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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 REINFORCED CONCRETE STRUCTURES  
 
Concrete is arguably the most important building material, playing a part in all 
building structures.  Its virtue is its versatility, i.e. its ability to be moulded to take 
up the shapes required for the various structural forms.  It is also very durable and 
fire resistant when specification and construction procedures are correct.  
Concrete can be used for all standard buildings both single-storey and multi-storey 
and for containment and retaining structures and bridges.  Some of the common 
building structures are shown in Fig. 1.1 and are as follows: 

1. The single-storey portal supported on isolated footings. 
2. The medium-rise framed structure which may be braced by shear walls or 

unbraced.  The building may be supported on isolated footings, strip 
foundations or a raft.  

3. The tall multi-storey frame and core structure where the core and rigid 
frames together resist wind loads.  The building is usually supported on a 
raft which in turn may bear directly on the ground or be carried on piles or 
caissons.  These buildings usually include a basement.  

     Complete designs for types 1 and 2 are given.  The analysis and design for type 
3 is discussed.  The design of all building elements and isolated foundations is 
described.  
 
 
1.2 STRUCTURAL ELEMENTS AND FRAMES  
 
The complete building structure can be broken down into the following elements:  

 Beams: horizontal members carrying lateral loads 
 Slab: horizontal plate elements carrying lateral loads 
 Columns: vertical members carrying primarily axial load but generally 

subjected to axial load and moment 
 Walls: vertical plate elements resisting vertical, lateral or in-plane loads  
 Bases and foundations: pads or strips supported directly on the ground 

that spread the loads from columns or walls so that they can be supported 
by the ground without excessive settlement.  Alternatively the bases may 
be supported on piles. 

     To learn about concrete design it is necessary to start by carrying out the design 
of separate elements.  However, it is important to recognize the function of the 
element in the complete structure and that the complete structure or part of it needs 
to be analysed to obtain actions for design.  The elements listed above are 
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illustrated in Fig. 1.2 which shows typical cast-in-situ concrete building 
construction.  
     A cast-in-situ framed reinforced concrete building and the rigid frames and 
elements into which it is idealized for analysis and design are shown in Fig. 1.3. 
The design with regard to this building will cover  

1. One-way continuous slabs  
2. Transverse and longitudinal rigid frames  
3. Foundations  

     Various types of floor are considered, two of which are shown in Fig. 1.4.  A 
one-way floor slab supported on primary reinforced concrete frames and secondary 
continuous flanged beams is shown in Fig. 1.4(a).  In Fig. 1.4(b) only primary 
reinforced concrete frames are constructed and the slab spans two ways.  Flat slab 
construction, where the slab is supported by the columns without beams, is also 
described.  Structural design for isolated pad, strip and combined and piled 
foundations and retaining walls (Fig. 1.5) is covered in this book. 
 
 
1.3 STRUCTURAL DESIGN  
 
The first function in design is the planning carried out by the architect to determine 
the arrangement and layout of the building to meet the client's requirements.  The 
structural engineer then determines the best structural system or forms to bring the 
architect's concept into being.  Construction in different materials and with 
different arrangements and systems may require investigation to determine the 
most economical answer.  Architect and engineer should work together at this 
conceptual design stage.  
Once the building form and structural arrangement have been finalized, the design 
problem consists of the following:  

1. Idealization of the structure into load bearing frames and elements for 
analysis and design  

2. Estimation of loads  
3. Analysis to determine the maximum moments, thrusts and shears for 

design  
4. Design of sections and reinforcement arrangements for slabs, beams, 

columns and walls using the results from 3  
5. Production of arrangement and detail drawings and bar schedules  

 
 
1.4 DESIGN STANDARDS  
 
In Europe, design is generally to limit state theory in accordance with the following 
Eurocodes: 
BS EN 1990:2002 Eurocode – Basis of structural design 
BS EN 1992-1-1:2004: Eurocode 2: Design of concrete structures Part-1: General 
rules and rules for buildings  
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BS EN 1992-1-2:2004: Eurocode 2: Design of concrete structures Part-1-2: 
General rules-Structural fire design  
     The design of sections for strength is according to plastic theory based on 
behaviour at ultimate loads.  Elastic analysis of sections is also covered because 
this is used in calculations for deflections and crack width.  
     The loading on structures conforms to: 
BS EN 1991-1-1: 2002 Eurocode 1: Actions on Structures Part-1-1: General 
actions-Densities, self-weight, imposed loads on buildings 
BS EN 1991-1-3: 2003 Eurocode 1: Actions on Structures. General actions. Snow 
loads  
BS EN 1991-1-4: 2005 + A1:2010 Eurocode 1: Actions on structures. General 
actions. Wind actions 
 
In addition to the above codes, although the code gives recommended values for 
certain parameters, each nation in Europe is allowed some leeway in terms of the 
values of certain parameters to be used in the codes.  In U.K., the National Annex 
gives guidance on the specific parameters to be used.   
    The code also makes a clear distinction between principles and application rules.  
Principles are indicated by the letter P after the clause number.  Principles 
comprise general statements, models, requirements for which no alternative is 
permitted.  For example:  
 
4.2 Environmental conditions 
4.2(1)P Exposure conditions are chemical and physical conditions to which the 
structure is exposed.  
 
4.3 Requirements for durability 
4.3(1)P In order to achieve the required design working life of the structure, 
adequate measures shall be taken to protect each structural element against the 
relevant environmental actions. 
 
Application rules are generally recognized to satisfy the principles.  Application 
rules follow principle rules.  For example under Section 5 Structural analysis: 
 
5.1.1 (4) P Analysis shall be carried out using idealizations of both geometry and 
the behaviour of the structure.  The idealizations selected shall be appropriate to 
the problem considered. 
5.1.1 (7) Common idealizations of the behaviour used for the analysis are: 

 Linear elastic behaviour 
 Linear elastic behaviour with limited redistribution 
 Plastic behaviour including strut and tie models 
 Non-linear behaviour 

 
     In the above 5.1.1(4)P is a principle and 5.1.1 (7) is an application rule.   
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Note that different application rules can be used provided they are not in conflict 
with the principle rules.  It is because of this, unlike say the British Standard       
BS 8110 for the design of reinforced concrete structures, the Eurocodes do not 
always give detailed equations for the design of an element or a structure.   
 
 The codes set out the design loads, load combinations and partial factors of safety, 
material strengths, design procedures and sound construction practice.  A thorough 
knowledge of the codes is one of the essential requirements of a designer.  Thus it 
is important that copies of these codes are obtained and read in conjunction with 
the book.  Generally, only those parts of clauses and tables are quoted which are 
relevant to the particular problem, and the reader should consult the full text.  
 
 
1.5 CALCULATIONS, DESIGN AIDS AND COMPUTING  
 
Calculations form the major part of the design process.  They are needed to 
determine the loading on the elements and structure and to carry out the analysis 
and design of the elements.  The need for orderly and concise presentation of 
calculations cannot be emphasized too strongly.  Very often in practice, projects 
are kept on hold after some preliminary work. Work should therefore be presented 
in a form such that persons other than those who did the initial design can follow 
what was done without too much looking back.  A useful reference for the 
presentation of design office calculations is Higgins and Rogers (1999). 
     Design aids in the form of charts and tables are an important part of the 
designer's equipment.  These aids make exact design methods easier to apply, 
shorten design time and lessen the possibility of making errors.  Useful books are 
Reynolds et. al (2007) and Goodchild (1997). 
     The use of computers for the analysis and design of structures is standard 
practice.  Familiarity with the use of spreadsheets is particularly useful.  A useful 
reference is Goodchild and Webster (2000). 
It is essential that students understand the design principles involved and are able 
to make manual design calculations before using computer programs.  Manual 
calculations are also necessary to check that results from the computer are in the 
right ‘ball park’.  This ensures that no gross errors in terms of loads or structural 
idealizations have been committed. 
 
 
1.6 DETAILING  
 
The general arrangement drawings give the overall layout and principal dimensions 
of the structure.  The structural requirements for the individual elements are 
presented in the detail drawings.  The outputs of the design calculations are 
sketches giving sizes of members and the sizes, arrangement, spacing and cut-off 
points for reinforcing bars at various sections of the structure.  Detailing translates 
this information into a suitable pattern of reinforcement for the structure as a 
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whole.  Useful references on detailing are by Institution of Structural Engineers, 
London (2006) and Calavera (2012). 
     It is essential for the student to know the conventions for making reinforced 
concrete drawings such as scales, methods for specifying steel bars, links, fabric, 
cut-off points etc.  The main particulars for detailing are given for most of the 
worked exercises in the book.  The bar schedule can be prepared on completion of 
the detail drawings.  In the U.K., the form of the schedule and shape code for the 
bars conform to BS 8666: 2005, Scheduling, Dimensioning, Bending and Cutting 
of Steel for Reinforcement for Concrete. 
     It is essential that the student carry out practical work in detailing and 
preparation of bar schedules prior to and/or during a design course in reinforced 
concrete.  Computer detailing suites are now in general use in design offices. 
 
 
1.7 REFERENCES  
 
Calavera, Jose. (2012). Manual for Detailing Reinforced Concrete Structures to 
EC2. Spon Press/Taylor & Francis.  
 
Goodchild, C.H. and Webster, R.M. (2000). Spresdsheets for Concrete Design to 
BS 8110 and EC2. Reinforced Concrete Council. 
 
Goodchild, C.H. (1997). Economic Concrete Frame Elements. Reinforced 
Concrete Council. 
 
Higgins, J.B and Rogers, B.R. (1999). Designed and Detailed, 4th ed. British 
Cement Association.  
 
Institution of Structural Engineers. (2006). Standard Method of Detailing 
Structural Concrete: A Manual for Best Practice, 3rd ed. London. 
 
Reynolds, C.E., Steedman, J.C. and Threlfall, A.J. (2007). Reinforced Concrete 
Designer’s Handbook, 11th ed. Routledge. 



6                                                                                          Reinforced concrete design to EC2 

 
Fig. 1.1 (a) Single storey portal; (b) medium-rise reinforced concrete framed building; (c) reinforced 

concrete frame  and core structure. 
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Fig. 1.2 (a) Part elevation of reinforced concrete building; (b) section AA, T-beam; 
(c) section BB; (d) continuous slab; (e) wall; (f) column base. 

 

Base 
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Fig. 1.3 (a) Plan of roof and floor; (b) section CC, T-beam; (c) section DD, column; (d) side elevation, 

longitudinal frame; (e) section AA, transverse frame; (f) continuous one-way slab. 
 
 

 
Fig. 1.4 (a) One-way floor slab; (b) two-way floor slab. 

Slab 

 
T-beams providing 
supports for one-way 
slabs. 
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Fig. 1.5 (a) Isolated base; (b) wall footing; (c) combined base; (d) piled foundation; (e) retaining wall. 

 



CHAPTER 2 
 

MATERIALS, STRUCTURAL 
FAILURES AND DURABILITY 

 
 
2.1 REINFORCED CONCRETE STRUCTURES  
 
Reinforced concrete is a composite material of steel bars embedded in a hardened 
concrete matrix; concrete, assisted by the steel, carries the compressive forces, 
while steel resists tensile forces.  Concrete itself is a composite material.  The dry 
mix consists of cement and coarse and fine aggregates.  Water is added and reacts 
with the cement which hardens and binds the aggregates into the concrete matrix; 
the concrete matrix sticks or bonds onto the reinforcing bars. 
     The properties of the constituents used in making concrete, mix design and the 
principal properties of concrete are discussed briefly.  Knowledge of the properties 
and an understanding of the behaviour of concrete are important factors in the 
design process.  The types and characteristics of reinforcing steels are noted.   
     Deterioration of and failures in concrete structures are now of widespread 
concern.  This is reflected in the increased prominence given in the concrete codes 
to the durability of concrete structures.  The types of failure that occur in concrete 
structures are listed and described.  Finally the provisions regarding the durability 
of concrete structures noted in the code and the requirements for cover to prevent 
corrosion of the reinforcement and provide fire resistance are set out.   
 
 
2.2 CONCRETE MATERIALS  
 
 
2.2.1 Cement  
 
The raw materials from which cement is made are lime, silica, alumina and iron 
oxide.  These constituents are crushed and blended in the correct proportions and 
burnt in a rotary kiln.  The resulting product is called clinker.   The cooled clinker 
can be mixed with gypsum and various additional constituents and ground to a fine 
powder in order to produce different types of cements.  The main chemical 
compounds in cement are calcium silicates and aluminates.   
The Euro standard for cements is BS EN 197-1:2011 Cement –Part 1: 
Composition, specifications and conformity criteria for common cements. 
     When water is added to cement and the constituents are mixed to form cement 
paste, chemical reactions occur and the mix becomes stiffer with time and sets.  
The addition of gypsum mentioned above retards and controls the setting time.  
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This ensures that the concrete does not set too quickly before it can be placed in its 
final position or too slowly so as to hold up construction.   
 
 
2.2.1.1 Types of Cements 
 
The code gives five groups of cements, all of which are mixtures of different 
proportions of clinker and another major constituent.  The five groups are:   
 
1. CEM I Portland cement:  This comprises mainly ground clinker and up to 5% of 
minor additional constituents. 
 
2. CEM II Portland composite cement: This comprises of seven types which 
contain clinker and up to 35% of another single constituent.  

i. Portland slag cement (CEM II/A-S and CEM II/B-S).  This comprises of 
clinker and blast furnace slag which originates from the rapid cooling of 
slag obtained by smelting iron ore in a blast furnace.  The percentage of 
the slag varies between 6 and 35%.  

ii. Portland silica fume cement (CEM II/A-D).  This comprises of clinker 
and silica fume which originates from the reduction of high purity quartz 
with coal in an electric arc furnace in the production of silicon and 
ferrosilicon alloys. 

iii. Portland-Pozzolana cement (CEM II/A-P, CEM II/B-P, CEM II/A-Q, 
CEM II/B-Q).  This comprises clinker and natural pozzolana such as 
volcanic ashes or sedimentary rocks with suitable chemical and 
mineralogical composition or Natural calcined pozzolana such as 
materials of volcanic origin, clays, shales or sedimentary rocks activated 
by thermal treatment. 

iv. Portland-fly ash cement (CEM II/A-V, CEM II/B-V, CEM II/A-W,    
CEM II/B-W).  This mixture of clinker and fly ash dust-like particles 
precipitated from the flue gases from furnaces fired with pulverised coal. 

v. Portland burnt shale cement (CEM II/A-T, CEM II/B-T).  This consists of 
clinker and burnt shale, specifically oil shale burnt in a special kiln at 
800OC. 

vi. Portland-limestone cement (CEM II/A-L, CEM II/B-L, CEM II/A-LL, 
CEM II/B-LL). 

vii. Portland-composite cement (CEM II/A-M, CEM II/B-M). 
 
3. CEM III blast furnace cement (CEM III/A, CEM III/B, CEM III/C): This 
comprises clinker and a higher percentage (36-95%) of blast furnace slag than that 
in CEM II/A-S and CEM II/B-S. 
 
4. CEM IV pozzolanic cement (CEM IV/A, CEM IV/B): This comprises of clinker 
and a mixture of silica fume, pozzolanas and fly ash.   
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5. CEM V composite cement (CEM V/A, CEM V/B): This comprises clinker and a 
higher percentage of blast furnace slag and pozzolana or fly ash.  
 

Table 2.1 Clinker content in cements 
 

Cement type Clinker content 
A B C 

CEM II 80-94% 65-79%  
CEM III 35-64% 20-34% 5-19% 
CEM IV 65-89% 45-64% - 
CEM V 40-64% 20-38% - 

 
The letters A, B and C designate respectively higher, medium and lower proportion 
of clinker in the final mixture.  However the percentage of clinker with the 
designations A, B, C can be different in different types of cement as shown in 
Table 2.1.    
The second constituent in cement in addition to clinker is designated by the second 
letter as follows: 

S = blast furnace slag 
D = silica fume 
P = natural pozzolana 
Q = natural calcined pozzolana 
V = siliceous fly ash 
W = calcareous fly ash (e.g., high lime content fly ash) 
L or LL = limestone 
T = burnt shale 
M = combination of two or more of the above components 

 
 
2.2.1.2 Strength Class 
 
There are three classes of strength as shown in Table 2.2.  The strength class of 
cement classifies its compressive strength at 28 days.   
 

Table 2.2 Strength class 
 

Strength 
class 

Compressive strength, MPa Initial 
setting time Early strength Standard strength 

2 day 7 day 28 day Minutes 
32.5 N - ≥ 16.0 ≥ 32.5 ≤ 52.5 ≥ 75 
32.5 R ≥ 10.0 - ≥ 32.5 ≤ 52.5 
42.5 N ≥ 10.0 - ≥ 42.5 ≤ 62.5 ≥ 60 
42.5 R ≥ 20.0 - ≥ 42.5 ≤ 62.5 
52.5 N ≥ 20.0 - ≥ 52.5 - ≥ 45 
52.5 R ≥ 30.0 - ≥ 52.5 - 
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2.2.1.3 Sulfate-Resisting Cement 
 
Sulfate resisting cements are used particularly in foundations where the presence of 
sulfates in the soil which can attack ordinary cements.  The sulfate resisting 
cements have the designation SR and they are produced by controlling the amount 
of tricalcium aluminate (C3A) in the clinker.  The available types are: 

i. Sulfate resisting Portland cements CEM I-SR0, CEM I-SR3,          
CEM I-SR5 which have the percentage of tricalcium aluminate in the 
clinker less than or equal to 0, 3 and 5% respectively. 

ii. Sulfate resisting blast furnace cements CEM III/B-SR, CEM III/C-SR 
(no need for control of C3A content in the clinker). 

iii. Sulphate resisting pozzolanic cements CEM IV/A-SR, CEM IV/B-SR 
(C3A content in the clinker should be less than 9%). 

 
 
2.2.1.4 Low Early Strength Cement 
 
These are CEM III blast furnace cements.  Three classes of early strength are 
available with the designations N, R and L respectively signifying normal, 
ordinary, high and low early strength as shown in Table 2.2. 
 
 
2.2.1.5 Standard Designation of Cements 
 
CEM cement designation includes the following information: 

i. Cement type (CEM I-CEM V) 
ii. Strength class (32.5-52.5) 

iii. Indication of early strength 
iv. Additional designation SR for sulfate resisting cement 
v. Additional designation LH for low heat cement 

 
Examples: 
1. CEM II/A-S 42.5 N  
This indicates Portland composite cement (indicated by CEM II), with high 
proportion of clinker (indicated by letter A) and the second constituent is slag 
(indicated by letter S) and the strength class is 42.5 MPa (indicating that the 
characteristic strength at 28 days is a minimum of 42.5 MPa) and it gains normal 
early strength (indicated by letter N). 
 
2. CEM III/B 32.5 N  
This indicates blast furnace cement (indicated by CEM III); with medium 
proportion of clinker (indicated by letter B) and the strength class is 32.5 MPa 
(indicating that the characteristic strength at 28 days is a minimum of 32.5 MPa) 
and it gains normal early strength (indicated by letter N). 
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3. CEM I 42.5 R-SR3 
This indicates Portland cement (indicated by CEM I),  the strength class is 42.5 
MPa (indicating that the characteristic strength at 28 days is a minimum of 42.5 
MPa) and it gains high early strength (indicated by letter R) and is sulfate resisting 
with C3A content in the clinker less than 3%.  
 
4. CEM III-C 32.5 L – LH/SR 
This indicates blast furnace cement (indicated by CEM III), the strength class is 
32.5 MPa (indicating that the characteristic strength at 28 days is a minimum of 
32.5 MPa) and it gains low early strength (indicated by letter L) and is sulfate 
resisting (indicated by letters SR) and is of low heat of hydration (indicated by 
LH). 
 
 
2.2.1.6 Common Cements 
 
Of twenty seven types of cement described in 2.2.1.1, the most common ones are 
mainly six:  

i. CEM I  
ii. CEM II/B-S (containing 65-79% of clinker and 21-35% of blast furnace 
       slag)  
iii. CEM II/B-V (containing 65-79% of clinker and 21-35% of siliceous fly 
       ash)  
iv. CEM II/A-LL (containing 80-94% of clinker and 6-20% of limestone) 
v. CEM III/A (containing 35-64% of clinker and 36-65% of other 
       constituents)  
vi. CEM III/B (containing 20-34% of clinker and 66-80% of other 
       constituents) 

 
     The initial setting time must be a minimum of 75, 60 and 45 minutes for 
strength classes of 32.5, 42.5 and 52.5 respectively. 
 
Useful references on aspects of cement are Neville (1996) and Popovics (1998). 
 
 
2.2.2 Aggregates  
 
The bulk of concrete is aggregate in the form of sand and gravel which is bound 
together by cement.  Aggregate is classed into the following two sizes:  

1. Coarse aggregate: gravel or crushed rock 5 mm or larger in size  
2. Fine aggregate: sand less than 5 mm in size  

     Natural aggregates are classified according to the rock type, e.g. basalt, granite, 
flint, limestone.  Aggregates should be chemically inert, clean, hard and durable.  
Organic impurities can affect the hydration of cement and the bond between the 
cement and the aggregate.  Some aggregates containing silica may react with alkali 
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in the cement causing the some of the larger aggregates to expand which may lead 
to concrete disintegration.  This is the alkali–silica reaction.  Presence of chlorides 
in aggregates, for example salt in marine sands, will cause corrosion of steel 
reinforcement.  Excessive amounts of sulphate will also cause concrete to 
disintegrate.   
     To obtain a dense strong concrete with minimum use of cement, the cement 
paste should fill the voids in the fine aggregate while the fine aggregate and cement 
paste fill the voids in the coarse aggregate.  Coarse and fine aggregates are graded 
by sieve analysis in which the percentage by weight passing a set of standard sieve 
sizes is determined.  Grading limits for each size of coarse and fine aggregate are 
set out in BS EN 12620:2002 + A1:2008: Aggregates for concrete. 
     The grading affects the workability; a lower water-to-cement ratio can be used 
if the grading of the aggregate is good and therefore strength is also increased.  
Good grading saves cement content.  It helps prevent segregation during placing 
and ensures a good finish.   
 
 
2.2.3 Concrete Mix Design  
 
Concrete mix design consists in selecting and proportioning the constituents to 
give the required strength, workability and durability.  Three types of mixes are 
defined in BS EN 206–1:2000: Concrete.  Specification, performance, production 
and conformity and BS 8500-1:2006 Part 1: Method of specifying and guidance for 
the specifier.  This is Complementary British Standard to BS EN 206-1-1:2006. 
 
The mixes are:  
 
1. Designed concrete: This is concrete for which the required properties and 
additional characteristics are specified to the producer who is responsible for 
providing a concrete conforming to the specifications which shall contain: 

a. Compressive strength class 
b. Exposure classes (see Table 2.5) 
c. Maximum nominal upper aggregate size 
d. Chloride content class (maximum chloride content in cement is limited to 

0.20-0.40% in the case of reinforced concrete and to 0.10-0.20% in the 
case of prestressed concrete). 

 
2. Prescribed concrete: The composition of the concrete and the constituent 
materials to be used are specified to the producer who is responsible for providing 
a concrete with the specified composition. The specification shall contain: 

a. Cement content 
b. Cement type and strength class 
c. Either w/c ratio or consistence in terms of slump or results of other test 

methods (see section 2.4.2) 
d. Type, categories and maximum chloride content of aggregate 
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e. Maximum nominal upper size of aggregate and any limitations for 
grading 

f. Type and quantity of admixture or other additives, if any 
 
3. Standardized prescribed concrete: This is prescribed concrete for which the 
composition is given in a standard valid in the place of use of the concrete.  
Standardized prescribed concrete shall be specified by citing the standard valid in 
the place of use of the concrete giving the relevant requirements.  Standardized 
prescribed concrete shall be used only for: 

i. Normal-weight concrete for plain and reinforced concrete structures 
ii. Compressive strength classes for design: Minimum characteristic cylinder 
        strength of 16 MPa unless 20 MPa is permitted in provisions 
iii. Exposure limited to concrete inside buildings with very low air humidity 

     The water-to-cement ratio is the single most important factor affecting concrete 
strength.  For full hydration cement absorbs about 0.23 of its weight of water in 
normal conditions.  This amount of water gives a very dry mix and extra water is 
added to give the required workability.  The actual water-to-cement ratio used 
generally ranges from 0.45 to 0.6.  The aggregate-to-cement ratio also affects 
workability through its influence on the water-to-cement ratio, as noted above.  
The mix is designed for the 'target mean strength' which is the characteristic 
strength required for design plus a specified number of times the standard deviation 
of the mean strength.  In Eurocode 2, the mean value of cylinder compressive 
strength fcm is taken as characteristic strength fck plus 8 MPa.  Characteristic 
cylinder compressive strength fck is defined as not more than 5% of the results 
falling below the chosen strength. 
     Several methods of mix design are used in practice.  Useful references are Day 
(2006) and Klett (2003). 
 
 
2.2.4 Admixtures  
 
Advice on admixtures is given in BS EN 934–2: 2009 Admixtures for concrete, 
mortar and grout and related standards. 
The code defines admixtures as ‘Materials added during the mixing process in a 
quantity not more than 5% by mass of the cement content of the concrete, to 
modify the properties of the mix in the fresh and/or hardened state’.  
     Admixtures covered by Euro Standards are as follows:  

i. Set accelerating (retarding) admixture: admixture which decreases 
(increases) the time to commencement of transition of the mix from the 
plastic to the rigid state. 

ii. Water resisting admixture: admixture which reduces the capillary 
absorption of hardened concrete. 

iii. Water reducing/plasticizing admixture: admixture which, without 
affecting the consistence, permits a reduction in the water content of a 
given concrete mix, or which, without affecting the water content, 
increases the slump/flow or produces both effects simultaneously. 
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iv. Air entraining admixture: admixture which allows a controlled quantity of 
small, uniformly distributed air bubbles to be incorporated during mixing 
which remain after hardening.  This is used to increase resistance to 
freeze-thaw damage to concrete. 

v. High range water reducing agents/super plasticizers, which are more 
efficient than (3) above. 

vi. Hardening accelerating admixture: admixture which increases the rate of 
development of early strength in the concrete, with or without affecting 
the setting time. 

vii. Water retaining admixture: admixture which reduces the loss of water by 
a reduction of bleeding. 

There are also admixtures which produce several different actions.   
Some useful references on admixtures are Rixon et al. (1999), Paillere (1995) and 
Ramachandran (1995). 
 
 
2.3 CONCRETE PROPERTIES  
 
The main strength and deformational properties of concrete are discussed below. 
 
 
2.3.1 Stress−Strain Relationship in Compression 
 
Fig. 2.1 shows the stress−strain relationship for concrete in compression.  The 
characteristic compressive strength of cylinder fck is defined as the strength below 
which not more than 5% of the results fall.  The mean compressive strength fcm is 
related to fck as fcm = fck + 8 MPa. 
     For the design of cross sections, two simplified stress−strain relationships are 
proposed in Eurocode 2.  The stress−strain relationship shown in Fig. 2.2 is a 
combination of a parabola and a straight line.  The second simplified representation 
shown in Fig. 2.3 is bilinear. 
The mathematical equation for the parabola−rectangle is given by 
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Table 2.3 shows the several strength and strain properties of concrete.  It also 
shows relationship between characteristic cylinder strength fck and cube strength 
fcu.  An approximate relationship between cylinder strength fck and cube strength 
fck, cube is 

fck ≈ 0.8 fck, cube 
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Fig. 2.1 Stress−strain curve for concrete in compression. 

 

 
Fig. 2.2 Parabola−rectangle stress−strain relationship for concrete in compression. 

 
 
2.3.2 Compressive Strength  
 
The compressive strength is the most important property of concrete.  The 
characteristic strength that is the concrete grade is measured by the 28-day 
cylinder/cube strength.  Standard cylinders 150 mm diameter and 300 mm high or 
cubes of 150 or 100 mm for aggregate not exceeding 25 mm in size are crushed to 
determine the strength.  The test procedure is given in BS EN 12390:2: 2009:  
Testing Hardened Concrete: Making and curing specimens for strength tests and 
BS EN 12390:3: 2009:  Testing Hardened Concrete: Compressive strength of test 
specimen.  
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Fig. 2.3 Bilinear stress−strain relationship for concrete in compression. 
 

 
 
 

Fig. 2.4 Split cylinder test. 
2.3.3 Tensile Strength  
 
The tensile strength of concrete is about a tenth of the compressive strength.  It is 
determined by loading a concrete cylinder across a diameter as shown in Fig. 2.4.  
The test procedure is given in BS EN 12390:6: 2009:  Testing Hardened Concrete: 
Tensile splitting strength of test specimens. 
The mean characteristic tensile strength fctm is related to mean cylinder 
compressive strength fcm as follows. 
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The 5% and 95% fractiles of the characteristic tensile strength of concrete are 
respectively fctk, 0.05   = 0.7 fctk and fctk, 0.95 = 1.3 fctm. 
 
 
2.3.4 Modulus of Elasticity  
 
The short-term stress−strain curve for concrete in compression is shown in Fig. 
2.1.  The slope of the initial straight portion is the initial tangent modulus.  At any 
point, the slope of the line joining the point to the origin is the secant modulus.  
The value of the secant modulus depends on the stress and rate of application of 
the load.  The code giving details of the method of determining the elastic modulus 
is BS 1881–121:1983 Testing concrete. Methods for determination of Static 
modulus of elasticity in compression.  Note: A new Eurocode version is in 
preparation. 
     The dynamic modulus is determined by subjecting a beam specimen to 
longitudinal vibration.  The value obtained is unaffected by creep and is 
approximately equal to the initial tangent modulus.  The code BS 1881–209:1990 
Testing concrete. Recommendations for the measurement of dynamic modulus of 
elasticity gives the details. 
BS EN 1002-1-1:2004 Eurocode 2 Design of concrete structures gives the 
following expression for the short term secant modulus of elasticity (see Fig. 2.1) 
between zero stress and 0.4 fcm for concretes made with quartzite aggregates as  

3.0cm
cm ]

10
f[22E  GPa 

where fcm = fck +8 MPa, fck = characteristic cylinder strength.   
Because of the fact that the elastic modulus is greatly dependent on the stiffness of 
the aggregates, for limestone and sandstone aggregates the value from the equation 
should be reduced by 10% and 30% respectively.  For basalt aggregates the value 
should be increased by 20%. 
The tangent modulus Ec = 1.05 Ecm 
 
 
2.3.5 Creep  
 
Creep in concrete is the gradual increase in strain with time in a member subjected 
to prolonged stress.  The creep strain is much larger than the elastic strain on 
loading.  If the specimen is unloaded there is an immediate elastic recovery and a 
slower recovery in the strain due to creep.  Both amounts of recovery are much less 
than the original strains under load.   
     The main factors affecting creep strain are the concrete mix and strength, the 
type of aggregate, curing, ambient relative humidity, the magnitude and duration of 
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sustained loading and the age of concrete at which load is first applied.     In clause 
3.1.4(2), Eurocode 2 specifies that provided the concrete is not subjected to a stress 
greater than 45% of the compressive strength at the time of loading, long term 
creep strain )t,( 0cc  is calculated from the creep coefficient )t,( 0 by the 
equation  

)t,(
E

stress)t,( 0
c

0cc   

where Ec is the tangent modulus of elasticity of the concrete at the age of loading, 
t0.  The creep coefficient )t,( 0  depends on the effective section thickness, the 
age of loading and the relative ambient humidity. The creep coefficient is used in 
deflection calculations.  Clause 3.1.4 and Annex B of Eurocode 2 give the 
equations for determining the creep coefficient.   More details and examples are 
given in section 19.1.17, Chapter 19. 
 
 
2.3.6 Shrinkage  
 
The total shrinkage strain is composed of two parts, the drying shrinkage strain and 
the autogenous shrinkage strain.  Drying shrinkage strain is the contraction that 
occurs in concrete when it dries and hardens.  Drying shrinkage develops slowly 
due to migration of water and is irreversible but alternate wetting and drying 
causes expansion and contraction of concrete.  The autogenous shrinkage strain 
develops during the hardening of concrete and develops quite fast during the early 
days after casting of concrete.   
     The aggregate type and content are the most important factors influencing 
shrinkage.  The larger the size of the aggregate is, the lower is the shrinkage and 
the higher is the aggregate content; the lower the workability and water-to-cement 
ratio are, the lower is the shrinkage.  Aggregates that change volume on wetting 
and drying, such as sandstone or basalt, produce concrete which experiences a 
large shrinkage strain, while concrete made with non-shrinking aggregates such as 
granite or gravel experience lower shrinkage strain.  A decrease in the ambient 
relative humidity also increases shrinkage. 
     Eurocode 2 gives necessary data for calculating the drying shrinkage in 
equations (3.9)−(3.10) and in equations (3.11)−(3.13).  Values of shrinkage strain 
are used in deflection calculations.  More details and an example are given in 
section 19.1.18, Chapter 19. 
 
 
2.4 TESTS ON WET CONCRETE  
 
2.4.1 Workability  
 
The workability of a concrete mix gives a measure of the ease with which fresh 
concrete can be placed and compacted.  The concrete should flow readily into the 
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forms and go around and cover the reinforcement, the mix should retain its 
consistency and the aggregates should not segregate.  A mix with high workability 
is needed where sections are thin and/or reinforcement is complicated and 
congested. 
     For a given concrete, the main factor affecting workability is the water content 
of the mix.  Plasticizing admixtures will increase workability.  The size of 
aggregate, its grading and shape, the ratio of coarse to fine aggregate and the 
aggregate-to-cement ratio also affect workability to some degree.  
 
 
2.4.2 Measurement of Workability  
 
(a) Slump test  
The fresh concrete is tamped into a standard cone which is lifted off after filling 
and the slump is measured.  The slump is 25–50 mm for low workability, 50-100 
mm for medium workability and 100–175 mm for high workability.  Normal 
reinforced concrete requires fresh concrete of medium workability.  The slump test 
is the usual workability test specified.  The standard covering slump testing is      
BS EN 12350–2:2009 Testing fresh concrete. Slump test. 
 
(b) Degree of compactability test 
The fresh concrete is carefully placed in a container using a trowel, avoiding any 
compaction of the concrete. When the container is full, the top surface is struck off 
level with the top of the container. The concrete is compacted by vibration and the 
distance from the surface of the compacted concrete to the upper edge of the 
container is used to determine the degree of compactability.  Details are given in 
BS EN 12350–4: 2009 Testing fresh concrete–Part 4: Degree of compactability. 
 
(c) Flow table test  
This test determines the consistency of fresh concrete by measuring the spread of 
concrete on a flat plate which is subjected to jolting. 
Details are given in BS EN 12350–5: 2009 Testing fresh concrete–part 5: Flow 
table test. 
 
 
2.5 TESTS ON HARDENED CONCRETE  
 
 
2.5.1 Normal Tests  
 
The main destructive tests on hardened concrete are as follows. 
(a) Compression test: Refer to section 2.3.2 above. 
(b) Tensile splitting test: Refer to section 2.3.3 above.  
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(c) Flexure test: A plain concrete specimen is tested to failure in pure bending.  
The British standard covering testing of flexural strength is  BS EN 12390:5: 2009:  
Testing hardened concrete: Flexural strength of test specimens. 
(d) Test cores: Cylindrical cores are cut from the finished structure with a rotary 
cutting tool.  The core is soaked, capped and tested in compression to give a 
measure of the concrete strength in the actual structure.  The ratio of core height to 
diameter and the location where the core is taken affect the strength.  The strength 
is lowest at the top surface and increases with depth through the element.  A ratio 
of core height-to-diameter of two gives a standard cylinder test.  The Euro standard 
covering testing of cores is BS EN 12504-1:2009 Testing concrete in structures. 
Cored specimens. Taking, examining and testing in compression. 
 
 
2.5.2 Non-destructive Tests  
 
The main non-destructive tests for strength on hardened concrete are as follows. 
 
(a) Rebound hardness test 
The Schmidt hammer is used in the rebound hardness test in which a metal 
hammer held against the concrete is struck by another spring-driven metal mass 
and rebounds.  The amount of rebound is recorded on a scale and this gives an 
indication of the concrete strength.  The larger the rebound number is, the higher is 
the concrete strength.  The standard covering testing by Rebound hammer is        
BS EN 12504-2:2001 Testing concrete in structures. Non-destructive testing. 
Determination of rebound number. 
 
(b) Pullout force test 
A small metal disc with a rod fixed centrally on one side is glued into concrete 
using adhesives, so that the rod protrudes from the surface of the concrete. The 
force required to pull the disc out of the concrete is measured. 
BS EN 12504-3:2005 Testing concrete in structures. Determination of pull-out 
force covers the test procedure. 
 
(c) Ultrasonic pulse velocity test  
In the ultrasonic pulse velocity test, the velocity of ultrasonic pulses that pass 
through a concrete section from a transmitter to a receiver is measured.  The pulse 
velocity is correlated against strength.  The higher the velocity, the stronger is the 
concrete.  
 
(d) Other non-destructive tests  
Equipment has been developed to measure  

1. Crack widths and depths  
2. Water permeability and the surface dampness of concrete  
3. Depth of cover and the location of reinforcing bars  
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4. The electrochemical potential of reinforcing bars and hence the presence 
of corrosion  

A useful reference on testing of concrete in structures is Bungey et al. (2006). 
 
 
2.5.3 Chemical Tests  
 
A complete range of chemical tests is available to measure  

1. Depth of carbonation  
2. The cement content of the original mix  
3. The content of salts such as chlorides and sulphates that may react and 

cause the concrete to disintegrate or cause corrosion of the reinforcement 
     The reader should consult specialist literature. 
 
 
2.6 REINFORCEMENT 
 
Reinforcing bars are produced as hot rolled or cold worked high yield steel bars.  
They have characteristic yield strength fyk of 400 to 600 MPa.  Steel fabric is made 
from cold drawn steel wires welded to form a mesh.  High yield bars are produced 
as deformed bars with transverse ribs to improve bond with concrete. 
     The stress–strain curves for reinforcing bars are shown in Fig. 2.5.  Hot rolled 
bars have a definite yield point.  A defined proof stress at a strain of 0.2% is 
recorded for the cold worked bars.  The value of Young's modulus Es for steel is 
200 GPa.  The maximum breaking stress is k times the characteristic stress fyk.  The 
design stress fyd = fyk/γs, where γs = 1.15.   

 
 

Fig. 2.5(a) Stress−strain curve for hot rolled steel reinforcing bars. 
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Fig. 2.5(b) Stress–strain curve for cold worked steel reinforcing bars. 
 

 
 

Fig. 2.6 Design stress−strain curve for steel. 
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     The idealized design stress−strain curve for all reinforcing bars is shown in    
Fig. 2.6.   In the first case the maximum design stress is greater than fyd but the 
maximum strain is limited to εud taken as equal to 0.9 εuk.    An even more 
simplified option is to limit the maximum stress to fyd with no limit on the 
maximum strain.  For simplicity, the second option is preferred in all common 
design situations.  The material safety factor for steel is taken as γs = 1.15.  The 
behaviour in tension and compression is taken to be the same. Annex C in 
Eurocode 2 gives the properties of reinforcing bars shown in Table 2.3.   

 

Table 2.3 Properties of reinforcing bars 

Product form Bars and de-coiled rods Wire fabrics 

Class A B C A B C 

fyk or f0.2k 400-600 MPa 

k, minimum ≥ 1.05 ≥ 1.08 ≥1.15  
 < 1.35 

≥ 1.05 ≥ 1.08 ≥1.15  
 < 1.35 

εuk × 102 ≥ 2.5 ≥ 5.0 ≥ 7.5 ≥ 2.5 ≥ 5.0 ≥ 7.5 

As an example assuming: 
fyk = 500 MPa, k = 1.2, γs = 1.15, fyd = fyk/ γs = 435 MPa, εuk = 2.5 × 10−2, 

εud = 0.9εuk = 2.25 × 10−2, Es = 200 GPa, fyd/Es = 2.17 × 10−2 
 The maximum stress allowable at a strain of εud is given by 
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This shows that there is only a 5% increase in the maximum allowable stress. 
 
 
2.7 EXPOSURE CLASSES RELATED TO ENVIRONMENTAL  
    CONDITIONS  
 
BS EN 206-1:2000 Concrete -Part 1: Specification, performance, production and 
conformity defines six possible environmental conditions and the associated class 
designations which will determine the required cover to reinforcement to ensure 
durability.  These are shown in Tables 2.4a to f.  The main physical causes and 
attack by chemicals of concrete and reinforcement can be classified under the 
following headings.  Data on limiting values for composition and properties of 
concrete are taken from Table F.1 of EN 206-1-2000. 
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Table 2.4a Exposure class X0, related environmental conditions. 
Class 

designation 
Description of the environment Informative examples where 

exposure classes may occur 
1.  No risk of corrosion or attack 

X0 For concrete without 
reinforcement or embedded 
metal:  All exposures except 
where there is freeze/thaw, 
abrasion or chemical attack. 
For concrete with reinforcement 
or embedded metal: Very dry   

Concrete inside buildings with 
very low air humidity 
C12/15 

 
a. Freezing and thawing  
Concrete nearly always contains water which expands on freezing.  The freezing–
thawing cycle causes loss of strength, spalling and disintegration of the concrete.  
Resistance to damage is improved by using an air entraining agent. 
 
b. Chlorides  
High concentrations of chloride ions cause corrosion of reinforcement and the 
products of corrosion can disrupt the concrete.  Chlorides can be introduced into 
the concrete either during or after construction as follows. 

i. Before construction Chlorides can be admitted in admixtures containing 
calcium chloride, through using mixing water contaminated with salt 
water or improperly washed marine aggregates.   

ii. After construction Chlorides in salt or sea water, in airborne sea spray and 
from deicing salts can attack permeable concrete causing corrosion of 
reinforcement.  

 
c. Sulphates  
Sulphates are present in most cements and in some aggregates.  Sulphates may also 
be present in soils, groundwater and sea water, industrial wastes and acid rain.  The 
products of sulphate attack on concrete occupy a larger space than the original 
material and this causes the concrete to disintegrate and permits corrosion of steel 
to begin.  Sulphate-resisting cement should be used where sulphates are present in 
the soil, water or atmosphere and come into contact with the concrete.   
 
d. Carbonation  
Carbonation is the process by which carbon dioxide from the atmosphere slowly 
transforms calcium hydroxide into calcium carbonate in concrete.  The concrete 
itself is not harmed and increases in strength, but the reinforcement can be 
seriously affected by corrosion as a result of this process.   
     Normally the high pH value of the concrete prevents corrosion of the 
reinforcing bars by keeping them in a highly alkaline environment due to the 
release of calcium hydroxide by the cement during its hydration.  Carbonated 
concrete has a pH value of 8.3 while the passivation of steel starts at a pH value of 
9.5.  The depth of carbonation in good dense concrete is about 3 mm at an early 
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stage and may increase to 6 to 10 mm after 30 to 40 years.  Poor concrete may 
have a depth of carbonation of 50 mm after say 6-8 years.  The rate of carbonation 
depends on time, cover, concrete density, cement content, water-to-cement ratio 
and the presence of cracks.  
 

Table 2.4b Exposure classes XC, related environmental conditions, maximum w/c ratio, minimum 
strength class, minimum cement content in kg/m3 

Class 
designation 

Description of the environment Informative examples where 
exposure classes may occur 

2. Corrosion induced by carbonation 
XC1 Dry or permanently wet Concrete inside buildings with 

very low air humidity. 
Concrete permanently 
submerged in water. 
w/c = 0.65 
C20/25 
260 

XC2 Wet, rarely dry Concrete surfaces subjected to 
long term water contact. 
Many foundations. 
w/c = 0.60 
C25/30 
280 
 

XC3 Moderate humidity Concrete inside buildings with 
moderate or high air humidity. 
External concrete sheltered 
from rain. 
w/c = 0.55 
C30/37 
280 

XC4 Cyclic wet and dry Concrete surfaces subjected to 
water contact, not within 
exposure class XC2. 
w/c = 0.50 
C30/37 
300 

 
e. Alkali–silica reaction  
A chemical reaction can take place between alkali in cement and certain forms of 
silica in aggregate.  The reaction produces a gel which absorbs water and expands 
in volume, resulting in cracking and disintegration of the concrete.  The reaction 
only occurs when the following are present together:  

i. A high moisture level in the concrete. 
ii. Cement with a high alkali content or some other source of alkali 

iii. Aggregate containing an alkali-reactive constituent  
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The following precautions should be taken if uncertainty exists: 
i. Reduce the saturation of the concrete. 

ii. Use low alkali Portland cement and limit the alkali content of the mix to a 
low level. 

iii. Use replacement cementitious materials such as blast furnace slag or 
pulverized fuel ash.  Most normal aggregates behave satisfactorily. 

 
f. Acids  
Portland cement is not acid resistant and acid attack may remove part of the set 
cement.  Acids are formed by the dissolution in water of carbon dioxide or sulphur 
dioxide from the atmosphere.  Acids can also come from industrial wastes.  Good 
dense concrete with adequate cover is required and sulphate-resistant cements 
should be used if necessary.  
 

Table 2.4c Exposure classes XD, related environmental conditions, maximum w/c ratio, minimum 
strength class, minimum cement content in kg/m3 

 
Class 

designation 
Description of the environment Informative examples where 

exposure classes may occur 
3. Corrosion induced by chlorides 

XD1 Moderate humidity Concrete surfaces exposed to 
airborne chlorides. 
w/c = 0.55 
C30/37 
300 

XD2 Wet, rarely dry Swimming pools 
Concrete components exposed 
to industrial waters containing 
chlorides. 
w/c = 0.55 
C30/37 
300 

XD3 Cyclic wet and dry Parts of bridges exposed to 
spray containing chlorides. 
Pavements 
Car park slabs 
w/c = 0.45 
C35/45 
320 
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Table 2.4d Exposure classes XS, related environmental conditions, maximum w/c ratio, minimum 
strength class, minimum cement content in kg/m3 

Class 
designation 

Description of the environment Informative examples where 
exposure classes may occur 

4. Corrosion induced by chlorides from sea water 
XS1 Exposed to airborne salt but not 

in direct contact with sea water. 
Structures near to or on the 
coast 
w/c = 0.50 
C30/37 
300 

XS2 Permanently submerged Parts of marine structures 
w/c = 0.45 
C35/45 
320 

XS3 Tidal, splash and spray zones. Parts of marine structures 
w/c = 0.45 
C35/45 
340 

 
 
 

2.8 FAILURES IN CONCRETE STRUCTURES  
 
 
2.8.1 Factors Affecting Failure  
 
Failures in concrete structures can be due to any of the following factors:  

i. Incorrect selection of materials  
ii. Errors in design calculations and detailing  

iii. Poor construction methods and inadequate quality control and supervision  
iv. Chemical attack  
v. External physical and/or mechanical factors including alterations made to 

the structure  
     The above items are discussed in more detail below.  
 
 
2.8.1.1 Incorrect Selection of Materials  
 
The concrete mix required should be selected to meet the environmental or soil 
conditions where the concrete is to be placed.  The minimum grade that should be 
used for reinforced concrete is 25/30 class meaning that fck = 25 MPa and fck, cube is 
30 MPa.  Higher grades should be used for some foundations and for structures 
near the sea or in an aggressive industrial environment.  If sulphates are present in 
the soil or ground water, sulphate-resisting cement should be used.  Where freezing 
and thawing occur, air entrainment should be adopted. 
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Table 2.4e Exposure classes XF, related environmental conditions, maximum w/c ratio, minimum 
strength class, minimum cement content in kg/m3 and minimum content of air entrained 

Class 
designation 

Description of the environment Informative examples where 
exposure classes may occur 

5. Freeze/Thaw attack 
XF1 Moderate water saturation, 

without deicing agent. 
Vertical concrete surfaces 
exposed to rain and freezing. 
w/c = 0.55 
C30/37 
300 

XF2 Moderate water saturation, with 
deicing agent. 

Vertical concrete surfaces of 
road structures exposed to 
freezing and airborne de-icing 
agents. 
w/c = 0.55 
C25/30 
300 
4% air 

XF3 High water saturation, without 
deicing agent. 

Horizontal concrete surfaces 
exposed to rain and freezing. 
w/c = 0.50 
C30/37 
320 
4% Air 

XF4 High water saturation, with 
deicing agents or sea water. 

Road and bridge decks exposed 
to deicing agents. 
Concrete surfaces exposed to 
direct spray containing deicing 
agents and freezing. 
Splash zones of marine 
structures exposed to freezing. 
w/c = 0.45 
C30/37 
340 
4%Air 

 
Note: For XF2−XF4, use aggregates with sufficient freeze−thaw resistance. 
 
 
2.8.1.2 Errors in Design Calculations and Detailing  
 
An independent check should be made of all design calculations to ensure that the 
section sizes, slab thickness etc. and reinforcement sizes and spacing specified are 
adequate to carry the worst combination of design loads.  The check should include 
overall stability, robustness and serviceability and foundation design.   
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     Incorrect detailing is one of the most common causes of failure and cracking in 
concrete structures.  First the overall arrangement of the structure should be 
correct, efficient and robust.  Movement joints should be provided where required 
to reduce or eliminate cracking.  The overall detail design should shed water.  
     Internal or element detailing must comply with the code requirements.  The 
provisions specify the cover to reinforcement, minimum thicknesses for fire 
resistance, maximum and minimum steel areas, bar spacing limits and 
reinforcement to control cracking, lap lengths, anchorage of bars etc. 
 
 

Table 2.4f Exposure classes XA, related environmental conditions, maximum w/c ratio, minimum 
strength class, minimum cement content in kg/m3  

Class 
designation 

Description of the environment Informative examples where 
exposure classes may occur 

6. Chemical attack 
XA1 Slightly aggressive chemical 

environment 
Natural soils and ground water 
w/c = 0.55 
C30/37 
300 

XA2 Moderately aggressive chemical 
environment 

Natural soils and ground water 
w/c = 0.50 
C30/37 
320 
Sulfate-resisting cement 

XA3 Highly aggressive chemical 
environment 

Natural soils and ground water 
w/c = 0.45 
C35/45 
360 
Sulfate-resisting cement 

 
The limits on various chemicals in water and ground for the classes XA1 – XA3 
are given in Table 2 of BS EN 206-1:2000 Concrete -Part 1: Specification, 
performance, production and conformity. 
The reader should refer to the code for full details. 
 
 
2.8.1.3 Poor Construction Methods  
 
The main items that come under the heading of poor construction methods 
resulting from bad workmanship and inadequate quality control and supervision 
are as follows.   
 
(a) Incorrect placement of steel  
Incorrect placement of steel can result in insufficient cover, leading to corrosion of 
the reinforcement.  If the bars are placed grossly out of position or in the wrong 
position, collapse can occur when the element is fully loaded. 
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(b) Inadequate cover to reinforcement  
Inadequate cover to reinforcement permits ingress of moisture, gases and other 
substances and leads to corrosion of the reinforcement and cracking and spalling of 
the concrete.   
 
(c) Incorrectly made construction joints  
The main faults in construction joints are lack of preparation and poor compaction.  
The old concrete should be washed and a layer of rich concrete laid before pouring 
is continued.  Poor joints allow ingress of moisture and staining of the concrete 
face.   
 
(d) Grout leakage  
Grout leakage occurs where formwork joints do not fit together properly.  The 
result is a porous area of concrete that has little or no cement and fine aggregate.  
All formwork joints should be properly sealed. 
 
(e) Poor compaction  
If concrete is not properly compacted by ramming or vibration, the result is a 
portion of porous honeycomb concrete.  This part must be hacked out and recast.  
Complete compaction is essential to give a dense, impermeable concrete. 
 
(f) Segregation  
Segregation occurs when the mix ingredients become separated.  It is the result of  

i. Dropping the mix from too great a height in placing.   Chutes or pipes 
should be used in such cases. 

ii. Using a harsh mix with high coarse aggregate content. 
iii. Large aggregate sinking due to over-vibration or use of too much 

plasticizer.  
 Segregation results in uneven concrete texture, or porous concrete in some cases.   
 
(g) Poor curing  
A poor curing procedure can result in loss of water through evaporation.  This can 
cause a reduction in strength if there is not sufficient water for complete hydration 
of the cement.  Loss of water can cause shrinkage cracking.  During curing the 
concrete should be kept damp and covered. 
 
(h) Excessive water content  
Excess water increases workability but decreases the strength and increases the 
porosity and permeability of the hardened concrete, which can lead to corrosion of 
the reinforcement.  The correct water-to-cement ratio for the mix should be strictly 
enforced. 
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2.8.1.4 External Physical and/or Mechanical Factors  
 
The main external factors causing concrete structures to fail are as follows.   
 
(a) Restraint against movement  
Restraint against movement causes cracking.  Movement in concrete is due to 
elastic deformation and creep under constant load, shrinkage on drying and setting, 
temperature changes, changes in moisture content and the settlement of 
foundations.  The design should include sufficient movement joints to prevent 
serious cracking.  Cracking may only detract from the appearance rather than be of 
structural significance but cracks permit ingress of moisture and lead to corrosion 
of the steel.  Various proprietary substances are available to seal cracks.   
     Movement joints should be clearly indicated for both members and structure as 
a whole.  The joints are to permit relative movement to occur without impairing 
structural integrity.   Diagrams of some movement joints are shown in Fig. 2.7.  
The location of movement joints is a matter of experience.  Joints should be placed 
where cracks would probably develop, e.g., at abrupt changes of section, corners or 
locations where restraints from adjoining elements occur.   
 
1. The contraction joint may be a complete or partial joint with reinforcement 
running through the joint.  There is no initial gap and only contraction of the 
concrete is permitted. 
 
2. The expansion joint is made with a complete discontinuity and gap between the 
concrete portions.  Both expansion and contraction can occur in the same structure.  
The joint must be filled with a sealer. 
 
3. There is complete discontinuity in a sliding joint and the design is such as to 
permit movement in the plane of the joint.   
 
4. The hinged joint is specially designed to permit relative rotation of members 
meeting at the joint.  The Freyssinet hinge has no reinforcement passing through 
the joint.   
 
5. The settlement joint permits adjacent members to settle or displace vertically as 
a result of foundation or other movements relative to each other.  Entire parts of the 
building can be separated to permit relative settlement, in which case the joint must 
run through the full height of the structure.  
 
(b) Abrasion  
Abrasion can be due to mechanical wear such as flow of grains in a silo, wave 
action etc.  Abrasion reduces cover to reinforcement.  Dense concrete with hard 
wearing aggregate and extra cover allowing for wear are required.   
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Fig. 2.7 (a) Partial contraction joint; (b) expansion joint; (c) sliding joints; (d) hinge joints. 

 
(c) Wetting and drying  
Wetting and drying leaches lime out of concrete and makes it more porous, which 
increases the risk of corrosion to the reinforcement.  Wetting and drying also cause 
movement of the concrete which can cause cracking if restraint exists.  Detail 
should be such as to shed water and the concrete may also be protected by 
impermeable membranes.   
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(e) Overloading  
Extreme overloading will cause cracking and eventual collapse.  Factors of safety 
in the original design allow for possible overloads but vigilance is always required 
to ensure that the structure is never grossly overloaded.  A change in function of 
the building or room can lead to overloading, e.g., if a class room is changed to a 
library the imposed load can be greatly increased.   
 
(f) Structural alterations  
If major structural alterations are made to a building, the members affected and the 
overall integrity of the building should be rechecked.  Common alterations are the 
removal of walls or columns to give a large clear space or provide additional doors 
or openings.  Steel beams are inserted to carry loads from above.  In such cases the 
bearing of the new beam on the original structure should be checked and if walls 
are removed the overall stability may be affected.   
 
(g) Settlement  
Differential settlement of foundations can cause cracking and failure in extreme 
cases.  The foundation design must be adequate to carry the building loads without 
excessive settlement.  Where a building with a large plan area is located on ground 
where subsidence may occur, the building should be constructed in sections on 
independent rafts with complete settlement joints between adjacent parts.   
     Many other factors can cause settlement and ground movement problems.  
Some problems are shrinkage of clays from ground dewatering or drying out in 
droughts, tree roots causing disruption, ground movement from nearby 
excavations, etc.   
 
(h) Fire resistance  
Concrete is a porous substance bound together by water-containing crystals.  The 
binding material can decompose if heated to too high a temperature, with 
consequent loss of strength.  The loss of moisture causes shrinkage and the 
temperature rise causes the aggregates to expand, leading to cracking and spalling 
of the concrete.  High temperature also causes reinforcement to lose strength.  At 
550°C the yield stress of steel drops to about its normal working stress and failure 
occurs under service loads.   
     Concrete, however, is a material with very good fire resistance and protects the 
reinforcing steel.  Fire resistance is a function of member thickness and cover.  The 
code requirements regarding fire protection are set out in BS EN 1992-1-2:2004 
Eurocode 2: Design of concrete structures-part 1-2: General rules-Structural fire 
design. 
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2.9 DURABILITY OF CONCRETE STRUCTURES  
 
 
A durable structure should satisfy strength and serviceability requirements 
throughout its design working life.  One of the main causes for poor durability is 
the corrosion of steel reinforcement.  Good quality dense concrete and adequate 
cover are prime requirements in order to produce durable structures.  Table 2.5 
gives the details of water/cement ratio, minimum cement content for producing 
good quality concrete to satisfy various exposure classes and Cmin, dur which is the 
minimum cover to steel from durability considerations. 
The minimum cover Cmin to steel should satisfy the code equation (4.2):  

                        Cmin = Maximum {Cmin, b; Cmin,dur ;  10 mm}                           (4.2) 
 

i. For safe transmission of bond forces, the required cover is Cmin, b as 
given in Table 4.2 of Eurocode 2. 

ii. For separated bars,  Cmin, b ≥ bar diameter, φ. 
iii. For bundled bars, Cmin, b ≥ equivalent bar diameter, φn. 

 
φn = φ √nb ≤ 55 mm.  nb = Number of bars in the bundle.  nb ≤ 4 for vertical bars in 
compression and for bars in a lapped joint.  nb ≤ 3 for all other cases. 
If the nominal maximum size of the aggregate is greater than 32 mm, Cmin, b should 
be increased by 5 mm.  The cover can be reduced if stainless steel bars are used. 
For a design life of 50 years, minimum values of Cmin, dur for various classes of 
exposure are are given as follows in Table 4.4 N of Eurocode 2: X0 = 10 mm,   
XC1 = 15 mm, XC2/XC3 = 25 mm, XC4 = 30 mm, XD1/XS1 = 35 mm,  
XD2/XS2 = 40 mm, XD3/XS3 = 45 mm  
 
 
2.10 FIRE PROTECTION 
 
 
One of the prime requirements in terms of safety of a structure is that the structure 
gives enough protection to the occupants in case of fire.  The code BS EN 1992-1-
2:2004 Eurocode 2: Design of concrete structures-part 1-2:General rules-
Structural fire design gives minimum dimensions for various types of members 
and also the necessary cover to reinforcement for different standards (periods in 
minutes) of fire resistance.  Tables 2.6 to 2.9 give the necessary information.  It is 
assumed that the ratio of flexural resistance in fire/resistance at normal temperature 
is 0.7.  
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Table 2.5 Recommended limiting values for composition and properties of concrete and minimum 
cover to steel for durability 

Class 
designation 

Maximum 
w/c ratio 

Minimum 
strength 

class 

Minimum 
cement 
content 
(kg/m3) 

Minimum 
air 

content 
(%) 

Cmin, dur 
mm * 

X0 - C12/15 - - 10 
XC1 0.65 C20/25 260 - 15(25) 
XC2 0.60 C25/30 280 - 25(35) 
XC3 0.55 C30/37 280 - 25(35) 
XC4 0.50 C30/37 300 - 30(40) 
XD1 0.55 C30/37 300 - 35(45) 
XD2 0.55 C30/37 320 - 40(50) 
XD3 0.45 C35/45 320 - 45(55) 
XS1 0.50 C30/37 300 - 35(45) 
XS2 0.45 C35/45 320 - 40(50) 
XS3 0.45 C35/45 340 - 45(55) 
XF1 0.55 C30/37 300 -  
XF2 0.55 C25/30 300 4.0  
XF3 0.50 C30/37 320 4.0  
XF4 0.45 C30/37 340 4.0  
XA1 0.55 C30/37 300 -  
XA2 0.50 C30/37 320 -  
XA3 0.45 C35/45 360 -  

 
*This column gives minimum cover to steel to ensure durability of reinforced 
concrete structures.  Figures in parentheses refer to prestressed concrete structures.  
The values given are valid for a design life of 50 years. 
 
Fig. 2.8 shows the width b for different types of members. If the web is of variable 
width, width b refers to the width at the centroid of tension steel. 
In the case of I-section, d1 + 0.5 × d2 ≥ (220, 380, 480 mm respectively for 120, 
180 and 240 minutes of fire resistance). 
 
Fig. 2.9 shows the nominal axis distance a, the distance from the surface to the 
centroid of steel and width b for different sections. Note that the value of a can be 
greater than that shown because of bond and durability requirements. 
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Fig. 2.8 Sections through members showing width b. 
 

 
Fig. 2.9 Sections through members showing dimensions a and b. 

 
 

 
 

Fig. 2.10 Concrete slab with floor finishes. 
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Table 2.6 Dimensions a and b for simply supported beams (reinforced and prestressed)  
Standard 

fire 
resistance 
(minutes) 

Minimum distances (mm) 
Possible combinations of width b of 
beam  and  a, the average axis 
distance (mm) 

Web 
width, bw 

(mm) 
1 2 3 4 5 6 

R 30 b = 80  
a = 25 

120 
20 

160 
15 

200 
15 

80 

R 60 b = 120  
a = 40 

160 
35 

200 
30 

300 
25 

80 

R 90 b = 150  
a = 55 

200 
45 

300 
40 

400 
35 

100 

R 120 b = 200  
a = 65 

240 
60 

300 
55 

500 
50 

120 

R 180 b = 240  
a = 80 

300 
70 

400 
65 

600 
60 

150 

R 240 b = 280  
a = 90 

350 
80 

500 
75 

700 
70 

170 

asd = a + 10 mm 
 

Note: Value of dimension a can be greater because of durability and bond 
considerations. 

 
Table 2.7 Dimensions a and b for continuous beams (reinforced and prestressed) 

Standard 
fire 

resistance 
(minutes) 

Minimum distances (mm) 
Possible combinations of width b of 
beam  and  a, the average axis 
distance (mm) 

Web 
width, bw 

(mm) 
1 2 3 4 5 6 

R 30 b = 80  
a = 15 

160 
12 

  80 

R 60 b = 120  
a = 25 

200 
12 

  100 

R 90 b = 150  
a = 35 

250 
25 

  110 

R 120 b = 200  
a = 45 

300 
35 

450 
35 

500 
30 

130 

R 180 b = 240  
a = 60 

400 
50 

550 
50 

600 
40 

150 

R 240 b = 280  
a = 75 

500 
60 

650 
60 

700 
50 

170 

asd = a + 10 mm 
 

Note: Value of dimension a can be greater because of durability and bond 
considerations. 
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Table 2.8 Dimensions a and b for one-way and two-way slabs (reinforced and prestressed)  
Standard 

fire 
resistance 
(minutes) 

Minimum dimensions (mm) 
Slab thickness, hs 
hs = h1 + h2 (mm) 

See Fig. 2.10 

Axis distance, a (mm) 
One 
way 

Two way (ly ≥ lx) 
ly/lx ≤ 1.5 1.5 < ly/lx ≤ 2 

R 30 60 10 10 10 
R 60 80 20 10 15 
R 90 100 30 15 20 

R 120 120 40 20 25 
R 180 150 55 30 40 
R 240 175 65 40 50 

 
Table 2.9 Dimensions a and b for rectangular and circular columns (reinforced and prestressed) 

Standard fire 
resistance 
(minutes) 

Minimum dimensions (mm)  b and a 
Column exposed on more than one side Column 

exposed on 
one side 

μfi = 0.2 μfi = 0.5 μfi = 0.7 μfi = 0.7 
R 30 b = 200 

a = 25 
b = 200 
a = 25 

b = 200 (300-) 
a = 32(27) 

b = 155 
a = 25 

R 60 b = 200 
a = 25 

b = 200 (300) 
a = 36 (31) 

b = 250 (350) 
a = 46 (40) 

b = 155 
a = 25 

R 90 b = 200 (300) 
a = 31 (25) 

b = 300 (400) 
a = 45 (38) 

b = 350 (450) 
a = 53 (40) 

b = 155 
a = 25 

R 120 b = 250 (350) 
a = 40 (35) 

b = 350 (450) 
a = 45 (40) 

b = 350 (450) 
a = 57 (51) 

b = 175 
a = 35 

R 180 b = 350  
a = 45 

b = 350  
a = 63 

b = 450  
a = 70 

b = 230 
a = 55 

R 240 b = 350 
a = 61 

b = 450 
a = 75 

- b = 295 
a = 70 

 
μfi = Axial load in fire situation.  Design resistance of column at normal 
temperature.  A conservative value is μfi = 0.7. 
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CHAPTER 3 

LIMIT STATE DESIGN AND 
STRUCTURAL ANALYSIS 

 
 
3.1 STRUCTURAL DESIGN AND LIMIT STATES 
 
 
3.1.1 Aims and Methods of Design  
 
The Eurocode BS EN 1990:2002 + A1:2005 Eurocode. Basis of structural design 
states that a structure shall be designed and executed in such a way that it will, 
during its intended life (design life for building structures is generally taken as 50 
years and for monumental structures like bridges as 100 years), with appropriate 
degrees of reliability and in an economical way sustain all actions and influences 
likely to occur during execution and use and be durable.  In particular 
a. A structure shall be designed to have adequate structural resistance, 

serviceability, and durability. 
b. In the case of fire, the structural resistance shall be adequate for the required 

period of time. 
c. A structure shall be designed and executed in such a way that it will not be 

damaged by events such as explosion, impact and the consequences of human 
errors to an extent disproportionate to the original cause. 

d. The structure shall be designed such that deterioration over its design working 
life does not impair the performance of the structure below that intended, 
having due regard to its environment and the anticipated level of maintenance. 

 
     It is recognized that no structure can be made one hundred percent safe and that 
it is only possible to reduce the probability of failure to an acceptably low level.  
     The method recommended in the code is limit state design in conjunction with 
partial factor method.  The loads (actions) will be according to the following 
standards: 

 BS EN 1991-1-1:2002 Eurocode 1: Actions on Structures part 1-1: 
General actions-Densities, self-weight, imposed loads on buildings 

 BS EN 1991-1-3:2003 Eurocode 1: Actions on Structures. General 
actions. Snow loads 

 BS EN 1991-1-4:2005 + A1:2010 Eurocode 1: Actions on Structures. 
General actions. Wind actions 

 
There is a U.K. National Annex to BS EN 1990:2002 + A1:2005. 
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It is recognized that calculations alone are not sufficient to produce a safe, 
serviceable and durable structure.  The basic requirements should be met by: 

 Choice of suitable materials 
 Appropriate design and detailing 
 Specifying control procedures for design, production, execution and 

appropriate use 
 
 
3.1.2 Criteria for Safe Design: Limit States  
 
One criterion for a safe design is that the structure should not become unfit for use, 
i.e., it should not reach a limit state during its design life.  This is achieved, in 
particular, by designing the structure to ensure that it does not reach two important 
limit states. 
 
1. Ultimate limit state (ULS): This limit state is concerned with the safety of the 
people and of the structure.  This requires that the whole structure or its elements 
should not collapse, overturn or buckle when subjected to the design loads. 
 
2. Serviceability limit states (SLS): This limit state is concerned with 

 Comfort of the occupants:  For example the structure should not suffer 
from excessive vibration or have large cracks or deflection so as to alarm 
the user of the building. 

 Appearance of the structure.  The structure should not become unfit for 
use due to excessive deflection or cracking.  

 
     For reinforced concrete structures, the normal practice is to design for the 
ultimate limit state, check for serviceability and take all necessary precautions to 
ensure durability.  
 
 
3.1.3 Ultimate Limit State  
 
The structure must be designed to carry the most severe combination of loads to 
which it is subjected.  Each and every section of the elements must be capable of 
resisting the axial and shear forces, bending and twisting moments derived from 
the analysis.  Overall stability of a structure is provided by shear walls, lift shafts, 
staircases and rigid frame action or a combination of these means.  The structure 
should transmit all loads, dead, imposed, snow and wind, safely to the foundations.  
     The design is made for ultimate loads and design strengths of materials with 
partial safety factors applied to loads and material strengths.  This permits 
uncertainties in the estimation of loads and in the performance of materials to be 
assessed separately.  The section strength is determined using plastic analysis 
based on the short-term design stress−strain curves for concrete and reinforcing 
steel.  As already noted in 3.1.1, the planning and design should be such that 
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damage to a small area or failure of a single element should not cause collapse of a 
major part of a structure.  This means that the design should be resistant to 
progressive collapse.  The structure should resist the applied loads as a unit.  This 
can be ensured by adequately tying the different parts of the structure using vertical 
and horizontal ties.   
 
 
3.1.4 Serviceability Limit States  
 
In checking for the serviceability limit states, account is to be taken of temperature, 
creep, shrinkage, sway and settlement and possibly other effects.  
     The main serviceability limit states are as follows.  
 
(a) Deflection  
The deformation of the structure should not adversely affect its efficiency or 
appearance.  Deflections of beams may be calculated, but may tend to be 
complicated because of cracking, creep and shrinkage effects.  In normal cases 
span-to-effective depth ratios can be used to check compliance with requirements.  
 
(b) Cracking  
Cracking should be kept within reasonable limits by correct detailing.  Crack 
widths may be calculated, but may tend to be complicated and in normal cases 
cracking can be controlled by adhering to detailing rules with regard to bar spacing 
in zones where the concrete is in tension.  
 
(c) Vibration 
The structure should not under the action of wind loads or movement of the people 
vibrate so much as to make people uncomfortable or in worst cases even to alarm 
people. 
     In analysing a section for the serviceability limit states the behaviour is assessed 
assuming a linear elastic relationship for steel and concrete stresses.  Allowance is 
made for the stiffening effect of concrete in the tension zone and for creep and 
shrinkage.  
 
 
3.2 ACTIONS, CHARACTERISTIC AND DESIGN VALUES OF ACTIONS  
 
 
Actions (loads) can be classified as 

 Permanent actions (G):  These are fixed values such as the self-weight of 
the structure and the weight of finishes, ceilings, services and partitions. 

 Variable actions (Q): These are imposed loads due to people, furniture, 
and equipment etc. on floors, wind actions on the whole structure 
including roofs and snow loads on roofs.   
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 Accidental actions (A): These are loads due to crashing of vehicles against 
the building, bomb blasts and other forces. 

The characteristic value of an action (load) is its main representative value defined 
by a nominal value which is normally expected to have a 95% probability of not 
being exceeded.  
The characteristic loads used in design are as follows:  
1. The characteristic permanent action Gk is given by a single value as its value 
does not vary significantly during the lifetime of the structure. 
 
2. The characteristic variable action Qk is represented as follows. 

 Combination value ψ0 Qk is used for irreversible ultimate limit states. 
 Frequent value ψ1 Qk is used for reversible limit states. 
 Quasi-permanent value ψ2 Qk is used for calculating long term effects such 

as deflection due to creep and other aspects related to the appearance of 
the structure. 

Note that combination factor ψ is a device for reducing the design value of variable 
loads when they act in combination.  
Table 3.1 gives the ψ values for different imposed loads. 
 

Table 3.1 Recommended values of ψ factors for imposed load on buildings 
Imposed load on buildings 
Category Description Ψ1 Ψ2 Ψ3 
A Domestic, residential areas 0.7 0.5 0.3 
B Office areas 0.7 0.5 0.3 
C Congregation areas 0.7 0.7 0.6 
D Shopping areas 0.7 0.7 0.6 
E Storage areas 1.0 0.9 0.8 
F Traffic area,  

Vehicle weight ≤ 30 kN 
0.7 0.7 0.6 

G Traffic area,  
30 kN < Vehicle weight ≤ 160 kN 

0.7 0.5 0.3 

H Roofs 0 0 0 
Snow loads for sites at an altitude > 1000 m 0.7 0.5 0.2 
Snow loads for sites at an altitude ≤ 1000 m 0.5 0.2 0 
Wind loads on buildings 0.6 0.2 0 

 
The design value of an action is a product of the representative value and a load 
factor γF, i.  Thus for permanent actions,  design value is γF,i Gk.  For variable 
actions, design value is γF, i ψi Qk, where i = 0, 1, or 2 depending on whether it is a 
combination value, a frequent value or a quasi-permanent value.  The value of γF, i 
can be different for different Qk and different from that for Gk. 
The partial safety factor γF, i takes account of  

a. Possible increases in load  
b. Inaccurate assessment of the effects of loads  
c. Unforeseen stress distributions in members  
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d. Importance of the limit state being considered  
Note: Uniformly distributed load will be represented by small letters.  If for 
example concentrated permanent and imposed loads are Gk and Qk respectively, 
their uniformly distributed values will be denoted by gk and qk respectively. 
Permanent and variable actions are given in BS EN 1991-1-1:2002 Eurocode 1: 
Actions on Structures Part-1-1: General actions-Densities, self-weight, imposed 
loads on buildings.  Snow loads are obtained from BS EN 1991-1-3:2003 Eurocode 
1: Actions on Structures. General actions. Snow loads. 
 
3. The characteristic wind action Wk depends on the location, shape and 
dimensions of the buildings.  Wind loads are estimated using  
BS EN 1991-1-4: 2005 + A1:2010 Eurocode 1: Actions on Structures. General 
actions. Wind actions. 
 
4. The characteristic earth loads En are to be obtained in accordance with         
BS EN 1997-1:2004 Eurocode 7: Geotechnical design —Part 1: General rules. 
Bond and Harris (2008) wrote a useful book covering the geotechnical aspects of 
design to Eurocode 7. 
 
 
3.2.1 Load Combinations  
 
In practice many different loads act together and this fact has to be considered in 
calculating the load for which the structure has to be designed. 
Eurocode 1 gives the following load combinations depending on whether the 
overall equilibrium of the structure considered as a rigid body is being considered 
(EQU) or design of a structural element (STR) needs to be carried out. 
 
 
3.2.2 Load Combination EQU 
 
          

 1i
i,ki,0i,Q1,k1,Qj,k

1j
j,G Q""Q""GloadDesign              (6.10) 

The load factors to be used are: 
 γG, j = 1.10 (unfavourable), 0.90 (favourable) 
 Qk, 1 is the leading variable action 
 γQ, 1 = 1.50 (unfavourable), 1.00 (favourable) 
 Qk, i are accompanying variable actions 
 γQ, i = 1.50 (unfavourable), 1.00 (favourable) 

In the equation (6.10) “+” implies “to be combined with”. 
For further information, see Table A1.2(A) in Design values of actions (EQU) (Set 
A) in BS EN 1990:2002 Eurocode -Basis of Structural Design. 
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3.2.3 Load Combination STR 
 
The code gives the following alternative equations for design of structural 
elements.  The equation numbers in the code are (6.10), (6.10a) and (6.10b).  These 
equation numbers will be used in the rest of this book to make it convenient to 
refer to the code clauses. 


 1i

i,ki,0i,Q1,k1,Qj,k
1j

j,G Q""Q""GloadDesign                                (6.10) 

or alternatively 

 1i

i,ki,0i,Q1,k1,01,Qj,k
1j

j,G Q""Q""GloadDesign                        (6.10a) 


 1i

i,ki,0i,Q1,k1,Qj,k
1j

j,G Q""Q""GloadDesign                            (6.10b) 

In the above the symbols denote as follows 
Σ = combined effect of 
“+” = to be combined with 
ξ = reduction factor for unfavourable permanent actions G 
The load factors to be used are: 
γG,j = 1.35 (unfavourable), 1.00 (favourable) 
Qk, 1 = leading variable action 
γQ, 1 = 1.50 (unfavourable), 1.00 (favourable) 
Qk ,i = accompanying variable actions 
γQ, i = 1.50 (unfavourable), 1.00 (favourable) 
ξ = 0.85 (U.K. adopts 0.925) 
For further information see Table A1.2(B) Design values of actions (STR/GEO) 
(Set B) in BS EN 1990:2002 Eurocode -Basis of Structural Design. 
 

Table 3.2 Simplified equations for checking EQU and STR 
Persistent 

and 
transient 
design 

situations 

Permanent actions Leading variable 
action 

Accompanying variable 
action 

 Unfav. Fav. Unfav. Fav. Unfav. Fav. 
Equilibrium 

6.10 
1.10 Gk, sup 0.90 Gk, inf 1.5 Qk,1 0 1.5 ψ 0,i Qk,i 0 

STR 
6.10 

1.35 Gk, sup 1.0 Gk, inf 1.5 Qk,1 0 1.5 ψ 0,i Qk,i 0 

STR 
6.10a 

1.35 Gk, sup 1.0 Gk, inf §1.5 ψ 0,i Qk,1 0 1.5 ψ 0,i Qk,i 0 

STR 
6.10b 

*1.15 Gk, sup 1.0 Gk, inf 1.5 Qk,1 0 1.5 ψ 0,i Qk,i 0 

 
* ξ γ Gj, sup = 0.85 × 1.35 = 1.15 (The U.K. National Annex value is                  
0.925 × 1.35= 1.25). 
§ In case 6.10a, there is no leading variable. 
 
The code in a note states that ‘the characteristic values of all permanent actions 
from one source are multiplied by 1.35 if the total resulting action is unfavourable 
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and by 1.0 if the total resulting action effect is favourable.  For example, all actions 
originating from the self weight of the structure may be considered as coming from 
one source; this also apples if different materials are involved.’ 
If only two variable loads are present, the above equations can be represented in a 
simplified form as shown in Table 3.2. 
 
 
3.2.4 Examples 
 
Example 1: Fig. 3.1 shows a simply supported beam with an overhang.  It is 
subjected to the following loads. 

 Permanent load due to self weight gk = 10.0 kN/m 
 Variable imposed load qk = 15 kN/m 
 Variable concentrated load Qk = 25 kN/m 

 
 
3.2.4.1 Checking for EQU (Stability) 
 
The structure will become unstable if tension develops in the left hand support or if 
the right hand support sinks.  
 

 
 

Fig. 3.1 A beam with an overhang. 
 
1. Tension reaction at the first support 
The influence line for tension at the left hand support is shown in Fig. 3.2.  Using 
Muller-Breslau’s principle, the ordinate at the left hand end is 1.0 and at the right 
hand end is 1.0 × (1.5/12) = 0.125.  The area of the influence diagram in the simply 
supported section is ½ × 1.0 × 12 = 6.0 and in the overhang section is                    
½ × 0.125 × 1.5 = 0.09375.  Load the structure so as to develop the maximum 
tension at the left hand support.  The influence line shows that the maximum 
(unfavourable) load should be in the overhang and minimum (favourable) load in 
the simply supported section. 

 
 
 
 
 

Fig. 3.2 Influence line for reaction at left hand support. 
 
Depending on which variable (imposed) load is considered as the leading variable, 
there are two options for imposed loading. 

12 m 1.5 m 

1.0 
0.125 
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 Case 1: Treat the distributed load qk as the leading variable and the 
concentrated load Qk as the accompanying variable. 

 Case 2: Treat the concentrated load Qk as the leading variable and the 
distributed load qk as the accompanying variable. 

Values of Ψ factors are taken from Table 3.1. 
Using equation (6.10) for checking equilibrium, the loads in different parts of the 
beam are calculated as follows: 
Case 1:  
(1) In the simply supported section, all loads are favourable.  Therefore  

γG,1 = 0.90,  gk = 10 kN/m, γQ,1 = 0, qk = 0 kN/m, Qk = 0, ψ0,i = 0.7 
(2) In the overhang section, all loads are unfavourable.  Therefore  

γG,1 = 1.10, gk = 10 kN/m, γQ,1 = 1.5, qk = 15, Qk = 25 kN, ψ0,i = 0.7 
Design reaction = − [{0.90 × 10 + 0 × 0} × 6.0 + 0 × 0.7 × 0] in simply supported  
                             + [{1.10 × 10 + 1.5 × 15} × 0.09375 + 1.50 × 0.7 × 25× 0.125] 
                                in overhang 
                         = − 54.0 + 3.14 + 3.28 = − 47.58 kN (acting upwards) 
No tension develops at the left hand support. 
 
Case 2:  
(1) In the simply supported section, all loads are favourable.  Therefore  

γG,1 = 0.90,  gk = 10 kN/m, γQ,1 = 0, ψ0,i = 0.7, qk = 0 kN/m, Qk = 0, 
(2) In the overhang section, all loads are unfavourable.  Therefore  

γG,1 = 1.10, gk = 10 kN/m, γQ,1 = 1.5, ψ0,i = 0.7, qk = 15, Qk = 25 kN 
Design reaction = − [{0.90 × 10 + 0 × 0.7 × 0} × 6.0 + 0 × 0] in simply supported  
                             + [{1.10 × 10 + 1.5 × 0.7 × 15} × 0.09375 + 1.50 × 25× 0.125] 
                                 in overhang 
                          = − 54.0 + 2.51 + 4.69 = − 46.85 kN (acting upwards) 
From the two cases considered, the minimum upward reaction is 46.85 kN and no 
tension develops at the left hand support. 
 
2. Maximum reaction at the right hand support 
If checking the adequacy of the foundation under the right hand support, then 
calculating the value of the reaction is a check for equilibrium.   Fig. 3.3 shows the 
influence line for reaction at the right hand support.  The ordinate at the right hand 
reaction is 1.0 and at the end of the overhang by proportion, it is 1× (12 + 1.5)/12 = 
1.125.  The area of the influence diagram in the simply supported section is           
½ × 1.0 × 12 = 6.0 and in the overhang section is ½ × (1 + 1.125) × 1.5 = 1.59375. 
 

 
Fig. 3.3 Influence line for right hand reaction. 

 

1.125 1.0 
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Case 1: In this case all loads are unfavourable.  Therefore uniformly distributed 
loads occupy the entire length of the beam and the concentrated load acts at the tip 
of the overhang. 

γG,1 = 1.10, gk = 10 kN/m, γQ,1 = 1.5, qk = 15, Qk = 25 kN, ψ0,i = 0.7 
Design reaction = [{1.10 × 10 + 1.50 × 15.0} × 6.0 + 0 × 0.7 × 0] + 
                              [{1.10 × 10 + 1.5 × 15.0} × 1.59375 + 1.50 × 0.7 × 25× 1.125] 
                         = 201.0 + 53.391 + 29.53 = 283.92 kN (Acting upwards) 
Case 2:  
γG, 1 = 1.10, gk = 10 kN/m, γQ, 1 = 1.50, ψ0, i = 0.7, qk = 15.0 kN/m, Qk = 25 kN  
 
Design reaction = [{1.10 × 10 + 1.50 × 0.7 × 15.0} × 6.0 + 0 × 0.7 × 0] +  
                              [{1.10 × 10 + 1.5 × 0.7 × 15} × 1.59375+ 1.50 × 25× 1.125] 
                          = 160.5 + 42.63 + 42.19 = 245.32 kN (acting upwards). 
The maximum upward reaction is 283.92 kN. 
 
Example 2:  Fig. 3.4 shows an office building subjected to variable loading due to 
characteristic imposed loading Qk and wind loading Wk, in addition to permanent 
gravity loading Gk.  Check the loading patterns for maximum tension in the left 
hand column. From Table 3.1, for imposed office load take ψ0= 0.7 and for wind 
loading take ψ0= 0.6. 
 

 
 

Fig. 3.4 An office building. 
 
Maximum tension (and hence possible over topping) in the left hand column will 
occur when minimum gravity and imposed loading in the region AB,  maximum 
gravity and imposed loading in the region BC and wind is blowing from left to 
right. 
Case 1: Treating imposed load Qk as the leading variable:  

a. In the region AB the loading is 0.9 Gk  

A B C 

Minimum 

Maximum 
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b. In the region BC the loading is 1.10 Gk + 1.50 Qk 
c. The wind loading is 1.50 × 0.6 × Wk 

 
Case 2: Treating imposed load Wk as the leading variable:  

a. In the region AB the loading is 0.9 Gk  
b. In the region BC the loading is 1.10 Gk + 1.50 × 0.7 × Qk 
c. The wind loading is 1.50 Wk 

Note that the value of Gk, Qk and Wk need not be same at all levels.  For example, 
the loading on the roof is likely to be smaller than at other levels.  Similarly the 
wind load at the roof level will be approximately half of that at lower levels. 
 
 
3.2.4.2 Load Calculation for STR (Design) 
 
Equations (6.10), (6.10a) and (6.10b) are used to determine the bending moment at 
the mid-span section and also moment over the right hand support 
 
1. Design bending moment at mid-span section 
The influence line bending moment at mid-span section is shown in Fig. 3.5.  
Using Muller-Breslau’s principle, the ordinate at the mid-span is L/4 = 12.0/4 = 3.0 
and at the right hand end the ordinate by proportion is, 3.0 × ((1.5/6.0) = 0.75.  The 
area of the influence diagram in the simply supported section is ½ × 3.0 × 12 = 
18.0 and in the overhang section is ½ × 0.75 × 1.5 = 0.5625. 
It shows that for maximum positive bending moment (tension at the bottom face) 
the maximum (unfavourable) load should be in the simply supported section and 
minimum (favourable) load in the overhang section.  

 

 
Fig. 3.5 Influence line for mid-span bending moment. 

 
Case 1: Treat the distributed load qk as the leading variable and the concentrated 
load Qk as the accompanying variable. 
In the simply supported section, all loads are unfavourable and in the overhang 
section all loads are favourable.  In the simply supported section, place all 
uniformly distributed loads and a concentrated load at mid-span.   In the overhang 
section only uniformly distributed permanent load. 

γG,1 = 1.35,  gk = 10 kN/m, γQ,1 = 1.50, qk = 15.0 kN/m, Qk = 25, ψ0,i = 0.7 
In the overhang section: Only permanent load 

γG,1 = 1.0,  gk = 10 kN/m, γQ,1 = 0, qk = 0, Qk = 0 kN, ψ0,i = 0.7 
Using code equation (6.10),  
Mid-span BM = (1.35 ×10.0 + 1.50 × 15.0) × 18.0 + 1.50 × 0.7 × 25.0 × 3.0 

3.0 

0.75 
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                        − 1.0 × 10.0 × 0.5625  
                     = 721.125 kNm 
Alternatively, using code equation (6.10a), 
Mid-span BM = (1.35 × 10.0 + 1.50 × 0.70 × 15.0) × 18.0 + 1.50 × 0.7 × 25.0 × 3.0  
                          − 1.0 × 10.0 × 0.5625  
                       = 599.625 kNm 
Using code equation (6.10b), 
Mid-span BM = (0.85 ×1.35 × 10.0 + 1.50 × 15.0) × 18.0 + 1.50 × 0.7 × 25.0 × 3.0 
                           − 1.0 × 10.0 × 0.5625  
                       = 684.675 kNm 
Note that in the above calculations, different values have been used for γG.  If the 
same value of γG = 1.35 is used throughout, the value of the moment will reduce 
by 1.97 kNm. 
 
Case 2: Treat the concentrated load Qk as the leading variable and the distributed 
load qk as the accompanying variable. 
Using code equation (6.10),  
Mid-span BM = (1.35 × 10.0 + 1.50 × 0.7 × 15.0) × 18.0 + 1.50 × 25.0 × 3.0 
                           − 1.0 × 10.0 × 0.5625 
                       = 633.375 kNm 
Using code equation (6.10a), 
Mid-span BM = (1.35 × 10.0 + 1.50 × 0.70 × 15.0) × 18.0 + 1.50 × 0.7 × 25.0 × 3.0 
                           − 1.0 × 10.0 × 0.5625 
                       = 599.625 kNm 
Using code equation (6.10b), 
Mid-span BM = (0.85 ×1.35 × 10.0 + 1.50 × 0.7 × 15.0) × 18.0 + 1.50 × 25.0 × 3.0 
                           − 1.0 × 10.0 × 0.5625 
                       = 596.925 kNm 
Note that in the above calculations, different values have been used for γG.  If the 
same value of γG = 1.35 is used throughout, the value of the moment will reduce 
by 1.97 kNm. 
The design bending moment is therefore 721.125 kNm from equation (6.10),    
Case 1. 
 
2. Design bending moment over the support 
The influence line bending moment at support section is shown in Fig. 3.6 
 

 
 

Fig. 3.6 Influence line for bending moment over the support. 
 
Using Muller-Breslau’s principle, the ordinate at the end of overhang is 1.5.  The 
area of the influence diagram in the overhang section is ½ × 1.5 × 1.5 = 1.125. 

1.5
5 
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It shows that for maximum negative bending moment (tension at the top face) the 
maximum (unfavourable) load should be in the overhang section.  Any load in the 
simply supported section does not produce any bending moment over the support.  
All loads in the overhang section are unfavourable. 
 
Case 1: Treat the distributed load qk as the leading variable and the concentrated 
load Qk as the accompanying variable. 
Using code equation (6.10),  
Support BM = (1.35 × 10.0 + 1.50 × 15.0) × 1.125 + 1.50 × 0.7 × 25.0 × 1.5 
                     = 79.875 kNm 
Using code equation (6.10a), 
Mid-span BM = (1.35 × 10.0 + 1.50 × 0.70 × 15.0) ×1.125 + 1.50 × 0.7 ×25.0 × 1.5 
                        = 72.28 kNm 
Using code equation (6.10b) 
Mid-span BM = (0.85 ×1.35 ×10.0 + 1.50 × 15.0) ×1.125 + 1.50 × 0.7 × 25.0 × 1.5 
                        = 77.60 kNm 
Case 2: Treat the concentrated load Qk as the leading variable and the distributed 
load qk as the accompanying variable. 
Using code equation (6.10),  
Support BM = (1.35 ×10.0 + 1.50 × 0.7 ×15.0) ×1.125 + 1.50 × 25.0 × 1.5 
                     = 89.16 kNm 
Using code equation (6.10a), 
Support BM = (1.35 ×10.0 + 1.50 × 0.70 ×15.0) ×1.125 + 1.50 × 0.7 × 25.0 × 1.5 
                     = 72.28 kNm 
Using code equation (6.10b) 
Support BM = (0.85 ×1.35 ×10.0 + 1.50 × 0.7 × 15.0) ×1.125 + 1.50 × 25.0 × 1.5 
                     = 86.88 kNm 
The design bending moment is therefore 89.16 kNm from equation (6.10), Case 2. 
 
 
3.2.5 Partial Factors for Serviceability Limit States 
 
Table A1.4 of the code gives the following combination of actions for checking the 
serviceability limit state.  All load factors γG and γQ are taken as unity.  The 
combinations are shown in Table 3.3. 
 

Table 3.3 Design values of actions for use in the combination of actions 
 
Combination Permanent actions Gd Variable actions, Qd 

Unfavourable Favourable Leading Others 
Characteristic Gkj, sup Gkj, inf Qk,1 Ψ0,i Qk,i 
Frequent Gkj, sup Gkj, inf Ψ1,1 Qk,1 Ψ2,i Qk,i 
Quasi-
permanent 

Gkj, sup Gkj, inf Ψ2,1 Qk,1 Ψ2,i Qk,i 
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3.3 PARTIAL FACTORS FOR MATERIALS 
 
 
Eurocode 2 gives the following partial factors for materials. 
For persistent and transient design situations, γc for concrete = 1.5, γs for 
reinforcing and prestressing steel = 1.15.  For accidental design situations, γc = 1.3 
and γs = 1.0.  
Design strength for concrete is therefore fcd = fck/ γc and for steel fyd = fyk/ γs    
where fck and fyk are respectively the characteristic cylinder compressive strength 
of concrete and yield stress of steel. 
     The partial factor for materials takes account of  

1. Uncertainties in the strength of materials in the structure  
2. Uncertainties in the accuracy of the method used to predict the behaviour 

of members  
3. Variations in member sizes and building dimensions  

 
 
3.4 STRUCTURAL ANALYSIS  
 
 
3.4.1 General Provisions  
 
In clause 5.1.1, Eurocode 2 states that the purpose of structural analysis is to obtain 
distribution of internal stress resultants such as axial and shear forces, bending and 
twisting moments.  The method normally used is frame analysis.  However in some 
local areas such as 

 In the vicinity of supports and concentrated loads 
 Beam and column intersections 
 Abrupt changes of cross section 
 Anchorage zones in posttensioned members 
 Deep beams where the span/depth ratio is less than about 3 

In cases where stress resultants cannot give a true picture of the stress and strain 
distribution, methods such as finite element analysis will be required to carry out a 
detailed stress analysis. 
In clause 5.1.1(7), the following four idealizations are stated.  They are: 

 Linear elastic behaviour. 
 Linear elastic behaviour with limited redistribution.  This applies only to 

statically indeterminate structures.  See Chapter 13 and Chapter 14. 
 Plastic behaviour including strut and tie models.  See Chapter 8 on Yield 

line analysis of slabs and Chapter 18 on strut−tie and other models. 
 Non-linear behaviour. 

The most common method of analysis is linear elastic analysis.  The analysis is 
carried out assuming  

 Uncracked cross section 
 Linear stress−strain relationship 
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 Mean value of modulus of elasticity 
The complete structure may be analysed elastically by the matrix method of 
structural analysis using a computer program.  It is normal practice to model beam 
elements using only the rectangular section of T-beam elements in the frame 
analysis.  
     It has to be remembered that an analysis of the complete statically indeterminate 
structure requires the cross section dimensions to be input as data.  Therefore at the 
preliminary analysis/design stage, approximate methods of analysis which give 
sufficiently accurate values of the internal forces without having to analyse the 
entire structure so that one can decide on a preliminary design of the cross section 
are essential.  
     In some cases linear elastic analysis with limited redistribution or even a full 
plastic analysis can be used, provided certain limitations are observed.  All these 
aspects will be discussed in later chapters. 
 
 
3.5 REFERENCE 
 
 
Bond, A. and Harris, A. (2008). Decoding Eurocode 7. Taylor & Francis. 



CHAPTER 4 
 

SECTION DESIGN FOR MOMENT 
 
 
4.1 TYPES OF BEAM SECTION  
 
The three common types of reinforced concrete beam section are: 

a. Rectangular sections with tension steel only (this generally occurs when 
designing a given width of slab as a beam)  

b. Rectangular sections with tension and compression steel 
c. Flanged sections of either T or L shape with tension steel and rarely with 

or without compression steel  
Beam sections are shown in Fig. 4.1.  It will be established later that all beams of 
structural importance must have steel at top and at bottom to carry links to resist 
shear.  
 
 

 
 

Fig. 4.1 (a) Rectangular beam and slab, tension steel only; (b) rectangular beam,  
tension and compression steel; (c) flanged beams. 

 
 
4.2 REINFORCEMENT AND BAR SPACING  
 
Before beginning section design, reinforcement data and code requirements with 
regard to minimum and maximum areas of bars in beams and bar spacing are set 
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out.  This is to enable sections to be designed with practical amounts and layout of 
steel.  Requirements for cover were discussed in section 2.9, Chapter 2.  
 
 
4.2.1 Reinforcement Data  
 
In accordance with Eurocode 2, clause 8.9, bars may be placed singly or in pairs or 
in bundles provided all bars are of the same characteristic strength.  In a bundle, 
bars of different diameters are allowed provided the ratio of diameters does not 
exceed 1.7.  For design purposes the pair or bundle is treated as a single bar of 
equivalent diameter φn,  

φn = φ √nb ≤ 55 mm 
where nb = numbers of bars in the bundle with diameter φ, nb ≤ 4 for vertical bars 
in compression or bars at a lapped joint, nb ≤ 3 in all other cases. 
Bars are available with diameters of 6, 8, 10, 12, 16, 20, 25, 32 and 40 mm and in 
grades with characteristic strengths fyk = 400 to 600 MPa. 
     Preferred sizes of bars are 8, 10, 12, 16, 20, 25, 32 and 40 mm.  For 
convenience in design calculations, areas of groups of bars are given in Table 4.1.  
Table 4.2 gives equivalent diameter of bundles of bars of same diameter.  
 

Table 4.1 Areas of groups of bars 
Size of 

bar (mm) 
Numbers of bars in group 

1 2 3 4 5 6 7 8 
8 50 101 151 201 251 302 352 402 
10 79 157 236 314 393 471 550 628 
12 113 226 339 452 566 679 792 905 
16 201 402 603 804 1005 1206 1407 1609 
20 314 628 943 1257 1571 1885 2109 2513 
25 491 982 1473 1964 2454 2945 3436 3927 
32 804 1609 2413 3217 4021 4826 5630 6434 

 
Table 4.2 Equivalent diameters of bars in groups 

Size of bars in 
group (mm) 

Number of bars in group 
1 2 3 4 

8 8 11.3 13.9 16 
10 10 14.1 17.3 20 
12 12 17.0 20.8 24 
16 16 22.6 27.7 32 
20 20 28.3 34.6 40 
25 25 35.4 43.3 50 
32 32 45.3 55.4 64 

 
A useful publication for preparing detailed drawings was published in 2006 by the 
U.K. Institution of Structural Engineers.  
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Bars of size 12 mm and above are available from stock in lengths of 12 m.  For 
sizes 8 mm and 10 mm available lengths are 8, 9 or 10 m.   
As shown in Table 2.4, three grades of steel A, B and C are allowed, all with 
characteristic yield strength of 400 to 600 MPa but of different ductilities.  The full 
details are shown in Table C.1 of Annex C in Eurocode 2.  In the U.K. the 
corresponding grades of steel available are 500A, 500B and 500C with 
characteristic yield strength of 500 MPa.   
 
 
4.2.2 Minimum and Maximum Areas of Reinforcement in Beams  
 
According to clause 9.2.1.1, equation (9.1N) of Eurocode 2, the minimum area of 
tension reinforcement As, min in a beam section to control cracking should be  

                     db
f
f26.0A t

yk

ctm
min,s   but not less than 0.0013 bt d                 (9.1N) 

where  
bt = width of the tension zone.  In a rectangular beam it is the width and in a         
T-beam it is the width of the web.   
d = effective depth 
fctm = mean axial tensile strength of concrete (see Chapter 2, section 2.3.3) 
        = 0.30 × fck 0.667, fck ≤ 50 MPa,  
        = 2.12 × ℓn(1.8+ 0.1× fck), fck > 50 MPa 
For fyk = 500 MPa, Table 4.3 gives the value of As,min/(bt d). 
 

Table 4.3 Minimum value of tension reinforcement in beams 
fck MPa fctm MPa As,min/(bt d)% 

12 1.6 0.13 
16 1.9 0.13 
20 2.2 0.13 
25 2.6 0.14 
30 2.9 0.15 
35 3.2 0.17 
40 3.5 0.18 
45 3.8 0.20 
50 4.1 0.21 
55 4.2 0.22 
60 4.4 0.23 
70 4.6 0.24 
80 4.8 0.25 
90 5.0 0.26 

Maximum tension or compression steel area should not exceed 4% of the gross 
cross sectional area. 
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4.2.3 Minimum Spacing of Bars  
 
Clause 8.2 of Eurocode 2, states that the spacing of bars should be such that 
concrete can be placed and compacted properly.  The clear distance (horizontal and 
vertical) between individual parallel bars or horizontal layers of parallel bars 
should not be less than  

Maximum {bar diameter; (maximum size of aggregate + 5 mm); 20mm}. 
Where bars are positioned in separate horizontal layers, bars in each layer should 
be located vertically above each other. 
 
 
4.3 BEHAVIOUR OF BEAMS IN BENDING  
 
The behaviour of a cross section subjected to pure bending is studied by loading a 
beam at two points as shown in Fig. 4.2(a).  Under this system of loading, sections 
between the loads are subjected to pure bending.  Initially the beam behaves as a 
monolithic elastic beam till the stresses at the bottom fibre reach the tensile 
strength of concrete.  Because of the very low tensile strength of concrete (about 
10% of its compression strength), vertical cracks appear at a fairly low load.  As 
the load is increased, cracks lengthen and penetrate deeper towards the 
compression face.  Simultaneously, the strain in steel also increases.  The final 
failure depends on the amount and yield stress of steel.  The three possible modes 
of failure are: 
 
1. Steel yields first: If the tensile force capacity of steel is ‘low’, then steel yields 
before the strain in the concrete at the compression face reaches the maximum 
permissible value of 0.0035 (see Fig. 2.2 and Fig. 2.3).  Because steel is a ductile 
material, steel elongates while maintaining its strength.  The beam continues to 
deform at constant load and the neutral axis moves up.  The beam finally fails 
when the depth of the compression zone is too small to balance the tensile force in 
steel.  This type of failure is the desired type because there is ample warning before 
failure.  All beams, if overloaded, should be designed to fail in this manner.       
Fig. 4.2(b) shows the qualitative load versus deflection curve and Fig. 4.2(c) shows 
the stress distribution at elastic and ultimate stages. 
 
2. Simultaneous ‘yielding’ of steel and concrete: If the tensile force capacity of 
steel is ‘moderate’, yielding of steel is simultaneously accompanied by the 
crushing of concrete.  Unlike the failure mode where the steel yields first, there is 
little warning before failure.  This is not a desirable mode of failure. 
 
3. Concrete crushes first: If the tensile force capacity of steel is ‘high’, then steel 
does not yield at all before concrete crushes.  Because concrete is a fairly brittle 
material, it fails in an explosive manner without any significant residual load 
bearing capacity.  This form of failure is to be avoided at all costs! 
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Fig. 4.2 (a) Flexural cracks at collapse; (b) load–deflection curve; (c) effective section and stress 
distribution. 

 
 
 
 

Elastic 
stress 

Elastic 
stress 

(c) 
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4.4 SINGLY REINFORCED RECTANGULAR BEAMS  
 
 
4.4.1 Assumptions and Stress–Strain Diagrams  
 
The ultimate moment of resistance of a section is based on the assumptions set out 
in clause 3.1.7. These are as follows:  
 
1. The strains in the concrete and reinforcement are derived assuming that plane 
sections remain plane;  

 
Fig. 4.3 Parabola−rectangle stress−strain relationship for concrete in compression. 

 

 
Fig. 4.4 Bilinear stress−strain relationship for concrete in compression. 

 
2. The stresses in the concrete in compression are derived using either the design 
stress−strain curve given in Fig. 4.3 (parabolic−rectangular) or Fig. 4.4 (bilinear) 

fcd 

εc3 εcu3 
εc 

fcd 

εc2 εcu2 
εc 

σc 
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with fcd = fck/ γc, γc = 1.5.  Note that in both cases the maximum strain in the 
concrete at failure (εcu2 or εcu3) is 0.0035 for fck ≤ 50 MPa and decreasing to 0.0026 
for fck = 90 MPa. 
 

Table 4.4 Values of  λ, η, εcu2 and εcu3 
fck MPa λ η (εcu2 = εcu3)× 103 

≤ 50 0.80 1.0 3.5 
55 0.7875 0.975 3.1 
60 0.775 0.95 2.9 
70 0.750 0.90 2.7 
80 0.725 0.85 2.6 
90 0.70 0.80 2.6 

 
For convenience in calculation, as shown in Fig. 4.5, a drastic simplification is 
made by assuming rectangular stress distribution over a depth λ x, where the depth 
of the stress block is λ times the depth to the neutral axis denoted by x.  The 
compressive stress in the stress block is a constant value equal to η fcd.  The 
maximum strain in the concrete at failure as εcu3. 
 
3. The tensile strength of the concrete is ignored. 
 
4. The stresses in the reinforcement are derived from the stress–strain curve shown 
in Fig. 2.6 (Chapter 2) where γs = 1.15. 

 

 
 

Fig. 4.5 (a) Section; (b) strain; (c) rectangular parabolic stress diagram; (d) simplified stress diagram. 
h = overall depth of the section 
d = effective depth, i.e. depth from the compression face to the centroid of tension steel 
b = breadth of the section 
x = depth to the neutral axis 
fs = stress in steel 
As = area of tension reinforcement 
εcu3 = maximum strain in the concrete 
εs = strain in steel 
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The values of λ and η depend on the value of fck as given in Eurocode 
equations (3.19) to (3.22).  

λ = 0.8, fck ≤ 50 MPa                                                   (3.19) 
λ = 0.8 – (fck – 50)/400   50 < fck ≤ 90 MPa                (3.20) 

             η = 1.0, fck ≤ 50 MPa                                                   (3.21) 
             η = 1.0 − (fck – 50)/200,   50 < fck ≤ 90 MPa               (3.22) 
Table 4.4 shows the values of λ and η for different values of fck. 
The total compression force C in concrete = (λx) × b × (η fcd) and tension 
force T in steel = As fs. 

 
 
4.4.2 Moment of Resistance: Rectangular Stress Block 
 
The total compressive force C is given by 

C = (λx) × b × (η fcd) 
Setting fcd = fck/γc, γc = 1.5, fcd = fck/1.5 = 0.667 fck 

kc = C/(bd fck) =  0.667 λ × η ×(x/d) 
The lever arm z is 

z = d – 0.5 λx, z/d = 1 − 0.5  λ (x/d) 
If M is the applied moment, then 

M = C  z = (λx) × b × (η fcd)  (d – 0.5 λx) 

d
x),5.01(

5.1fbd
Mk

ck
2 


  

Rearranging, 0k322 


  

Solving the quadratic equation for α, 

)k31(1


  

})k31(0.1{5.05.01
d
z


   

Total tensile force T in steel is 
T = As  fs 

For internal equilibrium, total tension T must be equal to total compression C.  The 
forces T and C form a couple at a lever arm of z. 

M = T z = As fs z 
As = M/(fs z) 

 
     The stress fs in steel depends on the strain εs in steel.  As remarked in section 
4.3, it is highly desirable that final failure is due to yielding of steel rather than due 
to crushing of concrete.  It is useful therefore to calculate the maximum neutral 
axis depth in order to achieve this.  Assuming that plane sections remain plane 
before and after bending, an assumption validated by experimental observations, if 
as shown in Fig. 4.5(b), the maximum permitted strain in concrete at the 
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compression face is εcu3, then the strain εs in steel is calculated from the strain 
diagram by  

3cus x
)xd(



  

Strain εs in steel at a stress of fyk/s is given by 

m

yk
ss

f
E


  

where fyk = yield stress , s =  1.15 and Es is Young’s modules for steel. 
Taking fyk = 500 MPa, m = 1.15, fyk/s = 435 MPa, Es = 200 GPa, εs = 0.0022 
For εs = 0.0022, the depth of neutral axis x is given by 

3cus x
)xd(0022.0 


  

}0022.01{

1
d
x

3cu


  

This is the value of x/d at which steel just reaches its ‘yield’ stress and concrete 
reaches its maximum compressive strain.  This is called ‘balanced design’.  Table 
4.5 shows the value of x/d for balanced design. However in order to ensure that 
failure is preceded by steel yielding well before the strain in concrete reaches εcu3, 
resulting in the desirable ductile form of failure, maximum value of x/d in practice 
is made much smaller than the value calculated for balanced failure. 
     In the case of statically indeterminate structures where linear elastic analysis 
with limited redistribution is used in the design at ULS (see Chapters 13 and 
Chapter 14), Eurocode 2 in clause 5.5 specifies that the following limits  on the 
depth of neutral axis x as given by code equations (5.10a) and (5.10b)] have to be 
observed in order that the designed structure is reasonably ductile. 
 
                            δ ≥ 0.44 + 1.25 xu/d       fck ≤ 50 MPa                                   (5.10a) 
                            δ ≥ 0.54 + 1.25(0.6 + 0.0014/εcu2) xu/d   fck > 50 MPa         (5.10b) 
                             ≥ 0.7 if Class B and class C reinforcement is used. 
                             ≥ 0.8 if Class A reinforcement is used as it is least ductile. 
 
δ = Redistributed bending moment/elastic bending moment 
xu = depth of neutral axis at the ULS 
Table 4.5 shows the maximum values of xu/d permitted for different ratios of 
redistribution.  Note that all values are well below the value calculated for balanced 
design.   
Similarly, Table 4.6 shows the values of zu/d = 1 − 0.5 λ (xu/d).   
Table 4.7 shows the values of kc = 0.667 λ × η × (xu/d). 

Table 4.8 shows the values of )
d

x5.01(
d

x667.0k uu  . 
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Table 4.5 Maximum value of xu/d for different ratios of redistribution 
fck 
MPa 

εcu2 × 103 xu/d 
δ = 1.0 δ = 0.90 δ = 0.80 δ = 0.70* Balanced 

≤ 50 3.5 0.448 0.368 0.288 0.208 0.6140 
55 3.1 0.350 0.274 0.198 0.122 0.5849 
60 2.9 0.340 0.266 0.192 0.118 0.5686 
70 2.7 0.329 0.257 0.186 0.114 0.5510 
80 2.6 0.323 0.253 0.183 0.112 0.5417 
90 2.6 0.323 0.253 0.183 0.112 0.5417 

 
Table 4.6 Maximum value of zu/d for different ratios of redistribution 
fck 
MPa 

zu/d 
δ = 1.0 δ = 0.90 δ = 0.80 δ = 0.70* 

≤ 50 0.8208 0.8528 0.8848 0.9168 
55 0.8622 0.8922 0.9221 0.9521 
60 0.8683 0.8969 0.9256 0.9542 
70 0.8766 0.9034 0.9303 0.9571 
80 0.8828 0.9083 0.9338 0.9592 
90 0.8869 0.9115 0.9361 0.9606 

 
Table 4.7 Maximum value of kc for different fck and moment redistribution ratio 

fck kc = C/(bd fck) 
δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7* 

≤ 50 0.2401 0.1964 0.1544 0.1110 
55 0.1800 0.1403 0.1018 0.0623 
60 0.1677 0.1306 0.0948 0.0581 
70 0.1488 0.1159 0.0841 0.0515 
80 0.1335 0.1040 0.0754 0.0462 
90 0.1213 0.0945 0.0686 0.0420 

 
Table 4.8 Maximum value of k for different fck and moment redistribution ratio 

fck k = M/(bd2 fck) 
δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7* Balanced 

≤ 50 0.196 0.167 0.136 0.102 0.247 
55 0.154 0.125 0.093 0.059 0.227 
60 0.145 0.117 0.087 0.055 0.213 
70 0.130 0.105 0.078 0.049 0.191 
80 0.117 0.094 0.070 0.044 0.173 
90 0.107 0.086 0.064 0.040 0.159 

Note that in all the tables, for Class A steel, maximum value of δ = 0.80. 
For any value of δ and fck, M = k bd2 fck is the maximum value of the applied 
moment that the section can resist utilizing fully the compression capacity  
C = kc bd fck of the cross section.  This formula can be used to calculate the 
minimum effective depth required in a singly reinforced rectangular concrete 
section. 
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ck
min fbk

Md   

In practice the effective depth d is made larger than the required minimum 
consistent with the required headroom. 

ckfbk
Md   

     The reason for this is that with a larger depth, the neutral axis depth is smaller 
and hence the lever arm is larger leading for a given moment M, to a smaller 
amount of reinforcement.  It has the additional advantage that in the event of 
unexpected overload, the beams will show large ductility before failure.   

fs = fyk/1.15 = 0.87 fyk 
M = T z = As 0.87 fyk z 

As = M/(0.87 fyk z) 
 
 
4.4.2.1 U.K. National Annex Formula 
 
According to the U.K. National Annex, the constant stress in the stress block is 
taken as αcc η fcd, where αcc = 0.85 

M = C  z = (λx) × b × (αcc η fcd)  (d – 0.5 λx) 

d
x

fbd
Mk cc

ck



 ),5.01(

5.12  

Rearranging, 0322 



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Solving the quadratic equation for α, 
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
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d
z
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The justification for assuming that the constant stress in the  rectangular stress 
block is 0.85 η fcd is given in 
 
PD 6687-1, Background paper to the U.K. National Annex o Eurocode 2, Parts 1 
and 3. 
 
 
4.4.3 Procedure for the Design of Singly Reinforced Rectangular Beam  
 
The steps to be followed in the design of singly reinforced rectangular beams can 
be summarised as follows. 
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 From the minimum requirements of span/depth ratio to control deflection 
(see Chapter 6), estimate a suitable effective depth d. 

 Assuming the bar diameter for the main steel and links and the required 
cover as determined by exposure conditions, estimate an overall depth h. 

h = d + bar diameter + Link diameter + Cover to links 
 Assume breadth at about half the overall depth. 
 Calculate the self–weight. 
 Calculate the design live load and dead load moment using appropriate 

load factors.  The load factors are normally 1.35 for dead loads and 1.5 for 
live loads. 

 For the given value of fck, calculate λ and η from Table 4.4.  Note that  
fck≤ 50 MPa, λ = 0.8  and η = 1.0 

 As there is no redistribution possible in the case of statically determinate 
structures, δ =1 

 Calculate  value of k from Table 4.8 
 In the case of singly reinforced sections, calculate the minimum effective 

depth using the formula  

ck
min fbk

Md   

 Adopt an effective depth greater than the minimum depth in order to 
reduce the total tension reinforcement. 

 Check that the new depth due to increased self–weight does not drastically 
affect the calculated design moment.  If it does, calculate the revised 
ultimate moment required. 

 Calculate k = M/(b d2 fck) 
 Calculate the lever arm z  

})k31(0.1{5.0
d
z


  

 Calculate the required steel As 
 

As = M/{0.87 fyk z} 
 Check that the steel provided satisfies the minimum and maximum steel 

percentages specified in the code. 
 
 
4.4.4 Examples of Design of Singly Reinforced Rectangular Sections 
 
Example 1: A simply supported reinforced rectangular beam of 8 m span carries 
uniformly distributed characteristic dead load, which includes an allowance for 
self–weight of 7 kN/m and characteristic imposed load of 5 kN/m.  The breadth 
b = 250 mm.  Design the beam at mid-span section.  Use strength class 25/30 
concrete and fyk = 500 MPa for steel reinforcement. 
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Solution: For 25/30 concrete, fck = 25 MPa, η = 1.0, λ = 0.8 
Design load = (1.35 × 7) + (1.5 × 5) = 16.95 kN/m 
Design ultimate moment M at mid–span: 
M = 16.95 × 82/8 = 135.6 kNm 
For simply supported beam, δ =1 as there is no possibility of redistribution.  From 
Table 4.8, for fck ≤ 50 and δ =1, k = 0.196 
Minimum effective depth to avoid any compression steel is given by  

mm333
25250196.0

106.135
fb196.0

Md
6

ck
min 







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Using this value of d, 
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The area of steel required is 
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However, if a value of d equal to say 400 mm, which is larger than the minimum 
value is used, then one can reduce the area of steel required. 
 

 
 

Fig. 4.6 Mid-span section of the beam. 
 
Assuming d = 400 mm 
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Provide three 20 mm diameter bars as shown in Fig. 4.6.  From Table 4.1, area of 
steel A = 943 mm2.  Assuming cover of 30 mm and link diameter of 8 mm, the 
overall depth h of the beam is 
h = 400 + 30 + 8 + 20/2 = 448, say 450 mm. 
From Table 4.3, for fck = 25 MPa that the minimum percentage steel required is 
0.14.  Check that the provided percentage is greater than the minimum of 0.14. 
100 As/(bt d) = 100 × 943/(250 × 400) = 0.94 > 0.14. 
Note that this is only one of several possible satisfactory solutions. 
 
In simply supported beams bending moment decreases towards the supports.  
Therefore the amount of steel required towards the support region is much less 
than at mid-span.  Therefore it is possible to reduce the area of steel away from the 
mid-span.   
 
Example 2: Determination of tension steel cut-off.  For the beam in Example 4.1, 
determine the position along the beam where theoretically the middle of the three 
20 mm diameter bar may be cut off.  
The section at cut-off has two 20 mm diameter bars continuing: As = 628 mm2.  
The neutral axis depth can be determined by equating total compression in concrete 
to total tension in the beam.   

T = 0.87 fyk As = 0.87 × 500 × 628 × 10−3 = 273.2 kN 
C = η× (fck /1.5) × b × λx × 10−3, λ = 0.8, η = 1 
C = (25/1.5 × 250 × 0.8x) × 10−3 = 3.33x kN 

Equating C = T: 
x = 82 mm 

z = d – 0.5 λ x = 367 mm 
Moment of resistance MR: 

MR = T z = 273.2 × 367 × 10−3 = 100.3 kNm 
Determine the position ‘a’ from the support where M = 100.3 kN m. 
Left hand reaction V is: 

V = 16.95 × 8/2 = 67.8 kN 
100.3 = 67.8 a – 0.5 × 16.95 a2 

The solutions to this equation are a = 1.95 m and a = 6.04 m from end A.  
The bars should NOT be stopped at the section but continued a certain length 
beyond the theoretical cut-off point because of anchorage considerations which 
will be explained in Chapter 6. 
 
Example 3: Singly reinforced one-way slab section.  Fig. 4.7 shows a slab section 
1 m wide and 130 mm deep with an effective depth of 100 mm is subjected to a 
design ultimate moment of 10.5 kNm.  Find the area of reinforcement required.    
fck = 25 MPa and fyk = 500 MPa. 
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In the case of slabs, because of the very large width, reinforcement is not usually 
specified as a fixed number of bars but in terms of the diameter of the bar and its 
spacing.  Using Table 4.9, provide 8 mm diameter bars at 175 mm centres giving 
As = 288 mm2.   
Check the minimum percentage of steel.   
The percentage steel = 100 As/(bt d) = 100 × 288/(1000 × 100) = 0.29 > 0.14.  The 
reinforcement for the slab is shown in Fig. 4.7.  

 
 

Fig. 4.7 Reinforcement in slab. 
 
 
4.4.5 Design Graph 
 
Using the equations developed in section 4.4.2, a graph for the design of singly 
reinforced rectangular beams can be constructed as follows. 

 Choose strength class of concrete 
 Calculate parameters η and λ 
 Choose a value of (x/d) ≤ 0.448 
 (z/d) = {1 – 0.5 λ(x/d)}  
 C =  η (fck /1.5) × b  × λx = bd fck {0.667 η λ (x/d)} 
 M = C z = bd2 fck [0.667 η λ (x/d) (1−0.5 λx/d) 
 As = M/(0.87 fyk z) = 0.766 (x/d) λ η b d ( fck/fyk) 

 
d
x767.0

f
f

db
A

ck

yks   

Fig. 4.8 shows a plot of k = M/(bd2 fck) versus As/(bd) × (fyk/fck) for fck ≤ 50 MPa. 
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Fig. 4.8 Plot of M/(bd2 fck) versus As/(bd) * (fyk/fck) for fck ≤ 50 MPa. 

 
 

Table 4.9 (Table to be used for calculating steel areas in slabs, walls, etc.) 
 

TOTAL REINFORCEMENT AREA (mm2/m) 
 Bar diameter (mm) 
Bar spacing (mm) 6 8 10 12 16 20 25 

50 566 1010 1570 2260 4020 6280 9820 
75 378 670 1050 1510 2680 4190 6550 

100 283 503 785 1130 2010 3140 4910 
125 226 402 628 904 1610 2510 3930 
150 189 335 523 753 1340 2090 3270 
175 162 288 448 646 1150 1790 2810 
200 141 251 392 565 1010 1570 2460 
250 113 201 314 452 804 1260 1960 
300 94 167 261 376 670 1050 1640 
350 81 144 224 323 574 897 1400 
400 70 126 196 282 502 785 1230 
450 63 112 174 251 447 697 1090 
500 57 101 157 226 402 628 982 

 
Note: A = (π d2/4) {1000/(c/c spacing in mm}. 
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4.5 DOUBLY REINFORCED BEAMS  
 
The normal design practice is to use singly reinforced sections.  However if for any 
reason, for example headroom considerations, it is necessary to restrict the overall 
depth and breadth of a beam, then it becomes necessary to use steel in the 
compression zone as well because concrete alone might not provide the necessary 
compression resistance.  
 
 
4.5.1 Design Formulae Using the Rectangular Stress Block  
 
The formulae for the design of a doubly reinforced beam are derived using the 
rectangular stress block. 
     Let M be the design ultimate moment.  As shown in Table 4.7 and Table 4.8 
respectively, a rectangular section as a singly reinforced section can resist a 
maximum value of the compressive force due to moment equal to  

Csr = kc bd fck 
and moment equal to  

Msr = k b d2 fck 
The corresponding neutral axis depth xu /d can be determined from Table 4.5 and 
zu/d from Table 4.6. 
If the applied moment M > Msr, then compression steel is required because 
concrete cannot provide any more compressive force than Csr.   
The compressive force Cs due to compression steel of area As

' is 
Csc = As

' fs
' 

where fs
' is the stress in compression steel. 

 

 
 

Fig. 4.9 Doubly reinforced beam. 
 
As shown in Fig. 4.9, the lever arm zsc for compression steel is 

zsc = (d – d') 
The stress in the tensile steel is fyk/1.5 = 0.87 fyk because the neutral axis depth of 
xu/d is less than the value for balanced design.  However the stress fs

` in the 
compressive steel depends on the corresponding strain εsc in concrete at 
compression steel level.  εsc is given by 

T 

Csc 

Csr xu 

d 

d' 
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If the strain εsc is equal to or greater than the yield strain in steel, then steel yields 
and the stress fs

` in compression steel is equal to 0.87 fyk.  Otherwise, the stress in 
compression steel is given by  

fs
' = Es εsc 

If fyk = 500 MPa and Es = 200 GPa, then the yield strain in steel is equal to 
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Table 4.10 shows the value of 
d
'd for combinations of fck and δ. 

 

Table 4.10 Maximum value of 
d
'd

for different ratios of redistribution 

fck 
MPa 

εcu3× 103 
d
'd  

δ = 1.0 δ = 0.90 δ = 0.80 δ = 0.70* 
≤ 50 3.5 0.1664 0.1367 0.1070 0.0773 
55 3.1 0.1016 0.0795 0.0574 0.0353 
60 2.9 0.0820 0.0642 0.0464 0.0285 
70 2.7 0.0609 0.0477 0.0344 0.0212 
80 2.6 0.0497 0.0389 0.0281 0.0173 
90 2.6 0.0497 0.0389 0.0281 0.0173 

* Note: For Class A steel, maximum value of δ = 0.80. 
 
Taking moments about the tension steel, 

M = Csr zu + Csc zsc 
For various combinations of fck and δ, values of kc and zu/d are shown in Table 4.7 
and Table 4.6 respectively.  

M = {kc fck b d} × (zu /d) + As
' fs

' (d – d') 
For various combinations of fck and δ, values of k are shown in Table 4.8.  

M = k b d2 fck + As
' fs

' (d – d') 
As

' = (M – Msr)/{fs
' (d – d')} 

For equilibrium, the tensile force T is equal to total compressive force. 
T = As 0.87 fyk = Csr + Csc 
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     One important point to remember is that to prevent steel bars in compression 
from buckling, it is necessary to restrain the bars using links.   
 
 
4.5.2 Examples of Rectangular Doubly Reinforced Concrete Beams 
 
The use of the formulae developed in the previous section is illustrated by a few 
examples. 
 
Example 1: A rectangular beam is simply supported over a span of 6 m and carries 
characteristic dead load including self-weight of 12.7 kN/m and characteristic 
imposed load of 6.0 kN/m.  The beam is 200 mm wide by 300 mm effective depth 
and the inset d' of the compression steel is 40 mm.  Design the steel for mid-span of 
the beam for fck = 25 MPa concrete and fyk = 500 MPa reinforcement.  
 

 
 

Fig. 4.10 Doubly reinforced beam. 
 

design load = (12.7 × 1.35) + (6 × 1.5) = 26.15 kN/m 
Required ultimate moment M: 

M = 26.15 × 62/8 = 117.7 kN m 
Maximum moment that the beam section can resist as a singly reinforced section is 

Msr = 0.196 × 25 × 200 × 3002 × 10−6 = 88.2 kNm 
Since M > Msr, compression steel is required. 
d'/d = 40/300 = 0.13 < 0.1664 (see Table 4.11). Therefore  compression steel 
yields.  The stress fs

' in the compression steel is 0.87fyk. 
As

` = {M – Msr}/[0.87 fyk (d – d')] 
As

' = {117.7 – 88.2}× 106/[0.87 × 500 × (300 – 40)] = 261 mm2 
From equilibrium:  

As 0.87 fyk = Csr + As
' fs

' 
As 0.87 × 500 = kc × 200 × 300 × 25 + 261 × 0.87 × 500 

kc = 0.2401 from Table 4.7 
As = 1089 mm2 

200 

365 
300 

2H16 

2H12 
2H25 
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For the tension steel (2H25 + 2H12) give As = 1208 mm2.  For the compression 
steel 2H16 give As

` = 402 mm2.  The beam section and flexural reinforcement steel 
are shown in Fig. 4.10.  
 
Example 2: Design the beam in Example 4.6 but with d` = 60 mm.  

d'/d = 60/300 = 0.20 > 0.166 (Table 4.11) 
Compression steel does not yield.   
Calculate the strain in compression steel: xu/d = 0.448, xu = 134 mm 

0019.0
134

)60134(0035.0
x

)dx()0035.0(
'

3cusc 





  

Stress in compression steel is 
fs

` = Es εsc = 200  103  0.0019 = 397 MPa 
As

' = {M – Msr}/ [397 (d – d ')] 
{117.7 – 88.2}× 106/ [397 × (300 – 60)] = 310 mm2 

From equilibrium:  
As 0.87 fyk = Csr + As

' fs
' 

As 0.87  500 = kc × 200 × 300 × 25 + 310 × 397 
kc = 0.2401 from Table 4.7 

As 0.87  500 = 0.2401  200  300  25 + 310  397, As = 1111 mm2 
 
 
4.6 FLANGED BEAMS 
 
 
4.6.1 General Considerations  
 
 
In a simple slab–beam system shown in Fig. 4.11, the slab is designed to span 
between the beams.  The beams span between external supports such as columns, 
walls, etc.  The reactions from the slabs act as load on the beam.   
When a series of beams are used to support a concrete slab, because of the 
monolithic nature of concrete construction, the slab acts as the flange of the beams.  
The end beams become L-beams while the intermediate beams become T-beams.  
In designing the intermediate beams, it is assumed that the loads acting on one half 
of the slab on the two sides of the beam are carried by the beam.  Because of the 
comparatively small contact area at the junction of the flange and the rib of the 
beam, the distribution of the compressive stress in the flange is not uniform.  It is 
higher at the junction and decreases away from the junction.  This phenomenon is 
known as shear lag.  For simplicity in design, it is assumed that only part of full 
physical flange width is considered to sustain compressive stress of uniform 
magnitude.  This smaller width is known as effective breadth of the flange.  
Although the effective width actually varies even along the span as well, it is 
common to assume that the effective width remains constant over the entire span. 
Fig. 4.12 shows typical bending moment distribution in continuous beams.  The 
concept of effective width applies in the region between zero moments as shown in 



Section design for moment                                                                                                      79 

Fig. 4.12 as here the flange will be in compression.   Over the support region, the 
flange is in tension.  Therefore the web of the beam resists compression and the 
beam behaves as a rectangular beam.  Therefore the concept of effective width is 
irrelevant in this region.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.11 Beam−slab system. 
 
Clause 5.3.2.1 of Eurocode 2 gives the necessary information on effective width of 
flanges.    

 
Fig. 4.12 Distance between points of zero moments ℓ0 in the spans of a continuous beam. 

 
Fig. 4.13 shows the simply supported lengths in end span and intermediate spans of 
a continuous beam. 

ℓ0 ℓ0 ℓ0 
End span Interior  

span 
Cantilever 

Stress distribution in the flange 

Actual Assumed 



80                                                                                       Reinforced concrete design to EC 2 

     
 

Fig. 4.13 Definition of ℓ0 for calculation of effective flange width. 
 
Note: The length of the cantilever ℓ3 should be less than half the adjacent span and 
the ratio of the adjacent spans should lie between 2/3 and 1.5. 
 
The effective width is given by Eurocode 2 equations (5.7), (5.7a) and (5.7b) as 
follows.  The notation is shown in Fig. 4.14. 

beffe,1 = 0.2 b1 + 0.1 ℓ0 ≤ 0.2ℓ0 and beffe,1  ≤ b1 
beffe,2 = 0.2 b2 + 0.1 ℓ0 ≤ 0.2ℓ0 and beffe,2  ≤ b2 

beff = beff,1 + beff, 2 + bw 
  
    The design procedure for flanged beams depends on the depth of the stress 
block.  Two possibilities need to be considered. 
 

 
 

Fig. 4.14: Effective flange width parameters for flanged beams. 
 
 
 
 

b1 b2 

bW 

beff 

beff,2 beff,1 

b 

b1 b2 

ℓ1 ℓ2 ℓ3 

ℓ0 = 0.85ℓ1 ℓ0 = 0.7ℓ2 

ℓ0 = 0.15ℓ2 +ℓ3 

ℓ0 = 0.15(ℓ1 +ℓ2) 
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6.2 Stress Block within the Flange  
 
If λx ≤ hf, the depth of the flange (same as the total depth of the slab) then all the 
concrete below the flange is cracked and the beam may be treated as a rectangular 
beam of breadth beff and effective depth d and the method set out in sections 4.4.3 
applies.  The maximum moment of resistance when λx = hf is equal to 

Mflange = η fcd beff hf(d – hf/2) 
Thus if the design moment M ≤ Mflange, then design the beam as singly reinforced 
rectangular section b × d. 
 
 
4.6.3 Stress Block Extends into the Web  
 
As shown in Fig. 4.15, the compression forces are as follows: 
In the flange of width (beff – bw), the compression force C1 is 

C1 = η fcd (beff – bw) hf 
In the web, the compression force C2 is 

C2 = η fcd bw λx 
The corresponding lever arms about the tension steel are 

z1 = d – hf/2 
z2 = (d – λx /2) 

 

 
 

Fig. 4.15 T-beam with the stress block extending into the web. 
 
Taking moments about tension steel, the moment of resistance MR is given by 

MR = C1 z1 + C2 z2 
MR = η fcd (b – bw) hf (d – hf/2) + η fcd  bw  λx (d – λx /2) 

 
From equilibrium,  

T = As fs = C1 + C2 
If the amount of steel provided is sufficient to cause yielding of the steel, then       
fs = 0.87fyk.  The maximum moment of resistance without any compression steel is 
when x = xu as shown in Table 4.5.  The maximum moment of resistance is 

hf 

b 

d 
λx x λx 

ηfcd εcu3 
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If Mflange < M ≤ Mmax, then determine the value of x from  
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where x ≤ xu and the reinforcement required is obtained from the equilibrium 
condition, 

As 0.87 fyk = C1 + C2 
 
 
4.6.4 Steps in Reinforcement Calculation for a T-Beam or an L-Beam 
 

 Calculate the total design load (including self–weight) and the 
corresponding design moment M using appropriate load factors. 

 Calculate the maximum moment Mflange that can be resisted, when the 
entire flange is in compression. 

Mflange = η fcd beff hf(d – hf/2) 
 Calculate the maximum moment that the section can withstand without 

requiring compression reinforcement. 
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 If M ≤ Mflange, then design as a rectangular beam of dimensions, b × d. 
               If Mflange < M ≤ Mmax, then solve the following quadratic equation in (x/d) 
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 Check x ≤ xu and the reinforcement required is obtained from  
As 0.87 fyk = C1 + C2 

 If M > Mmax, then compression steel is required or the section has to be 
revised.  Compression steel is rarely required in the case of flanged beams 
because of the large compression area provided by the flange. 

 
 
4.6.5 Examples of Design of Flanged Beams 
 
Example 1: A continuous slab 100 mm thick is carried on T-beams at 2 m centres.  
The overall depth of the beam is 350 mm and the breadth bw of the web is 250 mm.  
The 6 m span beams are simply supported.  The characteristic dead load including 
self–weight and finishes is 7.4 kN/m2 and the characteristic imposed load is           
5 kN/m2.  Design the beam using the simplified stress block.  The material 
strengths are fck = 25 MPa concrete and fyk =  500 MPa reinforcement.  
Since the beams are spaced at 2 m centres, the loads on the beam are: 

Dead load = 7.4 × 2 = 14.8 kN/m 
Live load = 5 × 2 = 10 kN/m 



Section design for moment                                                                                                      83 

Design load = (1.35 × 14.8) + (1.5 × 10) = 35.0 kN/m 
Ultimate moment at mid-span = 35.0 × 62/8 = 157.4 kN m 

b = b1 + b2 + bw = spacing of beam = 2000 mm 
b1 = b2 = (2000 – 250)/2= 875 mm 

ℓ0 = Span of simply supported beam = 6000 mm  
beffe,1  = beffe,2 = 0.2 b1 + 0.1 ℓ0 ≤ 0.2ℓ0  

= 0.2 × 875 + 0.1× 6000 = 775 mm 
beffe,1 = beffe,2 =  775  ≤ (b1 = b2 = 875) 

Therefore beffe,1 = beffe,2 =  775   
beff = beff,1 + beff, 2 + bw = 775 + 775 + 250 = 1800 ≤ (b = 2000 mm) 

Effective width beff of flange = 1800 mm 
Assuming a nominal cover on the links is 25 mm and if the links are H8 bars and 
the main bars are H25, then  

d = 350 – 25 – 8 – 25/2 = 304.5 mm, say 300 mm. 
First of all check if the beam can be designed as a rectangular beam by calculating 
Mflange. 

Mflange = η fcd beff hf (d – hf/2) 
fck = 25 MPa, fcd = 25/1.5 = 16.7 MPa, η =1, λ = 0.8,δ = 1 (simply supported beam) 

Mflange = 16.67 × 1800 × 100 × (300 – 0.5 × l00) × 10−6 = 750.2 kNm 
The design moment of 165 kNm is less than Mflange.  The beam can be designed as 
a rectangular beam of size 1800 × 300.  

k = M/ (b d2 fck) = 165 × 106/ (1800 × 3002 × 25) = 0.041 
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Provide 3H25; As = 1472 mm2 
 
Example 2: Determine the area of reinforcement required for the simply supported 
T-beam shown in Fig. 4.16.  The dimensions of the beam are: 

Effective width, b = 600 mm, bw = 250 mm, d = 340 mm, hf = 100 mm. 
The beam is subjected to an ultimate moment of 305 kNm.  The material strengths 
are fck = 25 MPa concrete and fyk = 500 MPa reinforcement.  
Note: η =1, λ = 0.8, δ =1, fcd = 25/1.5 = 16.7 MPa, xu/d = 0.448 from Table 4.5. 
Calculate Mflange to check if the stress block is inside the flange or not. 

Mflange = η fcd beff hf (d – hf/2) 
Mflange = 16.7 × 600 × 100 × (340 – 0.5 × l00) × 10−6 = 290.6 kNm 

The design moment of 260 kNm is greater than Mflange.  Therefore the stress block 
extends into the web.   
Check if compression steel is required, although it is unlikely to be the case. 
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(Mflange = 290.6) <  (M = 305) < (Mmax = 311) 
The beam can be designed without any need for compression steel.   

 
 

Fig. 4.16 Cross section of T-beam. 
 
Determine the depth of the neutral axis from  
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0.264 = 0.1463 + 0.333 (x/d) – 0.133 (x/d)2 
Simplifying 

(x/d) 2 – 2.50 (x/d) + 0.885 = 0 

Solving the quadratic in (x/d), (x/d) = 
2

])885.0450.2(50.2[ 2 
 

x/d = (2.50 – 1.646)/2 = 0.427 < 0.448 
x = 0.427 × 340 = 145 mm 

C1 = η fcd (b – bw) hf = 16.67 × (600 – 250) × 100 × 10−3 =  583.45 kN 
C2 = η fcd bw λx = 16.67 × 250 × 0.8 × 145 × 10−3 = 483.43 kN 

T = 0.87 fyk As = C1 + C2 
0.87 × 500 × As = (583.45 + 483.43) × 103 

As = 2453 mm2 
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Provide 5H25, A = 2454 mm2 as shown in Fig. 4.12. 
 
 
4.7 CHECKING EXISTING SECTIONS  
 
In the previous sections, methods have been described for designing rectangular 
and flanged sections for a given moment.  In practice it may be necessary to 
calculate the ultimate moment capacity of a given section.  This situation often 
occurs when there is change of use in a building and the owner wants to see if the 
structure will be suitable for the new purpose.  Often moment capacity can be 
increased either by  

 Increasing the effective depth.  This can be done by adding a well 
bonded layer of concrete at the top of the beam/slab. 

 Increasing the area of tension steel by bonding steel plates to the 
bottom of the beam. 

 
 
4.7.1 Examples of Checking for Moment Capacity 
 
Example 1: Calculate the moment of resistance of the singly reinforced beam 
section shown in Fig. 4.17.  The material strengths are fck = 25 MPa concrete and 
fyk = 500 MPa reinforcement.  The tension reinforcement is 4H20 giving              
As = 1256 mm2. 

 
 

Fig. 4.17 Cross section of rectangular beam. 
 
Solution: Assuming that tension steel yields, total tensile force T is given by 

T = 0.87 fyk As = 0.87 × 500 × 1256 × 10−3 = 546.4 kN 
If the neutral axis depth is x, then the compression force C is, taking λ = 0.8 and  
η = 1 

250 

400 
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kNx167.410250x8.0
5.1

25)bx(fC 3
cd    

For equilibrium, T = C.  Solving for x 
x = 131 mm < (0.448 d = 179 mm) 

Check the strain in steel 

}
10200
50087.0strainyield{007.0)131400(

131
0035.0)xd(

x
0035.0

3
2cu

s











Steel yields.  Therefore the initial assumption is valid. 
z = d – 0.5× λ × x = 400 – 0.5 × 0.8 × 131 = 348 mm 

Moment of resistance M 
M = T z = 546.4 × 348 × 10−3 = 190.2 kNm 

 
Example 2: Determine the ultimate moment capacity of the beam in Fig. 4.17, 
except, As = 6T20 = 1885 mm2. 
Proceeding as in Example 1, assume that steel yields and calculate 

T = 0.87 fyk As = 0.87 × 500 × 1885 × 10−3 = 819.98 kN 

kNx167.410250x8.0
5.1

25)bx(fC 3
cd    

For equilibrium, T = C.  Solving for x 
x = 197 mm > (0.448 d = 179 mm) 

Check the strain in steel 

)0022.0strainyield(0036.0)197400(
197
0035.0)xd(

x
0035.02cu

s 


  

Although the strain in steel is larger than the yield strain, in order to ensure 
sufficient ductility, the code limits the neutral axis depth to 0.448 d = 179 mm.  
Using this value of x,  

kN7.596102501798.0
5.1

25)bx(fC 3
cd    

Lever arm = d – 0.5 λx = 400 – 0.5  0.8 179 = 328 mm 
M = C  z = 596.7  328  10−3 = 195.7 kNm 

 
Example 3: Calculate the moment of resistance of the beam section shown in       
Fig. 4.18.  The material strengths are fck = 25 MPa concrete and fyk = 500 MPa 
reinforcement. As = 4T25 = 1963 mm2, As

` = 2T20 + T16 = 829 mm2. 
 
Solution: Assume that both tension and compression steels yield and calculate the 
tension force T and compression force Cs in the steels. 

T = 0.87 fyk As = 0.87 × 500 × 1963 ×10−3 = 853.9 kN 
Cs = 0.87 fyk A`

s = 0.87 × 500 × 829 ×10−3 = 360.6 kN 
The compression force in concrete is 

kNx33.310x8.0250
5.1

250.1xbfC 3
cdc    

For equilibrium, Cc + Cs = T. 
3.33 x + 360.6 = 853.9.   
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Solving x = 148 mm, x/d = 0.42 < 0.448 
Calculate strain in tension and compression steels to verify the assumption. 

0048.0
148

)148350(0035.0
x

)xd(0035.0s 





  

0023.0
148

)50148(0035.0
x

)dx(0035.0
'

'
s 





  

Both strains are larger than yield strain of 0.0022.  Therefore both steels yield and 
the initial assumption is correct.  The neutral axis depth is less than 0.448 d. 

kN3.493101488.0250
5.1

25xbfC 3
cdc    

Taking moments about the tension steel, ).dd(C)x5.0d(CM '
sc    

M = 493.3× (350 – 0.5 ×0.8× 148) × 10−3 + 360.6 × (350 – 50) × 10−3 = 251.6 kNm 
 

 
 

Fig. 4.18 Cross section of doubly reinforced beam. 
 
 
4.7.2 Strain Compatibility Method 
 
In the previous section, examples were given for calculating the moment of 
resistance of a given section.  It required making initial assumptions about whether 
the compression and tension steels yield or not.  After calculating the neutral axis 
depth from equilibrium considerations, strains in tension and compression steels 
are calculated to validate the assumptions.  The problem can become complicated 
if  say tension steel yields while the compression steel does not yield.  A general 
approach in this case is the method of strain compatibility which has the advantage 
of avoiding the algebraic approach.  The basic idea is to assume a neutral axis 
depth.  From the assumed value of neutral axis depth, strains in steel in 
compression and tension are calculated.  Thus 

ykss
3cu

s f97.0Ef),xd(
x




  
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From the stresses, calculate the forces 
T = As fs,  Cs = As

' fs
',  Cc = η fcd b λx,  C = Cs + Cc 

For equilibrium, T = C.  If equilibrium is not satisfied, then adjust the value of x 
and repeat until equilibrium is established.  Normally only two sets of calculations 
for neutral axis depth are required.  Linear interpolation can be used to find the 
appropriate value of x to satisfy equilibrium.  The following example illustrates the 
method. 
 
 
4.7.2.1 Example of Strain Compatibility Method 
 
Example 1: Calculate the moment capacity of the section with b = 250 mm,           
d = 350 mm, d' = 50 mm, fck = 25 MPa and fyk = 500 MPa,   
As

' = 3H20 = 942.5 mm2,  As = 6H25 = 2945.2 mm2 
 
Trial 1: Assume x = 220 mm, λ = 0.8, η = 1, δ = 1, fcd = 25/1.5 = 16.67 MPa 
Strain εs' in compression steel is given by 

εs' = 0.0035(x – d')/x = 0.0035 × (220 – 50)/220 = 0.0027 > 0.0022 
Therefore compression steel yields and the stress fs' is equal to 0.87 fyk 
Similarly, strain εs in tension steel is given by 

εs = 0.0035(d – x)/x = 0.0035 × (350 – 220)/220 = 0.00207 < 0.0022 
Therefore tension steel does not yield and the stress fs is equal to  

fs = εs Es = 0.00207  200 103 = 413.6 MPa 
T = As  fs = 2945.2  413.6 × 10−3 = 1218.1 kN 

C = fcd  b  0.8 x + As'  fs' 
C = {16.67  250  0.8  220 + 942.5  0.87  500}  10−3 

C = (733.48 + 410.0) = 1043.5 kN 
T – C = 74.6 kN 

Total tensile force T is greater than the total compressive force C.  Therefore 
increase the value of x in order to increase the compression area of concrete and 
also reduce the strain in tension steel but increase the strain in compression steel. 
 
Trial 2: Assume x = 240 mm say 
Strain εs

' in compression steel is given by 
εs

' = 0.0035(x – d')/x = 0.00277 > 0.0022 
Therefore compression steel yields and the stress fs' is equal to 0.87 fyk. 
Similarly, strain εs in tension steel is given by 

εs = 0.0035(d – x)/x = 0.0016 < 0.0022 
Therefore tension steel does not yield and the stress fs is equal to  

fs = εs E = 0.001604  200  103 = 320.8 MPa 
T = As  fs = 2945.2  320.8  10−3 = 944.8 kN 

C = fcd  b 0.8 x + As'  fs' 
C = {16.67  250  0.8  240 + 942.5  0.87  500}  10−3 

C = (800.16 + 410.0) = 1210.2 kN 
T – C = −265.36  kN 
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As shown in Fig. 4.19, linearly interpolate between x = 220 and 240 to obtain the 
value of x giving T – C = 0. 

x = 220 + (240 – 220)  (74.6)/(74.6 + 265.36) = 224 mm 
x/d = 224/350 = 0.64 > 0.448 

As a check calculate T and C for x = 224 mm. 
Strain εs

’ in compression steel is given by 
εs' =  0.0035(x – d')/x = 0.0027 > 0.0022 

Therefore compression steel yields and the stress fs' is equal to 0.95 fyk. 
Similarly, strain εs in tension steel is given by 

εs = 0.0035(d – x)/x = 0.0018 < 0.0022 
Therefore tension steel does not yield and the stress fs is equal to  

fs = εs E = 0.0018  200  103 = 360 MPa 
T = As  fs = 2945.2  360  10−3 = 1160.3 kN 

C = fcd  b  0.8 x + As'  fs' 
C = {16.67  250  0.8  224 + 942.5  0.87  500}  10−3 

C = (746.8 + 410.0) = 1156.8 kN 
T – C = 3.5 kN 

This is close enough to be zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.19 Linear interpolation. 
 
Taking moments about the tension steel, the lever arm for compression force in 
concrete is (d – 0.5 λx) and for the compression force in steel it is (d – d').  

M = {746.8  (350 – 0.5 0.8  224) + 410.0  (350 – 50)}  10−3 = 317.5 kNm 
Since x/d > 0.448, it is sensible to limit the permissible ultimate moment to a value 
less than 317.5 kNm.  Limiting x to x = 0.448 d = 157 mm,  

Cc = C = fcd  b 0.8 x = {16.67  250  0.8  157} 10−3 = 523.4 kN 
Lever arm zc = d – 0.5 λx = 287 mm 

Strain εs
' in compression steel is given by εs' = 0.0035(x – d')/x = 0.0024 > 0.0022. 

Therefore compression steel yields and the stress fs` is equal to 0.87 fyk. 
Cs = {942.5  0.87  500}  10−3 = 410.0 kN, Lever arm zs = d – d' = 300 mm 

Taking moments about the steel centroid, M = Cc zc + Cs zs = 273.2 kNm. 

74.6 

265.36 

T − C 

x 
220 

240 
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CHAPTER 5 
 

SHEAR, BOND AND TORSION 
 
 
5.1 SHEAR FORCES 
 
In beams, a change in bending moment involves shear forces.  Shear force at a 
section gives rise to diagonal tension in the concrete and leads to cracking.  Shear 
failures are very brittle and therefore should be avoided.  All beams should always 
be designed to fail in a ductile manner in flexure rather than in shear.  
 
 
5.1.1 Shear in a Homogeneous Beam  
 
According to engineers’ theory of bending, in a beam a state of pure shear stress 
exists at the neutral axis.  This causes principal tensile and compressive stresses of 
the same magnitude as the shear stress and inclined at 45o to the neutral axis.  This 
is shown in Fig. 5.1(b) and Fig. 5.1(c) on an element at the neutral axis.   
In an elastic rectangular beam shown in Fig. 5.1(a), the distribution of shear stress 
is parabolic as shown in Fig. 5.1(d).  The maximum elastic shear stress at the 
neutral axis is given by 

bh
Vv 5.1max   

where V = shear force at the section. 
     In a T-beam or an L-beam, most of the shear force is resisted by the web and 
therefore for all practical purposes in shear calculations, flanged beams can be 
considered as rectangular beams of dimensions bw  h, where bw = width of the 
web. 

 
Fig. 5.1 (a) cross section; (b) beam; (c) enlarged element; (d) shear stress distribution. 

 
 
 

b 

h 

(a) (b) 

(c) 
(d) 
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5.1.2 Shear in a Reinforced Concrete Beam without Shear Reinforcement  
 
(a) Shear failure  
Shear in a reinforced concrete beam without shear reinforcement causes cracks on 
inclined planes near the support as shown in Fig. 5.2. 
 

 
Fig. 5.2 Different actions contributing to shear strength. 

 
The cracks are caused by the diagonal tensile stress mentioned above.  The shear 
failure mechanism is complex and depends on the shear span av to effective depth d 
ratio (av/d).  Shear span av is defined as the distance between the support and the 
major concentrated load acting on the span.  When this ratio is large, the failure is 
as shown in Fig. 5.2.  
     The following actions form the three mechanisms resisting shear in the beam:  

a. Shear stresses in the compression zone resisted by uncracked concrete. 
b. Aggregate interlock along the cracks: Although cracks exist in the web 

due to tensile stresses caused by shear stresses, the width of the cracks is 
not large enough prevent frictional forces between cracked surfaces.  
These frictional forces exist along the cracked surfaces and contribute to 
resisting shear force.   

c. Dowel action in the bars where the concrete between the cracks transmits 
shear forces to the bars. 

 
(b) Shear capacity  
An accurate analysis for shear strength is not possible. The problem has been 
solved by testing beams of the type normally used in practice.  Shear strength 
depends on several factors such as 

 The percentage of flexural steel in the member.  This affects the shear 
capacity by restraining the width of the cracks and thus enhancing the 
shear carried by the aggregate interlock along the cracks.  It also naturally 
increases the shear capacity due to dowel action and increase the depth of 
the section in compression. 
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 Compression strength of concrete strength: It affects by increasing the 
aggregate interlock capacity and also the shear capacity of the uncracked 
portion of the beam. 

 Type of aggregate: This affects the shear resisted by aggregate interlock.  
For example, lightweight aggregate concrete has approximately 20% 
lower shear capacity compared to normal weight concrete. 

 Effective depth: Tests indicate that deeper beams have proportionally 
lower shear capacity compared to shallow beams.  The reason for this is 
not clear but it is thought it might have some thing to do with lower 
aggregate interlock capacity.  

 Restraining the tension steel separating from concrete by providing 
vertical links improves shear capacity by increasing dowel action. 

 

 
 

Fig. 5.3 Definition of Asl at section A. 
 
The shear capacity of a member without any shear reinforcement is given by code 
equations (6.2a), (6.2b) and (6.3N). 
              db]kv[db]k}f100{kC[V wcp1minwcp1

3/1
ck1c,Rdc,Rd    (6.2a) 
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  
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sl
1   

Asl = Area of tensile reinforcement which extends a length of (design anchorage 
length lbd + effective depth) beyond the section where the shear capacity is being 
calculated as shown in Fig. 5.3. 
                                                 ck

5.1
min fk035.0v                                       (6.3N) 

d lbd+d lbd+d 

d lbd+d 

A A 

A 



 94                                                                                   Reinforced concrete design to EC 2 

k1 = 0.15 
σcp = Axial force/Area of concrete cross section 

In the above equations, VRD, c is in Newtons, fck in MPa, all linear dimensions are in 
mm. 
  
(c) Example 
Calculate the shear capacity of a rectangular beam 250 × 450 mm, effective depth 
d = 400 mm reinforced at a section with 3H20 bars. fck = 25 MPa, σcp = 0.  It may 
be assumed that the bars extend a length lbd + d beyond the section under 
consideration.  Bw = 250 mm, d = 400 mm, Asl = 3 × 314 = 943 mm2. 

12.0
)5.1(

18.0C
c

c,Rd 


  

0.271.1
400
2001k   

0.294.0
400250

943100100 1 


  

MPa39.02571.1035.0v 5.1
min   

3

33/1
c,Rd

10400250]015.039.0[

10400250]015.0}2594.0{71.112.0[V







 

kN0.3977.58V c,Rd   
 
 
5.1.3 Shear Reinforcement in the Form of Links 
 
Fig. 5.4 shows a reinforced concrete beam under third point loading.  Due to the 
loading, bending and shear stresses act at all points in the beam.  In areas where 
bending stresses dominate, vertical flexural tensile cracks develop.  In areas where 
shear stresses dominate as at neutral axis, inclined tension cracks develop due to 
diagonal principal tensile stress caused by shear stress.  At sections where both 
bending and shear are of equal importance, cracks which start as vertical tension 
cracks due to bending become inclined as they move up due to the action of shear 
stresses. 
When sufficient inclined cracks form as shown in Fig. 5.5, concrete between 
cracks acts as concrete struts. 
If vertical steel stirrup reinforcements are provided, the combination of vertical 
steel stirrups and inclined concrete struts together form the web of a composite 
truss whose tension chord is steel reinforcement and the compression chord is 
uncracked concrete as shown in Fig. 5.6.  It is important to appreciate that this is a 
‘smeared truss’ in the sense that both steel and concrete web members are not 
discrete members.  If Asw is the area of one steel stirrup and the spacing is s along 
the span, then the vertical force provided by the stirrups is Asw fyk/s per unit length.   
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Fig. 5.4 Beam under third point loading. 

 

 
Fig. 5.5 A cracked reinforced concrete beam. 

 

 
Fig. 5.6 A composite truss. 

 
In this model of shear resistance, it is assumed that at ultimate loads, the steel 
stirrups yield and concrete struts do not crush.  
Note that bending moment alone creates a force of M/z where z is the lever arm in 
the tension and compression chords.  However, the smeared truss idealization 
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introduces an additional force in the tension and compression chords due to shear 
force V.  This can be seen from the force analysis of the truss shown in Fig. 5.7.  
The depth of the truss is z, the web members are inclined to the horizontal by θ and 
the panel width is z cot θ.   
The force analysis of the truss shows that the tensile forces in the bottom chord are 
V cot θ, 2V cot θ, 3V cot θ and so on. The bending moments in the middle of each 
panel are 0.5V z cot θ, 1.5V z cot θ, 2.5V z cot θ and so on.  Dividing the bending 
moment by the lever arm z, the force in the top and bottom chords due to bending 
moment is 0.5V cot θ, 1.5V cot θ, 2.5V cot θ and so on.  The force in the top and 
bottom chords due to shear force alone is the difference between the total force and 
the force due to bending moment.  This additional force is equal to 0.5V cot θ in 
the top and bottom chords.  This has to be allowed for in the design of tension 
reinforcement. 

 
 

Fig. 5.7 Additional tensile force due to shear force. 
 
 
5.1.4 Derivation of Eurocode 2 Shear Design Equations 
 
Fig. 5.8 shows the idealized truss with a cut section parallel to the concrete 
compression struts.  Let z be the lever arm, the distance between the compression 
chord and longitudinal reinforcement acting as tension chord.  If θ is the inclination 
of concrete struts to the horizontal and s is the spacing of the vertical shear links, 
the number of links in the distance z cot θ is z cot θ /s. If Asw is the total area of 
shear link and fywd is the design yield stress of the link steel, the shear force V at 
the section is given by 

ywdsw fA
s

cotzV 
  

z 

z cotθ  

θ 

V V cotθ  2V cotθ  3V cotθ  

V cotθ  2V cotθ  

0.5V cotθ  1.5V cotθ  2.5V cotθ  

Bending moment distribution 



Shear, bond and torsion                                                                                                        97 

 
Fig. 5.8 Idealized truss with a cut section parallel to the struts. 

 

 
 

Fig. 5.9 Idealized truss with a cut section perpendicular to the struts. 
 
 
Fig. 5.9 shows the same idealized truss but with a cut perpendicular to the struts.  
The length of the cut section is z/cos θ.  If σc is the stress in the concrete struts, the 
total compressive force Fc parallel to the struts is  




cos
zbF wcc  

The total vertical tensile force Fs due to force in the stirrups is  

ywdsws fA
s

tanzF 
  

However, ywdsw fA
s

cotzV 
 can be expressed as 

ywdsw fA
s
ztanV   

Fs can now be expressed as  




 2
ywdsws tanVfA

s
tanzF  

From Fig. 5.8,  
V = Fc sin θ − Fs 

Replacing Fs by V tan2 θ 
V = Fc sin θ − V tan2 θ 

z 

z tan θ 

z 

z cot θ 
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V (1 + tan2 θ) = Fc sin θ 
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The maximum shear force that can be resisted without crushing the concrete in the 
struts is given by  

)tan(cot
1zbV wcmax,Rd


  

Code limits the concrete stress σc to 
cd1cwc f  

where ν1 is an efficiency factor which allows for the effects of cracking as well for 
the actual distribution of stress in the struts.  It is given by code equation (6.6N). 
                                  ν1 = 0.6 (1 − fck/250)                                                        (6.6N)  
                              αcw = 1 for non-prestressed structures.                           (6.10aN) 
VRD, max is given by the code equation (6.9) 

)tan(cot
1fzbV cd1wcwmax,RD


  

                                                   1 ≤ cot θ ≤ 2.5                                                 (6.7N) 
An approximate value for lever arm is z = 0.9 d.  The value of bw is the width of 
the web in T-beams.  If the width of the web varies, then the minimum width 
between the tension and compression chords should be used as shown in Fig. 5.10. 
 

 
 

Fig. 5.10 Minimum web width bw. 
 
The shear reinforcement required is given by  

ywdsw fA
s
ztanV   

The expression for V can be written as  

bw 

bw 
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                                                    cotfA
s
zV ywdsw  

In the code the above equation is the shear resistance due to stirrups alone and is 
given as equation (6.8). 

                                       cotfA
s
zV ywdsws,RD                                               (6.8) 

 
Table 5.1 Values of shear resistance  

cot θ VRD,s VRD,max 
1.0 0.87(z/s) Asw fywk 0.2(1 − fck/250) bw z fck 
2.5 2.175 (z/s) Asw fywk 0.138(1 − fck/250)  bw z fck 

 
Table 5.1 shows the values of shear resistance of concrete and steel for the two 
extreme values of cot θ.  Taking fcd= fck/ (γc =1.5), fywd = fyk/ (γs =1.15) and 
equating the value of shear resistance of concrete to the shear resistance of stirrups, 
the value of Asw/s can be calculated.   Clearly the minimum value of shear steel is 
needed when cot θ = 2.5 and the maximum value of shear steel is needed when  
cot θ = 1.0. 
 
 
5.1.4.1 Additional tension force due to shear in cracked concrete 
 
Fig. 5.11 shows a beam cracked in shear with concrete struts inclined at an angle to 
the beam axis.  
  

 
 

Fig. 5.11 Beam cracked in shear with concrete struts. 
 
Taking a series of steps perpendicular to the struts, the total compressive across a 
vertical cut is 

 coshbF cc  
where σc = compressive stress in concrete, b = width of the beam and h = depth of 
beam. 
As shown in Fig. 5.12, the vertical component of Fc is equal to the shear force VEd. 

VEd = Fc sin θ. 
The horizontal component H is equal to Fc cos θ. 

θ 

Fc 
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Expressing Fc in terms of VEd,  
H = Fc cos θ = (VEd/sin θ) cos θ = VEd cot θ. 

The horizontal compressive force H is kept in equilibrium by tension forces in the 
top and bottom chords.  The force in the bottom chord is approximately 0.5H. 
The additional tension force due to shear is therefore 0.5 VEd cot θ. 
 

 
Fig. 5.12 Additional tension force in a beam cracked in shear with concrete struts. 

 
In Eurocode 2 clause 6.2.3(7), the additional tensile force in the longitudinal 
reinforcement due to shear VEd in members with shear reinforcement is given by 
equation (6.18) as 
                                         ΔVEd = 0.5 VEd (cotθ – cotα)                                   (6.18) 
where θ = angle of the cracks and α = inclination of shear reinforcement to the 
vertical. 
For members with shear reinforcement, the total tensile force Fs for which the 
reinforcement needs to be designed is given by 

Fs = (MED/z + ΔVEd) ≤ Maximum moment along the beam MED, max/z 
In clause 9.2.1.3(2), Eurocode 2 suggests that this additional tensile force due to 
shear can be included by simply shifting the moment curve away from the section 
of maximum moment in the direction of decreasing moment a distance  
                                           a1 = 0.5 z (cotθ – cotα)                                              (9.2) 
The shifted bending moment diagram is used for design.   
In the case of members without shear reinforcement, a1 = d. 
 
 
5.1.5 Minimum Shear Reinforcement 
 
The code recommends in equations (9.4) and (9.5N) that minimum shear 
reinforcement must satisfy the condition  

                                                            
yk

ck

w

sw
f

f08.0
bs

A
                   (9.4) and (9.5N) 

In addition the maximum longitudinal spacing s is limited to 0.75 d according to 
equation (9.5N).  The transverse spacing (across the width bw) should be limited to 
0.75 d ≤ 600 mm according to equation (9.8N). 
 
 
 
 

VEd 
H 
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5.1.6 Designing Shear Reinforcement 
 
The steps in designing the shear reinforcement are as follows. 

 Calculate the design shear force, VEd. 
 Calculate VRD, c.  If VEd < VRD, c, then no shear reinforcement is required 

but a minimum value should always be provided. 
 If VEd > VRD, c, shear reinforcement is required. 
 Equate V = VRD, max and calculate the value of cot θ.  Check that it is with 

in the limits of 1.0 and 2.5.  If it is outside the limits for minimum shear 
reinforcement, choose the maximum value within the limits and calculate 
the corresponding value of VRD, max and ensure that it is larger than VEd. 

 Design the necessary shear reinforcement from the equation (6.8)  

                                      cotfA
s
zV ywdsws,RD                                        (6.8)        

 Check that the minimum reinforcement has been provided 
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                         (9.4) and (9.5N) 

Check the longitudinal and lateral spacings.  
 
Example: At a cross section in a T-beam with flange width b = 600 mm, flange 
thickness hf = 125 mm, effective depth d = 375 mm, width of web bw = 200mm, 
flexural reinforcement is 2H32 mm bars, fck = 25 MPa, fywk = 500 MPa, design 
ultimate shear force VEd = 157.5 kN.  Determine the spacing of 10 mm diameter 
links.  
Solution: 
i. Check if shear reinforcement is required, VEd > VRd, c. 

VEd = 157.5 kN, bw = 200 mm, d = 375 mm, Asl = 2 × 804 = 1608 mm2 
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VRd, c = 57.35 kN < VEd.  Therefore shear reinforcement is required. 
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ii. Check whether the section strength is adequate, VEd < VRd,max. 
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Setting VRd, max = VEd,  
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04.4cot   
The value of cot θ is outside the limits of 1.0 and 2.5. 
Choosing cot θ = 2.5 for minimum shear reinforcement, VRd, max = 232.8 kN > VEd 
Section size is adequate. 
 
iii. Design of shear reinforcement. 
Ensure that VRd, s ≥ VEd and choosing 2-leg links of H8, Asw = 100.5 mm2,           
cot θ = 2.5, z = 0.9d, fywk = 500 MPa,  
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iv. Check minimum steel requirement. 
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mm628
508.0

500
200

5.100s   

Maximum spacing s ≤ (0.75 d = 0.75 ×375 = 281 mm). 
Maximum spacing should be less than 280 mm.  A spacing of 225 mm will be 
satisfactory.  Note that for reasons of economy, it is always desirable to have the 
links at maximum spacing permitted as this will reduce the number of links. 
 
 
5.1.7 Bent-up Bars as Shear Reinforcement 
 
The most common method of providing shear reinforcement is in the form of links.  
A less common method is using bent−up bars.  The reason bent-up bars are less 
popular is because of the increased cost of bending and fixing the reinforcement.   
 

 
Fig. 5.13 Bent-up bars resisting shear force (simply supported end). 

 
In the case of simply supported ends, the bending moment decreases but shear 
force increases towards the support.  Normally the tension reinforcement is 
curtailed towards the supports.  However, instead of curtailing the bottom tension 
reinforcement towards the supports, they can be bent up as shown in Fig. 5.13 to 
cross a potential shear crack and thus assist in resisting shear force. 
     A similar situation occurs at continuous supports as well.  As shown in           
Fig. 5.14, both the bending moment as well as the shear force increase towards the 
supports.  However as the bending moment causing tension at the top face 
decreases away from the support, the top tension steel can be bent down to act as 
shear reinforcement.   
This is the main motivation for using bent-up bars as shear reinforcement.  
However, often there might not be sufficient bars to bend to maintain minimum 
spacing required.   

Bending 
moment 

Shear 
force 
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Fig. 5.14 Bent-up bars resisting shear force (continuous support). 
 
Composite truss: As shown in Fig. 5.15, the composite truss is made up of bent-up 
bars and concrete struts.  The concrete struts and the bent-up bars are inclined at 
angles θ and α respectively to the horizontal.  
Taking a section parallel to the struts as shown in Fig. 5.16, the number of bent-up 
bars is z(cot θ + cot α)/s, where s is the spacing of the bent-up bars.  The vertical 
component of the bars is therefore the shear resistance VRd, s of the bent-up bars. 

                                     


 sinfA
s

)cot(cotzV ywdsws,Rd                        (6.13) 

Similarly taking a section perpendicular to the struts and proceeding as in section 
5.1.4,  

)cot1(
)cot(cotzbV 2wc




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Replacing σc by αcw ν1 fcd and V by VRd, max 
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Fig. 5.15 Composite truss with bent-up bars and concrete struts. 
 

 
 

Fig. 5.16 A section parallel to the concrete struts. 
 
 
5.1.7.1 Example of Design of Bent-up Bars and Link Reinforcement in Beams 
 
Design shear reinforcement using a combination of shear links and bent-up bars for 
a rectangular beam b = 300 mm, d = 450 mm, fck = 25 MPa, fyk = 500 MPa.  The 
tension steel consists of 3H25 mm bars.  Bent-up bars are H20 bars bent in pairs at 
an angle to the horizontal of 450 and at a spacing of 600 mm.  The design shear 
force VEd = 320 kN. 
Design shear reinforcement using one half of total shear force to be resisted by 
links and the other half by bent-up bars. 
 
a. Link design 

VEd = 0.5 ×320 = 160 kN, bw = 300 mm, d = 450 mm, Asl = 3 × 491 = 1473 mm2 
 
i. Check if shear reinforcement is required, VEd > VRd, c. 
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VRd, c = 81.4 kN < VEd.  Therefore shear reinforcement is required. 
 
ii. Check the adequacy of the section, VRd,max > VEd. 

 

}
fzb

V2{sin5.0
cd1wcw

Ed1


   

01

3
1

64.727.155.0)263.0(sin5.0

}

5.1
256.0)4509.0(3000.1

101602{sin5.0












 

45.7cot   
The value of cot θ is outside the limits of 1.0 and 2.5. 
Choosing cot θ = 2.5 for minimum shear reinforcement, (VRD, max = 419 kN)> VEd. 
Section size is adequate. 
 
iii. Design of shear reinforcement 
Ensure that VRd, s ≥ VEd, and choose 2-leg links of 8 mm diameter, 
Asw = 100.5 mm2, cot θ = 2.5, z = 0.9d, fywk = 500 MPa,  

)kN160V(kN
s

17696

105.2
15.1

5005.100
s

)4509.0(

cotfA
s
zV

Ed

3

ywdsws,Rd














 

mm110s   
0.75 d = 0.75 × 450 = 338 mm 

Use a spacing of 100 mm.   
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iv. Check minimum area of links 
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Minimum steel has been provided. 
 
b. Bent-up bar design 
 
i. Check if for bent-up bar case, VRd, max > VEd. 
Assuming cot θ = 2.5 from link design and cot α = 1.0, α = 450 
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ii. Design of shear reinforcement 
Asw = 2 × 314 = 618 mm2, cot θ = 2.5, z = 0.9d, fywk = 500 MPa, s = 600 mm,  
α = 450 

 sin)cot(cotfA
s
zV ywdsws,Rd  

3
s,Rd 107071.0)15.2(
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
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)kN160V(kN456V Eds,Rd   
s ≤ 0.75 d (1+cot α) = 0.75 × 450 × (1+1) = 676 mm which is greater than the 
spacing of 600 mm provided. 
 
Note: The code is unclear about many aspects of combining vertical shear links 
and bent-up bars.  For example there are two values for VRd,max, one for links steel 
and one for bent-up bars with the latter giving a much smaller value than the 
former. As it is clearly illogical to use two different values for cot θ; in the above 
example only one value of cot θ calculated from VRD, max for link steel case is used. 
 
 
5.1.8 Loads Applied Close to a Support  
 
When loads are applied close to a support as shown in Fig. 5.17, a large proportion 
of the load is transferred to the support by strut action rather than by bending and 
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shear action.  Therefore one can take a reduced value of the load when designing 
shear reinforcement. 

 
Fig. 5.17 Loads close to support. 

 
Clause 6.2.2 (6) states that when loads are applied on the upper side within a 
distance 0.5 ≤ av/d ≤ 2.0, where av is the distance from the edge of the support to 
the edge of the load as shown in Fig. 5.17 and d is the effective depth, the 
contribution of that load to shear force VEd may be reduced by a reduction factor β 
equal to 0.5 av/d.  The reduction is applicable also when checking VRd, c.   
If av/d ≤ 0.5, then use β = 0.25. 
In addition, VEd calculated without the reduction by β should always satisfy the 
condition given by code equation (6.5) 

                                    cd
ck

wEd f]}
250
f

1[6.0{db5.0V                                (6.5) 

In addition to the above requirement, VEd calculated with the reduction by β should 
always satisfy the condition given by code equation (6.19) 
                                    VEd reduced  sinfA ywdsw                                     (6.19) 
α = 900 for links.  Asw is the total shear reinforcement crossing the inclined shear 
crack.  Only the reinforcement in the central 0.75 av of the distance between the 
loaded areas should be taken into account. 
 
 
5.1.8.1 Example 
 
A corbel 350 mm wide and 500 mm deep is reinforced in tension by 2H25 mm 
bars to support a load of 400 kN.  Assuming that fyk = 500 MPa, fck = 30 MPa, 
effective depth d = 450 mm, av = 600 mm, design the necessary shear 
reinforcement. 

av/d = 600/450 = 1.33 
β = av/ (2d) = 1.33/2 = 0.67 

VEd = Reduced load for shear force = β × 400 = 268 kN 
i. Check that VEd satisfies equation (6.5). 
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ii. Check if shear reinforcement is needed, VRd, c< VEd. 

Asl = 2 × 491 = 982 mm2 
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VRd, c = 83.5 kN < VEd. 
Therefore shear reinforcement is required. 
 
iii. Check adequacy of section, VRd, max > VEd. 
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21.6cot   
The value of cot θ is outside the limits of 1.0 and 2.5. 
Choosing cot θ = 2.5 for minimum shear reinforcement, VRd, max = 587 kN > VEd. 
Section is adequate. 
iv. Design of shear reinforcement VRd, s > VEd 
Choosing 2-leg links of 8 mm diameter, 
Asw = 100.5 mm2, cot θ = 2.5, z = 0.9d and fywk = 500 MPa. 



 110                                                                                   Reinforced concrete design to EC 2 

)kN267V(kN
s

44242

105.2
15.1

5005.100
s

)4509.0(

cotfA
s
zV

Ed

3

ywdsws,RD














 

mm165s   
Maximum spacing = 0.75 d = 338 mm.  Choose 150 mm spacing for links. 
 
v. Check minimum shear steel:  
av = 600 mm, 0.75 av = 450 mm, sin α = 1 and area of one 2-leg link = 100.5 mm2. 

VEd reduced  sinfA ywdsw  
If N links are provided in the section 0.75 av,  

3100.1
15.1

5005.100NkN268   

1.6N   
Provide seven links in the 450 mm length.  Provide 8 mm diameter 2-leg links at 
450/ (7−1) = 75 mm centres. 
Note: Annex J.3 of Eurocode 2 gives further information on the design of corbels 
using strut−tie method.  See also Chapter 18. 
 

 
 

Fig. 5.18 Beams with sloping webs. 
 
 
5.1.9 Beams with Sloping Webs 
 
Very often the beam depth is increased towards the support to increase shear 
capacity.  Fig. 5.18 shows the situation at a simply supported end and at a 
continuous support.  Note that at a simply supported end, the total shear force is 
increased because of the vertical component of the tensile force.  On the other 
hand, in the case of continuous beam, the total shear force is reduced by the 
vertical component of the compressive force.  These changes need to be included 
when designing shear reinforcement. 
 

(a) (b) 
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5.1.10 Example of Complete Design of Shear Reinforcement for Beams  
 
Example 1: A continuous slab 100 mm thick is carried on T-beams at 2 m centres.  
The overall depth of the beam is 450 mm and the breadth bw of the web is 250 mm 
as shown in Fig. 5.19.  The beams are 7 m clear span and are simply supported as 
shown in Fig. 5.20.  The characteristic dead load including self-weight and finishes 
is 10 kN/m2 and the characteristic imposed load is 6 kN/m2.  Design the beam 
using the simplified stress block.  The materials are concrete fck =25 MPa and steel 
fyk = 500 MPa.  

 
Fig. 5.19 Cross section of the T-beam. 

 
 

 
Fig. 5.20 Beam and loading. 

 
Since the beams are spaced at 2 m centres, the loads on the beam are: 

Dead load = 10.0 × 2 = 20.0 kN/m 
Live load = 6 × 2 = 12 kN/m 

Design load = (1.35 × 20.0) + (1.5 × 12) = 45.0 kN/m 
Ultimate moment at mid-span = 45.0 × 7.22/8 = 291.6 kN m 

 
Design for bending: 
Calculate the effective width: 

b = b1 + b2 + bw = spacing of beam = 2000 mm 
b1 = b2 = (2000 – 250)/2= 875 mm 

ℓ0 = Span of simply supported beam = 7200 mm  
beffe,1 = beffe,2 = 0.2 b1 + 0.1 ℓ0 ≤ 0.2ℓ0  

              = 0.2 × 875 + 0.1× 7200 = 895 mm 
beffe,1 = beffe,2 = 895 > (b1 = b2 = 875) 

7.0 m 

200 mm 200 mm 

450 
100 

2000 

250 



 112                                                                                   Reinforced concrete design to EC 2 

Therefore beffe, 1 = beffe, 2 = 875   
beff = beff,1 + beff, 2 + bw = 875 + 875 + 250 = 2000 ≤ (b = 2000 mm) 

Effective width beff of flange = 2000 mm 
The beam section is shown in Fig. 5.17.  Assuming a nominal cover on the links is 
25 mm and if the links are 8 mm in diameter and the main bars are 20 mm in 
diameter, then  

d = 450 – 25 – 8 – 20/2 = 407 mm, say 400 mm. 
First of all check whether the beam can be designed as a rectangular beam by 
calculating Mflange. 

Mflange = η fcd b hf (d – hf/2) 
fck = 25 MPa, fcd = 25/1.5 = 16.7 MPa, η =1, λ = 0.8, δ = 1 (simply supported 
beam). 

Mflange = 16.67 × 2000 × 100 × (400 – 0.5 × l00) × 10−6 = 1166.9 kNm 
The design moment of 291.6 kNm is less than Mflange.  The beam can be designed 
as a rectangular beam of size 1840 × 400.  

k = M/ (b d2 fck) = 291.6 × 106/ (2000 × 4002 × 25) = 0.037 < 0.196 

97.0})
0.1

037.031(0.1{5.0})k31(0.1{5.0
d
z




 

2
6

yk
s mm1728

50087.040097.0
106.291

f87.0d97.0
MA 







  

Provide 6H20; As = 1884 mm2. 
Check actual effective depth: 

d1 for bottom four bars = 450 – 25(cover) −8 (links) − 20/2 = 407 mm. 
d2 for top two bars = 407 – 20 = 387 mm. 

d = (4 × 407 + 2 × 387)/6 = 400 mm.  Assumption is valid. 
Bar curtailment: 
The top two bars can be curtailed, leaving the bottom four bars to run to full length.   
As = 4H20 = 1256 mm2.   
 
Check minimum steel: 
From equation (9.1N), As, min = 0.26 × (fctm/fyk) × bt d 
fctm = 0.30 ×(25)0.667 = 2.6 MPa, fyk = 500 MPa, bt = 250 mm, d = 400 mm,  
As, min =135 mm < 1256 mm2 provided. 
Ignoring the additional tensile force due to shear:  
Equating total tension to total compression, 
As × 0.87 × fyk = (2000 × a) × fcd, a = thickness of slab in compression 
1256 × 0.87 ×500 = (2000 × a) × 25/1.5, a = 16.4 mm 
lever arm z = (d1 – a/2) = 407 – 16.4/2 = 399 mm 
Moment of resistance = As × 0.87 × fyk × z = 218 kNm 
45 × (7.2/2) × x – 45 × x2/2 = 218, x = 1.79 m and 5.40 m 
Top two bars can be curtailed at 1.79 m from the centre of support at both ends. 
Including the additional tensile force due to shear: As a simple means of including 
the effect of shear force on tensile force in the reinforcement, using the shift rule 
from clause 9.2.1.3(2), the bending moment diagram is shifted by  

a1 = 0.5z (cotθ – cotα) 



Shear, bond and torsion                                                                                                        113 

z = 399 mm, cot θ = 2.5, α = 900, cot α = 0, a1 = 0.5 m. 
The moment of 218 kNm, instead of occurring at 1.79 m from the ends, is assumed 
to occur at 1.79 – a1 = 1.29 m from the ends. 
Assume the anchorage length lbd ≈ 41 bar diameters = 820 mm (see section 5.2). 
The top two bars can be stopped at (1.79 – a1 − lbd ) = (1.79 – 0.5 – 0.82) = 0.47 m 
from the centre of support at both ends. 
 
Design for shear: 
In clause 6.2.1(8), the code states that for members subjected to predominantly 
uniformly distributed loading, the design shear force need not be checked at a 
distance less than d from the face of the support.  Any shear reinforcement required 
should continue to the support.  In addition it should be verified that that the shear 
at the support does not exceed VRd, max. 
In clause 6.2.3 (5), the code states that where there is no discontinuity of VEd, (e.g., 
for uniformly distributed loading) the shear reinforcement in any length increment 
ℓ = z (cot θ + cot α) may be calculated using the smallest value of VEd in the 
increment.  

Reaction R = 45 × 7.2/2 = 162.0 kN.  Width of support = 200 mm. 
Shear force at d from face of support = R – (100 + 400) × 10−3 × 45 = 139.5 kN. 

VEd = 139.5 kN. 
 
(a) Check if shear reinforcement is required, VEd > VRd, c 
VEd = 139.5 kN, bw = 250 mm, d = 400 mm, Asl = 4 × 314 = 1256 mm2 

12.0
)5.1(

18.0C
c

c,Rd 


  

0.271.1
400
2001k   

0.226.1
400250

1256100100 1 


  

MPa39.02571.1035.0v 5.1
min   

kN0.398.64V
10400250]015.039.0[

10400250]015.0}2526.1{71.112.0[V

c,Rd

3

33/1
c,Rd











 

VRd, c = 64.8 kN < 139.5 kN.  Therefore shear reinforcement is required. 
 
(b) Check if the section strength is adequate, VEd < VRd, max. 

}
fzb

V2{sin5.0
cd1wcw

Ed1


   
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01

3
1

03.906.185.0)31.0(sin5.0

}

5.1
256.0)4009.0(2500.1

105.1392{sin5.0












 

29.6cot   
The value of cot θ is outside the limits of 1.0 and 2.5. 
Choosing cot θ = 2.5 for minimum shear reinforcement, VRd, max = 310.3 kN > VEd. 
Check that shear force at support is less than VRd, max.  
Shear force at support = 162.0 kN < (VRd, max = 310.3 kN). 
Section size is adequate. 
 
(c) Design of shear reinforcement: 
Ensure that VRd, s ≥ VEd and choose 2-leg links of 8 mm diameter. 
Asw = 100.5 mm2, cot θ = 2.5, z = 0.9d, fywk = 500 MPa, VEd = 139.5 kN. 

 cotfA
s
zV ywdsws,Rd  

3
s,Rd 105.2

15.1
5005.100

s
)4009.0(V 


  

                               )kN5.139V(kN
s

39326V Eds,Rd   

mm282s   
Maximum spacing s ≤ (0.75 d = 0.75 × 400 = 300 mm). 
Maximum spacing should be less than 300 mm.  A spacing of 250 mm will be 
satisfactory. 
 
(d) Check minimum steel requirement. 
 

yk

ck

w

sw
f

f08.0
bs

A
  

500
2508.0

250s
5.100



 

mm503
2508.0

500
250

5.100s   

 
(e) Calculate the shear resistance with minimum shear steel. 

s = 300 mm. 

 cotfA
s
zV ywdsws,Rd  

kN1.131105.2
15.1

5005.100
300

)4009.0(V 3
s,Rd 


   

This shear force occurs at (7.2/2) × [1.0 – 131.1/162] = 0.69 m from the ends. 
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Therefore beyond 0.69 m from the ends, only minimum shear links at 300 mm are 
required.   
Provide links at 250 mm centres for 0.69 m from the ends and links at 300 mm for 
the rest of the beam.  2H12 bars are provided at the top to hold the links.  The 
arrangement is shown in Fig. 5.21. 
 

 
Fig. 5.21 Shear link arrangement. 

 
In order to assist design calculations, Table 5.2 gives the values of Asw/(s bw) for  
fyk = 500 MPa and fck from 25−60 MPa. 
 

Table 5.2 Minimum shear reinforcement: Value of (Asw/(s bw) ×104 
 

fck, MPa 25 30 35 40 45 50 55 60 
(Asw/(s bw)×104 8.0 8.76 9.47 10.12 10.73 11.31 11.87 12.39 

 
Table 5.3 gives values of Asw/s for various link sizes and spacings assuming 2-leg 
links. 
 
 
 
 
 
 

570 mm 100 mm 

4 links at 250 links at 300 
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Table 5.3 Asw/s for 2-leg links 
Link 
size 

(mm) 

Spacing s (mm) 

 75 100 125 150 175 200 250 300 
H6 0.754 0.566 0.452 0.377 0.323 0.283 0.226 0.189 
H8 1.340 1.005 0.804 0.670 0.575 0.503 0.402 0.335 

H10 2.094 1.571 1.257 1.047 0.898 0.785 0.628 0.524 
H12 3.016 2.262 1.810 1.508 1.293 1.131 0.905 0.754 
H16 5.362 4.021 3.217 2.681 2.298 2.011 1.609 1.340 

 
 
5.1.11 Shear Design of Slabs 
 
Flexural design of slabs is treated in Chapter 8.  One-way and two-way solid slabs 
are designed for shear like beams on the basis of a strip of unit width of 1 m.  Slabs 
carrying moderate distributed loads such as floor slabs in office buildings and 
apartments do not normally require shear reinforcement.  In clause 6.2.1(4), the 
Eurocode 2 suggests that minimum shear reinforcement may be omitted in 
members such as slabs (solid, ribbed or hollow core slabs) where transverse 
redistribution of loads is possible.  
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Fig. 5.22 Punching shear (a) pad footing; (b) flat slab−column junction; 
(c) wheel load on bride deck.. 

 
 
5.1.12 Shear Due to Concentrated Loads on Slabs  
 
Fig. 5.22 shows situations where a slab is subjected to concentrated forces such as 
when the concentrated load is caused by a column reaction in a flat slab or in a pad 
footing or due to a concentrated wheel load on slabs in bridge decks.  A 



Shear, bond and torsion                                                                                                        117 

concentrated load causes punching failure which occurs on inclined faces of a 
truncated cone or pyramid, depending on the shape of the loaded area as shown in 
Fig. 5.23.  
  

 
 

Fig. 5.23 Elevation of punching shear at a column. 
 
Punching shear is considered in section 6.4 of Eurocode 2.  Shear resistance is 
checked at the face of the column and at the basic control perimeter u1 which is 
normally taken at a distance of 2d from the face of the column.  Fig. 5.24 shows 
basic perimeters in the case of a circular and rectangular column. 

a. Circular column of diameter D: Basic perimeter, u1 = π(D + 4d) 
b. Rectangular column b × h: Basic perimeter, u1 = 2(b + h) + 4π d 

 
 

 
 

Fig. 5.24 Control perimeters for circular and rectangular columns. 
 
Fig. 5.25 shows basic perimeters in the case of a rectangular column close to an 
edge or at a corner at distance smaller than twice the effective depth d.  Note that 
the unsupported edge is excluded in the perimeter calculation. 

(a) Column b × h, near to an edge: u1 = 2(a+b) + h + 2πd, a < 2d 
(b) Column b × h, near to a corner: u1 = a1+ b + a2 + h + πd, a1 and a2 < 2d 
 

2d 

d 

2d 

2d 

2d 

(a)  π (D + 4d) 

D 
h 

b 

(b)  2(b+h) + 4πd 
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Fig. 5.25 Column close to edge or a corner. 

 
 
5.1.13 Procedure for Designing Shear Reinforcement against Punching Shear 
 
a. The effective depth d and the axial compressive stress σcp are taken as the 
average of the values in y- and z-directions. 

d = 0.5 (dy + dz), σcp = 0.5(σcy + σcz) 
 
b. At the column perimeter or perimeter of the loaded area u0, ensure that  

]f5.0v[
du

V
cdmax,Rd

0

Ed  where ν = 0.6 (1 – fck/250), fcd = fck/ (γc = 1.5) 

 
c. At the basic control perimeter u1, calculate  

)kv(]k}f100{kC[v cp1mincp1
3/1

ck1c,Rdc,Rd    

12.0
)5.1(

18.0C
c

c,Rd 


  

0.2
d

2001k   

02.0lzly1   

ρly and ρlz refer to reinforcement ratio in y- and z-directions respectively calculated 
over a width of slab equal to width of the column plus 3d on each side. 

ck
5.1

min fk035.0v   

If c,Rd
1

Ed
Ed v]

du
Vv[  , then no shear reinforcement is necessary.   

If c,RdEd vv  , provide shear reinforcement. 

a < 2d 

2d 

2d 

h 

b 
2d 

h 

a1 

2d 

a2 

b 

a1 and a2 < 2d 

(a) (b) 
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d. Shear reinforcement is calculated according to the code equation (6.52) 

                        sin}
du

1{fA}
s
d{5.1v75.0v

1
ef,ywdsw

r
c,Rdcs,Rd             (6.52) 

where: Asw = Total area of one perimeter of reinforcement  
            sr = Radial spacing of perimeters of reinforcement 
           fywd, ef = Effective design strength of punching shear reinforcement 
                    = 250 + 0.25 d ≤ fywd 
           α = angle between the shear reinforcement and the plane of the slab. 
If only a single line of bent-down bars is provided, take the ratio (d/sr) = 0.67. 
 
e. Determine the position of the outermost perimeter uout where vEd = vRd, c. 
 
f. Arrange the reinforcement. 
 
 
5.1.13.1 Example of punching shear reinforcement design: Zero moment case 
 
Design the shear reinforcement around the column of a flat slab.  The flat slab is 
supported by 400  600 mm columns spaced at 7.5 m in both directions.  The slab 
is 400 mm thick and is reinforced with H20 bars at 150 mm c/c in both directions 
with 30 mm cover.  Assume fck = 30 MPa, fywk = 500 MPa and shear links are H8 
single leg. 
The characteristic loads on the slab are:  

Live load = 15.0 kN/m2. 
Dead load including self weight, screed, partitions, etc. = 13.5 kN/m2. 

 
(i) Effective depths 

In y-direction, dly = 400 – 30 – 20/2 = 360 mm 
In z-direction, dlz = 400 – 30 –20 –20/2 = 340 mm 

d = 0.5(dly + dlz) = 350 mm 
(ii) Steel percentage 

As = H20 bars at 150 mm c/c = π × 202/4 × (1000/150) = 2094 mm2/m 
100 ρ1y = 100 ρ1z = 100 As/ (bd) = 100 2094/ (1000  350) = 0.60 

100 ρ = 0.5(0.60 + 0.60) = 0.60 
 
(iii) Column reaction 
Design load on slab:  

q = 1.35 × 13.5 + 1.5 × 15 = 40.73 kN/m2 
Column reaction, VEd = q × spacing in y-direction × spacing in z-direction 

VEd = 40.73 × 7.5 × 7.5 = 2291 kN 
 
(iv) Calculate vRd, max and vRd, c. 

fck = 30 MPa, ν = 0.6 (1 – fck/250) = 0.53, fcd = fck/(γc = 1.5) = 20 MPa 
vRd,max =  0.5 ν fcd = 0.5  0.53  20 = 5.3 MPa 

)kv()k}f100{kC(v cp1mincp1
3/1

ck1c,Rdc,Rd   
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12.0
)5.1(

18.0C
c

c,Rd 


 , 0.276.1
350
2001k  , σcp = 0 

0.260.060.060.0100 lzly1   , ck
5.1

min fk035.0v  = 0.45.  
Substituting in the formula, vRd, c = 0.55 MPa. 
 
(v) Check for maximum shear around the column perimeter 

u0 = Column perimeter = 2(400 + 600) = 2000 mm 
Load on slab acting downwards on the column = 400  600  40.73  10−6  
                                                                            = 9.8 kN 

V = 2291 – 9.8 = 2281.2 kN 
v = V/ (u0 d) = 2281.2  103/ (2000  350) = 3.26 MPa < (vRd, max = 5.3) 

The slab thickness is therefore adequate. 
 
(vi) Calculate the shear stress at the perimeter u1 at 2d from the column face: 

u1 = 2(400 + 600) + 2π × 2d = 6398 mm 
The load acting within the perimeter is equal to  

[400  600 + 2  (400 + 600)  2d + π (2d) 2]  40.73  10−6 kN 
= 129.50 kN 

VEd = 2291 – 129.50 = 2161.5 kN 
vEd = VEd/ (u1  d) = 2161.5  103/ (6398  350) = 0.97 MPa > (vRd, c = 0.55) 

Shear reinforcement is needed. 
 

 
 

Fig. 5.26 Outer perimeter uout. 
 
(vii) Calculate the perimeter uout where shear stress is equal to vRd, c 
As shown in Fig. 5.26, let the perimeter be at a distance Nd from the face of the 
column. 

uout = 2(400 + 600) + 2π Nd mm 

400 + 2Nd 

600 + 2Nd 

Nd 

Nd 
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The load acting within the perimeter is equal to  
[400  600 + 2  (400 + 600)  Nd + π (Nd) 2] 40.73  10−6 kN 

VEd = [2291 – Load inside perimeter] kN 
vEd = VEd/ (uout  d) = vRd,c MPa 

By trial and error, N = 3.72 and uout = 2(400 + 600) + 2π  3.72 350 = 10181 mm. 
At this perimeter no shear reinforcement is required. 
 
(viii) Calculate the position of the outermost perimeter where shear 
reinforcement is required 
According to clause 6.4.5(4) of Eurocode 2, the last ring of shear reinforcement 
must be within kd, where k = 1.5 from the uout. 
This perimeter lies at (Nd – kd) = (3.72 d – 1.5d) = 2.22 d from the face of the 
column. 
Perimeter length = u2.22 d = 2(400 + 600) + 2π × 2.22 d = 6882 mm. 
 
(ix) Calculate shear reinforcement using the code equation (6.52) 

 sin)
du

1(fA)
s
d(5.1v75.0v

1
ef,ywdsw

r
c,Rdcs,Rd  

sr = 0.75d, fywk = 500 MPa, γs = 1.15, d = 350 mm, fywd = 500/1.15 = 435 MPa 
fywd,ef =   (250 + 0.25× 350 = 338)  ≤ 435 MPa,  fywd,ef = 338 MPa, vRd,c = 0.55  
 
At basic control perimeter u1 at 2d from column: 

vRd,cs = vEd = 0.97 MPa, u1 = 6398 mm 
Substituting in code equation (6.52),  

3506398
1338A

d75.0
d5.155.075.097.0 sw


  

Asw = 1847 mm2 
 
(x) Calculate the minimum link leg area 
Using code equation (9.11) to calculate the area of a single link leg  

                                 
yk

ck

tr
min,sw f

f
08.0

ss
)cossin5.1(A 


                         (9.11) 

Substituting fck = 30 MPa, fyk = 500 MPa, d = 350 mm, sr = 0.75 d, st = 2d,  
sin α = 1 for vertical links, Asw, min = 107 mm2.   
Choosing H12 bars, Asw, min = 113 mm2. 
No. of links required = Asw/ Area of one link = 1847/113 = 17 links. 
A minimum of 17 links should be provided at all perimeters with the spacing 
between the perimeters equal to or less than 0.75d.  The first perimeter is at a 
distance > (0.3d = 105 mm) from the face of the column.  The last perimeter is 
within 1.5d from the perimeter where shear reinforcement is no longer required.  
This is at 2.22d from the face of the column (see viii above). 
(2.22d – 0.3d)/0.75d = 2.56. 
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Choosing the first perimeter at, say, (200 mm = 0.57d) from the face of the 
column, the number of perimeters at which reinforcement needs to be provided is 
(2.22d – 0.57d)/0.75d = 1.46, say 2. 
Provide reinforcement on three perimeters. 
Choose the perimeters as follows: 

 Last perimeter at 2.22 d from the face of the column. 
 Middle perimeter at (2.22d – 0.75 d) = 1.47 d from the face of the column. 
 The first perimeter at 1.47 d – 0.75 d = 0.72 d from the face of the 

column. 
 
(xi) Arrange link reinforcement 
Arrange the perimeters as follows. 
(i) First perimeter at a distance > (0.3d = 105 mm) 
Choose first perimeter at 0.72d = 252 mm 
Perimeter length = u0.72 d = 2(400 + 600) + 2π × 0.72d = 3593 mm 
Maximum spacing of links ≤ 1.5d = 525 mm 
Spacing of links = perimeter length/Minimum no. of links = 3583/17 = 211 mm 
Provide 17 links at say 210 mm. 
 
(ii) Second perimeter at (252 + 0.75d) = 515 mm = 1.47d 
Perimeter length = u1.47 d = 2(400 + 600) + 2π × 1.47 d = 5233 mm 
Maximum spacing of links ≤ 1.5d = 525 mm 
Spacing of links = perimeter length/Minimum no. of links = 5233/17 = 308 mm. 
 
(iii) Third perimeter at (515 + 0.75d) = 778 mm = 2.22d 
Perimeter length = u2.22 d = 2(400 + 600) + 2π × 2.22 d = 6486 mm 
Maximum spacing of links ≤ 2d = 700 mm 
Spacing of links = perimeter length/minimum no. of links = 6882/17 = 405 mm  
Reinforcement is provided on three perimeters.  Once the numbers are rounded up 
to practical dimensions, design will be satisfactory. 
 
 
5.1.14 Shear Reinforcement Design: Shear and Moment Combined 
 
Fig. 5.27 shows the shear stress distribution in the slab due to moment acting on 
the column or loaded area.  It is generally assumed that the distribution of shear 
stress due to moment is ‘plastic’ in the sense that apart from the sign (i.e., up or 
down), the shear stress is constant around the perimeter. 
The maximum shear stress vEd is taken, according to code equation (6.38) as 

                                                     
du

V
v

1

Ed
Ed                                                  (6.38) 

where the factor β accounts for the combined action of shear force VEd and moment 
MEd. 
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Fig. 5.27 Shear stress distribution due to bending moment on column. 
 
 
5.1.14.1 Support reaction eccentric with regard to control perimeter for 
             rectangular columns 
 
Use code equations (6.39) and (6.41) to calculate β and W1 in the case of 
rectangular columns subjected to a shear force VEd and a moment MEd. 

                                                        
1

1

Ed

Ed
W
u

V
Mk1                                    (6.39) 

                                    W1 = 0.5c1
2 + c1 c2 + 4 c2 d + 16 d2 + 2 π d c1                (6.41) 

where  
c1 is the column dimension parallel to the eccentricity of the load. 
c2 is the column dimension perpendicular to the eccentricity of the load. 
The value of k is given in Table 5.4. 
 

Table 5.4 Values of k for rectangular loaded areas/columns 
 

c1/c2 ≤ 0.5 1.0 2.0 ≥ 
3.0 

k 0.45 0.60 0.70 0.80 
 
Example: Design shear reinforcement for a column 300 × 500 mm, d = 200 mm 
subjected to VEd = 450 kN and MEd = 160 kNm.  The moment acts about an axis 
parallel to the longer side of the column. 
As the moment acts about the longer side, eccentricity of the load will be parallel 
to the shorter side.  Therefore c1 = 300 mm, c2 = 500 mm.  Substituting in code 
equation (6.41),  

W1 = 0.5 × 3002 + 300 × 500 + 4 × 500 × 200 + 16 × 2002 + 2 π × 200× 300 
W1 = 1.612 × 106 mm2 

Interpolating from Table 5.2 for k at c1/c2 = 300/500 = 0.6,  
k = 0.45 + (0.60 − 0.45) × (0.6 − 0.5)/ (1.0 − 0.5) = 0.48 

u1 = 2(300 + 500) + 2π × 2d = 4113 mm 
MEd/VEd = 160 × 106/ (450 × 103) = 356 mm 

Substituting in code equation (6.39), 
44.1

10612.1
411335648.01 6 

  
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MPa79.0
2004113
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Ed
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
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5.1.14.2 Support reaction eccentric with regard to control perimeter for circular 
             columns 
 
For internal circular columns of diameter D, code equation (6.42) gives the value 
of β as 

                                                        
d4D

e6.01


                                     (6.42) 

where eccentricity, e = MEd/VEd. 
 
 
5.1.14.3 Support reaction eccentric with regard to control perimeter about two 
              axes for rectangular columns 
 
For internal rectangular columns with moment MEd, y and MEd, z about y- and z-axes 
respectively, code equation (6.43) gives the value of β as 

                                           })
b
e()

b
e

{(8.11 2

y

z2

z

y
                                    (6.43) 

where eccentricities, ey = MEd, z/VEd and ez = MEd, y/VEd.  by and bz are the overall 
widths of the critical perimeter in the y- and z-directions respectively as shown in 
Fig. 5.28. 

 
 

Fig. 5.28 Control perimeter dimensions. 
 
Example: Calculate vEd for a column 300 × 500 mm, d = 200 mm, subjected to: 

VEd = 450 kN, 
MEd, y = 160 kNm, moment acts about the longer side of the column. 
MEd, z = 200 kNm, moment acts about the shorter side of the column. 

y 

z 

2d 

2d 

by 

bz 
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by = 500 + 2 × 2d = 1300 mm, bz = 300 + 2 × 2d = 1100 mm 
ey = MEd, z/VEd = 200 × 106/ (450 × 103) = 444 mm 
ez = MEd, y/VEd = 160 × 106/ (450 × 103) = 356 mm 

u1 = 2(300 + 500) + 2π × 2d = 4113 mm 

88.1})
1300
356()

1100
444{(8.11 22   

MPa03.1
2004113
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du

Vv
3

1

Ed
Ed 




  

 
 
5.1.14.4 Rectangular edge columns 
 
Two cases are considered: 
a. Eccentricity perpendicular to the free edge of the slab toward the interior and no 
eccentricity parallel to the edge.  
The value of β = 1 (i.e., the shear stress vEd is constant) on the reduced control 
perimeter u1* as shown in Fig. 5.29. 

 
 

Fig. 5.29 Edge column: Reduced control perimeter. 
 
Example: A 300 × 500 mm column orientated with the shorter side parallel to the 
free edge, d = 200 mm, VEd = 450 kN, MEd = 160 kNm, moment acts about the 
shorter side of the column and directed away from the free edge. 
c1 = dimension perpendicular to free edge = 500mm.  
c2 = dimension parallel to free edge = 300 mm. 
1.5d = 300 mm, 0.5c1 = 250 mm, min (300;  250) = 250 mm. 
Reduced perimeter u1* = c2 + π × 2d + 2 × 250 =   2056 mm. 
 
Taking β =1 and substituting in code equation (6.43),  

2d 

c2 

≤ min(1.5 d; 0.5c1) 

c1 
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MPa09.1
2002056

104500.1
du

Vv
3

*1

Ed
Ed 







   

b. Where eccentricity is with respect to both axes, β can be determined from code 
equation (6.44): 

                                       parallel
1

1

*1

1 e
W
uk

u
u

                                         (6.44) 

The moment acting about an axis parallel to the free edge acts toward the interior 
of the slab as shown in Fig. 5.28. 
u1 is the basic control perimeter as shown in Fig. 5.24. 
u1* is the reduced control perimeter as shown in Fig. 5.29. 
k from Table 5.2 replacing the ratio c1/c2 by 0.5 c1/c2. 
eparallel = eccentricity parallel to the edge caused by a moment acting about an axis 
perpendicular to the edge. 

W1 = 0.25c2
2 + c1 c2 + 4 c1 d + 8 d2 + π d c2 

 

 
 

Fig. 5.30 Column near to a free edge. 
 
Example: A 300 × 500 mm column orientated with the shorter side parallel to the 
free edge at a distance of 275 mm from the free edge is shown in Fig. 5.30. 
 d = 200 mm, VEd = 450 kN. 
Assume that moments act about both the long side as well as the short side. 
Moment about the longer side = 160 kNm. 
eparallel = 160 × 106/ (450 × 103) = 356 mm. 
c2 = Column dimension parallel to eparallel = 300 mm, c1 = 500 mm. 
1.5d = 300 mm, 0.5c1 = 250 mm. 
Min (1.5d; 0.5c1) = min (300; 250) = 250 mm. 
Reduced perimeter u1* from Fig. 5.28. 
u1* = c2 + π × 2d + 2 × 250 = 300 + π × 2 × 200 +   2 × 250 = 2057 mm. 
Since the dimension 275 mm is less than 2d = 400 mm,  in calculating the value of 
basic control perimeter u1, although the control perimeter extends right up to the 
free edge as shown in Fig. 5.23, the free edge is not taken into consideration. 

400 

300 

250 

500 

275 
160 kNm 
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u1 = c2 + π × 2d + 2 × (500 +275) = 3107 mm 
W1 = 0.25c2

2 + c1 c2 + 4 c1 d + 8 d2 + π d c2 
W1 = 0.25 × 3002 + 300 × 500 + 4 × 500 × 200 + π × 200 × 300 = 0.761 × 106 mm2 

0.5 c1/c2 = 0.5 × 500/ 300 = 0.83  
From Table 5.2, interpolating for c1/c2 = 0.83, 

k = 0.45 + (0.60 – 0.45) × (0.83 – 0.5)/ (1.0 – 0.5) = 0.55 
Substituting in code equation (6.44),  

31.2356
10761.0

310755.0
2057
3107

6 


  

MPa67.1
2003107

1045031.2
du

Vv
3

1

Ed
Ed 




   

 
 
5.1.14.5 Support Reaction Eccentric toward the Interior for Rectangular 
              Corner Column 
 
In the case of corner columns with eccentricity toward the interior of the slab, 
punching shear may be assumed to be uniformly distributed along the reduced 
control perimeter u1* as shown in Fig. 5.31.      
u1* = min (1.5d, 0.5c1) + min (1.5d, 0.5c2) + π d. 
β is given by the ratio u1/ u1* and u1 is as given in Fig. 5.22. 
 

 
 

Fig. 5.31 Corner column. 
 
Example: A 300 × 500 corner column located 275 mm from the edges is subjected 
to a shear force of 180 kN.  The eccentricity of the load is toward the interior of the 
slab.  Taking d = 200 mm, calculate the value of β and the shear stress vEd. 
c1 = 300 mm, c2 = 500 mm.  1.5d = 300 mm. 

u1* = min (300, 150) + min (300, 250) + π × 200 = 1028 mm 

c2 

2d 

2d 

c1 

Min( 1.5d; 0.5c2) 

Min( 1.5d; 0.5c1) 
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u1 = c1 + 275 + c2 + 275 + π d 
u1 = 300 + 275 + 500 + 275 + π × 200 = 1978 mm 

β = 1978/1028 = 1.92 
vEd = β VEd/ (u1* d) = 1.92 × 180× 103/ (1028 × 200) = 1.68 MPa 

 
 
5.1.14.6 Approximate values of β for columns of a flat slab 
 
In cases where the lateral stability of the structure does not depend on the frame 
action of the slab and columns, the following approximate values of β may be used. 

 Interior column: β = 1.15 
 Edge column: β = 1.4 
 Corner column: β = 1.5 

 
 
5.2 BOND STRESS 
 
Bond is the grip due to adhesion or mechanical interlock and bearing in ribbed bars 
between the reinforcement and the concrete as shown in Fig. 5.32(a).  The bearing 
of the forces on the ribs causes radial cracks as shown in Fig. 5.32(b) and hoop 
reinforcement to resist the cracking greatly enhances the bond strength. 
 

 
 

Fig. 5.32 (a) ‘Bond’ forces; (b) radial cracks. 
 
Anchorage is the embedment of a bar in concrete so that it can carry loads through 
the bond between the steel and concrete.  If the anchorage length is sufficient, then 
the full strength of the bar can be developed by bond.  The area over which the 
bond stress acts is the product of the anchorage length lbd, reqd and the perimeter π φ 
of the bar.   
If σsd is the design stress in the bar of diameter φ and constant bond stress is fbd, 
equilibrium requires that 

(a) 

(b) 
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Force in the bar = Resistance due to bond 

bdreqd,bdsd
2 fl

4


  

Simplifying the above equation leads to the code equation (8.3) 

                                                           
bd

sd
reqd,bd f4

l 
                                       (8.3) 

If σsd = fyd, fyd = fyk/ (γs = 1.15),  

}
f
f

6.4
1{l

bd

yk
reqd,bd   

Clause 8.4.2 of Eurocode 2 covers aspects of bond stress.  The ultimate bond stress 
fbd is given by code equation (8.2) as 
 
                                       ctd21bd f25.2f                                                     (8.2) 
where  
η1 is a coefficient related to quality of bond conditions and the position of the bar 
during concreting. 
η1 = 1.0 when good conditions are obtained as in the following cases as shown in 
Fig. 5.33: 

a. Bars inclined at an angle α to the horizontal such that 450 ≤ α ≤ 900 
b. For all bars in a slab if the total depth of slab h ≤ 250 mm 

Restricted good conditions occur in the following cases as shown in Fig. 5.34. 
 

 
 

Fig. 5.33 Cases of good bond conditions for all bars. 
 

a. For slabs h > 250 mm and concreted from above, only for bars in the 
bottom 250 mm of slab. 

b. For slabs h > 600 mm and concreted from above, only for bars in the zone 
beyond 300 mm from the top face. 

η1 = 0.7 in all other cases 
η2 is related to bar diameter φ 

η2 = 1.0, φ ≤ 32 mm, η2 = (132 – φ)/100, φ > 32 mm 
fctd= 0.7 × fctm/γc, γc = 1.5,  (see code equation (3.16) 

fctm = 0.3 × fck
0.67 , fck ≤ 50 MPa 

                              = 2.12 × ℓn (1.8 + 0.1 × fck), fck > 50 MPa 

Direction of 
concreting 

α 

(a) 450 ≤ α ≤ 900 

h
   

(b) h ≤ 250 mm  
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In clause 8.4.2(2), it is suggested that the value of fck should be limited to 60 MPa 
as concrete above this strength tends to be brittle.   Table 5.5 gives the values of 
bond stress and anchorage length lbd, req when η1 = 1.0.  
  

 
 

Fig. 5.34 Hatched areas indicate poor bonding. 
 
     For situations where the bond conditions are poor for which η1 = 0.7, the values 
of bond stress in Table 5.5 must be multiplied by 0.7 and lbd, req divided by 0.7. 
 

Table 5.5 Bond stress fbd and basic anchorage length lbd, reqd for good bond conditions, fyk= 500 MPa 
fck MPa fbd,  MPa lbd, reqd/φ 

φ ≤ 32 mm φ = 40 mm φ ≤ 32 mm φ = 40 mm 
20 2.32 2.13 47 51 
25 2.70 2.48 40 44 
30 3.05 2.81 36 39 
35 3.37 3.10 32 35 
40 3.69 3.40 30 32 
45 4.00 3.68 27 30 
50 4.28 3.94 25 28 
55 4.43 4.08 25 27 
60 4.57 4.20 24 26 

 
 
5.3 ANCHORAGE OF BARS 
 
Bars are anchored by providing sufficient anchorage length in the case of a straight 
bar.  The length required can be reduced by providing a standard bend              
(Fig. 5.35(a)) or a standard hook (Fig. 5.35(b)) or by a standard loop (Fig. 5.35(c)).  
In the case of the standard bend or hook, the bar has to have a straight length of at 
least five times the bar diameter beyond the end of the curved portion. Anchorage 
length can also be reduced by welding a transverse bar as in the case of welded 
mats.  Fig. 5.35(d) shows the corresponding anchorage length.  The diameter φ1 of 
the transverse bar must be equal to or greater than 0.6 times the diameter of φ the 
main bar.  
 

h 250 mm 

(a) h > 250 
mm 

h 

(b) h > 600 mm 

300 
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Fig. 5.35(a) A standard bend. 
 
 
 

 
 

Fig. 5.35(b) A standard hook. 
 
 

 
 

Fig. 5.35(c) A standard loop. 
 
 

 
 

Fig. 5.35(d) Welded transverse bar. 
 
 
 

lb.eq 

Φ1≥ 0.6φ 
≥ 5φ 

lb,eq 

lb, eq 

α ≥ 1500 

≥5 φ 

900 ≤ α ≤ 1500 

lb,eq 

≥ 5φ 
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5.3.1 Design Anchorage Length 
 
The basic anchorage length lb, reqd given by equation (8.3) is modified as follows to 
obtain the design anchorage length lbd.   
 

                               
 }

f
f

6.4
1{

f4
l

bd

yk

bd

sd
reqd,bd                                               (8.3) 

  
lbd is given by code equation (8.4) as 
 
                                                 lbd = α1 α2 α3 α4 α5 lb, reqd ≥ lb, min                          (8.4) 
 
where: α1,  α2,  α3,  α4,  α5  are coefficients shown in Table 5.6. 
 
                                       (α 2 × α 3 × α 5) ≥ 0.7                                                     (8.5) 
 
Table 5.6 shows the values of α1 to α5 for various situations that will influence 
‘bond length’ and help to reduce the required bond length.  Note that the smaller 
the value of these factors, lower will be the anchorage length required.  However it 
has to be said that in practice, conditions generally limit the number of situations 
where one can reduce the bond length lbd to less than lb, reqd to a small number of 
cases. 
α1 reflects the shape of bar (i.e. straight, hooked, looped, etc.) with adequate cover. 
α2 reflects the effect of minimum cover for the bar.  
α 1  and  α 2 are functions of the parameter cd as shown in Fig. 5.36. 
 

 
 

Fig. 5.36 Values of cd for beams and slabs. 
 
α3 reflects the fact that confining transverse reinforcement resists cracking of 
concrete around the bars as explained in section 5.2 and Fig. 5.32(b).  This is 
reflected by the parameter K shown in Fig. 5.37. 

a 

c 
c1 

a 

c1 
c 

cd = min (a/2, c1, c) cd = min (a/2, c1) 
cd = c 

Straight bars Bent or hooked bars Looped bars 
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Fig. 5.37 Values of K for beams and slabs. 
 
 

Table 5.6 Values of α1 α2 α3 α4 α5 coefficients 
Influencing factor Type of 

anchorage 
Reinforcing bar 

Tension Compression 
Shape of bars Straight α1 = 1 α1 = 1 

Other than 
straight 

α1 = 0.7, if cd > 3φ 
Otherwise α1 = 1 

See Fig. 5.36 for cd  
values 

α1 = 1 

Concrete cover Straight α 2 = 1 − 0.15(cd − φ)/φ 
≥ 0.7 
≤ 1.0 

See Fig. 5.36 for cd  
values 

α2 = 1 

Other than 
straight 

α 2 = 1 − 0.15(cd−3 φ)/φ 
≥ 0.7 
≤ 1.0 

See Fig. 5.36 for cd  
values 

α2 = 1 

Confinement by 
unwelded 
transverse 

reinforcement  

All types α 3 = 1 − kλ 
≥ 0.7 
≤ 1.0 

See Fig. 5.37 for K value 

α3 = 1 

Confinement by 
welded transverse 

reinforcement 

Fig. 5.32(d) α4 = 0.7 α4 = 0.7 

Confinement by 
transverse pressure 

All types α 5 = 1 − 0.04 ρ 
≥ 0.7 
≤ 1.0 

 

  smin,sst A/)AA(  
ΣAst = cross sectional area of transverse reinforcement along the design anchorage 
length. 
ΣAst, min = Cross sectional area of the minimum transverse reinforcement  
             = 0.25 As for beams and 0 for slabs. 
As = area of a single anchored bar with maximum bar diameter. 
ρ = transverse pressure in MPa at ultimate limit state along lbd. 

As 

Ast 

K = 0.1 

Ast 
As 

K = 0.05 

Ast 
As 

K = 0 
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α4 takes account of the fact that welded transverse reinforcement naturally 
enhances the ‘bond’. 
α5 accounts for the effect of transverse compression to the plane of splitting along 
the design anchorage length. 
lb, min is defined by code equations (8.6) and (8.7) as follows. 
lb, min > max(0.3 lb, reqd; 10φ; 100 mm) for anchorage in tension                          (8.6) 
lb, min > max(0.6 lb, reqd; 10φ; 100 mm) for anchorage in compression                (8.7) 

 
Clause 8.4.2(2) of Eurocode 2 states that as a simplified alternative to code 
equation (8.4), in the case of standard bend or hook or loop 

lbd = lb, eq = α1 lb, reqd ≥ lb, min 
In the case of a welded transverse bar 

lbd = lb, eq = α4 lb, reqd ≥ lb, min 
 
 
5.3.2 Example of Calculation of Anchorage Length 
 
Example : Calculate the full anchorage lengths in tension for a H32 bar,               
fyk = 500 MPa  in fck = 25 MPa concrete. Assume that the bar is fully stressed.  
Assume link diameter = 8 mm, clear cover to links 30 mm.  A cross section of the 
beam is shown in Fig. 5.38. 

 

 
 

Fig. 5.38 Beam cross section. 
 

Calculate the coefficients α1 to α5: 
From Fig. 5.33, clear cover to the bars at the bottom as well as at sides is the 
sum of link diameter + cover = c = c1 = 30 + 8 = 38 mm. 
Clear distance between bars = a = [270 – 2(30 + 8 + 32)]/2 – 32 = 33 mm.  
Calculate α1: 

270 

550 

8 mm 

32 mm 

30 mm 

30 mm 
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cd = min (a/2; c1; c) = min (33/2, 38, 38) = 16.5 mm < (3φ = 96 mm) 
For a straight bar or one with a standard bend, α1 = 1.0. 
Calculate α2:  
Straight bar: α2 = 1− 0.15(cd – φ) /φ = 1.07 > 1.0, α2 = 1.0. 
Standard bend: α2 = 1− 0.15(cd – 3φ) /φ = 1.37 > 1.0, α2 = 1.0. 
Calculate α3: If links are provided at 375 mm c/c, then there are approximately 
three 8 mm links over a distance of 1125 mm. 

Link area = π/4 × 82 = 50.3 mm2 
ΣAst ≈ 3 × 50.3 = 151 mm2 

As = 804 mm2 (cross sectional area of one 32 mm bar) 
ΣAmin = 0.25 As = 0.25 × 804 = 201 mm2 

λ = (151 − 201)/804 = − 0.06 
K = 0.05, α3 = 1.003 > 1.0, α3 = 1.0 

Calculate α4: No welded bar.  α4 = 1.0. 
Calculate α5: No confining lateral pressure.  α5 = 1.0. 

α2 × α3 × α5 = 1.0 > 0.7 
MPa6.2)25(30.0f30.0f 667.0667.0

ckctm   
From equation (3.16) in clause 3.1.6(2)P,  

fctd = 0.7 × fctm/ (γc = 1.5) = 1.2 MPa 
φ = 32 mm, η1 = 1.0 for good bond, η2 = 1.0 as φ ≤ 32 mm 

MPa7.22.10.10.125.2f25.2f ctd21bd    
fyk = 500 MPa, σsd = fyk/ (γs = 1.15) = 435 MPa 

mm1289}
7.2

435
0.4

32{
f4

l
bd

sd
reqd,bd 

  

lb, min > max (0.3 lb, reqd; 10φ; 100 mm) for anchorage in tension 
lb, min > max (0.3 × 1289; 10× 32; 100 mm) 

= max (387; 320; 100) = 387 mm 
lbd = α1 α2 α3 α4 α5 lb, reqd ≥ lb, min 

As all values of αi = 1.0, lbd = lb, reqd ≥ lb, min = 1289 mm. 
As a simplification, lb, eq = α1 × lb, rqd. 

lb, eq = 1.0 × lb, rqd = 1289 > (lb, min = 320) = 915 mm 
1289 mm ≈ 40 φ 

In compression because α1 = α2 = α3 = 1.0, the anchorage length in compression in 
this case will be same as in tension viz. 1289 mm ≈ 40 φ. 
 
 
5.3.3 Curtailment and anchorage of bars 
 
Sufficient reinforcement must be provided at all sections to resist the envelope of 
the acting tensile force including the additional tensile force due to the effect of 
inclined tensile cracks in the webs due to shear.  The tensile force due to bending is 
given by MEd/z where MEd is the design bending moment at the section and z is the 
lever arm.   
The additional tensile force ΔFtd due to shear VEd is given by code equation (6.18) 
as 
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ΔFtd = 0.5 VEd (cotφ – cotα) 
where 2.5 ≥ cotφ ≥ 1.0 and α = Inclination of shear reinforcement to the beam axis. 
In the case of vertical shear links, cotα = 0 and cotφ is generally about 2.5. 
The total tensile force Ftd 

Ftd = MEd/z + ΔFtd  ≤  MEd, max/z 
where MEd, max is the maximum moment along the beam. 
As a simplification, the effect of the shear force can be accounted for by shifting 
the bending moment in the direction of the decreasing bending moment (and 
therefore increasing shear force) by a value a1 given by code equation (9.2) 

a1 = z (cotφ – cotα)/2 
where z ≈ 0.9d. 
Generally taking cotφ = 2.5 and cotα = o for vertical shear links,  

a1 = z (cotφ – cotα)/2 = 1.125 d 
 
 
5.3.4 Example of Moment Envelope 
 
A three span continuous T-beam with spans of 8 m is used to support a 100 mm 
thick slab spanning 3m between the T-beams.  The characteristic loads are: 

Super imposed dead load due to partitions, ceiling, floor finishes = 3 kN/m2. 
Imposed live load = 3.5 kN/m2. 

T-beams have a total depth of 500 mm and a web width of 300 mm as shown in 
Fig. 5.39.  fck = 25 MPa, fyk = 500 MPa. 
 

 
Fig. 5.39 Cross section of T-beam. 

 
Cross sectional area = 0.5 × 0.3 + (3.0 – 0.3) × 0.1 = 0.42 m2 

Self weight = 0.42 × 25 = 10.5 kN/m 
Super dead load = 3 × (span of slab = 3) = 9.0 kN/m 

gk = 10.5 + 9.0 = 19.5 kN/m 
qk = 3.5 × (span of slab = 3) = 10.5 kN/m 

qmax = 1.35 × 19.5 + 1.5 × 10.5 = 42.08 kN/m 
qmin = 1.0 × 19.5 + 0.0 × 10.5 = 19.5 kN/m 

Load cases: (see clause 5.1.3 of Eurocode 2). 
Case 1: qmax, qmin, qmax to give maximum span moment in spans 1−2 and 3−4 as 
shown in Fig. 5.40. 

500 

300 

3000 
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Fig. 5.40 Case 1 loading. 

 
Support moment at 2 and 3 = 197.06 kNm. 
Span 1−2: 

Reaction V1 = 42.08 × 8/2 – 197.06/8 = 143.69 kN 
M = 143.69 × x – 42.08 × x2/2 

Mmax = 245.2 at x =143.69/42.08 = 3.42 m 
Span 2−3: 

Reaction V2 = 42.08 × 8/2 = 78.0 kN 
M = −197.06 + 78.0 × x – 19.5 × x2/2 

Mmax = −41.1 at x = 4.0 
 
Case 2: qmax, qmax, qmin to give maximum support moment at 2 as shown in         
Fig. 5.41. 

 
Fig. 5.41 Case 2 loading. 

 
Support moment at 2 = 293.69 kNm and support moment at 3 = 172.87 kNm. 
Span 1−2: 

Reaction V1 = 42.08 × 8/2 – 293.69/8 = 131.61 kN 
M = 131.61 × x – 42.08 × x2/2 

Mmax = 205.8 at x = 3.13 m 
Span 2−3: 

Reaction V2 = 42.08 × 8/2 + (293.69 − 172.87)/8 = 183.32 kN 
M = −293.69 + 183.32 × x – 42.08 × x2/2 

Mmax =   105.6 at x = 4.36 m 
 
Case 3: qmin, qmax, qmin to give maximum span moment in span 2−3 as shown in 
Fig. 5.42. 

8 8 

42.08 kN/m 

8 

42.08 kN/m 
19.5 kN/m 

1 2 3 4 

8 8 

42.08 kN/m 

8 

42.08 kN/m 19.5 kN/m 

1 2 3 4 
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Fig. 5.42 Case 3 loading. 

 
Support moment at 2 and 3 = 197.06 kNm. 
Span 1−2: 

Reaction V1 = 19.5 × 8/2 – 197.06/8 = 53.77 kN 
M = 53.77 × x – 19.5× x2/2 
Mmax = 74.1 at x = 2.76 m 

Span 2−3: 
Reaction V2 = 42.08 × 8/2 = 168.32 kN 

M = −197.06 + 168.32 × x – 42.08 × x2/2 
Mmax = 139.58 at x = 168.32/42.08 = 4.0 m 

 
Case 4: qmin, qmax, qmax to give maximum support moment at 3 as shown in Fig. 
5.43. 

 
Fig. 5.43 Case 4 loading. 

 
Support moment at 2 = 172.87 kNm and Support moment at 3 = 293.69 kNm. 
Span 1−2: 

Reaction V1 = 19.5 × 8/2 – 172.87/8 = 56.39 kN 
M = 56.39 × x – 19.5× x2/2 

Mmax = 81.53 at x = 56.39/19.5 = 2.89 m 
Span 2−3: 

Reaction V2 = 42.08 × 8/2 − (293.69− 172.87)/8 = 153.22 kN 
M = −172.87 + 153.22 × x – 42.08 × x2/2 

Mmax = 106.1 at x = 3.64 m 
 
Bending moment diagrams are shown in Fig. 5.44.  Bending moment envelope is 
shown in Fig. 5.45. 
 

8 8 

19.5 kN/m 

8 

42.1 kN/m 42.1 kN/m 

1 2 3 4 

8 8 

19.5 kN/m 

8 

42.08 kN/m 
19.5 kN/m 

1 2 3 4 
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Fig. 5.44 Bending moment diagrams. 

 
 

 
Fig. 5.45 Bending moment envelope. 

 
Design of beam 1-2; span section: M = 245.2 kNm 
Effective width: 
b = 3000 mm, bw = 300 mm, b1 = b2 = 1350 mm, l0 = 0.85 × 8.0 = 6.8 m 
beff,1 = beff,2 = 0.2 × 1350 + 0.1 × 6800 ≤ 0.2 × 6800 
beff,1 = beff,2 =1360 mm ≤ b1 
beff = 2 × 1350 + 300 = 3000 mm 
Effective depth, d: Assuming 30 mm cover, 8 mm links and 25 mm bar diameter 
d ≈ 500 – 30 – 8 – 25/2 = 450 mm 
fck = 25 MPa, fcd = fck/(γc = 1.5 ) = 16.7 MPa 
fyk = 500 MPa, fyd = fyk/(γs = 1.15 ) = 435 MPa 
Maximum moment capacity Mflange if the entire flange is in compression: 
Mflange = fcd × beff × hf × (d – hf/2)  
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            = 16.67 × 3000 × 100 × (450 – 100/2) × 10−6 = 20004 kNm 
Compression depth s is less than the slab depth. 
245.2 = 16.67 × 3000 × s× (450 – s/2) × 10−6 
s2 – 900 s + 9789 = 0 
s = 11 mm 
As × fyd = (3000 × s) × fcd 
As = 1265 mm = Say 3H25 = 1473 mm2 
Check minimum steel (code equation (9.1N) : 
fyk = 500 MPa, fctm = 0.3× fck (2/3) = 0.3 × (25) (2/3) = 2.6 MPa,  
d = 450 mm, bt = 300 mm 

2

tt
yk

ctm
min,s

mm176183

4503000013.0450300
500

6.226.0

db0013.0db
f
f26.0A







 

As, provided = 1473 mm2 
Ratio As, Provided/As, required = 0.86 
Maximum stress in bar = fyd × 0.86 = 373 MPa 
fctd = 0.7 × fctm/1.5 = 1.21 MPa 
Assuming good bond, MPa7.221.125.2f25.2f ctdbd   
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  

Taking α1 = 1.0, lbd = lbd, reqd = 863 mm. 
 
Bar curtailment at bottom in span 1−2: 
If one bar is curtailed, As due to two bars = 982 mm2 > As, min 
Equating tension and compression forces, As × fyd = (3000 × s) × fcd 
s = 8.5 mm 
z = d – s/2 = 446 mm 
M = As × fyd × z = 190.3 kNm 
From Case 1 in Span 1−2: M = 190.3 = 143.69 × x – 42.08× x2/2   
Moment of 190.3 kNm occurs in span 1−2 in Case 1 at 1.79m and 5.03 m from 
support.  The maximum moment occurs at 3.42 m from support. 
Taking α1 = 1.0, lbd = lbd, reqd = 863 mm. 
 
Design support section: M = 293.7 kNm 
As the flange is in tension, design as a rectangular beam 300 × d 
293.58 = 16.67 × 300 × s× (450 – s/2) × 10−6 
s2 – 900 s + 117449 = 0 
s = 158 mm 
As × fyd = (3000 × s) × fcd 
As = 1817 mm2 = Say 4H25 = 1964 mm2 
Ratio As, Provided/As, required = 0.93 
Maximum stress in bar = fyd × 0.93 = 402 MPa 
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  

Taking α1 = 1.0, lbd = lbd, reqd = 931 mm. 
 
Bar curtailment at top at support 2 in spans 1−2 and 2−3: 
If two bars are curtailed, As due to two bars = 982 mm2 
Equating tension and compression forces, As × fyd = (300 × s) × fcd 
s = 85 mm 
z = d – s/2 = 407 mm 
M = As × fyd × z = 174.0 kNm 
Span 1−2:  
From Case 2, M = −174.0 = 131.61 x – 42.08 x2/2 
x = 7.38 m from left support or at (8.0 −7.38) = 0.62 m from support in span 1−2. 
From Case 3 in span 1-2, the negative moment is zero when 
M = 0 = 53.37 x – 19.5 x2/2 at x = 5.47 m from left hand support or at  
(8.0 – 5.47) = 2.53 m from support 2. 
Span 2−3: 
From Case 2, M = −174 = −293.69 + 183.32 x – 42.08 x2/2 
x = 0.71 m from support in span 2−3. 
In span 2-3, negative moment always exists as can be seen from the moment 
envelope shown in Fig. 5.45. 
 
 
5.3.4.1 Anchorage of Curtailed Bars and Anchorage at Supports 
 
As shown in section 5.1.4.1, the code in sections 9.2.1.3 gives rules for the 
curtailment of longitudinal tension reinforcement. 
 
1. Sufficient reinforcement must be provided at all sections to resist the tension 
caused by the bending moment and additional tension caused by the effect of 
inclined cracks due to shear.   The effect of the additional tension force can be 
accounted for by using the ‘shift rule’.   

 
 

Fig. 5.46 Shift rule. 
 
The modified bending moment diagram is obtained by shifting the basic bending 
moment diagram by a distance a1 from the position of maximum moment (and zero 
shear force) towards the direction of decreasing moment.  Therefore the theoretical 
cut-off point based on bending moment only is shifted a distance a1 from the 
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position of maximum moment towards the decreasing moment as shown in         
Fig. 5.46.   
The equation for a1 is given by code equation (9.2) as 

a1 = z (cotφ – cotα)/2 
where 
z ≈ 0.9 d,  
α = inclination of shear reinforcement to beam axis. 
φ = angle of inclination of concrete struts.  2.5 ≥ cot φ ≥ 1.0. 
Note that if cot φ ≈ 2.5 and cotα = 0, a1 ≈ 1.125 d. 
 
2. All bars should extend a length equal to lbd beyond the point where they are no 
longer needed.  
The cut off point from a support = Theoretical cut off – a1 − lbd. 
 
Bottom steel:  Taking cotφ ≈ 2.5, cotα = 0 because of vertical links only, d = 450 
mm and z = 0.9 d = 405, then 

a1 = z (cotφ – cotα)/2 = 506 mm 
The bending moment diagram is shifted by 0.506 m from the position of maximum 
moment towards the supports as shown in Fig. 5.46. 
The bars can be curtailed as follows. 
Bottom steel in span 1−2: Middle bar H25. 
Adding lbd = 0.863 m and a1 to the end of the bar, the final position of the bar is 
(1.79 – 0.506 – 0.863) = 0.421 m to (5.03 + 0.506 + 0.863 = 6.4 m) from the left 
hand support. 
Two bars extend all the way through with an anchorage length of lbd = 0.0.863 m at 
the end supports.  At the intermediate support, the bar should have an anchorage 
length of 10 φ = 250 mm. 
 
Top steel: At the top, 4H25 extend from the support a length equal to  
0.62 + a1 + lbd = 0.62 + 0.503 + 0.931 = 2.054 m to the left of support 2 and  
0.71 + a1 + lbd = 0.71 + 0.503 + 0.931 = 2.144 m to the right of support 2. 
From the moment envelope, the negative moment is zero at 2.53 m to the left of 
support 2.  Therefore, 2H25 continue a length of  
2.53 + a1 + lbd = 2.53 + 0.503 + 0.931 = 3.964 m to the left of support 2. 
On the right, the bars continue through the entire span 2-3 and extend 3.964 m 
beyond support 3. 
 
 
5.3.4.2 Anchorage of Bottom Reinforcement at an End Support 
 
In clause 9.2.1.4, the rules are given as follows. 
 
1. If in design it is assumed that at an end support provides little or no end fixity, 
then the area of bottom reinforcement provided should be at least 25% of that 
provided in the span.  The anchorage length is measured from the line of contact of 
the beam with support as shown in Fig. 5.47.  
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2. At intermediate supports, as shown in Fig. 5.48, the anchorage length should not 
be less than 10φ, where φ is the diameter of the bar. 
 

 
 

Fig. 5.47 Anchorage of bottom steel at end support. 
 

 
Fig. 5.48 Anchorage of bottom steel at intermediate support. 

 
 
5.3.5 Laps  
 
Lengths of reinforcing bars are joined by lapping, by mechanical couplers or by 
butt or lap welded joints.  Only lapping which is the usual way of joining bars is 
discussed here. It is important that laps are not located in areas subjected to high 
moments.  In order that sections are not weakened, laps should be staggered so that 
not all laps occur at the same section.   
The lap length l0 is given by code equations (8.10) and (8.11) as 
                             min,0reqd,b6543210 lll                                        (8.10) 
                                 )mm200;15;3.0max(l 6min,0                                      (8.11) 

 
α1 to α5 are as given Table 5.6 but α3 calculated taking  

ΣAst, min = Area of one lapped bar × (σsd/ fyd) 
α3 is calculated as  

0.1]
25

[5.1 1
6 


  

ρ1 < 0.33, α6 = 1.0 and ρ1 > 0.50, α6 = 1.5. 
ρ1 = % of reinforcement lapped with in 0.65 l0 from the centre of lap considered. 
As an example, consider the situation shown in Fig. 5.49. 

10φ 

lbd 
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In this example four bars are lapped.  Counting only those bars whose centre lines 
of the lapped section are within the 0.65 l0 on either side of the first lapped bar, one 
can count only the top and bottom bars.  Therefore in this case ρ1= 50%.  

α6 = √ (50/25) = 1.41. 

 
 

Fig. 5.49 Percentage of lapped bars at one section. 
 
The rules for laps are as follows. 
a. The clear distance between the lapped bars should be equal to or less than 4φ or 
50 mm as shown in Fig. 5.50.  If it is greater than these, then the lap length should 
be increased by the amount by which the limitation is exceeded. 
 

 
 

Fig. 5.50 Single lap. 
 
b. In the case of adjacent laps, the clear distance between adjacent bars should be 
equal to greater than 2φ or 20 mm and the longitudinal distance between two 
adjacent laps should not be less than 0.3 l0 as shown in Fig. 5.51.   
 

   
Fig. 5.51 Adjacent lap. 

 

l0 

l0 

≥ Min (20mm, 2φ) 

≥ 0.3 lo 

l0 ≤ min (50 mm, 4 φ) 

l0 

0.65 l0 0.65 l0 
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Where all the conditions stated above are complied with, the lapped bars in 
tension may be 100% provided all bars are in a single layer.  Where the bars 
are in several layers, the percentage should be reduced to 50% 
 
 
5.3.5.1 Transverse Reinforcement in the Lap Zone 
 
Transverse reinforcement is required in the lap zone to resist transverse 
tension forces.  Fig. 5.52 and Fig. 5.53 show the details of transverse 
reinforcement in tension and compression laps. 
 

 
 

Fig. 5.52 Transverse reinforcement at a tension lap. 
 

 
Fig. 5.53 Transverse reinforcement at a compression lap. 

 
The requirements for tension laps are as follows. 

 If the diameter of the bars is less than 20 mm and the percentage of bars 
lapped in any section is less than 25%, then any transverse reinforcement 
or links necessary for other reasons such as shear may be assumed to be 
sufficient. 

 If the diameter of the bars is greater than or equal to 20 mm then total 
transverse reinforcement ΣAst ≥ area of one lapped bar should be provided 

l0 

l0/3 l0/3 

ΣAst/2 ΣAst/2 4φ 4φ 

l0 

l0/3 l0/3 

ΣAst/2 ΣAst/2 
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as shown in Fig. 5.52.  The spacing between the links must be less than 
150 mm. 

The requirements for compression laps are similar to that of tension laps, except 
that the last link should be placed at a distance of four diameters from the end of 
the lap. 
 
 
5.3.5.2 Example of Transverse Reinforcement in the Lap Zone 
 
The tension reinforcement in the web of a T-beam 250 mm wide consists of three 
32 mm bars.  The bars are lapped as shown in Fig. 5.54.  Calculate the transverse 
reinforcement required.  Concrete cover is 30 mm and link diameter is 12 mm. 
Assume fck = 30 MPa, fyk = 500 MPa. 
 

 
Fig. 5.54 Lapping of bars in T-beam. 

 
Solution: Calculate factors α1 to α6: 
α1 = 1.0 as the bars are straight 
α2: (See Fig. 5.36) 
c = c1 = 30 + 12 = 42 mm 
a = clear space between bar = [250 – 2 × (30 + 12) – 3 × 32]/2 = 35 mm 
cd = min (35/2; 42; 42) = 18 mm 
α2 = 1 – 0.15× (18 − 32)/32 = 1.44 > 1.0 
Take α2 = 1.0 
Assume α3 to α5 = 1.0 
Calculate α6:  
Percentage of reinforcement lapped: As the centre lines of only two out of three 
laps are likely to be in the 0.65l0 region, ρ1 = (2/3) ×100 = 67 
α6 = √ (67/25) = 1.64 > 1.5 
Take α6 = 1.5 
Calculate lb, reqd 

MPa9.2)30(30.0f30.0f 667.0667.0
ckctm   

fctd = 0.7 × fctm/ (γc = 1.5) = 1.35 MPa 
φ = 32 mm, η1 = 1.0 for good bond, η2 = 1.0 as φ ≤ 32 mm 

MPa1.335.10.10.125.2f25.2f ctd21bd    

1202 

781 781 
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fyk = 500 MPa, σsd = fyk/ (γs = 1.15) = 435 MPa 
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reqd,bd 

  

l0 = (α1 α2 α3 α4 α5 α6) × lb, reqd = 1.5 × 1123 = 1684 mm 
0.65 l0 = 1095 mm, l0/3 = 505 mm 

Calculate Ast:  
As = Area of 32 mm bar = 804 mm2 
ΣAst = As = 804 mm2, ΣAst/2 = 402 mm2 
l0/3 = 505 mm 
505/150 = 3.4, say 4 
Number of links required on each side of lap = 4 + 1 = 5 
Area per link = 402/5 = 80 mm2 
Area of a 12 mm bar = 113 mm2 
Provide at laps a total of ten 12 mm diameter bars as shown in Fig. 5.52. 
 
 
5.3.6 Bearing Stresses Inside Bends  
 
Bars are anchored by providing a standard bend as shown in Fig. 5.35(c).  It is 
often necessary to anchor a bar by extending it around a bend in a stressed state, as 
shown in Fig. 5.55.  

 
 

Fig. 5.55 Bar anchored around a bend. 
 
In both cases concrete inside the bend is subjected to compressive stress and it is 
necessary to make the radius of the bend large enough to prevent the crushing of 
the concrete.  It is also necessary that the radius of the bend is not so small that it 
might crack the bars during fabrication of the reinforcement.   
In clause 8.3, the code prescribes the following limitations. 

1. In order to prevent the bar from cracking during the bending of the 
bar, the minimum inside diameter of the bend should be 4φ for bars 
of 16 mm diameter and under.  For bars of greater diameter than 16 
mm, the radius of the bend should be 7 φ. 

2. Explicit verification of concrete stress inside the bend is not 
necessary, if: 
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a. The anchorage does not require the bar to extend by more than 5 φ beyond 
the end of the bend 

b. Inside radius complies with the requirement in (a) above. 
c. The plane of the bend is not close to concrete face and there is a bar of a 

diameter at least equal to the diameter of the bar inside the bend as shown 
in Fig. 5.56 which will clearly reduce the stress in concrete inside the 
bend. 

d. If the above conditions are not fulfilled, then the minimum diameter of the 
bar around which the bar should be bent (called diameter of the mandrel) 
is given by  code equation (8.1) 

                              }
2
1

a
1{

f
F

bcd

bt
min,m


                                                    (8.1) 

where 
 Fbt = tensile force in the bar, φ = diameter of the bar, ab = half the c/c 

distance between bars, fcd = fck / (γc = 1.5), fck ≤ 50 MPa. 
 For bars adjacent to the face of a member, ab = cover + φ/2. 
 Table 5.7 gives the ratio of φm, min/ φ for fyk = 500 MPa, γs = 1.15, Fbt = 

(π/4) φ2 fyd. 
 
 

 
 

Fig. 5.56 Longitudinal bar inside a bend. 
 

Table 5.7 Mandrel diameter in terms of bar diameter 
 

fck φ m, min/ φ 
ab = 2 φ ab = 3 φ ab = 4 φ ab = 5 φ ab = 10 φ 

20 25.6 21.3 19.2 17.9 15.4 
25 20.5 17.1 15.4 14.3 12.3 
30 17.1 14.2 12.8 12.0 10.2 
35 14.6 12.2 11.0 10.2 8.8 
40 12.8 10.7 9.6 9.0 7.7 
45 11.4 9.5 8.5 8.0 6.8 
50 10.2 8.5 7.7 7.2 6.2 

≥55 9.3 7.8 7.0 6.5 5.6 
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5.4 TORSION  
 
 
5.4.1 Occurrence and Analysis of Torsion 
 
In practice two types of torsion occur. 
 
1. Equilibrium torsion:  This is the case where torsional resistance must be 
provided in order to maintain equilibrium.  Fig. 5.57 shows an example of a 
cantilever L-shaped in horizontal plane, carrying a vertical load at the tip.   The 
longitudinal beam is subjected to a twisting moment equal to [W × a] and it is 
necessary that the beam can resist this twisting action as otherwise the beam will 
simply collapse. The twisting moment (W × a) is equilibrium torsion. 
 

 
Fig. 5.57 Equilibrium torsion. 

 
 

Fig. 5.58 Two interconnected beams. 
 
2. Compatibility torsion: This is the case where members are subjected to 
twisting moment in order to preserve continuity of displacements, but torsional 
resistance is not required to maintain equilibrium.  Fig. 5.58 shows a grid work of 
two intersecting beams.  Only the longitudinal beam carries an external load W 
normal to the plane of the grid.  An analysis assuming that the two beams are 
identical and are pin connected at the intersection shows that for the two beams to 
have the same deflection at the intersection, the load distribution is as shown.  The 

L/4 
L/2 

R 

R 

W 

W 
a 
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vertical force R at the intersection is 0.344W, where W is the applied load.  The 
longitudinal beam rotates in the clockwise direction at the intersection.  If the two 
beams are rigidly connected, then the transverse beam, for compatibility reasons, 
will be forced to rotate in the same direction.  This twisting of the transverse beam 
will create a twisting moment in the longitudinal beam.  This is called 
compatibility torsion.  This torsion is not needed to maintain equilibrium.     
      The code suggests in section 6.3.1 (2) that the minimum longitudinal and shear 
reinforcement normally provided can provide sufficient resistance against 
excessive cracking caused by compatibility torsion.  Reinforcement needs to be 
designed to resist equilibrium torsion only.   
 
 
5.4.2 Torsional Shear Stress in a Concrete Section  
 
Fig. 5.59 shows a rectangular beam subjected to a torsional moment.  Because 
concrete is weak in tension, the resulting shear stresses cause cracks which spiral 
around the axis.   
 

 
 

Fig. 5.59 Diagonal cracking pattern. 
 
Fig. 5.60 shows a rectangular box beam whose wall thickness can be considered as 
small compared to other cross sectional dimensions.  It is shown in books on 
strength of materials that when the box section is subjected to a torsional moment 
TEd, the shear flow q defined as the product of shear stress in the wall and its 
thickness is a constant in the walls of the box.  The walls of the box are in a state of 
pure shear.  The shear stress τi in the side of thickness ti is given by 

k
ii A2

Ttq   
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where Ak is the area enclosed by the centre line dimensions of the sides of the box 
and t is wall thickness. 

 
 

 
 

Fig. 5.60 Stresses in a thin walled box beam under torsion. 
 

     Fig. 5.61 shows the elastic stress distribution in a solid rectangular section 
subjected to a torsional moment.  The shear stresses due to torsion are tangential to 
the sides and in an elastic material, the maximum shear stress occurs in the middle 
of the longer side of a rectangular section.  The stress is zero at the centroid of the 
section and increases in a non-linear manner towards the edges.  A very high 
proportion of the torsional resistance comes from the shear stresses acting over a 
short thickness near to the surface of the box.  Therefore for all practical purposes 
the solid section can be treated as a thin-walled hollow section 

 

 
Fig. 5.61  Torsional shear stress distribution in a solid rectangular section. 

 
The above ideas can be generalized and hold true for any hollow section.  In clause 
6.3.2, the code gives the following design procedure. 
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As shown in Fig. 5.62, the shear stress τt, i in the ith wall of thickness tef, i of a 
section subjected to pure torsional moment TEd may be calculated from code 
equation (6.26) as 

                                       
k

Ed
i,efi,t A2

Ttq                                            (6.26) 

where 
q = constant shear flow the walls of the section. 
τt, i = shear stress in the ith wall. 
 tef, i = effective wall thickness of the ith wall. 
Ak = area enclosed by the centrelines of the connecting walls including the inner 
        hollow areas. 
Note that    

1. tef, i may be taken as A/u, but should not be taken as less than twice the 
distance between the edge and the centreline of the longitudinal 
reinforcement.  For hollow sections, the real thickness is the upper limit. 

2. A = total area of the cross section within the outer circumference, 
including inner hollow areas. 

3. u = outer circumference of the cross section. 
The shear force VEd, i in the ith wall is given by code equation (6.27) as 
                                                       VEd, i = tef, i tef, i zi = q zi                                (6.27) 
 

 
 

Fig. 5.62 Torsional stress distribution in a polygonal hollow section. 
 
 
5.4.2.1 Example 
 
Fig. 5.63 shows the cross section of a trapezoidal box girder with side cantilevers.  
The webs and bottom flange are 300 mm thick; the top flange is 400 mm.  It is 
subjected to a torsional moment TEd = 5000 kNm.  Calculate the shear forces in the 
walls of the girder. 
 
Solution: As the thin cantilevers will not provide any significant torsional 
resistance, the cross section can be reduced to a simple trapezoidal box as shown in 
Fig. 5.64. The top width of the box: 

1200 + 2× {(3000 – 1200 – 2× 600)/2} × 2000/ (2000 – 400) = 1950 mm 

zi 

tef,i 

TEd 
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Fig. 5.63 Trapezoidal box girder with side cantilevers. 
 

 
 

Fig. 5.64 Trapezoidal box girder. 
 
(i) The centre-line dimensions:  

Top flange = 1950 – 300 = 1650 mm 
Bottom flange = 1200 – 300 = 900 mm 

Height = 2000 – 400/2 – 300/2 = 1965 mm 
Inclined length of web =√ [19652 + {(1650 − 900)/2}2] = 2000 mm 

Ak = 1965 × (1650 + 900)/2 = 2.505 × 106 mm2 
uk = Perimeter of Ak = 1650 + 900 + 2 × 2000 = 6550 mm 

q = TEd/ (2 × Ak) = 5000 × 106/ (2 × 2.505 × 106) = 998 N/mm 
(ii) Shear stress in the walls: 

Webs: τ = q/t = 998/300 = 3.3 MPa 
Bottom flange: τ = q/t = 998/300 = 3.3 MPa 
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Top flange: τ = q/t = 998/400 = 2.5 MPa 
(iii) Shear forces in the walls:  

Webs: V = q × length= 998 × 2000×10−3 = 1996 kN 
Bottom flange: V = q × length= 998 × 900×10−3 = 898 kN 
Top flange: V = q × length= 998 × 1650×10−3 = 1647 kN 

 
 
5.4.3 Design for Torsion 
 
As explained in the previous section, torsional moment induces shear stresses in 
the walls of the beam.  Design of the walls for the shear stress induced by torsion 
follows the same lines as design for shear in beams.  The walls are assumed to 
resist shear stresses by a combination of concrete struts and shear links.  Unlike 
beams where there is compression force in the top chords due to bending moment, 
under pure shear induced by torsion, it is necessary to provide longitudinal 
reinforcement in the top chord also. 
Fig. 5.65 shows the composite truss resisting the shear stress caused by torsion. 
 

 
 

Fig. 5.65 Composite truss resisting torsional moment. 
 
If q = TEd/(2 Ak) is the shear flow per unit length, going around the perimeter uk, 
the total force due to torsion is q uk.  In the same manner, if Fc is the force in the 
concrete compression strut, for equilibrium 

Fc sin θ = q uk 
Fc = q uk/sin θ 

Fc cos θ = Total horizontal force = ΣAsl fyd 
where ΣAsl = total longitudinal steel area and fyd = stress in the steel reinforcement. 
Expressing Fc in terms of uk,  

ΣAsl fyd = q uk (cos θ/sin θ) 

cotq
u

fA

k

ydsl



 

In the above equation substituting for q in terms of twisting moment as TEd/ (2 Ak) 
leads to the equation (6.28) of Eurocode 2. 

θ 

h 

h cotθ 
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                                                       cot
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
                                 (6.28) 

 
If Asw is the area of one link spaced at s, the vertical force resisted by the link is 

ydsws f
s

cothAF 
  

The vertical force from torsion is qh.  Equating Fs to qh,  

ydsws f
s

cothAqhF 
  

Substituting for q in terms of TED,  

ydsw
k

Ed f
s

cothAh
A2

Tqh 
  

Simplifying, the equation to calculate the link reinforcement is given by 




cot
s

A2
TfA

k

Ed
ydsw  

It is necessary to put a limit on the compressive stress in the struts.  Considering 
the truss in a single plane as shown in Fig. 5.66: 

 
Fig. 5.66 Composite truss; width of struts. 

 
 Compressive force Fc = qh/ sinθ 
 If σc is the stress in the strut, Fc = tef b σc 
 The width covered by a strut is b = h cosθ 

Equating the two expressions for Fc,  
qh/ sinθ = tef h cosθ σc 



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The code limits the concrete stress σc to 
cd1c f  

where ν1  = ν given by code equation (6.6N) is an efficiency factor which allows 
for the effects of cracking as well for the actual distribution of stress in the struts. 
                                             ν1 = ν = 0.6 (1 – fck/250)                                       (6.6N) 

qh 
h 

θ 
θ 

 b = h cosθ  

 b = h cosθ  
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2.5 ≥ cot θ ≥ 1.0 
 
 
5.4.3.1 Example of Reinforcement Design for Torsion  
 
Design the longitudinal and link reinforcement for the example in 5.3.3.1.  Assume 
fck = 30 MPa, fcd = fck/1.5 = 20 MPa, fyk = 500 MPa, fyd = 500/1.15 = 435 MP. 

ν1 = 0.6(1 – 30/250) = 0.528 
σc = ν1 fcd = 0.528 × 20 = 10.56 MPa 

As previously calculated, uk = 6550 mm, q = 998 N/mm,  
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θ = 19.50, cot θ = 2.82 > 2.5 
Take cot θ = 2.5 
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ΣAsl = 37568 mm2, ΣAsl /uk = 5.74 mm2/mm 
Using H25 bars, this gives one H25 at every 86 mm.  The above bars are 
distributed around the perimeter in a uniform manner.  In order to tie the links, it is 
practical to put one bar at each corner.   
Top flange, provide an additional 19 bars at 87 mm spacing. 
Bottom flange, provide an additional 10 bars at 90 mm spacing. 
In each web, provide 23 bars at 87 mm spacing. 
Total number of bars provided = 4 + 19+ 10 + 2 × 23 = 79H25 = 38779 mm2. 
Link reinforcement:   Using H12 links, Asw = 113 mm2 
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Provide H12 links at 120 mm c/c. 
 
 
5.4.4 Combined Shear and Torsion 
 
As the mode of resistance for shear and torsion is by a composite truss consisting 
of concrete struts, shear links and longitudinal reinforcement, it is important to 
make sure that the concrete struts are not overstressed. 
The code in equation (6.29) limits the combined effect of shear force and torsion as 
follows. 
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αcw = 1 for non-prestressed structures 
 
 
5.4.4.1 Example of Design of Torsion Steel for a Rectangular Beam  
 
A rectangular beam section has an overall depth of 500 mm and a breadth of 300 
mm.  It is subjected at ultimate to a vertical sagging moment of 320 kNm, a 
vertical shear of 230 kN and a torque of 30 kN m. Design the longitudinal steel and 
links required at the section.  The material strengths are fck = 30 MPa,                   
fyk = 500 MPa.  Use H25 bars for longitudinal steel and H8 bars for links. 
 
Design for bending: 
Using cover to steel of 30 mm,  

d = 500 – 30 – 10 – 25/2 = 447 mm 
k = M/ (b d2 fck) = 320 × 106/ (300 × 4472 × 30) = 0.178 < 0.196 

Design as a singly reinforced beam. 
η = 1, z/d = 0.5[1.0 + √ (1 – 3 × k)] = 0.84 

fyd = 500/1.15 = 435 MPa 
As = M/ (z × fyd) = 320 × 106/ (0.84× 447 × 435) = 1959 mm2 

Provide 4H25, As = 1964 mm2 > 1959 mm2 
Check minimum steel: 

As,min = 0.26 × (fctm/fyk) ×  bt d, fctm = 0.3 × 300.667 =  2.9 MPa, fyk = 500 MPa, 
As,min = 202 mm2 < 1959 mm2 

 
Design for shear: 

VEd = 230 kN 
 

i. Check if shear reinforcement is required, VEd > VRd, c 
VEd = 230 kN, bw = 300 mm, d = 447 mm, Asl = 4H25 = 1964 mm2 
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VRd, c = 94.9 kN < VEd. 
Therefore shear reinforcement is required. 
 
ii. Check if the section strength is adequate, VEd < VRd, max 
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7.5cot   
The value of cot θ is outside the limits of 1.0 and 2.5.  Choose cot θ = 2.5. 

ν1 = ν = 0.6(1 – fck/250) = 0.6(1 – 30/250) = 0.528 
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VRd, max = 410 kN > VEd. 
Section size is adequate. 
 
iii. Design of shear reinforcement: 
Ensure that VRd, s ≥ VEd, and choose 2-leg H8 links, 

Asw = 101 mm2, cot θ = 2.5, z = 0.84d, fyk = 500 MPa, 

)kN230V(kN
s

41221

105.2
15.1

500101
s

)44784.0(

cotfA
s
zV

Ed

3

ywdsws,Rd














 

mm179s   
Maximum spacing = 0.75d = 0.75 × 447 = 335 m. 
Check minimum shear steel:  

ρw, min = (0.08 × √fck)/ fyk = 0.876 ×10−3 
ρw = Asw/(s × bw) =  101/(179 × 300) = 1.881 ×10−3 > 0.876 ×10−3 

 
Design for torsion: 
Calculate tef: 
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A = 300 × 500, u = 2(300 + 500), 
Effective wall thickness tef,i = A/u = 94 mm 

Dimension of the ‘hollow’ section: 
b = 300 – 94 = 206 mm, h = 500 – 94 = 406 mm 

Ak = 206 × 406 = 83636 mm2, uk = 2(206 + 405) = 1224 mm 
TEd = 30 kNm 

q = TEd/ (2 Ak) = 179 N/mm 
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ΣAsl = 1262 mm2, 3H25 = 1473 mm2 
For symmetry, use 4H25.  Since bending provides compression in the top chord, 
only 2H25 need be provided in the bottom chord. 
Link design:  

Asw = area of H8 bar = 50 mm2, fyd = 500/1.15 = 435 MPa 
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mm303s   
Arrangement of reinforcement  
Longitudinal bars: bending = 4H25, torsion = 2H25, total 6H25. 
Provide 4H25 in the bottom and 1H25 in the middle of the sides. 
Links: shear: 2-leg H8 links at 179 mm c/c, torsion: H8 links at 303 mm c/c. 
Provide 8 mm links at 150 c/c but use 2-leg links alternatively. 
 
Check shear-torsion interaction: 

cotθ = 2.5, θ= 21.80, sin θ = 0.37, cos θ = 0.929 
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VEd = 230 kN, TEd = 30 kNm 
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Design is unsatisfactory.  Use a larger section. 
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5.5 SHEAR BETWEEN WEB AND FLANGE OF T-SECTIONS 
 
Section 6.2.4 of Eurocode 2 deals with the reinforcement to resist the shear 
between web and flanges.  Fig. 5.67 shows a T-beam between two sections.  The 
difference in bending moment between the two sections causes differential bending 
forces in the flanges.  In order to transmit this force to the web, shear stresses 
develop at the junction between the web and the flange.   Reinforcement is needed 
in the flange to resist this shear stress. 
 

 
 

Fig. 5.67 Shear stresses at flange-web junction. 
 
 
5.5.1 Example 
 
Determine the shear reinforcement in the flanges for the T-beam example in 
section 5.1.10 and shown in Fig. 5.19 and Fig. 5.20. 
Solution: 

Mid-span bending moment = 291.6 kNm, d = 400 mm, fck = 25 MPa. 
z/d = 0.97, z = 388 mm. 

Let s be the depth of flange in compression. 
z = d – s/2, s = 24 mm 

Bending stress in the flange = fcd = 25/1.5 = 16.7 MPa. 
Width of one half of flange = (2000 – 250)/2 = 875 mm. 

Compression force C in one half of flange at mid-span = 875 × s × fcd ×10−3 
C = 875 × 24 × 16.7 ×10−3 = 350.7 kN 

The compression force varies from zero where the bending moment is zero to a 
maximum value of 350.7 kN at position of maximum moment, i.e., mid-span. 

The shear force ΔFd = 350.7 kN. 
Assuming uniform distribution of shear stress at the flange-web junction, an 
average value vEd is given by code equation (6.20): 
                                                     vEd = ΔFd/ (hf × Δx)                                       (6.20) 

hf = thickness of the flange = 100 mm. 
Δx = distance between the position of maximum moment and zero moment 

Δx = effective span/2 = (7.2 /2) = 3.6 m 
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vEd = 350.7 × 103/ (100 × 3.6 × 103) = 0.97 MPa. 
The transverse reinforcement Asf at spacing sf is given by code equation (6.21) as 

                                               
1

f
Edyd

f
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cot
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s

A


                                         (6.21) 

 
To prevent the crushing of the compression struts in the flange, the condition given 
by code equation (6.22) has to be satisfied 

11cdEd cossinfv   
The limits on cotθ1 are: 

1.0 ≤ cotθ1 ≤ 2.0 for compression flanges 
1.0 ≤ cotθ1 ≤ 1.25 for tension flanges 

 
ν = 0.6 (1− fck/250) = 0.528, fcd = 25/1.5 = 16.7 MPa, 

0
11

1

11cdEd

4.6,22.02sin

)2sin5.0(7.16528.097.0
cossinfv













 

cotθ1 =9.0 > 2.0.  Take cotθ1 = 2.0 
Using H10 bars, Asf = 79 mm2, fyd = 500/1.15 = 435 MPa, 
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Generally T-beams form a part of the monolithic slab and T-beam flooring with the 
slab spanning between the T-beams.   The transverse bending of the flange caused 
by the slab spanning between the beams will need reinforcement which might very 
well exceed the reinforcement calculated to resist shear between flange and web. 



CHAPTER 6 
 

SERVICEABILITY LIMIT STATE 
CHECKS 

 
 
6.1 SERVICEABILITY LIMIT STATE 
 
In Chapter 4 and Chapter 5, design procedures for the ultimate limit state (ULS) in 
bending, shear and torsion were described.  It is necessary in practice to ensure that 
the structure can not only withstand the forces at the ultimate limit state but also 
that it behaves satisfactorily at working loads.  The main aspects to be satisfied at 
serviceability limit state (SLS) are deflection and cracking.  In this chapter checks 
that are normally used to ensure satisfactory behaviour under SLS conditions 
without detailed calculations are considered.  These are known as ‘deemed to 
satisfy’ clauses.  Methods requiring detailed calculations are discussed in Chapter 
17. 
 
 
6.2 DEFLECTION  
 
 
6.2.1 Deflection Limits and Checks  
 
Limits for the serviceability limit state of deflection are set out in clause 7.4 of the 
code.   It is stated in 7.4.1 (4) that the appearance and general utility of a structure 
could be impaired if the deflection exceeds L/250 where L is the span of a beam or 
length of a cantilever.  Deflection due to dead load can be offset by pre-cambering.  
The code also states that deflections that could damage adjacent parts of the 
structure should be limited.  For the deflection after construction, L/500 is 
normally appropriate under quasi-permanent loads. 
Generally it is not necessary to calculate the deflections explicitly.  Code allows 
limiting the span-to-effective depth ratio to ensure that deflection under SLS does 
not exceed the limits.  
 
 
6.2.2 Span-to-Effective Depth Ratio  
 
In a homogeneous elastic beam of span L, if the maximum stress is limited to an 
allowable value σ and the deflection Δ is limited to, say, span/250, then for a given 
load a unique value of span-to-effective depth ratio L/d can be determined to limit 
stress and deflection to their allowable values simultaneously.  Thus for the simply 
supported beam with a uniformly distributed load,  
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Maximum bending moment = W L/8 
where W = total load on the beam and  

Maximum stress σ = M y/I = 
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where I is the second moment of area of the beam section, d is the depth of the 
beam and L is the span.  
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where  
E is Young's modulus, σ = allowable maximum stress  
     Similar reasoning may be used to establish span-to-effective depth ratios for 
reinforced concrete beams to control deflection.  The method in the code is based 
on calculation and confirmed by tests.  The main factors affecting the deflection of 
the beam are taken into account such as  

 The basic span-to-effective depth ratio for rectangular or flanged beams 
and the support conditions  

 The amount of tension and compression steel and the  stress in them at 
SLS  

 Concrete strength fck 
The allowable value for the span-to-effective depth ratio can be calculated using 
the code equations (7.16a) and (7.16b) for normal cases.  
The equations have been derived on the basis of the following assumptions: 

 The maximum stress in steel σs at SLS is 310 MPa for fyk = 500 MPa.  If a 
different level of stress σs other than 310 MPa is used, then L/d from 
equation should be multiplied by 310/ σs where 
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A

f
500310




 

 For flanged sections, if b/bw exceeds 3, then L/d from equation should be 
multiplied by 0.8. 

 For beams and slabs other than flat slabs, where the effective span Leff 
exceeds 7 m and the beam supports partitions liable to be damaged due to 
excessive deflections, L/d values from equation should be multiplied by 
7/Leff. 
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where 
L/d = limit of span/effective depth ratio. 
K  =  factor to account for different structural systems. 
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ρ0 = 10−3 ×√fck. 
ρ = tension reinforcement ratio to resist the maximum moment due to design loads. 
ρ' = compression reinforcement ratio to resist the maximum moment due to design  
        loads. 
Table 6.1 shows the basic L/d ratios for reinforced concrete members without axial 
restraint calculated from the code equations. 
 

Table 6.1 Basic L/d ratios 
Structural System K ρ = 

1.5% 
ρ = 

0.5% 
Simply supported beam, one-way or two-way 
spanning simply supported slab. 

1.0 14 20 

End span of continuous beam or one-way 
continuous slab or two-way spanning slab 
continuous over one long side. 

1.3 18 26 

Interior span of continuous beam or one-way 
or two-way spanning slab. 

1.5 20 30 

Flat slabs (based on longer span) 1.2 17 24 
Cantilever 0.4 6 8 

 
 
6.2.2.1 Examples of Deflection Check for Beams  
 
Example 1: A continuous slab 100 mm thick is carried on T-beams at 2 m centres.  
The overall depth of the beam is 350 mm and the breadth bw of the web is 250 mm.  
The beams are 6 m spans and are simply supported.  The characteristic dead load 
including finishes is 4.5 kN/m2 and the characteristic imposed load is 5 kN/m2.  
The material strengths are fck =25 MPa and fyk =500 MPa. Check if L/d is 
adequate.  If inadequate, redesign the beam. 
Since the beams are spaced at 2 m centres, the loads on the beam are: 

100 mm thick slab + finishes = (0.1 × 25 + 4.5) × 2 = 14.0 kN/m 
Weight of rib only = (0.35 – 0.1) × 0.25 × 25 = 1.56 kN/m 

Live load = 5 × 2 = 10 kN/m 
Design load = 1.35 × (14.0 + 1.56)) + (1.5 × 10) = 36.0 kN/m 

Ultimate moment at mid-span = 36.0 × 62/8 = 162 kN m 
Effective width beff of flange can be shown to equal 1800 mm (See Chapter 4, 
section 4.6.5). 
The beam section is shown in Fig. 4.17.  Assuming a nominal cover on the links is 
25 mm and if the links are H8 and the main bars are H25, then  

d = 350 – 25 – 8 – 12.5 = 305 mm 
It can be shown that the beam can be designed as a rectangular beam of size  
1800 × 300.  

k = M/ (b d2 fck) = 162 × 106/ (1800 × 3052 × 25) = 0.039 < 0.196 
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Provide 3H25; As = 1472 mm2 
As, prov /As, reqd = 1472/1282 = 1.15 

ρ = As/ (bw d) = 1282/ (250 × 305) = 0.0168, ρ% = 1.68 
ρ0 = 10−3 ×√25 = 0.005, ρ0% = 0.5 

ρ > ρ0 
Simply supported beam, K = 1 
No compression steel, ρ' = 0 

b/bw = 1800/250 = 7.2 > 3.0.  Therefore L/d from equation is multiplies by 0.8. 

                           0

'

ck'
0

ck if]f
12
1f5.111[K

d
L










           (7.16b) 

As an approximation, the stress σs in the steel at SLS can be taken as  
σs = (load at SLS/Load at ULS) × fyd 

Load at ULS = 1.35 × (14.0 + 1.56) + (1.5 × 10) = 36.0 kN/m 
Load at SLS = 1.0 × (14.0 + 1.56) + (1.0 × 10) = 25.56 kN/m 

Note that load at SLS can be more appropriately taken as gk + ψ2 qk. 
σs = (25.56/ 36.0) × (500/1.15) = 318 MPa ≈ 310 MPa assumed in the formula. 

L/d = 11 + 1.5 × 5 × 0.005/0.0168 = 13.2 
L/d = 13.2 × 0.8 = 10.6 

Correcting for As, prov > As, reqd, L/d = 10.6 × 1.15 = 12.1 
Actual L/d = 6000/305 = 19.7 

Depth is too small.  Deflection will exceed the permitted L/250. 
 
Redesign the beam: 

L = 6 m, d = 6000/12 = 500 mm 
h = 500 + 25 (cover) + 8 (links) + 25/2 = 550 mm 

d = 550 – 25 – 8 –25/2 = 504 mm 
Increase in moment due to deeper web = (0.55 – 0.35) × 25 × 1.35 ×62/8  
                                                               = 30.38 kNm 

k = M/ (b d2 fck) = (162 + 30.38) × 106/ (1800 × 5042 × 25) = 0.02 < 0.196 
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Provide 2H25; As = 982 mm2 
As, prov /As, reqd = 982/900 = 1.09 

ρ = As/ (bw d) = 982/ (250 × 454) = 0.0087, ρ% = 0.87 
ρ0 = 10−3 ×√25 = 0.005, ρ0% = 0.5 < ρ% 

Simply supported beam, K = 1 
No compression steel, ρ' = 0 

b/bw = 1800/250 = 7.2 > 3.0.  Therefore L/d from equation is multiplied by 0.8. 
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L/d = 11 + 1.5 × 5 × 0.005/0.0087 = 15.3 
L/d = 15.3×0.8 = 12.24 

Correcting for As, prov > As, reqd, L/d = 12.24 × 1.09 = 13.34 
Actual L/d = 6000/504 = 11.9 

Deflection will not exceed the permitted L/250. 
 
Example 2: A rectangular beam is simply supported over a span of 6 m and carries 
characteristic super dead load of 34 kN/m and characteristic imposed load of     
17.0 kN/m.  The beam is 300 mm wide by 500 mm deep and the inset of the 
compression steel is 40 mm.  Design the steel for mid-span of the beam for the 
material strengths of fck =25 MPa and fyk =500 MPa.  Check the adequacy of L/d 
ratio. 

Self weight = 0.3 × 0.500 × 25 = 3.75 kN/m 
Design load = (34.0 + 3.75) × 1.35 + (17.0 × 1.5) = 76.46 kN/m 

Required ultimate moment M: 
M = 76.46 × 62/8 = 344.1 kN m 

d ≈ 500 – 25(cover) – 8(link) – 25/2 = 454 mm 
Maximum moment that the beam section can resist as a singly reinforced section is 

Msr = 0.196 × 25 × 300 × 4542 x 10−6 = 303 kNm 
M > Msr, Compression steel is required. 

d'/d = 40/454 = 0.09 < 0.1664 (see Table 4.11) 
The compression steel yields.  The stress fs

'  in the compression steel is 0.87fyk. 
As' = {M – Msr}/ [0.87 fyk (d – d')] 

As' = {344.1 – 303.0} × 106/ [0.87 × 500 × (454 – 40)] = 234 mm2 
From equilibrium:  

As 0.87 fyk = Csr + As' fs' 
where Csr = kc bd fck, compression force in concrete. kc = 0.2401 from Table 4.7. 

As × 0.87 × 500 = kc × 300 × 454 × 25 + 234 × 0.87 × 500 
As = 2113 mm2 

For the tension steel 5H25 give As = 2454 mm2. 
For the compression steel 2H12 give As' = 226 mm2. 

As, prov /As, reqd = 2454/2113 = 1.16 
ρ = As/ (bw d) = 2454/ (300 × 454) = 0.018, ρ% = 1.80 

ρ0 = 10−3 ×√25 = 0.005, ρ0% = 0.5 
ρ > ρ0 

Simply supported beam, K = 1 
Compression steel, ρ' = 234/ (300 × 454) = 0.0017, ρ'% = 0.17 

Load at ULS = (34.0 + 3.75) × 1.35 + (17.0 × 1.5) = 76.46 kN/m 
Load at SLS = (34.0 + 3.75) × 1.0 + (17.0 × 1.0) = 54.75 kN/m 

Note that load at SLS can be more appropriately taken as gk + ψ2 qk. 
σs = (54.75/ 76.46) × (500/1.15) = 311 MPa ≈ 310 MPa assumed in the formula. 
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L/d = 11 + 1.5 × 5 ×0.005/0.018 + (5/12) × √(0.0017/0.018) = 13.2. 
L/d = 13.2.  
Correcting for As, prov > As, reqd, L/d = 13.2 × 1.16 = 15.3). 
Actual L/d = 6000/454 = 13.2. 
Deflection will not exceed the permitted L/250. 
 
 
6.3 CRACKING  
 
 
6.3.1 Cracking Limits and Controls  
 
Cracking is normal in reinforced concrete structures.  However any prominent 
crack greatly detracts from the appearance and might even affect the proper 
functioning of the structure.  Excessive cracking and wide deep cracks affect 
durability and can lead to corrosion of reinforcement.  In section 7.3.1, code 
recommends the following limits on crack width.   
   For exposure classes X0 and XC1 (see Table 2.5), crack width is limited to 0.4 
mm in order not to spoil the appearance of the structure.  For exposure classes 
(XC2 to XC4, XD1, XD2, XS1 to XS3), crack width is limited to 0.3 mm. 
The value given above is valid for ensuring appearance and durability under quasi-
permanent loads but does not include any special requirement such as water 
tightness in structures retaining aqueous fluids. 
Two methods are available to ensure crack widths limits are not violated. They are:  

1. In normal cases control of cracking without direct calculation as 
given in section 7.3.3 of the code is followed.   This is done by 
following the maximum bar diameter values given in Table 7.2N of 
the code reproduced here as Table 6.2 or the values for maximum 
spacing of bars given in Table 7.3N reproduced here as Table 6.3.   

2. In special cases crack widths of an already designed structure can be 
calculated using the equations given section 7.3.4 of the code.  

In this Chapter only rules for the normal case are considered.  Rules for special 
cases are discussed in Chapter 19. 
 
 
6.3.2 Bar Spacing Controls in Beams 
 
Cracking is controlled by specifying the maximum distance between bars in 
tension as given in Table 6.2 or by restricting the maximum bar diameter as given 
in Table 6.3.  
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Table 6.2 Maximum bar spacing for crack control 
Steel stress, 

MPa 
Maximum bar spacing (mm) for 

maximum crack width, wk  
wk  = 0.4 

mm 
wk  = 0.3 

mm 
wk  = 0.2 

mm 
160 300 300 200 
200 300 250 150 
240 250 200 100 
280 200 150 50 
320 150 100  
360 100 50  

 
In the above table, the steel stress corresponds to stress in steel at SLS.  It is 
reasonable to assume that the steel stress at SLS can be calculated as 

Steel stress at SLS = Steel stress at ULS × [quasi-permanent load/load at ULS] 
The stress in steel at ULS is normally taken as fyd = fyk/ (γs = 1.15). 
 

Table 6.3 Maximum bar diameter φ’s for crack control 
Steel stress, 

MPa 
Maximum bar size (mm) for maximum 

crack width, wk  
wk  = 0.4 

mm 
wk  = 0.3 

mm 
wk  = 0.2 

mm 
160 30 32 25 
200 32 25 16 
240 20 16 12 
280 16 12 8 
320 12 10 6 
360 10 8 5 
400 8 6 4 
450 6 5  

 
The above value of φ’s has been calculated assuming fct, eff = 2.9 MPa, coefficient 
kc = 0.4, depth of the tensile zone immediately prior to cracking, hcr = 0.5h,           
(h − d) = 0.1h. 
The above value needs to be modified as follows as given by code equations 
(7.6N) and ((7.7N) respectively. 
             for cases of bending                               (7.6N) 

              for cases of uniform axial tension        (7.7N) 
 
 
6.3.3 Minimum Steel Areas 
 
If crack control is required, a minimum amount of steel reinforcement is required 
in areas where tension is expected.  In beams, a minimum reinforcement is 
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required in individual parts of the beam such as webs, flanges, etc.    The minimum 
reinforcement is calculated using the code formula (7.1).   
                                                      As, min σs = kc k fct, eff Act                                  (7.1) 
where 
As, min = the minimum area of steel in the tensile zone. 
Act = Area of concrete in the tensile zone (See Fig. 6.1). 
σs = Permitted steel stress.  A lower value than fyk is required so as not to violate 
       crack width limitations (see Table 6.2). 
fct, eff = fctm of concrete at the time when cracks are expected to occur. 
k = 1.0 for webs h ≤ 300 mm deep, flanges with widths less than 300 mm. 
       0.65 for webs h ≥ 800 mm deep, flanges with widths greater than 800 mm. 
    Interpolation for intermediate values is allowed. 
kc = 1.0 for pure tension. 
For bending or bending with axial force, 
k = 0.4 for webs of box and T-sections 
k = 0.9 [Fcr/ (Act × fct, eff) ≥ 0.5 where absolute value of the tensile force Fcr within 
the flange immediately prior to cracking due to the cracking moment calculated 
with fct, eff. 
 

 
 

Fig. 6.1 Tensile area in beams. 
 
 
6.3.3.1 Example of Minimum Steel Areas 
 
Example 1: A rectangular beam 300 × 650 is required to span 7 m.  The ends are 
simply supported.  The characteristic dead load gk = 20 kN/m and imposed load   
qk = 30 kN/m.  fck = 30 MPa, fyk = 500 MPa. 

q ult = 1.35 × 20 + 1.5 × 30 = 72 kN/m 
Mult = 72 × 72/8 = 441 kNm 

d = 650 – 30 (cover) – 8 (link) – 25/2 (bar radius) = 599 mm 
k = M/ (b d2 fck) = 441 × 106/ (300 × 5992 × 30) = 0.137 < 0.196 

η = 1, z/d = 0.5{1+ √ (1 − 3×k/ η)} = 0.884 
z = 0.884 × 599 = 530 mm 
fyd = 500/1.15 = 435 MPa 

As = M/ (z fyd) = 441 × 106/ (530 × 435) = 1915 mm2 
As = 4H25 = 1964 mm2 

 

d 
Tensile zone 
2(h-d) 

x 
h 
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1. Check L/d ratio using code equation (7.16b) 
fck = 30 MPa ρ0% = 0.1 ×√fck = 0.55 

ρ% = 100 × 1964/ (300 × 599) = 1.09 
ρ'% = 0 

Load at ULS = 1.35 × 20 + 1.5 × 30 = 72 kN/m 
Load at SLS = 1.0 × 20 + 1.0 × 30 = 50.0 kN/m 

σs = (50.0/ 72.0) × (500/1.15) = 302 MPa ≈ 310 MPa assumed in the formula. 
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L/d = 11+ 1.5 × 5.5 × 0.55/1.09 = 15.2 
As, prov/As, reqd = 1964/1915 = 1.026 
L/d corrected = 15.2 × 1.026 = 15.6 
Actual L/d= 7000/599 = 11.7 < 15.6 

Deflection check is satisfactory. 
 
2. Check minimum longitudinal steel using code equation (9.1N) 
fctm = 0.3 × fck 0.67 = 0.3 × 300.67 = 2.9 MPa 
As, min = 0.26 (fctm/ fyk) bt d = 0.26 × (2.9/500) × 300 × 599 = 271 mm2 
 
3. Check maximum spacing of bars using Table 6.2 
q SLS = gk + qk = 20 + 30 = 50 kNm 
qSLS/ qULT = 50/72 = 0.69 
σs = fyd × 0.69 = 300 MPa 
From Table 6.2, for σs = 300 and wk = 0.3 mm, maximum spacing = 125 mm 
Bar spacing = [300 – 2 × (30 + 8) – 25]/3 = 66 mm < 125 mm 
 
4. Check minimum reinforcement areas using code equation (7.1) 
Stress in steel at SLS = 302 MPa (see (1) above. 
From code equation (7.2), as there is no axial load, σc = 0,  kc = 0.4. 
k = 1.0 for h ≤ 300 and k = 0.65 h ≥ 800. 
Interpolating, k = 0.65 + {(800 – 650)/ (800 – 300)} × (1.0 – 0.65) = 0.76 
Act = {2(h – d) = 102} × {width = 300} = 30600 mm2. 
Assuming that cracks might appear at about 3 days, calculate fck(t).   

fck(3) ≈ fcm(t) – 8 
                                             fcm(t) = cc(t) fcm                                                      (3.1) 
                                   cc(t) = exp{s × [1 − √(28/t)]}                                           (3.2) 
Taking s = 0.25 for class N cement and t = 3, cc(t) = 0.6 
fcm = fck + 8 = 38 MPa, fcm(t) = 0.6 × (38) = 22.8 MPa  
fctm = 0.3 × fck 0.67 = 0.3 × 22.80.67 = 2.4 MPa 
Substituting in code equation (7.1),  
                            As, min × σs = kc k fct, eff Act                                                        (7.1) 

As, min = 0.4 × 0.76 × 2.4 × 30600/ 302 = 74 mm2 
All checks are satisfactory. 
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6.3.4 Bar Spacing Controls in Slabs 
 
The maximum clear spacing between bars in slabs is given in clause 9.3.1.1(3).  If 
h is the overall depth of the slab, for main steel, the spacing of the bars should not 
exceed the lesser of 3 h or 400 mm.  Secondary steel spacing of the bars should not 
exceed the lesser of 3.5 h or 450 mm.  
 
Example 1: A 350 mm deep slab has been designed for an ultimate moment of  
200 kNm/m using fck = 30 MPa and fyk = 500 MPa.  Apply ‘Deemed to satisfy’ rule 
to check the maximum bar spacing. 
Dimensions of slab: b = 1000 mm, h = 350 mm, cover = 30 mm, main steel H16 
bars. 

Effective depth, d = 350 – 30 – 16/2 = 312 mm. 
k = 200 × 106/ (1000 × 3122 × 30) = 0.069 < 0.196 

η = 1, z/d = 0.5(1.0 + √ (1 – 3 × 0.069) = 0.95 
As required = 200 × 106/ (0.95 × 312 × 0.87 × 500) = 1552 mm2/m 

As Provided = H16 at 125 mm = 1609 mm2 
Maximum spacing allowed: clause 9.3.1 (3) states that spacing 3 h ≤ 400 mm. 
Spacing = 125 mm. 
Actual spacing of 125 mm is less than permitted maximum spacing.  Design is 
satisfactory. 
 
 

 
 

Fig. 6.2 Surface reinforcement. 
 
 
6.3.5 Surface Reinforcement 
 
Appendix J of the code gives details regarding surface reinforcement to resist 
spalling.  It should be used where the main reinforcement is made up of bars of 
diameter greater than 32 mm or bundled bars with an equivalent diameter greater 
than 32 mm.  The surface reinforcement consists of small diameter bars or of 
welded mesh and is placed outside the links parallel to and perpendicular to the 
main tension reinforcement as shown in Fig. 6.2.  The area of surface 
reinforcement should not be less than 0.01 times the area of concrete external to 
the links.  The spacing of the bars should not exceed 150 mm.   

x 

d-x 

≤ 150 mm 



CHAPTER 7 
 

SIMPLY SUPPORTED BEAMS 
 
 
The aim in this chapter is to put together the design procedures developed in 
Chapters 4, 5 and 6 to make a complete design of a reinforced concrete beam.  
Beams carry lateral loads in roofs, floors etc. and resist the loading in bending, 
shear and bond.  The design must comply with the ultimate and serviceability limit 
states.  
 

 
Fig. 7.1 Effective span. 

 
Fig. 7.2 Bearing support. 

 
 
7.1 SIMPLY SUPPORTED BEAMS  
 
Simply supported beams do not occur as frequently as continuous beams in in-situ 
concrete construction, but are an important element in pre-cast concrete 
construction.  
The effective span leff of a simply supported beam is defined in the code in clause 
5.3.2.2, equation (5.8) as  
                                       leff = ln + a1 + a2                                                           (5.8) 
ln = distance between the faces of supports 
a1 and a2 refer to support width at ends 1 and 2 of the beam 

a1 

ln 

leff 

h 

t 

ln 

leff 

h 
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a1 = min (0.5h, 0.5t) 
h = overall depth of the beam 
t = width of support as shown in Fig. 7.1 
If a bearing is provided as shown in Fig. 7.2, then a1 (or a2) is the distance from the 
face of the support to the centre of the bearing.  In other words, the effective span 
is the distance between the centres of bearings. 
 
 
7.1.1 Steps in Beam Design  
 
Although the steps in beam design as shown in (a) to (j) below are presented in a 
sequential order, it is important to appreciate that design is an iterative process.  
Initial assumptions about size of the member, diameters of reinforcement bars are 
made and after calculations it might be necessary to revise the initial assumptions 
and start from the beginning.  Experience built over some years helps to speed up 
the time taken to arrive at the final design.  The two examples in this chapter do 
not show this iterative aspect of design. 
 
(a) Preliminary size of beam  
The size of beam required depends on the moment and shear that the beam carries.  
Clause 9.2.1.1(3) gives the maximum reinforcement as 4% of the cross sectional 
area of concrete.  The minimum percentage must comply with the code equation 
(9.1N) 

                                                db
f
f26.0A t

yk

ctm
min,s                               (9.1N) 

where fctm = mean tensile strength of concrete, bt = width of the web, d = effective 
depth, fyk = characteristic strength of reinforcement. 
 
A general guide to the size of beam required may be obtained from the basic span-
to-effective depth ratio from Table 7.4N of the code.   
The following values are generally found to be suitable. 
Overall depth ≈ span/15. 
Breadth ≈ (0.4 to 0.6) × depth. 
The breadth may have to be very much greater in some cases. The size is generally 
chosen from experience.  Many design guides are available which assist in design. 
 
(b) Estimation of loads:  
The loads should include an allowance for self-weight which will be based on 
experience or calculated from the assumed dimensions for the beam.  The original 
estimate may require checking after the final design is complete.  The estimation of 
loads should also include the weight of screed, finish, partitions, ceiling and 
services if applicable.  The following values are often used: 
Screed: 1.8 kN/m2 
Ceiling and service load: 0.5 kN/m2 
Demountable light weight partitions: 1.0 kN/m2 
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Block-work partitions: 2.5 kN/m2 
The imposed loading, depending on the type of occupancy, is taken from  
Eurocode 1: Actions on Structures-Part 1-1: General actions-Densities, self-
weight, imposed loads for buildings. 
 
(c) Analysis  
The ultimate design loads are calculated using appropriate partial factors of safety 
from BS EN 1990-2002 Eurocode-Basis of Structural Design. The load 
combinations to be considered are as explained in section 3.2.3, Chapter 3.  The 
details are summarised in Table 3.2, repeated here for convenience. 
 

Table 3.2 Simplified equations for checking EQU and STR 
Persistent 

and 
transient 
design 

situations 

Permanent actions Leading variable 
action 

Accompanying variable 
action 

 Unfav. Fav. Unfav. Fav. Unfav. Fav. 
6.10 1.35 Gk, sup 1.0 Gk, inf 1.5 Qk,1 0 1.5 ψ 0,i Qk,i 0 
6.10a 1.35 Gk, sup 1.0 Gk, inf §1.5 ψ 0,i Qk,1 0 1.5 ψ 0,i Qk,i 0 
6.10b *1.15 Gk, sup 1.0 Gk, inf 1.5 Qk,1 0 1.5 ψ 0,i Qk,i 0 

 
Note: In equation (6.10b), The U.K National Annex uses the multiplier as 1.25 
instead of 1.15 for unfavourable permanent actions.   
The ultimate reactions, shears and moments are determined and the corresponding 
shear force and bending moment diagrams are drawn.  
 
(d). Cover 
Choose cover to suit the environment and fire resistance.  See Chapter 2, sections 
2.9 and 2.10 for details. 
 
(e) Design of moment reinforcement  
The flexural reinforcement is designed at the point of maximum moment.  Refer to 
Chapter 4 for the steps involved. 
 
(f) Curtailment and end anchorage  
A sketch of the beam in elevation is made and the cut-off point for part of the 
tension reinforcement is determined.  The end anchorage for bars continuing to the 
end of the beam is set out to comply with code requirements in clause 9.2.1.4. See 
Chapter 5 for details.   It requires that the bars should continue for a length equal to 
anchorage length measured from the line of contact of the support with the beam.  
It is necessary to include the additional tensile force FE due to shear equal to  

FE = 0.5 VED cotθ, 1.0 ≤ cotθ ≤ 2.5 
 
(g) Design for shear  
Design ultimate shear stresses are checked and shear reinforcement is designed 
using the procedures set out in section 6.2.  Refer to this and Chapter 5. 
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     Note that except for minor beams such as lintels, all beams must be provided 
with at least minimum links as shear reinforcement.  Small diameter bars are 
required in the top of the beam to carry and anchor the links.  
 
(h) Deflection  
Deflection is checked using the rules from section 7.4.2.  Refer to Chapter 6. 
 
(i) Cracking  
The maximum clear distance between bars on the tension face is checked against 
the limits given in the code in section 7.3.3 and Table 7.3N.  Refer to Chapter 6 for 
more details. 
 
(j) Design sketch  
Design sketches of the beam with elevation and sections are needed to show all 
information for the draft sperson. 
 
 
7.1.2 Example of Design of a Simply Supported L-Beam in a Footbridge  
 
(a) Specification  
The section through a simply supported reinforced concrete footbridge of 7 m 
effective span is shown in Fig. 7.3.  The characteristic imposed load is 5 kN/m2 and 
the materials to be used are fck = 25 MPa concrete and fyk = 500 MPa 
reinforcement.  Design the L-beams that support the bridge. Concrete weighs 25 
kN/m3, and the unit mass of the handrails is 16 kg/m per side.  The beam will be in 
XD1 environment. 
 
 

 
 

Fig. 7.3 Cross section of a foot bridge. 
 
 
(b) Loads, shear force and bending moment diagram 
The total load is carried by two L-beams.  All the load acting on 0.8 m width acts 
on an L-beam.  

400 

1600 
200 

Screed 30 mm Handrail 

120 
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The dead load carried by each L-beam is  
[(0.12 slab + 0.03 screed) × 0.8 + 0.2 × (0.4 – 0.12) rib] × 25  

+ 16 × 9.81x 10−3 hand rails = 4.6 kN/m 
The total live load acting on each beam is 0.8 × 5 = 4.0 kN/m. 
As there is only one variable load, when using equation (6.10) the design load at 
ultimate limit state is (1.35 × 4.6) + (1.5 × 4) = 12.21 kN/m 
The ultimate moment at the centre of the beam is 12.21 × 72/8 = 74.8 kN m 
Support reaction = 12.21 × 7.0/2 = 42.74 kN. 
The load, shear force and bending moment diagrams are shown in Fig. 7.4. 
 

 
 

Fig. 7.4 Loading, shear force, and bending moment diagrams. 
 

 
 

Fig. 7.5 The L-beam. 
 
(c) Design of moment reinforcement  
The effective width b of the flange of the L-beam shown in Fig. 7.5 is given by 
code equations (5.7), (5.7a) and (5.7b).  See Fig. 4.11, Chapter 4. 

b1= 600 mm, l0 = 7 m, 
beff, 1 = 0.2 b1 + 0.1 l0 ≤ 0.2 l0 

12.2 kN/m 

74.8 kNm 

42.74 kN 

7.0  m 

b1 = 600 

bw = 200 

b = 800 

120 

400 
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beff, 1 = 0.2 × 600 + 0.1 × 7000 ≤ min (0.2 × 7000, b1) 
                                = 820 ≤ min (1400, 600) = 600 mm 

beff = beff, 1 + bw = 800 mm 
b = 800 mm 

Assume exposure class as XD1, from Table 2.26, Chapter 2, cmin, dur = 35 mm for 
structural class S4.  Assume 25 mm bars for reinforcement. 
Cover, Cmin = max (diameter of bar; cmin, dur; 10 mm) = max (25; 35; 10) = 35 mm. 
The effective depth d is estimated as 

d = 400 – 35 (cover) – 8 (link diameter) – 25/2 = 344.5 mm, say 345 mm 
Check for the depth of the stress block:  
The moment of resistance of the section when the stress block is equal to the slab 
depth hf = 120 mm is  

MFlange = fcd × b × hf × (d – hf/2) 
MFlange = (25/1.5) × 800 × 120 × (345 – 0.5 × 120) × 10−6 = 456 kNm 

(M = 74.8) < (MFlange = 456) 
The stress block is inside the slab and the beam can be designed as a rectangular 
section. 

k = M/ (bd2 fck) = 74.8 × 106/ (800 × 3452 × 25) = 0.031 < 0.196 
η = 1, z/d = 0.5[1.0 + √ (1 –3 k) = 0.98 

z = 0.98 × 345 = 338 mm 
As = M/ (0.87 fyk z) =74.8 × 106/ (0.87 × 500 × 338) = 509 mm2 

Provide 2H25, As = 982 mm2.  
Check for minimum steel area using the code equation (9.1N). 

MPa6.2253.0f3.0f 67.067.0
ckctm   

2
t

yk

ctm
min,s mm93345200

500
6.226.0db

f
f26.0A   

As provided > As, min 
 
Curtailment of bars:   As there are only two bars, all bars will be taken right to 
the end.   
 
(d) Design of shear reinforcement  
Maximum shear force VEd at d from the face of support 

VEd = 42.74 – 12.2 × 0. 345 = 38.5 kN 
i. Check if shear reinforcement is required, VEd > VRd, c 

VEd = 37.4 kN, bw = 200 mm, d = 345 mm, Asl = 2H25 = 982 mm2 

12.0
)5.1(

18.0C
c

c,Rd 


  

0.276.1
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2001k   

0.242.1
345200

982100100 1 


  
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MPa30.02542.1035.0v 5.1
min   

kN9.4710345200]30.0}2542.1{76.112.0[V 33/1
c,Rd    

VRd, c = 47.9 kN > VEd.  Therefore no shear reinforcement is required but nominal 
minimum reinforcement will be provided. 
 
Check minimum shear steel  requirement 
 

yk

ck

w

sw
f

f08.0
bs

A
  

500
2508.0

200s
5.100



 

mm628
2508.0

500
200

5.100s   

Maximum spacing s ≤ (0.75 d = 0.75 ×345 = 259 mm). 
Maximum spacing should be less than 259 mm.  A spacing of 250 mm will be 
satisfactory.  2H12 bars are provided to carry the links at the top of the beam. The 
shear reinforcement is shown in Fig. 7.6.  
 

 
 

Fig. 7.6 Shear reinforcement. 
 
(e) End anchorage  
Clause 9.2.1.4 (1) of Eurocode 2 states that 

 The area of bottom reinforcement provided at supports with little or no 
end fixity should be at least 25% of the area of steel provided in the span. 

 The tensile force FE to be anchored is given by code equation (9.3) as  

                                                  
z
aVF 1

EDE                                                    (9.3) 

a1 is given in code equation (9.2) as  

                                           )cot(cot
2
za1                                                 (9.2) 

α = angle of shear reinforcement and for vertical links, α = 900 and cot α = 0. 
cot θ ≈ 2.5, a1/z = 1.25 

2H25 

2H12 
H8 at 250 mm 
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FE = 1.25 VEd 
The bond length needed (see clause 9.2.1.4(3)) is measured from the line of contact 
between the beam and the support.  
At support, VEd = 38.5 kN.  FE = 1.25 × 38.5 = 48.13 kN. 
Area of steel required to resist this force = FE/fyd  
                                                                 = 48.13 × 103/ (500/1.15) = 111 mm2. 
As all the steel is carried over to the support, area of steel provided  is that of 2H25 
equal to  982 mm2 > 111 mm2. 
From Table 5.5, Chapter 5, for fck = 25 MPa, the bond length is 40 bar diameters. 
The bond length ℓbd needed = (As required/As provided) × (40 × 25). 
ℓbd = (111/982) × (40 × 25) = 113 mm. 
 
(f) Deflection check  
The deflection of the beam is checked using the equation (7.16a and b) of the code. 
As, prov /As, reqd = 982/509 = 1.93. 
ρ = As/ (bw d) = 982/ (200 × 345) = 0.014, ρ% = 1.42. 
ρ0 = 10−3 × √25 = 0.005, ρ0% = 0.5.  ρ > ρ0. 
Simply supported beam, K = 1. 
No compression steel, ρ' = 0. 
b/bw = 800/200 = 4.0 > 3.0.  Therefore L/d from equation is multiplies by 0.8. 

Load at ULS = (1.35 × 4.6) + (1.5 × 4) = 12.21 kN/m 
Load at SLS = (1.0 × 4.6) + (1.0 × 4) = 8.6 kN/m 

Stress σs in steel at SLS = (8.6/12.21 ) × fyd = 306 MPa 
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L/d = 13.6 × 0.8 = 10.9.  
L/d ratio corrected for As, prov / As, reqd is 10.9 × 1.93 = 21.1. 
Actual L/d = 7000/345 = 20.3. 
Deflection will not exceed the permitted L/250. 
 
(g) Check for cracking  
The clear distance between bars on the tension face is 

200 – 2 × (35 + 8) – 25 = 89 mm 
Sustained load at SLS = gk + qk = 4.6 + 4.0 = 8.6 kN/m. 
Load at ULS = 1.35 gk + 1.5 qk = 1.35 × 4.6 + 1.5 × 4.0 = 12.21 kN/m. 
Stress σs in steel at SLS = 306 MPa. 
From Table 6.2, for 0.3 mm crack width, maximum spacing is approximately     
120 mm.  The actual spacing of 89 mm does not exceed 120 mm.  The beam is 
satisfactory with regard to cracking.  
 
(i) Beam reinforcement  
The reinforcement for each L-beam is shown in Fig. 7.6.  Note that the slab 
reinforcement also provides reinforcement across the flange of the L-beam. 
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7.1.3 Example of Design of Simply Supported Doubly Reinforced 
         Rectangular Beam  
 
(a) Specification  
A rectangular beam is 300 mm wide by 575 mm overall depth with inset to the 
compression steel of 55 mm.  The beam is simply supported and spans 9 m.  The 
characteristic dead load including an allowance for self-weight is 20 kN/m and the 
characteristic imposed load is 11 kN/m.  The materials to be used are fck = 25 MPa 
and fyk = 500 MPa.  Design the beam. 
 
(b) Loads and shear force and bending moment diagrams  

Design load = (1.35 × 20) + (1.5× 11) = 43.5 kN/m 
Ultimate moment = 43.5 × 92/8 = 440.4 kN m 
Shear force at support = 43.5 × 9/2 = 195.8 kN 

(c) Design of the moment reinforcement 
Calculate the effective depth d: 
Assuming 25 mm bars for reinforcement in two layers, 10 mm diameter for links 
and cover to the reinforcement is taken as 35 mm for XD1 exposure, effective 
depth d is 

d = 575 – 35 – 10 – 25 = 505 mm 
The maximum moment of resistance of a singly reinforced rectangular beam is  

0.196 b d2 fck = 0.196 × 300 × 5052 × 25 × 10−6 = 374.9 kNm < 440.4 kNm 
Compression reinforcement is required.  
From Table 4.5, d'/ d = 55/450 = 0.12 < 0.1664. 
The compression steel yields.  Stress in the compression steel is fyd. 
The area of compression steel is  

A's = (M – 0.196 bd2 fck) / [(d – d') × fyd] 
= (440.4 – 374.9) × 106/ [(505 – 55) × 435] = 335 mm2 

Provide 2H16, A's = 402 mm2. 
Equate total tensile and compressive forces.  Neutral axis depth with maximum 
moment for singly reinforced beam from Table 4.5 is 0.448 d.  The stress block 
depth is 0.8x = 0.358 d 

fcd × b × 0.358d + A's × fyd = As × fyd 
16.67 × 300 × 0.358 × 505 + 335 × 435 = As × 435 

As = 2414 mm2 
Provide 5H25, As = 2454 mm2.   
Note: The value of d is slightly changed. 
d1 for the top 2H25 = 575 – (35+10) – 25 – 25/2 = 492.5 mm. 
d2 for the bottom 3H25 = d1 + 25 = 517.5 mm. 
d = (2 × d1 + 3 × d2) / (2+3) = 508 mm. 
The revised values are: 

0.196 b d2 fck = 0.196 × 300 × 5082 × 25 × 10−6 = 379.4 kNm < 440.4 kNm 
The area of compression steel is  

A's = (M – 0.196 bd2 fck) / [(d – d') × fyd] 
= (440.4 – 379.4) × 106/ [(508 – 55) × 435] = 310 mm2 

Provide 2T16, A'
s = 402 mm2. 
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fcd × b × 0.358d + A'
s × fyd = As × fyd 

16.67 × 300 × 0.358 × 508 + 310 × 435 = As × 435 
As = 2401 mm2 

Provide 5T25, As = 2454 mm2.     
There is a very slight reduction in tension and compression steel. 
The top layer 2H25 can be curtailed.   
Stress block depth s: As = 3H25 = 1473 mm2, d = d2 = 473 mm. 

fcd × b × s = As × fyd, s = 128 mm 
z = d – s/2 = 409 mm 

M = As × fyd× (d – s/2) × 10−6 = 262.1 kNm 
262.1 = 195.8 x – 0.5 × 43.5 × x2 

x = 1.64 and 7.36 m 
 
(d) Design of shear reinforcement  
VEd = Shear force at d from face of support = 195.8 – 43.5 × 508 × 10−3  
                                                                     = 173.7 kN 
 
i. Check whether shear reinforcement is required, VEd > VRd, c 
VEd = 173.7 kN, bw = 300 mm, d = 508 mm, Asl = 5H25 = 2454 mm2. 
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VRd, c = 102.2 kN < VEd.  Therefore shear reinforcement is required. 
 
ii. Check whether the section strength is adequate, VEd < VRd, max 

01

3
1

1

1

33.765.145.0)25.0(sin5.0

}
)

5.1
25(6.0)5089.0(3000.1

105.1732{sin5.0

}2{sin5.0
















cdwcw

Ed
fzb

V




 

cot θ = 7.8, which is outside the limits of 1.0 and 2.5.  Choosing cot θ = 2.5 for 
minimum shear reinforcement, VRd, max = 473.1 kN > (VEd at support = 195.8 kN). 
Section size is adequate. 
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iii. Design of shear reinforcement 
Ensuring that VRd, s ≥ VEd, and choosing 2-leg links of 10 mm diameter, 
Asw = 157.1 mm2, cot θ = 2.5, z = 0.9d, fywk = 500 MPa,  
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iv. Check minimum steel requirement 
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Maximum spacing s ≤ (0.75 d = 0.75 × 508 = 381 mm). 
Calculate VRd, s for s = 375 mm. 
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This shear force occurs at 2.59 m from the supports.  This means that in the middle 
portion of the beam for a distance of (9.0 – 2 × 2.59) = 3.83 m links at a spacing of 
375 mm will be satisfactory.  In the rest of the beam, a spacing of 175 mm will be 
satisfactory.  
 
(e) Bar curtailment and end anchorage  
The additional tensile force generated by shear that can be accommodated by 
shifting the bending moment diagram by a distance a1 is given by code equation 
(9.2) as 
                                             a1 = z (cotφ – cotα)/2                                       (9.2) 
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Fig. 7.7 Beam cross section. 
 

 
 

Fig. 7.8 Beam reinforcement. 
 
Using z = 409 mm, cot θ = 2.5, cot α = as only vertical links are used as shear 
reinforcement, a1 = 511 mm. 
From Table 5.5, lbd = 40 φ = 1.0 m, the top 2H25 can be stopped at                   
(1.64 – lbd – a1) = 0.14 m from the ends.  This is too short a length to bother about.  
It is simply convenient to carry all bars to the ends.  The compression bars will be 
carried through to the ends of the beam to anchor the links.  
The amount of bottom reinforcement at the support is clearly greater than 25% of 
the steel at mid-span as required by the clause 9.2.1.4(3). 
The tensile force FE at the support to be anchored is  

FE = VED × (a1/z) ≈ 1.25 VED 
At support, VED = 195.8 kN, FE = 245 kN. 
Area of steel = 2H25 = 982 mm2, stress in the bar = 199 MPa. 

Stress in the bar /fyd = 0.46 
From Table 5.5, lbd = 40 bar diameters. 

5H25 

2H16 

300 

575 

H10 

16H10 at 175 10H10 at 375 16H10 at 175 
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lbd required = 0.46 × 40 × 25 = 460 mm. 
The anchorage of the bars at the supports will be provided by a 90° bend with an 
internal diameter of seven bar diameters equal to 175 mm.    The diameter of the 
bend is determined on the basis that the bar is not damaged (see section 5.2.6). 
 
(f) Deflection check  
The deflection of the beam is checked using the equation (7.16 b) of the code. 

As, prov /As, reqd = 2454/2091 = 1.17 
ρ = As/ (bw d) = 2454/ (300 × 508) = 0.016, ρ% = 1.61 

ρ0 = 10−3 ×√25 = 0.005, ρ0% = 0.5 
ρ' = A's/ (bw d) = 402/ (300 × 508) = 0.0026, ρ'% = 0.26 

ρ > ρ0 
Simply supported beam, K = 1. 

Load at ULS = (1.35 × 20) + (1.5× 11) = 43.5 kN/m 
Load at SLS = (1.0 × 20) + (1.0 × 11) = 31.0 kN/m 

Stress σs in steel at SLS = (31.0/ 43.5) × fyd = 310 MPa  
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L/d = 13.9 
L/d ratio corrected for As, prov / As, reqd is 13.9 × 1.17 = 16.3. 
Actual L/d = 9000/508 = 17.7. 
Deflection will exceed the permitted L/250.  The beam needs to be redesigned 
with a deeper beam. 
 
(g) Check for cracking  
The clear distance between bars on the tension face is 

[300 – 2 × (35 + 10) – 3 × 25]/2 = 68 mm 
Stress σs in steel at SLS = 310 MPa.  
From Table 6.2, for 0.3 mm crack width, maximum spacing is approximately 120 
mm.  The actual spacing of 68 mm does not exceed 300 mm.  
The beam is satisfactory with regard to cracking.  
 
(i) Beam reinforcement  
The reinforcement for the beam is shown in Fig. 7.7 and Fig. 7.8. 
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CHAPTER 8 
 

REINFORCED CONCRETE SLABS 
 
 
8.1 DESIGN METHODS FOR SLABS 
 
Slabs are plate elements forming floors and roofs in buildings, which normally 
carry uniformly distributed loads acting normal to the plane of the slab.  In many 
ways the behaviour of a beam and a slab are similar but there are also some 
fundamental differences.  A beam is essentially a one-dimensional element 
subjected on a face to bending moment and shear force as shown in Fig. 8.1(a).   
 

 
Fig. 8.1 Beam and plate elements. 

 
A slab is similar to a beam element except that it is a two-dimensional element as 
shown in Fig. 8.1(b).  It can be visualized as representing two beams at right 
angles.  On the faces normal to the x–axis, bending moment Mxx and shear force Vx 
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(b) Plate element 
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act.  Similarly, on the faces normal to the y-axis, bending moment Myy and shear 
force Vy act.  However, because of the two-dimensional nature of the slab, it is 
subjected not only to bending moments Mxx and Myy and shear forces Vx and Vy 
but also to twisting moments Mxy on all the four faces. 
The slab is essentially a statically indeterminate structure and for a slab of given 
shape and support conditions, the distribution of bending and twisting moments  
and shear forces in the slab subjected to loads normal to the plane of the slab 
cannot be determined easily.  Elastic analysis can be done for simple shapes such 
as rectangular simply supported plates by analytical methods but for practical 
problems, the finite element method is used. 
The object of determining the distribution of moments and shear forces is to obtain 
a set of stresses which are in equilibrium with the applied ultimate loads.  Provided 
the slab cross section behaves in a ductile manner, elastic distribution of stresses or 
some variations within limits of the elastic stresses can be used for designing the 
slab.  
The code gives very little guidance on the equations for bending moments and 
shear forces for which the slabs need to be designed.  However clause 5.5 lays 
down a few basic principles which one needs to adhere to.  The basic principles 
are: 

 Linear analysis with limited redistribution may be applied to the analysis 
of structural members for the verification of ULS. 

 The moments at ULS calculated using a linear elastic analysis may be 
redistributed provided that the resulting distribution of moments remains 
in equilibrium with the applied loads. 

 In continuous beams and slabs which are predominantly subjected to 
flexure and which have the ratios of adjacent spans in the range of 0.5 to 
2.0, redistribution of bending moments may be carried out without 
explicit check on the rotation capacity, provided that the following 
limitation given by code equations (5.10a) and (5.10b) on the neutral axis 
dept xu at the ultimate is satisfied.   
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where 
δ = Ratio of redistributed moment to elastic bending moment.   
xu = Depth of neutral axis at ULS after redistribution. 
εcu2 = 3.5 × 10−3   fck ≤ 50 MPa 
       = {2.6 + 35 × [(90 – fck)/100]4} × 10−3    fck >50 MPa 
Note in equation (5.10b), δ ≥ 0.7 if Class B and Class C reinforcement is used and 
δ ≥ 0.8 if Class A reinforcement is used.  Note that the higher the value of δ, the 
lower the amount of redistribution.  
See Annex C of Eurocode 2 for properties of Class A, B and C reinforcements. 
Equations (5.10a) and (5.10b) can be simplified as 
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for fck = (55, 60, 70, 80 and 90), the corresponding values of C1 = (1.32, 1.35, 1.40, 
1.42, 1.42). 
The following example illustrates the above ideas. 
 
Example: Table 8.1 shows the results for the three span continuous beam in 
section 5.3.4.   Fig. 8.1 shows the bending moment distribution for the four load 
cases.   

Table 8.1 Bending moments from elastic analysis 
 

Loading Span 1–2 Support 2 Span 2–3 Support 3 Span 3–4 
MAX, min, MAX 238.3$ 

245.2* 
197.1 –41.1 197.1 238.3$ 

245.2* 
MAX, MAX, min 190.0$ 

205.8* 
293.7 103.5$ 

106.1* 
172.9 69.6$ 

81.5* 
min, MAX, min 57.5$ 

74.1* 
197.1 139.7 197.1 57.5$ 

74.1* 
min, MAX, MAX 69.6$ 

81.5* 
172.9 103.5$ 

106.1* 
293.7 190.0 

 
Note:  If two values are shown for span moment, the figure with * is the maximum 
bending moment in the span and the figure with $ is the bending moment at mid-
span.  If only one value is shown then the maximum bending moment occurs at 
mid-span. 

 
Fig. 8.2 Elastic analysis bending moment diagrams. 
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Because the support moments tend to peak over a short distance only, one can 
reduce the support moment to a more manageable value.  For example, assuming δ 
0.7 for reduction of maximum support moment, Table 8.2 shows the modified 
moments and Fig. 8.3 shows the modified bending moment diagrams.  As can be 
seen, the change applies only to loading cases (MAX, MAX, min) and             
(min, MAX, MAX).  Note that once the support moment is reduced, then the span 
moment increases in order to maintain equilibrium with the applied loads. The 
maximum support moments are changed from 293.7 kNm from elastic analysis to 
70 percent of the elastic value.  The new support moment value is                        
0.7 × 293.7 = 205.6 kNm. 

 
Table 8.2 Modified elastic bending moments  

Loading Span 1–2 Support 2 Span 2–3 Support 3 Span 3–4 
MAX, min, MAX 238.3$ 

245.2* 
197.1 –41.1 197.1 238.3$ 

245.2* 
MAX, MAX, min 234.0$ 

241.8* 
205.6 147.6$ 

147.8* 
172.9 69.6$ 

81.5* 
min, MAX, min 57.5$ 

74.1* 
197.1 139.7 197.1 57.5$ 

74.1* 
min, MAX, MAX 69.6$ 

81.5* 
172.9 144.6$ 

147.8* 
205.6 234.0$ 

241.8* 
 
Note:  If two values are shown for span moment, then the figure with * is the 
maximum bending moment in the span and the figure with $ is the bending 
moment at mid-span.  If only one value is shown then the maximum bending 
moment occurs at mid-span. 

 
Fig. 8.3 Modified elastic analysis bending moment diagrams. 
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The continuous beam can be designed as shown in section 5.3.4, using the moment 
values shown in Table 8.1.  In this case as there has been no change from the 
elastic analysis values, therefore δ = 1 and the maximum depth of neutral axis and 
maximum moment capacity are given by Table 4.5 and Table 4.8.   
For fck ≤ 50 MPa, δ = 1.0: 

xu/d = 0.448 and Mmax = 0.196 b d2 fck 
Assuming a breadth of b = 300 mm, fck = 25 MPa, for the maximum support 
moment of 293.7 kNm, the minimum effective depth needed is 

293.7 × 106 = 0.196 × 300 × d2 × 25, d = 447 mm 
For fck ≤ 50 MPa, δ = 0.7:  

xu/d = 0.208 and Mmax = 0.102 b d2 fck 
Assuming a breadth of b = 300 mm, fck = 25 MPa, for the maximum support 
moment of 205.6 kNm, the minimum effective depth needed is 

205.6 × 106 = 0.102 × 300 × d2 × 25, d = 518 mm 
 
     Therefore, although the maximum moment has reduced, in order to ensure 
sufficient ductility, one needs to adopt a deeper section if one wants to use a singly 
reinforced section.   
 
     Because of the difficulty of obtaining the elastic moment distribution, 
historically many simplified methods of determining the distribution of bending 
moments and shear forces which intuitively reflect the distribution of the loads to 
the supports have been used in practice.  Slabs designed by these methods have 
behaved satisfactorily and are widely used in design practices. 
In practice, apart from the finite element method which is generally used for non-
standard design situations, slabs are designed using the following methods.  

1. Simplified elastic analysis which uses the idealization of a slab into strips 
or beams spanning one way or a grid with the strips spanning two ways  

2. Using design coefficients for moment and shear coefficients which have 
been obtained from yield line analysis 

3. The yield line and Hillerborg strip methods  
These methods will be illustrated by several examples. 
 
 
8.2 TYPES OF SLABS 
 
Slabs may be simply supported or continuous over one or more supports and are 
classified according to the method of support as follows:  

1. spanning one way between beams or walls  
2. spanning two ways between the support beams or walls  
3. flat slabs carried on columns and edge beams or walls with no interior 

beams  
     Slabs may be solid of uniform thickness or ribbed with ribs running in one or 
two directions. Slabs with varying depth are generally not used.  Stairs with 
various support conditions form a special case of sloping slabs.  
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8.3 ONE-WAY SPANNING SOLID SLABS  
 
 
8.3.1 Idealization for Design 
 
Uniformly loaded slabs  
In section 5.3.1(5), the code defines that a slab subjected dominantly to uniformly 
distributed loads may be considered as one-way spanning if either: 

 It possesses two free (unsupported) and sensibly parallel edges. 
 It is the central part of a sensibly rectangular slab supported on four edges 

with a ratio of longer to shorter span greater than 2. 

 
 

Fig. 8.4 Plan of a typical one-way slab spanning between beams. 
 
 

 

 
Fig. 8.5 (a) Simply supported slab. 

 
Fig. 8.4 shows the plan of a typical one-way slab spanning between beams and the 
beams supported on columns.  The beams could be either T-beams or L-Beams.   
L-beams occur at the edges and T-beams occur in the interior.  
One-way slabs carrying predominantly uniform loadS are designed on the 
assumption that they consist of a series of rectangular beams 1 m wide spanning 
between supporting beams or walls.  The sections through a simply supported slab 
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L–Beam 

T–Beam 
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and a continuous one-way slab are shown in Fig. 8.5 (a) and Fig. 8.5 (b) 
respectively.  

 

 
 

Fig. 8.5 (b) Continuous one-way slab. 
 
 
8.3.2 Effective Span, Loading And Analysis  
 
(a) Effective span  
Clause 5.3.2.2 of the code gives the rules for calculating the effective spans.  The 
effective span for one-way slabs is the same as that set out for beams in section 7.1.  
If ln is the clear span (distance between faces of supports), the effective span leff is 
given by  

leff = ln + a1 + a2 
The effective spans for non-continuous (simply supported), continuous and fully 
constrained situations are shown in Fig. 8.6. 
 
(b) Arrangement of loads  
The slab should be designed to resist the most unfavourable arrangement of loads.  
In clause 5.1.3 of Eurocode 2, the following two loading arrangements are 
recommended for buildings. 

1. Alternate spans carrying (γGGk + γQ Qk) other spans carrying only γGGk. 
2. Any two adjacent spans carrying (γGGk + γQ Qk).  All other spans carrying 

only γGGk. 
In note 3 to the Table A1.2 (B) of BS EN 1990:2002 Eurocode –Basis of structural 
design, it is stated that characteristic values of all permanent actions from one 
source such as that from self weight of the structure, are multiplied by γG, sup if the 
total action effect is unfavourable and by γG, inf if the total action effect is 
favourable. 
γG, sup = 1.35, γG, inf = 1.0, γQ = 1.5 if unfavourable otherwise 0. 
 
Fig. 8.7 shows the loading arrangements to cause the maximum bending moment 
in the chosen span and at the chosen support of a continuous beam.  In order to 
cause the maximum bending moment in a chosen span, place the maximum load on 
that span and in all alternate spans.  In the remaining spans, only minimum load is 
applied.   
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In order to cause the maximum bending moment in a chosen support, place the 
maximum load on spans on either side of the chosen support.  On the remaining 
spans only minimum load is applied.   
Maximum load is equal to (1.35 gk + 1.5 qk) and minimum load is equal to 1.35gk. 
Once all loading patterns are analysed, envelopes of maximum and minimum 
moments can be drawn and the slab is designed.   
 

 
Fig. 8.6 Effective spans for various support conditions. 

 
 
Fig. 8.8 to Fig. 8.11 show the bending moment diagrams for continuous beams of 
uniform constant cross section subjected to a uniformly distributed load on one 
span at a time.  Table 8.3 gives the values of bending moments at support sections.   
The sign convention is positive values show hogging moments and negative values 
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indicate sagging moments. These tabular values are very suitable for calculating 
the support moments using spreadsheets.   
 

 
 

Fig. 8.7 Eurocode 2 suggests loading to cause maximum bending moments in a span and at a support. 
 
 

 

 
 

Fig. 8.8 Two-span continuous beam. 
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Fig. 8.9 Three-span continuous beam. 
 

Once the support moments are known, then the maximum moment in the span of 
an isolated member can be calculated as shown in Fig. 8.12. 

L
]MM[Lq5.0V LR

L


  

Maximum span moment MMax occurs at x = VL/q. 
Mmax = –ML + VL × x – 0.5 × q × x2 

Note the signs of the moments at supports.  ML is positive clockwise but MR is 
positive anticlockwise.   
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Fig. 8.10 Four-span continuous beam. 
 
 
8.3.3 Section Design, Slab Reinforcement Curtailment and Cover  
 
(a) Cover  
The amount of cover required for durability is given in Table 2.5 and the cover for 
fire protection is given in Table 2.9 in Chapter 2.  
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Fig. 8.11 Five-span continuous beam. 
 

 
Fig. 8.12 Loading on an isolated beam. 
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(b) Minimum tension steel  
The main moment steel spans between supports and over the interior supports of 
continuous slab.  The slab sections are designed as rectangular beam sections 1 m 
wide.  
The minimum area of main reinforcement has to satisfy clause 9.2.1.1(1). 

 

db0013.0butdb
f
f26.0A tt

yk

ctm
min,s   

where bt = width (for slab design 1000 mm), d = effective depth. 
Table 4.3, Chapter 4 shows the value of As, min calculated from the code equation 
(9.1N). 
 
(c) Distribution steel  
The distribution, transverse or secondary steel runs at right angles to the main 
moment steel and serves the purpose of tying the slab together and distributing 
non-uniform loads through the slab.  Clause 9.3.1.1(2) states that in the case of 
one-way slabs, secondary reinforcement of not less than 20 percent of principal 
reinforcement should be provided. 
Note that distribution steel is required at the top parallel to the supports of 
continuous slabs.  The main steel is placed nearest to the surface to give the 
greatest effective depth.  

 
Table 8.3 Support moment coefficients 

No. of 
spans 

Load on 
span 

Support moment coefficients  
Support 2 Support 3 Support 4 Support 5 

2 1–2 6.25  
2–3 6.25 

3 1–2 6.67 –1.67  
2–3 5.00 5.00 
3–4 –1.67 6.67 

4 1–2 6.6970 –1.7860 0.4463  
2–3 4.9066 5.3568 –1.3352 
3–4 –1.3352 5.3568 4.9066 
4–5 0.4463 –1.7860 6.6970 

5 1–2 6.7003 –1.7945 0.4778 –0.1190 
2–3 4.9023 5.3836 –1.4346 0.3567 
3–4 –1.3157 5.2634 5.2634 –1.3157 
4–5 0.3567 –1.4346 5.3836 4.9023 
5–6 –0.1190 0.4778 –1.7945 6.7003 

 
Note: Support moment = Coefficient × (qL2/100). 
q = load per unit length on span, L = constant span. 
Sign convention: Positive values show hogging moments. 
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(d) Slab reinforcement  
Slab reinforcement is a mesh and may be formed from two sets of bars placed at 
right angles.  Table 4.9, Chapter 4 gives bar spacing data in the form of areas of 
steel per metre width for various bar diameters and spacings.  Reinforcement in 
slabs consist of a large number bars both ways which need to be tied together to 
form a mat.  This is an expensive operation.  Although more steel might be used 
than strictly required, it is often economical to use cross-welded wire fabric.   
Table 8.4 shows the particulars of fabric produced from cold reduced steel wire 
with fyk = 460 MPa as given in BS 4483:1985.  The fabric is available in             
4.8 m × 2.4 m sheets. 

Table 8.4 Fabric types 
Fabric 
reference 

Longitudinal wire Cross wire 
Wire 
size 
(mm) 

Pitch 
(mm) 

Area 
(mm2/m) 

Wire 
size 
(mm) 

Pitch 
(mm) 

Area 
(mm2/m) 

Square 
mesh 

 

A393 10 200 393 10 200 393 
A252 8 200 252 8 200 252 
A193 7 200 193 7 200 193 
A142 6 200 142 6 200 142 
A98 5 200 98 5 200 98 
 
Structural 
mesh 

 

B1131 12 100 1131 8 200 252 
B785 10 100 785 8 200 252 
B503 8 100 503 8 200 252 
B385 7 100 385 7 200 193 
B285 6 100 285 7 200 193 
B196 5 100 196 7 200 193 
 
Long mesh       
C785 10 100 785 6 400 70.8 
C636 9 100 636 6 400 70.8 
C503 8 100 503 5 400 49.1 
C385 7 100 385 5 400 49.1 
C283 6 100 283 5 400 49.1 
 
Wrapping 
mesh 

 

D98 5 200 98 5 200 98 
D49 2.5 100 49 2.5 100 49 
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(e) Crack Control  
Maximum spacing of bars is given in Clause 9.3.1.1(3) as follows.  If h is the total 
depth of slab, then maximum spacing is normally restricted to  

3h ≤ 400 mm for principal reinforcement 
3.5 h ≤ 450 for secondary reinforcement 

However in areas of maximum moment, maximum spacing is restricted to  
2h ≤ 250 mm for principal reinforcement 

3 h ≤ 400 mm for secondary reinforcement 
 
(f) Curtailment of bars in slabs  
Curtailment of bars is done according to the moment envelope.  However, clause 
9.3.1.2(1) requires that half the calculated span reinforcement must continue up to 
support. 
It is further stated that in monolithic construction, where partial fixity occurs along 
an edge of a slab but is not taken into account, the top reinforcement should be 
capable of resisting at least 25 percent of the maximum moment in the adjacent 
span and this reinforcement should extend at least 0.2 times the length of the 
adjacent span measured from the face of the support.  
     The above situation occurs in the case of simply supported slabs or the end 
support of a continuous slab cast integral with an L-beam which has been taken as 
a simple support for analysis but the end of the slab might not be permitted to 
rotate freely as assumed.  Hence negative moments may arise and cause cracking.  
      
(g) Shear  
Under normal loads shear stresses are not critical and shear reinforcement is not 
required.  Shear reinforcement is provided in heavily loaded thick slabs but should 
not be used in slabs less than 200 mm thick (clause 9.3.2 (1)).   
 
(h) Deflection  
The check for deflection is a very important consideration in slab design and 
usually controls the slab depth.  In normal cases a strip of slab 1 m wide is checked 
against span-to-effective depth ratios.  
 
 
8.4 EXAMPLE OF DESIGN OF CONTINUOUS ONE-WAY SLAB  
 
(a) Specification  
A continuous one-way slab has four equal spans of 4.0 m each.  The slab depth is 
assumed to be 160 mm.  The loading is as follows:  
Dead loads due to self–weight, screed, finish, partitions, ceiling: 5.2 kN/m2 
Imposed load: 3.0 kN/m2 
The materials strengths are: concrete, fck = 25 MP, reinforcement, fyk = 500 MPa.  
The condition of exposure is XC1.  Fire resistance = 2 hours.  Design the slab and 
show the reinforcement on a sketch of the cross section.  
(b) Design loads  
Consider a strip 1 m wide.  
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Design maximum ultimate load = (1.35 × 5.2) + (1.5 × 3) = 11.52 kN/m 
Design minimum ultimate load = (1.35 × 5.2) + (0 × 3) = 7.02 kN/m 
Five load cases are analysed as shown in Table 8.5.  The analysis is done using the 
bending moment coefficients given in Table 8.3. 
 

Table 8.5 Load cases analysed 
Maximum 
moment at 

Loads on spans 
Span 1–2 Span 2–3 Span 3–4 Span 4–5 

Support 2 11.52 11.52 7.02 7.02 
Support 3 7.02 11.52 11.52 7.02 
Support 4 7.02 7.02 11.52 11.52 
Spans 1–2 & 3–4 11.52 7.02 11.52 7.02 
Spans 2–3 & 4–5 7.02 11.52 7.02 11.52 
 
(i) Maximum moment at support 2 
qmax on spans 1–2 and 2–3. 
qmin load on span 3–4 and 4–5. 
Table 8.6 shows the results of calculations. 
 

Table 8.6 Loading for maximum moment at support 2 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 11.52 1.8432 12.34 –3.29 0.82 
2–3 11.52 1.8432 9.04 9.87 –2.46 
3–4 7.02 1.123 –1.50 6.02 5.51 
4–5 7.02 1.123 0.50 –2.01 7.52 

SUM Σ 20.38 Σ 10.59 Σ 11.39 
 

Note: Loading for maximum moment at support 4 will be mirror image of the 
results for maximum moment at support 2.  M4 = M2, M2= M4 and M3 = M3. 
Maximum moment at support 2 = 20.38 kNm. 
 

Table 8.7 Loading for maximum moment at support 3 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 7.02 1.123 7.52 –2.01 0.50 
2–3 11.52 1.8432 9.04 9.87 –2.46 
3–4 11.52 1.8432 –2.46 9.87 9.04 
4–5 7.02 1.123 0.50 –2.01 7.52 

SUM Σ 14.60 Σ 15.72 Σ 14.60 
 
(ii) Maximum moment at support 3 
qmax on spans 2–3 and 3–4. 
qmin load on spans 1–2 and 4–5. 
Table 8.7 shows the results of calculations. 
Maximum moment at support 3 = 15.72 kNm. 
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(iii) Maximum moment in spans 1–2 and 3–4 
qmax on spans 1–2 and 3–4. 
qmin load on spans 2–3 and 4–5. 
Table 8.8 shows the results of calculations. 
 

Table 8.8 Loading for maximum moment in spans 1–2 and 3–4 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 11.52 1.8432 12.34 –3.29 0.82 
2–3 7.02 1.123 5.51 6.02 –1.50 
3–4 11.52 1.8432 –2.46 9.87 9.04 
4–5 7.02 1.123 0.50 –2.01 7.52 

SUM Σ 15.89 Σ 10.59 Σ 15.88 
 
From the support moment values in Table 8.8:  
 
span 1–2 
M2 = 15.89 and left hand reaction, V1 = 19.07 kN/m and the maximum moment is  
15.78 kNm/m at 1.66 m from support 1. Moment reduces to half the maximum at 
1.2 m on either side of the maximum. 
 
span 3–4 
M3 = 10.59 kNm/m, M4 = 15.88 kNm/m, right hand reaction, V4 = 24.36 kN/m and 
the maximum moment is 9.88 kNm/m at 2.12 m from support 4. Moment reduces 
to half the maximum at 0.92 m on either side of the maximum. 
 

Table 8.9 Loading for maximum moment in spans 2–3 and 4–5 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 7.02 1.123 7.52 –2.01 0.50 
2–3 11.52 1.8432 9.04 9.87 –2.46 
3–4 7.02 1.123 –1.50 6.02 5.51 
4–5 11.52 1.8432 0.82 –3.29 12.34 

SUM Σ15.88 Σ 10.59 Σ 15.89 
 

(iv) Maximum moment in spans 2–3 and 4–5 
qmax load on spans 2–3 and 4–5. 
qmin on spans 1–2 and 3–4. 
Table 8.9 shows the results of calculations. 
From the support moment values in Table 8.9: 
 
span 2–3 
M2 = 15.88 kNm/m, M3 = 10.59 kNm/m, left hand reaction, V2 = 24.36 kN/m and 
the maximum moment is 9.88 kNm/m at 2.12 m from support 2. Moment reduces 
to half the maximum at 0.93 m on either side of the maximum. 
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span 4–5 
M4 = 15.89 kNm/m, right hand reaction, V5 = 19.07 kN/m and the maximum 
moment is 15.78 kNm/m at 1.66 m from support 5. Moment reduces to half the 
maximum at 1.2m on either side of the maximum. 
 
Fig. 8.13 shows the resulting bending moment diagrams.  
 

 
Fig 8.13 Bending moment distribution in a four-span continuous one-way slab. 

 
Fig. 8.14 shows the symmetrical moment envelope which will be used for 
designing the reinforcement and also to decide on the bar curtailment. 
 
The maximum bending moments are: 
 
(i) Hogging 
Supports 2 and 4: 20.38 kNm/m. 
Support 3: 15.72 kNm/m. 
In both cases, the moment reduces to half the peak value at approximately 0.4 m on 
either side of the support. 
 
(ii) Sagging 
Span 1–2 and span 4–5: 15.78 kNm/m.  
Moment reduces to half the peak value at 1.2 m on either side of the peak value 
which occurs at 1.7 m from the simply supported end. 
Span 2–3 and 3–4: 9.88 kNm/m.  
Moment reduces to half the peak value at 0.92 m on either side of the peak value 
which occurs at 1.89 m from the end with a moment of 10.59 kNm/m. 
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Fig.8.14 Moment envelope for four-span one-way continuous slab. 
 
(c) Design of moment steel  
The minimum cover required is 40 mm on the basis of fire protection and 15 mm 
on the basis of XC1 exposure.  Assume 10 mm diameter bars.  The effective depth:  
d = 160 – 40 – 10/2 = 115 mm.  Width, b = 1000 mm. 
 
(i) Hogging moment 
Supports 2 and 4: 
M = 20.38 kNm/m. 
k = M/ (bd2 fck) = 20.38 × 106/ (1000 × 1152 × 25) = 0.062 < 0.196. 
Singly reinforced section can be designed 

95.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 20.38 × 106/ (0.87 × 500 × 0.95 × 115) = 429 mm2/m 
10 mm bars at 175 mm spacing gives As = 448 mm2/m (see Table 4.9, Chapter 4). 
Support 3: 
M = 15.72 kNm/m. 
k = M/ (bd2 fck) = 15.72 × 106/ (1000 × 1152 × 25) = 0.048 < 0.196. 
Singly reinforced section can be designed 

96.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 15.72 × 106/ (0.87 × 500 × 0.96 × 115) = 327 mm2/m. 
10 mm bars at 200 mm spacing gives As = 392 mm2/m (see Table 4.9, Chapter 4). 
 
(ii) Sagging moment 
Spans 1–2 and 4–5: 
M = 15.78 kNm/m. 
Moment reduces to half the maximum at 1.2 m on either side of the maximum. 
k = M/ (bd2 fck) = 15.78 × 106/ (1000 × 1152 × 25) = 0.048 < 0.196. 
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Singly reinforced section can be designed 

96.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 15.78 × 106/ (0.87 × 500 × 0.96 × 115) = 329 mm2/m. 
10 mm bars at 200 mm spacing gives As = 392 mm2/m (see Table 4.9, Chapter 4). 
Spans 2–3 and 3–4: 
M = 9.88 kNm/m. 
Moment reduces to half the maximum at 0.93m on either side of the maximum. 
k = M/ (bd2 fck) = 9.88 × 106/ (1000 × 1152 × 25) = 0.03 < 0.196. 
Singly reinforced section can be designed 

98.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 9.88 × 106/ (0.87 × 500 × 0.98 × 115) = 202 mm2/m. 
10 mm bars at 300 mm spacing gives As = 261 mm2/m (see Table 4.9, Chapter 4). 
 
Fig. 8.15 shows the calculated steel at different locations.  Taking into account the 
maximum spacing and also the minimum steel requirement, the above calculated 
value of steel is adjusted to simplify the layout and also minimize the number of 
variations in order to minimize errors during construction.  
 

 
 
 

Fig. 8.15 Calculated H10 steel at supports and in spans. 
 
Minimum steel 

MPa6.22530.0f30.0f 667.0667.0
ckctm  . 

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d. 
As, min = 0.26 × (2.6/500) × 1000× 115 ≥ 0.0013 × 1000× 115. 
As, min = 156 mm2/m. 
In this case h = 160 mm.   
In areas of maximum moment, spacing ≤ 250 mm for main steel.  For 10 mm 
diameter bars at 250 mm c/c, area of steel is 314 mm2/m.  
In other areas, spacing ≤ 400 mm for main steel.  For H10 bars at 400 mm c/c, area 
of steel is 196 mm2/m. 
Both the above values are greater than the minimum steel of 156 mm2/m 
 
Main steel 
Bottom steel: The steel reinforcement can be rationalized as follows. 

175c/c 175c/c 200c/c 

200c/c 200c/c 300c/c 300c/c 



Reinforced concrete slabs                                                                                                     207 

In spans 2–3 and 3–4, calculated steel is 10 mm bars at 300 c/c. However in 
maximum moment areas, the bar spacing is limited to 250 mm.  In addition, away 
from the areas of maximum moment, the maximum spacing is limited to 400 mm.  
Therefore all bottom steel can be at 200 mm spacing and alternate bars can be 
curtailed to give a spacing of 400 mm c/c. 
From Table 5.5 for fck = 25 MPa and φ ≤ 32 mm, the anchorage length is 40 bar 
diameters which is equal to 400 mm. 
In the end spans, sagging moment reduces to half the peak value at 1.2 m to the left 
and right of peak value.    As there is generally no shear reinforcement in the slabs, 
the shift in bending moment to accommodate the tensile stress caused by shear is 
equal to the effective depth.  Adding 400 mm of anchorage length plus                  
(d = 115 mm) to these lengths, the length over which the bars at 200 mm c/c are 
required is 2 ×1.2 + 2 × 0.4 + 2 × d   = 3.43 m.  The length of steel saved by 
curtailment in a span length of 4.0 m is only 0.57 m. To keep the layout simple, it 
is better to have the steel at 200 mm c/c in the bottom of the slab over the entire 
four spans. 
 
Top steel: Maximum steel over the internal supports can be a constant value of  
175 mm c/c.  In the end spans, the moment reduces to half the peak value 
approximately 0.4 m from the support.  Adding an anchorage length of 400 mm 
and a shift value of (d = 115 mm), the length is 0.0.915 m. The negative moment 
reduces to zero at 1.4 m from the support.  Adding an anchorage length of 400 mm 
and a shift value of (d = 115 mm), this comes to 1.915 m.  The steel can be 
provided as follows.  
End spans: Provide steel over the supports at 175 mm c/c.  Stop alternate bars   
0.92 m from support.  Continue the rest of the bars 1.92 m from support. 
Middle spans: Provide steel over the supports at 175 mm c/c.  Stop alternate bars 
0.92 m from support.  Continue the rest of the bars over the whole length. 
 
Secondary steel: Secondary steel to be not less than 20 percent of main steel.  
Spacing restricted to 3h ≤ 400 mm in areas of maximum moment and  3.5h ≤ 450 
mm. 
Minimum steel as calculated is 156 mm2/m.  Using 8 mm bars at 300 mm spacing, 
As = 168 mm2/m. 
Use H8 at 300 as secondary steel. 
Fig. 8.16 shows the final arrangement of flexural steel. 
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Fig. 8.16 Flexural steel. 
 

 
(c) Shear force distribution in the slab  
Fig. 8.17 shows the shear force diagrams for the five loading cases analysed.   
Fig. 8.18 shows the corresponding shear force envelope. 
The maximum shear force is 28.14 kN/m at support 2 for span 1–2. 
 
 

 
 

Fig. 8.17 Shear force diagrams. 
 
 

H10 at 200 

1.92 m 

0.92 m 0.92 m 
H10 at 350 
c/c 

H10 at 175 

H10 at 350 

H8 at 300 

H8 at 300 
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Fig. 8.18 Shear force envelope. 
  
(d) Shear resistance  
bw = 1000 mm, d = 115 mm, As = H10 at 200 = 393 mm2/m 
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VRd, c = 58.30 kN/m > (VEd = 28.14 kN/m) 
No shear reinforcement is required. 
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(e) Crack control  
As all the reinforcements satisfy the maximum spacing requirements, the slab will 
not suffer excessive cracking. 
 
(f) Deflection 
Use the code equation (7.16a). 
ρ0% = 0.1 ×√fck = 0.5. 
bw = 1000 mm, d = 115 mm, As = H10 at 200 = 393 mm2/m. 
ρ% = 100 ×393/ (1000×115) = 0.34. 
K = 1.3. 

                     
02

3
0

ck
0

ck if])1(f2.3f5.111[K
d
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



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             (7.16a)
 

4.35])1
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50.0(252.3

34.0
50.0255.111[3.1

d
L 2

3

  

Actual L/d = 4000/115 = 34.8 < 35.4 
L/d ratio is slightly higher than desirable but the slab will not deflect more than 
L/250. 
 
 
8.5 ONE-WAY SPANNING RIBBED OR WAFFLE SLABS  
 
 
8.5.1 Design Considerations  
 
Solid slabs are uneconomic in spans over 4 m due to self weight.  When spans are 
long (perhaps over 5 m) but the live loads are relatively moderate or light, it is 
advantageous to reduce the dead weight of the slab.  By having a series of ribs 
(beams) connected by structural topping as shown in Fig. 8.19, the weight of the 
slab between the ribs is considerably reduced. 
Ribbed slabs may be constructed in a variety of ways.  Two principal methods of 
construction are: 

a. Ribbed slabs without permanent blocks.  The space between the beams is 
created using square or rectangular plastic formers during casting.  
Reinforcement is laid between the formers. 

b. Ribbed slabs with permanent hollow or solid blocks to obtain a flat 
ceiling.  

 
 
8.5.2 Ribbed Slab Proportions  
 
Clause 5.3.1(6) states that ribbed or waffle slabs need not be treated as discrete 
elements for the purpose of analysis, provided that the flange or the structural 
topping and transverse ribs have sufficient torsional stiffness.  This may be 
assumed provided that: 
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Fig. 8.19 Ribbed slab. 

 
1. The centres of ribs should not exceed 1.5 m. 
2. The depth of rib below the flange does not exceed four times its width. 
3. The depth of flange is at least one-tenth of the clear distance between ribs 

or 50 mm, whichever is greater.  
4. Transverse ribs are provided at a clear spacing not exceeding 10 times the 

overall depth of the slab.  
5. The minimum flange thickness of 50 mm may be reduced to 40 mm 

where permanent blocks are incorporated between the ribs. 
     Note that to meet a specified fire resistance period, non-combustible finish, e.g., 
screed on top or sprayed protection can be included to give the minimum thickness. 
 
 
8.5.3 Design Procedure and Reinforcement  
 
(a) Shear forces and moments  
Shear forces and moments for continuous slabs can be obtained by analysis as 
shown in section 8.3.   
 
(b) Design for moment and moment reinforcement  
Design consists of determining the reinforcement required in the ribs.  The mid-
span section is designed as a T-beam with an effective flange width.  The support 
section is designed as a rectangular beam.  The slab may be made solid near the 
support to increase shear resistance.  

≤ 1.5 m 
bw 

≤ 4bw 

tf 

tf ≥ Max(50 mm, a/10) 

a 
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     Moment reinforcement consisting of one or more bars is provided at the top and 
the bottom of the ribs.  If appropriate, bars can be curtailed in a similar way to bars 
in solid slabs.  
 
(c) Shear resistance and shear reinforcement  
The shear resistance is checked as for beams and any necessary shear links are 
designed.   
 
(d) Reinforcement in the topping  
Minimum percentage of reinforcement is provided in the topping in each direction.   
The code states in clause 9.2.1.1(1) that minimum cross sectional area of not less 
than 0.13 percent of the area of the topping should be provided in each direction.  
The reinforcement normally consists of a mesh which is placed in the centre of the 
topping.  If the ribs are widely spaced the topping may need to be designed for 
moment and shear as a continuous one-way slab between ribs.  
 
 
8.5.4 Deflection  
 
The deflection can be checked using the span-to-effective depth rules given in 
section 7.4.2 of the code.  
 
 
8.5.5 Example of One-Way Ribbed Slab  
 
(a) Specification  
A ribbed slab is continuous over four equal spans each of 6 m.  The characteristic 
dead loading including self-weight, finishes, partitions etc. is 4.7 kN/m2 and the 
characteristic imposed load is 2.5 kN/m2.  The construction materials are concrete, 
fck = 25 MPa and reinforcement, fyk = 500 MPa. Design the end span of the slab.  
 
(b) Trial section  
A cross section through the floor and a trial section for the slab are shown in      
Fig. 8.20.  The thickness of topping is 60 mm and the minimum width of a rib is 
125 mm.  The deflection check will show whether the depth selected is 
satisfactory.  The cover for mild exposure is 25 mm.  For H12 bar, effective depth 
d = 350 – 25 – 12/2 = 319, say, 320 mm. 
Note: Minimum thickness of topping = 50 mm or clear distance between ribs/10 
whichever is greater.  In this case topping is 60 mm which is greater than 50 mm or 
(450 – 125)/10 = 32 mm. 
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Fig. 8.20 Top: Section through floor. Bottom: Section PP through slab. 
 
(c) Design loads  
Consider a typical T-beam.  Load over a width of 450 mm (equal to the spacing of 
beams) acts on the beam. 

gk = 4.7 × 0.45 = 2.12 kN/m 
qk = 2.5 × 0.45 = 1.13 kN/m 

Design maximum ultimate load = (1.35 × 2.12) + (1.5 × 1.13) = 4.56 kN/m 
Design minimum ultimate load = (1.35 × 2.12) + (0 × 1.13) = 2.86 kN/m 

Five load cases are analysed as shown in Table 8.10.  The analysis is done using 
the bending moment coefficients given in Table 8.3. 
 

Table 8.10 Load cases analysed 
Maximum 
moment at 

Loads on spans 
Span 1–2 Span 2–3 Span 3–4 Span 4–5 

Support 2 4.56 4.56 2.86  2.86  
Support 3 2.86 4.56 4.56 2.86 
Support 4 2.86 2.86 4.56 4.56 
Spans 1–2 & 3–4 4.56 2.86 4.56 2.86 
Spans 2–3 & 4–5 2.86 4.56 2.86 4.56 

 
Table 8.11 Loading for maximum moment at support 2 

Load on 
span 

q qL2/100 Moment at  
Support 2 Support 3 Support 4 

1–2 4.56 1.6416 10.99 –2.93 0.73 
2–3 4.56 1.6416 8.06 8.79 –2.19 
3–4 2.86 1.03 –1.38 5.52 5.06 
4–5 4.56 1.03 0.46 –1.84 6.90 

SUM Σ 18.13 Σ 9.54 Σ 10.50 
 

450 450 

125 
60 350 

6 m 

P 

P 
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(i) Maximum moment at support 2 
qmax on spans 1–2 and 2–3 and 4–5. 
qmin load on span 3–4. 
Table 8.11 shows the results of calculations. 
Note: For loading for maximum moment at support 4 will be mirror image of the 
results for maximum moment at support 2.  M4 = M2, M2= M4 and M3 = M3. 
 
(ii) Maximum moment at support 3 
qmax on spans 2–3 and 3–4. 
qmin load on spans 1–2 and 4–5. 
Table 8.12 shows the results of calculations. 
 

Table 8.12 Loading for maximum moment at support 3 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 2.86 1.03 6.89 –1.84 0.46 
2–3 4.56 1.6416 8.06 8.79 –2.19 
3–4 4.56 1.6416 –2.19 8.79 8.06 
4–5 2.86 1.03 0.46 –1.84 6.89 

SUM Σ 13.22 Σ 13.90 Σ 13.22 
 
(iii) Maximum moment in spans 1–2 and 3–4 
qmax on spans 1–2 and 3–4. 
qmin load on spans 2–3 and 4–5. 
Table 8.13 shows the results of calculations. 
 

Table 8.13 Loading for maximum moment in spans 1–2 and 3–4 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 4.56 1.6416 10.99 –2.93 0.73 
2–3 2.86 1.03 5.06 5.52 –1.38 
3–4 4.56 1.6416 –2.19 8.79 8.06 
4–5 2.86 1.03 0.62 –1.84 6.89 

SUM Σ 14.48 Σ 9.54 Σ 14.30 
 
From the support moment values in Table 8.13: 
span 1–2 
M2 = 14.48 kNm and left hand reaction, V1 = 11.27 kN/m and the maximum 
moment is 13.92 kNm at 2.47 m from support 1. 
span 3–4 
M3 = 9.54 kNm, M4 = 14.30 kNm, right hand reaction, V4 = 14.47 kN/m and the 
maximum moment is 8.67 kNm at 3.17 m from support 4.  
 
 (iv) Maximum moment in spans 2–3 and 4–5 
qmax load on spans 2–3 and 4–5. 
qmin on spans 1–2 and 3–4. 
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Table 8.14 shows the results of calculations. 
 

Table 8.14 Loading for maximum moment in spans 2–3 and 4–5 
Load on 

span 
q qL2/100 Moment at  

Support 2 Support 3 Support 4 
1–2 2.86 1.03 6.89 –1.84 0.62 
2–3 4.56 1.6416 8.06 8.79 –2.19 
3–4 2.86 1.03 –1.36 5.52 5.06 
4–5 4.56 1.6416 0.73 –2.93 10.99 

SUM Σ14.32 Σ 9.54 Σ 14.48 
 

From the support moment values in Table 814:  
span 2–3 
M2 = 14.32 kNm, M3 = 9.54 kNm, left hand reaction, V2 = 14.48 kN and the 
maximum moment is 8.66 kNm/m at 3.17 m from support 2.  
span 4–5 
M4 = 14.48 kNm, right hand reaction, V5 = 11.27 kN/m and the maximum moment 
is 13.92 kNm/m at 2.47 m from support 5. 
Fig. 8.21 shows the resulting bending moment diagrams.  Fig. 8.22 shows the 
symmetrical moment envelope which will be used for designing the reinforcement 
and also to decide on the bar curtailment. 
The maximum bending moments are: 
 

 
 

Fig. 8.21 Bending moment distribution in the four-span continuous ribbed slab. 
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Fig. 8.22 Moment envelope for the four span one-way ribbed slab. 
 
(i) Hogging 
Supports 2 and 4: 18.13 kNm. 
Support 3: 13.90 kNm/m. 
In both cases, the moment reduces to half the peak value at approximately 0.6 m on 
either side of the support. 
 
(ii) Sagging 
Span 1–2 and span 4–5: 13.92 kNm.  
Moment reduces to half the peak value at 1.75 m to the left and to the right of the 
peak value which occurs at 2.47 m from the simply supported end. 
Span 2–3 and 3–4: 8.66 kNm.  
Moment reduces to half the peak value at 1.4 m to the left and to the right of the 
peak value which occurs approximately at mid-span. 
 
(d) Design of moment steel  
 
(i) Hogging moment 
Because the flange is in tension, design this section as a rectangular section  
125 mm wide and d = 320 mm.   
Supports 2 and 4: 

M = 18.13 kNm/m. 
k = M/ (bd2 fck) = 18.13 × 106/ (125 × 3202 × 25) = 0.057 < 0.196. 

Section can be designed as a singly reinforced section. 
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96.0])k31(0.1[5.0
d
z

   

As = M/ (0.87 fyk z) = 18.13 × 106/ (0.87 × 500 × 0.96 × 320) = 136 mm2 
2H10 gives As = 157 mm2. 
Support 3: 

M = 13.90 kNm/m 
k = M/ (bd2 fck) = 13.90 × 106/ (125 × 3202 × 25) = 0.043 < 0.196 

Section can be designed as a singly reinforced section. 

97.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 13.90 × 106/ (0.87 × 500 × 0.97 × 320) = 103 mm2 
Provide 2H10.  As = 157 mm2.  
 
(ii) Sagging moment 
The flange breadth is 450 mm, hf = 60 mm, d = 320 mm. 
Effective width: (see Fig. 4.11). 

b1 = b2 = (450–125)/2 = 163 mm, ℓ0 ≈ 0.7 × 6 m = 4200 mm 
beffe, 1 = beffe, 2 = 0.2 b1 + 0.1 ℓ0 ≤ 0.2ℓ0 and beffe, 1 ≤ b1 

beffe, 1 = 163 mm 
beff = beff, 1 + beff, 2 + bw 

b = 450 mm 
Spans 1–2 and 4–5  
M = 13.92 kNm/m. 
Check if the stress block is inside the flange. 

Mflange = η fcd b hf (d – hf/2) 
fcd = 25/1.5 = 16.7 MPa, η = 1 

Mflange = 1.0 × 16.7 × 450 × 60 × (320 – 60/2) × 10–6 = 130.8 > 14.57 kNm. 
The neutral axis lies in the flange.  The beam is designed as a rectangular beam.   

k = 13.92 × l06/ [450 × 3202 × 25] = 0.012 < 0.196 

])k31(0.1[5.0
d
z

  = 0.99 

As = 13.92 × 106/ (0.87 × 500 × 0.99 × 320) = 101 mm2 
Provide 2H10.  As = 157 mm2.  
 
Spans 2–3 and 3–4 
M = 8.66 kNm. 

k = 8.66 × l06/ [450 × 3202 × 25] = 0.008 < 0.196 

99.0])k31(0.1[5.0
d
z

  

As = 8.66 ×106/ (0.87 × 500 × 0.99 × 320) = 63 mm2 
Provide 2H8.  As = 101 mm2.  
 
Fig. 8.23 shows the calculated steel at different locations.  Taking into account the 
maximum spacing and also the minimum steel requirement, the above calculated 
value of steel is adjusted to simplify the layout and also minimize the number 
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variations in order to minimize errors during construction. As all steel is carried to 
the supports, there is no need to check on the possibility of bar curtailment. 

 
 

Fig. 8.23 Calculated steel at supports and in spans. 
 
(iii) Minimum steel 

MPa6.22530.0f30.0f 667.0667.0
ckctm  . 

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d. 
bt = width of web = 125 mm, d = 320 mm. 
As, min = 0.26 × (2.6/500) × 125× 320 ≥ 0.0013 × 125× 320. 
As, min = 54 mm2.  The areas of steel calculated are higher than the minimum 
values. 
 
(e) Shear forces in the rib  
Fig. 8.24 shows the shear force diagrams for the loading considered in Table 8.9. 
The ‘shear force envelope’ is shown in Fig. 8.25. 
At support 2 for span 1–2: VEd = 16.70 kN. 
Check if shear reinforcement is required, VEd > VRd, c. 
VEd = 16.70 kN, bw = 125 mm, d = 320 mm, Asl = 2H10 = 157 mm2. 

12.0
)5.1(

18.0C
c

c,Rd 


  

0.279.1
320
2001k   

0.239.0
320125

157100100 1 


  

MPa42.02579.1035.0v 5.1
min   

kN7.1635.18V
10320125]015.042.0[

10320125]015.0}2539.0{79.112.0[V

c,Rd

3

33/1
c,Rd











 

VRd, c = 18.35 kN > (VEd = 16.70).  Therefore no shear reinforcement is required. 
 
H6 links at 1000 mm c/c will be used to make a reinforcement cage.  
The arrangement of moment and shear reinforcement in the rib are shown in        
Fig. 8.26.  

2H10 2H10 2H10 

2H10 2H10 2H8 2H8 
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Fig. 8.24 Shear force diagram: Ribbed slab. 

 
Fig. 8.25 Shear force envelope: Ribbed slab. 
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Fig. 8.26 Reinforcement detail in the ribs of a ribbed slab. 
 
(f) Deflection 
Using the code equation (7.16a): 

ρ0% = 0.1 × √fck = 0.5 
bw = 125 mm, d = 320 mm, As = 2H10 = 157 mm2 

ρ% = 100 ×157/ (125 × 320) = 0.39 < ρ0% 
ρ'% = 0 

K = 1.3 for end spans 

02
3

0
ck

0
ck if])1(f2.3f5.111[K

d
L










  

9.29])1
39.0
50.0(252.3

39.0
50.0255.111[3.1

d
L 2

3

  

Correction for flange width to web width ratio: 
b/bw = 450/125 = 3.6 > 3 
Correction factor = 0.8 
L/d = 29.9 × 0.8 = 23.9 

Actual L/d = 6000/320 = 18.75 < 23.9 
The slab is satisfactory with respect to deflection.  
 
(g) Reinforcement in topping  
 
Minimum steel 

MPa6.22530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
As, min = 0.26 × (2.6/500) × 1000× 60 ≥ 0.0013 × 1000× 60 

As, min = 81 mm2/m 
Maximum spacing is normally restricted to  

3h ≤ 400 mm for principal reinforcement 
3.5 h ≤ 450 for secondary reinforcement 

In this case h = 60 mm.  Taking the maximum spacing as 3.5 h = 210 mm and the 
minimum steel as 81 mm2/m, 5 mm bars at 200 mm c/c both ways gives               
As = 98 mm2/m.  From Table 8.3, wrapping mesh D98 fulfils the requirements. 

6 m 

2H10 

2H10 

H6–1000 
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8.6 TWO-WAY SPANNING SOLID SLABS  
 
 
8.6.1 Slab Action, Analysis and Design  
 
When floor slabs are supported on four sides, two-way spanning action occurs as 
shown in Fig. 8.29.  In a square slab the action is equal in each direction.  In long 
narrow slabs where the length is greater than twice the breadth, the action is 
effectively one way. However, the end beams always carry some slab load.  
Slabs may be classified according to the edge conditions.  In the following 
continuous over supports also includes the case where the slab is built in at the 
supports.  They can be defined as follows: 
 

1. Simply supported one–panel slabs where the corners can lift away from 
the supports.  

2. A one panel slab held down on four sides by integral edge beams (the 
stiffness of the edge beam affects the slab design).  

3. Slabs with all edges continuous over supports.  
4. Slab with one, two or three edges continuous over supports.  The 

discontinuous edge(s) may be simply supported or held down by integral 
edge beams.  

     Elastic analytical solutions of rectangular and circular slabs for standard cases 
are given in textbooks on the theory of plates.  Irregularly shaped slabs, slabs with 
openings or slabs carrying non-uniform or concentrated loads, slabs with edge 
beams can be analysed using computer programs based on finite element analysis.  
     Commonly occurring cases in slab construction in buildings are discussed.  The 
design is based on shear and moment coefficients based on intuitive understanding 
of load distribution in two orthogonal directions. The slabs are square or 
rectangular in shape and predominantly support uniformly distributed loads.  
 
 
8.6.2 Rectangular Slabs Simply Supported on All Four Edges: Corners Free to 
         Lift  
 
A typical example of a slab based on an intuitive understanding of load distribution 
is the design of simply supported slabs that do not have adequate provision either 
to resist torsion at the corners or to prevent the corners from lifting.  Fig. 8.27 
shows a slab simply resting on a wall or on a steel beam which illustrates this 
situation.   
     If the corners are not held down, under loading, the slab curls up at the corners 
and is therefore not supported along its entire length.  The portion of the slab not in 
contact with the support depends on the load as well as the stiffness of the slab.  
Even when using finite element programs, the exact portion of the slab not in 
contact with the support can be determined only by trial and error.  The following 
is a sensible common sense approach.  It is based on the design procedure given 
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originally by Rankine and Grashoff and was included in British Standards BS8110 
which has been used for many years leading to satisfactory designs. 
In an elastic simply supported beam subjected to uniformly distributed load q per 
unit length as shown in Fig. 8.28, the deflection at mid-span is given by 

4Lq
EI384

5
  

where EI = flexural rigidity. 
 

 
 

Fig. 8.27 Slab resting on a wall or on a steel beam. 
 

 
Fig. 8.28 Elastic simply supported beam. 

 
Fig. 8.29 Rectangular simply supported slab. 

 
Fig. 8.29 shows a simply supported rectangular slab subjected to a uniformly 
distributed load q per unit area.  Taking at the middle of the slab a strip of slab in 
the x-direction and another in the y-direction, if qx is the load carried by the strip 
ion the x-direction and qy is the load carried by the strip in the y-direction, then for 
compatibility of deflection at the centre,  

4
yy

4
xx Lq

EI384
5Lq

EI384
5

  

Ly 

Lx 

L 
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Total load, q = qx + qy.  Solving for qx and qy,  

)1(
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1qq 4
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y4x
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
  

For a square slab: α = 1.  qx = qy = 0.5q. 
For a rectangular slab: 

α = 1.25, qx = 0.29 q, qy = 0.71q 
α = 1.50, qx = 0.17 q, qy = 0.83q 
α = 2.00, qx = 0.06 q, qy = 0.94q 

As is to be expected, as the shape of the slab becomes more rectangular, a greater 
proportion of the load is carried in the short (Ly) direction.  For values α greater 
than 2.0, the slab behaves essentially as a one-way spanning slab.  
The maximum bending moments in the strips are: 

Short (Ly-direction): 
)1(8
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q
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Long (Lx-direction): 
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The design of reinforcement is done for the above moments.  60 percent of the 
mid-span steel is carried over to the supports and fully anchored.  The remaining 
40 percent can be stopped at 0.1 of the span from the supports.  
 
 
8.6.3 Example of a Simply Supported Two-Way Slab: Corners Free to Lift  
 
(a) Specification  
A slab in an office building measuring 5 m × 7.5 m is simply supported at the 
edges with no provision to resist torsion at the corners or to hold the corners down.  
The slab is assumed to be 200 mm thick.  The total characteristic dead load 
including self–weight, screed, finishes, partitions, services etc. is 6.2 kN/m2.  The 
characteristic imposed load is 2.5 kN/m2.  Design the slab using fck = 25 MPa 
concrete and fyk = 500 MPa reinforcement. 
 
(b) Design of the moment reinforcement  
Consider centre strips in each direction 1 m wide. The design load is 

q = (1.35 × 6.2) + (1.5 × 2.5) = 12.12 kN/m2 
Lx/Ly = 7.5/5 = 1.5 

For cover of 25 mm and 12 mm diameter bars the effective depths are as follows:  
For short-span bars in the bottom layer: dy = 200 – 25 – 12/2 = 169 mm 
For long-span bars in the top layer: dx = 200 – 25 – 12 – 12/2 = 157mm 

Minimum steel: 
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.MPa6.22530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d. 
Short direction: As, min = 0.26 × (2.6/500) × 1000× 169 ≥ 0.0013 × 1000× 169. 
As, min = 229 mm2/m. 
Long direction: As, min = 0.26 × (2.6/500) × 1000× 157 ≥ 0.0013 × 1000× 169. 
As, min = 212 mm2/m. 
Slab depth, h = 200 mm.  Spacing of steel ≤ min (3h; 400 mm), spacing ≤ 400 mm. 
Short span  

m/kNm63.31
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L
qm,m/kN12.10
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
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k = 31.63 × 106/ (1000 × 1692 × 25) = 0.044 < 0.196 

996.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 31.63 × 106/ (0.87 × 500 × 0.996 × 169) = 432 mm2/m 
Provide H12 bars at 250 mm centres to give an area of 452 mm2/m. Curtailing 50 
percent of bars gives a steel area of 226 mm2/m which is approximately equal to 
the minimum value. However the spacing increases to 500 mm which is greater 
than the maximum value permitted.  Therefore continue all the bars to the supports. 
 
Long span  

m/kNm06.14
8

Lqm,m/kN0.2
)1(

1qq
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
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k = 14.06 × 106/ (1000 × 1572 × 25) = 0.023 < 0.196 

998.0])k31(0.1[5.0
d
z

  

As = M/ (0.87 fyk z) = 14.06 × 106/ (0.87 × 500 × 0.998 × 157) = 205 mm2/m 
 

Provide H8 bars at 225 mm centres to give an area of 223 mm2/m which is almost 
equal to minimum steel area. Therefore no curtailment is possible.  All bars must 
be carried over to the support.  
Fig. 8.30 shows the reinforcement details. 
 
(c) Shear resistance: 
Although for flexural design it was assumed that the total load is shared between 
the strips in the short and long directions, for calculating the shear force in the 
strips, it is assumed that the all the load in the portions of the slab as shown in    
Fig. 8.31 go to the supporting beams.  This shows that the maximum shear force in 
the strip spanning in the short direction is almost equal to q Ly/2 for a meter-wide 
strip.  This is obviously an over-estimation of the actual shear force but errs on the 
safe side.   
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Fig. 8.30 Slab steel: (a) plan; (b) part section. 
 

 
Fig. 8.31 Load to the supports. 

 
VEd = 12.12 ×5.0/2 = 30.3 kN/m. 
Check if shear reinforcement is required, VEd > VRd, c. 
VEd = 30.3 kN/m, bw = 1000 mm, d = 169 mm, Asl = 452 mm2/m. 
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kN8.3378.41V c,Rd   
VRd, c = 41.78 kN > (VEd = 30.3).  Therefore no shear reinforcement is required. 
 
(d) Deflection 
Use the code equation (7.16a). 

ρ0% = 0.1 ×√fck = 0.5 
bw = 1000 mm, d = 169 mm, Asl = 452 mm2/m 
ρ% = 100 ×452/ (1000 × 169) = 0.27 < ρ0% 

ρ'% = 0 
K = 1 for two-way spanning simply supported slab 
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Actual L/d = 5000/169 = 29.6 < 37.5 
The slab is satisfactory with respect to deflection.  
 
(e) Cracking  
Maximum spacing is normally restricted to  

3h ≤ 400 mm for principal reinforcement 
3.5 h ≤ 450 for secondary reinforcement 

In this case h = 200 mm.  Taking the maximum spacing as 3 h = 600 mm, the 
actual spacing of bars is 250 mm which is less than permitted.  Therefore the 
design is safe against unacceptable crack widths.   
 
(f) Finite element analysis 
A finite element analysis of the slab was carried out by assuming that a meter 
length of the slab from each corner is not in contact with the support.  The results 
are shown in Fig. 8.32 to Fig. 8.35. Fig. 8.32 and Fig. 8.33 show respectively the 
contour of bending moments in the long and short directions. 
Fig. 8.34 shows that the bending moment in the long direction is sensibly constant 
over 60 percent of the span.  The maximum value is about 13.25 kNm/m compared 
with 14.06 kNm/m from the approximate calculation.  Similarly Fig. 8.35 shows 
that the maximum moment in the short direction is 25.4 kNm/m compared with 
31.63 kNm/m from the approximate calculation. This shows that the assumptions 
made in the intuitive approach are reasonable. 
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Fig. 8.32 Contour of bending moment in the slab in the long direction (Lx). 
 
 

 
 

Fig. 8.33 Contour of bending moment distribution in the slab in the short direction (Ly). 
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Fig. 8.34 Bending moment distribution in the slab in the long direction (Lx). 
 

 

 
 

Fig. 8.35 Bending moment distribution in the slab in the short direction (Ly). 
 
 
8.7 RESTRAINED SOLID SLABS  
 
In the previous section, design of slabs not restrained from lifting up at the corners 
was considered.  In many cases, if the slabs are monolithic with the support beams 
or are continuous over supports, the slabs cannot freely lift.  In such cases, along 
the supported edges not only restraining bending moments but also twisting 
moments and shear forces act. 
The presence of twisting moments has two important consequences. 
First, the twisting moment Mxy on an edge over an infinitesimal distance δy can be 
replaced by two forces Mxy δy apart.   Similarly over an adjacent point, the twisting 

moment will be   y
y

M
M xy

xy 



  which over a distance δy can also be replaced by 

two forces y
y

M
MF xy

xy 



 , δy apart.    As can be seen, the net result is a distributed 
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shear force equal to y
M xy




 except at the corner where the force will be Mxy.    

Similarly from the adjacent edge, there is another force equal to Mxy.   The net 
result is at the corner there is a concentrated force equal to 2 Mxy acting in the same 
direction as the load as shown in Fig. 8.36.   Note that the unit for Mxy is kNm/m 
which is the same thing as kN.  The units for 2 Mxy is kN.  These concentrated 
forces act in the same direction at the diagonally opposite corners.  On two corners 
the forces act down and at the other two corners they act up.  These upward forces, 
if not opposed, lift the corners up. 
 

 
Fig. 8.36 Twisting moments at a simply supported corner leading to concentrated corner force. 

 
 

 
 

Fig. 8.37 Twisting moments at a simply supported corner. 
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Second, as shows in Fig. 8.37, the twisting moment can be thought of as two shear 
forces at the top and bottom edges.   The shear force due to twisting moment 
produces tensile stresses in the top face causing a crack at 450 to the horizontal.  
Similarly, the shear force due to twisting moment produces tensile stresses in the 
bottom face causing a crack at 1350 to the horizontal.  If orthogonal reinforcement 
is used, then shear reinforcement will be needed in both x- and y-directions both at 
the top as well at the bottom face.  In contrast to reinforcing for bending moment, 
reinforcing for twisting moment requires four layers of reinforcement:  two in the 
top face and two in the bottom face.  
 
 
8.7.1 Design and Arrangement of Reinforcement  
 
Restrained slabs can be designed using moments calculated from finite element 
analysis.  However for routine design, this approach is unnecessarily complicated.  
In this section, the design procedures as stated in the British Standards BS8110 are 
used.  As stated before in section 8.6.2, this design has been used for many years 
and produced satisfactory designs. 
Moment coefficients given here have been derived from yield line analysis.  The 
derivation of the coefficients will be given in section 8.9.16.  Table 8.15 shows the 
moment coefficients for the design two-way spanning slabs supported on all the 
four edges but only some of which are continuous.  The moment coefficients are 
given both for support moment (hogging, negative) and span moment (sagging, 
positive) in both the short span and long span directions. In this method the corners 
are assumed to be prevented from lifting and provision is made for resisting torsion 
near the corners.  The maximum moments at mid-span on strips of unit width for 
spans Lx and Ly are given by  

msx = βsx q Ly
2 

 msy = βsy q Ly
2 

where Ly = short span and LX is the long span. q = applied load per unit area. 
These equations may be used for continuous slabs when the following provisions 
are satisfied: 

1. The characteristic dead and imposed loads are approximately the same on 
adjacent panels as on the panel being considered;  

2. The spans of adjacent panels in the direction perpendicular to the line of 
the common support are approximately the same as that of the panel 
considered in that direction.  

 
The design rules for slabs are as follows.  

1. The slabs are divided in each direction into middle and edge strips as 
shown in Fig. 8.38.  

2. The maximum moments defined above apply to the middle strips.  The 
moment reinforcement is designed for 1 m wide strips using formulae in 
Chapter 4.  The amount of reinforcement provided must not be less than 
the minimum area as given in section 9.2.1.1 of the Eurocode.  The bars 
are spaced at the calculated spacing uniformly across the middle strip.  
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3. The minimum tension reinforcement specified is to be provided in the 
edge strips.  The edge strips occupy a width equal to total width/8 parallel 
to the supports as shown in Fig. 8.38. 

 
Table 8.15 Bending moment coefficients for rectangular panels supported on all sides with  

provision for torsion and corners prevented from lifting. 
 Short span Ly coefficients: βsy × 103 Long span 

Lx  
coefficients 

βsx × 103 
Side ratio Lx/Ly For all 

ratios 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0 
Case 1: Interior panel 

Edge –31 –37 –42 –46 –50 –53 –59 –63 –32 
Mid-span 24 28 32 35 37 40 44 48 24 

Case 2: One short edge discontinuous 
Edge –39 –44 –48 –52 –55 –58 –63 –67 –37 
Mid-span 29 33 36 39 41 43 47 50 28 

Case 3: One short edge discontinuous 
Edge –39 –49 –56 –62 –68 –73 –82 –89 –37 
Mid-span 30 36 42 47 51 55 62 67 28 

Case 4: Two adjacent edges discontinuous 
Edge –47 –56 –63 –69 –74 –78 –87 –93 –45 
Mid-span 36 42 47 51 55 59 65 70 34 

Case 5: Two short edges discontinuous 
Edge –46 –50 –54 –57 –60 –62 –67 –70 – 
Mid-span 34 38 40 43 45 47 50 53 34 

Case 6: Two long edges discontinuous 
Edge – – – – – – – – –45 
Mid-span 34 46 56 65 72 78 91 100 34 

Case 7: Two short edges and one long edge discontinuous 
Edge –57 –65 –71 –76 –81 –84 –92 –98 – 
Mid–span 43 48 53 57 60 63 69 74 44 

Case 8: Two long edges and one short edge discontinuous 
Edge – – – – – – – – –58 
Mid-span 42 54 63 71 78 84 96 105 44 

Case 9: All edges simply supported 
Mid-span 55 65 74 81 87 92 103 111 56 
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Fig. 8.38 Middle and edge strips. 
 

4. The reinforcement is to be detailed in accordance with the simplified rules 
for curtailment of bars in slabs as shown in Fig. 8.39 and Fig. 8.40 at the 
continuous end and simply supported end respectively.  At the 
discontinuous edge, top steel of one-half the area of the bottom steel at 
mid-span is to be provided to control cracking.  

 
Continuous member (Fig. 8.39): 

 Sagging moment: 100 percent of steel calculated for maximum sagging 
moment is placed over 60 percent of effective span and 40 percent 
maximum steel is placed over the 20 percent of effective span towards the 
supports. 

 Hogging moment: 100 percent of steel calculated for maximum hogging 
moment to extend to 0.15 of the effective span from the face of the 
support or 45 bar diameters.  50 percent of maximum steel to extend to 
0.30 of the effective span from the face of the support. 

 
Simply supported end (Fig. 8.40): 

 Sagging moment: 100 percent of steel calculated for maximum sagging 
moment to extend up to 0.1 of the effective span from the simply 
supported end and 40 percent of maximum  steel to extend over (0.1 
effective span + 12 times the bar diameter or equivalent anchorage).   

 Torsion reinforcement is to be provided at corners where the slab is 
simply supported on both edges meeting at the corners.  Corners X and Y 
shown in Fig. 8.41 require torsion reinforcement. This is to consist of a 
top and bottom mesh with bars parallel to the sides of the slab and 
extending from the edges a distance of one-fifth of the shorter span.  The 
area of bars in each of the four layers should be, at X, three-quarters of the 
area of bars required for the maximum mid-span moment and at Y, one-
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half of the area of the bars required at corner X.  Note that no torsion 
reinforcement is required at the internal corners Z shown in Fig. 8.41. 

 

 
 

 
 

Fig. 8.39 Reinforcement arrangement at continuous end. 
 

 

 
 

Fig. 8.40 Reinforcement arrangement at simply supported end. 
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Fig. 8.41 Slab arrangement, floor plan: case 1: interior panel; case 2: one short edge discontinuous; case 

3: one long edge discontinuous; case 4: two adjacent edges discontinuous. 
 
 
8.7.2 Shear Forces and Shear Resistance  
 
Shear forces  
 
Shear force coefficients βvx and βvy for various support cases for continuous slab 
strips are given in Table 8.16.  The maximum shear forces per unit width in the 
slab are given by  

Vsx = βvx q Ly 
Vsy = βvy q Ly 

These are numerically the same as the design loads on supporting beams per unit 
length over the middle strip. 
The coefficients have been derived using yield line analysis and will be discussed 
in section 8.9.16.  
Shear resistance is checked as detailed in section 6.2 of the Eurocode 2.  
 
 
8.7.3 Deflection  
 
Deflection is checked in accordance with section 7.4.2 of the code by comparing 
the actual span-to-effective depth ratio with the corresponding allowable ratio.  
Calculations are done for the short span as it carries the maximum load. 
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Table 8.16 Shear force coefficients for rectangular panels supported on all sides with provision for 
torsion and corners prevented from lifting 

 
Type of edge Short span Ly coefficients: βvy × 102 Long span 

Lx  
coefficients: 

βvx × 103 
Side ratio Lx/Ly For all 

ratios 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0 
Case 1: Interior panel 

Continuous 33 36 39 41 43 45 48 50 33 
Case 2: One short edge discontinuous 

Continuous 36 39 42 44 45 47 50 52 36 
Discontinuous – – – – – – – – 24 

Case 3: One short edge discontinuous 
Continuous 36 40 44 47 49 51 55 59 36 
Discontinuous 24 27 29 31 32 34 36 38 – 

Case 4: Two adjacent edges discontinuous 
Continuous 40 44 47 50 52 54 57 60 40 
Discontinuous 26 29 31 33 34 35 38 40 26 

Case 5: Two short edges discontinuous 
Continuous 40 43 45 47 48 49 52 54 – 
Discontinuous – – – – – – – – 26 

Case 6: Two long edges discontinuous 
Continuous – – – – – – – – 40 
Discontinuous 26 30 33 36 38 40 44 47 – 

Case 7: Two short edges and one long edge discontinuous 
Continuous 45 48 51 53 55 57 60 63 – 
Discontinuous 30 32 34 35 36 37 39 41 29 

Case 8: Two long edges and one short edge discontinuous 
Continuous – – – – – – – – 45 
Discontinuous 29 33 36 38 40 42 45 48 30 

Case 9: All edges simply supported 
Discontinuous 33 36 39 41 43 45 48 50 33 
 
 
8.7.4 Cracking  
 
Crack control is attained by adhering to the maximum spacing of bars as detailed in 
section 9.3.a of the code. 
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8.7.5 Example of Design of Two-Way Restrained Solid Slab  
 
(a) Specification  
The part floor plan for an office building is shown in Fig. 8.42.  It consists of 
restrained slabs poured monolithically with the downstand edge beams.  The slab is 
180 mm thick and the loading is as follows:  
Total characteristic dead load gk = 6.2 kN/m2 
Characteristic imposed load qk = 2.5 kN/m2 
Design the comer slab using grade fck = 30 MPa concrete and fyk = 500 MPa 
reinforcement.  Show the reinforcement on sketches.  
 
(b) Slab division, moments and reinforcement  
The corner slab is divided into middle and edge strips as shown in Fig. 8.42. 

 
 

Fig. 8.42 (a) Part floor plan; (b) symmetric moment coefficients. 
 
The moment coefficients are taken from Table 8.14 for a square slab for the case 
with two adjacent discontinuous edges.  The values of the coefficients and 
locations of moments are shown in Fig. 8.42 (b). 

Design ultimate load = (1.35 × 6.2) + (1.5 × 2.5) = 12.12 kN/m2 
Assuming 10 mm diameter bars and 20 mm cover, the effective depth of the outer 
layer to be used in the design for moments in the short span direction is  

d = 180 – 20 – 10/2 = 155 mm 
The effective depth of the inner layer to be used in the design for moments in the 
long span direction is  

d = 180 – 20 – 10 – 10/2 = 145 mm 
The moments and steel areas for the middle strips are calculated.  Because the slab 
is square, only one direction need be considered.  

Y 
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(i) Positions 1 and 4 (over supports) short direction: 
d = 155 mm 

msy = –0.047 × 12.12 × 62 = –20.51 kN m/m 
k = 20.51 × 106 / (30 × 1000 × 1552) = 0.029 < 0.196 

z/d = 0.5[1.0 +√ (1.0 – 3 ×0.029)] = 0.98 
As = 20.51 × 106 / (0.87 × 500 × 0.98 × 155) = 310 mm2 /m 

Provide H10 bars at 250 mm centres to give an area of 314 mm2/m. 
 
(ii) Position 2 (mid-span) short direction: 
Use the smaller value of d. 

d = 145 mm 
msx = 0.036 × 12.12 × 62 = 15.71 kN m/m 

k = 15.71 × 106 / (30 × 1000 × 1452) = 0.025 < 0.196 
z/d = 0.5[1.0 +√ (1.0 – 3 ×0.025)] = 0.98 

As = 15.71 × 106 / (0.87 × 500 × 0.98 × 145) = 254 mm2/m 
Provide H8 bars at 175 mm centres to give an area of 287 mm2/m.  
 
(iii) Minimum steel: 

MPa9.23030.0f30.0f 667.0667.0
ckctm  . 

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d. 
bt = width of web = 1000 mm, d = 155 mm. 
As, min = 0.26 × (2.9/500) × 1000× 155 ≥ 0.0013 × 1000 × 155. 
As, min = 233 mm2/m.  The areas of steel calculated are higher than the minimum 
values.  
Note that H8 bars at 200 mm centres give an area of 251 mm2/m.  
 
(iv) Positions 3 and 5 (discontinuous edges):  
Top steel one half of the area of steel at mid-span is to be provided. 

As = 0.5 × 310 = 155 mm2/m < 210 mm2/m (minimum steel) 
Provide 8 mm diameter bars at 200 mm centres to give an area of 251 mm2/m.  
In detailing, the moment steel will not be curtailed because both negative and 
positive steel would fall below the minimum area if 50 percent of the bars were 
stopped off.  
Fig. 8.43 shows the reinforcement arrangement. 
 
(c) Shear forces and shear resistance 
 
(i) Positions 1 and 4 (continuous edge): 

βvy = βvx =0.40 
VEd = Vsy = 0.4 × 12.12 × 6 = 29.01 kN/m 

Check if shear reinforcement is required, VEd > VRd, c. 
VEd = 29.01 kN/m, bw = 1000 mm, d = 155 mm, Asl = 314 mm2/m 

12.0
)5.1(

18.0C
c

c,Rd 


  
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VRd, c = 83.7 kN > (VEd = 29.01).  Therefore no shear reinforcement is required. 

 

  
 

Fig. 8.43 Reinforcement arrangement (cross section). 
 
(ii) Positions 3 and 5 (discontinuous edge): 

βvy = βvx =0.26 
The bottom tension bars are to be stopped at the centre of the support.  The shear 
resistance is based on the top steel with As = 251 mm2/m. 

VEd = Vsx = 0.26 × 12.12 × 6 = 18.91 kN/m 
d = 145 mm 
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kN3.789.59V c,Rd   
VRd, c = 78.3 kN > (VEd = 18.91).  Therefore no shear reinforcement is required. 
  
(d) Torsion steel  
Torsion steel of length equal to 1/5th of shorter span = 6/5 = 1.2 m is to be provided 
in the top and bottom of the slab at the three external corners marked X and Y in 
Fig. 8.42 (b).  
 
(i) Corner X 
The area of torsion steel is 0.75 × (Required steel at maximum mid-span moment): 

As = 0.75 × 254 = 191 mm2/m 
This will be provided by the minimum steel of 8 mm diameter bars at 200 mm 
centres giving a steel area of 251 mm2/m.  
 
(ii) Corner Y 
The area of torsion steel is one half of that at corner X. 

As = 0.5 × 191 = 96 mm2/m. 
Again provide minimum H8 bars at 200 mm centres giving a steel area of            
251 mm2/m. 
 
(e) Edge strips  
Provide minimum reinforcement, 8 mm diameter bars at 200 mm centres, in the 
edge strips both at top and bottom.  
 
(f) Deflection  
Check using steel at mid-span with d = 145 mm.  
Using the code equation (7.16a), 

ρ0% = 0.1 ×√fck = 0.55 
bw = 1000 mm, d = 145 mm, Asl = 287 mm2/m 
ρ% = 100 × 287/ (1000 × 145) = 0.20 < ρ0% 

ρ'% = 0 
K = 1.3 for two-way spanning slab continuous over one long edge 
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3

  

Actual L/d = 6000/145 = 41.4 < 96.4 
The percentage of reinforcement is quite low.  The L/d ratio is rather higher than 
desirable but calculations indicate that the slab is satisfactory with respect to 
deflection.   
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(g) Cracking  
The bar spacing does not exceed 3 h = 3 × 180 = 540 mm. The slab will not suffer 
excessive cracking. 
 
 

 
 

Fig. 8.44 Contour plot of Mxx. 
 
 
8.7.6 Finite Element Analysis 
 
In the previous section, the design was done using the moment coefficients 
obtained from yield line analysis.  As a comparison, an elastic analysis of the slab 
was carried out using a finite element analysis program.  The results are shown in 
Fig. 8.44 to Fig. 8.47.  
Fig. 8.44 and Fig. 8.45 show respectively a contour plot of moment in the x-
direction and twisting moment Mxy.  Fig. 8.46 shows a plot of the variation of the 
moment along the centre line of the slab.  The maximum hogging and sagging 
moments in kNm/m are 29.3 and 12.6 respectively giving a ratio of 2.3.  The 
corresponding values from the yield line analysis are 20.5 and 15.7 respectively 
giving a ratio of 1.3.  Clearly the support moment has decreased and the span 
moment has increased due to redistribution of the moment caused by yielding. 
Fig. 8.47 shows the variation of Mxy along the diagonal.  As is to be expected, the 
maximum twisting moment is at the corner where two simply supported edges 
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meet.  In section 8.12, design using the elastic values of (Mxx, Myy, Mxy) will be 
discussed.  This is more versatile than the design based on yield line analysis. 
 
 
 

 
 

 
Fig. 8.45 Contour plot of Mxy. 

 
 

 
 

Fig. 8.46 Variation of Mxx along the middle section of the slab. 
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Fig. 8.47 Variation of Mxy along the diagonal section of the slab. 
 
 
8.8 WAFFLE SLABS  
 
 
8.8.1 Design Procedure  
 
Two-way spanning ribbed slabs are termed waffle slabs.  Waffle slabs can be 
designed using the method detailed in section 8.6 provided the slab satisfies the 
criteria detailed in section 8.5.2.   
Slabs may be made solid near supports to increase moment and shear resistance 
and provide flanges for support beams.  In edge slabs, solid areas are required to 
contain the torsion steel.  
 
 
8.8.2 Example of Design of a Waffle Slab  
 
(a) Specification  
Design a waffle slab for an internal panel of a floor system that is constructed on 
an 8 m square module.  The total characteristic dead load is 6.5 kN/m2 and the 
characteristic imposed load is 2.5 kN/m2.  The materials for construction are         
fck = 35 MPa concrete and fyk = 500 MPa reinforcement. 
 
(b) Arrangement of slab  
A plan of the slab arrangement is shown in Fig. 8.48 (top).  The slab is made solid 
for 500 mm from each support.  The proposed section through the slab is shown in 
Fig. 8.48 (bottom).  The proportions chosen for rib width, rib depth, depth of 
topping and rib spacing meet various requirements set out in section 8.5.2.   
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Fig. 8.48 Top: Plan of waffle slab. Bottom: Section through the slab. 
 
(c) Reinforcement  

Design ultimate load = (1.35 × 6.5) + (1.5 × 2.5) = 12.53 kN/m2 
The middle strip moments for an interior square panel are, from Table 3.14, 

Support msx = – 0.031 × 12.53 × 82 = – 24.86 kNm/m 
Mid-span msx = 0.024 × 12.53 × 82 = 19.25 kNm/m 

Slab width supported by one rib = 500 mm. 
 
The moment per rib is therefore 

Support msx= –24.86 × 0.5= –12.43 kNm 
Mid-span msx = 19.25 x 0.5 = 9.63 kNm 
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The effective depths assuming 12 mm diameter main bars and 6 mm diameter links 
and 25 mm cover are as follows: 

Outer layer d = 350 – 25 – 6 – 12/2 = 313 mm 
Inner layer d = 350 – 25 – 6 – 12 – 12/2 = 301 mm 

 
Support: solid section 500 mm wide  
As the flooring dimensions and supports are symmetrical, it is convenient to have 
the steel arrangement also symmetrical.  Section design is based on the smaller 
value of d equal to 301 mm. 

k = 12.43 × 106 / (500 × 3012 × 35) = 0.008 < 0.196 
z/d = 0.5[1.0 + √ (1 – 3× 0.008)] = 0.99 

As = 12.43 × 106 / (0.87 × 500 ×0.99 × 301) = 96 mm2 
 
Check minimum steel 

MPa2.33530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
bt = width of web = 500 mm, d = 313 mm 

As, min = 0.26 × (3.2/500) × 500 × 313 ≥ 0.0013 × 500× 226 
As, min = 260 mm2. 

The areas of steel calculated are less than the minimum values.  Provide 2H16 in 
the ribs giving an area of 402 mm2. 
At the end of the solid section, the maximum moment of resistance of the concrete 
ribs with width 125 mm is given by  

M = 0.196 × 125 × 3012 × 35 × 10–6 = 77.7 kNm 
This exceeds the applied moment at the support and so the ribs are able to resist the 
applied moment without compression steel.  The applied moment at 500 mm from 
the support will be somewhat less than the support moment. 
 
Centre of span. T-beam, d = 301 mm  
The flange breadth b is 500 mm and hf = 75 mm.  fcd = 35/1.5 = 23.3 MPa. 

Mflange = fcd × b × hf × (d – hf/2) × 10–6  
Mflange = 23.3 × 500 × 75× (301 – 75/2) × 10–6 = 230 kNm > 10.06 kNm 

Hence the neutral axis lies in the flange and the beam is designed as a rectangular 
beam. 

k = 10.06 × 106 / (500 × 3012 × 35) = 0.006 < 0.196 
z/d = 0.5 [1.0 + √ (1 – 3 × 0.006)] = 0.995 

z = 0.995 d = 299 mm 
As = 10.06 × 106 / (0.87 × 500 × 299) = 77 mm2 

Provide two 8 mm diameter bars with area 101 mm2.  
 
Check minimum steel 

MPa2.33530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
bt = width of web = 125 mm, d = 301 mm 
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As, min = 0.26 × (3.2/500) × 125× 301 ≥ 0.0013 × 125× 301 
As, min = 63 mm2. 

The areas of steel calculated are higher than the minimum values.  
 

 
 

Fig. 8.49 Reinforcement detail in the rib including shear reinforcement. 
 
 
(d) Shear resistance  
The shear force coefficient is taken from Table 8.15.  The shear at the support is  

Vsy = 0.33 × 12.53 × 8 = 33.41 kN/m 
The shear at the support for the width of 500 mm supported by one rib is  

Vsy = 33.41 × 0.5 = 16.71 kN 
Loading over 500 mm width = 12.53 × 0.5 = 6.27 kN/m 

The shear on the ribs at 500 mm from support is  
VEd = 16.71 – 6.27 × 0.5 = 13.57 kN 

d = 301 mm 
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VRd, c = 19.19 kN > (VEd = 13.57). 

Therefore no shear reinforcement is required. 
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Provide 6 mm diameter 2-leg links to form a cage. The arrangement of the 
reinforcement and shear reinforcement in the rib is shown in Fig. 8.49. 
 
(e) Deflection  

b/bw = 500/125 = 4.0 > 3 
Correction factor = 0.8 

Check using steel at mid-span with d = 301 mm.  
Using the code equation (7.16a), ρ0% = 0.1 × √fck = 0.59, bw = 125 mm,                 
d = 301 mm, Asl = 101 mm2 
ρ% = 100 × 101/ (125 × 301) = 0.27 < ρ0%, ρ'% = 0 
K = 1.5 for interior span of two-way spanning slab 
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Correction factor for b/bw > 3 is 0.8. 
L/d = 82.2 × 0.8 = 65.6. 
Actual L/d = 8000/226 = 35.3 < 65.6. 
L/d ratio is a bit high but the slab is satisfactory with respect to deflection. 
 
(f) Reinforcement in topping  
For a topping 75 mm thick the minimum area required per metre width is  

MPa2.33530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
bt = width of web = 1000 mm, h = 75 mm 
As, min = 0.26 × (3.2/500) × 1000× 75 ≥ 0.0013 × 1000× 75 
As, min = 125 mm2/m. 
Provide H6 bars at 225 mm spacing giving an area of 126 mm2/m.    Provide in the 
centre of the topping A142 square structural mesh with H6 bars at 200 c/c both 
ways, giving a cross sectional area of  141 mm2/m.  
 
 
8.9 FLAT SLABS 
 
 
8.9.1 Definition and Construction  
 
The flat slab is a slab with or without drops, supported generally without beams by 
columns with or without column heads.  The slab may be solid or have recesses 
formed on the soffit to give a waffle slab. Here only solid slabs will be discussed.  
     Flat slab construction is shown in Fig. 8.50 for a building with circular internal 
columns, square edge columns and drop panels.  The slab is thicker than that 
required in T-beam floor slab construction but the omission of beams gives a 
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smaller storey height for a given clear height and simplification in construction and 
formwork.   

 
 

Fig. 8.50 Flat slab construction. 
 

 
 
 

Fig. 8.51  Slab without drop panel, with a rectangular drop panel and flared column head. 
 
     Various column supports for the slab either without or with drop panels are 
shown in Fig. 8.51.  As can be seen, the total width of the drop can vary over a 
wide range.  Drop panels only influence the distribution of moments if the smaller 
dimension of the drop is at least equal to one-third of the smaller panel dimension.  

hH hH 

< 2hH < 2hH 

hH 

>2(hH + d) >2(hH + d) 

d 
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Smaller drops provide resistance to punching shear.  The panel thickness is 
generally controlled by deflection.   
 

 
 

Fig. 8.52 Plan of a flat slab. 
 
 

 
Fig. 8.53 Part of the flat slab used for analysis. 

 
 
8.9.2 Analysis  
 
The bending moment distribution in a flat slab is quite complex.  Fig. 8.52 shows 
part plan of a flat slab 30 × 24 m with columns spaced at 6 m both ways.  Fig. 8.53 
shows a symmetrical half of a part of the slab 6 m wide lying between the centre 

6 m 6 m 6 m 
3 m 

6 m 6 m 6 m 
3 m 

6 m 
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lines of the panel.  The slab is 300 mm thick and is loaded by a uniformly 
distributed load of 18.75 kN/m2.  Fig. 8.54 shows the contours of moments in the 
x-directions for a symmetrical half of a slab from finite element analysis.   
Fig. 8.55 shows the distribution of bending moment along the line of columns.  As 
can be observed it is similar to bending moment distribution in an equivalent 
continuous beam.   
 

 
 

Fig. 8.54 Contour of bending moment in the x-direction. 
 
Fig. 8.56 shows the variation of the bending moment across the width at a section 
at the second column and Fig. 8.57 shows the variation of the bending moment 
across the width at a section midway between the first and second columns. 
The main point to notice is that the hogging moment is highly concentrated over a 
short width near the column line but the sagging moment is less concentrated than 
the hogging moment. 
The results from the finite element analysis indicate that 
 

 
 
 

Fig. 8.55 Distribution of bending moment along the line of columns. 
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Fig. 8.56 Variation of bending moment Mxx across the width at the second column. 
 
 

 
 
Fig. 8.57 Variation of bending moment Mxx across the width between first and second columns. 
 

 Continuous beam analysis of a part of the slab lying between the centre 
lines of the panel will yield reasonable distribution of the bending moment 
in the flat slab. 

 The moment tends to concentrate over a width near the column. 
These observations are taken into account in the Eurocode 2 recommendations for 
flat slab analysis and design. 
 
 
8.9.3 General Eurocode 2 Provisions  
 
The design of slabs is covered in the Eurocode 2 in two places: 

 Section 6.4 which gives the procedure to design against punching shear 
failure. 

 Annex I which gives the procedure for the analysis of flat slabs. 
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In Annex I, the code simply states that design moments may be obtained by using a 
proven method of analysis such as  

 
 

Fig. 8.58 Division of the structure into frames. 
 
 

 
 

Fig. 8.59 Division of a panel into column and middle strips. 
 

 

Ly 
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(a) Equivalent frame method  
(b) Grillage method  

       (c) Finite element analysis 
       (d) Yield line analysis 
Annex I also gives some guidance on the use of the equivalent frame method. 
The code states that normally it is sufficient to consider only the single load case of 
maximum design load (1.35 × dead load + 1.5 × imposed load) on all spans.  The 
following method of analysis is used to obtain the moments and shears for design.  
 
 
8.9.4 Equivalent Frame Analysis Method  
 
The structure is divided longitudinally and transversely into frames consisting of 
columns and strips of slab contained between the centre lines of adjacent panels as 
shown in Fig. 8.58. The stiffness of the members may be calculated from their 
gross cross sectional dimensions.  For vertical loading, the stiffness may be based 
on the full width of the panels.  For horizontal loading, 40 percent of the gross 
value should be used to reflect the increased flexibility of the column–slab joints in 
flat slab structures compared with that of column–beam joints.    
The total bending moment obtained from the analysis is should be distributed 
across the width of the slab.  The panel should be divided into column and middle 
strips as shown in Fig. 8.59.  The bending moment should be apportioned to the 
strips as shown in Table 8.17. 
 

Table 8.17 Distribution of moments in flat slabs 
 Distribution between column and middle strip 

as percentage of total negative or positive moment 
Column strip Middle strip 

Negative 60 to 80 percent 40 to 20 percent 
Positive 50 to 70 percent 50 to 30 percent 

 
Section 9.4.1 of Eurocode 2 states that at internal columns, 50 percent of the total 
reinforcement to resist the negative (hogging) moment should be placed within 
Ly/8 on either side of the column.  
 
 
8.9.5 Shear Force and Shear Resistance  
 
The punching shear around the column is the critical consideration in flat slabs.  
Rules are given in section 6.4 of the Eurocode 2 for calculating the ultimate design 
shear resistance capacity force and designing the required shear reinforcement.   
Chapter 5, sections 5.1.11 to 5.1.14 gives many examples of designing against 
punching shear.  Section 6.4.2 of Eurocode 2 gives details about the control 
perimeter as shown in Fig. 8.60 for circular and rectangular columns.  The control 
perimeter is at a distance of 2 d from the column perimeter.    
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    Section 6.4.3 of Eurocode 2 gives equations for calculating punching shear 
capacity.   The following checks are required: 

 At the column perimeter, vEd < vRd, max 
 Punching shear reinforcement is not required if vEd < vRd, c 
 Where punching shear reinforcement is required, it is provided as detailed 

in section 6.4.5 
 

 
 

Fig. 8.60 Control perimeters for circular and rectangular columns. 
 

Where the support reaction is eccentric, the calculated value of column reaction 
should be multiplied by a factor β.  In the case of structures where lateral stability 
is not dependent on the frame action (braced structures), the values of β = 1.15, 1.4 
and 1.5 respectively for internal, edge and corner columns.  For other cases where 
the value of moment transferred to the column is known explicitly, β can be 
calculated using Eurocode 2 equations (6.30) to (6.46). 
  
    As conventional shear reinforcement in the form of links greatly complicates and 
slows down the steel fixing process, it is not desirable to have shear reinforcement 
in light or moderately loaded slabs.  However some prefabricated proprietary shear 
reinforcements are available which considerably simplify the provision of shear 
reinforcement.  Another form of shear reinforcement used is the stud rail which 
consists of headed shear studs welded to a steel plate. 
 
 
8.9.6 Deflection  
 
The check is to be carried out for the most critical direction, i.e., for the longest 
span using Eurocode 2 equations (7.16a) and (7.16b.)  
 
 
8.9.7 Crack Control  
 
The bar spacing rules for slabs given in Tables 7.2N and 7.3N of Eurocode 2 apply.  
 
 
 

2d 
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8.9.8 Example of Design for an Internal Panel of a Flat Slab Floor  
 
(a) Specification  
The floor of a building constructed of flat slabs is 30 m × 24 m.  The column 
centres are 6 m in both directions and the building is braced with shear walls.  The 
slab is 300 mm deep.  The internal columns are 450 mm square. 
The loading is as follows:  
Screed, floor finishes, partitions and ceiling = 2.5 kN/m2 
Imposed load = 3.5 kN/m2 
The materials are fck = 30 MPa concrete and fyk = 500MPa reinforcement.  
Design the edge panel on two sides and show the reinforcement on a sketch.  
 
(b) Slab and column details and design dimensions  
A part floor plan and slab details are shown in Fig. 8.61. 
 

 
 

Fig. 8.61 Plan of continuous beam. 
 
(c) Design loads and moments  
Considering a 6 m width of the slab and taking unit weight of concrete as          
25.0 kN/m3. 
Slab weight = 6 × 0.3× 25 = 45 kN/m 
Screed weight = 6 × 2.5 = 15 kN/m 
gk = 45 + 15 = 60 kN/m 
Imposed load, qk = 6 × 3.5 = 21 kN/m 
Design load = 1.35 × 60 + 1.5 × 21 = 112.5 kN/m 

Half Middle strip = 1.5 m 

Column strip = 3.0 m 
6 m 

Span = 6 m 

Half Middle strip = 1.5 m 
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As shown in Fig. 8.62, the equivalent frame consists of five 6 m span continuous 
beams loaded by 112.5 kN/m.  The continuous beam may be analysed by any 
suitable method.   

 
 

Fig. 8.62 ‘Equivalent frame’ continuous beam. 
 
The final moment is shown in Fig. 8.63. 
 

 
Fig. 8.63 Moment distribution in the continuous beam. 

 
The key values are: 
 
Total Negative moments: 
Moment at second and fifth support = –426.4 kNm 
Moment at third and fourth internal support = –319.9 kNm 
 
Total Positive moments: 
Span 1–2 and 5–6: M = 315.5 kNm 
Span 2–3 and 4–5: M = 134.5 kNm 
 
(d) Design of moment reinforcement  
The cover is 25 mm and 16mm diameter bars in two layers and 8 mm links are 
assumed. The effective depth for the inner layer is  

d = 300 – 25 – 8 – 25 –16/2 = 234 mm 

6 m 6 m 3 m 

112.5 kN/m 
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Fig. 8.64 Top steel in the x-direction. 
 
Negative moment reinforcement (steel at top), end panel 

M = 426.4 kNm 
k = 426.4 × 106 / (6000 × 2342 × 30) = 0.043 < 0.196 

z/d = 0.5 [1.0 + √ (1 – 3 0 × 0.043)] = 0.97 
z = 0.97 d = 226 mm 

As = 426.4 × 106 / (0.87 × 500 × 226) = 4337 mm2 
 
Column strip reinforcement 
50 percent of 4337 mm2 equal to 2169 mm2 is placed in the column strip of width 
of Ly/4 = 1500 mm.  Provide 11H16 at 150 mm c/c giving steel area of 2211 mm2. 
The remaining 20 percent of 4337 mm2 equal to 867 mm2 is placed in the column 
strip of width of Ly/4 = 1500 mm.  Provide 3H16 at 375 mm c/c on 750 mm width 
on either side of column giving steel area of 2211 mm2. 
 
Middle strip reinforcement 
The remaining one 30 percent of 4337 mm2 equal to 1301 mm2 is placed in the 
column strip of width of 3000 mm. Provide 7H16 at 500 mm.    
 
Fig. 8.64 shows the reinforcement arrangement at the top of the slab. 
 
Positive moment reinforcement (steel at bottom), end panel 

M = 315.5 kNm 
k = 315.5 × 106 / (6000 × 2342 × 30) = 0.032 < 0.196 

z/d =0.5 [1.0 + √ (1 – 3 0 × 0.032)] = 0.98 
z = 0.98 d = 228 mm 

As = 315.5 × 106 / (0.87 × 500 × 228) = 3181 mm2 

3H16 at 375 

11H16 at 150 

3H16 at 375 

3H16 at 375 

11H16 at 150 

3H16 at 375 

7H16 at 500 
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Column strip reinforcement 
60 percent of 3181 mm2 equal to 1909 mm2 is placed in the column strip of width 
of 3000 mm.  Provide 10H16 at 300 mm c/c giving steel area of 2011 mm2. 
Note that in section 9.4.1 (3), the code recommends that bottom reinforcement     
(≥ 2 bars) in each orthogonal direction should be provided at internal columns and 
this reinforcement should pass through the column.  
 
Middle strip reinforcement 
The remaining 40 percent of 1272 mm2 is placed in the 3000 mm wide column 
strip.  Provide 7H16 at 500 mm.    
Fig. 8.65 shows the reinforcement arrangement at the bottom of the slab. 
 

 

 
 

Fig. 8.65 Bottom steel in the x-direction. 
 
(e) Shear resistance  
 
Fig. 8.66 shows the shear force distribution.  The reaction at the second support is 
the sum of right reaction of 408.57 kN from span 1–2 + left reaction of 355.25 kN 
from span 2–3 giving a total of 763.8 kN. 
 

10H16 at 300 

10H16 at 300 

7H16 at 500 



258                                                                                     Reinforced concrete design to EC 2 

 
Fig. 8.66 Shear force distribution in the continuous beam. 

 
i. At the column face 

Reaction = 763.8 kN 
Internal column: Unbalnced moment factor, β= 1.15 

VEd = 763.8 × 1.11 = 847.8 kN 
Column: 450 mm square, u0 = 4 × 450 = 1800 mm, d = 234 mm 

vEd = 847.8 × 103 / (1800 × 234) = 2.0 MPa 
ν = 0.6 (1 – fck/250) = 0.6 × (1– 30/250) = 0.53, fcd = 30/ (γc = 1.5) = 20 MPa 

vRd, max = 0.5 (ν1 = ν) × fcd = 0.5 × 0.53 × 20 = 5.28 MPa 
vEd < vRd, max.  The maximum shear stress is satisfactory.  
 
ii. At 2.0 d from the column face  
Shear perimeter, u1 = 4 × 450 + 2 × π× (2× d) = 1800 + 2941 = 4741 mm 

v = 847.8 × 103/ (4741 × 234) = 0.76 MPa 
Note: It is more accurate to deduct the downward load inside the shear perimeter in 
calculating v. 
Area inside shear perimeter = {450 × 450 + 4 × 450 × (2d) + π × (2d) 2} × 10–6  
                                            = 1.73 m2 
Applied load = 18.75 kN/m2 
Load inside the perimeter = 1.73 × 18.75 = 32.49 kN 

v = (847.8 – 32.49) × 103/ (4741 × 234) = 0.74 MPa 
The improvement is insignificant. 
Calculate vRd, c: 
In the centre half of the column strip 16 mm diameter bars are spaced at 150 mm 
centres giving an area of 1340 mm2/m.  

100 ρ1 = 100 As/ (bd) = 100 × 1340 / (1000 × 234) = 0.57 < 2.0 
CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √(200/d) = 1.93 < 2.0 

MPa60.0)3057.0(93.112.0)f100(kCv 33.033.0
ck1c,Rdc,Rd   
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νmin = 0.035 × k1.5×√fck = 0.035×1.931.5 ×√30 = 0.51 MPa 
(v = 0.76) > (vRd, c = 0.60) 

Shear reinforcement is needed. 
 
iii. Calculate the perimeter uout where shear stress is equal to vRd, c 
As shown in Fig. 5.23, let the perimeter be at a distance Nd from the face of the 
column. 

uout = 2(450 + 450) + 2π Nd mm 
The load acting within the perimeter is equal to  

[450  450 + 2  (450 + 450)  Nd + π (Nd) 2] 18.75  10−6 kN 
VEd = [847.8 – Load inside perimeter] kN 

vEd = VEd/ (uout  d) = vRd, c MPa 
By trial and error, N = 2.65. 

uout = 2(450 + 450) + 2π  2.65  234 = 5696 mm 
At this perimeter no shear reinforcement is required. 
 
iv. Calculate the position of the outermost perimeter where shear 
reinforcement is required 
The last ring of shear reinforcement must be within kd, where k = 1.5 from the uout. 
This perimeter lies at (Nd – kd) = (2.65 d – 1.5d) =1.15 d from the face of the 
column. 
Perimeter length = u1.15 d = 2(450 + 450) + 2π × 1.15 d = 3491 mm.  
 
v. Calculate shear reinforcement using the code equation (6.52) 

                                sin}
du

1{fA}
s
d{5.1v75.0v

1
ef,ywdsw

r
c,Rdcs,Rd            (6.52) 

sr = 0.75d, fywk = 500 MPa, γs = 1.15, d = 234 mm, fywd = 500/1.15 = 435 MPa 
fywd, ef = (250 + 0.25× 234 = 309) ≤ 435 MPa, fywd, ef = 309 MPa, vRd, c = 0.60  

 sin)
du

1(fA)
s
d(5.1v75.0v

1
ef,ywdsw

r
c,Rdcs,Rd  

At basic control perimeter u1 at 2d from column: 
vRd, cs = vEd = 0.76 MPa, u1 = 4741 mm 

Substituting in code equation (6.52),  

 sin)
du

1(fA)
s
d(5.1v75.0v

1
ef,ywdsw

r
c,Rdcs,Rd

]
2344741

1[309A
d75.0

d5.160.075.076.0 sw


  

Asw = 557 mm2 
 
vi. Calculate the minimum link leg area 
Using code equation (9.11) to calculate the area of a single link leg.  
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yk

ck

tr
min,sw f

f
08.0

ss
)cossin5.1(A 


  

Substituting fck = 30 MPa, fyk = 500 MPa, d = 234 mm, sr = 0.75 d, st = 2d,  
sin α = 1 for vertical links, 
Asw, min = 48 mm2.  Choosing 8 mm diameter bars, Asw, min = 50 mm2. 
No. of links required = Asw/ Area of one link = 557/50 = 11.1 links. 
A minimum of 12 links should be provided at all perimeters with the spacing 
between the perimeters ≤ 0.75 d. 
 
vii. Arrange link reinforcement 
Arrange the perimeters as follows. 
(i) First perimeter at 100 mm = 0.43d > 0.3d 
Perimeter length = u0.43 d = 2(450 + 450) + 2π × 0.43 d = 2432 mm 
Maximum spacing of links ≤ 1.5d = 350 mm 
Spacing of links = perimeter length/Minimum no. of links 
                           = 2432/12 = 203 mm < 350 mm 
Provide 12 links at say 200 mm 
 
(ii) Second perimeter at (100 + 0.72d) = 269 mm say ≈ 1.15d 
Perimeter length = u1.15 d = 2(450 + 450) + 2π × 1.15 d = 3491 mm 
Spacing of links ≤ 1.5d = 350 mm 
Spacing of links = perimeter length/Minimum no. of links  
                           = 3491/12 = 291 mm < 350 mm 
 
viii. Summary 
Reinforcement is provided on two perimeters.  Once the numbers are rounded up to 
practical dimensions, design will be satisfactory. 
 
(f) Deflection  
The calculations are made for the middle strip using the average of the column and 
middle strip tension steel.  
10H16 at 300 mm c/c giving steel area of 2011 mm2 is placed in the column strip 
of width of 3000 mm. 
7H16 at 500 mm giving steel area of 1407 mm2 is placed in the column strip of 
width of 3000 mm. 
Permissible span depth ratio can be calculated using Eurocode 2 equation (7.16a). 
ρ% = 100 × 0.5 × (2011 + 1407)/ (3000 × 234) = 0.24 
ρ0% = 0.1√fck =   0.1√30 = 0.55 
k = 1.2 for flat slabs 
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Allowable span/d ratio = 66.7  
Actual span/d ratio = 6000/234 = 25.6 

Hence the slab is satisfactory with respect to deflection.  
 
(g) Cracking  
The bar spacing does not exceed 3 h, i.e. 900 mm.  
 
(h) Arrangement of reinforcement  
The arrangement of the reinforcement is shown in Fig. 8.66 and Fig. 8.67.  For 
clarity, only the steel in x-direction is shown separately for top and bottom steel.  
The steel arrangement is identical in both the x- and y-directions.  Note that 
although in the diagrams steel shown arrangement is shown confined to the 
individual panel, in reality steel extends into adjacent panels. 
 
 
8.10 YIELD LINE METHOD  
 
 
8.10.1 Outline of Theory  
 
The yield line method developed by Johansen is applicable to calculation of 
collapse load caused by yielding of under-reinforced concrete slab.  It is based on 
the upper bound theorem (also known as the kinematic theorem) of the classical 
theory of plasticity.  According to this theorem, for any assumed collapse 
mechanism, if the collapse load is calculated by equating the energy dissipation at 
the plastic ‘hinges’ to the work done by the external load, then the load so 
calculated is equal to or greater than the true collapse load.  The yield line method 
applied to slabs is analogous to the calculation of ultimate load of frames by the 
formation of plastic hinges in the members of the frame.  The collapse mechanism 
of a frame consists of a set of rigid members connected at plastic hinges.  The only 
difference between a frame and a slab at collapse is that instead of discrete plastic 
hinges forming at several locations in a frame, in the case of the slab, yielding 
takes place along several lines of hinges, referred to as yield lines.  All 
deformations are assumed to take place at the yield lines and the fractured slab at 
collapse consists of rigid portions held together by the yielded reinforcement at the 
yield lines.  It is important to appreciate that the method assumes ductile behaviour 
at yield lines and does not consider the possibility of shear failure.  Another 
important point to bear in mind is that because the method gives an upper bound 
solution to the true collapse load, it is important to investigate all possible collapse 
modes in order to determine the smallest collapse load. 
     In the one-way continuous slab shown in Fig. 8.67(a), straight yield lines form 
with a sagging yield line at the bottom of the slab near mid-span and hogging yield 
lines over the supports.  The yield line patterns for a square and a rectangular 
simply supported two-way slab subjected to a uniform load are shown in             
Fig. 8.67(b) and Fig. 8.67(c) respectively. The deformed shape of the square slab is 
an inverted pyramid and that of the rectangular slab is an inverted roof shape.  
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Fig. 8.67 (a) Continuous one-way slab; (b) square slab; (c) rectangular slab. 
 

 

Hinge 
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Fig. 8.68 Top: Simply supported trapezoidal slab. Middle: Trapezoidal slab with a free edge. 
Bottom: Rectangular slab with a column support. 

 
 
 
8.10.1.1 Properties of Yield Lines 
 
The following properties of the yield lines will be found useful in proposing 
possible collapse mechanisms. 
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(i)        Yield lines are generally straight and they must end at a slab 
boundary. 

(ii)        A yield line between two rigid regions must pass through the 
intersection of the axes of rotation of the two rigid regions.  
Edge supports act as axes of rotation. 

(iii)        Axes of rotation lie along the line of supports.  They can 
pass over a column at any angle. 

 
Fig. 8.68 shows some yield line patterns, which illustrate the above properties. 
   

(i)        Fig. 8.68(a) shows a trapezoidal slab simply supported on all four 
edges. The yield line between the two trapezoidal rigid regions passes 
through E where the axes of rotations AB and CD meet.  The yield 
line between the trapezoidal rigid region rotating about AB and the 
triangular region rotating about BD meets at B, the intersection point 
of the two axes of rotation. 

(ii)        Fig. 8.68(b) shows a trapezoidal slab simply supported on two 
opposite edges AB and CD, while edge AC is fixed against rotation 
while edge BD is free.  The yield line between the two trapezoidal 
rigid regions passes through E where the axes of rotations AB and 
CD meet.  The yield line ends at the free edge.  The yield line 
between the trapezoidal rigid region rotating about AB and the 
triangular region rotating about AC meets at A, the intersection point 
of the two axes of rotation. 

(iii)        Fig. 8.68(c) shows a rectangular slab simply supported on edges AB 
and BD and supported on a column at C.  The axes of rotations are 
AB, BD and EF.  The yield lines terminating at a free edge intersect 
the intersection of the two axes of rotations.  The axis of rotation ECF 
passes over the column. 

 
 
8.10.2 Johansen’s Stepped Yield Criterion 
 
As remarked earlier, the slab yields only at yield lines.  Yielding is governed by 
Johansen’s stepped yield criterion which assumes that yielding takes place when 
the applied moment normal to the yield line is equal to the moment of resistance 
provided by the reinforcement crossing the yield line.  It assumes that all 
reinforcement crossing a yield line yields and that the reinforcement bars stay in 
their original directions. 
     As shown in Fig. 8.69, let the two sets of reinforcement in the x and y directions 
respectively have ultimate moment of resistance such that for a yield line parallel 
to the x-axis the normal moment of resistance is mx and this resistance is provided 
by flexural steel in the y-direction.  Similarly for a yield line parallel to the y-axis, 
the normal moment of resistance is my and this is provided by flexural steel in the 
x-direction. 
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     If a yield line forms at an angle θ to the x-axis, then as shown in Fig. 8.70, the 
yield line can be imagined to be made up of a series of steps parallel to the 
reinforcement directions.  For a unit length of yield line, the lengths of the 
horizontal and vertical steps are respectively cos θ and sin θ.  The moment of 
resistance on the horizontal step is mx cos θ and on the vertical step it is my sin θ.  
The components of these moments of resistance parallel to the yield line are        
mx cos2 θ and my sin2 θ respectively.  Thus the normal moment of resistance along 
the yield line is  

mn = mx cos2 θ + my sin2 θ 
Note that if θ = 0, then the yield line is perpendicular to the reinforcement in the y-
direction and hence mn = mx.  Similarly if θ = 900, then the yield line is 
perpendicular to the reinforcement in the x-direction and hence mn = my.  If mx = 
my = m, a case of isotropic reinforcement, then mn = m irrespective of the direction 
of the yield line. 

 
 

Fig. 8.69 Yield line in an orthogonally reinforced slab. 

 
 

Fig. 8.70 Resistant moments on an inclined yield line. 
 
 
 
 

 

 
mx 

my 
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8.10.3 Energy Dissipated in a Yield Line 
 
Consider a slab ABCD, simply supported on the two adjacent edges AB and BC 
and free on the other two edges AD and CD as shown in Fig. 8.71 (a).  Let a yield 
line BD form between the two rigid regions ABD and CBD as shown in             
Fig. 8.71 (b).  Let the dimensions of the slab be as follows: 

AF = 1.5,   BF = 6.0,   FD = 2.0,   BG = 4.0,   CG = 0.5 
From geometry, the values for the following angles can be calculated. 

Angle ABF = tan–1 (1.5/6.0) = 14.04o, Angle FBD = tan–1 (2.0/6.0) = 18.44o 
Angle CBG = tan–1 (0.5/4.0) = 7.13o, Angle DBG = 900 – Angle FBD = 71.56o 

The length L of the yield line BD = √ (22+ 62) = 6.325 
     The energy dissipated at a yield line is given by the equation  

E = mn L θn 
where mn = normal moment on the yield line, L = length of the yield line, θn = 
rotation at the yield line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.71 (a) Slab supported on two edges only. 
 

     If the moments of resistance due to steel in the x- and y-directions respectively 
are μm and m, then the value of mn on a yield line inclined at an angle φ to the x- 
axis is given by  

mn = m cos2φ + μm sin2φ 
The energy dissipation at a yield line can be calculated by any of the three methods 
as follows. 
 
Method 1:  This is the most general and direct method but is not always the most 
convenient method to use.  The inclination of the yield line to the horizontal is 

φ = Angle FDB = 90o – 18.44o = 71.56o. 
The length L of the yield lines is L = 6.325 and the moment of resistance normal to 
the yield line is  

mn = m cos2φ + μm sin2φ = 0.1m + 0.9μm 

B 
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A
 B  

μm 
m 
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In order to calculate θn, draw a line JK perpendicular to the yield line BD as shown 
in Fig. 8.71 (b).  From geometry,  
Angle (JBD) = 14.04o + 18.11o = 32.480, BD = 6.325, JD = BD tan (JBD) = 4.063 

Angle (DBK) = 71.56o + 7.13o = 78.69o, KD = BD tan (DBK) = 31.625 
If point D deflects vertically by Δ, then  

θn = Δ/JD + Δ/KD = 0.2777 Δ 
Energy dissipated in the yield line is   

mn L θn = (0.1m + 0.9 μm) (6.325) (0.2777 Δ) 
= (1.5812 μm + 0.1757 m) Δ 
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Fig. 8.71 (b) Deformation along the yield line BD. 

 
Method 2: If the yield line is inclined at an angle φ to the x-axis, then the energy 
dissipated can be expressed as 

mn L θn = (mx cos2 φ + my sin2 φ) L θn 
mn L θn = mx (L cos φ) (θn cos φ) + my (L sin φ) (θn sin φ) 

Lx = L cos φ,   Ly = L sin φ, θx = θn cos φ,   θy= θn sin φ 
mn L θn = mx Lx θx + my Ly θy 

This formulation avoids having to calculate mn and L and can be useful in some 
instances.  Referring to Fig. 8.71 (a), 

Lx = FD = 2.0, Ly = FB = 6.00, 
mx = m, my = μm, 

From Method 1, 
θn = 0.2777 Δ, 

φ = Angle FDB = 71.56o 
θx = θn cos φ = 0.0879 Δ, θy = θn sin φ = 0.2635 Δ 

mn L θn = m (2.0) (0.0879 Δ) + μm (6.0) (0.2635 Δ) 
                                     = (1.5812 μm + 0.1757 m) Δ 
 
Method 3:  This is the best approach if the axes of rotation of the rigid regions lie 
along the coordinate axes and the steel is orthogonal and the reinforcement 
directions coincide with the coordinate axes.  The method is based on the fact that 
θn is the sum of the rotation of the two rigid regions.  In Fig. 8.71(b),  

θn = Angle DJK + Angle DKJ. 
                                   mn L θn = mx Lx θx + my Ly θy 



268                                                                                     Reinforced concrete design to EC 2 

                                                = (mx Lx θx1 + my Ly θy1) + (mx Lx θx2 + my Ly θy2) 
where (θx1, θy1) and ( θx2 , θy2) refer respectively to the x and y components of the 
rotation at the yield line due to rigid regions ABD (i.e., Angle DJK) and CBD (i.e., 
Angle DKJ). 
     In order to use this method, it is important to use a consistent notation for the 
moment and rotation vectors.  For the rotation vector, it is assumed that it is 
positive if the right hand’s thumb points along the positive direction of the rotation 
vector, then the slab rotates in the clockwise direction.  The moment vector is 
assumed positive if the right hand’s thumb points along the positive direction of 
the moment vector.  The moment then acts in the anticlockwise direction. 
     In the example considered, the rigid portion ABD rotates about the support AB 
in a clockwise direction.  Therefore the rotation vector points in the direction from 
A to B.  Similarly, the rigid portion DBC rotates about the support BC in a 
clockwise direction.  Therefore the rotation vector points in the direction from B to 
C.  
     The normal moment on the yield line BD causes tension on the bottom side.  
Therefore in the rigid portion ABD, the moment vector points in the direction from 
D to B while in the rigid portion DBC the moment vector points in the opposite 
direction from B to D.   
     Rotation of the rigid region ABD about the axis AB is 

θ1 = Δ/DL, where DL is perpendicular to AB. 
DL = BD sin ABD = 6.325 sin (14.04 + 18.44 = 32.48) = 3.397 

θ1 = Δ/3.397 = 0.2944 Δ 
Angle FAB = 90 – 14.04o = 75.96o 

θx1 = θ1 cos (FAB) = 0.2944 Δ × 0.2425 = 0.0714 Δ 
θy1 = θ1 sin (FAB) = 0.2944 Δ × 0.9701 = 0.2856 Δ 

mx = –m,   my = μ m,   Lx = 2.0,   Ly = 6.0 
Note that the sign of mx is negative because the horizontal component of the 
moment vector points in a direction opposite to that of the corresponding rotation 
component.   
     Rotation of the rigid region DBC about the axis BC is  

θ2 = Δ/DM, where DM is perpendicular to AB 
DM = BD sin DBM = 6.325 sin (90 – 18.44 + 7.13= 78.69) = 6.202 

θ 2 = Δ/6.202 = 0.1612 Δ 
θx2 = θ2 cos (GBC) = 0.1612 Δ cos (7.13) = 0.16 Δ 
θy2 = θ2 sin (GBC) = 0.1612 Δ sin (7.13) = 0.02 Δ 

mx = m,   my = –μ m,   Lx = 2.0,   Ly = 6.0 
Note that the sign of my is negative because the vertical component of the moment 
vector points in the direction opposite to that of the corresponding rotation 
component. 
     Energy E dissipated on the yield line is 

E = – m (2.0) (0.0714 Δ) + μ m (6.0) (0.2856 Δ) 
+ m (2.0) (0.16 Δ) – μ m (6.0) (0.02Δ) 

E = (1.5936 μ m + 0.1772 m) Δ 
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Although Method 3 appears to be more complicated than Method 1, in most cases 
of rectangular slabs where the axes of rotation coincide with the coordinate axes, 
Method 3 will be found to be the ideal method to use.   
 
 
8.10.4 Work Done by External Loads 
 
If a rigid region carries a uniformly distributed load q and rotates by θ about an 
axis AB as shown in Fig. 8.72, then the work done by q is given by 

Work done = ∫ q dA r θ 
where dA = an element of area, r = perpendicular distance to the element of area 
from the axis of rotation. 
Since q and θ are constant, work done = q θ ∫ r dA. 
But ∫ r dA = first moment of area about the axis of rotation. 

W = q θ {First moment of area about the axis of rotation} 
= q θ × Area × Distance to the centroid of area from the axis of rotation 

= q × Area × Deflection at the centroid 
 

 
 
 
 
 
 
 
 
 

Fig. 8.72  External work done by loads on a slab. 
 
 
8.10.5 Example of a Continuous One-Way Slab  
 
Consider a strip of slab 1 m wide where the mid-span positive reinforcement has a 
moment of resistance of m per metre and the support negative reinforcement has a 
moment of resistance of m' per metre.  The slab with ultimate load W per span is 
shown in Fig. 8.73(a).  
 
(a) End span AB  
The yield line in the span forms at point C at x from A.  The rotation at A is θ.  The 
deflection Δ at the hinge in the span is θ x.  If the rotation at the hinge over the 
support B is φ, then  

φ (l – x) = Δ = θ x 
φ = θ x / (l – x) 

The net rotation ψ at the hinge C is  
ψ = (θ + φ) = θ l / (l – x) 

The rotations at A, C and B are shown in Fig. 8.73 (b).  

r 
dA 

A 

B 
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The work done by the loads is W (x θ)/2. 
The energy dissipated E in the yield lines is  

E = (m ψ + m, φ) 
E = m θ l/ (l – x) + m` θ x / (l – x) 

E = θ/ (l – x) {m l + m` x} 
 

 
 

Fig. 8.73 (a) Continuous one-way slab; (b) end span; (c) internal span. 
 
Equating the work done by the loads to energy dissipated at the hinges,  

W (x θ)/2 = θ/ (l – x) {m l + m` x} 
W = 2 {m l + m` x} / [x (l – x)] 

 
The position x of the yield line in the span is determined so that the collapse load is 
minimum.  Differentiating W with respect to x, 

 
dW/dx = x (l – x) m` – (m l + m` x) (l – 2x) = 0 

m` x2 – m l (l – 2x) = 0 
This equation can be solved for x for a given value of the ratio m' /m.   
Under the section 5.6.2 for plastic analysis for beams, frames and slabs, clause 
5.6.2(2) of the code states that the required ductility may be deemed to be satisfied 



Reinforced concrete slabs                                                                                                     271 

without explicit verification of rotation capacity if all the following conditions are 
fulfilled. 

i. xu/d ≤ 0.25, fck ≤ 50 MPa and xu/d ≤ 0.15, fck ≥ 55 MPa. 
ii. the ratio of moments at intermediate supports to the moments in the span 
should be between 0.5 and 2.0. 
iii. reinforcing steel is either Class B or C.  (See Table C.1 in the Annex C of 
the code.  This is reproduced in Table 2.4, Chapter 2.) 

In Eurocode 2 code equations (5.10a) and (5.10b) given below, the ratio δ of 
redistributed/elastic moments is gives as 

                      MPa50ffor
d
x}0014.06.0{25.144.0 ck

u

2cu




                    (5.10a)

                       MPa50ffor
d
x}0014.06.0{25.154.0 ck

u

2cu




                   (5.10b) 

 
Table 8.18 Variation of δ with fck for plastic analysis 

fck, MPa εcu2 × 103 xu/d δ 
≤ 50 3.5 0.25 0.7525 
55 3.1 0.15 0.7372 
60 2.9 0.15 0.7430 
70 2.7 0.15 0.7497 
80 2.6 0.15 0.7535 
90 2.6 0.15 0.7535 

 
For the limitations on xu/d stated above, the corresponding values of redistribution 
ratio δ are shown in Table 8.18.  The maximum reduction of the moment is about 
25 percent of the elastic values. 
Note that if xu/d = 0.25, Mu = 0.12 bd2 fck, k = 0.12. 
When designing using yield line analysis, the depth of the slab should be so chosen 
that k ≤ 0.12. 
 
For the special case where m = m', the equation dW/dx = 0 reduces to  

x2 + 2 l x – l2 = 0,   x = 0.414 l 
Substitute in the work equation x = 0.414 l to obtain the value of m: 

m = m' = 0.086 Wl 
Since the maximum moment in span is at x = 0.414 l, the contra-flexure point is at 
a distance of 2x from support A.  Therefore the theoretical cut-off point for the top 
reinforcement is at 2x = 0.828 1 from the support A or at 0.172 l from support B.  
 
(b) Internal span DE  
The hinge is at mid-span and the rotations are shown in Fig. 8.73(c). The work 
equation is  

W (0.5 l θ)/2 = m` θ + m 2 θ + m` θ 
For the case where m = m'  

m = Wl/16 = 0.063Wl 
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Note that the moment value 0.063 Wl is same that in Table 8.14 of the code.  The 
theoretical cut-off points for the top bars are at 0.147 l from each support. 
 
 
8.10.6 Simply Supported Rectangular Two-Way Slab  
 
The slab and yield line pattern are shown in Fig. 8.76.  The ultimate loading is w 
per square metre.  As shown in Fig. 8.74, steel in the shorter y-direction provides a 
moment of resistance of m per unit length and the steel in the longer x-direction 
provides a moment of resistance of μm per unit length.  The yield line pattern is 
defined by one parameter, β. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.74 Collapse mode for a simply supported slab. 
 
1. Work done by external loads 
The work done by the loads can be calculated by assuming that points E and F 
deflect by Δ. 
 
(a) Triangles ACE and BFD 
Area = 0.5 b βa, deflection at the centroid = Δ/3. 
Work done by external loads is 
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(b) Trapeziums CEFD and AEFB 
Dividing the trapezium into two triangles and a rectangle,  

Triangle: area = 0.5 b/2 βa, deflection at the centroid = Δ/3 
Rectangle: area = b/2 (a – 2 βa), deflection at the centroid = Δ/2 

Work done by external loads is 
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Total work done by the loads W = W1 + W2 =  )23(
6


abq . 

2. Energy dissipated at the yield lines 
The energy dissipated at the yield lines can be calculated using Method 3. 
 
(a) Yield line in triangles ACE and BFD 
The triangles rotate only about y-axis. 

ly = b,   my = μm,   
ay





  

Hence the energy dissipated E1 on the yield lines in triangles ACE and BFC is 
][21 yyyxxx mmE     
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(b) Yield line in trapeziums AEFB and CEFD   
The trapeziums rotate only about x-axis. 

lx = a, mx = m, 
bx 5.0


  

Hence the energy dissipated E2 on the yield lines in trapeziums AEFB and CEFD is 
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The total energy dissipated E is therefore 

E = E1 + E2  }42{
b
am

a
bm


  

3. Calculation of moment of resistance: 
Equating the work done by the external loads to the energy dissipated at the yield 
lines, 

)23(
6

42 





abqW
b
am

a
bmE  

Solving for m,  
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In order to calculate the maximum value of m required, set dm/dβ = 0 
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Solving the quadratic in β,  
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8.10.6.1 Example of Yield Line Analysis of a Simply Supported Rectangular 
             Slab  
 
A simply supported rectangular slab 4.5 m long by 3 m wide carries an ultimate 
load of 16 kN/m2.  Determine the design moments for the case when the value of μ 
= 0.5.  
     Substituting a = 4.5 m,   b = 3.0 m,   b/a = 0.667,   μ = 0.5, in the formula for β,  

β= 0.312 
Substituting β = 0.312 and q = 16.0 in the equation for m,  

m = 10.51 kNm/m, μm = 5.26 kNm/m 
It is usual in designs based on the yield line analysis for the reinforcement to 
remain uniform in each direction.  It is evident from the collapse mechanism that 
yield line analysis provides no information on where the reinforcement can be 
curtailed, nor does it give any information on the shear force distribution in the 
slab. 
 
 
8.10.7 Rectangular Two-Way Clamped Slab 
 
The solution derived in section 8.9.6 can be extended to the case of a continuous or 
clamped slab.  The slab shown in Fig. 8.75 has a continuous hogging yield line 
around the supports.  The negative moment of resistance of the slab at the supports 
has a value of γ m' per unit length in the shorter direction and m' per unit length in 
the longer direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.75 Collapse mode for a clamped slab. 
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The basic yield line pattern will be as for the simply supported slab shown in Fig. 
8.74 except that negative yield lines (tension at the top face) form parallel and 
close to the supports as shown in Fig. 8.75 by dotted lines.  The work done by 
external loads and the energy dissipated at the positive yield lines (tension at the 
bottom face) remain as for the simply supported slab.  The extra aspect to be 
considered is the energy dissipated at the negative yield lines.   
(a) For the two negative yield lines parallel to the shorter sides 

ly = b, my = γm`, 
ay





  

Hence the energy dissipated by the two negative yield lines parallel to the shorter 
side is 
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(b) For the two negative yield lines parallel to the longer sides: 

lx = a, mx = m`, 
bx 5.0


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Hence the energy dissipated by the two negative yield lines parallel to the longer 
sides is 
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Total energy dissipated at the negative yield lines is  
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Equating the work done by the external loads to the energy dissipated at all the 
yield lines,  
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In order to calculate the maximum value of m required, set dm/dβ = 0 
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Solving the quadratic in β,  
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8.10.7.1 Example of Yield Line Analysis of a Clamped Rectangular Slab  
 
A clamped rectangular slab 4.5 m long by 3 m wide carries an ultimate load of  
16 kN/m2.  Determine the design moments for the case where 

m`/m = 1.3,   μ = 0.6,   γ = 0.6 
as obtained from average moment ratios from elastic analysis. 
Substituting in the formula for β, 
a = 4.5 m,   b = 3.0 m,   b/a = 0.667,   m`/m = 1.3,   μ = 0.6,   γ = 0.6, β = 0.33 < 0.5 
Substituting β = 0.33 and q = 16.0 kN/m2, m = 4.34 kNm/m, μm = 2.60 kNm/m,    
m' = 5.64 kNm/m, γm' = 3.4 kNm/m. 
     It is usual in designs based on the yield line analysis for the reinforcement to 
remain uniform in each direction.  However, the extent of the negative 
reinforcement required can be determined by finding the dimensions of a simply 
supported central rectangular region of dimensions αa × αb which has a collapse 
moment in the yield lines of m = 4.1 kNm/m, μm = 2.47 kNm/m and q = 16.0. 
     Since at the cut-offs of top bars, the hogging yield line has zero strength, this 
simulates simple support.  The bars must be anchored beyond the theoretical cut-
off lines.  
     Substituting μ = 0.6, b/a = 3/ (4.5) = 0.67 in the equation for β in section 8.9.6 
gives β = 0.33. 
     Substituting for m = 4.34 kN/m, b = 3 α, a = 4.5 α, μ = 0.6, β = 0.33,  
q = 16kN/m2 in the equation for m in section 8.9.6, where 
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gives α = 0.66.  The theoretical cut-off  lengths are therefore (1 – α)/2 = 0.17 of the 
side dimensions. 
 
 
8.10.8 Clamped Rectangular Slab with One Long Edge Free 
 
A rectangular slab continuous on three edges and free on a long edge has two 
distinct modes of collapse as shown in Fig. 8.76 and Fig. 8.77.  The slab shown in 
the figures has a continuous hogging yield line around the supports in addition to 
positive yield lines.  As shown in Fig. 8.77, the positive and negative moments of 
resistance of the slab have values of μm and γm' per unit length respectively in 
yield lines parallel to the y-direction and m and m' per unit length respectively in 
yield lines parallel to the x-direction. 
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     In the case of simply supported and clamped rectangular slabs, there was only 
one mode of collapse defined by a single parameter β.  However when one of the 
edges is free, there are two different modes of collapse possible as shown in        
Fig. 8.76 and Fig. 8.77.  Calculations have to be done for both modes of collapse to 
determine either the minimum collapse load or the maximum moment of resistance 
required. 
 
8.10.8.1 Calculations for Collapse Mode 1 
 
The mode of collapse is shown in Fig. 8.76.  Assume that EF deflects by Δ. 
 
(1) Energy dissipated at the yield lines 
 
(a) Trapeziums ACFE and BDFE: The trapeziums rotate only about the y-axis. 
 
(i) For the negative yield line 

ly = b,   my = γm`,  
ay 5.0


 .  Total energy dissipation for the two regions is 
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(ii) For the positive yield line 

ly = b,   my = μm,   
ay 5.0
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 .  Total energy dissipation for the two regions is 
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Fig. 8.76 Clamped slab with a free edge, collapse mode 1. 
 
(b) Triangle CFD: The triangle rotates only about the x-axis. 
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(i) For the negative yield line 

lx = a,   mx = m`,   
bx





 .  Energy dissipation is 
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(ii) For the positive yield line 

lx = a,   mx = m,   
bx





 .  Energy dissipation is 
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
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1
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Total energy dissipated at the positive and negative yield lines is  
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Simplifying 
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(2) Work done by external loads 
 
(a) Triangle CFD:  Area = 0.5 a βb, deflection at the centroid = Δ/3 
Work done by external loads is 

3
5.01


 baqW   

(b) Trapeziums ACFE and BDFE:  Dividing it into a triangle and a rectangle 
Triangle: area = 0.5 a/2 βb, deflection at the centroid = Δ/3 

Rectangle: area = a/2 (b – βb), deflection at the centroid = Δ/2 
Work done by the external loads is 
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Total work W done by the loads = W1 + W2 
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6


abqW  

(3) Calculation of m 
Equating the work done by the external loads to the energy dissipated at all the 
yield lines,  
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In order to calculate the maximum value of m required, set dm/dβ = 0, 
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8.10.8.2 Calculations for Collapse Mode 2 
 
The mode of collapse is shown in Fig. 8.77.  Assume that E F deflects by Δ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.77 Clamped slab with a free edge, collapse mode 2. 
 
(1) Energy dissipated at the yield lines 
 
(a) Triangles ACE and BDF: Rotation of the triangles is about y-axis only. 
 
(i) For the negative yield line 

ly = b,   my = γm`,   
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 .  Total energy dissipation for the two triangles is 
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(ii) For the positive yield line 

ly = b,   my = μm,   
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 ,  Total energy dissipation for the two triangles is 
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(b) Trapezium CEFD: The trapezium rotates only about the x-axis. 
 
(i) For the negative yield line 

lx = a,   mx = m`,   
bx


 .  Energy dissipation is 

b
maE 

 '
3  

(ii) For the positive yield line 

lx = 2(βa),   mx = m,   
bx


 ,  Energy dissipation is 

b
maE 

 24  

Total energy dissipated at the positive and negative yield lines is  
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Simplifying 
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(2) Work done by external loads 
 
(a) Triangles ACE and BDF: 
Area = 0.5 b βa, deflection at the centroid = Δ/3 
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(b) Trapezium CEFD 
Dividing it into two triangles and a rectangle, 

Two triangles: area = 0.5 b βa, deflection at the centroid = Δ/3 
Rectangle: area = b (a – 2βa), deflection at the centroid = Δ/2 
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Total work W done by the loads = W1 + W2 
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     Equating the work done by the external loads to the energy dissipated at all the 
yield lines,  
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In order to calculate the maximum value of m required, set dm/dβ = 0, 
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Simplifying 
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Solving the quadratic in β, 
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8.10.8.3 Example of Yield Line Analysis of a Clamped Rectangular Slab with 
             One Long Edge Free 
 
A clamped rectangular slab with one long edge free is 4.5 m long by 3 m wide and 
carries an ultimate load of 16 kN/m2.  Determine the design moments for the case 
when  

m'/m = 5.0,   μ = 3.0,   γ = 1.5 
as obtained from maximum moment ratios from elastic finite element analysis.  
     When a slab has more than one distinct mode of failure, it is necessary to 
investigate both modes of failure and accept the larger of the two moments as the 
design moment.  
 
Mode 1: Substituting the values of the parameters in the formula for β,  

β = 0.712 < 1.0 
Using this value of β,  

m = 2.03 kNm/m 
 
Mode 2:  Using the same parameters as for mode 1, calculate the value of β.  The 
smaller root for β is 

β = 0.597 > 0.5 
Using this value of β = 0.5, 

m = 1.95 kNm/m. 
 
For design the larger value for m is obtained from mode 1.  Therefore  
m = 2.03 kNm/m, μ m = 6.1 kNm/m, m' = 10.2 kNm/m,   γm' = 15.2 kNm/m. 
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8.10.9 Trapezoidal Slab Continuous over Three Supports and Free on a  
           Long Edge  
 
Fig. 8.78 shows a uniformly loaded trapezoidal slab with three edges clamped and 
one edge free.  Normal moment of resistance per unit length on positive and 
negative yield lines parallel to x- and y-axes are respectively (m, μm) and (m', γm') 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.78 Trapezoidal clamped slab with a free edge. 
     
In the previous examples, the rotations of the rigid regions took place about edges 
which were parallel to x- or y-axis.  In this example only one axis of rotation is 
parallel to the coordinate axes.  One possible mode of collapse is shown by the 
positive yield lines CE and DF and negative yield lines parallel to the supports. 
     Assume that EF deflects by Δ.  As shown in Fig. 8.79, let the yield line CE be 
inclined to the vertical by φ and the support CA is inclined to the vertical by ψ.  Let 
EG be perpendicular to support AC.  From geometry, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.79 Rotation and moment vectors. 
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Angle ACH = ψ,   
)(

1cos,tan






a
h

AE
h

b
a  

Angle ECH = φ, 
b
a

 tan , Angle CAH = 90 – ψ, GE = h, AE = (α + β) a 

Triangle ACE rotates clockwise about the support AC by θ.  The rotational 
components of θ are 

 cos,sin, 


 yxh
 

Substituting for tan ψ and cos ψ  

ab yx










)(
1,

)( 





  

 
(a) Energy dissipated in yield lines 
 
(i) Negative yield line in triangles ACE and BDF 
The triangles rotate about an axis inclined to both x- and y-axes. 

lx = α a,   mx = m`,   θx = 
b


 )( 

  

ly = b,   my = γm`,   
ay
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

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  

Hence the energy dissipated on the negative yield line in the two triangles is 
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     Note that because both the moment vector and the rotation vector act in the 
same direction, the energies dissipated by both the x- and y-components are 
positive. 
 
(ii) Positive yield line in triangles ACE and BDF 

lx = β a,   mx = m,   θx = 
b


 )( 

  

ly = b,   my = μm,   
ay



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)(
1

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Note that x-components of the moment vector and rotation vector point in opposite 
directions.  Therefore the energy dissipated on the positive yield line in triangle 
ACE is 
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(iii) Negative yield line in the trapezium ECDF 
The trapezium rotates only about the x-axis. 

lx = a,   mx = m',   θx = 
b
  

b
mamE '

xxx3


   

(iv) Positive yield line in the trapezium ECDF 

lx = 2(β a),   mx = m,   θx = 
b
  

b
mamE xxx


  24   

Therefore total energy dissipation is  
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(b) Work done by external loads 
 
(i) Triangles ACE and BDF 

Area = 0.5 (α + β) a b,   deflection of the centroid = Δ/3 
W1 = 2 q {0.5 (α + β) a b Δ/3} 

 
(ii) Trapezium ECDF 
 
Divide into two triangles and a rectangle. 
For each triangle: 

area = 0.5 β a b,   deflection of the centroid = Δ/3 
For the rectangle: 

Area = (1 – 2β) a b,   deflection of the centroid = Δ/2 
Work done is 

W2 = 2 q {0.5 a b β} Δ/3 + q a b (1 – 2 β) Δ/2 
Total work W done is W = W1 + W2 

W = q ab {3 + 2 (α – β)} Δ/6 
Equating W = E and simplifying,  
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If α = 0, then the equation will be same as for Mode 2 collapse of a clamped 
rectangular slab with a free edge. 
Assuming: 
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a = 4.5 m,   b = 3.0 m,   α a = 1.0,   m`/m = 5.0,   μ = 3.0,   γ= 1.5, q = 16 kN/m       
β = 0.5, m = 3.04 kNm/m. 

 
 
8.10.10 Slab with a Symmetrical Hole 
 
Fig. 8.80 shows a simply supported rectangular slab of dimensions a × b with a 
central rectangular hole of dimensions αa × αb.   
There are three distinct modes of collapse which have to be analysed in calculating 
the minimum collapse load. 
 
 
 
 
 
 
 
 
 

Fig. 8.80 Slab with a hole. 
 
 
8.10.10.1 Calculations for Collapse Mode 1 
 
Fig. 8.81 shows the collapse mode 1.  Let the deflection at the apex of the triangle 
be Δ. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.81 Collapse mode 1. 
 
(a) Work done by external loads 
(i) Two side triangles 

Area = 0.5 b βa,   deflection at the centroid = Δ/3 
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(ii) Two trapeziums 
Dividing each into two triangles, two rectangles and a rectangle adjoining the side 
of the hole, 
 
Triangle 

Area = 0.5 b/2 βa,   deflection at the centroid = Δ/3 
Rectangle 

Area = b/2 (a – αa – 2 βa),   deflection at the centroid = Δ/2 
 
Rectangle adjoining the hole 
Note that the deflection at the edge of the hole is not Δ but (1 – α) Δ 

Area = {b (1 – α)/2} αa,   deflection at the centroid = (1 – α) Δ/2 

]
2

)1(
2

)1(
2

)2(
2

}
322

1{2[22











 


 aqbaaabqabqW  

 }3643{
6

32
2 

abqW  

Total work W done by the loads = W1 + W2  
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(b) Energy dissipated at the yield lines 
 
(i) Yield lines in the two side triangles 

ly = b,   my = μm,   
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(ii) Yield lines in the two trapeziums 

lx = (a – αa),   mx = m,   
bx 5.0
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The total energy dissipated is therefore 

E1 + E2 =  })1(42{
b
am

a
bmE 


  

Equating the work done by the external loads to the energy dissipated at the yield 
lines, 
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Solving for m,  
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In order to calculate the maximum value of m required, set dm/dβ = 0, 
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The resulting quadratic equation in β can be solved numerically for specific values 
of the parameters α and μ and the corresponding value of m can be determined.  
Note that from geometry the above equations are valid for 0 ≤ β ≤ (1 – α)/2. 
 
 
8.10.10.2 Calculations for Collapse Mode 2 
 
Fig. 8.82 shows the collapse mode 2.  Assume that the deflection at the apex of 
side triangles is Δ. 
(a) Work done by external loads 
 
(i) Side trapeziums 
Divide each into two triangles and a rectangle. 
 
Triangle 

Area = 0.5 {(1 – α) a /2} βb,   deflection at the centroid = Δ/3 
 
 
 
 
 
 
 
 
 

Fig. 8.82 Collapse mode 2. 
 
Rectangle 

Area = (1 – 2β) b (1 – α) a/2,   deflection at the centroid = Δ/2 
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(ii) Top and bottom trapeziums 
Divide it into two triangles and a rectangle which is part of the hole. 
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Triangle 
Area = 0.5 {(1 – α) a /2} βb, deflection at the centroid = Δ/3 

 
Rectangle 
Note that the deflection at the edge of the hole is not Δ but (1 – α) Δ/ (2β) 

Area = αa (1 – α) b/2, deflection at the centroid = (1 – α) Δ/ (4 β) 
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(b) Energy dissipated at the yield lines 
 
(i) Yield lines in the two side trapeziums 

ly = 2(βb),   my = μm,   
ay )1(5.0 





  










)1(
8}

)1(5.0
2{21








a
bm

a
mbE  

 
(ii) Yield line in the top and bottom trapeziums 

lx = 2(1 – α) a/2,   mx = m,   
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The total energy dissipated is therefore 
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Equating the work done by the external loads to the energy dissipated at the yield 
lines, 
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Solving for m,  
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In order to calculate the maximum value of m required, set dm/dβ = 0. 
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The resulting quadratic equation in β can be solved numerically for specific value 
of the parameters and the corresponding value of m can be determined.  The above 
equations are valid only for 0.5(1 – α) ≤ β ≤ 0.5. 
 
 
8.10.10.3 Calculations for Collapse Mode 3 
 
Fig. 8.83 shows the collapse mode 3.  Assume that the deflection at the longer 
sides of the hole is Δ. 
 
(a) Work done by external loads 
 
(i) Side trapeziums  
Divide each into two triangles and a rectangle. 
 
Triangle 

Area = 0.5 {(1 – α) b /2} βa,   deflection at the centroid = Δ/3 
 
Rectangle 
Note that the deflection at the edge of the hole is not Δ but {0.5(1 – α)/ β} Δ 

Area = αb (1 – α) a/2, deflection at the centroid = {0.5(1 – α)/ β} Δ/2 
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Fig. 8.83 Collapse mode 3. 
 
(ii) Top and bottom trapeziums  
Divide it into two triangles and a rectangle which is part of the hole. 
 
Triangle 

Area = 0.5 {(1 – α) b /2} βa,   deflection at the centroid = Δ/3 
 

βa 
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Rectangle 
Area = (1 – 2β) a (1 – α) b/2,   deflection at the centroid = Δ/2 
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Total work W done by the loads = W1 + W2 
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(b) Energy dissipated at the yield lines 
 
(i) Yield lines in the two side trapeziums 

ly = 2(1 – α) b/2,   my = μm,   
ay
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(ii) Yield line in the top and bottom trapeziums 

lx = 2(βa),   mx = m,   
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The total energy dissipated is E = E1 + E2, 
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Equating the work done by the external loads to the energy dissipated at the yield 
lines, 
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Solving for m,  
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In order to calculate the maximum value of m required, set dm/dβ = 0, 
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The resulting quadratic equation in β can be solved numerically for specific values 
of the parameters and the corresponding value of m can be determined.   The above 
equations are valid only for 0.5(1 – α) ≤ β ≤ 0.5. 
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Table 8.18 Collapse load for a simply supported slab with a hole 
α Mode 1 Mode 2 Mode 3 
 β m/ (qb2) β m/ (qb2) β m/ (qb2) 
0 0.312 0.0730 N/A – N/A – 
0.05 0.317 0.0753 0.5* 0.0715 0.5* N/A 
0.10 0.320 0.0770 0.5* 0.0741 0.5* 0.0336 
0.20 0.322 0.0779 0.4567 0.0769 0.5* 0.0325 
0.30 0.317 0.0760 0.4076 0.0770 0.5* 0.0290 
0.40 0.300* 0.0701 0.3564 0.0744 0.5* 0.0242 
0.50 0.250* 0.0607 0.3031 0.0690 0.5* 0.0189 
0.6 0.20* 0.0474 0.2474 0.0608 0.2* 0.0136 
0.7 0.15* 0.0316 0.1895 0.0498 0.15* 0.0120 
0.8 0.10* 0.0158 0.1290 0.0360 0.10* 0.0074 
0.9 0.05* 0.0041 0.0659 0.0194 0.05* 0.0036 

 
*Not a stationary minimum. 

 
 
8.10.10.4 Calculation of Moment of Resistance 
 
For calculating the required ultimate moment, ultimate moments from all the three 
modes are calculated and the largest value is chosen.  Results of calculations for 
a/b = 1.5, μ = 0.5 for a range of 0 ≤ α ≤ 0.9 are shown in Table 8.19. 
 
In some cases the stationary minimum value of β is obtained in the non-valid 
region.  In such cases the minimum value of m/(qb2) has been calculated by 
limiting the value of β to the valid region.  This is indicated in the table by *.  It is 
noticed that up to α ≈ 0.25, mode 1 governs and afterwards mode 2 governs.  It 
appears that mode 3 never governs. 
 
 
8.10.11 Slab-and-Beam Systems 
 
Combined beam-slab systems are commonly met in practice.  Fig. 8.84 shows a 
typical case of a slab supported on beams cast integral with slabs, which in turn are 
supported on columns at the corners of the rectangle.   
In considering this type of system, it is important to investigate yield line collapse 
modes involving independent collapse of the slab only and combined slab–beam 
collapse. 
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Fig. 8.84 Integral beam–slab systems. 
 

 
Fig. 8.85 Collapse of beam–slab systems. 

 
     If the torsional strength of the supporting beams is ignored, then the slab can be 
assumed to be simply supported on beams and the collapse of the slab only is 
treated as the collapse of a simply supported slab as discussed in section 8.9.6.  The 
calculated moment of resistance is the minimum that should be provided in the 
slab. 
     In considering the combined slab–beam collapse, if the deflection at the plastic 
hinge is Δ, then the total rotation at the plastic hinge is 

θn = 2(Δ/0.5a) = 4Δ/a 
The work done by external loads is  

W = qb (Δa/2) = 0.5q a b Δ 
If the moment capacity of the beams is Mb, then the energy dissipated at the plastic 
hinge due to slab and beam is  

E = (μm b+ 2Mb) θn = (m b+ 2Mb) 4Δ/a 
Equating W = E,  

qa2b/8 = μm b+ 2Mb 

Collapse of slab only 
Collapse of slab and beam 

Represent plastic hinge in beam 

a 

b 
μm 

m 
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Knowing m,  
Mb = qa2b/16 – μm b/2 

 
It is possible to increase the value of m to a value larger than the minimum for 
collapse of slab only and provide lighter beams.  For example using the slab 
designed in section 8.8.6.1, q = 16 kN/m2,   a = 4.5 m,   b = 3.0 m,   μ = 0.5,          
m = 10.51 kNm/m, μ m = 5.26 kNm/m, Mb = 52.86 kNm. 
     If it is decided to decrease the moment capacity of the beams towards the 
supports, then other possible collapse modes such as that shown in Fig. 8.85 need 
to be investigated. 
 
 
8.10.12 Corner Levers  
 
In sections 8.9.6 and 8.9.7 the yield lines for both simply supported and continuous 
slabs were assumed to run directly into the corners (Fig. 8.84 and Fig. 8.85).  This 
situation will develop only if there is sufficient top steel at the corner region and 
the corner is held down.  However if the corners are not held down then the yield 
line will divide to form a corner lever as shown in Fig. 8.86.  Two possible 
situations occur. 
 
1. Simply supported corner not held down: In this case the slab lifts off the 
corner and the sagging yield line divides as shown in Fig. 8.86(a) and the triangular 
portion rotates about the chain dotted line.  
 
2. Simply supported corner held down: In this case the sagging yield line divides 
and a hogging yield line forms as shown in Fig. 8.86(b).  
     Solutions have been obtained for these cases which show that for a 90° corner, 
the corner lever mechanism decreases the overall strength of the slab by about 10 
percent.  In the case of slabs with acute corners the reduction in the calculated 
ultimate load due to corner levers is much larger.  The reinforcement should be 
increased accordingly when the simplified solution is used.  The top reinforcement 
commonly known as torsional reinforcement will prevent cracking in continuous 
slabs on the corner lever hogging yield line.  

 
 

Fig. 8.86 (a) Corner not held down; (b) corner held down. 
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8.10.13 Collapse Mechanisms with More Than One Independent Variable 
 
The collapse mechanisms considered previously were governed by a single 
variable β.  Unfortunately this is not always the case.  Fig. 8.87 shows a case of a 
slab clamped on two adjacent edges and the other two edges simply supported.  In 
this case the collapse mechanism is defined by three independent variables β1, β2 
and β3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.87 Collapse mode for a slab with two adjacent discontinuous edges. 
 
The problem of finding the maximum (or minimum) value of a function of several 
variables is not a trivial task.  Fortunately computer programs are available for 
solving such problems. 
 
 
8.10.14 Circular Fans 
 
When concentrated loads act, flexural failure modes are likely to involve 
concentration of yield lines around the loaded area.  This generally involves curved 
negative moment yield lines with radial positive moment yield lines as shown in 
Fig. 8.88. 
If the moment of resistance is same in both directions and the radius of the fan is r, 
then the energy dissipated can be calculated by assuming that the deflection at the 
centre is Δ.   
 
(a) Energy dissipated at yield line 
 
(i) Negative yield line 
The total length L of the negative yield line is 2πr.  Rotation θn at the yield line is 
Δ/r.  Moment of resistance is m.  `Therefore energy dissipated is 

E1 = m` (2πr) Δ/r = 2π m` Δ 

a 

β3b 

β1a β2a 

A B 

C D 

F E 

m 

μm 

m` 

γm` 
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Fig. 8.88 Yield lines in a circular fan. 
 
(ii) Positive yield lines 
 
As the reinforcement in each direction is the same, the slab is isotropically 
reinforced.  Therefore the x- and y-axes for each triangular segment can be 
different.  Assuming that the x- and y-axes coincide with the radial and tangential 
directions of the circle, each segment rotates about the tangent only.  The 
projection of the yield lines of each segment on the tangent is equal to the arc 
length corresponding to that segment.   
The total projected length L of all positive yield line is 2πr.  The tangential rotation 
θn at the yield line is Δ/r.  Moment of resistance is m. 
Therefore energy dissipated is 

E2 = m (2πr) Δ/r = 2π m Δ 
The total energy dissipation is 

E = E1 + E2 = 2π (m` + m) Δ 
 
(b) Work done by external loads 
 
Let q be the uniformly distributed load due to self weight and other externally 
applied loads and P is the concentrated load at the centre of the circle.  The 
concentrated load could be an external load or a reaction from a column as in flat 
slab construction.  The work done by the external uniformly distributed load q is 
calculated by noting that at the centroid of each triangular segment, deflection is 
Δ/3 and the total load is q (π r2).  Therefore 

W = q (π r2) Δ/3 + P Δ 
Equating E and W, 

(m' + m) = q r2 /6 + P/ (2 π) 
 
 
8.10.14.1 Collapse Mechanism for a Flat Slab Floor 
 
Fig. 8.89 shows a flat slab floor with columns spaced at Lx and Ly in the x- and y-
directions respectively.  Postulate a collapse mechanism where the entire floor 
deflects by Δ with circular fans around columns as shown in Fig. 8.91.  In any one 
panel: 
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Fig. 8.89 Collapse of a flat slab floor. 

 
(a) Energy dissipated at yield lines 
From section 8.9.14 above,  

E = 2π (m' + m) Δ 
(b) Work done by external load 
 
(i) Uniformly distributed load outside the circular fans 

Area = Lx Ly – π r2,   deflection = Δ 
(ii) Uniformly distributed load inside the circular fans 

Area = π r2,   deflection = 2Δ/3 
Total work done is 

W = q (Lx Ly – π r2) Δ + q π r2 (2Δ/3) 
W = q (Lx Ly – π r2/3) Δ 

Equating W and E,  

}
3

{
2

2
' rLLqmm yx




  

 
 
8.10.15 Design of a Corner Panel of Floor Slab Using Yield Line Analysis 
 
A square corner panel of a floor slab simply supported on the outer edges on steel 
beams and continuous over the interior beams is shown in Fig. 8.90.   

E = 2m {2/ (1 – β) + 1/ β} Δ 
 

Δ 

Ly 

Lx 

r 
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Fig. 8.90 Corner slab. 
 
The design ultimate load is 12.4 kN/m2.  The slab is to be 175 mm thick and 
reinforced equally in both directions.  The moment of resistance in the hogging and 
sagging yield lines is to be the same.  The materials are fck = 30 MPa concrete and 
fyk = 500 MPa reinforcement.  Design the slab using the yield line method. 
     The yield line pattern, which is symmetric about the diagonal, depends on one 
variable β.  Assuming the deflection at the meeting point of the sagging yield lines 
as Δ, 
 
(a) Energy dissipated at yield lines 
 
(i) Positive yield lines in bottom triangle  
Rotates about x-axis only. 

θx = Δ/ (6β), mx = m,  lx = 6 
(ii) Positive yield lines in left triangle  
Rotates about y-axis only. 

θy = Δ/ (6β),   my = m,  ly = 6 
Total energy dissipation E1 is 

E1 = 2{m 6 Δ/ (6β)} = 2m Δ/β 
 
(iii) Positive and negative yield lines in the right triangle  
Note that my = (m+m') accounts for both positive and negative yield lines in the 
triangle. Rotates about y-axis only. 

θy = Δ/ (6 – 6 β),   my = (m + m'),  ly = 6 
(iv) Positive and negative yield lines in the top triangle  
Rotates about x-axis only. 

θx = Δ/ (6 – 6 β),   mx = (m + m'),  lx = 6 
Total energy dissipation E2 is 

E2 = 2(m + m') Δ/ (1 – β) 

6 m 

6β 
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The total energy dissipated E by all yield lines is 
E = E1 + E2 = 2{(m + m')/ (1 – β) + m/ β} Δ 

If m = m', E = 2m{2/ (1 – β) + 1/ β} Δ 
 

(b) External work done by the loads 
 
(i) Bottom and left triangles 

Area = 0.5 × 6 × (6 β),  deflection = Δ/3 
W1 = 2[q {0.5 × 6 × (6 β)} Δ/3] = 12q β Δ 

 
(ii) Top and right triangles 

Area = 0.5 × 6 × (6 – 6 β),  deflection = Δ/3 
W2= 2[q {0.5 × 6 × (6 – 6 β)} Δ/3 = 12q (1 – β) Δ 

The total work W done is  
W = W1 + W2 = 12 q Δ 

 
(c) Calculation of moment capacity required 
Equating E and W, and solving for m 

)1(
6

2








 qm  

For maximum m, dm/dβ = 0, 
(1 + β) (1 – 2 β) – (β – β2) = 0 

Simplifying, 
β2 + 2β – 1 = 0, β = (√2 – 1) = 0.4142 

Substituting for β,   m = 1.03q.  If q = 12.4 kN/m2,   m = 12.76 kNm/m. 
 
(d) Design for flexure 
Assuming 10 mm diameter bars and 25 mm cover, the effective depth d of the 
inner layer is 

d = 175 – 25 –10 – 5 = 135 mm 
According to the code equation (5.10a), the ratio of redistributed /elastic moment is 
                             δ ≥ 0.44 + 1.25 (xu/d)                                                        (5.10a) 

If Class A steel is used, δ ≥ 0.8, xu/d ≤ 0.29. 
Keeping xu/d ≤ 0.25 for approximately 25 percent redistribution, 

z/d = 1 – 0.4 xu/d = 1– 0.1 = 0.9 
Mu = fcd × (0.8x × b) × z = 0.12 bd2 fck 

k = m/ (bd2 fcu) = 12.76 × 106/ (1000 × 1352 × 30) = 0.023 < 0.12 
z/d = 0.5(1.0 + √ (1.0 – 3 × 0.023) = 0.98 

xu/d = 0.05 < 0.25 
z = 0.98 × 135 = 132 mm 

As = 12.76 × 106/ (0.87 × 500 × 132) = 222 mm2/m 
Increase the steel area by 10 percent to 245 mm2/m to allow for the formation of 
corner levers.  
Check minimum steel area: 
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MPa6.22530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
As, min = 0.26 × (2.6/500) × 1000× 135 ≥ 0.0013 × 1000× 135 

As, min =183 mm2/m 
Maximum spacing is normally restricted to  

3 h ≤ 400 mm for principal reinforcement 
3.5 h ≤ 450 for secondary reinforcement 

Provide 10 mm diameter bars at 300 mm centres to give a steel area of 262 mm2/m 
which is greater than the minimum area of reinforcement = 183 mm2/m. 
 
As a comparison, using the moment coefficients from Table 8.14 for two adjacent 
edges discontinuous, the moments are: 

Support moment = m' = –0.047 ×12.4 × 62 = –20.98 kNm/m 
Span moment = m = 0.036 ×12.4 × 62 = 16.07 kNm/m 

m'/m = 1.31 
If this ratio is used in the yield line analysis, then the total energy dissipated by all 
yield lines is 

E = E1 + E2 = 2{(m + m`)/ (1 – β) + m/ β} Δ 
If m' = 1.31 m, 

E = 2 m {2.31/ (1 – β) + 1/ β} Δ 
 
The total work W done is  

W = W1 + W2 = 12 q Δ 
Equating E and W, and solving for m 

)31.11(
q6m

2




  

For maximum m, dm/dβ = 0, 
(1 + 1.31 β) (1 – 2 β) – 1.31 (β – β2) = 0 

Simplifying, 
1.31 β2 + 2β – 1 = 0, β = (√2.31 – 1) = 0.52 

Substituting for β, m = 0.89 q.  If q = 12.4 kN/m2, m = 11.05 kNm/m and             
m' = 14.5 kNm/m. 
Compared with the yield line solution which gave m = 12.76 kNm/m, using the 
moment coefficients gives m = 11.05 kNm. 
  
The cut-off for the top steel can be determined by considering a slab of length L as 
shown in Fig. 8.91 with  no top steel i.e. m' = 0. 
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Fig. 8.91 Corner slab with simple supports. 
 
Proceeding as before, 
 
1. The total energy dissipated E by all yield lines is 

E = 2{(m + m`)/ (1 – β) + m/ β} Δ 
Setting m' = 0,  

E = 2m {1 / (1 – β) + 1/ β} Δ 
= 2m Δ / (β – β2) 

 
2. External work done by the loads 
(i) Bottom and left triangles 

Area = 0.5 × L × (L β),   deflection = Δ/3 
W1 = 2[q {0.5 × L × (L β)} Δ/3] = L2q β Δ/3 

 
(ii) Top and right triangles 

Area = 0.5 × L× (L – L β),   deflection = Δ/3 
W2= 2[q {0.5 × L × (L – L β)} Δ/3 = L2q (1 – β) Δ/3 

The total work W done is  
W = W1 + W2 = L2q Δ/3 

 
3. Calculation of moment capacity required 
Equating E and W, and solving for m 

)(
6
Lqm 2

2
  

For maximum m, dm/dβ = 0, 1 − 2β = 0, β = 0.5, m = qL2/24. 
If m = 12.76 kNm/m and q = 12.4 kN/m2, then L = 4.97 m. 
The top bars can be cut off at (6.0 – 4.97) = 1.03 m from the support.  However 
allowing for an anchorage length of 36 bar diameters, the anchorage length for a 
H10 bar is 36 × 10 = 360 mm.  The top bars can be curtailed at 1.03 + 0.36 = 1.4 m 

L 

L β 
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from the support.  Area of steel at top is 10H at 300 mm.  Over a length of 1.4 m 
provide 6H10 at 300 c/c.   
The bottom steel is to run into and be continuous through the supports.  
 
At the corner where two simply supported edges meet, torsional steel has to be 
provided.  The steel is provided in four layers, two at top and two at bottom at right 
angles.  The area of steel provided is 75 percent of the steel at mid-span and the 
bars extend a distance of 20 percent of the shorter span. 
Area of steel at mid-span is 262 mm2/m.  75 percent of 262 = 197 mm2/m ≈ 10 mm 
bars at 400 c/c.  The bars extend a distance from the edge of L/5 = 1.2 m.  Provide 
4H10 spaced at 400 mm.  
 

 
 

Fig. 8.92 Steel layout for corner slab. 
 
4. Check shear capacity 
The shear at the continuous edge is  

V = 12.4 × (6/2) + 12.76/6 = 39.3 kN /m 
v = 39.3 × 103 / (1000 × 135) = 0.29 MPa 

100 ρ1 = 100 As/ (bd) = 100 × 262/ (1000 × 135) = 0.19 < 2.0 
CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + (200/d) 0.5 = 2.2 >2.0 

MPa43.0)3019.0(0.212.0)f100(kCv 33.033.0
ck1c,Rdc,Rd   

νmin = 0.035 × k1.5×√fck = 0.035×2.01.5 ×√30 = 0.54 MPa 
(v = 0.29) < (vRd, c = 0.54) 

No shear reinforcement is needed.  The shear stress is satisfactory.  
 
 
5. Deflection 
 
Bottom steel As = 10H at 300 = 262 mm2/m. 
ρ% = 100 × 262/ (1000 × 135) = 0.19. 
ρ0% = 0.1√fck =   0.1√30 = 0.55. 

4H10 at 400 
Both ways 

21H10 at 300 
Both ways 

4H10 at 400 
Both ways 

6H10 at 300 
Both ways 

Bottom Top 
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k = 1.3 for end span of two-way spanning slab continuous over one long edge. 
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Allowable span/d ratio = 96.6  
Actual span/d ratio = 6000/135 = 44.4 
Hence the slab is satisfactory with respect to deflection.  
 
6. Cracking 
The minimum clear distance between bars is not to exceed 3h = 525 mm.  
 
7. Reinforcement details 
The reinforcement is shown in Fig. 8.92.  Note that at the corners torsion 
reinforcement is better provided as U-bars rather than as individual bars as 
indicated.  Note that if the slab was supported on reinforced concrete L-beams on 
the outer edges as opposed to say steel I-beams, a value for the ultimate negative 
resistance moment at these edges could be assumed and used in the analysis. 
 
 
8.10.16 Derivation of Moment and Shear Coefficients for the Design of 
             Restrained Slabs 
 
Bending moment and shear force coefficients in Tables 3.14 and 3.15 of the code 
for the design of two-way restrained slabs with corners held down and with 
provision for resisting torsion are derived on the basis of yield line analysis.  The 
ratio of negative moment to positive moment is kept constant at 1.33.  The ‘long 
span’ moments derived for a square slab are assumed to hold good for other values 
of the aspect ratio.  Yield line analysis assumes that reinforcement in each direction 
is uniformly distributed over the width but the code recommends that the main 
steel is provided only in the middle strip which is 3/4 times the relevant width and 
only minimum steel in the edge strips.  Therefore the value obtained from the yield 
line analysis is multiplied by 4/3.  The shear in the slab is calculated by assuming 
that the total load on the support is uniformly distributed over the middle three 
quarters of the beam span. 
 
 
8.10.16.1 Simply Supported Slab  
 
Using the formulae derived in section 8.9.6,  

)23(
6
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
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abq
b
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a
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Multiplying through by (b/a) and simplifying, the above equation becomes 
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bqm
a
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(a) Square slab 
a/b = 1,  μm = m,  β = 0.5,  m = 0.0417 qb2. 
Multiplying this value for m by 4/3, m = 0.056 qb2, βsx = 0.056. 
 
(b) Rectangular slab 
a/b > 1.0. 
Keep μm = 0.0417 qb2 as constant for all values of a/b.  Substituting this value in 
the above equation for m and simplifying,  

}1)(0209.00833.0125.0{ 22




a
bbqm   

For a maximum value of m, dm/dβ = 0. 

a
b

a
b 5.0,01)(0209.00833.0 2

2  


 

Substituting this value of β in the equation for m 

)}(0833.0125.0{2

a
bbqm   

Multiplying this value for m by 4/3, 

4/3 )}(1111.01667.0{)},(1111.01667.0{2

a
b

a
bbqm sx    

μm = 0.0417 qb2 
Multiplying this value for μm by 4/3,  

μm = 0.0556 qb2, βsy = 0.056 
 
(c) Shear coefficients 

β = 0.50 b/a 
Short beam: 

Load = 0.5× q × b × βa. 
Spreading this uniformly over a length of 0.75 b,  

3333.0,333.0}6667.0{  vyx qb
b
aqbv   

Long beam: 
Load = 0.5× q × 0.5b × (2 – 2β) a. 

Spreading this uniformly over a length of 0.75 a,  

)5.01(6667.0{)},5.01(6667.0{)}1(6667.0{
a
b

a
bqbqbv vxy    

 
8.10.16.2 Clamped Slab 
 
Using the formula derived in section 8.9.7,  
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)23(
6

)2(2)2(2 '
'

' 









abqm
b
am

a
bmm

b
am

a
b  

Multiplying through by b/a and simplifying, the above equation becomes 

)23(
12

)(2)(][
2

'
'

2 





 bqmmmm
a
b  

 
(a) Square slab 

a/b = 1,  μm = m,  γm' = m' = 1.33 m,  β = 0.5 
m = 0.0179 qb2,  m' = 0.024 qb2 

Multiplying these value for μm by 4/3, 
m = 0.024 qb2,  βsx = 0.024 and m' = 0.032 qb2,  βsy = 0.032 

 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.0179 qb2,   γm' = 0.024 qb2 and m' = 1.33m as constant for 
all values of a/b.  Substituting these values in the above equation for m and 
simplifying,  

}1)(009.00357.00536.0{ 22




a
bbqm   

For a maximum value of m, dm/dβ = 0. 

a
b

a
b 502.0,01)(009.00357.0 2

2  


 

Substituting this value of β in the equation for m 

)}(0359.00536.0{2

a
bbqm   

Multiplying this value for μm by 4/3,  

)}(0479.00715.0{2

a
bbqm   

)}(0639.00953.0{33.1 2'

a
bbqmm   

For positive moment at mid-span in short span  

)}(0479.00715.0{
a
b

sx   

Negative moment at short edge  

)}(0639.00953.0{
a
b

sx   

μm = 0.0179 qb2, γm' = 0.024 qb2 
Multiplying the above values by 4/3 

μm = 0.0239 qb2, γm' = 0.032 qb2 
In the long span direction, coefficients for positive and negative moments are 
respectively 

0239.0sy  and 032.0sy  
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(c) Shear coefficients 
Follow the procedure for the simply supported slab in section 8.9.16.1. 
 
 
8.10.16.3 Slab with Two Discontinuous Short Edges 
 
Fig. 8.93 shows a slab with two discontinuous short edges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.93 Collapse mode for a slab with two discontinuous short edges. 

 
Using the formulae derived in section 8.8.16.2 but with γm' = 0,  

)23(
12

)(2][
2

'2 





bqmmm
a
b  

(a) Square slab 
a/b = 1,  μm = m,  m' = 1.33 m. 

For maximum m, dm/dβ = 0 
3918.0,03214.04286.02    

Using β = 0.3918, m = 0.026 qb2, m' = 0.034 qb2. 
Multiplying these values by 4/3,  

m = 0.034 qb2,  βsx = 0.034 and m' = 0.046 qb2,  βsy = 0.046 
 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.026 qb2 and m' = 1.33 m as constant for all values of a/b.  
Substituting these values in the equation for m and simplifying,  

}1)(0056.00357.00536.0{ 22




a
bbqm   

For a maximum value of m, dm/dβ = 0. 

a 

b 

βa βa 

A B 

C D 

F E 

m 

μm 

m` 
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a
b

a
b 3950.0,01)(0056.00357.0 2

2  


 

Substituting this value of β in the equation for m 

)}(0282.00536.0{2

a
bbqm   

Multiplying the above value by 4/3,  

)}(0376.00715.0{2

a
bbqm  ,  )}

a
b(0501.00953.0{bqm333.1m 2'   

Short span  

For positive moment: )}(0376.00715.0{
a
b

sx   

Negative moment at short edge: )}(0501.00953.0{
a
b

sx   

μm = 0.0260 qb2 
Multiplying the above values by 4/3,   μm = 0.0347 qb2 
 
Long span  
For positive moment at mid-span: 0347.0sy  
 
(c) Shear coefficients  
Proceed as for the simply supported slab but use: 

β = 0.3918, a/b = 1 
β = 0.3950 b/a, a/b > 1.0. 

}6667.0{
b
aqbvx   

0.1/,2633.0,2633.0  abqbv vyx   
0.1/,2612.0,2612.0  abqbv vyx   

)}1(6667.0{  qbvy  

0.1/),3950.01(6667.0{)},3950.01(6667.0{  ab
a
b

a
bqbv vyy   

0.1/,4055.0)},3918.01(6667.0{  abqbv vyy   
 
 
8.10.16.4 Slab with Two Discontinuous Long Edges 
 
Fig. 8.94 shows a slab with two discontinuous long edges.  Using the formulae 
derived in section 8.9.16.2 and substituting m' = 0,  

)23(
12

2)(][
2'

2 





 bqmmm
a
b  
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Fig. 8.94 Collapse mode for slab with two discontinuous long edges. 
 
(a) Square slab 
a/b = 1, μm = m, γm' = 1.33 m. 
For maximum, dm/ β = 0. 

5.05972.0,075.1333.22    
Restrict β = 0.5 as this is the maximum value permissible.  Using β = 0.5, 
m = 0.025 qb2, γm' = 0.033 qb2. 
Multiplying these values by 4/3,  

m = μm = 0.033 qb2,   βsx = 0.033 and γm` = 0.044 qb2,   βsy = 0.044 
(b) Rectangular slab  
a/b > 1.0.  Keep μm = 0.025 qb2 and γm' = 0.033 qb2 as constant for all values of 
a/b.  Substituting these values in the equation for m and simplifying,  

}1)(029.00833.0125.0{ 22




a
bbqm   

For a maximum value of m, dm/d β = 0.   

a
b

a
b 59.0,01)(029.00833.0 2

2  


 

Substituting this value of β in the equation for m and simplifying,  

)}(098.0125.0{2

a
bbqm   

Multiplying the above value by 4/3, )}(1307.01667.0{2

a
bbqm   

For positive moment at mid-span in short span 

0.1/)},(1307.01667.0{  ab
a
b

sx , 0.1/,033.0  absx  

Long span direction 
μm = 0.033 qb2, γm' = 0.044 qb2 

a 

b 

βa βa 

A B 

C D 

F E 

m 

μm γm` 
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Positive moment: μm = 0.033 qb2, .033.0sy  

Negative moment: γm' = 0.044 qb2, .044.0sy  
(c) Shear coefficients 
Proceed as for the simply supported slab but use: 
β = 0.5 for a/b = 1 and for a/b > 1.0, β = 0.59 b/a  

}6667.0{
b
aqbvx   

0.1/,3933.0,3933.0  abqbv vyx   
0.1/,3333.0,3333.0  abqbv vyx   

)}1(6667.0{  qbvy  

0.1/),59.01(6667.0{)},59.01(6667.0{  ab
a
b

a
bqbv vyy   

0.1/,3333.0)},5.01(6667.0{  abqbv vyy   
 
 
8.10.16.5 Slab with One Discontinuous Long Edge 
 
Fig. 8.95 shows the collapse mode which is governed by two parameters β1 and β2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.95 Collapse mode for a slab with one discontinuous long edge. 

 
It can be shown that the basic equation for solving the problem is 

)23(
6)1(

)()(][2 1

2

22

'

1

'
2 












 bqmmmmm
a
b  

 

a 

b 

β1a β1a 

A B 

C D 

F E 

m 

μm 

m` 

γm` 

β2b 
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(a) Square slab 
a/b = 1, μm = m, γm' = m' = 1.33 m. 

)23(
6

}
)1(

1333.26667.4{ 1

2

221








bqm  

For maximum m, dm/dβ1 = 0 and dm/dβ2 = 0.   
dm/dβ2 = 0 leads to 0.1604.0,075.15.3 22

2
2    

Value of β2 = 0.604 is independent of β1.  Using this value of β2, 
dm/dβ1 = 0 leads to 5.0546.0,00959.14612.1 11

2
1    

Using β1 = 0.5 and β2 = 0.604, m = μm = 0.020 qb2, m' = γm' = 0.027 qb2. 
Multiplying these values by 4/3,  

m = γm' = 0.027 qb2,   βsx = 0.027 and m' = γm' = 0.036 qb2,   βsy = 0.036. 
 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.020 qb2 and γm' = 0.027 qb2 as constant for all values of 
a/b and m' = 1.33 m.  Substituting these values in the equation for m and 
simplifying,  

})(094.0333.05.0{}
)1(

1333.2{ 2

1
1

2

22 a
bqbm








  

dm/dβ2 = 0 leads to 0.1604.0,075.15.3 22
2
2    

dm/dβ1 = 0 leads to 
a
b

a
b 531.0,01)(094.0333.0 12

2

1

 


 

Substituting these values of β1 and β2 in the equation for m and simplifying,  

)}(0554.00783.0{2

a
bbqm   

Multiplying the above value by 4/3,  

)}(0739.01044.0{2

a
bbqm  ,  )}(0985.01392.0{33.1 2'

a
bbqmm   

 
Short span 
 
For positive moment 

)}(0739.01044.0{2

a
bbqm  , 1/)},(0739.01044.0{  ab

a
b

sx  

027.02bqm  , 1/,027.0  absx  
Negative moment at short edge 

)}(0985.01392.0{33.1 2'

a
bbqmm  , 1/)},(0985.01392.0{  ab

a
b

sx  

036.02' bqm  , 1/,036.0  absx  
Long span 
μm = 0.027 qb2 and γm' = 0.036 qb2 



310                                                                                     Reinforced concrete design to EC 2 

For positive and negative moments, the moment coefficients βsy are 0.027 and 
0.036 respectively. 
 
(c) Shear coefficients 
Use and β1 = 0.5 for a/b = 1 and for a/b > 1.0, use β1 = 0.531 b/a.  β2 = 0.604 for all 
aspect ratios. 
 
Short beam: Spread the load uniformly over a length of 0.75 b. 

Load = 0.5× q × b × β1a. 

}6667.0{ 1 b
aqbvx   

0.1/,354.0,354.0  abqbv vyx   
0.1/,3333.0,3333.0  abqbv vyx   

 
Load on the longer beam: Spread the load on the beam uniformly over a length of 
0.75 a and use β2 = 0.604. 
 
Continuous end 

vy= 0.5 × q × β2b × (2 – 2β1) a 
)}1(805.0{ 1 qbvy  

0.1/),531.01(805.0{)},531.01(805.0{  ab
a
b

a
bqbv vyy   

0.1/,403.0)},5.01(805.0{  abqbv vyy   
 
Simply supported end 

vy = 0.5 × q × (1 – β2) b × (2 – 2β1) a 
)}1(528.0{ 1qbvy  

0.1/),531.01(528.0{)},531.01(528.0{  ab
a
b

a
bqbv vyy   

0.1/,264.0)},5.01(528.0{  abqbv vyy   
 
 
8.10.16.6 Slab with One Discontinuous Short Edge 
 
Fig. 8.96 shows the collapse mode which is governed by two parameters β1 and β2.   
It can be shown that the basic equation for solving the problem is 

)3(
6

)(4})({][ 21

2
'

12

'
2 










 bqmmmmm
a
b  

(a) Square slab 
a/b = 1, μm = m, γm' = m' = 1.33 m. 
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)3(
6

}333.21333.9{ 21

2

21





bqm  

Simplifying 

)333.2333.9(
)3(

6 2121

21
21

2











qbm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.96 Collapse mode for a slab with one discontinuous short edge. 
 
For maximum m, dm/dβ1 = 0 and dm/dβ2 = 0.   
dm/dβ1 = 0 leads to  

2
2
21

2
2
21

21

111
2

1

2857.14286.0

,85714.04

,81

,01

















C

B

A

CBA

 

dm/dβ2 = 0 leads to  

1
2

12

12

12

222
2

2

733.2

,6667.4
,333.90.1

,02

















C

B
A

CBA

 

The values of β1 and β2 can be calculated as follows: 
 Assume a value for β2 
 Calculate A1, B1 and C1 
 Solve the quadratic in β1 
 Using the calculated value of β1, calculate A2, B2 and C2 
 Solve the quadratic in β2 

a 

b 

β1a β2a 

A B 

C D 

F E 

m 

μm 

m’ 

γm’ 
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 Compare the assumed and calculated values of β2  
 Repeat calculations until the assumed and calculated values of β2 differ by 

a very small value 
 Calculate the value of m/ (qb2) 

 
Using this procedure, in this case 

β1 = 0.4013 and β2 = 0.5455, m = 0.0213 qb2, m' = 0.0284 qb2. 
Multiplying these values by 4/3, 

m = μm = 0.028 qb2,  βsx = 0.028 and m' = γm' = 0.038 qb2,   βsx = 0.038. 
 
(b) Rectangular slab 
a/b > 1.0.  Keep m` = 1.33 m, μm = 0.021 qb2 and γm` = 0.028 qb2 as constant for 
all values of a/b.  Substituting these values in the equation for m and simplifying,  

})(00533.001786.0)(00228.001786.00536.0{ 2

2
2

2

1
1

2

a
b

a
bqbm





   

dm/dβ1 = 0 leads to  

a
b

a
b 3575.0,0)(00228.001786.0 1

2
2

1

 


 

dm/dβ2 = 0 leads to  

a
b

a
b 5460.0,0)(00533.001786.0 2

2
2
2

 


 

Substituting these values of β1 and β2 in the equation for m and simplifying,  

)}(0323.00536.0{2

a
bbqm   

Multiplying the above value by 4/3, )}(0431.00715.0{2

a
bbqm   

Short span 
Positive moment 

)}(0431.00715.0{2

a
bbqm  , 1/)},(0431.00715.0{  ab

a
b

sx  

028.02bqm  , 1/,028.0  absx  
Negative moment at short edge 

)}(0575.00953.0{33.1 2'

a
bbqmm  , 1/)},(0575.00953.0{  ab

a
b

sx  

038.02' bqm  , 1/,038.0  absx  
 
Long span 

μm = 0.028 qb2 and γm' = 0.038 qb2 
For positive and negative moments, the moment coefficients are respectively. 

βsy = 0.028 and βsy = 0.038 
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(c) Shear coefficients 
Spread the load uniformly over a length of 0.75 b. 

a/b = 1: β1 = 0.4013 and β2 = 0.5455 
a/b > 1.0: β1 = 0.3575 b/a and β2 = 0.546 b/a 

Load on the shorter beam 
Continuous end 

Load = 0.5× q × b × β2 a. 

364.0},364.0{}6667.0{ 2  vxx qb
b
aqbv   

Simply supported end 
Load = 0.5× q × b × β1 a. 

1/,1589.0},1589.0{}6667.0{ 1  abqb
b
aqbv vxx   

1/,2675.0},2675.0{}6667.0{ 1  abqb
b
aqbv vxx   

Load on the longer beam 
Spread the load uniformly over a length of 0.75 a. 

Load = 0.5× q × 0.5b × (2 – β1 – β2) a 
}2(3333.0{ 21   qbvy  

0.1/),301.0667.0{()},9035.02(333.0{  ab
a
b

a
bqbv vyy   

0.1/,3655.0)},546.03575.02(333.0{  abqbv vyy   
 
 
8.10.16.7 Slab with Two Adjacent Discontinuous Edges 
 
Fig. 8.97 shows the collapse mode which is governed by three parameters β1, β2 
and β3.   
It can be shown that the basic equation for solving the problem is 

)3(
6)1(

11)(})({][ 21

2

33

'

12

'
2 













 bqmmmmmm
a
b  

 
(a) Square slab 
a/b = 1, μm = m, γm` = m` = 1.33 m. 

)3(
6

}
)1(

1333.2333.21{ 21

2

3321








bqm  

For maximum m, dm/dβ1 = 0, dm/dβ2 = 0 and dm/dβ3 = 0. 
dm/dβ3 = 0 leads to  

604.0,075.15.3,0
)1(

1333.2
33

2
32

3
2
3




 


 

Substituting this value of β3 in the expression for m and simplifying,   
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)333.23884.6(
)3(

6 2121

21
21

2











qbm  

For maximum m, dm/dβ1 = 0 and dm/dβ2 = 0. 
dm/dβ1 = 0 leads to  

2
2
21

21

21

111
2

1

3

,2
,3333.23384.6

,01

















C

B
A

CBA

 

dm/dβ2 = 0 leads to  

1
2

12

12

12

222
2

2

733.2

,6667.4
,13384.6

,02

















C

B
A

CBA

 

The values of β1 and β2 can be calculated following the same procedure as in 
section 8.9.16.7. 
In this case β1 = 0.39565 and β2 = 0.64356, m = 0.0261 qb2, m' = 0.0348 qb2.   
Multiplying these values by 4/3,  

m = μm = 0.035 qb2,   βsx = 0.035 and m' = γm' = 0.046 qb2,   βsx = 0.046 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.97 Collapse mode for a slab with two adjacent discontinuous edges. 
 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.0261 qb2 and γm' = 0.0348 qb2 as constant for all values of 
a/b.  Substituting these values in the equation for m and simplifying,  

a 

β3b 

β1a β2a 

A B 

C D 

F E 

m 

μm 

m` 

γm` 
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})(00955.00261.0)(00407.00261.00783.0{ 2

2
2

2

1
1

2

a
b

a
bqbm





   

dm/dβ1 = 0 leads to  

a
b

a
b 3949.0,0)(00407.00261.0 1

2
2

1

 


 

dm/dβ1 = 0 leads to  

a
b

a
b 6049.0,0)(00955.00261.0 2

2
2
2

 


 

Substituting these values of β1 and β2 in the equation for m and simplifying,  

)}(0522.00783.0{2

a
bbqm   

Multiplying the above value by 4/3,  

)}(0696.01044.0{2

a
bbqm   

Short span 
 
Positive moment 

)}(0696.01044.0{2

a
bbqm  , 1/)},(0696.01044.0{  ab

a
b

sx  

035.02bqm  , 1/,035.0  absx  
Negative moment at short edge 

)}(0928.01392.0{33.1 2'

a
bbqmm  , 1/)},(0928.01392.0{  ab

a
b

sx  

035.0333.1 2' bqm  , 1/,047.0  absx  
Long span 

μm = 0.035 qb2 and γm' = 0.046 qb2 
For positive and negative moments, the moment coefficients βsy are 0.035 and 
0.046 respectively. 
 
(c) Shear coefficients 

a/b = 1, β1 = 0.3957, β2 = 0.6436 
a/b > 1.0, β1 = 0.395 b/a, β2 = 0.605 b/a. 

 
Shorter beam: Spread the load uniformly over a length of 0.75 b. 
Continuous end  

Load = 0.5× q × b × β2 a. 

}6667.0{ 2 b
aqbvx   

0.1/,403.0),403.0(}6667.0{ 2  abqb
b
aqbv vxx   
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0.1/,4291.0),4291.0(}6667.0{ 2  abqb
b
aqbv vxx   

Simply supported end 
Load = 0.5× q × b × β1 a. 

264.0},264.0{}6667.0{ 1  vxx qb
b
aqbv   

 
Longer beam: Spread the load uniformly over a length of 0.75 a, and β3 = 0.604. 
 
Continuous end 

Load = 0.5× q × β3 b × (2 – β1 – β2) a 
)}2(4027.0{ 21   qbvy  

0.1/),0007.12(4027.0,}0007.12(4027.0{  ab
a
b

a
bqbv vyy   

0.1/,3869.0,}0393.12(4027.0{  abqbv vyy   
 
Simply supported end 

Load = 0.5× q × (1 – β3) b × (2 – β1 – β2) a 
)}2(2640.0{ 21   qbvy  

0.1/),0007.12(2640.0,}0007.12(2640.0{  ab
a
b

a
bqbv vyy   

0.1/,3869.0,}0393.12(4027.0{  abqbv vyy   
 
 
8.10.16.8 Slab with Only a Continuous Short Edge 
 
Fig. 8.98 shows the collapse mode which is governed by two parameters β1 and β2. 
It can be shown that the basic equation for solving the problem is 

)3(
6

4})({][ 21

2

12

'
2 










 bqmmmm
a
b  

 
(a) Square slab 
a/b = 1, μm = m, γm` = 1.33 m. 

)3(
6

}4333.21{ 21

2

21





bqm  

Simplifying, 

)333.24(
)3(

6 2121

21
21

2











qbm  

For maximum m, dm/dβ1 = 0 and dm/dβ2 = 0. 
dm/dβ1 = 0 leads to  
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dm/dβ2 = 0 leads to  

1
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12

12
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2

733.2

,6667.4
,14

,02
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
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CBA

 

The values of β1 and β2 can be calculated following the same procedure as in 
section 8.9.16.6.  In this case β1 = 0.2868 and β2 = 0.65934, m = 0.0311 qb2,         
m' = 0.0414 qb2.  Multiplying these values by 4/3,  

m = μm = 0.042 qb2,  βsx = 0.042 and γm' = 0.055 qb2,  βsx = 0.055. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.98 Collapse mode for a slab with one continuous short edge. 
 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.031 qb2 and γm' = 0.041 qb2 as constant for all values of 
a/b.  Substituting these values in the equation for m and simplifying,  

})(01811.00417.0)(00776.00417.0125.0{ 2

2
2

2

1
1

2

a
b

a
bqbm





   

dm/dβ1 = 0 leads to  

a
b

a
b 4314.0,0)(00776.00417.0 1

2
2

1

 


 

dm/dβ2 = 0 leads to  

a 

 

β1a β2a 

A B 

C D 

F E 

m 

μm 

 

γm` 
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a
b

a
b 659.0,0)(01811.00417.0 2

2
2
2

 


 

Substituting these values of β1 and β2 in the equation for m and simplifying,  

)}(0909.0125.0{2

a
bbqm   

Multiplying the above value by 4/3,  

)}(1212.01667.0{2

a
bbqm   

Short span 
Positive moment 

1/)},(1212.01667.0{)},(1212.01667.0{2  ab
a
b

a
bbqm sx , 

1/,041.0,041.02  babqm sx  
Long span 
μm = 0.041 qb2 and γm` = 0.055 qb2 
For positive and negative moments, the moment coefficients βsy are 0.041 and 
0.055 respectively. 
 
(c) Shear coefficients 

a/b = 1: β1 = 0.2868 and β2 = 0.6593 
a/b > 1.0: β1 = 0.4314 b/a and β2 = 0.6590 b/a. 

 
Short beam: Spread the load uniformly over a length of 0.75 b. 
 
Continuous end 

Load = 0.5× q × b × β2 a 

44.0},6667.0{ 2  vxx b
aqbv   

Simply supported end 
Load = 0.5× q × b × β1 a 

1/,2876.0},6667.0{ 1  ab
b
aqbv vxx   

1/,1912.0},6667.0{ 1  ab
b
aqbv vxx   

Longer beam: Spread the load uniformly over a length of 0.75 a. 
Load: = 0.5× q × 0.5 b × (2 – β1 – β2) a 

}2(3333.0{ 21   qbvy  

1/),3634.06667.0(  ab
a
b

vy , 1/,3513.0  abvy  
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8.10.16.9 Slab with Only a Continuous Long Edge 
 
Fig. 8.99 shows the collapse mode which is governed by two parameters β1 and β2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.99 Collapse mode for a slab with one continuous long edge. 
 
It can be shown that the basic equation for solving the problem is 

)23(
6)1(

)(}2{][ 1

2

22

'

1

2 











bqmmmm
a
b  

 
(a) Square slab 
a/b = 1, μm = m, m' = 1.33 m. 

)23(
6

}
)1(

0.1333.22{ 1

2

221








bqm  

Simplifying:   

}333.2333.1)1(2{
)23()1(

6 12122

1
221

2











qbm  

dm/dβ2 = 0 leads to  
604.0,075.15.3 22

2
2    

Using this value of β2, the expression for m is  

}0.23885.6{
)23(

6 1

1
1

2











qbm  

dm/dβ1 = 0 leads to  
4404.0,04696.06261.0 11

2
1    

Using β1 = 0.4404 and β2 = 0.604 in the expression for m, m = 0.032 qb2,             
m' = 0.043 qb2. 

a 

β2b 

β1a β1a 

A B 

C D 

F E 

m 

μm 

m’ 
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Multiplying these values by 4/3,  
m = μm = 0.043 qb2,  βsx = 0.043 and m' = 0.058 qb2,  βsx = 0.058. 

 
(b) Rectangular slab 
a/b > 1.0.  Keep μm = 0.032 qb2, m’ = 1.333m and β2 = 0.604 as constant for all 
values of a/b.  Substituting these values in the equation for m and simplifying,  

})(010.00522.00783.0{ 2

1
1

2

a
bqbm


   

dm/dβ1 = 0 leads to  

a
b

a
b 4377.0,0)(010.00522.0 1

2
2

1

 


 

Substituting for β1 in the equation for m and simplifying,  

)}(0457.00783.0{2

a
bbqm   

Dividing the above value by 0.75,  

)}(0609.01044.0{2

a
bbqm   

Short span 
Positive moment 

1/)},(0609.01064.0{)},(0609.01064.0{2  ab
a
b

a
bbqm sx , 

1/,041.0,043.02  babqm sx  
Negative moment 

1/)},(0812.01419.0{)},(0812.01419.0{333.1 2'  ab
a
b

a
bbqmm sx  

1/,0573.0,0573.02'  babqmm sx  
Long span: μm = 0.043 qb2, βsy = 0.058 
 
(c) Shear coefficients 
Spread the load uniformly over a length of 0.75 b. 

β2 = 0.604 and β1 = 0.4404, a/b = 1 
β2 = 0.604 and β1 = 0.4382 b/a, a/b > 1.0 

Shorter beam 
Load = 0.5× q × b × β1 a. 

}6667.0{ 1 b
aqbvx   

2921.0},6667.0{ 1  vxx b
aqbv   

Longer beam: Spread the load uniformly over a length of 0.75 a.  
 
Continuous end 

Load = 0.5 × q × β2b × (2 – 2β1) a 
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)}1(8053.0{ 1 qbvy  

)3529.08053.0(,}4382.01(8053.0{
a
b

a
bqbv vyy    

Simply supported end 
Load = 0.5× q × (1 – β2) b × (2 – 2β1) a 

)}1(5280.0{ 1 qbvy  

)2314.05280.0(,}4382.01(5280.0{
a
b

a
bqbv vyy  

 
 
 
8.11 HILLERBORG’S STRIP METHOD 
 
This method of designing slabs is based on the lower bound theorem of plasticity.  
The basic idea is to find a distribution of moments, which fulfils the equilibrium 
equations, and design the slab for these moments.  Normally in a slab not only 
moments about two axes but also torsional moments exist.  Analysis is complicated 
because of the presence of these torsional moments.  Strip method simplifies 
analysis by ignoring torsional moments and assuming that the load is carried by a 
set of strips in bending only.   
 
 
 
 
 
  
 
 
 
 
 
 

Fig. 8.100 Load distribution in a simply supported slab. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.101 Bending moments in horizontal (1–1) and vertical (2–2) strips. 
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8.11.1 Simply Supported Rectangular Slab 
 
As an example, consider the rectangular slab simply supported on four sides and 
subjected to a uniformly distributed load q as shown in Fig. 8.100.  
As shown in Fig. 8.101, for a typical strip 1–1 in the horizontal direction, the 
loading on the strip consists of uniformly distributed loading on the end portions 
only and for typical strip 2–2 in the vertical direction, with the loading on the strip 
consisting of uniformly distributed loading covering the entire span.  The bending 
moments in these individual simply supported strips can be easily calculated and 
the slab may be reinforced accordingly.   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.102 Step-wise load distribution to the supports. 
 

The main difficulty in assuming the load distribution as shown in Fig. 8.100 is that 
the loading on the strip across its width is not uniform.  This difficulty can be 
avoided by assuming load distribution to the supports in a step-wise fashion as 
shown in Fig. 8.102.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.103 Load distribution in a slab with one free edge. 
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8.11.2 Clamped Rectangular Slab with a Free Edge  
 
Fig. 8.103 shows a slab clamped on three sides and free on one side.  The load 
distribution to the supports is as indicated.  If desired the step-wise load 
distribution can also be adopted.  The strip 1–1 is a beam clamped at both ends 
while the strip 2–2 is a cantilever. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Fig. 8.104 Slab with opposite edges simply supported and free. 
 
 
8.11.3 Slab Clamped on Two Opposite Sides, One Side Simply Supported  
           and One Edge Free 
 
Fig. 8.104 shows a slab clamped on two opposite sides and one side is 
simply supported while the opposite edge is free.  The load distribution to 
the supports is as indicated.   
     The strip 1–1 is a beam clamped at both ends.  In Fig. 8.103, strip 2–2 
was clamped at one end and could therefore act as a cantilever.  In Fig. 
8.104, for the strip 2–2 to transmit any load to the simply supported end, it 
is necessary that there is a support at the ‘free’ end.  Edge strip 3–3 provides 
this support.  Therefore while designing strip 3–3, it is necessary to include 

Reactions  
from strip 2–2 
‘free‘end 

Strong edge strip 

2 2 

1 1 

2 

3 3 

2 

1 
1 

3 3 
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not only the load applied directly onto the strip but also the reactions from 
strip 2–2.  Strip 3–3 acts like an edge beam by being more heavily 
reinforced than the rest of strips 1–1.  Strip 3–3 could be thickened in order 
to allow sufficient depth of lever arm to the reinforcement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.105 Strong band reinforcement. 
 
 
8.11.4 Strong Bands  
 
Fig. 8.105 shows a rectangular slab simply supported on all sides and carrying a 
concentrated load W.  The load is transmitted to the supports mainly through 
heavily reinforced strips in two directions.   These strips are known as ‘strong 
bands’.   The strong bands act as beams and are more heavily reinforced compared 
to the rest of the slab.  It is often convenient to increase the thickness in order to 
accommodate steel reinforcement and also to increase its lever arm.   Distributed 
load on the rest of the slab can be distributed between the edge supports and strong 
bands.  The load carried by the strong bands will be approximately in inverse 
proportion to the fourth power of the spans.  Thus if the spans are a and b with  
a ≥ b, then the loads Wa and Wb carried by the strips in the a and b direction are 

4][,
)1(

1,
)1( b

aWWWW ab 





 


  

 
4][,

)1(
1,

)1( b
aWWWW ab 





 



  

 
The concept of the strong band is also useful when designing slabs with holes or 
slabs with re-entrant corners.   
 
 

b 

a 

W 

Concentrated load  
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Fig. 8.106 Slab with a hole. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.107 Slab with a re-entrant corner. 
 
Fig. 8.106 shows a slab with a rectangular hole.  By providing strong bands around 
the hole, edge beams are created and the loads can be distributed between the edge 
supports and strong bands.  The two strong bands running between the supports 
also provide support for the short edge beams around the hole. 
Fig. 8.107 shows a slab with a re-entrant corner.  By providing a strong band, the 
slab is conveniently divided into two rectangular slabs which can be effectively 
designed separately.  The strong band acts as an additional support to the two slabs 
and allows the above simplification compared with the relatively complex 
distribution of moments obtained from an elastic analysis. 
 
 
8.11.5 Comments on the Strip Method 
 
One of the main attractions of the strip method as compared with the yield line 
method is that apart from the fact that it is a lower bound method and therefore 
there is no need to investigate alternative mechanisms, the method not only gives 
the bending moments and shear forces at every point in the structure but also gives 
information on the loads and their distribution acting on the supporting beams.  
This is of great attraction to designers. 
 
It is important to remember that the method ensures safety against bending failure 
only.  It does not take account of the possibility of shear failure.  Because of the 
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fact that the emphasis is on safety at ultimate limit state, additional considerations 
are necessary to ensure that the design meets serviceability limit state conditions 
as well.  For any given structure, it is possible to choose an infinite number of 
possible distributions of loads to the supports and the corresponding moments.   
     As an example consider the load distribution on the rectangular slab simply 
supported on all edges shown in Fig. 8.108.  The proportion of the uniformly 
distributed load q against the arrows indicates the value of the load carried to the 
support in the direction indicated.  This load distribution is different from the one 
shown in Fig. 8.100.  However from a serviceability limit state point of view, it is 
important to ensure that the chosen distribution of moments does not depart too far 
from the elastic distribution of moments.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8.108 A feasible load distribution to the four edge supports. 
 
The following points should be borne in mind when deciding on the load 
distribution to the supports. 
With fixed edges, the ratio between the proportion of load carried to the fixed 
edge and that carried to the simply supported edge should be increased by a factor 
of 1.6 to 1.8 compared to the case where both edges have same support conditions.  
If, for example, of the two opposite edges, one is fixed and the other is simply 
supported, then an appropriate load distribution should be as shown in Fig. 8.110.  
The dividing lines between the regions can be treated as zero shear lines.  For 
example, for the strip 1–1 shown in Fig. 8.109, if the line of zero shear is at 1.1 
from the simply supported end, then the reaction at the simply supported end is   
1.1 q and at the fixed end is 1.9 q.  The maximum bending moment in the span is 

b/4 

b/2 

b/4 

a/4 a/2 a/4 

q 

 

q  0.75q 

0.25q 
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at the point of zero shear and is equal to 0.605 q and at the fixed end is 1.2 q.  
Thus the ratio of reactions is 1.9/1.1 = 1.72 and the ratio of moments is 1.2/0.605 
= 2.0.  Thus by choosing the position of lines of zero shear, it is possible to control 
the moment distribution to correspond to the elastic values. 
 

Although the strip method assumes that torsional moments are zero, however 
where two simply supported edges meet, torsional moments do exist.  In the 
absence of proper reinforcement, this will lead to cracking which is best limited by 
providing torsional reinforcement as suggested in codes of practice.  The ratio 
between the support and span design moments in a strip fixed at both ends and 
subjected to uniformly distributed loading should be about 2.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 8.109 Zero shear lines to control load distribution to supports. 

 
 
8.12 DESIGN OF REINFORCEMENT FOR SLABS USING ELASTIC 
      ANALYSIS MOMENTS 
 
With the widespread availability of finite element programs to carry out elastic 
analysis of plates, it is necessary to have rules for designing reinforcement for a 
given set of bending and twisting moments in slabs.  Fig. 8.110 shows the bending 
moments Mx and My and twisting moment Mxy acting on an element of slab.  The 
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convention used in representing a moment by a double-headed arrow is that if the 
right hand thumb is pointed in the direction of the arrow head, then the direction of 
the moment is given by the direction the fingers of the right hand bend.  Bending 
moments as shown in Fig. 8.110, cause tension on the bottom face. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.110 Bending and twisting moments on an element of slab. 
 
As shown in Fig. 8.111, on a section inclined at an angle α to the y-axis, normal 
bending moment Mn and twisting moment Mnt act.  It can be shown that  

Mn = Mx cos2 α + My sin2 α + 2 Mxy sin α cos α 
If the ultimate sagging moment of resistance provided by steel in x- and y-
directions are Mb

xu and Mb
yu respectively, then from Johansen’s yield criterion 

(section 8.9.2), the normal moment of resistance on a section inclined at an angle α 
to the y-axis is given by 

Mb
nu = Mb

xu cos2 α + Mb
yu sin2 α 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8.111 Normal bending moment and twisting moments on an element of slab. 
 
Since it is desirable that the applied Mn must not be greater than the resistance Mnu,  

[{Mb
xu cos2 α + Mb

yu sin2 α} – {Mx cos2 α + My sin2 α + 2Mxy sin α cos α}] ≥ 0 
Dividing throughout by cos2 α and setting t = tan α, the above equation simplifies 
to 

{(Mb
xu – Mx) + (Mb

yu – My) t2 – 2Mxy t} ≥ 0 

Mn 
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Yielding will take place when the difference between Mnu and Mn is a minimum.  
Differentiating with respect to t, 

(Mb
yu – My) t – Mxy = 0 

 
For the difference to be a minimum, the second derivative with respect to t must be 
positive.  Therefore   

(Mb
yu – My) ≥ 0 

Substituting the value of t and simplifying 
(Mb

xu – Mx)(Mb
yu – My) – Mxy

2 = 0 
This equation shows for what combination of bending and twisting moments a slab 
with a known moment of resistance in x- and y-directions yields.  This equation is 
known as the yield criterion for a slab.  Note that the twisting moment term appears 
as a square indicating that the sign of Mxy is irrelevant. 
     From the yield criterion, the following special cases can be noted. 
Case 1: 

If Mb
xu = 0, then Mb

yu = My – Mxy
2/Mx 

 
Case 2: 

If Mb
yu = 0, then Mb

xu = Mx – Mxy
2/My 

Case 3: 
If Mb

xu ≠ 0 and Mb
yu ≠ 0, then for economy (Mb

xu + Mb
yu) must be made a 

minimum.  From the yield criterion 
Mb

xu = Mx + Mxy
2 / (Mb

yu – My) 
(Mb

xu + Mb
yu) = Mx + Mxy

2 / (Mb
yu – My) + Mb

yu 
Minimizing the above expression with respect to Mb

yu,  
–Mxy

2 / (Mb
yu – My) 2 + 1 = 0 

(Mb
yu – My)  = ±Mxy 

Since (Mb
yu – My) ≥ 0, choosing the positive sign,  

xyy
b
yuxyx

b
xu MMMMMM  ,  

Note that only the numerical value of Mxy is used. 
 
 
8.12.1 Rules for Designing Bottom Steel 
 
In the following, positive bending moments are sagging moments which cause 
tension on the bottom face.  The rules for calculating the moment of resistance 
required for flexural steel at bottom are as follows. 

(a) If 
xy

x

M
M ≥ –1.0 and 

xy

y

M

M
 ≥ –1.0,   then xyy

b
yuxyx

b
xu MMMMMM  ,  

(b) If 
xy

x

M
M  < –1.0 and 0.1

2


x

xy
y M

M
M    then 

x

xy
y

b
yu

b
xu M

M
MMM

2

,0   

(c) If 
xy

y

M

M
 < –1.0 and 0.1

2


y

xy
x M

M
M    then 

y

xy
x

b
xu

b
yu M

M
MMM

2

,0   
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(d) If none of the above conditions are valid,   then 0 b
xu

b
yu MM  

 
 
8.12.1.1 Examples of Design of Bottom Steel 
 
The following examples illustrate the use of equations derived in section 8.11.1.  
The four criteria are checked to see which is the valid one for a specific 
combination of Mx, My and Mxy. 
 
Example 1: Mx = 30 kNm/m, My = 15 kNm/m, Mxy = 20 kNm/m 

Check criterion (a): 
xy

x

M
M  = 1.5 > –1.0,   

xy

y

M

M = 0.75 > –1.0, Therefore criterion 

(a) applies. 
Mb

xu = 30+20 = 50 kNm/m, Mb
yu = 15+20 =35 kNm/m 

 
Example 2: Mx = –35 kNm/m, My = 15 kNm/m, Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = –1.75 < –1.0,   

xy

y

M

M = 0.75 > –1.0. 

(b) 
xy

x

M
M  = –1.75 < –1.0,   0.143.26

2


x

xy
y M

M
M .  Therefore criterion (b) applies. 

x

xy
y

b
yu

b
xu M

M
MMM

2

,0  = 26.43 kNm/m 

 
Example 3: Mx = –15 kNm/m, My = –25 kNm/m, Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = –0.75 > –1.0,   

xy

y

M

M
 = –1.25 < –1.0 

(b) 
xy

x

M
M  = –0.75 > –1.0,   0.167.1

2


x

xy
y M

M
M  

(c) 
xy

y

M

M  = –1.25 < –1.0, 00.1
2


y

xy
x M

M
M .   Therefore criterion (c) applies. 

y

xy
x

b
xu

b
yu M

M
MMM

2

,0  = 1.0 kNm/m 

 
Example 4: Mx = –30 kNm/m, My = –40 kNm/m, Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = –1.5 < –1.0, 

xy

y

M

M  = –2.0 < –1.0 

(b) 
xy

x

M
M  = –1.5 < –1.0, 067.26

2


x

xy
y M

M
M  
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(c) 
xy

y

M

M  = –2.0 < –1.0, 00.20
2


y

xy
x M

M
M  

Since none of the criteria (a) to (c) apply, 0,0  b
xu

b
yu MM .  No steel is required at 

the bottom of the slab. 
 
 
8.12.2 Rules for Designing Top Steel 
 
In a manner similar to the determination of sagging moment of resistance,  if the 
ultimate hogging moments of resistance provided by steel in x- and y-directions are 
Mt

xu and Mt
yu respectively, then the rules for calculating the moment of resistance 

required for flexural steel at top are as follows.  Note that the value of t
xuM  and 

t
yuM  are both negative, indicating that they correspond to a hogging bending 

moment requiring steel at the top of the slab.  

(a) If 
xy

x

M
M  ≤ 1.0 and 

xy

y

M

M
 ≤ 1.0, then xyy

t
yuxyx

t
xu MMMMMM  ,  

(b) If 
xy

y

M

M  > 1.0 and 0
2


y

xy
x M

M
M  then 

y

xy
x

t
xu

t
yu M

M
MMM

2

,0   

(c) If 
xy

x

M
M  > 1.0 and 0

2


x

xy
y M

M
M  then 

x

xy
y

t
yu

t
xu M

M
MMM

2

,0   

(d) If none of the above conditions are true, then 0 t
xu

t
yu MM  

 
 
8.12.2.1 Examples of Design of Top Steel 
 
Example 1: Mx = –30,   My = –40,   Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = –1.5 < 1.0 and 

xy

y

M

M
= –2.0 < 1.0.  Criterion (a) applies. 

xyx
t
xu MMM  = –50 kNm/m, xyy

t
yu MMM   = –60 kNm/m 

 
Example 2: Mx = –30, My = 35, Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = –1.5 < 1.0 and 

xy

y

M

M
= 1.75 > 1.0 

(b) 
xy

y

M

M
 = 1.75 > 1.0 and 

y

xy
x M

M
M

2

  = –41.43 < 0.  Criterion (b) applies. 

y

xy
x

t
xu

t
yu M

M
MMM

2

,0  = –41.43 
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Example 3: Mx = 25,   My = –45,   Mxy = 20 kNm/m 

(a) 
xy

x

M
M  = 1.25 > 1.0 and 

xy

y

M

M = –2.25 < 1.0  

(b) 
xy

y

M

M  = –2.25 < 1.0 and 
y

xy
x M

M
M

2

  = 33.89 > 0. 

(c) 
xy

x

M
M  = 1.25 > 1.0, 00.61

2


x

xy
y M

M
M .  Criterion (c) applies. 

x

xy
y

t
yu

t
xu M

M
MMM

2

,0  = –61.0 kNm/m 

 
 
8.12.3 Examples of Design of Top and Bottom Steel 
 
In sections 8.11.1.1 and 8.11.2.1 examples were concerned with determining the 
required moment of resistance either at the top or the bottom face of the slab.  
However cases do arise where for a given combination of bending and twisting 
moments there is need to provide steel at both the faces.  This case generally arises 
when twisting moments larger than bending moments are present. 
 
Example 1: Mx = 15,   My = –18,   Mxy = 20 kNm/m 
 

Bottom steel: 
xy

x

M
M  = 0.75 > –1.0 and 

xy

y

M

M
= –0.9 > –1.0 

xyx
b
xu MMM   = 35 kNm/m, xyy

b
yu MMM   = 2 kNm/m 

 

Top steel: 
xy

x

M
M  = 0.75 < 1.0 and 

xy

y

M

M
= –0.9 < 1.0 

xyx
t
xu MMM   = –5 kNm/m, xyy

t
yu MMM   = –38 kNm/m 

This example shows that steel is required in both directions top and bottom. 
 
Example 2: Mx = 20, My = –20, Mxy = 20 kNm/m 
 

Bottom steel:
xy

x

M
M  = 1.0 > –1 and 

xy

y

M

M
= –1.0 

xyx
b
xu MMM   = 40 kNm/m, xyy

b
yu MMM   = 0 

 

Top steel: 
xy

x

M
M  = 1.0 and 

xy

y

M

M
= –1.0  

xyx
t
xu MMM   = 0, xyy

t
yu MMM   = –40 kNm/m 
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This example shows that steel is required in only y-direction at top and in only x-
direction at bottom. 
 
 
8.12.4 Comments on the Design Method Using Elastic Analysis 
 
The Eurocode in clause 5.6.1 permits the design for ultimate limit state of slabs 
using Upper bound also known as kinematic method (Johansen’s yield line 
method) or the Lower bound also known as static method (Hillerborg’s strip 
method). These methods can be used without any direct check of rotation capacity 
provided conditions of code clause 5.6.1(2) P repeated in section 8.9.5 are adhered 
to.  Any problems with serviceability limit state requirements can be minimized by 
ensuring recommended span/depth ratios and spacing of reinforcement are 
observed. 
Using bending and twisting moments from elastic analysis to design slabs using the 
rules developed in sections 8.11.1 to 8.11.3 avoids this problem and leads to a very 
economical design.  The main disadvantage is that the designed reinforcement will 
vary from point to point and some form of averaging is needed to convert the 
variable reinforcement into bands with constant reinforcement.  The method is also 
highly amenable to computer-aided design of general slab structures. 
 
 
8.13 STAIR SLABS  
 
 
8.13.1 Building Regulations  
 
In U.K., statutory requirements are laid down in Building Regulations and 
Associated Approved Documents, Part H that defines private and common 
stairways.  The private stairway is for use with one dwelling and the common 
stairway is used for more than one dwelling.  Requirements from the building 
regulations are shown in Fig. 8.112.  
 
 
8.13.2 Types of Stair Slabs  
 
Stairways are sloping one-way spanning slabs.  Two methods of construction are 
used.  
 
(a) Transverse spanning stair slabs  
 
Transverse spanning stair slabs span between walls, a wall and stringer (an edge 
beam), or between two stringers. The stair slab may also be cantilevered from a 
wall.  A stair slab spanning between a wall and a stringer is shown in Fig. 8.113(a).  
The stair slab is designed as a series of beams consisting of one step with assumed 
breadth and effective depth shown in Fig. 8.113(c).  The moment reinforcement is 
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generally one bar per step.  Secondary reinforcement is placed longitudinally along 
the flight.  
 

 
 
 

Fig. 8.112 Building regulation for dimensions of stairs. 
 
(b) Longitudinal spanning stair slabs  
The stair slab spans between supports at the top and bottom of the flight.  The 
supports may be beams, walls or landing slabs.  A common type of staircase is 
shown in Fig. 8.114. 
     The effective span l lies between the top landing beam and the centre of support 
in the wall.  If the total design load on the stair is W the positive design moment at 
mid-span and the negative moment over top beam B are both taken as Wl/10.  The 
arrangement of moment reinforcement is shown in Fig. 8.114.  Secondary 
reinforcement runs transversely across the stair.  
     A staircase around a lift well is shown in Fig. 8.115.  The effective span l of the 
stair is normally taken as between the centres of landing.  The maximum moment 
near mid-span and over supports is taken as Wl/10, where W is the total design load 
on the span.  
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Fig. 8.113 (a) Transverse section; (b) longitudinal section; (c) assumptions for design. 
 
 
8.13.3 Design Requirements  
 
(a) Imposed loading  
The imposed loading on stairs is given in Eurocode 1: Actions on Structures       
Part 1-1: General Actions, clause 6.3.1.2, Table 6.2.  From this table the distributed 
loading is between 2 kN/m2 and 4 kN/m2 with the former value recommended. 
 
(b) Design provisions  
The stress analysis of a stair slab is complex.  The slab is attached to the wall on 
one side and is connected to the landings at top and bottom.  Because of the depth 
of the stairs, cantilever moment is unlikely to be important.   The usual 
assumptions for design of staircases are as follows.  
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1. Staircase may be taken to include a section of the landing spanning in the 
same direction and continuous with the stair flight. 

2. The design ultimate load is to be taken as uniform over the plan area. 
When two spans intersect at right angles as shown in Fig. 8.116 the load 
on the common area can be divided equally between the two spans. 

3. When as shown in Fig. 8.116 the staircase is built monolithically at its 
ends into structural members spanning at right angles to its span, the 
effective span is given by ln + 0.5(a1 + a2), where ln is the clear horizontal 
distance between supporting members. a1 is the breadth of a supporting 
member at one end or the depth of the slab whichever is the smaller and a2 
is the dimension similar to a1 at the second end of the slab.  

4. The effective span of simply supported staircases without stringer beams 
should be taken as the horizontal distance between centrelines of supports 
or the clear distance between faces of supports plus the effective depth 
whichever is less. 

5. The depth of the section is to be taken as the minimum thickness 
perpendicular to the soffit of the stair slab. 

6. The design procedure is the same as for beams and slabs. 
 
 
8.13 4 Example of Design of Stair Slab  
 
(a) Specification  
Design the side flight of a staircase surrounding an open stair well.  A section 
through the stairs is shown in Fig. 8.116(a).   
The stair slab is supported on a beam at the top and on the landing of the flight at 
right angles at the bottom.  The imposed loading is 2 kN/m2.  The stair is built     
110 mm into the sidewall of the stair well.  The clear width of the stairs is 1.25 m 
and the flight consists of steps with risers at 180 mm and goings of 220 mm with 
20 mm nosing.  The stair treads and landings have 15 mm granolithic finish and the 
underside of the stair and landing slab has 15 mm of plaster finish.  The materials 
are fck = 30 MPa concrete and fyk = 500 A reinforcement.  
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Fig. 8.114 A common type of stair case. 
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Fig. 8.115 (a) Plan; (b) section AA. 

 
(b) Loading and moment  
Assume the waist thickness of structural concrete is 100 mm, the cover is 25 mm 
and the bar diameter is 10 mm.  The loaded width is 1.10 m and effective breadth 
of the stair slab is 1.25 m as shown in section AA in Fig. 8.116(a).  The effective 
span of the stair slab is taken as the clear horizontal distance (1540 mm) plus the 
distance of the stair to the centre of the top beam (235 mm) plus one-half of the 
breadth of the landing (625 mm), i.e., 2400 mm.  The design ultimate loading on 
the stairs is calculated first.  
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(i) Landing slab 
 The overall thickness including the top and underside finish is 130 mm.  

Dead load = 0.13 × 25 = 3.25 kN/m2 
Imposed load = 2 kN/m2 

Total design ultimate load = 1.35 × 3.25 + 1.5 × 2.0 = 7.4 kN/m2 
Taking the loaded length of the landing as 1100 mm and assuming that only 50 
percent of the landing load goes to each flight,  

Landing load = 0.5 × 7.4 × (landing breadth/2 =0.625) × (loaded length=1.1) 
                          = 2.54 kN 
(ii) Stair slab  
The slope length is √ (1.7752+ 1.442) = 2.29 m and the steps project 152 mm 
perpendicularly to the top surface of the waist. The average thickness including 
finishes is 100 +152/ 2 + 30 = 206 mm. 

Dead load = 0.206 × 2.29 × 1.1× 25 = 12.97 kN 
Imposed load = 1.775 × 1.1 × 2.0 = 3.92 kN 

Total design load = 1.35 × 12.97 + 1.5 × 3.92 = 23.39 kN 
The total load on the span is  

2.54 + 23.39 = 25.93 kN 
Assuming that the design moment for sagging moment near mid-span and the 
hogging moment over the supports are both Wl/10, design moment M is 

M = 25.93 × 2.4/10 = 6.22 kNm 
 
(c) Moment reinforcement  
The effective depth  

d = 100 – 25 – 5 = 70mm 
The effective width b will be taken as the width of the stair slab, 1250 mm.  

k = M/ (bd2 fck) = 6.22 × 106/ (1250 × 702 × 30) = 0.034 < 0.196 
z/d = 0.5[1.0 + √ (1.0 – 3 × 0.0349)] = 0.97 

z = 0.97 × 70 = 68 mm 
As = 6.22 × 106/ (0.87 × 500 × 68) = 210 mm2 for the full 1250 mm width 

             = 210/1.25 = 168 mm2/m 
 
Minimum steel 

MPa6.22530.0f30.0f 667.0667.0
ckctm   

As, min = 0.26 (fctm/fyk) bt d ≥ 0.0013 bt d 
bt = 1 m width of slab = 1000 mm, d = 700 mm 
As, min = 0.26 × (2.6/500) × 1000× 70 ≥ 0.0013 × 1000× 70 
As, min = 97 mm2/m.   
The area of steel calculated (210) is higher than the minimum value. 
Provide five 8 mm diameter bars to give a total area of 251 mm2.  Space the bars at 
300 mm centres.  The same steel is provided in the top of the slab over both 
supports.  
According to clause 9.3.1.1(2), secondary reinforcement should be not less than 20 
percent of principal reinforcement.   
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Main steel required is 168 mm2/m.  20 percent of 168 mm2/m = 34 mm2/m, which 
is below the minimum value of 97 mm2/m. Provide minimum steel of 8 mm 
diameter bars at 300 mm centres (maximum spacing = 3h = 300 mm) to give       
101 mm2/m transversely as distribution steel.  
 
(d) Shear resistance  
From the loading shown in Fig. 8.116(c), reaction at the right support is the 
maximum. 

Shear = {2.54 × 0.625/2 + 23.39 × (0.625+1.775/2)}/2.4 = 15.1 kN 
v = 15.1 × 103/ (1250 × 70) = 0.17 N/mm2 

100 ρ1 = 100 As/ (bd) = 100 × 251/ (1250 × 70) = 0.29 < 2.0 
CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + (200/70)0.5 = 2.69 >2.0 

MPa49.0)3029.0(0.212.0)f100(kCv 33.033.0
ck1c,Rdc,Rd   

νmin = 0.035 × k1.5×√fck = 0.035×2.01.5 ×√30 = 0.54 MPa 
(v = 0.17) < (vRd, c = 0.54) 

No shear reinforcement is needed. 
The slab is satisfactory with respect to shear.  
 
 

 
 

Fig. 8.116 (a) Section through the stairs; (b) loading diagram. 
 

1.775 m 

2.4 m 

Landing 
1.25 m 

1.25 m 

Loaded width 
1.1 m 

1.44 m 

(a) 

(b) 
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Fig. 8.116 (c) Loads and reactions. 
 
 (e) Deflection  
The slab is checked for deflection using code equation (7.16a). 

100 ρ1% = 100 × 251/ (1250 × 70) = 0.29 < 2.0 
ρ0% = 0.1√fck =   0.1√30 = 0.55 

k = 1.5 for interior span of one-way slabs 

                            
0

2
3

0
ck

0
ck if})1(f2.3f5.111{K

d
L











      (7.16a)
 

8.49})1
29.0
55.0(302.3

29.0
55.0305.111{2.1

d
L 2

3

  

Allowable span/d ratio = 49.8  
Actual span/d ratio = 2400/70 = 34.3 

Hence the slab is satisfactory with respect to deflection.  
 
(f) Cracking  
For crack control the clear distance between bars is not to exceed 3 h = 300 mm.  
The reinforcement spacing of 300 mm is satisfactory.  
 

 
 

Fig. 8.117 Reinforcement details. 
 
 

1.775 m 

0.625 m 

2.54 kN 

23.39 kN 
15.1 kN 

10.86 kN 
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(g) Reinforcement  
The reinforcement is shown in Fig. 8.117.  
 
 
8.13 5 Analysis of Stair Slab as a Cranked Beam 
 
Fig. 8.118 shows the stair slab as a cranked beam.  It is assumed that the beam is 
fixed at the top and bottom to the landings. 
 

 
 

Fig. 8.118 Cranked beam. 
 
(i) Landing slab 
 
 The overall thickness including the top and underside finish is 130 mm.  

Dead load = 0.13 × 1.25 × 25 = 4.06 kN/m 
Taking the loaded length of the landing as 1100 mm and assuming that only 50 
percent of the landing load goes to each flight,  

Imposed load = 2 × 1.1 × (50%) = 1.1 kN/m 
Total design ultimate load = 1.35 × 4.06 + 1.5 × 1.1 = 7.13 kN/m 

 
(ii) Stair slab  
The slope length is √ (1.7752+ 1.442) = 2.29 m and the steps project 152 mm 
perpendicularly to the top surface of the waist. The average thickness including 
finishes is 100 +152/ 2 + 30 = 206 mm. 

Dead load = 0.206 × 2.29 × 1.25× 25 = 14.74 kN 
Imposed load = 1.775 × 1.1 × 2.0 = 3.92 kN 

Total design load = 1.35 × 14.74 + 1.5 × 3.92 = 25.78 kN 
Spreading this load over a length of 2.29 m, loading is 11.25 kN/m. 
The beam is analysed using a frame analysis program.  Fig. 8.119 and Fig. 8.120 
show respectively the bending moment and shear force diagrams. 
 
 
 
 

1.44 m 

1.25 m 

7.13 kN/m 

11.26 kN/m 
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Fig. 8.119 Bending moment diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.120 Shear force diagram. 
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CHAPTER 9 
 

COLUMNS 
 
 
9. 1 TYPES, LOADS, CLASSIFICATION AND DESIGN  
      CONSIDERATIONS  
 
 
9.1.1 Types and Loads  
 
Columns are structural members in buildings carrying roof and floor loads to the 
foundations.  A column stack in a multi-storey building is shown in Fig. 9.1(a).   
Columns primarily carry axial loads, but most columns are subjected to moment as 
well as axial load.  Referring to the part floor plan in the figure, the internal column 
A is designed for predominantly axial load while edge columns B and corner 
column C are designed for axial load and appreciable moment.  
     Design of axially loaded columns is treated first.  Then methods are given for 
design of sections subjected to axial load and moment.  Most columns are termed 
short columns and fail when the material reaches its ultimate capacity under the 
applied loads and moments.  Slender columns buckle and the additional moments 
caused by deflection must be taken into account in design.  
  The column section is generally  
square or rectangular, but circular and polygonal columns are used in special cases.  
When the section carries mainly axial load it is symmetrically reinforced with four, 
six, eight or more bars held in a cage by links.  It is not practical to cast vertically 
columns smaller than 200 mm square. Typical column reinforcement is shown in 
Fig. 9.1(b). 
General requirements for design of columns are treated in section 5.8 of    
Eurocode 2.  The provisions apply to columns where the greater cross sectional 
dimension does not exceed four times the smaller dimension.  
     The minimum size of a column must meet the fire resistance requirements given 
in Eurocode 2: Design of Concrete Structures-Part 1-2: General Rules-Structural 
Fire Design.   
For example, from Table 2.10, Chapter 2, for a fire resistance period of 90 minutes, 
a fully exposed braced column must have a minimum dimension of 350 mm with 
the distance from the surface to centre of the steel of at least 53 mm.  
 
 
9.1.2 Braced and Unbraced Columns 
 
Lateral stability in braced reinforced concrete structures is provided by shear walls, 
lift shafts and stairwells.  Fig. 9.2a shows a frame structure which is designed such 
that all horizontal load is resisted by a stiff lift shaft so that the column ends deflect 
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very little. In a braced column the axial load and the bending moments at the ends 
of a column arise from the vertical loads acting on the beams.  The horizontal loads 
do not affect the forces or deformation of the column.  The columns do not 
contribute to the overall horizontal stability of the structure. 
 

 
 

Fig. 9.1 (a) Building column; (b) column construction. 
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9.1.3 General Code Provisions  
 
In unbraced structures, resistance to lateral forces is provided by bending in the 
columns and beams in that plane.  The column ends can deflect laterally.  Fig. 9.2b 
shows a typical unbraced structure.  In a column in an unbraced structure, the axial 
force and moments in the column are caused not only by the vertical load on the 
beams but also by the lateral loads acting on the structure and additional moments 
due to the axial load being eccentric to the deflected column. 
     It is worth pointing out that most concrete buildings are designed as braced 
structures.  Unbraced structures are rare and are used only if there is a need for 
uninterrupted floor space. 
 

 
 

Fig. 9.2 (a) Braced structure. (b) Unbraced structure. 
 
 
 
 

(a) 

(b) 

Elevation 

Plan 

Elevation 
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9.1.4 Practical Design Provisions  
 
The following practical design considerations with regard to design of columns are 
extracted from section 9.5.2 of the Eurocode 2.  The main points from the code are 
as follows.  
 
(a) Minimum diameter of longitudinal bar  
Clause 9.5.2(1) states that the longitudinal bar should have a diameter not less than 
8 mm.  
 
(b) Minimum area of reinforcement  
Clause 9.5.2(2) states that the total amount of longitudinal reinforcement should 
not be less than As, min.  As, min = 0.10 NEd /fyd or 0.002 Ac whichever is greater, 
where NEd = design axial force and Ac is the cross sectional area of concrete.  
 
(c) Maximum area of reinforcement  
Clause 9.5.2(3) states that the total area of longitudinal reinforcement should not 
exceed As, max: 

As, max = 0.04 Ac outside laps 
As, max = 0.08 Ac at laps 

 
(d) Polygonal columns 
Clause 9.5.2(4) states that there should be a longitudinal bar at each corner.  In the 
case of circular columns, there should be a minimum of four bars.  
 
(e) Requirements for links  
It is necessary to provide transverse reinforcement like links, hoops, helical or 
spiral reinforcement to prevent the longitudinal reinforcement from buckling.  The 
transverse reinforcement confines the concrete and therefore increases its 
compressive strength.  Fig. 9.3 shows the use of links. 
Clause 9.5.3 covers containment of compression reinforcement using transverse 
reinforcement:  

1. The diameter of the transverse reinforcement should not be less than        
6 mm or one-quarter of the diameter of the largest longitudinal bar 
whichever is greater.  

2. The maximum spacing is to be Scl, max.   Scl, max = minimum of: 
 20 times the diameter of the smallest longitudinal bar  
 The lesser dimension of the column 
 400 mm 

3. The maximum spacing in (2) above can be reduced by a factor of 0.6: 
 In sections within a distance equal to the larger dimension of the 

column cross section above or below a beam or slab. 
 Near lapped joints, if the maximum diameter of the longitudinal bar is 

greater than 14 mm.  A minimum of three links should be evenly 
placed in the lap length.  
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4. Every longitudinal bar or bundle of bars placed in a corner should be held 
by a link.  No bar within a compression zone should be further than 150 
mm from a restrained bar. 

5. If the direction of bars changes by less than equal to 1 in 12, any change 
in lateral forced can be ignored. 

 
Fig. 9.3 (a) Arrangement of links; (b) column lap; (c) column base. 

 
(f) Compression anchorage length, laps and butt joints  
Section 5.3.5, Chapter 5 discusses the topic of laps.  Table 5.6, Chapter 5 shows 
that in the case of compression, α1 = α2 = α3 = 1 and the design anchorage length  

ℓbd = ℓb, reqd ≥ ℓb, min 
Values of ℓb, reqd are shown in Table 5.5, Chapter 5. 
The required anchorage length in compression is given by equation (8.7) of the 
code,  
                          ℓb, min > max (0.3 ℓb, reqd; 10 φ; 100 mm)                                  (8.7) 
Using the value of ℓb, reqd from Table 5.5 of Chapter 5, Table 9.1 shows the values 
of ℓb, min. 
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Table 9.1 Compression anchorage length ℓb, min values for fck = 25 and 30 MPa, fyk = 500 MPa 
φ ℓb, min mm 

fck = 25 fck = 30 
6 100 100 
8 100 100 
10 120 108 
12 144 130 
16 192 173 
20 240 216 
25 300 270 
32 384 346 
40 528 468 

 
Taking α1 = α2 = α3 = 1, the design lap length ℓ0 from code equation (8.10) is given 
by 
                                          ℓ0 = α6 ℓb, reqd ≥ ℓ0, min                                             (8.10) 
From equation (8.11) of the code,  
                             ℓ0, min > max (0.3 α6 ℓb, reqd; 15 φ; 200 mm)                        (8.11) 

1.5 ≥ [α6 = √ (ρ1/25)] ≥ 1.0 
where ρ1 is the percentage of reinforcement lapped with in 0.65 ℓ0 from the centre 
of lap length (see Fig. 5.49, Chapter 5 or Fig. 8.8 of Eurocode 2). 
Table 9.2 shows the required lap length ℓ0. 

 
Table 9.2 Lap length ℓ0 values for fck = 25 and 30 MPa, fyk = 500 MPa 

Dia. ℓ0, mm ℓ0, mm 
fck=25, MPa fck=30, MPa 

α6 α6 
1 1.15 1.4 1.5 1 1.15 1.4 1.5 

6 240 276 336 360 216 248 302 324 
8 320 368 448 480 288 331 403 432 

10 400 460 560 600 360 414 504 540 
12 480 552 672 720 432 497 605 648 
16 640 736 896 960 576 662 806 864 
20 800 920 1120 1200 720 828 1008 1080 
25 1000 1150 1400 1500 900 1035 1260 1350 
32 1280 1472 1792 1920 1152 1325 1613 1728 
40 1760 2024 2464 2640 1560 1794 2184 2340 

 

 
See section 5.2.5.1, Chapter 5 and Fig. 5.52 for additional information about 
transverse reinforcement at a lap joint. 
Clause 8.7.1(1)P of the code states that the  load in compression bars may be 
transferred by welding, mechanical devices assuring load transfer in 
tension−compression or in compression only.  
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9.2 COLUMNS SUBJECTED TO AXIAL LOAD AND BENDING  
      ABOUT ONE AXIS WITH SYMMETRICAL REINFORCEMENT  
 
 
9.2.1 Code Provisions  
 
The design of columns resisting moment and axial load is similar to the design in 
bending except that equilibrium should include bending moment and axial load.  
The bending moment is the sum of moment due to external loads and moment 
caused by the axial load acting eccentrically to the laterally deflected column.   
 
 
9.2.2 Section Analysis: Concrete 
 
A reinforced column section subjected to the ultimate axial load N and ultimate 
moment M is shown in Fig. 9.4.  In most cases, columns are symmetrically 
reinforced because the direction of the moment in most cases is reversible.  An 
additional reason is with unsymmetrical reinforcement there is always the danger 
of the smaller amount of steel being wrongly placed on the face requiring the larger 
reinforcement.    

 
 

Fig. 9.4 Column subjected to axial force and moment. 
 
Depending on the relative values of M and N, the following two main cases occur 
for analysis:  
 

N 

M 

Ast Asc 

h 

b 
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Fig. 9.5 Cross section partly in compression (λx < h). 
 
 

 
Fig. 9.6 Cross section wholly in compression (λx > h). 

 
Case 1: λx/h ≤ 1 
In this case, compression on one side in the concrete and reinforcement and tension 
in the reinforcement on the other side occurs with the neutral axis lying between 
the rows of reinforcement.  As shown in Fig. 9.5, this case occurs when λx ≤ h.  In 
this case part of the column cross section is in compression and part in tension. 
Compressive force in concrete, Cc is give by 
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Taking moments about the mid-depth of the section, the moment of the 
compression force Cc is 
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Case 2: λx/h > 1 
In this case compression occurs over the whole section with the neutral axis lying 
at the edge or outside the section with both rows of steel bars in compression.  
As shown in Fig. 9.6, this case occurs when λx > h. 
Compressive force in concrete, Cc is given by 
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Taking moments about the mid-depth of the section, the moment of the 
compression force is 
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9.2.3 Stresses and Strains in Steel 
 
For all positions of the neutral axis, the strains in the compression and tension 
steels are 
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The stresses in the compression and tension steels are 
fsc = E εsc ≤ fyd and fst = E εst ≤ fyd 

where E = Young’s modulus for steel. 
Note that when x > d, then εst becomes negative, indicating that the stress in the 
‘tension’ steel is actually compressive.  The force Cs in compression and force T in 
tension steel are 

Cs = Asc fsc, T = Ast fst 
 
 
9.2.4 Axial Force N and Moment M 
 
The sum of the internal forces is  

N = Cc + Cs –T 
N = Cc + As' fs
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The sum of the moments of the internal forces about the centre line of the column 
is  
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Using the above equations, it is not possible to directly design a section to carry a 
given load and moment.  It is necessary to assume a trial section and the required 
amount of steel can be determined using design charts constructed using the above 
equations.  
 
 
9.2.5 Construction of Column Design Chart  
 
A design curve can be drawn for a selected grade of concrete and reinforcing steel 
for a section with a given percentage of reinforcement, 100As/(bh), symmetrically 
placed at a given location d/h.  The curve is formed by plotting values of N/ (bh) 
against M/ (bh2) for various positions of the neutral axis x.  Other curves can be 
constructed for percentages of steel ranging from a minimum value of 0.4% to a 
maximum value of 4% for vertically cast columns.  The family of curves forms the 
design chart for that combination of materials and steel location.  Separate charts 
are required for the same materials for different values of d/h which determines the 
location of the reinforcement in the section.  Groups of charts are required for the 
various combinations of concrete and steel grades.  
 
The process for construction of a design chart is demonstrated below.  

1. Select materials: Concrete fck = 30 MPa, Reinforcement fyk = 
500 MPa. 

2. Select a value of d/h = 0.95, d'/h = 0.05.  
3. Select a total steel percentage 100As/ (bh) = say, 4. 

Let the steel be symmetrically placed and Asc/ bh = 0.02 and Ast/ bh = 0.02. 
The design chart is constructed by selecting different values of x/h and calculating 
the corresponding N/ (bh) and M/ (bh2). 
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N/ (bh) = Cc / (bh) + 0.02 (fsc – fst) 
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For fck = 30 MPa, fcd = 30/1.5 = 20 MPa, λ = 0.8, η = 1, αcc = 1.0. εcu3 = 0.0035. 
Note that for U.K. practice αcc = 0.85. 
The equations for calculating Cc/ (bh) and )bh/(M 2

c  to be used depend upon the 
value of x/h.  They can be summarised as follows. 
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9.2.5.1 Typical Calculations for Rectangular Stress Block 
 
(a) Choose material properties: 
Concrete: fck = 30 MPa, fcd = fck/1.5 = 20 MPa,   
λ = 0.8, η = 1, αcc = 1 (U.K. practice αcc = 0.85) 
εcu3 = 0.0035 
Steel: fyk = 500 MPa, fyd = fyk/1.15 = 435 MPa 
Young’s modulus for steel, Es = 200 × 103 MPa 
(b) Choose a value for x/h: 
(i) Let x/h = 0.4. 
Using the equations for x/h ≤ λ 
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N/ (bh) = Cc / (bh) + 0.03 (fsc – fst) = 4.86 + 0.0 = 6.40 
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(ii)  x/h = 1.4. 
Using the equations for x/h > λ 
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(iii) x/h = 2.0. 
Using the equations for x/h > λ 
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     In a similar manner calculations can be carried out for other values of x/h.  
Calculations are most conveniently done using a spreadsheet.  Using the results, a 
graph of N/ (bh) versus M/ (bh2) can be drawn as shown in Fig. 9.7. 
     As is to be expected, when x > d, the ‘tension’ reinforcement goes into 
compression.  This naturally increases the value of N/ (bh) but drastically 
decreases the value of M/ (bh2).  When the entire column section is under a 
compressive stress of αcc η fcd and the stress in both steels is fyd compression, then 
the maximum value of N/ (bh) is attained and the corresponding value of M/ (bh2) 
is equal to zero.   
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Fig. 9.7 Column design chart for 4% steel. 
 

      
Curves for total steel percentages 1, 2, 3, and 4 can be plotted.  The design chart is 
shown in Fig. 9.8.  Other charts are required for different values of the ratio d/h to 
give a series of charts for a given concrete and steel strength.  A separate series of 
charts is required for each combination of materials used.  
     It has to be noted that any combination of {N/ (bh), M (bh2)} which lies on or 
inside the curve corresponding to a particular value of Asc/ (bh) leads to a safe 
design.  

 
Fig. 9.8 Column design chart. 



358                                                                                     Reinforced concrete design to EC 2 

9.2.5.2 Column Design Using Design Chart 
 
At a cross section in a column, design loads at ultimate are an axial load of            
N = 1480 kN and a moment M = 54 kNm.  The column section is 300 mm × 250 
mm.  Determine the area of steel required.  The materials are fck = 30 MPa concrete 
and fyk = 500 MPa reinforcement.  
Assume 25 mm diameter bars for the main reinforcement and 8 mm diameter links.  
The cover on the links is 25 mm.  

b = h = 250 mm 
d = 250 – 25 – 8 – 12.5 = 204 mm 

d/h = 204/250 = 0.82 
Use the chart shown in Fig. 9.17 where d/h = 0.85. 

N/ (bh) = 1480 × 103/ (250 × 300) = 16.4 
M/ (bh2) = 54 × 106 (250 × 3002) = 2.4 

For this combination of {N/ (bh), M/ (bh2)}, the design chart for 100As/ (bh) = 2 
shown in Fig. 9.9 indicates a safe design. 

Asc = 2.0 × 300 × 250/ l00 = 1500 mm2 
Provide four 25 mm diameter bars to give an area of 1963 mm2. 
 

 
     

Fig. 9.9 Column design chart for example. 
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9.2.5.3 Three Layers of Steel Design Chart  
 
The design chart shown in Fig. 9.7 strictly applies only to the case where the 
symmetrical reinforcement is placed on two opposite faces.  Charts can be 
constructed for other arrangements of reinforcement.  One such case is shown in 
Fig. 9.10 where eight bars are spaced evenly around the perimeter of the column.  
The total steel As is placed such that at the top and bottom rows steel is             
0.375 As (3 bars) and in the middle row it is 0.25 As (2 bars). 
 
 
 
 
 
 
 
 
 

Fig. 9.10 Column with three rows of steel. 
 

 
 

Fig. 9.11 Column design chart for three layers of reinforcement. 
 
     The contribution from concrete is calculated as in the previous section.  There 
are however three strains to calculate. 
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The stresses in the compression and tension steels are calculated from strains as 
before. 

Cs = Asc fsc 
T1 = Ast1 fst1,   T2 = Ast2 fst2 

N = Cc + Cs –T1 – T2 
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The sum of the moments of the internal forces about the centre line of the column 
is  
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Note that the middle layer steel has zero lever arm about the centre line and hence 
does not contribute to moment of resistance. 
Fig. 9.11 shows the column design chart for this case. 
 
 
9.3 COLUMNS SUBJECTED TO AXIAL LOAD AND BENDING  
      ABOUT ONE AXIS: UNSYMMETRICAL REINFORCEMENT  
 
An unsymmetrical arrangement of reinforcement provides the most economical 
solution for the design of a column subjected to a small axial load and a large 
moment about one axis.  Such members occur in single storey reinforced concrete 
portals.  Design charts for such cases can be constructed.  If the total steel area is 4 
percent, say, but is distributed such that the tension steel is 3 percent and 
compression steel is 1 percent, then the corresponding design chart is as shown in 
Fig. 9.12. 
     When the ratio (x/h) ≈ 1.18, the stresses in both the steels are compressive and 
are respectively 195 MPa in ‘tension’ steel and 435 MPa in ‘compression’ steel.  
The forces in the two steels cause a moment equal to that caused by the 
compressive stress in concrete with M/(bh2) ≈ 0 and N/(bh) = 29.1.  When the ratio 
(x/h) = 2.25, the stresses in the two steels are equal to –fyd and the entire column is 
almost in a state of uniform compression and the maximum value of                     
N/ (bh) = 37.39 is reached.  However because of the fact that the compressive 
forces in the two steel are not equal, the force in the ‘tension’ steel gives rise to a 
negative value of M/ (bh2) = –3.04.  However if the reinforcement is symmetrically 
distributed, then N/ (bh) = 37.39 and M/ (bh2) will be zero. 
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Fig. 9.12 Column design chart: unsymmetrical reinforcement. 
 
 
9.3.1 Example of a Column Section Subjected to Axial Load and Moment: 
         Unsymmetrical Reinforcement  
 
At a cross section in a column, the ultimate design loads are an axial load              
N = 230 kN and moment M = 244 kNm.  Design the reinforcement required using 
an unsymmetrical arrangement. The concrete is fck = 30 MPa and the reinforcement 
is fyk = 500 MPa. 
     Assuming d'/h = 0.15 and d/h = 0.85 and because of the large moment, assume a 
rectangular section with b = 300 mm and h = 350 mm. 

N/ (bh) = 230 × 103/ (300 × 350) = 2.19 
M/ (bh2) = 244 × 106/ (300 × 3502) = 6.64 

Assume As
`/ (bh) = 1% and As/ (bh) = 2% and draw the design chart as shown in 

Fig. 9.13.  As shown in Fig. 9.12, the combination (M/ (bh2) = 6.64, N/ (bh) = 
2.19) is inside the interaction curve, indicating that it is a safe design. 
 
  Calculations show that at (x/h) = 0.41, −fsc = fst = fyd, indicating that both steel 
yield.  Approximately only a third of the column cross section is in compression. 

N/ (bh) = 2.20, M/ (bh2) = 6.77. 
As' = 0.01 × 300 × 400 = 1200 mm2, As = 0.02 × 300 × 400 = 2400 mm2 

Provide 3H25 on the compression face, Asc = 1473 mm2 and 5H25 on the tension 
face, Ast = 2454 mm2. 
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Fig. 9.13 Column design chart: Ast = 2%, Asc = 1%. 
 
 

 
Fig. 9.14 Column design chart: Ast = 1.5%, Asc = 1.5%. 
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If the column had been symmetrically reinforced, then for total of 3% steel, 
assuming As

'/ (bh) = 1.5% and As/ (bh) = 1.5%, the design chart is as shown in     
Fig. 9.14.  As can be seen, it leads to an unsafe design. 
 
 
9.4 COLUMN SECTIONS SUBJECTED TO AXIAL LOAD AND BIAXIAL 
       BENDING  
 
 
9.4.1 Outline of the Problem  
 
When a column is subjected to an axial force and a bending moment about, say, the 
x-axis, the neutral axis is parallel to the x-axis.  However when a column is 
subjected to an axial force and moments about the two axes, the neutral axis is 
inclined to the x-axis as shown in Fig. 9.15. 
 

 
 

Fig. 9.15 Biaxial bending causes inclined neutral axis. 
 
 

For a given location and direction of the neutral axis the strain diagram can be 
drawn with the maximum strain in the concrete of εcu3. The strains in the 
compression and tension steel can be found and the corresponding stresses 
determined from the stress–strain diagram for the reinforcement.  The resultant 
forces Cs and T in the compression and tension steel and the force Cc in the 
concrete can be calculated and their locations determined. The net axial force is 

N = Cc + Cs – T 
Moments of the forces Cc, Cs and T are taken about the XX and YY axes to give 
Mx and My.   
Thus a given section can be analysed for a given location and direction of the 
neutral axis and the axial force and biaxial moments that it can support can be 

x 

y 

Neutral axis 

x 
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determined.  As in the case of axial load with moment about one axis only, a 
failure surface can be constructed.  Calculations are naturally much more involved 
than in the case of axial load accompanied by moment about one axis. 
 
 
9.4.1.1 Expressions for Contribution to Moment and Axial Force by Concrete 
 
Fig. 9.16 shows a rectangular column b × h and reinforced with four bars.  

 
Fig. 9.16 Column subjected to axial load and biaxial moments. 

 
Assuming the origin of coordinates at the centroid of the column cross section, the 
coordinates of the four bars can be calculated.   The position of the neutral axis is 
governed by two parameters α and β as shown in Fig. 9.17.  Assuming that the 
maximum compressive strain εcu3 is at the top right hand corner of the column, the 
normal strain in the cross section is given by 

ε = εcu3 {C1 + C2 (x/b) + C3 (y/h)} 
The constants can be calculated from the boundary conditions as follows: 

ε = εcu3 at (x/b = 0.5, y/h = 0.5), 
ε = 0 at (x/b = (0.5 – β), y/h = 0.5), 
ε = 0 at (x/b = 0.5, y/h = (0.5 – α)) 

Solving for the constants: 
C1 = 1 – 1/ (2β) – 1/ (2α),   C2 = 1/β,   C3 = 1/α 

}
)5.0

h
y()5.0

b
x(

1{3cu









  

The strain in the bars can be calculated by substituting the appropriate coordinates 
of the bars.  The stress σ in the bars is equal to σ = E ε but numerically not greater 
than fyd. 
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Y 
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2 3 
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     Assuming a rectangular stress block with constant stress of αcc η fcd and a depth 
equal to λ times the depth of the neutral axis, depending on the position of the 
neutral axis, expressions for the compressive force and the corresponding moments 
about the x- and y-axes due to the compressive stress in the column can be derived 
as follows.  

 
 

Fig. 9.17 Column with the neutral axis inclined to x-axis. 
 
Case 1: λβ ≤ 1.0 and λα ≤ 1.0 
From the triangular shape of the stress block shown in Fig. 9.18,  

Nc = αcc η fcd {0.5 × λ αh × λ βb}, 
Mxc = Nc × (0.5 h – λ αh/3), 
Myc = Nc × (0.5 b – λ βb/3) 

 

 
 

Fig. 9.18 Neutral axis position for Case 1. 
 
Case 2: λ β > 1.0 and λ α ≤ 1.0 
From the trapezoidal stress block shown in Fig. 9.19, 

)1(h)bb(
b
hh1







  

Nc = αcc η fcd {0.5 (αh1 + λαh) b}, 
Mxc = Nc × (0.5 h – ybar), 

λαh 

 λβb 

αh 

βb 

Neutral axis 

X 

Y 
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Myc = Nc × (0.5 b –xbar) 
Position of centroid from right face of the trapezium: 

xbar = 
)hh(
)hh2(

3
b

1

1


  

Position of centroid from top face of the trapezium: 

ybar = 
)hh(

)hhhh(
3 1

1
222

1




 
 

 
 

Fig. 9.19 Neutral axis position for case 2. 
 
Case 3: λβ ≤ 1.0 and λα > 1.0 
From the trapezoidal stress block shown in Fig. 9.20 
 

 
 

Fig. 9.20 Neutral axis position for case 3. 
 

)1(b)hh(
h
bb1


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
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Nc = αcc η fcd {0.5 (βb1 + λβb) h}, 
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Mxc = Nc × (0.5 h – ybar), 
Myc = Nc × (0.5 b – xbar) 

 
Position of centroid from right face of the trapezium: 

xbar =
)bb(

)bbbb(
3 1

1
222

1


  

 
Position of centroid from top face of the trapezium: 

ybar = 
)bb(
)bb2(

3
h

1

1


  

 
Case 4: λβ > 1.0 and λα > 1.0 
The five-sided stress block shown in Fig. 9.21 can be considered as compression 
over the entire column cross section with tension in the triangular area in the left 
hand bottom corner.  Compression over the entire column does not give rise to any 
moment.  Moment is caused purely by the tension in the triangular area. 
 

 
 

Fig. 9.21 Neutral axis position for case 4. 
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b
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Nc = αcc η fcd {bh – 0.5 (h – αh1) (b – βb1)} 
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)}bb(
3
1b5.0){bb)(hh(

2
1fM 111cdccyc   

 
 
9.4.1.2 Example of Design Chart for Axial Force and Biaxial Moments 
 
Consider a rectangular column b × h and reinforced with four bars as shown in Fig. 
9.16.  The total steel area As = 4% of bh, fck = 30 MPa, fyk = 500 MPa, b/h = 0.5.  
The bars are located at 0.15h from top and bottom faces and at 0.35b from the 
sides.  The coordinates (x/b, y/h) of the four bars are: 
1: (0.2, 0.35), 2: (0.2, –0.35), 3: (–0.2, –0.35), 4: (–0.2, 0.35) 

fck = 30 MPa, εcu3 = 0.0035, λ = 0.8, η = 1, fcd = 30/1.5 = 20 MPa, 
fyk = 500 MPa, fyd = 500/1.15 = 435 MPa, Es = 200 × 103 MPa 

Calculate N/ (bh), Mx/ (bh2) and My/ (b2h) for the following positions of the neutral 
axis. 
 
(a) Assuming α =0.65, β = 0.95 
Calculate the strains (positive is compressive) in steel from the equation 

}
)5.0()5.0(

1{0035.0









 h
y

b
x

 

The strains in the four bars are respectively:  
1.587 × 10−3,   –2.182 × 10−3,   –3.659 × 10−3,   0.113 × 10−3 

Taking Young’s modulus for steel Es = 200 × 103 MPa, the corresponding stresses 
are: 317, – 435, – 435 and 23 MPa 
The contribution of the stresses in steel to: 

Ns = (317 – 435 – 435 + 23) × (0.02 bh/4) = –2.652 bh (tensile) 
Mxs = (317 + 435 + 435 + 23) × (0.02 bh/4) × 0.35h = 2.12 bh2 
Mys = (317 – 435 + 435 – 23) × (0.02 bh/4) × 0.2b = 0.294 b2 h 

Calculate the contribution of the compressive stress in concrete using: 
α =0.65, β = 0.95, λ = 0.8, λα =0.52, λβ = 0.76 

From the triangular stress block shown in Fig. 9.25, the contributions of the 
compressive stress in concrete to the forces are: 

Nc = fcd × 0.5 × (0.52 h × 0.76 b) = 3.952 bh 
Mxc = Nc × (0.5 h – 0.52 h/3) = 1.291 bh2 
Myc = Nc × (0.5 b – 0.76 b/3) = 0.975 b2h 

Adding the contribution of steel and concrete: 
N/ (bh) = 3.952 – 2.652 = 1.3,    

Mx/ (bh2) = 1.291 + 2.12 = 3.41,    
My/ (b2h) = 0.975 + 0.294 = 1.269 

 
(b) Assuming α =0.65, β = 1.35 
The strains in the four bars are respectively: 

1.915 × 10−3, –1.85 × 10−3, –2.89 × 10−3, 0.877 × 10−3 
The corresponding stresses are: 383, –371, –435 and 175 MPa 
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The contribution of the stresses in steel to: 
Ns = (383 – 371 – 435 + 175) × (0.02 bh/4) = –1.24 bh (tensile) 
Mxs = (383 + 371 + 435 + 175) × (0.02 bh/4) × 0.35h = 2.39 bh2 
Mys = (383 – 371 + 435 – 175) × (0.02 bh/4) × 0.2b = 0.273 b2 h 

Calculate the contribution of the compressive stress in concrete using: 
α =0.65, β = 1.35, λ = 0.8, λ α = 0.52, λ β = 1.08 

From the trapezoidal stress block shown in Fig. 9.26, the contributions of the 
compressive stress in concrete to the forces are: 

)1(h)bb(
b
hh1







  = 0.039 h 

h1/h = 0.06 
Nc = fcd × {0.5 (αh1 + λαh) b} = 5.59 bh 

ybar = 
)hh(

)hhhh(
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1
222

1


  = 0.174 h 

Mxc = Nc × (0.5 h – ybar) = 1.821 bh2 

xbar = 
)hh(
)hh2(

3
b

1

1


  = 0.357 b 

Myc = Nc × (0.5 b – xbar) = 0.802 b2h 
Adding the contribution of steel and concrete: 

N/ (bh) = 5.59 − 1.24 = 4.35, 
   Mx/ (bh2) = 1.821 + 2.39 = 4.211, 
   My/ (b2h) = 0.802 + 0.273 = 1.075 

 
(c) Assuming α =1.2, β = 0.65 
The strains in the four bars are respectively: 

1.447 × 10−3, –0.59 × 10−3, –2.75 × 10−3, –0.71 × 10−3 
The corresponding stresses are: 289,  –119, –435 and –141 MPa 
The contribution of the stresses in steel to: 

Ns = (289 – 119 – 435 – 141) × (0.02 bh/4) = –2.04 bh (tensile) 
Mxs = (289 + 119 + 435 – 141) × (0.02 bh/4) × 0.35h = 1.232 bh2 
Mys = (289 – 119 + 435 + 141) × (0.02 bh/4) × 0.2b = 0.748 b2 h 

Calculate the contribution of the compressive stress in concrete using: 
α =1.2, β = 0.65, λ = 0.8, λ α = 0.96, λ β = 0.52 

From the trapezoidal stress block shown in Fig. 9.27, the contributions of the 
compressive stress in concrete to the forces are: 

)1(b)hh(
h
bb1


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


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b1/b = −0.033 
Nc = fcd × {0.5 (βb1+ λ βb) h} = 4.986 bh 
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  = 0.319 h 

Mxc = Nc × (0.5 h – ybar) = 0.901 bh2 
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xbar = 
)bb(

)bbbb(
3 1

1
222

1


  = 0.174 b 

Myc = Nc × (0.5 b – xbar) = 1.625 b2h 
 
Adding the contribution of steel and concrete: 

N/ (bh) = 4.986 − 2.04 = 2.946 
Mx/ (bh2) = 0.901 + 1.232 = 2.133 
My/ (b2h) = 1.625 + 0.748 = 2.373 

 
(d) Assuming α =1.3, β = 1.5 
Calculate the strains (positive is compressive) in steel. 
The strains in the four bars are respectively: 

2.396 × 10−3, 0.512 × 10−3, –0.42 × 10−3, 1.463 × 10−3 
The corresponding stresses are: 435, 102, –84 and 293 MPa 
The contribution of the stresses in steel to: 

Ns = (435 + 102 – 84 + 293) × (0.02 bh/4) = 3.74 bh 
Mxs = (435 – 102 + 84 + 293) × (0.02 bh/4) × 0.35h = 1.25 bh2 
Mys = (435 + 102 + 84 – 293) × (0.02 bh/4) × 0.2b = 0.331 b2 h 

Calculate the contribution of the compressive stress in concrete using: 
α =1.3, β = 1.5, λ = 0.8, λ α = 1.04, λ β = 1.20, 

From the trapezoidal stress block shown in Fig. 9.28, the contributions of the 
compressive stress in concrete to the forces are: 

h)}1(h)bb(
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Nc = fcd {bh – 0.5 (h – αh1) (b – βb1)} = 12.11 bh 
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1h5.0){bb)(hh(

2
1fM 111cdxc  = 1.767 bh2 

)}bb(
3
1b5.0){bb)(hh(

2
1fM 111cdyc  = 1.435 b2h 

 
Adding the contribution of steel and concrete: 

N/ (bh) = 12.11 + 3.74 = 15.85 
Mx/ (bh2) = 1.767 + 1.25 = 3.017 

My/ (b2h) = 1.435 + 0.331 = 1.766 
 
 
9.4.1.3 Axial Force−Biaxial Moment Interaction Curve 
 
Calculations similar to that in the previous section can be done.  Assuming           
fck = 30 MPa, fyk = 500 MPa, As/ (bh) = 4%, x/b = 0.2, y/h = 0.35.  The results are 
shown in Table 9.3 for My/ (hb2) = 2.0.  The interaction curve is shown in           
Fig. 9.22.  
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Table 9.3 Calculations for biaxial column design curve 
α β Mx/(bh2) N/(bh) 
2 1.5 2.7 27.4 

1.9 1.5213 2.9 27.0 
1.8 1.5381 3.1 26.5 
1.7 1.5554 3.3 25.8 
1.6 1.5726 3.6 25.0 
1.5 1.5877 3.8 24.0 
1.4 1.6 4.1 22.8 
1.3 1.8377 4.1 22.6 

1.25 1.814 4.4 21.5 
1.2 1.8 4.6 20.5 

1.25 1.5971 4.7 20.3 
1.3 1.6014 4.5 21.3 
1.0 1.7 5.5 15.5 
0.8 1.6 6.4 9.5 

0.7117 1.5 6.8 5.9 
0.7 1.4 6.6 4.9 

0.6852 1.3 6.4 3.6 
0.678 1.25 6.3 2.9 

 
 
9.4.2 Approximate Method Given in Eurocode 2  
 
In the absence of interaction diagram as described in section 9.5.1, an approximate 
design method given in Eurocode 2, clause 5.8.9 can be used.  The code gives two 
cases as follows.   
Case 1:  In this case if the code equations (5.38a) and (5.38b) are satisfied then 
biaxial bending can be ignored. 

 As a first step, separate design in each principal direction, disregarding 
biaxial bending, is made.  Imperfections need to be taken into account 
only in the direction where they will have the most unfavourable effect. 

No further check is necessary if the following two conditions are satisfied. 
 Code equation (5.38a) requiring that the ratio of slenderness  
                                  λy/λz ≤ 2.0 and   λz/λy ≤ 2.0                                      (5.38a) 
 Code equation (5.38b) requiring that the relative eccentricities ey/h and 

ez/b satisfy the condition  
                              (ey/heq)/ (ez/beq) ≤ 0.2   or   (ez/beq)/ (ey/heq) ≤ 0.2       (5.38b) 
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Fig. 9.22 Column design chart for axial force and biaxial bending. 

 

 
Fig. 9.23 Rectangular section. 

 
In the above equations,  
Rectangular sections: beq = b, heq = h 
Circular sections, diameter d: beq = heq = 0.866 d 
General shape: beq = √(12 Iyy/A), heq = √(12 Izz/A) 
where:  
Iyy and Izz are the second moments of area about the yy- and zz-axes respectively 
A = cross sectional area 
ey and ez are respectively the eccentricity along the y- and z-axes. 
ez = MEdy/NEd, ey = MEdz/NEd 
MEdy, MEdz and NEd are respectively the design values of bending moment about the 
y-axis, bending moment about the z-axis and axial load. 

y 

z 

h 

b ey 
ez 
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λy and λz are respectively slenderness ratios about the y- and z-axis.   
 
Case 2: Biaxial bending needs to be considered. 
If the conditions in code equations (5.38a) and (5.38b) are not fulfilled, then biaxial 
bending should be taken into account including second order effect in each 
direction.  This can be done by using the code equation (5.39) given by 

                                        
0.1)

M
M

()
M
M( a

Rdy

Edya

Rdz

Edz 

                                        (5.39)
 

In the above equation, MEdy and MEdz are respectively the design values including 
second order effects of bending moment about the y- and z-axis.  MRdy and MRdz 
are respectively the resistant values of bending moment about the y- and z-axis.  
For circular and elliptic cross sections, the exponent a = 2.0.  For rectangular cross 
section, the exponent a is dependent on the ratio NEd/NRd as shown in Table 9.4. 
NEd = Design axial load.  NRd = Ac fcd + As fyd.  Ac = gross cross sectional area of 
concrete.  As = Area of longitudinal reinforcement. 
 

Table 9.4 Values of exponent a 
NEd/NRd 0.1 0.7 1.0 
a 1.0 1.5 2.0 

 
 
9.4.2.1 Example of Design of Column Section Subjected to Axial Load and  
           Biaxial Bending: Eurocode 2 Method  
 
Design the reinforcement for the column section shown in Fig. 9.24   It is subjected 
to the following actions at ULS: NEd = 950 kN, MEdy = 95 kN m, MEdz = 65 kNm.   

NED/ (bh) =7.92, MEdy/ ((hb2) = 1.98, MEdz/ ((h2b) = 1.81. 
The material strengths are fck = 30 MPa for concrete and fyk = 500 MPa 
reinforcement.   
Assume the cover is 25 mm, links are 8 mm in diameter and main bars are H32 
giving As/ (bh) = 0.27%. 
 
(a) As information about the height and end conditions of the column are not 
known, assume equation (5.38a) is satisfied.   
 
(b) Check equation (5.38b). 

ez = MEdy/NEd = 95/950 = 0.10 m = 100 mm 
beq = b = 400 mm, ez/beq = 0.25 

ey = MEdz/NEd= 65/950 = 0.068 m = 68 mm 
heq = h = 300 mm, ey/heq = 0.23 

(ez/beq)/ (ey/heq) = 0.25/0.23 = 1.09 > 0.2 
(ey/heq) / (ez/beq) = 0.23/0.25 = 0.92 > 0.2 

Uniaxial design is inadmissible. 
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Fig. 9.24 Cross section of column subjected to axial load and biaxial moments. 
 
Use equation (5.39) for biaxial design: 
Effective depths: 

b' = 400 – 25 – 8 – 32/2 = 351 mm 
h' = 300 – 25 – 8 – 32/2 = 251 mm 

N/ (bh) = 950 × 103 / (400 × 300) = 7.92 
MEdy/ (h b2) = 95 × 106/ (300 × 4002) = 1.98 
MEdz/ (b h2) = 65 × 106/ (400 × 3002) = 1.81 

Assume 4H32 as steel. 
Ac = 300 × 400 = 12 × 104 mm2 

As = 4H32 = 3217 mm2 
fcd = 30/1.5 = 20 MPa, fyd = 500/1.15 = 435 MPa 

NRd =Ac fcd + As fyd = 3799.4 kN 
NEd = 950 kN 
NEd/NRd = 0.25 

MRdy:  
Ignore the effect of compression steel.  Area of tension steel = 2H32 = 1609 mm2.  
Width (h) = 300 mm, effective depth (b') = 351 mm. 
Determine the stress block depth, s: 

300 × s × fcd = As × fyd 
300 × s× 20 = 1609 × 435, s = 117 mm 

MRdy = As × fyd × (351 – s/2) = 204.9 kNm 
MEdy/MRdy = 95/204.9 = 0.46 

MRdz:  
Ignore the effect of compression steel.  Area of tension steel = 2H32 = 1609 mm2.  
Width (b) = 400 mm, effective depth (h') = 251 mm. 
Determine the stress block depth, s: 

400 × s × fcd = As × fyd 
400 × s× 20 = 1609 × 435, s = 88 mm 

MRdz = As × fyd × (251 – s/2) = 145.1 kNm 

y 

z 

h=300 

b=400 
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MEdz/MRdz = 65/145.1 = 0.448 
Calculate a by interpolation: 

13.1)1.025.0(
)1.07.0(
)0.15.1(0.1a 
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
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Check interaction relationship: 
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Edz   

0.182.0)448.0()46.0( 13.113.1   
Design is safe. 
Fig. 9.25 shows the uniaxial N−M chart for the designed section.  The figure 
clearly shows the design is safe for both (N, My) and (N, Mz).  However this does 
not necessarily indicate that the design is safe for (N, My, Mz) combination.  
If it is decided to use the exact column design for biaxial moment, then a 
corresponding column design chart as shown in Fig. 9.26 needs to be constructed.  
As a check, using α =1.3, β = 1.02 and the coordinates of the bars as (± 0.375h, 
±0.333b) 
Calculate the strains (positive is compressive) in steel. 
The strains in the four bars are respectively:  

2.592 × 10−3,   0.573 × 10−3,   –1.71 × 10−3,   0.306 × 10−3 
The corresponding stresses are: 437, 115, – 437 and 61 MPa 
The contributions of the stresses in steel to the column forces: 

Ns = (437 + 115 – 343 + 61) × (0.016 bh/4) = 1.08 bh 
Mxs = (437 – 115 + 343 + 61) × (0.016 bh/4) × 0.375h = 1.09 bh2 
Mys = (437 + 115 + 343 – 61) × (0.016 bh/4) × 0.333b = 1.11 b2 h 

The contributions of the compressive stress in concrete to the forces are calculated 
using λ = 0.8, α =1.3, β = 1.02, λα = 1.04 and λβ = 0.816, fcd = 20. 
From the trapezoidal stress block shown in Fig. 9.21, 

)1(b)hh(
h
bb1







 = 0.031 b 

Nc = fcd × {0.5 (βb1+ λ βb) h} = 8.47 bh 

ybar = 
)bb(
)bb2(

3
h

1

1


  = 0.346 h 

Mxc = Nc × (0.5 h – ybar) = 1.308 bh2 

xbar = 
)bb(

)bbbb(
3 1

1
22

1 2



  = 0.272 b 

Myc = Nc × (0.5 b – xbar) = 1.928 b2h 
Adding the contribution of steel and concrete: 

N/ (bh) = 8.47 + 1.08 = 9.55, 
   Mx/ (bh2) = 1.308 + 1.09 = 2.398,    

My/ (b2h) = 1.928 + 1.11 = 3.038 
The required values are: N = 950 kN, Mx = 95 kNm, My = 65 kNm.   
If b = 300mm and h = 400mm, the section is safe because  
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N/ (bh) = 7.92 < 9.55,   Mx/ (bh2) = 1.98 < 2.398,   My/ (b2h) = 1.81 < 3.038 
 

 
 
 

Fig. 9.25 Uniaxial N−M chart for section in Fig. 9.2. 
 

 
Fig. 9.26 Biaxial design chart for column in Fig. 9.24. 
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9.5 EFFECTIVE LENGTH OF COLUMNS  
 
 
9.5.1 Effective Length 
 
For a general column, effective length can be defined as the length of the column 
for which the elastic buckling load is the same as that of a pin-ended column.  
Euler buckling load PE for a pin-ended column of length ℓ and flexural rigidity EI 
is PE = π2 EI /ℓ2.  For a column fully restrained both in rotation and translation at 
the ends, the Euler buckling load is PE = 4 π2 EI /ℓ2 = π2 EI / (0.5 ℓ) 2.  The 
effective length ℓ0 for a ‘fixed’ end column is therefore 0.5 ℓ.  Table 9.5 shows the 
effective lengths for some typical ideal end conditions.   

 
Table 9.5 Effective lengths for various ideal end conditions 

Restraints at End 1 Restraints at End 2 α = ℓ0/ℓ 
Rotational Translational Rotational Translational 

0 Infinite 0 Infinite 1.0 
Infinite Infinite Infinite Infinite 0.5 
Infinite Infinite 0 Infinite 0.7 
Infinite Infinite Infinite 0 1.0 
Finite Infinite Finite Infinite 0.5 < α < 1.0  

Infinite Infinite 0 0 2.0 
Finite Infinite 0 0 > 2.0 
Finite Finite Finite Finite 0.5 < α < ∞  

 
For a typical column in a braced structure as shown in Fig. 9.3, the effective length 
depends on the rotational restraint provided by the beams and columns joined to 
the column at each end.  The effective length Leff for a column in a braced structure 
lies in the region of 0.5 to 1.0 times the actual length. 
 

 
 

Fig. 9.27 Column in a braced structure. 
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Fig. 9.27 shows a typical column construction in a framed building.  In section 
5.8.3.2, the code gives the following equations for determining the effective length 
ℓ0 of an isolated column. 
 
(a) For braced members code equation (5.15) gives the equation for calculating the 
effective length. 

                  
}

)k45.0(
k1{}

)k45.0(
k1{5.0

2
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1

1
0





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                                (5.15)
 

k1 and k2 are the relative flexibilities of rotational restraints at ends 1 and 2 
respectively, where: 



EI
M

k 
  

EI = bending stiffness (flexural rigidity) of the column. 
If there is a column above or below the column under consideration, then EI/ℓ 
should be replaced by EI/ℓ for column under consideration + EI/ℓ of the column 
above or below as appropriate.   
θ = rotation of the restraining for a moment M. 
Note: k = 0 represents fully restrained and k = ∞ represents pin-end.  If k1 = k2 = 0, 
then ℓ0 = 0.5 ℓ which corresponds to a fully fixed ended column. 
Since fully rigid restraint is rare in practice, in clause 5.8.3.2(3), Eurocode 2 
recommends a minimum value of 0.1 for k1 and k2.  
If k1 = 0, k2 = ∞, then ℓ0 = 0.5 × √2ℓ = 0.7ℓ which corresponds to a column fully 
fixed at end 1 and pin-ended at end 2. 
If k1 = ∞, k2 = ∞, then ℓ0 = 0.5× 2 ℓ = ℓ which corresponds to a pin-ended column. 
The above ideal end conditions, the equation gives the same values as in Table 9.1. 
Fig. 9.28 shows the variation of ℓ0/ℓ with k1 = k2 = k.  As can be seen beyond a 
value of k = 5.0, any increase in the value of k has only a minor effect on the 
effective length. 
 

 
 

Fig. 9.28 Variation of ℓ0/ℓ with k1 = k2 = k for a braced column. 
 



Columns                                                                                                                                379 

For a beam of span L, flexural rigidity EI and clamped at the far end as shown in 
Fig. 9.29(a), the relationship between M and θ is 

M = 4 (EI/L) θ or θ/M = 0.25 L/ (EI) 
Similarly, for a similar beam pinned at the far end as shown in Fig. 9.6(b), the 
relationship between M and θ is 

M = 3 (EI/L) θ or θ/M = 0.33 L/ (EI) 
 

 
 

Fig. 9.29 Moment–rotation relationships. 
 
 

 
 

Fig. 9.30 A column sub-frame in a braced frame. 
 
As an example for the column sub-frame shown in Fig. 9.30, let EI for beams be 
50% of EI for columns.  Span of beams equal to 1.5 times the height of columns.  

EI 

EI 

EI 

0.5EI 

0.5EI 

0.5EI 

0.5EI 

M 

θ 

M 

θ 

(a) Far end fixed (b) Far end pinned 
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For calculating k, at each end include two beams and one column (top or bottom).  
Therefore, 

96.3]EIEI[}
EI5.0
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Fig. 9.31 Variation of ℓ0/ℓ with k1 = k2 = k for an unbraced column. 
 
(b) For unbraced members code equation (5.16) gives the equation for calculating 
the effective length. 
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 (5.16)
 

Fig. 9.31 shows the variation of ℓ0/ℓ with k1 = k2 = k.   
 
For the unbraced frame shown in Fig. 9.32, using the same data as for the braced 
frame, except that the far ends of the beams are pinned and on rollers to allow 
sway, 

96.3]EIEI[}
EI5.0
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  



Columns                                                                                                                                381 







56.4
]80.1;56.4max[

}]
)96.31(

96.31{}
)96.31(

96.31{;}
)96.396.3(

96.396.3101{max[0
















 

0.1/0    
 
 

 
 

Fig. 9.32 A column sub-frame in an unbraced frame. 
 
 
9.5.2 Long and Short Columns 
 
Fig. 9.33 shows a column subjected to an axial load and end moments.  When the 
column deforms, the axial load NEd is eccentric to the deformed column and causes  
a bending moment M2, equal to NEd δ, where δ is the lateral deflection of the 
column.  M2 is known as the second order moment and is clearly a function of the 
flexibility of the column.  Axial forces and moments acting on the column from the 
loads acting on the structures including geometric imperfections are known as first 
order effects.  The total bending moment is the sum of the bending moment MoEd 
due to the external loads and the bending moment M2 equal to Nδ.  A column is 
considered short if only the first order effects need to be considered in its design.   

EI 

EI 

EI 

0.5EI 

0.5EI 

0.5EI 

0.5EI 
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Fig. 9.33 Bending moment in a deformed column. 
 
 
9.5.3 Slenderness Ratio 
 
In general, the elastic buckling for a column is PE = π2 EI /ℓ0

2. 

The axial stress in the column is σ = 2
0

2E 1
A
IE

A
P


 . 

The radius of gyration i = √ (I/A). 

Therefore  2
2

20

2 1E
)

i
(

1E


 


.

 
                       Slenderness ratio λ = ℓ0/i                                                             (5.14) 
In equation (5.13N), clause 5.8.3.1, the code classifies columns as short when the 
slenderness ratio λ about both axes are less than λlim  

                                        n
1CBA20lim 

                                  (5.13N)
 

where 

)2.00.1(
1A

ef
 , (If the effective creep ratio φef is not known take A = 0.7). 

)21(B  , ω = (As fyd)/ (Ac fcd), (If the value of ω is not known take        
B = 1.1). 
As = Total area of longitudinal reinforcement. 
Ac = Total area of concrete in the cross section. 
fyd and fcd respectively design strength of steel reinforcement and concrete. 
 

Mtop 

Mbottom 

Mtop 

Mbottom 

+ 
δ 

NEd 

M NEdδ 
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Fig. 9.34 First order moments. 
 
 

mr7.1C  , rm = moment ratio = M01/M02.  
M01 and M02 are the first order moments. 
M01 = min (Mtop; Mbottom), M02 = max (Mtop; Mbottom), 0102 MM  . 
Note: If the end moments give tension on the same side, rm is taken as positive 
(i.e., C ≤ 1.7) otherwise negative (i.e., C ≥ 1.7) as shown in Fig. 9.34. 
(If the moment ratio rm is not known take C = 0.7.) 
Note that if rm is positive, the column will bend in single curvature and is 
likely to buckle at a lower load than if rm is negative when the column will try 
to buckle in double curvature whose buckling load is very much higher than 
that of a column buckling in single curvature. 
n = relative normal force = NEd/ (Ac fcd).  NEd = Design axial force. 

 
 
9.5.3.1 Example of Calculating the Effective Length of Columns  
 
Specification: The lengths and proposed section dimensions for the columns and 
beams in a multi-storey building are shown in Fig. 9.35.  Determine the effective 
lengths and slenderness ratios for the YY and ZZ axes for the lower column length 
AB, for the two cases where the structure is braced and unbraced.  The connection 
to the base and the base itself are designed to resist the column moment.   

 

Mbottom Mbottom 

Mtop Mtop 

rm ≥ 0 
C ≤ 1.7 

rm ≤ 0 
C ≥ 1.7 
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Fig.9.35  Multi-storey building: (a) Side elevation. (b) Transverse frame. 
  
(a) Effective length calculations in the longitudinal direction 
Bending about z-z axis: 
 
(i) Rotational stiffness of beams  
L = 5m, section 250 × 400 
I = (250 × 4003/12) × 10−12 = 1.33 × 10−3 m4 
4 × I/L = 1.33 × 10−3 m3 
Rotational stiffness of two beams = 2 ×1.33 × 10−3 = 2.67 × 10−3 m3 
(ii) Columns 
Bottom column: L = 5m, section 300 × 400 
I = (300 × 4003/12) × 10−12 = 1.60 × 10−3 m4 

5 m 8 m 

4 m 

5 m 

Beams 500 × 300 
Columns 400 × 300 

(b
) 

5 m 5 m 

4 m 

5 m 

Beams 400 × 250 
Columns 400 × 300 

(a) 
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I/L = 0.32 × 10−3 m3 
Top column: L = 4m, section 300 × 300 
I = (300 × 3003/12) × 10−12 = 0.675 × 10−3 m4 
I/L = 0.169 × 10−3 m3 
Rotational stiffness of two columns = (0.32 + 0.169) × 10−3 = 0.489 × 10−3 m3 
ktop = 0.489/2.67 = 0.18 
kbottom = 0.1 (fixed) (Recommended value.  See clause 5.3.8.2(3)) 
ℓ = 5 m, radius of gyration, iz = 400/√12 = 116 mm 
 
(iii) Braced structure 

                  
}

)k45.0(
k1{}

)k45.0(
k1{5.0

2

2

1

1
0





 

                                (5.15)
 

ℓ0 = 3.08 m 
Slenderness ratio λ = 3.08/0.116 = 26.6 
 
(iv) Unbraced structure 
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ℓ0 = 6.41 m 
Slenderness ratio λ = 6.41/0.116 = 55.3 
 
(b) Effective length calculations in the transverse direction 
Bending about y-y axis: 
 
(i) Rotational stiffness of beams 
Beam on right: L = 8 m, section 300 × 500 
I = (300 × 5003/12) × 10−12 = 3.125 × 10−3 m4 
4 × I/L = 1.5625 × 10−3 m3 
Beam on left: L = 5 m, section 300 × 500 
I = (300 × 5003/12) × 10−12 = 3.125 × 10−3 m4 
4 × I/L = 2.5 × 10−3 m3 
Rotational stiffness of two beams = (1.5625 + 2.5) × 10−3 = 4.06 × 10−3 m3 
 
(ii) Columns 
Bottom column: L = 5m, section 300 × 400 
I = (400 × 3003/12) × 10−12 = 0.90 × 10−3 m4 
I/L = 0.18 × 10−3 m3 
Top column: L = 4m, section 300 × 300 
I = (300 × 3003/12) × 10−12 = 0.675 × 10−3 m4 
I/L = 0.169 × 10−3 m3 
Rotational stiffness of two columns = (0.18 + 0.169) × 10−3 = 0.349 × 10−3 m3 
ktop = 0.349/4.06 = 0.086.  Set it to 0.1, the minimum value. 
kbottom = 0.1 (fixed) 
ℓ = 5 m, iy, radius of gyration = 300/√12 = 87 mm 
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(iii) Braced structure 
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ℓ0 = 2.95 m 
Slenderness ratio λ = 2.95/0.087 = 33.96. 
 
(iv) Unbraced structure 

           
}]

)k1(
k1{}

)k1(
k1{;}

)kk(
kk101{max[

2

2

1

1

21

21
0








 

  (5.16)
 

ℓ0 = 6.12 m 
Slenderness ratio, λ = 6.12/0.087 = 70.39. 
 
 
9.5.4 Primary Moments and Axial Load on Column 
 
Fig. 9.36 shows the characteristic loading on the column. 
 
Design loading (ULS) 
Case 1:  Imposed load, primary.  Wind load secondary 
NEd = 1.35 × 765 + 1.5 × 305 + 1.5 × 0.6 × 0 = 1490 kN 
Note M02 is numerically the larger and M01 is numerically the smaller of the 
moments at top and bottom of column.   
M02= 1.35 × 48 + 1.5 × 28 + 1.5 ×0.6 × 37 = 140 kNm 
M01 = − (1.35 × 24 + 1.5 × 14 + 1.5 ×0.6 × 37) = −87 kNm 
 
Case 2:  Wind load, primary.  Imposed load, secondary 
NEd = 1.35 × 765 + 1.5 × 0.7 × 305 + 1.5 ×0 = 1353 kN 
M02= 1.35 × 48 + 1.5 × 0.7 × 28 + 1.5 × 37 = 150 kNm 
M01= − (1.35 × 24 + 1.5× 0.7 × 14 + 1.5 × 37) = −103 kNm 
Check whether column is short or long: 
Using code equation (5.13N),  
                              λ lim = 20 × A × B × C/ √n                                                 (5.13N) 
Calculate A: 
Age at loading, t0 = 3 days (assumed) 
Assume all four sides are exposed to atmosphere: 
u, perimeter of the column = 2× (300 + 400) = 1400 mm 
Ac, area of concrete in the cross section = 400 × 300 = 12 × 104 mm2 
h0 = 2 Ac/u = 171 mm 
Assuming class S cement, fck = 30 MPa, relative humidity RH = 50%, from  
Fig. 3.1 in the Eurocode 2, φ (∞, t0) = 3.5. 
φef = φ (∞, t0) × (M0Eqp/M0Ed) = 3.5 × (98/119) = 2.88 
A = 1/ (1+ 0.2 φef) = 0.63. 
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Fig. 9.36 Loading on the column. 
 
Calculate B: 
As = 4H32 = 3217 mm2, fyd = fyk/1.15 = 500/1.15 = 435 MPa 
As fyd = 3217 × 435 × 10−3 = 1399.4 kN 
Ac = 400 × 300 = 12 × 104 mm2, fcd = fck/1.5 = 30/1.3 = 20 MPa 
Ac fcd = 12 × 104 × 20 × 10−3 = 2400 kN 
ω = As fyd/ Ac fcd = 1399.4/2400 = 0.58 
B = 1+ ω = 1.58 
 
 
Calculate C: 
Case 1: Imposed load, primary.  Wind load secondary 
NEd = 1490 kN 
n = 1490/2400 = 0.62, √n = 0.79 
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M02 = 140 KNm, M01 = −87 kNm.  
The moments cause tension on opposite sides.  rm =M02/M01 = −87/140 = −0.62 
C = 1.7 − rm = 1.7 – (−0.62) = 2.32 
 
Calculate λlim  
Braced member: λlim = 20 × 0.63 × 1.58 × 2.32/ 0.79 = 58.5 
Actual λ = 26.6 and 33.96 in the longitudinal and transverse directions respectively 
and both values are less than λlim.   The column is short. 
  
Unbraced member: In clause 5.8.3.1(1), Eurocode 2 suggests that for unbraced 
members in general:  
C = 0.7 
λlim = 20 × 0.63 × 1.58 × 0.7/ 0.79 = 17.6 
Actual λ = 55.3 and 70.4 in the longitudinal and transverse directions respectively 
and both values are greater than λlim.   The column is long. 
 
Case 2: Wind load, primary.  Imposed load, secondary 
NEd = 1353 kN 
n = 1353/2400 = 0.56, √n = 0.75 
M02 = 150 KNm, M01 = −103 kNm.   
The moments cause tension on opposite sides.  rm = −103/150 = −0.69 
C = 1.7 – (−0.69) = 2.39 
 
Calculate λlim  
Braced member: λlim = 20 × 0.63 × 1.58 × 2.39/ 0.75 = 63.4 
Actual λ = 26.6 and 33.96 in the longitudinal and transverse directions respectively 
and both values are less than λlim.   The column is short. 
 
Unbraced member In clause 5.8.3.1(1), Eurocode2 suggests that for unbraced 
members in general:  
C = 0.7 
λlim = 20 × 0.63 × 1.58 × 0.7/ 0.75 = 18.6 
Actual λ = 55.3 and 70.4 in the longitudinal and transverse directions respectively 
and both values are greater than λlim.  The column is long. 
 
Short column design: 
Geometrical imperfection: 
In clause 5.2 (5), equation (5.1), the inclination θℓ is given as  
                                                θℓ = θ0 αh αm                                                       (5.1) 
where θ0 = 1/200. 
For an isolated member;  

αh = 2/√ℓ, ℓ = actual length (not effective length ℓ0) of the column 
2/3 ≤ αh ≤ 1 

αm = 1 
In clause 5.2(7), equation (5.2), the eccentricity ei is given as  
                                              ei = θℓ × ℓ0/2                                                        (5.2) 



Columns                                                                                                                                389 

where ℓ0 = effective length. 
 
Longitudinal 

Effective length ℓ0 = 3.08 m, actual length ℓ = 5 m 
αh = 2/√ℓ = 0.894, 2/3 ≤ αh ≤ 1 

θℓ = θ0 αh αm = (1/200) × 0.894 × 1 = 4.472 × 10−3 
ei = θℓ × ℓ0/2 = 4.472 × 10−3 × 3.08/2 = 6.887 × 10−3 = 6.9 mm 

In clause 6.1(4) Eurocode 2 states that for cross sections with symmetrical 
reinforcement, the minimum eccentricity e0 = h/30 ≥ 20 mm, h = depth of the 
section. 

h = 400 mm 
e0 = h/30 = 400/30 = 13 mm < 20 mm 

Design value of eccentricity = 20 mm. 
 
Transverse 

Effective length ℓ0 = 2.93 m, actual length ℓ = 5 m 
αh = 2/√ℓ = 0.894, 2/3 ≤ αh ≤ 1 

θℓ = θ0 αh αm = (1/200) × 0.894 ×1 = 4.472 × 10−3 
ei = θℓ × ℓ0/2 = 4.472 × 10−3 × 2.95/2 = 6.596 × 10−3 = 6.6 mm 

In clause 6.1(4) Eurocode 2 states that for cross sections with symmetrical 
reinforcement, the minimum eccentricity e0 = h/30 ≥ 20 mm, h = depth of the 
section. 

h = 300 mm 
e0 = h/30 = 300/30 = 10 mm < 20 mm 

Design value of eccentricity = 20 mm. 
 
Design loading (ULS) 
 
Case 1:  Imposed load, primary.  Wind load secondary 
NEd = 1490 kN, M02= MTop = 140 kNm, M01 = MBottom = −87 kNm 
Geometrical imperfection: eccentricity e = 20 mm 
Design for NEd = 1490 kN,  

MEd = M02 + NEd ei = 140 + 1490 × 20 × 10−3 = 169.8 kNm 
NEd/ (bh) = 12.4, MEd/ (bh2) = 3.54 

 
Case 2:  Wind load, primary.  Imposed load, secondary 
NEd = 1353 kN, M02= MTop = 150 kNm, M01= MBottom = −103 kNm 
Geometrical imperfection: eccentricity ei = 20 mm 
Design for NEd = 1353 kN,  

MEd = M02 + NEd ei = 150 + 1353 × 20 × 10−3 = 177.0 kNm 
NEd/ (bh) = 11.3, MEd/ (bh2) = 4.92 

The plotted points in Fig. 9.37 fall inside the N−M curve indicating that the design 
is safe. 
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Fig. 9.37 N−M chart for the short column. 

 
Check maximum and minimum steel areas: 
As = 4H32 = 3217 mm2, Ac = 300 × 400 = 12 × 104 mm2 
As/Ac = 0.027, 0.004 < As/Ac < 0.04 
Links: One quarter of diameter of main bar = 32/4 = 8 mm 
Spacing: 
20 times the diameter of main bar = 20 × 32 = 640 mm 
Lesser dimension of column = 300 mm 
Spacing = Min (640; 300; 400) = 300 mm 
Provide H8 links at 300 mm c/c. 
 
 
9.6 DESIGN OF SLENDER COLUMNS  
 
 
9.6.1 Additional Moments Due to Deflection  
 
In the primary analysis of the rigid frames, the secondary moments due to lateral 
deflection are ignored.  This effect is small for short columns but with slender 
columns significant additional moments occur.   
Eurocode in equation (5.32) allows for the differing first order moments M01 and 
M02 to be replaced by an equivalent moment M0e. 
                                    M0e = 0.6 M02 + 0.4 M01 ≥ 0.4 M02                              (5.32) 
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Numerical value of M02 > Numerical value of M01. 
 
Case 1:  Imposed load, primary.  Wind load secondary 

M0e = 0.6 M02 + 0.4 M01 ≥ 0.4 M02 
= 0.6 × 140 + 0.4 × (−87) ≥ 0.4 × 140 

= 49 < 56 
M0e = 56 kNm 

 
Case 2:  Wind load, primary.  Imposed load, secondary 

M0e = 0.6 M02 + 0.4 M01 ≥ 0.4 M02 
= 0.6 × 150 + 0.4 × (−103) ≥ 0.4 × 150 

= 49 < 60 
M0E = 60 kNm 

 
Using the method based on nominal curvature as given in section 5.8.8, the 
additional second order moment M2 and the deflection e2 are given by code 
equation (5.33) as 

                                                            M2 = NEd e2, cr
1e

2
0

2



                       (5.33)

 

c = a factor depending on the total curvature 1/r caused by sum of first and second 
order moments and c is normally taken as equal to π2 on the assumption that the 
curvature distribution is sinusoidal.   
For members with constant cross section and symmetrical reinforcement, code 
equation (5.34) gives the value of 1/r as 

                                                     0
r r

1KK
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                                             (5.34)
 

The correction factor Kr depending on the axial load is given by code equation 
(5.36) as 
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                                        (5.36) 
Ac fcd = 300 ×400 × (30/1.5) × 10−3 = 2400 kN 

As = 4H32 = 3217 mm2, As fyd = 3217 × (500/1.15) × 10−3 = 1399 kN 
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nbal = value of n at maximum moment resistance.   The code suggests that the value 
of 0.4 may be used. 

nu = 1 + ω = 1 + As fyd/ (Ac fcd) = 1 + 1399/2400 = 1.58 
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      (case 2)
 

The factor Kφ for taking account of creep is given by code equation (5.37) as 

                                                    ef1K                                             (5.37)
 

φef = effective creep ratio = 2.88 (as previously calculated) 
β = 0.35 + fck/200 – λ/150 

β = 0.35 + 30/200 – 55.3/150 = 0.131 (longitudinal direction) 
β = 0.35 + 30/200 – 70.4/150 = 0.031 (transverse direction) 

Kφ = 1 + 0.131 × 2.88 = 1.38 (longitudinal direction) 
Kφ = 1 + 0.031 × 2.88 = 1.09 (transverse direction) 
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fyd/Es = 435/ (200 × 103) = 2.175 × 10−3 
d = effective depth = 400 – 25 (cover) – 10(link) – 32/2 = 349 mm 

1/r0 = = 1.39 × 10−5 
 

)directiionallongitudin(1055.11039.138.181.0
r
1KK

r
1 55

0
r

    

)directiiontransverse(1030.11039.109.186.0
r
1KK

r
1 55

0
r


   

 

)directionallongitudin(mm89
10

)1041.6(1055.1
cr

1e
23

5
2
0

2 


 
 

)directiontransverse(mm49
10

)1012.6(1030.1
cr

1e
23

5
2
0

2 


 
 

M2 = NEd e2 =1490 × (89× 10−3) = 133 kNm (longitudinal direction, case 1) 
M2 = NEd e2 =1353 × (89 × 10−3) = 120 kNm (longitudinal direction, case 2) 
M2 = NEd e2 =1490 × (49 × 10−3) = 73 kNm (transverse direction, case 1) 
M2 = NEd e2 =1353 × (49 × 10−3) = 66 kNm (transverse direction, case 2) 
 
Total design forces in the Longitudinal direction: 
Case 1:  Imposed load, primary.  Wind load secondary 

M2 = NEd e2 = 133 kNm 
M0e = 56 kNm 

MEd = 56 + 133 = 189 kNm, MEd/ (bh2) =3.94, 
NEd = 1490 kN, NEd/ (bh) = 12.42 

 
Case 2:  Wind load, primary.  Imposed load, secondary 

M2 = NEd e2 = 120 kNm 
M0E = 60 kNm 

MEd = 60 + 120 = 180 kNm, MEd/ (bh2) =3.75, 
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NEd = 1353 kN, NEd/ (bh) = 11.28 
Fig. 9.37 shows the N−M chart for the column.   
Note that from the chart N/ (bh) = 8.0 when M/ (bh2) is a maximum value equal to 
6.74. Therefore axial load at maximum moment is Nbal is given by  

NBal = 8.0 × 300 × 400 × 10−3 = 960 kN, 
nbal = Nbal/ (Ac fcd) = 960/2400 = 0.4 

This is the value assumed in calculating Kr.  Therefore no revision of the design 
calculations for M2 is needed. 
 

 
Fig. 9.38 N−M chart for the long column. 

 
Check maximum and minimum steel areas: 
As = 4H32 = 3217 mm2, Ac = 300 × 400 = 12 × 104 mm2 
As/Ac = 0.027, 0.004 < As/Ac < 0.04 
Links: One quarter of diameter of main bar = 32/4 = 8 mm 
20 times the diameter of main bar = 20 × 32 = 640 mm;  
Lesser dimension of column = 300 mm 
Spacing = Min (640; 300; 400) = 300 mm 
Provide H8 links at 300 mm c/c. 



CHAPTER 10 
 

WALLS IN BUILDINGS 
 
 
10.1 FUNCTIONS, TYPES AND LOADS ON WALLS 
 
All buildings contain walls that function to carry loads, enclose and divide space, 
exclude weather and retain heat.  Walls may be classified into the following types: 
 
1. Internal non-load-bearing walls of block-work or light movable partitions that 

divide space only 
2. External curtain walls that carry self-weight and lateral wind loads 
3. External and internal infill walls in framed structures that may be designed to 

provide stability to the building but do not carry vertical building loads; the 
external walls would also carry lateral wind loads 

4. Load-bearing walls designed to carry vertical building loads and horizontal 
lateral and in-plane wind loads and provide stability 

 
The role of the wall is based on the type of building in which it is used. Building types 

and walls provided are as follows: 
 

1. Framed buildings: wall types 1, 2 or 3 
2. Load-bearing and shear wall building with no frame: wall types 1, 2 and 4 
3. Combined frame and shear wall building: wall types 1, 2 and 4 
 
Type (3) is the normal multi-storey building. 

A wall is defined in Eurocode 2, clause 9.6.1, as a vertical load-bearing member 
whose length exceeds four times its thickness.  This definition distinguishes a wall from a 
column.  Loads are applied to walls in the following ways: 

 
1. Vertical loads from roof and floor slabs or beams supported by the wall 
2. Lateral loads on the vertical wall slab from wind, water or earth pressure 
3. Horizontal in-plane loads from wind when the wall is used to provide lateral 

stability in a building as a shear wall 
In the following sections, only Type 4 structural concrete walls are considered. 
 
 
10.2 DESIGN OF REINFORCED CONCRETE WALLS  
 
A reinforced concrete wall is a wall containing at least the minimum quantity of 
reinforcement required by clause 9.6.2.  The reinforcement is taken into account in 
determining the strength of the wall.  In the code EC2, there is very little guidance given 



396                                                                                     Reinforced concrete design to EC 2 

for the design aspects specifically related to walls.  The general assumption is that walls will 
be designed using the rules for the design of columns. 
 
 
10.2.1 Wall Reinforcement 
 
(a) Minimum and maximum area of vertical reinforcement 
According to Eurocode 2, clause 9.6.2, the minimum and maximum amounts of 
reinforcement required for a reinforced concrete wall are 0.002Ac and 0.04Ac outside lap 
locations respectively.  It is further stated that where minimum reinforcement controls design, 
half of this area should be located on each face.  The distance between two adjacent vertical 
bars should not exceed three times the wall thickness or 400 mm, whichever is lesser. 
 
(b) Area of horizontal reinforcement 
According to Eurocode 2,  clause 9.6.3, horizontal reinforcement should be provided at 
each face and should have a minimum area of 25% of the vertical reinforcement or  
0.001 Ac, whichever is greater.  The spacing between two adjacent horizontal bars should 
not be greater than 400 mm. 
 
(c) Provision of links 
If the compression reinforcement in the wall exceeds 0.02Ac, links must be provided 
through the wall thickness in accordance with the rules for columns in clause 9.5.3 
which are:   

1. The diameter of the transverse reinforcement should not be less than 6 
mm or one-quarter of the diameter of the largest longitudinal bar 
whichever is greater.  

2. The maximum spacing is to be Scl, max.  
Scl, max = minimum of  

 20 times the diameter of the smallest longitudinal bar  
 The lesser dimension of the wall i.e. the thickness 
 400 mm 

The maximum spacing should be reduced by a factor of 0.6 in the following cases. 
 In sections within a distance equal to 4× thickness of wall above or below 

a beam or slab. 
 Near lapped joints, if the diameter of the longitudinal bar is greater 

than 14 mm.  A minimum of three bars evenly placed in the lap 
length is required. 

Where the main reinforcement (i.e., vertical bars) is placed nearest to the wall 
faces, transverse reinforcement should be provided in the form of links with 4 per 
m2 of the wall area. 
 
10.2.2 General Code Provisions For Design 
 
The design of reinforced concrete walls follows the rules for the design of columns.  
The general provisions are as follows. 
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(a) Axial loads 
The axial load in a wall may be calculated assuming the beams and slabs transmitting 
the loads to it are simply supported. 
 
(b) Effective height 
Where the wall is constructed monolithically with adjacent elements, the effective 
height le should be assessed as though the wall were a column subjected to bending 
at right angles to the plane of the wall. 
 
(c) Transverse moments 
For continuous construction, transverse moments can be calculated using elastic 
analysis.  The eccentricity is not to be less than h/30 or 20 mm where h is the wall 
thickness (Eurocode 2, clause 6.1(4)). 
 
(d) In-plane moments 
Moments in the plane of a single shear wall can be calculated from statics.  When 
several walls resist forces, the proportion allocated to each wall should be in 
proportion to its stiffness. 

Consider two shear walls connected by floor slabs and subjected to a uniform 
horizontal load, as shown in Fig. 10.1.  

 

 
 

Fig. 10.1 Shear walls connected by floor slabs. 
 
The walls acting as a cantilever of height H and loaded by a uniformly distributed 
load of p per unit length deflect by the same amount 

δ = pH3/8EI 

H 
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Thus the load is divided between the walls in proportion to their second moments of 
area:  

Wall 1:  = p [p [ , wall 2: p2 = p – p1 
 
A more accurate analysis for connected shear walls is given in Chapter 15. 
 
As a more complex example, consider the plan of a shear wall assembly for a tall building 
shown in Fig. 10.2.   
  

 
Fig. 10.2 Plan of a symmetrical shear wall assembly. 

 
It consists of four shear walls and a central core.  The arrangement is symmetrical about 
the vertical y-axis.  The two walls parallel to the vertical axis are 8 m long and 200 mm 
thick.  The two walls parallel to the horizontal x-axis axis are 12 m long and 200 mm 
thick.  The central axis is core 4 m × 4 m and the walls are 150 mm thick.   
For a total force F acting in the y-direction it is sensible to neglect any force resisted by 
the two walls parallel to the x-axis as their stiffness will be negligible compared with the 
stiffness of the core and the walls parallel to the y-axis.   
The second moments of area about the x-axis of the two walls are: 

Ixxw = 0.2 ×83/12 = 8.53 m4 
The second moment area about the x-axis of the core is 

Ixxc = (4 ×43/12 − 3.7 ×3.73/12) = 5.72 m4 
∑Ixx = 2Ixxw + Ixxc = 22.78 m4 

Load taken by each wall = (Ixxw/∑Ixx) × F = 0.38 F 
Load taken by the core = (Ixxw/∑Ixx) × F = 0.25 F 

 
If the arrangement of the walls is unsymmetrical, an arrangement not recommended, as 
shown in Fig. 10.3, then the building will experience a twisting moment. Assuming the 
dimensions of the walls and core as in the previous example, the second moments of 
are: 

Wall parallel to y-axis: Ixxwy = 0.2 ×83/12 = 8.53 m4 
Wall parallel to x-axis: Ixxwx = 0.2 ×123/12 = 28.8 m4 
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Ixxc = Iyyc = (4 ×43/12 −3.7 × 3.73/12) = 5.72 m4 
∑Ixx = Ixxwy + Ixxc = 14.25 m4 
∑Iyy = Iyywx + Iyyc = 34.52 m4 

 
 

Fig. 10.3 Plan of an unsymmetrical shear wall assembly. 
 
The centre of stiffness (also called as shear centre) is calculated as follows.   
Taking the first moment of Ixx of all the elements about A,   

Ixxwy × (21.0 – 0.2/2) + Ixxc × (21.0/2) = dx ∑Ixx 
8.53 × (21.0 – 0.2/2) + 5.72 × (21.0/2) = 14.25 × dx 

dx = 16.72 m 
Taking the first moment of Iyy of all the elements about A,   

Iyywx × (11.0 – 0.2/2) + Iyyc × (11.0/2) = dy∑Iyy 
28.8 × (11.0 – 0.2/2) + 5.72 × (11.0/2) = 34.52 × dy 

dy = 10.01 m 
The eccentricity e of the force F from the centre of stiffness is  

e = 16.72 – 21.0/2 = 6.22 m 
Twisting moment, T = Fe = 6.22 F 

The force in any element is made of a ‘direct’ force and a force due to twisting 
moment. 

Table 10.1 Forces in the walls  
 

Wall Ixxi Iyyi dxi dyi Ixxi(dx − dxi)2 + Iyyi(dy − dyi)2 
Wall y-axis 8.53 0 20.9 5.5 149.04 
Wall x-axis 0 28.8 10.5 10.9 22.81 

core 5.72 5.72 10.5 5.5 337.64 
     ∑509.50 

 
Direct forces in the elements are: 

Wall in the y-direction = (Ixxwy/∑Ixx) × F = 0.60 F 
Wall in the x-direction = 0 

 

x 

y 

Stiffness 
centre 

 

x 

y 
11.0 

21.0 

A 
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Core = (Ixxc/∑Ixx) × F = 0.40 F 
 

 
 
 

Fig. 10.4 Direct forces in the shear wall assembly. 
 

Forces in the elements due to twisting moment are: 
Taking dx = 16.72 m and dy = 10.01 m, table 10.1 can be completed. 
Wall in the y-direction = T × (Ixxwy × (dx – dxi)) /∑ Ixx (dx − dxi) 2 + Iyy (dy − dyi) 2) 
                                        = −0.44F 
Wall in the x-direction = T× (Ixxwx × (dy – dyi)) /∑ Ixx (dx − dxi) 2 + Iyy (dy − dyi) 2)  
                                         = −0.31F 
Core in the y-direction = T× (Ixxwy × (dx – dxi)) /∑ Ixx (dx − dxi) 2 + Iyy (dy − dyi) 2) = 0.43F 
Core in the x-direction = T× (Ixxwx × (dy – dyi)) /∑ Ixx (dx − dxi) 2 + Iyy (dy − dyi) 2) = 0.32F 
 

 
 

Fig. 10.5 Forces due to twisting moment in the shear wall assembly. 
 
(iii) Total forces are: 

Wall in the y-direction: 0.60F − 0.44F = 0.16F 
Wall in the x-direction: 0 − 0.31F = −0.12F 

Core in the y-direction: 0.40F + 0.43F = 0.83F 
Core in the x-direction: 0 + 0.32F = 0.32F 

0.6F 
0.4F 

 0.6F 0.4F 

0.6F 
0.4F 
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(e) Reinforcement for walls in tension 
If tension develops across the wall section, the reinforcement is to be arranged in 
two layers and the spacing of bars in each layer should comply with the bar spacing 
rules in section 9.6.2 and 9.6.3 of the code. 
 
 
10.2.3 Design of Stocky Reinforced Concrete Walls 
 
The design of stocky reinforced concrete walls is covered by the rules for the design 
of columns.  
 
(a) Walls supporting transverse moment and uniform axial load 
Where the wall  supports a transverse moment and a uniform axial load, a unit 
length of wall can be designed as a column using column design charts discussed 
in Chapter 9. 
 
(c) Walls supporting in-plane moments and axial load 
The design for this case is set out in section 10.3.4 below. 
 
(d) Walls supporting axial load and transverse and in-plane moments 
The code states that the effects are to be assessed in three stages. 
 
(i) In-plane Axial force and in-plane moments are applied. The distribution of force 
along the wall is calculated using elastic analysis assuming no tension in the concrete. 
 
(ii) Transverse The transverse moments are calculated using the procedure set out in 
section 10.3.2(c). 
 
(iii) Combined The effects of all actions are combined at various sections along the wall.  
The sections are checked using the general assumptions for beam design. 
 
 
10.3 WALLS SUPPORTING IN-PLANE MOMENTS AND AXIAL 
         LOADS 
 
 
10.3.1 Wall Types and Design Methods 
 
Some types of shear wall are shown in Fig. 10.6.  The simplest type is the straight wall 
with uniform reinforcement as shown in Fig. 10.6(a).  In practice the shear wall 
includes columns at the ends as shown in Fig. 10.6(e).  Channel-shaped walls are also 
common as shown in Fig. 10.6(d), and other arrangements are used.   
There are many procedures used to design a wall subjected to axial force and in-plane 
moment.  Three design procedures are discussed. 

1. Using an interaction chart 
2. Assuming elastic stress distribution 
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3. Assuming that only end zones resist moment 
The methods are discussed briefly below.  Examples illustrating their use are given. 
 
 

 
 

Fig. 10.6 (a) Wall reinforcement: (b) uniform strips of steel; (c) extra reinforcement in end zones; (d) 
channel-shaped shear walls; (e) shear wall between columns. 

 
 
10.3.2 Interaction Chart 
 
The chart construction is based on the assumptions for design of beams given in 
clause 6.1 of Eurocode 2.  A straight wall with uniform reinforcement is considered.  



Walls in buildings                                                                                                                 403 

For the purpose of analysis the vertical bars are replaced by uniform strips of steel 
running the full length of the wall as shown in Fig. 10.6 (b). 
The chart shown in Fig. 10.8 is constructed using the following equations. 
Assuming fyk = 500 MPa and Young’s modulus for steel is 200 GPa, then the strain εy 
when the stress is fyd = fyk/1.15 = 435 MPa is given by 

εy = 435/ (200 × 103) = 2.174 × 10−3 
If the maximum compressive strain in concrete is 0.0035 and the neutral axis depth is 
x, the strain in steel is equal to εy at a depth c from the neutral axis, where  

c = (εy /0.0035) x = 0.6211 x, 
(x – c) = 0.3789 x 

Using the rectangular compressive stress block, fcd = fck/1.5 = 0.667 fck and the 
thickness of the wall is b, the compressive force due to concrete = 0.667fck (0.8x) b. 
The steel in the wall is taken as Asc mm2/mm. 
Three cases of neutral axis positions need to be considered. 
 

 
 

Fig. 10.7 (a) Strains and stresses in steel and concrete for Case 1. 
 
Case 1: If (x/h) ≤ 0.6169, as shown in Fig. 10.7(a) 

AB = 0.3789 x, BC = CD = 0.6211 x, DE = h − 1.6211 x 

3.5×10−3 

2.17×10−3 
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fyd 

A 
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Strain in the cross section 
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Note: DE = 0, if (h – 1.6211 x) = 0, x/h = 0.6169.   
This is the maximum x/h for case 1. 
Force in segments: 

FAB = 0.3789 x × (fyd × b × Asc) 
FBC = 0.6211 x × (0.5× fyd × b × Asc) 

FCD = − 0.6211 x × (0.5× fyd × b × Asc) 
FDE = (h − 1.6211 x) × (fyd × b × Asc) 

Summing up the forces in steel,  
Fsteel = (h − 1.432 x) × (fyd × b ×Asc) 

Force due to concrete, Fconcrete = 0.8x × b × fcd 
Lever arms from the middle of the depth: 

ℓAB= 0.5 h – 0.5 × 0.3789 x = 0.5h – 0.1895 x 
ℓBC = 0.5 h – 0.3789 x – (0.6211 x)/3 = = 0.5 h – 0.5859 x 

ℓCD = 0.5 h – 0.3789 x – 0.6211 x – (2/3) × (0.6211 x) = 0.5 h – 1.4141 x 
ℓDE = 0.5 h – 0.3789 x – 2 × 0.6211 x – (h − 1.6211x)/2 = −0.8106 x 

Lever arm for force in concrete, ℓconcrete = 0.5h – 0.4 x 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 

 
 

Fig. 10.7 (b) Strains and stresses in steel and concrete for Case 2. 
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Case 2: If 1.0 ≥ (x/h) > 0.6169, as shown in Fig. 10.7(b) 
AB = 0.3789 x, BC = 0.6211 x, CD = h − x 

Note: CD = 0 if (h – x) = 0, x/h = 1.0.  This is the maximum x/h for case 2. 
Force in segments: 

FAB = 0.3789 x × (fyd × b × Asc) 
FBC = 0.6211 x × (0.5× fyd × b × Asc) 

FCD = (h − x) × (700× (h/x − 1) × b × Asc) 
Force due to concrete, Fconcrete = 0.8x×b×fcd 

Lever arms from the middle of the depth: 
ℓAB = 0.5 h – 0.5 × 0.3789 x = 0.5h – 0.1895 x 

ℓBC = 0.5 h – 0.3789 x – (0.6211 x)/3 = = 0.5 h – 0.5859 x 
ℓCD = 0.5 h – 0.3789 x – 0.6211 x – (2/3) × (h − x) = − 0.1667 h – 0.3333 x 

Lever arm for force in concrete, ℓconcrete = 0.5h – 0.4 x 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 

 
Fig. 10.7(c) Strains and stresses in steel and concrete for Case 3. 

 
Case 3: If 2.6392 ≥ (x/h) > 1.0, as shown in Fig. 10.8(c) 

AB = 0.3789 x, BC = h − 0.3789 x 
Note: BC = 0, if (h – 0.3789 x) = 0, x/h = 2.6392.  This is the maximum x/h for Case 3. 
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Force in segments: 
FAB = 0.3789 x × (fyd × b × Asc) 

FBC = (h − 0.3789 x) × [0.5 × {fyb + σ} × b × Asc] 
σ = 700× (1 − h/x) 

Force due to concrete: 
 Fconcrete = 0.8x × b × fcd,    0.8 x ≤ h 
Fconcrete = h × b × fcd,        0.8 x > h 

Lever arms from the middle of the depth: 
ℓAB = 0.5 h – 0.5 × 0.3789 x = 0.5h – 0.1895 x 

ℓBC = 0.5 h – 0.3789 x – (h − 0.3789 x)/3× {1 + σ/ (σ + fyd)} 
= 0.1667 h – 0.2526 x – (h − 0.3789 x)/3× {σ/ (σ + fyd)} 

Lever arm for force in concrete, ℓconcrete = 0.5h – 0.4 x, 0.8 x ≤ h 
If 0.8x > h, ℓconcrete = 0 

N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
The chart is shown in Fig. 10.8.   
 

 
 

Fig. 10.8 Wall design chart: fck = 30 MPa, fyk = 500 MPa, Asc = 2%. 
 
      A chart could also be constructed for the case where extra steel is placed in two zones 
at the ends of the walls as shown in Fig. 10.6(c).  Charts could also be constructed for 
channel-shaped walls. 
     In design the wall is assumed to carry the axial load applied to it and the overturning 
moment from wind.  The end columns, if existing, are designed for the loads and 
moments they carry.  Very often the in-plane moment is treated as concentrated 
tension and compression forces in the end columns.   
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(a) Elastic stress distribution 
A straight wall section, including columns if desired, or a channel-shaped wall is 
analyzed for axial load and moment using the properties of the gross concrete section 
in each case.  The wall is divided into sections and each section is designed for the 
average direct load on it.  Compressive forces are resisted by concrete and 
reinforcement.  Tensile stresses are resisted by reinforcement only. 
 
(b) Assuming that end zones resist moment 
Reinforcement located in zones at each end of the wall is designed to resist the 
moment. The axial load is assumed to be distributed over the length of the wall. 
 
 
10.3.3 Example of Design of a Wall Subjected to Axial Load and In-Plane 
           Moment Using Design Chart 
 
(a) Specification 
The plan and elevation for a braced concrete structure are shown in Fig. 10.9.   
 

 
 

Fig. 10.9 Framing arrangement. 
 
The total dead load of the roof and floors is 6 kN/m2. The imposed load on 
roof is 1.5 kN/m2 and that for each floor is 3.0 kN/m2.  The wind speed is 20 
m/s and the building is located in a city centre.  Design the transverse shear 
walls as straight walls without taking account of the columns at the ends.  The 
load bearing part of the wall is 160 mm thick with 20 mm thick decorative tiles 
on both faces.  The materials are fck = 30 MPa concrete and fyk = 500 MPa for 
reinforcement. 

Wind 
direction 
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Refer to BS EN 1991-1-1: 2002 Eurocode 1: Actions on Structures Part -1-1: 
General actions-Densities, self-weight, imposed loads on buildings, for more 
information. 
 
(b) Type of wall: slenderness 
The wall is 160 mm thick structurally and is braced.  The slenderness is calculated as for 
columns as given in clause 5.8.3.2 of Eurocode 2.  In this example it is assumed that the 
wall is ‘stocky’ and second order effects can be ignored. 
 
(c) Dead and imposed loads on wall 
Dead load: The dead load on the inner wall, given that the wall is 200 mm thick 
including finishes, is as follows. 
Note that there are 10 floors including the roof and the plan area of each floor is 8 × 6 m.  
Total height of the building = 35 m. 

Roof and floor slabs: 10 × (6 × 8) × 6 kN/m2 = 2880 kN 
Wall, 200 mm thick: (0.2 × 6 × 35) × 25 kN/m3 = 1050 kN 

Total dead load at base: 2880 + 1050 = 3930 kN 
 
Imposed load: The wall carries load from 10 floors.  Therefore imposed load can be 
multiplied by a reduction factor αn in accordance with BS EN 1991-1-1:2002 Part 1-
1, equation (6.2) 

                                                                        (6.2) 
 
where n = number of storeys (>2) above the structural element from the same category 
and Ψ0 = 0.7 for office areas from Table A1.1 of the code.  Substituting n = 10 and        
Ψ0 = 0.7 in equation (6.2), αn = 0.76.  The imposed load is  

0.76 × {1.5 (Roof load) + 3.0 × 9 floors} (6 × 8) = 1040 kN 
 
(d) Dead and imposed loads at each end of the wall from one transverse beam 
The slabs span between the beams which are supported on the walls.  On any transverse 
beam, acts, all the load acting on area 8 × 8 m.  The beam reaction acts on the column.   

Dead load from roof and floor slab: 10 × {(1/2) × (8 × 8)} × 6.0 = 1920 kN 
Column (500 mm × 500 mm) at wall ends: 35 × 0.5 × 0.5 × 25 kN/m3 = 218.75 kN 

Imposed load: 0.76 × {(1/2) × (8 × 8)} × (1.5 + 3.0 × 9) = 693.1 kN 
In summary,  axial load from: 
Dead load = 2880 (roof and floor) + 1050 (self weight of wall) 

    + 2 × (1920 + 218.75) (two transverse beams) = 8207.5 kN. 
Imposed load: 1040 (roof and floors) + 2 × 693.12) (two transverse beams) =2426.2 kN. 

 
(e) Wind load 
Wind loads are specified in  
BS EN 1991-1-4: 2005 + A1:2010 Eurocode 1: Actions on Structures. General 
actions. Wind actions 
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UK National Annex to Euro code 1: Actions on Structures. General actions. Wind 
actions 
A useful reference on the code is Cook (2007). 
 
The case for which wind load is calculated is wind acting normal to the 40 m 
width.  The maximum height H = 35 m above the ground.  The wind loads are 
assumed to be resisted equally by four shear walls.  The calculations of wind loads are 
complex and reference must be made to the full code along with the National 
Annex.  
 
(f) Wind load calculated using U.K. National Annex  
 
The following is a very brief summary using the National Annex for the United 
Kingdom. 
 
Step 1: The basic wind velocity vb is calculated from the wind code equation (4.1) 
as 
                                                  vb = Cdir × Cseason × vb,0                                    (4.1) 
Conservatively, direction factor Cdir and season factor Cseason can both be taken as 
1.0 

vb = 1.0 × 1.0 × vb, 0 = vb, 0 
 
Step 2: The fundamental value of the basic wind velocity vb, 0 is given by the 
National Annex equation (NA.1) as 
                                                      vb, 0 = vb, map × Calt                                    (NA.1) 
Vb, map = fundamental basic wind velocity in m/s given in the map of the country.   
The map for the United Kingdom is given in the National Annex in Fig. NA.1. 
Assume vb, map ≈ 20 m/s. 
Calt = altitude correction factor. 
 
Step 3: Conservatively, Calt for any building height is given by National Annex 
equation (NA.2a) as  
                                              Calt = 1 + 0.001 × A                                       (NA.2a) 
A = Altitude of the site in meters above sea level. 
If A = 100 m, Calt = 1.1 

Vb, 0 = vb, map × Calt = 20 × 1.1 = 22.0 m/s 
vb = vb, 0 = 22.0 m/s 

 
Step 4: The basic velocity pressure qb is given by the wind equation (4.10) as  
                                         qb = 0.5 ×ρ × vb

2 N/m2                                            (4.10) 
ρ = density of air taken as 1.226 kg/m3 

     qb = 0.613× vb
2 × 10−3 = 0.613 × 22.02 × 10−3 = 0.30 kN/m2 

 
Step 5: The peak wind pressure qp (z) is given by National Annex equation 
(NA.3b) for sites in town terrain by 
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                                                  qp (z) = ce (z) × ce, T × qb                         (NA.3b) 
 
Step 6: Exposure factor ce (z) 
Since the height h of the building is 35 m and the width of the building b is 40 m, h 
< b.  Therefore z = h = 35 m, hdis = 0 for terrain category IV.  From Fig. NA.7, 
assuming 10 km from the shore line, ce (z) ≈ 3.4 
 
Step 7: Exposure correction factor ce, T 
From Fig. NA.8, assuming 10 km from the shore line, ce, T(z) ≈ 0.94 

qp (z) = ce (z) × ce, T × qb = 3.4 × 0.94 × 0.30 = 0.96 kN/m2 
 
Step 8: The total pressure coefficient cf is the sum of external pressure coefficient 
cpe and internal pressure coefficient cpi.  The values of the pressure coefficients are 
calculated from Table 7.1 of the wind code.   Values of cpe, 10 should be used for the 
design of overall load bearing structure. In this case h = 35 m, b = 40 m,              
h/b = 0.875.  Interpolating from Table NA.4, 

Area D: cpe, 10 = 0.7 + (0.8 − 0.7) × (0.875 – 0.25)/ (1.0 – 0.25) = 0.78 
Area E: cpe, 10 = 0.3 + (0.5 − 0.3) × (0.875 – 0.25)/ (1.0 – 0.25) = 0.47 

cf = 0.78 + 0.47 =1.25 
 
Step 9: The total wind load wk = qp (z) × cf = 0.96 ×1.25 = 1.20 kN/m2. 
 
(g) Wind load calculated using the Eurocode wind code  
The following is a very brief summary using the BS EN 1991:2005 wind loading 
code 
 
Step 1: The mean wind velocity vm (z) at a height above the terrain is given by the 
wind code equation (4.3) as  
                                                  vm (z) = cr (z) × c0 (z) × vb                              (4.3) 
cr (z) = terrain roughness factor.  This factor accounts for the variability of the 
mean wind velocity at the site due to height above the ground level and ground 
roughness of the terrain upwind of the structure. 
c0 (z) = Orography (terrain) factor taken as 1.0. 
 
Step 2: cr (z) is defined by the wind code equation (4.4) as 
                                       cr (z) = kr ×ℓn (z/z0) for zmin ≤ z ≤ zmax                     (4.4) 
From Table 4.1 of the wind code, for terrain category IV (see figures in A.1 of the 
code) which represents city environment, z0 = zmin = 1.0, z = height of the building, 
zmax = 200 m. 
 
Step 3: kr is defined by the wind code equation (4.5) for town areas as  
                                                   kr = 0.19 × (z0/z0, II)0.07                                    (4.5) 
From Table 4.1 in the code, z0 = 1.0, and z0, II = 0.05 
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kr = 0.19 × (z0/z0, II) 0.07 = 0.19 × (1.0/0.05)0.07 = 0.19 ×1.23 = 0.23 
 
Step 4: If z = 35 m,  

cr (z) = kr ×ℓn (z/z0) = 0.23 × ℓn (35/1.0) = 0.23 × 3.56 = 0.83 
 
Step 5: The basic wind velocity vb is calculated from the wind code equation (4.1) 
as 
                                                vb = Cdir × Cseason × vb, 0                                      (4.1) 
Conservatively, direction factor Cdir and season factor Cseason can both be taken as 
1.0 

vb = 1.0 × 1.0 × vb, 0 = vb, 0 
 
Step 6: The fundamental value of the basic wind velocity vb, 0 is given by the 
National Annex equation (NA.1) as 
                                                     Vb, 0 = vb, map × Calt                                   (NA.1) 
Vb, map = fundamental basic wind velocity in m/s given in the map of the country.   
The map for the United Kingdom is given in the National Annex in Fig. NA.1. 
Assume vb, map ≈ 20 m/s. 
Calt = altitude correction factor. 
 
Step 7: Conservatively, Calt for any building height is given by National Annex 
equation (NA.2a) as  
                                                  Calt = 1 + 0.001 × A                                   (NA.2a) 
A = Altitude of the site in meters above sea level. 
If A = 100 m, Calt = 1.1 

Vb, 0 = vb, map × Calt = 20 × 1.1 = 22.0 m/s 
vb = vb, 0 = 22.0 m/s 

 
Step 8: vm (z) = cr (z) × c0 (z) × vb = 0.83 × 1.0 × 22.0 = 18.3. 
 
Step 9: The basic velocity pressure qb is given by the wind equation (4.10) as  
                                                    qb =0.5 ×ρ × vb

2                                           (4.10) 
ρ = density of air taken as 1.25 kg/m3 

     qb =0.613× vb
2 ×10−3 = 0.613 ×22.02×10−3 = 0.30 kN/m2 

 
Step 10: The peak velocity pressure qp (z) at height z is given by wind code 
equation (4.8) 
                                                    qp (z) = ce (z) × qb                                         (4.8) 
 
Step 11: The value of ce (z) for different values of z and different terrain 
categories is given in Fig. 4.2 of the code.  For z = 35 m and terrain category IV,   
ce (z) ≈ 2.1. 
 
Step 12: qp (z) = ce (z) × qb = 2.1 × 0.30 = 0.63 kN/m2 
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Step 13: The wind pressure acting on the external surface we is calculated from 
wind code equation (5.1) 
                                                    we = qp (ze) × cpe                                           (5.1) 
 
Step 14: The wind pressure acting on the internal surface wi is calculated from 
wind code equation (5.1) 
                                                      wi = qp (ze) × cpi                                          (5.1) 
 
Step 15: The wind force Fw, e acting on the external surface is calculated from 
wind code equation (5.5) 
                                               We = cscd × ∑we × Aref                                      (5.5) 
 
Step 16:  The wind force Fw, i acting on the internal surface is calculated from 
wind code equation (5.6) 
                                                     Fw, i = ∑wi × Aref                                          (5.6) 
  
Step 17: From section 6.2(1)(c), for framed buildings with structural walls with height less 
than 100 m and less than four times the in-wind depth cs cd = 1.0.  In this case h = 35 m, in-
wind depth = 22 m.  Therefore cs cd = 1.0. 
 
Step 18:  Frictional forces can be ignored when the total area of all surfaces parallel to the 
wind is equal to less than the total area of all external surfaces perpendicular to the wind. 
 
Step 19: The total pressure coefficient cf is the sum of external pressure coefficient 
cpe and internal pressure coefficient cpi.  The values of the pressure coefficients are 
calculated from Table 7.1of the wind code.   Values of cpe, 10 should be used for the 
design of overall load bearing structure.  In this case h = 35 m, b = 40 m, h/b = 
0.875.  Interpolating from wind code Table 7.1, 

Zone D:  External pressure cpe 
Cpe, 10 = 0.7 + (0.8 – 0.7) × (0.875 – 0.25)/ (1.0 – 0.25) = 0.78 

Zone E: Internal pressure cpi 
cpe, 10 = –0.3 + (–0.5 + 0.3) × (0.875 – 0.25)/ (1.0 – 0.25) = −0.47 

 
Step 20: The total wind load force Fw = QP (z) × (0.78 + 0.47) ×Aref  

Fw = 0.63 × (0.78 + 0.47) × Aref 
Fw per wall = 0.79 × (40 × 35) /4 = 276.5 kN 

 
(h) Load combination: Using the design values of actions as shown in Table A1.2 (B) 
and recommended values of ψ factors for buildings given in Table A1.1 of                        
BS EN 1990:2002 Euro code - Basis of Structural Design, the following design values of 
axial load N and in-plane moment M can be calculated.  The wall is 160 mm thick by 6000 
mm long.  Taking the wind load as 1.2 kN/m2 from the U.K. National Annex, 
horizontal wind load and the corresponding moment at the base are as follows: 

Total horizontal load per wall = 1.20 × (40 × 35) /4 = 420 kN 
Moment = 420 × 35/2 = 7350.0 kNm 
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i. Load calculation using equation (6.10) of the code 
Case 1:  
Dead + Imposed as leading variable + Wind as accompanying variable 
γGj, sup = 1.35, γQ, 1 = 1.5, γQ, i = 1.5, ψ0, i = 0.6 

N = 1.35 × 8207.5 (dead) + 1.5 × 2426.2 (Imposed) = 14719.4 kN 
M = 1.5 × 0.6 ×7350.0 = 6615.0 kNm 

b = 160 mm, h = 6000mm 
N/ (bh) = 15.33, M/ (bh2) = 1.15 

Case 2: 
Dead + Wind as leading variable + Imposed as accompanying variable  
γGj, sup = 1.35, γQ, 1 = 1.5, γQ, i = 1.5, ψ0, i = 0.7 

N = 1.35 × 8207.5 (dead) + 1.5 × 0.7 × 2426.2 (Imposed) = 13627.6 kN 
M = 1.5 ×7350.0 = 11025.0 kNm 

b = 160 mm, h = 6000mm 
N/ (bh) = 14.20, M/ (bh2) = 1.91 

 
ii. Load calculation using equation (6.10a) of the code 
Case 1: 
Dead + Imposed as leading variable + Wind as accompanying variable 
γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.7, γQ, i = 1.5, ψ0, i = 0.6 

N = 1.35 × 8207.5 (dead) + 1.5 × 0.7 × 2426.2 (Imposed) = 13627.6 kN 
M = 1.5 × 0.6 ×7350.0 = 6615.0 kNm 

b = 160 mm, h = 6000mm 
N/ (bh) = 14.20, M/ (bh2) = 1.15 

Case 2: 
Dead + Wind as leading variable + Imposed as accompanying variable  
γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.6, γQ, i = 1.5, ψ0, i = 0.7 

N = 1.35 × 8207.5 (dead) + 1.5 × 0.7 × 2426.2 (Imposed) = 13262.7 kN 
M = 1.5 × 0.6 × 7350.0 = 6615.0 kNm 

b = 160 mm, h = 6000mm 
N/ (bh) = 14.20, M/ (bh2) = 1.15 

iii. Load calculation using equation (6.10b) of the code 
Case 1: 
Dead + Imposed as leading variable + Wind as accompanying variable 
ξ = 0.85, γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.7, γQ, i = 1.5, ψ0, i = 0.6 
N = 0.85 × 1.35 × 8207.5 (dead) + 1.5 × 2426.2 (Imposed) = 13057.4 kN 

M = 1.5 × 0.6 ×7350.0 = 6615.0 kNm 
b = 160 mm, h = 6000mm 

N/ (bh) = 13.60, M/ (bh2) = 1.15 
Case 2: 
Dead + Wind as leading variable + Imposed as accompanying variable  
ξ = 0.85, γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.6, γQ, i = 1.5, ψ0, i = 0.7 
N = 0.85 × 1.35 × 8207.5 (dead) + 1.5 × 0.7 × 2426.2 (Imposed) = 11965.6 kN 

M = 1.5 × 7350.0 = 11025 kNm 
b = 160 mm, h = 6000mm 

N/ (bh) = 12.46, M/ (bh2) = 1.91 
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Fig. 10.10 Wall design chart: fck = 30, fyk = 500, Asc = 0.4%. 
 
Wall design for load combinations in (f) 
The wall is 160 mm thick by 6000 mm long.  The design is made using the chart in          
Fig. 10.10 which is for a steel percentage of 0.4%.  The most critical case is case 2 for 
equation (6.10b).  The design using 0.4% of steel appears satisfactory.  
The total steel area is given by 

Asc = (0.4/100) × 160 × 6000 = 3840 mm2 
Area per meter = 3840/6.0 = 640 mm2/m 

Provide one row of H10 bars at 100 mm centers.  From Table 4.9, Chapter 4, area of steel 
provided is 785 mm2/m. 
The provided steel percentage is  

[785/ (160 × 1000)] × 100 = 0.49% 
 

Table 10.2 Load combinations, wall design 
Loads (N,M) Eq. 6.10 Eq. 6.10a Eq. 6.10b 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 
N/ (bh) 
 

15.33 
 

14.20 
 

14.20 
 

14.20 
 

13.60 12.46 
M/ (bh2) 
 

1.15 
 

1.91 
 

1.15 
 

1.15 1.15 1.91 
 
(i) Check minimum and maximum steel percentages: 
Minimum steel percentage required is 0.2% and maximum allowed is 4%. 
The provided value of 0.49% satisfies the requirements. 
 
(ii) Spacing of bars: 
The distance between adjacent bars should not exceed Min (3 × wall thickness; 400 mm). 
Wall thickness = 160 mm.  Spacing should not exceed 400 mm.  Actual spacing is 100 mm. 
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(iii) Horizontal reinforcement:  
Steel area = max (25% of vertical steel; 0.1%). 
25% of vertical steel = 0.12%. 
Maximum spacing allowed = 400 mm. 
0.12% = 0.12/100 × (thickness = 160) × (spacing = 400 mm) = 77 mm2. 
Provide H8 bars at 400 mm spacing as horizontal steel.  Area of steel provided is 78.5 mm2. 
  
(iv) Transverse steel: 
As the vertical steel is one layer only and the percentage does not exceed 2%, transverse 
steel is not required. 
 
 
10.3.3.1 Example of Design of a Wall with Concentrated Steel in End  
             Zones or Columns Subjected to Axial Load and In-Plane Moment  
 
The plan of the wall is shown in Fig. 10.11.   

I  
 

Fig. 10.11 Wall with end columns. 
 
In the absence of a design chart to cover this case, the following approximate design 
procedure can be used.  The wall simply carries the dead and imposed load acting on a plan 
area of 6 × 8 m. The end columns carry dead and imposed loads from the reactions 
from transverse beams.  In addition they also resist the moment from the wind 
load. 
 
(a) Wall Design:   
Dead load: The wall section carries all the self weight and the dead and imposed loads 
which act directly on wall from the 10 floors including the roof over the plan area of each 
floor of 8 × 6 m.   

Roof and floor slabs: 10 × (6 × 8) × 6 kN/m2 = 2880 kN 
Wall, 200 mm thick: (0.2 × 6 × 35) × 25 kN/m3 = 1050 kN 

Total dead load at base: 2880 + 1050 = 3930 kN 
 
Imposed load: The wall carries load from 10 floors.  Allowing for the reduction in 
total imposed load as calculated previously, the total imposed load is  

0.76 × {1.5 (Roof load) + 3.0 × 9 floors} (6 × 8) = 1040 kN 
Using Equation (6.10) for dead load and imposed combination as it gives the largest 
value of N,     
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γGj, sup = 1.35, γQ, 1 = 1.5, γQ, i = 1.5 
N = 1.35 × 3930 (dead) + 1.5 × 1040 (Imposed) = 6866 kN 

Clause 6.1(4) of Eurocode 2 recommends using a minimum eccentricity of 1/30 of the 
thickness or 20 mm, whichever is greater.  160/30 = 5.33 mm < 20 mm   

M = 1.5 ×1040.0 × 20 × 10−3 = 31.2 kNm 
b = 160 mm, h = 6000mm 

N/ (bh) = 7.15, M/ (bh2) = 0.005 
From the design chart shown in Fig. 10.10, minimum steel is all that is required.  
Provide H10 at 200 mm centers on both faces.  From Table 4.9, Chapter 4, total steel area 
provided is 784 mm2/m.  Steel percentage is 784/ (1000 × 200) × 100 = 0.39%. 
 
(i) Check minimum and maximum steel percentages: 
Minimum steel percentage required is 0.2% and maximum allowed is 4%. 
The provided value of 0.39% satisfies the requirements. 
 
(ii) Spacing of bars: 
The distance between adjacent bars should not exceed Min (3 × wall thickness; 400 mm). 
Wall thickness = 200 mm.  Spacing should not exceed 400 mm.  Actual spacing is 200 mm. 
 
(iii) Horizontal reinforcement:  
Steel area = max (25% of vertical steel; 0.1%). 
25% of vertical steel = 0.1%. 
Maximum spacing allowed = 400 mm. 
0.1% = 0.1/100 × (thickness = 200) × (spacing = 400 mm) = 80 mm2. 
On each face, steel area required is 40 mm2. 
On each face, provide H8 bars at 400 mm spacing as horizontal steel.  Area of steel 
provided on each face is 50 mm2. 
  
(iv) Transverse steel: 
As the vertical steel percentage does not exceed 2%, transverse steel is not required. 
 
(b) Design of end columns: 
The slabs span between the beams which are supported on the walls. The transverse 
beam supports all the load acting on area 8 × 8.  The beam reaction acts on the column. 
 
Dead load: 

Dead load from roof and floor slab: 10 × {(1/2) × (8 × 8)} × 6.0 = 1920 kN 
Self weight of Column (500 mm × 500 mm) at wall ends: 

35 × 0.5 × 0.5 × 25 kN/m3 = 218.75 kN 
Total dead load = 1920.0 + 218.75 = 2138.75 kN 

 
Imposed load:  

0.76 × {(1/2) × (8 × 8)} × (1.5 + 3.0 × 9) = 693.1 kN 
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Wind load:  
Assume that the end columns resist the moment due to wind.  The lever arm is 6.0 m.  The 
equivalent axial force due to moment caused by wind is 

± 7350.0 /6.0 = ± 1225 kN  
Take eccentricity = 20 mm, b = h = 500 mm  
 
i. Load calculation using equation (6.10) of the code 
Case 1:  
Dead + Imposed as leading variable + wind as accompanying variable 

γGj, sup = 1.35, γQ, 1 = 1.5, γQ, i = 1.5, ψ0, i = 0.6 
N = 1.35 × 2138.75 (dead) + 1.5 × 693.1 (Imposed) ± 1.5 × 0.6 × 1225 (wind) 

N = 5029.1 kN or 2824.5 kN 
M = 100.6 kNm or 56.55 

N/ (bh) = 20.12 or 11.29, M/ (bh2) = 0.81 or 0.45 
 
Case 2:  
Dead + wind as leading variable + imposed as accompanying variable  

γGj, sup = 1.35, γQ, 1 = 1.5, γQ, i = 1.5, ψ0, i = 0.7 
N = 1.35 × 2138.75 (dead) + 1.5 × 0.7 × 693.1 (Imposed) ± 1.5 × 1225 (wind) 

    N = 5452.6 kN or 1777.6 kN 
M = 109.1 kNm or 35.55 kNm  

N/ (bh) = 21.81 or 7.11, M/ (bh2) = 0.87 or 0.28 
 
ii. Load calculation using equation (6.10a) of the code 
Case 1:  
Dead + imposed as leading variable + wind as accompanying variable 

γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.7, γQ, i = 1.5, ψ0, i = 0.6 
N = 1.35 × 2138.75 (dead) + 1.5 × 0.7 × 693.1 (Imposed) ±1.5 × 0.6 ×1225 (wind) 

     N = 4717.6 kN or 2512.6 kN 
M = 94.4 kNm or 50.25 kNm  

N/ (bh) = 18.87 or 10.05, M/ (bh2) = 0.76 or 0.40 
 
Case 2:  
Dead + wind as leading variable + imposed as accompanying variable  
γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.6, γQ, i = 1.5, ψ0, i = 0.7 

N = 1.35 × 2138.75 (dead) + 1.5 × 0.7 × 693.1 (Imposed) ±1.5 × 0.6 ×1225 (wind) 
= 4717.6 kN or 2512.6 kN 

M = 94.4 kNm or 50.25 kNm 
N/ (bh) = 18.87 or 10.05, M/ (bh2) = 0.76 or 0.40 

 
iii. Load calculation using equation (6.10b) of the code 
Case 1:  
Dead + imposed as leading variable + wind as accompanying variable 
ξ = 0.85, γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.7, γQ, i = 1.5, ψ0, i = 0.6 
N = 0.85 × 1.35 × 2138.75 (dead) + 1.5 × 693.1 (Imposed) ±1.5 × 0.6 ×1225 (wind) 

N = 4596.4 kN or 2391.4 kN 
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M = 91.9 kNm or 47.8 kNm 
N/ (bh) = 18.39 or 9.57, M/ (bh2) = 0.74 or 0.38 

Case 2: 
Dead + wind as leading variable + imposed as accompanying variable  
            ξ = 0.85, γGj, sup = 1.35, γQ, 1 = 1.5, ψ0, 1 = 0.6, γQ, i = 1.5, ψ0, i = 0.7 

N = 0.85 × 1.35 × 2138.75 (dead) + 1.5 × 0.7 × 693.1 (Imposed) ±1.5 ×1225 (wind) 
   N = 5019.5 kN or 1344.5 kN 
M = 100.4 kNm or 26.9 kNm  

N/ (bh) = 20.1 or 5.4, M/ (bh2) = 0.80 or 0.22 
 
Table 10.3 shows a summary of all load combinations.  The two values refer to 
wind loading being additive or subtractive from the dead and imposed load 
combination. 
 

Table 10.3 Load combinations, end column design 
Load Eq. 6.10 Eq. 6.10a Eq. 6.10b 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 
N/(bh) 
 

20.1/11.
3 
 

21.81/7.1
1 
 

18.87/10.1 
 

18.87/10.1 
 

18.4/9.6 20.1/5.4 
M/(bh2) 
(9(bh2)(b
h2) 
 

0.8/0.5 
 

0.9/0.3 
 

0.8/0.4 
 

0.8/0.4 0.7/0.4 0.8/0.2 
 
Fig. 10.12 shows the design chart for 2% steel.  The load combination for case 2 is plotted, 
indicating that design is safe. Provide 8H32 bars as shown in Fig. 10.13. 
 

 
 

Fig. 10.12 N−M chart for end column design. 
 
Design of links: 
Column is 500 mm square with 8H32 bars as reinforcement. 
Link diameter = H32/4 = 8 mm. 
Spacing = min (20 × H32; (b = 500 mm); 400 mm) = 400 mm. 
Provide links as shown in Fig. 10.13.  All the bars are restrained by links. 
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Fig. 10.13 Reinforcement details in the wall and the end columns. 
 
 
10.3.4 Design of a Wall Subjected to Axial Load and In-Plane Moment with 
            Columns at the End 
 
In the example in section 10.3.3.1, design was carried out assuming that the in-plane 
moment is resisted by the end columns only.  A chart for the design of wall with end 
columns where the axial load and moment are resisted by the entire section can be 
constructed as follows. 
Total depth of wall =h, thickness of wall = t   
Reinforcement in the wall = Asc, wall   
End columns width = b, Area of end columns = Acol  
Reinforcement in the end columns = Asc, col 
Assuming Young’s modulus for steel is 200 GPA, fyk = 500 MPa, the strain εsy in steel 
when the stress is fyd =fyk/ (γs = 1.5) = 435 MPa is given by 

εsy = 435/ (200 × 103) = 2.174 × 10−3 
If the maximum compressive strain in concrete is εcu3 = 3.5× 10−3 and the neutral axis 
depth is x, the strain in steel is equal to εsy at a depth c from the neutral axis, where  

c = (εsy / εcu3) x = 0.6211 x 
(x – c) = 0.3789x 

a. The entire left hand column steel will be at yield when (x − c) =0.3789 x = b the 
width of the column.   Therefore x/b = 2.64. 

X/h = (x/b) × (b/h) = 2.64 × b/h 
b. The entire right hand column will be at yield in tension when the strain is equal to 

εsy, when (h – b – x) = 0.6211 x.   
x/h = 0.6169 × (1 – b/h) 

εcu3 × E = (3.5× 10−3) × (200 × 10−3) = 700 MPa 
Three cases of neutral axis position are considered.   
Note that in a trapezium as shown in Fig. 10.14, from the left hand side, the centroid is 
at  
 

==  
 

Column: 
8H32 

H10 at 200 H8 at 400 

Links: 
H8 at 
400 
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Fig. 10.14 Centroid of a trapezium. 
 
Case 1: For simplicity, the first case is where the entire left hand column is in 
compression and the column steel is at yield. 
Neutral axis depth lies between the limits such that and the entire left hand column steel 
is at yield (i.e., x/h > 2.6415 × b/h) and the entire right hand column steel is at yield 
[i.e., x ≤ 0.6167 (h – b) or x/h ≤ 0.6167 (1 – b/h)]. See Fig. 10.15. 
 

 
 

Fig. 10.15 Strains and stresses in steel and concrete for Case 1. 
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Force in segments: 
AB = 0.3789 x, BC = CD = 0.6211 x, DE = h – 1.6211 x 
Left hand column force (compressive): fyd × Asc, col + fcd × Acol 
Right hand column force (tensile): – fyd × Asc, col 
Concrete compressive force wall: (0.8x – b) × t × fcd 
Forces in the wall due to steel: 

FAB = (0.3789 x – b) × (fyd × Asc, wall) 
FBC = 0.6211 x × (0.5× fyd ×Asc, wall) 

FCD = – FBC 
FDE = – (h – 1.6211 x – b) × (fyd × Asc, wall) 

 
Lever arms from the middle of the depth: 

ℓLeft hand Column = 0.5h – 0.5 b 
ℓRight hand Column = – (0.5h – 0.5 b) 

ℓAB= 0.5 h – b – 0.5 × (0.3789 x – b) – b 
ℓBC = 0.5 h – 0.3789 x – (0.6211 x)/3 

ℓCD = 0.5 h – 0.3789 x – 0.6211 x – (2/3) × (0.6211 x) 
ℓDE = 0.5 h – 1.6211 x – (h – 1.6211x − b)/2 

Lever arm for force in concrete in wall, ℓconcrete = 0.5h – 0.5 × (0.8 x – b). 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 
Case 2: Two possible positions of the neutral axis need to be considered.   
 
Case 2a:  As shown in Fig. 10.16, the portion BC of the wall is in compression and 
portion CD of the wall is in tension. The right hand column is in tension.   
Length CD = (h – b – x).  CD = 0 when x/h = (1 – b/h). 
 
Forces in segments: 
Left hand column force (compressive): fyd × Asc, col + fcd × Acol 
Concrete compressive force wall: (0.8x – b) × t × fcd 
Forces in the wall due to steel: 

FAB = (0.3789 x – b) × (fyd × Asc, wall) 
FBC = 0.6211 x × (0.5× fyd ×Asc, wall) 

Strain ε at (h – x – b) =  

Stress σ1 at (h – x – b) =   
FCD = – (h – x – b) × 0.5 × σ1 × Asc, wall 

Stress σ2 at (h – x) =   but numerically not greater than 435 MPa 
Right hand column force (tensile):  =  Asc, col 
 
Lever arms from the middle of the depth: 
ℓLeft hand Column = 0.5h – 0.5 b 

ℓRight hand Column =  
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ℓAB= 0.5 h – b – 0.5 × (0.3789 x – b) 
ℓBC = 0.5 h – 0.3789 x – (0.6211 x)/3 
ℓCD = 0.5 h – x – (2/3) × (h – x – b) 

Force in wall due to concrete, Fconcrete = (0.8x – b) × t × fcd. 
Lever arm for force in concrete, ℓconcrete = 0.5h – 0.4 x – 0.5b. 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 

 
Fig. 10.16 Strains and stresses in steel and concrete for Case 2a. 

 
Case 2b: As shown in Fig. 10.17, the portion BC of the wall is in compression and the 
right hand column is partly in tension and partly in compression.   
 
Forces in segments: 
Left hand column force (compressive): fyd × Asc, col + fcd × Acol 
Concrete compressive force wall: (0.8x – b) × t × fcd 
Forces in the wall due to steel: 
FAB = (0.3789 x – b) × (fyd × Asc, wall) 
Strain ε1 at right edge of the wall at (x – h + b) =  

fcd 

Stress in concrete 

0.8x 

3.5×10−3 

2.17×10−3 

fyd 

A B 

C 

D Stress in steel 

Strain in the cross section 

x 

≤ fyd 



Walls in buildings                                                                                                                 423 

Stress σ1 at right edge of the wall =   
FBC = (h – b – 0.3789 x) × 0.5× [fyd + σ1] ×Asc, wall) 
Strain ε2 at (h – x) = 

yd

 

Stress σ2 at (h – x) =   

Right hand column force (tensile):  =  × Asc, col 

Lever arms from the middle of the depth: 
ℓLeft hand Column = 0.5h – 0.5 b 

ℓRight hand Column =  

ℓAB= 0.5 h – b – 0.5 × (0.3789 x – b)  
ℓBC = 0.5 h – 0.3789 x – (h – b – 0.3789 x)/3 × (1 + σ1/ (fyd + σ1)) 
Force in wall due to concrete, Fconcrete = (0.8x – b) × t ×fcd. 
Lever arm for force in concrete, ℓconcrete = 0.5h – (0.4 x + 0.5b). 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 

 
Fig. 10.17 Strains and stresses in steel and concrete for Case 2b. 
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Case 3: 2.6389 ≥ (x/h) > 1.0, as shown in Fig. 10.18  
AB = 0.3789 x – b, BC = h – 0.3789 x – b 
 
Force in segments: 
Left hand column force (compressive): fyd × Asc, col + fcd × Acol 
FAB = (0.3789 x – b) × (fyd × Asc, wall) 
Stress σ at left edge of the right hand column: σL = 700 × (1 – (h – b)/x) 
Stress σ at right edge of the right hand column: σR = 700 × (1 – h/x) 
Average stress = 700 × [1 – (h/x) × (1 + 0.5b/h)] 
Force in the right hand column = 700 × [1 – (h/x) × (1 + 0.5b/h)] × Asc, col 
FBC = (h – 0.3789 x − b) × [0.5 × {fyb + σL} × Asc, wall] 
Force due to concrete, Fconcrete = 0.8x × t × fcd, 0.8 x ≤ h 
                                      Fconcrete = h × t × fcd, 0.8 x > h 
 
Lever arms from the middle of the depth: 
ℓAB= 0.5 h – 0.5 × 0.3789 x = 0.5h – 0.1895 x 
ℓBC = 0.5 h – 0.3789 x – (h − 0.3789 x − b)/3× {1 + σL/ (σL + fyd)} 
Lever arm for force in concrete, ℓconcrete = 0.5h – 0.4 x, 0.8 x ≤ h. 
If 0.8x > h, ℓconcrete = 0. 
N = Algebraic sum of all the axial forces. 
M = Algebraic sum of the product of axial forces and corresponding lever arms. 
 

 
 

Fig. 10.18 Strains and stresses in steel and concrete for Case 3. 
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Fig. 10.19 Design chart for a wall with end columns. 
 
Fig. 10.19 shows the design chart.  It is constructed for the following parameters. 
fck = 30 MPa, fcd = fck/1.5 = 20 MPa.  fyk = 500 MPa, fyd = fyk/1.15 = 435 MPa. 
Total depth of wall, h = 6500 mm, thickness of wall, t = 160 mm.   
Reinforcement in the wall, Asc, wall = 0.785 mm2/mm.  
Width of end columns, b = 500 mm, b/h = 500/6500 = 0.077. 
Area of end columns, Acol = 2.55 × 106 mm2.  
Reinforcement in the column, Asc, col = 8H32 = 6434 mm2. 
The bar centre in the columns inset from the edges by 60 mm.   
 
 
10.3.5 Design of a Wall Subjected to Axial Load, Out-of-Plane 
            and In-Plane Moments 
 
External shear walls are subjected not only to axial forces but also to in-plane moment due 
to resisting wind forces. In addition there are also out-of-plane moments due to moments 
caused by beams resting on the walls.  In essence it is a case of axial force and biaxial 
moments.  The design procedure can be complex.  The complexity is reduced by adopting a 
simplified procedure as follows.   
The wall is divided into a series of vertical strips.  The axial force and in-plane moment is 
substituted by a varying axial force in the vertical column strips.  A vertical strip of the wall 
is designed to resist the net axial force (due to the stress caused by axial force and in-plane 
moment) and out-of-plane moment acting on that strip.  The procedure is illustrated by an 
example. 
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     The section of a stocky reinforced concrete wall 150 mm thick and 4000 mm long is 
subjected to the following actions: 

N = 4300 kN 
In-plane moment, My = 2100 kNm 

Out-of-plane moment, Mx = 244 kNm 
Design the reinforcement for the heaviest loaded end zone 500 mm long.  The materials are 
fck = 30 MPa for concrete and fyk = 500 MPa for reinforcement. 
 
From an elastic analysis, the stress in the section due to axial force N and moment My are 
calculated as follows. 

 
 

A = 150 × 4000 = 6 × 105 mm2 
I = 150 × 40003/12 = 8 × 1011 mm4 
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= 7.17 + 5.25 = 12.42 MPa 
The stress at 250 mm from the end is 

7.17 + 5.25 ×1750/2000 = 11.76 MPa 
The axial load on the end zone is 

11.76 × 150 × 500 × 10−3 = 882 kN 
The bending moment on the end zone is 

M = 224 (500/4000) = 28 kN m 
Design the end zone for an axial load moment combination using b = 150 mm, h = 500 mm 

N/ (bh) = 882× 103/ (150 × 500) = 11.76 
M/ (bh2) = 28 × 106/ (500 × 1502) = 2.5 

From a column design curve, 100 Asc/ (bh) = 1.5.  
Asc = 1.5 × 150 × 500 × 10−2 = 1125 mm2. 
Provide 4H20 to give an area of 1263 mm2. 
 
 
10.4 DESIGN OF PLAIN CONCRETE WALLS 
 
 
10.4.1 Code Design Provisions 
 
A plain wall contains either no reinforcement or less than 0.4% reinforcement.  The 
reinforcement is not considered in strength calculations.  The design procedure is given in 
section 12.0 of the code.  The design procedure follows the same steps as for a reinforced 
concrete wall except for the following points. 
 
(a) Material strength 
The design value of compressive strength is defined in section 12.3.1 of Eurocode 2 as  

fcd = αcc, pl × fck /γc 
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αcc, pl = 0.8 
Note:  αcc = 1.0 for reinforced concrete in the section 3.1.6(1) P of the code but the U.K. 
National Annex suggests a value of 0.85. 
 
(b) Structural analysis 
Since plain concrete has limited ductility, at ultimate limit state only elastic analysis with no 
redistribution is permitted. See section 12.5 of the code. 
 

 
Fig. 10.20 Cross section of a wall. 

 
The axial resistance NRd of a wall with uniaxial eccentricity e in the direction of the 
thickness hw of the wall as shown in Fig. 10.20 is given by equation (12.2) of the code as 

NRd = η fcd × b × hw × (1 – 2e/hw) 
where 
η fcd = design effective compressive strength. 
b = overall width of the cross section. 
hw = overall depth of the cross section. 
e = eccentricity of NEd in the direction of hw. 

 
As an example consider a wall b = 1 m, hw = 200 mm, e = 30 mm, fck = 30 MPa. 

αcc, pl = 0.8, η = 1.0, γc = 1.5 
fcd = αcc, pl × fck /γc = 16 MPa 

NRd = η fcd × b × hw × (1 – 2e/hw) = 2240 kN/m 
 
 
10.5 REFERENCE 
 
Cook, N.J. (2007). Designers’ Guide to EN 1991-1-4 Eurocode 1: Actions on 
structures, general actions part 1-4, Wind actions. Thomas Telford. 
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CHAPTER 11 
 

FOUNDATIONS 
 
 
11.1 GENERAL CONSIDERATIONS  
 
Foundations transfer loads from the building or individual columns to the earth. 
Types of foundations commonly used are:  

 Isolated bases for individual columns  
 Combined bases for several columns  
 Rafts for whole buildings which may incorporate basements 

 
All the above types of foundations may bear directly on the ground or be supported 
on piles.   Only isolated and combined bases are considered in this chapter.  The 
type of foundation to be used depends on a number of factors such as  

 Soil properties and conditions  
 Type of structure and loading  
 Permissible amount of differential settlement  

 
The design of any foundation consists of two parts 

 Geotechnical design to determine the safe bearing strength of the soil 
 Structural design of the foundation using reinforced concrete 

 
The Eurocode governing the geotechnical aspects of foundation design is             
BS EN 1997-1:2004: Eurocode 7: Geotechnical Design —Part 1: General Rules. 
Spread foundations are covered in section 6 and in Appendix D.  Pile foundations 
are covered in section 7 of the code.  
A very useful reference on Eurocode 7 is Bond and Harris (2008). 
 
The Eurocode governing the structural aspects of foundation design is BS EN 
1992-1-1:2004: Eurocode 2: Design of Concrete Structures Part 1: General Rules 
and Rules for Buildings. 
For the vast majority of simple foundations, the two aspects can be treated 
separately.  However for some types of foundations, for example raft foundations, 
the interaction between the structure and foundation might need to be taken into 
account.  
 
 
11.2 GEOTECHNICAL DESIGN 
 
 
The following is a brief description of the important aspects of geotechnical design 
as given in Eurocode 7. 
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11.2.1 Geotechnical Design Categories 
 
In clause 2.1(14 to 21), Eurocode 7 gives three geotechnical categories for which 
geotechnical engineers might need to be involved in design. 
 

a. Geotechnical category 1 should only include small and relatively simple 
structures, for which it is possible to ensure that the fundamental 
requirements will be satisfied on the basis of experience and qualitative 
geotechnical investigations with negligible risk in terms of overall 
stability or ground movements and in ground conditions, which are 
known from comparable local experience to be sufficiently straight-
forward.  In these cases the procedures may consist of routine methods for 
foundation design and construction and structural engineers alone can take 
responsibility for geotechnical aspects of design. 

 
b. Geotechnical category 2 should include conventional types of structure 

and foundations like spread, raft and pile foundations with no exceptional 
risk or difficult or loading conditions.  Routine procedures for field and 
laboratory testing and for design and execution may be used.  In this case 
geotechnical design can be done by geotechnical or structural engineers. 

 
c. Geotechnical category 3 should include structures or parts of structures, 

which fall outside the limits of geotechnical categories 1 and 2.  
Geotechnical category 3 includes for example very large or unusual 
structures, structures involving abnormal risks, or unusual or 
exceptionally difficult ground or loading conditions, structures in highly 
seismic areas, structures in areas of probable site instability or persistent 
ground movements that require separate investigation or special measures.   
In this case responsibility for geotechnical design rests entirely with 
geotechnical engineers. 

 
 
11.2.2 Geotechnical Design Approaches 
 
In clause 2.4.7.3.4, Eurocode 7 gives three approaches to geotechnical design.  
Design Approach 1:  In this approach given in clause 2.2.7.3.4.2, partial factors 
are applied to actions and to ground strength parameters. 
Design Approach 2:  In this approach given in clause 2.2.7.3.4.3, partial factors 
are applied to actions or to the effects of actions and to ground resistances.   
Design Approach 3:  In this approach given in clause 2.2.7.3.4.4, partial factors 
are applied to actions or to the effects of actions from the structure and to ground 
strength parameters. 
The three approaches can give very different results as there is no unanimity 
among geotechnical engineers as to which is the correct approach.  The U.K. 
National Annex to Eurocode 7 permits only Design 1 approach. 
 



Foundations                                                                                                                          431 

11.2.3 Load Factors for Design 1 Approach 
 
For design at the ultimate limit, the following limit states with their own 
combination of actions should normally be considered: 

 EQU: Loss of equilibrium of the structure 
 STR: Internal failure or excessive deformation of the structure 
 GEO: Failure due to excessive deformation of the ground 

 
Table 11.1 Partial factors on actions (γF) or the effects of actions (γE) 

 
 Permanent Actions Leading 

Variable 
Action 

Accompanying Variable 
Action 

Unfavourable Favourable Main (if 
any) 

Others 

 Combination 1 
STR/GEO (6.10) 1.35 Gk 1.0 Gk 1.5 Qk,1  1.5 ψ0,,j Qk, j 

(6.10a) 1.35 Gk 1.0 Gk . 1.5 ψ01 Qk 1.5 ψ0,,j Qk, j 
(6.10b) ξ ×1.35 Gk 1.0 Gk 1.5 Qk,1  1.5 ψ0,,j Qk, j 

Combination 2 
 (6.10) 1.0 Gk 1.0 Gk 1.3 Qk,1 . 1.3 ψ0,,j Qk, j 

EQU (6.10) 1.1 Gk 0.90 Gk 1.5 Qk,1 . 1.5 ψ0,,j Qk, j 
 
Note: ξ = 0.85 but The U.K. National Annex gives ξ = 0.925. 
Values for EQU are from Table A.1 of the code. 
Values for STR/GEO are from Table A.3 of the code. 

 
 

Table 11.2 Material property partial factors, γM 
 

  Angle of 
Shearing 

Resistance, 
φ 

Effective 
Cohesion, c 

Undrained 
Shear 
Strength 

Unconfined 
Strength 

Bulk 
Density 

 γφ γc γcu γqu γγ 
STR/GEO Combination 1 1.0 1.0 1.0 1.0 1.0 

Combination 2 1.25 1.25 1.4 1.4 1.0 
EQU EQU 1.25 1.25 1.4 1.4 1.0 

 
Values for STR/GEO are from Table A.4 of the code. 
Values for EQU are from Table A.2 of the code. 
     
There are two sets of combinations used for the STR and GEO ultimate limit 
states.  Table 11.1 shows the relevant partial factors on actions or effects of actions 
for persistent and transient design situations for STR/GEO and EQU situations.  
Exp. (6.10), Exp (6.10a) and Exp (6.10b) refer to expressions given in                  
BS EN 1990:2002, Eurocode-Basis of Structural Design, Table A2.4 (B) and Table 
A2.4(C).  Same values are also given in Tables A.1 and A.3 of the Eurocode 7. 
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Partial resistance factor γR for bearing for spread foundations is given in Table A.5 
of the code.  The γR is 1.4 for Design 2 approach and is 1.0 for Design 1 and 
Design 3 approaches.  
 
Table 11.2 shows the material property factors γM. 
 
In the following section examples of three design approaches for a rectangular 
footing on drained sandy soil are illustrated. 
 
 
11.2.3.1 Example of Calculation of Bearing Capacity by Design 1 Approach 
 
A rectangular footing 3.75 × 2.25 m and 700 mm thick supports the following 
column loads: 
Permanent actions (Dead load): Gk = 950 kN 
Leading variable action (Imposed load): Qk = 700 kN 
The footing rests on sandy soil with angle of shearing resistance φ = 30o. 
Determine the allowable base pressure and compare it with the applied base 
pressure. 
 
Solution: 
Step 1: Calculate design loads. 
Taking unit weight of concrete = 25 kN/m3, calculate the weight of the footing. 

Gk, footing = 3.75 × 2.25 × 0.700 × 25 = 147.7 kN 
Gk = 950 (applied) + 147.7 (Footing) = 1097.7 kN 

Qk = 700 kN 
Use expression (6.10) as it gives the maximum design load. 

Design load for Combination 1: γg = 1.35, γq = 1.5 
VEd = 1.35 × 1097.7 + 1.5 × 700 = 2531.8 kN 

Design load for Combination 2: γg = 1.0, γq = 1.3 
VEd= 1.0 × 1097.7 + 1.3 × 700 = 2007.7 kN 

 
Step 2: Calculate design base pressure: 

Area of footing, Abase = 3.75 × 2.25 = 8.44 m2 
Combination 1: Base pressure = 2531.8 /8.44 = 300 kN/m2 or kPa 
Combination 2: Base pressure = 2007.7 /8.44 = 238 kN/m2 or kPa 

 
Step 3: Calculate design material properties. 
As the footing rests on sandy soil, the only relevant material property is the angle 
of shearing resistance, φ. 
Characteristic value φk = 30o.  Note that the safety factor γφ is applied to tan φk not 
to φk. 

Combination 1: γφ= 1.0, tan φd = tan φk/ γφ= tan 30 = 0.577, φd =30.0o 
Combination 2: γφ= 1.25, tan φd = tan φk/ γφ= tan 30/1.25 = 0.462, φd =24.8o 
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Step 4: Calculate design bearing capacity factors.  Use the equations in section D.4 
of Annex D of Eurocode 7.  
i. Overburden factor Nq 

Nq = e (π × tanφ
d
) × tan2 (45 + φd/2) 

Combination 1: φd = 30o, Nq = 18.40 
Combination 2: φd = 24.8o, Nq = 10.44 

ii. Cohesion factor, Nc 
Nc = (Nq − 1) cotφd 

Combination 1: φd = 30o, Nc = 30.14 
Combination 2: φd = 24.8o, Nc = 20.43 

Note: If effective cohesion c = 0, there is no need to compute this factor. 
iii. Body weight factor Nγ 

Nγ =2 (Nq − 1) tanφd 
Combination 1: φd = 30o, Nγ = 20.09 
Combination 2: φd = 24.8o, Nγ = 8.72 

 
Step 5: Calculate design shape factors.  Use the equations in Annex D of  
Eurocode 7.  
Rectangular base:  B = 2.25 m, L = 3.75, B/L = 0.6 
i. sq = 1 + (B/L) sin φd 

Combination 1: φd = 30o, sq = 1.30 
Combination 2: φd = 24.8o, sq = 1.25 

ii. sc = (sq Nq − 1)/(Nq − 1) 
Combination 1: Nq = 18.40, sq = 1.30, sc = 1.317 
Combination 2: Nq = 10.44, sq = 1.25, sc = 1.276 

iii. Note: If effective cohesion c = 0, there is no need to compute this factor. 
        sγ = 1 – 0.3 (B/L) 

Combination 1 and 2: B/L = 0.6, sγ = 0.82 
 
Step 6: Calculate the overburden pressure, q. 
Taking the unit weight of soil as 18 kN/m3 and the safety factor γγ = 1 

q = 18 × depth of footing = γγ × 18 × 0.7 = 12.6 kN/m2 or kPa 
 
Step 7: Calculate the allowable qult: 

qult = q × Nq × sq + c × Nc × sc + 0.5 × γ × B × Nγ × sγ 
Combination 1: qult = 12.6 × 18.40 × 1.30 + 0.0 × 30.14 × 1.317 

+ 0.5 × 18.0 × 2.25 × 20.09 × 0.82 = 635 kN/m2 or kPa 
Combination 2: qult = 12.6 × 10.44 × 1.25 + 0.0 × 20.43 × 1.276 

+ 0.5 × 18.0 × 2.25 × 8.72 × 0.82 = 309 kN/m2 or kPa 
 
Step 8: Compare applied to permissible base pressures: 

Combination1:  qult applied = 300 kPa, qult permissible = 635 kPa 
qult applied /qult permissible = 300/635 = 0.47 

Combination2:  qult applied = 238 kPa, qult permissible = 309 kPa 
qult applied /qult permissible = 238/309 = 0.77 
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Clearly combination 2, although it has a smaller value of applied base pressure, 
because of the factor of safety γφ = 1.25 applied to tan φ, it has a smaller value of 
the permissible base pressure.  The footing size is adequate but can be reduced. 
 
 
11.2.3.2 Example of Calculation of Bearing Capacity by Design 2 Approach 
 
The Design 2 approach is similar to Design 1 approach except that only 
Combination 1 partial factors are used both for actions as well as for soil 
parameters.  Finally an overall factor γR is used for bearing pressure. 
 
Step 1: Calculate design loads: 

Gk = 950 (applied) + 147.7 (Footing) = 1097.7 kN 
Qk = 700 kN 

γg = 1.35, γq = 1.5 
Vd = 1.35 × 1097.7 + 1.5 × 700 = 2531.8 kN 

 
Step 2: Calculate design base pressure: 

Area of footing, Abase = 3.75 × 2.25 = 8.44 m2 
Base pressure = 2531.8 /8.44 = 300 kN/m2 or kPa 

 
Step 3: Calculate design material properties: 

Characteristic value φk = 30o. 
γφ= 1.0, tan φd = tan φk/ γφ= tan 30 = 0.577, φd =30.0o 

 
Step 4: Calculate design bearing capacity factors.  Use the equations in Annex D 
            of Eurocode 7.  
i. Overburden factor Nq: 

Nq = e (π × tanφ
d
) × tan2 (45 + φd/2) 

φd = 30o, Nq = 18.40 
ii. Cohesion factor, Nc 

Nc = (Nq − 1) cotφd 
φd = 30o, Nc = 30.14 

Note: If effective cohesion c = 0, there is no need to compute this factor. 
iii. Body weight factor Nγ 

 Nγ = 2 (Nq − 1) tanφd 
φd = 30o, Nγ = 20.09 

 
Step 5: Calculate design shape factors.  Use the equations in Annex D of 
            Eurocode 7.  
Rectangular base:   B = 2.25 m, L = 3.75, B/L = 0.6 
i. sq = 1 + (B/L) sin φd 

φd = 30o, sq = 1.30 
ii. sc = (sq Nq − 1)/(Nq − 1) 

Nq = 18.40, sq = 1.30, sc = 1.317 
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Note: If effective cohesion c = 0, there is no need to 
compute this factor. 

iii. sγ = 1 – 0.3 (B/L) 
iv. B/L = 0.6, sγ = 0.82 
 
Step 6: Calculate the overburden pressure, q. Taking the unit weight of soil as        
18 kN/m3 and the safety factor γγ = 1, 

q = 18 × depth of footing = γγ × 18 × 0.7 = 12.6 kN/m2 or kPa 
 
Step 7: Calculate qult: 

qult = q × Nq × sq + c × Nc × sc + 0.5 × γ × B × Nγ × sγ 
qult = 12.6 × 18.40 × 1.30 + 0.0 × 30.14 × 1.317 

+ 0.5 × 18.0 × 2.25 × 20.09 × 0.82 = 635 kN/m2 or kPa 
 
Step 8: Calculate qallowable: 

qult permissible = qult/γR 
γR = 1.4 for Design 2 from Table A.5 of the code. 

qult permissible = 635/1.4 = 436 kPa 
 
Step 9: Compare applied to permissible base pressures: 

qult applied = 300 kPa, qult permissible = 436 kPa 
qult applied /qult permissible = 300/436 = 0.69 

The footing size is adequate but can be reduced. 
 
 
11.2.3.3 Example of Calculation of Bearing Capacity by Design 3 Approach 
 
The Design 3 approach is similar to Design 1 approach except that Combination 1 
partial factors are used only for actions but Combination 2 partial factors are used 
for soil parameters.  Finally an overall factor γR = 1 is used for bearing pressure. 
 
Step 1: Calculate design loads: 

Gk = 950 (applied) + 147.7 (Footing) = 1097.7 kN 
Qk = 700 kN 

γg = 1.35, γq = 1.5 
Vd = 1.35 × 1097.7 + 1.5 × 700 = 2531.8 kN 

 
Step 2: Calculate design base pressure: 

Area of footing, Abase = 3.75 × 2.25 = 8.44 m2 
Base pressure = 2531.8 /8.44 = 300 kN/m2 or kPa 

 
Step 3: Calculate design material properties. 
As the footing rests on sandy soil, the only relevant material property is the angle 
of shearing resistance, φ. 
Characteristic value φk = 30o.  Note that the safety factor γφ is applied to tan φk not 
to φk. 
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Combination 2: γφ= 1.25, tan φd = tan φk/ γφ= tan 30/1.25 = 0.462, φd =24.8o 
 
Step 4: Calculate design bearing capacity factors.  Use the equations in Annex D 
           of Eurocode 7.  
i. Overburden factor Nq: 

Nq = e (π × tanφ
d
) × tan2 (45 + φd/2) 

Combination 2: φd = 24.8o, Nq = 10.44 
ii. Cohesion factor, Nc 

Nc = (Nq − 1) cotφd 
Combination 2: φd = 24.8o, Nc = 20.43 

              Note: If effective cohesion c = 0, there is no need to compute this factor. 
iii. Body weight factor Nγ 

 Nγ =2 (Nq − 1) tanφd 
Combination 2: φd = 24.8o, Nγ = 8.72 

 
Step 5: Calculate design shape factors.  Use the equations in Annex D of 
           Eurocode 7.  
Rectangular base:  B = 2.25 m, L = 3.75, B/L = 0.6 
i. sq = 1 + (B/L) sin φd 

ii. Combination 2: φd = 24.8o, sq = 1.25 
iii. sc = (sq Nq − 1)/(Nq − 1) 

       Combination 2: Nq = 10.44, sq = 1.25, sc = 1.276 
               Note: If effective cohesion c = 0, there is no need to compute this factor. 

iv. sγ = 1 – 0.3 (B/L) 
Combination 2: B/L = 0.6, sγ = 0.82 

 
Step 6: Calculate the overburden pressure, q.  Taking the unit weight of soil as 18 
kN/m3 and the safety factor γγ = 1, 

q = 18 × depth of footing = γγ × 18 × 0.7 = 12.6 kN/m2 or kPa 
 
Step 7: Calculate the allowable qult: 

qult = q × Nq × sq + c × Nc × sc + 0.5 × γ × B × Nγ × sγ 
Combination 2: qult = 12.6 × 10.44 × 1.25 + 0.0 × 20.43 × 1.276 

+ 0.5 × 18.0 × 2.25 × 8.72 × 0.82 = 309 kN/m2 or kPa 
 
Step 8: Compare applied to permissible base pressures: 

qult applied = 300 kPa, qult permissible = 309 kPa 
qult applied /qult permissible = 300/309 = 0.97 

The footing size is just adequate. 
 
 
11.2.3.4 Comments on the Calculation of Bearing Capacity by Three Design 
             Approaches 
 
The three design approaches give very different permissible base pressures.  The 
ratios of qult applied /qult permissible for Design approaches 1, 2 and 3 are 
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respectively are 0.77, 0.69 and 0.97.  The reason for Design approach 3 giving a 
low ratio is because it uses high partial factor for actions and soil parameters 
leading to high applied pressure and low permissible base pressure.   On the other 
hand, the Design 1 approach for combination 2 uses low partial factor for actions 
and soil parameters leading to low applied pressure and low permissible base 
pressure.  There is no guidance in Eurocode 7 on which is the most suitable design 
approach.  For STR/GEO limit states, the U.K. National Annex allows only  
Design 1 approach. 
 
 
11.3 SPREAD FOUNDATIONS 
 
The geotechnical design of spread foundations like pad, strip and raft foundations 
is covered in section 6 of the Eurocode 7, part 1.  The code gives three methods of 
design.  They are 

 
Table 11.3 Allowable bearing capacity (From BS 8004) 

Category Type of soil Allowable bearing 
pressure 

kN/m2 or kPa 

Remarks 

Non-
cohesive 

soils 

Dense gravel or 
dense gravel and 

sand 

>600 Width of 
foundation not 
less than 1 m. 
Ground water 
level assumed to 
be below base of 
foundation. 

Medium gravel or 
medium gravel 

and sand 

< 200−600 

Loose gravel or 
loose gravel and 

sand 

< 200 

Compact sand > 300 
Medium dense 

sand 
 

Loose sand <100 
Cohesive 
soils 

Very stiff boulder 
clay and hard clay 

300−600 Susceptible to 
long term 
consolidation 
settlement. 

Stiff clay 150−300 
Firm clay 75−150 

Soft clay and silt < 75 
Very soft clay and 

silt 
Not applicable 

 
(a) Analytical method:  A commonly recognized analytical method including 
numerical method where relevant should be used. 
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(b) Semi-empirical method:  A commonly recognized semi-empirical method 
such as bearing resistance estimation using pressure meter test should be used. 

 
(c) Prescriptive method using presumed bearing resistance:  A commonly 
recognized prescriptive method based on presumed bearing resistance should be 
used.  When such a method is applied, the design result should be evaluated on the 
basis of comparable experience.   
For a commonly used spread foundation, settlement will be the governing criterion.  
Traditionally, allowable bearing pressure has been used to control settlement.    In 
general, site load tests and laboratory tests on soil samples should be carried out to 
determine the actual soil properties for foundation design.  Where this is deemed 
unnecessary, values for relevant parameters for various soil types and conditions 
given in BS 8004:1986: Code of Practice for Foundations or similar publications 
can be used.  Table 11.3 gives some typical values. 
 
 
11.4 ISOLATED PAD BASES  
 
 
11.4.1 General Comments  
 
Isolated pad bases are square or rectangular slabs provided under individual 
columns.  They spread the concentrated column load safely to the ground and may 
be axially or eccentrically loaded (Fig. 11.1 and Fig. 11.3).  Mass concrete can be 
used for lighter foundations if the underside of the base lies inside a dispersal angle 
of 45°, as shown in Fig. 11.1(a).  Otherwise a reinforced concrete pad is required 
(Fig. 11.1(b)). 
There is little specific guidance given in Eurocode 2 for the design of footings.  
The following procedure is normally used.  
 

1. When the base is axially loaded the load may be assumed to be 
uniformly distributed.   The actual pressure distribution depends 
on the soil type; refer to soil mechanics textbooks. 

2. When the base is eccentrically loaded, the reactions may be 
assumed to vary linearly across the base. 

 
 
11.4.2 Axially Loaded Pad Bases  
 
Refer to the axially loaded pad footing shown in Fig. 11(b) where the following 
symbols are used:  

Gk = characteristic dead load from the column (kN) 
Qk = characteristic imposed load from the column (kN) 

W= weight of the base (kN) 
L, B= base length and breadth (m) 

Pb = safe bearing pressure (kN/m2 or kPa) 
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Note that the safe bearing pressure value is a serviceability value as it is used to 
control settlement of the foundation. 
The required area is found from the characteristic loads including the weight of the 
base:  

Base area = (Gk + Qk + W)/Pb = L × B m2 
 
The design of the base is made for the ultimate load delivered to the base by the 
column shaft, i.e., the design load is 1.35 Gk + 1.5 Qk.   
 

 
 

Fig. 11.1 (a) Mass concrete foundation; (b) reinforced concrete pad foundation. 
 
(a) Bending  
The critical section for bending is at the face of the column on a pad footing or the 
wall in a strip footing.  The moment is taken on a section passing completely 
across a pad footing and is due to the ultimate loads on one side of the section.  No 
redistribution of moments should be made.  The critical sections are XX and YY in 
Fig. 11.2(a).   
 
(b) Distribution of reinforcement  
Because of the greater concentration of bending moment near the column than 
towards the edges, traditionally the practice has been to concentrate the 
reinforcement in a narrow width near the centre.  The arbitrary rule is that if the 
distance from the centre line of the column to the edge of the pad exceeds          
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0.75 (c + 3d), two-thirds of the required reinforcement for the given direction 
should be concentrated within a zone from the centre line of the column to a 
distance 1.5 d from the face of the column.  Here c is the column width and d is the 
effective depth of the base slab.  Otherwise the reinforcement may be distributed 
uniformly over the entire width. The arrangement of reinforcement is shown in Fig. 
11.2(b). 

 
Fig. 11.2(a) Critical section for bending design. 

 

 
 

Fig. 11.2(b) Layout of flexural reinforcement. 
 
(c) Shear on vertical section across full width of base  
The vertical shear force is the sum of the loads acting outside the section 
considered.  Shear stress is checked at a distance d from the face of the column as 
shown in Fig. 11.2(c).  
The shear stress is  

v = V/ (ℓ d) ≤ vRd, c 
where ℓ is the length L or width B of the base as appropriate.   

y 

x x 

y 

c 

1.5d 1.5d 

2/3 of design reinforcement 
within this width 

0.5L 



Foundations                                                                                                                          441 

It is normal practice to make the base sufficiently deep so that shear reinforcement 
is not required.  The depth of the base is often controlled by the design for shear.   
Rules for members not requiring shear reinforcement are covered in clause 6.2.2 of 
the Eurocode.  From equations (6.2a), (6.2b) and (6.3N) of the Eurocode 2,  
 

vRd, c = CRd, c × k × (100 × ρ1 × fck) 0.3333 ≥ (vmin = 0.035 × k1.5 × √fck) 
 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/d) ≤ 2.0, ρ1 = Asl/ (bw d) ≤ 0.02 
 
It is normal practice to make the base sufficiently deep so that shear reinforcement 
is not required.  The depth of the base is often controlled by the design for shear.  If 
the shear stress calculation indicates the need for shear reinforcement, the solution 
is to increase the depth of the footing until no shear reinforcement is required.      

 

 
 

Fig. 11.2(c) Critical section for checking beam shear at d from the face of the column. 
 
(d) Punching shear around the loaded area  
Rules for checking for punching shear resistance are given in section 6.4 of the 
code.  The punching shear force is the sum of the loads outside the periphery of the 
critical section shown in Fig. 11.2(d).  The reader should refer Chapter 5, sections 
5.1.10 to 5.1.13 dealing with the design of flat slabs for shear, where most of the 
concepts and equations are covered in detail.   
The two checks on the shear stress are: 

 First at the perimeter of the column.   
 [vEd = Column load/ (u0 d)] < [vRd, max = 0.3 × (1 − fck/250) × fcd] 

u0 = perimeter of the column = 2 (c1 + c2), c1 and c2 are side dimensions of the 
column. 
If this requirement is not satisfied, then the thickness of the slab has to be increased 
till the requirement is satisfied. 

 Next at perimeters from r = d to 2d from the face of the column using the 
code equation (6.50).  

vEd = VEd. red/ (u × d) ≤ (vRd = vRd, c × 2d/a) 
where 
VEd = Total load outside the perimeter 

VEd = Column load – p × [2(c1 + c2) × r + π × r2 + c1 × c2] 
u = 2 × (π × r + c1 + c2) 

vRd, c = CRd, c × k × (100 × ρ1 × fck) 0.3333 ≥ (vmin = 0.035 × k0.667 × fck) 
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CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/d) ≤ 2.0, ρ1 = Asl/ (bw d) ≤ 0.02 
p = base pressure at ULS = column load / (area of base). 
a = distance of the perimeter from the column face d ≤ a ≤ 2 d. 
 

 
 

Fig. 11.2(d) Control perimeter for checking punching shear at 2d from column sides. 
 

  

 
 

Fig. 11.2(e) Base reinforcement. 
 
(e) Anchorage of column starter bars  
Fig. 11.2(e) shows the arrangement.  Apart from the reinforcement in the base, 
column bars extend at least an anchorage length to which column reinforcement is 
attached.  It is common practice to cast along with the base a short length of the 
column.  This is called as a kicker.  This facilitates the positioning of the formwork 
for the column.  However some people prefer not use a kicker (known as 
‘kickerless’ construction) to speed up the construction process. 
The required compression lap length l0 = lb, reqd ≥ max (15 × bar dia, 200 mm). 
The reader should refer to section 5.2, Chapter 5 for further details. 
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(f) Minimum grade of concrete and nominal cover 
The minimum grade of concrete to be used in foundations and the nominal cover to 
the reinforcement depend on many factors such as the presence of sulphates or 
chlorides in the soil, the type of cement used and so on. The reader should refer to 
sections 2.7 and 2.9, Chapter 2 for more details. 
 
 
11.4.2.1 Example of Design of an Axially Loaded Base  
 
(a) Specification  
A column 400 mm × 400 mm carries a dead load of 800 kN and an imposed load 
of 300 kN.  The safe bearing pressure is 200 kN/m2.  Design a square base to resist 
the loads.  fck = 30 MPa and fyk = 500 MPa.  The exposure class is XC1/XC2.  The 
minimum cover cmin, dur = 25 mm. As the concrete is cast against a blinding layer, 
the cover is taken as 40 mm.   
 
(b) Size of base  
Assume the weight is 100 kN.   

Service load = 800 + 300 + 100 = 1200 kN 
Area of base = 1200/200 = 6.0 m2.  Make the base 2.5 m × 2.5 m. 

 
(c) Moment steel  

Ultimate load = (1.35 × 800) + (1.5 × 300) = 1530 kN 
Ultimate base pressure = 1530/6.25 = 245 kN/m2 

Note: The self weight of the footing is not included because the self weight and the 
corresponding base pressure will cancel themselves out when calculating the 
design forces for the base. 
The critical section YY at the column face is shown in Fig. 11.2(a). 
Length of the beyond the face of the column = (2.5 – 0.4)/2 = 1.05 m. 

Myy = 245 × 1.05 × 2.5 × 1.05/2 = 337.6 kNm 
Try an overall depth of 650 mm with 16 mm bars both ways.   

The weight of the footing = 2.5 × 2.5 × 0.65 × 25 = 102 kN 
102 kN ≈ 100 kN assumed in design. 

The effective depth of the top layer of steel is  
d = 650 – 40 – 16 – 16/2 = 586 mm 

fck = 30, η = 1, λ = 0.8 
k = M/ (bd2 fck) = 337.6 × 106/ (2500 × 5862 × 30) = 0.013 < 0.196 

] 
 

z/d= 0.99 
fyk = 500, fyd = 500/1.15 = 435 MPa 

As = 337.6 × 106/ (435 × 0.99 × 586) = 1338 mm2 
 
Check minimum steel: 
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From equation (9.1N) of the code, 
                           As, min = 0.26× (fctm/fyk) × bd ≥ 0.0013 bd                           (9.1N) 

fctm= 0.3 × fck 
0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 

b = 2500 mm, d = 586 mm 
As, min = 0.26× (2.9/500) × 2500 × 586 ≥ 0.0013 × 2500 × 586 

As, min = 2209 mm2 
Area of H16 bar = 201 mm2.  Number of 16 mm bars = 2209/201 ≈ say, 11. 
Provide 11H16 bars, As = 2212 mm2. 
The distribution of the reinforcement is determined to satisfy the rule. 

3/4(c+ 3d) = 0.75 (400 + 3 × 586) = 1619 mm 
0.5 L = 2500/2 = 1250 mm < 1619 mm 

The bars can be spaced equally at 240 mm centres.   
     The full anchorage length required past the face of the column.  From Table 5.5, 
Chapter 5, for fck = 30 MPa, the anchorage length required is 36 bar diameters.  
Anchorage length = 36 × 16 = 576 mm.  Adequate anchorage is available.   
 
(d) Vertical shear  
The critical section Y1Y 1 at d = 586 mm from the face of the column is shown in 
Fig. 11.2(c).   

VEd = 245 × 2.5 × (1050 – 586) × 10−3 = 284.2 kN 
vEd = 284.2 × 103/ (2500 × 586) = 0.19 MPa 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/586) = 1.58 ≤ 2.0, 
The bars extend 565 mm, i.e., more than d, beyond the critical section and so all 
the steel can be taken into account when calculating Asl. 

Asl = 11H16 = 2212 mm2, ρ1 = Asl/ (bw d) = 2212/ (2500 × 586) = 0.0015 ≤ 0.02 
CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.58 × (100 ×0.0015 × 30)0.33 = 0.31 

vmin = 0.035 × k1.5 × √fck= 0.035 ×1.58 1.5 × √30 = 0.38 > 0.31 
vRd, c = 0.38 MPa 

(vEd = 0.19) < (vRd, c = 0.38) 
The shear stress is satisfactory and no shear reinforcement is required.   
 
(e) Punching shear  
Check shear stress at column perimeter: 
Column load = 1530 kN, u0 = 2 × (400 + 400) = 1600 mm, d = 586 mm 
Upward load = Base pressure × column area = 245 × 0.4 × 0.4 = 39.2 kN 

vEd = (1530 – 39.2) × 103/ (1600 × 586) = 1.59 MPa 
vRd, max = 0.3 × (1 − fck/250) × fcd = 0.3 × (1 − 30/250) × 30/1.5 = 5.28 MPa 

(vEd = 1.59) < (vRd, max = 5.28) 
Slab depth is adequate. 
Check punching shear on a perimeter at d to 2 d from the column face.   
The critical perimeter is shown in Fig. 11.2(d).   
Let a = distance of the perimeter from the column face.  d ≤ a ≤ 2 d. 
u = 2 × [(c1 = 400) + (c2 = 400)] + 2 × π × a. 
Let A = Area inside the perimeter. 
A= π a2 + 2 × [(c1 = 400) + (c2 = 400)] × a + [(c1 = 400) × (c2 = 400)] mm2. 
p = base pressure at ULS = 245 kN/m2 or kPa. 
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Column load at ULS = 1530 kN. 
VEd, red = Column load – A × p = 1530 – 245 × A × 10−6 kN. 
vEd = VEd, red/ (u × d). 
Table 11.4 shows the calculation of punching shear stress vEd.  The maximum 
value at a = d is 0.32 MPa which is less than (see code equation (6.50)  
vRd = (vrd, c× 2d/a) = 0.76 MPa.  The slab does not require shear reinforcement. 
 

Table 11.4 Calculation of punching shear stress vEd 
a A, m2 u, mm VEd,red, kN vEd, MPa 

586 2.18 5281.96 996.78 0.32 
644.6 2.50 5650.15 918.30 0.28 
703.2 2.84 6018.35 834.54 0.24 
761.8 3.20 6386.54 745.49 0.20 
820.4 3.59 6754.74 651.16 0.16 
879 3.99 7122.93 551.54 0.13 

937.6 4.42 7491.13 446.63 0.10 
996.2 4.87 7859.32 336.44 0.07 

1054.8 5.34 8227.52 220.96 0.05 
1113.4 5.84 8595.71 100.19 0.02 
1172 6.35 8963.91 −25.86 0.00 

 
(f) Cracking  
The required and provided areas of reinforcement are respectively 1338 mm2 and 
2209 mm2.  The loads at SLS and ULS are 1100 kN and 1300 kN respectively.  
The stress in steel at serviceability limit state is 
 

 
 
From Table 7.2N of the code, the maximum bar diameter for 0.3 mm wide crack is 
25 mm.   From Table 7.3N of the code the maximum spacing of bars is 250 mm.  
Both the criteria are satisfied.    No further checks are required.   
 
(g) Reinforcement  
The arrangement of reinforcement is shown in Fig. 11.3.   
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Fig. 11.3 Reinforcement arrangement. 
 
 
11.5 ECCENTRICALLY LOADED PAD BASES  
 
 
11.5.1 Vertical Soil Pressure at Base 
 
Just as in the case of concentrically loaded bases, where the base pressure was 
assumed to be constant provided the footing was ‘rigid’ in comparison with the 
soil, in a similar manner the base pressure for eccentrically loaded pad bases may 
be assumed to vary linearly across the base for design purposes.   
The characteristic loads on the base are the axial load N, moment M and horizontal 
load H arising from either shear on the column or horizontal forces developed at 
the base of portal frames as shown in Fig. 11.4.  The base dimensions are length L, 
width B and depth h. 

Base area A = B × L 
Section modulus Z = B × L2/6 

The total vertical load is N + W and the moment at the underside of the base is  
(M + Hh).  The maximum and minimum base pressures applied are  
 

 

 
 
pmax should not exceed the safe bearing pressure.   

 

11H16 at 240 mm both ways 

2.5 m Square 
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Fig. 11.4 Eccentrically loaded base. 
 

 
Fig. 11.5 Eccentrically loaded pads: (a) bearing on part of base; (b) base set eccentric to column. 

 
The eccentricity e of the resultant reaction is 
 

 

L/2 
e 

(a) 

(b) 

pmax pmin 

M 

N 

H 

h W 

L 



448                                                                                     Reinforced concrete design to EC 2 

If e ≤ L/6, there is pressure over the whole of the base, as shown in Fig. 11.4.   
If e > ℓ/6 only a part of the base bears on the ground, as shown in Fig. 11.5(a).  
This situation should be avoided as there is the danger of overloading the soil and 
also might lead to tipping over of the foundation.   The column can be set eccentric 
to the column by, say, el to offset the moments due to permanent loads and give 
uniform pressure, as shown in Fig. 11.5(b).  

Eccentricity el = (M + Hh)/N 
 
 
11.5.2 Resistance to Horizontal Loads  
 
Horizontal loads applied to bases are resisted by passive earth pressure against the 
end of the base, friction between the base and ground for cohesion-less soils such 
as sand, or adhesion for cohesive soils such as clay.  In general, the load will be 
resisted by a combination of all actions.  The ground floor slab can also be used to 
resist horizontal load.  The forces are shown in Fig. 11.6.   
 

 
 

Fig. 11.6 Forces resisting horizontal force on the base. 
 
Formulae from soil mechanics for calculating the resistance forces are given for the 
two cases of cohesionless and cohesive soils.   
 
(a) Cohesionless soils  
The passive earth pressure p at depth h is given  

p = γ h kp 
kp = (1 + sin φ)/ (1 – sin φ) 

where φ is the angle of internal friction and γ is the soil density.   
 
If p1 and p2 are passive earth pressures at the top and bottom of the base, then the 
passive resistance  

Rpassive = 0.5 B h (p1 + p2) 
If μ is the coefficient of friction between the base and the ground, generally taken 
as tan φ, the frictional resistance is 

Passive Earth 
pressure W 
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Rfriction = μ (N + W) 
 
(b) Cohesive soils  
For cohesive soils φ = 0.  Denote the cohesion at zero normal pressure c and the 
adhesion between the base and the load β.  The resistance of the base to horizontal 
load is  

Rbase = 2cBh + 0.5B h (p1 + p2) + β L B 
where the passive pressure p1 at the top is equal to γh1, the passive pressure p2 at 
the bottom is equal to γh2 and L is the length of the base.  The resistance forces to 
horizontal loads derived above should exceed the factored horizontal loads applied 
to the foundation.   

 
Fig. 11.7 (a) Portal base reactions; (b) force H taken by tie; (c) wind load and base reactions. 

 

 
 

Fig. 11.8 (a) Fixed base; (b) pinned base; (c) pocket base. 
 
In the case of portal frames it is often helpful to introduce a tie beam between bases 
to take up that part of the horizontal force due to portal action from dead and 
imposed loads as in the pinned base portal shown in Fig. 11.7(b).  Wind load has to 
be resisted by passive earth pressure, friction or adhesion.   
     Pinned bases should be used where ground conditions are poor and it would be 
difficult to ensure fixity without piling.  It is important to ensure that design 
assumptions are realized in practice.   
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11.5.3 Structural Design  
 
The structural design of a base subjected to ultimate loads is carried out for the 
ultimate loads and moments delivered to the base by the column shaft.  Pinned and 
fixed bases are shown in Fig. 11.8. 
 
 
11.5.3.1 Example of Design of an Eccentrically Loaded Base  
 
(a) Specification  
The characteristic loads for an internal column footing in a building are given in 
Table 11.5.  The proposed dimensions for the 450 mm square column and base 
(3600 × 2800 mm) are shown in Fig. 11.9.  The base supports a ground floor slab 
200 mm thick.  The soil is firm well drained clay with the following properties:  

Unit weight = 18 kN/m3,  
Safe bearing pressure = 150 kN/m2,  

Cohesion = 60 kN/m2 
The materials to be used in the foundation are fck = 30 MPa and fyk = 500 MPa. 
 

Fig. 11.9 Side and end elevations. 
 

Table 11.5 Applied column loads and moments 
 Vertical load, kN Horizontal load, kN Moment, kNm 

Dead 770 35 78 
Imposed 330 15 34 

 
(b) Maximum base pressure on soil 
The maximum base pressure is checked for the service loads.   

Weight of base + slab = (550 + 200) ×10−3 × 3.6 × 3.0 × 25 = 202.5 kN 
Total axial load = 770 + 330 + 202.5 = 1302.5 kN 

Total moment = 78 + 34 + 0.550× (35 + 15) = 139.5 kN m 
Base area A = 3.0 × 3.6 = 10.8 m2 

Section modulus Z = 3.0 × 3.62/6 = 6.48 m3 
Maximum base pressure = 1302.5/10.8 + 139.5/6.48 = 120.6 + 21.5 = 142.1 kN/m2 

Maximum base pressure < (safe bearing pressure = 150 kN/m2) 
 
 

3600 3000 
550 

200 
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(c) Resistance to horizontal load  
Check the passive earth resistance assuming no ground slab.   

No adhesion, β = 0, (h1 = 0, p1 = 0), (h2 = 0.550, p2 = 18 × 0.550 = 9.9) 
The passive resistance is  
                   = 2c B h + 0.5 B h (p1 + p2) + β L B 

= {2 × 60 × 3.0 × 0.550} + {0.5 × 3.0 × 0.5 × (0 + 9.9)} + 0 
= 198 + 7.4 = 205.4 kN 

Factored horizontal load = (1.35 × 35) + (1.5 × 15) = 69.75 kN 
Passive resistance > 69.75 kN 

The resistance to horizontal load is satisfactory.   
     The reduction in moment on the underside of the base due to the horizontal 
reaction from the passive earth pressure has been neglected. 
 

 
 

Fig. 11.10 (a) Base pressures and plan of footing. 
 
(d) Design of the moment reinforcement  
The design is carried out for the ultimate loads from the column. 
 
(i) Long-span moment steel  

Axial load N = (1.35 × 770) + (1.5 × 330) = 1535 kN 
Horizontal load H = (1.35 × 35) + (1.5 × 15) = 69.75 kN 

Moment M = (1.35 × 78) + (1.5 × 34) + (0.5 × 69.75) = 191.2 kNm 
Maximum pressure = 1535/10.8 + 191.2/6.48 = 171.6 kN/m2 
Minimum pressure = 1535/10.8 – 191.2/6.48 = 112.6 kN/m2 

The pressure distribution is shown in Fig. 11.10. 
At the face of the column pressure is  

Pressure = 112.6 + (171.6 – 112.6) × (3.6 – 1.575)/3.6 = 145.8 kN/m2 
 

3000 

3600 

191.2 kNm 

69.75 kN 

1535 kN 

1575 

171.6 
112.6 145.8

4.0 
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Fig. 11.11 Reinforcement in the base. (Only a symmetrical half of the short direction steel is shown. 
 
Moment at the face of the column is 

My = 145.8 × 3.0 × 1.5752/2 + 0.5(171.6 – 145.8) × 3.0 × 1.575 × (2/3) × 1.575 
= 606.5 kNm 

If the cover is 40 mm and 16 mm diameter bars are used, the effective depth for the 
bottom layer is  

d = 550 – 40 – 16/2 = 502 mm 
k = M/ (bd2 fck) = 606.5 × 106/ (3000 × 5022 × 30) = 0.027 < 0.196 

] 
z/d= 0.98 

fyk = 500, fyd = 500/1.15 = 435 MPa 
As = 606.5 × 106/ (435 × 0.98 × 502) = 2834 mm2 

Check minimum steel: 
From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × bd ≥ 0.0013 bd 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 3000 mm, d = 502 mm 

As, min = 0.26× (2.9/500) × 3000 × 502 ≥ 0.0013 × 3000 × 502 
As, min = 2271 mm2 < 2834 

Provide 15H16.  As = 2834 mm2. 
0.75 (c + 3d) = 0.75 (450 + 3 × 502) = 1467 mm, 

15H16 at 200 

4H12 at 300 

8H12 at 100 
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L/2 = 3000/2 = 1500 mm 
0.75 (c + 3d) < ℓx 

The difference between 1467 mm and 1500 mm is small enough to be ignored and 
steel can be distributed uniformly.  Provide 15 bars at 200 mm centres to give a 
total steel area of 2834 mm2.   
 
(ii) Short-span moment steel 

Average pressure = 0.5 × (171.6 + 112.6) = 142.1 kN/m2 
Moment Mx = 142.1 × 3.6 × 1.275 2/2 = 415.8 kNm 

Using H12 bars,  
Effective depth d = 550 – 40 – 16 – 12/2 = 488 mm 

k = M/ (bd2 fck) = 415.8 × 106/ (3600 × 4882 × 30) = 0.016 < 0.196 

] 
z/d= 0.99 

fyk = 500, fyd = 500/1.15 = 435 MPa 
As = 415.8 × 106/ (435 × 0.99 × 488) = 1979 mm2 

Check minimum steel: 
From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × bd ≥ 0.0013 bd 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 3600 mm, d = 488 mm 

As, min = 0.26× (2.9/500) × 3600 × 488 ≥ 0.0013 × 3600 × 488 
As, min = 2649 mm2 > 1979 mm2 

Provide 24H12.  As provided = 2488 mm2 
0.75(c + 3d) = 1436 < (ℓx = 1800 mm) 

Place two-thirds of the bars (16 bars) in the central zone 1450 mm wide.  Provide 
16H12 at 100 mm over a width of 1500 mm.  In the outer strips 870 mm wide 
provide 4H12 at 300 mm centres.  
 
The arrangement of bars is shown in Fig. 11.11.  Note that for clarity, only a 
symmetrical half of steel in the short direction is shown.  
 
(e) Vertical shear  
 
Long span: The vertical shear stress is checked at d = 502 mm from the face of the 
column. 

Pressure = 112.6 + (171.6 – 112.6) × (3.6 – 1.575 + 0.502) /3.6 = 154.0 kN/m2 
Shear at a distance d from the face of the column is 

V Ed = 0.5(154.0 + 171.6) × 3.0 × (1.575 – 0.502) = 524.1 kN 
vEd = 524.1 × 103/ (3000 × 502) = 0.35 MPa 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/502) = 1.63 ≤ 2.0 
The bars extend 502 mm, i.e., more than d, beyond the critical section and so all 
the steel can be taken into account when calculating Asl. 

Asl = 15H16 = 3016 mm2, ρ1 = Asl/ (bw d) = 3016/ (3000 × 502) = 0.002 ≤ 0.02 
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CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.63 × (100 ×0.002 × 30)0.33 = 0.36 
vmin = 0.035 × k1.5 × √fck= 0.035 ×1.63 1.5 × √30 = 0.40 > 0.36 

vRd, c = 0.40 MPa 
(vEd = 0.35) < (vRd, c = 0.40) 

No shear reinforcement is required.   
 
Short span: 

Average pressure = 0.5(171.6 + 112.6) = 142.1 kN/m2 
The average pressure acts over an area of dimensions  

{(3000 – 450)/2 – 488 = 787 mm} × 3600 mm 
Shear at a distance d from the face of the column is 

VEd = 142.1 × 3.6 × 0.787 = 416.0 kN 
vEd = 416.0 × 103/ (3600 × 488) = 0.24 MPa 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/488) = 1.64 ≤ 2.0 
The bars extend 488 mm, i.e. more than d, beyond the critical section and so all the 
steel can be taken into account when calculating Asl. 

Asl = 24H12 = 2714 mm2, ρ1 = Asl/ (bw d) = 2714/ (3600 × 488) = 0.0016 ≤ 0.02 
CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.64 × (100 ×0.0016 × 30)0.33 = 0.33 

vmin = 0.035 × k1.5 × √fck= 0.035 ×1.64 1.5 × √30 = 0.40 > 0.33 
vRd, c = 0.40 MPa 

(vEd = 0.24) < (vRd, c = 0.40) 
No shear reinforcement is required.   

 
(f) Punching shear and maximum shear  
Check punching shear around column perimeter: 

Column perimeter, u0 = 2(c1 + c2) = 1800 mm 
d = 495 mm 

Column axial force = 1535 kN 
vRd, max = 0.3× (1 − fck/250) × fcd = 0.3 × (1 ‒ 30/250) × (30/1.5) = 5.28 MPa 

Shear stress around column perimeter = 1535 × 103/ (1800 × 495) 
= 1.72 MPa < (vRd, max = 5.28MPa) 

Thickness of the slab is acceptable. 
Check punching shear on perimeters at Nd from the face of the column, where 1≤ 
N ≤ 2.     
Fig. 11.12 shows the punching perimeter considered.  c1 and c2 are respectively the 
dimensions of the column parallel and perpendicular to the eccentricity of the 
load. 
Using the data from (e) above,  

Average d = 0.5 (502 + 488) = 495 mm 
Average pressure = (171.6 + 112.6)/2 = 141.8 kN/m2 

Area inside the perimeter A = c1 × c2 + 2 × (c1 + c2) × Nd + π × (Nd) 2 
where c1 = c2 = 450 mm. 

Upward thrust from base pressure = 141.8 × A kN 
Pressure at column face is p2 = 29.8 × (c1/L) = 3.688 kN/m2 

where c1 = 450 mm, L = 3600 mm. 
Pressure at punching shear perimeter, p1 = 29.8 × (c1 + 2 Nd)/L kN/m2 
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Perimeter length, u = 2(c1 + c2 + π × Nd) 

 
 

Fig. 11.12 Pressure distribution at the base at ULS. 
 
Moment caused by the linear pressure distribution in the three areas as shown in 
Fig. 11.13(a) are: 

Area A:  
 

Area B:  
Area C:  The necessary equations for calculating Mc can be derived as follows. 
Total force F acting on the area shown in Fig. 11.13(b) due to linear pressure 
distribution variation in the x-direction is given by 

 

 

 

 
 
The moment My about the vertical axis is given by 

Nd Nd 

p1 p2 
= 
3.
7
2
5 
=  

c1 

171.6 112.6 

141.8 

29.8 
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Fig. 11.13(a) Punching shear perimeter. 

 

 
 

Fig. 11.13(b) Pressure distribution on a quarter circular area. 
 
VEd, red = Column axial force ‒ upward thrust from base pressure 
MEd, red = Moment on the column – (Ma+ Mb + Mc) 

vEd = β × (VEd/ (u1 ×d) 
u1 = 2(c1 + c2 + π × Nd) 

 is given by code equation (6.51). 

                                        }                            (6.51) 

 
From Table 6.1 of the code, for c1/c2 = 1, k = 0.6. 

 p2 p1  

a 

x 

c1 

c2 

Nd 

A A 

B 

B C 

C 

C 

C 
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Rewriting code equation (6.41) for a perimeter at a distance of a instead of 2 d 
from the column face,  

W = c1 c2 + 2 c2 a + 0.5 c1
2 + 4a2 + π c1 a 

Calculations can be done using a spreadsheet.  The results are shown in  
Table 11.6.   
 

Table 11.6 Punching shear stress calculations 
 

Nd 
p1 A N-

Soil 
VEd,red Ma Mb Mc M-

soil 
MEd, 

red 
W1 u1 vEd 

495 11.8 1.9 265 1270 1.8 0.1 2.6 4.6 187 2.4 4.9 0.62 

545 12.6 2.1 300 1235 2.2 0.1 3.5 5.9 185 2.7 5.2 0.56 
594 13.4 2.4 338 1197 2.7 0.1 4.6 7.4 184 3.1 5.5 0.51 

644 14.2 2.7 378 1157 3.2 0.2 5.9 9.3 182 3.4 5.8 0.46 
693 15.0 3.0 420 1115 3.8 0.2 7.5 11.5 180 3.8 6.2 0.42 

743 15.9 3.3 465 1070 4.5 0.2 9.4 14.0 177 4.2 6.5 0.39 
792 16.7 3.6 511 1024 5.2 0.2 11.6 17.0 174 4.6 6.8 0.35 
842 17.5 3.9 560 975 6.0 0.2 14.2 20.3 171 5.1 7.1 0.32 

891 18.3 4.3 611 924 6.8 0.2 17.1 24.2 167 5.5 7.4 0.29 
941 19.1 4.7 664 871 7.8 0.2 20.6 28.6 163 6.0 7.7 0.26 

990 19.9 5.1 720 816 8.8 0.2 24.5 33.5 158 6.5 8.0 0.23 

 
Calculations have been done using, p2 = 3.688 kN/m2 and d = 495 mm. 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/495) = 1.64 ≤ 2.0, 
Average 100As/ (bd) = √ (0.20 × 0.16) = 0.18 

CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.64 × (0.18 × 30)0.33 = 0.35 
vmin = 0.035 × k1.5 × √fck= 0.035 ×1.64 1.5 × √30 = 0.40 > 0.35 

vRd, c = 0.40 MPa 
From code equation (6.50),  

vRd = vRd, c × (2d/a) = 0.40 × (2d/a) 
At ‘a’ = d, vRd = 0.80 MPa which is greater than 0.62 MPa 
At a = 2d, vRd = 0.40 MPa which is greater than 0.23 MPa 

 
Note that in the above calculations, an allowance has been made for the reduction 
of the net moment by the moment from the soil reaction.  This is reasonable 
because the column force has been reduced by the upward pressure from the soil 
reaction. The differences are unlikely to be significant.  In this example for 
perimeter at d from the column, MEd = 191.2 kNm, MEd, red = 186.6 kNm.  The code 
equation (6.51) uses only MEd rather than MEd, red. 

 
 
(g) Sketch of reinforcement  
The reinforcement is shown in Fig. 11.11. 
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11.5.3.2 Example of Design of a Footing for a Pinned Base Steel Portal  
 
(a) Specification  
The column base reactions for a pinned base rigid steel portal for various load 
cases are shown in Fig. 11.14.  Determine the size of foundation for the two cases 
of independent bases and tied bases.  The soil is firm clay with the following 
properties:  

Unit weight = 18 kN/m3,  
Safe bearing pressure = 150 kN/m2,  
Cohesion and adhesion = 50 kN/m2 

 
(b) Independent base  
The base is first designed for dead + imposed load.  The proposed arrangement of 
the base is shown in Fig. 11.14(a).  The base is 2 m long by 1.2 m wide by 0.5 m 
deep.  The finished thickness of the floor slab is 180 mm.  The unfactored loads on 
the soil are: 

Weight of base = (0.5 + 0.18) × 2 × 1.2 × 25 = 40.8 kN 
Vertical load = 103 + 84 + 40.8 = 227.8 kN 

Horizontal load = 32.4 + 40.3 = 72.7 kN 
Moment = 72.7 × 0.5 = 36.4 kN m 

Area = 2 × 1.2 = 2.4m2 
Section modulus = 1.2 × 22/6 = 0.8 m3 

The maximum vertical pressure is  
227.8/2.4 + 36.4/0.8 = 140.4 kN/m2 

 
The resistance to horizontal load is 
           = 2 c B h + 0.5 B h (p1 + p2) + β L B 

= (2 × 50 × 1.2 × 0.5) + 0.5 × 1.2 × 0.5 × (0 + 18 × 0.5) + 50 × 2 × 1.2 
= 60 + 2.7+ 120 = 182.7 kN 

The maximum factored horizontal load is  
 (1.35 × 32.4) + (1.5 × 40.3) = 104.2 kN < 182.7 kN 

The base is satisfactory with respect to resistance to sliding. 
 
Check the dead + imposed + wind load internal suction on the right hand side base. 

Vertical load = 103+ 84 + 40.8 – 29.4 = 198.4 kN 
Horizontal load = 32.4 + 40.3 + 2.4 = 75.1 kN 

Moment = 75.1 × 0.5 = 37.6 kNm 
Maximum pressure = 198.4/2.4 + 37.6/0.8 = 129.7 kN/m2 

The reinforcement for the base can be designed and the shear stress checked as in 
the previous example. 
 
(c) Tied base  
The proposed base is shown in Fig. 11.15(b).  The trial size for the base is           
1.2 m × 1.2 m × 0.5 m deep and tie rods are provided in the ground slab.  The 
horizontal tie resists the reaction from the dead and imposed loads.  For this case, 

Weight of the base = (0.5 + 0.18) × 1.2 × 1.2 × 25 = 24.5 kN 
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Vertical load = 103 + 84 + 24.5 = 211.5 kN 
Maximum pressure = 211.5/1.22 = 146.9 kN/m2 

The main action of the wind load is to cause uplift and the slab has to resist a small 
compression from the net horizontal load when the dead load and wind load 
internal pressure are applied at left hand base.   
 
(d) Design of tie 
To find the steel area for the tie using fyk = 500 MPa reinforcement,  

Ultimate load = (1.35 × 32.4) + (1.5 × 40.3) = 104.2 kN 
fyd = fyk/1.15 = 435 MPa 

As = 104.2 × 103/ 435 = 239.5 mm2 
Provide two 16 mm diameter bars to give an area of 402 mm2. 
If the steel column base bearing plate is 400 mm × 400 mm, the underside of the 
base lies within the 45° load dispersal lines.  Theoretically no reinforcement is 
required but 8H12 each way would provide 0.15% reinforcement which should be 
more than minimum requirement.   
 

 
 

Fig. 11.14 Pinned portal frame reactions (characteristic reactions): (a) dead load; (b) imposed load; 
(c) wind, internal pressure; (d) wind, internal suction. 
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Fig. 11.15 Unfactored loads and base pressures: (a) independent base; (b) tied base. 
 
 
 
 
 
 
 

146.2 kN/m2 
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11.6 WALL, STRIP AND COMBINED FOUNDATIONS  
 
 
11.6.1 Wall Footings  
 
Typical wall footings are shown in Fig. 11.16(a) and Fig. 11.16(b).  In               
Fig. 11.16(a) the wall is cast integral with the footing.  The critical section for 
moment is at Y1Y1, the face of the wall, and the critical section for shear is at 
Y2Y2, d from the face of the wall.  A 1 m length of wall is considered and the 
design is made on similar lines to that for a pad footing.   
 

 
 

Fig. 11.16 (a) Wall and footing integral; (b) wall and footing separate. 
 
     If the wall is separate from the footing, e.g., a brick wall, the base is designed 
for the maximum moment at the centre and maximum shear at the edge, as shown 
in Fig. 11.16(b).  The wall distributes the load W/t per unit length to the base and 
the base distributes the load W/b per unit length to the ground, where W is the load 
per unit length of wall, t is the wall thickness and b is the base width.  The 
maximum shear at the edge of the wall is  

W (b – t)/ (2b) 
The maximum moment at the centre of the wall is 
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11.6.2 Shear Wall Footings 
 
If the wall and footing resist an in-plane horizontal load, e.g., when the wall is used 
as a shear wall to stabilize a building, the maximum pressure at one end of the wall 
is found assuming a linear distribution of base pressure (Fig. 11.17).  The footing is 
designed for the average base pressure on, say, 0.5 m length at the end subjected to 
maximum base pressure.  Define the following variables:  

 
W = total load on the base 

H = horizontal load at the top of the wall 
h = height of the wall 
b = width of the base 

ℓ = length of the wall and base 
Base area A = bℓ 

Section modulus Z = bℓ2/6 
Maximum pressure =W/A + H h/Z 

     If the footing is on firm ground and is sufficiently deep so that the underside of 
the base lies within 45° dispersal lines from the face of the wall, reinforcement 
need not be provided.  However, it would be very advisable to provide at least 
minimum reinforcement at the top and bottom of the footing to control cracking in 
case some settlement should occur.   

 

 
 

Fig. 11.17 Shear wall footing. 
 
 
11.6.3 Strip Footings  
 
A continuous strip footing is used under closely spaced rows of columns as shown 
in Fig. 11.18 where individual footings would be close together or overlap.   
  If the footing is concentrically loaded, the pressure is uniform.  If the column 
loads are not equal or not uniformly spaced and the base is assumed to be rigid, 
moments of the loads can be taken about the centre of the base and the pressure 
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distribution can be determined assuming that the pressure varies uniformly.  These 
cases are shown in Fig. 11.18.   
     In the longitudinal direction, the footing may be analysed for moments and 
shears by the following methods.   
 

1. Assume a rigid foundation.  Then the shear at any section is the algebraic 
sum of the column forces acting down and the base pressure acting up on 
one side of the section, and the moment at the section is the corresponding 
sum of the moments of the forces on one side of the section. 

2. A more accurate analysis may be made if the flexibility of the footing and 
the assumed elastic response of the soil are taken into account.  The 
footing is analysed as a so-called beam on an elastic foundation.   

 
In the transverse direction the base may be designed along lines similar to that for a 
pad footing.   

 
 

Fig. 11.18 Continuous strip footing. 
 
 
11.6.4 Combined Bases  
 
Where two columns are close together and separate footings would overlap, a 
combined base can be used as shown in Fig. 11.19(a).  Again, if one column is 
close to an existing building or sewer it may not be possible to design a single pad 
footing, but if it is combined with that of an adjacent footing a satisfactory base can 
engineered.  This is shown in Fig. 11.19(b).   
     If possible, the base is arranged so that its centre line coincides with the centre 
of gravity of the loads because this will give a uniform pressure on the soil.  In a 
general case with an eccentric arrangement of loads, moments of forces are taken 
about the centre of the base and the maximum soil pressure is determined from the 
total vertical load and moment at the underside of the base.  The pressure is 
assumed to vary uniformly along the length of the base.   
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In the longitudinal direction the actions for design may be found from statics.  In 
the transverse direction, the critical moment and shear are determined in the same 
way as for a pad footing.  Punching shears at the column face and at d to 2 d from 
the column face must also be checked.   
 

 
 

Fig. 11.19 (a) Combined base; (b) column close to existing building. 
 
 
11.6.4.1 Example of Design of a Combined Base  
 
(a) Specification  
Design a rectangular base to support two columns carrying the following loads: 

Column 1: dead load = 310 kN, imposed load = 160 kN 
Column 2: dead load = 430 kN, imposed load = 220 kN 

     The columns are each 350 mm square and are spaced at 2.5 m centres.  The 
width of the base is not to exceed 2.0 m.  The safe bearing pressure on the ground 
is 160 kN/m2.  Take fck = 30 MPa concrete and fyk = 500 MPa.   
 
(b) Base arrangement and soil pressure  
Assume the weight of the base is 130 kN.  Various load conditions are examined.  
It is assumed here that the imposed loads on the columns are independent loads and 
therefore carry different load factors.  If this is not the case, then a single load 
factor should be applied for both the loads.  
 
(i) Case 1: Dead + imposed load on both columns.   Use SLS values  

Axial load = (310 + 160) + (430 + 220) + 130 = 1250 kN 
Area of base = 1250/160 = 7.81 m2 
Length of base = 7.81/2.0 = 3.91 m 

Choose 4.5 m × 2.0 m × 0.6 m deep base. 
The weight of the base is (4.5 × 2.0 × 0.6 × 25) = 135.0 kN ≈ 130 kN. 
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Area = 4.5 × 2.0 = 9.0 m2 
Section modulus = 2.0 × 4.52/6 = 6.75 m3 

The base is arranged so that the centre of gravity of the loads coincides with the 
centre line of the base, in which case the base pressure will be uniform.  This 
arrangement will be made for the maximum ultimate loads.   
The ultimate loads are 

Column 1: load = 1.35 × 310 + 1.5 × 160 = 658.5 kN 
Column 2: load = 1.35 × 430 + 1.5 × 220 = 910.5 kN 

The distance of the centre of gravity from column 1 is  
x = (910.5 × 2.5)/ (658.5 + 910.5) = 1.45 m 

The base arrangement is shown in Fig. 11.20.   
 

 
 

Fig. 11.20 Combined base dimensions and column loads. 
 
The soil pressure is checked for service loads for case 1:  

Direct vertical load = 310 + 160 + 430 + 220 + 130 = 1250 kN 
Since the centroid of the loads does not exactly coincide with the centroid of the 
base, check for maximum pressure which is non-uniform.    The moment about the 
centreline of the base is  

M = (430 + 220) × 1.05 – (310 + 160) × 1.45 = 1.0 kNm 
The moment is very small and can be ignored.  The base pressure is practically 
constant. 

Base pressure = 1250/9.0 = 138.9 kN/m2 < 160.0 
 
(ii) Case 2: Column 1, dead + imposed load; column 2, dead load only.  Use SLS 
values  

Axial load = (310+160) + (430 + 0) + 130.0 = 1030 kN 
Moment = M = (430+0) × 1.05 – (310 + 160) × 1.45 = –230 kN m 

Maximum pressure = 1030/9.0 + 230.0/6.75 = 148.5 kN/m2 < 160.0 kN/m2 
Maximum base pressure occurs toward the column 1 side. 

130 kN 
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(iii) Case 3: Column 1: dead load only; column 2: dead + imposed load.  Use 
SLS  values 

Axial load = (310+0) + (430 + 220) + 130 = 1090 kN 
Moment = M = (430+220) × 1.05 – (310 + 0) × 1.45 = 233 kN m 

Maximum pressure = 1090/9.0 + 233.0/6.75 = 155.6 kN/m2 < 160.0 kN/m2 
Maximum base pressure occurs toward the column 2 side. 
 
The base is satisfactory with respect to soil pressure. 
 
(c) Analysis for actions in longitudinal direction at ULS 
The cover is 40 mm, and the bars, say, 20 mm in diameter, giving an effective 
depth d of 550 mm.   Using the ‘Macaulay bracket notation’, the shear force V and 
moment M in the longitudinal direction due to ultimate loads are calculated by 
statics. 
As shown in Fig. 11.21, p1 and p2 are the base pressure at left and right hand ends 
respectively.  W1 and W2 are the column loads and p is the base pressure at a 
distance x from left hand end. 
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The maximum design moments are at the column face and between the columns, 
and maximum shears are at d from the column face.  Calculations are best done 
using spreadsheets.   The load cases are as follows.  The weight of the base is 
ignored as the corresponding base pressure will cancel the pressure due to the 
weight of the base.   
 

 
 

Fig. 11.21 Combined footing. 

2150 1025 625 

p p1 p2 

x 

W1 W2 
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In the following load factors from Equation (6.10), Table A2.4 (B) from              
BS EN 1990:2002, Eurocode-Basis of Structural Design are used. 
γGj, sup = 1.35, γGj, inf = 1.0, γQ, 1 = 1.5, ψ0, i = 0.7 
Six loading cases are discussed in detail. 
 
Case 1A: Maximum load on both columns with column 1 carrying leading 
                 variable load. 
Treat Gk as unfavourable on both columns, Qk on column 1 as leading variable 
action and Qk on column 2 as accompanying variable action.  Loads are as shown 
in Fig. 11.20. 

W1: 1.35 × 310 + 1.5 × 160 = 658.5 kN 
W2: 1.35 × 430 + 1.5 × 0.7× 220 = 811.5 kN 

W1 + W2 = 658.5 + 811.5 = 1470.0 kN, 
Moment M = 811.5 × 1.05 – 658.5 × 1.45 = −102.75 kN m 

p1 = 1470.0/9.0 + 102.75/6.75 = 178.6 kN/m2 
p2 = 1470.0/9.0 – 102.75/6.75 = 148.1 kN/m2 

 
Table 11.7 Shear and moment calculation for case 1A. 

x V M Remarks 
0.075 26.8 1.0 d from left face of column 1 
0.625 220.6 69.2 Left face of column 1 
0.975 –316.7 52.5 Right face of column 1 
1.525 –129.5 –70.1 d from right face of column 1 
1.89 0 –95.1 Maximum negative moment 
2.575 216.3 –23.2 d from left face of column 2 
3.125 391.6 144.2 Left face of column 2 
3.475 –310.6 158.4 Right  face of column 2 

4.025 –142.1 34.1 d from right face of column 2 
 
The results are shown in Table 11.7.  Fig. 11.22 and Fig. 11.23 show respectively 
the shear force and bending moment diagrams.   
Design values: shear force = 216.3 kN, moment = 158.4 kNm and –95.1 kNm. 
 
Case 1B: Maximum load on both columns with column 2 carrying leading 
                 variable load. 
Treat Gk as unfavourable on both columns, Qk on column 2 as leading variable 
action and Qk on column 1 as accompanying variable action.  Loads are as shown 
in Fig. 11.20. 

W1: 1.35 × 310 + 1.5 × 0.7× 160 = 586.5 kN 
W2: 1.35 × 430 + 1.5 × 220 = 910.5 kN 
W1 + W2 = 586.5 + 910.5 = 1497.0 kN, 

Moment M = 910.5 × 1.05 – 586.5 × 1.45 = 105.6 kN m 
p1 = 1497.0/9.0 − 105.6/6.75 = 150.7 kN/m2 

p2 = 1497.0/9.0 + 105.6/6.75 = 181.96 kN/m2 
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The results are shown in Table 11.8.  Fig. 11.24 and Fig. 11.25 show respectively 
shear force and bending moment diagrams.  Design values: shear force = 235.7 kN, 
moment = 188.8 kNm and –85.4 kNm. 

 
Fig. 11.22 Shear force diagram for case 1A. 

 
Fig. 11.23 Bending moment diagram for case 1A. 

 
Table 11.8 Shear and moment calculation for case 1B 

x V M Remarks 
0.075 22.6 0.8 d from left face of column 1 
0.625 191.1 59.4 Left face of column 1 
0.975 –286.0 42.8 Right face of column 1 
1.525 –110.7 –66.5 d from right face of column 1 
1.89 0 –85.4 Maximum negative moment 
2.575 235.7 –2.3 d from left face of column 2 
3.125 423.3 178.8 Left face of column 2 
3.475 –365.7 188.8 Right  face of column 2 

4.025 –171.3 40.9 d from right face of column 2 
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Fig. 11.24 Shear force diagram for case 1B. 

 
 

 
Fig. 11.25 Bending moment diagram for case 1B. 

 
Case 2A: Maximum load on column 1 and minimum load on column 2 with 
                 column 1 carrying leading variable load. 
Treat Gk as unfavourable on column 1 and as favourable on column 2, Qk on 
column 1 as leading variable action and Qk on column 2 as accompanying variable 
action.  Loads are as shown in Fig. 11.20. 

W1: 1.35 × 310 + 1.5 × 160 = 658.5 kN 
W2: 1.0 × 430 + 1.5 × 0.7 × 220 = 661.0 kN 

W1 + W2 = 658.5 + 661.0 = 1319.5 kN, 
Moment M = 661.0 × 1.05 – 658.5 × 1.45 = −260.8 kN m 
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p1 = 1319.5 /9.0 + 260.8 /6.75 = 185.2 kN/m2 
p2 = 1319.5 /9.0 − 260.8 /6.75 = 108.0 kN/m2 

The results are shown in Table 11.9.  Fig. 11.26 and Fig. 11.27 show respectively 
shear force and bending moment diagrams.  Design values: shear force = 181.7 kN, 
moment = 119.7 kNm and –95.3 kNm. 
 

Table 11.9 Shear and moment calculation for case 2A 
x V M Remarks 

0.075 27.7 1.0 d from left face of column 1 
0.625 224.9 71.0 Left face of column 1 
0.975 –313.6 55.6 Right face of column 1 
1.525 –133.4 –66.9 d from right face of column 1 
2.04 0 –95.3 Maximum negative moment 
2.575 181.7 –38.2 d from left face of column 2 
3.125 331.7 103.4 Left face of column 2 
3.475 –239.3 119.7 Right face of column 2 
4.025 –106.3 25.2 d from right face of column 2 

 
 

 
 

Fig. 11.26 Shear force diagram for case 2A. 
 
Case 2B: Maximum load on column 1 and minimum load on column 2 with 
                 column 2 carrying leading variable load. 
Treat Gk as unfavourable on column 1 and as favourable on column 2, Qk on 
column 2 as leading variable action and Qk on column 1 as accompanying variable 
action.  Loads are as shown in Fig. 11.20. 

W1: 1.35 × 310 + 1.5 × 0.7 × 160 = 586.5 kN 
W2: 1.0 × 430 + 1.5 × 220 = 760.0 kN 
W1 + W2 = 586.5 + 760.0 = 1346.5 kN, 
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Moment M = 760.0 × 1.05 – 586.5 × 1.45 = −52.4 kN m 
p1 = 1346.5 /9.0 + 52.4 /6.75 = 157.4 kN/m2 
p2 = 1346.5 /9.0 − 52.4 /6.75 = 141.9 kN/m2 

The results are shown in Table 11.10.  Fig. 11.28 and Fig. 11.29 show respectively 
shear force and bending moment diagrams.  Design values: shear force = 201.1 kN, 
moment = 150.2 kNm and –84.9 kNm. 
 

 
Fig. 11.27 Bending moment diagram for case 2A. 

 
Table 11.10 Shear and moment calculation for case 2B 

x V M Remarks 
0.075 23.6 1.0 d from left face of column 1 
0.625 195.4 61.2 Left face of column 1 
0.975 −282.9 45.9 Right face of column 1 
1.525 –114.5 –63.3 d from right face of column 1 
2.04 0 –84.9 Maximum negative moment 
2.575 201.1 –17.2 d from left face of column 2 
3.125 363.4 138.1 Left face of column 2 
3.475 –294.4 150.2 Right face of column 2 
4.025 –135.5 32.1 d from right face of column 2 

 
 
Case 3A: Minimum load on column 1 and maximum load on column 2 with 
                 column 1 carrying leading variable load. 
 
Treat Gk as unfavourable on column 2 and as favourable on column 1, Qk on 
column 1 as leading variable action and Qk on column 2 as accompanying variable 
action.  Loads are as shown in Fig. 11.20. 

W1: 1.0 × 310 + 1.5 × 160 = 550.0 kN 
W2: 1.35 × 430 + 1.5 × 0.7 × 220 = 811.5 kN 

W1 + W2 = 550.0 + 811.5 = 1361.5 kN, 
Moment M = 811.5 × 1.05 – 550.0 × 1.45 = 54.6 kN m 
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p1 = 1361.5 /9.0 − 54.6 /6.75 = 143.2 kN/m2 
p2 = 1361.5 /9.0 + 54.6 /6.75 = 159.4 kN/m2 

The results are shown in Table 11.11.  Fig. 11.30 and Fig. 11.31 show respectively 
shear force and bending moment diagrams.  Design values: shear force = 211.4 kN, 
moment = 166.3 kNm and –79.9 kNm. 
 

 
Fig. 11.28 Shear force diagram for case 2B. 

 

 
Fig. 11.29 Bending moment diagram for case 2B. 

 
 
Case 3B: Minimum load on column 1 and maximum load on column 2 with 
                 column 2 carrying leading variable load. 
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Treat Gk as unfavourable on column 2 and as favourable on column 1, Qk on 
column 2 as leading variable action and Qk on column 1 as accompanying variable 
action.  Loads are as shown in Fig. 11.20. 

W1: 1.0 × 310 + 1.5 × 0.7 × 160 = 478.0 kN 
W2: 1.35 × 430 + 1.5 × 220 = 910.5 kN 
W1 + W2 = 478.0 + 910.5 = 1388.9 kN, 

Moment M = 910.5 × 1.05 – 478.0 × 1.45 = 262.9 kN m 
p1 = 1388.9 /9.0 − 262.9 /6.75 = 115.3 kN/m2 
p2 = 1388.9 /9.0 + 262.9 /6.75 = 193.2 kN/m2 

The results are shown in Table 11.12.  Fig. 11.32 and Fig. 11.33 show respectively 
shear force and bending moment diagrams.  Design values: shear force = 230.6 kN, 
moment = 196.6 kNm and –70.8 kNm. 
 

Table 11.11 Shear and moment calculation for case 3A 
x V M Remarks 

0.075 21.5 1.0 d from left face of column 1 
0.625 180.4 56.2 Left face of column 1 
0.975 –267.3 41.0 Right face of column 1 
1.525 –104.9 –61.5 d from right face of column 1 
2.04 0 –79.9 Maximum negative moment 
2.575 211.4 –6.3 d from left face of column 2 
3.125 380.2 156.3 Left face of column 2 
3.475 –322.8 166.3 Right face of column 2 
4.025 –150.4 36.1 d from right face of column 2 

 
Design values: shear force = 211.4 kN, moment = 166.3 kNm and –79.9 kNm. 
 

Table 11.12 Shear and moment calculation for case 3B 
x V M Remarks 

0.075 17.4 1.0 d from left face of column 1 
0.625 150.9 46.4 Left face of column 1 
0.975 −236.7 31.3 Right face of column 1 
1.525 –86.1 −57.9 d from right face of column 1 
2.04 0 −70.8 Maximum negative moment 
2.575 230.6 –14.6 d from left face of column 2 
3.125 411.7 190.8 Left face of column 2 
3.475 –378.0 196.6 Right face of column 2 
4.025 –179.8 42.7 d from right face of column 2 
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Fig. 11.30 Shear force diagram for case 3A. 

 
Fig. 11.31 Bending moment diagram for case 3A. 

 
Fig. 11.32 Shear force diagram for case 3B. 
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Fig. 11.33 Bending moment diagram for case 3B. 

 
(d) Design of longitudinal reinforcement  
 
(i) Bottom steel 
The maximum moment from case 3B is (Fig. 11.33):  

M = 196.6 kNm 
k = M/ (bd2 fck) = 196.6 × 106/ (2000 × 5502 × 30) = 0.011 < 0.196 

] 
z/d= 0.99 

fyk = 500, fyd = 500/1.15 = 435 MPa 
As = 196.6 × 106/ (435 × 0.99 × 550) = 830 mm2 

Check minimum steel: 
From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × bd ≥ 0.0013 bd 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa 
b = 2000 mm, d = 550 mm 

As, min = 0.26× (2.9/500) × 2000 × 550 ≥ 0.0013 × 2000 × 550 
As, min = 1659 mm2 > 830 mm2 

Provide minimum reinforcement. 
Provide 9H16 at 240 mm centres to give a total area of 1809 mm2. 

(ℓc = 1000mm) < {0.75(c + 3d) = 0.75(350+ 3 × 550) = 1500 mm} 
Reinforcement should be spread uniformly across the width. 
 
(ii) Top steel 
The maximum moment from case 2A is (Fig. 11.27),  

M = 95.3 kNm 
Provide minimum reinforcement as above.   
 
(e) Transverse reinforcement  
At ULS, the base pressure distribution in kN/m2 is shown in Fig. 11.34.  
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Fig. 11.34 Base pressure distribution in case 3B. 
 
The maximum pressure under the base is for case 3B. The bending moment along 
the length of 4.5 m is variable.  In order to calculate a moment which is reasonable, 
the average pressure over a width of 0.5 m of the footing length is calculated. 
The pressure at 0.5 m from the end is 

115.3 + (193.2 – 115.3) × 4.0/4.5 = 184.5 kN/m2 
The average pressure on a 0.5 m length at the heavier end is 

(193.2 + 184.5) /2 = 188.9 kN/m2 
(2000 – 350)/2 = 825 mm, d = 550 ‒16 = 534 mm 

The moment at the face of the columns on a 0.5 m length strip at the heaviest 
loaded end is  

M = {188.9 × (0.5 × 0.825) × 0.825/2 = 32.14 kNm 
k = M/ (bd2 fck) = 32.14 × 106/ (500 × 5342 × 30) = 0.008 < 0.196 

] 
z/d= 0.99 

fyk = 500, fyd = 500/1.15 = 435 MPa 
 
As = 32.14 × 106/ (435 × 0.99 × 534) = 140 mm2. 
Check minimum steel: 
From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × bd ≥ 0.0013 bd 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 500 mm, d = 534 mm 

As, min = 0.26× (2.9/500) × 500 × 534 ≥ 0.0013 × 500 × 534 
As, min = 402 mm2 > 140 mm2 

Provide minimum reinforcement.  Total steel for a width of 4500 mm is  
402 × 4500/500 = 3624 mm2. 
Provide 19H16 at 245 mm centres to give a total area of 3820 mm2. 
Reinforcement should be spread uniformly across the length of the base.  
Fig. 11.35 shows the reinforcement arrangement.  Note that same reinforcement is 
provided at top and bottom faces.   
 
 

193.2 
115.3 
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(f) Vertical shear  
The maximum vertical shear from case 1 is  

VEd = 235.7 kN 
vEd = 235.7 × 103/ (2000 × 550) = 0.21 MPa 

Asl = 9H16 = 1810 mm2 
100 × ρ1 = 100 × 1810/ (2000 × 550) = 0.165 < 2.0 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/550) = 1.60 ≤ 2.0, 
CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.60 × (0.165 × 30)0.33 = 0.33 

vmin = 0.035 × k1.5 × √fck= 0.035 ×1.60 1.5 × √30 = 0.39 > 0.33 
vRd, c = 0.39 MPa 

(vEd = 0.21) < (vRd, c = 0.39) 
No shear reinforcement is required.   
 
 

 
 

Fig. 11.35 Reinforcement in the base slab. 
 
(g) Punching shear  
Check punching shear at column perimeter.  Table 11.13 shows the column loads, 
base pressure at column centre line and  

VEd = column load – base pressure × column area. 
The maximum value is 889.4 kN for column 2 from case 3B. 

u0 = 2 × (350 + 350) = 1400 mm, d = 550 mm 
vEd = 889.4 × 103/ (1400 × 550) = 1.16 MPa 

vRd, max = 0.3 × (1 − fck/250) × fcd = 0.3 × (1 − 30/250) × (30/1.5) = 5.28 MPa 
vEd < vRd, max. 

The thickness of slab is adequate. 
 
 
 

9H16 at 240 
Top & Bottom 

9H16 at 240 
Top & Bottom 
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Table 11.13 Punching loads around column perimeter 
Case Column 1 Column 2 

Load Pressure VEd Load Pressure VEd 
Case 1A 658.5 173.1 637.3 811.5 156.2 792.4 
Case 1B 586.5 156.3 567.4 910.5 173.6 889.2 
Case 2A 658.5 171.5 637.4 661,0 128.6 645.3 
Case 2B 586.5 154.6 567.6 760.0 145.9 742.1 
Case 3A 550.0 146.1 532.1 811.5 155.1 792.5 
Case 3B 478.0 129.2 462.2 910.5 172.5 889.4 

 
Check punching shear is checked at perimeters at d to 2 d from the face of a 
column.   
At d = 550 mm from the face of the column,  

u = perimeter = 2 × (350 + 350) + 2 × π × 550 = 4856 mm 
A = Area under perimeter = [4 ×350 × (350/2 + 550) + π × 5502] × 10−6 = 1.965 m2 

Column load = 910.5 kN, base pressure at centre line of column= 172.5 kN/m2 
VEd, red = 910.5 – 172.5 × 1.965 = 571.5 kN 
vEd = 571.5 × 103/ (4856 × 550) = 0.21 MPa 

Asl in x-direction = 9H16 = 1810 mm2 
100 × ρx = 100 × 1810/ (2000 × 550) = 0.165 

Asl in y-direction = 19H16 = 3992 mm2 
100 × ρy = 100 × 3992/ (4500 × 550) = 0.16 

 100ρ1 = √ (0.165 × 0.16) = 0.162 < 2.0 
CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/550) = 1.60 ≤ 2.0, 

CRd, c × k × (100 × ρ1 × fck) 0.33 = 0.12 × 1.60 × (0.162 × 30)0.33 = 0.33 
vmin = 0.035 × k1.5 × √fck= 0.035 × 1.60 1.5 × √30 = 0.39 > 0.33 

vRd, c = 0.39 MPa 
(vEd = 0.21) < (vRd = vRd, c × {2d/ (a = d)} = 0.78) 

At 1.5 d from the face of the column, the perimeter touches the edge of the slab on 
the width side. The punching shear is less critical than the vertical shear in this 
case.  The slab is safe against punching shear failure. 
 
(h) Sketch of reinforcement  
The reinforcement is shown in Fig. 11.35.  A complete mat has been provided at 
the top and bottom.  Some U-spacers are required to fix the top reinforcement in 
position. 
 
 
11.7 PILED FOUNDATIONS  
 
 
11.7.1 General Considerations  
 
When a solid bearing stratum such as rock is deeper than about 3 m below the base 
level of the structure, a foundation supported on end-bearing piles will provide an 
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economical solution.  Where the bedrock is too deep to obtain end bearing, 
foundations can also be supported on friction piles by skin friction between the pile 
sides and the soil.  The main types of piles are as follows:  

1. Precast reinforced or prestressed concrete piles driven into the required 
position. 

2. Cast-in-situ reinforced concrete piles placed in holes formed either by  
(a) Driving a steel tube with a plug of dry concrete or packed 

aggregate at the end into the soil  
(b) Boring a hole and lowering a steel tube to follow the boring tool 

as a temporary liner.  A reinforcement cage is inserted and the 
tube is withdrawn after the concrete is placed. 

In practice, many other methods are also used.  See Bowles (1995).  
Short bored plain concrete piles are used for light loads such as carrying ground 
beams to support walls.  Deep cylinder piles are used to carry large loads and can 
be provided under basement and raft foundations.  A small number of cylinder 
piles can give a more economical solution than a large number of ordinary piles.   
 
The safe load that a pile can carry can be determined by test loading a pile or using 
a pile formula that gives the resistance calculated from the energy of the driving 
force and the final set or penetration of the pile per blow.  In both cases the 
ultimate load is divided by a factor of safety of from 2 to 3 to give the safe load.  
Safe loads depend on the size and depth and whether the pile is of the end-bearing 
or friction type.  The pile can be designed as a short column if lateral support from 
the ground is adequate.  However, if ground conditions are unsatisfactory, it is 
better to use test load results.  The group action of piles should be taken into 
account because the group capacity can be considerably less than the summed 
capacities of the individual piles.  
 
     The manufacture and driving of piles are carried out by specialist firms that 
guarantee to provide piles with a given bearing capacity on the site.  Safe loads for 
precast and cast-in-situ piles vary from 100 kN to 1500 kN.  Piles are also used to 
resist tension forces and the safe load in tension is often taken as one-third of the 
safe load in bearing.  Piles in groups are generally spaced at 0.8 to 1.5 m apart.  
Sometimes piles are driven at an inclination to resist horizontal loads in poor 
ground conditions.  Rakes of 1 in 5 to 1 in 10 are commonly used in building 
foundations.  In an isolated foundation, the pile cap transfers the load from the 
column shaft to the piles in the group.  The cap is cast around the tops of the piles 
and the piles are anchored into it by projecting bars.  Some arrangements of pile 
caps are shown in Fig. 11.36(a) and Fig. 11.36(b).  
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Fig. 11.36 (a) Small pile cap for vertical load; (b) pile group resisting axial load and moment. 
 
 
11.7.2 Loads in Pile Groups  
 
In general pile groups are subjected to axial load, moment and horizontal loads.  
The pile loads are as follows.   
 
(a) Axial load  
When the load is applied at the centroid of the group, it is assumed to be 
distributed uniformly to all piles by the pile cap, which is taken to be rigid.  This 
gives the load per pile as 

Fa = (P + W)/N 
where P is the axial load from the column, W is the weight of the pile cap and N is 
the number of piles.   
 
 
 

(a) (b) 
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(b) Moment on a group of vertical piles  
The pile cap is assumed to rotate about the centroid of the pile group and the pile 
loads resisting moment vary uniformly from zero at the centroidal axis to a 
maximum or minimum for the piles farthest away.  Referring to Fig. 11.36(b), the 
second moment of area about the YY axis is  

Iy = 2(x2 + x2) = 4x2 
where x is the pile spacing in x direction.  The maximum load due to moment on 
piles A in tension and C in compression is  

x
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xMF
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m 4

  

For a symmetrical group of piles spaced at ±x1, ±x2 ... ±xn perpendicular to the 
centroidal axis YY, the second moment of area of the piles about the YY axis is  
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The maximum pile load is  

y

n
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xMF   

 
     If the pile group is subjected to bending about both the XX and YY axes 
moments of inertia are calculated for each axis.  The pile loads from bending are 
calculated for each axis as above and summed algebraically to give the resultant 
pile loads.  The loads due to moment are combined with those due to vertical load.   
 
(c) Horizontal load  
In building foundations where the piles and pile cap are buried in the soil, 
horizontal loads can be resisted by friction, adhesion and passive resistance of the 
soil.  Ground slabs that tie foundations together can be used to resist horizontal 
reactions due to rigid frame action and wind loads by friction and adhesion with 
the soil and so can relieve the pile group of horizontal load.  However, in the case 
of isolated foundations in poor soil conditions where the soil may shrink away 
from the cap in dry weather or in wharves and jetties where the piles stand freely 
between the deck and the sea bed, the piles must be designed to resist horizontal 
load.  Pile groups resist horizontal loads by  

1. Bending in the piles  
2. Using the horizontal component of the axial force in inclined piles  

These cases are discussed below.   
(d) Pile in bending  
A group of vertical piles subjected to a horizontal force H applied at the top of the 
piles is shown in Fig. 11.37.  The piles are assumed to be fixed at the top and 
bottom.  The deflection of the pile cap is shown in Fig. 11.37(b). 

Shear per pile V = H/N 
Moment M1 in each pile = Hh1/ (2N) 

where N is the number of piles and h1 is the length of pile between fixed ends.   
     The horizontal force is applied at the top of the pile cap of depth h2 and this 
causes a moment Hh2 at the pile tops.  When vertical load and moment are also 
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applied, the resultant pile loads are a combination of those caused by the three 
actions.  The total vertical load P + W is distributed equally to the piles.  The total 
moment M + H h2 is resisted by vertical loads in the piles and the analysis is 
carried out as set out in section 11.5.2(b) above.  The pile is designed as a 
reinforced concrete column subjected to axial load and moment.  If the pile is clear 
between the cap and ground, additional moment due to slenderness may have to be 
taken into account.  If the pile is in soil, complete or partial lateral support may be 
assumed.   

 
 

Fig. 11.37(a) Pile group; (b) deflection; (c) moment diagram. 
 
(e) Resistance to horizontal load by inclined piles  
An approximate method used to determine the loads in piles in a group subjected to 
axial load, moment and horizontal load where the horizontal load is resisted by 
inclined piles is set out.  In Fig. 11.38 the foundation carries a vertical load P, 
moment M and horizontal load H.  The weight of the pile cap is W.   
     The loads F in the piles are calculated as follows. 
 
(i) Vertical loads, pile loads Fv 
The sum of vertical loads is P+W.    

R
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(ii) Horizontal loads, pile loads FH  
The horizontal load is assumed to be resisted by pairs of inclined piles as shown in 
Fig. 11.38(b).  The sum of the horizontal loads is H.   
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(iii) Moments, pile loads FM  
The second moment of area is  

Iy = 2[(0.5S) 2 + (1.5S) 2] 
The sum of the moments is  

M1 = M + Hh 
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The maximum pile load is Fv4 + FH4 + FM4 
 

 
 

Fig. 11.38(a) Pile group; (b) resistance to horizontal load. 
 
 
11.7.2.1 Example of Loads in Pile Group  
 
The analysis using the approximate method set out above is given for a pile group 
to carry the loads and moment from a 6 m long shear wall similar to the one 
designed in Chapter 10, section 10.3.4.1.   
     The design actions for service loads are assumed to be as follows:  

Axial load = 9592 kN  
Moment = 5657 kNm 

Horizontal load = 281 kN 
The proposed pile group consisting of 18 piles inclined at 1 in 6 is shown in        
Fig. 11.39.  
The weight of the base is 610 kN.  For the vertical loads Fv1 to FV6 
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For the horizontal loads: 
–FHI = –FH2 = –FH3 = FH4 = FH5 = FH6 = 281 × √ (62 + 1)/18 = 94.9 kN 

The second moment of area is 2× (0.62 + 1.82 + 3.02) = 76.6. 
The moment at the pile top is 5657 + (281 × 1.2) = 5994 kNm. 
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The maximum pile load is  
F6 = 574.6 + 94.9 + 238 = 907.5 kN 

     The pile group and pile cap shown in Fig. 11.35 can be analysed using a plane 
frame computer program.  The large size of the cap in comparison with the piles 
ensures that it acts as a rigid member.  The pile may be assumed to be pinned or 
fixed at the ends. 

 
 
 

Fig. 11.39 Pile group. 
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11.7.3 Design of Pile Caps  
 
 
Pile caps are ‘deep beams’.  In a deep beam, the ratio of span to depth is nearer 
unity.  The bending stress distribution is complex and departs significantly from 
the linear stress distribution.  The usual checks for bending and shear strengths are 
no longer valid.  Pile caps are therefore designed using the Strut−tie method which 
is covered in section 6.5 of the Eurocode 2.  In this method the forces are assumed 
to be resisted by a series of concrete struts and steel ties. The truss might be 2 D or 
3 D triangulated form.  Fig. 11.40 shows a simple strut−tie model for a small pile 
cap such as that shown in Fig. 11.30(a). In the diagram the struts are shown by 
heavy lines and ties by ‘broken’ lines.  More details about the strut−tie method are 
given in Chapter 18.  
 

 
 

Fig. 11.40 Strut−tie model for a pile cap. 
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CHAPTER 12 
 

RETAINING WALLS 
 
 
12.1 WALL TYPES AND EARTH PRESSURE  
 
 
12.1.1 Types of Retaining Walls  
 
Retaining walls are structures used to retain mainly earth but also other materials 
which would not be able to stand vertically unsupported.  The wall is subjected to 
overturning due to pressure of the retained material. 
 

 
Fig. 12.1 (a) Gravity wall; (b) cantilever walls; (c) buttress wall; (d) counterfort wall. 
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Fig. 12.2(a) Earth pressure: cohesion less soil (c = 0). 

 
The types of retaining walls are as follows:  
 
1.  In a gravity wall stability is provided by the weight of concrete in the 

wall.  
2.  In a cantilever wall the wall slab acts as a vertical cantilever.  Stability is 

provided by the weight of structure and earth on an inner base or the 
weight of the structure only when the base is constructed externally.  

3.  In counterfort and buttress walls the vertical slab is supported on three 
sides by the base and counterforts or buttresses.  Stability is provided by 
the weight of the structure in the case of the buttress wall and by the 
weight of the structure and earth on the base in the counterfort wall.   

 
Examples of retaining walls are shown in Fig. 12.1.  Detailed designs for cantilever 
and counterfort retaining walls are given.   
 
 
12.1.2 Earth Pressure on Retaining Walls  
 
The Eurocode governing the geotechnical aspects of retaining wall design is 
section 9 and Annex C of BS EN 1997-1:2004: Eurocode 7: Geotechnical Design 
—Part 1: General Rules. 
A very useful reference on Eurocode 7 is Bond and Harri (2008). 
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(a) Active soil pressure  
Active soil pressures are given for the two extreme cases of soil such as a 
cohesionless soil like sand and a cohesive soil like clay (Fig. 12.2).  General 
formulae are available for intermediate cases.  The formulae given apply to drained 
soils and reference should be made to textbooks on soil mechanics for pressure 
where the water table rises behind the wall.  The soil pressures given are those due 
to a level backfill.  If there is a surcharge of q kN/m2 on the soil behind the wall, 
this is equivalent to an additional soil depth of z = q /γ where γ is the unit weight in 
kN/m3.  The textbooks give solutions for cases where there is sloping backfill.   
 

Fig. 12.2 (b) Earth pressure: cohesive soil (φ = 0). 
 
(i) Cohesionless soil, c = 0 (Fig. 12.2(a)): The horizontal pressure at any depth z is 
given by  

p = Ka (γz + q) 

)sin1(
)sin1(








aK  

where γ is the unit weight of soil in kN/m3, q = uniformly distributed surcharge in 
kN/m2, φ is the angle of internal friction and Ka is the coefficient of active earth 
pressure.   
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     The horizontal force P1 on the wall of height H1 is  

1a
2
1a1 qHKγHK

2
1P   

Note Eurocode 7, Annex C, Fig. C.1.1 gives active earth pressure coefficient for 
horizontal surface with various values of friction between soil and wall. 
 
(ii) Cohesive soil, φ= 0 (Fig. 12.2(b)):  The pressure at any depth z is given 
theoretically by  

p = γ z + q – 2c 
where c is the cohesion at zero normal pressure.  This expression gives negative 
values near the top of the wall.  In practice there are cracks at the top of the soil 
normally filled with water.   
 
(b) Wall stability against overturning  
Referring to Fig. 12.2 the vertical loads are made up of the weight of the wall stem 
and base and the weight of backfill on the base.  Front fill on the outer base has 
been neglected.  Surcharge would need to be included if present.  If the centre of 
gravity of these loads is x from the toe of the wall, the stabilizing moment with 
respect to overturning about the toe is ΣWx with a beneficial partial safety factory 
γf = 1.0.  The overturning moment due to the active earth pressure is γf P1H1/3 with 
an adverse partial safety factor γf = 1.4.  The stabilizing moment from passive earth 
pressure has been neglected.  For the wall to satisfy the requirement of stability  
 

ΣWx ≥ γf P1 H1/3 
 
(c) Vertical pressure under the base  
The vertical pressure under the base is calculated for service loads.  For a 1 m 
length of cantilever wall with base width b transmitting forces to the foundation 

Area A = b m2, section modulus Z = b2/6 m3. 
If ΣM is the sum of the moments of all vertical forces ΣW about the centre of the 
base and of the active pressure on the wall, then 

ΣM = ΣW(x – b/2) – PI H1/3 
where x = the centre of gravity of vertical loads from the toe of the wall. 
     The passive pressure in front of the base has again been neglected.  The 
maximum pressure is  

Z
M

A
WP 




max  

This should not exceed the safe bearing pressure on the soil.   
 
(d) Resistance to sliding (Fig. 12.2)  
The resistance of the wall to sliding is as follows.   
 
(i) Cohesionless soil: The friction R between the base and the soil is μ ΣW, where 
μ is the coefficient of friction between the base and the soil (μ = tan φ).  The 
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passive earth pressure force P2 against the front of the wall from a depth H2 of soil 
is  

)sin1(
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
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Note Eurocode 7, Annex C, Fig. C.2.1 gives passive earth pressure coefficient for 
horizontal surface with various values of friction between soil and wall. 
 
(ii) Cohesive soils:  The adhesion R between the base and the soil is βb where β is 
the adhesion in kN/m2.  The passive earth pressure P2 is  

P2 = 0.5γH2
2 + 2cH2 

     A downstand nib can be added, as shown in Fig. 12.2 to increase the resistance 
to sliding through passive earth pressure.   
For the wall to be safe against sliding  

1.5 P1 < P2 + R 
where P1 is the horizontal active earth pressure on the wall.   
 
 

 
 
 

Fig. 12.3 Model for initial sizing. 
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12.2 DESIGN OF CANTILEVER WALLS  
 
 
12.2.1 Initial Sizing of the Wall 
 
Before a retaining wall can be designed, it is necessary to assume initial 
dimensions whose accuracy can be checked by detailed calculations.  Often 
designers assume initial dimensions based on previous experience.  However, 
initial dimensions of the wall can be determined from the following approximate 
equations. 
 
Ignoring the difference in unit weight between soil and concrete and the weight of 
the toe slab of width b1, for a unit length of wall the total gravity load W is 
approximately given by  

W = γ b2 H1 + q b2 
     The total horizontal force P1 is given by 

P1 = 0.5 Kaγ H1
2 + Ka q H1 

where q = surcharge in kN/m2 and Ka = coefficient of active earth pressure. 
 
(i) Resistance to sliding 
Ignoring any contribution from passive earth pressure and using load factors of    
γQ = 1.5 on P1 as it is an adverse load and γG, inf = 1.0 on W as it is a beneficial load, 
for resistance against sliding, 

μ W ≥ 1.5 P1 
Substituting for W and P1,  

{μ γ b2 H1 + q b2} ≥ (γQ = 1.5) × {0.5 Ka γ H1
2 + Ka q × H1} 

Simplifying,  
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(ii) Zero tension in the base pressure 
Taking moments about the toe of the wall,  

W (b1 + b2/2) – 0.5 Kaγ H1
2 (H1/3) – Ka q H1 (H1/2) = W L 

L = b1 + 0.5 b2 – b2 Ka (H1/b2)2{1/6 + q/ (2 γH1)}/ [1+ q/ (γH1)] 
Eccentricity e of W with respect to the centre of the base is  

e = 0.5(b1 + b2) –L 
e = (1/6) b2 Ka (H1/b2)2{1 + 3q/ (γH1)}/ [1+ q/ (γH1)] – 0.5 b1 

For no tension to develop at the heel, W must lie in the middle third of the  
base.   Therefore 

e ≤ (b1 + b2)/6 
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12.2.2 Design Procedure for a Cantilever Retaining Wall 
 
For a given height of earth to be retained, the steps in the design of a cantilever 
retaining wall are as follows.   
 
1. Assume a breadth for the base.  This can be calculated from the equations 
developed in section 12.2.1.  A nib is often required to increase resistance to 
sliding.   
2. Calculate the horizontal earth pressure on the wall.  Considering all forces, 
check stability against overturning and the vertical pressure under the base of the 
wall.  Calculate the resistance to sliding and check that this is satisfactory.  A load 
factor γQ = 1.5 is applied to the horizontal loads for the overturning and sliding 
check.  The maximum vertical pressure is calculated using service loads and this 
should not exceed the safe bearing pressure.   
3. Reinforced concrete design for the wall is made for ultimate loads using 
appropriate load factors.  Surcharge if present may be classed as either dead or 
imposed load depending on its nature.   
Referring to Fig. 12.4, the structural design consists of the following.   
 
(a) Cantilever wall: Calculate shear forces and moments caused by the horizontal 
earth pressure.  Design the vertical moment steel for the inner (earth side) face and 
check the shear stresses.  Minimum secondary steel is provided in the horizontal 
direction for the inner face and both vertically and horizontally for the outer face.   
 
(b) Inner footing (heel slab): The net moment due to vertical loads on the top and 
earth pressure on the bottom face causes tension in the top and reinforcement is 
designed for this position.   

 
 

Fig. 12.4 Three parts of the cantilever retaining wall. 
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(c) Outer footing (toe slab): The moment due to earth pressure at the bottom face 
causes tension in the bottom face.   
 
The moment reinforcement for the three parts is shown in Fig. 12.4. 
 
 
12.2.3 Example of Design of a Cantilever Retaining Wall 
 
(a) Specification  
Design a cantilever retaining wall to support a bank of earth 3.5 m high.  The top 
surface is horizontal behind the wall but it is subjected to a dead load surcharge of 
15 kN/m2.  The soil behind the wall is well-drained sand with the following 
properties:  

Unit weight γ = 18.0 kN/m3 
Angle of internal friction φ= 30° 

The material under the wall has a safe bearing pressure of 100 kN/m2.  The 
coefficient of friction μ between the base and the soil is 0.5.  Design the wall using 
fck = 30 MPa concrete and fyk = 500 MPa reinforcement.   
 
Active earth pressure coefficient: 

Ka = (1 – sin φ)/ (1 + sin φ) = (1 – 0.5)/ (1 + 0.5) = 0.3333 
 
(b) Check preliminary sizing 
 
(i) Check minimum stem thickness 
For 1 m length of the wall, bending moment M at the base of the cantilever is  

M = 0.5 Kaγ H2 (H/3) + Ka q H (H/2) 
Substituting Ka = 0.333, γ = 18.0 kN/m3, H = 3.5 m, q = 15 kN/m2, 

M = 0.5 × 0.3333 × 18.0 × 3.52 × 3.5/3 + 0.3333 × 15 × 3.5 × 3.5/2 
M = 42.88 + 30.62 = 73.50 kN m/m 

In order for there to be no need for compression steel,  
M < 0.196 bd2 fck 

Taking b = 1000 mm, fcu = 30 N/mm2,  
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Take a value of d much larger than this to reduce the amount of steel required.   
However it should not be so large that minimum steel requirement is greater than 
the calculated steel area.  0Assume total stem thickness of 250 mm.  Same 
thickness is assumed for the base slab as well. 
 
(ii) Check resistance to sliding 

H1 = 3.5 + 0.25 = 3.75 m, 
q/ (γ H1) = 15.0/ (17.6 x 3.75) = 0.227 
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Ka = 0.333 
μ = 0.5 

Use equation from section 12.2.1.1, to calculate width b2. 
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(b2/H1){0.5+0.227) ≥ 1.5 × 0.333 × (0.5+0.227) 
b2 /H1 ≥ 0.50 
b2 ≥1.875 m, 

Take b2 = 2.05 m, 
b2 / H1= 0.55 

 
(iii) Check eccentricity 

b2 = 2.05, 
H1/b2 = 1.829 

q/ (γ H1) = 0.227 
Ka = 0.333 

Use equation from section 12.2.1.1, to calculate width b1.  
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(b1/b2) ≥ 0.25 × 0.333 × (1.829)2 [{1+ 3 × 0.227}/ {1 + 0.227}] – 0.25 
(b1/b2) ≥ 0.132,  

b1 ≥ 0.27 m, Take b1 = 0.8 m. 
 
The proposed arrangement of the wall is shown in Fig. 12.5.  Wall and base 
thicknesses are assumed to be 250 mm.  A 0.6 m nib has been added under the wall 
to assist in the prevention of sliding. 
 
(c) Wall stability  
Consider 1 m length of wall.  The horizontal pressure at depth z from the top is  

p = Ka (γz + q) = 0.333(18.0 z + 15) 
The horizontal pressure at the base (z = 3.75 m) = 27.5 kN/m2  
The horizontal pressure at the top (z = 0) = 5 kN/m2.   
The weight of wall, base and earth and the corresponding moments about the toe of 
the wall for stability calculations are given in Table 12.1.  Clockwise moments are 
taken as positive. 
 
(i) Maximum soil pressure 

Width of base b = 2.85 m 
For 1 m length of wall, area  

A = 2.85 m2 
Section modulus Z = 2.852/6 = 1.35 m3 
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Taking moments of all forces about the toe A, the centroid of the base pressure 
from A is at a distance L. 

L × 185.40 = 324.31 – 87.89 = 236.42 
L = 236.42/185.40 = 1.275 m 

Eccentricity, e = B/2 – L = 2.85/2 – 1.275 = 0.15 < 2.85/6 
Hence no tension is developed at C.   
The base is acted on by  

Vertical load = 185.40 kN 
Moment M = 185.40 × e = 27.81 kNm. 

The maximum soil pressure at end of the toe slab calculated for service load is 
185.40/ (A = 2.85) + 27.81/ (Z = 1.35) = 8565 kN/m2 < 100 kN/m2 

This is satisfactory, as the maximum pressure is less than the safe bearing capacity 
of soil. 
 

 
 

Fig. 12.5 Forces acting on the retaining wall. 
 
(ii) Stability against overturning  
The stabilizing (beneficial) moment due to gravity loads about the toe A of the wall 
has a partial safety factor γG, inf = 1.0 and the disturbing (adverse) moment due to 
horizontal loads has a partial safety factor γQ = 1.5.  The net stabilizing moment is  

(324.31 × 1.0 – 87.89 × 1.5) = 192.48 > 0 
The wall is considered safe against overturning. 
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(iii) Resistance to sliding  
The forces resisting sliding are the friction under the base and the passive 
resistance for a depth of earth of 850 mm to the top of the base.  The gravity loads 
are beneficial loads but the horizontal load is an adverse load.  Ignoring the passive 
pressure, for the wall to be safe against sliding  

(μ = 0.5) × {(γG, inf = 1.0) × 185.40} > {(γQ = 1.5) × 60.0}, 
i.e. 92.70 > 90.0 

The resistance to sliding is satisfactory.  There was no need for the nib but is 
included for additional protection.  No reliance is placed on passive earth pressure. 
 

Table 12.1 Stability calculations (cantilever wall) 
 

Type of 
Load 

Load (kN) Distance to centroid 
from A, m 

Moment  
about A 
(kNm) 

HORIZONTAL (Active earth pressure) 
Surcharge 5 × 3.75 = 18.75 3.75/2 = 1.875 –35.16 
Triangular 0.5 × 3.75 × 

(27.5 – 5) = 42.19 
3.75/3 = 1.25 –52.73 

Σ 18.75 + 42.19 = 60.94  –35.16 – 
52.73 =      –

87.89 
    

VERTICAL (Gravity) 
Wall + Nib (3.75 + 0.6) × 0.25 × 25 = 

27.19 
0.8 + 0.25/2 = 0.925 25.15 

Base 2.85 × 0.25 × 25 = 17.81 2.85/2= 1.425 25.38 

Back fill 1.8 × 3.5 × 18.0 = 113.40 0.8 + 0.25 + 1.8/2 = 1.95 221.13 

Surcharge 15 × 1.8 = 27 0.8 + 0.25 + 1.8/2 = 1.95 52.65 

Σ 185.40  324.31 

 
(iv) Overall comment:  The wall section is satisfactory.  The maximum soil 
pressure under the base controls the design.   
 
(d) Structural design of wall, heel and toe slabs  
 
(1) Cantilever wall slab 
 
(a) Bending design: 
At serviceability limit state, the horizontal pressure at the base (z = 3.5 m) is  

p = Ka (γz + q) = 0.333(18.0 × 3.5 + 15) = 26.0 kN/m2  
At the top (z = 0) is 5 kN/m2.   

Average pressure = 0.5 × (26.0 + 5.0) = 15.50 kN.m2 
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At ultimate limit state using γQ = 1.5, at the base of the cantilever, shear force V 
and moment M are 

V= 15.50 × 3.5 × (γf = 1.5) = 81.38 kN 
M = {(26.0 – 5.0) × 0.5 × 3.5 × 3.5/3 + 5.0 × 3.5 × 3.5/2} × (γQ = 1.5) 

M = 110.25 kNm/m 
Assume that the cover is 40 mm and the diameter of the bars is 16mm.  Effective 
depth d is 

d = 250 – 40 – 8 = 202 mm 
k = M/ (bd2 fck) = 110.25 × 106/ (1000 × 2022 × 30) = 0.09 < 0.196 

 = 0.5[1.0 +  
k = 0.09, η = 1.0, z/d = 0.927 

As = 110.25 × 106/ (0.927 × 202 × 0.87 × 500) = 1353 mm2/m 
Provide 12 mm diameter bars at 80 mm centres to give a steel area of                 
(π/4 ×122) × (1000/80) = 1414 mm2/m. 
Check minimum steel.  From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 202 mm 

As, min = 0.26× (2.9/500) × 1000 × 202 ≥ 0.0013 × 1000 × 202 
As, min = 305 mm2 

provided steel is greater than the minimum percentage of steel. 
Moment at SLS = Moment at ULS/ (γQ = 1.5) = 110.25/1.5 = 73.5 kNm/m 

Stress in steel at SLS = (MSLS/MULS) × (As, reqd/As, Provided) × fyd 
= (73.5/110.25) × (1353/1414) × (500/1.15) = 277 MPa 

Check maximum bar diameter and spacing of steel permitted:  For steel stress at 
SLS of 280 MPa and for a maximum crack width of 0.3 mm, maximum spacing 
allowed from code Table 7.3N is 150 mm and from code  Table 7.2N maximum 
bar size is 12mm.  The provided steel area satisfies both criteria. 

. 
(b) Curtailment of flexural steel 
Determine the depth z from the top where the spacing of 12 mm bars can be 
doubled to 160 mm.  Steel area at 160 mm c/c is equal to (π/4 ×122) × (1000/160) = 
707 mm2/m. 
The corresponding moment of resistance is approximately  

M = 0.5 ×110.25 = 55.13 kNm 
This moment occurs at a depth z from top given by 

55.13 = 1.5 × Ka (γ z3/6 + 15× z2/2) 
55.13 = 1.5 × 0.333 × (18.0 × z3/6 + 15× z2/2) 

Solving by trial and error, z = 2.67 m, 
d = 250 – 40 – 6 = 204 mm 

M = 55.13 
k = 55.13 × 106/ (1000 × 2042 × 30) = 0.044 < 0.196 

 = 0.5[1.0 +  
k = 0.044, η = 1.0, z/d = 0.966 
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As = 55.13 × 106/ (0.966 × 202 × 0.87 × 500) = 650 mm2/m 
As = 650 mm2/m > (As, min = 305 mm2/m) 

From Table 5.5, Chapter 5, the required anchorage length for fck = 30 MPa is 36 
bar diameters which is equal to 36 × 12 = 432 mm.  For anchorage requirements, 
bars are to extend an anchorage length beyond the theoretical cut off point.  
Therefore alternate bars need to continue up to a distance from top of 

= 2670 – 432 = 2238 mm 
Stop bars off bars at a distance from base equal to 

= 3500 – 2238 = 1262 mm, say 1300 mm. 
 

(c) Shear check 
At serviceability limit state, the horizontal pressure p at d from the base is  

p = Ka (γz + q) = 0.333[18.0 × (3.5 – 0.202) + 15] = 24.80 kN/m2  
At the top (z = 0).   p = 0.333[18.0 × 0 + 15] = 5 kN/m2 
Average pressure = 0.5 × (24.80 + 5.0) = 14.90 kN.m2 

At ultimate limit state using γQ = 1.5, at d from the base of the cantilever, shear 
force VEd is 

VEd = 14.90 × (3.5 – 0.202) × (γQ = 1.5) = 73.71 kN/m 
vEd = 73.71 × 103/ (1000 × 202) = 0.37 MPa 

ρ1 = Asl / (bw d) ≤ 0.02 
100 ρ1 = 100 × 1414/ (1000 × 202) = 0.70 < 2.0 

CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/202) = 1.995 ≤ 2.0, 
vRd, c = CRd, c × k × (100 × ρ1 × fck) 0.3333 ≥ (vmin = 0.035 × k1.5 × √fck) 

             = 0.12 × 1.995 × (0.70 × 30)0.3333 ≥ (vmin = 0.035 × 1.9951.5 × √30) 
                    = 0.66 ≥ 0.54 

vRd, c = 0.66 MPa > (vEd = 0.37 MPa) 
The shear stress is satisfactory. 
 
(d) Distribution steel 
Clause 9.3.1(2) of the code recommends that in slabs, secondary reinforcement of 
not less than 20% of the principal reinforcement and at a spacing less than or equal 
to 3.5 h or 400 mm whichever is lesser.   
In this case main steel is 1413 mm2/m.  20% of this value is 283 mm2/m.  10 mm 
bars at 275 mm provide a steel area of 286 mm2/m.  h = 250 mm, 3.5 h = 875 mm.   
For crack control on the outer face, provide 10 mm diameter bars at 275 mm 
centres each way.  For ease of construction it is better to provide steel fabric.  From 
Table 8.3, Chapter 8, a square mesh A393 10 mm bars at 200 mm centre both ways 
provides a steel area of 393 mm2/m. 
 
(2) Inner footing (heel slab) 
In order to determine the appropriate load factors to be used, it is necessary to 
consider the effect of gravity loads and earth pressure loads on the bending 
moment caused in the heel slab. 
     From Table 12.1, gravity loads provide:  

Vertical load = 184.40 kN, 
Moment about the Toe A = 324.31 kNm (Clockwise) 
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The centroid of the base pressure due to gravity loads only from A is at a distance 
L. 

L × 184.40 = 324.31, giving L = 1.76 m, 
Eccentricity, e = 2.85/2 – L = −0.334 

The base is acted on by a 
Vertical load = 184.40 kN 

Moment M = 184.40 × e = 61.60 kNm (clockwise) 
184.40 / (A = 2.85) = 64.70 kN/m2 

M/ (Z = 1.35) = 45.62 kN/m2 
 
On the top of the heel slab there is surcharge of 15 kN/m2 and a height of soil equal 
to 3.5 m and self weight of slab of 250 mm.  The total downward load is  

{15 + 3.5 × (γ = 18.0) + 0.25 × 25} = 84.25 kN/m2 
The bending moment on the base due to horizontal earth pressure is  

M = 87.89 kNm/m (anticlockwise) 
M/ (Z = 1.35) = 65.10 kN/m2 

The pressures due to gravity loads and horizontal earth pressure are shown in     
Fig. 12.6. 
     The net effect of gravity loads is to produce tension on the bottom of the slab 
while the base pressure due to horizontal loads produces tension on the top of the 
slab.  Therefore gravity loads are beneficial loads with a load factor of γG, inf = 1.0 
while earth pressure loads are adverse with a load factor of γQ, = 1.5 to be applied.  
Using these load factors, the base pressure at right and left ends of the base slab are 

Left end = 64.70 – 45.62 + 65.10 × 1.5 = 116.73 kN/m2 
Right end = 64.70 + 45.62 – 65.10 × 1.5 = 12.67 kN/m2 

The base pressure at the junction of the heel slab and cantilever is 
= 12.67 + (116.73 – 12.67) × (1.8/2.85) = 78.20 kN/m2 

 Fig. 12.7 shows the forces acting on the heel slab. 
 
(a) Bending design 
Referring to Fig. 12.7, moment M at the face of the wall is 

M = 0.5 × (84.25 – 12.67) × 1.82 – 0.5 × (78.20 – 12.67) × 1.8 × 1.8/3 
= 80.57 kN m/m 

k = M/ (bd2 fck) = 80.57 × 106/ (1000 × 2022 × 30) = 0.066 < 0.196 
 = 0.5[1.0 +  

k = 0.044, η = 1.0, z/d = 0.948 
As = 80.57 × 106/ (0.948 × 202 × 0.87 × 500) = 967 mm2/m 
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Fig. 12.6 Forces on the base slab due to gravity and earth pressure forces. 
 
Check for minimum steel from equation (9.1N) of the code. 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 202 mm 

As, min = 0.26× (2.9/500) × 1000 × 202 ≥ 0.0013 × 1000 × 202 
As, min = 305 mm2 

provided steel is greater than the minimum percentage of steel. 
Provide 12 mm bars at 100 mm centre.  As = 1130 mm2/m. 
 

 
 

Fig. 12.7 Pressures in kN/m2 acting on heel slab at ULS. 
 
Moment at SLS: Using unit load factors for all loads,  

Left end = 64.70 – 45.62 + 65.10 = 84.18 kN/m2 
Right end = 64.70 + 45.62 – 65.10 = 45.22 kN/m2 

The base pressure at the junction of the heel slab and cantilever is 
45.22 + (84.18 – 45.22) × (1.8/2.85) = 69.83 kN/m2 

184.40 kN 

64.70 

61.60 

45.62 

87.89 

65.10 

Moment due to gravity loads 

Moment due to earth 
pressure 

78.20 
12.67 

84.25 

1.8 
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Fig. 12.8 shows the forces acting on the heel slab. 
 

 
 

Fig. 12.8 Pressures in kN/m2 acting on heel slab at SLS. 
 
Referring to Fig. 12.8, moment M at the face of the wall is 

M = 0.5 × (84.25 – 45.22) × 1.82 – 0.5 × (84.18 – 45.22) × 1.8 × 1.8/3 
= 42.54 kN m/m 

Stress in steel at SLS = (MSLS/MULS) × (As, reqd/As, Provided) × fyd 
                                      = (42.54/80.57) × (967/1130) × (500/1.15) = 197 MPa  
Check maximum bar diameter and spacing of steel permitted.  For steel stress at 
SLS of 200 MPa and for a maximum crack width of 0.3 mm, maximum spacing 
allowed from code Table 7.3N is 250 mm and from code Table 7.2N maximum bar 
size is 25 mm.  The provided steel area satisfies both criteria. 
 
(b) Shear Check 
The base pressure at d from the junction of the heel slab and cantilever is 

= 12.67 + (116.73 – 12.67) × {(1.8 – 0.202)/2.85} = 71.02 kN/m2 
Referring to Fig. 12.7, the shear force VEd at d from the base slab-wall junction is  

VEd = {(84.25 – 12.67) – 0.5 × (71.02 – 12.67)} × (1.8 – 0.202) 
                      = 67.76 kN /m 

vEd = 67.76 × 103/ (1000 × 202) = 0.32 MPa 
ρ1 = Asl / (bw d) ≤ 0.02 

100 ρ1 = 100 × 1130/ (1000 × 202) = 0.56 < 2.0 
CRd, c = 0.18/ (γc = 1.5) = 0.12, k = 1 + √ (200/202) = 1.995 ≤ 2.0, 

vRd, c = CRd, c × k × (100 × ρ1 × fck) 0.3333 ≥ (vmin = 0.035 × k1.5 × √fck) 
               = 0.12 × 1.995 × (0.56 × 30)0.3333 ≥ (vmin = 0.035 × 1.9951.5 × √30) 

                     = 0.61 ≥ 0.54 
vRd, c = 0.61 MPa > (vEd = 0.32 MPa) 

The shear stress is satisfactory. 
 
(c) Distribution steel  
Clause 9.3.1(2) of the code recommends that in slabs, secondary reinforcement of 
not less than 20% of the principal reinforcement at a spacing less than or equal to 
3.5 h or 400 mm whichever is lesser.   
In this case main steel is 1130 mm2/m. 20% of this value is 226 mm2/m.  H10 bars 
at 325 mm provide a steel area of 242 mm2/m.  h = 250 mm, 3.5 h = 875 mm.   

84.18 
45.22 

84.25 

1.8 
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For crack control on the outer face provide H10 bars at 325 mm centres each way.  
For ease of construction it is better to provide steel fabric.  From Table 8.3, 
Chapter 8, a square mesh A393 H10 bars at 200 mm centre both ways provides a 
steel area of 393 mm2/m. 
 

 
 

Fig. 12.9 Pressures in kN/m2 acting on toe slab. 
 
(3) Outer Footing (toe slab) 
As shown in Fig. 12.6, both gravity and horizontal loads acting on the base slab 
produce tension on the bottom of the slab.  Therefore both loads are adverse and 
take a load factor of γG, sup = 1.35 and γQ = 1.50.  The only beneficial load is due to 
self weight.  Using these load factors, the base pressure at right and left ends of the 
base slab are 

Left end = (64.70 – 45.62) × 1.35 + 65.10 × 1.5 = 123.41 kN/m2 
Right end = (64.70 + 45.62) × 1.35 – 65.10 × 1.5 = 51.28 kN/m2 

The base pressure at the junction of the toe slab and cantilever 
= 51.25 + (123.41 – 51.25) × (2.85 − 0.80)/2.85 = 103.16 kN/m2 

Self weight load = 0.25 × 25 = 6.25 kN/mm2 
Fig. 12.9 shows the forces acting on the toe slab. 
 
The moment at the face of the wall is:  

M = 0.5 × (103.16 – 6.25) × 0.82 + 0.5 × (123.41 – 103.16) × 0.8 × (2/3) × 0.8 
= 35.33 kN m/m 

Reinforcement from the wall which is designed for a moment of 110.25 kNm/m 
will be anchored in the toe slab and will provide the moment steel here.  From 
Table 5.5, Chapter 5, the required anchorage length for fck = 30 MPa is 36 bar 
diameters which is equal to 36 × 12 = 432 mm.  This will be provided by the bend 
and a straight length of bar along the toe slab.   
 
Shear stress:  
The base pressure p at d from the junction of the toe slab and cantilever s 

p = 51.25 + (123.41 – 51.25) × (2.85 − 0.80 + 0.202)/2.85 = 108.27 kN/m2 
VEd = {(108.27 – 6.25) + (123.41 – 108.27) × 0.5} × (0.8 – 0.202) = 65.35 kN 

 

6.25 

103.16 123.41 

0.80 
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Fig. 12.10 Reinforcement detail in the cantilever retaining wall. 
 
The flexural steel and the dimensions of the toe slab are same as for the stem which 
is safe for shear force of 73.71 kN.  This is satisfactory.  The distribution steel is  
10 mm diameter bars at 240 mm centres. 
 
(4) Nib  
The passive earth pressure coefficient Kp = 1/Ka = 3.0.   
The earth pressures at the top and bottom of the nib are 

Top: Kp γ z = 3 × 18.0 × 0.25 = 13.5 kN/m2 
Bottom: Kp γ z = 3 × 18.0 × 0.85 = 45.90 kN/m2 

Referring to Fig. 12.5 the shear and moment in the nib using a load factor of  

H12 at 80 

H12 at 160 

Square mesh 

H12 at 100 
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γQ = 1.5 are as follows:  
V = 1.5 × (13.5 + 45.90) × 0.6/2 = 26.73kN 

M = 1.5 × {13.5 × 0.62/2 + (45.90 – 13.5) × 0.5 × 0.6 × (2/3) × 0.6} 
 = 9.48 kNm/m 

The values are quite small.  The minimum reinforcement is 305 mm2/m.  Provide 
10 mm diameter bars at 250 mm centres (As = 314 mm2/m) to lap onto the main 
wall steel.  The distribution steel is 10 mm diameter bars at 250 mm centres.   
 
Sketch of the wall reinforcement 
A sketch of the wall with the reinforcement designed above is shown in Fig. 12.10.  
Note that the reinforcement is organized to produce a 3-D cage which can be easily 
fabricated. 
 
 
12.3 COUNTERFORT RETAINING WALLS  
 
 
12.3.1 Stability Check and Design Procedure  
 
A counterfort retaining wall is shown in Fig. 12.10.  The spacing of the 
counterforts is usually made equal to the height of the wall.  The following 
comments are made regarding the design. 

 
Fig. 12.10 (a) Section: (b) back of wall. 

 
(a) Stability  
Consider as one unit a centre-to-centre length of panels taking into account the 
weight of the counterfort.  The horizontal earth acting on this unit together with the 
gravity loads must provide satisfactory resistance to overturning and sliding.  The 
calculations are made in a similar way to those for a cantilever wall.   
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Fig. 12.11 Counterfort wall: (a) Yield line pattern and reinforcement in wall; (b) yield line pattern in 
base slab; (c) reinforcement in counterfort. 

 
(b) Wall slab 
The slab is thinner than that required for a cantilever wall.  It is built in on three 
edges and free at the top.  It is subjected to a triangular load due to the active earth 
pressure.  The lower part of the wall cantilevers vertically from the base and the 
upper part spans horizontally between the counterforts.  A load distribution 
commonly adopted between vertically and horizontally spanning elements is 
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shown in Fig. 12.10.  The finite element method could also be used to analyse the 
wall to determine the moments for design.  Yield line analysis and Hillerborg’s 
strip methods are used in the example that follows. 
 
(c) Base slab 
Like the wall slab, the base slab behind the vertical wall is built-in on three sides 
and free on the fourth.  The loading is trapezoidal in distribution across the base 
due to the net effect of the weight of earth down and earth pressure under the base 
acting upwards.  As in the case of the wall slab, near the junction with the wall, the 
forces are resisted by cantilever action while away from this junction, the load is 
resisted by beam action with the strips spanning between the counterforts.  Like the 
wall slab, the moments in the base slab can be determined using yield line analysis 
or Hillerborg’s strip methods. 

 
 

Fig. 12.12 Forces acting on the structure at SLS. 
 
(d) Outer footing (toe slab) 
If provided, it is designed as a cantilever in a manner similar to cantilever retaining 
wall.   
 
(e) Counterforts  
Counterforts support the wall and base slabs and are designed as vertical 
cantilevers of varying T-beam sections.  The load on the counterforts is from the 
wall slab spanning between the counterforts.  A design is made for the section at 
the base and one or more sections up the height of the counterfort.  Link 
reinforcement must be provided between the wall slab and inner base slab and the 
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counterfort to transfer the loading.  Reinforcement for the counterfort is shown in 
Fig. 12.11(c). 
 
 
12.3.2 Example of Design of a Counterfort Retaining Wall  
 
(a) Specification  
A counterfort retaining wall has a height from the top to the underside of the base 
of 5 m and a spacing of counterforts of 5 m.  The backfill is level with the top of 
the wall.  The earth in the backfill is granular with the following properties:  

Unit weight γ = 18.0 kN/m3 
Angle of internal friction φ = 30o 

Coefficient of active earth pressure Ka = 0.333 
Coefficient of friction between the soil and concrete μ = 0.5 
Safe bearing pressure of the soil under the base = 170 kN/m2 

The construction materials are fck = 30 MPa concrete and fyk = 500 MPa 
reinforcement. 
 
(b) Trial section  
The proposed section for the counterfort retaining wall is shown in Fig. 12.12.  
Wall slab is made 180 mm thick and the counterfort and base slab are both 250 mm 
thick. 
 
(c) Stability  
Consider a 5 m length of wall centre to centre of counterforts.  The horizontal earth 
pressure at depth z is 

Ka γ z = 0.333 × 18.0 × z = 6.0 z kN/m2 
The pressure at z = 5 m is 30.0 kN/m2 

The loads are shown in Fig. 12.12.  The stability calculations are given in        
Table 12.2.  Clockwise moments are considered as positive. 
 
(i) Maximum soil pressure 
The properties of the base are as follows: 

Area A = 3.5 × 5 = 17.5 m2 
Section modulus Z = 5 × 3.52/6 = 10.21 m3 

Taking moments of all forces about the toe A, the centroid of the base pressure 
from A is at a distance L. 

L × 1613.88 = 2745.54 – 626.25, L = 1.31 m 
Eccentricity, e = 3.5/2 – L = 0.44 < 3.5/6 

No tension is developed at C. 
The base is acted on by 

Vertical load = 1613.88 kN, moment = 1613.88 × e = 705.0 kNm. 
The maximum soil pressure at A calculated for service load is  

1613.88 / (A = 17.5) + 705.0 / (Z = 10.21) = 161.27 kN/m2 < 170 kN/m2 
The minimum soil pressure calculated for service load is  

1613.88 / (A = 17.5) − 705.0 / (Z = 10.21) = 23.17 kN/m2  
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Width of base is sufficient to prevent bearing capacity failure. 
 
(ii) Stability against overturning  
The stabilizing moment due to gravity loads about the toe A of the wall has a 
partial safety factor γG, inf = 1.0 and the disturbing moment due to horizontal loads 
has a partial safety factor γQ= 1.5. 

(2745.54× 1.0 – 626.25× 1.5) = 1806 > 0 
The wall is very safe against overturning. 
 
(iii) Resistance to sliding  
The forces resisting sliding are the friction under the base.  For the wall to be safe 
against sliding  

(μ = 0.5) {1613.88× (γG, inf = 1.0)} > (γQ = 1.5) × 375.0 
806.94 > 562.5 

The resistance to sliding is satisfactory. 
 
 

Table 12.2 Stability calculations for counterfort wall (all loads characteristic) 
Type of 
Load 

Load, (kN) Distance to centroid  
from A, (m) 

Moment 
about A, 
(kNm) 

HORIZONTAL (Active earth pressure) 
Triangular 0.5 × 5 × 5 × 30.0 = 

375.00 
5/3 = 1.67 –626.25 

    
VERTICAL (Gravity) 
Wall 5 × 0.18 × (5.0 − 0.25) × 

25 =106.88 
0.18/2 = 0.09 9.62 

Base 5 × 0.25 × 3.5 × 25 = 
109.38 

3.5/2= 1.75 191.41 

Back fill (5.0 – 0.25) × (3.5 − 0.18) 
× (5.0 – 0.25) × 18.0 = 
1348.34 

0.18+(3.5 − 0.18)/2 
= 1.84 

2480.94 

Counterfort 0.5 × (3.5 − 0.18) ×  
(5.0 – 0.25) × 0.25 × 25 = 
49.28 

0.18 + (3.5 − 
0.18)/3 = 1.29 

63.57 

∑ 1613.88  2745.54 
 
 
(iv) Overall comment 
The wall section is satisfactory.  The maximum soil pressure under the base 
controls the design.   
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12.3.3 Design of Wall Slab Using Yield Line Method 
 
Mode 1 yield line mechanism 
The yield line solution is given for a square wall with a triangular load.  The yield 
line pattern for Mode 1 is shown in Fig. 12.13.  Parameter α, locating point F, 
controls the collapse pattern.  Deflection at F is Δ.  It is assumed that the slab will 
be isotropically reinforced with moment of resistance for both positive (tension on 
the outer face) and negative (tension on the earth face) being equal to m. 

 

 
 

Fig. 12.13 Mode 1 yield line pattern for wall slab. 
 
(i) Energy dissipated in the yield lines 
 
1. Rigid regions AEFD and BEFC 
Both rotate about y-axis only. 

(i) Negative yield lines: ℓy = a, my = m, θy = Δ/ (0.5a) 
(ii) Positive yield lines: ℓy = a, my = m, θy = Δ/ (0.5a) 

Energy dissipated  
E1 = 2{m × a × Δ/ (0.5a) + m × a × Δ/ (0.5a)} = 8 m Δ 

 
2. Rigid region DFC 
Rotates about x-axis only. 

(i) Negative yield lines: ℓx = a, mx = m, θx = Δ/ (αa) 
(ii) Positive yield lines: ℓx = a, mx = m, θx = Δ/ (αa) 

Energy dissipated  
E2 = {m × a × Δ/ (α a) + m × a × Δ/ (α a)} = (2/α) m Δ 
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3. Total energy dissipated  
E = E1 + E2 = (8 + 2/α) m Δ 

 
(ii) External work done 

 
 

Fig. 12.14 Rectangular region. 
 
Case 1: Rectangular region with rotation about the y-axis, Fig. 12.14.  Deflection 
is Δ at the edge L from the y-axis.   

Pressure distribution p = p2 – (p2 – p1) (y/H), rotation θy= Δ/L 
Force F on an element dx × dy = p × dx × dy 

Displacement of the force F = θy × x 
Total work done W =  

y
 

Limits for x = 0 and L, limits for y = 0 and H 

 
Carrying out the integration:   
 

 
 

Fig. 12.15 Triangular region. 
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Case 2: Triangular region with rotation about the y-axis, Fig. 12.15.  Deflection is 
Δ at the edge L from the y-axis.   

Pressure distribution p = p2 – (p2 – p1) (y/H), rotation θy= Δ/L 
Force F on an element dx × dy = p × dx ×dy 

Displacement of the force F = θy × x 
Total work done W = 

y
 

Limits for x = 0 and L, limits for y = (x/L) H and H 

 

 
Carrying out the integration,  

 
 

Fig. 12.16 Rectangular region. 
 
Case 3: Rectangular region with rotation about the x-axis, Fig. 12.16.  Deflection 
is Δ at the edge H from the x-axis.   

Pressure distribution p = p2 – (p2 – p1) (y/H), rotation θx= Δ/H 
Force F on an element dx ×dy = p × dx × dy 

Displacement of the force F = θx × y 
Total work done W =   

Limits for x = 0 and L, limits for y = 0 and H 

 
Carrying out the integration,   
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Fig. 12.17 Triangular region. 
 
Case 4: Triangular region with rotation about the x-axis, Fig. 12.17.  Deflection is 
Δ at the edge H from the x-axis.   

Pressure distribution p = p2 – (p2 – p1) (y/H), rotation θx= Δ/H 
Force F on an element dx × dy = p × dx ×dy 

Displacement of the force F = θx × y 
Total work done W =   

Limits for x = 0 and L, limits for y = 0 and (x/L) H 

 
Carrying out the integration,  
Using the above integrals, the work done in various regions can be calculated. 
 
(i) Rigid region AEGF: From Fig. 12.13, 

Substituting L = a/2, H = a (1 − α). p1 = 0 and p2= H γ 

 
(ii) Rigid region GFD: From Fig. 12.14, 

Substituting L = a/2, H = a α, p1 = (1 − α) a γ and p2= a γ 
 

(iii) Rigid region FDH: From Fig. 12.16, 
Substituting L = a/2, H = a α, p1 = (1 − α) aγ and p2= a γ 

 
 
4. Total work done W  

W = 2(W1 + W2 + W3) 
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5. Moment m 
Equating the work done by external loads to the energy dissipated at the yield 
lines,  

)14(
)46(

48

323








am  

For a maximum m, dm/dα = 0 
0)46(4)386)(14( 322    

Simplifying,  081386 32   , α = 0.483312 
m = 0.014762 γa3, 

Substituting a = 5.0 m, γ = 18.0, 
m = 33.22 kNm/m 

Using a load factor γQ on the earth pressure of 1.5 and also increasing the 
calculated moment by 10% to account for the formation of corner levers,  

m = (33.22 × 1.5) × 1.1 = 54.80 kNm/m 
 

Mode 2 yield line mechanism 
The yield line pattern for Mode 1 is shown in Fig. 12.18.  Parameter α, locating 
point F, controls the collapse pattern.  Deflections at F and E are Δ.  It is assumed 
that the slab will be isotropically reinforced with moment of resistance for both 
positive and negative being equal to m. 
 

 
 

Fig. 12.18 Mode 2 yield line pattern for wall slab. 
 
(i) Energy dissipated in the yield lines 
 
1. Rigid region AFD and BEC 
Both rotate about y-axis only. 

A 
B 
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E F 
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a 

αa αa 



Retaining walls                                                                                                                     515 

(i) Negative yield lines: ℓy = a, my = m, θy = Δ/ (α a) 
(ii) Positive yield lines: ℓy = a, my = m, θy = Δ/ (α a) 

Energy dissipated E1 is 
E1 = 2{m × a × Δ/ (α a) + m × a × Δ/ (α a)} = 4 (m/α) Δ 

 
2. Rigid region DFEC 
Rotates about x-axis only. 
                          (i) Negative yield lines: ℓx = a, mx = m, θx = Δ/a 

(ii) Positive yield lines: ℓx = 2α a, mx = m, θx = Δ/a 
Energy dissipated E2 is 

E2 = {m × a × Δ/a + m × 2 α a × Δ/a} = (2α + 1) m Δ 
 
3. Total energy dissipated 

E = E1 + E2 = {(4/α + (2 α+1)} m Δ 
 
4. Work done 
Rigid region AFD:  From Fig. 12.14, 
Substituting L = a α, H = a, p1 =0 and p2= a γ 

 
Region FDCE: Divide it into two triangles and a rectangle: 
Each triangle, from Fig. 12.17, 
Substituting L = α a, H = a, p1 = 0 and p2= a γ 

  
Rectangle, from Fig. 12.16,  
Substituting L = a (1 − 2 α), H = a, p1 =0 and p2= a γ 

 
Total work done  

W = 2(W1 + W2) + W3 =   
 
4. Moment m 
Equating the work done by external loads to the energy dissipated at the yield 
lines,  

)24(
)2(

12
am 2

23








  

For a maximum m, dm/dα = 0 
0)41)(2()24)(22( 22    

Simplifying,  
0586 2   , α = 0.697 > 0.5 

Take α = 0.5 
m = 0.013 γa3, 

Substituting a = 5.0 m, γ = 18.0, 
m = 28.13 kNm/m 
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Using a load factor γQ on the earth pressure of 1.5 and also increasing the 
calculated moment by 10% to account for the formation of corner levers,               
m = (28.13 × 1.5) × 1.1 = 46.41 kNm/m which is smaller than the value of m for 
mode 1.  Mode 1 controls design.  

 
5. Reinforcement 
Use 12 mm diameter bars and 40mm cover. 

d = 180 – 40 – 12/2= 134 mm 
According to clause 5.6.2 of Eurocode 2, plastic analysis of slabs without explicit 
check on rotation capacity can be made provided that xu/d ≤ 0.25 for fck ≤ 50 MPa 
and reinforcing steel is either Class B or Class C.  If xu/d = 0.25, 

Mu = b × 0.8 xu × fcd × (d – 0.4 xu) = 0.12 bd2 fck 
k = M/ (bd2fck) = 54.80 × 106/ (1000 × 1342 × 30) = 0.102 < 0.12 

 = 0.5[1.0 +  
k = 0.102, η = 1.0, z/d = 0.917 

As = 54.80 × 106/ (0.917 × 134 × 0.87 × 500) = 1026 mm2/m 
Check the minimum reinforcement required.  From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 134 mm 

As, min = 0.26× (2.9/500) × 1000 × 134 ≥ 0.0013 × 1000 × 132 
As, min = 202 mm2 

provided steel is greater than the minimum percentage of steel. 
Provide 12 mm bars at 100 mm centre to give a steel area of As = 1130 mm2/m. 
The same steel is provided in each direction on the outside and inside of the wall.  
The steel on the outside of the wall covers the whole area.  The points of cut-off of 
the bars on the inside of the wall may be determined by finding the size of a slab 
simply supported on three sides and one edge free that has the same ultimate 
moment of resistance m = 54.80 kNm/m as the whole wall.  This slab has the same 
yield line pattern as the wall slab. 
Taking the moment of resistance of negative yield lines as zero,  

Total energy dissipated, E = (4 + 1/α) m Δ 

Total work done, )46(
24

23 





 aW  

Equating E = W and substituting α = 0.483312 and m = 54.80 kNm/m, a = 4.69 m.  
Therefore a slab of similar shape to the clamped edge slab considered but clamped 
edges being replaced by simply supported edges and side length equal to 4.69 m 
instead of 5.0 m can carry the required load.   
In the horizontal direction, top face bars can be stopped from the sides at             
0.5 (5.0 – 4.69) + anchorage length of 36 bar diameter = 0.732 m i.e,. 750 mm say. 
In the vertical direction bars can be stopped from the base slab at                        
(5.0 – 4.69) + anchorage length of 36 bar diameter = 0.886 m i.e., 900 mm say. 
 
Maximum Spacing: Taking the moment ratio of M at ULS/M at SLS = γQ =1.5, 
the steel stress fs at SLS is given by 
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 = 263 MPa 

 
From Table 7.2N and Table 7.3N of the code, for a maximum crack width of      
0.3 mm, maximum bar size is 16 mm and maximum spacing is 175 mm.  These 
requirements are satisfied by the steel provided.    
     In the above only one mode of collapse has been investigated.  As the yield line 
method is an upper bound method other possible yield line patterns need to be 
investigated before finalizing the reinforcement. 
 
 
12.3.4 Design of Base Slab Using Yield Line Method 
 
(i) Base pressure calculation at the ultimate 
The properties of the base are:  

Area A = 17.5 m2 
Section modulus Z = 10.21 m3 

The forces at SLS per meter length are shown in Table 12.2.   
Total gravity load = 1613.88 kN, corresponding moment = 2745.54 kNm 

Earth pressure load = 375 kN (Horizontal), corresponding moment = −626.25 kNm 
Taking moments of all forces about the toe A, the centroid of the base pressure 
from A is at a distance L. 
 
Case (a): Load factor is γQ = 1.5 for earth pressure as an unfavourable load and  
γG, inf = 1.0 for gravity load as a favourable load, 

L × 1613.88× 1.0 = 2745.54 × 1.0 – 626.25 × 1.5, L = 1.12 m 
Eccentricity, e = 3.5/2 – L = 0.63 > 3.5/6. 

Tension is developed at C.   
The base is acted on by a 

Vertical load = 1613.88× 1.0 =1613.88 kN 
Moment = (1613.88× 1.0) × e = 1016.74 kNm 

The maximum soil pressure at A and minimum soil pressure at C are 
1613.88 / 17.5 ± 1016.74 / 10.21 = 191.8 and –7.40 kN/m2 

The negative pressure is very small and can be neglected. 
 
Case (b): Load factor is γQ = 1.0 for earth pressure as a favourable load and  
γG, inf = 1.35 for gravity load as an unfavourable load, 

L × 1613.88 × 1.35 = 2745.54 × 1.35 – 626.25 × 1.0, L = 1.41 m 
Eccentricity, e= 3.5/2 – L = 0.34 < 3.5/6. 

No tension develops at C. 
The base is acted on by  

Vertical load = 1613.88 × 1.35 = 2178.74 kN 
Moment = (1613.88 × 1.35) × e = 740.77 kNm 

The maximum soil pressure at A and minimum soil pressure at C are  
2178.74 /17.5 ± 740.77 / 10.21 = 197.05 and 51.95 kN/m2 
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Case (c): Load factor is γQ = 1.5 for earth pressure and γG, inf = 1.35 for gravity 
load as both are unfavourable loads, 

L × 1613.88 × 1.35 = 2745.54 × 1.35 – 626.25 × 1.5, L = 1.27 m 
Eccentricity, e= 3.5/2 – L = 0.48 < 3.5/6 

No tension develops at C. 
The base is acted on by  

Vertical load = 1613.88 × 1.35 = 2178.74 kN 
Moment = (1613.88 × 1.35) × e = 1045.79 kNm 

The maximum soil pressure at A and minimum soil pressure at C are  
2178.74 / 17.5 ± 1045.79 / 10.21 = 226.93 and 22.07 kN/m2 

 
Using Case (b) as it gives comparatively small base pressure so that the moment 
causing tension above will be large, the yield line solution is given for a 
rectangular base slab with a trapezoidal load due to base pressure on the bottom 
face and a uniform load due to self weight of the slab and soil on the slab at the top 
face.  The uniformly distributed load at the top is  

Base slab = 0.25 × 25 × 1.35 = 8.4 kN/m2 
Weight of soil = 4.75 × 18.0 × 1.35 = 115.43 kN/m2 

Total = 123.83 kN/m2 

 
 
 

Fig. 12.19 Mode 1 collapse of base slab. 
 
Two modes need to be investigated. 
 
Mode 1: The yield line pattern shown in Fig. 12.19.   
Parameter α, locating the position of point F, controls the pattern.  Deflection at F 
is Δ.  It is assumed that the slab will be isotropically reinforced with moment of 
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resistance for both positive (tension at bottom) and negative (tension at top) being 
equal to m.   
The pressure at a point distant y from the free edge is  

p = 123.83 – {51.95 + (197.05 – 51.95)y/3.5} = 71.88 – 41.46 y 
 
Energy dissipated in the yield lines:  
 
1. Rigid region AEFD and BEFC 
Both rotate about y-axis only. 

(i) Negative yield lines: ℓy = a, my = m, θy = Δ/ (0.5b) 
(ii) Positive yield lines: ℓy = a, my = m, θy = Δ/ (0.5b) 

Energy dissipated E1 is 
E1 = 2{m × a × Δ/ (0.5b) + m × a × Δ/ (0.5b)} = 8 m (a/b) Δ 

 
2. Rigid region DFC 
Rotates about x-axis only. 

(i) Negative yield lines: ℓx = b, mx = m, θx = Δ/ (α a) 
(ii) Positive yield lines: ℓx = a, mx = m, θx = Δ/ (α a) 

Energy dissipated E2 is 
E2 = {m × b × Δ/ (α a) + m × b × Δ/ (α a)} = (2b/α a) m Δ 

 
3. Total energy dissipated E 

E = E1 + E2 = {8a/b + 2b/ (α a)} m Δ 
Substituting a = 3.5, b = 5.0, total energy dissipated E = (5.6 + 2.8571/α) m Δ 
 
External work done: 
Set up the coordinate axes (x, y) with origin at A. 
Using the above integrals, the work done in various regions can be calculated. 
 
Rigid region AEGF: From Fig. 12.13, 
Substituting L = 5.0/2, H = 3.5 (1 − α). 

Pressure at any point = 71.88 – 41.46 y 
y = 0, p1 = 71.88, y = 3.5 (1 − α), p2= −73.23 + 145.11 α 

 
 
Rigid region GFD: From Fig. 12.14, 
Substituting L = 5.0/2, H = 3.5 α,  

Pressure at any point = 71.88 – 41.46 y 
y = 3.5 (1 − α),  p1= −73.23 + 145.11 α 

y = 3.5, p2= −73.23 
 

 
Rigid region FDH: From Fig. 12.16, 
Substituting L = 5.0/2, H = 3.5 α,  
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Pressure at any point = 71.88 – 41.46 y 
y = 3.5 (1 − α),   p1= −73.23 + 145.11 α 

y = 3.5, p2= −73.23 
 

 
Total work done: 

W = 2(W1 + W2 + W3) 
)82.10560.21390.5(W 2   

 
Moment m 
Equating the work done by external loads to the energy dissipated at the yield 
lines,  

)8571.26.5(
)82.10560.21390.5(m

32








  

For a maximum m, α = 1.0, m = 12.05 kNm/m 
 
Mode 2: The yield line pattern shown in Fig. 12.20.  Making the same assumptions 
as for Mode 1, the pressure p at any point y from the free edge is                             
p = 71.88 – 41.46 y 

 

 
 

Fig. 12.20 Mode 2 collapse of base slab. 
 
Energy dissipated in the yield lines: 
 
1. Rigid region AFD and BEC 
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Both rotate about y-axis only. 
(i) Negative yield lines: ℓy = a, my = m, θy = Δ/ (αb) 
(ii) Positive yield lines: ℓy = a, my = m, θy = Δ/ (αb) 

Energy dissipated E1 is 
E1 = 2{m × a × Δ/ (α b) + m × a × Δ/ (α b)} = 4m a/ (α b) Δ 

 
2. Rigid region DFEC 
Rotates about x-axis only. 

(i) Negative yield lines: ℓx = b, mx = m, θx = Δ/a 
(ii) Positive yield lines: ℓx = 2αb, mx = m, θx = Δ/a 

Energy dissipated E2 is 
E2 = {m × b × Δ/a + m × 2 αb × Δ/a} = (2α + 1) (b/a) m Δ 

 
3. Total energy dissipated 

E = E1 + E2 = {(4a/ αb + (2 α+1) (b/a)} m Δ 
Substituting a = 3.5, b = 5.0, Energy dissipated is 

E = (2.8/ α +1.4286 + 2.8571 α) m Δ 
External work done: 
Set up the coordinate axes (x, y) with origin at A. 
 
Rigid region AFD 
From Fig. 12.14, 
Substituting L = 5α, H = 3.5,  

Pressure at any point = 71.88 – 41.46 y 
y = 0, p1 =71.88, y = 3.5, p2= −73.23 

 
 
Region FDCE 
Divide it into two triangles and a rectangle: 
Each Triangle: From Fig. 12.17, 
Substituting L = 5α, H = 3.5,  

Pressure at any point = 71.88 – 41.46 y 
y = 0, p1 = 71.88, y = 3.5, p2= −73.23 

  
Rectangle: From Fig. 12.16, 

Substituting L = 5(1 − 2 α), H = 3.5, 
y = 0, p1 = 71.88, y = 3.5, p2= −73.23 

 
 
Total work done:  

W = 2(W1 + W2) + W3 =  )68.20771.205(   
4. Moment m 
Equating the work done by external loads to the energy dissipated at the yield 
lines,  
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)8571.24286.18.2(
)68.20771.205(m 2

2








  

For a maximum m, α = 0.40, m = 12.821 kNm/m 
Mode 2 gives marginally higher value of m = 12.81 kNm/m.  Increasing the 
calculated moment by 10% to account for the formation of corner levers, 

m = 12.81 × 1.1 = 14.09 kNm/m. 
 
5. Reinforcement 
Use 10 mm diameter bars and 40 mm cover. 

d = 250 – 40 – 10/2 = 205 mm 
According to clause 5.6.2 of Eurocode 2, plastic analysis of slabs without explicit 
check on rotation capacity can be made provided that xu/d ≤ 0.25 for fck ≤ 50 MPa 
and reinforcing steel is either Class B or Class C.  If xu/d = 0.25, 

Mu = b × 0.8 xu × fcd × (d – 0.4 xu) = 0.12 bd2 fck 
k = M/ (bd2fcu) = 14.09 × 106/ (1000 × 2052 × 30) = 0.011 < 0.12 

 = 0.5[1.0 +  
k = 0.011, η = 1.0, z/d = 0.99 

As = 14.09 × 106/ (0.99 × 205 × 0.87 × 500) = 160 mm2/m 
Check the minimum steel area required.  From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 134 mm 

As, min = 0.26× (2.9/500) × 1000 × 205 ≥ 0.0013 × 1000 × 205 
As, min = 309 mm2 

provided steel is less than the minimum percentage of steel. 
As most of the moment is coming from gravity loads with a load factor of  
γG, sup = 1.35, the ratio of moment at SLS/ moment at ULS ≈ 1/1.35 = 0.74.   
Stress in steel at SLS = 0.74 × (160/309) × (500/1.15) = 225 MPa. 
From Tables 7.2N and 7.3N of the code, in order to limit crack widths to 0.3 mm, 
maximum spacing is 225 mm and maximum bar size is 16 mm.  Provide 12 mm 
bars at 225 mm centre to give a steel area of As = 503 mm2/m.  The same steel is 
provided in each direction on the outside and inside of the wall.  The steel on the 
outside of the wall covers the whole area.   
 
 
12.3.5 Base Slab Design Using Hillerborg’s Strip Method 
 
Although yield line method was used in design in the previous sections, it is not the 
ideal method.  Hillerborg’s strip method offers a better alternative.  At the junction 
of the base slab with the wall slab, load is resisted by cantilever action but at a 
distance away from the base, load is resisted by clamped beam action with the slab 
spanning between the counterforts.  As shown in Fig. 12.21, the 3.5 m × 5.0 m base 
slab is divided into a set of 14 strips, each 250 mm wide.  The pressure at any level 
y from the free edge is given by the equation,  
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p = 71.88 – 41.46 y 
It is assumed that load lying in a triangle with the sides at an inclination of 
approximately 30o to the horizontal (see Fig. 12.21) is resisted by cantilever action.  
The rest of the load is resisted by horizontal clamped beam action.   

 

 
Fig. 12.21 Division of base slab into `horizontal` strips. 

 
 

 
 

Fig. 12.22 Load on `horizontal` strips. 
 
 
12.3.5.1 `Horizontal` Strips in Base Slab 
 
The `horizontal` strips span between the counterforts.  The strips towards the base 
are loaded as shown in Fig. 12.22.  The bending moment at the support and mid-
span of each strip is calculated using the equation 

Moment at support )46(,
12

2
11

2

  CCqL , 

a a 
L 

Counterforts 

Wall slab 
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Moment at mid-span 3
22

2

8,
24

 CCqL  

where q = uniformly distributed load in kN/m, L = span = 5 m, α = a/L, a = loaded 
length. 
 

Table 12.3: Bending moments (kNm/m) in horizontal strips in base slab 
Strip y p a alpha C1 C2 M-

Supp 
M-

Span 
AS-

Supp 
AS-

Span 
1 0.125 66.7 2.5 0.5 1 1 139.0 69.5 429 204 
2 0.375 56.3 2.5 0.5 1 1 117.4 58.7 356 171 
3 0.625 46.0 2.5 0.5 1 1 95.8 47.9 286 138 
4 0.875 35.6 2.5 0.5 1 1 74.2 37.1 218 106 
5 1.125 25.2 2.5 0.5 1 1 52.6 26.3 152 77 
6 1.375 14.9 2.5 0.5 1 1 31.0 15.5 89 77 
7 1.625 4.5 2.5 0.5 1 1 9.4 4.7 77 77 
8 1.875 −5.9 2.5 0.5 1 1 −12.2 −6.1 77 77 
9 2.125 −16.2 2.165 0.43 0.80 0.65 −27.0 −11.0 77 77 

10 2.375 −26.6 1.732 0.35 0.55 0.33 −30.7 −9.2 88 77 
11 2.625 −37.0 1.299 0.26 0.33 0.14 −25.8 −5.4 77 77 
12 2.875 −47.3 0.866 0.17 0.16 0.04 −15.7 −2.0 77 77 
13 3.125 −57.7 0.433 0.09 0.04 0.01 −5.1 −0.3 77 77 
14 3.375 −68.1 0 0.00 0.00 0.00 0.0 0.0 77 77 

 
Detailed calculations are shown in Table 12.3.  Fig. 12.23 shows the bending 
moment distribution in the `horizontal` strips. 
 

 
 

 
Fig. 12.23 Bending moment (kNm/m) in `horizontal` strips in base slab. 

Full line = support moment, broken line = span moment. 
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At the support, the maximum bending moment causing tension on the bottom of 
the slab is 139.0 kNm/m and the maximum bending moment at mid-span causing 
tension on the top of the slab is 69.5 kNm/m in strip 1.  Similarly, at the support 
the maximum bending moment causing tension on the top of the slab is             
30.7 kNm/m in strip 10 and the maximum bending moment causing tension on the 
bottom of the slab is 11.0 kNm/m in strip 9. 

d = 250 – 40 – 10/2 = 205 mm 
M = 139.0 kNm/m 

k = M/ (bd2fck) = 139.0 × 106/ (1000 × 2052 × 30) = 0.11 < 0.12 
 = 0.5[1.0 +  

η = 1.0, z/d = 0.91 
As = 139.0 × 106/ (0.91 × 205 × 0.87 × 500) = 1715 mm2/m 

Over a width of 250 mm, As = 1715 × 0.25 = 429 mm2 
Provide 3H16, As = 603 mm2. 
 
Check for minimum steel from equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 202 mm 

As, min = 0.26× (2.9/500) × 1000 × 205 ≥ 0.0013 × 1000 × 205 
As, min = 309 mm2/m 

Over a width of 250 mm, As = 309 × 0.25 = 77 mm2 
As most of the moment is from gravity loads,   

Moment at SLS = Moment at ULS/ (γG, sup = 1.35) 
Stress in steel at SLS = (MSLS/MULS) × (As, reqd/As, Provided) × fyd 
                                      = (1/1.35) × (429/603) × (500/1.15) = 229 MPa  
Check maximum bar diameter and spacing of steel permitted:  For steel stress at 
SLS of 240 MPa and for a maximum crack width of 0.3 mm, maximum spacing 
allowed from code Table 7.3N is 200 mm and from code Table 7.2N maximum bar 
size is 16 mm.  The provided steel area satisfies both criteria. 
Similar calculations can be done for the required steel in other strips.   
 
 
12.3.5.2 Cantilever Moment in Base Slab 
 
The cantilever moment is determined by taking a series of vertical strips.  The 
strips cantilever from the wall slab.  The cantilever moment is greatest in the 
middle vertical strip.  Pressures occur only in strips 9 to 14.  The bending moment 
M at the base of the cantilever is given by the product of the pressures on the 250 
mm wide strips and the distance from the base to the centre of the strips.  Pressures 
at the centre of strips are given in Table 12.3.  

Horizontal width of strip = 830 mm 
          M = 0.250 × {16.22 × 1.375 + 26.59 × 1.125 + 36.95 × 0.875 

      + 47.32 × 0.625 + 57.68 × 0.375 + 68.05 × 0.125} = 35.22 kNm/m 
k = M/ (bd2fck) = 35.22 × 106/ (1000 × 2052 × 30) = 0.028 < 0.196 
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 = 0.5[1.0 +  
k = 0.028, η = 1.0, z/d = 0.98 

As = 29.93 × 106/ (0.98 × 205 × 0.87 × 500) = 343 mm2/m 
H10 at 225 mm gives As = 349 mm2/m. 
Chech the minimum steel needed.  From equation (9.1N) of the code, 

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 1000 mm, d = 202 mm 

As, min = 0.26× (2.9/500) × 1000 × 205 ≥ 0.0013 × 1000 × 205 
As, min = 309 mm2/m 

provided steel is greater than the minimum percentage of steel. 
As most of the moment is from gravity loads,   

Moment at SLS = Moment at ULS/ (γG, sup = 1.35) 
Stress in steel at SLS = (MSLS/MULS) × (As, reqd/As, Provided) × fyd 

                                      = (1/1.35) × (343/349) × (500/1.15) = 317 MPa  
Check maximum bar diameter and spacing of steel permitted: 
For steel stress at SLS of 317 MPa and for a maximum crack width of 0.3 mm, 
maximum spacing allowed from code Table 7.3N is 100 mm and from code    
Table 7.2N maximum bar size is 10 mm.  Provide H10 at 100 c/c.  
Similar calculations can be done for the required steel in other strips. 
 

 
 

Fig. 12.24 Horizontal strips in vertical wall slab. 
 
 

Base slab 

Counterforts 
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12.3.6 Wall Slab Design Using Hillerborg’s Strip Method 
 
Wall design is done similar to the base design.  As the height of the wall is 5.0 m, it 
is divided into 20 strips each 250 mm wide as shown in Fig. 12.24.   
The pressure at any level y from the top is equal to 1.5 γKay, where                         
γ = 18.0 kN/m3,  Ka = coefficient of earth pressure = 0.33, load factor for earth 
pressure γQ = 1.5.  Therefore p = 9.0 y.   
It is assumed that load lying in a triangle with the sides at an inclination of 
approximately 30o to the horizontal is resisted by vertical cantilever action.   
Calculations are shown in Table 12.4 and Fig. 12.25 shows the bending moment 
distribution in the horizontal strips.  The calculation of steel in the strips is done as 
for the base.    
 

Table 12.4 Bending moment (kNm/m) in horizontal strips of vertical wall slab 
Strip y p a alpha C1 C2 Mspan M-

Supp 
AS-

Span 
As-

supp 
1 0.125 1.1 2.5 0.5 1 1 1.2 2.3 309 309 

2 0.375 3.4 2.5 0.5 1 1 3.5 7.0 309 309 

3 0.625 5.6 2.5 0.5 1 1 5.9 11.7 309 309 

4 0.875 7.9 2.5 0.5 1 1 8.2 16.4 309 309 

5 1.125 10.1 2.5 0.5 1 1 10.5 21.1 309 309 

6 1.375 12.4 2.5 0.5 1 1 12.9 25.8 309 309 

7 1.625 14.6 2.5 0.5 1 1 15.2 30.4 309 348 

8 1.875 16.9 2.5 0.5 1 1 17.6 35.1 309 403 

9 2.125 19.1 2.5 0.50 1 1 19.9 39.8 309 458 

10 2.375 21.4 2.5 0.50 1 1 22.2 44.5 309 513 

11 2.625 23.6 2.5 0.50 1 1 24.6 49.2 309 569 

12 2.875 25.9 2.5 0.50 1 1 26.9 53.9 309 625 

13 3.125 28.1 2.5 0.50 1 1 29.3 58.5 334 681 

14 3.375 30.3 2.5 0.50 1 1 31.6 63.2 362 738 

15 3.625 32.6 2.2 0.43 0.8 0.7 22.0 54.3 309 631 

16 3.875 34.8 1.7 0.35 0.6 0.3 12.1 40.2 309 462 

17 4.125 37.1 1.3 0.26 0.3 0.1 5.4 25.9 309 309 

18 4.375 39.3 0.9 0.17 0.2 0.0 1.7 13.0 309 309 

19 4.625 41.6 0.4 0.09 0.0 0.0 0.2 3.7 309 309 

20 4.875 43.8 0 0.00 0.0 0.0 0.0 0.0 309 309 
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Fig. 12.25 Bending moment (kNm/m) in the horizontal strips in the vertical wall slab. 
Full line = support moment, broken line = span moment. 

 
 
12.3.6.1 Cantilever Moment in Vertical Wall Slab 
 
The cantilever moment is greatest in the central vertical strip.   Pressures occur 
only in strips 15 to 20.  The bending moment M at the base of the cantilever is 
given by the product of the pressures at the 250 mm wide strips and the distance 
from the base to the centre of the strips. 

M = 0.250 × (32.59 × 1.375 + 34.84 × 1.125 + 37.09 × 0.875 + 39.34 × 0.625 
+ 41.58 × 0.375 + 43.83 × 0.125) = 40.53 kNm/m 

Steel required can be calculated in the same way as was done for base slab. 
 
 
12.3.7 Counterfort Design Using Hillerborg’s Strip Method 
 
The reactions from the horizontal strips of the wall slab act as horizontal forces on 
the counterfort.  At any level, the force R on the counterfort from the 250 mm wide 
strips on either side of the counterfort is (Fig. 12.17) 

R = 2 × p × a × 0.250 
This is calculated at the centre of each strip.  From the calculated value of R, shear 
force and bending moment at different levels in the counterfort can be calculated.  
The detailed calculations are shown in Table 12.5.  The distribution of shear force 
and bending moment are shown in Fig. 12.26 and Fig. 12.27.  
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Table 12.5 Shear force and bending moment in counterfort 
SF 
(kN) 

M 
(kNm) 

h 
(mm) 

d 
(mm) k z/d 

As 
(mm2) 

1.40 0.00 263 215 0 1 99 
5.62 0.35 429 381 0.0003 1.00 175 

12.64 1.76 595 547 0.0008 1.00 252 
22.48 4.92 761 713 0.0013 1.00 328 
35.12 10.54 927 879 0.0018 1.00 405 
50.57 19.32 1093 1045 0.0024 1.00 481 
68.84 31.96 1259 1211 0.0029 1.00 557 
89.91 49.17 1425 1377 0.0035 1.00 634 

113.79 71.65 1591 1543 0.0040 1.00 710 
140.48 100.10 1757 1709 0.0046 1.00 786 
169.99 135.22 1923 1875 0.0051 1.00 863 
202.30 177.71 2089 2041 0.0057 1.00 939 
237.42 228.29 2255 2207 0.0062 1.00 1016 
275.35 287.64 2421 2373 0.0068 0.99 1092 
310.63 356.48 2587 2539 0.0074 0.99 1168 
340.80 434.14 2753 2705 0.0079 0.99 1245 
364.89 519.34 2919 2871 0.0084 0.99 1321 
381.92 610.56 3085 3037 0.0088 0.99 1398 
390.93 706.04 3251 3203 0.0092 0.99 1474 
390.93 803.77 3417 3369 0.0094 0.99 1550 

 
 

 
 

Fig. 12.26 Shear force in counterfort. 
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Fig. 12.27 Bending moment in counterfort. 

 
The depth of the counterfort is 180 mm at top and increasing to 3500 mm at the 
bottom.  Assuming 40 mm cover and 16 mm bars, the effective depth at different 
levels is calculated.  The width of the counterfort is 250 mm.  The back of the 
counterfort is inclined at an angle θ to the horizontal where from Fig. 12.11, 

θ = tan−1(4750/33200) = 55o. 
At any level, the area of steel required is given by 

As = M/ (z × 0.87 × fy × sin 55) 
Note that because of the fact that the tension steel is placed parallel to the back of 
the counterfort as shown in Fig. 12.11, only the vertical component the force in the 
steel is taken into account.  The required area of steel is very small because of the 
very large effective depth of the counterfort. 
The minimum steel is calculated as  

As, min = 0.26× (fctm/fyk) × b × d ≥ 0.0013 b × d 
fctm= 0.3 × fck 

0.67 = 0.3 × 30 0.67 = 2.9 MPa, fyk = 500 MPa, 
b = 250 mm, 

As, min = 0.26× (2.9/500) × 250 × d /sin 55≥ 0.0013 × 250 × d/sin 55 
Minimum steel governs in all cases.  Table 12.5 shows the steel required at 
different levels.   4H25 will give a steel area of 1964 mm2. As shown in Fig. 12.11, 
it is essential to tie the counterfort and the wall slab together by horizontal links to 
resist the force R in tension.  Similarly, the counterforts must be anchored to the 
base slab by vertical links as shown in Fig. 12.11. 
 
 
12.4 REFERENCE 
 
Bond, Andrew and Harris, Andrew. (2008). Decoding Eurocode 7. Taylor & 
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CHAPTER 13 
 

DESIGN OF STATICALLY 
INDETERMINATE STRUCTURES 

 
 
13.1 INTRODUCTION 
 
Design of structures in structural concrete involves satisfying  

 The serviceability limit state (SLS) criteria  
 The ultimate limit state (ULS) criteria  

 
     Design for ULS is concerned with safety and this means ensuring that the 
ultimate load of the structure is at least equal to the design ultimate load.  The 
theoretical principles used in design at ULS are based on classical theory of 
plasticity which was developed for the design of steel structures with unlimited 
ductility.  Fig. 13.1 shows the moment−curvature relationship for a steel section.  
As can be seen, once the ultimate or plastic moment capacity is reached, for further 
changes in curvature and hence increasing deformation, the moment capacity is 
maintained provided that the compression flanges do not buckle.   
 

 
Fig. 13.1 Moment–curvature relationship for a steel section. 

 
Assuming that unlimited ductility can be relied upon, then according to the theory 
of plasticity, at ultimate load the state of stress has to satisfy the following three 
conditions. 
(a) Equilibrium condition: The state of stress must be in equilibrium with the 
ultimate load.  One convenient way of obtaining a set of stresses in equilibrium 
with external loads is to do an elastic analysis of a structure under a load equal to 
the ultimate load.  It does not in any way imply that the designed structure behaves 
elastically under the applied ultimate load. Theoretically it is permissible to use 
elastic analysis or any variation of it as long as the stresses are in equilibrium with 

Moment 

Curvature 
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the external loads.  The implication of this statement for the design of reinforced 
concrete structures will be discussed later.   
The Eurocode 2 permits three methods of structural analysis for the calculation of a 
set of ‘stresses’ or stress resultants like bending and twisting moments, axial and 
shear forces in equilibrium with the applied load for design at the ULS.  They are:  
 
(i) Linear elastic analysis: In clause 5.4 of the Eurocode 2 it is stated that linear 
elastic analysis may be used for the determination of ‘stresses both for ULS as well 
SLS designs.  It may be carried out assuming uncracked sections with linear 
stress−strain relationship using mean value of modulus of elasticity. 
 
(ii) Linear elastic analysis with limited redistribution: In clause 5.5 of the Eurocode 
2 this method is limited to design at ULS only.  This will be discussed in detail in 
the rest of this chapter. 
 
(iii) Plastic analysis: In clause 5.6 of the Eurocode 2 this method is limited to 
design at ULS only provided the ductility at critical sections is sufficient for the 
envisaged collapse mechanism to form.  
 
(b) Yield Condition: The state of stress must not violate the yield condition for the 
material.  This means for example, that for any combinations of bending moment 
and axial force, the capacity of the column should not exceeded the limits as 
defined by column design chart  (section 9.3, Chapter 9).  In members in framed 
structures primarily subjected to bending moment and shear forces, adequate 
reinforcement is provided such that the moment and shear capacity of the section is 
at least equal to the design forces at that section. 
 

(c) Mechanism Condition:  Sufficient yielded zones must be present to convert 
the structure in to a mechanism, indicating that there is no reserve load capacity 
left.  In the case of framed structures this means that there must be sufficient plastic 
hinges and in the case of plate structures sufficient ‘yield lines’ (Chapter 8) to 
convert the structure in to a mechanism. 

 
When using the methods based on the classical theory of plasticity to design 
structures in structural concrete, it is important to recognize the fact that unlike 
steel, reinforced concrete is a material of very limited ductility.  Fig. 13.2 shows by 
the discontinuous line the moment−curvature relationship for a reinforced concrete 
section.  After the maximum moment capacity is reached, the capacity is 
maintained for a limited increase in curvature beyond the curvature at maximum 
capacity.  For curvature beyond this value, the moment capacity decreases.  It is 
therefore necessary to ensure at no section is the curvature so large that the 
moment capacity decreases significantly before the structure collapses.   
     The need to pay attention to ductility and its effect on ultimate strength as well 
as serviceability behaviour is explained by two examples. 



Design of statically indeterminate structures                                                                       533 

 
 

Fig. 13.2 Idealized and actual moment–curvature relationship. 
 
 
13.2 DESIGN OF A PROPPED CANTILEVER 
 
Consider the design of a propped cantilever of 6 m span as shown in Fig. 13.3.  It 
is required to support at mid-span an ultimate load W equal to 100 kN.  The design 
can be carried out in several ways as follows. 
 

 
 

Fig. 13.3 Propped cantilever. 
 
(a) Design 1 based on elastic bending moment distribution 
In a propped cantilever supporting a midspan load W over a span L, from elastic 
analysis, the moments at support and mid-span are respectively 3WL/16 and 
5WL/32.  If W = 100 kN and L = 6 m, the corresponding moments are 112.5 kNm 
and 93.75 kNm respectively.  If the beam is designed for these moments, then 
assuming for simplicity that moment−curvature is elastic-perfectly plastic as 
shown by full line in Fig. 13.2, plastic hinges will form simultaneously at the 
support and mid-span sections and the beam will collapse.  Up to the collapse load, 
there is no rotation at the built-in support and the beam behaves as an elastic 
structure right up to collapse. 

Moment 

Curvature 

W 
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     Of course this is a very simplified picture as to what really happens when a 
beam is tested, because cracking and other non-linear behaviours start almost from 
the beginning and the moment−curvature is more like that shown by dotted line in 
Fig. 13.2.  However the grossly simplified elastic-perfectly assumption for 
moment−curvature relationship is sufficient for the present discussion. 
 
(b) Design 2 based on modified elastic bending moment distribution 
Instead of designing the beam using the elastic moment distribution, let the beam 
be designed for a support moment equal to 80% of elastic value of 112.5 kNm, i.e., 
90 kNm.  The moment at mid-span for equilibrium at the ultimate load is given by 
(WL/4 – support moment /2) = 100 × 6/4 – 90/2 = 105 kNm which is 112% of the 
corresponding moment of resistance at mid-span in Design 1. 
     In the elastic state, the maximum bending moment is at the support.  Since the 
design moment at the support is 90 kNm, which is only 80% of the corresponding 
elastic moment at a load of 100 kN, the first plastic hinge will form at the support 
at a load of 80 kN.  Up to the stage when the first plastic hinge forms, the beam 
behaves as an elastic propped cantilever and the rotation at the built in support is 
zero.  The moment at the mid-span is 5/32 × (80 × 6) = 75 kNm which is less than 
the moment capacity of the section which is 105 kNm.   
     For a load greater than 80 kN since a plastic hinge has formed at the support, 
the moment there cannot increase any further but moment at mid-span can increase 
until a second plastic hinge forms at mid-span and the beam collapses.  Therefore 
for the load stage from 80 kN to 100 kN, the beam behaves as if loaded by a 
concentrated load at mid-span and a support moment equal to 90 kNm.   The 
additional behaviour of the beam beyond a load of 80 kN can be computed by 
treating the beam as a simply supported beam.  During this stage, the support 
section continues to rotate.  The elastic rotation θ at the support in a simply 
supported beam of flexural rigidity EI and loaded at mid-span by a load P is given 
by  

θ = P L2/ (16 EI) 
Substituting 

P = (100 – 80) = 20 kN and L = 6, EI  = 45 
At this stage the moment at mid-span is equal to the moment capacity of 105 kNm 
and the beam collapses by the formation of plastic hinges at the support and at 
mid-span. 
     Comparing the two designs, both beams collapse by the formation of plastic 
hinges at support and at mid-span.  However in Design 1, the two plastic hinges 
form simultaneously and there was no rotation at the built in support right up to 
collapse.  However in Design 2 with the support moment capacity of only 80% of 
the elastic value as used in Design 1, the support section has to rotate from the load 
equal to 80 kN at which the first plastic hinge forms right up to collapse load of 
100 kN with the moment at the support remaining at the value of 90 kNm.  The 
support section had to undergo substantial rotation while continuing to maintain a 
moment of 90 kNm.  In other words, the section needs to have sufficient ductility 
between 80 kN to ultimate load of 100 kN to ensure that there is no decrease in 
moment capacity. 
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(c) Design 3 based on greater modification to elastic bending  
      moment distribution than Design 2 
In this case the beam is designed for a support moment of 67.5 kNm (60% of 
elastic value of 112.5 kNm).  The moment at mid-span for equilibrium at the 
ultimate load is equal to (100 × 6/4 – 67.5/2) = 116.25 kNm.  Carrying out the 
calculations as was done for Design 2, the first plastic hinge forms at the support at 
a load of 60 kN.  Up to the stage when the first plastic hinge forms, the beam 
behaves as propped cantilever and the rotation at the support is zero.  The moment 
at mid-span is 5 × 60 × 6/32 = 56.25 kNm which is less than the capacity of the 
section which is 116.25 kNm.  Since a plastic hinge has formed at the support at   
60 kN, the moment there cannot increase any further.  However, since the ultimate 
load to be supported is 100 kN, for the load stage from 60 kN to 100 kN, the beam 
behaves as if loaded by the concentrated load at mid-span and a support moment 
equal to 67.5 kNm.  Substituting P = (100 – 60) = 40 kN and L = 6, EI  = 90.  At 
this stage the moment at the mid-span also reaches a value equal to the moment 
capacity of 116.25 kNm and the beam collapses by the formation of plastic hinges 
at the support and mid-span. 
     Comparing the three designs, all three beams collapse by the formation of 
plastic hinges at support and at mid-span.  However at the stage when the load on 
the beam is at its ultimate value, the rotation  at the built in support for the three 
designs considered are EI  = 0, 45 and 90 respectively.  Thus the smaller the 
designed support moment capacity is compared with the elastic value, the larger is 
the rotation at the support.  This is shown in Fig. 13.4. 
 

 
 

Fig. 13.4 Load−support rotation relationship. 
 
     During the stage when the support is rotating from load at which first plastic 
hinge forms to ultimate load, the moment at the support has to remain constant at 
the designed value.  The larger the load range, the larger the resulting rotation and 
greater is the demand placed on the ductility of the section.  Sections that yield 
earlier in the loading history are the ones where there is the possibility of moment 
capacity reducing due to increasing curvature.  The greater the difference between 
the load at which the first plastic hinge forms and the ultimate load, the greater will 
be the required plastic hinge rotation.  It is important therefore that the difference 
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between the ultimate load and the load at which the first section yields is made as 
small as possible. 
     What the above example has demonstrated is that it is perhaps possible to 
design a structure using a bending moment distribution different from the elastic 
moment distribution, provided sufficient ductility could be assured.  Otherwise the 
assumption that the moment will remain constant during the rotation of the plastic 
hinge becomes invalid leading to unsafe design.  It is therefore desirable during 
designing that the stress distribution used in design departs from elastic stress 
distribution as little as possible. 
 
 
13.3 DESIGN OF A CLAMPED BEAM 
 
The idea that although a design might satisfy the ULS criteria, it might be 
unacceptable from an SLS point of view is demonstrated by the following 
example.  Consider the design of a beam spanning a distance L between two walls 
and subjected to a uniformly distributed load q.  Fig. 13.5 shows three bending 
moment diagrams, all of which are in equilibrium with a load of q.  From an 
ultimate limit state (ULS) point of view, one can design the beam using any one of 
the three bending moment distributions.  
 

 
 

Fig. 13.5 Alternative designs for a clamped beam. 
 
Design 1: Assume that the beam behaves as a simply supported beam.  The 
bending moment at mid-span is qL2/8.  In this case clearly only steel at the bottom 
face is required.  The moment of resistance at the support is zero and the first 
plastic hinges at the supports form at essentially zero load while the plastic hinge at 
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mid-span forms at the ultimate load.  The support hinge starts rotating right from 
the start leading to large cracks there.  While this design is satisfactory from a ULS 
point of view, it is clearly an unsatisfactory design from a serviceability limit state 
(SLS) point of view. 
 
Design 2: Assume that the beam behaves as a clamped beam.  From elastic 
analysis, bending moment at the junction with the wall is qL2/12 and at mid-span is 
qL2/24.  The plastic hinges at support and at mid-span form simultaneously.  This 
design is satisfactory from both the ULS and SLS points of view, because the 
design corresponds to the behaviour of the beam taking into account the proper 
boundary conditions. 
 
Design 3: Assume that the beam behaves as a pair of cantilevers.  Bending 
moment at the junction with the wall is qL2/8.  In this case clearly only steel at the 
top face is required.  The moment of resistance at the mid-span is zero and the first 
plastic hinge at mid-span forms at essentially zero load while the plastic hinges at 
supports form at the ultimate load.  The mid-span hinge starts rotating right from 
the start leading to large cracks there.  While this design is satisfactory from a ULS 
point of view, it is clearly an unsatisfactory design from a serviceability limit state 
(SLS) point of view. 
     As shown in Fig. 13.5, the bending moment distribution in Design 2 is the 
elastic distribution and requires both top and bottom reinforcement.  The bending 
moment distributions used in Design 1 requires only bottom reinforcement and 
Design 3 requires only top reinforcement.  They are extreme variations of the 
elastic moment distribution.  This example demonstrates the need to pay particular 
attention to both ULS and SLS aspects, keeping in mind the rather limited ductility 
available in the case of reinforced concrete sections.  Once again the example 
demonstrates that using elastic distribution of moments is likely to lead to 
satisfactory designs from both ULS and SLS points of view. 
 
 
13.4 WHY USE ANYTHING OTHER THAN ELASTIC VALUES IN  
        DESIGN? 
 
One question that naturally arises is why not simply use the elastic values of 
moments and avoid all problems of ductility?  The reason for using values of 
moments other than the elastic values is purely a matter of convenience.  Generally 
at support sections in frame structures, flat slabs and such structures there is 
considerable congestion of steel due to the fact that flexural steel in two directions 
at top and bottom of the beam or slab are required.  In addition, steel in the column 
and shear links need to be accommodated in the same congested area.  Therefore 
any reduction of steel in this zone is an advantage from the point of view of 
detailing.  Using moments at supports smaller than the elastic values helps in 
mitigating the problem.  Elastic stress fields often contain zones of stress 
concentration and it is useful to modify these stress distributions in the interests of 
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a smoothed out stress distribution which leads to a more convenient detailing of 
reinforcement. 
 
 
13.5 DESIGN USING REDISTRIBUTED ELASTIC MOMENT IN 
        EUROCODE 2  
 
Considerable experimental evidence shows that a satisfactory design can be 
obtained on the basis of reasonably small adjustments to the elastic bending 
moment distribution.  To take account of the factors that influence design using 
redistribution of elastic moments, in clause 5.5, the Eurocode 2 sets out the 
procedure for adjusting the elastic moment distribution for design.  This process is 
called moment redistribution.  This section states that a redistribution of moments 
obtained by a rigorous elastic analysis may be carried out provided that the 
following conditions hold:  
(a) Equilibrium between internal and external forces is maintained under all 
appropriate combinations of design ultimate load.  This generally means that any 
reduction in support moment should be accompanied by an increase in span 
moment.  This amounts to an increase in span moment of one half of the reduction 
in support moment. 
(b) In continuous beams and slabs which 

1. Are subjected predominantly to flexure. 
2. Have the range of lengths of adjacent spans in the range of 0.5 to 2. 
3. Redistribution should not be carried out in circumstances where the rotation 

capacity cannot be defined with confidence.  This situation occurs at 
corners in prestressed concrete frames.  

4. Redistribution of bending moments may be carried out without explicit 
check on the rotation capacity, provided that code equations (5.10a) and 
(5.10b) are satisfied. 

 
                         ) (xu/d)     for fck ≤ 50 MPa  ( 5.10a) 
                                
                        )(xu/d)      for fck > 50 MPa   (5.10b) 
                                   δ  ≥ 0.7 where Class B and Class C reinforcement is used 
                                    δ ≥ 0.8 where Class A reinforcement is used 

 
εcu2 = 0.0035 for fck ≤ 50 MPa 

εcu2 =  for fck > 50 MPa 

where  
δ =  the ratio of redistributed moment/Elastic bending moment. 
xu = the maximum depth of the neutral axis at ULS after redistribution. 
 
Table 4.5, Table 4.6 and Table 4.8 of Chapter 4 show respectively the relationship 
between δ and xu/d, z/d and k = M/ (bd2 fck) for different values of fck.   
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In general in framed structures if Class B or C reinforcements which have high 
ductility are used, then reductions of moments up to 30 percent of the elastic 
moments can be tolerated without making excessive demands on the ductility of 
the structure.  On the other hand if Class A steel is used then reductions are limited 
to 20% only.  It is worth pointing out that as demonstrated in section 13.2, ductility 
demand is increased by the use of moment values smaller than the elastic values.  
However as the ductility demand is unaffected if moments are increased above 
elastic values, there is no limit to the use of moment values larger than the elastic 
values.  In the case of flexural members, one way of ensuring that sufficient 
ductility is available is to limit the maximum depth of neutral axis as is reflected in 
equations (5.10a) and (5.10b) of Eurocode 2.  Larger reduction in moments from 
the elastic values will require smaller maximum depth of neutral axis so that 
steel yields well before concrete reaches maximum strain.   
 
 
13.6 DESIGN USING PLASTIC ANALYSIS IN EUROCODE 2  
 
According to clause 5.6.2 of the Eurocode 2, design of beams, frames can be done 
at ULS without explicit check on the rotation capacity provided the following        
conditions are all satisfied. 

(a) The area of tensile reinforcement is limited such that at any section  
xu/d ≤ 0.25 for fck ≤ 50 MPa 
xu/d ≤ 0.15 for fck ≥ 55 MPa 

(b) Reinforcing steel is either Class B or C 
(c) The ratio of moments at intermediate supports to the moments in the span 

is between 0.5 and 2. 
 
 
13.7 SERVICEABILTY CONSIDERATIONS WHEN USING 
        REDISTRIBUTED ELASTIC MOMENTS 
 
Elastic bending moment at ULS: Fig. 13.6 shows the elastic bending moment 
distribution in a uniformly loaded clamped beam.  If the ultimate design load is q, 
then from elastic analysis the bending moments at the support and mid-span are 
respectively qL2/12 and qL2/24.  The points of contraflexure are 0.211 L from the 
fixed ends.   
 
Elastic bending moment at SLS: At ULS the load factor for dead and live loads 
are respectively 1.35 and 1.5 or an average value of approximately 1.4.  The load at 
SLS is q/1.4 ≈ 0.7 q.  Since at SLS, the beam is more likely to behave elastically, 
the bending moments at SLS is 0.7 times the bending moment values calculated by 
elastic analysis at ULS. 
 
Redistributed bending moment at ULS: If the bending moments at the supports 
are redistributed by 30% when using Class B or C steel, then at ULS the bending 
moments at the support and mid-span after redistribution are respectively 
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0.7qL2/12 and (qL2/8 − 0.7qL2/12) = 1.6 qL2/24.  For this distribution of bending 
moments the points of contraflexure are 0.135 L from the fixed end.   
 
     Fig. 13.6 shows the SLS and redistributed bending moments at ULS.  Because 
of the shift in the position of contraflexure points, at certain sections in the beam 
the bending moment at SLS is larger than the redistributed bending moments at 
ULS.  During design, it is necessary to ensure that the moment of resistance is 
equal to larger of the SLS and redistributed ULS moment at the section.  Although 
Eurocode 2 does not make any recommendation about design at SLS when using 
redistributed moments, it is sensible that the resistance moment at any section 
should be at least 70 percent of the moment at that section obtained from an elastic 
maximum moments diagram covering all appropriate combinations design ultimate 
load   

 
 

Fig. 13.6 Bending moment distribution at ULS and SLS. 
 
 
13.8 CONTINUOUS BEAMS  
 
 
13.8.1 Continuous Beams in Cast-in-Situ Concrete Floors  
 
Continuous beams are a common element in cast-in-situ construction.  A 
reinforced concrete floor in a multi-storey building is shown in Fig. 13.7.  The 
floor action to support the loads is as follows:  
 

(a) The one-way slab is supported on the edge frame, intermediate T-beams 
and centre frame.  It spans transversely across the building.  

 
(b) Intermediate T-beams on line AA span between the transverse end and 

interior frames to support the floor slab.  
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(c) Transverse end frames DD and interior frames EE span across the building 
and carry loads from intermediate T-beams and longitudinal frames. 

 
(d) Longitudinal edge frames CC and interior frame BB support the floor slab.  

 
 

 
 

Fig. 13.7 Floor in a multi-storey building. 
 
     In the days when computer programs were not readily available, several 
simplified methods for the analysis of rigid-jointed frames were developed.  It is no 
longer necessary to resort to these methods. The steps in design of continuous 
beams are the same as those set out in Chapter 4, section 4.4.3 for simple beams 
except for the limit on the depth of the neutral axis depending on the amount of 
redistribution done. 
 
 
13.8.2 Loading on Continuous Beams 
 
 
13.8.2.1 Arrangement of Loads to Give Maximum Moments  
 
The loading to be applied to the continuous beam to give the most adverse 
conditions at any section along the beam can be found using qualitative influence 
lines obtained using Muller-Breslau’s principle.  It shows that in any continuous 
beam, the following two basic loading patterns need to be investigated.   
 

(a) Maximum moment in a span of a beam occurs when that span and every 
alternate span are loaded by (γG Gk + γQ Qk) and the rest of the spans by 
1.0 Gk. 



542                                                                                     Reinforced concrete design to EC 2 

(b) Maximum moment at a support in a beam occurs when spans on either 
side of the support and every alternate span are loaded by (γG Gk + γQ Qk) 
and the rest of the spans by 1.0 Gk. 

 
 
13.8.2.2 Eurocode 2 Arrangement of Loads to Give Maximum Moments  
 
In order to reduce the number of load cases to be analysed, Eurocode 2, clause 
5.1.3 prescribes the following simplified load arrangements for buildings.  
 

(a) Alternate spans are loaded with (γG Gk + γQ Qk) and the rest 
of the spans carrying γG Gk. 

(b) Any two adjacent spans are loaded with are loaded with                  
(γG Gk + γQ Qk) and the rest of the spans carrying γG Gk. 

 
 
13.8.2.3 The U.K. National Annex Arrangement of Loads to Give  
             Maximum Moments  
 
The U.K. National Annex allows the following load combinations. 

(a) Alternate spans are loaded with (γG Gk + γQ Qk) and the rest 
of the spans carrying γG Gk. 

(b) All spans are loaded with (γG Gk + γQ Qk). 
 
 
13.8.2.4 Example of Critical Loading Arrangements  
 
The total dead load on the floor in Fig. 13.7 including an allowance for the ribs of 
the T-beams, screed, finishes, partitions, ceiling and services is 6.6 kN/m2 and the 
imposed load is 3 kN/m2.  Calculate the design load and set out the load 
arrangements for the continuous T-beam on lines AA and BB.  

Gk = 3 × 6.6 = 19.8 kN/m 
Qk = 3 × 3 = 9 kN/m 

1.35 Gk + 1.5 Qk = (1.35 × 19.8) + (1.5 × 9) = 40.23 kN/m 
1.35 Gk = (1.35 × 19.8) = 26.73 kN/m 

The loading arrangements are shown in Fig. 13.8 for Eurocode 2 loading and in 
Fig. 13.9 for the U.K. National Annex loading. 
 
 
13.8.2.5 Loading from One-Way Slabs  
 
Continuous beams supporting slabs designed as spanning one-way can be 
considered to be uniformly loaded.  Fig. 13.10 shows a set of single span main 
beams spanning between the columns.  Another set of long continuous beams span 
between short beams.  The slab rests on the long beams and span in the direction of 
short beams.  Because of the fact that slabs span in one direction only, the loads on 
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the long beams are simply reactions from the slabs and can be considered to be 
uniformly distributed.  Note that some two-way action occurs at the corners of one-
way slabs.  

 
 

Fig. 13.8 Loading arrangements: Eurocode 2. 
 
 
13.8.2.6 Loading from Two-Way Slabs  
 
If the slab is designed as spanning two ways, the four edge beams assist in carrying 
the loading.  The load distribution normally assumed for analyses of the edge 
beams is shown in Fig. 13.11 where lines at 45° are drawn from the corners of the 
slab. This distribution gives triangular and trapezoidal loads on the edge beams as 
shown in the Fig. 13.11. 
The fixed end moments for the two load cases shown in Fig. 13.11(b) and           
Fig. 13.11(c) are as follows.  
 
 

40.23 40.23 26.73 

40.23 26.73 26.73 

40.23 40.23 26.73 

40.23 40.23 
26.73 
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(a) Trapezoidal load: The fixed end moments are determined by splitting the total 
load into a uniform central portion and two triangular end portions each, where W 1 
is the total load on one span of the beam, ℓx is the short span of the slab and ℓy is 
the long span of the slab. 
The fixed end moments for the two spans in the beam on AA are: 
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Fig. 13.9 Loading arrangements: The U.K. National Annex. 
 

 
 

Fig. 13.10 Floor plan of one-way spanning slabs. 

40.23 40.23 26.73 

40.23 26.73 26.73 

40.23 40.23 40.23 
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(b) Triangular load: The fixed end moments for the two spans in the beam on line 
BB in Fig. 13.11(a) is  

48
5 2

2
2

xW
M


  

where W2 is the total load on one span of the beam.  
 

 
 
 

Fig. 13.11 (a) Floor plan; (b) beam on AA; (c) beam on BB. 
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13.8.2.7 Analysis for Shear and Moment Envelopes  
 
Analyses using the matrix stiffness method can be used to find the shear forces and 
bending moments for design. 
 
 
13.9 EXAMPLE OF ELASTIC ANALYSIS OF CONTINUOUS BEAM  
 
(a) Specification  
Analyse the continuous beam for the three load cases shown in Fig. 13.8 and     
Fig. 13.9 and draw the separate shear force and bending moment diagrams.  
Construct the maximum shear force and bending moment envelopes.   
 
(b) Analysis by Stiffness method  
 
(i) Fixed end moments for the Eurocode 2 loading are:  

Case 1: Spans AB and CD: M = 40.23 × 82/12 = 214.56 kNm 
                               Span BC: M = 26.73 × 82/12 = 142.56 kNm 

Case 2: Spans AB and CD: M = 26.73 × 82/12 = 142.56 kNm 
                               Span BC: M = 40.23 × 82/12 = 214.56 kNm 

Case 3: Spans AB and BC:  M = 40.23 × 82/12 = 214.56 kNm 
                               Span CD:  M = 26.73 × 82/12 = 142.56 kNm  
                  Case 4: Span AB:  M = 26.73 × 82/12 = 142.56 kNm 
                               Spans BC and CD:  M = 40.23 × 82/12 = 214.56 kNm 
Assuming uniform flexural rigidity EI and equal spans of 8 m, the stiffness matrix 
K and the load vectors F for the four load cases are: 
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(ii) The fixed end moments for the U.K. National Annex loading are:  

Case 1: Spans AB and CD: M = 40.23 × 82/12 = 214.56 kNm 
                               Span BC: M = 26.73 × 82/12 = 142.56 kNm 

Case 2: Spans AB and CD: M = 26.73 × 82/12 = 142.56 kNm 
                               Span BC: M = 40.23 × 82/12 = 214.56 kNm 
                 Case 3: Spans AB, BC and CD:  M = 40.23 × 82/12 = 214.56 kNm 
Assuming uniform flexural rigidity EI and equal spans of 8 m, the stiffness matrix 
K and the load vectors F for the three load cases are: 
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Using clockwise moment as positive, the bending moments at the ends of a span 
are obtained from the following equations 
 

Mleft = Fixed end moment + (EI/L) {4 θLeft + 2 θRight} 
MRight = Fixed end moment + (EI/L) {2 θLeft + 4 θRight} 

 
The reactions R are given by 

Rleft = 0.5 q L + (Mleft – Mright)/L 
RRight = 0.5 q L – (Mleft – Mright)/L 

 
The shear force V and bending moment M at a section x from the left hand support 
are given by 

V = Rleft – q x 
M = Mleft – Rleft x + 0.5 q x2 

where L = span (8 m) and q = uniformly distributed loading.  
 
The results for Eurocode 2 loading are summarised in Table 13.1.  Detailed 
calculations for beam AB and beam BC are shown in Tables 13.2 and 13.3 
respectively.  The bending moment diagrams, bending moment envelope and shear 
force envelope for the four load cases are shown respectively in Fig. 13.12(a),     
Fig. 13.12(b) and Fig. 13.12(c).  

 
Fig. 13.12(a) Bending moment diagrams: Eurocode loading. 
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Table 13.1 Summary of elastic analysis: Eurocode 2 loading 
 

 Beam AB 
Cases 

Beam BC 
Cases 

 1 2 3 4 1 2 3 4 

RLeft 134 80 127 82 107 161 170 152 

RRight 188 134 195 132 107 161 152 170 
MLeft 0 0 0 0 −214 −214 −272 −200 
MRight 214 214 272 200 214 214 200 272 

MMax in 
Span 

−224 −120 −200 −126 0 139 −87 −87 

Mmax at x 3.33 3.0 3.16 3.07 4 4 4.22 3.78 
 
 

Table 13.2 Elastic moment and shear calculations for beam AB: Eurocode 2 loading 
 

x Case 1 Case 2 Case 3 Case 4 Moment Shear force 
Max. Min. Max. Min. 

0 0 0 0 0 0 0 134 80 
1 −114 −67 −107 −69 −67 −114 94 53 
2 −188 −107 −173 −110 −107 −188 54 27 
3 −221 −120 −200 −126 −120 −221 14 0 
4 −215 −107 −186 −114 −107 −215 −25 −34 
5 −168 −67 −132 −76 −67 −168 −52 −74 
6 −81 0 −38 −11 0 −81 −78 −114 
7 47 94 97 81 97 47 −105 −155 
8 214 214 272 200 272 200 −132 −195 

 
 

Table 13.3 Elastic moment and shear calculations for beam BC: Eurocode 2 loading 
 

x Case 1 Case 2 Case 3 Case 4 Moment Shear force 
Max. Min. Max. Min. 

0 214 214 272 200 272 200 170 107 
1 121 74 122 68 122 68 130 80 
2 54 −27 13 −24 54 −27 90 54 
3 14 −88 −57 −75 14 −88 49 27 
4 0 −108 −86 −86 0 −108 9 −9 
5 14 −88 −75 −57 14 −88 −27 −49 
6 54 −27 −23 13 54 −27 −54 −90 
7 121 74 68 122 122 68 −80 −130 
8 214 214 200 272 272 200 −107 −170 
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Fig. 13.12(b) Bending moment envelope: Eurocode loading. 

 

 
 

Fig. 13.12(c) Shear force envelope: Eurocode loading. 
 

 
 

Fig. 13.13(a) Bending moment diagrams. U.K. National Annex loading. 
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Fig. 13.13(b) Bending moment envelope: The U.K. National Annex loading. 

 

 
Fig. 13.13(c) Shear force envelope: The U.K. National Annex loading. 

 
 
 

Table 13.4 Summary of elastic analysis: U.K. National Annex loading 
 

 Beam AB Beam BC 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RLeft 134 80 129 107 161 161 

RRight 188 134 193 107 161 161 
MLeft 0 0 0 −214 −214 −258 
MRight 214 214 258 214 214 258 
MMax in Span  216 75 206 0 139 64 
Mmax at x  3.33 3.0 3.20 4.0 4.0 4.0 
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Table 13.5 Elastic moment and shear calculations for beam AB: U.K. National Annex loading 
x Case 1 Case 2 Case 3 Moment Shear force 

Max. Min. Max. Min. 
0 0 0 0 0 0 134 80 
1 −114 −67 −109 −67 −114 94 53 
2 −188 −107 −177 −107 −188 54 27 
3 −221 −120 −205 −120 −221 14 0 
4 −215 −107 −193 −107 −215 −27 −32 
5 −168 −67 −141 −67 −168 −54 −72 
6 −81 0 −48 0 −81 −80 −113 
7 47 94 85 94 47 −107 −153 
8 214 214 257 257 214 −134 −193 

 
Table 13.6 Elastic moment and shear calculations for beam BC: U.K. National Annex loading 

x Case 1 Case 2 Case 3 Moment Shear force 
Max. Min. Max. Min. 

0 214 214 257 257 214 161 107 
1 121 74 117 308 74 121 80 
2 54 −27 16 375 −27 81 54 
3 14 −88 −44 415 −88 40 27 
4 0 −108 −64 428 −108 0 0 
5 14 −88 −44 415 −88 −27 −40 
6 54 −27 16 375 −27 −54 −81 
7 121 74 117 308 74 −80 −121 
8 214 214 258 258 214 −107 −161 

 
The results for U.K. National Annex loading are summarised in Table 13.4.  
Detailed calculations for beam AB and beam BC are shown in Tables 13.5 and 
13.6 respectively.  The bending moment diagrams, bending moment envelope and 
shear force envelope for the four load cases are shown respectively in                 
Fig. 13.13(a), Fig. 13.13(b) and Fig. 13.13(c). 
 
 
13.10 EXAMPLE OF MOMENT REDISTRIBUTION FOR 
          CONTINUOUS BEAM  
 
As explained in section 13.4, redistribution gives a more even arrangement for the 
reinforcement, relieving congestion at supports.  It might also lead to a saving in 
the amount of reinforcement required.  
 
(a) Specification  
Referring to the three-span continuous beam analysed in section 13.7 above, 
redistribute the moments after making a 30% reduction in the maximum hogging 
moment at the interior support.  Draw the envelopes for maximum shear force and 
bending moment.  
 
(b) Moment redistribution: Eurocode 2 loading  
In the case of loading according to Eurocode 2, the maximum elastic hogging 
moment over the support B in case 3 (Table 13.4) or over the support C in case 4 is 
271.84 kNm.  If this is reduced by 30%, the hogging moment over the support is 
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0.7 × 271.84 = 190.29.  The support section is therefore designed for a moment of 
190.29 kNm.  Reducing the hogging moment increases the corresponding span 
moments. 
     The results are summarised in Tables 13.7 and detailed calculations for beams 
AB and BC are shown in Tables 13.8 and Table 13.9 respectively.  Fig. 13.14(a), 
Fig. 13.14(b) and Fig. 13.13(c) show respectively the redistributed bending 
moment diagrams, moment envelope and shear force diagrams. 
When Fig. 13.12(a) and Fig. 13.14(a) are compared, it is noted that the maximum 
hogging moment from the elastic bending moment envelope has been reduced by 
the moment redistribution.  However the maximum sagging moment from the 
elastic bending moment envelope has been increased by the moment redistribution.  
This is because any reduction in hogging moment leads to an increase in the 
sagging moment at mid-span by half that amount. As stated before, the object of 
moment redistribution is to reduce congestion of reinforcement at the supports. 

 
Table 13.7 Summary of redistributed analysis: Eurocode 2 loading 

 Beam AB Beam BC 

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 
RLeft 137 83 137 83 107 161 161 161 

RRight 185 131 185 131 107 161 161 161 
MLeft 0 0 0 0 −190 −190 −190 −190 
MRight 190 190 190 190 190 190 190 190 

MMax in 
Span 

−234 −129 −234 −129 24 132 132 132 

Mmax at x 3.41 3.11 3.41 3.11 4.0 4.0 4.0 4.0 
 

Table 13.8 Redistributed moment and shear calculations for beam AB: Eurocode 2 loading 
x Case 

1 
Case 2 Case 3 Case 4 Moment Shear force 

Max. Min. Max. Min. 
0 0 0 0 0 0 0 137 83 
1 −117 −70 −117 −70 −70 −117 97 56 
2 −194 −113 −194 −113 −113 −194 57 30 
3 −230 −129 −230 −129 −129 −230 16 3 
4 −227 −119 −227 −119 −119 −227 −24 −24 
5 −183 −82 −183 −82 −82 −183 −51 −64 
6 −99 −18 −99 −18 −18 −99 −77 −104 
7 26 73 26 73 73 26 −104 −145 
8 190 190 190 190 190 190 −131 −185 

 
Table 13.9 Redistributed moment and shear calculations for beam BC: Eurocode 2 loading 

x Case 1 Case 2 Case 3 Case 4 Moment Shear force 
Max. Min. Max. Min. 

0 191 190 190 190 191 190 161 107 
1 97 50 50 50 97 50 121 80 
2 30 −51 −51 −51 30 −51 81 54 
3 −10 −111 −111 −111 −10 −111 40 27 
4 −24 −132 −132 −132 −24 −132 0 0 
5 −10 −111 −111 −111 −10 −111 −27 −40 
6 30 −51 −51 −51 30 −51 −54 −81 
7 97 50 50 50 97 50 −80. −121 
8 190 190 190 190 190 190 −107 −161 
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Fig. 13.14(a) Redistributed bending moment diagrams: Eurocode loading. 

 
 
 

Fig. 13.14(b) Redistributed bending moment envelope: Eurocode loading. 
 

 
Fig. 13.14(c) Redistributed shear force envelope: Eurocode loading. 

 
(c) Moment redistribution: The U.K. National Annex loading  
In the case of loading according to the U.K. National Annex, the maximum elastic 
hogging moment over supports B and C  in case 3 (Table 13.6) is  257.47 kNm.  If 
this is reduced by 30 percent, the hogging moment over the support is                           
0.7 × 257.47 = 180.23.  The support section is therefore designed for a moment of 
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180.23 kNm.  Reducing the hogging moment increases the corresponding span 
moments. 

 
Table 13.10 Summary of redistributed elastic analysis: U.K. National Annex loading 

 Beam AB Beam BC 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RLeft 138 84 138 107 161 161 

RRight 184 130 184 107 161 161 
MLeft 0 0 0 −180 −180 −180 
MRight 180 180 180 180 180 180 
MMax in Span  238 133 238 34 142 142 
Mmax at x  3.44 3.16 3.44 4.0 4.0 4.0 

 
 

Table 13.11 Redistributed elastic moment and shear calculations for beam AB: The U.K. National 
Annex loading 

x Case 1 Case 2 Case 3 Moment Shear force 
Max. Min. Max. Min. 

0 0 0 0 0 0 138 84 
1 −118 −71 −118 −71 −118 98 58 
2 −196 −115 −196 −115 −196 58 31 
3 −234 −133 −234 −133 −234 18 4 
4 −232 −124 −232 −124 −232 −23 −23 
5 −189 −88 −189 −88 −189 −49 −63 
6 −106 −25 −106 −25 −106 −76 −103 
7 17 64 17 64 17 −103 −143 
8 180 180 180 180 180 −130 −184 

 
 

Table 13.12 Redistributed elastic moment and shear calculations for beam BC: The U.K. National 
Annex loading 

x Case 1 Case 2 Case 3 Moment Shear force 
Max. Min. Max. Min. 

0 180 180 180 180 180 161 107 
1 87 40 40 87 40 121 80 
2 20 −61 −61 20 −61 81 54 
3 −20 −121 −121 −20 −121 40 27 
4 −34 −142 −142 −34 −142 0 0 
5 −20 −121 −121 −20 −121 −27 −40 
6 20 −61 −61 20 −61 −54 −81 
7 87 40 40 87 40 −80 −121 
8 180 180 180 180 180 −107 −161 

 
The results are summarised in Tables 13.10 and detailed calculations for beams AB 
and BC are shown in Tables 13.11 and Table 13.12 respectively.  Fig. 13.15(a), 
Fig. 13.15(b) and Fig. 13.15(c) show respectively the redistributed bending 
moment diagrams, moment envelope and shear force diagrams. 
 
(d) Shear force envelope for design  
Redistribution of moments alters the shear force distribution.  In order to guard 
against the possibility of redistribution not occurring, for design at any section one 
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need to take the larger of the elastic and redistributed shear force.  Table 13.13 and 
Table 13.14 show the design shear envelope values for beams AB and BC 
respectively for Eurocode loading.  Tables 13.15 and Table 13.16 show the design 
shear envelope values for beams AB and BC respectively for the U.K. National 
Annex loading.  The final values for design are highlighted.  Fig. 13.14(c) and   
Fig. 13.15(c) show the corresponding shear envelope values.  
 

 
 
 

Fig. 13.15(a) Redistributed bending moment diagrams: The U.K. National Annex loading. 
 
 

 
 
 

Fig. 13.15(b) Redistributed bending moment envelope: The U.K. National Annex loading. 
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Fig. 13.15(c) Redistributed shear force envelope: U.K. National Annex loading. 

 
 

Table 13.13 Design shear envelope for beam AB: Eurocode loading 
 Redistributed Elastic Design 

x Max. Min. Max. Min. Max. Min. 
0 137 83 134 80 137 83 
1 97 56 94 53 97 56 
2 57 30 54 27 57 30 
3 16 3 14 0 16 3 
4 −24 −24 −25 −34 −25 −34 
5 −51 −64 −52 −74 −52 −74 
6 −77 −104 −78 −114 −78 −114 
7 −104 −145 −105 −155 −105 −155 
8 −131 −185 −132 −195 −132 −195 

 
 

13.14 Design shear force envelopes for beam BC: Eurocode loading 
x Redistributed Elastic Design 

Maximum Minimum Maximum Minimum Maximum Minimum 
0 161 107 170 107 170 107 
1 121 80 130 80 130 80 
2 81 54 90 54 90 54 
3 40 27 49 27 49 27 
4 0 0 9 −9 9 −9 
5 −27 −40 −27 −49 −27 −49 
6 −54 −81 −54 −90 −54 −90 
7 −80 −121 −80 −130 −80 −130 
8 −107 −161 −107 −170 −107 −170 
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Table 13.15 Design shear envelope for beam AB: The U.K. National Annex loading 
 Redistributed Elastic Design 

x Maximum Minimum Maximum Minimum Maximum Minimum 
0 138 84 134 80 138 84 
1 98 58 94 53 98 58 
2 58 31 54 27 58 31 
3 18 4 14 0 18 4 
4 −23 −23 −27 −32 −27 −32 
5 −49 −63 −54 −72 −54 −72 
6 −76 −103 −80 −113 −80 −113 
7 −103 −143 −107 −153 −107 −153 
8 −130 −184 −134 −193 −134 −193 

 
Table 13.16 Design shear force envelope for beam BC: The U.K. National Annex loading 

x Redistributed Elastic Design 

Maximum Minimum Maximum Minimum Maximum Minimum 
0 161 107 161 107 161 107 
1 121 80 121 80 121 80 
2 81 54 81 54 81 54 
3 40 27 40 27 40 27 
4 0 0 0 0 0 0 
5 −27 −40 −27 −40 −27 −40 
6 −54 −81 −54 −81 −54 −81 
7 −80 −121 −80 −121 −80 −121 
8 −107 −161 −107 −161 −107 −161 

 
 
13.11 CURTAILMENT OF BARS  
 
The curtailment of bars may be carried out in accordance with the detailed 
provisions set out in Eurocode 2, clauses 9.2.1.3.  The anchorage of tension bars at 
the simply supported ends is dealt with in clauses 9.2.1.4 of the code. The 
anchorage of bottom reinforcement at intermediate supports is dealt with in clauses 
9.2.1.5 of the code.  More details are given in sections 5.2 and 5.3 of Chapter 5. 
 
 
13.12 EXAMPLE OF DESIGN FOR THE END SPAN OF A CONTINUOUS 
          BEAM  
 
(a) Specification  
Design the end span of the continuous beam analysed in section 13.8.  The design 
is to be made for the shear forces and moments obtained after 30% redistribution 
from the elastic analysis has been made for the Eurocode 2 loading.  The shear 
force and moment envelopes are shown in Fig. 13.14. The materials are                
fck = 30 MPa and fyk = 500 MPa.  
 
(b) Design of moment steel  
The assumed beam sections for mid-span and over the interior support are shown 
in Fig. 13.16(a) and Fig. 13.16(b) respectively.  The cover for exposure class 
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XC2/XC3 from code Table 4.4N is 25 mm.  The axis distance for a fire resistance 
period of R120 from the extract from Table 2.8 shown below is about 40 mm for 
continuous beams.   
 

R 120 b = 200  
a = 45 

300 
35 

450 
35 

500 
30 

130 

 
(i) Section near the centre of the span: From Table 13.9, design moment  

M = 233.7 kNm. 
Using equations 5.7 of the Eurocode 2, calculate the effective width. 

Spacing of beams, b = 3m (See Fig. 13.7) 
Clear span ℓ1 = 8 m  

Effective span ℓ0 = 0.85 × ℓ1 = 6.8 m (See Fig. 4.10) 
b1 = b2 = 0.5 × (3000 − 250) = 1375 mm (See Fig. 4.11) 

beff, 1 = beff, 2 = 0.2 × 1375 + 0.1 × ℓ0 = 955 mm < 0.2 × ℓ0 
beff = 2 × 955 + 250 = 2160 mm 

d ≈ 450 − 25 (cover) – 10 (links) – 25/2 = 400 mm  
Axis distance = 25 + 10 + 25/2 = 48 mm (Satisfactory) 

The moment of resistance of the section when the entire flange is in compression is  
MFlange = fcd beff hf (d – hf/2) 

MFlange = (30/1.5) × 2160 × 125 × (400 – 0.5 × 125) × 10−6 = 1822.5 kNm 
M < Mflange 

The neutral axis lies in the flange.  The beam can be designed as a rectangular 
beam.   Although 30% redistribution has been done at supports, the moment in the 
span has increased.  Therefore there are no problems of rotation capacity. 
Therefore maximum value of k = 0.196. 

k = 233.7 × 106/ (30 × 2160 × 4002) = 0.023 < 0.196 

])k31(0.1[5.0
d
z




 
Substituting  η = 1, k = 0.023, z/d = 0.98

 

As = 233.7 × 106 / (0.98 × 400 × 0.87 × 500) = 1371 mm2 
Provide 3H25, As = 1473 mm2. 
Check for minimum steel:   
                                      As, min = 0.26 × (fcm/f yk) × bt d                                     (9.1N) 
 
bt = 250, fyk =  500 MPa, fcm = 0.30 × fck 0.667 = 2.9MPa, As, min = 151 mm2 
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Fig. 13.16 (a) T-beam at mid-span; (b) rectangular beam over support. 
 
The moment of resistance after stopping off one H25 bar is calculated where  

d = 400 mm, z = 0.98d and As = 981 mm2. 
The moment of resistance is  

MR = (0.87 × 500) × (0.98 × 400) × 981 × 10−6 = 167 kNm 
The design moment envelope using the data in Table 13.9 for beam AB is 

M = 137.1 x – 40.23 × x2/2 
If M = 167.0 kNm, x =1.59 m and 5.22 m from the simply supported end.   
The shift a1 in moment diagram to allow for tensile stress caused by shear is  
                                            a1 = 0.5 z cot θ                                                     (9.2) 
Taking z ≈ 0.98 d = 400mm, cot θ = 2.5, a1 = 500 mm. 
From Table 5.5, ℓbd = 36 φ = 36 × 25 = 900 mm. 
x = 1.59 – 0.5 – 0.9 = 0.19 m and x = 8.0 − 5.22 − 0.5 – 0.9= 1.38 m from the ends. 
2H25 bars are carried to the end.  According to Eurocode 2 clause 6.2.3(7), 
equation (6.18), the additional tensile force in the longitudinal reinforcement due to 
inclined cracks caused by shear is  
                                              ΔFEd = 0.5 VEd cot θ                                         (6.18) 
Taking VEd ≈ reaction – load over 1.59 m,  

At the left hand end: VEd = 137.1 kN − 40.23 × 1.59 = 73 kN, cot θ ≈ 2.5 
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3H25 
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250 

450 

3H25 
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At the right hand end: VEd = 137.1 kN − 40.23 × 5.22 = −73 kN, cot θ ≈ 2.5 
ΔFEd = 0.5 VEd cot θ = 91 kN 

Using the data from Table 5.5, bond strength fbd = 3.0 MPa, anchorage length for 
2H25 bars is  

bdreqd,bd
3 fl21091   

φ = bar diameter = 25 mm, ℓbd, reqd = 193 mm. 
This can be provided by a hook at the end of bar at the left and carrying the bars to 
the next span at the right. 
Check minimum steel using Eurocode 2 equation (9.1N):  
fcm = 0.3 × fck 0.667 = 2.9 MPa, fyk = 500 MPa, bt = 250 mm, d = 400 mm 
                                      As, min = 0.26 × (fcm/fyk) × bt d = 151 mm2                (9.1N) 
 
(ii) Section at the interior support: The beam acts as a rectangular beam at the 
support.  As 30% redistribution has been to reduce the moment at the support, from 
Table 4.8, Chapter 4, for δ = 0.7, maximum value of k = 0.102.   
The design moment from Table 13.10 is 190.32 kN m.   

k = 190.32 × 106/ (30 × 250 × 4002) = 0.159 > 0.102 
Compression reinforcement is required.  
Moment resisted without compression steel: 

Msr = 0.102 × 250 × 4002× 30 × 10−6 = 122.4 kNm 
Mcompression steel = 190.32 – 122.4 = 67.92 kNm 

Check whether compression steel yields: 
From Table 4.5, xu/d = 0.208, xu = 83 mm 

d' = 30 (cover) + 10 (link) + 25/2 = 52.5 mm 
Calculate the strain in compression steel. 

33
'

3cusc 10286.1
83

)5.5283(105.3
x

)dx(  





  

Stress in steel, f's = εsc × (Es = 200 × 103) = 257 MPa 
As' = (M – Msr)/{fs

` (d – d`)} 
As' = (190.32 – 122.4) ×106/ {257 × (400 – 52.5)} = 761 mm2 

Provide 2H25 giving A's = 982 mm2. 
Compression in concrete due to singly reinforced moment = Csr = kc bd fck 
From Table 4.7, kc = 0.1110 

Csr = kc bd fck = 0.1110 × 250 × 400 ×30 ×10−3 = 333 kN 
Csc = A's  f's =  761 × 257 × 10−3 = 195.6 kN 

T = As 0.87 fyk = Csr + Csc 
As × (500/1.15) ×10−3 = 333.0 + 195.6  

As = 1216 mm2 
Provide 3H25 giving As = 1473 mm2. 

The compression reinforcement will be provided by carrying 2H25 mid-span bars 
through to the support.  For tension reinforcement, provide 3H25. 
     The theoretical and actual cut-off points for one of the three top bars are 
determined.  The moment of resistance of the section with 2H25 bars and an 
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effective depth d = 400 mm is calculated.  Assuming that steel yields, equate the 
total tensile force T and the total compressive force C.  

T = 0.87 × 500 × 981 × 10−3 = 426.74 kN 
C = (30/1.5) × (0.8x) × 250 × 10−3 = 4x kN 

Equating T = C, x = 107 mm 
x/d = 107/400 = 0.27 > (0.208 for δ = 0.7) 

Assuming that steel does not yield and taking xu/d = 0.208, 
C = fcd × 0.8 xu × b = (30/1.5) × 0.8 × (0.208 × 400) × 250 × 10−3 = 332.8 kN 

T = fs × 981 × 10−3 = 0.981 fs kN 
Equating T = C, fs = 339 MPa 

Lever arm: z /d = 1 – 0.4 x/d =0.92 
The moment of resistance is 

MR = C z = 332.8 × (0.92 × 400) × 10−3 = 122.5 kNm 
From the data in Table 13.9, for case 1 loading, the equation for the moment is 
given by 

M = −190.3 + 184.7 x – 40.23 × x2/2 
If M = 122.5 kNm, x = 0.76 m.  Shifting the moment diagram by a1 = 0.5 m,  and 
ℓbd = 36φ = 36 ×25 = 900 mm, carry three bars to 0.76 + 0.5 + 0.9 = 2.16 m from 
the support. 

VEd = 184.7 – 40.23 × 1.26 = 134 kN 
ΔFEd = 0.5 VEd cot θ = 0.5 × 134 × 2.5= 168 kN 

Using the data from Table 5.5, bond strength fbd = 3.0 MPa, anchorage length for 
2H25 bars is  

bdreqd,bd
3 fl210168   

φ = bar diameter = 25 mm, ℓbd, reqd = 357 mm. 
As the bars are carried right to the ends, there is enough anchorage length. 

The bar cut-offs are shown in Fig. 13.17. 
 
(c) Design of shear reinforcement  
 
(i) Simply supported end: From the design shear force envelope:  
Check for maximum shear stress: From the data in Table 13.10 

VEd = 137 kN 
Using code equations (6.9), (6.6N) and (6.11bN), 
                               VRd, max = αcw × bw × z × ν1 × fcd/ (cotθ + tan θ)                    (6.9) 

fcd = 30/1.5 = 20 MPa, bw = 250 mm, z ≈ 0.9 d = 360 mm 
                    ν1 = ν = 0.6 (1 – fck/250) = 0.528, αcw = 1.0,          (6.6N) and (6.11.bN) 

V Rd, max = 950.4/ (cotθ + tan θ) kN 
Equating VEd to VRd, max 
(cotθ + tan θ) = 6.929 

cotθ = 0.3 and 6.8 both of which are outside the range. Taking cotθ =2.5 to give the 
smallest value of VRd, max = 327.7 kN > VEd. 
Section is satisfactory and shear links can be designed. 
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Fig. 13.17 Reinforcement details for the continuous beam. 
 
Shear V at d from support  

V = 143.71 – 40.23 × (d = 400) × 10−3 = 127.62 kN 
Check if shear reinforcement is needed.  Use equation (6.2a), (6.2b) and (6.6N) of 
the code. 
         V Rd, c = [CRd, c × k × (100 ρ1× fck) 0.33] bw d ≥ vmin × bw d      (6.2.a) and (6.2.b) 

CRd, c = 0.18/1.5 = 0.12, k = 1 + √ (200/d) = 1 + √ (200/400) = 1.71 < 2.0 
As = 2H25 = 982 mm2, 100 ρ1 = 100 × 982/ (250 × 400) = 0.98 < 2.0 

                            vmin = 0.035 × k1.5× fck 0.5 = 0.43 MPa                                (6.3N) 
VRd, c = (63.38 kN > 42.86) < VEd 

Shear reinforcement is needed. 
                                   VRd, s = (Asw/s) × z × fywd × cotθ                                     (6.8) 

Using H10 for links, Asw = area of two legs = 157 mm2 
z = 0.9d = 360 mm, fywd = 0.8 fywk = 0.8 × 500 = 400 MPa, cotθ = 2.5 

Equating VRd, s = VEd, s = 354 mm 
Maximum spacing s = 0.75d = 300 mm 

Using s = 300 mm, VRd, s = 150.7 kN 
                                  100 ρw = 100 × Asw/ (s × bw) = 0.21                                (9.4) 
                                  100 ρw, min = (8 ×√fck)/fyk = 0.09 < 0.21                        (9.5N) 
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(ii) Near the internal support:  From the shear force envelope, the maximum shear 
is VEd = 184.71 kN < (VRd, max = 327.7 kN) 
The shear at d = 400 mm from the support is  

V = 184.71 – 40.23 × 400 × 10−3 = 168.62 kN 
Carrying out the calculations as for end support, s = 268 mm. 
Shear capacity with links at 300mm is VRd, s = 150.7 kN. 
This shear force occurs at (184.71 – 150.7)/40.23 = 0.85 m from the support.   
Over this length link spacing can be reduced to 250 mm. Over the rest of the beam 
link spacing is 300 mm. 
According to clause 9.5.3(3), on the bottom face where the reinforcement is in 
compression the link spacing must not exceed the smaller of 20 × 25 (bar diameter) 
= 500 mm or 400 mm. Link spacing of 250 mm satisfies the requirement. 
 
(d) Deflection  
The allowable value for the span/effective depth ratio can be calculated using the 
code equations (7.16a) and (7.16b) for normal cases.  
The equations have been derived on the basis of the following assumptions: 

 The maximum stress in steel σs at SLS is 310 MPa for fyk = 500 MPa.  
The L/d from equation should be multiplied by 310/ σs where 

reqd,s

prov,s

s A
A310




 

 For flanged sections, b/bw exceeds 3, then L/d from equation should be 
multiplied by 0.8. 

 For beams and slabs other than flat slabs, where the effective span Leff 
exceeds 7 m and the beam supports partitions liable to be damaged due to 
excessive deflections, L/d values from equation should be multiplied by 
7/Leff. 

                          0
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ck'
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





            (7.16b) 

where 
L/d = limit of span/effective depth ratio 
K= a factor to account for different structural systems 

ρ0 = 10−3 × √fck 
ρ = tension reinforcement ratio to resist the maximum moment due to design  
      loads 

K = 1.3 for end span of continuous beam. 
ρ0 = 10−3 × √fck = 5.48 × 10−3 

ρ = 3H25/ (bw × d) = 1473/ (250 ×400) = 14.73 × 10−3 > ρ0 
ρ0/ρ = 0.37 

ρ' = 2H25/ (bw × d) = 982/ (250 ×400) = 9.82 × 10−3 
Note: Although the steel at top is not taken into consideration in calculating 
moment of resistance, its effect can be included when calculating deflection.   

√(ρ'/ ρ) = 0.82 
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As Provided = 3H25 = 1473 mm2, As Required = 1371 mm2 
As Provided /As Required = 1.07 

b/bw = 2160/250 = 8.64 > 3.0.  Multiply L/d calculated by 0.8 
L/d = 1.3 × [11 + 1.5 × 5.48 × 5.48/ (14.73 − 9.82) + 5.48 ×0.82/12] × 1.07 × 0.8 

L/d = 22.9 
Allowable span/d ratio = 22.9 

Actual span/d ratio 8000 / 400= 20.0 
The beam is satisfactory with respect to deflection.  
 
(e) Cracking  

1.35 Gk + 1.5 Qk = 40.23 kN/m 
Gk + Qk = 28.8 kN/m 

σs  ≈  (28.8/40.23) × 0.87 × 500/1.42 = 311 MPa ≈ 310 MPa (assumed) 
From Table 7.3N of the code, maximum bar spacing is 100 mm for a maximum 
crack width of 0.3 mm.  
The clear distance between bars on the tension faces at mid-span and over the 
support is [250 − 2 × {25 (cover) + 10(link) + 25/2}]/2 = 78 mm.  This does not 
exceed the 100 mm permitted.   
 
(f) Sketch of the beam  
A sketch of the beam with the moment and shear reinforcement and curtailment of 
bars is shown in Fig. 13.17. 
 
 
13.13 EXAMPLE OF DESIGN OF A NON-SWAY FRAME  
 
(a) Specification 
Fig. 13.18 shows a typical frame supporting a loading bay.  The frames are spaced 
at 4 m centres.  The floor consists of 250 mm thick precast slabs simply supported 
on top of beams.  The imposed load is 10 kN/m2.  The beams are 300 × 600 mm 
and columns are 300 mm × 300 mm.  The material strengths are fck= 30 MPa and 
fyk = 500 MPa.  
 
(b) Loads 
Permanent load, Gk: 

Beam self weight = 0.3 × 0.6 × 24 = 4.32 kN/m 
Precast planks: 0.125 × 4.0 × 24 = 24.00 kN/m 

Gk = 4.32 + 24.0 = 28.32 kN/m 
Imposed load, Qk:          Qk = 10 × 4 = 40 kN/m 

(1.35Gk + 1.5 Qk) = 1.35 × 28.32 + 1.5 × 40 = 98.23 kN/m 
1.0 Gk = 28.32 kN/m 
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Fig. 13.18 Non-sway rigid-jointed frame. 

 
(c) Elastic analysis 

I beams = 0.3 × 0.63/12 = 5.4 × 10−3 m4 
I columns = 0.3 × 0.33/12 = 0.675 × 10−3 m4 

Beams, I/L: = 5.4 × 10−3/3.5 = 1.5429 × 10−3 m3 
Columns, I/L: = 0.675 × 10−3/2.0 = 0.3375 × 10−3 m3 

 

 
 

Fig. 13.19 Simplified frame used in the analysis. 
 
In order to simplify the computation, the structure analysed is as shown in         
Fig. 13.19.  The cantilever CD is not included in the stiffness matrix but the 
moment induced by the cantilever on the rest of the frame in taken into account 
when computing the load vector and rotations at the joints A, B and C. 
The simplified stiffness matrix K is given by 
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The structure is analysed for the following four load cases: 
 
Case 1: (1.35Gk + 1.5 Qk) on AB and BC, 1.0 Gk on CD 

Fixed end moments AB and BC = 98.23 × 3.52/12 = 100.28 kNm 
Fixed end moment in CD = 28.32 × 1.52/2 = 31.86 kNm 

 
Case 2: 1.0 Gk on AB, (1.35Gk + 1.5 Qk) on BC and CD 
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                    Fixed end moments AB = 28.32 × 3.52/12 = 28.91 kNm 
                    Fixed end moments BC = 98.23 × 3.52/12 = 100.28 kNm 
                    Fixed end moment in CD = 98.23 × 1.52/2 = 110.51 kNm 
 
Case 3: (1.35Gk + 1.5 Qk) on AB and CD, 1.0Gk on BC 
                    Fixed end moments AB = 98.23 × 3.52/12 = 100.28 kNm 
                    Fixed end moments BC = 28.32 × 3.52/12 = 28.91 kNm 
                    Fixed end moment in CD = 98.23 × 1.52/2 = 110.51 kNm 
 
Case 4: 1.0 Gk on AB and CD, (1.4Gk + 1.6 Qk) BC 
                    Fixed end moments AB = 28.32 × 3.52/12 = 28.91 kNm 
                    Fixed end moments BC = 98.23 × 3.52/12 = 100.28 kNm 
                    Fixed end moment in CD = 28.32 × 1.52/2 = 31.86 
 
The load vectors for the four cases are 
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The displacement vectors for the four cases are 
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Table 13.17 Summary of elastic analysis 

 Case 1 Case 2 Case 3 Case 4 
MBA 141 66 84 80 
MBC −138 −72 −66 −90 
MCB 43 111 88 49 
MCD –32 –111 –111 –32 
MBE −3 7 −19 11 
MCF −11 −1 23 −17 
Axial: BE 411 229 239 256 
Axial: CF 187 330 203 203 

 
The results are summarised in Table 13.17 to Table 13.20.  The elastic bending 
moment diagrams, the moment envelope and shear force envelope for beam AB 
are shown in Fig. 13.20(a), Fig. 13.20(b) and Fig. 13.20(c) respectively.  The 
elastic bending moment diagrams, the moment envelope and shear force envelope 
for beam BC are shown in Fig. 13.21(a), Fig. 13.21(b) and Fig. 13.21(c)   
respectively. 

 
 

 



Design of statically indeterminate structures                                                                       567 

Table 13.18 Summary of elastic analysis: End moments and reactions 
 

 Beam AB Beam BC 

Case 
1 

Case 
2 

Case 
3 

Case 
4 

Case 1 Case 2 Case 3 Case 4 

RLeft 132 31 148 27 138 72 66 90 
RRight 212 68 196 72 43 111 88 49 
MLeft 0 0 0 0 199 161 43 184 
MRight 141 66 84 80 145 183 56 160 
MMax in Span  −88 −17 −111 −13 −64 −59 33 −82 
Mmax at x  1.34 1.09 1.50 1 2.03 1.64 1.52 1.87 

 
 

Table 13.19 Elastic moment and shear calculations for beam AB 
 

x Case 1 Case 2 Case 3 Case 4 Moment Shear force 
Max. Min. Max. Min. 

0.0 0. 0 0 0 0 0. 148 27 
0.5 −54 −1 −62 −10 −10 −62 99 13 
1.0 −83 −17 −99 −13 −13 −99 50 −2 
1.5 −87 −14 −111 −8 −8 −111 1 −16 
2.0 −67 −5 −99 3 3 −99 −26 −65 
2.5 −22 12 −63 21 21 −63 −40 −114 
3.0 47 35 −1 47 47 −1 −54 −163 
3.5 141 66 84 80 141 66 −68 −212 

 
 
 

Table 13.20 Elastic moment and shear calculations for beam BC 
 

x Case 1 Case 2 Case 3 Case 4 Moment Shear force 
Max. Min. Max. Min. 

0.0 138 72 66 90 138 66 199 43 
0.5 51 4 48 10 51 4 150 29 
1.0 −12 −39 37 −45 37 −45 101 15 
1.5 −50 −58 33 −75 33 −75 52 1 
2.0 −64 −53 36 −81 36 −81 3 −36 
2.5 −53 −23 46 −62 46 −62 −28 −85 
3.0 −17 32 64 −19 64 −19 −42 −134 
3.5 43 111 88 49 111 43 −56 −183 
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Fig. 13.20(a) Elastic bending moment diagrams: Beam AB. 

 

 
 

Fig. 13.20(b) Elastic bending moment envelope: Beam AB. 

 
Fig. 13.20(c) Elastic shear force envelope: Beam AB. 
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Fig. 13.21(a) Elastic bending moment diagrams: Beam BC. 

 
Fig. 13.21(b) Elastic bending moment envelope: Beam BC. 

 
 

Fig. 13.21(c) Elastic shear force envelope: Beam BC. 
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(d) Redistribution 
 
(i) Beam CD 
The maximum moment MCD at the root of the cantilever is 110.51.  Since CD is a 
cantilever, this moment cannot be reduced.   
 
(ii) Beam AB 
The support moment MBA = 141.02 from case 1 is the largest value of hogging 
moment considering all load cases and can be reduced  to 110.51, the moment at 
the root of the cantilever.  The percentage reduction is  

(1 – 110.51/141.02) = 21.6% 
The redistributed support moments are as follows. 
                Case 1: MBA = 110.51 (changed from elastic value of 141.02) 
                Case 2: MBA = 65.78 (Unchanged from elastic value) 
                Case 3: MBA = 110.51 (changed from elastic value of 84.31) 
                Case 4: MBA = 110.51 (changed from elastic value of 79.50) 
Note that in case 3 and case 4, the support moment has been increased.  This will 
result in a reduction in span moment. 
 
(iii) Beam BC 
Hogging moment MBC = 138.27 from case 1 can also be reduced to 110.51 so that 
the same top steel over the column BE serves for both moments MBA and MBC.   
Elastic moment MCB from case 2 is 117.62 and this can be reduced also to 110.51 
so that the same top steel over the column CF for both moments MCB and MCD.  
The redistributed moments are as follows. 
   Case 1: MBC = 110.51 (changed from elastic values of 138.27), MCB = 43.10 
   Case 2: MBC = 110.51, MCB = 110.51 (changed from elastic values of 72.32 
                 and 111.36 respectively) 
   Case 3: MBC = 110.51, MCB = 110.51 (changed from elastic values of 65.49  
                 and 87.95 respectively) 
   Case 4: MBC = 110.51(changed from elastic value of 90.05), MCB = 48.47  
 
Note that at support C, in cases 1 and 4, no redistribution has been done.  The 
reason for this is that the moment in the cantilever is small.  If the support moment 
MCB is raised to 110.51, then it will result in a very large moment in column CF.   
 
The results of redistribution are shown in Table 13.21 to Table 13.23. The 
redistributed bending moment diagrams, the moment envelope and shear force 
envelope for beam AB are shown in Fig. 13.22(a), Fig. 13.22(b) and Fig. 13.22(c) 
respectively.  The redistributed bending moment diagrams, the moment envelope 
and shear force envelope for beam BC are shown in Fig. 13.23(a), Fig. 13.23(b) 
and Fig. 13.23(c) respectively. 
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Table 13.21 Summary of redistributed elastic analysis: End moments and reactions 
 Beam AB Beam BC 

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

RLeft 140 31 140 18 191 172 50 190 
RRight 204 68 204 81 153 172 50 154 
MLeft 0 0. 0 0 111 111 111 111 
MRight 111 66 111 111 43 111 111 49 

MMax in 
span −100 −17 −100 −6 −76 −40 67 −73 

Mmax at x 1.43 1.09 1.43 0.64 1.95 1.75 1.75 1.93 
 
 

                         Table 13.22 Redistributed elastic moment and shear calculations for beam AB 
x Case 1 Case 2 Case 3 Case 4 Moment Shear force 

Max. Min. Max. Min. 
0.0 0 0 0 0 0 0 140 18 
0.5 −58 −12 −58 −6 −6 −58 91 4 
1.0 −91 −17 −91 −4 −4 −91 42 −10 
1.5 −100 −14 −100 5 5 −100 −7 −25 
2.0 −84 −5 −84 21 21 −84 −26 −56 
2.5 −44 12 −44 44 44 −44 −40 −105 
3.0 21 35 21 74 74 21 −54 −154 
3.5 111 66 111 111 111 66 −68 −204 

 
 

Table 13.23 Redistributed elastic moment and shear calculations for beam BC 
x Case 1 Case 2 Case 3 Case 4 Moment Shear force 

Max. Min. Max. Min. 
0.0 111 111 111 111 111 111 191 50 
0.5 27 37 89 28 89 27 142 35 
1.0 −32 −12 75 −30 75 −32 93 21 
1.5 −66 −37 68 −63 68 −66 44 7 
2.0 −75 −37 68 −72 68 −75 −5 −25 
2.5 −60 −12 75 −57 75 −60 −21 −74 
3.0 −21 37 89 −16 89 −21 −35 −123 
3.5 43 111 111 49 111 43 −50 −172 

 
 

Fig. 13.22(a) Redistributed bending moment diagrams for beam AB. 
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Fig. 13.22(b) Redistributed bending moment envelope for beam AB. 
 

 
Fig. 13.22(c) Redistributed shear force envelope for beam AB. 

 

 
 

Fig. 13.23(a) Redistributed bending moment diagrams for beam BC. 



Design of statically indeterminate structures                                                                       573 

 
Fig. 13.23(b) Redistributed bending moment envelope for beam BC. 

 

 
Fig. 13.23(c) Redistributed shear force envelope for beam BC. 

 
(e) Design moment envelopes 
The design maximum (or minimum) value of bending moment at a section is 
obtained as follows. 
The maximum (or minimum) moment value at a section is obtained by considering 
all load cases.  For a particular load case the values to be considered are: 

 If there is no redistribution, then the elastic moment value 
 If there is redistribution then the larger of 0.7 × elastic value  or the 

corresponding redistributed moment value. 
The design moment envelopes for beams AB and BC are shown in Fig. 13.24 and 
Fig. 13.25 respectively.  The results are summarised in Table 13.24 and           
Table 13.25 for beam AB and beam BC respectively. 
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Fig. 13.24 Design bending moment envelope for beam AB. 

 
 

Fig.13.25 Design bending moment envelope for beam BC. 

 
 

Fig. 13.26 Design shear force envelope for beam AB. 
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Fig. 13.27 Design shear force envelope for beam BC. 
 
 

Table 13.24 Design bending moment and shear force: Beam AB 
 Bending Moment Shear force 

x Max Min Max Min 
0 0 0 148 18 

0.5 −6 −58 99 4 
1.0 −4 −91 50 −10 
1.5 5 −100 1 −25 
2.0 21 −84 −26 −65 
2.5 44 −44 −40 −114 
3.0 74 −1 −54 −163 
3.5 111 46 −68 −212 

 
 

Table 13.25 Design bending moment and shear force: Beam BC 
 Bending Moment Shear force 

x Max Min Max Min 
0 111 46 199 43 

0.5 89 3 150 29 
1.0 75 −32 101 15 
1.5 68 −66 52 1 
2.0 68 −75 3 −36 
2.5 75 −60 −21 −85 
3.0 89 −21 −35 −134 
3.5 111 30 −50 −183 
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(f) Design of moment steel 
 
(i) Section near the centre of span AB 
Assuming 20 mm bars and a cover of 30 mm and 8 mm diameter shear links 

d = 600 – 20/2 – 8 – 30 = 552 mm 
Maximum redistributed moment from the design moment envelope is 100.23 kNm 
at approximately 1.5 m from left hand support from Case 3. 
     The corresponding moment before redistribution is 111.21 kNm. 

δ = 100.23/111.21 = 0.90 
As there is a decrease in the redistributed moment from the corresponding elastic 
value, it is necessary to check the maximum depth of neutral axis depth xu 
permitted.  From code equation (5.10a),  

δ ≥ 0.44 + 1.25 xu/d, xu/d ≤ 0.37 
Substituting xu/d = 0.37, as a singly reinforced section, the maximum moment 
allowable is  

MSR = fcd × b × 0.8 xu × (d – 0.4 xu) = 0.168 bd2 fck 
k = 100.51 × 106/ (300 × 5522 × 30) = 0.037 < 0.168 

No compression steel is required. 

])31(0.1[5.0
cc

k
d
z



 
Substituting αcc = 1, η = 1, k = 0.037, z/d = 0.97

 

As = 110.51 × 106 / (0.97 × 552 × 0.87 × 500) = 475 mm2 
Provide 3H16, As = 603 mm2. 
 
(ii) Section over support B 
Maximum redistributed moment from the design moment envelope is 100.51 kNm 
from Case 1.  The corresponding moment before redistribution is 141.02 kNm. 

δ = 100.51/141.02 = 0.71 
As there is a decrease in the redistributed moment from the corresponding elastic 
value, it is necessary to check the maximum depth of neutral axis depth xu 
permitted.  From code equation (5.10a),  

δ ≥ 0.44 + 1.25 xu/d, xu/d ≤ 0.22 
Substituting xu/d = 0.37, as a singly reinforced section, the maximum moment 
allowable is  

MSR = fcd × b × 0.8 xu × (d – 0.4 xu) = 0.107 bd2 fck 
k = 100.51 × 106/ (300 × 5522 × 30) = 0.037 < 0.107 

No compression steel is required. 

])k31(0.1[5.0
d
z



 
Substituting k = 0.037, z/d = 0.97

 

As = 110.51 × 106 / (0.97 × 552 × 0.87 × 500) = 475 mm2 
Provide 3H16, As = 603 mm2. 
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(iii) Section near the centre of span BC 
Maximum redistributed moment from the design moment envelope from Case 1 is 
75.50 kNm at approximately 2.0 m from left hand support.  The corresponding 
moment before redistribution is 81.88 kNm from Case 4.  The moment after 
redistribution has decreased.   Following the steps for Beam AB,  

δ = 75.50/81.88 = 0.92 
As there is a decrease in the redistributed moment from the corresponding elastic 
value, it is necessary to check the maximum depth of neutral axis depth xu 
permitted.  From code equation (5.10a),  

δ ≥ 0.44 + 1.25 xu/d, xu/d ≤ 0.38 
Substituting xu/d = 0.37, as a singly reinforced section, the maximum moment 
allowable is  

MSR = fcd ×b × 0.8 xu × (d – 0.4 xu) = 0.172 bd2 fck 
k = 75.50 × 106/ (300 × 5522 × 30) = 0.028 < 0.172 

No compression steel is required. 

])k31(0.1[5.0
d
z



 
Substituting k = 0.037, z/d = 0.98

 

As = 75.50 × 106 / (0.98 × 552 × 0.87 × 500) = 321 mm2 
Provide 2H16, As = 402 mm2. 
 
(iv) Section over support C 
Maximum redistributed moment from the design moment envelope is 110.51 kNm 
for Case 2.  The corresponding moment before redistribution is 111.36 kNm. 
Following the steps for Beam AB,  

δ = 110.51/111.36 = 0.99 
As there is a decrease in the redistributed moment from the corresponding elastic 
value, it is necessary to check the maximum depth of neutral axis depth xu 
permitted.  From code equation (5.10a),  

δ ≥ 0.44 + 1.25 xu/d, xu/d ≤ 0.44 
Substituting xu/d = 0.37, as a singly reinforced section, the maximum moment 
allowable is  

MSR = fcd ×b × 0.8 xu × (d – 0.4 xu) = 0.193 bd2 fck 
k = 100.51 × 106/ (300 × 5522 × 30) = 0.037 < 0.193 

No compression steel is required. 

])31(0.1[5.0
cc

k
d
z



 
Substituting αcc = 1, η = 1, k = 0.037, z/d = 0.97

 

As = 100.51 × 106 / (0.97 × 552 × 0.87 × 500) = 432 mm2 
Provide 3H16, As = 603 mm2. 
 
     By rationalizing the steel area calculations, for simplicity, provide 3H16 at both 
top and bottom for the beams including the cantilever. 
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Check minimum and maximum steel areas: 
Maximum steel provided is 3H16 = 603 mm2. 
Minimum. steel provided is 2H16 = 402 mm2 

fck = 30 MPa, fctm = 2.9 MPa, fyk = 500 MPa, bt = 300 mm, d = 532 mm 
                       As, min = 0.26 × (fctm /fyk) × bt d = 241 mm2                             (9.1N) 
                       As, max = 0.04 Ac = 0.04 × 300 × 600 = 7200 mm2 
Steel provided satisfies the required limitations. 
 
(g) Design shear envelopes 
Design shear force is the larger of the elastic and redistributed values.  The design 
shear force envelopes for beams AB and BC are shown in Fig. 13.26 and            
Fig. 13.27 respectively.  The results are also shown in Table 13.26 and Table 13.27 
for beams AB and BC respectively. 
 
(h) Design of shear reinforcement 
Using the data from Table 13.24 and Table 13.25, calculate shear forces at             
d = 552 mm from the face of the column/support, 
Beam AB:  
At end A: Elastic value = 147.81 – 98.23 × 0.552 = 93.59 (Case 3) 
                Redistributed value = 140.23 – 98.23 × 0.552 = 86.01 (Cases 1 and 3) 
At end B: Elastic value = 212.19 – 98.23 × 0.552 = 157.97 (Case 1) 
                Redistributed value = 203.48 – 98.23 × 0.552 = 149.26 (Cases 1 and 3) 
 
Beam BC:  
At end B: Elastic value = 199.10 – 98.23 × 0.552 = 144.88 (Case 1) 
                Redistributed value = 191.16 – 98.23 × 0.552 = 136.94 (Case 2) 
At end C: Elastic value = 183.05 – 98.23 × 0.552 = 128.83 (Case 1) 
                Redistributed value = 171.90 – 98.23 × 0.552 = 117.68 (Case 2) 
 
Check for maximum shear stress: From the data in Table 13.10 

Maximum VEd = 157.97 kN at end B for beam AB. 
Using code equations (6.9), (6.6N) and (6.11.bN) 
                            VRd, max = αcw × bw × z × ν1 × fcd/ (cotθ + tan θ)                    (6.9) 

fcd = 30/1.5 = 20 MPa, bw = 300 mm, z ≈ 0.9 d = 497 mm, αcw = 1.0  
                      ν1 = ν = 0.6 (1 – fck/250) = 0.528,                                                (6.6N)  

V Rd, max = 1574.9/ (cotθ + tan θ) kN 
Equating VEd to VRd, max 
(cotθ + tan θ)   = 9.98 

cotθ = 0.10 and 9.88 both of which are outside the range. Taking cotθ =2.5 to give 
the smallest value of VRd, max = 543.1 kN > VEd. 
Section is satisfactory and shear links can be designed. 
 
Check whether shear reinforcement is needed:  
Use equation (6.2a), (6.2b) and (6.6N) of the code. 
As the tension and compression steel is 3H16 over the entire span, a common value 
of VRd, c can be calculated which is applicable over the entire span. 
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              V Rd, c = [CRd, c × k × (100 ρ1× fck) 0.33] bw d ≥ vmin × bw d                  (6.2a) 
CRd, c = 0.18/1.5 = 0.12, k = 1 + √ (200/d) = 1 + √ (200/552) = 1.60 < 2.0 

As = 3H216 = 603 mm2, 100 ρ1 = 100 × 603/ (300 × 552) = 0.36 < 2.0 
                        vmin = 0.035 × k1.5× fck 0.5 = 0.43 MPa                                    (6.3N) 

VRd, c = (70.28 kN > 64.25) < VEd 
Shear reinforcement is needed. 
                                     VRd, s = (Asw/s) × z × fywd × cotθ                                   (6.8) 
Using H8 for links, Asw = area of two legs = 101 mm2. 

z = 0.9d = 497 mm, fywd = 0.8 fywk = 0.8 ×500 = 400 MPa, cotθ = 2.5 
VRd, s = 49964/s 

Equating VRd, s = VEd, calculate, s. 
Maximum spacing s = 0.75 d = 414 mm. 

 
Table 13.26 Spacing of links 

 Beam AB Beam BC 
End A End B End B End C 

VEd 93.59 157.97 144.88 128.83 
s, mm 534 316 345 388 

 
     By rationalizing the link spacings calculated, for simplicity, provide 8 mm 
diameter two leg links at 300 mm c/c throughout the beams including the 
cantilever. 
                         ρw = Asw/(s × bw) =   101/(300 × 300) = 1.12 × 10−3                   (9.4) 
                                     ρw, min =0.08 √fck/fyk = 0.876 × 10−3                            (9.5N) 
 
(i) Deflection  
Over the entire span, tension and compression steel is provided by 3H16.   
As = As' = 603 mm2. 

ρ = ρ' = 100 × 603/ (300 × 552) = 0.36% 
The allowable value for the span-to-effective depth ratio can be calculated using 
the code equations (7.16a) and (7.16b) for normal cases.  

                        02
3
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
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


       (7.16a) 

Substituting  
K = 1.3 for end span of continuous beam. 

ρ0 = 10−3 × √fck = 0.548% 
ρ0/ρ = 1.522 

As Provided = 3H25 = 1473 mm2, As Required = 1371 mm2 
As Provided /As Required = 1.07 

L/d = 1.3 × [11 + 1.5 × 5.48 × 1.522 + 3.2 × 5.48 × (1.522 − 1)1.5] 
L/d = 39.2 

(i) Beam AB 
As required = 475 mm2, As provided = 603 mm2 
Allowable L/d = 39.2 × 603/475 = 49.8 

Actual L/d = 3500 / 522= 6.7 
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The beam is satisfactory with respect to deflection.  
 
(ii) Beam BC 

As required = 321 mm2, As provided = 603 mm2 
Allowable L/d = 39.2 × 603/321 = 73.6 

Actual L/d = 3500 / 522= 6.7 
The beam is satisfactory with respect to deflection.  
 
(iii) Cantilever CD 
K = 0.3 for a cantilever 

L/d = 0.3 × [11 + 1.5 × 5.48 × 1.522 +3.2 × 5.48 × (1.522 − 1)1.5] 
L/d = 9.05 

As required = 475 mm2, As provided = 603 mm2, 
Allowable L/d = 9.05 × 603/475 = 11.5 

Actual L/d = 1500 / 522= 2.9 
The cantilever is satisfactory with respect to deflection.  
 
(j) Cracking  
Taking the stress in bars at SLS as approximately fyd divided by an average load 
factor equal to (1.35 + 1.5)/2 = 1.42, the stress is the bars is equal to                  
0.87 × 500/1.42 = 306 MPa.  From Table 7.3N of the code, maximum bar spacing 
is 100 mm for a maximum crack width of 0.3 mm.  
The clear distance between bars on the tension faces at mid-span and over the 
support is  

(300 – 2 × 30 (cover) – 2 × 8 (link) – 16)/2 – 16 = 88 mm 
The beam is satisfactory with respect to crack control.  
 
(k) Column design 
Table 13.27 shows the values of axial load N and moment M at the top of the 
columns for the four cases considered.  The values are shown both for elastic 
analysis as well as for the redistributed analysis.  The figures in brackets are        
M/ (bh2) and N/ (bh) using b = h = 300 mm. 
 

Table 13.27 Axial force and moments in columns 
  Case 1 Case 2 Case 3 Case 4 

Elas. Redis Elas. Redis Elas. Redis Elas. Redis 
BE N 411 

(4.6) 
395 
(4.4) 

229 
(2.5) 

240 
(2.7) 

239 
(2.7) 

253 
(2.8) 

256 
(2.8) 

271 
(3.0) 

M 2.8 
(0.1) 

0 
(0) 

6.5 
(0.2) 

36 
(1.3) 

18.8 
(0.7) 

0 
(0) 

10.6 
(0.4) 

0 
(0) 

CF N 187 
(2.1) 

195 
(2.2) 

330 
(3.7) 

319 
(3.5) 

203 
(2.3) 

197 
(2.2) 

203 
(2.3) 

197 
(2.3) 

M 0.6 
(0) 

11.2 
(0.4) 

36.0 
(1.3) 

0 
(0) 

59.4 
(2.2) 

0 
(0) 

6.0 
(0.2) 

16.6 
(0.6) 

 
Check whether the column is short: 
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Column BE: 300 mm square, ℓ = 2000 mm, NEd = 411 kN,  
n = 411 × 103/ (3002 × 20) = 0.228 

k1 = 0 at E as E is clamped. 
θ/M = 0.25 ×(L/I)BC + 0.333 ×(L/I)BA = 0.25/1.5429 + 0.33/1.5429 = 0.378 

k2 = 0.378 × (I/L) BC = 0.378 × 0.3375 = 0.128 
ℓ0= 0.5 ℓ × √[1 + 0.128/(0.45 + 0.128)] = 0.552 ℓ = 1104 mm 

i = √(I/A) = √{3004/[12 × 3002]} = 87 mm 
λ = ℓ0/i = 12.7 

λmin = 20 × (A = 0.7) × (B = 1.1) × (C = 0.7)/√0.228 = 22.6 
Column is short.  
 
Column CF: 300 mm square, ℓ = 2000 mm, NEd = 330 kN,  

n = 411 × 103/ (3002 × 20) = 0.183 
k1 = 0 at F as F is clamped 

θ/M = 0.25 ×(L/I)CB  = 0.25/1.5429 = 0.162 
k2 = 0.162 × (I/L) CF = 0.162 × 0.3375 = 0.055 

ℓ0= 0.5 ℓ × √[1 + 0.055/(0.45 + 0.055)] = 0.526 ℓ = 1053 mm 
i = √(I/A) = √{3004/[12 × 3002]} = 87 mm 

λ = ℓ0/i = 12.1 
λmin = 20 × (A = 0.7) × (B = 1.1) × (C = 0.7)/√0.228 = 22.6 

Column is short.  
 

 
 

Fig. 13.28 Column design chart. 
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The column design chart shown in Fig. 13.28 for fck = 30 MPa, fyk = 500 MPa and 
d/h = 0.95 shows that only minimum steel equal to Asc/ (bh) = 0.4% is required. 
Asc = (0.4/100) × 3002 = 360 mm2.  Provide one H12 bar in each corner.   
Asc = 452 mm2.  Provide 6 mm diameter links spaced at 20 × H12 =240 mm c/c 
(see clause 9.5.3 of the Eurocode 2). 
 
 
13.14 APPROXIMATE METHODS OF ANALYSIS  
 
In the examples of continuous beam and non-sway frame analysed in the previous 
sections, the relative flexural rigidity EI was assumed in order to carry out the 
elastic analysis.  In the case of statically indeterminate structures, information 
about the relative stiffness of members is required before analysis can be carried 
out.  In many cases experience can be used to guess at the relative size of members.  
However it is convenient to have approximate methods of analysis which allow a 
designer to estimate the relative stiffness of members.  Approximate methods of 
analysis convert a statically indeterminate structure into a statically determinate 
structure by assuming the position of points of contraflexure.  This enables the 
determination of inevitably approximate values of bending moment and shear 
forces in the structure without the need to know the relative stiffness of members. 
 
 
13.14.1 Analysis for Gravity Loads 
 
Analysis for gravity loads is done by assuming the points of contraflexure in the 
individual beams.  
 

 
Fig. 13.29 Bending moment diagrams: (a) clamped beam; (b) propped cantilever. 

 
     If a beam is continuous at both ends, its behaviour will be between the 
behaviour of a clamped beam at one extreme and that of a simply supported beam 
at the other extreme.  As shown in Fig. 13.29(a), in a clamped beam of span L 
subjected to a uniformly distributed load q, the contraflexure points are at 0.21 L 
from the ends.  The support and mid-span moments are respectively, qL2/12 and 
qL2/24.  In the corresponding simply supported beam, the points of zero moment 

Clamped beam 

Simply 
supported 
beam 

Simply 
supported 
beam 

Propped 
cantilever 
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are at the support and the moment at mid-span is qL2/8.  Assuming the position of 
contraflexure at approximately at 0.1 L from the ends,  

Mid-span moment = q (0.8L) 2/8 = 0.64 (qL2/8) 
Support moment =q (0.1L) 2/2 + 0.4qL × 0.1L = 0.36 (qL2/8) 

     If a beam is continuous at one end only, its behaviour will be between the 
behaviour of a propped cantilever at one extreme and that of a simply supported 
beam at the other extreme.  As shown in Fig. 13.29(b), in a propped cantilever of 
span L clamped at the right hand end and subjected to a uniformly distributed load 
q, the contraflexure point is at 0.25 L from the clamped end.  The support and mid-
span moments are respectively, qL2/8 and qL2/16.  In the corresponding simply 
supported beam, the points of zero moment are at the support and the moment at 
mid-span is qL2/8.  Assuming the position of contraflexure at approximately     
0.15 L from the ends,  

Span moment = q (0.85L) 2/8 = 0.723 (qL2/8) 
Support moment = q (0.15 L) 2/2 + 0.5 × 0.85 all × 0.15 L = 0.60 (qL2/8) 

     The following two examples show how these values can be used to analyse 
beams subjected to uniformly distributed loading. 
 
 
13.14.2 Analysis of a Continuous Beam for Gravity Loads 
 
Fig. 13.30 shows a three-span continuous beam. The beam spans are 8 m each.  
Assuming the position of contraflexure points, the beams are analysed for the four 
cases of loading as shown in Fig. 13.8. 
It is given that 1.35Gk+1.5Qk = 40.23 kN/m and 1.35 Gk = 26.73 kN/m.   
 
Case 1: End beams carry 40.23 kN/m and central span carries 26.73 kN/m. 
End spans: 

Support moment = 0.60 × 40.23 × 82/8 = 193 kNm 
Span moment = 0.723 × 40.23 × 82/8 = 223 kNm. 

Central span: 
Support moment = 0.36 × 26.73 × 82/8 = 77 kNm 
Span moment = 0.64 × 26.73 × 82/8 = 137 kNm 

 
Case 2: End spans carry 26.73 kN/m and central span carries 40.23 kN/m. 
End spans: 

Support moment = 0.60 × 26.73 × 82/8 = 128 kNm 
Span moment = 0.723 × 26.73 × 82/8 = 155 kNm 

Central span: 
Support moment = 0.36 × 40.23 × 82/8 = 116 kNm 

Span moment = 0.64 × 40.23 × 82/8 = 206 kNm 
 
Case 3: First and second beams carry 40.23 kN/m and end span carries 26.73 
kN/m. 
First span: 

Support moment = 0.60 × 40.23 × 82/8 = 193 kNm 
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                          Span moment = 0.723 × 40.23 × 82/8 = 223 kNm. 
Central span: 

Support moment = 0.36 × 40.23 × 82/8 = 116 kNm 
Span moment = 0.64 × 40.23 × 82/8 = 206 kNm 

Last span: 
Support moment = 0.60 × 40.23 × 82/8 = 193 kNm 

                          Span moment = 0.723 × 40.23 × 82/8 = 223 kNm. 
 
Case 4: First span carries 26.73 kN/m and the second and last spans carry 
             40.23 kN/m. 
First span: 

Support moment = 0.60 × 26.73 × 82/8 = 128 kNm 
Span moment = 0.723 × 26.73 × 82/8 = 155 kNm 

Central span: 
Support moment = 0.36 × 40.23 × 82/8 = 116 kNm 

Span moment = 0.64 × 40.23 × 82/8 = 206 kNm 
Last span: 

Support moment = 0.60 × 40.23 × 82/8 = 193 kNm 
                          Span moment = 0.723 × 40.23 × 82/8 = 223 kNm. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.30 Approximate bending moment distribution. 
 
     From the above analyses, the support needs to be designed for approximately 
193 kNm and the mid-span for 223 kNm.  Exact elastic analysis assuming uniform 

Case 1 

Case 2 

Case 3 
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flexural rigidity shows that the maximum support moment is 272 kNm and span 
moment in end spans is 220 kNm.   
 
 
13.14.3 Analysis of a Rectangular Portal Frame for Gravity Loads 
 
Fig. 13.31 shows a single bay portal frame subjected to gravity loads on the beam. 
The bending moment distribution can be obtained by assuming the points of 
contraflexure in the beam.  The moment at the tops of the columns will be the same 
as in the beam.  If the columns are fixed at the base, then the moment at the base of 
columns is half that of the moment at the top of columns. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.31 Rectangular portal frame. 
 
 
13.14.4 Analysis for Wind Loads by Portal Method  
 
Analysis of portal frames for the wind load is made for the whole frame assuming 
points of contraflexure at the mid-height of columns and at mid-span of beams.  In 
the portal method the horizontal shear force in each storey is assumed to be divided 
between the bays in proportion to their spans.  The shear force in each bay is then 
divided equally between the columns.  The column end moments are the column 
shear force multiplied by one-half the column height.  Beam moments balance the 
column moments.  The method is considered to be applicable to building frames of 
regular geometry up to 25 storeys high with a height-to-width ratio of less than 
five.  Variations in beam spans and column heights should be small.  The 
application of the method is shown by the analyses of the frame for wind loads 
shown in Fig. 13.32.  The dimensions of the frame are: 

Widths of bays: Bay 1 = L, Bay 2 = 2 L. 
Column heights: Top storey = 2h, middle storey = 1.5 h and bottom storey = h. 

 
Shear force Q in top storey = 1.5 W 

Shear force Q in bottom storey = 1.5 W + 2.5 W = 4.0 W 
Shear force Q in bottom storey = 1.5 W + 2.5 W + 3.5 W = 7.5 W 
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Total shear force Q in any storey is shared by the two bays in proportion to their 
widths.  Bay 1 = Q/3, Bay 2: = 2Q/3. 
 
The shear force in any bay is shared equally between the two columns of the bay. 

Shear force in left column = 0.5 (Q/3) = Q/6 
Shear force in middle column = 0.5(Q/3 + 2Q/3) = 0.5Q 

Shear force in right column = 0.5(2Q/3) = Q/3 
 
The bending moment M at the top and bottom of columns in any storey is given by 

M = shear force in the column × (height of column /2) 
Top storey: 

Left column: M = (Q/6) × h/2 = Qh/12 
Middle column: M = (Q/2) × h/2 = Qh/4 
Right column: M = (Q/3) × h/2 = Qh/6 

Middle storey: 
Left column: M = (Q/6) × 1.5 h/2 = Qh/8 

Middle  column: M = (Q/2) × 1.5 h/2 = 3Qh/8 
Right column: M = (Q/3) × 1.5 h/2 = Qh/4 

Bottom storey: 
Left column: M = (Q/6) × 2.0 h/2 = Qh/6 

Middle  column: M = (Q/2) × 2.0 h/2 = Qh/2 
Right column: M = (Q/3) × 2.0 h/2 = Qh/3 

 
Table 13.28 shows the shear force and bending moments in the columns. 
 

 
 

Fig. 13.32 Rigid-jointed frame subjected to lateral loads. 
 
(b) Bending moments in beams 
As shown in Fig. 13.33, the bending moments at the ends of the left beam are equal 
to the sum of the bending moments at the ends of the columns on the left of the 
connecting beam.  Similarly the bending moments at the ends of the right beam are 
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equal to the sum of the bending moments at the ends of the columns on the right of 
the connecting  beam.  Table 13.29 shows the bending moments in the beams.    
Fig. 13.34 shows the bending moment distribution in the frame. 
 

Table 13.28 Shear forces and bending moment in columns 
 Shear in storey  

Q/W 
Shear in columns/W Moment in columns/(Wh) 

Left Middle Right Left Middle Right 
Top 1.5 0.25 0.75 0.50 0.125 0.375 0.25 

Middle 1.5 + 2.5 = 4.0 0.67 2.0 1.33 0.50 1.50 1.0 
Bottom 4.0 + 3.5 = 7.5 1.25 3.75 2.5 1.25 3.75 2.5 

 
Table 13.29 Moments in beams 

Location Left beam Right beam 
Top storey 0.125 Wh 0.25 Wh 
Middle storey 0.625 Wh 1.25 Wh 
Bottom storey 1.75 Wh 3.50 Wh 

 
 

Table 13.30 Axial forces in columns 
Level Beam moments/(Wh) Reactions × (L/Wh) Axial force in column × 

(L/Wh) 
Beam-
Left 

Beam-
Right 

Beam-
Left 

Beam-
Right 

Left and right columns 

Top 0.125 0.25 0.25 0.25 0.25 
Middle 0.625 1.25 1.25 1.25 0.25+1.25 

= 1.50 
Bottom 1.75 3.50 3.50 3.50 0.25+1.25+3.50 

=5.0 
 

 
 

Fig. 13.33 Moments at joints and in beams. 
 
(c) Axial forces in columns 
As shown in Fig. 13.34, from the bending moments in the beams, reactions R at the 
ends of the beam is given by 

R = 2 × bending moments/span. 
From the reactions in the beam, axial forces in the columns can be determined.   
     Table 13.30 shows the axial forces in columns.  Note that the axial force in the 
middle column is zero and the axial force in the left column is tensile while in the 
right column it is compressive. 
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(d) Axial forces in beams 
As shown in Fig. 13.35, by considering at joints equilibrium in the horizontal 
direction of shear forces in the columns and the axial forces in the beams, axial 
forces in beams can be determined.  Table 13.31 shows the axial forces in beams.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.34 Bending moment distribution in the frame. 
 

 
Fig. 13.35 Axial force in beams. 

 
Table 13.31 Axial forces in beams 

 Load at 
joint/W 

Shear columns/W Axial force in beam/W 
Left Right Beam-Left Beam-right 

Top 1.5 0.25 0.5 1.5 – 0.25 = 1.25 0.5 
Middle 2.5 0.67 1.33 2.5 + 0.25 – 0.67 = 

2.08 
1.33 – 0.5 = 0.83 

Bottom 3.5 1.25 2.5 3.5 + 0.67 – 1.25 = 
2.92 

2.5 – 1.33 = 1.17 
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CHAPTER 14 
 

REINFORCED CONCRETE FRAMED 
BUILDINGS 

 
 
14.1 TYPES AND STRUCTURAL ACTION  
 
Commonly used single-storey and medium-rise reinforced concrete framed 
structures are shown in Fig. 14.1.  Tall multi-storey buildings are discussed in 
Chapter 15.  Only cast-in-situ rigid-jointed frames are dealt with, but the structures 
shown in the figure could also be precast. 
 
     The loads are transmitted by roof and floor slabs and walls to beams and to rigid 
frames and through the columns to the foundations.  In cast-in-situ buildings with 
monolithic floor slabs, the frame consists of flanged beams and rectangular 
columns.  However, it is common practice to base the analysis on the rectangular 
beam section, but in the design for sagging moments the flanged section is used.  If 
precast slabs are used the beam sections are rectangular. 
 
     Depending on the floor system and framing arrangement adopted, the structure 
may be idealized into a series of plane frames in each direction for analysis and 
design.  Such a system where two-way floor slabs are used is shown in Fig. 14.2; 
the frames in each direction carry part of the load.  In the complete three-
dimensional frame, torsion occurs in the beams and biaxial bending in the columns.  
These effects are small and it is usually only necessary to design for the maximum 
moment about the critical axis.  In rectangular buildings with a one-way floor 
system, the transverse rigid frame across the shorter plan dimension carries the 
load.  Such a frame is shown in the design example in section 14.5. 
 

 
 

Fig. 14.1 (a) Single storey; (b) multi-storey. 
 
Resistance to horizontal wind loads is provided by: 
 

1. In braced structures by shear walls, lift shaft and stairs  
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2. In unbraced structures by bending of rigid-jointed frames  
 
The analysis for combined shear wall, rigid frame systems is discussed in Chapter 
15.   
     In multi-storey buildings, the most stable arrangement is obtained by bracing 
with shear walls in two directions.  Stairwells, lift shafts, permanent partition walls 
as well as specially designed external shear walls can be used to resist the 
horizontal loading.  Shear walls should be placed symmetrically with respect to the 
building axes.  If this is not done the shear walls must also be designed to resist the 
resulting torque.  The concrete floor slabs act as large horizontal diaphragms to 
transfer loads at floor levels to the shear walls.  For economic reasons, the overall 
stability of a multi-storey building should not depend on unbraced frames alone.  
Shear walls in a multi-storey building are shown in Fig. 14.2.  
     Foundations for multi-storey buildings may be separate pad or of strip type.  
However, rafts or composite raft and basement foundations are more usual.  For 
raft type foundations the column base may be taken as fixed for frame analysis.  
The stability of the whole building must be considered and the stabilizing moment 
from dead loads should prevent the structure from overturning. 
     Separate pad type foundations should only be used for multi-storey buildings if 
foundation conditions are good and differential settlement will not occur.  For 
single-storey buildings, separate foundations are usually provided and, in poor soil 
conditions, pinned bases can be more economical than fixed bases.  The designer 
must be satisfied that the restraint conditions assumed for analysis can be achieved 
in practice.  If a fixed base settles or rotates, a redistribution of moments occurs in 
the frame. 
 
 
14.2 BUILDING LOADS  
 
The load on buildings is due to dead, imposed, wind, dynamic, seismic and 
accidental loads.  Normally multi-storey buildings for office or residential purposes 
are designed for dead, imposed and wind loads.  Earthquake loads are considered 
in earthquake-prone areas.  The design is checked and adjusted to allow for the 
effects of accidental loads.  The types of loads are discussed briefly. 
 
 
14.2.1 Dead Load  
 
Dead load is due to the weight of roofs, floors, beams, walls, columns, floor 
finishes, partitions, ceilings, services etc.  The load is estimated from assumed 
section sizes and allowances are made for further dead loads that are additional to 
the structural concrete. 
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14.2.2 Imposed Load  
 
Imposed load depends on the occupancy or use of the building and includes 
distributed loads, concentrated loads, impact, inertia and snow.  Loads for all types 
of buildings are given in BS EN 1991-1-4: 2002  Eurocode 1: Actions on 
Structures.  General actions. Densities, self weight, imposed loads for buildings. 
 
 

 
Fig. 14.2 (a) Plan; (b) rigid transverse frame; (c) side elevation; (d) column; (e) T-beam. 

 
 
14.2.3 Wind Load 
 
Wind load on buildings is estimated in accordance with BS EN 1991-1-4: 2005 + 
A1:2010  Eurocode 1: Actions on Structures.  General actions. Wind actions and 
UK National Annex to Eurocode 1: Actions on Structures. General actions. Wind 
actions. 
For full details and a worked example see section 10.3.4 of Chapter 10.  The 
following is a summary of the basic factors to be included in wind load calculation.     
Wind loads should be calculated for lateral and longitudinal directions to obtain 
loads on frames or shear walls to check the stability in each direction.  In 
asymmetrical buildings it may be necessary to investigate wind from all directions.   
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14.2.3 .1 Wind Load Calculated Using the U.K. National Annex  
 
The following is a very brief summary of calculations steps using the U.K. 
National Annex. 
 
Step 1: The basic wind velocity vb is calculated from the wind code equation (4.1) 
as 
                                      vb = Cdir × Cseason × vb,0                                                (4.1) 
Conservatively, direction factor Cdir and season factor Cseason can both be taken as 
1.0 

vb = 1.0 × 1.0 × vb,0 = vb,0 
 
Step 2: The fundamental value of the basic wind velocity vb,0 is given by the 
National Annex equation( NA.1) as 
                                             vb, 0 = vb, map × Calt                                             (NA.1) 
vb,map = fundamental basic wind velocity in m/s given in the map  for the United 
Kingdom given in the National Annex in Fig. NA.1. 
Calt = altitude correction factor. 
 
Step 3: Conservatively, Calt for any building height is given by National Annex 
equation (NA.2a) as  
                                         Calt = 1 + 0.001 × A                                            (NA.2a) 
A = Altitude of the site in meters above sea level. 
 
Step 4: The basic velocity pressure qb is given by the wind equation (4.10) as  
                                        qb = 0.5 ×ρ × vb

2 N/m2                                             (4.10) 
ρ = density of air taken as 1.226 kg/m3. 
 
Step 5: The peak wind pressure qp(z) is given by National Annex equation 
(NA.3b)  for sites in town terrain by 
                                             qp(z) = ce(z) × ce,T × qb                                    (NA.3b) 
 
Step 6: Exposure factor ce(z) is calculated from Fig. NA.7.  Exposure correction 
factor ce,T is calculated from Fig. NA.8. 
 
Step 7: The total pressure coefficient cf is the sum of external pressure coefficient 
cpe and internal pressure coefficient cpi.  The values of the pressure coefficients are 
calculated from Table 7.1 of the wind code.  The total wind load is given by 

wk = qp(z) × cf 
 
 
14.2.3 .2 Wind Load Calculated Using the Eurocode 
 
The following is a very brief summary of calculations steps using the Eurocode. 
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Step 1: The mean wind velocity vm(z) at a height above the terrain is given by the 
wind code equation (4.3) as  
                                  vm(z) = cr(z) × c0(z) × vb                                                  (4.3) 
cr(z) = terrain roughness factor.  This factor accounts for the variability of the mean 
wind velocity at the site due to height above the ground level and ground 
roughness of the terrain upwind of the structure. 
c0(z) = orography (terrain) factor taken as 1.0.  
 
Step 2: cr(z) is defined by the wind code equation (4.4) as 
                                 cr (z) = kr ×ℓn(z/z0) for zmin ≤ z ≤ zmax                              (4.4) 
 
Step 3: kr is defined by the wind code equation (4.5) for town areas as  

kr = 0.19 × (z0/z0,II)0.07 
 
Step 4: The basic wind velocity vb is calculated from the wind code equation (4.1) 
as 
                                                  vb = Cdir × Cseason × vb,0                                    (4.1) 
Conservatively, direction factor Cdir and season factor Cseason can both be taken as 
1.0 

vb = 1.0 × 1.0 × vb,0 = vb,0 
 
Step 5: The fundamental value of the basic wind velocity vb,0 is given by the 
National Annex equation (NA.1) as 
                                             vb, 0 = vb, map × Calt                                             (NA.1) 
vb,map = fundamental basic wind velocity in m/s given in the map of the country.   
The map for the United Kingdom is given in the National Annex in Fig. NA.1.  
Calt = altitude correction factor. 
 
Step 6: Conservatively, Calt for any building height is given by National Annex 
equation (NA.2a) as  
                                         Calt = 1 + 0.001 × A                                            (NA.2a) 
A = altitude of the site in meters above sea level. 
 
Step 7: The basic velocity pressure qb is given by the wind equation (4.10) as  
                                        qb = 0.5 ×ρ × vb

2 N/m2                                             (4.10) 
ρ = density of air taken as 1.25 kg/m3 

     qb =0.613 × vb
2 × 10−3 = 0.613 × 22.02 × 10−3  = 0.30 kN/m2 

 
Step 8: The peak velocity pressure qp(z)  at height z is given by wind code 
equation (4.8) 
                                                 qp(z) = ce(z) × qb                                              (4.8) 
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Step 9: The value of ce(z) for different values of z and different terrain categories 
is given in Fig. 4.2 of the code. 
 
Step 10: The wind pressure acting on the external surface we is calculated from 
wind code equation (5.1) 
                                                     we = qp(ze) × cpe                                           (5.1) 
 
Step 11: The wind pressure acting on the internal surface wi is calculated from 
wind code equation (5.1) 
                                                     Wi = qp(ze) × cpi                                           (5.1) 
 
Step 12: The wind force Fw,e acting on the external surface is calculated from wind 
code equation (5.5) 
                                                Fw,e = cscd × ∑we × Aref                                     (5.5) 
 
Step 13:  The wind force Fw,i acting on the internal surface is calculated from wind 
code equation (5.6) 
                                                     Fw,i = ∑wi × Aref                                           (5.6) 
 
Step 14: From section 6.2(1)(c), for framed buildings with structural walls with height less 
than 100 m and less than four times the in-wind depth, cs cd = 1.0.   
 
Step 15:  Frictional forces can be ignored when the total area of all surfaces parallel to the 
wind is equal to less than the total area of all external surfaces perpendicular to the wind. 
 
Step 16: The total pressure coefficient cf is the sum of external pressure coefficient 
cpe and internal pressure coefficient cpi.  The values of the pressure coefficients are 
calculated from Table 7.1 of the wind code.   Values of cpe, 10 should be used for the 
design of overall load bearing structure.   
 
 
14.2.4 Use of Influence Lines to Determine Positioning of Gravity Loads 
           to Cause Maximum Design Moments  
 
Muller-Breslau’s principle can be used to obtain qualitative influence lines as 
deflection curves.  The influence lines help to place the loads in correct positions in 
the structure in order to produce maximum moments in members.  The method is 
explained by three examples as follows.   
 
(a) Fig. 14.3(a) shows the positioning of gravity loads to give maximum bending 
moment in the span of beam AB.  This is known as chequer board load pattern.  
The deflection curve is obtained by creating a hinge at the mid-point in the beam 
AB and applying equal and opposite couples as shown in Fig. 14.3(b). 
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Fig. 14.3 Gravity load positioning for maximum span moment. 

 

 
 

Fig. 14.4 Gravity load positioning for maximum support moment at A in beam AB. 
 
(b) Fig. 14.4(a) shows the positioning of gravity loads to give maximum bending 
moment at the support A of beam AB.  The deflection curve is obtained by creating 
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a hinge at the end A of beam AB and applying equal and opposite couples as 
shown in Fig. 14.4(b).  Note that apart from beam AB, the other beams in the 
middle column of the frame are loaded with part of the beam with the maximum 
load and the other part with minimum load. 
 
(c) Fig. 14.5(a) shows the positioning of gravity loads to give maximum bending 
moment in column AB.  The deflection curve is obtained by creating a hinge at the 
end A of column AB and applying equal and opposite couples as shown in         
Fig. 14.5(b).  Note that maximum moment in column is obtained when the beam 
on one side of the column carries maximum load and the beam on the other side 
carries minimum load.   
 

 
 

Fig. 14.5 Gravity load positioning for maximum moment in column AB. 
 
 
14.2.5 Use of Sub-Frames to Determine Moments in Members 
 
The loading patterns shown in Fig. 14.4 to Fig. 14.6 show clearly that in a large 
rigid-jointed frame structure, the number of load patterns to be considered become 
too numerous for practical design.  Fortunately, the moments and shears under 
gravity loads can be determined using only part of the structure.  The reason for 
this is that generally the loads at any chosen floor level affect mainly the moments 
and shear forces in members at that level.  The loads on floor levels other than the 
chosen level have minimum effect.  This can be shown by a simple example. 
Fig. 14.6 shows a typical 2-D rigid-jointed building frame.  Fig. 14.7 shows a sub-
frame isolated from a much larger structure shown in Fig. 14.6.  For simplicity, 
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assume that (EI/L) is same for all members of the sub-frame and that the far ends 
of the members are clamped.    Under a gravity load of q per unit length on the 
beam of span L at the centre, the moment distribution is as shown in Fig. 14.8. 
 
The moments at the supports at each end in the loaded beam are approximately 
0.86 qL2/12 and the moment at the mid-span is 0.64 qL2/12.  The moment at the 
fixed end of unloaded beams and column is only 0.14 qL2/12.  In reality the 
moment value will be even smaller than this because the far ends are not fully 
clamped but attached to the members of the larger frame of which the sub-frame is 
only a part.  The moment distribution in the rest of the structure of which the sub-
frame is a part, is caused by the moment of 0.14 qL2/12 acting as the applied load 
at the ends of the members where the sub-frame is attached to the overall frame.  
This shows that the influence of the load q on the rest of the structure is quite small 
and can be ignored in the interests of simplicity. 
When using structural analysis computer programs for the determination of 
moments in beams under gravity loading, it is convenient to include all the beams 
at any one level with the columns above and below as shown in Fig. 14.9.  The 
ends of the columns can be taken as clamped unless pinned condition reflects 
reality better. 

 
 

Fig. 14.6 A typical 2-D rigid-jointed building frame. 
 
Clause 5.1.3 states that under gravity and imposed load combination, the following 
load arrangements should be investigated: 

1. Alternate spans carrying γG Gk + γQ Qk and other spans carrying γG Gk 
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2. Any two adjacent spans carrying  γG Gk + γQ Qk and other spans carrying  
γG Gk only 

 
The first load arrangement is to ensure maximum span moments are calculated and 
the second load arrangement is to ensure that the maximum support moments are 
calculated. 

 

 
 

Fig. 14.7 A typical sub-frame for analysis of moments in beams under gravity loading. 
 

 
 

Fig. 14.8 Bending moment distribution in the sub-frame under gravity loading. 
 

 
The sub-frame to be used for calculating column moments is shown in Fig. 14.10. 
Note that the beams on one side carries maximum load (γG Gk + γQ Qk) and the 
other side carries minimum load γG Gk. 
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Fig. 14.9 Sub-frame for determining the bending moment distribution in beams under gravity loading. 
 

 
 

Fig. 14.10 A typical sub-frame for analysis of moments in columns under gravity loading. 
 
 
14.2.6 Load Combinations  
 
Separate loads must be applied to the structure in appropriate directions and 
various types of loading combined with partial safety factors selected to cause the 
most severe design condition for the member under consideration.  In general the 
following load combinations should be investigated. 
 

Maximum 
Minimum 
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(a) Dead load Gk + imposed load Qk  
1. Alternate spans carrying maximum load of 1.35 Gk + 1.5 Qk and other 

spans carrying maximum load of 1.35 Gk 
2. Any two adjacent spans carrying  1.35 Gk + 1.5 Qk and other spans 

carrying  1.35 Gk only 
 
(b) Dead load Gk + wind load Wk  
If dead load and wind load effects are additive the load combination is               
1.35 Gk + 1.5 Wk.  However, if the effects are in opposite directions the critical 
load combination is 1.0Gk − 1.5Wk.   
The distributed wind pressure is applied as a concentrated load at floor levels as 
shown in Fig. 14.11. 
 
(c) Dead load Gk + imposed load Qk + wind load Wk  
(See BS EN 1990:2002, Eurocode– Basis of Structural Design.  The recommended 
values of ψ factors for buildings are shown in Table A1.2(B) and Table A1.1.) 
 
(i) If imposed load is the main variable and wind action is treated as accompanying 
action, then the load combination is  

1.35 Gk + 1.5 Qk + 1.5 × 0.6 × Wk 
(ii) If wind load is the main variable and imposed load is treated as accompanying 
action, then the load combination is  

1.35 Gk + 1.5 × 0.7 × Qk + 1.5 × Wk 
 

 
Fig. 14.11 Wind loading (a) Loads distributed on surfaces; (b) loads applied at floor levels. 
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14.2.6.1 Example of Load Combinations 
 
Fig. 14.12 shows a building supported on pinned base columns spaced 10 m in 
both directions.  Calculate the maximum bending moment and axial force 
(compression and tension) in the columns.  It is given that  

Gk = 15.0 kN/m2, Qk = 12.5 kN/m2, Wk = 1.0 kN/m2 
Wind acts on the face AB or GD and can act from left to right or vice versa. 
 
     In considering the load combinations to be considered for a particular stress 
resultant (bending moment, axial force, shear force), it is necessary to be aware of 
what effect a particular  load on a particular part of the structure has on the stress 
resultant calculated in order that appropriate load factors can be applied.   
     In this example the following effects can be noted. 
 

 
Fig. 14.12 Building supported by pinned base columns. 

 
(a) Left hand column: 

 Vertical load acting on the entire plan area BCD will cause compression 
in the column 

 Wind blowing from right to left causes compression in the column 
 Wind blowing from left to right causes tension in the column 

 
(b) Right hand column: 

 Vertical load acting on a plan area CD will cause compression 
 Vertical load on plan area BC will cause tension 
 Wind blowing from right to left causes tension in the column 
 Wind blowing from left to right causes compression in the column 

 
Load combinations:  
 
(i) Dead load Gk + imposed load Qk 
There are four cases to be considered.  They are 
 
a. (1.35 Gk + 1.5 Qk) on the plan area BCD: 

18 m 
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Total vertical load = (1.35 × 15+ 1.5 × 12.5) × 16 × 10 = 6240 kN 
Taking moments about F,  

Axial force in CE = {6240 × 16/2}/10 = 4992 kN 
Axial force in DF = 6240 – 4992 = 1248 kN 

 
b. (1.35 Gk + 1.5 Qk) on the plan area CD and 1.0 Gk on plan area BC: 
Total vertical load on plan area CD 

= (1.35 × 15+ 1.5 × 12.5) × 10 × 10 = 3900 kN 
Total vertical load on plan area BC 

= (1.0 × 15) × 6 × 10 = 900 kN 
Taking moments about F,  

Axial force in CE = {3900 × 10/2 + 900 × (10 + 6/2)}/10 = 3120 kN 
Axial force in DF = 3900 + 900 – 3120 = 1680 kN 

 
c. 1.0 Gk on the plan area CD and (1.35 Gk + 1.5 Qk) on plan area BC: 
Total vertical load on plan area CD 

= (1.0 × 15) × 10 × 10 = 1500 kN 
Total vertical load on plan area BC 

= (1.35 × 15 + 1.5 × 12.5) × 6 × 10 = 2340 kN 
Taking moments about F,  

Axial force in CE = {1500 × 10/2 + 2340 × (10 + 6/2)}/10 = 3792 kN 
Axial force in DF = 1500 + 2340 – 3792 = 48 kN 

 
d. 1.0 Gk on the plan area BCD: 

Total vertical load = (1.0 × 15) × 16 × 10 = 2400 kN 
Taking moments about F,  

Axial force in CE = {2400 × 16/2}/10 = 1920 kN 
Axial force in DF = 2400 – 1920 = 480 kN 

 
Column forces: From the above four combinations for dead and imposed loads, 
the maximum and minimum forces in the columns are: 
Column CE 
Maximum compressive force = 4992 kN (from a) 
Minimum compressive force = 1920 kN (from d) 
Column DF 
Maximum compressive force = 1680 kN (from b) 
Minimum compressive force = 48 kN (from c) 
 
(ii) Dead load and wind load: [(1.35 or 1.0) Gk ± 1.5 Wk]  
For convenience, the calculations are done by considering wind and dead loads 
separately. 
 
a. Wind load 1.5 Wk only 

Wind load = 1.5 × 1.0 × 18 × 10 = 270 kN 
Axial force in columns = ± 270 × (6 + 18/2)/10 = ± 405 kN 

Shear force in columns = ± 270/2 = ± 135 kN 
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Moment in columns = ± 135 × 6 = ± 810 kNm 
 
b. 1.35 Gk on the plan area BCD: 

Total vertical load = (1.35 × 15) × 16 × 10 = 3240 kN 
Taking moments about F, 

Axial force in CE = {3240 × 16/2}/10 = 2592 kN 
Axial force in DF = 3240 – 2592 = 648 kN 

 
c. 1.35 Gk on the plan area CD and 1.0 Gk on plan area BC: 

Total vertical load on plan area CD = (1.35 × 15) × 10 × 10 = 2025 kN 
Total vertical load on plan area BC = (1.0 × 15) × 6 × 10 = 900 kN 

Taking moments about F,  
Axial force in CE = {2025 × 10/2 + 900 × (10 + 6/2)}/10 = 2183 kN 

Axial force in DF = 2025 + 900 – 2183 = 743 kN 
d. 1.0 Gk on the plan area CD and 1.35 Gk on plan area BC: 

Total vertical load on plan area CD = (1.0 × 15) × 10 × 10 = 1500 kN 
Total vertical load on plan area BC = (1.35 × 15) × 6 × 10 = 1215 kN 

Taking moments about F,  
Axial force in CE = {1500 × 10/2 + 1215 × (10+6/2)}/10 = 2330 kN 

Axial force in DF = 1500 + 1215 – 2330 = 385 kN 
 
e. 1.0 Gk on the plan area BCD: 

Total vertical load = (1.0 × 15) × 16 × 10 = 2400 kN 
Taking moments about F,  

Axial force in CE = {2400 × 16/2}/10 = 1920 kN 
Axial force in DF = 2400 – 1920 = 480 kN 

 
Column forces: From the above five cases for dead and wind load combination, 
the critical axial force and moment combinations are: 
 
Column CE 

Maximum compressive force = 2592 (from b) + 405 (from a) = 2997 kN 
Moment in column = ± 810 kNm 

Minimum compressive force = 1920 (from e) – 405 (from a) = 1515 kN 
Moment in column = ± 810 kNm 

 
Column DF 

Maximum compressive force = 743 (from c) + 405 (from a) = 1148 kN 
Moment in column = ± 810 kNm 

Minimum compressive force = 385 (from d) – 405 (from a) = –20 kN 
Moment in column = ± 810 

 
(iii) [Dead + imposed + wind] load: Imposed load main variable 

1.35Gk +1.5 Qk + 1.5 × 0.6 ×Wk 
For convenience, the calculations are done by considering wind, dead + imposed 
loads separately. 
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(a) Wind load 
Wind load = 1.5 × 0.6 × 1.0 × 18 × 10 = 162 kN 

Axial force in columns = ± 216 × (6 + 18/2)/10 = ± 324 kN 
Shear force in columns = ± 162/2 = ± 81 kN 
Moment in columns = ± 81 × 6 = ± 486 kNm 

 
(b) Dead + imposed load on the plan area BCD 

Total vertical load = (1.35 × 15 + 1.5 × 12.5) × 16 × 10 = 6240 kN 
Taking moments about F,  

Axial force in CE = {6240 × 16/2}/10 = 4992 kN 
Axial force in DF = 6240 – 4992 = 1248 kN 

 
 
(iv) [Dead + imposed + wind] load: Wind load main variable 

1.35Gk +1.5 × 0.7 × Qk + 1.5 Wk 
For convenience, the calculations are done by considering wind, dead and imposed 
loads separately. 
 
(a) Wind load 

Wind load = 1.5 × 1.0 × 18 × 10 = 270 kN 
Axial force in columns = ± 270 × (6 + 18/2)/10 = ± 405 kN 

Shear force in columns = ± 270/2 = ± 135 kN 
Moment in columns = ± 135 × 6 = ± 810 kNm 

 
(b) Dead + imposed load on the plan area BCD: 

Total vertical load = (1.35 × 15 + 1.5 × 0.7 × 12.5) × 16 × 10 = 5340 kN 
Taking moments about F,  

Axial force in CE = {5340 × 16/2}/10 = 4272 kN 
Axial force in DF = 5340– 4272 = 1068 kN 

 
Column forces: From the above four cases for dead + imposed + wind 
combination, the critical axial force and moment combinations are: 
 
Column CE 

Maximum compressive force = 4992 (from b) + 405 (from c) = 5397 kN 
Moment in column = ± 810 kNm 

Minimum compressive force = 4272 (from d) – 405 (from c) = 3867 kN 
Moment in column = ± 810 kNm 

Column DF 
Maximum compressive force = 1248 (from b) + 405 (from c) = 1653 kN 

Moment in column = ± 810 kNm 
Minimum compressive force = 1068 (from d) – 405 (from c) = 663 kN 

Moment in column = ± 810 kNm 
 
Design values: From a design point of view, the critical combinations probably are 

Column CE: (N = 1515 kN, M = 810 kNm) or (N = 5397 kN, M = 810 kNm) 
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Column DF: (N = – 20 kN, M = 810 kNm) or (N = 1653 kN, M = 810 kNm) 
 
     This example shows that even in a simple structure, the number of load cases to 
be considered may become quite large.  In large scale structures, a good 
understanding of the behaviour of the structure under consideration is necessary in 
order to limit the number of load cases to be considered, by eliminating load cases 
clearly not critical. 
 
 
14.3 ROBUSTNESS AND DESIGN OF TIES  
 
Clause 9.10.1 of the Eurocode 2 states that situations should be avoided where 
damage to a small area or failure of a single element could lead to collapse of 
major parts of the structure.  Provision of effective ties is one of the precautions 
necessary to prevent progressive collapse.  The layout also must be such as to give 
a stable and robust structure.   
 
 
14.3.1 Types of Ties  
 
The types of tie are  

1. Peripheral ties  
2. Internal ties  
3. Horizontal ties to columns and walls  
4. Vertical ties particularly in panel buildings  

 
The types and location of ties are shown in Fig. 14.13. 
 
 
14.3.2 Design of Ties  
 
Steel reinforcement provided for a tie can be designed to act at its characteristic 
strength.  Reinforcement provided for other purposes may form the whole or part 
of the ties.   
 
 
14.3.3 Internal Ties  
 
Internal ties are to be provided at the roof and all floors in two directions at right 
angles.  They are to be continuous throughout their length and anchored to 
peripheral ties.  The ties may be spread evenly in slabs or be grouped in beams or 
walls.  Ties in walls are to be within 0.5 m of the top or bottom of the floor slab. 
     The ties should be capable of resisting a design tensile force of 10 kN/m in each 
direction. 
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14.3.4 Peripheral Ties  
 
A continuous peripheral tie is to be provided at each floor and at the roof.  This tie 
is to be located within 1.2 m of the edge of the building or within the perimeter 
wall.   The tie is to resist a force: 

Ftie, per = ℓ × q1 ≤ q2 
where q1 = 10 kN/m, q2 = 70 kN, ℓ = length of end span. 
 

 
Fig. 14.13 Building ties: (a) Plan; (b) section. 

 
 
14.3.5 Horizontal Ties to Columns and Walls  
 
Edge columns and walls should be tied horizontally to the structure at each floor 
and roof level.  The ties should be capable of resisting a tensile force ftie, fac = 20 kN 
per meter of the facade.  For columns the tie force need not exceed                      
Ftie, col = 150 kN. 
Corner columns are to be tied in two directions.  Steel provided for peripheral ties 
may be used as the horizontal tie.  
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     Where the peripheral tie is located within the walls the internal ties are to be 
anchored to it.   
 
 
14.3.6 Vertical Ties  
 
Vertical ties are required in buildings of five or more storeys.  Each column and 
load bearing wall is to be tied continuously from foundation to roof.  The tie is to 
be capable of carrying a tensile force equal to the ultimate dead and imposed load 
carried by the column or wall from one floor. 
 
 
14.4 FRAME ANALYSIS  
 
 
14.4.1 Methods of Analysis  
 
Modern frame analysis is achieved by plane frame computer programs based on 
the matrix stiffness method (see Bhatt (1981) and Bhatt (1986)).  Especially for 
vertical loading analysis, sub-frames are used to simplify the number of load cases 
to be analysed.   
Analysis assumes elastic behaviour.  Clause 5.4 of Eurocode 2 states that linear 
elastic analysis may be carried out assuming 

 Uncracked cross sections 
 Linear stress−strain relationships 
 Mean value of modulus of elasticity 

In beam−slab floor construction it is normal practice to base the beam stiffness on 
a uniform rectangular section consisting of the beam depth by the beam rib width.  
The flanged beam section is taken into account in the beam design for sagging 
moments near the centre of spans. 
As explained in section 13.5, Chapter 13, clause 5.5 of Eurocode 2 states that 
limited redistribution while maintaining equilibrium may be applied to the results 
of elastic analysis.  In continuous beams and slabs which have the ratio of lengths 
of adjacent spans in the range 0.5 to 2.0, there is no need to check explicitly for 
rotation capacity provided that  

 
                            ) for fck ≤ 50 MPa              (5.10a) 

                           ) for fck > 50 MPa              (5.10b) 
                              ≥ 0.7 where Class B and Class C reinforcement is used 
                              ≥ 0.8 where Class A reinforcement is used 
                              εcu2 = 0.0035 for fck ≤ 50 MPa 

                              εcu2 =  for fck > 50 MPa 
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where δ = ratio of redistributed moment/Elastic bending moment and xu = the 
maximum depth of the neutral axis at ULS after redistribution.  Table 4.5,       
Table 4.6 and Table 4.8 of Chapter 4 show respectively the relationship between δ 
and xu/d, z/d and k = M/ (bd2 fck) for different values of fck.   
It is further stated in clause 5.5(6) of Eurocode 2 that for design of columns, elastic 
moments from frame analysis should be used without any redistribution. 
     In rigid-frame analysis, the sizes for members must be chosen from experience; 
or established by an approximate design before the analysis can be carried out.  
Ratios of stiffness of the final member sections should be checked against those 
estimated and the frame should be reanalysed if it is found necessary to change the 
sizes of members significantly. 
 
 
14.4.2 Example of Simplified Analysis of Concrete Framed Building Under 
           Vertical Load  
 
(a) Specification  
The cross section of a reinforced concrete building is shown in Fig. 14.14(a).  The 
frames are at 4.5 m centres, the length of the building is 36 m and the column bases 
are fixed.  Preliminary sections for the beams and columns are shown in             
Fig. 14.14(b).  The floor and roof slabs are designed to span one way between the 
frames.  Longitudinal beams are provided between external columns of the roof 
and floor levels only. 

 
 

Fig. 14.14 (a) Cross section; (b) assumed member sections. 
 
The dead and imposed loadings are as follows: 
Roof: 

Total dead load = 4.3 kN/m2 
Imposed load = 1.5 kN/m2 
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Floor: 
Total dead load = 6.2 kN/m2 
Imposed load = 3.0 kN/m2 

 
Wind load: Wind load on buildings is estimated in accordance with BS EN 1991-
1-4: 2005 + A1:2010  Eurocode 1: Actions on Structures.  General actions. Wind 
actions and UK National Annex to Eurocode 1: Actions on Structures. General 
actions. Wind actions. 
The location is on the outskirts of a city in the northeast of the U.K.  The materials 
characteristic strengths are fck = 30 MPa for concrete and fyk = 500 MPa for 
reinforcement.  Determine the design actions for the beam BFK and column length 
FE for an internal frame for the two cases where the frame is braced and unbraced.  
 
(b) Loading  
Using a frame spacing of 4.5 m c/c, the characteristic loads are as follows. 
 
Dead load: 

Roof 4.3 × 4.5 = 19.4 kN/m 
Floors 6.2 × 4.5 = 27.9 kN/m 

 
Imposed load:  

Roof 1.5 × 4.5 = 6.8 kN/m 
Floors 3.0 × 4.5 = 14.5 kN/m 

 
(c) Section properties  
The beam and column properties are given in Table 14.1.  
 

Table 14.1 Section properties 
Member b × d L (mm) I (mm4) I/L 
Columns 

AB, EF, JK  
400 × 500 5500 4.17 × 109 7.58 × 105 

Columns 
BC, FG, KL 

300 × 400 4000 1.60 × 109 4.0 × 105 

Columns 
CD, GH,LM 

300 × 300 4000 0.675 × 109 1.6875 × 105 

Beam, DH 300 × 500 6000 3.125 × 109 5.208 × 105 
Beam, HM 300 × 500 8000 3.125 × 109 3.906 × 105 

Beams 
GL, FK 

400 × 600 8000 7.20 × 109 9.0 × 105 

Beams 
 CG, BF 

400 × 600 6000 7.20 × 109 12.0 × 105 
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(d) Sub-frame analysis for braced frame  
The sub-frame used in this example is shown in Fig. 14.15. The frame is analysed 
for the three load cases using the matrix stiffness method of analysis.  From 
characteristic dead and imposed loads,  

(1.35 Gk + 1.5 Qk) = (1.35 × 27.9 + 1.5 × 14.5) = 59.42 kN/m, 
1.35 Gk  = 37.67 kN/m 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 14.15 Simplified sub-frame for beam BFK. 
 
(e) Braced frame 
The following load cases are required for beam BFK for the braced frame. 
Case 1: (1.35Gk + 1.5 Qk) on BF and 1.35Gk on FK 
Case 2: (1.35Gk + 1.5 Qk) on FK and 1.35Gk on BF 
Case 3: (1.35Gk + 1.5 Qk) on BF and FK 
The fixed end moments are: 
Case 1: 

Span BF = 59.42 × 62/12 = 178.26 kNm, 
Span FK = 37.67 × 82/12 = 200.91 kN m 

Case 2: 
Span BF = 37.67 × 62/12 = 113.01 kNm 
Span FK = 59.42 × 82/12 = 316.91 kN m 

Case 3: 
Span BF = 59.42 × 62/12 = 178.26 kNm  
Span FK = 59.42 × 82/12 = 316.91 kN m 

 
The stiffness matrix K and load vector F for the three load cases are 
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The displacement vectors for the three load cases are 
 

8 m 6 m 

B K 

F 
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where E = Young’s modulus. 
     The shear force and bending moment diagrams for beam BFK are shown 
respectively in Fig. 14.16 and Fig. 14.17 and the results of analysis are shown in 
Table 14.2. 

Table 14.2 Bending moments for different loadings 
M Case 1 Case 2 Case 3 

MBF −86.00 −31.31 −72.06 
MFB −230.83 −226.99 −280.10 

Span-BF 199.88 85.79 173.49 
MFK −239.11 −384.47 −342.80 
MKF −114.86 −198.89 −192.03 

Span-FK 127.58 188.21 210.93 

 
Fig. 14.16 Shear force diagrams for beam BFK in sub-frame. 
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Fig. 14.17 Bending moment diagrams for beam BFK in sub-frame. 

 
(f) Asymmetrically loaded columns 
The moments for a column are calculated assuming that column and beam ends 
remote from the junction considered are fixed. Fig. 14.18 shows the sub-frames for 
determining column moments.  In the case of end columns, maximum load of 1.35 
Gk + 1.5 Qk is applied on the connecting beam.  In the case of the middle column, 
maximum load of 1.35 Gk + 1.5 Qk is applied on the longer connecting beam and 
only 1.35 Gk is applied on the shorter connecting beam.  Fig. 14.19 shows the 
bending moment diagrams in columns and connecting beams. 
 
 
 
 
 
 
 
 
 
 

Fig. 14.18 Loading on column sub-frames. 
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Fig. 14.19 Bending moment diagrams for column sub-frame. 
 
The stiffness matrix and the load vectors and the corresponding joint rotations for 
the three cases are: 
Asymmetrical Column ABC: 

Span BF = 59.42 × 62/12 = 178.26 kNm 
E × 105 × 94.32 × θB = 178.26, E ×105 × θB = 1.89 

Moments: MBA = 57, MBA = 29, MBC = 30, MCB = 15 

Asymmetrical Column JKL: 
Span KF = 59.42 × 82/12 = 316.91 Kn m 

E ×105 × 82.32 × θK = −316.91, E ×105 × θK = −3.85 

Moments: MKJ = −117, MJK = −58, MKL = −62, MLK = −31 

 
Asymmetrical Column EFG: 

Span FK = 59.42 × 82/12 = 316.91 kN m 
Span FB = 37.67 × 62/12 = 113.01 kN m 

E ×105 × 130.32 × θF = (316.91 – 113.01), E ×105 × θF = 1.565 

Moments: MFE = 48, MEF = 24, MFG = 25, MGF = 13 

 
If a slightly more complicated sub-frame is adopted as shown in Fig. 14.20, then 
the results are as follows. 
 
Column ABCD: 

Span BF and CG = 59.42 × 62/12 = −178.26 kNm, 
 

 
 

 
 

MBA = 51 (57), MAB = 26(29), MBC = 46 (30), MCB = 51(15), MCD = 16, MDC = 8. 
Figures in brackets correspond to simplified sub-frames with one beam only. 
 
Column EFGH: 

Span FK = 59.42 × 82/12 = 316.91 kNm 
Span GL = 37.67 × 82/12 = 200.91 kNm 
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Span GC = 59.42 × 62/12 = 178.26 kNm 
Span BF = 37.67 × 62/12 = 113.01 kNm 

 

 
 

 
 

MFE = 47 (70), MEF = 23(24), MFG = 26 (25), MGF = 14 (13), MGH = 1, MHG = 0.5. 
Figures in brackets correspond to simplified sub-frames with one beam only. 
 
Column JKLM: 

Span KF = 59.42 × 82/12 = 316.91 kNm 
Span LG = 59.42 × 82/12 = 316.91 kNm 

 

 
 

 
 

MKJ = −102 (−117), MJK = −51(−59), MKL = −93 (−62), MLK = −106(−31),  
MLM = −33, MML = −17 
Figures in brackets correspond to simplified sub-frames with one beam only. 
     It can be concluded from the above results that simplified sub-frames shown in   
Fig. 14.18 give sufficiently accurate results for the column for which he simplified 
sub-frame is used. 
 

 
 

Fig. 14.20 Modified column sub-frames. 
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(g) Unbraced frame-analysis for vertical loads 
The analysis for vertical loads can be made in the same way as for the braced 
frame assuming that horizontal displacement of joints can be ignored.   
Case 1: Taking the wind load as the leading variable, taking ψ0 for imposed load as 
0.7, the load in this case is 1.35 Gk + 1.5 × 0.7 × Qk. 

1.35 Gk + 1.5 × 0.7 × Qk = (1.35 × 27.9 + 1.5 × 0.7 × 14.5) = 52.89 kN/m, 
If all the spans are loaded by the maximum load 

Span BF = 52.89 × 62/12 = 158.67 kNm  
Span FK = 52.89 × 82/12 = 282.08 kN m 

Case 2: Taking the imposed load as the leading variable, taking ψ0 for the wind 
load as 0.6, the load in this case is 1.35 Gk + 1.5 × Qk. 

1.35 Gk + 1.5× 0.7 × Qk = (1.35 × 27.9 + 1.5 × 14.5) = 59.42 kN/m, 
If all the spans are loaded by the maximum load 

Span BF = 52.89 × 62/12 = 178.25 kNm  
Span FK = 59.42 × 82/12 = 316.88 kN m 

The stiffness matrix K, load vector F and displacement vector are 
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The resulting moments are:  
Case 1: 
Beams: MBF = −63.92, MFB = 250.14, MFK = −304.84, MKF = 170.10,  
Columns: MBG = 22.20, MBA = 41.72, MFJ = 18.75, MFE = 35.95,  
                 MKJ = −112.38, MKM = −57.72 
Case 2: 
Beams: MBF = −71.81, MFB = 281.02, MFK = −342.48, MKF = 191.10,  
Columns: MBG = 24.94, MBA = 46.87, MFJ = 21.07, MFE = 40.39,  
                 MKJ = −126.26, MKM = −64.85 
 
 
14.4.3 Example of Simplified Analysis of Concrete Framed Building for 
           Wind Load by Portal Frame Method 
 
(a) Wind loads 
The wind loads are calculated using UK National Annex to Eurocode 1: Actions on 
Structures. General actions. Wind actions. 
The case for which wind load is calculated is wind acting normal to the 40 m 
width. The total pressure p on the building is 0.86 kN/m2.  Fig. 14.21 shows the 
wind load acting as a uniformly distributed load over the height of the building. 
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Total horizontal load per frame = 0.86 × (4.5 × 13.5) = 52.25 KN 
 
The total load is distributed at the storey levels in proportion as follows: 

Roof level = 52.25 × (0.5 × 4)/13.5 = 7.74 KN 
Second floor level = 52.25 × 4.0 /13.5 = 15.48 KN 

First floor level = 52.25 × {0.5(4.0 + 5.5)}/13.5 = 18.38 kN 
Fig. 14.22 shows the concentrated loads acting at roof and storey levels.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.21 Rigid frame subjected to wind load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14.22 Loads at joints and bending moment diagram. 

 
(b) Analysis by portal method 
The moments and shear forces due to wind load are calculated using the portal 
method explained in Chapter 13, section 13.12.4. 
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(i) Shear in bays 
Total shear Q in each storey is divided between the bays in proportion to their 
spans. 

Bay 1: Span = 6 m, Bay 2: Span = 8m 
Shear in Bay 1 = Q × 6/ (6 + 8) = 0.4286 Q 
Shear in Bay 2 = Q × 8/ (6 + 8) = 0.5714 Q 

 
(ii) Shear in columns 
The shear in each bay is divided equally between the columns.  The shear in an 
interior column is the sum of the contributions from adjacent bays. 

Shear in left column = 0.5 × 0.4286 Q = 0.2143 Q 
Shear in middle column = 0.5 × (0.4286 + 0.5714) Q = 0.5Q 

Shear in right column = 0.5 × 0.5714 Q = 0.2857 Q 
(iii) Bending moment in columns 
Bending moment at the top and bottom of a column is equal to product of shear in 
the column and storey height/2. 
     Table 14.3a summarises the storey shear forces and shear forces in columns.  
Table 14.3b shows bending moment in columns. 

 
Table 14.3a Shear forces in kN in columns 

Location Q (kN) Storey 
height 

Shear in columns (kN) 
Left Middle Right 

Top 7.74 4.0 1.66 3.87 2.21 
Middle 7.74+15.48 = 23.22 4.0 4.97 11.61 6.63 
Bottom 23.22 + 18.38 = 41.60 5.5 8.92 20.80 11.89 

 
Table 14.3b Bending moments in kNm in columns 

Location Storey 
height 

Shear in columns Moment in columns 
Left Middle Right Left Middle Right 

Top 4.0 1.66 3.87 2.21 3.32 7.74 4.42 
Middle 4.0 4.97 11.61 6.63 9.94 23.22 14.26 
Bottom 5.5 8.92 20.80 11.89 24.53 57.2 32.70 

 
Table 14.4 Moments in beams 

Location Left beam Right beam 
Top 3.32 4.42 

Middle 14.26 17.68 
Bottom 34.47 45.96 

 
(iv) Bending moment in beams 
As shown in Fig. 13.28, the bending moments at the ends of the left beam are equal 
to sum of the bending moments at the ends of the columns on the left connecting 
the beam.  Similarly the bending moments at the ends of the right beam are equal 
to sum of the bending moments at the ends of the columns on the right connecting 
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the beam.  Table 14.5 shows the bending moments in the beams.  Fig. 14.12 shows 
the bending moment distribution in the frame. 
 
(v) Axial force in columns 
Since there is no distributed load on the beams and the contraflexure point is at 
mid-span, reaction R at the ends of the beam is given by 

R = 2 × bending moments at the ends/span 
     From the reactions in the beam, axial forces in the columns can be determined.  
Table 14.5 shows the axial forces in columns.  Forces reverse in sign if the wind 
blows from right to left. 
 
(vi) Axial forces in beams 
As shown in Fig. 13.33, Chapter 13, from the shear forces in the columns and by 
considering the horizontal force equilibrium at the joints, axial forces in beams can 
be determined.   Table 14.6 shows the axial forces in beams. 
 

Table 14.5 Axial forces in columns 
Level Beam moments Reactions 

in Beams 
Axial Force in Columns 

Left Beam Right Beam    
Top 3.32 4.42 1.11 1.11 

Middle 14.26 17.68 4.42 1.11 + 4.42 = 5.53 
Bottom 34.47 45.96 11.49 5.53 + 11.49 = 17.02 

 
Table 14.6 Axial forces in beams 

 Load at 
Joint 

Shear in 
columns 

Axial Force in Beam 

  Left Right Left beam Right beam 
Top 7.74 1.66 2.21 7.74 – 1.66 = 6.08 1.66 

Middle 15.48 4.97 6.63 15.48 + 1.66 – 
4.97  = 12.17 

6.63 – 2.21 = 
4.42 

Bottom 18.38 8.92 11.89 18.38 + 4.97 – 
8.92 = 14.43 

11.89 – 6.63 
= 5.26 

 
 
14.5 BUILDING DESIGN EXAMPLE  
 
 
14.5.1 Example of Design of Multi-Storey Reinforced Concrete Framed 
          Buildings  
 
(a) Specification  
The framing plans for a multi-storey building are shown in Fig. 14.23.  The main 
dimensions, structural features, loads, materials etc. are set out below. 
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(b) Overall dimensions  
The overall dimensions are 36 m × 22 m in plan × 36 m high  

Length: six bays at 6 m each; total 36 m 
Breadth: three bays, 8 m, 6 m, 8 m; total 22 m  

Height: ten storeys, nine at 3.5 m + one at 4.5 m 
 
(c) Roof and floors  
The floors and roof are constructed in one-way ribbed slabs spanning along the 
length of the building.  Slabs are made solid for 300 mm on either side of the beam 
supports. 
 
(d) Stability  
Stability is provided by shear walls at the lift shafts and staircases in the end bays. 
  
(e) Fire resistance  
All elements are to have a fire resistance period of 2 hours. 
 
(f) Loading condition  

Roof imposed load: 1.5 kN/m2 
Floors imposed load: 3.0 kN/m2 

Finishes, roof: 1.5 kN/m2 
Finishes, floors, partitions, ceilings, services: 3.0 kN/m2 

Parapet: 2.0 kN/m 
External walls at each floor: 6.0 kN/m 

 
The load due to self-weight is estimated from preliminary sizing of members.  The 
imposed load contributing to axial load in the columns is reduced by 50% for a 
building with ten floors including the roof as permitted by Table 2 of BS 6399-1, 
1996. 
 
(g) Exposure conditions  
External moderate 
Internal mild 
 
(h) Materials  
fck = 30 MPa concrete and fyk = 500 MPa reinforcement. 
 
(i) Foundations  
Pile foundations are provided under each column and under the shear walls. 
 
(j) Scope of work  
The work carried out covers analysis and design for  

1. Transverse frame members at floor 2 outer span only  
2. An internal column between floors 1 and 2  

The design is to meet requirements for robustness.  In this design, the frame is 
taken as completely braced by the shear walls in both directions.  A link-frame 
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analysis can be carried out to determine the share of wind load carried by the rigid 
frames (Chapter 15).  The design for dead and imposed loads will be the critical 
design load case. 
 

 
Fig. 14.23 (a) Floor plan and roof plan; (b) end elevation. 
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(k) Preliminary sizes and self-weight of members 
 
(1) Floor and roof slab  
The one-way ribbed slab is designed first.  The size is shown in Fig. 14.24.  The 
weight of the ribbed slab 0.5 m wide × 1.0 m is 

25 × [(0.5 × 0.275) – (0.375 × 0.215)] = 1.422 kN/m 
Load per unit area = 1.422/ (0.5) = 2.84 kN/m2 

 
Fig. 14.24 (a) Roof and floor slab; (b) roof and floor beams; (c) columns. 

275 
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(2) Beam sizes  
Beam sizes are specified from experience:  

Depth = span/15 = 500 mm, 
Width = 0.6 × depth = 400 mm, say 

Preliminary beam sizes for roof and floors are shown in Fig. 14.14.  The weights of 
the beams including the solid part of the slab are: 

Roof beams, 25 × [(0.3 × 0.45) + (0.6 × 0.275)] = 7.5 kN/m  
Floor beams, 25 × [(0.4 × 0.5) + (0.6 × 0.275)] = 9.13 kN/m. 

 
(3) Column sizes  
Preliminary sizes are shown in Fig. 14.14.  Self-weights are as follows. 

Floors 1 to 3: 0.552 × 25 = 7.56 kN/m 
Floors 3 to 7: 0.452 × 25 = 5.06 kN/m 
Floor 7 to roof: 0.42 × 25 = 4.0 kN/m 

(l)Vertical loads  
(1) Roof beam  
The floor slab extends to only (6000 – 2 × 300 – 300) = 5100 mm 

Dead load (slab, beam, finishes), Gk = (2.84 × 5.1) floor slab 
 + 7.5 beam self weight + (1.5 × 6) finishes = 31.0 kN/m 

Imposed load, Qk = 6 × 1.5 = 9 kN/m 
 
(2) Floor beams  
The floor slab extends to only (6000 – 2 × 300 – 400) = 5000 mm 

Dead load, Gk = (2.84 × 5) floor slab + 9.13 beam self-weight  
+ (3 × 6) finishes = 41.33 kN/m 

Imposed load, Qk = 6 × 3 = 18 kN/m 
 
(3) Internal column below floor 2  
An estimation of the load on the column can be calculated as follows. 
The entire load over a width (8+6)/2 = 7 m is carried by the internal column.   
The dead load is: 

Beam: 7 × [31 roof + (41.33 × 9 floors)] = 2820.8 kN 
Column self weight: 3.5[7.56 + 4(5.06 + 4.0)] = 153.30 kN 

Total: 2974.10 kN 
Imposed load = 7 × [9 roof + (18 × 9 floors)] = 1197 kN 

According to Equation (6.2) in 1991-1-1:2002(E) Eurocode 1: Actions on 
Structures, for columns and walls the total imposed loads from several storeys may 
be multiplied by the reduction factor αn where 
 

 
 
n = number of storeys (n > 2) above the loaded structural elements from the same 
     category. 
ψ0 = 0.7 for imposed loads (see Table A1.1, BS EN 1990:2002 Eurocode. Basis of 
Structural Design). 



Reinforced concrete framed buildings                                                                                  623 

Substituting n = 10, αn = 0.76 
Reduced imposed load = 0.76 × 1197 = 909.72 kN 

(m) Sub-frame analysis  
 
(1) Sub-frame  
The sub-frame consisting of the beams and columns above and below the floor 
level 1 is shown in Fig. 14.25.  The properties of members are shown in          
Table 14.7. 
 
(2) Loads and load combinations  
 

 (1.35 Gk + 1.5 Qk) = (1.35 × 41.33) + (1.5 × 18) = 82.8 kN/m 
1.35 Gk = 55.8 kN/m 

 
Table 14.7 Section properties 

Member L (mm) I (mm4) I/L(mm3) 

BC, MN 4500 3.417 × 109 7.5938 × 105 
EF, HK 4500 7.626 × 109 16.9456 × 105 
AB, LM 3500 3.417 × 109 9.7634 × 105 
DE, GH 3500 7.626 × 109 21.787 × 105 
BE, HM 8000 4.167 × 109 5.208 × 105 

EH 6000 4.167 × 109 6.945 × 105 
 
Note: For columns BC, EF and MN, the length is taken as 4.5 m, although it is 
shown as 5.5 m in Fig. 14.23 and Fig. 14.25.  It is assumed that they are 
deformable only over 4.5 m. 
 
Case 1: Spans BE and HM with maximum load and span EH with minimum load. 
The fixed end moments are: 

Spans BE and HM: 82.8 × 82/12 = 441.6 kNm 
Span EH:  55.8 × 62/12 = 167.4 kNm 

 
Case 2: Spans BE and HM with minimum load and span EH with maximum load. 
The fixed end moments are: 

Spans BE and HM: 55.8 × 82/12 = 297.60 kNm 
Span EH: 82.8 × 62/12 = 248.4 kNm 

 
Case 3: Spans BE and EH with maximum load and span HM with minimum load. 
The fixed end moments are: 

Span BE: 82.8 × 82/12 = 441.6 kNm 
Span EH: 82.8 × 62/12 = 248.4 kNm 

    Span HM: 55.80 × 82/12 = 297.60 kNm 
Case 4: Spans EH and HM with maximum load and span BE with minimum load. 
The fixed end moments are: 

    Span BE: 55.80 × 82/12 = 297.60 kNm 
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Span EH: 82.8 × 62/12 = 248.4 kNm 
 Span HM: 82.8 × 82/12 = 441.6 kNm 

(3) Analysis  
The stiffness matrix relationship is given by 
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Fig. 14.25 Sub-frame for beam moment analysis. 
 
The load vectors for the four cases are 
 


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
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Solving, the rotation values are shown in Table 14.8. 
 

Table 14.8 Joint rotations 
Rotation Case 1 Case 2 Case 3 Case 4 

θB × E × 106 50.9165 33.4830 50.3573 33.5462 

θE × E × 106 −17.2545 −4.4332 −12.4089 −4.9807 

θH × E × 106 17.2555 4.4338 4.9813 12.4099 

θM × E ×106 −50.9174 −33.4833 −33.5465 −50.3580 

A 

B 
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8 m 8 m 6 m 

3.5 m 

5.5 m 
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Table 14.9 shows the values of the bending moments in the symmetrical half of the 
sub-frame.  The shear force diagrams and bending moment diagrams are shown in 
Fig. 14.26 and Fig. 14.27 respectively.  The corresponding envelopes are shown in 
Fig. 14.28 and Fig. 14.29. 
 

Table 14.9 Bending moments in kNm in the sub-frame 
Moment Case 1 Case 2 Case 3 Case 4 

MBE −353.50 −232.47 −349.62 −232.90 
MEB 458.69 323.24 468.20 322.17 

Span BE 257.35 169.70 254.82 169.98 
MEH −191.37 −254.56 −275.95 −245.00 
MHE 191.37 254.56 245.00 275.96 

Span EH 59.73 118.04 112.29 112.29 
MBA 198.85 130.76 196.66 131.01 
MBC 154.66 101.71 152.96 101.90 
MED −150.37 −38.63 −108.14 −43.41 
MEF −116.96 −30.05 −84.11 −33.76 

 
(n) Design of outer span of beam BEH  
 
(1) Design of moment reinforcement  
Section at mid-span: According to Table 4.1 of the code, for concrete inside 
buildings with moderate or high humidity, the exposure category is XC3.   
According to Table 4.4N of the code, the minimum cover is 25 mm.  According to 
Table 5.6 of BS EN 1992-1-2:2004 Eurocode 2: Design of  concrete structures 
Part 1-2: General rules-Structural fire design, for a fire resistance 2 h, the required 
axis distance is 35 mm.   
The beam is a T-beam as shown in Fig. 14.24(b) with a rib width, bw = 400 mm, 
total flange width, bf = 1000 mm, total depth, h = 500 mm, flange thickness,          
hf = 275 mm. 
Assume H25 bars and H10 diameter links:  

Axis distance = 25 + 10 + 25/2 = 47.5 mm > 35 mm 
d = 500 – 25 – 10 – 25/2 = 452.5mm 

Maximum span moment occurs for case 1 loading.   The support moments from 
Table 14.10 are 

MBE = 353.50, MEB = 458.69 kNm, load q = 82.8 kN/m, Span = 8 m 
Reaction at left support  

Vleft = 0.5 × 82.8 × 8 + (353.50 – 458.69)/8 = 318.05 kN 
Shear force is zero when  

318.05 – 82.8 a = 0, a = 3.84 m 
Maximum span moment 

Mspan = –353.50+ 318.05 × 3.84 – 82.8 × 3.842/2 = 257.34 kNm 
Check the moment capacity if the entire flange is in compression. 

Mflange = bf × hf × fcd × (d – 0.5 hf) = 1754.4 kNm > 257.34 kNm 
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The stress block is inside the flange.  Design the beam as a rectangular beam of 
width 1000 mm. 

k = M/ (fck b d2) = 257.34 × 106 / (30 × 1000 × 452.52) = 0.042 < 0.196 

])k31(0.1[5.0
d
z

  

Substituting k = 0.042, z/d = 0.967 

 
Fig. 14.26 Shear force diagrams for a symmetrical half of beam. 

 

 
 

Fig. 14.27 Bending moment diagrams for a symmetrical half of beam. 
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As = 257.34 × 106/ (0.967 × 452.5 × 0.87 × 500) = 1352 mm2 
Provide 3H25 to give an area of 1473 mm2 (Fig. 14.18).  
Check minimum steel: fcm = 0.3 × fck 0.667 = 2.9 MP, fyk = 500 MPa, bt = 400 mm,  
d = 453 mm. 
                          As, min = 0.26 × (fcm/fyk) × bt d   = 273 mm2                          (9.1N) 
 

 
Fig. 14.28 Shear force envelope for a symmetrical half of beam. 

 

 
 

Fig. 14.29 Bending moment envelope for a symmetrical half of beam. 
 
Section at outer support: Maximum support moment occurs for case 1 loading.  
From Table 14.10, 

MBE = −353.50 kN m. 
At support tension is at the top.  The flange will be in tension.  The beam section is 
therefore rectangular. 

b = 400 mm.  Provide for H25 bars; d = 452.5 mm. 
k = M/ (fck b d2) = 353.50 × 106 / (30 × 400 × 452.52) = 0.144 < 0.196 
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877.0])k31(0.1[5.0
d
z



 
As = 353.50 × 106/ (0.877 × 452.5 × 0.87 × 500) = 2048 mm2 

Provide 3H32 = 2413 mm2. 
 
Section at inner support: Maximum support moment occurs for case 3 loading.  
From Table 14.10, MEB = 468.20 kN m. 
Assuming H32 mm bars, 

d = 500 – 25 – 10 – 32/2 = 449 mm 
k = M/ (fck b d2) = 468.20 × 106 / (400 × 4492 × 30) = 0.194 < 0.196 

823.0])k31(0.1[5.0
d
z


  

As = 468.20 × 106/ (0.823 × 452.5 × 0.87 × 500) = 2890 mm2 
Provide 4H32 = 3217 mm2. 
Fig. 14.30 shows the flexural reinforcement at different sections of the beam. 
Note that in clause 9.2.1.2(2), the Eurocode allows for the reinforcement in the 
flange to be spread over the effective width. 
 

 
 

Fig. 14.30 Beam BE: (a) Mid-span; (b) outer column; (c) inner column. 
Note: Links not shown for clarity. 

 
(2) Curtailment and anchorage  
As moments have been calculated by detailed analysis, the cut-off points will be 
calculated accurately. 
 
Top steel-outer support: Refer to Fig. 14.30.  The section has 3H32 bars at the 
top.  Determine the positions along the beam where the one bar can be cut off.   
The moment of resistance of the section with 2H32 bars (As = 1609 mm2) at top in 
tension is calculated.   
Assume that tension steel yields and the stress in the steel is 0.87 fyk.  

Yield strain in steel, εsy = 0.87 × 500/E = 2.175 × 10−3 
Equate the forces in the section:  

0.87 × 500 × 1609 = (fcd= 20) × 400 × (0.8x) 

3H25 

3H32 4H32 
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x = 109 mm 
Check strain in tension steel 

s = 0.0035 × (452.5 – x)/x = 10.98 x 10−3 > yield strain in steel, εsy  
Therefore tension steel yields. 
Taking moment about the tension steel, moment of resistance is given by 

MR = fcd × b × (0.8 x) × (d – 0.8x/2) 
= [20 × 400 × (0.8 × 109) × (452.5 – 0.4 × 109)] × 10−6 

= 285.25 kNm 
Using case 1 loads, the theoretical cut-off point for one bar is given by the solution 
of the equation  

−282.25 = –353.50 + 318.05 × x – 82.8 × x2/2, giving x = 0.23 m 
The position of point of contraflexure is given by 

0 = –353.50+ 318.05 × x – 82.8 × x2/2, giving x = 1.35 m 
Because of the effect of shear, the bending diagram will be shifted away from the 
position of maximum moment in the direction of the decreasing moment by        
a1= 0.5 z cot θ (see clause 9.2.1.3, equation (9.2)).  Cotθ can be taken as 
approximately 2.5 and z as approximately equal to the effective depth d.  The shift 
is therefore approximately 1.25 d.  Taking d = 452.5 mm, a1 = 1.25 d = 567 mm 
From Table 5.5, Chapter 5, the anchorage length is 32 bar diameters = 1024 mm. 
One out of three bars will be cut at 230 + 1024 + 567 = 1825 mm from the support. 
Two bars will be stopped at 1350 + 1024 + 567 = 2945 mm from the support.  
 
Top steel-inner support: The section has 4T32 bars at the top.  Determine where 
2H32 can be stopped. 
Calculate the moment of resistance of the section with 2H32 bars (As = 1609 mm2) 
at top in tension is calculated.   As in (i) above, MR= 285.25 kNm. 
Using case 3 loads,  

MBE = 349.62, MEB = 468.20 kNm, load q = 82.8 kN/m, Span = 8 m 
Reaction at left support  

Vleft = 0.5 × 82.8 × 8 + (349.62 – 468.20)/8 = 315.18 kN 
The theoretical cut-off point for two bars is given by the solution of the equation  

−282.25 = –349.62 + 315.18 × x – 82.8 × x2/2, giving x = 7.39 m 
The position of point of contraflexure is given by 

0 = –349.62 + 315.18 × x – 82.8 × x2/2, giving x = 6.27 m 
Two out of four bars will be cut at (8000 – 7390) + 1024 + 567 = 2205 mm from 
the support. 
Two more bars will be stopped at (8000 – 6270) + 1024 + 567 = 3325 mm from 
the support.  
 
(o) Summary top steel arrangement 
Outer support: From the outer support the outer 2H32 will be stopped at 1825 mm 
from support and the inner 1H32 will be stopped at 2945 mm from support. 
Inner support: From the inner support the inner 2H32 will be stopped at 2205 mm 
from support and the outer 2H32 will be stopped at 3375 mm from support. 
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Link bars: 2H12 approximately 3000 mm will connect between the 2H32 from the 
outer support to 2H32 from the inner support.  This will to provide ‘hanger bars’ to 
the shear links. 
 
Bottom steel in span: The section has 3H25 bars at the bottom.  Determine the 
positions along the beam where the one bar can be cut off.   
     The moment of resistance of the section with 2H25 bars (As = 982 mm2) at the 
bottom face in tension is calculated.   
Assume that tension steel yields and the stress in the steel is 0.87 fyk.  
Equate the forces in the section:  

0.87 × 500 × 982 = (fcd= 20) × 400 × (0.8x) 
x = 67 mm 

Check strain in tension steel 
s = 0.0035 × (452.5 – x)/x = 20.14 x 10−3 > yield strain in steel, εsy. 

Therefore tension steel yields. 
Taking moment about the tension steel, moment of resistance is given by 

MR = fcd × b × (0.8 x) × (d – 0.8x/2) 
= [20 × 400 × (0.8 × 67) × (452.5 – 0.4 × 67)] × 10−6 

= 182.54 kNm 
Using case 1 loads, the theoretical cut-off point for one bar is given by the solution 
of the equation  

182.54 = –353.50 + 318.05 × x – 82.8 × x2/2, giving x = 2.50 and 5.19 m 
The position of point of contraflexure is given by 

0 = –353.50 + 318.05 × x – 82.8 × x2/2, giving x = 1.35 m and 6.33 m 
Because of the effect of shear, the bending diagram will be shifted away from the 
position of maximum moment in the direction of the decreasing moment by          
a1 = 567 mm 
From Table 5.5, Chapter 5, the anchorage length is 36 bar diameters                      
36 × 25 = 900 mm. 
One out of three bars can be stopped at 2500 − 900 − 567 = 1033 mm from the 
outer support and at (8000 – 6330) − 900 − 567 = 203 mm from the inner support.   
However the curtailed length are quite short.  In the interests of convenience and 
also of crack control, all the three bars will be carried onto the supports. 
 
(3) Design of Shear Reinforcement  
Inner support: From case 3 loading, shear force at support  

VEd = 346.02 kN 
 
Check whether section strength is adequate at support, VEd < VRd, max 
From equation (6.9) of the code 

                             

From equation (6.9) of the code 

                          (6.9) 
From equation (6.11aN), αcw = 1, bw = 400 mm, z ≈ 0.9d = 404 mm,  
                       ν1 = 0.6(1 − fck/250) = 0.6 (1 – 30/25) = 0.528                        (6.6N) 
fcd = 30/1.5 = 20 MPa.  Equate VEd = VRd, max and determine θ 

VRd, max = 1706.5/ (cot θ + tan θ) 
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cot θ = 2.5, VRd, max = 588.5 kN 
cot θ = 1.0, VRd, max = 853.2 kN 

Choosing cot θ = 2.5 for minimum shear reinforcement,  
VRd, max = 588.5 kN > 346.02 kN 

Section size is adequate. 
 
ii. Check whether shear reinforcement is required at d from the face of 
     support i.e., VEd > VRd, c 

Distance from centre line of support (column = 550 mm wide) to a distance  
(d = 449 mm) from the support  

= 550/2 + 449 = 724 mm 
The shear at d from the face of the support is  

VEd = 346.02 – 82.8 × (0.724) = 286.1 kN. 
bw = 400 mm, d = 449 mm 

From 4H32, Asl = 4 × 804 = 3217 mm2 
Using equations (6.2a) and (6.2b) of the code, 

12.0
)5.1(

18.0C
c

c,Rd 


  

0.267.1
449
2001k   

0.279.1
449400

3217100100 1 


  

                                        MPa46.03079.1035.0v 5.1
min                  (6.3N) 

                                     kN6.827.135V
10449400]756.0[

10449400]}3079.1{67.112.0[V

c,Rd

3

33/1
c,Rd











    

(6.2a)

 

VRd, c = 135.7 kN < 286.1 kN.  Therefore shear reinforcement is required. 
 

Design of shear reinforcement: 
Ensuring that VRd, s ≥ VEd, and choosing 2-leg H10 links, 
Asw = 157 mm2, cot θ = 2.5, z = 0.9d, fywd = 500/1.15 = 435 MPa, VEd = 286.1 kN 
Using code equation (6.8),  
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Maximum spacing s ≤ (0.75 d = 0.75 × 449 = 337 mm). 
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Using a spacing of 225 mm, 
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Shear capacity with minimum shear reinforcement 
 
If s = 337 mm, the maximum spacing allowed 

kN205
337

68961V s,Rd   

This value of shear force occurs at 1.35 m from the outer support and from the 
inner support at (8.0 – 6.30) = 1.70 m. 
 

 
 

Fig. 14.31 Reinforcement detail. 
 

Rationalization of link spacings 
The following rationalization of link spacing will be adopted:  

1. From face of outer support to a distance of 1350 mm, provide            
7H10 at 225 mm c/c. 

2. From face of inner support to a distance of 1800 mm, provide            
9H10 at 225 mm c/c. 

3. Centre portion over a distance of (8000 – 1350 – 1800) = 4850 mm 
provide 15H10 at 325 mm c/c. 

The link spacing is shown in Fig. 14.31. 
 
(4) Deflection   

L/d = limit of span/effective depth ratio 
K = 1.3 for end span of continuous beam 

ρ0 = 10−3 × √fck = 5.477 × 10−3 

7H10 at 225 9H10 at 225 

15H10 at 325 

3H32+ 1H20 

2H12 

4H32 + 1H20 

3H25 
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Tension steel, ρ =3H25/ (400 × 452.5) = 8.136 × 10−3 
Compression steel, ρ' =2H12/ (400 × 452.5) = 1.25 × 10−3 

b/bw = 1000/400 = 2.5 < 3.0 
Leff = 8 m, 7/Leff = 0.875 

As, prov = 3H25= 1472 mm2 
As, reqd = 1352 mm2 

                    If fyk = 500 MPa, 089.1
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Allowable span/d ratio = 21.9  
Actual span/d ratio = 8000/452.5 = 17.7 

The beam is satisfactory with respect to deflection.  
 
(5) Cracking  
Steel stress at SLS:       
At ULS, loading, q = (1.35 Gk + 1.5 Qk) = (1.35 × 41.33) + (1.5 × 18) = 82.8 kN/m 
At SLS, loading, q = (Gk + Qk) = 41.33 + 18 = 59.33 kN/m 

σs = fyd × (59.33/82.8) × (As, reqd/As, prov) = 286 MPa
 

 
Referring to Table 7.3N in the code, the clear spacing between bars in the tension 
zone should not exceed 150 mm. 
 
Outer support -top steel 
3H32 bars with 25 mm cover and 10 mm links.  Spacing between bars is 

= [400 – 2 × (25 + 10) – 32]/2 = 149 mm < 150 mm 
If the inner 3H32 bar is curtailed, spacing between bars is 

= [400 – 2 × (25 + 10) – 32] = 298 mm > 150 mm 
In the interests of crack control, add an additional 25 mm bar to link with middle 
25 bar from outer support steel. 
 
 
Inner support -top steel  
4T32 bars with 25 mm cover and 10 mm links.  Spacing between bars is 

= [400 – 2 × (25 + 10) – 32]/3 = 99 mm < 150 mm 
If the inner 2H32 bars are curtailed, spacing between bars is 

= [400 – 2 × (25 + 10) – 32] = 298 mm > 150 mm 
In the interests of crack control, add an additional H20 mm bar to link with middle 
H32 bar from outer support steel. 
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Bottom steel: Spacing between bars is 
= [400 – 2 × (25 + 10) – 25]/2 = 153 mm ≈ 150 mm 

 
(6) Arrangement of reinforcement  
The final arrangement of the reinforcement at the top and bottom is shown in     
Fig. 14.32. 
 

 
Fig. 14.32 Arrangement of flexural reinforcement. 

 
(p) Design of the lower length of the centre column  
 
(1) Design loads and moments  
 
Roof beams:  

Gk = 31.0 kN/m, Qk = 9.0 kN/m 
1.35 Gk = 41.85 kN, 1.5 Qk = 13.5 kN/m 

Floor beams:  
Gk = 41.33 kN/m, Qk = 18.0 kN/m 

1.35 Gk = 55.80 kN, 1.5 Qk = 27.0 kN/m 
Three load cases will be analysed. 
Case A: All spans carry 1.35 Gk. 
Case B: Only spans BE and HM carry 1.5 Qk.   
Case C: Only spans BE and EH carry 1.5 Qk.   

H32 H20 H12 

Steel at top face 

H25 

Steel at bottom face 
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The results of the analysis are shown in Tables 14.10 (Rotations) and Table 4.11 
(Moments). 
 
 

Table 14.10 Joint rotations 
Rotation Case A 

1.35 Gk on all 
spans 

Case B 
1.5Qk on spans 

BE and HM 

Case C 
1.5Qk on spans 

BE and EH 
θB × E × 106 

33.9790 16.9375 16.3783 
θE × E × 106 

−8.7314 −8.5231 −3.6774 
θH × E × 106 

8.7321 8.5234 −3.7508 
θM × E ×106 

−33.9795 −16.9379 0.4330 
 

Table 14.11 Bending moments in kNm in the sub-frame 
Moment Case A Case B Case C 

MBE −235.91 −117.59 −113.71 
MEB 314.80 143.89 153.40 
MEH −179.53 −11.84 −96.43 
MHE 179.53 11.84 65.47 
MBA 132.70 66.15 63.96 
MBC 103.21 51.45 49.75 
MED −76.09 −74.28 −32.05 
MEF −59.18 −57.77 −24.93 

 
 

Analysis Case 1 = Case A + Case B:  
 
Permanent load analysis: From the frame analysis for the case A when all the 
floor beams are loaded with 1.35Gk = 55.80 kN/m, the reaction from the floor 
beams are: 
Floor beam BE: RE = 0.5 ×55.80 ×8 + (314.80 − 235.91)/8 = 233.06 kN. 
Floor beam EH: RE = 0.5 ×55.80 ×6 – (179.53 − 179.53)/6 = 167.40 kN. 
The compression force on the column = 233.06 + 167.40 = 400.46 kN. 
The column moment MEF = 59.18 kNm. 
On the roof beam, 1.35 Gk = 41.85 kN/m. 
The compression force on the column = 400.46 × (41.85/55.80) = 300.35 kN. 
Total load on column from roof + 9 floors = 300.35 + 9 × 400.46 = 3904.49 kN. 
 
Imposed load analysis: From the frame analysis for the case B when the floor 
beams BE and HM alone are loaded with 1.5Qk = 27.0 kN/m, the reaction from the 
floor beams are: 
Floor beam BE: RE = 0.5 × 27 ×8 + (143.89 – 117.59)/8 = 111.29 kN. 
Floor beam EH: RE = 0 kN. 
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The compression force on the column = 111.29 + 0 = 111.29 kN. 
The column moment MEF = 57.77 kNm. 
On the roof beam, 1.5 Qk = 13.5.0 kN/m. 
The compression force on the column = 111.29 × (13.5/27) = 55.65 kN. 
Total load on column from roof + 9 floors = 55.65 + 9 × 111.29 = 1057.26 kN. 
Apply the reduction factor αn = 0.76.  
Total load from imposed load on the column = 1057.26 × (αn = 0.76) = 803.51 kN. 
 
Column self weight: (γg = 1.35) × 3.5 × [7.56 + 4(5.06 + 4.0)] = 206.96 kN. 
Total column axial load, N = 3904.49 + 803.51 + 206.96 = 4914.96 kN. 
Column moment, MEF = 59.18 + 57.77 = 116.95 kNm. 
Design the column for N = 4915 kN and M = 117 kNm. 
 
Analysis Case 2 = Case A + Case C:   
 
Permanent load analysis: The results will be as for case 1. 
 
Imposed load analysis: From the frame analysis for the case C when the floor 
beams BE and EH alone are loaded with 1.5Qk = 27.0 kN/m, the reaction from the 
floor beams are: 
Floor beam BE: RE = 0.5 × 27 × 8 + (153.40 – 113.71)/8 = 112.96 kN. 
Floor beam EH: RE = 0.5 × 27 × 6 + (96.43 – 65.47)/6 = 86.16 kN. 
The compression force on the column = 112.96 + 86.16 = 199.12 kN. 
The column moment MEF = 24.93 kNm. 
On the roof beam, 1.5 Qk = 13.5 kN/m. 
The compression force on the column = 199.12 × (13.5/27) = 99.56 kN. 
Total load on column from roof + 9 floors = 99.56 + 9 × 199.12 = 1891.64 kN. 
Apply the reduction factor αn = 0.76.  
Total load from imposed load on the column = 1891.64 × αn = 1437.65 kN. 
Column self weight: As under case 1 = 206.96 kN. 
Total column axial load, N = 3904.49 + 1437.65 + 206.96 = 5549.09 kN. 
Column moment, MEF = 59.18 + 24.93 = 84.11 kNm. 
Design the column for N = 5550 kN and M = 84 kNm. 
 
(2) Effective length and slenderness 
Considering the braced column sub-frame shown in Fig. 14.33, use code equation 
(5.15) to calculate the effective length.  k1 and k2 are the relative flexibilities of 
rotational restraints at ends 1 and 2 respectively. 
where: 



EI
M

k 
  

EI = bending stiffness (flexural rigidity) of the column. 
If there is a column above or below the column under consideration, then EI/ℓ 
should be replaced by EI/ℓ for column under consideration + EI/ℓ of the column 
above or below as appropriate. 
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θ = rotation of the restraining for a moment M. 
For a beam of span L, flexural rigidity EI and clamped at the far end the 
relationship between M and θ is M = 4 (EI/L) θ or θ/M = 0.25 L/ (EI).  
For the column sub-frame shown in Fig. 14.32, I/L for beams EB and EH are 
respectively 5.208 × 105 and 6.945 × 105.  I/L for columns ED and EF are 
respectively 21.787 × 105 and 16.9456 × 105.   
k1 = 0.1 minimum value for clamped at the base as recommended by the code. 
k2 = 0.25 × (1/5.208 + 1/6.945) × (21.787 + 16.9456) = 3.25. 

                     
 745.0}

)k45.0(
k1{}

)k45.0(
k1{5.0

2

2

1

1
0 







            (5.15)
 

 

 
 

Fig. 14.33 A column sub-frame in a braced frame. 
 
(q) Slenderness ratio 
In equation (5.13N), clause 5.8.3.1, the code classifies columns as short when the 
slenderness ratio λ about both axes are less than λlim  

                                     n
1CBA20lim 

                                  (5.13N)
 

where 

)2.00.1(
1A

ef
 , (If the effective creep ratio φef is not known, use A = 0.7) 

)21(B  , ω = (As fyd)/ (Ac fcd) 
Assume the steel value in the column as As = 8H25 = 3927 mm2 

fyd = 500/1.15 = 435 MPa 
Ac = 550 2 = 30.25 ×104 mm2 

fcd = 30/1.5 = 20 MPa 
ω = 0.282 
B = 1.25 

F 

E 
 
 

B 

D 

H 
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mr7.1C  , rm = moment ratio = M01/M02 
Take rm = 0.5 as M01 is one half of M02 and of same sign producing tension on 
opposite faces.  rm is negative.  C = 1.7 – (−0.5) = 2.2. 
n = relative normal force = NEd/ (Ac fcd). 
NEd = Design axial force = 4916 kN, Ac = 550 × 550, fcd = 20 MPa, n = 0.81. 

8.42
81.0

12.225.17.020lim 

 
ℓ0 = 0.745 × (ℓ= 4500) = 3352 mm 

i = √ (I/A) = √ (5504/12) / (5502) = 159 mm 
λ = 3352/159 = 21.1 < λmin 

The column is short. 

 
Fig. 18.34 Column design chart (fck = 30, fyk = 500, d/h = 0.85). 

 
(1) Column reinforcement  
Fig. 18.34 shows the design chart for a column with three layers of steel as shown 
in Fig. 18.35.  The chart is constructed for fck = 30, fyk = 500, d/h = 0.85.  It can be 
seen that the design is safe for the following two load cases. 
 
 
Case 1: 

N/ (bh) = 4915 × l03/5502 = 16.25 
M / (bh2) = 117 × 106 /5503 = 0.71 

Case 2: 
N/ (bh) = 5550 × l03/5502 = 18.35 
M / (bh2) = 84 × 106 /5503 = 0.51 
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Provide 8H25 to give an area of 3928 mm2. 
100Asc/bh = 1.3 

Check minimum and maximum areas of steel: 
Minimum steel: Max (0.10×NED/fyd; 0.002 Ac)  
                         = Max (0.10 × 5545 × l03/435; 0.002 × 5502) = 1274 mm2 
Maximum steel: 0.04 Ac =0.04× 5502 = 12100 mm2. 
Both are satisfied. 
Link diameter = max (6 mm, diameter of largest bar = 25/4).  Use H8 links. 
The maximum spacing is to be the minimum of  

 20 times the diameter of the smallest longitudinal bar = 20 × 25 = 500 mm 
 Lesser dimension of the column = 550 mm 
 400 mm 

Use 400 mm spacing for links. 
Every longitudinal bar placed in a corner should be held by a link.  No bar within a 
compression zone should be further than 150 mm from a restrained bar.  Note that 
the bars at the centre of sides are held by separate horizontal and vertical links to 
satisfy this criterion. 
 

 
 

Fig. 14.35 Column reinforcement. 
 
(r) Robustness: design of ties  
The design must comply with the requirements of sections 9.10.2 of the code 
regarding robustness and the design of ties.  These requirements are examined.   
 
(1) Internal ties 
According to clause 9.10.2.3 of the code, the ties must be able to resist a tensile 
force in 20 kN/m width and can be spread evenly in the slabs or in beams.  These 
must be provided at each floor and roof level in two directions approximately at 
right angles.  

Steel area = 20 × 103 / (0.87 × 500) = 46 mm2/m 
Provide one H12 bar every 2250 mm in the topping of the ribbed slab. Steel 
provided is equal to 50 mm2/m. 

3H25 

links: H8 

3H25 

2H25 

550 sq. 
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(2) Peripheral ties  
According to clause 9.10.2.2 of the code, the peripheral ties must resist a maximum 
force Ftie, per of 70 kN.   

Steel area = 70 × 103 / (0.87 × 500) = 161 mm2 
This will be provided by an extra H16 bar in the edge L-beams running around the 
building.  Area provided = 201 mm2. 
 
(3) External column tie  
According to clause 9.10.2.4 of the code, edge columns should be tied horizontally 
to the structure at each floor and roof level.  The force to be resisted is Ftie, fac equal 
to 20 kN/m.  For the column the maximum force Fcol = 150 kN.  The required steel 
area is  

Steel area = 150 × 103 / (0.87 × 500) = 345 mm2 
Provide 2H16 = 402 mm2 per column. 
The corner columns must be anchored in two directions at right angles.   
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CHAPTER 15 
 

TALL BUILDINGS 
 
 
15.1 INTRODUCTION  
 
For the structural engineer the major difference between low and tall buildings is 
the influence of the horizontal loads due to wind and earthquake on the design of 
the structure.  Lateral deflection of a tall concrete building is generally limited to 
H/1000 to H/200 of the total height H of the building.  In the case of tall buildings, 
in addition to limiting this so called lateral drift, attention has to be focused on the 
comfort of the occupants because vibratory motion may induce mild discomfort to 
acute nausea.   
 
Another aspect that needs to be addressed in tall buildings is the vertical movement 
due to creep and shrinkage in addition to that due to elastic shortening.  These 
movements can cause distress in non-structural elements and must be allowed for 
in detailing. 
 
     This chapter is mainly concerned with the elastic static analysis of tall structures 
subject to lateral loads.  An attempt is made to explain the complex behaviour of 
such structures and to suggest simplified methods of analysis of those types of 
structures which do not require full 3-D analysis.  The behaviour of individual 
planar bents and the interaction between shear walls and rigid-jointed frames will 
be examined in detail as it highlights the complexity involved in the analysis of 
three-dimensional structures subjected to horizontal forces. 
 
 
15.2 ASSUMPTIONS FOR ANALYSIS  
 
The structural form of a building is inherently three-dimensional.  The 
development of efficient methods of analysis for tall structures is possible only if 
the usual complex combination of many different types of structural members can 
be reduced or simplified whilst still representing accurately the overall behaviour 
of the structure.  A necessary first step is therefore the selection of an idealized 
structure that includes only the significant structural elements with their dominant 
modes of behaviour.  It is often possible to ignore the asymmetry in a structural 
floor plan of a building, thereby making a three-dimensional analysis unnecessary. 
One common justifiable assumption is that floor slabs are fully rigid in their own 
planes but flexible out-of-plane.      Consequently, all vertical members at any level 
 
This chapter is a modified version of the chapter on Tall Buildings by Hoenderkamp from 
Reinforced Concrete: Design, Theory and Examples by T.J MacGinley, 1990, Spon Press.  
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are subject to the same components of translation and rotation in the horizontal 
plane.  This does not hold true for very long narrow buildings and for slabs which 
have their widths drastically reduced at one or more locations.  Similarly 
contributions from the out-of-plane stiffness of floor slabs and structural bents can 
be neglected because of their low stiffness compared with in-plane stiffness.  
 
 
15.3 PLANAR LATERAL LOAD RESISTING ELEMENTS  
 
 
15.3.1 Rigid-Jointed Frames  
 
The most common type of planar bent used for medium height structures is the 
rigid-jointed frame.  These frames are economic for buildings up to about 25 
storeys.  Beyond that height, control of drift becomes problematic and requires 
uneconomically large members. 
 
 
15.3.2 Braced Frames 
 
The lateral stiffness of a rigid frame can be improved significantly by providing 
diagonal members.  In fact such structures could be economic in case of very tall 
structures.  Bracing can be either in storey height–bay width module or they could 
extend over many bays and storeys.  Fig. 15.1 shows rigid frame and braced 
frames. 
 

 
 

Fig. 15.1 (a) Rigid–jointed frame; (b) braced frame; (c) braced frame with large diagonal bracing. 
 
 
15.3.3 Shear Walls  
 
The simplest form of bracing against horizontal loading is the plane cantilevered 
shear wall.  The main difficulty with shear walls is their solid form which tends to 
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restrict planning where wide open internal spaces are required.  They are 
particularly suitable for hotel and residential buildings requiring repetitive floor 
plans.  This allows the walls to be vertically continuous and they can serve both as 
room dividers and also provide sound and fire insulation. 
 
 
15.3.4 Coupled Shear Walls  
 
As shown in Fig. 15.2, a coupled shear wall structure is a shear wall with openings.  
The two halves of the wall could be connected by beams or slabs at each floor 
level.  For analysis purposes, coupled shear walls are treated as rigid frames.  
However compared to the width of a column in a rigid frame, the width of the wall 
is very large.  To allow for the large width of the walls, the beams connecting the 
walls are assumed to be rigid over half the width of the walls as shown in Fig. 15.3. 
 

 
Fig. 15.2 Coupled shear wall. 
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15.3.5 Wall-Frame Structures 
 
 

 
Fig. 15.3 Rigid-jointed frame model for a coupled shear wall. 

 

 
                                     (a)                                                         (b) 
 

Fig. 15.4 Shear mode and bending mode of deflection of rigid-jointed frames and walls. 
 
When rigid-jointed structures which deflect in a shear mode as shown in            
Fig. 15.4(a) are combined with shear walls which deflect in a flexural mode as 
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shown in Fig. 15.4(b), they are constrained to adopt a common deflected shape 
because of the horizontally stiff girders and slabs.  As a consequence, the two 
horizontal load resisting structural forms interact, especially at the top to produce a 
stiffer and stronger structure than a simple addition of the stiffnesses of the two 
elements would indicate.  This combined form has been found to be suitable for 
structures in the 40 to 60 storey range. 
 
 
15.3.6 Framed Tube Structures 
 
In this type of structure, the lateral load resisting system consists of moment 
resisting rigid-jointed frames in two orthogonal directions which form a closed 
tube around the perimeter of the building plan as shown in Fig. 15.5.  The frame 
consists of closely spaced columns at around 2 to 4 m centres joined by deep 
girders.  The lateral load is carried by the perimeter frames but gravity load is 
shared between internal columns and perimeter frames.  Perimeter frames aligned 
in the direction of the lateral load act as the webs and the frames normal to the 
direction of loading act as the flanges of the massive box cantilever.  Inevitably, 
with a wide flange, shear lag effect as shown in Fig. 15.5 makes the flanges much 
less efficient. 
 

 
 

Fig. 15.5 Framed tube structure. 
 
 
15.3.7 Tube-in-Tube Structures 
 
This is similar to framed tube structures except that apart from the perimeter tube 
there is an internal tube formed of a service core and lift cores as shown in         
Fig. 15.6.  Both tubes participate in resisting lateral loads. 
 
 
 

Stress 
profiles 
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15.3.8 Outrigger-Braced Structures 
 
Fig. 15.7 shows an outrigger structure.  This consists of a central core which could 
be shear walls which form part of the elevator and service cores or a braced frame.  
The core is connected to the perimeter columns by horizontal cantilevers or 
outriggers.  Under horizontal loads the core bends and rotation of the core is 
restrained by the outrigger trusses through tension and compression in the 
perimeter columns.  In effect the outriggers considerably increase the effective 
depth of the building and provide a very stiff structure.  The number of outriggers 
up the height is generally limited to a maximum of about four.  This type of 
structure has been found to be efficient in the design of buildings in the 40 to 70 
storey range. 
 

 
Fig. 15.6 Tube-in-tube structure. 

 

 
Fig. 15.7 Outrigger braced structure. 

 
 
15.4 INTERACTION BETWEEN BENTS  
 
The analysis of a tall building structure subject to horizontal and vertical loads is a 
three-dimensional problem.  In many cases, however, it is possible to simplify and 
reduce this to a 2-D problem by splitting the structure into several smaller two-

Core 

Outrigger truss 

Perimeter column in 
compression. 

Perimeter column 
in tension. 

Load 
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dimensional components which then allow a less complicated planar analysis to be 
carried out.   

 

 
Fig. 15.8 (a) Structural floor plan, (b) deflected profiles and (c) floor rotations. 

 
The procedure for subdividing a three-dimensional structure requires some 
knowledge of the sway behaviour of individual bents subjected to lateral loads.  As 
stated in section 15.3.5, rigid frames subject to lateral load will mainly deflect in a 

(b) 
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shear configuration and shear walls will adopt a flexural configuration under 
identical loading conditions.  These types of behaviour describe extreme cases of 
deflected shapes along the height of the structures.  Other bents such as coupled 
walls will show a combination of the two deflection curves.  In general they 
behave as flexural bents in the lower region of the structure and show some degree 
of shear behaviour in the upper storeys.  Combining several bents with 
characteristically different types of behaviour in a single three-dimensional 
structure will inevitably complicate the lateral load analysis.  It would be incorrect 
to isolate one of the bents and subject it to a percentage of the horizontal loading.   
     Fig. 15.8(a) shows the structural floor plan of a multi-storey building that 
consists of a single one bay frame combined with a shear wall.  The symmetrically 
applied lateral load will cause the structure to rotate owing to the distinctly 
different characteristics of the two bents.  A side view of the deflections of both 
cantilevers is shown in Fig. 15.8(b).  Fig. 15.8(c) shows rotation of sections taken 
at different levels.  It shows that it cannot be assumed not only that the rotation of 
the floor plans continuously increases along the height in one direction but also 
that the structure has a single centre of rotation.  To deal with these complications, 
a more sophisticated three-dimensional analysis will be necessary. 
 
 
15.5 THREE-DIMENSIONAL STRUCTURES  
 
 
15.5.1 Classification of Structures for Computer Modelling  
 
In many cases it is possible to simplify the analysis of a three-dimensional tall 
building structure subject to lateral load by considering only small parts which can 
be analysed as two-dimensional structures.  This type of reduction in the size of the 
problem can be applied to many different kinds of buildings.  The degree of 
reduction that can be achieved depends mainly on the layout of the structural floor 
plan and the location, in plan, of the horizontal load resultant.  The analysis of tall 
structures as presented here is divided into three main categories on the basis of the 
characteristics of the structural floor plan.  
 
 
15.5.1.1 Category I: Symmetric Floor Plan with Identical Parallel Bents Subject 
             to a Symmetrically Applied Lateral Load Q  
 
The structure shown in Fig. 15.9(a) comprises six rigid–jointed frames, four in the 
y-direction and two in the x-direction.  Because of symmetry about the y-axis, all 
beams and columns at a particular floor level will have identical translations in the 
y-direction when subjected to load q.  There will be no deflections in the x-
direction.  For the analysis of this model consisting of four identical rigid frames 
parallel to the applied load, it will be sufficient to analyse only one frame subjected 
to a quarter of the total load. 



Tall buildings                                                                                                                        649 

 
Fig. 15.9 (a) Structural floor plan of tall rigid frame building; (b) simplified floor plan;  

(c) one–bay rigid frame computer model. 
 
 
15.5.1.2 Category II: Symmetric Structural Floor Plan with Non-identical 
             Bents Subject to a Symmetric Horizontal Load Q  
 
The lateral load–resisting component of the structure shown in Fig. 15.10(a) 
comprises two rigid frames and two shear walls orientated parallel to the direction 
of the horizontal load q.  The behaviour of the structure is similar to Category I 
structures except that for the analysis a symmetrical half of the structure needs to 
be analysed.  In addition the shear wall and the rigid-jointed frame need to be 
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connected in line such that the horizontal deflections of the two elements at any 
level are identical.  The two structures can be linked by members of high axial 
stiffness to achieve the required compatibility of deflections. 
 

 
 

Fig. 15.10(a) Structural floor plan of frame–wall building; (b) simplified floor plan;  
(c) computer model of linked bents in a single plane. 

 
Note that as long as symmetry about the y-axis is maintained, it is possible to cope 
with any variation in geometry with height of different frames and walls.  A 

Note: Links have high 
axial stiffness but low 
flexural stiffness 
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setback in the upper storeys for all exterior bays in the floor plan shown in         
Fig. 15.11(a) will still allow a plane frame analysis for the linked bents shown in      
Fig. 15.11(b).  If the setback causes a loss of symmetry about the y-axis; however, 
the structure will rotate in the horizontal plane and a full three-dimensional 
analysis will be necessary.  
 
 
15.5.1.3 Category III: Non-symmetric Structural Floor Plan with Identical or 
              Non-identical Bents Subject to a Lateral Load Q  
 
A category III structure, of which an example floor plan is shown in Fig. 15.12, 
will rotate in the horizontal plane regardless of the location of the lateral load.  It 
cannot be reduced to a plane frame problem and a complete three-dimensional 
analysis is required. 
 

 
Fig. 15.11(a) Structural floor plan of rigid frame building. 

 
 
15.6 ANALYSIS OF FRAMED TUBE STRUCTURES 
 
Framed tube structures shown in Fig. 15.5 can be analysed as a pair of cantilevers 
lying in the same plane.  However it is necessary to allow for the shear lag effect in 
columns in the ‘flange’ frame.  This can be allowed for by treating the ‘web’ frame 
and the ‘flange’ frame as two cantilevers as shown in Fig. 15.13.  The lateral load 
is applied to the web frame.  At the junction between the two frames, at each storey 
level the web frame is connected to the flange frame through a set of `rigid` 
vertical springs.  This ensures that at the junction between the two frames, both 
frames move in the vertical z-direction by the same amount.  However the 
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displacement in the y-direction of web frame is different from the deflection of the 
flange frame in the x-direction, although in the analysis they lie in the same plane.  
The compatibility of deflections is valid only in the vertical direction. 
 
 
15.7 ANALYSIS OF TUBE-IN-TUBE STRUCTURES 
 
The distribution of horizontal load between the inner core and the perimeter tube of 
a tube–in–tube structure (Fig. 15.14) depends on the characteristics of the floor 
system connecting the vertical elements.  Two assumptions about these 
connections can be made, resulting in different computer models. 
 

 
 

Fig. 15.11(b) Linked rigid frames in a single plane. 
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(a) The interior beams and/or floors are effectively pin-connected to the cores 
and columns: If the structural floor plan is symmetric about the y-axis as shown in 
Fig. 15.14(a), the structure can be classified under category II and a plane frame 
analysis is possible.  Only half the structure needs to be considered.  As shown in 
Fig. 15.14(b), half the core is bent B, i.e., one channel-shaped cantilever wall is 
bundled with its exterior columns of the two exterior frames perpendicular to the 
direction of the load.  In calculating the second moment of area of the channel 
section, allowance has to be made for shear lag effect by assuming a reduced 
effective width for flange width.  Together they can be modelled as a single 
flexural cantilever with a combined bending stiffness represented by the wall and 
columns 1 and 2.  One rigid frame parallel to the direction of the load, bent A is 
then connected to it in a single plane by means of rigid links at each floor level.  
The two-dimensional model is to be subjected to half the lateral load.  
 

 
 

Fig. 15.12 Non-symmetric structural floor plan. 
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Fig. 15.13 Web and flange frames. 
 

 
 

Fig. 15.14(a) Structural floor plan of a tube-in-tube building. 
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Fig. 15.14(b) Rigid-jointed frame linked to core and columns. 

 
(b) Beams spanning from the exterior columns to the cores can be considered 
rigidly connected: The channel-shaped shear wall which is parallel to the load and 
rigidly connected to floor beams will behave as a wide column and must be 
modelled as such.  Flexural column elements are located on the neutral axis of the 
wall but in the plane of the bent.  The moment of inertia of these members should 
represent the full section of the channel-shaped wall.  Rigid arms are then attached 
in two directions at each floor level.  Floor beams are rigidly connected to these 
arms and the columns of the perpendicular frames.  The plane frame model of half 
the structure subjected to half the horizontal loading is shown in Fig. 15.14(c).  The 
short deep beams connecting the shear walls at each floor level will not influence 
the deflection behaviour of the structure in the y-direction since both walls adopt 
exactly the same deflection profile when subjected to lateral load. 
     When the core is turned through 90°, without loss of symmetry, a wide arm 
column model is still possible.  The flexible column elements are to be placed on 
the neutral axis of the channel-shaped section but in the plane of the bent to be 
analysed.  The second moment of area of this element should represent only one-
half of one channel-shaped section. The two unequal rigid arms at each floor level 
add up to the width of the 'flange' of the channel-shaped cantilever.  Beams 
connecting the wide column to other walls or columns can then be rigidly jointed 
to the arms.  
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Fig. 15.14(c) Linked bents. 
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CHAPTER 16 
 

PRESTRESSED CONCRETE 
 
 
16.1 INTRODUCTION 
 
Prestressed concrete structures can be defined as concrete structures where external 
compressive forces are applied to overcome tensile stresses caused by unavoidable 
loads due to gravity, wind, etc.  In other words, it is precompressed concrete 
meaning that compressive stresses are introduced into areas where tensile stresses 
might develop under working load and this precompression is introduced even 
before the structure begins its working life.  
This chapter gives a brief introduction to the basic aspects of prestressed concrete 
design.   For a more extensive treatment, the reader is referred to Bhatt (2011). 
 
     One of the disadvantages of reinforced concrete is that tensile cracks due to 
bending occur even under working loads.  This has four major disadvantages. 
   Cracks encourage corrosion of steel. 
 A cracked concrete beam is much more flexible than an uncracked beam.  This 

means that when using a reinforced concrete beam, one could have 
serviceability problems due to deflection or even due to cracking if too slender 
a beam is used. 

 Cracked concrete is not, on the whole, contributing to strength but rather it is 
simply adding to dead weight. 

 The width of the cracks is to a large extent governed by the strain in 
reinforcing steel.  If high tensile steel is used as reinforcement, then the 
resulting width of the cracks at working loads would be unacceptable.  
Ordinary reinforced concrete precludes the utilization of high strength steel 
and the resulting possible economies. 

 
Clearly the above problems can be overcome if we can apply external compressive 
forces to the beam to prevent it from cracking or even better if the external 
compressive forces can be applied so as to neutralize the stresses created by 
applied loads under serviceability conditions, a very efficient structure can be 
designed.   
 
Consider the simply supported beam supporting loads as shown in Fig. 16.1.  
Bending moment at a section XX produces tensile and compressive stresses at 
bottom and top fibres respectively.  If a compressive force is applied at the 
centroidal axis, it sets up uniform compression throughout the beam cross section.  
It does neutralize the tensile stresses at the bottom portion of the beam caused by 
bending but it has the disadvantage of increasing the total compressive stresses at 
the top face.  If however the compressive force is applied towards the bottom face 
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at an eccentricity of e from the centroidal axis, then in addition to an axial force of 
P, a bending moment equal to Pe of a nature opposite to that caused by external 
loads is created.  The total stresses due to the bending moment M and the prestress 
P at an eccentricity e are 

tt
top z
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z
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Pf  ,  

bb
bottom z

M
z
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A
Pf   

where zt and zb are the section moduli of the cross section for top and bottom fibres 
respectively and A is the cross sectional area of the beam. 
 
As shown in Fig. 16.1, by proper manipulation of the values of P and e, it is 
possible to ensure that at working loads, the entire cross section is in compression.  
It is often stated that one tonne of prestressing steel can result in up to 15 times the 
amount of building that is made possible by one tonne of structural steel.  
 

 
 
 

Fig. 16.1 Stresses due to prestress and external loads. 
 
 
16.2 APPLYING PRESTRESS 
 
There are two main methods of prestressing.  They are called pretensioning and 
posttensioning. 
 
 
16.2.1 Pretensioning 
 
This is used for producing precast prestressed concrete products such as bridge 
beams, double T-beams for floors, floor slabs, railway sleepers, etc.  In this 
method, as shown in Fig. 16.2, the process consists of the following steps. 
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 Any reinforcing steel such as links etc. are threaded onto the high tensile steel 
cables.  The cables are tensioned or jacked to the desired force between 
abutments.  The cable is anchored using a simple barrel and wedge device.  
Because of the fact that the cables are tensioned before concrete is cast, the 
name pretensioning is used for this process. 

  The formwork is assembled around the steel cables. 
 Concrete is placed in the moulds around it and is allowed to cure to gain 

desired level of strength.  This is often speeded up using steam curing.  This 
also enables the prestressing bed to be reused quickly for another job.  

 Steel is released from the abutments, transferring the compressive force to the 
concrete through the bond between steel and concrete. 

 
 

 
 

Fig. 16.2 Basic stages of pretensioning. 
 
In practice a large number of identical units are cast at the same time using what is 
known as longline production method. 
 
It is worth noting that when the force in the cable is transferred to concrete, it 
contracts.  Because of the full bond between concrete and steel, steel also suffers 
the same contraction leading to a certain loss of stress from the stress at the time of 
jacking.  This is known as loss of prestress at transfer and is generally of the order 
of 10%.  Thus 

P Transfer  0.9 Pjack 
where  

Stage 1: Cable stressed between abutments 
 
 

Stage 2: Concrete cast and allowed to harden 
 

Stage 3: Cable released from the abutments 
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P Transfer = Total force in the cable after initial loss of stress due to compression of 
concrete. 
Pjack = Total force used at the time of initial jacking the cable between the 
abutments. 
 
 
16.2.1.1 Debonding 
 
One of the disadvantages of having the same prestressing force P and eccentricity e 
at all sections is that while normally the external loads produce large bending 
stresses at the mid-span of the simply supported beam but small stresses towards 
the supports, the stresses due to prestressing remains constant at all sections.  This 
clearly defeats the idea of tailoring stresses due to prestressing to match the 
stresses due to external loads.  This disadvantage can be overcome to a great extent 
by two methods as follows. 

 
 

Fig. 16.3 Deflected tendons. 
 

(a) Deflected Tendons: As shown in Fig. 16.3, the cable is deflected along its 
length by pulling the cable up or down as necessary.  However this is generally not 
preferred because of extra cost.  
 
(b) Debonding: In this method by preventing bond from developing between 
concrete and steel by sheathing some of the cables in plastic tubing as shown in 
Fig. 16.4, both the prestressing force and eccentricity can be varied in a stepwise 
fashion along the span.  This is generally the preferred option due to low cost. 
 
The transfer of force between concrete and steel takes place gradually.  The force 
transfer takes place due to two basic actions. 
 
 Bond between concrete and steel plays an important part.  It is therefore 

essential to ensure that the cable is clean and free from loose rust and that 
concrete is well compacted. 

 The cable is stretched and therefore has a very slightly reduced diameter due 
to the Poisson effect.  However when the cable is released from the abutments, 
the wire regains its original diameter at the ends.  This creates a certain 
amount of wedging action and in addition frictional forces also come into play. 
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Fig. 16.4 Debonding: (a) Plastic sleeves around the cables; (b) effective position of where prestress 
starts; (c) variation of prestress and eccentricity along span. 

 
 
16.2.1.2 Transmission Length 
 
As shown in Fig. 16.2, once the cable is released from the abutments, the force in 
the cable becomes zero at the ends of the cable.  However away from the ends, the 
bond between cable and concrete prevents the cable from regaining its original 
length.  As shown in Fig. 16.5, the force in the cable gradually builds up to its full 
value over a certain length.  This is known as transmission length.  This varies 
depending on the surface characteristics of the cables and the strength of concrete.  
It is generally of the order of about 50 diameters for 7-wire strands. 
 
 
 
 
 
 

Fig. 16.5 Gradual build-up of force in the cable. 
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16.2.2 Posttensioning 
 
One of the limitations of pretensioning is that normally the cables need to remain 
straight because the cable is pretensioned before concrete hardens.  This limitation 
can be overcome if as shown in Fig. 16.6, the cable is laid to any desired profile 
inside a metal ducting fixed to the required profile to the reinforcement cage with 
the permanent anchorages also positioned at the ends of the duct.  Afterwards, 
concrete is cast and once it has hardened the cable is tensioned and anchored to the 
concrete using permanent external anchors rather than relying on bond between the 
cable and the concrete as in the case of pretensioning.  This is the basic idea of 
posttensioning.  Because of the fact that the cables are tensioned after the concrete 
has hardened, the system is known as posttensioning.  Finally, the duct is filled 
with a colloidal grout under pressure in order to establish bond between concrete 
and steel and also as protection against corrosion. 
 
 
 
 
 
 
 

Stage 1: Cable inside the duct but not tensioned and concrete is cast 
 
 
 
 
 
 

Stage 2: Concrete has hardened and cable is tensioned but not anchored 
 
 
 
 
 

Stage 3: Cable is tensioned and anchored at the ends 
 

Fig. 16.6 Different stages in posttensioning. 
 

There are various types of anchors used in practice but they are generally of two 
types.  
 The bar is threaded at the ends and anchoring is by a nut bearing on concrete.  

The threads are rolled rather than cut to reduce stress concentration.  The main 
advantage of this system is that prestress can be applied in stages to suit design 
considerations or losses can be compensated at any time prior to grouting.  
The anchorage is completely positive and there is no loss of prestress at the 
transfer stages. 
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 Anchoring is done using a system of cones and wedges.  In this case, there is 
loss of prestress at transfer stage because of the slip between the cable and the 
wedge before the wedges `bite in`. 

 
 
16.2.3 External Prestressing 
 
One of the disadvantages of traditional posttensioning is that there is no guarantee 
that the ducts are properly filled with grout to prevent corrosion and if the steel 
corrodes, cables cannot be replaced.  In order to overcome these problems, external 
prestressing as shown in Fig. 16.7 is used.  The cables are on the outside of the 
beam and the eccentricity is varied using saddles at appropriate places to obtain the 
required profile.  This is similar to the use of deflected tendons in a pretensioned 
system.  This system allows replacement of cables as required and also allows the 
use of additional cables at a later stage in order to strengthen the structure.  
Although the term external prestressing is used, it is not necessary for the cables to 
be outside the structure.  For example in the case of box girders, cables can be 
placed inside the void of the box girder. 
 
 
 
 
 
 
 

Fig. 16.7 External prestressing. 
 
 
16.2.4 Unbonded Construction 
 
Because of the relative unreliability of grouting to prevent corrosion of the cables 
and also because of the fact grouting is a time-consuming job and sufficient time 
has to elapse for the bond between the cables (also called tendons or strands) and 
concrete to become effective, a common form of construction used in practice is to 
dispense altogether with the bond between the concrete and steel.  Cables used in 
this form of construction are coated by grease and encased in a plastic sleeve.  The 
plastic sleeve acts as the duct and the construction process is similar to normal 
posttensioning.  The main advantage of this unbonded system is speed of 
construction as no grouting is done.  However this is not a particularly structurally 
efficient system because the ultimate bending capacity tends to be only about 70% 
of a corresponding beam using bonded construction.  Nevertheless, unbonded 
posttensioned slabs are a very common form of construction. 
 
 
 
 

saddle 
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16.2.5 Statically Indeterminate Structures 
 
Because the bending moment due to external loading in a simply supported beam 
is parabolic, the cable profile is also parabolic.  One of the advantages of 
posttensioning is that the cable profile can be varied so that the bending moment 
due to external loading can be neutralized by varying the eccentricity to match the 
shape of the bending moment diagram.  A posttensioning system is essential when 
constructing prestressed statically indeterminate structures.  Fig. 16.8 shows the 
cable profile in a two span continuous beam. 

 
 
 
 
 
 
 
 
 

Fig. 16.8 Cable profile in a two span continuous beam. 
 

 
16.2.6 End Block 
 
One important aspect of posttensioning that needs special attention is the area 
where cables are anchored.  Because of the fact that many cables are anchored to 
the same anchorage block of a relatively small size, large compressive forces are 
transferred at the anchorage block.  Depending on the number of cables anchored 
and their diameter, the force at an anchor block can vary from 100 to 12000 kN. 
This large transfer of force has the same effect as driving a wedge into a block of 
wood and has the tendency to burst the concrete transversely near the anchorage.  
The bursting forces have to be resisted using a large number of links near the 
anchors.  This area of beam is known as an end block. 
 
 
16.3 MATERIALS 
 
 
16.3.1 Concrete 
 
Concrete used for prestressing work is generally of much higher quality than that 
used for reinforced concrete work.  Concrete of grade C50 or over is common.  
Certain deformational properties of concrete affect the design of prestressed 
concrete structures and it is necessary to understand them.  One of the important 
properties of concrete is creep.  Creep is defined as the increase of strain with time 
when the stress is held constant.  Under the action of compressive stress due to 
prestress, concrete continues to deform.  Because of the bond between steel and 
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concrete, steel also experiences compressive strain which reduces the tension in the 
cables.  In addition to creep, shrinkage of concrete also contributes to the loss of 
prestress.  This long-term loss can be as high as 25% of the initial stress.  Thus  

P Service  0.75 Pjack 
where 
P Service = total prestress remaining in the long-term under working load conditions, 
after all the losses have taken place. 
Pjack = Total load in the cables at the time of jacking. 
     It should be noted that these long-term losses of prestress are common to both 
pre and posttensioning systems. 
 
     One important effect of creep is increased deflections.  Because in a prestressed 
concrete member a greater part of the cross section is in compression compared to 
the corresponding reinforced concrete section, long-term creep movements are 
increased. 
 
 
16.3.2 Steel 
 
Compared to normal high yield steel bars used in reinforced concrete which has a 
characteristic tensile stress fyk of about 500 MPa, prestressing steel is usually cold 
drawn high tensile steel wires or alloy steel bars with a characteristic tensile stress 
fpk tensile stress of about 1800 MPa.  Apart from the fact that steel used in 
prestressing work is of higher strength, it is also much less ductile compared with 
reinforcing bars.  Steel used in prestressed concrete is available in the form of:  
 
 Wires from 7 mm to 3 mm diameter.  In order to improve bond, wires are 

often indented.  This is called crimping. 
 Tendons used today are almost always 7-wire strand made from six wires spun 

round a straight central wire.  The overall nominal diameter varies from     
12.5 mm to 18 mm.  Two basic shapes of cables are available.  In standard 
cables the individual wires maintain their circular cross section.  In order to 
reduce the overall diameter, the standard strand can be passed through a die to 
compress the cable and reduce the voids.  The final shape of the individual 
wires is trapezoidal rather than circular.  This type of cable is called drawn and 
has, for the same nominal diameter, a higher amount of steel in the cross 
section.  

 Bars:  25 mm to 50 mm diameter.  Two types are common.   In one type, the 
bar has ribs along its entire length.  The ribs are rolled rather than cut to reduce 
stress concentration problems.  The ribs act as threads for coupling purposes.  
In the other type the bar is smooth but has threads rolled only at the ends for 
coupling or for anchorage purposes. 
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16.3.2 .1 Relaxation of Steel 
 
Just as concrete exhibits time-dependent deformation due to creep, steel exhibits a 
property called relaxation.  If the strain in steel is maintained constant, then the 
stress required to maintain that strain reduces with time.  This property is known as 
relaxation.  Relaxation is thus loss of stress under constant strain.  Generally tests 
are conducted for duration of 1000 hours (about 42 days) at a temperature of 20oC 
and at an initial stress of 70% of the actual tensile strength of the steel to determine 
Relaxation properties.  Final relaxation loss in the long term normally taken as 
about 57 years is expressed as a multiple of the 1000 hour loss.  Relaxation also 
contributes to the loss of prestress in the long-term.  
     Heat treatment is used to improve the elastic and yield properties of strands.  In 
clause 3.3.2(4), two classes of relaxation for strands are defined.  They are: 
 
Class 1: Wire or strand, ordinary relaxation.  In order to remove residual stresses 
due to cold drawing, the strand is heated to about 350o C and allowed to cool 
slowly. 
Class 2: Wire or strand, low relaxation.  The strand is heated to about 350o C while 
the strand is under tension and allowed to cool slowly.  This process is known as 
strain tempering. 
Class 3: Hot rolled and processed bars are classed as relaxation class 3. 
 
 
16.4 DESIGN OF PRESTRESSED CONCRETE STRUCTURES 
 
Although design of prestressed concrete structures has to satisfy both serviceability 
and ultimate limit state criteria, there is a fundamental difference in the approach to 
the design of reinforced and prestressed concrete structures.  The normal design 
procedure for a reinforced concrete structure is to design the structure for ultimate 
limit state and then check that the structure behaves satisfactorily at serviceability 
limit state.  On the other hand, the normal design procedure for a prestressed 
concrete structure is to design the structure for the serviceability limit state and 
then check that the structure behaves satisfactorily at ultimate limit state.  The 
reason for this difference is that generally speaking in prestressed concrete 
structures, serviceability limit state conditions are much more critical than the 
conditions at ultimate limit state.  Thus generally structures designed for 
serviceability limit state also satisfy the ultimate limit state criteria, but not the 
other way around. 
 
 
16.5 LIMITS ON PERMISSIBLE STRESSES IN CONCRETE 
 
Since prestressed concrete structures are primarily designed to satisfy the 
serviceability limit state, it is necessary to limit the stresses in concrete and steel.  
The structure is assumed to behave elastically and the two critical conditions to be 
considered are 
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 Stress state at transfer of prestress:  At this stage the loads acting are the self 
weight of the structure and prestress with only elastic shortening during 
transfer having taken place. 

 Stress state at serviceability limit state when the loads acting are the dead and 
live loads along with the prestress with all the long-term losses assumed to 
have taken place. 

 
 
16.5.1 Permissible Compressive and Tensile Stress in Concrete at Transfer 
 
Let fck(t) be the compressive strength at the time of stressing in the case of 
posttensioned members or at force transfer in the case of pretensioned members.  
Let the numerical value of the permissible stress in compression at the extreme 
fibre be ftc.  Clause 5.10.2.2(5) of the code states that ftc   0.6 fck(t).   
For pretensioned elements the stress at the time of transfer of prestress may be 
increased to 0.7 fck(t). 
Similarly, the permissible stress in tension, ftt at transfer is limited to fctm (t). 

fctm(t) = fck (t) 0.667,    fck (t) ≤ 50 MPa 
fctm(t) = 2.12 ℓn [1.8 + 0.1 fck(t)], fck(t) > 50 MPa 

 
 
16.5.2  Permissible Compressive and Tensile Stress in Concrete at  
           Serviceability Limit State 
 
Expressions for permissible stresses in compression fsc and in tension fst at 
serviceability limit state are similar to the expressions given above for transfer state 
except that fck(t) is equal to fck the compressive strength at 28 days.  However in 
order to ensure that creep deformation is linear, compressive stress under quasi-
permanent loads should be limited to 0.45 fck.  
 
 
16.6 LIMITS ON PERMISSIBLE STRESSES IN STEEL 
 
As described in section 16.3.2, many different types of prestressing steel are 
available in the form of wires, bars, tendons, etc.  The characteristic tensile stress 
fpk varies from about 1030 MPa for hot rolled bars to 1860 MPa for strands.  The 
value of Young’s modulus E = (195 10) kN/mm2. 
 
 
16.6.1 Maximum Stress at Jacking and at Transfer 
 
The permissible stresses are given in clause 5.10.2.1. 
 
Stress at jacking σp, max is limited to 

σp, max = min (0.8 fpk; 0.9 fp0.1k) 
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where: 
fpk = characteristic tensile strength of prestressing steel. 
fp0.1k = characteristic tensile strength of prestressing steel at 0.1% strain 
         ≈ 0.85 fpk. 
Substituting in the expression for σp, max = min (0.8 fpk; 0.9 fp0.1k) = 0.77 fpk. 
     Overstressing is permitted if the force in the jack can be measured to an 
accuracy of ±5% of the final value of the prestressing force.  In such cases the 
stress in steel can be increased to  σp, max = 0.95 fp0.1k ≈ 0.808 fpk.  
 
 
16.7 EQUATIONS FOR STRESS CALCULATION  
 
In a statically determinate structure, the stresses at top and bottom fibres are given 
by the following equations.  The sign convention used is as follows. 
Eccentricity e is positive below the neutral axis. 
Tensile stresses are positive and compressive stresses are negative. 
Bending moment causing sagging is considered positive. 
 
 
16.7.1 Transfer State 
 
At transfer, the external load acting is normally only the self weight.  With a large 
prestress force applied below the neutral axis, the beam will hog up.  The critical 
stress conditions are  
 Tension is critical at the top of the beam 
  Compression is critical at the bottom of the beam. 
The expressions for the stress at top and bottom fibres are given by  
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where ftt and ftc are the permissible stresses at transfer in tension and compression 
respectively.  The first subscript, t stands for transfer and the second subscript, (t or 
c) stands for tension or compression respectively.  Note that ftc is a compressive 
stress, and is a negative number.  Pt = prestress at transfer.  Pt =  Pjack, where        
  0.90 because at transfer, there is generally loss of prestress of about 10%.  zt 
and zb are the section moduli of the beam for top and bottom fibres respectively. 
 
 
16.7.2 Serviceability Limit State 
 
At working loads, external loads on the beam increase due to live loads and other 
dead loads.  In addition due to long-term loss the prestress in the cables also 
decreases.  These effects cause the beam to sag.  The critical stress conditions are: 
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 Compression is critical at the top of the beam. 
 Tension is critical at the bottom of the beam. 
The expressions for the stress at top and bottom fibres are given by  
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where  
fst and fsc are the permissible stresses at service in tension and compression 
respectively.  The first subscript, s stands for service and the second subscript (t or 
c) stands for tension or compression respectively.  Mservice = moment at 
serviceability limit state.  It includes the effect of self-weight, live loads, etc.        
Ps = prestress at service =  Pjack where   0.75 because of about 25% prestress is 
lost due to elastic shortening, creep, shrinkage and relaxation. 
 
 
16.7.3 Example of Stress Calculation 
 
Fig. 16.9 shows a pretensioned symmetric double T-beam. It is used as a simply 
supported beam to support a total characteristic load (excluding self weight) of    
45 kN/m over a span of 10 m.  It is prestressed by a total force of Pjack = 1450 kN.  
The constant eccentricity e is 390 mm.  Calculate the stresses at mid-span and 
support at transfer and serviceability limit state.  fck (t) = 30 MPa and fck = 40 MPa.  
Assume loss at transfer and serviceability limit state as respectively 10% and 25% 
of the jacking force. 
 
 
 
 
 
 
 
 
 
 

Fig. 16.9 A double T-beam. 
 
(i) Section Properties 
Area of cross section  

A = 2400 × 75 + 2 × (200 × 650) = 44 × 104 mm2 
Position of the centroid from the bottom: Taking moment about the bottom of the 
webs,  

A yb = 2400 × 75 × (725 – 75/2) + 2 × (200 × 650 × 650/2) = 2.083 × 108 mm3 
Distances from the centroidal axis to bottom and top fibres are: 

yb = 473 mm, yt = 725 – yb = 252 mm 

2400 

725  650  

200  
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Second moment of area, I: 
I = [2400 × 753/12 + 2400 × 75 × (yt – 75/2)2] + 2 × [200 × 6503/12 

+ 200 × 650 × (650/2 – yb) 2] = 2.322 × 1010 mm4 
zt = I/yt = 92.12 × 106 mm3 
zb = I/yb = 49.08 × 106 mm3 

 
(ii) Calculation of moments 

Unit weight of concrete = 25 kN/m3 
Self weight = (44 × 104) × 10−6 × 25 = 11.0 kN/m 

Mself weight = 11.0 × 102/8 = 137.5 kNm at mid-span 
Total load on the beam (including self weight) 

= 11.0 + 45.0 = 56.0 kN/m 
Mservice = 56 × 102/8 = 700 kNm at mid-span 

 
(iii) Prestress 

Pt = 0.90 Pjack = 0.9 × 1450 = 1305 kN 
Ps = 0.75 Pjack = 0.9 × 1450 = 1087.5 kN 

 
(iv) Permissible stresses 
 
(a) Transfer 

ftt = 0.30 × 30 0.67 = 2.9 MPa 
ftc = –0.6 fck (t) = –0.6 × 30 = –18.0 MPa 

 
(b) Service 

Fst = 0.30 × 50 0.67 = 4.1 MPa 
fsc = –0.6 fck = –0.6 × 40 = –24.0 MPa 

 
(v) Stress calculation at transfer 

Pt = 1305 kN, e = 390 mm 
Expressions for stresses at top and bottom fibres are given by equations (C16.1) 
and (C16.2). 
 
(a) Support:  At support self weight moment is zero because of the simply 
supported condition. 

ftop = –1305 × 103/ (44 × 104) + 1305 × 103 × 390 / (92.12 × 106) 
= –2.97 + 5.53 = 2.56 < 2.70 MPa 

 
fbottom = –1305 × 103/ (44 × 104) – 1305 × 103 × 390 / (49.08 × 106) 

= –2.97 – 10.37 = –13.33 > –17.50 MPa 
(b) Mid-span:  

Self weight moment = 137.5 kNm 
ftop = –1305 × 103/ (44 × 104) + 1305 × 103 × 370 / (92.12 × 106) 

– 137.5 × 106/ (92.12 × 106) 
= –2.97 + 5.53 – 1.49 = 1.07 < 2.90 MPa 
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fbottom = –1305 x 103/ (44 × 104) – 1305 × 103 × 370 / (49.08 × 106) 
+ 137.5 × 106/ (49.08 × 106) 

fbottom = –2.97 – 10.37 + 2.80 = –10.54 > –18.50 MPa 
Note: Stresses at the supports are larger than at mid-span. 
 
(vi) Stress calculation at serviceability limit state 

Ps = 1087.5 kN, e = 390 mm 
Expressions for stresses at top and bottom fibres are given by equations (C16.3) 
and (C16.4). 
 
(a) Support: At support moment is zero because of the simply supported condition. 

ftop = –1087.5 × 103/ (44 × 104) + 1087.5 × 103 × 390 / (92.12 × 106) 
 = –2.47 + 4.60 = 2.13 < 4.1 MPa 

 
fbottom = –1087.5 × 103/ (44 × 104) – 1087.5 × 103 × 390 / (49.08 × 106) 

= –2.47 – 8.64 = –11.11 > –24.0 MPa 
 
(b) Mid-span:  

Serviceability limit state moment = 700.0 kNm 
ftop = –1087.5 × 103/ (44 × 104) + 1087.5 × 103 x 390 / (92.12 × 106) 

– 700.0 × 106/ (92.12 × 106) 
= –2.47 + 4.60 – 7.60 = –5.47 > –24.0 MPa 

 
fbottom = –1087.5 × 103/ (44 × 104) – 1087.5 × 103 × 370 / (49.08 x 106) 

+ 700.0 × 106/ (49.08 × 106) 
 = –2.47 – 8.64 + 14.26 = 3.15 < 4.1 MPa 

 
Note: Stresses at the supports are smaller than at transfer condition.  The stresses at 
mid-span are larger than at transfer condition.  In addition the state of stress has 
reversed from tension at top to tension at bottom and vice versa. 
 
 
16.8 DESIGN FOR SERVICEABILITY LIMIT STATE 
 
For a given structural configuration and loads, design in prestressed concrete for 
serviceability limit state requirements involves two items: 
 A suitable section 
 Choice of prestress and corresponding eccentricity 
 
 
16.8.1 Initial Sizing of Section 
 
Consider the four equations (C16.1) to (C16.4) associated with the calculation of 
stresses at top and bottom fibres at a cross section under transfer and serviceability 
conditions.  In these equations 
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P transfer =  PJack,   0.90 
P Service =  PJack,   0.75 

P transfer =  PService, 

 = /  0.83 
 
Expressing Pt in terms of Ps, equations (C16.1) and (C16.2) can be expressed as 
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Similarly, eliminating Ps and e from equations (C16.6) and (C16.4), 
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Initially the self weight moment is not known.  However, (Mservice – M self weight) 
represents the moment due to external loads which are known.  As   0.83, the 
effect of including Mself weight has a small impact on the required section moduli.  
Therefore for an initial estimate, it is reasonable to take Mself weight as zero.  After an 
initial section has been decided upon, if necessary, the required value of section 
modulus can be recalculated.  
 
 
16.8.1.1 Example of Initial Sizing 
 
Calculate the section moduli required for a simply supported beam to support a 
characteristic load of 45 kN/m (excluding self weight) over a span of 10 m.  It is 
given that the allowable stresses are:  

ftt = 2.9 MPa, ftc = –18.0 MPa 
fst = 4.1 MPa, fsc = –24.0 MPa 
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The loss of prestress at transfer and service can be taken as 10% and 25% of the 
force at jacking. 

Mservice – Mself weight = 45 × 102/8 = 562.5 kNm at mid-span. 
 = 0.9/0.75 = 0.83 

 ftt – fsc = 0.83 × 2.9 – (–24.0) = 26.4 MPa 
fst –  ftc = 4.1 – 0.83 × (–18.0) = 19.0 MPa 

Ignoring Mself weight for an initial estimate of moduli, from equations (C16.7) and 
(C16.8), 

zt ≥ 562.5 × 106/26.4 = 21.31 × 106 mm3 
zb ≥ 562.5 × 106/19.0 = 29.61 × 106 mm3 

If it is decided to choose a T-section shown in Fig. 16.10, the section properties can 
be expressed as functions of the two parameters (hf/h) and (bw/b) as follows.  Table 
16.1 gives the section properties.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16.10 T-section. 
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hf/h = 0.1, bw/b = 0.2, 
a variety of section sizes is possible, for example:  
 
(i) b = 2000 mm, h = 595 say 600 mm, bw = 400 mm, hf = 60 mm  

zt = 0.076 × 2000 × 6002 = 54.72 × 106 mm3 
zb = 0.045 × 2000 × 6002 = 32.40 × 106 mm3 

 
(ii) b = 1500 mm, h = 686 say 700 mm, bw = 300 mm, hf = 70 mm  

zt = 0.076 × 1500 × 7002 = 55.86 × 106 mm3 
zb = 0.045 × 1500 × 7002 = 33.08 × 106 mm3 

 
Table 16.1 Section properties of T-beams 

hf/h bw/b A/(bh) yb/h yt/h I/(bh3) zt/(bh2) zb/(bh2) 
0.1 0.1 0.19 0.713 0.287 0.018 0.063 0.025 
0.2 0.1 0.28 0.757 0.243 0.019 0.079 0.025 
0.3 0.1 0.37 0.755 0.245 0.019 0.079 0.026 
0.1 0.2 0.28 0.629 0.371 0.028 0.076 0.045 
0.2 0.2 0.36 0.678 0.322 0.031 0.098 0.046 
0.3 0.2 0.44 0.691 0.309 0.032 0.103 0.046 
0.1 0.3 0.37 0.585 0.415 0.037 0.088 0.062 
0.2 0.3 0.44 0.627 0.373 0.041 0.109 0.065 
0.3 0.3 0.51 0.644 0.356 0.042 0.117 0.065 
0.1 0.4 0.46 0.559 0.441 0.044 0.100 0.079 
0.2 0.4 0.52 0.592 0.408 0.049 0.119 0.082 
0.3 0.4 0.58 0.609 0.391 0.050 0.127 0.082 

 
     If a double T-section (Fig. 16.9) is desired, the web width bw can be shared 
between two webs with the width of each web equal to 0.5bw.   
Having chosen a section, its self weight can be calculated.  For example for the 
section:  

b = 1500 mm, h = 700 mm, bw = 300 mm, hf = 70 mm 
A = 294.0 × 103 mm2 

Self weight = 7.056 kN/m 
M self weight = 88.2 kNm 

(1 – ) M self weight = 15.00 kNm 
 
Using the self weight moment, the revised required section moduli become 

zt ≥ (562.5 + 15.00) × 106/26.4 = 21.88 × 106 mm3 
zb ≥ (562.5 + 15.00) × 106/19.0 = 30.40 × 106 mm3 

 
The section modulus zb of the chosen section is 33.08 × 106 mm3 which is only 
slightly greater than the required value of 30.40 × 106 mm3.  The chosen section is 
adequate. 
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Fig. 16.11 Magnel diagram (the numbers against the lines correspond to equation numbers). 
 
 
16.8.2 Choice of Prestress and Eccentricity 
 
Having chosen a section, the next step is to choose the required value of prestress 
and eccentricity such that none of the stress criteria are violated.  By dividing 
throughout by 1/Ps, equations (C16.3) to (C16.6) can be rewritten as follows  
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If the inequality signs are replaced by an equality sign, a plot of e versus 1/Ps of 
each equation is a straight line and the plot of all the four equations encloses a 
quadrilateral as shown in Fig. 16.11.  Any choice of e and Ps inside the 
quadrilateral satisfies all the four stress criteria.  This plot is known as a Magnel 
diagram. 
 
 
16.8.2.1 Example of Construction of Magnel Diagram  
 
Fig. 16.9 shows a pretensioned symmetric double T-beam.  It is used as a simply 
supported beam to support a total characteristic load (excluding self weight) of    

e 

1/Ps 

feasible 
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45 kN/m over a span of 10 m.  Construct the Magnel diagram for the mid-span 
section using the following data.  Assume loss at transfer and serviceability limit 
state as respectively 10% and 25% of the jacking force. 
 
(i) Section properties:  

A= 44 × 104 mm2 
zt = 92.12 × 106 mm3 
zb = 49.08 × 106 mm3 
1/A = 227.27 × 10−8, 
1/zb = 2.035 × 10−8, 
1/zt = 1.086 × 10−8 

 
(ii) Moments at mid-span: 

Mself weight = 137.5 kNm 
Mself weight/zt = 137.5 × 106/ (92.12 × 106) = 1.49 MPa 
Mself weight/zb = 137.5 × 106/ (49.08 × 106) = 2.80 MPa 

 
Mservice = 694.5 kNm 

Mservice/zt = 700.0 × 106/ (92.12 × 106) = 7.60 MPa 
Mservice/zb = 700.0 × 106/ (49.08 × 106) = 14.26 MPa 

 
(iii) Permissible stresses: 

ftt = 2.9 MPa, ftc = –18.0 MPa, fst = 4.1 MPa, fsc = –24.0 MPa 
 
(iv) Prestress losses: 

 = 0.75/0.9 = 0.83 
 
(v) Solution: 
Substituting the above values in equations (C16.9) to (C16.11), the following four 
linear equations are obtained. 
 

–227.27 + 1.086 e = 0.83(1.49 + 2.9) 108/Ps = 3.65 (108/Ps) 
–227.27 – 2.035 e = 0.83(–2.80 – 18.0) 108/Ps  = –17.26 (108/Ps) 

–227.27 + 1.086 e = (7.60 – 24.0) 108/Ps = –16.40 (108/Ps) 
–227.27 – 2.035 e = (–14.26 + 4.1) 108/Ps = –10.16 (108/Ps) 

Fig. 16.12 shows the Magnel diagram. 
 
 
16.8.2.2 Example of Choice of Prestress and Eccentricity 
 
Fig. 16.12 shows the feasible region.  Any combination of Ps and e within the 
feasible region will satisfy all the four stress criteria.  Unfortunately practical 
limitations of cover, etc., reduce the extent of the feasible area.  In the above 
example yb = 473 mm.  Assuming that cables require a cover of approximately 50 
mm, the maximum eccentricity emax allowable is only (yb – 50) = 423 mm. This 
limitation is shown in Fig. 16.12 by the vertical line. 
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In choosing a value of Ps and e two important points to keep in mind are: 
 

 Choose as small a value of Ps (i.e., as large a value of 108/Ps) and as large 
a value of e as possible.  This will keep the costs down.  In this example 
this is approximately 108/Ps ≈ 70 and e ≈ 420 mm. 

 It is not advisable to work right at the edge of the feasible region as it does 
not allow for any flexibility in the arrangement of cables in the cross 
section. 

 
 

Fig. 16.12 Magnel diagram for mid-span. 
 
(i) Determination of number of cables (strands, tendons) required 
Note: Especially in bridge construction it is common to group many 7-wire strands 
into a single cable in a duct with an appropriate anchorage.  A value of Ps can be 
chosen which is near the top right hand part of the feasible region.  If 108/Ps ≈ 65,  
Ps ≈ 1539 kN and Pjack = Ps/0.75 ≈ 2051kN. 
 

Table 16.2 Properties of 7-wire strands 
Properties Strand type 

N S N S 

Nominal diameter, mm 13 13 15 15 
Nominal area, mm2 93 100 140 150 

Tensile strength, MPa 1860 1860 1860 1860 
Minimum breaking load, kN 173 186 260 279 

Minimum relaxation 2.5 2.5 2.5 2.5 
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Table 16.3 Properties of VSL cables with 7-wire strands 
 

No. of strands Anchor unit Corrugated steel strip sheath: 
Range of Internal dia./ External 

dia. 

Range of Shift mm 

1 6−1 25/30 5 

2 6−2 40/45 9 

3 6−3 40/45 6 

4 6−4 45/50 7 

5 to 7 6−7 50/57 to 55/62 9 to 7 

8 to 12 6−12 65/72 to 75−82 9 to 11 

13 to 15 6−15 80/87 13 to 10 

16 to 19 6−19 85/92 to 90/97 25 to 18 

20 to 22 6−22 100/107 14 to 22 

23 to 27 6−27 100/107 to 110/117 13 to 16 

28 to 31 6−31 110/117 to 120/127 15 to 19 

32 to 37 6−37 120/127 to 130/137 16 to 22 

38 to 43 6−43 140/147 21 to 25 

44 to 55 6−55 150/157 to 160/167 23 to 29 
 
In practice for posttensioned construction of bridges, strands are grouped into 
cables with suitable anchorages.  The variety of cables and the associated 
anchorages depend on the manufacturer.  For example VSL anchorages are 
available for cables containing 1, 2, 3, 4, 7, 12, 15, 19, 22, 27, 31, 37, 43 and 55 
strands.  The CCL anchorages allow for cables of 4,7,12, 19 and 22 strands of 13 
mm diameter or 4, 7, 12, 19, 27 and 37 strands of 15 mm diameter. The cables are 
placed inside ducts before concreting and the ducts are grouted afterwards to 
prevent corrosion of the strands.  During tensioning the strands in a cable tend to 
bunch together onto the tension side of the duct. This alters the position of the 
centroid of the tensile force with respect to the centroid of the duct as shown in 
Fig. 5.3.  The shift depends primarily on the diameter of the duct and the number 
of strands in the cable.  Manufacturers provide data on this. Table 16.3 shows the 
data for VSL cables. 
    Having calculated the value of Pjack, the next stage is to choose the type and 
number of cables required.  Table 16.2 gives the strengths of various types of       
7-wire strands.  If 7-wire drawn strand of 15.0 mm nominal diameter is chosen, fpk 
= 1860 MPa, the net cross sectional area = 150 mm2 and breaking load is 279 kN.  
Jacking stress should not normally exceed 77% of the breaking load of the tendon 
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but may be increased to 80.8% provided additional consideration is given to safety 
(see section 16.6.1). 

Force per cable at jacking = 0.77 × 279 = 214.8 kN 
Number of cables required = Pjack/214.8 = 2051/214.8 ≈ 9.6  

For symmetry, choose 10 cables.  Force per cable = 2051/10 = 205.1 kN.  
Stress in cable = 205.1 ×103/150 = 1367 MPa, = 0.735 fpk. 
 

 
 

Fig. 16.13 Arrangement of cables in the web. 
 
 
(ii) Determination of eccentricity 
Assuming that cables can be placed in the webs in horizontal layers at 50 mm 
intervals vertically with three cables per layer, 10 cables can be accommodated 
with five cables in each web as shown in Fig. 16.13.   
The resultant eccentricity 

e = yb – (50 ×3+ 100×2)/5 = 473 – 70 = 403 mm 
The point corresponding to  

108/Ps = 65, e = 403 mm 
is inside the feasible region.  Therefore the arrangement and force in the cables are 
satisfactory. 
 
 
16.8.2.3 Example of Debonding 
 
If it is decided to debond some cables towards the support, then a Magnel diagram 
has to be drawn for the support section as well.  At a support section, the critical 
condition is at transfer.  Conditions at service are not critical because of the long -
term losses in the prestress.  Since there are no moments acting at supports, the two 
critical equations are: 
 

–227.27 + 1.086 e = 0.83(0 + 2.9) 108/Ps = 2.41 (108/Ps) 
–227.27 – 2.035 e = 0.83(0 – 18.0) 108/Ps  = –14.94 (108/Ps) 

 
Fig. 16.14 shows the Magnel diagram at the support.  The feasible area is not a 
closed polygon.  

50 

50 
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Fig. 16.14 Magnel diagram at support. 
 
As shown in Fig. 16.14, the point corresponding to 108/Ps = 65, e = 403 mm is 
outside the feasible region and cannot be accepted.  In order to bring the point 
inside the feasible region, preserving symmetry of cable position, remove two 
cables from each web.  The number of strands is reduced from ten to six.  The 
corresponding 108/Ps is given by 

108/Ps = 65 × (10/6) = 108.3 
e = 473 – 50 = 423 mm 

As shown in Fig. 16.14, the point (423, 108) lies inside the feasible region and can 
be accepted. Thus two cables in each web need to be debonded towards the 
support. 
 
 
16.9 COMPOSITE BEAMS 
 
In a very common form of bridge construction, precast pretensioned beams are 
erected first and the in-situ concrete is cast on top of them using formwork which 
is supported on the precast beams.  The formwork is just left in place.  This type of 
formwork is called sacrificial formwork.  Beams are placed at approximately 1 m 
apart.  Once the in-situ concrete has hardened, the beam and the deck slab act as a 
composite structure.  Fig. 16.15 shows a typical bridge superstructure using 
inverted T-beams. 
 
In this type of beam, the weight of the slab and associated permanent formwork is 
carried wholly by the precast beam.  However once the slab hardens, then all 
subsequent loads acting on the slab will be resisted by the pretensioned beam 
acting in conjunction with the cast-in-situ slab.  The cast-in-situ slab acts as the 
compression flange of the composite I-beam.   
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Fig. 16.15 Composite beam. 
 
Since the object is to calculate the value of Ps and e so that the stresses in the 
precast section are within permissible limits, the stresses are calculated in the 
precast section only. 
 
(i) Transfer stage: Prestress acts on the precast beam.  The only external moment 
is due to the self weight of the beam.  The governing equations are (C16.1) and 
(C16.2) (repeated here for convenience).   
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(ii) Serviceability limit: The weights of slab and precast beam are supported by 
the precast beam.  The live loads are supported by composite beam.  In addition to 
the stresses caused by the loads, one needs to include the stresses caused by the 
shrinkage of the in-situ slab.  Stresses due to shrinkage occur because as the cast-
in-situ slab dries, it shrinks and forces the precast beam to bend. 
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The stresses due to shrinkage of the slab can be calculated as follows as shown in 
Fig. 16.16. 
Step 1: Assume that the slab is disconnected from the precast beam.  
 
Step 2: Let the free shrinkage of the slab be εsh. If the area of cross section of the 
slab is Aslab and the Young’s modulus of the concrete in the slab allowing for creep 
is Ec, the force tensile F required to restrain this shrinkage is given by 

Permanent 
formwork 

In-situ slab 

Pretensioned 
beam 
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F = εsh. ×Ec× Aslab 
This force acts only on the slab. 
 
Step 3: As this force does not exist in the final composite beam, the stress induced 
in the composite beam is given by a compressive force F is applied at the centre of 
the slab. 
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where a is the eccentricity of the force F with respect the centroid of the composite 
beam. 
 

 
Fig. 16.16 Shrinkage stresses in composite beam. 
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16.9.1 Magnel Equations for a Composite Beam  
 
Fig. 16.17 shows a composite beam.  The precast pretensioned inverted T-beam is 
made composite with a cast-in-situ slab acting as the top flange of the composite 
beam.  It is used as a simply supported beam over a span of 24 m. 
 

 
Fig. 16.17 Composite beam section. 

 
The section properties on precast and composite beam are as follows. 
 
(a) Precast beam: 

Area = 4.425 × 105 mm2 
yb = 442 mm 
yt = 658 mm 

I = 4.90 × 1010 mm4 
zb = 111.0 × 106 mm3 

zt = 74.5 × 106 mm3 
self weight = 11.06 kN/m 

 
(b) Composite beam: 

Acomposite = 6.025 × 105 mm2 
yb Composite = 638 mm, 

yt to top of precast = 1100 – 638 = 462 mm 
IComposite = 11.33 × 1010 mm4 
zb Composite = 177.6 × 106 mm3 

Composite zt to top of precast = 245.2 × 106 mm3 
self weight = 15.06 kN/m 

 
 
(c) Loads:  

Self weight of precast = 11.06 kN/m 
qdead = Weight of (Composite beam + permanent formwork) 

qdead = 15.06 + say 1.2 = 16.26 kN/m 
qlive = 18.2 kN/m 

 

250 

1000 
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750 
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(d) Moments and stresses at mid-span: 
 
Self weight: 

q Self weight = 11.06 kN/m 
Mself weight = 11.06 × 242/8 = 796.32 kNm 

MPa2.7
100.111
1032.796

z
M

6

6

b

weightSelf





  

MPa7.10
105.74
1032.796

z
M

6

6

t

weightSelf





  

 
Total dead load:  

qdead = 16.26 kN/m 
MDead = 16.26 × 242/8 = 1170.72 kNm 

MPa6.10
100.111
1072.1170

z
M

6

6

b

Dead 



  

MPa7.15
105.74

1076.1170
z

M
6

6

t

Dead 



  

 
Live load:  

qLive = 18.2 kN/m 
MLive = 18.2 × 242/8 = 1310.4 kNm 

MPa4.7
106.177
104.1310

zComp
M

6

6

b

Live 





MPa3.5
100.245
104.1310

zComp
M

6

6

precastoftoptot

Live 



  

 
Shrinkage stresses: Assume: 

Top = –1.7 MPa 
Bottom = 0.6 MPa 

 
(e) Magnel Equations: Magnel equations consider the stresses in precast section 
only. Using precast beam properties, 
 

1/A = 1/ (4.425 × 105) = 226.0 x 10−8 
1/zb = 1/ (111.0 × 106) = 0.90 x 10−8, 
1/zt = 1/ (74.5 × 106) = 1.34 x 10−8 

 
(f) Losses 
Take 10% loss at transfer and 25% long-term. 

 = (1 – 0.1)/ (1 – 0.25) = 0.83 
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(g) Permissible stresses: Assume  
ftt = 2.9 MPa, ftc = –18.0 MPa, fst = 4.1 MPa, fsc = – 24.0 MPa 

 
 

 
 

Fig. 16.18 Magnel diagram for the composite beam section. 
 
(h) Stress conditions and Magnel equations: 
 
At transfer: 
Top: (Equation C16.1) 

 
(–226.0 × 10−8 + 1.34e × 10−8)Ps – 0.83 × 10.7 ≤ 0.83 × 3.0 

–226.0 + 1.34 e ≤ 11.37 × (108/Ps) 
 
Bottom: (Equation C16.2) 

 (–226.0 × 10−8 – 0.90e × 10−8)Ps + 0.83 × 7.2 ≥ 0.83 × (–18.0) 
–226.0 – 0.90 e ≥ – 20.92 × (108/Ps) 

 
At Service: 
Top: (Equation C16.13) 

(–226.0 × 10−8 + 1.34e × 10−8)Ps – 15.7 – 5.3 – 1.7 ≥ –24.0 
–226.0 + 1.34 e ≥ 1.3 × (108/Ps) 

Bottom: (Equation C16.14) 
 

(–226.0 × 10−8 – 0.90e × 10−8)Ps + 10.6 + 7.4 + 0.6 ≤ 4.1 
–226.0 – 0.90 e ≤ –14.5 × (108/Ps) 

 
The Magnel diagram for the above set of four equations is shown in Fig. 16.18. 
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16.10 POSTTENSIONED BEAMS: CABLE ZONE 
 
In pretensioned beams, the strands are straight (except when cables are deflected) 
and due to debonding, prestress and eccentricity vary along the span in a stepwise 
manner.  In posttensioned beams, cables take a curved profile.  Thus the 
eccentricity can vary along the span but the prestress remains constant (if losses in 
prestress along the span can be ignored).  The permissible eccentricity at any 
section can be calculated by rearranging equations (C16.9) to (C16.12) as follows. 

                             s
tttweightself

t

P
fzM

A
ze 1)( .                                  (C16.15) 

                             s
tcbweightself

b

P
fzM
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ze 1)( .                                  (C16.16) 
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ze 1)(                                            (C16.17) 

                             s
stbservice

b

P
fzM

A
ze 1)(                                         (C16.18) 

 
 
16.10.1 Example of a Posttensioned Beam 
 
Fig. 16.9 shows a posttensioned symmetric double T-beam.  It is used as a simply 
supported beam to support a total load (excluding self weight) of 45 kN/m over a 
span of 10 m.  From the Magnel diagram at mid-span, the value of 108/Ps = 65, 
giving Ps = 1538.5 kN.  Assume loss at transfer and serviceability limit state as 
respectively 10% and 25% of the jacking force. 
 
(i) Section properties:  

A= 44 × 104 mm2 
zt = 92.12 × 106 mm 

zb = 49.08 × 106 mm3 
zt/A = 209.36 mm 
zb/A = 111.56 mm 

 
(ii) Moments (at position x from left hand support): 

self weight = 11.0 kN/m 
M self weight = 55.0 x – 5.5 x2 

service = 56.0 kN/m 
Mservice = 280.0 x – 28.0 x2 

 
(iii) Permissible stresses: 

ftt = 2.9 MPa, ftc = –18.0 MPa, fst = 4.1 MPa, fsc = – 24.0 MPa 
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(iv) Loss of prestress: 
 = 0.75/0.9 = 0.83 

 
(v) Prestress: 

Ps = 1538.5 kN 
 
(vi) Limits on eccentricity: 
 
Substituting the above values in equations (C16.15) to (C16.18)  

)105.1538/(]9.21012.9210)x5.5x0.55[(83.036.209e 3662   

)105.1538/()]0.18(1008.4910)x5.5x0.55[(83.056.111e 3662   

)105.1538/()]0.24(1012.9210)x0.28x0.280[(36.209e 3662   

)105.1538/(]1.41008.4910)x0.28x0.280[(56.111e 3662   
Simplifying 

e ≤ {353.48 + 29.67 x – 2.967 x2} 
e ≤ {365.04 + 29.67 x – 2.967 x2} 
e ≥ {–1227.68 + 182.0 x – 18.2 x2} 
e ≥ {–242.36+ 182.0 x – 18.2 x2} 

 
Noting that eccentricity is positive below the neutral axis, lower limits for e (i.e., 
eccentricity ≥) are governed by equations (C16.15) and (C16.16).  Clearly equation 
(C16.15) gives a lower value than equation (C16.16).  Similarly the upper limits 
for e (i.e. eccentricity ≤) are governed by equations (C16.17) and (C16.18).  
Clearly equation (C16.18) gives a larger value than equation (C16.17).  Thus the 
feasible cable zone lies between the curves corresponding to equations (C16.15) 
and (C16.18).  Cables placed inside the feasible zone thus satisfy all the stress 
criteria.  Assuming a minimum cover to the cables of 50 mm, the maximum and 
minimum values of e attainable are equal to  

yb – 50 = 423 mm 
yt – 50 = 202 mm. 

Fig. 16.19 shows the feasible region.  The range of e at the support and mid-span 
are: 

Ends: –242(−202) ≤ e ≤ 353, gap = 555mm 
Mid-span: 212 ≤ e ≤ 428(423), gap = 211 mm 

Figures in brackets show the practical values. 
 
As can be seen, the feasible region has a narrower width at mid-span (211 mm) 
than at the supports (555 mm).  The cables can be raised towards the supports 
providing an upward force which helps in counteracting the applied shear force. 
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Fig. 16.19 Feasible cable zone. 
 
 
16.11 ULTIMATE MOMENT CAPACITY 
 
One aspect of design of prestressed sections which is different from the procedure 
used in the case of a reinforced concrete section is that the designs are carried out 
for SLS and the designed section is checked to ensure that ULS conditions are also 
satisfied.  The calculations for determining the ultimate moment capacity are 
similar to the ultimate moment capacity calculation in the case of reinforced 
concrete section as explained in Chapter 4, section 4.6.2.  As in the case of 
reinforced concrete sections, the compressive stress distribution in concrete is 
assumed to be that given by rectangular stress block assumption with the maximum 
stress equal to fcd and the maximum strain equal to 0.0035.  The main difference 
from the calculations for a reinforced concrete section is in calculating the strains 
in steel.  In the case of reinforced concrete sections, the strain in steel is due to 
bending.  However, in the case of prestressed concrete sections, because the cables 
are pretensioned before the application of load, the total strain in the cable is the 
sum of the prestrain due to prestress Pservice and the strain due to applied bending.   
 
 
16.11.1 Example of Ultimate Moment Capacity Calculation 
 
Fig. 16.20 shows the cross section of a precast pretensioned inverted T-beam made 
composite with a cast-in-situ slab.  The beam is used to carry a total factored 
uniformly distributed dead load of 20 kN/m and 30 kN/m live load over a simply 
supported span of 24 m.  Calculate the ultimate moment capacity of the section. 
 



Prestressed concrete                                                                                                             689 

(a) Specification 
The properties of the beam are as follows.  Total prestressing force Ps at service is 
3712 kN applied at an eccentricity of 283 mm.  The prestress is applied by 32 
number 15 mm diameter 7-wire standard strands with an ultimate breaking load of 
279 kN. 
The 32 strands are positioned as follows: 

 10 cables at 60 mm from the soffit 
 14 cables at 110 mm from the soffit 
 6 cables at 160 mm from the soffit 
 2 cables at 1000 mm from the soffit 

The cross sectional area Aps of cable 
Aps = 150.0 mm2 

fck for precast beam = 40 MPa 
fck for in-situ slab = 30 MPa 

 

 
Fig. 16.20 Composite beam. 

 
(b) Stress–strain relationship 
The stress–strain relationship for prestressing steel is given in clause 3.3.6,        
Fig. 3.10 of the code and is shown in Fig. 16.21. 
 
Two options are given. 

1. A bilinear curve with an initial straight line with a modulus of 
elasticity Ep equal to 195 GPa and inclined branch with a strain limit 
of  εud = 0.02. 

2. A bilinear curve with an initial straight line with a modulus of 
elasticity Ep equal to 195 GPa and a horizontal branch with no strain 
limit.fp 0.1 k = 0.9 fpk, εuk = characteristic strain of prestressing steel at 
maximum load,   γs = 1.15. 

It is simple and convenient to use the option (2) for design. 
 

fpk = 1860 MPa, fp0.1 k = 0.9 × 1860 = 1674 MPa, fpd = 1674/1.15 = 1456 MPa 
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Young’s modulus Ep = 195 GPa 
fpd/Ep = 1456/ (195 × 103) = 7.467 × 10−3 

 
 

Fig. 16.21 Stress–strain relationship for prestressing steel. 
 
 
(c) Prestrain calculation 

fpe = prestress in the cables = Ps/Total area of cables 
 = 3712 × 103/ (32 × 150) = 773 MPa 

εpe = prestrain in the cables = fpe /E = 773/ (195 × 103) = 3.96 × 10−3 
 

Table 16.4 Data for cables 
Layer c = depth 

from soffit, mm 
No. in 
layer 

a =1260 – c, mm 

1 60 10 1200 
2 110 14 1150 
3 160 6 1100 
4 1000 2 260 

 
(d) Stress and strain in cables 
For a given depth x of neutral axis, at a depth a from the compression face, strain εb 
due to bending  

εb = 0.0035 × (a – x)/x = 3.5 × 10−3 (a/x – 1.0) 
Total depth of composite beam = 1100 + 160 = 1260 mm 

a = 1260 –distance to the layer from soffit 
Table 16.4 summarises the data for all the cables. 
 
Total strain ε at a depth a from the compression face 

ε = εpe +εb = {3.96 + 3.5(a/x – 1)} × 10−3 
From Fig. 16.19, for a given strain ε, the corresponding stress σ is given by the 
following equations. 

0 < ε ≤ 7.467 ×10−3, σ = ε × Ep 

fpd = fp 0.1k/γs 

εud fpd/Ep εuk 

fpk/γs 
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ε > 7.467 ×10−3, σ = 1456 MPa 
 
(e) Compressive stress in concrete 
Using the rectangular stress block, the depth of the stress block is 0.8x.  The 
compressive stress in concrete is fcd. 
 
(f) Determination of neutral axis depth x 
The determination of the neutral axis depth is a trial and error process.  The steps 
involved are as follows. 
 
(i) Assume a value for neutral axis depth, x 
 
(ii) Calculate at different levels a, the bending strain in εb in the cables  

εb = 3.5 × 10−3 (a/x – 1.0) 
 
(iii) Calculate the total strain ε = εpe + εb, εpe = 4.28 × 10−3 
 
(iv) Calculate the stress σ in the cables 
 
(v) Calculate the total tensile force F in each layer 

F = σ × (Area of cable= 150 mm2) × No. of cables in the layer 
 
(vi) Total tensile force T = ΣF 
 
(vi) Calculate the total compressive force C: 
 

(a) If x ≤ depth of slab (= 160 mm), C = fcd Slab × 1000 × (0.8 x) 
 

(b) If x > (depth of slab = 160 mm), CSlab = fcd Slab × (1000 × 160),             
              CBeam = fcd beam × (0.8x – 160) × 300, C = CSlab + CBeam  
fcd, slab = 30/1.5 = 20 MPa, fcd, beam = 40/1.5 = 26.7 MPa 
 
(vii) Check whether T = C.  If not go back to step (i) and repeat. If T > C then 
choose a larger value of x and vice versa.  Larger value of x increases the 
compression area and also reduces the bending strain in steel. 
 
(g) Trial 1 
Assume x = 600 mm. 
Table 16.5 summarizes the calculation of forces in layers. 
F = σ × No. of cables in the layer × 150 × 10−3 kN 

Cslab = 20 × 1000 × 160 × 10−3 = 3200 kN 
Cbeam = 26.7× (0.8x – 160) × 300 × 10−3 = 2560 kN 

C = Cslab + Cbeam = 3200 + 2560 = 5760 kN 
T – C = 52 kN 

Since T > C, increase the value of x and repeat. 
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Table 16.5 Force calculation in the cables for Trial 1 
Layer εb ×103 (ε = εpe + εb) × 103 σ ,MPa F, kN 

1 3.50 7.46 1266 1899 
2 3.21 7.17 1266 2658 
3 2.92 6.88 1266 1139 
4 −1.98 1.98 385 116 
    T = ΣF= 5812 

 
(h) Trial 2  
Assume x = 700 mm. 
Table 16.6 summarises the calculation of forces in layers. 
 

Table 16.6 Force calculation in the cables for Trial 2 
Layer εb ×103 (ε = εpe + εb) × 103 σ, MPa F, kN 

1 2.5 6.46 1260 1890 
2 2.25 6.21 1211 2543 
3 2.0 5.96 1162 1046 
4 –2.2 1.76 343 103 
    T = ΣF =5582 

 
Cslab = 20 × 1000 × 160 × 10−3 = 3200 kN 

Cbeam = 26.7 × (0.8x – 160) × 300 × 10−3 = 3200 kN 
C = Cslab + Cbeam = 3200 + 3200 = 6400 kN 

T – C = −819 kN 

 
 

Fig. 16.22 Linear interpolation. 
 
(i) Linear interpolation 
Since there are two values of neutral axis depth for which values of (T – C) are 
known, linear interpolation between x = 600 and x = 700 can be done to determine 
the value of x for which T – C = 0. 
From Fig. 16.22,  
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(j) Calculation of tensile and compressive forces at x = 606 mm 
 
Table 16.7 shows the force calculation in the cables. 
 

Table 16.7 Force calculation in cables for interpolated value of x 
Layer εb x 103 (ε = εpe + εb) x 103 σ MPa F, kN 

1 3.43 7.39 1266 1899 
2 3.14 7.10 1266 2658 
3 2.85 6.81 1266 1139 
4 −2.00 1.96 383 115 
    T = ΣF = 5811 

 
Cslab = 20 × 1000 × 160 × 10−3 = 3200 kN 

Cbeam = 26.7 × (0.8x – 160) × 300 × 10−3 = 2598 kN 
C = Cslab + Cbeam = 3200 + 2598 = 5798 kN 

T – C = 12 kN which is small enough to be ignored. 
 

 
Fig. 16.23 Forces in the cross section. 

 
(k) Calculation of ultimate moment Mu 
Since the total T and C form a couple, the ultimate moment is calculated by taking 
moments about any convenient point of the tensile and compressive forces.  Taking 
moments about the top of the cross section of the forces shown in Fig. 16.23, the 
ultimate moment capacity is equal to 4897.53 kNm.  Detailed calculations are 
shown in Table 16.8. 
 

Table 16.8 Calculation of ultimate moment capacity, Mu 
 Force, kN Lever arm = 

Distance from top, m 
Moment, kNm 

Cslab –3200 (160/2 = 80) x 10−3 –256 
CBeam –2598 {160+(0.8x – 160)/2 = 322.4} × 10−3 –838 

F1 1899 1200 × 10−3 2279 
F2 2658 1150 × 10−3 3057 
F3 1139 1100 × 10−3 1252 
F4 115 260 × 10−3 30 
   Σ 5524 

Cslab 

CBeam F4 

F1 

F3 

F2 
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The applied bending moment at ultimate load is 
M at ULS = 20 × 242/8 due to dead load + 30 × 242/8 due to live load 

= 3600 kNm < 5524 kNm 
The applied moment is less than the ultimate moment capacity Mu.  The beam has 
sufficient capacity to resist the applied bending moment at ULS. 
Calculations such as this are best done using spreadsheets.   
 
 
16.12 SHEAR CAPACITY OF A SECTION WITHOUT SHEAR 
          REINFORCEMENT AND UNCRACKED IN FLEXURE 
 
Sections are said to be uncracked in flexure if the flexural tensile stress is smaller 
than fctk0.05/γc.  In sections which are uncracked in flexure, it is necessary to limit 
the maximum principal tensile stress in the web to a value fctd. 

fctd = fctm/γc, γc = 1.5 
fctm = 0.30 ×fck 0.667, fck ≤ 50 MPa 

= 2.12 × ℓn [1.8 + 0.1fck], fck > 50 MPa 
fctk0.05 = 0.7 fctm 

 
If fcp is the compressive stress due to prestress at the neutral axis, then the state of 
stress at the neutral axis is as shown in Fig. 16.24.  The maximum principal tensile 
stress equal to fctd for the biaxial state of stress shown in Fig. 16.24 is given by  
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From which the permissible value of τ can be calculated as follows. 
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Fig. 16.24 Normal and shear stresses at the neutral axis. 

 
The elastic shear stress τ is given by  

σcp 

τ 
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where  
I = second moment of area of the cross section. 
S = first moment of area about the centroidal axis of the area of section above the 
section where the shear stress is calculated (see hatched area in Fig. 16.25). 
bw = width of the section where the shear stress is calculated. 

 
Fig. 16.25 Shear stresses at a level in the cross section. 
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Eurocode 2 in equation (6.4) gives the following formula for calculating VRd, c, the 
shear capacity due to concrete alone in sections uncracked in flexure,  

                                      
}ff{
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V cpctd
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w
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


                                (6.4) 
αℓ = is a factor to allow for the reduction in the value of σcp due to the transmission 
length effect. 
αℓ = ℓx/ℓpt2 ≤ 1.0 for pretensioned tendons. 
ℓx = distance from the start of the transmission length. 
ℓpt2 = upper bound value of the transmission length. 
The bond stress fpbt at the time of release of tendons is give for 7-wire tendons by 
code equation (8.15) as 

fbpt = (ηp1 = 3.2) × (η1 = 1.0 for good bond otherwise 0.7) × 0.7 fctm (t)/γc. 
The basic value for transmission length ℓpt is given by code equation (8.16) as   
                                        ℓpt = α1 × α2 × φ × (σpmo/fpbt)                                   (8.16) 
α1 = 1.0 for gradual release or 1.25 for sudden release. 
α2 = 0.19 for wire strands. 
φ = nominal diameter of tendon. 
σpmo = tendon stress just after release. 
                                          ℓpt2 = 1.2 ℓpt                                                           (8.18) 
 
As an example if fck = 40 MPa,  

fctm = 0.3 × fck 0.667 = 3.5 MPa 
Assume tendons released at t = 3 days.  
                                         fctm (t) = βcc × fctm                                                      (3.1) 
 

                                                                               (3.2) 

Centroidal axis 

τ 
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Assume s = 0.2 for the class R type of cement used.  
 t = 3 days, when the tendon is released. 

βcc = 0.66 
fctm (t) = (βcc = 0.66)  × (fctm = 3.5) = 2.3 MPa 

fctd (t) = 0.7 × [fctm(t) =2.3 ]/(γc = 1.5) = 1.1 MPa 
         fbpt = (ηp1 = 3.2) × (η1 = 1.0 or good bond) × [fctd (t) =1.1] = 3.4 MPa    (8.15) 
 
For 7-wire 15 mm strand, take fyp = 1860 MPa.  
Assume that the strand is stressed to 0.75 fyk and at release there is a 10% loss.  
σpmo = tendon stress just after release ≈ 0.9 × 0.75 × 1860 = 1256 MPa. 
ℓpt = (α1 = 1.0) × (α2 0.19) × (φ 15) × [σpmo = 1256)/ (fpbt = 3.4)] 
     = 1051 mm                                                                                                    (8.16) 
                                   ℓpt2 = 1.2 ℓpt = 1.2 × 1051 = 1261 mm                       (8.18) 

ℓpt2 = 1261/ (φ = 15 mm) ≈ 84 tendon diameters 
 

 
 

Fig. 16.26 Transmission length. 
 
 
16.12.1 Example of Calculating Ultimate Shear Capacity Vrd, c 
 
Calculate VRd, c at the support section of the beam shown in Fig. 16.27.  The beam 
prestressed with a prestress at service of 1856 kN.  The beam is made from 
concrete with fck = 40 MPa. 

 
Fig. 16.27 Precast prestressed beam. 

 
Area of cross section, A = (750 – 300) ×250 + 1100 ×300 = 4.425 × 105 mm2 

First moment of area,  about the soffit = (750 – 300) × 2502/2 + 300 ×11002/2 
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 = 1.956 × 108 mm3 
Centriodal axis from the soffit = /A = 442 mm 

Second moment of area, I about the centroidal axis: 
I = (750 – 300) × 2503/12 + (750 – 300) × 250 × (442 − 250/2)2  

                   + 300 × 11003/12 + 300 ×1100 × (1100/2 – 442)2 = 4.882 × 1010 mm4 
σcp = compressive stress at centroidal axis of the beam due to prestress of 1856 kN: 

σcp = 1856 ×103/4.424×105
 = 4.2 MPa 

fck = 40 MPa, fctm = 0.30 ×fck 0.667 = 3. 5 MPa 
γc = 1.5, fctd = fctm/γc = 2.3 MPa 

Assuming αℓ = 0.75,  
MPa98.4}ff{ cpctd

2
ctd    

S = First moment of area about the centroidal axis of the hatched area above the 
centroidal axis shown in Fig. 16.28. 

 
Fig. 16.28 Area above the centroidal axis. 

 
S = 300 ×6582/2 = 6.50 ×107 mm3, web width, bw = 300 mm 
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                        (6.4) 
 
 
16.12.2 Example of Calculating Ultimate Shear Capacity Vrd, c for a  
             Composite Beam 
 
In the example in section 16.12.1, the cross section involved was that of a precast 
prestressed section only.  In the case of a composite beam, prestress acts on the 
precast cross section.  The dead load is carried by the precast section but live load 
is carried by the composite section.  In order to calculate VRd, c it is necessary to 
proceed from the first principals.  Fig. 16.29 shows a composite beam cross  
section.  The precast beam shown in Fig. 16.27 is made composite with a cast-in-
situ slab 1000 mm wide × 160 mm deep.  fck of slab concrete is 30 MPa and fck of 
precast beam is 40 MPa. The precast beam is stressed with a prestress of 1856 kN 
at an eccentricity of 202 mm.   
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Solution: Two sets of calculations will be carried out.  The first one based on the 
maximum principal tensile stress at the centroidal axis of the precast beam and the 
second one at the centroidal axis of the composite beam.  The smaller of the two 
values will govern design. 

 
Cross sectional properties: 
Precast beam: (From section 16.12.1) 
Depth of beam = 1100 mm, Aprecast = 4.425 ×105 mm2, ybar = 442 mm,              I 
precast= 4.882 × 1010 mm4. 
 
Composite section: In order to allow for the difference in the value of                 
fck, slab = 30 MPa and fck, beam = 40 MPa, the width of the slab is taken as             
1000 × 30/40= 750 mm. 

Depth of beam = 1100 + 160 = 1260 mm, 
Acomposite = APrecast + A slab = 4.425 ×105 + 750 ×160 = 5.625 ×105 mm2 

ybar = [4.425 ×105× 442 + 750 ×160 × (1100 + 160/2)]/ (5.625×105) = 599 mm 
Icomposite = (750 – 300) × 2503/12 + (750 – 300) × 250 × (599 − 250/2)2 

+ 300 ×11003/12 + 300 ×1100 × (1100/2 – 599)2 

+ 750 × 1603/12 + 750 × 160 × (1100 + 160/2 – 599) = 10.07 ×1010 mm4

  
(1) VRd, c based on the maximum principal tensile stress at the centroidal axis 
      of the precast beam  
At the centroidal axis of precast beam, σcp= 1856 ×103/ (4.425 ×105) = 4.2 MPa. 
fck = 30 MPa, fctd = 2.3 MPa and αℓ = 075. 
Maximum shear stress τ permitted = √ (2.32 + 0.75 × 2.3 × 4.2) = 3.5 MPa. 
 
(a) For determining shear stress due to dead load in the precast beam at beam 
centroidal axis, take moment about the centroidal axis of the beam of the area 
above beam centroidal axis (see Fig. 16.28):  
S = 300 × (1100 – 442)2/2 = 6.50 ×107 mm3, bw = 300 mm 
 

 
 
(b) For determining shear stress due to live load in the composite beam at the 
precast beam centroidal axis level, take moment about the centroidal axis of 
composite  beam of the area above precast beam centroidal axis (see Fig. 16.29): 
Web depth above the precast beam centroidal axis = 1100 – 442 = 658 mm 
 

ybarComposite beam – ybarprecast beam = 599 – 442 =157 mm 
 

S = 750 × 160 × (1260 − 599 – 160/2) for slab + 300 × 658 × (658/2 − 157) web 
S = 10.37 × 107 
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τ = 3.5 = (4.506 × VDead + 3.43 × Vlive) × 10−3 

If at ULT, VDead = 240 kN, then VLive = 705 kN 
VRd, c = VDead + VLive = 945 kN 

 

 
Fig. 16.29 Area above the centroidal axis of precast beam. 

 

(2) VRd, c based on the maximum principal tensile  stress at the centroidal axis 
      of the composite beam: 
Stress due to prestress at the centroidal axis of the component beam: 
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fck = 30 MPa, fctd = 2.3 MPa and αℓ = 075. 
Maximum shear stress τ permitted = √ (2.32 + 0.75 × 2.3 × 3.0) = 3.2 MPa. 
 
(c) For determining shear stress in the precast beam at composite beam centroidal 
axis, take moment about the centroidal axis of the beam of the area above 
composite beam centroidal axis (see Fig. 16.30):  

ybar-composite beam – ybar-precast beam = 599 – 442 =157 mm 
Depth above composite beam centroidal axis = 1100 – 599 = 501 mm 

S = 300 × 501 × (501/2 + 157) = 6.125 × 107 mm3 
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Fig. 16.30 Area above the centroidal axis of composite beam. 

 
(d) For determining shear stress in the composite beam at the composite beam 
centroidal axis, take moment about the centroidal axis of composite beam of the 
area above composite beam centroidal axis (see Fig. 16.31): 

 
Fig. 16.31 Area above the centroidal axis of composite beam. 

 
Web depth above the composite beam centroidal axis = 1100 – 599 = 501 mm 

S = 750 × 160 × (1260 − 599 – 160/2) for slab + 300 × 5012/2 for web 
S = 10.74 ×107 

 

 
 

 
τ = 3.2 = (4.182 × VDead + 3.56 × Vlive) × 10−3 

If at ULT, VDead = 240 kN, then VLive = 617 kN 
VRd, c = VDead + VLive = 857 kN 

Taking the smaller of two values, VRd, c = 857 kN. 
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If as an approximation, it is assumed that all loads are carried by the composite 
section, then  

kN900102.3
1074.10

3001007.10V 3
7

10

c,Rd 



 

 
900 kN is only 5% larger than the more accurate value of 857 kN. 
 
 
16.13 SHEAR CAPACITY OF SECTIONS WITHOUT SHEAR 
         REINFORCEMENT AND CRACKED IN FLEXURE 
 
In the case of sections where the flexural tensile stress is greater than fctd the shear 
capacity of the section is given by the following semi-empirical formula given by 
code equations (6.2a), (6.2b) and (6.3N). 

          
db]kv[db]k}f100{kC[V wcp1minwcp1

3/1
ck1c,Rdc,Rd 

   (6.2a)
 

12.0
)5.1(

18.0C
c

c,Rd 


 , 0.2
d

2001k  , 02.0
db

A

w

sl
1   

k1 = 0.15, Asl = area of tensile reinforcement which extends a length of (design 
anchorage length lbd + effective depth) beyond the section where the shear capacity 
is being calculated. 

                                             ck
5.1

min fk035.0v                                           (6.3N) 

σcp = Axial force, Ps/Ac ≤ 0.2 fcd 
 
 
16.13.1 Example of Calculating Ultimate Shear Capacity Vrd, c 
 
Example: For the double T-beam shown in Fig. 16.32, calculate the shear capacity 
at a section which is cracked in bending. The tension steel consists in each web of 
three 7-wire 15 mm diameter tendons with an effective cross sectional area of 150 
mm2.  The prestress in each web is 462 kN.  The cables are placed at 50 mm from 
the soffit.  The beam is made from concrete fck = 40 MPa. 
 

 
 

Fig. 16.32 Double T-beam. 
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Solution: 
d = 725 – 50 = 875 mm, k = 1+ √ (200/875) = 1.48 < 2.0 

Asl = 3 ×150 = 450 mm2 per web 
100ρ1 = 100 ×450/ (200 ×875) = 0.257 < 2.0 

fcd = fck/γc= 40/1.5 = 26.7 MPa, 
0.2 fcd = 5.34 MPa 

ck
5.1

min fk035.0v   = 0.40 MPa 
σcp = 462 × 103/ (200 ×725) = 3.2 MPa < 0.2 fcd 

3

33/1
c,Rd

10875200]2.315.040.0[

10875200]2.315.0}40257.0{48.112.0[V



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

 
VRd, c = [0.386 +0.48] ×175 ≥ [0.40 + 0.48] × 175 

VRd, c =154 kN per web 
Total shear capacity = 2 × 154 = 308 kN. 

 
 
16.14 SHEAR CAPACITY WITH SHEAR REINFORCEMENT 
 
For members with shear reinforcement, the shear resistance is the smaller value of  
                                   cotθ                                         (6.8) 
and  
                                          (6.9) 
Asw = cross sectional area of shear reinforcement. 
s = spacing of links. 
fywd = design yield strength of shear reinforcement. 
ν1 = strength reduction factor for concrete cracked in shear. 
                             ν1= 0.6(1 − fck/250)                                                               (6.6N) 
αcw is defined as follows: 
                         αcw = (1 + σcp/fcd), 0 < (σcp/fcd) ≤ 0.25                                  (6.11.aN) 
                         αcw = 1.25, 0.25 < (σcp/fcd) ≤ 0.5                                          (6.11.bN) 
                         αcw = 0.25(1 − σcp/fcd), 0.5 < (σcp/fcd) ≤ 1.0                          (6.11.cN) 
θ = inclination of the concrete strut to the beam axis.  1 ≤ cotθ ≤ 2 .5. 
 
 
16.14.1 Example of Calculating Shear Capacity with Shear Reinforcement  
 
Calculate the shear reinforcement for the beam in section 16.13.1 if the shear force 
to be resisted is VEd = 580 kN per web. 

fck = 40 MPa, fcd = fck/γc = 40/1.5 = 26.7 MPa, ν1= 0.6(1 − fck/250) = 0.504 
fywd = 500/ (γs= 1.15) = 435 MPa 

Use 2-leg H10 links.  Asw = 157 mm2 
σcp = 462 × 103/ (200 ×725) = 3.2 MPa, σcp /fcd = 0.12 

αcw = (1 + σcp/fcd) = 1.12 
Equate VEd to VRd, max and determine the value of cotθ.   
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Take z = 0.9d = 0.9 × 875 = 788 mm. 
bw = 200 mm 
                                          (6.9) 
 
                VRd, max = 1.12 × 200 ×788 × 0.504 × 26.7× 10−3 ×1/ (cotθ + tanθ) 
                                VRd, max = 2356.5×1/ (cotθ + tanθ) kN = (VEd = 580 kN) 

(cot θ + tan θ) = 4.06 
cot2θ – 4.06 cot θ + 1 = 0, cot θ = 0.26 or 3.80 

Both values are outsize the limits for cot θ. Limiting cot θ = 2.5 for maximum 
shear capacity with shear reinforcement, determine the spacing of reinforcement. 
If cot θ = 2.5, VRd, max = 3534.7/ (2.5 + 0.4) = 1219 kN. 
Equating VRd, s to VEd, determine the spacing of links. , s

 
VRd, s = (VEd = 580 kN) 

s = 232 mm 
Maximum s = 0.75d = 0.75 × 875 = 656 mm (code equation 9.6N). 
Check minimum shear link requirement: 
                                         Asw/(s ×bw) > 0.08×√fck/fyk                       (9.4 and 9.5N) 

157/ (232 ×200) > 0.08 ×√40/500 
3.38 ×10−3 > 1.01×10−3 

Minimum requirement is satisfied. 

 
Fig. 16.33 A bridge I-beam. 

 

200 mm 

600 mm 

400 mm 

200 mm 

200 mm 

200 mm 

120 mm 

1200 mm 



704                                                                                     Reinforced concrete design to EC 2 

16.14.2 Example of Design for Shear for a Bridge Beam 
 
Design the shear reinforcement for the bridge I-beam shown in Fig. 16.33.  The 
beam is simply supported over a span of 20 m.  The relevant section properties are 
A = 412 × 103 mm2, yb = 530 mm, yt = 670 mm, I = 6.17 × 1010 mm4 

Zb = 116.6 × 106 mm3, Zt = 92.1 × 106 mm3 
 
At ultimate limit state the uniformly distributed load on the beam is q = 53.0 kNm.  
The beam is prestressed with twenty 7-wire 13 mm strands spaced as follows: 6 at 
50 mm, 6 at 100 mm, 6 at 200 mm and 2 at 1100 mm from the soffit giving          
Ps = 2037 kN, e = 315 mm 
Ignoring the cable at 1000 mm from the soffit, effective depth,  
d =1200 – (6 × 50 + 6 × 100 + 6 × 200) / 18   = 1083 mm.   
The beam is made from concrete fck = 40 MPa. 
fctm = 0.3 ×40 0.667 = 3.5 MPa, fctd = fctm/ (γc = 1.5) = 2.3 MPa,  
fck, 0.05 = 0.7 × fctm = 2.45 MPa, fck, 0.05 / (γc =1.5) = 1.7 MPa 
 
Step 1: Calculate the shear capacity of concrete alone at an uncracked section 
At the centroidal axis, σcp = NEd/A = Ps/A  

σcp = 2037.0 × 103/ (412.0 × 103) = 4.94 MPa 
fctd = 2.3 MPa.  Assume α1 = 0.5 

MPa2.3}ff{ cpctd
2
ctd  

 S = 400 × 200 × (1200 – ybar – 200/2) for top flange 
+ 0.5× (400 – 200) × 120 × (1200 – ybar − 200 – 120/3) for top triangle 

+ 200 × (1200 – ybar – 200)2/2 for the web 
S = (45.6 + 5.16 + 22.09) × 106 = 72.85 × 106 mm3 

bw = 200 mm 
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             (6.4)
 

 
Step 2: Check the start of the cracked section 
 
If the flexural stress is greater than fck, 0.05 / (γc =1.5) = 1.7 MPa, the section should 
be considered as cracked. 
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1.7 = − 4.94 − 5.50 + 0.227 × (20x – x2) 
Simplifying, x2 – 20x +53.48 = 0.  Solving the quadratic equation, x = 3.2 m and 
16.8 m.  The beam should be considered as cracked beyond 3.2 m from the 
supports.  At distances less than 3.2 m from supports, shear capacity of the section 
is the uncracked value of VRd, c = 542 kN. 
 
Step 3: Calculate the shear capacity of concrete at a cracked section without 
shear reinforcement 

CRd, c = 0.12 
At the neutral axis, σcp = NEd/A = Ps/A = 2037.0 × 103/ (412.0 × 103) = 4.94 MPa. 
Average stress in stress block, fcd = 22.7 MPa.  0.2 fcd = 4.5 MPa. 

σcp = 4.94 > (0.2 fcd = 4.5) 
Take σcp = 4.5 MPa in further calculations. 

k1 = 0.15 
Note: Only the steel areas in the ‘tension zone’ should be included.  The two cables 
at 1100 mm from the soffit are therefore not included.  d = 1083 mm. 
                  k = 1+√(200/d) = 1 + √ (200/1083) = 1.43 < 2.0 
                   vmin = 0.035 k 1.5 √fck = 0.035 × 1.431.5 × √40 = 0.38 MPa       (6.3N) 

Asl = 18 number 7-wire 13 mm strands each 100 mm2 
=18 × 100 = 1800 mm2 

bw = 200 mm, d = 1083 mm 
100ρt = (100 ×1800)/ (200 × 1083) = 0.82 < 2.0 

Substituting the values into (9.6), 

               
db]kv[db]k}f100{kC[V wcp1minwcp1

3/1
ck1c,Rdc,Rd 

(6.2a) 
VRd, c = [0.12 × 1.43 × (0.82 × 40)0.33 + 0.15 × 4.94] × 200 × 1083 × 10−3 

VRd, c  ≥ [0.38 + 0.15 × 4.94] × 200 × 1083 × 10−3 
VRd, c = 279.5 ≥ 242.8 kN 

VRd, c = 279.5 kN 
 
Step 4: Design necessary shear reinforcement 
The shear force VEd at the support is 53.0 × 20/2 = 530.0 kN. 
The shear capacity of a section cracked in flexure = 279.5 kN.  The shear capacity 
of a section uncracked in flexure = 542 kN.  The beam is cracked beyond 3.2 m 
from supports.  The applied shear force is equal to shear force capacity of the 
cracked section without shear reinforcement at 

279.5 = 530 – 53 × x, x = 4.73 m 
No shear reinforcement (except nominal reinforcement) is required beyond 4.9 m 
from the supports.  Shear reinforcement is required only from 3.2 m to 4.9 m from 
the supports. 
Shear V at d from support = 530.0 – q d = 530 – 53 × 1083 × 10−3 = 472.6 kN. 
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This value is much less than the shear capacity of 542 kN for a section uncracked 
in flexure.   Shear at 3.1 m from the support = 530 – 53 × 3.1 = 365.7 kN.  
Therefore design shear reinforcement for VEd = 365.7 kN. 
fck = 40 MPa, fcd = fck/γc = 40/1.5 = 26.7 MPa, ν1= 0.6(1 − fck/250) = 0.504. 

fywd = 500/ (γs= 1.15) = 435 MPa 
Use 2-leg H10 links. Asw = 157 mm2. 
At the neutral axis, σcp = NEd/A = Ps/A = 2037.0 × 103/ (412.0 × 103) = 4.94 MPa. 

σcp /fcd = 4.94/26.7 = 0.185 < 0.25 
                                              αcw = (1 + σcp/fcd) = 1.185                               (6.11.aN) 

z ≈ 0.9d = 0.9 × 1083 = 975 mm, bw = 200 mm 

                               (6.9) 
VRd, max= 1.185 × 200 × 975 × 0.504 × 26.7 × 10−3 /(cot θ  + tan θ) 

VRd, max= = 3109.5/ (cot θ + tan θ) kN 
cot θ = 2.5, VRd, max = 1072.2 kN 
cot θ = 1.0, VRd, max = 1557.8 kN 

Equating VRd, s from (6.8) to VEd, determine the spacing of links. , s

  
VRd, s = (VEd = 365.7 kN) 

s = 455 mm 
Maximum s = 0.75d = 0.75 × 975 = 731 mm.   
Provide 2-leg H10 links at 450 mm c/c. 
Check minimum shear link requirement: 
                                    Asw/(s × bw) > 0.08 × (√fck)/fyk                       (9.4) and (9.5N) 

157/ (450 × 200) > 0.08 ×(√40)/500 
1.74 ×10−3 > 1.01×10−3 

Minimum requirement is satisfied. 
 
 
16.14.3 Example of Design for Shear for a Composite Beam 
 
Design shear reinforcement for composite beam shown in Fig. 16.34.  

 
Fig. 16.34 Composite beam section. 
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The beam is simply supported over a span of 24 m.  The relevant  section 
properties are as follows. 

Precast beam: (From section 16.12.1) 
Depth of beam = 1100 mm, Aprecast = 4.425 ×105 mm2, ybar = 442 mm, 

I precast= 4.882 × 1010 mm4, zb = 101.40 × 106 mm3, zt = 68.11 × 106 mm3 
fck, beam = 40 MPa 

Cast-in-situ slab: fck, slab = 30 MPa.  Width = 1000 mm, thickness = 160 mm. 
Composite section: For calculating the composite section properties, in order to 
allow for the difference in the strengths of concrete in the precast beam and the 
cast-in-situ slab, the width of the slab is taken as: 

1000 × (fck, slab/fck, beam) = 1000 × 30/40= 750 mm. 
Depth of beam = 1260 mm, Acomposite = 5.625 ×105 mm2, ybar = 599 mm 

Icomposite = 10.07 ×1010 mm4, zb = 168.11 ×106 mm3, zt = 152.34 ×106 mm3 
 
At ultimate limit state the uniformly distributed load on the beam is  

Dead load = 20 kN/m and live load is 30 kNm. 
Total prestressing force Ps at service is 3712 kN applied at an eccentricity of      
283 mm.  The prestress is applied by 32 number 15.0 mm diameter 7-wire standard 
strands. 
The 32 strands are positioned as follows: 

10 cables at 60 mm from the soffit 
                                       14 cables at 110 mm from the soffit 
                                         6 cables at 160 mm from the soffit 
                                         2 cables at 1000 mm from the soffit. 
The cross sectional area Aps of cable 

Aps = 150.0 mm2 
fck for precast beam = 40 MPa, fctm = 0.3 ×40 0.667 = 3.5 MPa, 
fctd = fctm/ (γc= 1.5) = 2.3 MPa, fck 0.05 = 0.7 × fctm = 2.5 MPa 

fck 0.05 / (γc= 1.5) = 1.7 MPa 
fck for in-situ slab = 30 MPa, fctm = 0.3 ×30 0.667 = 2.9 MPa, 

fctd = fctm/ (γc= 1.5) = 1.9 MPa 
 
Step 1: Calculate the shear capacity of concrete alone at an uncracked section 
As an approximation, calculate for the composite section, VRd,c based on the 
maximum principal stress at the centroidal axis of the composite section. 
Stress due to prestress at the centroidal axis of the component beam 
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Take: fck = 40 MPa, fctd = 2.3 MPa and αℓ = 075, 
Maximum shear stress τ permitted = √ (2.32 + 0.75 × 2.3 × 5.0) = 3.7 MPa. 
From Fig. 16.31,  

S = 750 × 160 × (1260 − 599 – 160/2) for slab + 300 × 5012/2 for web 
S = 10.74 ×107 
bw = 300 mm 
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                  (6.4)

 

 
Step 2: Check the start of the cracked section 
If the flexural stress is greater than fck, 0.05 / (γc =1.5) = 1.7 MPa, the section should 
be considered cracked.  Assume that the dead load equal to 20 kN/m acts on the 
precast beam and live load equal to 30 kN/m acts on the composite beam. 

 
 

 
1.7 = − 8.39 − 10.36 + 0.188 × (24x − x2) 

x2 – 24x + 108.77 = 0 
x = 6.1 m and 17.9 m 

The beam should be considered cracked beyond 6.1 m from the supports.  At 
distances less than 6.1 m from supports, shear capacity of the section is the 
uncracked value of VRd, c = 1041 kN. 
 
Step 3: Calculate the shear capacity of concrete at a cracked section without 
shear reinforcement 

CRd, c = 0.12 
From step 1, at the neutral axis, σcp = 5.0 MPa 

Average stress in stress block, fcd = 22.7 MPa, 0.2 fcd = 4.5 MPa 
σcp = 5.0 > (0.2 fcd = 4.5) 

Take σcp = 5.0 MPa in further calculations. 
k1 = 0.15 

Note: Only the steel areas in the tension zone should be included.  Ignoring the 
cables at 1000 mm from the soffit, the centroid of the cables from the soffit is 

(10 × 60 + 14 × 110 + 6 × 160)/30 = 103 mm 
d = 1260 – 103 = 1157 mm 

k = 1+√200/d = 1 + √ (200/1157) = 1.42 < 2.0 
                   vmin = 0.035 k 1.5 √fck = 0.035 × 1.431.5 × √40 = 0.38 MPa       (6.3N) 
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Asl = 30 number 7-wire 15 mm strands each 150 mm2 = 30 × 150 = 4500 mm2 
bw = 300 mm, d = 1157 mm 

100ρt = (100 ×4500)/ (300 × 1157) = 1.30 < 2.0 
Substituting the values into (9.6), 

          
db]kv[db]k}f100{kC[V wcp1minwcp1

3/1
ck1c,Rdc,Rd 

(6.2a) 
VRd, c = [0.12 × 1.42 × (1.30 × 40)0.33 + 0.15 × 5.0] × 300 × 1157 × 10−3 

VRd, c ≥ [0.38 + 0.15 × 5.0] × 300 × 1157 × 10−3 
VRd, c = 481 ≥ 392.2 kN 

VRd, c = 481 kN 
 
Step 4: Design necessary shear reinforcement 
The shear force VEd at the support is (20 + 30) × 24/2 = 600.0 kN. 
The shear capacity of a section cracked in flexure = 481 kN. 
The shear capacity of a section uncracked in flexure = 1041 kN. 
The beam is cracked beyond 6.1 m from supports. 
At 6.1 m, shear force = 600 – 50 × 6.1 = 295 kN < 481kN. 
The beam needs only nominal reinforcement.  
Maximum s = 0.75d = 0.75 × 975 = 731 mm. 
Provide 2-leg H10 links at 700 mm c/c. 
Check minimum shear link requirement: 
                                 Asw/(s × bw) > 0.08×√fck/fyk                         (9.4) and (9.5N) 

157/(s × 300) > 0.08 ×√40/500 
s < 523 mm 

Provide links at500 mm c/c. 
 
 
16.15 HORIZONTAL SHEAR 
 
In the case of composite beams, it is necessary to ensure that the horizontal shear 
stress between the precast beam and the cast-in-situ slab as shown in Fig. 16.35 can 
be safely resisted.  If there were to be a shear failure at the slab–beam junction, 
then composite beam action will be destroyed.    
 

 
 

Fig. 16.35 Slab-precast beam interface shear stress. 
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Fig. 16.36 Forces on an element. 

 
Fig. 16.36 shows the bending moment and shear forces acting on element of length 
Δx.  Equilibrium requires that   
 

 
M = C z, where z is the lever arm and C is the total compressive force due to 
bending. 
The compressive force in the slab is β C, where  
β = force in the slab/ total compressive force in the beam 
Fig. 16.37 shows the forces acting on an element of slab of length Δx.  Equilibrium 
requires that  

 
 

 
where τ is the interface shear stress and bi is the width of contact between the 
precast beam and the slab. 
Eurocode 2 in clause 6.2.5, equation (6.24) substitutes VEd for V and vEdi for τ 
resulting in  

                                                                                                  (6.24) 

 
Fig. 16.37 Forces on an element of slab. 
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Fig. 16.38 Forces at the interface. 
 
The shear stress vEdi is resisted by a combination of friction and adhesion between 
the slab concrete and beam concrete.  If the shear links are anchored in the slab, it 
helps to clamp the two elements together and provides a normal force at the 
interface which helps to resist the interface shear stress as shown in Fig. 16.38. 
Assuming that shear links are anchored in the slab, and substituting α = 900, the 
resistance to shear stress vEdi is given by equation (6.25) of the code as 
                                         vRdi = c fctd + μσn + ρ fyd μ ≤ 0.5 ν fcd                     (6.25) 
If the interface in the beam is roughened by exposing the aggregates before 
concreting, c = 0.45 and μ = 0.7.   
σn is the normal external force per unit area across the interface.  This can be taken 
as zero. 
fyd = the stress in the shear links. 
ρ = Ratio area of link reinforcement crossing the interface/area of the joint. 
ν = 0.6[1 – fck/250] 
 
 
16.15.1 Example of Checking for Resistance for Horizontal Shear Stress 
 
Design the shear reinforcement for the beam in section 16.11.1.   
From the data in Table 16.8, at ULS 

Compression force in slab = 3200 kN 
Compression force in beam = 2598 kN 

Total compression force = 3200 + 2598 = 5798 kN 
β = 3200/5798 = 0.552 

Ultimate moment = 5524 kNm 
Lever arm, z = 5524/5798 = 0.953 m = 953 mm 

Link steel = 157 mm2 at 500 mm c/c, Area of contact = 500 × (bi = 300) 
ρ = 157/ (500 ×300) = 1.05 ×10−3 
fyd = 500/ (γs = 1.15) = 435 MPa 
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Take c= 0.45, μ = 0.7, fck slab = 30 MPa, ν = 0.6[1 – fck/250] = 0.528 
fctm = 0.3 ×30 0.667 = 2.9 MPa, fctd = fctm/ (γc = 1.5) = 1.9 MPa, 

fcd = 30/1.5 = 20 MPa 

vRdi = c fctd + μσn + ρ fyd μ ≤ 0.5 ν fcd 
vRd, i= 0.45 × 1.9 + 0.7 × 0 + 1.05 × 10−3 × 435 × 0.7 ≤  0.5 × 0.528 × 20 

vRd, i = 1.18 ≤ 5.28 
vRdi =1.18 MPa 

 
vRdi > vEdi 

Design is satisfactory. 
 
 
16.16 LOSS OF PRESTRESS IN PRETENSIONED BEAMS 
 
In sections 16.2.1 and 16.3.1 it was stated that although at the time of stressing the 
cables, the total force is Pjack, due to losses that occur during transfer of prestress to 
concrete and also due to long-term deformation of steel and concrete, there is 
considerable reduction in prestress at the long-term SLS stage. 
 
 
16.16.1 Immediate Loss of Prestress at Transfer 
 
The loss at transfer occurs because of the fact that when the force is transferred to 
concrete, it contracts.  Because of the full bond between steel and concrete, steel 
also suffers the same contraction.  Eurocode 2 clause 5.10.4 gives the aspects to be 
included in calculating the loss.  The loss in prestress can be calculated by using a 
simple model where the prestress and eccentricity are constant over the whole 
length and all the prestressing steel Aps can be assumed to be concentrated at an 
eccentricity e.  If Pt is the force in the cables, then at the centroid of steel the stress 
σc in concrete is given by 

e
I
eP

A
P tt

c   

where A and I are respectively the area of cross section and second moment area of 
pretensioned beam.   
 
The strain εc in concrete is given by  

εc = σc /Ec 
where Ec = Young’s modulus for concrete considering immediate contraction.   
 
Because of full bond, the strain εs in steel is same as strain in concrete. 

εs = εc = σc /Ec 
 
The stress σs in steel corresponding to εs is  
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σs = Es εs = Es σc /Ec 
The loss of prestress is given by  

Loss = Aps σs = Aps Es σc /Ec 
Pt = Pjack – Loss 

 
 
16.16.1.1 Example of Calculation of Loss at Transfer  
 
Calculate the loss at transfer for the pretensioned beam in section 16.11.1. 
The properties of the precast section are:  

Area, Ac = 4.425 × 105 mm2 
Second moment of area, Ic = 4.90 × 1010 mm4 

ybar = 442 mm from the soffit 
zb = 110.86 × 106 mm3 

Prestressing force used to stress 32 cables each of area 150 mm2 is 
PJack= 4700 kN, eccentricity, e = 283 mm. 

Ep = 195 GPa 
The cables are normally released after one or two days or earlier using steam 
curing to speed up the gain in strength.    Taking t = 3 days,  

                                                              (3.2)         
Assuming s = 0.2 for the type R cement used, βcc (t) = 0.66 

fck (t) =0.66 ×30 = 19.9 MPa, fcm (t) = fck (t) + 8 = 27.9 MPa. 
Ecm (t) = 22 × (fcm (t)/10)0.3 = 29.9 GPa  

Aps = Area of prestressing steel = 32 strands at 150 mm2 each = 4800 mm2 
Assuming that Pt is in kN, compressive stress σc due to prestress at centroid of steel 

t
3

10

3
t

5

3
t

c P10894.3283
1090.4

28310P
10425.4

10P










   

Loss = Aps Ep σc /Ecm (t) 
Loss = (4800) × (195/29.9) × 3.894 × 10−3 × Pt × 10−3 kN 

Loss = 0.122 Pt kN 
Pt = Pjack – Loss = 4700 – 0.122 Pt 

Pt = 4189 kN,  
Transfer loss = Pjack – Pt = 511 kN 

There is 11 % loss of prestress at the time of transfer. 
 
 
16.16.2 Long-Term Loss of Prestress 
 
After the force has been transferred, concrete continues to contract due to creep.  In 
addition concrete also suffers shrinkage due to loss of moisture.  Because the steel 
is under stress there is reduction in stress due to the relaxation effect.  These losses 
can be calculated using the simple model used in section 16.15.1 
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(i) Time-dependent losses of prestress for pre and posttensioning 
Eurocode 2 gives in clause 5.10.6, equation (5.46) for calculating the loss of stress 
due to creep and shrinkage of concrete and relaxation of steel.   
 

                      ]   (5.46) 

 
Use of this equation is demonstrated for the precast section example in section 
16.16.1.1. 

Ap = area of prestressing steel = 4800 mm2 
Ac = cross sectional area of concrete = 4.425 × 105 mm2 

Second moment of area, Ic = 4.90 × 1010 mm4 
zcp = eccentricity of prestress = 283 mm 

1 + (Ac/Ic) × zcp
2 = 1.723 

Ep = modulus of elasticity for steel = 195 GPa 
fck = 30 MPa 

Ecm = secant modulus of elasticity = Ecm = 22 × [(fck + 8)/10]0.3 = 32.8 GPa 
(Ep/Ecm) × (Ap/Ac) × 1.723 = 0.11 

Φ (t, t0) = creep coefficient at time t at load application at t0. 
For the section, Ac == 4.425 × 105 mm2 

Perimeter, u = 2 × 1100 + 2 × 750 = 3700 mm 
h0 = notional size = 2 × Ac/u = 239 mm 

From code Fig. 3.1b, for relative humidity, RH = 80% and the beam is loaded at    
t0 = 3 days, for class S cement, φ (∞, t0) ≈ 3.0. 

1+ 0.8 × φ (∞, t0) = 3.4 
Denominator in code equation (5.46) is equal to 1 + 0.11× 3.4 = 1.374  

Δσpr = Relaxation loss of stress 
Accurate calculations can be done using equations in clause 3.3.2 of Eurocode.  An 
approximate estimation can be made as follows.   
For low relaxation strands (Class 2), 1000 hour loss is 2.5% when tensioned to    
0.9 fp0.1k.   
fp0.1k ≈ 0.88 fpk.   fpk = 1860 MPa.  0.9 fp0.1k = 0.9 × 0.88 × 1860 = 1473 MPa.  
1000 hour loss = 2.5/100 × 1473 = 37 MPa. 
In the long run relaxation loss can be taken as approximately 1.5 times the 1000 
hour loss.  

Δσpr =1.5 × 37 = 55 MPa 
0.8 × Δσpr = 44 MPa 

εcs = Estimated shrinkage strain using the data in clause 3.1.4 of Eurocode 2.   
An approximate value is used in the following.  
Assume, εcs ≈ 0.36 ×10−3.  εcs × Ep= 70 MPa. 
σc, QP = stress in the concrete adjacent to the tendons due to self weight, initial 
prestress and other quasi-permanent loads. 
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(a) Stress due to prestress: Assuming that Pt = 4189 kN, compressive stress σc due 
to prestress at centroid of steel 

MPa3.16283
1090.4

283104189
10425.4
104189

10

3

5

3

c 








  

(b) Stress due to uniformly distributed dead load of 12.5 kN/m and live load of 
35.0 kN/m over a simply supported span of 20: 
Moment at mid-span = (12.5 + 37.0) ×202/8 = 2475 kNm. 
Stress at the centroid of steel = 2475 ×106 × 283/ (4.90 ×1010) = 14.3 MPa. 

σc, QP = −16.3+ 14.3 = 2.0 MPa 
The stress due to dead and live loads is maximum at mid-span and zero at the 
supports and the distribution is parabolic over the span.  An average stress due to 
dead and live loads ≈ (2/3) × 14.3 = 9.5 MPa. 

σc, QP = −16.3+ 9.5 = −6.8 MPa QP

 
Substituting in the expression for ΔPc+s+r:  

ΔPc+s+r = 4800 × (70 + 44 + 121) ×10−3/1.374 = 821 kN 
As can be seen, the greatest part, nearly 52%, of the long-term loss, is due to creep.  
Creep can also substantially increase long-term deformation leading to 
unacceptable deflection.  It is very important to make realistic estimation of the 
effects of creep. 
Final prestress remaining = PJack – transfer loss – long-term loss  
                                          = 4700 – 511 – 821 = 3368 kN 
Final loss % = (1 − 3368/4700) × 100 = 28%. 
 
 
16.17 LOSS OF PRESTRESS IN POSTTENSIONED BEAMS 
 
The difference between the losses in pretensioned and posttensioned occurs only 
due to losses during jacking and transfer.  The long-term loss calculations are 
identical. 
 
(i) Transfer loss 
In posttensioned beams, because concrete contracts while the cables are being 
stressed, any loss due to elastic contraction of concrete can be compensated to a 
certain extent.  However it is rare for all tendons to be stressed at the same time.  
At each stage of stressing, elastic loss takes place in all the tendons previously 
stressed.  Maximum loss is in the tendons first stressed and minimum loss in the 
last but one tendon stressed.  In clause 5.10.5.1 of the Eurocode 2, it is suggested 
that as an approximation, the transfer loss is approximately 50% of that in a 
corresponding pretensioned beam.   
Apart from the loss due to elastic contraction, there is an additional loss to 
consider.  After the jacking is done, wedges are driven into the anchors to retain 
the tension in the tendons.  Unfortunately, a certain amount of slip of the cables 
takes place before the wedges ‘bite in’. The tendon slips near the anchor but 
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friction between the tendon and the duct prevents the slip affecting the entire 
length.  The loss in slip at the anchorage is known as draw-in loss.  As the amount 
of slip is same whatever the length of the member, the loss of prestress due to 
draw-in is particularly important in short members.  The reader is referred to 
references at the end of this chapter for details of calculation.   
 
(ii) Loss due to friction between the cable and the duct and curvature of the 
      tendons  
Friction between the duct and the cable reduces the force in the cable away from 
the jacking end.  Loss also occurs because of the curvature of the cables.  The loss 
may be minimized by jacking from both ends of the beam.  If Po is the prestress at 
the jacking end, then prestress Px at a distance x from the anchorage is given by the 
equation 

)kx(
0x ePP    

where k = unintentional angular displacement for internal tendons.  k is dependent 
on many factors such as the type of duct, how well it is supported while concrete is 
being cast, degree of vibration used.  In clause 5.10.5.2(3), the code suggests   
0.005 < k <0.01 per meter length. 
μ = friction coefficient.  In Table 5.1 of the code, for internal tendons which fill 
roughly half the duct, μ = 0.19. 
θ = Sum of angular displacement over a distance, x. 
As an example, in a simply supported posttensioned beam of span 20 m with a 
mid-span dip of 200 mm, assuming 

k = 75 × 10−4 /m, μ = 0.19 
Δ = 200mm 

Equation for the cable profile is 

 

 
Since θ is small, tan θ = dy/dx = θ 

At x = 0, dy/dx = 4Δ/L = 0.04 radians 
At x = L/2, dy/dx = 0. 

At x = L, dy/dx = −4Δ/L = −0.04 radians 
From x = 0 to x = L/2, angular displacement = 0.04 – 0 = 0.04. 

μ (θ+ kx) = 0.022 
P10 = 0.978 × P0 

From x = 0 to x = L, angular displacement = 0.04 – (− 0.04) = 0.08. 
μ (θ+ kx) = 0.022 
P20 = 0.957 × P0 

Due to friction and wobble, the loss of prestress from starting anchorage to mid-
span is 2.2% loss and from support to support is 4.3% loss. 
It is important to minimize this loss.  One way of doing this is to tension the cable 
from both ends. An effort also must be made to keep the profile of the cable as flat 
as possible. 
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16.18 DESIGN OF END BLOCK IN POSTTENSIONED BEAMS 
 
In posttensioned members, after stressing the cables which are inside ducts fixed to 
the reinforcement cage, cables are anchored at the ends using proprietary 
anchorages.  After anchoring, the ducts are grouted to prevent corrosion of the 
cables and also to bond the cables to concrete.   
 

 
Fig. 16.39 Diffusion of compressive forces in an end block.  

 
When the cables are anchored, a very high force is transferred to the concrete over 
a small area.  As shown in Fig. 16.39, if an axial force representing the force 
applied to the anchor acts at the end face, the load gradually diffuses into concrete 
along curved paths and after a certain distance from end, the stresses normal to the 
cross section become uniform.   
    Elastic stress studies show that because of the fact that that compressive stresses 
are inclined to the axis, in order to maintain equilibrium,  tensile stresses are 
required and they vary along the axis as shown in Fig. 16.40.   
 

 
Fig. 16.40 Bursting tensile stress distribution. 

 
A simplified force system can be visualized by replacing the curved stress path by 
straight inclined struts as shown in Fig. 16.41.  In order to maintain equilibrium, a 
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vertical tie is needed.  This represents the bursting or splitting force which can 
cause tensile failure of the end block.  
      As shown in Fig. 16.42, a more elaborate truss system consisting of concrete 
struts and steel ties can be visualized which reflects better the gradual diffusion of 
concentrated force.  In clause 8.10.3(5), Eurocode 2 recommends that the 
dispersion angle can be taken as β = arc tan (2/3) ≈ 34o. 
In clause 8.10.3(4), Eurocode 2 recommends that if the stress in the ties is limited 
to 300 MPa, there is no need to check for crack widths.    The bearing stress behind 
the anchorage plates should be checked for limiting bearing stress in concrete. 
The bursting stresses are local to the anchorage and generally there is little of an 
interference effect from neighbouring anchorages.  The reinforcement to resist 
bursting force is designed separately for each anchorage.  The reinforcement can 
be in the form of links or as a spiral. 
Design using strut−tie method is discussed in detail in Chapter 18. 
 

 
Fig. 16.41 Simple strut−tie model. 

 
 

 
      

Fig. 16.42 Strut−tie system for an end block. 
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CHAPTER 17 
 

DEFLECTION AND CRACKING 
 
 
In normal design practice, reinforced concrete structures are designed for the 
ultimate limit state. As explained in Chapter 6, the serviceability limit state criteria 
such as maximum deflection, maximum crack widths are not checked by detailed 
calculations but by meeting deemed-to-satisfy rules such as  

(a)  Ensure satisfy deflection criteria at serviceability limit state by using 
minimum ratios of span to depth given in Table 7.4N and equations 
(7.16a) and (7.16b) of Eurocode 2. 

(b)  Satisfy crack width criteria at serviceability limit state by restricting 
maximum diameter of the bar as given in Table 7.2N  or by 
restricting the spacing of tension reinforcement to values given in 
Table 7.3N of the Eurocode 2. 

     Only in rare cases is detailed calculation of deflection and crack widths 
required, the exception being design of liquid retaining structures which are 
governed by crack width considerations (see Chapter 19).  The object of this 
chapter is to discuss these detailed calculations. 
 
 
17.1 DEFLECTION CALCULATION 
 
 
17.1.1 Loads on Structure 
 
The design loads for the serviceability limit state are loads which are sustained loads 
i.e. load which act for a long time.   Therefore the loads to be used in calculating the 
deflection are: 

(a)   Characteristic value of dead loads  
(b)   Quasi-permanent imposed loads   

In apartments and office buildings only about 25% of the characteristic imposed load 
is taken as permanently applied. 
 
 
17.1.2 Analysis of Structure 
 
An elastic analysis based on the gross concrete section may be used to obtain moments 
for calculating deflections using loads are as set out in 17.1.1. 
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17.1.3 Method for Calculating Deflection 
 
The method for calculating deflection is set out in clause 7.4.3 of Eurocode 2.  It is 
unrealistic to expect great accuracy in deflection calculations because of a number 
of factors are difficult to assess which can seriously affect results.  Some of the 
factors are: 

(a) Inaccurate assumptions regarding support restraints 
(b) The actual loading and the amount that is of long-term duration which 

            causes creep cannot be precisely estimated 
(c) Whether the member has or has not cracked 
(d) The difficulty in assessing the effects of finishes and partitions 

The method given is to assess curvatures of sections due to moment and to use these 
values to calculate deflections. 
 
 
17.1.4 Calculation of Curvatures 
 
The curvature at a section can be calculated using assumptions set out for a cracked 
or uncracked section.  Elastic theory is used for the section analysis. 
 
 
17.1.5 Cracked Section Analysis 
 
The assumptions used in the analysis of cracked section are as follows: 
Strains are calculated on the basis that plane sections remain plane.  The 
reinforcement is elastic with a modulus of elasticity of 200 GPa and concrete in 
compression is elastic with a secant modulus of elasticity Ecm.   
Clause 3.1.3 states that the secant modulus of elasticity Ecm of the concrete is given 
by 

Ecm = 22 [(fck + 8)/10]0.3 GPa 
Ecm value valid between the compressive stress σc in concrete in the range 

0 ≤ σc ≤ 0.4(fck + 8) MPa 
This value is applicable to concrete made with quartzite aggregates.  For limestone 
and sandstone aggregates the value should be reduced by 10% and 30% 
respectively.  For basalt aggregates the value should be increased by 20%.  The 
tangent modulus Ec = 1.05 Ecm. 
The final creep strain εcc(∞,t0) at time t =∞ as a multiple of elastic strain (σc/Ec) for 
a concrete loaded at age t0 is given by Eurocode  2 equation (3.6) as 
                                         εcc (∞, t0) = φ (∞, t0) (σc/Ec)                                    (3.6) 
The effect of creep due to long-term loads is taken into account by using an effective 
modulus of elasticity with a value of Ec/ (1 + (∞, t0)). 
 
To show the method for calculating curvature, consider the doubly reinforced 
rectangular beam section shown in Fig. 17.1(a).  The strain diagram and stresses 
and internal forces in the section are shown in Fig. 17.1(b) and Fig. 17.1(c) 
respectively.   
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The terms used in the figure are defined as follows: 
fc = stress in the concrete in compression 

fsc = stress in the compression steel 
fst = stress in the tension steel 

As = area of steel in tension 
As' = area of steel in compression 

x = depth to the neutral axis 
h = depth of the beam 

d = effective depth 
d' = inset of the compression steel 

Cc = force in the concrete in compression 
Cs = force in the steel in compression 

Ts = force in the steel in tension 
The following further definitions are required: 

Ec = modulus of elasticity of the concrete 
Es = modulus of elasticity of the steel 

e = modular ratio, Es / Ec 
Note that for quasi-permanent loads the effective value of Ec is used. 

Eeff = effective modulus of elasticity of the concrete for long term 
Eeff = Ec/ (∞, t0) 

(∞, t0)  = creep coefficient 
 

 
 

Fig. 17.1 Stress and strain distribution in a cracked reinforced concrete beam. 
 
Note that although concrete is capable of sustaining a small amount of tensile stress, 
because of the low tensile strength of concrete, it is common to ignore this 
altogether. 
 If the maximum compressive stress in concrete is fc, the corresponding strain c in 
concrete is 

c = fc/Ec 
Assuming full bond, the strains in compression and tension steels are 

sc = c (x – d′)/x 
s = c (d – x)/x 

The stresses in compression and tension steels are 

εc 

x 
d’ 

d 

Cs 

Ts 

Cc 

fc 

(b) Strain (c) Stress (a) Cross section 
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fsc = Es sc  
fs = Es s  

Substituting for strains in steel in terms of concrete strain,  
fsc = Es sc = Es [c (x – d')/x] 

= Es (fc/Ec) (x – d')/x 
fsc = e fc (x – d')/x 

e = modular ratio, Es / Ec 
Similarly 

fs = Es s = Es [c (d – x)/x] 
= Es (fc/Ec) (d – x)/x 
fs = e fc (d – x)/x 

The internal forces due to compression in concrete, compression steel, tension steel 
and tension in concrete are given by 

Cc = 0.5 fc b x 
Cs = e fc As' (x – d')/x 
Ts = e fc As (d – x)/x 

For equilibrium, the sum of the internal forces is zero: 
Cc + Cs = Ts  

Substituting for the forces in terms of stresses 
0.5fc b x + e fc As' (x – d')/x = e fc As (d – x)/x 

Multiplying throughout by x 
                                     0.5fc b x2 + e fc As' (x – d') = e fc As (d – x) 
The value of x can be determined by solving the above quadratic equation. 
The sum of the moments of the internal forces about the neutral axis is equal to the 
applied moment M  

M = 0.67 Cc x + Cs (x – d ' )  + Ts (d – x) 
                M = [0.33 fc b x3 + e fc As' (x – d') 2 + e fc As (d – x) 2]/x 

Note that the area of concrete occupied by the reinforcement has not been 
deducted in the expressions given above. 
The moment M can be expressed as  

M = fc Icr/ x 
where 

                      Icr = 0.33 b x3 + e As'(x – d') 2 + e As (d – x) 2  
Icr is called second moment of area of cracked transformed section. 
The compressive strain c in concrete is 

c = fc/Ec 
The curvature 1/r is 

1/r = M / (Ec Icr) 
 
 
17.1.6 Uncracked Section Analysis 
 
For an uncracked section, concrete and steel are both considered to be elastic in 
tension and in compression.  The analysis is similar to the cracked section 
analysis except that the area of concrete below the neutral axis is uncracked.  The 
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stress at the bottom face of the beam is fc (h – x)/x instead of being zero in a 
cracked section. 
The internal forces are given by 

Cc = 0.5fc b x 
Cs = e fc As' (x – d')/x 
Ts = e fc As (d – x)/x 
Tc = 0.5fc b (h – x) 2/x 

For equilibrium, the sum of the internal forces is zero: 
Cc + Cs = Ts + Tc 

0.5fc b x + e fc As' (x – d')/x = e fc As (d – x)/x+ 0.5fc b (h – x) 2/x 
 
Multiplying throughout by x/fc 

0.5 b x2 + e As' (x – d') = e As (d – x) + 0.5 b (h – x) 2 
Simplifying 

e As'(x – d') = e As (d – x) + 0.5 b h2 – b h x 
Solving for x 

                       x = {0.5 b h2 + e (As d + As' d')}/ [b h + e (As + As')] 
 
Note that if the influence of reinforcement is ignored, then x = 0.5h. 
The sum of the moments of the internal forces about the neutral axis is equal to the 
external moment M. 
  

M = 0.67 Cc x + Cs (x – d ' )  + Ts (d – x) + 0.67 Tc (h – x) 
M = 0.33 fc b x2 + e fc As' (x – d') 2 /x+ e fc As (d – x) 2/x 

+ 0.33 fc b (h – x) 3/x 
M = [0.33 b x3 + e As' (x – d') 2 + e As (d – x) 2 

+ 0.33 b (h – x) 3] (fc/x) 
Simplifying 
M = [0.33 b h3 + e As' (x – d') 2 + e As (d – x) 2 – b h x (h – x)] (fc/x) 
 
The moment M can be expressed as  

M = I (fc/x) 
I = [0.33 b h3 + e As' (x – d') 2 + e As (d – x) 2 – b h x (h – x)]  

I is called second moment of area of uncracked transformed section. 
Very often the influence of reinforcement is ignored and substituting            
x = 0.5h, for an uncracked section, I = bh3/12. 
 
 
17.1.7 Long-Term Loads: Creep 
 
The effect of creep must be considered for quasi-permanent loads.  Load on 
concrete causes an immediate elastic strain (σc/Ec) and a long-term time-dependent 
strain known as creep strain.  The strain due to creep may be much larger than that 
due to elastic deformation.  On removal of the load, most of the strain due to creep 
is not fully recovered. 
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    Creep is discussed in clause 3.1.4 and also in detail in Annex B of Eurocode 2.  
The creep coefficient (∞, t0)   is used to evaluate the effect of creep. Values of   
(∞, t0)   depend on the age of concrete t0 at loading, notional size h0 of the member 
and ambient relative humidity RH.  The notional size h0 for uniform sections is 
twice the cross sectional area Ac divided by the exposed perimeter u. 
     In deflection calculations, for calculating the curvature due to the long-term 
loads, creep is taken into account by using an effective value for the modulus of 
elasticity of the concrete equal to 

Eeff = Ec/ [1 + (∞, t0)] 
 
 
17.1.7.1 Calculation of (∞, t0)  
 
As an approximation, Fig. 3.1 of Eurocode 2 can be used to calculate the final creep 
coefficient (∞, t0).  However, Annex B gives the necessary equations for 
calculating (∞, t0). These are given below along with a numerical example. 

(∞, t0)   = RH × (fcm) ×  (t0) 
 

 
 

 
 

 
 

(fcm) = 16.8/√fcm 
fcm = fck + 8 

Depending on the type of cement, the gain in strength with age varies.  This fact 
can be taken into account by calculating a modified value of t0 which will be more 
or less than the actual value of t0: 

 =    

 
α = −1 for cement Class S 
α = 0 for cement Class N 
α = 1 for cement Class R 

 

 
 

h0 = 2 Ac/u 
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17.1.7.2 Example of Calculation of (∞, t0) 
 
Calculate the value of (∞, t0) using the following data. 
Cement: Class S or N or R. 
Concrete: fck = 30 MPa, fcm = fck + 8 = 38 MPa > 35 MPa. 
T-beam: web width bw = 250 mm, flange width b = 1450 mm, total depth h = 350 mm, 
flange thickness hf = 100 mm. 
Concrete is loaded at t0 = 7 days. 
Relative humidity RH = 50%. 
 
Step 1: Calculate h0: 
Assume all surfaces exposed to atmosphere:  

Ac = 1450 × 100 + 250 × (350 – 100) = 20.75 × 104 mm2 
u = 2 × (1450 + 350) = 3600 mm 

h0 = 2 Ac/u = 115 mm 
Step 2: Calculate fcm: 

fcm = fck + 8 = 38 MPa > 35 MPa 
 
Step 3: Calculate parameters associated with fcm: 

(fcm) = 16.8/√fcm = 2.725 

 

 
Step 4: Calculate RH: 

RH = 0.5, h0 = 115 mm, α1 = 0.944, α2 = 0.984, fcm > 35 MPa 
RH = [1 + (1 − 0.5) × 0.944/ (0.1 ×115 0.333)] × 0.984 = 1.939 

 
Step 5: Calculate t0, modified: 

t0, actual = 7 days 
 

 =    

Note: Class S, N and R stand for Slow early strength gain, Normal early strength 
gain and Rapid early strength gain cements respectively. 

 Class S cement, α = −1, t0, modified = 4 days 
Class N cement, α = 0, t0, modified = 7 days 
Class R cement, α = 1, t0, modified = 12 days 

 
Step 6: Calculate (t0): 

 
Class S cement, (t0) = 1/ (0.1 + 4 0.2) = 0.704 
Class N cement, (t0) = 1/ (0.1 + 7 0.2) = 0.635 
Class R cement, (t0) = 1/ (0.1 + 12 0.2) = 0.573 
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Step 7: Calculate (∞, t0): 
(∞, t0)   = [RH = 1.939] × [(fcm) = 2.725] × [ (t0) = 0.704] = 3.7, class S 
(∞, t0)   = [RH = 1.939] × [(fcm) = 2.725] × [ (t0) = 0.635] = 3.4, class N 
(∞, t0)   = [RH = 1.939] × [(fcm) = 2.725] × [ (t0) = 0.573] = 3.0, class R 

 
Step 8: Calculate short term Ecm: 

Ecm = 22 [(30 + 8)/10]0.3 = 32.84 GPa 
 
Step 9: Calculate long term Ec: 

Long term Ec = 34.5/ [1 + (∞, t0)] = 7.0 GPa, Class S 
Long term Ec = 34.5/ [1 + (∞, t0)] = 7.5 GPa, Class N 
Long term Ec = 34.5/ [1 + (∞, t0)] = 8.2 GPa, Class R 

 
 
17.1.8 Shrinkage 
 
Concrete shrinks slowly as the water migrates through the pores of concrete.  This 
is termed drying shrinkage εcd. There is another type of shrinkage called 
autogenous shrinkage εcd which is due hardening of the concrete and this develops 
fairly rapidly.   The total shrinkage εcs is the sum of these two components of 
shrinkage.  Shrinkage is mainly dependent on the ambient relative humidity, the 
surface area from which moisture can be lost relative to the volume of concrete, and 
the mix proportions.  It is noted that certain aggregates produce concrete with a 
higher initial drying shrinkage than normal. 
 
 
17.1.8.1 Calculation of Final Shrinkage Strain εcd, ∞ 
 
Values of basic drying shrinkage strain εcd, 0 are given by equations (B.11) and 
(B.12) of Annex B of Eurocode 2.   

εcd, 0 = 0.85 [(220 + 110 αds1) × exp {−0.1 × αds2 × fcm}] × 10−6 × RH 
RH = 1.55 × (1 – RH3) 

αds1 = 3 and αds2 = 0.13 for Class S cement 
αds1 = 4 and αds2 = 0.12 for Class N cement 
αds1 = 6 and αds2 = 0.11 for Class R cement 

 
Example: Using the data in the example in section 17.1.7.1, calculate the value of 
εcd, 0. 
fck = 30 MPa, fcm = 38 MPa, RH = 0.5 (i.e. 50% relative humidity) 

RH = 1.55 × (1 – RH3) = 1.55× (1 – 0.53) = 1.356 
εcd, 0 = 0.85 × (220 + 110 × 3) ×exp (−0.13 × 3.8) × 10−6 × 1.356 = 387 × 10−6, S 
εcd, 0 = 0.85 × (220 + 110 × 4) ×exp (−0.12 × 3.8) × 10−6 × 1.356 = 482 × 10−6, N 
εcd, 0 = 0.85 × (220 + 110 × 6) ×exp (−0.11 × 3.8) × 10−6 × 1.356 = 668 × 10−6, R 
The final shrinkage strain εcd, ∞ = εcd, 0 × kh. 
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Table 17.1 Values of kh versus h0 
ho kh 

100 1.0 
200 0.85 
300 0.75 

≥500 0.70 
 
Values of kh are given in code Table 3.3 reproduced as Table 17.1.  
 
In this example h0 = 115 mm, 

kh = 1.0 – (1.0 – 0.85) × (115 – 100)/ (200 – 100) = 0.98 
εcd, ∞ = εcd, 0 × kh = (378, 471, 653) × 10−6, for S, N and R cements respectively. 
 
 
17.1.8.2 Calculation of Final Autogenous Shrinkage Strain εca, ∞ 
 

εca, ∞ = 2.5 × (fck – 10) × 10−6 = 50 × 10−6 
 
 
17.1.8.3 Calculation of Final Total Shrinkage Strain εcs, ∞ 
 

εcs, ∞ = εcd, ∞ + εca, ∞ = (428, 521, 703) × 10−6, for S, N and R class cements. 
 
 
17.1.8.4 Curvature Due to Shrinkage 
 
Curvature caused by shrinkage strain can be calculated as follows.  Fig. 17.2 shows 
a reinforced concrete beam subjected to strain due to shrinkage of εcs, ∞.  

 
 

Fig. 17.2 Free and restrained shrinkage of a reinforced concrete beam. 
 

d – x 

F 

F 

εcs 
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Detaching the reinforcement from the beam, the concrete alone is allowed to shrink 
freely and does not deflect laterally. However in order to ensure compatibility of 
deformation, a compressive force F has to be applied to reinforcement alone equal 
to εcs, ∞ × Es × As, where Es = young’s modulus for reinforcement and As = area of 
reinforcement.   
At this stage a compressive stress exists in reinforcement only and the concrete is 
stress free as it has been allowed to shrink freely.  Actually this external force does 
not exist when a reinforced concrete beam shrinks.  A force F equal and opposite to 
the one used for restraining the reinforcement alone is now applied to the 
composite reinforced concrete section.  This force which acts at an eccentricity of 
(d – x) is resisted by both concrete and steel.   This force induces a bending 
moment MShrinkage in the beam equal to F × (d − x). The curvature produced 1/rcs is  
given by 
 

1/rcs = MShrinkage/ (Eeff I) = εcs, ∞ × Es × As × (d − x)/ (Ec, eff I) 
Setting  

αe = effective modular ratio, Es/Ec, eff 
S = As (d − x), the first moment of area of the reinforcement As about the 
centroidal axis. 

εcs, ∞ = εcs 
The expression for curvature due to shrinkage is given by Eurocode 2 equation 
(7.21) as 
                                                          1/rcs = εcs × αe × S / I                                (7.21) 
 
In clause 7.4.3(6), it is stated that S and I should be calculated for  uncracked and 
cracked sections in order to calculate the shrinkage curvature for uncracked and 
cracked sections respectively. 

Ec, eff = Ecm/ [1 + (∞, t0)], Ecm = 22 (0.8 + 0.1 fck) 0.3 
 
If there is compression reinforcement, then an additional force F equal to             
εcs, ∞ × Es × A's, and a corresponding moment equal to −εcs, ∞ × Es × A's (x − d') has 
to be included when calculating the curvature due to shrinkage.   
Note that if the reinforcement in the beam is symmetrically placed, there is no 
curvature due to shrinkage. 
 
 
17.1.9 Curvature Due to External Loading 
 
Curvature 1/rb is equal to d2y/dx2, the second derivative of deflection with respect to 
distance along the span.  Deflection can be calculated directly by integrating either 
analytically or by numerical integration techniques the differential equation  

d2y/dx2 = M/ (EI). 
The deflection Δ is calculated from 

Δ = KL2 (1/rb) 
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where L is the effective span of the member, l/rb is the curvature at the point of 
maximum moment which is near mid-span in the case of beams and at support in 
the case of cantilevers.   

l/rb = M/ (EI) 
K is a constant which depends on the shape of the bending moment diagram 
 
 
17.1.9.1 Evaluation of Constant K 
 
The method of calculating K is illustrated by a few examples.  Expressions for 
deflection of an elastic beam are given in books on structural analysis.  See Bhatt 
(1999). 
 
Example 1: Simply supported beam carrying uniformly distributed total load W 
over a span L. 
The deflection  at mid-span is given by 

 = 5WL3/ (384 EI) 
Bending moment M at mid-span is 

M = W L/8 
Replacing the load W by moment M 

 = 5ML2/ (48 EI) = K L2 (1/rb), K = 5/48 
 
Example 2: Simply supported beam carrying a concentrated load W at mid-span 
over a span L. 
The deflection  at mid-span is given by 

 = WL3/ (48 EI) 
Bending moment M at mid-span is 

M = W L/4 
Replacing the load W by moment M 

 = 4ML2/ (48 EI) = K L2 (1/rb), K = 1/12 
 
Example 3: An intermediate span beam carrying uniformly distributed total load 
W over a span L with support moments of MA and MB. 
The deflection  at mid-span is given by 

 = 5WL3/ (384 EI) – (MA + MB) × L2/ (16 EI) 
Bending moment M at mid-span is 

M = W L/8 – (MA + MB)/2 
Replacing the load W by moment M 

 = 5{M + (MA + MB)/2} L2/ (48 EI) – (MA + MB) L2/ (16 EI) 
 = {5 M/48 – (MA + MB)/96} L2/ (EI) 

 = K L2 (1/rb), K = 5 /48 – (MA + MB)/ (96 M) 
 
Example 4: Cantilever carrying uniformly distributed total load W over a span L. 
The deflection  at the tip is given by 

 = WL3/ (8 EI) 
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Bending moment M at support is 
M = W L/2 

Replacing the load W by moment M 
 = ML2/ (4 EI) = K L2 (1/rb), K = ¼ 

 
Example 5: Cantilever carrying a concentrated load W at the tip over a span L.  
The deflection  at the tip is given by 

 = WL3/ (3 EI) 
Bending moment M at support is 

M = W L 
Replacing the load W by moment M 

 = ML2/ (3 EI) = K L2 (1/rb), K = 1/3 
 
 
17.2 CHECKING DEFLECTION BY CALCULATION 
 
When calculating the curvature in beams, it has to be appreciated that part of the 
beam will be fully cracked and part of the beam will be uncracked.  In order to 
allow for this, Eurocode 2 in clause 7.4.3 equation (7.18), gives the following 
equation for calculating the curvature, 1/r of members subjected mainly to flexure. 
                                 1/r = ζ (1/r cracked) + (1 − ζ) (1/r uncracked)                            (7.18) 
                                         ζ = 1 −  (Mcr/M) 2                                                    (7.19) 
Mcr = Moment to cause cracking = zb × fctm. 
zb = section modulus for the bottom fiber.   
For a rectangular beam b × h, zb = bh2/6. 
For other sections, zb = I/yb.  
I = second moment of area about the centroidal axis and yb = distance from the 
soffit to the centroidal axis. 

fctm = 0.30 fck 0.667 for fck ≤ 50 MPa 
= 2.12 ℓn (1.8 + 0.1 fck) for fck > 50 MPa 
 = 1.0 for a single short-term loading 

= 0.5 for sustained loads 
 
 
17.2.1  Example of Deflection Calculation for T-Beam 
 
A simply supported T-beam of 6 m span carries a dead load including self-weight of 
14.8kN/m and an imposed load of 10 kN/m.  The T-beam section has the tension 
reinforcement designed for the ultimate limit state and the bars in the top to support the 
links.  The dimensions of the beam shown in Fig. 17.3 are: web width bw = 250 mm, 
flange width b = 1450 mm, total depth h = 350 mm, flange thickness hf = 100 mm, 
effective depth d = 300 mm, inset of compression steel d' = 45 mm, compression steel 
2H16, As' = 402 mm2, tension steel 3H25, As = 1473 mm2.  The materials are               
fck = 30 MPa concrete and fyk = 500 MPa reinforcement.  Calculate the deflection of the 
beam at mid-span. 
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(a) Moments 
The deflection calculation will be made for characteristic dead and imposed loads to 
comply with serviceability limit state requirements.  The quasi-permanent load is taken 
as the dead load plus 25% of the imposed load. 

Quasi-permanent load = 14.8 + 0.25 ×10 = 17.3 kN/m 
Mid-span  moment MQp = 17.3 × 62/8 = 77.85 kNm 

 

 
 

Fig. 17.3 T-beam. 
 

(b) Material properties 
fck = 30 MPa, fctm = 0.30 fck 0.667 = 2.9 MPa, Ecm = 22 (0.8 + 0.1 fck) 0.3 = 32.84 GPa. 
From section 17.1.7.1, t0 = 7 days, Class N cement, (∞, t0)] = 3.4.  
Ec = 34.5/ [1 + (∞, t0)] = 7.5 GPa.  
Es = 200 GPa, Effective modular ratio, αe = 200.0/7.5 = 26.67. 
 
(c) Section properties 
(i) Uncracked section analysis ignoring steel areas 

Area of cross section, A = 350 × 250 + (1450 – 250) × 100 
= (0.875 + 1.20) ×105 = 2.075 × 105 mm2 

A × yb = [0.875 × 350/2 + 1.20 × (350 – 100/2)] × 105 = 51.31 × 106 mm3 
yb = 247 mm 

x = 350 − 247 = 103 mm 
I = 250 × 3503/12 + 250 × 350 × (247 – 350/2)2 + (1450 – 250) × 1003/12 

+ (1450 − 250) ×100 × (350 – 100/2 – 247)2 

I = 0.178 × 1010 mm4 
zb = I/yb = 7.2 × 106 mm3 

MCracking = (fctm = 2.9) × zb = 20.88 kNm 
 
(ii) Uncracked section analysis including steel areas 

As = 1472 mm2, As' = 402 mm2, d' = 45 mm, h − d = 50 mm 
Area of cross section, A = 2.075 × 105 mm2 + αe × (As' + As) = 2.575 × 105 mm2 

1450 

350 300 

250 

1472 mm2 

402 mm2 
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A × yb = 51.31 × 106 mm3 + αe × [As'× (350 – 45) + As × 50] = 56.55 × 106 mm3 
yb = 220 mm 

x = 350 – 220 = 130 mm 
I = 250 × 3503/12 + 250 × 350 × (220 – 350/2)2 + (1450 – 250) × 1003/12 

+ (1450 − 250) ×100 × (350 – 100/2 – 220)2 

+ αe × [As'× (350 – 45 − 220)2 + As × (220 − 50)2] = 0.315 × 1010 mm4 
zb = I/yb = 14.32 × 106 mm3 

MCracking = (fctm = 2.9) × zb = 41.53 kNm 
Including the steel areas increases the value of Mcracking by 2.0 times! 
 
(iii) Cracked section properties 
Assume x ≤ depth of flange, 100 mm (see Fig. 17.4) 

1450 × x2/2 + αe × As′ × (x – 45) = αe × As × (d – x) 
x2 + 68.94 x – 16910.3 = 0 

x = 100 mm 
Icracked = 1450 × 1003/3 + αe × [As′ × (x – 45)2 + As × (300 – x) 2] 

= 0.209× 1010 mm4 
 
 

 

 

 

 

 

Fig. 17.4 Neutral axis depth in T-beam. 
 
(d) Curvature due to shrinkage  
From section 17.1.8.1, shrinkage strain εcs for type N cement is 521 × 10−6 

1/rcs = εcs × αe × S / I 
(i) Uncracked section ignoring steel areas: 

I = 0.178 × 1010 mm4, x = 103 mm  
S = As × (d − x) – As' × (x − 45) = 0.267 × 106 mm3 

1/rcs = 521 × 10−6 × 26.67 × 0.267 × 106/ (0.178 × 1010) = 2.084× 10−6 mm−1 
 
(ii) Uncracked section including steel areas: 

I = 0.315 × 1010 mm4, x = 130 mm,  
S = As × (d − x) – As' × (x − 45) = 0.216 × 106 mm3 

1/rcs = 521 × 10−6 × 26.67 × 0.216 × 106/ (0.315 × 1010)   = 0.953 × 10−6 mm−1 
 
(iii) Cracked section including steel areas: 

I = 0.209 × 1010 mm4, x = 100 mm,  
S = As × (d − x) – As' × (x − 45) = 0.272 × 106 mm3 

1/rcs = 521 × 10−6 × 26.67 × 0.272 × 106/ (0.209 × 1010) = 1.808 × 10−6 mm−1 
 

(e) Curvature due to load 
Mid-span moment = 77.85 kNm 
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Curvature = M/ (EI) 
Ec, eff = 7.5 GPa 

(i) Uncracked section ignoring steel areas: I = 0.178 × 1010 mm4 
Curvature, 1/r = 5.832 × 10−6 mm−1 

 
(ii) Uncracked section including steel areas: I = 0.315 × 1010 mm4 

Curvature, 1/r = 3.295 × 10−6 mm−1 
 
(iii) Cracked section including steel areas: I = 0.209 × 1010 mm4 

Curvature, 1/r = 4.967 × 10−6 mm−1 
 

(f) Sum of curvatures 
The final curvature l/rb is the curvature under the quasi-permanent load plus 
shrinkage curvature. 
(i) Uncracked section excluding steel areas 

Curvature due to shrinkage = 2.084 × 10−6 mm−1 
Curvature due to load = 5.832 × 10−6 mm−1 

Total curvature = 7.916 × 10−6 mm−1 

 
(ii) Uncracked section including steel areas 

Curvature due to shrinkage = 0.953 × 10−6 mm−1 
Curvature due to load = 3.295 × 10−6 mm−1 

Total curvature = 4.248 × 10−6 mm−1 
 
(iii) Cracked section including steel areas 

Curvature due to shrinkage = 1.808 × 10−6 mm−1 
Curvature due to load = 4.967 × 10−6 mm−1 

Total curvature = 6.775 × 10−6 mm−1 

 
(g) Final curvature and deflection 
Calculate curvature using the Eurocode 2 equation (7.18). 
                                    1/r = ζ (1/r cracked) + (1 − ζ) (1/r uncracked)                        (7.18) 
(i) Uncracked section excluding steel areas 

MCracking = (fctm = 2.9) × zb = 20.88 kNm 
M = 77.85 kNm 

Mcr/M = 20.88/77.85 = 0.268 
Calculate ζ using Eurocode 2 equation (7.19). 
                                  ζ = 1 – ( = 0.5) × 0.2682 = 0.964                                          (7.19) 

Curvature, 1/r = 0.964 × 6.775 × 10−6 + (1 − 0.964) × 7.916 × 10−6 
= 6.816 × 10−6 mm−1 

For a simply supported beam carrying a uniform load, K = 5/48. 
Deflection a = K L2 (1/rb), L = 6000 mm 

Mid-span deflection,  = (5/48) × L2 × (1/r) = 26 mm 
Permissible,  = Span/250 = 6000/250 = 24 mm 
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(ii) Uncracked section including steel areas 
MCracking = (fctm = 2.9) × zb = 41.53 kNm 

Mcr/M = 41.53/77.85 = 0.533 
                                         ζ = 1 – ( = 0.5) × 0.5332 = 0.858                                   (7.19) 

Curvature, 1/r = 0.858 × 6.775 × 10−6 + (1 − 0.858) × 4.248 × 10−6 
= 6.416 × 10−6 mm−1 

Mid-span deflection,  = (5/48) × L2 × (1/r) = 24 mm 
Permissible,  = Span/250 = 6000/250 = 24 mm 

Note that the two sets of results are reasonably close. 
 
 
17.3 CALCULATION OF CRACK WIDTHS 
 
Calculation of crack widths in connection with the design of structures retaining 
aqueous liquids was discussed in Chapter 17.  In this section determination of crack 
widths in connection with beams will be discussed. 
 
 
17.3.1 Cracking in Reinforced Concrete Beams 
 
Concrete is weak in tension.  A reinforced concrete beam cracks in flexure on the 
tension face when the tensile strength of the concrete is exceeded.  Tension cracks 
due to bending (not shear cracks) form at fairly small values of bending moment.  
These cracks exist even at serviceability limit state loads.  As long as these cracks 
are not unacceptably wide and are well spaced, they are harmless and do not distract 
from appearance or encourage corrosion of reinforcement.  It has to be appreciated 
that cracking is a semi-random phenomenon and that it is not possible to predict an 
absolute maximum crack width or the exact spacing of cracks.  Generally the 
closer the spacing, lesser will be the width of an average crack. 
Strain steel is an approximate measure of the crack width.  For example if σsm is 
the mean stress in steel, the corresponding mean strain εsm is equal to σsm/Es, where 
Es is Young’s modulus for steel. 
If Sr, max is the maximum crack spacing, then  

Average crack width/ Sr, max ≈ εsm 
However it has to be recognized that concrete losses its tensile strength only at 
cracks.  Between cracks, concrete is still capable of resisting tensile stress.  This is 
known as tension stiffening.  In order to get a more realistic measure of the crack 
width, it is necessary to modify the relationship between crack spacing, average 
crack width and strain in steel by including the average strain in concrete as well. 
In other words,  

wk/ Sr, max  ≈ (εsm – εcm) 
where wk = average crack width, εcm = mean strain in concrete between cracks. 
This is the basic concept used in the code calculation of crack widths and spacing 
as given in section 7.3.4 of Eurocode 2.  The following equations may be used for 
calculating crack widths. 
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(a) Crack width wk may be calculated using code equation (7.8). 
                                                   wk = Sr, max (εsm – εcm)                                       (7.8) 
where 
Sr, max = maximum crack spacing. 
εsm = mean strain in reinforcement. 
εcm = mean strain in concrete between cracks. 
 
(b) (εsm – εcm) may be calculated from the code equation (7.9). 
 

                    (7.9) 
 
where 
σs = stress in tension reinforcement assuming cracked section. 
αe = modular ratio = Es/Ecm. 
ρp, eff = As/Ac, eff. 
kt = 0.6 for short term loading. 
    = 0.4 for long term loading. 
Ac, eff = Effective area of concrete surrounding the reinforcement as shown in  
Fig. 17.5.   

hc, eff = min [2.5 (h − d); (h − x); 0.5h] 
 

 
 

Fig. 17.5 hc, eff for beam and slab. 
 
(c) Sr, max may be calculated from code equation (7.31) 

h d 

hc, eff 

h hc, eff 

Beam 

Slab 
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In the case of bending where high bond bars act as tension reinforcement,  
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
where 
k1 = 0.8 for high bond bars, k2 = 0.5 for bending, k3 = 3.4, k4 = 0.425 

Sr, max = 3.4 c + 0.128 φ/ ρp, eff 
c = cover to longitudinal reinforcement. 
φ = bar diameter. 
                                                     ρp, eff = As/Ac, eff                                             (7.10) 
If there are n1 bars of diameter φ1 etc., an equivalent diameter φeq is given by  

φeq   = Σni φi
2/ Σni φi 

 
 
17.4 EXAMPLE OF CRACK WIDTH CALCULATION FOR T-BEAM 
 
The beam chosen is shown in Fig. 17.2.  The total moment at the section due to 
service loads is 111.6 kNm.   
The materials are concrete, fck = 30 MPa and reinforcement, fyk = 500 MPa.  
Determine the spacing and width of cracks.   
 
Solution: The properties of the cracked section are computed first.  The values for 
the moduli of elasticity are as follows: 
Reinforcement = Es = 200 GPa 

Concrete = Ecm = 22 × (0.8 + 0.1fck) 0.3 = 32.84 GPa 
Modular ratio = αe = 200/32.84 = 6.1 

Assume neutral axis depth x < hf, depth of flange.  Ignore tensile strength of 
concrete. 

Compression force in concrete, Cc = 0.5 fc  1450 x 
Compression force in compression steel, Cs = As'  fsc = 402  αe × fc (x – 45)/x 
Tensile force in steel, Ts = As  fst = 1472  αe × fc (300 – x)/x 
For equilibrium in the axial direction: 

Cc + Cs – Ts= 0 
Multiplying throughout by x/fc and simplifying 

0.5  1450 x2 + 402  αe × (x – 45) – 1472  αe × (300 – x) = 0 
Simplifying 

x2 + 15.77 x – 3867.7 = 0 
x = 55 mm 

M = Cc  0.67 x + Cs  (x – 45) + Ts  (300 – x)  
M = 111.6 kNm 

M = Cc  0.67 x + Cs  (x – 45) + Ts  (300 – x) 
M = (fc/x) [0.33  1450  x3 + 402  αe  (x – 45)2 + 1472  αe  (300 – x) 2] 

fc = 9.8 MPa  
The compressive strain εc in the concrete is 

εc = fc/Ec = 9.8/ (32.84  103) = 0.3  10−3 
Strain εs at steel level 

εs= (εc /x) (d – x)  
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εs = 0.3  10−3  (300 – 55)/55 = 1.336  10−3 
σs = εs × Es = 267 MPa 

x = 55 mm, h = 350 mm, d = 300 mm 
hc, ef = min [(2.5 × (350 – 300); (350 – 55)/3; 350/2]  

hc, ef = min [125; 98; 175] = 98 mm      
Ac, ef = bw × hc, ef =24583 mm2 

ρp, eff = As/Ac, ef = 1472/24583 = 0.06 
fct, eff = fctm = 0.3 ×fck 

0.67 = 2.9 MPa 
(kt = 0.4) × (2.9/ 0.06) × (1 + 6.1 × 0.06) = 26 MPa 

(σs = 267) – 26 = 241 MPa > 0.6 σs 
                                       (εsm – εcm) = 241/Es = 1.21 × 10−3                               (7.9) 
                                              Sr, max = 3.4 c + 0.128 φ/ ρp, eff 

φ = 25 mm 
Cover, c = h − d – φ/2 = 37.5 mm 

    Sr, max = 3.4 c + 0.128 φ/ ρp, eff = 3.4 × 37.5 + 0.128 × 25/ 0.06 = 181 mm   (7.11) 
                 wk = Sr, max (εsm – εcm) = 181 × 1.21 ×10−3 = 0.22 mm                    (7.8) 
 
Note:  In the above calculation, Ecm for concrete was taken as the short term value.  
However as the load is sustained load, then it is more meaningful to take the value 
of Ecm as affected by creep strains.  In that case taking (∞, t0)] = 3.4,  

Ec = 34.5/ [1 + (∞, t0)] = 7.5 GPa 
Modular ratio = αe = 200/7.5 = 26.7 

x2 + 69.03 x – 16929.1 = 0 
x = 100 mm 

M = Cc  0.67 x + Cs  (x – 45) + Ts  (300 – x)  
M = 111.6 kNm 

M = Cc  0.67 x + Cs  (x – 45) + Ts  (300 – x) 
= (fc/x) [0.33  1450  x3 + 402  αe  (x – 45)2 + 1472  αe  (300 – x) 2] 

fc = 5.4 MPa  
The compressive strain εc in the concrete is 

εc = fc/Ec = 5.4/ (7.5  103) = 0.713  10−3 
Strain εs at steel level 

εs= (εc /x) (d – x)  
εs = 0.713  10−3  (300 – 100)/100 = 1.425  10−3 

σs = εs × Es = 285 MPa 
x = 100 mm, h = 350 mm, d = 300 mm 

hc, ef = min [(2.5× (350 – 300); (350 – 100)/3; 350/2]  
hc, ef = min [125; 83; 175] = 83 mm      

Ac, ef = bw × hc, ef =20833 mm2 
ρp, eff = As/Ac, ef = 1472/20833 = 0.071 

fct,eff = fctm = 0.3 × fck 
0.67 = 2.9 MPa 

(kt = 0.4) × (2.9/ 0.071) × (1 + 26.7 × 0.071) = 47 MPa 
(σs = 285) – 47 = 238 MPa > 0.6 σs 
(εsm – εcm) = 238/Es = 1.19 × 10−3 

Sr, max = 3.4 c + 0.128 φ/ ρp, eff 
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φ = 25 mm 
Cover, c = h − d – φ/2 = 37.5 mm 

Sr, max = 3.4 c + 0.128 φ/ ρp, eff = 3.4 × 37.5 + 0.128 × 25/ 0.071 = 173 mm 
wk = Sr, max (εsm – εcm) = 173 × 1.19 ×10−3 = 0.21 mm 

Quite evidently, the effect of using a creep affected value of Ecm does not make a 
great difference to the calculated crack width. 
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CHAPTER 18 
 

A GENERAL METHOD OF DESIGN AT 
ULTIMATE LIMIT STATE 

 
 
18.1 INTRODUCTION 
 
In the previous chapters, designs of different structural elements such as beams, 
columns, slabs were discussed.  The design equations developed were largely 
based on tests on elements similar to the ones commonly met in practice.  This 
approach has the obvious disadvantage that the methods cannot be safely used 
outside the range of parameters tested.  In practice one has to design structures 
which are outside the norm of day-to-day structures. The design of such structures 
needs a design approach which has wide validity.  Such an approach needs to be 
based on  

 Sound theoretical principles such as theory of elasticity and plasticity 
 Material behaviour 
The object of this chapter is to present such an approach.  Nowadays analysis of 
complex structures to determine the elastic stress distribution using finite element 
programs has become commonplace.  Unfortunately design at ultimate limit state 
cannot be based on the assumption that the material will remain elastic as this 
makes the designs extremely expensive.  This means it is necessary to allow 
yielding of the sections at ultimate limit state.  In other words design method needs 
to be based on theory of plasticity.  However application of traditional theory of 
plasticity to the design of reinforced concrete structures suffers from two 
fundamental limitations.  They are 
 It assumes large ductility of material such as steel. Unfortunately reinforced 

concrete is a material which has limited ductility even when yielding of steel 
precedes the crushing of concrete. 

 It can be used to predict the collapse load of a structure which is already fully 
designed!   

Fortunately a close examination of the limit theorems of the theory of plasticity 
points to a way of overcoming both of the limitations stated above. 
 
 
18.2 LIMIT THEOREMS OF THE THEORY OF PLASTICITY 
 
Theory of plasticity is based on three fundamental assumptions: 
 The material has unlimited ductility. 
 Failure by buckling is prevented. 
 At collapse sufficient areas yield to convert the structure into a mechanism. 
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These concepts lead to the following three conditions. 
1. Equilibrium condition: The state of stress and the applied load must be in 

equilibrium. 
2. Yield condition: The state of stress at no point should violate the yield 

criterion for the material. 
3. Mechanism condition: At ultimate load sufficient parts of the structure must 

yield in order to convert the structure into a mechanism indicating it cannot 
support additional load. 

If the calculation of the maximum load carried is based on satisfying only 
equilibrium and yield conditions, it is possible that insufficient areas have yielded 
to convert the structure into a mechanism.  This indicates that the load calculated is 
equal to or less than the true collapse load.  The load is called a lower bound to the 
true collapse load.  For example Hillerborg’s strip method of design of slabs 
discussed in section 8.11 of Chapter 8 is an example of design using the lower 
bound approach as the loading on the strips is based on simply satisfying 
equilibrium and the corresponding bending moments and the reinforcement satisfy 
the yield condition. 
On the other hand, if the collapse load is calculated for an assumed collapse 
mechanism as was done by the yield line analysis method discussed in Chapter 8, 
then the collapse load calculated  is equal to or greater  than the true collapse load 
as there might be other mechanisms which yield a smaller collapse load.  The 
maximum load calculated by this method is called an upper bound to the true 
collapse load. 
It is worth pointing out that the calculations are directed at determining the 
collapse load.  There is no attention paid to the behaviour of the structure at 
working or serviceability limit state. 
 
 
18.3 REINFORCED CONCRETE AND LIMIT THEOREMS OF THE 
      THEORY OF PLASTICITY 
 
Two aspects of a steel structure compared with a reinforced concrete structure need 
to be focused on before considering how to apply principles of the theory of 
plasticity to the design of reinforced concrete structures. 
 Reinforced concrete has very limited plasticity.   
 Provided buckling is prevented for a given cross section and yield stress, the 

maximum capacity of a steel section is fixed.  In the case of reinforced 
concrete, the maximum capacity can be changed by varying the amount of 
reinforcement provided.    

Taking note of the above observations, the following procedure can be adopted for 
designing a structure to carry a given ultimate load. 
 
Equilibrium condition: Based on experience and preliminary design, assume cross 
sections dimensions and carry out an elastic analysis to determine the stress 
distribution when the structure is carrying the ultimate load.  The object of this step 
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is to simply obtain a set of stresses in equilibrium with the applied load.  It is 
appreciated that this might not be the actual stress distribution at ultimate load as 
certain sections of the structure might yield, disturbing the elastic stress 
distribution.  It is not always necessary to use elastic stress distribution.  However, 
especially for complex structures, elastic stress distribution is easily calculated 
using elastic finite element analysis packages. The main aim of this step is to 
satisfy the equilibrium condition.   
 
Yield condition: Using the elastic stresses and a known yield criterion for the 
combination of stresses considered, determine the necessary reinforcement.  
Because the reinforcement is determined so as not to violate the yield condition, 
this step satisfies the yield condition. 
 
Mechanism condition: If the reinforcement is tailored to satisfy the yield condition 
at all points of the structure, then the structure will yield at all points and the 
structure will automatically become a mechanism.  This step will be explained in a 
later section and illustrated with examples. 
However in practice, it will not be practicable to vary reinforcement from point to 
point.  In other words the structure might not become a mechanism and the true 
ultimate load will be larger than the design ultimate load.  The design ultimate load 
becomes a lower bound to the true ultimate load. 
 
Ductility demand:  One advantage of this approach is that the load at which 
yielding occurs first at a section and the load at which collapse occurs will be fairly 
small and will be even smaller when compared with the design ultimate load.  This 
greatly reduces the need for large ductility and hence recognizes the limitations 
 of reinforced concrete as a ductile material.    
 
 
18.4 DESIGN OF REINFORCEMENT FOR IN-PLANE STRESSES 
 
Fig. 18.1 shows a membrane element in a state of plane stress.  The normal forces 
per unit length in the x- and y-directions are respectively Nx and Ny.  The shear 
force per unit length is Nxy.  The sign convention for the normal stresses is tensile 
stress is positive.   Shear stress is positive as shown in Fig. 18.1.  If the thickness of 
the element is t, the stresses are related to forces per unit length as follows.  
 

σx = Nx/t, σy = Ny/t, τxy = Nxy/t 
 

The applied forces per unit length (Nx, Ny and Nxy) are resisted by stresses in 
concrete and stresses in steel.  
If the principal stresses in concrete are σ1 and σ2 with σ1 inclined at an angle θ to 
the x-axis, the corresponding forces in concrete per unit length in the cartesian 
coordinate system are as shown in Fig. 18.2, where N1 = σ1 t and N2 = σ2 t.  
It is assumed here that on a principal plane, any shear resistance due to 
intergranular friction is ignored.   
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Fig. 18.1 In-plane stresses. 

 

 
Fig. 18.2 In-plane stresses in concrete. 

 
If the areas of steel in x- and y-directions are respectively Ax and Ay and the stress 
in steel fx and fy, the resistance due to reinforcement is as shown in Fig. 18.3.  
It is assumed here that any resistance to shear due to dowel action of steel is 
ignored as this comes into play only after the formation of large width of cracks at 
the cracked plane. 
 
Equating the applied force to the combined resistance of steel and concrete, 

Nx = N1 cos2θ + N2 sin2θ + Ax fx 
Ny = N2 cos2θ + N1 sin2θ + Ay fy 

                                       Nxy = (N1 − N2) cos θ sin θ = 0.5(N1 − N2) sin 2θ   (C18.1) 
Note that the maximum value of Nxy = 0.5(N1 – N2).  

N1 sin2θ + N2 cos2θ 

N1 cos2θ + N2 sin2θ  

(N1 − N2) cosθ sinθ  

N1 

N2 θ 

Nxy 

Ny 

Nx 
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Fig. 18.3 Uniaxial stresses in steel. 

 
The object of design is to match resistance to applied force with minimum steel 
consumption and without exceeding the strength of concrete in compression.  It is 
assumed that the tensile strength of steel can be ignored.  
     Eliminating N2 and θ from equation (C18.1) by equating the product of first two 
equations to the square of the third equation,  
                                (Nx – Ax fx) (Ny – Ay fy) – N2

xy = 0                               (C18.2)  
This is known as the yield criterion for orthogonally reinforced concrete for in-
plane stress conditions.  
Adding the first two equations of (C18.1),  
                                      Nx + Ny = N1 + N2 + Ax fx + Ay fy                             (C18.3)  
In order to determine he reinforcement areas for a given state of stress, four 
possible scenarios need to be considered as follows.  
 
Case 1:  The principal forces in concrete N1 and N2 are both compressive and do 
not exceed the permissible compressive stress for uncracked concrete equal to  
fcd = fck/γc.  In such a case there is no need for reinforcement.   If the compressive 
stresses are larger than permissible, an increase in the thickness t instead of 
compressive reinforcement gives the optimal solution.  
The principal stresses are:  

N1 = 0.5{(Nx + Ny) + √ [(Nx − Ny) 2 + 4 N2
xy] ≥ −fcd t 

N2 = 0.5{(Nx + Ny) − √ [(Nx − Ny) 2 + 4 N2
xy] ≥ −fcd t 

 
Case 2: If the major principal force N1 is tensile, it is set equal to zero.  Equation 
(C18.3) simplifies to  
                                                 Nx + Ny = N2 + Ax fx + Ay fy                        (C18.4) 

Equation (C18.4) together with equation (C18.2) can be used to derive the 
reinforcement for two cases as follows. 
 
Case 2a: No reinforcement is needed in the x-direction and steel in the y-direction 
reaches the permissible tensile stress equal to fyd = fyk/γs.  The compressive stress in 
cracked concrete is equal to or less than νfcd = (fck/γc) × 0.6 × (1 − fck/250).  
Equation (C18.2) reduces to 

Nx (Ny – Ay fyd) – N2
xy = 0 

Ax fx 

Ay fy 
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                                          Ay fyd = Ny – N2
xy/Nx                                    (C18.5) 

Ay = 0 if Nx Ny/N2
xy = 1 

From equation (C18.4),  
                                         N2 = Nx + Ny − Ay fy = Nx + N2

xy/Nx                    (C18.6)  
 
Case 2b: No reinforcement is needed in the y-direction and steel in the x-direction 
reaches the permissible tensile stress equal to fyd = fyk/γs.  The compressive stress in 
cracked concrete is equal to or less than νfcd = (fck/γc) × 0.6 × (1 − fck/250)  
Equation (C18.2) reduces to 

Ny (Nx – Ax fyd) – N2
xy = 0 

                                          Ax fyd = Nx – N2
xy/Ny             (C18.7) 

Ax = 0 if Nx Ny/N2
xy = 1 

From equation (C18.4),  
                                      N2 = Nx + Ny – Ax fx = Ny + N2

xy/Ny                      (C18.8)  
 
Case 3: In this case both Ax and Ay are greater than zero and fx = fy = fyd. The 
object is to minimize the total quantity of steel AsTotal = Ax + Ay.  

AsTotal = (Ax + Ay) fyd 
Substituting for Ay from equation (C18.2),  
                                            AsTotal = Ax fyd + Ny – N2

xy/ (Ax fyd – Nx)  
To obtain the minimum value of AsTotal, differentiating S with respect to Ax, and 
setting d AsTotal /dAx to zero  
                                                        1 = N2

xy/ (Ax fyd – Nx)2 = 0 
Since (Axfyd − Nx) > 0,  
                                                               Axfyd − Nx = │ yxN │ 
│ yxN │ is the positive numerical value of Nxy.  

Ax fyd = Nx + │ yxN │ 
                                   Ay fyd = Ny + │ yxN │                          (C18.9) 

                                          N2 = −2│ yxN │                            (C18.10) 
The compressive stress in cracked concrete is equal to or less than  

νfcd = (fck/γc) × 0.6 × (1 − fck/250). 
Note that  

Ax fyd = 0 if Nx + │ yxN │ = 0 
Ay fyd = 0 if Ny + │ yxN │= 0 

 
Summary: From the consideration of the four cases discussed above, the regions 
of application to the individual cases can be summarised as follows.  
Case 1:                                           Nx Ny/ N2

xy > 1, Ax = Ay = 0 
 
Case 2a:                                     Nx/│ yxN │ < −1 and Nx Ny/ N2

xy ≤ 1  
                                                    Ax = 0, Ay fyd = Ny – N2

xy/Nx  
                                           N2 = Nx + Ny − Ay fy = Nx + N2

xy/Nx  
 
Case 2b:                                Ny/│ yxN │ < −1 and Nx Ny/ N2

xy ≤ 1  
Ay = 0, Ax fyd = Nx – N2

xy/Ny 
N2 = Ny + N2

xy/Ny 
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Case 3:                                     Nx/│ yxN │ ≥ −1 and Ny/│ yxN │ ≥ −1 
Ax fyd = Nx + │ yxN │ 
Ay fyd = Ny + │ yxN │ 

N2 = −2│ yxN │ 
Fig. 18.4 summarises in a graphical form the equations for the design of 
reinforcement. 
 
The equations in this section are same as the equations in Annex F of Eurocode 2 
except for a change in notation such as σEdx for σx, σEdy for σy, τEdxy for τxy, ftdx for 
Ax fyd/t and ftdy for Ay fyd/t.  The Annex assumes that compressive stress is positive.   
 

 
Fig. 18.4 Design zones. 

 
 
18.4.1 Examples of Reinforcement Calculations 
 
In the following examples, assume: 
Thickness, t = 350 mm, fyk = 500 MPa, γs = 1.15, fyd = 435 MPa, fck = 30 MPa,      
γc = 1.50, fcd = 20 MPa, ν = 0.6 (1 − fck/250) = 0.528, νfcd = 10.56 MPa.  
Maximum shear stress = νfcd/2 = 5.28 MPa.  

NX/│Nxy│ 

 

Ny/│Nxy│ 

 

(0, 0) 

(–1, –1) 

Nx Ny – N2
xy = 0 

Ax = 0 

Ay > 0 

Ax > 0 

Ay = 0 

Ax > 0 

Ay > 0 

Ax = 0 

Ay = 0 
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Reinforcement is required for the given values of (Nx, Ny and Nxy). 
 
Example 1a: Nx = 4000N/mm, Ny = −2000 N/mm, Nxy = −1200 N/mm.  
Nx/│ yxN │= 3.3 > −1, Ny/│ yxN │= −1.7 < −1, Nx Ny/N2

xy = −5.6 < 1 
As Nx Ny/ N2

xy ≤ 1 and Ny/│ yxN │ < −1, this combination falls into case 2b.  
                                         Ay = 0, Ax × 435 = Nx – N2

xy/Ny,   Ax = 10.0 mm2/mm 
Provide H25 bars at 45 mm centres giving 10.9 mm2/mm. 
                                          N2 = Ny + N2

xy/Ny = −2720 N/mm, σ2 = N2/t = −7.8 MPa 
Compressive stress is less than νfcd.  

                                          [│ yxN │ = 1200]< [0.5 σ2 t = 1365] 
 
Example 1b: Nx = −2400N/mm, Ny = 3000 N/mm, Nxy = 1600 N/mm.  

Nx/│ yxN │= −1.5< −1, Ny/│ yxN │= 1.93 > −1, Nx Ny/N2
xy = −2.8 < 1 

As Nx Ny/ N2
xy ≤ 1 and Nx/│ yxN │ < −1, this combination falls into case 2a.  

                                    Ax = 0, Ay × 435 = Ny – N2
xy/Nx,   Ay = 9.35 mm2/mm 

Provide H25 bars at 40 mm centres giving 12.3 mm2/mm. 
                 N2 = Nx + N2

xy/Nx = −3467 N/mm, σ2 = N2/t = −9.9 MPa.  
Compressive stress is less than νfcd.  
                                    [│ yxN │ = 1600] < [0.5 σ2 t = 1732] 
 
Example 1c: Nx = 2000 N/mm, Ny = 3000 N/mm, Nxy = 1800 N/mm.  
As Nx/│ yxN │ ≥ −1 and Ny/│ yxN │ ≥ −1, this combination falls into case 3.  

Ax × 435 = Nx + │ yxN │,   Ax = 8.74 mm2/mm 
Provide H25 bars at 50 mm centres giving 9.82 mm2/mm 
                          Ay × 435 = Ny + │ yxN │,   Ay = 11.0 mm2/mm 
Provide H25 bars at 40 mm centres giving 12.3 mm2/mm. 

N2 = −2│ yxN │= −3600 N/mm, σ2 = N2/t = −10.3 MPa 
Compressive stress is less than νfcd.  

[│ yxN │ = 1800] ≈ [0.5 σ2 t = 1800] 
 
Example 1d: Nx = −2400 N/mm, Ny = −3000 N/mm, Nxy = 2000 N/mm.  

Nx/│ yxN │= −1.2, Nx/│ yxN │= −1.5, Nx Ny/N2
xy = 1.8 

As Nx Ny/ N2
xy > 1, this combination falls into case 1.  

Ax = Ay = 0 
N1 = 0.5{(Nx + Ny) + √ [(Nx − Ny)2 + 4 N2

xy] = −678 N/m,  σ1 = N1/t = −1.9 MPa 
N2 = 0.5{(Nx + Ny) − √ [(Nx − Ny)2 + 4 N2

xy] = −4722 N/mm,  
σ2 = N2/t = −13.5 MPa. ≥ − (fcd = 20 MPa) 

 
 
18.4.2 An Example of Application of Design Equations 
 
Fig. 18.5 shows a box girder 1.2 m wide × 1.7 m deep with 200 mm thick walls.  
At a cross section at ultimate limit state, it is subjected to the following load 
combinations: twisting moment, T = 10000 kNm, bending moment,                      
M = 1500 kNm and shear force, V = 900 kN.  Design the necessary reinforcement 
assuming that fyd = 435 MPa, fcd = 20 MPa,   νfcd = 10.56 MPa. 
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Step 1: Carry out an elastic stress analysis 
(i) Torsion:  
Centre line dimensions of the box:  

Width = 1.2 – 0.2 = 1.0 m, depth = 1.7 – 0.2 = 1.5 m 
Area enclosed by centre line, Ak = 1.0 × 1.5 = 1.5 m2 
From equation 6.26 of Euroode 2, shear flow in the sides of the box, Nxy 
                                             Nxy = T/ (2 × Ak) = 333 kN/m = 333 N/mm 
(ii) Shear force:  

Second moment of area, I = (1.2 × 1.73 – 1.0 ×1.53)/12 = 0.345 m4 
Shear flow Nxy is calculated at three levels in the box as follows. 
 
Top flange-web junction and bottom flange-web junction:  
First moment S of area about the centroidal axis of half the area above the junction,  

S = 0.5 × (1.2 ×0.2) × (1.7/2 – 0.2/2) = 0.09 m2 
Nxy = V × S/I = 900 × 0.09/ 0.345 = 235 kN/m = 235 N/mm 

Shear flow in the flanges will be distributed in a triangular fashion as shown in   
Fig. 18.5.   The average value is 0.5 × 235 = 118 N/mm.  It acts in opposite 
directions on the two halves of the flange.   It is additive to the shear flow from 
torsion on the left half of the flange and subtractive on the right half of the flange. 
 
Centroidal axis: 
First moment of area about the centroidal axis of half the area above the centroidal 
axis,  

S = 0.5 × [({1.2 × 1.7/22}/ 2) − ({0.8 × 1.3/22}/ 2)] = 0.13225 m2 
Nxy = V × S/I = 900 × 0.13225 / 0.345 = 345 kN/m = 345 N/mm 

An average Nxy in the web ≈ 235 + (2/3) (345 – 235) = 308 N/mm. 
Note the factor 2/3 comes from the fact that in a parabola, the average width is 2/3 
the maximum width. 
 
(iii) Bending moment:  
Nx in the top flange: − (M/I) × y × t = (1500/0.345) × (1.5/2) × 0.2 = −652 N/mm. 
Nx in the bottom flange: (M/I) × y × t = (1500/0.345) × (1.5/2) × 0.2 = 652 N/mm 

Average Nx in the top half of the web = −652/2 = −326 N/mm. 
Average Nx in the bottom half of the web = 652/2 = 326 N/mm. 

 
Step 2: Calculate the total forces at different sections of the box 
Top flange:  

Nx = −652 N/mm, Ny = 0 
Nxy = 333 (torsion) + 118 (shear) = 451 N/mm 

Nx/│ yxN │= −1.45, Ny/│ yxN │= 0, Nx Ny/N2
xy = 0 

As Nx/│ yxN │ < −1 and Nx Ny/ N2
xy ≤ 1, this falls into case 2a. 

Ax = 0 
Ay fyd = Ny – N2

xy/Nx = 312, Ay = 0.72 mm2/mm 
Provide H16 bars at 275 mm centres which gives Ay = 0.73 mm2/mm. 

N2 = Nx + N2
xy/Nx   = −964 N/mm, σ2 = 4.8 MPa < ν fcd 
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Bottom flange: 
Nx = 652 N/mm, Ny = 0 

Nxy = 333 (torsion) + 118 (shear) = 451 N/mm 
Nx/│ yxN │= 1.45, Ny/│ yxN │= 0, Nx Ny/N2

xy = 0 
As Nx/│ yxN │ ≥ −1 and Ny/│ yxN │ ≥ −1, this falls into case 3. 

Nx +│ yxN │= 1103 N/mm, Ny + │ yxN │= 451 N/mm 
Ax = 2.54 mm2/mm 

Over a total width of flange equal to 1200 mm, Ax = 3048 mm2. 
Provide 7H25 bars which gives a total area of 3436 mm2. 

Ny + │ yxN │= 451 N/mm 
Ay = 1.04 mm2/mm 

H16 bars at 190 mm centres gives Ay = 1.06 mm2/mm.  This will be part of shear 
links.  

N2 = −2│ yxN │= −902 N/mm, σ2 = 4.8 MPa < ν fcd 
 

 
Fig. 18.5 Shear flow due to torsion and shear force. 

 
Top half of web:  

Nx = −326 N/mm, Ny = 0 
Nxy = 333 (torsion) + 308 (shear) = 641 N/mm 

Nx/│ yxN │= −0.51, Ny/│ yxN │= 0, Nx Ny/N2
xy = 0 

As Nx/│ yxN │ > −1 and Nx Ny/ N2
xy ≤ 1, this falls into case 3. 

Axfyd = Nx + │ yxN │ = 314, Ax = 0.72 mm2/mm 
Over a depth of 1.7/2 = 0.85 m, Ax = 616 mm2. 
Provide 4H16 giving a total area of 804 mm2. 

Ay fyd = Ny + │ yxN │ = 641, Ay =   1.47 mm2/mm 
Provide H16 at 130 mm centres giving Ay = 1.55 mm2/mm.   This will be part of 
shear links.  

N2 = −2│ yxN │= −1282 N/mm, σ2 = −6.4 MPa < ν fcd 
 

Torsion Shear Force 
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Bottom half of web:  
Nx = 326 N/mm, Ny = 0 

Nxy = 333 (torsion) + 308 (shear) = 641 N/mm 
Nx/│ yxN │= 0.51, Ny/│ yxN │= 0, Nx Ny/N2

xy = 0 
As Nx/│ yxN │ >  −1 and  Ny/│ yxN │> − 1, this falls into case 3. 

Ax fyd = Nx + │ yxN │ = 967, Ax = 2.22 mm2/mm 
Over a depth of 1.7/2 = 0.85 m, Ax = 1890 mm2. 
Provide 4H25 giving a total area of 1964 mm2. 

Ay fyd = Ny + │ yxN │ = 641, Ay = 1.47 mm2/mm 
Provide H16 at 130 mm centres giving Ay = 1.55 mm2/mm.  This will be part of 
shear links.  

N2 = −2│ yxN │= −1282 N/mm, σ2 = −6.4 MPa < ν fcd 
 
Summary 
 
Longitudinal reinforcement:  
Bottom flange: 7H25, Top flange = 0.  
Top half of web: 4H16, Bottom half of web: 4H25. 
Shear Link reinforcement: Provide H16 at 130 mm centres.  Note that the 
reinforcement in the web (H16 at 130 mm centres) overrides the calculated 
reinforcement in the top flange (H16 at 275 centres) and bottom flange             
(H16 at 190 mm centres).  
      This example demonstrates a few of the key concepts of the design principles 
based on the lower bound plasticity limit theorem.  Although it is best to use the 
elastic stress distribution in design to limit ductility demand, it is not always 
convenient to do so because elastic stress distribution leads to highly variable 
distribution of reinforcement.  Averaging out the stresses while maintaining 
equilibrium leads to a more convenient distribution of reinforcement.  
     In a similar way, although it is best for the direction of reinforcement to 
coincide with the direction of principal stresses calculated from elastic stress 
analysis, practical limitations might prevent this.  Orthogonal layout of 
reinforcement is most common, although occasionally skew layout of 
reinforcement can be adopted as well.  
 
 
18.4.3 Presence of Prestressing Strands 
 
Prestressing is used to apply external compression to prevent the formation cracks 
at serviceability limit state.  Fig. 18.6 shows an idealized stress−strain relationship 
for a prestressing strand. As shown in Fig. 18.6, although the design ultimate stress 
is fpd, after all the losses have taken place, at the serviceability limit state, the 
prestress in the strands will be fpe.  From the serviceability limit state to ultimate 
limit state, the prestressing strands will act as ordinary reinforcement with a design 
stress fyd equal to (fpd – fpe). 
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Fig. 18.6 Stress−strain relationship for prestressing strand. 

 
The design equations from 18.3 can be used by replacing  

Ax fyd by [Axu fyd + Axp (fpd – fpex)] and Ay fyd by [Ayu fyd + Ayp (fpd – fpey)] 
where:  
Axu and Ayu are respectively the areas of unstressed (or ordinary) reinforcement 
areas in x- and y-directions.  
Axp and Ayp are respectively the areas of stressed (or prestressed) strand areas in x- 
and y-directions.  
fpex and fpey are respectively the prestress in the strands in x- and y-directions.  
 
Example: Design the necessary reinforcement for the following conditions.  
Forces per unit length from loads at ultimate limit state:  

Nx = 1390 N/mm, Ny = 2080 N/mm, Nxy = 1250 N/mm 
The prestress is applied in the x-direction only.  
Thickness t = 250 mm, fpd = 1617 MPa, fpex = 1068 MPa, fyd = 435 MPa,             
νfcd = 10.56 MPa, Axp = 0.47 mm2/mm 
Prestress in N/mm = −Axp × fpex = −0.47 × 1068 = −502 N/mm. 
Net Nx = 1390 − 502 = 888 N/mm, Ny = 2080 N/mm, Nxy = 1250 N/mm. 

Nx/│Nxy│= 0.71, Ny/│Nxy│= 1.66, Nx Ny/N2
xy = 1.33 

Nx/│ yxN │ ≥ −1 and Ny/│ yxN │ ≥ −1 
This falls into case 3 zone.  

Ax fyd + Axp × (fpd – fpex) = Nx + │ yxN │ = 888 + 1250= 2138 N/mm 
Ax × 435 + 0.47 × (1617 − 1068) = 2138 

Ax = 4.33 mm2/mm. 
Provide H25 at 100 mm centres.  Ax = 4.91 mm2/mm. 

Ay fyd = Ny + │ yxN │ = 2080 + 1250 = 3330 N/mm 
Ax = 7.66 mm2/mm. 

Provide H25 at 60 mm centres.  Ax = 8.18 mm2/mm 
N2 = −2│ yxN │ = −2500 N/mm, σ2 = −10.0 MPa > −νfcd 

 
 
 
 

fpd 

fpe 

ε 
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18.5 REINFORCEMENT DESIGN FOR FLEXURAL FORCES 
 
When only flexural forces act as on a slab as shown in Fig. 18.7, the equations 
developed in section 8.11, Chapter 8 can be used to design the necessary 
reinforcement at top and bottom faces in the x- and y-directions.  Although these 
equations are not included in Eurocode 2, they do not conflict with clause 
5.6.1(3)P.  The only requirement is to adhere to the requirements of clause 
5.6.2(2): 

i. The area of tensile reinforcement is limited such that at any section, 
xu/d ≤ 0.25, fck ≤ 50 MPa,   xu/d ≤ 0.15, fck ≥ 55 MPa 

ii. Reinforcing steel is class B or C which have higher ductility compared to 
Class A steel. 

iii. The ratio of moments at intermediate supports to the moments in the span 
should be between 0.5 and 2.0. 

 

   
Fig. 18.7 Flexural forces. 

 
Mx and My respectively are bending moments about the y- and x-axes and Mxy is 
the twisting moment.  The convention used in Fig. 18.8 is the right hand cork 
screw rule which states that if the right hand thumb points in the direction of the 
vector, the moment acts in the direction the fingers curl. 
The design equations for flexural reinforcement from Chapter 8, section 8.11.1 and 
section 8.11.2 are repeated here for convenience.  In the following, positive 
bending moments are sagging moments which cause tension on the bottom face. 
 
The rules for calculating the moment of resistance required for flexural steel at 
bottom b

xu
b
yu MandM are as follows. 
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(c) If 
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y
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(d) If none of the above conditions are valid,   then .0MM b
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b
yu   

 
In a manner similar to the determination of sagging moment of resistance, if the 
ultimate hogging moments of resistance provided by steel in x- and y-directions are 
Mt

xu and Mt
yu respectively, then the rules for calculating the moment of resistance 

required for flexural steel at top are as follows.  Note that the values of t
xuM  and 

t
yuM  are both negative, indicating that they correspond to hogging bending 

moments requiring steel at the top of the slab.  
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(d) If none of the above conditions are true, then .0MM t
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t
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18.6 REINFORCEMENT DESIGN FOR COMBINED IN-PLANE AND 
        FLEXURAL FORCES 
 
Very often in shell structures, an element can be subjected to a combination of  
in-plane forces (Nx, Ny and Nxy) as shown in Fig. 18.1 and flexural forces (Mx, My 
and Mxy) as shown in Fig. 18.8. The design of reinforcement for such a 
combination is best carried out using the sandwich model as shown in Fig. 18.8. 
 

 
Fig. 18.8 Sandwich model. 

 
The thickness is divided into a top layer and a bottom layer.  The thickness of each 
layer is twice the distance from the outer layer to the centre of steel.  

z 

Top layer 

Bottom layer 

ys 

yi 
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Using notation, ys and yi are the distances to the superior (or top) and inferior (or 
bottom) layers from the centroidal axis,  

z = ys +yi 
A force N can be distributed to top and bottom layers as Ns and Ni respectively.  

N = Ns + Ni 
For the resultant to coincide with the centroidal axis,  

Ns × ys = Ni × yi 
Solving for Ns and Ni 

Ns = N (1 − ys/z), Ni = N (1 − yi/z) 
Similarly a moment M can be replaced by a couple of forces ±M/z. 
The total force in the top and bottom layers are 

Ns = N (1 − ys/z) – M/z 
Ni = N (1 − yi/z) + M/z 

As the reinforcements in the x- and y-directions cannot lie in the same plane, ys 
and yi on the face normal to x- and y-axes will be different.  In order to keep the 
calculations simple it is convenient to assume that ys and yi values are the average 
of corresponding values on two perpendicular faces. 
Sandwich model is given in Eurocode 2- Part 2: Concrete Bridges-Design and 
detailing, Annex LL.  Equations (LL.128) to (LL.142) correspond to the equations 
given above. 
 
 
18.6.1 Example of Design for Combined In-Plane and Flexural Forces 
 
Design the necessary reinforcement for a slab 500 mm thick subjected to the 
following combination of forces at the ultimate limit state. Assume fyd = 435 MPa, 
fcd = 20 MPa and νfcd = 10.56 MPa: 

Nx = 1000N/mm, Ny = 1400 N/mm, Nxy = 900 N/mm 
Mx = 60 kNm/m, My = 100 kNm/m, Mxy = 60 kNm/m 

Assume cover to steel = 30mm, reinforcement H20. 
 
Solution:  
(i) Take average values only. 

Thickness of top and bottom layers = 2 × 30 + 20 = 80 mm 
z = 500 – 80 = 420 mm 
ys = yi = z/2 = 210 mm 

 
(ii) Determine the in-plane forces in the top and bottom layers due to applied force 
and moments. 

Mx/z = 60 ×106/ (103 × z) = 143 N/mm, 
My/z = 100 ×106/ (103 × z) = 238 N/mm, 
Mx/z = 100 ×106/ (103 × z) = 238 N/mm, 
Nx (1 − ys/z) = Nx (1 − yi/z) = 500 N/mm 
Ny (1 − ys/z) = Ny (1 − yi/z) = 700 N/mm 

Nxy (1 − ys/z) = Nxy (1 − yi/z) = 450 N/mm 
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(iii) Design of reinforcement 
 
Top layer: 

Nx = 500 – 143 = 357 N/mm, 
Ny = 700 – 238 = 462 N/mm, 
Nxy = 450 – 238 = 212 N/mm 

Nx/│Nxy│= 1.68, Ny/│Nxy│= 2.18, Nx Ny/ N2
xy = 3.66 

As Nx/│ yxN │ > −1 and Ny/│ yxN │> − 1, this falls into case 3. 
Axfyd = Nx +│Nxy│=569, Ax = 1.31 mm2/mm 

Provide H20 at 225 mm c/c giving 1.40 mm2/mm. 
Ay fyd = Ny +│Nxy│=674, Ax = 1.55 mm2/mm 

Provide H20 at 200 mm c/c giving 1.57 mm2/mm. 
N2 = −2│Nxy│= −424 N/mm, t = 80 mm, σ2 = N2/t = −5.3 MPa. 

Maximum compressive stress is less than νfcd. 
 
Bottom layer: 

Nx = 500 + 143 = 643 N/mm,  
Ny = 700 + 238 = 938 N/mm,  
Nxy = 450 + 238 = 688 N/mm 

Nx/│Nxy│= 0.93, Ny/│Nxy│= 1.36, Nx Ny/ N2
xy = 1.27 

As Nx/│ yxN │ > −1 and Ny/│ yxN │> − 1, this falls into case 3. 
Axfyd = Nx +│Nxy│=1331, Ax = 3.06 mm2/mm 

Provide H20 at 100 mm c/c giving 3.14 mm2/mm. 
Ay fyd = Ny +│Nxy│=1626, Ax = 3.74 mm2/mm 

Provide H20 at 80 mm c/c giving 3.93 mm2/mm. 
N2 = −2│Nxy│= −1376 N/mm, t = 80 mm, σ2 = N2/t = −17.2 MPa  

Maximum compressive stress is greater than νfcd.  This stress is not a real stress.  It 
is  more a reflection of the modelling used. 
Design is satisfactory.  
 
 
18.7 OUT-OF-PLANE SHEAR 
 
Eurocode 2- Part 2: Concrete bridges-Design and detailing, Annex LL, equations 
(LL.121) to (LL.123) give the procedure for designing for out-of-plane shear 
forces.  The procedure is illustrated by a simple example.  
 
Example: The slab in section 18.5 is subjected to the following out-of-plane shear 
forces.  Check the overall shear capacity of the slab.  
Vx = 120 N/mm, Vy = 180 N/mm 
Solution: 

Resultant shear force VEd = √ (V2
x + V2

y) = 216.3 N/mm 
tan φ = Vy/Vx = 1.5, cos φ = 0.56, sin φ = 0.83 

From section 18.5, reinforcements at the bottom of the slab are:  
Ax = H20 at 100 mm c/c giving 3.14 mm2/mm 
Ay = H20 at 80 mm c/c giving 3.93 mm2/mm 
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As = Ax cos2φ + Ay sin2φ = 3.14 × (0.56)2 + 3.93 × (0.83)2 = 3.69 mm2/mm 
d = effective depth = 500 – 3 − 20/2 = 460 mm 

100ρ = 100 × 3.69/ (d = 460) = 0.80 
Shear capacity of sections with no shear reinforcement and cracked in flexure is 
given by equation (6.2a) and (6.2b) of Eurocode 2 in clause 6.2.2 as 

                          VRd, c = [CRd, c k (100 ρ fck) 0.33] bW d ≥ vmin bW d              (6.2a) 
                                             vmin = 0.035 × k 1.5 √fck                                      (6.3N) 

CRd, c = 0.12, k = 1 + √(200/d) = 1.66 < 2.0, 100 ρ = 0.80 < 2.0, fck = 30 MPa 
bw = 1 mm, d = 460 mm, vmin = 0.035 × k1.5 ×√fck = 0.41 

(VRd, c = 264N/mm) > (VEd = 216.3 N/mm) 
Design is satisfactory.  
 
 
18.8 STRUT−TIE METHOD OF DESIGN 
 
In a structure subjected to in-plane forces, the stress distribution will consist of 
normal stresses (σx and σy) and shear stress τxy.  These stresses will result in 
principal stresses σ1 and σ2.  If for example σ1 is tensile and σ2 is compressive, then 
one can visualize the external loads being resisted by a combination of tensile and 
compressive stresses.  Compressive stresses can be resisted by concrete and 
because concrete is weak in tension, tensile stresses can be resisted by steel 
reinforcement.  The external load is thus resisted by a series of concrete struts and 
steel ties.  This is the basic principle behind the very popular strut−tie method of 
design.  This method is very attractive to designers as they can visualize the 
resistance to a complex stress state provided by a simple system of struts and ties.  
The method is obviously based on the lower bound limit theorem of plasticity as 
both equilibrium and yield criteria requirements are satisfied.  One word of caution 
which applies to all such methods is that the method concentrates on providing 
safety at the ultimate limit state only.  There is no attention paid to aspects of 
serviceability limit state.  In order to prevent problems at the serviceability state 
one should choose a stress state which does not depart drastically from the elastic 
stress distribution.  Eurocode 2 in clause 6.5 gives recommendations for the use of 
strut−tie method of design. 
 
 
18.8.1 B and D Regions 
 
Most designs of beams and columns are based on the assumption that strain 
distribution is linear across the depth or ‘plane sections remain plane’.  This is 
known as the Bernoulli assumption and regions where this assumption is valid are 
known as B regions.  Such regions exist away from areas with concentrated loads 
or reactions, abrupt changes of cross section, etc.  
Regions which are not B regions are called D regions where D stands for disturbed.  
In these regions, assumption of linear distribution of strains is not valid.  Fig. 18.9 
shows some typical cases of D regions and the associated possible strut−tie 
models. It is in the D regions the strut−tie method of design finds wide application. 
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Fig. 18.9(a) D regions at a ‛half’ joint. 
 

 

 
Fig. 18.9(b) A possible strut−tie model for a ‘half’ joint. 

 
 
 

Fig. 18.9(c) D regions at a joint in a frame. 
 
Fig. 18.9(c) shows a joint in a frame subjected to ‘closing’ bending moments.  A 
possible strut−tie model can be envisaged as shown in Fig. 18.9(d).  It clearly 
shows that an inclined ‘strut’ is needed to maintain equilibrium at the joint.  If the 

Strut Tie 
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moments are reversed so that the joint is an ‘opening’ joint, the strut is transformed 
into a tie. 
 

 
 
 

Fig. 18.9(d) A possible strut−tie model: closing moments. 
 
 

 
 

Fig. 18.9(e) D regions at a corbel. 

A 

B 
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Fig. 18.9(f) Strut−tie model for a corbel. 
 
Fig. 18.9(e) shows a corbel.  Corbels are very short cantilevers commonly 
encountered in industrial structures and also in bridge structures where the corbel is 
used to support a simply supported beam at a ‘half’ joint. 
Fig. 18.9(f) shows a possible strut−tie model. 
 
 
18.8.1.1 Saint Venant’s Principle 
 
Saint Venant’s principle gives an indication of the size of the D region. The 
principle states that the localized effect of any type of disturbance dies away at a 
distance of about one member depth.  If the structure or the member is larger than 
the D region, then only these areas need to be designed by the strut−tie method.  
Away from the disturbance the normal design procedures can be adopted.  
However if the structure is small enough, then the D region can cover the whole 
structure.  An example of such a structure is a deep beam whose depth is 
comparable to the span as shown in Fig. 18.10.  
 
 
18.8.2 Design of Struts 
 
It is well known that if concrete is subjected to uniaxial compression, then the 
design strength is equal to fcd.  If the state of stress is biaxial compression, the 



A general method of design at ultimate limit state                                                               761 

design strength will be approximately greater by about 10%.  Eurocode 2 in clause 
6.5.2, equation (6.55) suggests using a maximum compressive strength of fcd.  
 

 
Fig. 18.10 Deep beam modelling with a CCC node at A and CCT nodes at B. 

 
If, however, axial compression is accompanied by tension at right angles, the 
strength of the strut is greatly reduced.  Eurocode 2 in clause 6.5.2, equation (6.56) 
suggests the design strength as equal to 0.6(1 − fck/250) fcd.  In addition to limiting 
the design compressive strength, it is also necessary to design reinforcement to 
resist the tension developed.   
 
Fig. 18.11 shows two common situations where compression in the strut is 
accompanied by lateral tension. 
If the total width b is less than or equal to 0.5H, where H is the length of the strut, 
tension reinforcement required can be spread over a height h equal to width b of 
the strut at both ends.  Code equation (6.58) gives the total tension T to be resisted 
as T = 0.25 (1 − a/b) F, where F is the compressive force in the strut and a is the 
width of the loaded area. 
If on the other hand, the total width b is greater than 0.5H, where H is the length of 
the strut, tension reinforcement required can be smeared over a height h equal to 
025H.  Code equation (6.59) gives the total tension T to be resisted as  

T = 0.25 (1 − 1.4 a/H) F. 
 

A 

B B 
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Fig. 18.11 Different compression fields needing transverse tensile reinforcement. 
 

 
 
18.8.3 Types of Nodes and Nodal Zones 
 
When using the strut−tie method of design, because the given structure is replaced 
by a pin-jointed truss, different types of nodes occur where members meet.  These 
nodal zones need to be carefully designed and detailed. 
 
(a) CCC Node:  If three compressive forces meet at anode as shown in Fig. 18.12, 
it is called a CCC node. According to Eurocode 2 equation (6.60), the compression 
stress in each strut is restricted to a maximum value of 0.6(1 – fck/250)fcd.  
Examples of CCC nodes are nodes A in a frame corner shown in Fig. 18.9(d) and 
in deep beam shown in Fig. 18.10. 
 
(b) CCT node: If two compressive forces and a tie force anchored in the node 
through bond meet as shown in Fig. 18.13, it is called a CCT node.  According to 
Eurocode 2 equation (6.61), the compression stress in each strut is restricted to a 
maximum value of 0.51(1 – fck/250) fcd.   An example of such a node occurs in the 
design of a deep beam as shown in Fig. 18.10 at B.  Such nodes also occur at the 
top nodes in ‘half’ joint shown in Fig. 18.9(b). 
 

Restricted 
compression field 

Unconfined 
compression field 

a 

b 
b 

a 

H 
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Fig. 18.12 CCC node. 
 
 

 
 

Fig. 18.13 CCT node. 
 

 
Fig. 18.14 CTT node. 
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Fig. 18.15 A cross bar inside the bend. 

 
(c) CTT node: If two tensile forces at a compressive force meet at a node it is 
called a CTT node. Examples of such nodes are B in the frame joint shown in Fig. 
18.9(c) and in the bottom nodes in the ‘half’ joint shown in Fig. 18.9(b).  
In the case of the frame joint in Fig. 18.9(d), the tension reinforcement in the beam 
can be bent over and used as tension reinforcement in the column as shown in    
Fig. 18.14.  The equilibrating compression force is provided by concrete.  It is 
important to ensure that the mandrel is large enough to prevent bearing failure in 
concrete (see clause 8.3(3) in Eurocode 2). It is desirable to provide a cross bar 
inside the bend as shown in Fig. 18.15.  According to Eurocode 2 equation (6.62), 
the compression stress in each strut is restricted to a maximum value of          
0.45(1 – fck/250) fcd. 
 
 
18.8.4 Elastic Analysis and Correct Strut−Tie Model 
 
Elastic finite element analysis of part of the structure which lies in the B region can 
be very helpful in correctly modelling the strut−tie model for the given problem.  
The idea is illustrated by some typical examples. 
Corbel: Fig. 18.9(f) shows a strut−tie model for a corbel.  Fig. 18.16(a) and 
18.16(b) show the vectorial representation of the major principal stress σ1 and 
minor principal stress σ2 respectively.  The major principal stress plot clearly 
shows the need for horizontal reinforcement at the top of the corbel which is finally 
anchored in the column.  The minor principal plot shows the compressive stress 
converging from the left and from the right towards the re-entrant corbel indicating 
that it is a CCC node as shown in Fig. 18.20(c).  
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Fig. 18.16(a) Vectorial plot of σ1 for a corbel. 
 

 
 

Fig. 18.16(b) Vectorial plot of σ2 for a corbel. 
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Fig. 18.16(c) Strut−tie model for a corbel with different types of nodes. 

 
Eurocode 2 in Annex J3 gives recommendations for reinforcing corbels (also 
called brackets).  Calavera (2012) also gives detailed drawings for reinforcement 
(see pages 390 to 395). 

 
 
 

 
 

Fig. 18.17(a) Vectorial plot of σ1 for a ‘half joint’. 
 

CCT  node 
TTC  node 

CCC  node 
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Fig. 18.17(b) Vectorial plot of σ2 for a ‘half joint’. 
 
Half joint: Fig. 18.17(a) and Fig. 18.17(b) show the vectorial representation of the 
major principal stress σ1 and minor principal stress σ2 respectively. The major 
principal stress plot clearly shows the need for a diagonal reinforcement crossing 
the re-entrant corner and also reinforcement at the bottom face of the beam.  The 
minor principal plot shows the compressive stress parallel to the top face and also 
along in the diagonal direction. The plots validate the strut−tie model shown in  
Fig. 18.9(b).  
Calavera (2012) also gives detailed drawings for reinforcement in ‘half joints’ also 
called dapped-end beams (see pages 396 to 397).  
 
 
18.8.5 Example of Design of a Deep Beam Using Strut−Tie Model 
 
Fig. 18.18 shows deep beam.  The beam is 5400 mm long × 3000 mm high and 250 
mm thick.  It is loaded by a uniformly distributed load of 350 kN/m.  It is 
supported on two 400 mm × 250 mm columns.  Design the necessary 
reinforcement assuming fyk = 500 MPa, fck = 30 MPa. 
 
Fig. 18.19 shows the vectorial representation of the principal stresses σ1 and σ2 
from an elastic finite element analysis.  It is clear from the diagram that near the 
bottom surface the stress is horizontal tensile and the compressive stresses flow 
towards the supports.   Guided by the elastic stress distribution, the strut−tie model 
shown in Fig. 18.20 can be constructed. 
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Fig. 18.18 A deep beam. 

 
 

 
 

Fig. 18.19 Elastic principal stress distribution.  
 
 

5400 mm 

3000 mm 

350 kN/m 
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Fig. 18.20 Strut−tie model for the deep beam. 

 
Calculation of the forces in the members:  
Strut AB is inclined to the horizontal at α = tan−1 (2000/1300) = 57o. 
Vertical reaction at A = 300 × 5.4/2 = 810 kN. 
Force FAB in the strut = 810/sin 57o = 966 kN. 
Force FAD in the tie = 966 × cos 57o = 526 kN. 
Provide 3H25 = 1473 mm2. 
Force FBC in the strut = 966 × cos 57o = 526 kN. 
 
Design checks: 

Force FAD in the tie = 526 kN 
fyk = 500 MPa, fyd = 500/ (γs = 1.15) = 435 MPa 
Area of steel, As = 526 × 103/ 435 = 1209 mm2 

Provide 3H25, As = 1473 mm2. 
 
Check stresses in the nodal zones: 
Fig. 18.21 shows the CCT and CCC nodes occurring in the strut−tie model. 
Node A: Node A is a CCT node.  Column at A is 400 × 250 mm. 

Vertical compressive stress in column = 810 × 103/ (400 × 250) = 8.1 MPa 
Column width = 400 mm 

Strut is inclined at 57o to the horizontal. 
Width of strut = 400/ cos (90o – 57o) = 477 mm 

Compressive stress in the strut, FAB = 966 × 103/ (477 × 250) = 8.1 MPa 
Vertical height of the joint at A = 400 × tan (33o) = 260 mm 

Horizontal stress in the joint due to FAD = 526 × 103/ (260 × 250) = 8.1 MPa 
Node A is a CCT node.  In a CCT node, according to Eurocode 2 equation (6.61), 
the compressive stress is limited to σRd, max = 0.51 × (1 – fck/250) fcd.   

fck = 30 MPa, fcd = fck/ (γc = 1.5) = 20 MPa, 
σRd, max = 0.51 × (1 – 30/250) 20 = 9 MPa > 8.1 MPa. 

1300 mm 1300 mm 

2000 mm 

B 

A 

C 

D 

57o 

810 kN 810 kN 

2400 mm 
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Fig. 18.21 Nodal zones for the deep beam. 
 

 
Fig. 18.22 Reinforcement in the deep beam. 

 
 
Node B: Node B is a CCC node.   

Compressive stress in the strut, FAB = 966 × 103/ (477 × 250) = 8.1 MPa 
Vertical height of the joint at B = 477 × sin (90o – 57o) = 260 mm 

966 kN 

810 kN 

526 kN 

966 kN 

810 kN 

526 kN A 

B 
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Horizontal compressive stress in the joint due to FCB = 526 × 103/ (260 × 250) 
                                                           = 8.1 MPa 

‘Column’ at B is 400 × 250 mm. 
Vertical compressive stress in column = 810 × 103/ (400 × 250) = 8.1 MPa 

The node area at B is subjected to a hydrostatic compressive stress of 8.1 MPa. 
In a CCC node, according to Eurocode 2 equation (6.60), the compressive stress is 
limited to σRd, max = 0.6 × (1 – fck/250) fcd.   

fck = 30 MPa, fcd = fck/ (γc = 1.5) = 20 MPa 
σRd, max = 0.6(1 – 30/250) 20 = 10.6 MPa > 8.1 MPa. 

The stress state in the nodes is safe.   
Fig. 18.22 shows the reinforcement in the deep beam. 
 
 
18.8.6 Example of Design of Half Joint Using Strut−Tie Model 
 
Fig. 18.23 shows a ‘half’ beam joint also called a draped end.  The beam is 8.0 m 
simply supported.  It is 1500 mm × 800 mm broad.  The depth is reduced to 700 
mm over a length of 500 mm at each end.  The beam supports a uniformly 
distributed load of 250 kN/m.  Assume fck= 30 MPa and fyk = 500 MPa. 
 
 

 
 

Fig. 18.23 A symmetrical half of a ‘half joint’ beam. 
 
Fig. 18.24 and Fig. 18.25 show, for the part of the beam near the half joint, from an 
elastic stress analysis the vector plots of the major principal stress σ1 and both the 
principal stresses respectively.  Guided by the plot the strut−tie model shown in 
Fig. 18.26 is adopted. 
 
Analysis:  
Reaction at the support = 250 × 4.25 = 1062.5 kN. 
Bending moment M at mid-span = 1062.5 × 4.0 – 250 × 4.252/2 = 1992.2 kNm. 

d = 1500 – 40 (cover) – 25/2 = 1436 mm. 

700 mm 

1500 mm 

500 mm 

4000 mm 

800 mm thick 
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k = M/ (b d2 fck) = 1992.2 × 106/ (800 × 14362 × 30) = 0.04. 
z/d = 0.5[1.0 + √ (1 – 3 × 0.4)] = 0.97. 

As = 1992.2 × 106/ (0.97 × 1436 × 0.87 × 500) = 3289 mm2. 
Provide 7H25 = 3437 mm2. 
Depth x of stress block = 87 mm. 
 

 
 

Fig. 18.24 Vector plot of principal stress σ1 near the ‘half joint’. 
 
 

 
 

Fig. 18.25 Vector plot of principal stress σ1 and σ2 near the ‘half joint’. 
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Fig. 18.26 Strut−tie model near the ‘half joint’. 

 
The horizontal compressive strut can be located at about 87/2 ≈ 44 mm from the 
top face. 
The horizontal tie can be located at approximately                                      
40(cover) + 10 (links) + 25/2 = 63 mm from the bottom face. 
Assuming that the inclined tie is at 45o to the horizontal,  

Force in the tie = reaction/ sin 45o = 1062.5 / (0.707) = 1503 kN 
As = 1503 × 103/ (0.87 × 500) = 3454 mm2 

Provide 7H25 = 3437 mm2. 
Assuming that the tie has a cover of 30 + 25/2 = 43 mm, the bar is located at      
250 + 43 sin 45o = 280 mm from the centre of reaction. 
 
Check the stress state at the node: Fig. 18.27 shows a CCT node.  In a CCT node, 
according to Eurocode 2 equation (6.61), the compressive stress in the struts is 
limited to  

σRd, max = 0.51 × (1 – fck/250) fcd 
fck = 30 MPa, fcd = fck/ (γc = 1.5) = 20 MPa 
σRd, max = 0.51 × (1 – 30/250) 20 = 9 MPa 

Assuming that the reaction acts over a width of, say, 150 mm, compressive stress σ 
in the horizontal and vertical strut is 

σ = 1063 × 103/ (800 × 150) = 8.9 MPa < 9 MPa 
Note: Clause 10.9.4.6, Eurocode 2 suggests an alternative model for reinforcement 
of ‘half joints’ as shown in Fig. 18.28. 
Calavera (2012) suggests the reinforcement details shown in Fig. 18.29 for the 
strut−tie model in Fig. 18.23. 

1431 kN 

45o 45o 

1431 kN 
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Fig. 18.27 CCT node. 
 
 

 
Fig. 18.28 An alternative strut−tie model. 

 

 
Fig. 18.29 Reinforcement for strut−tie model in Fig. 18.23. 

 

1503 kN 

1063 kN 

1063 kN 



A general method of design at ultimate limit state                                                               775 

18.9 REFERENCES 
 
Bhatt, P. (2012). Prestressed Concrete Design to Eurocodes. Spon Press.  
 
Calavera, Jose. (2012). Manual for Detailing Reinforced Concrete Structures to 
EC2. Spon Press.  
 
Nielsen, M.P. and Hoang, L.C. (2011). Limit Analysis and Concrete Plasticity. 
CRC Press.  



CHAPTER 19 
 

DESIGN OF STRUCTURES RETAINING 
AQUEOUS LIQUIDS 

 
 
19.1 INTRODUCTION 
 
Structures such as tanks for retaining water or effluents in sewage treatment works 
are designed using the following codes: 

 BS EN 1992-3:2006 Eurocode 2-Design of concrete structures: Part 3: 
Liquid retaining and containment structures 

 U.K. National Annex to BS EN 1992-3:2006 Eurocode 2  
 BS EN 1991-1-4:2006 Eurocode 1-Actions on structures: Part 4: Silos 

and Tanks 
The codes generally adopts the relevant clauses of BS EN 1992-1-1:2004 Eurocode 
2-.Design of concrete structures: Part 1-1: General rules and rules for buildings 
along with additional clauses as required.   
 
The following is a brief summary of the relevant clauses.  The reader should 
always refer to the complete texts in the codes. 
 
     The design is normally carried out according to the limit state principles.  
However, unlike normal reinforced concrete structures, designs for such structures 
are often governed by the serviceability limit state considerations of limiting the 
crack width rather than by ultimate limit state considerations. 
 
 
19.1.1 Load Factors 
 
When designing a tank for containment of fluids, normally the load to which the 
walls are designed is the internal pressure.  The corresponding partial factor for 
action is γF = 1.2.  At ultimate limit state, the self weight is considered as 
permanent action with a load factor of 1.35 and maximum height of liquid retained 
as leading variable action with a load factor of 1.2.  In the case of tanks located 
below ground, the possibility of flotation of the tank when empty due to ground 
water pressure should be considered.  The uplift is normally resisted by the dead 
weight of the structure.   
 
 
 
 
 



778                                                                                    Reinforced Concrete design to EC 2  

19.1.2 Crack Width 
 
According to clause 7.3.1, at serviceability limit state in a reinforced concrete 
structure, the maximum crack width due to direct tension and flexure or restrained 
temperature and moisture effects should be limited to values dictated by tightness 
class as defined in code Table 7.105 and given below as Table 19.1.   

 
Table 19.1 Classification of tightness 

Tightness class Requirement for leakage 
0 Some degree of leakage acceptable, or leakage of 

liquids is irrelevant 
1 Leakage to be limited to a small amount.  Some surface 

staining or damp patches acceptable. 
2 Leakage to be minimal.  Appearance not to be impaired 

by staining. 
3 No leakage permitted. 

 
Tightness class 0: Provisions of Eurocode 2, clause 7.3.1, values for maximum 
crack width as given in code Table 7.1N may be adopted.  The clause states that 
under quasi-permanent load combination, for X0 and XC1 class exposures, the 
crack width is limited to 0.4 mm and for exposure classes XC2−XC4, XD1−XD2, 
XS1−XS3, crack width is limited to 0.3 mm. 
 
Tightness class 1: Any cracks which can be expected to pass through the full 
thickness of the section should be limited to 0.2 mm if h0/h ≤ 5 and to 0.05 mm if   
h0/h ≥ 35.  Linear interpolation is permitted for intermediate values of h0/h. Here   
h = element thickness, h0 = hydrostatic pressure head.  If under the action of quasi-
permanent combination of loads the full thickness of the section is not cracked as 
measured by the compression zone  xmin > min (50 mm; 0.2 h), then provisions as 
for tightness class 0 may be adopted. 
 
Tightness class 2: Cracks which can be expected to pass through the full thickness 
of the section should be avoided. 
 
Tightness class 3: Generally special measures such as liners or prestressing will be 
required to ensure water tightness. 
 
 
19.1.2.1 Crack Width Control without Direct Calculation 
 
Where minimum reinforcement as given by code equation (7.1) (see section 6.3.3, 
Chapter 6), for sections totally in tension, the maximum bar diameter and 
maximum bar spacing for maximum crack width over the range 0.05 to 0.3 mm are 
given in Fig. 7.103N and Fig. 7.104N of the code BS EN 1992-3:2006, Eurocode 
2- Design of concrete structures- Part 3: Liquid retaining and containment 
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structures.  The maximum bar diameter can be modified using code equation 
(7.122) rather than code equation (7.7N) as follows: 
 
          for cases of uniform axial tension          (7.122) 
 
 
19.2 BENDING ANALYSIS FOR SERVICEABILITY LIMIT STATE  
 
In Chapter 17, section 17.1.5 the formulae were derived for the stresses in concrete 
and steel at serviceability limit state when tension and compression steel are 
present and tensile stress in concrete is ignored.  The equation for calculating the 
neutral axis depth is repeated here for convenience.  
                                     0.5fc b x2 + e fc As' (x – d') = e fc As (d – x) 
In the absence of compression steel, the lever arm z is  

z = d – x/3 
For a given moment M, the stresses in steel and concrete can be determined as 
follows. 

M = T z = As fs z = C z = 0.5 fc b x z 

zA
Mf
s

s  , 
zxb

Mf c
2

  

 
 
19.2.1 Example of Stress Calculation at SLS 
 
Fig 19.1 shows a cantilever wall which is part of a water tank.  The tank retains 
water to a depth of 3.5 m.  The base is 400 mm thick overall and is reinforced with 
H12 bars at 100 mm c/c.  Calculate the stresses in concrete and steel at 
serviceability limit state.  Also check whether the moment of resistance is 
sufficient at ultimate limit state.  Assume fck = 30 MPa, fyk = 500 MPa. 
 
 
 
 
 
 
 
 
 

Fig. 19.1 A cantilever wall. 
 
Ecm = 22(0.8 + 0.1fck) 0.3 = 32.84 GPa. 
Assume creep coefficient, φ (∞, t0) = 1.5. 
Ec, long term = Ecm/ [1 + φ (∞, t0)] = 32.84/2.5 = 13.2 GPa. 
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Es = 200 GPa.  
αe = 200.0/13.2 = 15.2. 
Consider 1 m length of wall.  The steel area As = 1131 mm2/m, b = 1000 mm 
h = 400 mm.  Assuming cover = 40 mm,  

d = 400 – 40 – 12/2 = 354 mm 
(a) Calculate the neutral axis depth: 

)(
2
1 2 xdAbx se   

)x354(11312.15x1000
2
1 2   

Simplifying:  
x2 + 34.38 x – 12171.4 = 0, giving x = 95 mm 

z = d – x/3 = 354 – 95/3 = 323 mm 
 
(b) Moment at base at serviceability limit state: 
Assuming γ = unit weight of water = 10 kN/m3, 

M = γH3/6 
M =10 × 3.53/6 = 71.46 kNm/m 

 
(c) Stresses in steel and concrete: 

PaM196
3231131
1046.71

zA
Mf

6

s
s 




  

MPa7.4
323941000
1046.712

zb
M2f

6

c 






  

 
(d) Moment at ultimate limit state: 
Using a load factor of 1.2,  

M = 1.2 × 71.46 =85.75 kNm/m 
 
(e) Neutral axis depth at ULS: 
Assuming that steel yields, equating total tension and total compression, 

fcd b 0.8x = 0.87 fyk As 
(30/1.5) × 1000 × 0.8x = 0.87 × 500 × 1131, giving x = 31.0 mm 

Check the strain in tension steel:  

)(0035.0 xd
xs

  

)0022.0
10200
50087.0(036.0)31354(

0.31
0035.0

3s





  

Steel yields and the assumption is justified. 
 
(f) Moment of resistance at ULS: 

Mu = 0.87 fyk As (d – 0.4x) 
= 0.87 × 500 × 1131 × (354 – 0.4 × 31.0) × 10−6 
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= 168. 1 kNm/m > 85.75 kNm/m 
The design is satisfactory at ULS. 
 
 
19.2.2 Crack Width Calculation in a Section Subjected to Flexure Only 
 
Calculation of crack widths and spacing was explained in detail in section 17.3, 
Chapter 17.  In the following, the necessary equations from clause 7.3.1 of the code 
are summarized.  The use of the equations is demonstrated by a numerical 
example. 
 
(i) Crack width wk may be calculated using code equation (7.8). 
                                            wk = Sr, max (εsm – εcm)                                          (7.8) 
 
(ii) (εsm – εcm) may be calculated from the code equation (7.9). 
 

                    (7.9) 
where 
σs = stress in tension reinforcement assuming cracked section 
αe = modular ratio = Es/Ecm 
ρp, eff = As/Ac, eff 
kt = 0.4 for long term loading 
Ac, eff = b × hc, eff   
hc, eff = min [2.5 (h − d); (h − x); 0.5h] 
 
(iii) Sr, max may be calculated from code equation (7.11) 
                                       Sr, max = 3.4 c + 0.128 φ/ ρp, eff                                     (7.11) 
c = cover to longitudinal reinforcement.  φ = bar diameter. 
If there are ni bars of diameter φi etc., an equivalent diameter φeq is given by           
φeq   = Σni φi

2/ Σni φi. 
 
Example: Using the data from section 19.2.1,  

x = 95 mm, σs = 196 MPa, h = 400 mm, c = 40 mm, d = 354 mm 
hc, ef = min [(2.5× (400 – 354); (400 – 95)/3; 400/2]  

hc, ef = min [115; 102; 200] = 102 mm      
Ac, ef = bw × hc, ef =1000 × 102 = 10.2 ×104 mm2 

As = H12 at 100 mm = 1131 mm2/m, ρp, eff = As/Ac, ef = 1131/10.2×104 = 0.011  
fct, eff = fctm = 0.3 × fck 

0.67 = 2.9 MPa 
Taking creep into account, αe = 200.0/13.2 = 15.2 

(kt = 0.4) × (2.9/0.011) × (1 + 15.2 × 0.011) = 123 MPa 
(σs = 196) – 123 = 73 MPa < (0.6 σs = 118) 

Take 0.6 σs = 118 MPa 
(εsm – εcm) = 118/ (Es = 200× 103) = 0.59 × 10−3 
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Sr, max = 3.4 c + 0.128 φ/ ρp, eff 
φ = 12 mm 

Cover, c = 40 mm 
Sr, max = 3.4 c + 0.128 φ/ ρp, eff = 3.4 × 40 + 0.128 × 12/ 0.011 = 276 mm 

wk = Sr, max (εsm – εcm) = 276 × 0.59 ×10−3 = 0.15 mm 
Choose tightness class 1.  
Hydraulic head, h0 = 3.5 m, wall thickness, h = 400 mm, ho/h = 8.75.  Interpolating 
between wk = 0.2 mm for h0/h ≤ 5.0 and wk = 0.0.05 mm for h0/h ≥ 35.0,              
for h0/h = 8.75, permissible crack width wk is  

wk = 0.05 + (0.2 − 0.05) × (35 − 8.75)/ (35.0 – 5.0) = 0.18 mm 
Actual crack width of 0.15 mm is less than permissible crack width of 0.18 mm. 
 

 
 
 

Fig. 19.2 Rectangular tank wall subjected to two-way bending moments and axial tension. 
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Note that in the case of large tanks under hydrostatic pressure, it is possible to 
reduce crack width limits in the upper portions of the walls and thus reduce the 
required steel area. 
 

 
 

Fig. 19.3 Circular tank wall subjected to bending moment and axial tension at right angles. 
 
 
19.3 WALL SUBJECTED TO TWO-WAY BENDING MOMENTS AND 
       TENSILE FORCE 
 
Fig. 19.2 shows a rectangular water tank.  Normal load acting on the side wall 
ABCD of the rectangular tank is resisted by two-way bending action.   In the 
vertical direction, the slab acts as a cantilever, fixed at the base.  In the horozontal 
direction, the load is resisted by the wall acting as  a beam supported by the front 
and back walls.  The shear forces on the side wall ABCD  act as tensile forces on 
the back wall CDEF and vice versa. The cantilever bending action about the 
horizontal axis causes horizontal cracks parallel to the base.  The bending moment 
about a vertical axis  together with the tensile force on the sides causes vertical 
cracks paralel to the height.   
A similar situation occurs in the case of the circular water tank shown in Fig. 19.3.  
Radial pressure causes circumferential tension.   Depending on the fixity at the 
base of the wall, fluid pressure may cause bending moment and shear force in the 
wall as in the case of rectangular tank.  
Circular tanks are often prestressed to prevent the formation of cracks due to radial 
pressure. 
 
 
19.3.1 Analysis of a Section Subjected to Bending Moment and Direct Tensile 
          Force for Serviceability Limit State  
 
From the equations in section 17.1.5, the total compressive force C is 

x
dxfA
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where As
` is the area per unit length of compression steel. 

The total tensile force T is 

x
xdfAfAT cesss


   

For equilibrium in the axial direction,  
T – C = Applied tensile force N 

N
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Taking moments about the tension steel,  
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where M = applied moment, h = overall depth of the section. 
There are two unknowns ,viz., fc and x in the two equations.  Eliminating fc from 
the two equations,  

}M)
2
h

3
xd(N{

2
xb)}

2
hdd(NM){dx(A)xd(A)

2
hNM(

2
''

e
'
ses  

                                                                                                                         (C19.1) 
 
Solution of the above cubic equation gives the value of neutral axis depth, x.  
Compressive stress in concrete fc can be obtained from 

                  
2
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bx ces

c 


         (C19.2) 

The equations are valid only if x ≥ d' because it is assumed that the stress in 
compression steel is actually compressive. 
 
 
19.3.1.1 Example of Calculation of Stresses Under Bending Moment and Axial 
             Tension 
 
Calculate the stresses using the following data. 

h = 400 mm, cover = 40 mm 
Tension steel: 16 mm diameter bars at 100 mm c/c giving 

As = 2011 mm2/m, As' = 0 
fck = 30 MPa, fyk = 500 MPa, αe = 15 

Applied actions at serviceability limit state: 
M = 100 kNm/m, N = 60 kN/m  

b = 1000 mm, 
d = 400 – 40 – 16/2 = 352 mm 

(a) Neutral axis depth: 
Substituting As' in equation (C19.1), 
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Simplifying: 
x3 – 5456 x2 – 265452 x + 93.4391 × 106 = 0 

Solving the cubic equation by trial and error gives x = 110 mm. 
 
(b) Compressive stress in concrete: 
Substituting As' in equation (C19.2), 

2
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(

2
hNMxdfbx c   

2
400106010100)

3
7.109352(

2
7.1091000 36  cf  

fc = 5.1 MPa 
(c) Tensile stress in steel: 
Calculate tensile stress in steel: 

PaM169
7.109

7.10935209.515
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xdff ces 
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19.3.2 Crack Width Calculation in a Section Subjected to Direct Tension 
 
Fig. 19.4 shows a circular water tank with 350 mm thick walls and 10 m internal 
diameter and 6.5 m high retains water to a depth of 6.0 m.  The base of the tank is 
designed to be free sliding.  Design the reinforcement at the base and calculate the 
crack width.  Assume fck = 30 MPa and fyk = 500 MPa. 
 
 
 
 
 
 
 
 
 
 

Fig. 19.4 Ring tension. 
 
The pressure p at the base of the tank: 

p = γH = 10 kN/m3 × 6 = 60 kN/m2 
As shown in Fig. 19.4, the circumferential tension at the base T is given by  

T = p D/2 = 60 × 10/2 = 300 kN/m 
where D = diameter of tank = 10 m. 

F 
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Using a load factor of γF = 1.2, total tension at ULS is 
T = 1.2 × 300 = 360 kN/m 

Total reinforcement required = 360 × 103/ (0.87 × fyk) = 828 mm2/m. 
Assuming 350 mm thick walls, according to clause 7.3.2, equation (7.1) the total 
minimum steel reinforcement in the wall should not be less than As, min.   
                                                 As, min σs = kc k fct, eff Act                                    (7.1) 

kc = 1.0 for pure tension, k =1.0,  
fck = 30 MPa, fct, eff = fctm = 0.3 × fck 

0.67 = 2.9 MPa 
σs = fyk = 500 MPa 

Act = 350 ×1000 = 350 × 103 mm2/m  
As, min = 2030 mm2/m 

On each face As, min = 1015 mm2/m. 
Provide H16 at 175 mm c/c, As = 1149 mm2/m on each face. 
Note that because of the sudden release of tension when the walls crack, the total 
amount of reinforcement is very much greater than that required to resist the 
tension force in the cracked state. 
σs = stress in tension reinforcement assuming cracked section.  All the tension is 
resisted by steel. 

σs = 300 ×103/ (2 ×1149) = 131 MPa 
Taking creep into account, αe = 200.0/13.2 = 15.2. 
kt = 0.4 for long term loading. 

Cover = 40 mm, d = 350 – 40 – 16/2 = 302 mm 
hc, eff = min [2.5 (h − d); 0.5h] = min [2.5 × (350 – 302); 350/2] = 120 mm 

Ac, eff = b × hc, eff = 1000 × 120 = 1.2 × 105 mm2/m 
fct, eff = fctm = 0.3 × fck 

0.67 = 2.9 MPa 
ρp, eff = As/Ac, eff = 1149/1.2 × 105 = 0.01  

 

                    (7.9) 
 

(εsm – εcm) = (131 − 146)/ Es < 0.6 σs/ Es 
Take (εsm – εcm) = 0.6σs/Es = 131/ (200 × 103) = 0.655 × 10−3 

 
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 

c = cover to longitudinal reinforcement = 40 mm 
φ = bar diameter = 16 mm 

ρp, eff = 0.01 
Sr, max = 3.4 c + 0.128 φ/ ρp, eff = 341 mm 

 
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
where 
k1 = 0.8 for high bond bars, k2 = 1.0 for pure tension, k3 = 3.4, k4 = 0.425. 
c = cover to longitudinal reinforcement.  φ = bar diameter. 
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19.3.3 Control of Cracking without Direct Calculation 
 
Taking σs = 131 MPa and using code Fig. 7.103N for maximum bar diameter and 
code Fig. 7.104N for maximum spacing in order not to exceed a crack width of    
wk = 0.2 mm, maximum bar diameter = 50 mm and maximum bar spacing is      
300 mm. 
Using code equation (7.122) and adjusting the maximum bar diameter 
 

 
 
Clearly the bar diameter of 16 mm and a spacing of 175 mm are both well below 
the maximum permitted values.  
 
 
19.4 CONTROL OF RESTRAINED SHRINKAGE AND THERMAL  
        MOVEMENT CRACKING 
 
Changes in temperature and moisture content of the concrete cause movements.  If 
these movements are restrained they lead to tensile stresses in concrete and 
possibility of cracks.  During hydration of cement, heat is generated and as the 
concrete cools, it contracts.  Similarly loss of moisture leads to drying shrinkage.  
In most structures these effects are of no significance compared with the stresses 
due to external loads.  However in thin sections such as walls, these effects are 
important and must be taken into account if the structure is not to be rendered 
unserviceable due to wide cracks.  It is necessary to reinforce the structures to 
ensure that a number of well distributed cracks of acceptable width occur rather 
than a few wide cracks.  

 
 

Fig. 19.5 Sequence of construction. 
 
The restraint to movement can be reduced by proper sequence of construction.   
Fig. 19.5(a) shows the preferred sequence because after each bay is cast, the slab is 
unrestrained at one edge and can contract during cooling.  On the other hand a 

1 2 3 

1 3 2 

(a) Preferred option 

(b) Not recommended 
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sequence of construction shown in Fig. 19.5(b) is not recommended because the 
middle slab is restrained on both sides. 
     The restraint to movement due to friction between the ground and the slab can 
be reduced by laying a polythene sheet on a layer of smooth concrete. 
 
 
19.4.1 Design Options for Control of Thermal Contraction and Restrained 
          Shrinkage 
 
Stresses due to shrinkage and thermal movements are controlled by the provision 
of movement joints.  In Annex N of BS EN 1992-3:2006 Eurocode 2-Design of 
concrete structures: Part 3: Liquid retaining and containment structures, the code 
allows for the following two options. 
 

1. Design for full restraint.  In this case no movement joints are provided and 
the crack widths and spacings are controlled by the provision of 
appropriate reinforcement as detailed in sections 19.2.2 and 19.3.3 [see 
Eurocode 2 clause 7.3.4 and equations (7.8) to (7.12)]. 

 
2. Design for free movement.  This is achieved by providing close 

movement joints at greater than 5 m or 1.5 times the wall height.  The 
minimum reinforcement in the wall should be as detailed in Chapter 10 
[see Eurocode 2 clauses 9.6.2 to 9.6.4]. 

 
Fig. 19.6 shows a typical expansion joint.  This has no restraint to movement.  
There is no continuity of steel or concrete across the joint.  An initial gap is 
provided for expansion and leakage of water is prevented by using a water stop 
made from rubber or similar materials.  If in an expansion joint the initial gap is 
eliminated, it becomes a complete contraction joint. 

 
 

Fig. 19.6 Expansion joint. 
 
 
 
 
 
 

Sealing compound 

Centre bulb water stop Initial gap for expansion 
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19.4.2 Reinforcement Calculation to Control Early-Age Cracking and 
          Thermal Contraction and Restrained Shrinkage 
 
It is well known that increasing any of cement content, placing temperature, pour 
thickness and restraint contributes to increased risk of early-age cracking.  
Restraint to contraction occurs when walls are cast onto rigid foundations or large 
slabs cast as a series of bays. It has to be noted that elastic thermal restraint stresses 
are relieved to a certain extent by creep. 
Designing reinforcement to control crack spacing and width is accomplished in 
basically two stages: 
 
Stage 1:  Ensure minimum steel reinforcement As, min as given in Eurocode 2, 
clause 7.3.2, equation (7.1) is provided.  
                                                 As, min σs = kc k fct, eff Act                                   (7.1) 

kc = 1.0 for pure tension, k =1.0  
σs = fyk = 500 MPa 

fct, eff = tensile strength of concrete at the age t when cracks are expected. 
The age t when cracks are expected is normally taken as 3 days. 

 fctm = 0.3 × fck (t) 
0.67, fck (t) = fcm (t) – 8 MPa 

                                                 fct, eff (t) = fcm (t) = cc (t) × (fck + 8)                 (3.1) 
                                           cc (t) = Exp{s [1− √ (28/t)]}                                  (3.2) 
s = 0.20, 0.25 and 0.38 for cements of class R, class N and class S respectively. 
 
Stage 2:  Check that the provided steel achieves the specified crack width as 
specified in Table 7.105 of EN 1992-3:2006 Eurocode 2 Design of concrete 
structures: Part 3: Liquid retaining and containment structures and (repeated as 
Table 19.1) using the Eurocode 2, Clause 7.3.4, equations (7.8) to (7.12) as 
given below.  See Chapter 17, section 17.3.1 for more details. 
 
 
19.4.3 Reinforcement Calculation to Control Early-Age Cracking for a 
          Member Restrained at One End  
 
In the case of a member restrained at its end such as a floor slab at the end of a bay, 
(εsm – εcm) may be calculated from the code equation (M.1) in Annex M of BS EN 
1992-3:2006 Eurocode 2-.Design of concrete structures: Part 3: Liquid retaining 
and containment structures. 
 
(i) Calculate (εsm – εcm) 

          (εsm – εcm) = 0.5 αe kc k fct, eff [1 + 1/ (αe ρ)]/ Es                              (M.1) 
Table 19.2 gives the values of the parameters. 
fct, eff = tensile strength of concrete at time t as shown in section 19.4.2. 
t can be taken as equal to 3 days for early-age cracking. 

αe = modular ratio = Es/Ecm (t),  ρ = As/Act 
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(ii) Crack spacing Sr, max may be calculated from Eurocode 2 equation (7.11): 
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
where 
k1 = 0.8 for high bond bars, k2 = 1.0 for pure tension, k3 = 3.4, k4 = 0.425. 
c = cover to longitudinal reinforcement.  φ = bar diameter. 
 
If there are ni bars of diameter φi etc., an equivalent diameter φeq is given by code 
equation (7.12). 
                                              φeq   = Σni φi

2/ Σni φi                                              (7.12) 
 

Table 19.2 Values of parameters in equation (M.1) 
Parameter External restraint 

dominant 
Internal restraint 

dominant 
kc 

See Eurocode 2, clause 7.3.2 
1.0 for pure tension 0.5 

k 
See Eurocode 2, clause 7.3.2 

k = 1.0, h ≤ 300 mm 
k = 0.65, h ≥  800 mm 
Intermediate values, 

interpolate 

1.0 

Act, surface area in tension Full section thickness 20% of section 
thickness 

 
Note: Table 3.1, CIRIA Manual C660, recommends k = 0.75 for h ≥ 800 mm. 
 
(iii) Crack width wk may be calculated using code equation (7.8). 

                                                  wk = Sr, max (εsm – εcm)                               (7.8) 
where 
Sr, max = maximum crack spacing.  εsm = mean strain in reinforcement.   
εcm = mean strain in concrete between cracks. 
Note that in between cracks, concrete retains its tensile strength.  This is known as 
tension stiffening. 
 
(iv) Without directly checking the crack width and spacing, the suitability of 
reinforcement can be checked by calculating σs from code equation (M.2), 
                                                    σs = kc k fct, eff / ρ                                          (M.2) 
and use Fig. 7.103 to obtain maximum bar diameter and Fig. 7.104N to obtain the 
maximum spacing for various crack widths.  
 
 
19.4.4 Example of Reinforcement Calculation to Control Early-Age 
           Cracking in a Slab Restrained at One End 
 
Determine minimum steel and the expected crack width for a 400 mm thick slab 
with a cover to steel of 40 mm.  Assume fck = 30 MPa and fyk = 500 MPa.  Also 
check using equation (M.2) and Fig. 7.103N and Fig. 7.104N if the provided 
spacing is acceptable. 
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Step 1: Calculate the tensile strength at t = 3 days. 
Take s = 0.25 for Class N cement 

                           t = 3 days, cc (t) = Exp{s [1 − √ (28/t)]} = 0.6                        (3.2) 
fcm = fck + 8 = 38 MPa 

                       fcm (t) = cc (t) × (fck + 8) = 0.6 × (30 + 8) = 22.7 MPa                 (3.1) 
fck (t) = fcm (t) – 8 MPa = 14.7 MPa 

fct, eff = fctm = 0.3 × fck (t) 0.67 = 1.8 MPa 
 
Step 2: Calculate the modular ratio at t = 3days. 

Ecm = 22 × [(fck+ 8)/10]0.3 = 22 × [(30+ 8)/10]0.3 = 32.84 GPa 
                           Ecm (t) = [fcm (t)/fcm]0.3 × Ecm                                                 (3.5) 
                           Ecm (t) = [22.7/38.0]0.3 × 32.84 = 4.38 GPa  

Es = 200 GPa 
αe = 200/ 4.38 = 45.66 

 
Step 3: Calculate the minimum steel required. 

h = 400 mm, c = 40 mm,  
Act = bw × h =1000 × 400 = 40 ×104 mm2 

Take external restraint as dominant, kc = 1.0. 
From the data in Table 19.2, interpolate the value of k.  

k = 1.0 – (1.0 – 0.65) × (400 – 300)/ (800 – 300) = 0.93 
σs = fyk = 500 MPa  

     As, min = kc k fct, eff Act / σs = 1.0 × 0.93 × 1.8 × 40 × 104 /500 = 1339 mm2    (7.1) 
Provide steel at a maximum spacing of say 100 mm to aid proper compaction. 
Provide H16 at 100 mm on each face.  As = 2 × 2011 = 4022 mm2/m. 

ρ = As/Act= 4022/ (40.0 ×104) = 10.05 × 10−3 
 
Step 4: Calculate the maximum crack spacing Sr, max and crack width, wk. 
                            (εsm – εcm) = 0.5 αe kc k fct, eff [1 + 1/ (αe ρ)]/ Es                   (M.1) 
 
(εsm – εcm) = 0.5 × 45.7 × 1.0 × 0.93 × 1.8  
                    × [1 + 1/ (45.7 × 10.05 × 10−3)]/ (200 × 103) = 0.608 × 10−3 

c = cover to longitudinal reinforcement = 40 mm 
φ = bar diameter= 16 mm. 

Ac, eff = Effective area of concrete in tension surrounding reinforcement to a depth of 
hc, eff = min [h/2; 2.5(c + φ/2)]. 
Assuming 50% of reinforcement is on each face, As = 4022/2 = 2011 mm2/m. 
hc,eff = min [h/2;  2.5(c + φ/2)]= min [400/2 ; 2.5(40 + 16/2)] = 120 mm. 

                   ρp, eff  = As/Ac,eff = 2011/(120 ×1000) = 16.76 × 10−3 
 
Note that ρ and ρeff are two different values.  ρ is the ratio  of steel to the whole 
cross section.  On the other hand, ρeff is the ratio of steel area to the concrete 
area in tension.  
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
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Take  k1 = 0.8 for high bond bars, k2 = 1.0 for pure tension, k3 = 3.4, k4 = 0.425. 
 

Sr, max = 3.4 × 40 + 0.8 × 1.0 × 0.425 × 16/ (16.76 × 10−3) = 461 mm 
                                                  wk = Sr, max (εsm – εcm)                               (7.8) 

wk = 461 × 0.608 × 10−3 = 0.28 mm 
Crack width is too large.   
 
If the steel area is increased by providing H20 at 100 mm on each face,  
Total As = 6283 mm2/m 

ρ = As/Ac = 6283/ (40.0 ×104) = 15.71 × 10−3 = 1.57% 
                       (εsm – εcm) = 0.5 αe kc k fct, eff [1 + 1/ (αe ρ)]/ Es                           (M.1) 
(εsm – εcm) = 0.5 × 45.7 × 1.0 × 0.93 ×1.8  
                    × [1 + 1/ (45.7 × 15.71 × 10−3)]/ (200 ×103) = 0.46 × 10−3 

φ = 20 mm 
ρp, eff  = As/Ac,eff  

Ac, eff = Effective area of concrete in tension surrounding reinforcement to a depth of 
hc, eff = min [(h/2; 2.5(c + φ/2)]. 
Assuming 50% of reinforcement is on each face, As = 6283/2 = 3142 mm2/m. 

hc, eff = min [h/2;  2.5(c + φ/2)] = min [400/2;  2.5(40 + 20/2)] = 125 mm. 
                   ρp, eff = As/Ac, eff = 3142/ (125 ×1000) = 25.132 × 10−3 

 
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 

 
Sr, max = 3.4 × 40 + 0.8 × 1.0 × 0.425 × 20/ (25.32 × 10−3) = 405mm 

 
                                                  wk = Sr, max (εsm – εcm)                               (7.8) 
 

                                        wk = 405 × 0.46 × 10−3 = 0.19 mm 
This is an acceptable crack width. 
 
Step 5: Check the maximum bar diameter and spacing for acceptable crack width. 
                                                    σs = kc k fct, eff / ρ                                          (M.2) 

σs = 1.0 × 0.93 × 1.8 / (10.05 × 10−3) = 167 MPa 
From Fig. 7.103N, maximum bar diameter φs

* for 0.2 mm wide crack is 
approximately 40 mm. 
Calculate the adjusted the maximum bar diameter φs

 from code equation (7.122) 
 
                                        φs = φs

* [fct, eff/2.9] × {h/[10 ×(h − d)]}                  (7.122) 
h =400 mm, d = 400 – 40 − 20/2 = 350 mm, fct, eff = 1.8 MPa 

φs = φs
* [1.8/2.9] × {400/[10 ×(400 − 350)]} = 0.50 φs

* ≈ 20 mm 
From Fig. 7.104N, maximum bar spacing for 0.2 mm wide crack is approximately 
250 mm. 
The provided values are well below acceptable approximate values. 
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19.4.5 Reinforcement Calculation to Control Early-Age Cracking in a Wall 
          Restrained at One Edge 
 
In the case of a long wall restrained along one end, (εsm – εcm) may be calculated 
from the code equation (M.3) in Annex M of BS EN 1992-3:2006 Eurocode 2-
Design of concrete structures: Part 3: Liquid retaining and containment 
structures: 

                                  (εsm – εcm) = Rax εfree                                                (M.3) 
where 
Rax = the restraint factor 
εfree = Strain which would occur if the member was completely unrestrained  
 
The Eurocode 2, Part 3 provides little information on early magnitude of thermal 
strain.  However, using equations (B.11) and (B.12) of Annex B of Eurocode 2, 
basic drying shrinkage strain εcd, 0 can be calculated.  Autogenous shrinkage strain 
εca can be calculated using Eurocode 2 equation (3.12). Bamforth (2007) will be 
found very useful for understanding and calculating the reinforcement to prevent 
early-age thermal cracking. 
 
Bamforth (2007) gives the following equation for (εsm – εcm) 
                  (εsm – εcm) = K1 {[αc T1 + εca] R1 + αc T2 R2 + εcd R3}        (CIRIA 3.2) 

 
and the data required for calculating the possibility of thermal cracking are quite 
detailed.  The manual provides sufficient information to calculate the values of these 
parameters.  The parameters are: 
 
(i) K1: Coefficient for the stress relaxation due to creep under sustained loading.  
Take K1 = 0.65. 
 
(ii) T1, drop in temperature from the maximum to the ambient. 
Fig. 19.7 shows qualitative change in temperature with time in days.  This is a 
function of several variables.  The main variables are: 
 
(a) Cement type, amount of additives such as fly ash, ggbs (ground granulated blast 
furnace slag) and total cement content in kg/m3.  For a concrete of fck = 30 MPa, 
total cement content can vary from 350 to 450 kg/m3. 
 
(b).Section thickness:  Larger the thickness the greater the rise in temperature above 
the ambient. This can vary from 20o to 50oC. 
 
(c) Formwork insulation: The temperature rise will be less in steel formwork as 
compared with plywood formwork. 
 
(d) Placing temperature. 
 
(e) Ambient conditions: Rise in temperature will be less in winter than in summer. 
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Fig. 19.7 Rise in temperature of concrete after casting. 

  
(iii) αc = coefficient of thermal expansion: Eurocode 2 in clause 3.1.3(5) gives  

αc = 10 × 10−6 /oC 
 
(iv) Long term annual ambient temperature change, T2:  In U.K. the recommended 
values for T2 are:  Casting in winter, T2 = 10o C, casting in summer, T2 = 20o C. 
 
(v) Shrinkage strain εcd : Values of basic drying shrinkage strain εcd, 0 is given by 
equations (B.11) and (B.12) of Annex B of Eurocode 2.    
        εcd, 0 = 0.85 [(220 + 110 αds1) × exp {−0.1 × αds2 × fcm}] × 10−6 × RH      (B.11) 
                      RH = 1.55 × (1 – RH3), RH = % ambient relative humidity       (B.12) 

αds1 = 3 and αds2 = 0.13 for Class S cement 
αds1 = 4 and αds2 = 0.12 for Class N cement 
αds1 = 6 and αds2 = 0.11 for Class R cement 

The final shrinkage strain εcd = εcd, ∞ = εcd, 0 × kh. 
Values of kh are given in code Table 3.3 is reproduced in Table 19.3.  

 
Table 19.3 Values of kh versus h0 

ho kh 
100 1.0 
200 0.85 
300 0.75 

≥500 0.70 
 
(vi) Autogenous shrinkage strain εca 
                                               εca = εca, ∞ = 2.5 × (fck – 10) × 10−6                    (3.12) 
 
(vii) R2 and R3 are restraint factors applying to long-term thermal movement and 
drying shrinkage respectively. 
 
(viii) Early-age temperature differential ΔT is the temperature difference between 
the centre and surface of the slab as shown in Fig. 19.8. 

Days 

Temperature T1 
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Fig. 19.8 Variation in temperature across the thickness of the slab. 
 

As a simplified approach at the preliminary stage, Bamforth (2007) gives a 
simplified equivalent to CIRIA equation (3.2) as   
                               (εsm – εcm) = K [αc (T1 + T2) + εcd]                        (CIRIA 3.17) 
where K = coefficient which takes account of restrain R.   
The recommended values are: 

K = 0.5 
εcd = 150 ×10−6 for U.K. external exposure conditions 
εcd = 350 ×10−6 for U.K. internal exposure conditions 

Recommended values for T2 in U.K. are:  
Casting in winter, T2 = 10o C and casting in summer, T2 = 20o C. 
T1: It is a function of fck, thickness, h and type of formwork.  Table 19.4 shows 
values of T1 for summer or winter casting for concrete with fck = 30 MPa. 
 

Table 19.4 Recommended values of temperature T1
oC 

 Steel formwork Plywood formwork 
h, mm 300 500 700 1000 2000 300 500 700 1000 2000 

Summer 18 28 35 43 54 28 36 42 47 55 
Winter 12 20 28 37 52 22 30 37 42 55 

 
 
19.4.6 Example of Reinforcement Calculation to Control Early-Age 
           Cracking in a Wall Restrained at One Edge 
 
Determine minimum steel and the expected crack width for a 400 mm thick wall 
with a cover to steel of 40 mm.  Assume fck = 30 MPa and fyk = 500 MPa.   The 
external wall is cast in winter on a strong base.  
 
Step 1: Calculate the minimum steel required. 

h = 400 mm, c = 40 mm,  
Act = bw × h =1000 × 400 = 40 × 104 mm2 

Taking external restraint as dominant, kc = 1.0. 

Thickness 

Temperature 

ΔT 
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Using the relationship between h and k in Table 19.1, interpolate the value of k 
k = 1.0 – (1.0 – 0.65) × (400 – 300)/ (800 – 300) = 0.93 

σs = fyk = 500 MPa ,  
From section 19.4.3, fct, eff = 1.8 MPa for fck (t) at t = 3 days. 

Act = 400 × 1000 = 40 × 104 mm2 
     As, min = kc k fct, eff Act / σs = 1.0 × 0.93 × 1.8 × 40 × 104 /500 = 1339 mm2  (7.1) 
Provide each face H12 at 160 mm = 707 mm2/m. 

Total As = 2 × 707 = 1414 mm2/m 
One half of this value of steel can be placed on each face of the slab.  

ρ = As/Act= 1414/40.0 ×104 = 3.53 × 10−3 
 
Step 2: Parameters in CIRIA equation (3.17): 

K = 0.5 
εcd = 150 × 10−6 for U.K. external exposure conditions 

Casting in winter, T2 = 10o C 
T1: From Table 19.4, interpolating,  

T1 = 12 + (20 − 12) × (400 − 300)/ (500 – 300) = 16oC 
Coefficient of thermal expansion, αc = 10 × 10−6/oC 

 
Step 3: Calculate (εsm – εcm) from CIRIA equation (3.17): 
                               (εsm – εcm) = K [αc (T1 + T2) + εcd]                        (CIRIA 3.17) 
       (εsm – εcm) = 0.5 × [10 × 10−6 × (16 + 10) + 150 ×10−6] = 205 ×10−6 
 
Step 4: Calculate the maximum crack spacing Sr, max and crack width, wk. 

c = cover to longitudinal reinforcement = 40 mm 
φ = bar diameter= 12 mm 

        Ac, eff = Effective area of concrete in tension surrounding reinforcement to a 
depth of hc, eff = min [h/2; 2.5(c + φ/2)]. 
Assuming 50% of reinforcement is on each face, As = 1413/2 = 707 mm2/m. 
hc,eff = min [h/2;  2.5(c + φ/2)] = min [400/2 ; 2.5(40 + 12/2)] = 115 mm. 

                   ρp, eff  = As/Ac,eff = 707/(115 ×1000) = 6.15 × 10−3 
 
Note that ρ and ρeff are two different values.   ρ is the ratio  of steel to the whole 
cross section.  On the other hand, ρeff is the ratio of steel area to the concrete 
area in tension.  
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
 
Taking k1 = 0.8 for high bond bars, k2 = 1.0 for pure tension, k3 = 3.4, k4 = 0.425. 
 

Sr, max = 3.4 × 40 + 0.8 × 1.0 × 0.425 × 12/ (6.15 × 10−3) = 799 mm 
                                                  wk = Sr, max (εsm – εcm)                               (7.8) 
 

wk = 799 × 205 × 10−6 = 0.16 mm 
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19.5 DESIGN OF A RECTANGULAR COVERED TOP UNDERGROUND 
         WATER TANK 
 
Specification 
Design a rectangular water tank with two equal compartments as shown in    
Fig. 19.9.   

Soil: Unit weight γ = 18 kN/m3 
Concrete: Unit weight γ = 25 kN/m3 
Unit weight of water γw = 10 kN/m3 

Soil: Submerged unit weight γ = (18 – γw) = 8 kN/m3 
Coefficient of friction φ = 30o 

Surcharge = 12 kN/m2 
Consider the possibility of water logging up to 1 m below the ground level. 
Design crack width = 0.2 mm. 
Use fck = 30 MPa concrete and fyk = 500 MPa steel. 
Assume walls and slabs are 400 mm thick.  The roof is not integrally connected to 
the walls and is simply supported on the external walls but continuous over the 
central dividing wall. 
 

 
 

Fig. 19.9 Rectangular water tank. 
 
 
19.5.1 Check Uplift 
 
Total weight W of the tank when empty: 

W = {5 × 10 – (5 – 0.4 – 0.4) (10 – 0.4 – 0.4 – 0.4)} × 8 × 25 
W = 2608 kN 

8 m 

5 m 5 m 

5 m 
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As this is a favourable load, using a load factor of γG, inf = 0.90,  
W × γG, inf = 2347 kN 

 
Uplift Pressure of water under the floor due to 4 m head of water 

Uplift pressure = 10 × 4 = 40 kN/m2 
Uplift force = 8 × 10 × 40 = 3200 kN 

 
Additional weight required to have a factor of safety against floatation of 1.1 is 
3200 × 1.1 – 2347 = 1173 kN. 
This can be provided by extending the base as shown in Fig. 19.10. 

 

 
 

Fig. 19.10 New design of base to increase total weight of tank. 
 
The submerged unit weight of the soil = 18 – 10 = 8 kN/m3. 
Pressure due to 1 m high dry soil plus 3.6 m of submerged soil 

= 1 × 18 + 3.6 × 8 = 46.8 kN/m2 
Submerged weight of slab = (25 – 10) × 0.4 = 6.0 kN/m2. 
If b = width of the projecting base slab, then 

{[(10 + 2b) × (8 + 2b) – 10 × 8] × (46.8 + 6.0)} × γG, inf  = 1173 
If b = 0.65 m, the additional weight is 1192 kN. 
 
 
19.5.2 Pressure Calculation on Longitudinal Walls 
 
Case 1: Tank empty 
Coefficient of active earth pressure: 

ka = (1 – sinφ)/ (1 + sinφ) = (1 – 0.5)/ (1 + 0.5) = 0.33 
Pressure due to surcharge = ka × 12 = 4 kN/m2 

The wall is 5000 – 400 – 400 = 4200 mm high. 
For the top (1000 – 400) = 600 mm, unit weight of soil = 18 kN/m3. 
Below this level, submerged unit weight of soil = 8 kN/m3. 
In addition to the soil pressure there is also the pressure due to ground water. 
The pressures at different levels shown in Fig. 19.11 are: 
 
(i) At 400 mm below ground 

p = 4 kN/m2 due to surcharge + ka × 18 × 0.4 = 6.4 kN/m2 
 
(ii) at 1000 mm below ground 

p = 4 kN/m2 due to surcharge + ka × 18 × 1.0 = 10.0 kN/m2 
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(iii) at 4600 mm below ground  
p = 10 + ka × 8 × (4.6 – 1.0) + 10 × (4.6 – 1.0) due to ground water 

p = 55.6 kN/m2 

 
 

Fig. 19.11 Pressure distribution on the wall. 
 
Case 2: Tank full 
Ignore any passive pressure due to soil and assume that the ground is dry. 
 
(i) At 400 mm below ground 

p = 10 × 0.4 = 4.0 kN/m2 
 
(ii) At 4600 mm below ground 

p = 10 × 4.6 = 46 kN/m2 
 
19.5.3 Check Shear Capacity 
 
Effective depth: d = 400 – 40 mm cover – 12 mm bar /2 = 354 mm 
 
Case 1: Tank empty 
Although part of the lateral pressure is transferred to the sides of the wall, towards 
the middle of the wall, most of the load is transferred to the base.  Using a load 
factor of γF = 1.2, total shear force at base is approximately 
VEd = (γF = 1.2) × [0.5 × (6.4 + 10.0) × 0.6 + 0.5 × (10.0 + 55.6) × 3.6]  
       = 147.6 kN/m 
 
Case 2: Tank full 
Total shear force at base is approximately  

V = (γF = 1.2) × [0.5 × (4.0 + 46.0) × 4.2] = 126.0 kN/m 
 

Check whether thickness is sufficient  
Use Eurocode 2 equation (6.9) check VEd < VRd, max. 

4.2 
m 

0.4 
m 

55.6 

10.0 
6.4 

4.0 
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                         )tan(cot
1fzbV cd1wcwmax,Rd


                            (6.9) 

αcw = 1.0, bw = 1000 mm, z = 0.9d = 319 mm, fcd = (fck = 30)/ (γc = 1.5) = 20 MPa 
                                  ν1 = 0.6 (1 − fck/ 250) = 0.528                                       (6.6N) 
 
Section 6 of clause 6.2.3(109) Eurocode 2-Design of concrete structures: Part 3: 
Liquid retaining and containment structures, recommends that cot θ can be 
conservatively assumed to be 1.0.  
 
    VRd, max = [1.0 × 1000 × 319 × 0.528 × 20/( 1+ 1)] × 10−3 = 1684 kN/m      (6.9) 
 
Section thickness is adequate. 
 
 
19.5.4 Minimum Steel Area 
 
Calculate the minimum steel required to control early-age thermal cracking 

h = 400 mm, c = 40 mm,  
Act = bw × h =1000 × 400 = 40 ×104 mm2 

Taking external restraint as dominant, kc = 1.0. 
Using the values for h and k in Table 19.1, interpolate the value of k 

k = 1.0 – (1.0 – 0.65) × (400 – 300)/ (800 – 300) = 0.93 
σs = fyk = 500 MPa ,  

From section 19.4.3, fct, eff = 1.8 MPa for fck (t) at t = 3 days 
Act = 400 × 1000 = 40 × 104 mm2 

     As, min = kc k fct, eff Act / σs = 1.0 × 0.93 × 1.8 × 40 × 104 /500 = 1339 mm2  (7.1) 
Provide on each face H12 at 160 mm = 707 mm2/m. 
Total As = 2 × 707 = 1414 mm2/m. 

ρ = As/Act= 1413/ (40.0 ×104) = 3.53 × 10−3 
From section 19.4.6, the expected crack width due to wall restraint at the base is 
0.16 mm. 
 
Check whether shear reinforcement can be avoided 
The shear capacity of a member without any shear reinforcement is given by code 
equations (6.2a), (6.2b) and (6.3N).  Assuming no prestressing,  
              db]v[db]}f100{kC[V wminw

3/1
ck1c,Rdc,Rd                                      (6.2a) 

12.0
)5.1(

18.0C
c

c,Rd 


 , 0.275.1
354
2001

d
2001k   

22.0
)3541000(

707100
db

A100100
w

sl
1 


  

                                                 15.0fk035.0v ck
5.1

min                            (6.3N) 
VRd, c = 135 kN/m < (VEd = 148 kN/m) 
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Increase reinforcement provided to increase shear resistance and avoid the need for 
shear reinforcement. 
Provide H12 at 90 mm centres on each face. 

As = 1257 mm2/m 

2355.0
)3541000(

1257100
db

A100100
w

sl
1 


  

VRd, c = 151 kN/m > (VEd = 148 kN/m) 
There is no need for shear reinforcement. 
Instead of increasing the area of steel, the other option is to increase the thickness 
of the wall which might be cheaper! 
 
 
19.5.5 Design of Walls for Bending at Ultimate Limit State 
 
For calculating moments in the walls of the tank, ready-made tables of moment 
coefficients are available.  These coefficients have been obtained from elastic 
analysis of thin plates using analytical methods based on multiple Fourier series or 
using the finite element method.  Typical results are shown in Table 19.5 for the 
case of side and bottom edges being clamped and the top edge being free as shown 
in Fig. 19.12. 
 

 
 

Fig. 19.12 Notation for Table 19.5. 
 
 
19.5.5.1 Design of Transverse/Side Walls 
 
Although the pressure on the wall is not strictly hydrostatic, the wall can be 
designed as a 7.2 m wide × 4.2 m high slab clamped on three sides and free at top 
and subjected to a hydrostatic loading giving base pressures of 55.6 kN/m2 for  
case 1 and 46.0 kN/m2 for case 2.  Since the pressure difference is not large, design 
for case 1 and use the same steel area for case 2.  Near the base the wall will bend 
about a horizontal axis and away from the base, and the wall bends as a horizontal 
clamped beam spanning between the end walls.  
 

a 

b 
q 

x 

y 
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Table 19.5 Moment coefficients 
b/a x/a y = 0 y = b/4 y = b/2 

Mx My Mx My My 
2.0 0 0 0.027 0 0.010 –0.064 

0.25 0.012 0.024 0.006 0.010 –0.060 
0.50 0.016 0.017 0.011 0.010 –0.048 
0.75 –0.007 0.003 –0.002 0.003 –0.024 
1.0 –0.084  –0.058  - 

1.5 0 0 0.021 0 0.006 –0.039 
0.25 0.009 0.020 0.004 0.007 –0.044 
0.50 0.015 0.017 0.009 0.008 –0.041 
0.75 0.003 0.006 0.004 0.004 –0.023 
1.0 –0.058  –0.039  - 

1.0 0 0 0.010 0 0.002 –0.014 
0.25 0.003 0.012 0.001 0.003 –-0.023 
0.50 0.009 0.013 0.005 0.005 –0.028 
0.75 0.008 0.008 0.005 0.004 –0.020 
1.0 –0.032  –0.021   

 
Moment = Coefficient × q × a2 

 
(a) Vertical bending moment at base 
b = 7.2 m, a = 4.2 m, b/a = 1.71.  From Table 19.5, interpolating between b/a of 1.5 
and 2.0,  

Bending moment coefficient ≈ (0.084+ 0.058)/2 = 0.071 
Vertical bending moment M at SLS: 

M = 0.071 × 55.6 × 4.22 = 69.64 kNm/m (SLS) 
Vertical bending moment at base at ULS 

M = (γF = 1.2) × 69.64 = 83.57 kNm/m (ULS) 
k = M/ (b d2 fck) = 83.57 × 106/ (1000 × 3542 × 30) = 0.022 < 0.196 

983.0])k31(0.1[5.0
d
z




 

As = M/ (0.87 fyk z) = 83.57 × 106/ (0.87 × 500 × 0.98 × 354) = 554 mm2/m. 
Provided steel of H12 at 90 mm c/c = 1257 mm2/m on each face is more than 
adequate.   
 
(b) Horizontal bending moment at fixed vertical edges 
From data in Table 19.5, interpolating between b/a of 1.5 and 2.0,  

Bending moment coefficient = (0.064+ 0.039)/2 = 0.052 
M at SLS = 0.052 × 55.6 × 4.22 = 51.0 kNm/m 

M = (γF = 1.2) × 51.0 = 61.2 kNm/m (ULS) 
k = M/ (b d2 fck) = 61.2 × 106/ (1000 × 3542 × 30) = 0.016 < 0.196 

988.0])k31(0.1[5.0
d
z

  
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As = M/ (0.87 fyk z) = 61.2 × 106/ (0.87 × 500 × 0.99 × 354) = 401 mm2/m 
 
(c) Direct tension in walls 
In case 2 there is also direct tension in the horizontal direction in the wall due to 
water pressure inside he tank on the 10 m long walls.  Average pressure p is 
approximately  

p = 0.5 × 46.0 = 23 kN/m2 
Ignoring the resistance provided by the base, tensile force N per meter is 

N = (0.5 × 5.0 × 23) = 57.5 kN/m at SLS. 
N = (γF = 1.2) × 57.5 = 69 kN/m.at ULS 

Steel area required to resist this force is approximately 
As = N/ (0.87 fyk) = 69 × 103/ (0.87 × 500) = 158 mm2/m 

On each face this is equal to 158/2 = 79 mm2/m. 
Adding this steel area to the moment steel needed for horizontal bending,  

As = 401 (bending) + 79 (direct tension) = 480 mm2/m 
Provided steel of H12 at 90 mm c/c = 1257 mm2/m on each face is more than 
adequate.   
 
Note: In the calculations for design of a section subjected to bending and direct 
tension that follow, the procedure that has been adopted is to calculate the steel 
area required separately  for bending and direct tension and add the two values to 
obtain the total steel area required.  This procedure is approximate.  The correct 
method is to consider moment-axial force interaction as in the case of columns and 
use a column design chart as explained in Chapter 9 to check the adequacy of 
reinforcement provided. 
 
(d) Horizontal bending moment at mid-span 
From data in Table 19.5, interpolating between b/a of 1.5 and 2.0, 

Bending moment coefficient = (0.027+ 0.021)/2 = 0.024 
M at SLS = 0.024 × 55.6 × 4.22 = 23.54 kNm/m 

M = (γF = 1.2) × 23.54 = 28.3 kNm/m (ULS) 
k = M/ (b d2 fck) = 28.3 × 106/ (1000 × 3542 × 30) = 0.008 < 0.196 

99.0])k31(0.1[5.0
d
z




  

As = M/ (0.87 fyk z) = 28.3 × 106/ (0.87 × 500 × 0.99 × 354) = 186 mm2/m 
As = 186 (Bending) + 79 (Direct tension) = 265 mm2/m 

These values are smaller than the bending moment of at support. 
Provide on both faces H12 at 90 mm c/c in the horizontal direction.  
As on each face = 1257 mm2/m. 
 
 
19.5.5.2 Crack Width Calculation in Transverse Walls 
 
h = 400 mm, cover = 40 mm, Steel: H12 at 90 mm c/c. 
Applied forces at serviceability limit state:  
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M = 51.0 kNm/m, N = 57.5 kN/m (tension) 
fck = 30 MPa, fyk = 500 MPa, αe = 15.6 allowing for creep 

b = 1000 mm, d = 354 mm, As = As′ = 1257 mm2/m 
 
(a) Calculate the neutral axis depth including compression steel area 
Substituting the values in equation (C19.1),  

)}
2

(){()()
2

( ''' hddNMdxAxdAhNM eses    
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MhxdNxb   
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xx  

Simplifying: 
x3 – 29927.5 x2 – 1.8964 ×106 × x + 3.258 × 108 = 0 

Solving by trial and error, x = 78 mm. 
 
(b) Calculate the compressive stress in concrete 
Substituting the values in equation (C19.2),  

2
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Solving, fc = 2.6 MPa. 
 
(c) Calculate the tensile stress in steel  

MPa143
78

783546.26.15
x

xdff ces 





  

 
(d) Check maximum bar diameter and maximum spacing using Tables 7.2N 
and 7.3N respectively of Eurocode 2 
Taking steel stress as approximately 160 MPa, for a crack width of 0.2 mm,  the 
maximum bar spacing is 200 mm.   
The maximum bar diameter from Table 7.2N is 25 mm. The bar diameter is 
modified by using Eurocode 2 equation (7.6N) as follows. 

fct, eff = 0.3 × fck 067  =  2.9 MPa 
σc = axial stress =  N/(b h) = 57.5 × 103/(1000 × 400) = −0.14 MPa (tensile) 

h = 400 mm < 1000 mm, h*/h = 1.0 
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k1 = 2/3 as N is tensile 
                              kc = 0.4 × {1 − σc/[k1 × fct,eff] × (h/h*)} ≤ 1.0                     (7.2N) 
                              kc = 0.4 × {1 − (−0.14)/[0.67 × 2.9× 1.0]}  = 0.43 ≤ 1.0  

                                              
)dh(

h5.0k
9.2

f cr
c

eff,ct*
ss


                              (7.6N) 

hcr = depth of tensile zone immediately prior to cracking. 
As the tensile force is very small, cracking is governed by bending moment.  hcr 
can be taken as approximately h/3 = 400/3 = 133 mm. 
Φs

* = 25 mm from Eurocode 2 Table 7.2N. 

mm16
)354400(

1555.043.0
9.2
9.225s 


  

Both spacing and maximum bar diameter satisfy the requirements for 0, 2 mm 
crack width 
 
 
19.5.5.3 Design of Longitudinal Walls 
 
The wall is designed as a 4.4 m × 4.2 m slab clamped on three sides and free at top 
and subjected to a hydrostatic loading giving at base pressures of 55.6 kN/m2 for 
case 1 and 46.0 kN/m2 for case 2.  Since the pressure difference is not large, design 
for case 1 and use the same steel area for case 2 as well.   
 
(a) Vertical bending moment at base  
b = 4.4, a = 4.2, b/a ≈ 1.0.  From Table 17.9, using the coefficient for b/a = 1.0, 

Moment at SLS = 0.032 × 55.6 × 4.22 = 31.4 kNm/m (SLS) 
Moment at ULS = (γF = 1.2) × 31.4 = 37.7 kNm/m (ULS) 

k = M/ (b d2 fck) = 37.7 × 106/ (1000 × 3542 × 30) = 0.01 < 0.196 

99.0])k31(0.1[5.0
d
z




  

As = M/ (0.87 fyk z) = 37.7 × 106/ (0.87 × 500 × 0.99 × 354) = 247 mm2/m 
 
(b) Horizontal bending moment at fixed vertical edges 
From Table 17.9, using the coefficient for b/a = 1.0,  

Moment at SLS = 0.028 × 55.6 × 4.22 = 27.5 kNm/m 
Moment at ULS = (γF = 1.2) × 27.5 = 33.0 kNm/m (ULS) 

k = M/ (b d2 fck) = 33.0 × 106/ (1000 × 3542 × 30) = 0.009 < 0.196 

99.0])k31(0.1[5.0
d
z




  

As = M/ (0.87 fyk z) = 33.0 × 106/ (0.87 × 500 × 0.99 × 354) = 216 mm2/m 
 
(c) Direct tension in walls 
In case 2 there is also direct tension in the horizontal direction in the wall due to 
water pressure on the 8 m long walls.  Average pressure p is approximately  
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p = 0.5 × 46.0 = 23 kN/m2 
Ignoring the resistance provided by the base, tensile force N per meter at SLS is  

N = 0.5 × 8.0 × 23 = 92.0 kN/m 
Tensile force N per meter at ULS is  

N = (γF = 1.2) × 92.0 = 110.4 kN/m 
Area of steel required As = 110.4 × 103/ (0.87 × 500) = 254 mm2/m. 
Area of steel per face = 254/2 = 127 mm2/m. 
Adding this steel area to the moment steel needed for horizontal bending, total area 
of steel needed: 216 (bending) + 254 (axial tension) = 470 mm2/m. 
Provided steel of H12 at 90 mm c/c = 1257 mm2/m on each face is more than 
adequate.   
 
(d) Horizontal bending moment at mid-span 
From Table 17.9, using the coefficient for b/a = 1.0,  

Moment at SLS = 0.013 × 55.6 × 4.22 = 12.8 kNm/m. 
Moment at ULS = (γF = 1.2) × 12.8 = 15.4 kNm/m (ULS) 

k = M/ (b d2 fck) = 15.4 × 106/ (1000 × 3542 × 30) = 0.004 < 0.196 

99.0])k31(0.1[5.0
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


  

As = M/ (0.87 fyk z) = 15.4 × 106/ (0.87 × 500 × 0.99 × 354) = 101 mm2/m. 
Adding this steel area to the steel needed for axial tension, total area of steel 
needed: 101 (bending) + 254 (axial tension) = 355 mm2/m. 
Provided steel of H12 at 90 mm c/c = 1257 mm2/m on each face is more than 
adequate.   
 
 
19.5.5.4 Crack Width Calculation in Longitudinal Walls 
 
h = 400 mm, cover = 40 mm, Steel: H12 at 90 mm c/c. 
Applied forces at serviceability limit state: M = 27.5 kNm/m, N = 92.0 kN/m. 
fck = 30 MPa, fyk = 500 MPa,  αe = 15.6 allowing for creep. 
b = 1000 mm, d = 354 mm, As = As′ = 1257 mm2/m.   
 
(a) Calculate the neutral axis depth including compression steel area 

)}
2

(){()()
2

( ''' hddNMdxAxdAhNM eses    

})
23

({
2

2

MhxdNxb   



Design of structures retaining aqueous liquids                                                                    807 
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Simplifying: 
x3 – 29927.5 x2 – 1.8964 ×106 × x + 3.258 × 108 = 0 

Solving by trial and error, x = 50 mm. 
 
(b) Calculate the compressive stress in concrete  

2
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Solving, 
fc = 1.1 MPa 

 
(c) Calculate the tensile stress in steel 

MPa104
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(d) Check maximum bar diameter and maximum spacing using Tables 7.2N 
and 7.3N respectively of Eurocode 2 
The calculations can be done as for transverse walls.  The steel stress is very low.  
The crack width can be expected to be smaller than 0.2 mm. 
 
 

 
 

Fig. 19.13 Reinforcing corner for closing and opening joints. 
 
 
 

Closing corner Opening corner 
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19.5.5.5 Detailing at Corners 
 
Proper detailing of steel at corners is extremely important to realize the full 
strength of the sections.  Section 6 of clause 6.2.3(109) of Eurocode 2-Design of 
concrete structures: Part 3: Liquid retaining and containment structures, 
recommends using the strut−tie method to determine the required reinforcement for 
opening and closing corners.  Fig. 19.13 shows a schematic reinforcement layout 
for closing and opening joints, where full lines represent reinforcement and dashed 
lines concrete struts.  Note that in the case of opening joint, the diagonal 
reinforcement is in tension.  Refer to Annex.2: Frame corners in Eurocode 2 where 
design of frame corners using strut−tie method is given in detail. 
 
 
19.5.6 Design of Base Slab at Ultimate Limit State 
 
The slab is subjected to concentrated loads from the walls and bending moments at 
the ends from the walls.  There is also a small amount of direct tension from the 
internal pressure in the tanks but this has been ignored in the following design.   
 
(i) Longitudinal direction  
 
(1) Tank empty 
 
(a) Load on end walls: 

Vertical load from roof slab: = (5.0/2) × 0.4 × 25 = 25.0 kN/m 
Surcharge: (5/2) × 12 = 30.0 kN/m 

Weight of wall: 4.2 × 0.4 × 25 = 42.0 kN/m 
Weight of soil on the 0.65 m projection is equal to:  

0.65 × (18.0 × 1.0 dry soil at top + 8.0 × 3.2 submerged soil) = 28.3 kN/m 
Total = 25.0 + 30.0 + 42.0 + 28.3 = 125.3 kN/m 

Using a load factor γG = 1.35, concentrated load from the end walls is  
                                            = 1.35 ×125.3 = 169.2 kN/m 
From previous calculation of wall design, moment from the external pressure 

= 0.071 × 55.6 × 4.22 = 69.64 kNm/m at SLS 
Using a load factor γF= 1.20, moment from external pressure  
                                        = 1.2 × 69.64 = 83.57 kNm/m at ULS 
 
(b) Load on central wall: 

Vertical load from roof slab: = 5.0 × 0.4 × 25 = 50.0 kN/m 
Surcharge: 5 × 12 = 60.0 kN/m 

Weight of wall:  4.2 × 0.4 × 25 = 42.0 kN/m 
Total = 50.0 + 60.0 + 42.0 = 152.0 kN/m 

Using a load factor γG = 1.35, concentrated load from the central walls is  
                                            = 1.35 ×152.0 = 205.2 kN/m 
Moment from the external pressure = 0. 
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(c) Uplift pressure: There is an uplift pressure of 10 × 4.0 = 40 kN/m2. 
Using a load factor γF= 1.20, the uplift pressure is 

1.20 × 40.0 = 48.0  kN/m2 
 
(d) Net pressure p on the ground: 

p = (2 × 169.2 + 205.2)/9.6 – 48.0 = 8.63 kN/m2 
Fig. 19.14 and Fig. 19.15 show respectively the forces on the base slab and the 
corresponding bending moment distribution. 
 
 

 
 

Fig. 19.14 ULS forces on the base slab in the longitudinal direction, tank empty. 
 
Maximum bending moment: Tension at bottom = 83.57 kNm/m at the ends. 
Maximum bending moment: Tension at top = 169.2 kNm/m at 2.92 m from the 
ends. 
Maximum shear force = 169.2 kN/m at the ends. 
 

 
 

Fig. 19.15 Bending moment distribution in base slab in the longitudinal direction, tank empty. 

169.2 kN 169.2kN 205.2 kN 

83.57 kNm 

9.6 m 
56.6 kN/m 

83.57 kNm 
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Fig. 19.16 ULS forces on the base slab in the longitudinal direction, tank full. 
 
 
(2) Both tanks full and no ground water 
 
(a) Load on end walls: 

Vertical load from roof slab: = (5.0/2) × 0.4 × 25 = 25.0 kN/m 
Surcharge: (5/2) × 12 = 30.0 kN/m 

Weight of wall: 4.2 × 0.4 × 25 = 42.0 kN/m 
Weight of soil on the 0.65 m projection = 0.65 × 18.0 × 4.2 = 49.1 kN/m 

Total = 25.0 + 30.0 + 42.0 + 49.1 = 146.1 kN/m 
Using a load factor γG = 1.35, concentrated load from the end walls is  
                                            = 1.35 ×134.8 = 181.98 kN/m 
From previous calculation of wall design, moment from the external pressure, 
vertical bending moment at base (SLS): 

M = 0.071 × (10 × 4.2) × 4.22 = 52.60 kNm/m 
Using a load factor γF= 1.20, moment from external pressure at ULS 
                                        = 1.2 × 52.60 = 63.12 kNm/m  
 
(b) Load on central wall: 
205.2 kN/m as in Case 1. 
Moment from the external pressure = 0. 
 
(c) Load from water in the tank: 
Using a load factor γF= 1.20, load due to 4.2 m depth of water is 
                                        = 1.2 × 4.2 × 10 = 50.4 kNm/m  
(d) No uplift pressure 
 
(e) Net pressure p on the ground: 

p = (2 × 197.3 + 205.2)/9.6 + 50.4= 112.9 kN/m2 
 
 
 

197.3 kN 205.2 kN 

63.12 kNm 

9.6 m 
62.5 kN/m 

197.3 kN 

63.12 kNm 
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(f) Net uniformly distributed load on base slab: 
As the load due to water inside the tanks and the base pressure are both uniformly 
distributed on the base slab, one need to consider only the base pressure due to 
walls for determining the bending moment in the base slab. 
Net uniformly distributed load on the base slab is 112.9 – 50.4 = 62.5 kN/m2. 
Fig. 19.16 and Fig. 19.17 show respectively the forces on the base slab and the 
corresponding bending moment distribution.  
Maximum bending moment: Tension at top = 374.6 kNm/m at 3.2 m from the 
ends.  Maximum shear force = 197.3 kN/m at the ends. 
 

 
Fig. 19.17 Bending moment distribution in base slab in the longitudinal direction, tank full. 

 
Design of reinforcement: 
The maximum bending moment causing tension at top is 374.6 kNm/m from tank 
full and the maximum bending moment causing tension at bottom is 83.57 kNm/m 
from tank empty case. 
 
Steel at top: 
M = 374.6 kNm/m, b = 1000 mm, cover = 40 mm, φ = H25,  
d = 400 – 40 – 25/2 = 347 mm, fck = 30 MPa 
k = 374.6 × 106/ (1000 × 3472 × 30) = 0.104 < 0.196 
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Provide H25 at 180 c/c = 2727 mm2/m. 
 
Steel at bottom: 
M = 83.57 kNm/m, b = 1000 mm, cover = 40 mm, φ = H12,  
d = 400 – 40 – 12/2 = 354 mm, fck = 30 MPa 
k = 83.57 × 106/ (1000 × 3542 × 30) = 0.02 < 0.196 
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Provide H12 at 200 c/c= 566 mm2/m. 
 
(ii) Transverse direction 
The slab is subjected to concentrated loads from the walls and bending moment at 
the ends from the walls. 
 
(1) Tank empty 
 
(a) Load on end walls: 
Vertical load = (γG = 1.35) × 123.1 = 166.2 kN/m (from previous calculation for 
longitudinal wall). 
Moment from the external pressure = (γF = 1.2) × 0.032 × 55.6 × 4.22  
                                                           = 37.7 kNm/m. 
 
(b) Uplift pressure: 
Uplift pressure = (γF = 1.2) × 10 × 4.0 = 48 kN/m2. 
 

 
 

Fig. 19.18 Forces on the base slab in the transverse direction, tank empty. 
 

166.2 kN 166.2 kN 

37.7 kNm 

7.6 m 
43.73 kN/m 

37.7 kNm 
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(c) Net pressure p on the ground: 
p = 2 × 166.2/7.6 – 48.0 = –4.3 kN/m2 

Although calculation indicates that the slab will not be in equilibrium, this is not 
strictly true because of the presence of the loads on the central wall.  Since the 
overall stability against flotation of the structure has been established, calculation 
will be continued assuming equilibrium is maintained.  Calculation will be 
somewhat approximate but not seriously so. Fig. 19.18 shows the forces on the 
base slab.  Fig. 19.19 shows the bending moment distribution on the base slab.   
 
 

 
 

Fig. 19.19 Bending moment on the base slab in the transverse direction, tank empty. 
 
Maximum bending moment causing tension at bottom = 37.7 kNm/m. 
Maximum moment causing tension at top = 280.03 kNm/m. 
Maximum shear force = 166.2 kN/m at the ends. 
 
 
(2) Both tanks full and no ground water 
 
(a) Load on end walls: 
Vertical load = (γG = 1.35) ×144.2 = 194.7 kN/m (from previous calculation for 
longitudinal wall). 
Moment from the external pressure = (γF = 1.2) × 0.032 × (10 × 4.2) × 4.22  
                                                          = 28.4 kNm/m. 
(b) Uplift pressure: 
There is no uplift pressure. 
 
(c) Net pressure p on the ground: 

p = 2 × 194.7/7.6 = 51.23 kN/m2 
Fig. 19.20 shows the forces on the base slab. Fig. 19.21 shows the bending moment 
distribution on the base slab. 
Maximum moment causing tension at top = 298.9 kNm/m. 
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Maximum shear force = 194.7 kN/m at the ends. 
 

 
Fig. 19.20 ULS forces on the base slab in the transverse direction, tank full. 

 

 
Fig. 19.21 Bending moment distribution on the base slab in the transverse direction, tank full. 

 
Design of reinforcement: 
The maximum bending moment causing tension at top is 298.9 kNm/m from tank 
full case and the maximum bending moment causing tension at bottom is 37.7 
kNm/m from tank empty case.   
 
Steel at top: 
M = 298.9 kNm/m, b = 1000 mm, cover = 40 mm, φ = H25,  
d = 400 – 40 – 25/2 = 347 mm, fck = 30 MPa 
k = 298.9 × 106/ (1000 × 3472 × 30) = 0.083 < 0.196 
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Provide H25 at 220 c/c = 2231 mm2/m. 
 
Steel at bottom: 
M = 37.7 kNm/m, b = 1000 mm, cover = 40 mm, φ = H12.  
d = 400 – 40 – 12/2 = 354 mm, fck = 30 MPa. 
k = 37.7 × 106/ (1000 × 3542 × 30) = 0.01 < 0.196 
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Provide H10 at 300 c/c= 262 mm2/m. 
 
Shear strength check: 
Maximum shear force is 194.7 for the transverse direction with the tank being full. 
 
(i) Check the adequacy of the thickness i.e. VEd < VRd, max using Eurocode 2 
     equation (6.9) 

                         )tan(cot
1fzbV cd1wcwmax,Rd


                             (6.9) 

αcw = 1.0, bw = 1000 mm, d = 347 mm, z = 0.9d = 312 mm, fcd = (fck = 30)/ (γc = 
1.5) = 20 MPa 
                                  ν1 = 0.6 (1 − fck/ 250) = 0.528                                        (6.6N) 
 
In section 6 of clause 6.2.3(109), Eurocode 2-Design of concrete structures: Part 
3: Liquid retaining and containment structures, recommends that cot θ can be 
conservatively assumed to be 1.0.  
 
    VRd, max = [1.0 × 1000 × 312 × 0.528 × 20/(1 + 1)] × 10−3 = 1647 kN/m      (6.9) 
 
Section thickness is adequate. 
 
(ii) Check whether shear reinforcement can be avoided 
The shear capacity of a member without any shear reinforcement is given by code 
equations (6.2a), (6.2b) and (6.3N).  Assuming no prestressing,  
              db]v[db]}f100{kC[V wminw

3/1
ck1c,Rdc,Rd                                      (6.2a) 

12.0
)5.1(

18.0C
c

c,Rd 


 , 0.276.1
347
2001

d
2001k   

Steel at top = As = H25 at 180 = 2727 mm2/m 
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                                                 15.0fk035.0v ck
5.1

min                            (6.3N) 
VRd, c = 222.8 kN/m > (VEd = 194.7 kN/m) 

 
Final reinforcement: 
In longitudinal and transverse directions steel at top is H25 at 180 c/c. 
In the longitudinal direction, steel at bottom is H12 at 200 c/c and in the transverse 
direction steel at bottom is H10 at 300 c/c. 
 
 
19.6 DESIGN OF CIRCULAR WATER TANKS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 19.22 Circular tank. 

 

 
 

Fig. 19.23 Forces on an element of the wall. 

T 

M 

νM 



Design of structures retaining aqueous liquids                                                                    817 

Circular water tanks are commonly employed in reinforced concrete and also in 
circularly prestressed posttensioned prestressed concrete.  Fig. 19.22 shows a 
circular tank subjected to an internal pressure which can be constant as in the case 
of gas tanks or increase towards the base as in the case of liquid retaining tanks. 
If the tank is not restrained in the radial direction at top and bottom, then 
considering the tank as a thin-walled cylinder, under a constant internal pressure p, 
the circumferential tension T in the wall is given by 

T = p R 
where R = internal radius of the tank. 
The displacement w in the radial direction is given by 

Et
pRw

2

  

where E = Young’s modulus, t = thickness of the wall. 
 
If the pressure variation is hydrostatic and at p any depth y from the top is 

p = γy 
γ = unit weight of the liquid retained. 
The circumferential tension T in the wall is given by 

T = γy R. 
The displacement w in the radial direction at a depth y from the top is given by 

y
Et
Rw

2
  

 
If the displacement is constrained at the bottom, then the total pressure p is resisted 
partly by circumferential tension and partly by bending action in the vertical 
direction as shown in Fig. 19.23.  In addition to the bending moment in the vertical 
direction, there is also a bending moment in the circumferential direction given by 
νM, where ν is the Poisson’s ratio. 
The pressure pt resisted by tension causes a radial displacement w given by 

w
R
Etp

Et
Rpw t

t
2

2

,   

The pressure pb resisted by bending action is given by 
 

bp
dy

wdEI 4

4

 

I = t3/12 per unit length, t = thickness of the wall. 
Because of the Poisson effect,  

)1(12 2

3




EtEI  

If p is the internal pressure,  

w
R
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wdEIppp tb 24
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The bending moment M and shear force V and circumferential tension T are given 
by 

w
R
EtT

dy
wdEIV

dy
wdEIM  ,, 3

3

2

2

 

The differential equation is known as the beam on elastic foundation equation and 
can be solved for given boundary conditions.   
 

 
 

Fig. 19.24 Base details for pinned and fixed joints. 
 
Ready-made tables are available for calculating the circumferential tension T and 
bending moment M for the two cases of the base of the tank being either fully fixed 
or pinned.  Fig. 19.24 shows the base reinforcement details for achieving pinned 
and fixed joints.  Table 19.6 shows typical values for a specific tank of dimensions 
h2/ (Rt) = 8.0. 
 
 
19.6.1 Example of Design of a Circular Water Tank 
 
Design an above-ground fixed base water tank for the following specification. 
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(a) Specification   
Internal radius R = 15 m, height h = 6 m, wall thickness t = 300 mm. 
Unit weight of water γ = 10 kN/m3. 
fck = 30 MPa, fyk = 500 MPa, Design crack width = 0.2 mm. 
 
(b) Calculation of forces 

Parameter (h2/Rt) = 62/ (15 × 0.3) = 8.0 
q = γ h = 10 × 6 = 60 kN/m2 

Fig. 19.25, Fig. 19.26 and Fig. 19.27 show the distribution of vertical bending 
moment, shear force and circumferential tension. 
Maximum shear force V at base at ULS: 

V = (γF = 1.2) × 0.063 × 60 × 6 = 27.5 kN/m 
Maximum bending moment causing tension on inner face at base at ULS: 

M = (γF = 1.2) × 0.0267 × 60 × 62 = 69.2 kNm/m 
Maximum bending moment causing tension on the outer face at 0.4 h at ULS: 

M = (γF = 1.2) × 0.0077 × 60 x 62 = 19.96 kNm/m 
Maximum ring tension T occurs at mid-height 

T = (γF = 1.2) × 0.43 × 60 × 15 = 464 kN/m 
Corresponding moment: 

M = (γF = 1.2) × 0.0066 × 60 × 62 = 17.1 kNm/m 
Circumferential moment: 

= ν M = 0.2 × 17.1 = 3.42 kNm/m 
 

 
Table 19.6 Vertical bending moment and ring tension coefficients for cylindrical tanks 

h2/(Rt) = 8.0, ν = 0.2 
y/h Fixed base Pinned base 

M T M T 
0: Top 0 0.067 0 0.017 

0.1 0.0003 0.163 0.0001 0.136 
0.2 0.0013 0.256 0.0006 0.254 
0.3 0.0028 0.339 0.0016 0.367 
0.4 0.0047 0.402 0.0033 0.468 
0.5 0.0066 0.430 0.0056 0.545 
0.6 0.0077 0.410 0.0084 0.579 
0.7 0.0069 0.334 0.0109 0.552 
0.8 0.0023 0.210 0.0118 0.446 
0.9 –0.0081 0.073 0.0092 0.255 

1.0: Base –0.0267 0 0 0 
 

Moment M = coefficient × (γ h3) kNm/m. 
Positive moment causes tension on the outer face. 

Tension T = coefficient × (γ h R) kN/m. 
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Fig. 19.25 Vertical bending moment in the wall. 
 
 
 

 
 

Fig. 19.26 Shear force in the wall. 
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Fig. 19.27 Circumferential tension in the wall. 
 
(c) Design 
(i) Check shear capacity 
Effective depth: 

d = 300 – 40 cover – 16/2 = 252 mm 
VEd = 27.5 kN/m 

bw = 1000mm,  z ≈ 0.9d = 227 mm 
                                  ν1 = 0.6 (1 − fck/250) = 0.528                                          (6.6N) 
                              αcw = 1 for non-prestressed structures.                           (6.10aN) 
Take cot θ = 1. 
Check adequacy of depth: Use Eurocode 2 equation (6.9) 

                           
)tan(cot

1fzbV cd1wcwmax,RD


                             (6.9) 

VRd = 1199 kN 
Depth is adequate. 
 
(ii) Steel to control thermal cracking 
 
Step 1: Calculate the tensile strength at t = 3 days. 
Take s = 0.25 for Class N cement. 
                           t = 3 days, cc (t) = Exp{s [1 − √ (28/t)]} = 0.6                       (3.2) 

fcm = fck + 8 = 38 MPa 
                       fcm (t) = cc (t) × (fck + 8) = 0.6 × (30 + 8) = 22.7 MPa              (3.1) 

fck (t) = fcm (t) – 8 MPa = 14.7 MPa 
fct, eff = fctm = 0.3 × fck (t) 0.67 = 1.8 MPa 

 
Step 2: Calculate the modular ratio at t = 3 days. 
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Ecm = 22 × [(fck+ 8)/10]0.3 = 22 × [(30+ 8)/10]0.3 = 32.84 GPa 
                           Ecm (t) = [fcm (t)/fcm]0.3 × Ecm                                                 (3.5) 
                           Ecm (t) = [22.7/38.0]0.3 × 32.84 = 4.38 GPa  

Es = 200 GPa 
αe = 200/ 4.38  = 45.66 

 
Step 3: Calculate the minimum steel required to control early-age thermal 
cracking. 

h = 300 mm, c = 40 mm,  
Act = bw × h =1000 × 300 = 30 ×104 mm2 

Taking external restraint as dominant, kc = 1.0. 
From Table 19.1, k =1 

σs = fyk = 500 MPa ,  
fct, eff = 1.8 MPa for fck(t) at t = 3 days 

     As, min = kc k fct, eff Act / σs = 1.0 × 1.0 × 1.8 × 30 × 104 /500 = 1080 mm2    (7.1) 
Provide As = H12 at 100 mm = 1131 mm2/m. 
One half of this value of steel can be placed on each face of the slab. Each face has 
H12 at 200 mm. 

ρ = As/Act= 566/30.0 ×104 = 1.89 × 10−3 
 
Step 4: Calculate the maximum crack spacing Sr, max and crack width, wk. 
                                
                            (εsm – εcm) = 0.5 αe kc k fct, eff [1 + 1/ (αe ρ)]/ Es                      (M.1) 
 
 (εsm – εcm) = 0.5 × 45.7 × 1.0 × 1.0 × 1.8 × [1 + 1/ (45.7 × 1.89 × 10−3]/ (200 × 103) 
                  = 2.59 × 10−3 

c = cover to longitudinal reinforcement = 40 mm 
φ = bar diameter= 12 mm 

Ac, eff = Effective area of concrete in tension surrounding reinforcement to a depth of 
hc, eff = min [h/2; 2.5(c + φ/2)]. 
Assuming 50% of reinforcement is on each face, As = 566 mm2/m. 
hc,eff = min [h/2;  2.5(c + φ/2)] = min [300/2 ; 2.5(40 + 12/2)] = 115 mm. 

                   ρp, eff  = As/Ac,eff = 566/(115 ×1000) = 4.92 × 10−3 
 
Note that ρ and ρeff are two different values.   ρ is the ratio  of steel to the whole 
cross section.  On the other hand, ρeff is the ratio of steel area to the concrete 
area in tension.  
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                     (7.11) 
 
Taking k1 = 0.8 for high bond bars, k2 = 1.0 for pure tension, k3 = 3.4, k4 = 0.425 
 

Sr, max = 3.4 × 40 + 0.8 × 1.0 × 0.425 × 12/ (4.92 × 10−3) = 965 mm 
                                                  wk = Sr, max (εsm – εcm)                               (7.8) 
 

wk = 965 × 2.59 × 10−3 = 2.5 mm 
Crack width is too large.   



Design of structures retaining aqueous liquids                                                                    823 

If the steel area is increased by providing H12 at 50 mm on each face and both 
vertically and horizontally,  

Total As = 4524 mm2/m 
ρ = As/Ac = 4524/ (30.0 ×104) = 15.88 × 10−3 = 1.5% 

                                (εsm – εcm) = 0.5 αe kc k fct, eff [1 + 1/ (αe ρ)]/ Es               (M.1) 
(εsm – εcm) = 0.5 × 45.7 × 1.0 × 1.0 ×1.8 × [1 + 1/ (45.7 × 15.88 × 10−3]/ (200 × 103) 
                  = 0.49 × 10−3 

ρp, eff = As/Ac,eff 
Ac, eff = Effective area of concrete in tension surrounding reinforcement to a depth of 
hc, eff = min (h/2; 2.5(c + φ/2). 
Assuming 50% of reinforcement is on each face, As = 4524/2 = 2262 mm2/m. 
hc,eff = min [h/2;  2.5(c + φ/2)]= min [300/2 ; 2.5(40 + 12/2)] = 115 mm. 

                   ρp, eff  = As/Ac,eff = 2262/(115 ×1000) = 19.67 × 10−3 
                             
                                      Sr, max = k3 c + k1 k2 k4 φ/ ρp, eff                                        (7.11) 

 
Sr, max = 3.4 × 40 + 0.8 × 1.0 × 0.425 × 12/ 19.67 × 10−3 = 343mm 

 
                                                  wk = Sr, max (εsm – εcm)                                  (7.8) 
 

                                        wk = 343 × 0.49 × 10−3 = 0.17 mm 
This is an acceptable crack width. 
 
Step 5: Check the maximum bar diameter and spacing for acceptable crack width. 
                                                    σs = kc k fct,eff / ρ                                              (M.2) 

σs = 1.0 × 1.0 × 1.8 / 15.88 × 10−3 = 113 MPa 
From Fig. 7.103N, maximum bar diameter φs

* for 0.2 mm wide crack is 
approximately 40 mm. 
Calculate the adjusted the maximum bar diameter φs

 from code equation (7.122) 
 
                                        φs = φs

* [fct, eff/2.9] × {h/[10 × (h − d)]}                   (7.122) 
 
h =400 mm, d = 300 – 40 −12/2 = 254 mm, fct, eff = 1.8 MPa. 

φs = φs
* [1.8/2.9] × {300/[10 × (300 − 254)]} = 0.65 φs

* ≈ 26 mm 
From Fig. 7.104N, maximum bar spacing for 0.2 mm wide crack is approximately 
250 mm. 
The provided values are well below acceptable approximate values. 
 
(iii) Design for vertical bending 
 
a. Vertical steel on inner face 
Maximum bending moment causing tension on inner face at base at ULS: 

M = (γF = 1.2) × 0.0267 × 60 × 62 = 69.2 kNm/m 
M = 69.2 kNm/m, b = 1000 mm, cover = 40 mm, φ = H12,  

d = 300 – 40 – 12/2 = 254 mm, fck = 30 MPa 
k = 69.2 × 106/ (1000 × 2542 ×30) = 0.036 < 0.196 



824                                                                                    Reinforced Concrete design to EC 2  

97.0])
0.1

036.031(0.1[5.0
d
z

  

m/mm646
50087.025497.0

102.69A 2
6

s 



  

Provide H12 at 175 c/c = 646 mm2/m. 
This steel is required for only a height of approximately 0.2 h from base.  Above 
this only minimum steel required.  Alternate bars can be terminated beyond (0.2h + 
anchorage length of 38 φ) = 1656 mm, say 1700 mm above base. 
 
However the minimum steel of H12 at 50 = 2262 provided to minimize early-age 
thermal cracking supersedes the above value. 
 
b. Vertical steel on outer face 
Maximum bending moment causing tension on the outer face at 0.4h at ULS: 

M = (γF = 1.2) × 0.0077 × 60 × 62 = 19.96 kNm/m 
k = 19.96 × 106/ (1000 × 2542 × 30) = 0.01 < 0.196 
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However the minimum steel of H12 at 50 = 2262 provided to minimize early-age 
thermal cracking supersedes the above value. 
 
(iv) Design for ring tension  
 
Maximum ring tension T occurs at mid-height, 

T = 0.43 × 60 × 15 = 387 kN/m at SLS 
T = (γF = 1.2) × 387 = 464 kN/m at ULS 

Circumferential moment = 3.42 kNm/m 
As = 464 × 103/ (500/1.15) = 1067 mm2/m 

Use T16 at 300 on each face giving total As = 1340 mm2/m. 
 
However the minimum steel of H12 at 50 = 2262 provided to minimize early-age 
thermal cracking supersedes the above value. 
 
(v) Check crack width: 
Moment is small and can be ignored.  Stress in steel is due to ring tension. 

σs = T/As = 387 × 103/ (2262) = 170 MPa 
From code BS EN 1992-3:2006 Eurocode 2-Design of concrete structures: Part 3: 
Liquid retaining and containment structures, for a crack width of 0.2 mm, 
Fig. 7.103N gives maximum bar diameter = 25 mm. 
Fig. 7.104N, gives maximum bar spacing = 175 mm. 
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From code equation (7.122), the modified bar diameter is 
                      φs = φs* (fct, eff/ 2.9) × {h/[10 (h − d)]}                                       (7.122) 
                      φs = 25× (1.8/ 2.9) × {300/[10 × (300 − 254)]} = 10 mm  ≈ 12 mm 
The provided steel of H12 at 50 is sufficient to limit the crack width to 0.2 mm.  
 
 
19.7 REFERENCES 
 
Anchor, Robert D. (1992). Design of Liquid Retaining Concrete Structures,  
2nd ed. Edward Arnold. 
 
Bamforth, P.B. (2007). Early-Age Thermal Crack Control in Concrete. CIRIA. 
 
Batty, Ian and Westbrook, Roger. (1991). Design of Water Retaining Concrete 
Structures. Longman Scientific and Technical. 
 
Ghali, Amin. (1979). Circular Storage Tanks and Silos. E&FN Spon. 
 
Perkins, Phillip H. (1986). Repair, Protection and Water Proofing of Concrete 
Structures. Elsevier Applied Science. 



CHAPTER 20 
 

U.K. NATIONAL ANNEX 
 
 
20.1 INTRODUCTION  
 
Eurocodes have been written to be applicable to all counties which belong to the 
European Union.  However there is recognition that differences in construction 
materials and practices as well as climatic conditions leading for example to 
differences in wind and snow loading exist.   In order to accommodate these 
differences, Eurocode allows each country to adopt ‘nationally determined 
parameters’.  In the U.K., the nationally determined parameters are given in U.K. 
National Annex (UKNA).  In the vast majority of cases the recommendations of 
Eurocode and UKNA are identical.  Only in a small number of cases do they differ.  
The object of this chapter is to highlight some of these important differences.  The 
reader should refer to the full document for complete details. 
 
 
20.2 BENDING DESIGN 
 
(a) Design compressive strength: fcd =αcc fck/γc.   
In Eurocode αcc = 1, fcd = fck/γc.   
In UKNA, αcc = 0.85, fcd = 085fck/γc in flexure and axial loading but may be used in 
all phenomena. 
 
(b) If concrete strength is determined at an age t > 28 days, in Eurocode αcc = 0.85 
and in UKNA αcc = 1.0. 
 
 
20.2.1 Neutral Axis Depth Limitations for Design Using Redistributed 
            Moments 
 
Eurocode uses the following equations: 
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                          (5.10b)
 

Note in equation (5.10b), δ ≥ 0.7 if Class B and Class C reinforcement is used and 
δ ≥ 0.8 if Class A reinforcement is used.   
 
UKNA uses the following equations for fyk ≤ 500 MPa: 
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20.3 COVER TO REINFORCEMENT 
 
For c min, dur, Eurocode gives values in code Table 4.4N.  This is summarised in 
Chapter 2, section 2.9. 
UKNA recommends following the values in BS8500-1:2006. 
 
 
20.4 SHEAR DESIGN 
 
The main recommendation in UKNA is that unless tests show otherwise, the shear 
strength of concrete for fck > 50 MPa may be limited to that of fck = 50 MPa. 
An additional restriction is that while normally 1 ≤ cot θ ≤ 2.5, if shear co-exists 
with externally applied tension, then cotθ = 1.25. 
In Eurocode, ν1 = ν= 0.6(1 − fck/25). 
In UKNA ν1 = 0.6(1 − fck/25) × (1 – 0.5 cos α) where α = inclination of shear links 
to the horizontal.  If α = 900, ν1 = ν= 0.6(1 − fck/25). 
 
 
20.4.1 Punching Shear 
 
Both in Eurocode and in UKNA, the value of the maximum punching shear stress 
vRd, max adjacent to the column in is limited to 0.5 ν fcd.   However in UKNA it is 
further required that at the first control perimeter, the shear stress is limited to  
2vRd, c. 
 
 
20.5 LOADING ARRANGEMENT ON CONTINUOUS BEAMS AND  
        SLABS 
 
UKNA allows for the following three options: 
 
Option 1: Use the Eurocode recommended loading pattern. 
 
Option 2:  
(a) All spans carrying (γG Gk + γQ Qk). 
(b) Alternate spans carrying (γG Gk + γQ Qk) and other spans carrying γG Gk.  The 
same value of γG should be used throughout the structure. 
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Option 3: For slabs use all spans carrying (γG Gk + γQ Qk) provided: 
 In one-way spanning slab the area of each bay exceeds 30m2.  Bay is the 

area bounded by the full width of the structure and the width between the 
lines of support on the other two sides. 

 Ratio of Qk/Gk ≤ 1.25. 
 Qk ≤ 5 kN/m2. 

Note that for design, the resulting moments are redistributed by reducing the 
support moments (except in cantilevers) by 20% with a consequential increase in 
span moments. 
 
 
20.6 COLUMN DESIGN 
 
In Eurocode, the minimum value of diameter of longitudinal reinforcement φmin is 
8 mm but in UKNA it is 12 mm. 
The maximum spacing of transverse reinforcement sd, max is: 
Eurocode: 
sd, max = min [20 × diameter of longitudinal bars; lesser dimension of column;  
                    400 mm]  
 
UKNA: 
sd, max = as per Eurocode for fck ≤ 50 MPa, αn αs ωwd ≥ 0.04 for fck > 50 MPa 
where 
αn = 1 – Σbi

2/ (b0 h0 × 6). 
bi = distance between consecutive bars that are laterally restrained as shown in  
Fig. 20.1.  
αs = [1 − 0.5 s/b0] [1 − 0.5 s/h0]. 
ωwd = [volume of confining hoops/volume of concrete] × (fyd/fck). 
s = longitudinal spacing of links. 
b0, h0 = dimensions of centre lines of links. 
 

 
 

Fig. 20.1 Column cross section. 

bi 
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Example: Fig. 20.2 shows the cross section of a column. H12 links are spaced at 
100 mm.  Cover to steel = 30 mm.  fck = 60 MPa.  Check whether the links are 
sufficient. 
 

 
 

Fig. 20.2 Column cross section. 
 

b0 = h0 = 550 – 2 × (30 + 12/2) = 478 mm 
bi= [550 − 2 × (30 + 12 + 25/2)]/2 = 221 mm 

Σbi
2 = 8 × 2212 = 3.89 × 105 mm2 

αn = 1 – Σbi
2/ (b0 × h0 × 6) = 1 – 3.89 × 105/ (478 × 478 × 6) = 0.72 

αs = [1 − 0.5 s/b0] [1 − 0.5 s/h0] = [1 – 0.5 × 200/478]2 = 0.625 
Total length of links = 2 × [3 × (550 – 30 – 12] = 3048 mm 

Area of H12 link = 113 mm2 
Volume of link = 3048 × 113 = 3.45 × 105 mm3 

Volume of concrete = b0 × ho × s= 22.85 × 106 mm3 
fyd = 500/1.15 = 435MPa 

ωwd = [3.45 ×105/ (22.85×106)] × (435/60) = 0.11 
αn × αs × ωwd = 0.72 × 0.625 × 0.11 = 0.049 ≥ 0.04 

Link diameter and spacing are satisfactory. 
 
 
20.7 TIES 
 
(a) Peripheral ties: The forces to be resisted by peripheral ties are as follows.   

Fte, per = ℓ1 q1 ≤ q 2. 
where ℓ1 = Length of end span. 
 
Eurocode:  q1= 10 kN/m, q2 = 70 kN 
 
UKNA: q1 = (20 + 4 n0) ℓ1, q2 = 60 kN 
where n0 = number of storeys. 
 

3H25 

3H25 

2H25 

550 sq. 
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(b) Internal ties: Minimum tensile force Ftie, int kN/m width that an internal tie is 
capable of resisting: 
Eurocode: Ftie, int = 20 kN/m 
 
UKNA: Ftie, int = [(qk + gk)/7.5] × (ℓx/5) × Ft ≥ Ft kN/m 
where  
ℓx = The greater of the distance between the centres of columns, frames or walls 
supporting two adjacent floor spans in the direction of the tie under consideration. 
Ft = (20 + 4n0) ≤ 60 kN 
Maximum spacing of internal ties = 1.5 ℓx 
 
(c) Horizontal ties:  
Eurocode: Horizontal ties to external columns should resist a force Ftie, col = 150 kN 
and to the walls should resist a force Ftie, fac = 20 kN/m of the facade. 
 
UKNA:  
Ftie, col = Ftie, fac  
          = max [2 Ft ≤ ℓs/ (2.5 Ft); 3% of total design vertical load carried by column  
                      or wall at that level] 
Ftie, col in kN per column. 
Ftie, col in kN/m of the wall. 
ℓs = floor to ceiling height in m. 
 
 
20.8 PLAIN CONCRETE 
 
Design values of compressive and tensile strength of plain concrete are given by: 
Eurocode: 
fcd = 0.8 fck/ γc 
fctd = 0.8l fctk, 0.05/ γc 
 
UKNA: 
fcd = 0.6 fck/ γc 
fctd = 0.8 fctk, 0.05/ γc 
 
 
20.9  ψ FACTORS  
 
Wind loads on buildings: 
Eurocode: ψ0 = 0.6. 
UKNA: ψ0 = 0.5. 
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