Example 2.3 Two Way slab design 1. Design the two way slab beam supported floor system if it is intended to be used for office building ,assume the partition wall load to be $2^{kN}/_{m^2}$ Use C25/30 S400 Cover 25 mm # **Solution** # **Step 1: Material property** C25/30 $$f_{cd} = \frac{0.85*25}{1.5} = 14.1667 Mpaf_{ctm} = 2.6 mpa$$ $$S400f_{yd} = \frac{400}{1.15} = 347.826 Mpa$$ # **Step 2: Depth determination** Assumption: - Slab is lightly reinforced (ho=0.5~%) $$\rho_o = \sqrt{f_{ck}} * 10^{-3} = 5 * 10^{-3}$$ For $$\rho \le \rho_o \frac{l}{d} = K \left[11 + 1.5 \sqrt{f_{ck}} \frac{\rho_o}{\rho} + 3.2 \sqrt{f_{ck}} \left(\frac{\rho_o}{\rho} - 1 \right)^{3/2} \right]$$ Panel 1& 2 - End span of two way slab From Table 7.4 N K=1.3 $$\frac{l}{d} = 24.05$$ because we used S400 multiply the value by $\frac{500}{f_{yk}} = 1.25$ $\frac{l}{d} = 24.05 * 1.25 = 30.0625$ $l = l_x = 5000 \ mm$ $d = 166.320 \ mm$ Panel 3& 4 - Interior span K=1.5 $$\frac{l}{d} = 27.75$$ because we used S400 multiply the value by $\frac{500}{f_{yk}} = 1.25$ $\frac{l}{d} = 27.75 * 1.25 = 34.6875$ $l = l_x = 4000 \ mm$ $d = 115.315 \ mm$ Cantilever $$K = 0.4$$ $$\frac{l}{d} = 0.4[11 + 1.5\sqrt{5}] * \frac{500}{400} \qquad d = 129.729 \, mm$$ Governing depth is from panel 1 and panel 2. Using $$\emptyset$$ 10 and cover 25 mmH = 166.320 + 25 + $\frac{10}{2}$ = 196.32 Use H = 200 mm ## Step 3: Loading #### · Permanent load | Floor finish | $20*10^{-3}*27$ | $0.54 \frac{KN}{m^2}$ | |--------------------|----------------------------|--------------------------------| | Cement screed | 30 * 10 ⁻³ * 23 | $0.69 \frac{KN}{m^2}$ | | RC slab | $200 * 10^{-3} * 25$ | $5 \frac{KN}{m^2}$ | | Plastering | $15 * 10^{-3} * 25$ | $0.375 \frac{KN}{m^2}$ | | Load from paretion | | $2^{KN}/m^2$ | | | | $G_k = 8.605 \ \frac{KN}{m^2}$ | ### Variable Loading For office $$Q_k$$ from 2 to 3 $^{KN}/_{m^2}$ take $Q_k = 3 {^{KN}}/_{m^2}$ ### Design load for the slab $$P_d = 1.35 DL + 1.5 LL = 1.35 * 8.605 + 1.5 * 3 = 16.116 \frac{KN}{m^2}$$ Parapet wall on the cantilever Using 20 cm HCB with height of 1.5 m $P_{d,par} = 1.35(0.2 * 1.5 * 23) = 9.315 \, KN$ ### Step 4: Analysis NB panel 3 & 4 are assumed to be simply supported at the intersection between the panel and cantilever. $$M_{sx} = \beta_{sx}q l_x^2 M_{sy} = \beta_{sy}q l_x^2$$ $q = 16.116 \ KN/_{m^2}$ | Р | Ту | l_y | l_x | l_y | $\beta_{sx,sup}$ | $\beta_{sx,span}$ | $\beta_{sy,sup}$ | $\beta_{sy,span}$ | $M_{sx,sup}$ | $M_{sx,spa}$ | $M_{sy,sup}$ | $M_{sy,span}$ | |---|----|-------|-------|-------|------------------|-------------------|------------------|-------------------|--------------|--------------|--------------|---------------| | | pe | | | l_x | | | | | | | | | | 1 | * | 6 | 5 | 1.1 | 0.063 | 0.047 | 0.045 | 0.034 | 25.383 | 18.93 | 18.131 | 13.699 | | 2 | * | 5 | 5 | 1 | 0.047 | 0.036 | 0.045 | 0.034 | 18.937 | 14.505 | 18.131 | 13.699 | | 3 | * | 6 | 4 | 1.5 | 0.078 | 0.059 | 0.045 | 0.034 | 20.113 | 15.214 | 11.604 | 8.767 | | 4 | * | 5 | 4 | 1.2 | 0.066 | 0.049 | 0.045 | 0.034 | 17.019 | 12.639 | 11.604 | 8.767 | | | | | | 5 | | | | | | | | | [&]quot;*" = adjacent side discontinues ### Cantilever Taking 1 m strip 9.315 KN Step 5: Adjust the unequal edge moment • Between Panel 1 and panel 3 Change = $\frac{25.383-20.1137}{20.1137} * 100 = 26.197\% > 10\%$ use moment distribution | | Member | Stiffness | ` | D.F | |---------|--------|---------------|---------------|-------| | Joint B | BA | <u>I</u>
5 | 0.45 <i>I</i> | 0.444 | | | ВС | $\frac{I}{4}$ | | 0.556 | | | В | | | |-----|---------|----------|--| | D.F | 0.444 | 0.556 | | | | 25.383 | -20.1137 | | | | -3.339 | -2.929 | | | | -23.043 | -23.043 | | Adjusted support moment is $23.043 \ KNM/m$ ### Span moment on panel 1 $$M_1 = (25.383 + 18.937) - 23.043 = 21.277 \ KNm/m$$ ### Span moment on panel 3 $$M_3 = (20.1137 + 15.214) - 23.043 = 12.2847 \ KNm/m$$ ### • Between Panel 2 and panel 4 $$Change = \frac{18.937 - 17.019}{17.019} * 100 = 11.219\% > 10\%$$ use moment distribution | | Member | Stiffness | ` | D.F | |---------|--------|--------------------|---------------|-------| | Joint B | BA | <u>I</u> 5 | 0.45 <i>I</i> | 0.444 | | | ВС | $\frac{I}{\Delta}$ | | 0.556 | | | В | | | |-----|---------|---------|--| | D.F | 0.444 | 0.556 | | | | 18.937 | -17.019 | | | | -0.8515 | -1.0664 | | | | 18.085 | -18.085 | | Adjusted support moment is $18.085 \ KNM/_m$ ### Span moment on panel 2 $$M_2 = (18.937 + 14.505) - 18.085 = 15.396 \frac{KNm}{m}$$ ### Span moment on panel 4 $$M_4 = (17.019 + 12.684) - 18.085 = 11.573 \, \frac{KNm}{m}$$ The adjusted design moment is given below **Step: 6 Design for flexure** $$d = 200 - 25 - \frac{10}{2} = 170 \ mmd_2 = 200 - 25 - 10 - \frac{10}{2} = 160 \ mm$$ $$a_s = 78.5 \ mm^2 f_{cd} = 14.1667 \ mpa \quad f_{yd} = 347.826 \ mpa$$ $$A_{s,min} = 0.26 * \frac{f_{ctm}}{f_{yk}} b_t d > 0.013 b_t d = 287.3 \ mm^2$$ $$S_{min} = \frac{b * a_s}{A_s} = \frac{1000 * 78.5}{287.3} = 273.372 \ mm$$ $$Use \ \emptyset \ 10 \ C | C \ 270 \ mm$$ $$S_{max} = \begin{cases} 3h \\ 400 \end{cases} = 400 \ mm$$ | M_{sd} | d | μ | K_z | Z | A_{s} | Spacing | Spacing prov | |----------|-----|--------|-------|--------|---------|---------|--------------| | 13.699 | 160 | 0.0377 | 0.978 | 156.48 | 251.691 | 312.048 | Ø10 C C 270 | | 21.277 | 170 | 0.0519 | 0.971 | 165.07 | 370.578 | 211.83 | Ø10 C C 210 | | 15.356 | 170 | 0.0375 | 0.978 | 166.26 | 265.538 | 295.625 | Ø10 C C 270 | | 12.2847 | 160 | 0.0338 | 0.977 | 156.32 | 225.937 | 347.44 | Ø10 C C 270 | | 11.573 | 170 | | | | | | Ø10 C C 270 | | 8.767 | 160 | | | | | | Ø10 C C 270 | | 18.131 | 170 | 0.044 | 0.973 | 165.41 | 315.136 | 249.09 | Ø10 C C 240 | | 23.043 | 170 | 0.056 | 0.969 | 164.73 | 402.165 | 195.193 | Ø10 C C 190 | | 18.085 | 170 | 0.044 | 0.973 | 165.41 | 314.336 | 249.732 | Ø10 C C 240 | | 11.604 | 170 | | | | | | Ø10 C C 270 | | 22.782 | 170 | 0.0556 | 0.969 | 164.73 | 397.609 | 197.429 | Ø10 C C 190 | Secondary reinforcement = 20% As main = $0.2*197.429=39.4854~mm^2$ Provide Ø10~C|C~270 # Step 7: Check shear capacity of the slab $$V_{RD,C} = \left[C_{RD,C} * K(100\rho f_{ck})^{\frac{1}{3}} + K_1 \sigma_{CP} \right] b_w d > (V_{min} + K_1 \sigma_{CP}) b_w d$$ $$C_{RD,C} = \frac{0.18}{\gamma_C} = 0.12 \qquad K1 = 0.15$$ $$V_{min} = 0.035 K^{\frac{3}{2}} f_{ck}^{\frac{1}{2}}$$ $$K = 1 + \sqrt{\frac{200}{d}} \le 2 \qquad K = 2$$ Taking minimum reinforcement Ø10 C | C 270 $\rho = \frac{A_s}{b_w d} = 1.7102*10^{-3}$ $$\sigma_{CP} = \frac{N_{ed}}{A_c} < 0.2 f_{cd} = 0$$ Taking one meter strip B=1000 mm and d=170 mm $$V_{RD,c} = 84.146 \, KN$$ #### Maximum acting shear Assuming the beam width to be 200 mm $$V_{sd} = P_d(0.5l_n-d)b_w$$ $$p_d = 16.116 \ ^{KN}/_{m^2}l_n = 5-0.2 = 4.8 \ m \quad taking \ unit \ meter \ width$$ $$V_{sd} = 16.116(0.5(4.8) - 0.17) * 1$$ $$V_{sd} = 35.940 \ KN$$ $$V_{RD,C} > V_{sd}$$ The seection is adequte **Step 8: Detailing** - (1) Ø10 c/c 210 mm - \bigcirc 910 c/c 270 mm - $\left(\begin{array}{c}3\end{array}\right)$ Ø10 c/c 270 mm - $\begin{pmatrix} 4 \end{pmatrix}$ $\emptyset 10 \ c/c \ 270 \ mm$ - (5) Ø10 c/c 240 mm - \emptyset 10 c/c 190 mm - $\sqrt{7}$ Ø10 c/c 240 mm - (8) Ø10 c/c 270 mm - 9 Ø10 c/c 190 mm - \bigcirc 10 c/c 270 mm # Step 9: Load transfer to beam To consider pattern loading, load is transferred separately for dead and live load cases. Factored dead load = $$1.35 * 8.605 = 11.61675 \ ^{KN}/_{m^2}$$ Factored live load = $1.5 * 3 = 4.5 \ ^{KN}/_{m^2}$ factored load on the parapet wall = $9.315 \ KN$ $$V_i = \beta_{vi} q_i l_x$$ #### Case 1 Dead load $$q_i = 11.61675 \ \frac{KN}{m^2}$$ | Р | Ту | l_y | l_x | l_y | $\beta_{vx,c}$ | $\beta_{vx,d}$ | $\beta_{vy,c}$ | $\beta_{vy,d}$ | $V_{x,c}$ | $V_{x,d}$ | V_{yc} | V_{yd} | |---|----|-------|-------|-------|----------------|----------------|----------------|----------------|-----------|-----------|----------|----------| | | pe | | | l_x | | | | | | | | | | 1 | * | 6 | 5 | 1.1 | 0.47 | 0.31 | 0.4 | 0.26 | 27.299 | 18.006 | 23.23 | 15.102 | | 2 | * | 5 | 5 | 1 | 0.4 | 0.26 | 0.4 | 0.26 | 23.23 | 15.102 | 23.23 | 15.102 | | 3 | * | 6 | 4 | 1.5 | 0.54 | 0.35 | 0.4 | 0.26 | 25.092 | 16.263 | 18.58 | 12.081 | | 4 | * | 5 | 4 | 1.2 | 0.485 | 0.32 | 0.4 | 0.26 | 22.536 | 14.87 | 18.58 | 12.081 | | | | | | 5 | | | | | | | | | #### Case 2 Live load $$q_i = 4.5 \ \frac{KN}{m^2}$$ | Р | Ту | l_y | l_x | l_y | $\beta_{vx,c}$ | $\beta_{vx,d}$ | $\beta_{vy,c}$ | $\beta_{vy,d}$ | $V_{x,c}$ | $V_{x,d}$ | V_{yc} | V_{yd} | |---|----|-------|-------|------------------|----------------|----------------|----------------|----------------|-----------|-----------|----------|----------| | | pe | | | $\overline{l_x}$ | | | | | | | | | | 1 | * | 6 | 5 | 1.1 | 0.47 | 0.31 | 0.4 | 0.26 | 10.575 | 6.975 | 9 | 5.85 | | 2 | * | 5 | 5 | 1 | 0.4 | 0.26 | 0.4 | 0.26 | 9 | 5.85 | 9 | 5.85 | | 3 | * | 6 | 4 | 1.5 | 0.54 | 0.35 | 0.4 | 0.26 | 9.72 | 6.3 | 7.2 | 4.68 | | 4 | * | 5 | 4 | 1.2 | 0.485 | 0.32 | 0.4 | 0.26 | 8.73 | 5.76 | 7.2 | 4.68 | | | | | | 5 | | | | | | | | | Load transfer on the cantilever part Dead load case only $V = 23.2551 \, KN$ Live load case only $V = 5.4 \ KN$ ### Load on beam due to dead load only ### Load on beam due to live load only ### Loading on beam - Load from slab - partition load directly supported on the beam - Own weight of the beam - For this particular case without partition load on beam and excluding the selfweight #### The load on axis 2 will be Maximum span moment at AB ### Maximum span moment at BC ### Maximum support moment at B