Example 2.3 Two Way slab design

1. Design the two way slab beam supported floor system if it is intended to be used for office building ,assume the partition wall load to be $2^{kN}/_{m^2}$

Use C25/30 S400 Cover 25 mm

Solution

Step 1: Material property

C25/30
$$f_{cd} = \frac{0.85*25}{1.5} = 14.1667 Mpaf_{ctm} = 2.6 mpa$$

$$S400f_{yd} = \frac{400}{1.15} = 347.826 Mpa$$

Step 2: Depth determination

Assumption: - Slab is lightly reinforced (ho=0.5~%)

$$\rho_o = \sqrt{f_{ck}} * 10^{-3} = 5 * 10^{-3}$$

For
$$\rho \le \rho_o \frac{l}{d} = K \left[11 + 1.5 \sqrt{f_{ck}} \frac{\rho_o}{\rho} + 3.2 \sqrt{f_{ck}} \left(\frac{\rho_o}{\rho} - 1 \right)^{3/2} \right]$$

Panel 1& 2 - End span of two way slab From Table 7.4 N

K=1.3
$$\frac{l}{d} = 24.05$$
 because we used S400 multiply the value by $\frac{500}{f_{yk}} = 1.25$ $\frac{l}{d} = 24.05 * 1.25 = 30.0625$ $l = l_x = 5000 \ mm$ $d = 166.320 \ mm$

Panel 3& 4 - Interior span

K=1.5
$$\frac{l}{d} = 27.75$$
 because we used S400 multiply the value by $\frac{500}{f_{yk}} = 1.25$ $\frac{l}{d} = 27.75 * 1.25 = 34.6875$ $l = l_x = 4000 \ mm$ $d = 115.315 \ mm$

Cantilever

$$K = 0.4$$

$$\frac{l}{d} = 0.4[11 + 1.5\sqrt{5}] * \frac{500}{400} \qquad d = 129.729 \, mm$$

Governing depth is from panel 1 and panel 2.

Using
$$\emptyset$$
 10 and cover 25 mmH = 166.320 + 25 + $\frac{10}{2}$ = 196.32 Use H = 200 mm

Step 3: Loading

· Permanent load

Floor finish	$20*10^{-3}*27$	$0.54 \frac{KN}{m^2}$
Cement screed	30 * 10 ⁻³ * 23	$0.69 \frac{KN}{m^2}$
RC slab	$200 * 10^{-3} * 25$	$5 \frac{KN}{m^2}$
Plastering	$15 * 10^{-3} * 25$	$0.375 \frac{KN}{m^2}$
Load from paretion		$2^{KN}/m^2$
		$G_k = 8.605 \ \frac{KN}{m^2}$

Variable Loading

For office
$$Q_k$$
 from 2 to 3 $^{KN}/_{m^2}$ take $Q_k = 3 {^{KN}}/_{m^2}$

Design load for the slab

$$P_d = 1.35 DL + 1.5 LL = 1.35 * 8.605 + 1.5 * 3 = 16.116 \frac{KN}{m^2}$$

Parapet wall on the cantilever

Using 20 cm HCB with height of 1.5 m $P_{d,par} = 1.35(0.2 * 1.5 * 23) = 9.315 \, KN$

Step 4: Analysis

NB panel 3 & 4 are assumed to be simply supported at the intersection between the panel and cantilever.

$$M_{sx} = \beta_{sx}q l_x^2 M_{sy} = \beta_{sy}q l_x^2$$
 $q = 16.116 \ KN/_{m^2}$

Р	Ту	l_y	l_x	l_y	$\beta_{sx,sup}$	$\beta_{sx,span}$	$\beta_{sy,sup}$	$\beta_{sy,span}$	$M_{sx,sup}$	$M_{sx,spa}$	$M_{sy,sup}$	$M_{sy,span}$
	pe			l_x								
1	*	6	5	1.1	0.063	0.047	0.045	0.034	25.383	18.93	18.131	13.699
2	*	5	5	1	0.047	0.036	0.045	0.034	18.937	14.505	18.131	13.699
3	*	6	4	1.5	0.078	0.059	0.045	0.034	20.113	15.214	11.604	8.767
4	*	5	4	1.2	0.066	0.049	0.045	0.034	17.019	12.639	11.604	8.767
				5								

[&]quot;*" = adjacent side discontinues

Cantilever Taking 1 m strip

9.315 KN

Step 5: Adjust the unequal edge moment

• Between Panel 1 and panel 3

Change = $\frac{25.383-20.1137}{20.1137} * 100 = 26.197\% > 10\%$ use moment distribution

	Member	Stiffness	`	D.F
Joint B	BA	<u>I</u> 5	0.45 <i>I</i>	0.444
	ВС	$\frac{I}{4}$		0.556

	В		
D.F	0.444	0.556	
	25.383	-20.1137	
	-3.339	-2.929	
	-23.043	-23.043	

Adjusted support moment is $23.043 \ KNM/m$

Span moment on panel 1

$$M_1 = (25.383 + 18.937) - 23.043 = 21.277 \ KNm/m$$

Span moment on panel 3

$$M_3 = (20.1137 + 15.214) - 23.043 = 12.2847 \ KNm/m$$

• Between Panel 2 and panel 4

$$Change = \frac{18.937 - 17.019}{17.019} * 100 = 11.219\% > 10\%$$
 use moment distribution

	Member	Stiffness	`	D.F
Joint B	BA	<u>I</u> 5	0.45 <i>I</i>	0.444
	ВС	$\frac{I}{\Delta}$		0.556

	В		
D.F	0.444	0.556	
	18.937	-17.019	
	-0.8515	-1.0664	
	18.085	-18.085	

Adjusted support moment is $18.085 \ KNM/_m$

Span moment on panel 2

$$M_2 = (18.937 + 14.505) - 18.085 = 15.396 \frac{KNm}{m}$$

Span moment on panel 4

$$M_4 = (17.019 + 12.684) - 18.085 = 11.573 \, \frac{KNm}{m}$$

The adjusted design moment is given below

Step: 6 Design for flexure

$$d = 200 - 25 - \frac{10}{2} = 170 \ mmd_2 = 200 - 25 - 10 - \frac{10}{2} = 160 \ mm$$

$$a_s = 78.5 \ mm^2 f_{cd} = 14.1667 \ mpa \quad f_{yd} = 347.826 \ mpa$$

$$A_{s,min} = 0.26 * \frac{f_{ctm}}{f_{yk}} b_t d > 0.013 b_t d = 287.3 \ mm^2$$

$$S_{min} = \frac{b * a_s}{A_s} = \frac{1000 * 78.5}{287.3} = 273.372 \ mm$$

$$Use \ \emptyset \ 10 \ C | C \ 270 \ mm$$

$$S_{max} = \begin{cases} 3h \\ 400 \end{cases} = 400 \ mm$$

M_{sd}	d	μ	K_z	Z	A_{s}	Spacing	Spacing prov
13.699	160	0.0377	0.978	156.48	251.691	312.048	Ø10 C C 270
21.277	170	0.0519	0.971	165.07	370.578	211.83	Ø10 C C 210
15.356	170	0.0375	0.978	166.26	265.538	295.625	Ø10 C C 270
12.2847	160	0.0338	0.977	156.32	225.937	347.44	Ø10 C C 270
11.573	170						Ø10 C C 270
8.767	160						Ø10 C C 270
18.131	170	0.044	0.973	165.41	315.136	249.09	Ø10 C C 240
23.043	170	0.056	0.969	164.73	402.165	195.193	Ø10 C C 190
18.085	170	0.044	0.973	165.41	314.336	249.732	Ø10 C C 240
11.604	170						Ø10 C C 270
22.782	170	0.0556	0.969	164.73	397.609	197.429	Ø10 C C 190

Secondary reinforcement = 20% As main = $0.2*197.429=39.4854~mm^2$ Provide Ø10~C|C~270

Step 7: Check shear capacity of the slab

$$V_{RD,C} = \left[C_{RD,C} * K(100\rho f_{ck})^{\frac{1}{3}} + K_1 \sigma_{CP} \right] b_w d > (V_{min} + K_1 \sigma_{CP}) b_w d$$

$$C_{RD,C} = \frac{0.18}{\gamma_C} = 0.12 \qquad K1 = 0.15$$

$$V_{min} = 0.035 K^{\frac{3}{2}} f_{ck}^{\frac{1}{2}}$$

$$K = 1 + \sqrt{\frac{200}{d}} \le 2 \qquad K = 2$$

Taking minimum reinforcement Ø10 C | C 270 $\rho = \frac{A_s}{b_w d} = 1.7102*10^{-3}$

$$\sigma_{CP} = \frac{N_{ed}}{A_c} < 0.2 f_{cd} = 0$$

Taking one meter strip B=1000 mm and d=170 mm

$$V_{RD,c} = 84.146 \, KN$$

Maximum acting shear

Assuming the beam width to be 200 mm

$$V_{sd} = P_d(0.5l_n-d)b_w$$

$$p_d = 16.116 \ ^{KN}/_{m^2}l_n = 5-0.2 = 4.8 \ m \quad taking \ unit \ meter \ width$$

$$V_{sd} = 16.116(0.5(4.8) - 0.17) * 1$$

$$V_{sd} = 35.940 \ KN$$

$$V_{RD,C} > V_{sd}$$
 The seection is adequte

Step 8: Detailing

- (1) Ø10 c/c 210 mm
- \bigcirc 910 c/c 270 mm
- $\left(\begin{array}{c}3\end{array}\right)$ Ø10 c/c 270 mm
- $\begin{pmatrix} 4 \end{pmatrix}$ $\emptyset 10 \ c/c \ 270 \ mm$
- (5) Ø10 c/c 240 mm

- \emptyset 10 c/c 190 mm
- $\sqrt{7}$ Ø10 c/c 240 mm
- (8) Ø10 c/c 270 mm
- 9 Ø10 c/c 190 mm
- \bigcirc 10 c/c 270 mm

Step 9: Load transfer to beam

To consider pattern loading, load is transferred separately for dead and live load cases.

Factored dead load =
$$1.35 * 8.605 = 11.61675 \ ^{KN}/_{m^2}$$

Factored live load = $1.5 * 3 = 4.5 \ ^{KN}/_{m^2}$
factored load on the parapet wall = $9.315 \ KN$

$$V_i = \beta_{vi} q_i l_x$$

Case 1 Dead load

$$q_i = 11.61675 \ \frac{KN}{m^2}$$

Р	Ту	l_y	l_x	l_y	$\beta_{vx,c}$	$\beta_{vx,d}$	$\beta_{vy,c}$	$\beta_{vy,d}$	$V_{x,c}$	$V_{x,d}$	V_{yc}	V_{yd}
	pe			l_x								
1	*	6	5	1.1	0.47	0.31	0.4	0.26	27.299	18.006	23.23	15.102
2	*	5	5	1	0.4	0.26	0.4	0.26	23.23	15.102	23.23	15.102
3	*	6	4	1.5	0.54	0.35	0.4	0.26	25.092	16.263	18.58	12.081
4	*	5	4	1.2	0.485	0.32	0.4	0.26	22.536	14.87	18.58	12.081
				5								

Case 2 Live load

$$q_i = 4.5 \ \frac{KN}{m^2}$$

Р	Ту	l_y	l_x	l_y	$\beta_{vx,c}$	$\beta_{vx,d}$	$\beta_{vy,c}$	$\beta_{vy,d}$	$V_{x,c}$	$V_{x,d}$	V_{yc}	V_{yd}
	pe			$\overline{l_x}$								
1	*	6	5	1.1	0.47	0.31	0.4	0.26	10.575	6.975	9	5.85
2	*	5	5	1	0.4	0.26	0.4	0.26	9	5.85	9	5.85
3	*	6	4	1.5	0.54	0.35	0.4	0.26	9.72	6.3	7.2	4.68
4	*	5	4	1.2	0.485	0.32	0.4	0.26	8.73	5.76	7.2	4.68
				5								

Load transfer on the cantilever part

Dead load case only $V = 23.2551 \, KN$

Live load case only $V = 5.4 \ KN$

Load on beam due to dead load only

Load on beam due to live load only

Loading on beam

- Load from slab
- partition load directly supported on the beam
- Own weight of the beam
- For this particular case without partition load on beam and excluding the selfweight

The load on axis 2 will be

Maximum span moment at AB

Maximum span moment at BC

Maximum support moment at B

