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Preface 

Over the last two decades, exploitation of the United Kingdom's offshore 
oil and gas reserves has prompted a substantial level of research activity in 
marine technology. This work has been directed towards the development 
of offshore structures designed to provide cost-effective platforms for 
operation in the hostile ocean environment found on the United Kingdom 
continental shelf. 

A common element of many of the offshore structures being developed 
for application in the North Sea and other offshore locations is that they 
exhibit some degree of compliance to ameliorate the effects of wave 
loading and to reduce structural weight and cost. The compliant nature of 
these structures, through their capabihty to deform significantly due to 
wave action and mooring loads, means that structural dynamics plays an 
important role in their operational behaviour. Examples of compliant 
structures range from floating production systems, crane vessels and 
offshore work vessels to articulated tower type loading buoys, guyed 
towers and tensioned buoyant platforms. 

An unusual feature of research and development in the offshore industry 
over the last two decades has been the fact that designs with substantial 
innovative features have been seriously researched and those with suffi­
cient technical merit have mostly found an application. A leading example 
of this is the Hut ton tensioned buoyant platform, but other examples are 
crane vessels with pneumatic compliance and hybrid floating production 
systems based on articulated joints between compliant bottom-emplaced 
towers and floating vessels. This close collaboration between technological 
development and practical application provides stimulating and rewarding 
challenges for the engineers involved in both the background research and 
in the construction, installation and operation phases of development. It is 
hoped that the contents of this book will convey to the reader some of the 
fascinating technical problems that are being encountered and solved. 
There is every indication that the kind of technology developments 
outlined above wih continue and indeed increase in intensity over the next 
two decades. 

The authors feel that it is timely, therefore, that some of the develop­
ments in the analysis of compliant structures over the last two decades are 
brought together in a single text book. Most of the material described has 
originated from work carried out in the Depar tment of Mechanical 
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Engineering at University College London (UCL) . This Depar tment , in 
association with the Depar tment of Civil Engineering at U C L and Imperial 
College of Science and Technology, has worked since 1978 within the 
London Centre of Marine Technology. The Centre has been financially 
supported by the United Kingdom government, its Depar tment of Energy 
and consortia of oil companies and offshore contractors to carry out work 
on the structural, hydrodynamic and material aspects of offshore struc­
tures. This book presents some aspects of the mechanics of compliant 
structures researched by one small group within the London Centre . The 
London Centre has also been engaged in other relevant research work on 
compliant structures which has not been presented in this book. 

The first four chapters of the book present an account of the various 
conventional and newly emerging methods of hydrostatic and hydrodyna­
mic analysis that are available for characterizing compliant marine struc­
tures. This is followed by the use of the analysis methods for a variety of 
conventional and novel comphant structures. Semisubmersibles, ship 
forms, tensioned buoyant platforms, crane vessels and vertical marine 
risers are considered among the conventional structures. However , more 
attention is focused on those newer compliant structures which are 
believed to have a future application or, alternatively, are useful in 
illustrating an interesting performance feature. Among such structures are 
those with articulated joints, pneumatic comphances and tandem hull 
marine vehicles. 

It is important to point out that this list of structures is by no means 
complete, but is, firstly, representative of promising compliant structure 
types and, secondly, consists of structures which the authors and colleagues 
have researched at University College London. The majority of the 
material presented in this book is concerned with analysis methods for 
determining the hydrostatic and hydrodynamic behaviour, at wave fre­
quencies only, of conventional and novel compliant structure types. The 
contribution of hull configuration for tandem hull vessels and of pneumatic 
compliances for ship shape and semisubmersible vessels has also been 
emphasized. On the other hand, the treatment of second order wave forces 
and structural behaviour has been left out entirely, although much 
excellent work has been carried out on the former at the London Centre by 
Professor Rodney Eatock-Taylor (now at the Depar tment of Engineering 
Science, Oxford University) and his research group. 

This text book is aimed at a range of readers from second- and third-year 
undergraduates in Mechanical Engineering as well as Naval Architecture 
and Ocean Engineering, and postgraduates reading for Masters ' degrees 
and carrying out research. However, care has been taken to ensure that the 
book contains additional material of interest to practising engineers who, it 
is believed, have a need for a text which brings together analysis methods 
and their implementation for a range of conventional and novel compliant 
marine structures. 

The authors have many acknowledgements to make to all the colleagues 
who have contributed to the research and technical developments 
described in this book. First among these are our research colleagues Dr D 
Τ Brown, Dr G J Lyons, Dr F Β Seyed, Dr J Η Harrison and Mr Β A 
Hogan. Many other former colleagues have also contributed to developing 
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the analysis methods and model testing described in the book; among these 
are Dr Ε R Jefferys and Mr Ε O Lynch. Our thanks also go to Professor Τ 
Η Lambert for his guidance over the years and to Professor R Eatock-
Taylor for his steady support and encouragement of our work. A special 
acknowledgement must also be made to the late Mr Μ Adye of the Marine 
Technology Directorate whose ideas for joint industry and government 
funded research on compliant structures contributed in some part to the 
success of the research on which this book is based. FinaUy, the authors 
wish to acknowledge the efforts made by Mrs V Clark, Miss S Collins and 
Mr Κ Pickering in the typing and preparation of the manuscript, and of 
Mrs J Pilbeam in the preparation of the Figures. It should be noted that the 
upright symbols used in the Figures are printed in italics in the text in order 
to improve presentation and readability. 

Minoo Η Patel 
Joel A Witz 
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Introduction 

The introduction of a compUant mechanism into an engineering structure 
serves two purposes. It provides the structure with a degree of mobihty and 
it provides a means to alleviate destructive loads. T o illustrate the point, 
take the example of alternative forms of the jetty or landing pier. One form 
consists of a rigid structure fabricated out of a framework of supporting 
members and piles. This structure must react all the environmental forces. 
An alternative form consists of floating pontoons which yield to the 
changing water levels and wave induced fluid motions. This compliance 
ensures a simple and inexpensive structure. 

The first compliant marine structures, ships, are almost as old as human 
civilization itself. Man's development has been closely entwined with the 
use of ships for fishing, transportation, t rade, exploration and warfare. As 
these maritime activities developed, the skills associated with ship design 
and construction came to encompass an understanding of the use of hull 
form, and methods of propulsion and materials to achieve acceptable 
performance. 

The compliance in a ship rests within its ability to ride the continuously 
moving ocean surface through its rigid body motions. Thus, the hull of a 
ship is essentially rigid where structural flexibilities generate deflections 
which are orders of magnitude less than the motions of the vessel in waves. 
Over the last century, the crafts of ship design and construction have been 
supplemented by the science of naval architecture which has laid a 
mathematical and experimental foundation for ship design. This has led to 
the development of a wide variety of marine vehicles. 

However, recent scientific advances suggest that incorporating comp­
liance into a marine vehicle can yield substantial performance advantages 
to the designer. The required compliance can be defined as a means of 
incorporating a deliberate flexibility in the submerged volume of the 
structure through structural articulations or interactions with t rapped air 
volumes, or by other means such that the vessel's submerged shape alters 
in reaction to wave forces and vessel motions. Thus , a compliant vessel, 
unlike its rigid counterpart , can undergo 'structural ' deformations which 
are of the same order of magnitude as vessel motions in waves or the wave 
fluid motions themselves. This consideration of compliance begins to draw 
man made marine vehicles closer to those developed by nature through the 
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evolution of marine life which uses compHance in satisfying the needs for 
locomotion and structural efficiency. 

The use of compliance in man made marine systems has been most 
thoroughly investigated during the development of wave energy devices 
where the need for a power take off requires that wave forces be associated 
with some prescribed wave induced relative motion between two parts of a 
wave energy device. Count (1978, 1980) and Evans (1982) present details 
of key aspects of wave energy machines, whereas Salter (1974) gives an 
overall description of one such device called a Salter duck. 

The requirements of the offshore oil and gas industry are promoting 
exploration drilling and hydrocarbon production operations in progress­
ively deeper and more hostile waters. These requirements need to be met 
by more efficient marine vehicles designed to satisfy hitherto unusual 
performance demands. In this context, compUant marine vehicles are 
being researched and engineered into systems which offer significantly 
better performance than rigid alternatives. 

The purpose of any compliant marine structure is to satisfy a specific 
functional requirement. This functional requirement will include social, 
economic and environmental factors as well as technical factors. The 
general design principles for compHant marine structures must embody the 
goal of finding the optimum solution to the functional requirement . The 
structure and all its subsystems must satisfy the highest standards of safety 
and reliability. A compliant marine structure must survive extreme wave, 
wind and current conditions associated with its design life. All potential 
failure modes must be identified, together with their probabiUty of 
occurrence. The consequences of failure also need to be examined. 

Compliant marine structures are complex systems consisting of a number 
of subsystems which closely interact with each other. The designer must be 
aware of all the interacting subsystems and the effect that each subsystem 
has on the design. The general design principles for compUant marine 
structures are addressed below. 

The compliant marine structure is a working platform which must 
support all envisaged payload requirements. A significant proport ion of 
the weight of the structure will be fixed during its design life. This weight 
will consist of primary and secondary structural weight, together with plant 
weight. The structure must also support the range of variable loads 
anticipated in its working Ufe. The designer must foresee all potential 
weight variations during the structure's design life and i n c o φ o r a t e these 
weight variations into the design. This procedure will often dictate the 
general overall dimensions of the structure. These dimensions will require 
further optimization during the design cycle. 

Many compliant marine structures utilize buoyancy of the submerged 
hull to support the payload. Hydrostatics, therefore, is a fundamental 
design consideration. The buoyancy and hydrostatic stability requirements 
often determine vessel dimensions. The vessel must have adequate hy­
drostatic characteristics to remain afloat and, also, it must have sufficient 
hydrostatic stability to prevent capsize. Damage considerations are impor­
tant. The compliant marine structure may be damaged by collision, 
explosion, fire or accidental flooding. In its damaged condition, the 
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1 .1 Historical development 

This century has seen rapid growth in the exploration of the oceans, 
particularly in the search for hydrocarbons. In the last two-and-a-half 
decades, the demands for the offshore oil and gas industry have been met 
with a number of different types of marine structure. Some of these 
structures have been rigid, but , as exploration has moved into modera te to 
large water depths and more hostile environmental conditions, compliant 
marine structures in the form of drill ships and semisubmersibles have been 
utilized. Hydrocarbon production is still dominated by the use of fixed 
structures. 

The oil industry began its move offshore in the late 1940s. The first 
offshore operations were in the United States where a gradual move was 
made from the swamps and marsh lands of Louisiana into the Gulf of 
Mexico. Exploration in shallow waters 20 m) was carried out from 
submersible drilling units which were floated onto location and then 
ballasted to rest on the sea bed. Experience obtained with submersible 
ballasting operations and the requirement for exploration in deeper waters 
led to the development of the semisubmersible. 

One of the earliest semisubmersibles was the Blue Water I which was 
converted in 1961 from a submersible by adding vertical columns for 
flotation. Blue Water I started drilling off Louisiana in 90 m of water in 
1962. The semisubmersible had arrived. This type of vessel has seen 
considerable development since then but has maintained its essential form. 
Figure 1.1 illustrates the evolution of the semisubmersible. 

The 1960s also saw the emergence of the drill ship. As the name implies, 
it is simply a monohull vessel used for drilHng purposes. The early drill 
ships were usually converted from barges, ore carriers, tankers or supply 
vessels. Drill ships are the most mobile of all drilling units but they are the 

Structure must have adequate buoyancy and hydrostatic stabihty to prevent 
capsize in the prevaiUng sea state. 

Station keeping is an important consideration in the design of a 
compHant marine structure. The mooring system must be able to maintain 
the structure on location within specified limits for all sea states. The 
mooring system must have sufficient redundancy so that failure of a 
mooring system component does not result in a significant deterioration of 
station keeping ability. 

Wave induced motions are also fundamental to the successful operation 
of a compliant marine structure. The designer must optimize the dynamic 
response of the structure to waves in order to maximize operability and 
minimize structural loads. It is the responsibihty of the designer to ensure 
that structural integrity is always maintained. A major problem for most 
marine structures is significant levels of cyclic fatigue damage associated 
with oscillatory wave loading. The designer must address this issue. 

The above considerations are representative of some of the challenges 
faced by designers of compliant marine structures. Design is an iterative 
procedure. Hopefully the process converges to an opt imum solution. 
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Figure 1.1. The evolution of the semisubmersible 
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Figure 1.2. Drill ship with turret mooring 

The needs of hydrocarbon production differ from those of exploration 
drilling. Hydrocarbon production requires a stable platform which must be 
able to carry large amounts of development drilling and oil processing 
equipment along with support and maintenance services. These require­
ments have been satisfied with the development of the fixed jacket 
structure. A typical fixed offshore drilhng and production platform is 
illustrated in Figure 1.3. 

Fixed marine structures have evolved considerably from the early t imber 
frame constructions located in a few metres ' water depth to the steel 
structures sited in hostile environments with water depths in the region of 
200 m. The largest water depth to date for a fixed jacket structure is 412 m. 
This is the Bullwinkle platform in the Gulf of Mexico. 

However, hydrocarbon reservoir size and characteristics as well as 
location and water depth raise technical and economic constraints for the 
feasibility of utilizing fixed platforms. This has led to increased interest in 
using floating production systems for the exploitation of offshore oil and 

least productive because of their relatively poor sea keeping character­
istics. One important development associated with the drill ship is the 
concept of the turret mooring system. This system allows the vessel to 
weather vane. Figure 1.2 shows a typical drill ship with a turret mooring. 
Despite their poor sea keeping characteristics, drill ships are still used 
because of their mobility and high payload capacity. Advances in dynamic 
positioning systems have allowed drill ships to work in deep waters without 
a conventional mooring spread. 
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Figure 1.3. Typical offshore drilling and production platform. Key: a - jacket; b - module 
support frame; c - piles; d - drilling derrick; e - helicopter pad; f - drilling and production 
equipment; g - flare stack; h - survival craft; i - revolving cranes; j - pile guides; k - pile 
sleeves; 1 - drilling and production risers; m - export pipes; η - accommodation 

gas fields. Many oilfield developments have used tankers for oil storage 
and export , but with production facilities installed on fixed platforms. 

The first floating production system came on stream in June 1975 at the 
Argyll Field in the U K sector of the North Sea. This system consisted of a 
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Figure 1.4. Initial Argyll field development concept (Blair and Smith, 1988). Key. 
a - Transworld 58 semisubmersible; b - catenary anchor leg mooring buoy; c - loading 
hose; d - hard pipe riser system; e - 12" flexible riser; f - pipeline end module; g - 10" 
export pipeline; h - Argyll base manifold and mass anchor; i - 4" subsea flowline; 
j - subsea tree 

Several oilfield developments have used a combination of fixed and 
floating production facilities. An example of this approach is the Hondo 
Field in California's Santa Barbara Channel . The Hondo Field develop­
ment includes one of the deepest single anchor leg moorings (SALMs) in 
the world in over 150 m of water. The SALM is made up of a piled base; a 
double articulated riser (consisting of an upper buoy body and a lower riser 
section); a triaxial joint joining the yoke to the buoy and a truss type yoke 
which is hinged to the ship. The terminal moors a 50 000 t deadweight 
storage and process tanker which receives, processes and stores raw crude 
from the Hondo platform via the SALM terminal piping. The Hondo field 
development is shown in Figure 1.5. 

The introduction of articulations into a marine structure has led to the 
development of the Lena guyed tower which was installed in 1983 in over 
300 m water depth offshore Louisiana, U S A - see Boening and Howell 
(1984). The guyed tower is similar in structure to a fixed jacket structure 
but is allowed to rock about its base to give significant horizontal 
deflections at deck level. These horizontal deflections are restrained by guy 
lines designed to have differing stiffness responses in operating and 
extreme weather conditions. The Lena guyed tower is shown in Figure 1.6. 

The early 1970s saw considerable interest in the tensioned buoyant 
platform concept, or the tension leg platform as it is otherwise known. This 
concept involves a buoyant surface platform which is held in position by 

semisubmersible production unit with oil export using shuttle tankers via a 
single point mooring. Figure 1.4 illustrates the Argyll Field development. 
This early development has provided considerable experience in operating 
floating production systems (Blair and Smith, 1988). 
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Figure 1.5. Hondo field development {Offshore Engineer, 1986). Key. a - pipelines; 
b - power cable; c - single anchor leg mooring; d - offshore storage and treatment vessel; 
e - shuttle tanker; f - gas pipeline 

Figure 1.6. Typical guyed tower. Key. a - tower; b - guylines; c - clump weight; 
d - fairleads; e - foundation; f - guyline terminations; g - platform deck 



Types of structures 9 

Figure 1.7. Deep Oil X-1 TLP (Horton, 1975). Key: a - anchor position for tow; b - test 
riser; c - template 

The first oil producing tension leg platform for hydrocarbon production 
came into operation in 1984 in the North Sea (Mercier, 1982) and can be 
regarded as a direct descendant of the Deep Oil X-L The platform is 
located on the Hut ton Field in 147 m of water. The displacement of the 
Hut ton tension leg platform is 63 300 t at its operating draught of 33.2 m. 
This platform is illustrated in Figure 6 .1 . 

Table 1.1 presents an overview of the many other floating production 
platforms that are in operation or under development. 

1.2 Types of structures 

The wide variety of compliant marine structures is remarkable . New ideas 
and developments seem to appear every day. There are , however, general 
classes of compliant marine structures. These are as follows: 

(a) semisubmersibles; 
(b) tensioned buoyant platforms; 

tensioned tethers. The platform's vertical motions are restrained by the 
tethers while the platform is compliant in its horizontal degrees · of 
freedom. A sea-test programme of a test tension leg platform was carried 
out in 1975 by Deep Oil Technology, Inc. on behalf of a consortium of oil 
company sponsors (Horton, 1975), The tension leg platform was on station 
for a three-month period in 60 m water depth on the seaward side of Santa 
Catalina Island, offshore California. This test tension leg platform with an 
operating displacement of 645 t was designated the Deep Oil ΧΊ and is 
shown in Figure 1.7. 
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Table 1.1 The world's floating production systems in order of on-stream date* 

On- Water Max 
Field Country Operator stream depth wave Production unit Mooring system DiagA 

Argyll UK Hamihon Jun75 79 m 25 m Conv. semi-TW58 Anchor spread D 
Casablanca Spain (Med) Eniepsa Feb 77 161 m 16 m Conv. semi Anchor spread Ε 
Castellón Spain (Med) Shell Aug 77 117 m 16 m Conv. tanker Leg. buoyant yoke Β 
Enchova Brazil Petrobras Aug 77 190 m 15 m Conv. semi-Penrod 71 Anchor spread Ε 
Dorada Spain (Med) Eniepsa May 78 93 m 13 m Conv. semi-Sedco 1 Anchor spread D 
Garoupa Brazil Petrobras Feb 79 118 m 15 m Conv. tanker-P.P. Moraes Buoyant single leg C 

Nilde Italy Agip Sept 80 95 m 18 m Conv. tanker Leg. buoyant yoke Β 
Garoupinha Brazil Petrobras Nov 80 120 m 15 m Conv. semi-Sedco 135F Anchor spread Ε 
S. Pampo Brazil Petrobras Dec 80 120 m 15 m Conv. semi-Sedco Staflo Anchor spread Ε 

Hondo US (Calif) Exxon Apr 81 151 m 13 m Conv. tanker Buoyant single leg C 
Buchan UK BP May 81 117 m 27 m Conv. semi Anchor spread D 
Cadlao Philippines Amoco Aug 81 97 m 17 m Conv. tanker Calm yoke A 
Linguado Brazil Petrobras Dec 81 100 m 15 m Conv. semi-Petrobras 12 Anchor spread Ε 

Bicudo Brazil Petrobras Feb 82 145 m 15 m Conv. semi-Sedco 135D Anchor spread Ε 
Tazerka Tunisia Shell Nov 82 145 m 10 m Conv. tanker Leg. buoyant yoke Β 

Corvina Brazil Petrobras Aug 83 226 m 15 m Conv. semi-Petrobras 14 Anchor spread Ε 
Pirauna Brazil Petrobras Dec 83 244 m 15 m Conv. semi-Petrobras 15 Anchor spread Ε 

Trilha Brazil Petrobras Jun84 105 m 15 m Conv. semi-Tr^sworld 61 Anchor spread Ε 
Duncan/Argyll UK Hamilton Nov 84 79 m 25 m Conv. semi-Deepsea Pion. Anchor spread D 
Parati Brazil Petrobras Dec 84 107 m 15 m Conv. semi-Pentagone 81 Anchor spread Ε 
Viola Brazil Petrobras Dec 84 127 m 15 m Conv. semi-Ocean Zephyr Anchor spread Ε 

Innes UK Hamilton Jan 85 78 m 25 m Conv. semi-Transworld 58 Anchor spread D 
Geisum Egypt (G.Suez) Conoco Nov 85 45 m 6 m Conv. tanker Anchor spread F 
Mila Italy (Sicily) Montedison Dec 85 55 m 14 m Conv. tanker-Acqua Blu Calm yoke Α 

Akam Nigeria Ashland Jan 86 42 m 10 m Conv. tanker Fixed jacket G 
Kakap Indonesia Marathon Apr 86 85m 11 m Conv. tanker Calm yoke Α 
White Tiger Vietnam Sudoimport - 55 m 16 m Conv. tanker Calm yoke Α 
Kepiting Indonesia Conoco Jun 86 90m 12 m New barge Anchor spread F 
Jabirú Aust. (Timor S.) BHP July 86 119 m 16 m Conv. tanker Buoyant riser C 
Weizhou China Total Mid 86 37 m 19 m Conv. tanker Fixed tower (EMH) G 
Petrojarl Norway For N. Hydro Sept 86 110 m 29 m New ship Turret & dp F 

Balmoral UK Sun Oil Feb 87 143 m 29 m New semi Anchor spread Ε 
Green Canyon US (G. Mex.) Placid Mid 87 500 m 22 m Conv. semi-Penrod 72 Anchor spread Ε 
Swops/Cyrus UK BP Mid 87 112 m 29 m New ship dp F 
Bohai China JCODC Late 87 23 m 10 m New barge Fixed tower G 

Ivanhoe UK Amerada Aug 88 125 m 28 m Conv. semi-Sedco SS? Anchor spread Ε 

Snorre Norway Saga 1989 350 m 31 m Conv. tanker? _ 

Emerald UK Sovereign 1989 150 m 31 m Conv. semi? 
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Storage 
Riser Oil transport Eng. contr. Tanker Wells Oil capy. (bbls) Remarks Field Oil transport Eng. contr. 

dm 

Rigid Shuttle, spm 7 40 000b/d £125mn project. TW58 moves 84 (see Duncan). Argyll 
Flex Shuttle/pipe - 2 20 000 b/d - Bideford Dolphin to May 78, then Afortunada. Casablanca 
Rex Shuttle, side SBM Inc 60 000t 2 20 000 b/d 350 000 £32mn project. Linked bars leg, clamped riser. Castellón 
Rex Shuttle, spm _ 11 60 000 b/d - Started with one well and built up. Enchova 
Rigid Shuttle, direct - 3 20 000 b/d - Was extended well test, to Dec 85. Dorada 
Rex Shuttle, spm Canocean 55 000 t 6 50 000 b/d 350 000 Now replaced by platform. Garoupa 

Rigid Shuttle, side SBM 84 000t 1 20 000 b/d 550 000 Nilde 
Rig/Flex Shuttle - 3 10 000 b/d - Garoupinha 
Rig^Hex Shuttle, spm - 4 40 000 b/d - S. Pampo 

Rigid Shuttle Imodco 50 000t 37 000 b/d 250 000 Limited processing on vessel. Wells at jacket. Hondo 
Rigid Spm (pipe 87) - 8 72 000 b/d - £280mn project. Buchan 
Rex Shuttle, tandem SBM 127 000 t 2 30 000 b/d 72 000 Leased system. Steep S riser. Cadlao 
Rig/Flex Shuttle, spm - 10 40 000 b/d - Linguado 

Rig/Flex Shuttle, spm 5 20 000 b/d Platform replacing soon. Bicudo 
Rigid Shuttle, side SBM 210 000 t 8 30 000 b/d $190mn project. High pressure swivel Tazerka 

Rig/Flex Shuttle, spm 6 40 000 b/d Corvina 
Rex Shuttle, spm 8 30 000 b/d Deepest subsea well is 383m. Pirauna 

Rig/Flex Shuttle, spm 4 10 000 b/d Trilha 
Rig/Flex Shuttle, spm RJBA - 11 70 000 b/d - £110mn project. Rex riser for water (60,000b/d). Duncan/Argyll 
Rig/Rex Shuttle - 6 20 000 b/d - Parati 
Rex Shuttle - 5 18 000 b/d - Viola 

Rigid Shuttle, spm RJBA 1 10 000 b/d £15mn project. Via Argyll spm. Innes 
Rex Heated shuttle Imodco 227 000 t 8 20 000 b/d 1 mn Shut in, March 86. Lazy wave riser. Geisum 
Rex Shuttle, tandem Bluewater 70 000 t 2 20 000 b/d - Leased system. Mila 

Rigid Shuttle, tandem SBM 285 000 t - 80 000 b/d 1.75 mn Two more fields to be tied in. Up to 20 wells. Akam 
Rex Shuttle, side SBMModec 140 000 t 8 22 000 b/d 55 000 Now on stream. Kakap 
Rex 150 000 t Installed. Delays in going on stream. White Tiger 
Rex Heated shuttle Comb. Eng. 2 10 000 b/d 72 000 Leased system. Kepiting 
Rex Shuttle SBM 160 000 t 1 30 000 b/d 1 mn A$60mn project. Disconnectable in cyclone. Jabirú 
Rigid Shuttle, side 174 000 t 6 30 000 b/d 600 000 Trial production. Disconnectable. Weizhou 
Rig^^lex Shuttle, tandem (Golar Nor) 52 000 t 1 30 000 b/d 190 000 Vessel cost £75mn. Operator Golar Nor. Petrojarl 

Rex Pipeline 
Rig/Flex Pipeline 
Rigid Itself 
Rigid Shuttle, side 

33 0001 19 60 000 b/d - £400mn plus project. Built-in workover. Balmoral 
24 15 000 b/d - Will gain world depth record. Green Canyon 

BP/H&W/MH 76 000 t 3 15 000 b/d 300 000 Vessel cost £110mn. Swops/Cyrus 
(Bluewater) 75 000 t 4 10 000 b/d - Disconnectable. Bohai 

Rex Pipeline Brown & Root 8 50 000 b/d - £375mn project. Ivanhoe 

- -
Global Eng. _ 

Decision July 86 on extended pilot. 
Still at conceptual stage. 

Snorre 
Emerald 

* This list is strictly limited to production; no 'storage only' floaters are included, nor is the single operational tension leg platform Hutton on it. nor other 
prospective TLPs 

t Basic layout diagrams, shown on p. 12. are generalized; for example. Hondo and Jabiro, both classed as ' C , differ markedly in reality 
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Table 1.1 (continued) 

(1 
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Figure 1.8. Typical semisubmersible vessel. Key: a - submerged pontoons; b - surface 
piercing deck support column; c - bracing members; d - mooring lines; e - anchor racks; 
f - deck structure; g - moonpool; h - accommodation; i - helicopter pad; j - drill pipe 
racks 

(c) articulated structures; 
(d) single point moorings; 
(e) monohull vessels; 
(f) multi-hull vessels. 

Each of the above classifications of compliant marine structures is briefly 
discussed below. 

Semisubmersibles are floating platforms with a geometry that is conside­
rably different from conventional ship, or monohull , forms. Such vessels 
are widely used by the offshore oil industry because of their relatively low 
wave induced motion response - a perspective view of a semisubmersible 
is shown in Figure 1.8. The low motions of a semisubmersible are a 
consequence of its hull form which consists of deeply submerged pontoons 
connected to an elevated deck by several large diameter water surface 
piercing columns together with bracing members . Thus, a large proport ion 
of the vessel's submerged volume is at a deep draught where wave 
pressures have decayed rapidly with depth. The small water plane area of a 
semisubmersible and its large submerged volume yields long natural 
periods in heave, roll and pitch. These periods are well above the range of 
periods observed for ocean gravity waves, further contributing to reduced 
motions. 
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Figure 1.9. Trendsetter Zane Barnes 

This has led to the development of passive motion suppression devices. 
One such device is in the form of open bot tom tanks which are known as 
motion suppression tanks. These tanks are attached to the vessel at the 
water line and extend some distance above and below still water level. 
Each tank is open to the sea at its base and traps a volume of air above the 
internal water level. On semisubmersibles, the tanks take the form of 
annular volumes surrounding some or all of the surface piercing columns. 

The main Hmitation of semisubmersibles is their relatively low payload 
capacity. This is primarily due to their small water plane area and large 
displacement. As a consequence semisubmersible designs often represent a 
balance between wave induced motions and payload capacity. The quest 
for the optimum compromise between heave motions and payload capacity 
has led to complex semisubmersible designs. One latest example is the 
Trendsetter class semisubmersible Zane Barnes (Allan, 1988) which has a 
central caisson and pontoons with variable cross-section, as shown in 
Figure 1.9. Nevertheless, the heave motion of a semisubmersible is still a 
significant factor in curtailing marine operations such as drilling or 
hydrocarbon production. Therefore, it is desirable to reduce heave motion 
in order to reduce the down-time of the vessel. 
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Figure 1.10. Semisubmersible with motion suppression tanks 

Figure 1.10 shows a schematic view of an annular motion suppression tank 
attached to a semisubmersible column. The t rapped air mass inside the 
tank introduces a pneumatic 'compliance' between wave action and the 
motions of the vessel. This device helps reduce wave induced motions. 

Another approach to increase the payload capacity of a semisubmersible 
while maintaining low wave induced motions is to introduce structural 
articulations into the semisubmersible's structure. This allows the vessel to 
maintain a large span and draught without the corresponding increase in 
structural weight. One such design is the articulated column semisubmer­
sible shown in Figure 9 .1 . 

The tensioned buoyant platform (or tension leg platform) has evolved 
from the semisubmersible concept. The platform structure is similar to that 
of a semisubmersible. However , the platform has excess buoyancy over 
self weight and is held in position at its operating draught by tensioned 
tethers anchored to the sea bed. Figure 6.1 shows a typical tensioned 
buoyant platform. The tensioned buoyant platform vertical motions are 
now constrained but the platform retains its compliance in the horizontal 
modes of motion. 

The articulated tower shown in Figure 1.11 is the simplest illustration of 
a compliant marine structure. The tower is connected to a subsea base by a 
universal joint which allows free movement in all vertical planes. The 
subsea base may be piled into the sea bed or be of sufficient submerged 
weight to remain stationary on the sea bed. The articulated tower is held 
upright by a level of excess buoyancy over self weight in its structure. Thus , 
the universal joint at the base coupled with an angular stiffness due to 
excess buoyancy yields a compliant structure which will tilt due to wave 
action or other horizontal forces. 

The performance advantage of an articulated tower over an equivalent 
rigid alternative arises from the fact that the tower tilts in waves, thus 
reducing wave induced surge forces on itself due to reduced relative 
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Figure 1.11. Articulated tower. Key: a - mooring yoke, universal-joint and swivels; 
b - hinge; c - universal-joint; d - base 

velocities and accelerations between the tower and surrounding wave fluid. 
The same principle resists the effects of the hawser loads due to a tanker 
moored at the tower. The overturning moment due to such hawser loads is 
balanced by a resisting moment due to the tower angular stiffness and tilt 
angle. Design of an articulated tower must, therefore, ensure that the 
natural period in tilting motion is above the range of predominant wave 
periods. This minimizes the effects of dynamic magnification in tilt motions 
and is consistent with the requirement that the tower should be as 
compliant to oscillating wave forces as possible but capable of resisting 
steady forces from tanker mooring tension, wind and current. 

A variation on the articulated tower is the guyed tower. The guyed tower 
has mooring lines which provide a restoring force, thus restraining the 
horizontal motions of the tower to a certain degree. 

Single point moorings are probably the most common type of perma­
nently installed compliant marine structures. There are numerous varia­
tions, some of which are illustrated in Figure 1.12. Many of these designs 
are currently in operation. 

Monohull vessels are often used in association with single point moor­
ings for hydrocarbon processing, storage and export. These vessels are 
usually converted tankers with the main differences being in the functional 
layout, mooring systems and propulsion. The primary advantage of using a 
monohull vessel is its high payload capacity - the principal drawback is the 
relatively high motion in moderate sea states. This is alleviated to a certain 
extent by the design of a mooring system which allows the vessel to 
weather vane, and by incorporating motion suppression devices. Figures 
1.13 and 5.2 show representative modern monohull vessels typical of those 
that can be used for well testing and hydrocarbon production in the North 
Sea. 
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Figure 1.12, Typical North Sea single point moorings. Top left - CALM (catenary anchor 
leg mooring); top centre - SPAR (single point anchor reservoir); top right - ELSBM 
(exposed location single buoy mooring); bottom left - SALM (single anchor leg mooring); 
bottom centre - ALT (articulated loading tower); bottom right - YMS (yoke moored 
storage) 

7 

É 
Figure 1,13. Monohull floating production vessel. Key: a - riser carrier; b - helicopter 
deck; c - machinery; d - retractable thrusters; e - two fixed thrusters; f - cargo; 
g - process; h - machinery; i - tunnel thruster; j - riser 



18 Introduction 

Figure 1.14. Hinged ship 

1.3 General analysis and design requirements 

The analysis and design of compliant marine structures has rapidly 
advanced in the last two decades, with numerous techniques being 
currently available to evaluate and predict their operating performance. A 
compliant marine structure consists of a number of subsystems which are 
highly interactive. These subsystems can be classified into the surface 
platform and process plant, the mooring system, flexible or rigid marine 
risers, product storage and export facilities. 

Technical assessments of each of the above systems tend to be isolated 
into different discipUnes such as naval architecture, structural design, 
process equipment design, and so on. However, the interactive behaviour 
of the whole system is such that design and specification of each subsystem 
must account for potential effects on other subsystems or the whole 
facility. 

The general design criteria for a comphant marine structure are listed 
below in a perceived order of importance: 

1. The structure must be fit for the purpose of being operated safely in a 
generally hosfile marine environment. 

2. It must have sufficiently high payload for all reasonable processing, 
marine systems and possible oil storage options. 

3. Wave induced motions must be sufficiently low to allow plant, marine 
equipment and crew to function with an economically viable low 
down-time. 

The relatively large length of some modern tankers has led to the 
development of placing a structural articulation in the centre of the ship. 
This is illustrated in Figure 1.14. The purpose of this hinge is to alleviate 
the midships bending moment . 

The extension of the monohull vessel to a multi-hull vessel such as a 
catamaran or trimaran has yet to find application in exposed offshore 
locations, although these vessels have been used as crane vessels in 
sheltered waters because of their high hydrostatic stability. A different 
kind of multi-hull vessel which is of considerable interest is the tandem hull 
barge shown in Figure 8.1. The tandem hull concept consists of a lower 
hull, which is totally submerged, separated from an upper hull by interhuU 
columns. The objective of this design is to combine the best features of 
both semisubmersible and monohull vessels - low wave induced motions 
and high payload capacity. 

a 
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4. Mooring system loads in extreme sea states must be acceptable but 
exhibit sufficiently low vessel offsets to allow a riser system to function 
with low down-time. 

5. The system must survive extreme sea states with or without remedial 
actions such as pulling risers or slackening moorings. 

6. All certification, inspection and maintenance requirements must be 
satisfied. 

7. Initial and running costs as well as construction and installation 
timescales should be financially viable for the field to be developed. 

The assessment of a compliant marine structure's ability to satisfy the 
above design criteria requires analysis capabilities in the following areas: 

(a) modelling of the marine environment; 
(b) hydrostatics; 
(c) environmental loading; 
(d) hydrodynamics in waves; 
(e) structural design and analysis; 
(f) moorings and risers. 

The state of knowledge in each of the above areas has advanced conside­
rably since the 1960s. This book describes typical analysis methods which 
cover most of the above areas but with special emphasis on the determina­
tion of hydrostatic and hydrodynamic characteristics. Applications of these 
analysis methods to a range of compliant marine structures are illustrated 
by specific t reatment of selected conventional and novel structure types. 
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Ocean wave excitation 

Compliant marine structures have to be designed to withstand the static 
and dynamic forces exerted by environmental phenomena which include 
wind, current, tidal action and waves. In addition, structures in cold 
regions have to withstand ice impacts and icing loads, and structures with 
sea bed connections need to be designed for the effects of seismic activity. 

Of these environmental phenomena, ocean gravity waves generally 
induce the largest oscillatory forces on marine structures and do so 
throughout its life time. Most of the analysis and design associated with 
compliant structures is, therefore, based on their displacement and stress 
response to dynamic wave excitation. The analysis methods presented in 
this book are , consequently, directed solely at these wave induced res­
ponses. Work on the response of compliant structures to wind, current and 
ear thquake loading is also relevant to design. Such work is available in the 
offshore engineering research literature and is not covered within this 
book. 

2.1 Ocean waves as a random process 

Consideration of the gravity wave loading of compliant marine structures 
requires physical and statistical descriptions of the mechanics of ocean 
waves. The physical description of ocean waves is available at various 
levels from linear theory embodying infinitesimal wave height and other 
related assumptions to Stokes' fifth order theory offering a series based 
solution for waves of finite height. There is an extensive body of research 
literature on these various wave theories - Patel (1989) and Sarpkaya and 
Isaacson (1981) give overviews of the various wave theories used for the 
analysis of offshore structures. These theories are not described in great 
detail here. 

However, the statistical description of the occurrence of ocean waves on 
a wave-by-wave basis or as discrete storms needs to be well understood for 
evaluating compliant marine structure designs. These two levels of stat­
istical descriptions differ fundamentally with the first making use of a 
description of wave elevations, velocities, accelerations and pressures 
within a set of waves of given (known) severity. The second level involves 

20 
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the prediction of overall extreme storm events over a specified long time 
period. Such an extreme event is defined as one which occurs, on average, 
once in a specified number of years - the time period being known as the 
return period. 

The most common approach for selection of wave design criterion for 
marine structures is to estimate an extreme value parameter (such as the 
maximum wave height) associated with a return period which equals or 
exceeds the expected service life of the marine structure. The choice of the 
design return period is determined on the basis of the expected life of the 
marine structure and the accepted level of risk of structural damage within 
that t ime. 

Compliant marine structures are required to survive a nominal 50 (or 
100) year return period storm. This storm is represented by applying 50 
year return period values of all the environmental parameters (i.e. wind, 
currents and waves) simuhaneously and, for vectorial quantities, in the 
same direction. This representation is much more severe than a real 50 
year event. It does, however, have the advantage of including an additional 
safety margin and it is a convenient device for designers who would 
otherwise have to adopt a more complex approach. 

A more realistic approach would be to evaluate the joint probability of 
occurrence of all the environmental parameters and to establish the 
combined 50 year event. This would result in a large variety of combina­
tions of environmental conditions which would give rise to different 
dynamic responses and structural loads. Also, the more reahstic combined 
50 year event may not impose loads of sufficient severity for use as design 
limits and, therefore, an increase in the design return period may be 
required. 

The use of the joint probability of occurrence of environmental para­
meters for the prediction of design criteria is a complex procedure and is 
inherently more difficult to carry out. This approach is also hindered by the 
absence of sufficient environmental data. It is for this reason that the 
simpler design principle of worst case simultaneous occurrence generally 
finds application. 

The problem then becomes one of estimating the required 50 year values 
using all the data available. The parameters which are generally required 
to define the static design load condition for a fixed marine structure are 
the one minute mean wind speed; the significant wave height, and the 
mean zero-crossing period, Γ^; the 'maximum' wave height, / f^ax and its 
associated period, T^ax; the vertical profile of total current speed; and the 
maximum and minimum water levels. Directions are also required for 
vector parameters . 

The above approach has been successfully used for the selection of 
environmental design criteria for fixed offshore structures. However , it is 
inadequate on its own for the assessment of compliant marine structures. 

The dynamic characteristics of compliant marine structures are such that 
extreme structural loads and responses may occur in wave conditions which 
are less severe than the design return period values. As a consequence of 
the potential problems of dynamic amplification occurring with compUant 
marine structures, the design criteria must include sets of wave parameters 
together with their energy - frequency - direction distributions and the 
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Figure 2 .1 . Structure of a random sea 
(Pierson el al, 1958) 

corresponding probabilities of occurrence. This data is also required for 
the assessment of cumulative fatigue damage. The selection of wave design 
parameters requires short term and long term statistical models of the 
physical parameters in question. Both these models will be described 
below. 

The sea surface in a storm exhibits chaotic behaviour. The water heaves 
and tosses in an apparently random manner in the general downwind 
direction. Individual waves are short crested and preserve their identities 
for relatively short periods of time. This behaviour appears to the observer 
to be far removed from the long crested waves of permanent form which 
are implied by most deterministic mathematical theories for ocean waves 
(Weigel, 1964; Stoker, 1957; Cokelet , 1977; Lamb, 1975). 

Analysis of ocean waves requires a statistical model based on our 
knowledge of surface gravity waves. One such model is to assume that the 
sea surface is composed of a large number of superimposed simple 
harmonic progressive waves propagating in different directions with diffe­
rent amplitudes and phases. This approach is illustrated in Figure 2 .1 . 
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Figure 2.2. Definition of progressive waves moving in an arbitrary direction 

In terms of the general axis system: 

η(χ, y, ή = a cos{k{x cosO + y sinG} - ωί + e) (2.2) 

where θ is the angle between the χ and XQ axes measured in a counterclock­
wise direction with respect to the χ axis; and e is the phase of the wave at 
X = y = t = 0. 

The wave number , k, is related to the angular frequency, ω, by the 
dispersion relationship. 

ω g 
(2.3) 

where d is the water depth. The general results for linear wave theory are 
given in Appendix I. The principal interest is in deep water ocean waves 
where the dispersion relationship becomes 

kg = (2.4) 

Wind generated waves at a deep water location may be described by a 
linear superposition of simple harmonic waves propagating in various 
directions. The sea surface may be described by 

— {χ cosG/ + y sinB/) - ω/ί -h €/ (2.5) 

That is, the wave surface at time t is given by the sum of an infinite number 
of component waves for all directions, and for all frequencies, ω„ 
covering the range 0 ^ 6 / ^ In and 0 ^ ω/ < oo respectively. The phase . 

Consider the progressive wave travelUng along the XQ direction in Figure 
2.2 with wave speed (or celerity), c. The water surface elevation, η , is 
given by 

η(χο, ή = a cos(/cxo - ωΟ (2.1) 

where a is the wave amplitude; k is the wave number; and ω is the angular 
frequency in radians per second. 
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€/, is assumed to be a random variable distributed uniformly over the range 
0 =̂  €/ ^ 2τΓ and its magnitude depends on ω, and Θ/. 

The amplitude, is also a random variable with a range 0 ^ < oo. 
For any frequency and direction interval, ΔωΔΘ, the average wave energy 
is 1/2 pgaj. Ignoring the factor pg, the sum of \ aj defines the single sided 
directional spectral density function 0 (ω , θ): 

σ(ω, θ) dω de = 2 2 ^ «2 (2.6) 
Δω Δθ 

where 0{ω, θ) is defined over the frequency range 0 ^ ω < oo. 
Pierson (1955) makes use of the above definition (Equation (2.6)) to 

express the profile of a random sea surface by the following stochastic 
integral representation: 

η(^ , y. t) = cos 
-TT Jo 

— {χ cose + y sine) - ωί + €(ω, e) 

Χ ν [20 (ω , e) dω de] (2.7) 

Equation (2.7) is not an integral in the Riemann sense but should be 
interpreted as the limit of the partial sum 

η(^ , ^ ' ̂ ) = Σ Σ {χ COSe2y+i + y Sine2y+i) 

j--m í=0 

- ω2/+ι/ + €(ω2/+ι, e2;+i) 

χ ν[20(ω2 /+ι, e2/+l)(ω2/+2 " ω2/)(e2;+2 - 02;)] (2.8) 

with the limits 

^2i+2 - = 0 

ö - 2 m - l "Τϊ" 

hj+2 ~ 02/ = 0 

Equation (2.7) represents a stationary normal random process in three 
dimensions. The mathematical proof of this fact is given by Pierson (1955, 
pp. 12^129). 

A measure of the total energy in the wave field is given by the integral 

σ(ω, e) de dω = £ (2.9) 
0 ^ - π 

Often, interest is focused on the energy-frequency distribution in the wave 
field. A measure of this energy-frequency distribution is given by the 
spectral density, 0 (ω) . The total energy, E, is given by 
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Ε = α(ω) αω = £ [ η 2 ] (2.10) 

where Ε[. .] is the expectation operator . The directional spectral density 
and the power spectral density are related by 

σ(ω, θ) de = α(ω) (2 . ι ΐ) 

which states that the total energy at frequency ω is the sum of the energy at 
that particular frequency over all directions of travel. A more detailed 
discussion of the mathematical description of random wave profiles may be 
found in Pierson (1955), Kinsman (1965), Phillips (1966) and Borgman 
(1972). 

2.2 Short term wave statistics 

The designer is not directly interested in the wave elevation process itself, 
but, rather, in its statistics such as average wave height or maximum wave 
height. In many severe sea states most of the energy in the wave field 
propagates in one general direction. Statistical descriptions of unidirec­
tional (or long crested) irregular waves may be made using random process 
theory. The following assumptions are generally made: 

1. Ocean waves are taken to be a weakly stationary, ergodic, normal 
random process with zero mean. 

2. Wave spectral density functions are narrow banded. 
3. Wave crest elevations (maxima) are statistically independent . 
4. The statistical properties of ocean waves are homogeneous, that is, 

they are independent of local position. 

The assumption that the sea state is represented by a stationary process is 
only valid for short periods of time - typically 20 minutes to 3 hours. 

Figure 2.3 shows a representative wave elevation time history. This 
diagram illustrates some of the possible definitions of wave height and 
period. Fortunately, the situation is simplified with narrow banded wave 
spectral density functions since the wave energy is concentrated in a 
narrow frequency band and there is effectively only one maximum and 
minimum between successive up crossings of the mean water level. 

Predictions made under the above assumption are known as short term 
statistics. The sea state is described by its spectrum and its spectral 
moments . 

The /cth moment of the wave spectrum, rrij^, is defined as 

ω^Ο(ω) dω (2.12) 

The probability distribution function, Ρ (η ) , for the wave elevation is the 
probability that a realization of the wave elevation, η(ίο), is less than the 
value η . In notation form: 
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Figure 2.3. Definitions of wave heights and periods 

Ρ(η) = Prob [η(/ο) < η] 

Ρ(η) is given by 

Ρ(η) = p{z) dz 

or 

dm 
αη = ρ (η ) 

(2.13) 

(2.14) 

(2.15) 

where ρ ( η ) is the probability density function. 
For a Gaussian (or normal) wave elevation process with zero mean, ρ ( η ) 

is given by 

Ρ(η) = 
1 

e x p ( - η W ) (2.16) 

ν(2τΓ)σ 
where is the variance of the wave elevation process. The Gaussian 
probability density function is illustrated in Figure 2 .4 . 

The variance is obtained from the wave spectral density, 0 ( ω ) , using the 
relationship 

σ 2 = 0{ω) άω = mo (2.17) 

The probabiUty distribution for wave ampUtude or height is obtained from 
a crossing analysis and the wave elevation probability density function. 
Cartwright and Longuet-Higgins (1956) describe the procedure. They also 
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Prob [η (to)^V] = Ρ{η) 

O η 

Figure 2.4. Gaussian probability density function with zero mean 

show that the distribution of maxima for a Gaussian process depends on 
the bandwidth of the frequency spectrum. The bandwidth of the frequency 
spectrum is the frequency range which contains most of the energy in the 
spectrum. This concept is illustrated in Figure 2.5. 

B a n d w i d t h 

Figure 2.5. Concept of bandwidth for a frequency spectrum 

One measure of the bandwidth of the wave frequency spectrum is the 
bandwidth parameter which is defined in moments of the frequency 
spectrum. The bandwidth parameter , €, is given by 

= 
mo/n^ 

(2.18) 

The two limits of € are zero and unity where e = 0 represents a narrow 
band spectrum and e = 1 indicates a wide band spectrum. 
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Cartwright and Longuet-Higgins (1956) show that the probabiUty dens­
ity function of maximum, η η ΐ 3 χ , is given by 

ν(2π) 
/. μ/(1-€2)/6 

[ε exp ( -μ2 /2e2) + V(l - e^) μ e x p ( - μ 2 / 2 ) 

exp(-x^/2)djc] (2.19) 

where μ = η m a χ / ^ ( ' ^ o ) · Figure 2.6 shows this probabiUty density function 
for a range of bandwidth parameters . For narrow band spectra (e = 0) , 

Figure 2.6. Graphs of ρ (μ) , the probability distributions of the heights of maxima 
(μ = η η ΐ 3 χ / ΐ Ώ ο ^ )̂  for different values of the bandwidth parameter e 

Equation (2.19) reduces to the Rayleigh probabiUty density function 

a i - a \ 
p{a) = — exp — - 0 ^ a < o o (2.20) 

σ ν2σ / 

where a is the wave ampUtude. For narrow banded wave spectra we are 
interested in the wave height, / / , which is twice the wave ampUtude. In 
terms of wave height, / / , the Rayleigh probability density function is given 
by 

Η 

8σ2 
0^ Η < 00 (2.21) 

The probability that the wave height exceeds a value HQ is given by 

Prob [Η > Ho] = P m = exp ( ^ - ^ (2.22) 

The Rayleigh probability density function for wave height is shown in 
Figure 2.7. The Rayleigh distribution is used to predict wave height 
statistics. For example, the mean wave height, H, is given by 
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2 σ ρ ( Η ο 

P r o b . C H > H o D = P ( H o ) 

0" 0 . 5 1.0 1.5 2 . 0 
Η ο / ( 2 σ ) 

Figure 2.7. Rayleigh probability density function (Ochi, 1982) 

2.5 3 . 0 3 . 5 

Η / ( 2 σ ) 

Η = Hp(H) dH = ν{2Ίτ)σ 

and the root mean square wave height H^^^ is given by 

^rms = 2 V ( 2 ) a 

(2.23) 

(2.24) 

The most widely used wave height statistic which describes the severity of a 
sea state is the significant wave height. The significant wave height, H^, is 
defined as the average of the highest one-third of the wave heights. For this 
reason the notation Hiß for significant wave height is sometimes found in 
the literature. 

If H^ is the lower limit of the highest one-third of a sample of wave 
heights then 

Prob [H> HJ = p{H) dH = i (2.25) 

This is illustrated in Figure 2.8. 
If the wave height probability density function is given by the Rayleigh 

probability density function (Equation 2.21) then 

H^ = 2 V ( 2 In 3)σ 

1.048 σ (2.26) 
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P r o b . [ H > H * ] = V3 

Figure 2.8. Sicetch showing tiie location of significant wave height 

Now, H¡ is found from (see Figure 2.8) 

5 Η p(H) dH 

H^ 
- ^ e x p 

ί-Η' 

8σ' 
dH 

(2.27) 

(2.28) 

(2.29) 

/-ηΛ γ / 
= / / ^ e x p 7̂  +2ν(2ττ)σ 1 - Φ 1 

* ^\8σ^) ι V 2 V ( 2 ) a / 

where Φ(α) is the Gaussian Error Integral and is given by 

= τJ7T-^ Í exp(-u^/2)dM 
v(2 i r ) J_ 

Substituting H^ = 2V'(2 In 3) σ into Equat ion (2.28) gives 

H^ = 4.01 σ = 4.01 V(mo) (2.30) 

The significant wave height is related to the area under the 'narrow 
banded ' wave spectrum. 

The above arguments may be extended to consider the average of the 
highest 1/Mh wave heights, Hy^ 

HyN = [V(ln M) + N V ( i r ) (1 - Φ (V(2 In N)))] 2V(2)a (2.31) 

When Ν is large, the second term in Equation (2.31) is small compared 
with the first term and so 

HyN = 2V(2 In Λ0 σ (2.32) 
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Table 2.1 Wave height relations based on the Rayleigh distribution 

Characteristic height 
Η Η 

V(m„) 
Η 
Hs 

Standard deviation of free surface ση = V(m„) 
11/2V(2) = 1 
0.354 1.0 0.250 

Root mean square height r̂ms 1.0 
[2V(2) = 1 
2.828 0.706 

Mode H{p = max) 
|1/V(2) = ] 
0.707 

[2 = 1 
2.0 0.499 

Median height 
|V(ln2) = ] 
0.833 

[2V(ln2) = ] 
2.355 0.588 

Mean height Η = Hi 
|ν(π)/2 = ] 
0.886 

[ν(2π) = 1 
2.507 0.626 

Significant height 1.416 4.005 1.0 

Average of 10 highest waves 1̂/10 1.800 5.091 1.271 

Average of 100 highest waves H\im 2.359 6.672 1.666 

Table 2.1 summarizes the wave height relations based on the Rayleigh 
distribution. 

The question remains as to how restrictive is the assumption that the 
wave spectrum is narrow banded. The effect of the bandwidth parameter , 
e, on the wave amplitude statistics is illustrated in Figure 2.9. The diagram 
shows that the narrow band wave spectrum assumption only starts to 
introduce significant errors in the statistics when e is greater than 0.6 to 0.8. 
The mean wave amplitude is most in error, with the smallest errors 
associated with the extreme statistics. For example, the error in significant 
wave height is overestimated by approximately 8% for e equal to 0.8. 
Figure 2.9 also shows that the narrow band wave assumption is conservat­
ive as it generally overpredicts the wave amplitude statistics. Most sea 
states observed in the ocean have a bandwidth parameter which lies in the 
range 0.4-0.8. 

The prediction of wave periods is also of importance to compliant 
marine structures. The wave spectrum already gives information on the 
energy-frequency distribution. The mean frequency, ω, is given by the 
zero and first moments of the wave spectrum: 

_ ^ 1 
ω = — 

mo 

or in terms of mean wave period, f: 

T=l-n 

(2.33) 

(2.34) 

The wave period in a long crested irregular sea is normally defined as the 
time interval between successive up crossings (or, alternatively, down 
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1 . 0 

Figure 2.9. Wave amplitude statistics as functions of bandwidth parameter € 

crossings) of the zero mean level. If the narrow band wave spectrum 
assumption is made then the average zero-crossing frequency and the 
average zero-crossing period are given by 

£[ω,] = 

and 

E\T,] = 2TT 

ηΐ2 

mo 

mo 

m2 

(2.35) 

(2.36) 

The average time interval, Γ^, between successive crests is sometimes used 
and is given by 

Vm4/ 
(2.37) 
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2.3 Wave spectra 

Short term predictions of wave height and period may be made once the 
wave spectrum is known. The wave spectrum may be estimated from wave 
measurements (Jenkins and Watts , 1968; Bendat and Piersol, 1986; 
Priestley, 1981). Alternatively, models of the wave spectrum may be 
selected based on the general environmental conditions and the offshore 
location. Considerable work has been carried out in the development of 
spectral models of the sea. These models are presented by Ochi (1982). 
The wave spectral models generally used for design criteria of marine 
structures are presented below. One of the earliest spectral models was 
proposed by Pierson and Moskowitz (1964) and is still widely used. From 
observations of ocean waves taken in the North Atlantic, Pierson and 
Moskowitz developed a spectral formulation representing fully developed 
wind-generated seas. In the derivation of this formulation the wave spectra 
were first expressed in a dimensionless form. The average line of the 
measured dimensionless spectra yielded the following spectral formulation 
in terms of frequency ω: 

^ — ^ 1 0 ^ ω ^ ^ (2.38) 0 ( ω ) = — Γ - exp 
ω-

- β 

where α = 0.0081; β = 0.74; and U is the wind speed at an elevation of 
19.5 m above the mean sea level. 

The shape of the wave spectrum depends only on the wind speed U and, 
therefore, this spectral formulation is known as a single parameter 
spectrum. Figure 2.10 shows Pierson-Moskowitz wave spectra for various 
wind speeds. The Pierson-Moskowitz is part of a family of wave spectra 
which have the form 

0 ( ω ) = 4 ^ ' ' ρ ί - 4 ) (2-39) 

where, in the case of the Pierson-Moskowitz wave spectrum, A = ag^ and 

For narrow band processes where the bandwidth parameter tends to zero, 
Tc is equal to T^. 

The pioneering work of Rice (1944,1945) set the basis for the prediction 
of the short term statistics of ocean waves. Rice's work was developed 
further by Pierson (1952) and Longuet-Higgins (1952, 1956), among 
others, for the analysis of ocean waves. Ochi (1982) and Carter etal. (1986) 
present excellent reviews of the development of the stochastic analysis of 
random seas. Comparison between the above theory and observation of 
ocean waves generally demonstrate good agreement providing confidence 
in the short term statistical models. 
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Figure 2.10. Pierson-Moskowitz wave spectrum: (a) 10.0 m/s (Beaufort 5); (b) 12.5 m/s 
(Beaufort 6); (c) 15.0 m/s (Beaufort 7) 

The spectral moments of the Pierson-Moskowitz spectrum are given by 

mo = AIAB 

1 
0.4 

mi = 

m2 = 

m4 

Í2ía4. 0.306̂  
V( t t ) >1 

Β .3/4 
(2.40) 

4 V ( ß ) 

where Gamma function, Γ(η), is given b> 

Γ(η) = (2.41) 

Note that the fourth moment is infinite. This is a general feature of wave 
spectra with a ω"^ tail. This results in the bandwidth parameter , €, defined 
by Equat ion (2.18) being equal to unity, the value of a wide band 
spectrum. Many researchers regard this situation as being more a mathe­
matical quirk than a true reflection of the physical situation since most of 
the energy is concentrated around the modal frequency, ω^. This is 
illustrated in Figure 2.11 which shows the amount of energy in the wave 
spectrum from zero frequency up to an upper frequency limit, Virtually 
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P i e r s o n - M o s k o w i t z Upper L i m i t ( ω ^ / ω ρ η ) 

Figure 2.11. Percentage energy in Pierson-Moskowitz spectrum as function of oíJíú„ 

all the energy occurs below 2.5 ω^. One approach is to truncate the 
frequency range by applying an upper frequency limit. One realistic 
representation of wind waves is to make the upper frequency limit equal to 
gl(2i:U)\ this corresponds to assuming that waves cannot be generated with 
a phase velocity exceeding the local wind speed, U. Longuet-Higgins 
(1983) has proposed an alternative measure of bandwidth by the para­
meter , V , given by 

v = — - - 1 (2.42) 

The value of ν is zero for a narrow banded sea. It has no upper limit but is 
approximately 0.42 for a Pierson-Moskowitz spectrum. 

The narrow band spectrum assumption is often used for predicting wave 
height in the seas described by the Pierson-Moskowitz spectrum, even 
though this spectrum is not, strictly speaking, a narrow band spectrum. 
This contradiction is inherent in the use of the one parameter spectral 
formulation (Equation (2.39)). If this spectrum is assumed to be narrow 
banded then the following relationships exist: 
Significant wave height: 

Average wave height: 
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(2.43) 

Ratio of the significant and average wave heights: 

HJH= V(8/it) = 1.60 

Modal frequency and period: 

= 27τ(4β/5)-ι/^ 

Average frequency and period: 

ω = mj/mo = Γ(3/4)Β^^^ = 1.235^^^ 

T= [27τ/Γ(3/4)]β-^/^ = 5.13^-1/^ 

Average zero-crossing frequency and period: 

(0(3 = V(m2/mo) = (πβ)^/^ 

Ratio of frequencies and periods: 

ω^/ωο = (4/57τ)ΐ/4 = 0.71 

< / ω = [(4/5)ΐ^^/Γ(3/4)] = 0.77 

TJT, = {5ιτ/4γ'' = 1.41 

TJT= [Γ(3/4)/(4/5)^/^] = 1.30 

The general application of one-parameter Pierson-Moskowitz wave 
spectrum is limited by the fact that the sea state seldom reaches the fully 
developed situation. This is particularly true for severe wind speeds where 
the duration must be sufficiently long over the fetch before the sea reaches 
its fully developed state. Bretschnieder (1959) has derived a spectral 
formulation suitable for partially developed seas. 

The development of a sea is also Umited by the fetch. An extensive wave 
measurement program, known as the Joint North Sea Wave Project 
( JONSWAP) , was carried out in the North Sea. From the analysis of the 
measured data, the J O N S W A P spectral formulation was derived (Hassel­
mann et ai, 1973). The J O N S W A P spectral formulation is representative 
of wind-generated seas with a fetch Hmitation. The J O N S W A P spectrum is 
given by 

G(f) = a 

where 

8 1 
exp 

1.25 1 J 
(2.44) 

7 = peak enhancement parameter 

σ = f o r / > / n . 

α = scale parameter 

= modal frequency in Hz 

/ = frequency in Hz 
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0{ω) = ο ί ~ exp 
ω 

5 / ω , \ η 

ω / 
7 exp[ - (ω - ω^^/2σ"ωΙ,] (2.46) 

where ω„, = 2-π·/„. 
The J O N S W A P spectral formulation has five parameters: a , for 

f^fm and σι, for / > /„,. The values of these parameters change from one 
spectrum to another , although some parameters show fairly consistent 
trends in relation to wind speed and fetch. Hasselmann et al. (1973) 
provide average values for each parameter based on the measured data. 
The average values of the parameters are 

γ = 3.30 

σ„ = 0.07 and = 0.09 

α = 0.076 ( I ) - ° 22 

4 = 3.5{g/U)ix)-''' (2.47) 

where χ is the dimensionless fetch; χ is given by 

X = gx/U^ (2.48) 

where χ is the fetch; and U is the wind speed. The use of these average 
parameters in Equation (2.44) gives the mean J O N S W A P spectrum, which 
is a function of two parameters: the wind speed and the location where the 
fetch is known. 

Figure 2.12 illustrates a typical J O N S W A P spectrum and a correspond­
ing Pierson-Moskowitz spectrum with the same zero-crossing period and 
significant wave height. 

The above spectral formulations are not the only available one dimen­
sional wave spectral models. Examples of other models are Neumann 
(1953), Bretschnieder (1956), Darbishire (1961) and Scott (1965). Ochi 
and Hubble (1976) present a multi-parameter spectral model which can be 
used to model bimodal seas which can occur in sea states comprising local 
wind-generated waves and swell. 

The above wave spectra are frequency or point spectra. These spectra 
represent energy at a point which is an accumulation of all the energy 
propagating in different directions. No consideration has been given to the 
dispersion of wave energy with direction. It is often assumed that the sea is 
long crested. That is, the waves propogate in only one direction and the 
associated wave spectrum is known as the unidirectional spectrum. 

Observations of wind-generated waves show that they do not necessarily 
propagate in only one direction such as the wind direction. The wave 
energy is usually distributed over a range of directions. The situation that is 

The peak enhancement parameter , 7, in Equation (2.44) is defined as the 
ratio of the maximum spectral energy to the maximum of the correspond­
ing Pierson-Moskowitz spectrum for the same values of α a n d / ^ . It can be 
seen that the spectrum formulation (Equation (2.44)) is given by multiply­
ing the Pierson-Moskowitz spectrum by the following peak enhancement 
factor: 

^exp[-a-/,)2/2a2/;„] ^2.45) 

In terms of circular frequency, the J O N S W A P spectrum is given by 
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Figure 2.12. JONSWAP and Pierson-Moskowitz spectra for Hs = 5.0 m, = 8 s 

often encountered is one where wave energy associated with frequencies 
close to the modal frequency generally propagates in the direction of the 
wind, whereas wave energy associated with frequencies above or below the 
modal frequency is generally distributed over a range of directions 
(Mitsuyasu, 1975). It is evident that information on the directional 
dispersion of wave energy is required for a more accurate description of 
random seas. 

In addition, information on wave directionahty is needed for predicting 
the excitation of compliant marine structures because the forces are 
associated with coupled motions induced by waves travelling in different 
directions. 

Directional wave spectra, 0 ( ω , θ), are normally expressed in terms of 
the frequency or point spectrum, 0 ( ω ) , and the angular spreading func­
tion, ^ ( ω , θ), of the wave energy: 

σ(ω, θ) = σ(ω) ϋ ( ω , θ) 

where 

0 ( ω , θ) de = 1 

(2.49) 

(2.50) 

The separation of the directional spectra into the product of a spreading 
function and a frequency spectra is particularly convenient for evaluating 
the response of marine structures in a short crested seaway where 
correlations between different modes of motion need to be considered. 

Several spreading functions have been proposed. These are outhned 
below: 

The spreading function for the special case of unidirectional waves 
propagating in the direction θ is given by 
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where θο is the mean wave direction 

θ - θ ο \ 
No = cos^^ de 

^max ' (ω/ωρ)^ for ω ^ ωρ 
G = \ v - " p / ^ ^ ^2.55) 

[Gmm ' (ω/ωρ) 2 ^ for ω > ωρ 

ωρ = 27T/1.05 Γ, 

and 

Γζ is an average zero crossing period 
Other more complex directional distributions have been proposed by 
Longuet-Higgins et al. (1961) and Hasselmann et al. (1976) but are not 

D(9) = — δ (Θ - Θ) (2.51) 

where δ(. .) is the Dirac delta function. 
The cosine square spreading function is given by 

r(2/7T)cos^(e-eo) for - 7 t / 2 < θ - Θο < 7t /2 
0 ( θ ) = Γ ^ \ / V (2.52) 

[0 otherwise 

where θο is the mean wave direction. The cosine square function is 
extremely simple. Its limitation is that it is independent of both frequency 
and wind speed. 

A more advanced spreading function is the Stereo Wave Observation 
Project (SWOP) formulation, which was derived from analysis of mea­
sured data (Cote et ai, 1960) and is a function of angle and dimensionless 
frequency. The SWOP energy spreading function is given by 

_^ Γ I / t t (1 4- α cos2e 4- b cos4e) for - 7τ/2 < θ < 7τ/2 

[ 0 otherwise 

where 

a = 0.50 + 0.82 exp ( - 1/2 ω'^) 

b = 0.32 exp ( ~ 1/2 ω"^) 

ω is the dimensionless frequency given by 

ω = ί/ω/g (2.54) 

where U is the wind speed at 19.5 m above the mean sea level. Note that 
the S W O P spreading function is not equal to zero at ± 7 γ / 2 but is truncated 
at these limits. 

The Mitsuyasu formulation for directional distribution has been deve­
loped from work reported in Mitsuyasu et al. (1975) and modified by Goda 
and Suzuki (1975). The equation can be written as 

D(0 , ω) = No cos^' 
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2.4 Long term wave statistics 

The assumptions underlying the short term stochastic models of ocean 
waves no longer apply over long periods of t ime. The general approach to 
modelling the ocean environment over a long period of time is to regard 
the behaviour of the ocean as a set of sea states with each sea state being 
described by its short term statistics (significant wave height and zero-
crossing period). Each sea state will also have an associated probability of 
occurrence. One of the primary requirements in the evaluation of a 
compliant marine structure is the choice of a design wave and period. The 
design wave is often associated with the extreme sea state which will occur 
once on average in the design return period. 

An estimate of extreme wave heights is normally based on the extrapola­
tion of instrumentally measured waves over a period of one to three years. 
This procedure is empirical and there is inevitably an element of error in 
the extrapolation process. However, no alternative method of estimating 
the extreme conditions is known. 

Long term wave data is usually obtained from records of wave elevation 
taken typically every three hours for a period of 15 or 20 min. Each sample 
is reduced to two representative parameters , significant wave height, H^, 
and average zero-crossing period, Γχ, by using the methods previously 
described. Data for a long period of time is then represented by a bivariate 
histogram (or scatter diagram) of and Γ^, as shown in Figure 2.13. This 
scatter diagram summarizes data for three years of measurements at the 
Stevenson Station in the North Sea. Each box in the scatter diagram 
denotes the number of occurrences of wave conditions, with significant 
wave heights and zero-crossing periods denoted by the range in the height 
and width of the box respectively. The diagram has a total of 1000 events 
recorded on it and so, for example, waves with significant wave height in 
the range L5 to 2 m and zero-crossing period in the range from 6 to 7 s 
occurred for 46/1000 of the three year period covered by the diagram. 

Now the maximum wave heights that are most likely to occur over a very 
long period of time (from 5 to 100 years) can be predicted if the probability 
of occurrence of Hs measured over relatively short time scales (from 1 to 3 
years) is plotted using distribution functions that yield straight lines. Three 
such distributions have been identified. They are as follows: 

(a) the logarithmic normal distribution by Jasper (1956); 
(b) the Weibull distribution by Weibull (1951); 
(c) the Gumbel distribution by Gumbel (1958) and Saetre (1974). 

There is little theoretical justification for these distributions other than that 
observed data generally plots on to straight linesUhrough their use. The 
first two of the above distributions suffer from the slight disadvantage that 
they give a larger emphasis to the effects of smaller waves. 

presented here because of the difficulty of using them in design calcula­
tions. 
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Figure 2.13. Wave scatter diagram (units indicated in parts per thousand, O-f denotes 
value less than 0.5 parts per thousand) 
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7. The logarithmic normal distribution 
T h i s d i s t r i b u t i o n a s s u m e s t h a t t h e n a t u r a l l o g a r i t h m o f w a v e h e i g h t s h a s a 
n o r m a l d i s t r i b u t i o n . T h e p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n i s , t h e r e f o r e , 
d e s c r i b e d b y t h e e q u a t i o n 

- ( I n / / - μΫΙ 
^ ' ( 2 . 5 6 ) 

2σ' 

w h e r e σ a n d μ a r e c o n s t a n t s d e p e n d e n t o n t h e c h a r a c t e r i s t i c s o f t h e d a t a 
s e t . T h u s a p l o t o f c u m u l a t i v e p r o b a b i l i t y d i s t r i b u t i o n a g a i n s t s i g n i f i c a n t 
w a v e h e i g h t , s a y , o n n o r m a l p r o b a b i U t y p a p e r s h o u l d b e a s t r a i g h t H n e . 
M e a s u r e d d a t a o f t e n d e v i a t e s f r o m a s t r a i g h t l i n e , p a r t i c u l a r l y a t l a r g e 
w a v e h e i g h t s w h e r e t h e l i n e a r i t y i s n e c e s s a r y f o r a c c u r a t e p r e d i c t i o n s o f 
l o n g t e r m s i g n i f i c a n t w a v e h e i g h t s . 

2 . The Weibull distribution 
T h e W e i b u l l c u m u l a t i v e p r o b a b i l i t y d i s t r i b u t i o n o f w a v e h e i g h t i s 
d e s c r i b e d b y t h e e q u a t i o n 

P r o b [ / / > f / J = P c l ( H ) = 1 - e x p ^ ( 2 . 5 7 ) 

w h e r e PCL(H) i s t h e p r o b a b i l i t y t h a t a n y w a v e h e i g h t c h o s e n a t r a n d o m , 
/ / m , i s l e s s t h a n w a v e h e i g h t H; a n d β , 7 a r e c o n s t a n t s . B y r e a r r a n g i n g a n d 
t a k i n g l o g a r i t h m s . E q u a t i o n ( 2 . 5 7 ) c a n b e w r i t t e n a s 

l n [ l n {1 - PcdH)}-'] = 7 In / / - 7 In β ( 2 . 5 8 ) 

T e s t s o f t h e W e i b u l l d i s t r i b u t i o n w i t h l o n g t e r m w a v e d a t a h a s s h o w n t h a t 
t h e d i s t r i b u t i o n g i v e s b e t t e r f i t s t o a s t r a i g h t l i n e if t h e w a v e h e i g h t Η o n 
t h e r i g h t h a n d s i d e o f E q u a t i o n ( 2 . 5 8 ) i s r e p l a c e d b y (H - a') w h e r e a' i s a 
t h r e s h o l d w a v e h e i g h t v a l u e b e l o w w h i c h w a v e a c t i v i t y i s n e v e r e x p e c t e d t o 
f a l l . I n s h e l t e r e d w a t e r s a' m a y b e t a k e n t o b e z e r o o r v e r y s m a l l , w i t h a 
l a r g e v a l u e ( f r o m 0 . 5 t o 2 . 0 m ) b e i n g u s u a l f o r m o r e e x p o s e d l o c a t i o n s . 

L o n g t e r m w a v e d a t a c a n b e u s e d w i t h t h e e q u a t i o n f o r t h e W e i b u l l 
d i s t r i b u t i o n b y p l o t t i n g l n [ l n {1 - P c l ( ^ } ~ ^ ] a g a i n s t ln{H - a') a n d 
u s i n g a s t r a i g h t l i n e fit o n t h e p l o t t e d p o i n t s t o e x t r a p o l a t e p r o b a b i H t i e s o f 
o c c u r r e n c e o f l a r g e r w a v e h e i g h t s . T h i s g r a p h m a y a l s o b e p l o t t e d d i r e c t l y 
o n t o s p e c i a l l y p r e p a r e d W e i b u l l p r o b a b i h t y p a p e r . 

W a v e h e i g h t d a t a f r o m s c a t t e r d i a g r a m s c a n b e u s e d i n t h e s e d i s t r i b u ­
t i o n s i n t w o w a y s . I n t h e f i r s t , m o r e c o m m o n , a p p r o a c h , s i g n i f i c a n t o r 
m a x i m u m w a v e h e i g h t d a t a a r e p l o t t e d a g a i n s t a f u n c t i o n o f t h e i r 
p r o b a b i l i t y o f o c c u r r e n c e f o r e v e r y r e c o r d i n t h e a v a i l a b l e d a t a s e t w h e r e 
t h e w a v e h e i g h t e x c e e d s a s m a l l t h r e s h o l d v a l u e . I n s o m e c a s e s t h i s 
t h r e s h o l d v a l u e c a n b e s e t t o z e r o . A n a l t e r n a t i v e m e t h o d u t i l i z e s t h e 
h i g h e s t w a v e h e i g h t i n a f i x e d s m a l l t i m e i n t e r v a l p l o t t e d a g a i n s t a f u n c t i o n 
o f i t s p r o b a b i l i t y o f o c c u r r e n c e . 

T h e d e t a i l e d f o r m o f t h e t h r e e d i s t r i b u t i o n s a r e d e s c r i b e d b e l o w : 
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3. The Gumbel distribution 
This is defined as 

Prob [H^h] = PCL{H) = exp [ - exp ( - a{H - ß})]^ 

or > (2.59) 

- I n [ - In PcdH)] = a(H - β) J 
The apphcation of these long term distributions is illustrated by using the 
data of Figure 2.13 through a Weibull distribution to predict significant 
wave heights for 1,10 and 100 year return periods for wave rider buoy data 
recorded at the Stevenson Station in the North Sea. 

Taking Η as the significant wave height, the terms of the Weibull 
distribution equation are evaluated in Table 2.2 using a threshold value of 
a' = 1.0 m. Figure 2.14 presents plotted data from the fourth and third 
columns of the table which fits a straight line apart from one anomalous 

l n [ l n ( 1 - P (H) I 'M 

In ( H - a ) 

Figure 2.14. Weibull plot 

point due probably to insufficient occurrences recorded in the scatter 
diagram for high significant wave height. The 100 year return period 
significant wave height is predicted by taking the probability oí Η < HIQQ 
to be 

Pioo{H) = P[H<Hioo\ = l -
100 X 365.25 X 24 

= 0.999 996 58 

Then 

In In 
1 

1 - Λοο(Η) 
= 2.533 
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Table 2.2 Weibull distribution data 

Him \n[H - 1. 

2 0.370 0 
3 0.624 0.693 
4 0.783 1.099 
5 0.888 1.386 
6 0.940 1.609 
7 0.971 1.792 
8 0.981 1.946 
9 0.984 2.079 

In 
1 

-0 .772 
-0 .022 

0.424 
0.784 
1.034 
1.264 
1.377 
1.420 

gives In [//loo-fl] = 2.94 from the graph, with Ηχ^ thus being 19.9 m. 
Similarly, the 1 year and 10 year return periods' significant wave heights 
can be obtained as 13.7 m and 16.8 m respectively. 

A comparative evaluation of the prediction from the log normal , 
Weibull and Gumbel distributions has been carried out by Saetre (1974), 
using three years' data; the results are listed in Table 2.3. The Gumbel 
probability distribution gives the highest extrapolated values although 

Table 2.3 Comparison of long term predictions from Gumbel, Weibull and log normal 
distributions 

Extrapolated wave heights (m) 

Wave parameter Return period (years) Gumbel Weibull Log normal 

10 14.4 13.6 12.5 
50 16.3 15.2 14.6 

/ / m ax (3 hrs) 10 26.8 24.5 23.2 
50 30.6 27.8 27.0 

(From Saetre, 1974) 

Saetre concluded that the Gumbel gives the best fit to this particular set of 
data. The Weibull distribution offers a prediction that is midway between 
the three and tends to be the distribution that is used most often in the 
offshore industry. However, the recommended approach would be to use 
all three methods and assess the 'goodness-of-fit' to the particular data 
invoved. The Weibull and Gumbel distributions generally show a better fit 
to data than the log normal distribution. Further improvements to long 
term predictions can only be achieved by continuous sets of observed data 
which cover periods of 10-20 years. Unfortunately, such data sets are 
generally unavailable at present. 
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2.5 Wind and current 

The effects of wind and current must also be considered in the design of 
compliant marine structures. Wind and currents need to be specified in 
terms of their strength, direction and spatial variation. Long term stat­
istical methods such as those described in the preceding section are used to 
determine extreme wind and current conditions in order to establish 
environmental design conditions. Spectral techniques have been used to 
describe wind gusts. Patel (1989) gives further details on wind and currents 
in the ocean environment. 

One important feature of both wind and currents is the presence of a 
significant mean component over a specified period of time. This mean 
component is usually evaluated either over a period of one minute or one 
hour. The choice of the averaging period depends on the problem under 
consideration. For example, the one minute mean wind speed is normally 
used when considering wind heeling effects associated with hydrostatic 
stability considerations. 

Mean wind and current components have an important effect on 
compliant marine structures as they provide a source of steady environ­
mental loading on the structure. This will influence many aspects of the 
design such as station keeping. Steady wind and current may also result in 
important dynamic phenomena such as vortex induced vibration. This is an 
important consideration for structures such as marine risers. 

2.6 Application of environmental spectra 

The long term statistical methods such as those described in Section 2.4 
form the basis for determining extreme environmental conditions for the 
design of compliant marine structures. The extreme sea state, or indeed 
any other sea state, is best described as a random process. This requires the 
application in the design process of the methods presented in Sections 2.2 
and 2.3. However, much of the analysis of compliant marine structures is 
based on deterministic methods. For example, the behaviour of a marine 
structure is often evaluated in response to regular wave excitation. At first 
sight these deterministic methods appear incompatible with the random 
nature of the wave loading. Fortunately this is not the case for many 
compliant marine structure system models. This is best illustrated by 
examining the response of a single degree of freedom dynamic system to 
random excitation. 

Consider the mass - damper - spring system. 

my by ky = x(t) (2.60) 

where m is the mass; b is the damping; k is the stiffness; χ is the excitation; 
and y is the response. If the excitation is harmonic at frequency ω, then x{t) 
has the form 

x{t) = Χ{ω^^^ (2.61) 
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and the response will be of the form 

y{t) = y ( a , ) e - ' (2.62) 

where Χ{ω) and Υ{ω) are the complex ampHtudes of the excitation and the 
response respectively. Substituting Equations (2.61) and (2.62) into Equa­
tion (2.60) gives 

Υ(ω) = Η{ω) Χ{ω) (2.63) 

where 

^( '^^ = I Γ — ~ T (2.64) 
k — ω m -h \ωο 

Η{ω) is the frequency response function of the dynamic system. 
If the excitation is a stationary random process with spectrum, Οχχ{ω), 

then the frequency response function, / / ( ω ) , governs the transmission of 
the random excitation. It can be shown that the relationship between the 
excitation-response cross-spectrum, Ο^^(ω), and the excitation spectrum, 
0^^{ω), is given by (Newland, 1984; Bendat and Piersol, 1986) 

σ,,(ω) = Η{ω)ΟΜ (2.65) 

The response spectrum, Gyy{ω), is related to the excitation spectrum, 
ονν(ω), by 

σ,ν(ω) = Η%ω)Η{ω)0,,(ω) (2.66) 

or 

σ, ,(ω) = \Η{ω)\ΌΜ (2.67) 

These results readily extend to multiple input-multiple output systems. 
Bendat and Piersol (1986) give further details. 

The important point is that once the frequency response functions of the 
dynamic systems under consideration have been established then response 
spectra and statistics may be determined from the excitation spectra. For 
example, the reponse of interest may be wave induced motions. 
Knowledge of the wave spectra and the response of the structure to regular 
wave loading would allow the calculation of the statistics on the determina­
tion of the frequency response functions for many types of compHant 
marine structure. The constraint on this theory is that the dynamic system 
is linear. Alternative methods must be considered if the dynamic system is 
highly non-linear. One commonly appHed approach is to carry out time 
domain numerical simulations. These, however, are generally expensive in 
terms of computation. 
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C h a p t e r 3 

Hydrostatic analysis 

The hydrostatic stabihty of comphant floating marine structures plays an 
important role in their design and operating effectiveness. In the case of 
conventional rigid floating structures replacing fixed bot tom emplaced 
platforms, the hydrostatic stability is the limiting criterion for deck payload 
capacity. For compliant structures with articulated joints or those that are 
tethered to the sea bed, however, the hydrostatic stability is substantially 
modified by the effects of the compliance. At the same t ime, the stiffness 
associated with the hydrostatic stability of a compliant vessel can have a 
major effect on its dynamic response in waves. This occurs for the case of a 
semisubmersible with articulated columns (see Chapter 9) where a non-
monotonically increasing hydrostatic righting moment with angle of heel 
leads to the presence of a catastrophic dynamic instability in the damaged 
condition. It is important , therefore, to consider the hydrostatic stability of 
a compliant structure very carefully for its impact on its payload perfor­
mance and on its dynamic response in waves. 

For certification purposes, the hydrostatic stability of a compliant vessel 
is usually considered using criteria set down for conventional floating rigid 
structures. Typical such certifying agency requirements are presented by 
Patel (1989) and in certifying authority publications. However, care has to 
be taken to ensure that the conventional criteria for floating rigid struc­
tures are applied with proper account being taken of the behaviour of 
compliant features of the structure. Again, hydrostatic stability calcula­
tions for the semisubmersible with articulated columns of Chapter 9 
illustrates types of interaction that can take place between the hydrostatics 
and compliance. 

The above considerations invariably require that the hydrostatic stability 
of a comphant vessel be examined from first principles as far as is possible. 
This is the approach taken in this chapter with the introduction of a new 
pressure integrafion technique for hydrostatic stability calculations. 

3.1 Theoretical background to pressure integration technique 
for hydrostatic analysis 

Consider the arbitrary body shown in Figure 3.1(a) floating at the free 
surface between a 'heavy' and a 'light' fluid such as an air-water interface. 

49 
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Figure 3.1(a). Free floating body equilibrium, (b) Floating body equilibrium with attached 
loads 

There are two forces acting on the body. The first force is the weight of 
the body acting vertically downwards. The second force is due to the fluid 
pressure acting on the body's submerged surface. 

The incremental force, dF , acting on the body due to fluid pressure is 

d¥ = pg{d- z)dS (3.2) 

By integrating over the submerged surface the total force, F , is 

F = 9g{d-z) n(x) dS (3.3) 

where η is the unit normal vector acting into the body and is a function of 
position, X . Similarly, the incremental moment d M is 

dM = X X dF 

= X X ρ g (d - z) dS (3.4) 

Integrating Equation (3.4) over the submerged surface gives 

Μ = xX pg{d - ζ) n(x) d5 
Js 

Resolving forces and moments due to body weight gives 

F = Wk 

(3.5) 

(3.6) 

The hght fluid is at a constant pressure equal to the free surface pressure. 
The pressure is assumed to be constant across the free surface. The 
pressure, p , of the stationary heavy fluid with respect to the free surface at 
any point x ( j c , y, z) below the free surface is 

p = 9g{d-z) (3.1) 

The position and orientation of the global Oxyz axis system shown in 
Figure 3.1 is arbitrary. In Figure 3.1(a) it has been placed, for convenience, 
at the bot tom of the floating body but this fact is not of major significance. 
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and 

Μ = x g X W k (3.7) 

where W is the weight of the body; and XQ is the centre of gravity. 
For static equihbrium, Equations (3.6) and (3.7) must be satisfied since 

the fluid exerts an upward thrust on the body equal and opposite to the 
body's weight. This upward thrust, called the buoyancy force, F^, lies on 
the same line of action as the weight. 

Now the divergence theorem states that 

f · η d 5 = V · f dV^ (3.8) 

Jv 
where f is the vector field; and V is the gradient operator (Kreyszig, 1988). 
The negative sign arises because the divergence theorem is normally 
defined by a unit normal vector acting out of the surface. From Equat ion 
(3.3) the buoyancy force is given by 

Fn = ρ g ( d - z)k . n(x) dS (3.9) 

Using the divergence theorem (Equation 3.8), Equat ion (3.9) becomes 

= - Ρ g — (d-z)dV= pgV 
dz 

(3.10) 

This is Archimedes ' principle - the buoyancy force acting on a freely 
floating body is equal to the weight of the volume of fluid displaced by the 
body. 

The solutions of Equations (3.6) and (3.7) determine the magnitude of 
the buoyancy force and the horizontal coordinates of the centre of 
buoyancy. The vertical centre of buoyancy can not be determined from 
these equations since the solution of Equat ion (3.7) only gives the line of 
action. The solution for the vertical centre of buoyancy is given from the 
fact that it lies at the centroid of the submerged volume. Thus 

XB · k = d - {d - z) dV^ (3.11) 

Relating the right hand side of Equat ion (3.11) to the right hand side of the 
divergence theorem (Equation (3.8)) gives 

V · f = - ζ 

The solution to Equat ion (3.12) is 

f = - ^ k 

(3.12) 

(3.13) 

Substituting Equation (3.13) into Equat ion (3.11) via Equat ion (3.7) 
results in 

\B - k = d - pg k · n(x) áS (3.14) 
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Now all the hydrostatic properties have been determined in terms of 
surface integrals. The advantage of these surface integrals is that they do 
not have to be evaluated over the waterplane area as they are zero on that 
surface. 

Solutions to Equations ( 3 . 6 ) , ( 3 . 7 ) and ( 3 . 1 4 ) give the body's equili­
brium position. However, nothing is known about the stability of the body 
in this position. The classical approach to stability is to apply a small linear 
or rotational displacement to a body and test whether it returns to its 
equilibrium position of its own accord or if it goes to another equilibrium 
position. In the theory described here , a small rotation is appHed to the 
body. The point of rotation may be anywhere in space, provided that the 
buoyancy force remains constant. The centre of buoyancy moves to a new 
position, X b and the centre of gravity moves to x q . Note that the centre of 
gravity does not move relative to the rigid body but it does move in a fixed 
global frame of reference. 

Taking moments gives 

M r = {-X'G X Wk) - (xfe X [-Wk]) 

= W ( x ' b - X g ) X k ( 3 . 1 5 ) 

where M r is the restoring moment vector. If M r is greater than zero in the 
direction of rotation, then the body is stable. If M r is less than zero, the 
body is unstable and will find a new equihbrium position. 

In many floating vessels the centre of gravity does not remain fixed 
relative to the rigid body. This is due to movements in load such as 
suspended crane loads and movement of liquids within the hull. These 
mechanisms lead to a loss in stability which is reflected in the restoring 
moment , M r . If the centre of gravity moves to a new position, x q , with 
rotation then the loss in restoring moment , A M r , is given by 

A M r = W ( x ' g - x ^ ) X k ( 3 . 1 6 ) 

Floating vessels often have attached loads as a result of tethers, mooring 
lines and other systems. These loads will influence the hydrostatics of the 
vessel. Figure 3 .1 (b) shows a floating vessel with η attached loads. The 
loads, T/, are located on the surface of the vessel at positions, x,. In this 
case the equilibrium equations of the body are given by: 

η 

F = Wk -f 2 Τ,· ( 3 . 1 7 ) 

i = l 

and 

Μ = x g X Wk 4- 2 X, X T, ( 3 . 1 8 ) 

/ = i 

The implication of Equation ( 3 . 1 7 ) is that the horizontal components of the 
attached loads are in equilibrium and that the buoyancy force is equal to 
the weight of the body plus the vertical components of the attached loads. 
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Fn'W 
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(3.19) 

In considering the stability of a floating vessel with attached loads the 
previously described procedure of applying a rotation to the vessel and 
determining the restoring moment may be used. However, the problem 
may be relatively complex since, in general, the attached loads T, will 
change in magnitude and orientation with rotation. This is best illustrated 
by considering the influence of a catenary mooring line where rotation of 
the vessel will cause a change in line tension and line orientation with 
respect to the vessel. 

The pressure integration method for evaluating the hydrostatic stability 
of floating rigid vessels also gives the same results as those associated with 
submerged volume calculations of the classical approach. The classical 
hydrostatic stability results will be presented here for free floating bodies 
which are totally submerged or pierce the free surface. 

3.2 Classical hydrostatics 

A free submerged body, such as that illustrated in Figure 3.2 will be in 
vertical equilibrium if its weight, W, acting through its centre of gravity, G, 
is equal to the buoyancy force, pgV, acting through the centre of buoyancy 
(or volume) B, where V is the body's submerged volume. However , the 
relative positions of points G and Β will govern the body's stability in roll 
and pitch. The body will be in stable, neutral or unstable equilibrium if the 

Figure 3 .2 . Submerged body 
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Figure 3.3. Arbitrary body floating freely at water surface 

this volume is described with respect to Cartesian axes Oxyz that are fixed 
in the body with Oxy initially in the water plane. At equilibrium, the 
constant body weight, W, will be equal to the buoyancy force, pgV, with 
the latter acting through the centre of buoyancy, B. Now, if the body is 

centre of buoyancy B, is above, coincides with or is below the centre of 
gravity G. A body in stable equihbrium will, if given a small displacement 
and then released, return to its original position. If the equilibrium is 
unstable, the body will not return to its stable position but will move 
further from it. In neutral equilibrium, the body will neither return to its 
original position nor increase its displacement following the initial distur­
bance, but, rather, will simply adopt a new position. The condition for 
stable equilibrium requires a restoring couple to return the vessel to its 
original position following angular perturbation. 

This restorinng couple can be written as 

Μ = pgV{KB - KG) sine = W{KB - KG) sinO (3.20) 

where θ is the rotation angle of the body from its equilibrium position; and 
Κ is a reference point on the vessel keel. 

Now, for a fully submerged rigid body without free surfaces in internal 
tanks, the positions of points Β and G relative to the body will remain fixed 
and the stability will be fully defined by the above considerations. 
However, for a freely floating body at the free surface, the shape of the 
submerged volume, and hence the position of the centre of volume (or 
buoyancy), will shift with inclination of the body. 

This aspect complicates consideration of the stability of a floating body 
at the free surface and requires the problem to be examined from first 
principles. Consider the arbitrary body in Figure 3.3 floating at the free 
surface with submerged volume V. The shape of the surface boundary of 
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given a small inclination, β, about the Oy axis, the condition that the 
submerged volume must remain constant before and after inclination is 

V = (5 - jcß)d4 (3.21) 

where the function 5 = / ( J C , y) describes the ζ co-ordinate of the sub­
merged body surface relative to axes Oxyz. Simplifying Equat ion (3.21) 
and carrying out a similar procedure for rotation about the χ axis leads to 
the conditions 

xdA = 0, yáA = Q (3.22) 

which prove that rotation of the body at constant submerged volume, and, 
therefore with equilibrium maintained, can only take place about axes 
through the centroid of the water plane. This point is defined as the centre 
of flotation. 

The co-ordinates of the centre of buoyancy before inclination, (x, y, 
z), can be defined by the equations 

1 
SxáA 

1 
y = SydA (3.23) 

^ V 
Ja 

-S^áA 
2 

After an inclination of β about the Oy axis, the centre of buoyancy shifts to 
co-ordinates {x',y', z): 

V 
(5 - χ^)χάΑ 

y = - (5 - x^)ydA (3.24) 

jcß)(5 + x^)dA 

with the moments being taken about the initial co-ordinate axes. The 
movement of the centre of buoyancy parallel to the y axis can then be 
obtained as 

y - y = 
β 

xyáA (3.25) 
Ja 

This equation indicates that if the cross-product of area of the water plane 
about Ox and Oy is zero, that is, Oxy are principal axes of the water plane 
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IV 
χ 2 dL4 (3.26) 

with the indicating that the movement is small or of second order . Also, 
the horizontal movement of the centre of buoyancy is given by 

x - x ' = ^ V 
x^ dA (3.27) 

The effect of this is illustrated by Figure 3.3(b) where BB'B" indicates the 
locus of centre of buoyancy as β increases. The upward shallow curvature 
of the line is due to the vertical movement in Β being of second order 
compared to the horizontal movement . Fur thermore , for small β the 
vertical through the centre of buoyancy {B') goes through a fixed point My 
whose position can be defined by using triangle BMyB' in Figure 3.3(b) to 
obtain 

BB' x - x ' 1 
BMy = = = -

^ β Ά V 
x'dA = ^-^ (3.28) 

with lyy being the second moment of water plane area about Oy. Using a 
similar derivafion for rotafion about the Ox axis, the relationship 

ΒΜχ = — where I^^ x^ dA (3.29) 

can be obtained. Therefore, for small rotations about the Ox and Oy axes, 
the centre of buoyancy will move along a surface which is concave upwards 
but with different curvatures in the Oy and Ox directions - the centres of 
curvatures being the metacentres Μ χ and My respectively. These M^ and 
My metacentre positions are given by Equations (3.28) and (3.29) and may 
be considered as the effective point of application of the buoyancy force 
after rotations about the Ox and Oy axes respectively. A t any inclination of 
the body, the tangent plane to the surface of buoyancy will be parallel to 
the water plane. Note also that if the axes Oxy are not principal axes of the 
water plane, that is 

xydAy^O, 
Ja 

area, then the centre of buoyancy will move parallel to the Oxz plane 
during inclination about the y axis. The condition of zero cross-product of 
water plane area is satisfied if either Ox or Oy are hues of symmetry of the 
water plane. Since this condition is satisfied for the majority of floating 
vessels used in offshore operations, y = y' and χ = x' are taken to be valid 
for inclination about the Oy and Ox axes respectively. These conditions 
also imply that rotation about the Ox and Oy axes can be treated 
independently in hydrostatic analysis if Oxy are principal axes of the water 
plane area. On the other hand, if the cross-product of water plane area is 
non-zero, it is recommended that the hydrostatic analysis is carried out 
from first principles without the use of the relationships derived in this 
section. 

The vertical movement of the centre of buoyancy can be written as 
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= pgV- GM, • sin α = pgV- GZ, 

RMy = pgV- GMy sin β = GZy 

GZ, = GM, • sin a , GZy = GMy • sin β 

the metacentre positions cannot in general exist since the lines through Β 
and B' in Figure 3.3(b) will not necessarily intersect. 

For stable equilibrium, the metacentre positions must both lie above the 
centre of gravity, although the centre of buoyancy need not do so. The 
righting moments in the Oy ζ and Oxz planes, RM^ and RMy, can then be 
written as 

(3.30) 

where GM^, GMy are metacentre heights; α and β are inclinations about 
the Ox and Oy axes, respectively; and GZ^ , GZy are moment arms of the 
restoring couples. 

Calculations for initial stability of a freely floating vessel are carried out 
by identifying the position of five points within or around the vessel. The 
lower most point on the vessel vertical centre line, denoted by Κ (for keel 
level), is conventionally used as a reference. The positions of vessel centre 
of gravity, G, centre of buoyancy, ß , and the longitudinal and transverse 
metacentres and M^, are defined with respect to the keel reference Κ 
and using the Ox axis pointing forwards and Oz vertically downwards. The 
longitudinal and transverse metacentric heights are given by 

GMy = KB ^ BMy - KG ^ 

and I (3.31) 

GM, = KB + BM, - KG 

since BMj^ and BMy can be directly calculated from Equat ions (3.29) and 
(3.28) respectively. The above classical theory is described in further detail 
by Ramsey (1961), Rawson and Tupper (1976) and Clayton and Bishop 
(1982). 

These classical theory results may also be determined in terms of surface 
integrals. If the axes Oxy of Figure 3.1 coincide with the principal axes of 
the waterplane, then the second moments of waterplane area I,, and lyy are 

and 

{xifnk dS 
Js 

lyy (xjfnk dS 

The waterplane area is given by 

η k d 5 

The centre of flotation (xp, y^) is given by 

1 
(x · i)n · k dS 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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and 

= ( x · j)n · k dS (3.36) 

There are a number of physical effects which can contribute to a loss in the 
hydrostatic stability of a vessel. These effects arise from the fact that the 
mass distribution of a vessel can change with angle of inclination and the 
resultant centre of gravity shift is invariably such as to reduce the 
hydrostatic restoring moment arm, G Z . The stability reductions can occur 
due to the effects of tanks of fluids with free surfaces inside a vessel, due to 
freely suspended loads from cranes and also due to loads applied by 
catenary moorings or riser pipe connections between the floating platform 
and sea bed. Calculation of these stability losses is essential during 
definition of the hydrostatic stability of a floating vessel. 

The most common source of stability loss is the so-called free surface 
effect. Consider a floating vessel which has partially filled tanks with free 
surfaces on board. Inchnation of the vessel causes these free surfaces to 
move such that the fluid in the tanks 'piles' up towards the side of tanks 
closest to the submerging part of the ship. This causes the centre of gravity 
of the tank fluid contents, and therefore of the vessel, to shift in the 
direction of movement of the vessel hull's centre of buoyancy as it inclines. 
There is a consequent reduction in the magnitude of the restoring couple 
between vessel weight and the buoyancy force. An expression for this 
stability loss is obtained as follows. 

Consider a tank, A , with fluid contents of weight w on board a vessel, ß , 
of weight W, as shown in Figure 3.4. When the vessel inclines through a 
small angle, β, the horizontal shift in centre of gravity of the tank contents, 
gg', induces a horizontal shift G G ' , in the vessel centre of gravity such that 

W ' GG' = w gg' (3.37) 

But gg' is identical to the centre of buoyancy shift that would occur if the 
shape of the tank fluid contents were to be considered as the submerged 
volume of a freely floating body. Then Equation (3.37) can be written as 

W · GG' = w — β (3.38) 

I β-.ο 
Figure 3.4. Free surface effect 
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where Ιγ is the second moment of area of the fluid free surface about an 
axis through the centroid of the free surface parallel to the axis of rotation 
of the ship, and Vi is the volume of hquid in the tank. Converting the 
centre of gravity shift as a loss in metacentric height, taking w = pigV^i, 
where pi is the density of fluid in the tank, and W = pgV where ρ is the 
density of sea water and V is the submerged volume of the vessel, the 
metacentric height loss is obtained as 

GG' pi/i 
^{GM) = = — (3.39) 

For a ship with a large number of internal tanks (say N) with free surfaces, 
the total metacentric height loss is 

Ν 

HGM) = 4 ; Σ Ρ'^' (3-40) 

where p/ is the fluid density for the contents of the iih tank; and /, is its free 
surface second moment of area about an axis through the free surface's 
own centroid and parallel to the vessel's axis of rotation. 

Note that the free surface effect is independent of the volume of fluid in 
the tanks and would disappear if a tank was completely full - in this case 
the mass of fluid would act as a rigid body during vessel rotation. Free 
surface effects are normally reduced in the design of a floating offshore 
vessel by compartmentat ion of tanks to reduce the value of // substantially 
for each of the tanks. The loss of metacentric height or free surface 
correction is then subtracted from the rigid vessel metacentric height to 
give a net value to be considered for vessel evaluation. 

Freely suspended masses on board a vessel have a similar effect to free 
surfaces in that the centre of gravity is shifted in the same horizontal 
direction as the centre of buoyancy and, therefore, tends to reduce 
stability. For a vessel with Ν suspended masses on board, each of mass m/ 
and with free suspension lengths L,, the centre of gravity shift is 

Ν 

G G ' = ß - ^ ^ m ^ L , (3.41) 
/ = 1 

Using the same approach as before, the metacentric height loss can be 
written as 

Ν 

HGM) = 4; Σ (3.42) 

I t 
This correction to metacentric height can be applied by subtracting it from 
the rigid vessel metacentric height. Alternatively, the centre of gravity 
calculation of the vessel can be carried out by placing the masses m/ at the 
top end of the suspension lengths L/. This has the same effect as the 
correction defined above. 

The forces applied on a vessel by a catenary mooring spread can vary 
with angle of inclination of the vessel to contribute to either some gain or 
loss in stability, but such corrections are usually small and are neglected for 
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3.3 Pressure integration technique 

The calculation of the large angle stability can be carried out by a 
volumetric approach which makes use of submerged volume and water 
plane area properties. The volumetric method is an extension of the 
classical method (see Ramsey, 1961; Rawson and Tupper , 1976; and 
Clayton and Bishop, 1982). Practical difficulties have been experienced in 
applying this method to the calculation of the large angle hydrostatic 
stability of complex hull forms often associated with compliant marine 
structures. A more fundamental approach uses an integration of the 
pressure distribution acting over the submerged body surface to yield all 
the necessary hydrostatic characteristics. 

The method is computationally more efficient when transformed into a 
programmed set of instructions for an arbitrary structure at any orienta­
tion. Mathematically, the surface integral of pressure can be transformed 
into a volume integral such that numerical quantities used in conventional 
naval architecture can be derived from the surface integrals. The computa­
tional requirement to divide all the vessel surface into panels is analogous 
to a requirement for surface panels in potential flow boundary integral 
techniques (see Section 4.2). 

The problem is now one of solving the previously given surface integral 
equations. Equations (3.3), (3.5) and (3.14). Consider a body that has 
been modelled by a set of m surface elements covering its submerged 
surface. This allows complex vessel geometries to be modelled by a set of 
simple and easily defined plate elements. Equations (3.3) and (3.5) now 
become 

F = 2 (3.43) 

and 
m 

M= (3.44) 
/=i 

where and M, are the forces and moments acting on the /th surface 
element; F/ and M, are given by 

F , = I p g ( á - 2 ) n , d 5 , (3.45) 

and 

\Xpg{d- z) n, d5, (3.46) 

hydrostatics calculations. The generally constant downward force applied 
by a marine riser to a drilling or production vessel usually has little effect 
on vessel hydrostatic stability. However, both moorings and the riser apply 
net downward forces on the vessel which have to be accounted for in the 
weight and buoyancy force balance of the vessel. 
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The advantage of the above is that a complex surface integral has been 
reduced to a summation of a set of known surface integrals. Depending on 
the type of surface element, Equations (3.45) and (3.46) may be evaluated 
analytically, numerically or by a partially analytic/partially numerical 
method. 

Two alternative methods are adopted here for the solution of these 
equations. The first is a complete numerical summation over the element 's 
surface. The element is treated as a region and is subdivided into a set of 
rectangular subelements. Equations (3.45) and (3.46) now become 

M„ Ma 

Δ/ζΔν 

and 

^pq ^ 9g (d - Xpq · k ) ΔΛΔν 
p=\ q=\ 

(3.47) 

(3.48) 

where \pq is the co-ordinate of the centroid of the rectangular subelement 
with dimensions Δ/ζ and Δ ν and a unit normal n^ .̂ There are Μ ρ of these 
subelements along the submerged edge of the element and along the 
other. 

The second method is a numerical summation of a series of line integrals 
of finite width. Equations (3.45) and (3.46) now become 

(d - Χ · k ) Π d/ 

and (3.49) 

p=\ Jo 

Χ X (¿/ - X · k ) Π d/ 

where Lp is the submerged length of the pth line element. This reduction of 
a complete surface integral to a sum of element surface integrals is equally 
applicable to all the surface integral equations. This solution method is 
preferred because it is more accurate and computationally faster. 

The line element has unit width, a submerged length defined by the two 
end vectors, Xi and X2, and a constant normal vector n. Figure 3.5 
illustrates this and also gives some definitions. The force acting on element 
d/ is 

d¥ = ρ g {d - z) dl η 

Integration gives 

(3.50) 

F = Pg{d-z)dl 

L J 
= Fn (3.51) 
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F r e e S u r f a c e 

D r a u g h t 
d η 

x , ( x , , y , , z . ) 

ζ = X| 

y Δ ν = ν 2 - ν ι 

y Δ ζ = Ζ 2 - ζ , 

^ Χ submeraed l e n a t h l — 

V A X ^ + A y2 Η - Δ ζ ^ 

axial unit vector = 

( Δ χ , Δ γ . Δ ζ ) 

Figure 3.5. A line element 

Now F is a line integral from \χ to X2. In global axes d/ becomes 

d/ = e ;̂, dx + e^^ áy + e^, dz 

AJC Δν Δζ 

For any point on a straight line 

AJC Ay Δζ 

or, in terms of a variable /, 

Δ Λ : / 
λ: = 

L 

L 

Δ ζ / 
ζ = 

F now becomes 

^ ^ , 9g{d- z) ax áy 
x— + y— + ζ 

dz dz 
dz 

(3.52) 

(3.53) 

(3.54) 

(3.55) 
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F = 
" ρ g (d - 2 ) dz 

d -
(^2 + Zl ) 

The force acting on the line element is 

(Z2 + ZiY 
F = p g d -

The moment Μ is given by 

Μ = \X pg{d - z)ndl 

Μ = pg (d-z) 

yn, - zriy 

zn, - xn^ dl 

where η = {η,, rty, n^}. 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

Let L = -

L = -

{d-z)x dl 

{d- z)y dl 

and 

(d- z)z dl 
Jo 

Substituting Equations (3.54) into (3.60) gives 

{χ^Ζ2 + ZiX2) ΔχΔζ 
^ {X2 + Xl) 

iy = -iy2 + yi) -
(y\Z2 + zxyi) ^y^z 

(3.60) 

(3.61) 

h = - ( Z 2 + 2 l ) - 2\22 -
Δ ζ 2 

The moment Μ becomes 

lytl. - hny 
Μ = pgL - l,n. (3.62) 

I^rty - lyn, _ 

The relations for dxidz and d_y /d2 are found by differentiating the equations 
in (3.53). Substituting into Equat ion (3.55) gives 
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R o t a t i o n angle ( ° ) 

1 8 0 

Figure 3.6. Restoring moment of a 10 m x 10 m χ 4 m box of 205 t mass and draught of 
2 m 

Figure 3.7 shows the large angle hydrostatic stabihty of a naval vessel 
calculated by the pressure integration technique and the volumetric 
method. The results are presented in terms of a variation of GZ with angle 
of heel where G is the centre of gravity position and Ζ is the base of the 
perpendicular from G to the vertical through the metacentre M. They show 
good agreement between the two methods for this relatively simple hull 
form. The pressure integration technique is computationally more efficient 
than the volumetric method and is more accurate for complex hull 
geometries. 

A final note on the presentation of large angle hydrostatic stability of 
marine vessels. In practical terms, the large angle stabihty characteristics of 
a hull form can be defined by tabulated or plotted data presented in various 

This method can be developed for a wide range of surface elements such as 
rectangular, triangular and curved plates and Coon's patches. Fur ther 
details are given by Witz and Patel (1985) and Harrison, Patel and Witz 
(1990). 

Figure 3.6 presents a comparison of the restoring moment of a uniform 
10 m by 10 m by 4 m box of 205 t mass and a draught of 2 m calculated 
using the above pressure integration technique and by the wall sided 
formula (Rawson and Tupper , 1976). This box offers a special case where 
the wall sided formula provides an exact analytical result for the restoring 
moment over the entire 180** of rotation. Figure 3.6 shows that the pressure 
integration technique is in excellent agreement with the analytic result. 
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Figure 3 .7 . G Z curve for naval hull (— volumetric method; * pressure integration tech­
nique) 

ways. Cross-curves of stability (see Figure 3.8(a)) present stability moment 
arms (GZ) against vessel displacement for a range of heel angles. In some 
cases, the variability of centre of gravity position, G, is removed from G Z 
by replacing it with 5 Z , where S is an arbitrary fixed point or pole on the 
vessel vertical centre line; SZ can readily be related to G Z if the positions 
of 5 and KG are known. Statical stability curves define the variation of 
G Z , SZ or righting moment against angle of heel (see Figure 3.8(b)). 
Statical stability curves are often drawn on the same axes as wind heeling 
curves to check that the vessel has sufficient hydrostatic restoring moment 
to recover from a heeling moment due to wind and to estimate the angle of 
heel that will be induced by wind. The area under either of these curves is a 
measure of the work done to heel the vessel over to any particular angle. A 
practical means of ensuring stability under wave induced motions is to 
require that the area under the restoring moment curve exceeds the area 
under the wind heeling curve by a specified fraction at least. 

Curves of form can be used to define the values of displacement, KB, 
KMy, KM,, BMy, BM, as functions of vessel draught - see Figure 3.8(c). 
Safe vessel loading conditions can be defined by allowable KG curves 
(Figure 3.8(d)) which give the highest permissible centre of gravity heights 
above the keel as a function of vessel draught. All these curves are usually 
presented in tabulated and graphical form in the stability manual of a 
floating offshore vessel. 
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Figure 3.8. Hydrostatic stability curves: (a) cross-curves of stability; (b) static stability 
curve; (c) curve of form; (d) allowable KG curve 
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The hydrostatic stabihty of floating comphant marine structures remains 
an important element of their operational success. Specific features of such 
hydrostatics are covered at appropriate points in the rest of this book. 



C h a p t e r 4 

Dynamic response analysis 

Compliant marine structures are dynamic systems which interact with the 
surrounding fluid medium. This fluid-structure interaction plays an impor­
tant part in characterizing their response. This chapter is concerned with 
presenting typical methods for deriving the dynamic response of comphant 
marine structures once their equations of motion have been formulated. 
The evaluation of coefficients or coefficient matrices for the governing 
equations are covered in later sections for each class of compliant marine 
structure. 

Compliant marine structures are complex systems with numerous func­
tional components . It is an almost impossible task to analyse the comphant 
marine structure using a complete system model which gives all relevant 
design information. A more practical approach is to identify system models 
which provide the relevant design parameters . For example, a designer is 
interested in the wave induced motions and stresses of a compliant marine 
structure. A full hydroelastic model to identify these design parameters 
would be very complex and difficult to utilize within a design cycle. A more 
practical approach would be to determine the wave induced motions by 
considering the marine structure to be a floating, rigid body. The next 
stage would be to use the computed wave induced motions and loads for a 
structural analysis in order to determine the stress distribution within the 
structure. The use of two separate system models for different but related 
design parameters is feasible within the design process. The designer must, 
of course, ensure that no significant errors are introduced, i.e. the system 
models applied are appropriate. 

Another related approach is to reduce the complete system into a 
number of subsystems and to analyse each subsystem separately. Many of 
these subsystems will interact and therefore the analysis may be iterative. 
For example, a different system model is required for the analysis of the 
dynamics of an individual mooring line compared with the system model 
used for the analysis of the wave induced motions of a moored compliant 
marine structure. Yet both these systems interact and therefore their 
analysis may have to be carried out in an iterative procedure where output 
from one system model is required for input for the other system model 
and vice versa. 

69 
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4.1 Formulation of governing equations 

The transformation of a problem concerned with fluid-structure interac­
tions of a floating body into the governing equation of a second order 
dynamic system is best illustrated by considering a simple linearized system 
with one degree of freedom. An example of such a system is the cylindrical 
buoy of Figure 4.1 where coordinate η denotes vertical motion of the water 
surface and ζ denotes the resultant buoy vertical motion. The total force 
acting on the buoy will be due to added mass, damping and hydrostatic 
stiffness induced forces due to differential motion between the buoy and 
surrounding fluid. The net force due to these effects will serve to accelerate 
the buoy. Thus the equation of motion can be written as 

mi = - z) + β ( ή - 2) + Γ ( η - ζ) (4.1) 

where m is the buoy mass; and A, B, C are coefficients expressing the 
added mass, damping and hydrostatic stiffness induced forces on the buoy. 

wave d i rect ion 

2 or 77 

Figure 4.1 . Heave motion of a buoy 

Here the damping force is taken to be hnear and the Froude-Krylov 
force - applying through dynamic wave pressure on the buoy base - is 
given by the stiffness term, Γ η , for a buoy geometry where draught, Λ, is 
very small compared to incident wave lengths. 

Rearranging Equation (4.1) to bring unknown buoy motion terms to the 
left hand side gives 

(m + A) ζ + β 2 -h C 2 = F(0 (4.2) 

This chapter examines the analysis of the dynamic system models 
encountered in later chapters. 
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where 

F(0 = ^ ή + β ή + C η (4.3) 

Thus, there are two equations governing the behaviour of the buoy in 
waves. Equation (4.3) is concerned with the mechanism of wave elevation 
motion, η , exerting an exciting force F{t) on the buoy, whereas Equat ion 
(4.2) is a second order linear ordinary differential equation which describes 
the dynamic response of the buoy. The form of the above equations is 
typical of that obtained for all floating bodies in that two transfer functions 
(from wave elevation to force and from wave force to motion) are involved 
in deriving a body motion response from wave elevation. 

This concept can readily be extended to multiple degrees of freedom to 
obtain an equation of motion in matrix form as 

M X + B X + K X = F(0 (4.4) 

where the (n x I) column vector of displacement X holds the η degrees of 
freedom that characterize the response of the structure; and ¥{t) denotes 
the (n X 1) column vector of applied forces. All the coefficients of the η 
equations of motion imphed in Equat ion (4.4) are incorporated in {n x n) 
matrices of mass, damping and stiffness (M, Β and K) . The magnitude and 
distribution of coefficients in these matrices reflect the dynamic character­
istics of each degree of freedom and of the couplings between them. 

For the floating systems described in this book, the degrees of freedom 
are concerned with rigid body motions of structural elements or bulk 
motions of water masses. The application of these equations of motion to 
structural deformation degrees of freedom is not considered, with the 
exception of the dynamics of marine risers in Chapter 11. However , many 
systems exhibit a quadratic form of damping arising from drag forces. 
Inclusion of this drag force damping for a simple single degree of freedom 
system yields an equation of motion of the form 

(m A)z -l· B^\z\ ζ -l· C ζ = F{t) (4.5) 

where m is the physical mass; A is the added mass; ßv is the quadratic 
damping coefficient; C is the stiffness and F is the exciting force. 

One approach that permits solution of Equat ion (4.5) is to use a 
linearized equivalent damping coefficient Β that is selected so that the 
non-linear and equivalent linear damping coefficients dissipate the same 
energy at resonance. For a hnear damping term of the form given in 
Equation (4.2), the energy dissipated at resonance can be written as 

W L = 2 Β(Β ωο sinωoO dz (4.6) 
J-R 

where ζ = R sin(ωoí - π/2) is the resonant motion at frequency ωο. 
Writing the integral in terms of time gives 

=2 Β ωο R^ sin^ωoí d(ωoO 

= ττΒωοΒ^ (4.7) 

^0 
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W D = 2 

For non-linear drag induced damping, the work, W Q , done becomes 

B^{R^ ωΐ sin^ωoO dz 

J-R 

Γ ^ 

= 2 Β^ωΙ sin^ωoí d(ωoO 
Jo 

= ΐΒ,ωΙ R' (4.8) 

Equating the work done by linear and non-linear damping yields 

8 
Β = — 

3π 

3 7 T 
ß v (4.9) 

Equation (4.5) can be solved by replacing ß v |z| by ß from Equat ion (4.9). 
The equation has, therefore, to be solved by iteration in that a value of z^ax 
has to be determined which satisfies the equation. The first solution for the 
iteration is usually found by assuming that the damping is linear and 10% 
of critical. The new value of z^ax obtained from this initial solution is then 
placed in the damping term and the procedure repeated until successive 
values of z^ax are within a small value of each other. This interaction 
converges very quickly away from resonance and within approximately ten 
solutions at resonance. The resultant solution for ζ will now also be a 
function of the amphtude of the applied force. Fa , and of wave ampli tude, 
a. 

All the above formulation features are illustrated further in Section 5 .1 . 

4.2 Solution techniques 

This section briefly describes solution techniques commonly employed in 
the analysis of compliant marine structures. More comprehensive treat­
ments of the methods presented here are to be found in the literature (see, 
for instance. Bathe, 1982; Meirovitch, 1986; and Thomson, 1988). 

4 . 2 . 1 Free response 

This technique is used to derive the undamped natural periods and 
corresponding modes of vibration (eigen values and eigen vectors) for a 
marine system responding to initial conditions in still water. If the matrix 
equation of free undamped motion for a marine system is 

M q + K q = 0 (4.10) 

where q is the (n x I) displacement vector containing the η degrees of 
freedom of the system, Μ is the mass matrix and Κ is the stiffness matrix. 

Assuming a solution of the form 

q = qoe- ' ' - ' (4.11) 
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and substituting into Equation (4.10) yields 

( K - ω^Μ) QO = 0 (4.12) 

Apart from the trivial solution of QO = 0, Equat ion (4.12) has solutions 
given by 

Det |K - ω^Μΐ = 0 (4.13) 

which leads to a polynomial of degree η where η is the number of degrees 
of freedom in the governing equation, Equat ion (4.4). Solution of the 
determinant yields η values of which are the natural frequencies of 
the system. Each natural frequency, ω̂ ., has a corresponding set of values 
of QO, given by 

( Κ - ω ? Μ ) ς ο . = 0 (4.14) 

although the elements of vector QO, are only defined relative to each other 
rather than in absolute terms. For systems with many degrees of freedom, 
the determination of the eigen values ω̂ . and the eigen vectors QO, requires a 
considerable computational effort although modern computer based algo­
rithms make the task simpler than it would be otherwise - see Bathe and 
Wilson (1973) for a survey of available techniques. 

It can also be shown that the eigen vectors for any two vibration modes 
satisfy an orthogonality condition. Consider vibration modes r and s. From 
Equation (4.14) these can be written as 

K Q O , = w ? M Q O , (4.15) 

and 

K Q O , = ω ? M Q O , (4.16) 

Taking the transpose of Equation (4.15) gives 

( K QO.)^ = ω2 (Μ QO,)^ 

or 

q J , K = W 2 Q O T M (4.17) 

since Κ and Μ are symmetric and Κ = and Μ = M ^ . If Equat ion (4.17) 
is postmultiphed by QO^ and Equat ion (4.16) is premultiplied by QJ, , then 

q J ^ K Q O , = ω ? q 3 ; M Q O , (4.18) 

and 

q 3 ; K Q O , = ω ? Q T M Q O , (4.19) 

Subtraction of (4.19) from (4.18) yields 

(ω? - ω?) ql Μ QO, = 0 (4.20) 

so that for ω, ω,, the orthogonality conditions for the modes of vibration 
are obtained as 

ql Μ QO, = 0 (4.21) 

and 

qor κ QO, = 0 (4.22) 
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4 . 2 . 2 Forced response 

4,2.2,1 Frequency domain methods 
The matrix equation of motion (4.4) for dynamic response can be solved in 
either the frequency or time domains. For solution in the frequency 
domain, it is necessary to use hnear wave theory to obtain wave properties 
and to linearize the drag force term. Once these simplifications are made , a 
frequency domain solution offers readily usable transfer functions of 
structure displacements, internal forces and stresses which can be applied 
to deriving statistical response results. 

The frequency domain solution can be obtained in two ways. A direct 
substitution of the form of solution 

q = qo e - - ^ (4.27) 

in a governing equation of the form 

M q + C q + K q = F (4.28) 

will yield the unknown displacement through matrix inversion of the term 
in square brackets in the equation 

[K - Μ - iω C] qo = Fo (4.29) 

where the exciting force is 

F = Fo e-*"^ (4.30) 

with amplitude Fo and frequency ω, q is the displacement vector and M, C 
and Κ are mass, damping and stiffness matrices. For systems with 
non-linear loading, F is the linearized form of the wave exciting force. 
Solution of Equation (4.29) requires the inversion of a large matrix with 

The eigen vectors are often normahzed by using a version of Equat ion 
(4.21) with r = s so that for the rth normahzed eigen vector φ „ the 
condition 

Μ Φ, = 1 (4.23) 

holds. This can be achieved by calculating the scale factor 

Sr = ql Μ qo. (4.24) 

and obtaining the normalized eigen vector as 

Φ. = - 7 ^ (4.25) 

With this normalization procedure, if all the eigen vectors, φ „ are 
collected in an η x η square matrix, Φ , then the condition 

Μ Φ = I (4.26) 

where I is the π x η identity matrix with unit diagonal terms and zero off 
diagonal terms. 
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complex number elements. This is a numerically cumbersome operation 
and has prompted the development of computationally more efficient 
solution techniques. 

One such method uses modal superposition. This technique relies on the 
fact that despite the large number of degrees of freedom of a typical 
offshore structure, its dynamic response is limited to only a few modes of 
vibration. The modal superposition technique uses this feature to reduce 
the solution computation time. This is because the eigen vectors or mode 
shapes can be said to be building blocks of the dynamic response of a 
general η degree of freedom system to the extent that it is efficient to 
describe the response in terms of these mode shapes. The method initially 
requires determination of the undamped natural frequencies and vibration 
modes of the structure, as is described earher . 

Thus the displacement vector, q, of an degree of freedom dynamic 
system described by the matrix equation 

M q + C q + K q = F(0 (4.31) 

can be written in terms of eigen vectors (or mode shapes) through the 
matrix equation 

q = Φ Y (4.32) 

where Φ is the η x η matrix of normalized eigen vectors φ,; and Y is the 
(n X 1) column vector of modal amplitudes. Thus Equat ion (4.32) trans­
forms from geometric variables, q, to generahzed co-ordinates, Y, which 
describe the amphtudes of exched modes during dynamic response. These 
generalized co-ordinates are called normal co-ordinates. 

Equation (4.31) can be written in terms of the normal co-ordinates, Y, 
by substitution of Equation (4.31) and premultiplying by the transpose of 
the eigen vector matrix, φ^, to give 

Φ ^ Μ Φ Ϋ ^ Φ ^ ε Φ Υ + Φ^Κ φ γ = φ Τ ¥(ή (4.33) 

Now, as a consequence of the orthogonality condition, all components 
except for the iih column vector term vanish in the mass and stiffness 
terms. The orthogonality does not apply to the damping term but the 
modal superposition technique assumes that terms other than in the rth 
mode also vanish in the terms of Equat ion (4.33) that are derived from the 
damping matrix. Thus the rth normal mode is entirely decoupled and 
satisfies the equation 

Y, + C , Y, + Y, = f , ( í ) 

where 

M, = φ ΐ Μ φ , 

K¡ = ΦΤ Κ φ , (4.34) 

C, = Φΐ C φ , 

and 

f ,(0 = φ7 f ( í ) 
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4,2,2.2 Time step integration 
Solution of the equation of motion by frequency domain and modal 
superposition techniques as described above is only applicable to linear 
systems with harmonic excitation, whereas the equations of motion for 
drag dominated structures can have a substantial non-linear character, as 
illustrated by Equation (4.5), for wave forces. This non-linear nature can 
be preserved by solving the equations of motion through a time step 
procedure. This also permits the wave kinematics to be more accurately 
represented by Stoke's fifth order theory for regular waves at least. The 
disadvantage of this approach is its complexity and the fact that output 
results are available only as time histories. Time domain solutions are also 
computationally expensive. 

Two methods for time step integration are described here. The first, 
called the central difference method, is an explicit algorithm which is based 
on a Taylor series expansion. 

The equation of motion in a matrix form is taken as 

M x + C i + K x = F (4.36) 

in the usual notation; X/ and X/+i are taken to be the values of vector χ at 
times / and / + ! such that Δί = ί/+ι - ί/. Then expanding X/+i and x, as a 
Taylor series gives 

x,^i = Xi + (Δ0 + \ {Mf k,- + . . . I 
χ,_ι = χ , - ( Δ 0 ^ , + Η Δ 0 ' χ / - . . . J 

Equation (4.34) can be solved for all the normalized co-ordinates, 7/, and 
the geometric co-ordinates, q, can be recovered from Equation (4.32). The 
major advantage of this modal superposition technique is that the structure 
dynamic response is usually made up of the superposition of only a few of 
all the modes that are likely to be excited. The number of times Equat ion 
(4.34) needs to be evaluated can, therefore, be reduced for computational 
efficiency by evaluating it only for significant modes. On the other hand, 
this technique requires that eigen frequencies and vectors be evaluated 
prior to obtaining a solution. 

It can be shown that a conventional damping matrix of the form given by 

C = α Μ 4- β Κ (4.35) 

where α and β are constants, will satisfy the orthogonality condition, since 
the mass and stiffness matrices will each satisfy this condition also. Thus , if 
the damping matrix is approximated to the form of Equation (4.35), the 
modal superposition technique will uncouple the damping term without 
resorting to the approximation of neglecting off diagonal terms in Equat ion 
(4.33). 

Note that the uncoupled equations of motion in normal co-ordinates 
given by Equation (4.34) can be solved by any method in the frequency or 
time domain. 
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By subtracting and adding Equations (4.37) and neglecting terms of power 
( Δ ί ) ^ and higher gives 

X,· = (x,+i - χ,_ι)/(2Δ0 

and 1 (4.38) 

X, = {x,+i - 2x,- + x¿-i}/(Af)2 , 

Direct substitution in Equat ion (4.36) with χ = χ, gives 

[Μ + i ( Δ / ) C] χ,+, = ( Δ Ο ' F, + [2Μ - {Atf Κ] χ, 

+ [i ( Δ Ο C - Μ] χ,_ι (4.39) 

Equation (4.39) is used for successive time steps to derive the displacement 
of time / + 1 from displacements at time / and / - 1. The central difference 
method requires the condition 

At 
— ^ 0.318 
T„ 

(4.40) 

to be satisfied for numerical stability where Γ„ is the period of the highest 
vibration mode of the system. 

The second time step integration method considered here is the 
Newmark-ß technique which assumes that the displacement and velocity at 
the end of a time interval can be related to the displacement, velocity and 
acceleration at the beginning of the time interval by the equation 

= X/ + 2 ( Δ 0 [x/ + 

and I (4.41) 

χ,^ι = X, + ( Δ Ο i , + G - β ) (Atf χ, + β ( Δ Ο ^ χ.>ι ^ 

The variable β does have physical significance, in that β = 1/4 in Equat ion 
(4.41) corresponds to a constant acceleration variation from / to / + 1 
whereas β = 1/6 converts the equation to apply for linearly varying 
acceleration. 

Writing Equation (4.36) for time periods i - I, i and i + 1 gives 

Μ 3¿,_, + C χ,-ι + Κ x,_, = F,_, (4.42) 

Μ X,· + C i,- + Κ Χ; = Γ,· (4.43) 

Μ χ,·+ι + C χ,+1 + Κ χ,+ι = F,+ i (4.44) 

Multiplying Equations (4.42) and (4.44) by β(Δί)^, Equation (4.43) by 
(1 - 2β)(Δί)^ and adding gives 

(ΔΟ'Μ [{βχ,^, + χ,} - {ßx, + Ö - β) x , - i} 

+ { i χ , + i k ,_ ,} ] + ( Δ O ^ C [ { l i , } + { U , - , } 

+ {β ( i , > , - i , ) } + { (1 - β) ( i , - i , _ , ) } ] 

+ (Atf Κ [β χ,+ 1 + (1 - 2β) χ, + β χ,_ι] 

= (Δί)^ [β F,>, + (1 - 2β) F, + β F,_i] (4.45) 
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Δί 

Substituting from Equation (4.41), simplifying and rearranging gives 

[M + i (Δί) C + β (ΔΟ^ Κ] χ,>ι 

- (Atf [β F,+ , + (1 - 2β) Fi + β F,_i] 

+ [2Μ - (Δί)2 (1 - 2β) Κ] χ,· 

- [Μ - i (Δί) C + β (Δί)^ Κ] χ,_ι (4.46) 

Thus the displacements at time i + 1 can be obtained from the displace­
ment at times i and i - 1. Displacement Χχ at t ime Δί can be obtained by a 
special case of Equation (4.46) obtained from Equations (4.43), (4.44) and 
(4.41) as 

[M I (Δί) C + β (Δί)2 Κ] χ, 

= (Δί)2 β Fl + (Δί)2 [(1 - β) I + (1 - β) Δί C Μ - · ] Fo (4.47) 

with Xq = Χο = O at ί = 0. 
Comparison of Equations (4.29) and (4.47) shows that the central 

difference and Newmark β methods are equivalent for β = 0. It can be 
shown from stability analysis that the Newmark β method is uncondi­
tionally stable for β > 1.4. For β > 1/4, the stability conditions are given 
by the equations 

O . 3 1 8 f o r β = 0 

< 0.450 for β = ^ (4.48) 

^ 0.551 for β = ^ 

Once the condition for stability is met for either method, the accuracy of 
the solution must be investigated to ensure that a sufficiently small value of 
Δί is used for accuracy but is yet not too small that computation time is 
prohibitive. 

Felippa and Park (1978) present more information on these and other 
time step integration techniques, whereas Godeau et al. (1977) present 
some results for non-linear behaviour of a fixed offshore structure in 
irregular waves. 

Despite the more exact solution of structural dynamics offered by a time 
step integration, research has continued to examine ways in which frequen­
cy domain solutions can be extended to predict the effects of the drag force 
non-linearity by using an iterative procedure based on minimization of 
mean square error (see Penzien and Tseng, 1978; and Taudin, 1978). 
Eatock-Taylor and Rajgopalan (1982) present a perturbation technique to 
examine the higher harmonics generated due to the drag force non-
hnearity. 
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C h a p t e r 5 

Semisubmersible and ship forms 

5.1 Introduction 

The use of semisubmersibles as offshore work platforms has developed 
considerably in the past two decades. There are over 120 units world wide 
operating primarily as exploration drilling vessels, although several semi­
submersibles are now dedicated to other tasks such as diver support and 
fire fighting and as the surface vessels for offshore hydrocarbon production 
systems. Indeed, for marginal fields in deeper water, a semisubmersible 
based production system may be the only viable economic alternative to 
conventional bottom standing structures. 

Semisubmersibles differ from conventional ship shape forms in several 
fundamental ways. The deep submergence of the main buoyancy chambers 
in a semisubmersible causes significant reductions in the wave induced 
heave, roll and pitch motions compared with those of monohull ships. The 
small water plane area of the deck support structure further ensures low 
dynamic response to heave forces. However, the largest contribution to 
low wave induced motion response comes from the wave force cancellation 
effect which arises because at a certain frequency the instantaneous 
upward wave force caused by the vertical columns can be cancelled out 
almost exactly by the downward wave force on horizontal members such as 
pontoons. The designer of a semisubmersible has to choose the geometry 
of the vessel such that wave force cancellation occurs at the most 
advantageous frequency in the motion response transfer function of the 
vessel. 

The features outhned above and illustrated in Figure 5.1 make it 
essential that the design and evaluation of a semisubmersible vessel takes 
proper account of the interactions which influence wave induced motions 
of the structure. This is important because the down-time or workability of 
a semisubmersible vessel is dependent on its motion response to waves, 
particularly in heave. Reliable performance evaluation of a vessel in a 
specific wave climate depends on accurate motion response calculations. 

The development of modern semisubmersible designs directed at filling 
an increasingly diverse range of applications is tending towards vessels 
which have larger columns and pontoons than their predecessors but with 
fewer bracing members . This is partly due to the desire to maintain 
structural integrity while reducing construction costs, and also due to the 

80 
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Incident 
Wave 

Figure 5.1. Typical semisubmersible hull and reference axes system. W is the still water 
level, vertically below the centre of gravity G 

modern requirement for larger deck payload capabilities for such systems. 
Similarly, semisubmersible crane vessels are required to lift significantly 
heavier loads and hence must be designed with column and pontoon 
dimensions of sufficient size to maintain hydrostatic stability and small heel 
angles during lifts. 

Traditionally, calculations of semisubmersible wave induced motions 
have been carried out using a Morison equation formulation with drag and 
inertia coefficients found from experiment and certifying authority rules. 
The assumptions and approximations associated with the use of this 
equation are vahd for the earlier slender member rig designs, but wave 
diffraction effects have to be considered when calculating motions for 
modern, bulkier, large displacement vessels. Conversely, methods based 
on diffraction theory which are used to derive semisubmersible wave 
motion predictions do not consider drag forces on bracing members or 
non-linear damping effects; both phenomena significantly influence vessel 
motions, particularly near resonance. On the other hand, diffraction 
analysis will account for member interactions with incident waves and 
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{ b ) 

Figure 5.2. Monohull floating production system 

interaction due to adjacent members , both of which are ignored by the 
Morison equation. 

MonohuU floating production systems are also becoming attractive for 
offshore oil floating production systems in the North Sea and offshore 
Brazil as well as other areas of the world. These designs have evolved from 
established conventional ship designs. In fact, most monohull designs for 
hydrocarbon production and storage are based on conventional oil product 
tankers. The main departures from a conventional tanker design are in the 
moorings, propulsion units, and in the existence of a moonpool . The 
propulsion units normally include thrusters in addition to stern propellers. 
These units improve manoeuvrability and also allow for dynamic position­
ing. The moorings are usually bow hawsers on turret moorings which 
permit weather vaning. The moonpool is an opening in the hull through 
which certain operations are conducted. Monohull designs traditionally 
take the form of a typical production tanker shown in Figure 5.2. However , 
recent designs to emerge include the tandem hull vessel, described further 
in Chapter 8. 

Both semisubmersible and ship shape hull forms need to be analysed for 
their hydrodynamic response in waves to determine wave induced motions, 
survivability and operability. From a designer's view point, such analyses 
need to be used to arrive at the best possible hull form to yield minimum 
wave induced motions coupled with the maximum deck payload. The 
vessels must have a mooring system that will maintain station to a defined 
horizontal offset (expressed as a percentage of water depth) over a subsea 
well head. Clearly, the vessel and moorings must have sufficient structural 
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5.2 Morison equation based analysis 

Several research investigations related to predictions of semisubmersible 
wave induced motions using the Morison equation have been reported in 
the technical hterature over the last two decades. Some of these (Burke , 
1969; Ochi and Vuolo, 1971; and Hooft, 1971) have been concerned with 
developing the hydrodynamics of motion response calculations and validat­
ing these against model scale experimental data . O o and Miller (1977) 
employ such a computation to survey the wave induced heave motion 
response of a variety of semisubmersible hull configurations. These basic 
hydrodynamic motion response calculations have also been extended to 
consideration of the apphed loads, strength analysis and structure dyna­
mics of the vessel hull configuration by researchers such as Pedersen et al. 
(1974), Pincemin etal. (1974), van Opstal etal. (1974) and Paulling (1974). 
On the other hand, Natvig and Pendered (1977) present a more sophisti­
cated approach to the hydrodynamic motion response computations. A 
hnearized solution of the equations of motion in the frequency domain is 
compared with a time domain computation incorporating several sources 
of non-linearity. The two techniques agree quite well and confirm the 
validity of the linearization process which assumes equal energy dissipation 
at resonance to deduce an equivalent linear damping. 

Strength and fatigue tolerance to survive extreme storms and to have 
acceptably long service lives. 

The above requirements are substantial and only achievable by accept­
ing design compromises which improve one aspect of the design at the 
expense of others. 

This chapter is concerned with the hydrodynamic analysis methods used 
to determine the wave induced motion responses of conventional semisub­
mersible and ship shape hull forms. For semisubmersibles with very 
slender members a Morison equation based formulation is used to cal­
culate motions in all six degrees of freedom. However, modern semisub­
mersibles with more massive columns and pontoons need to be analysed 
using diffraction theory, as do all ship shape hull forms. The basic 
methodology for hydrodynamic analysis of these more massive hull forms 
using diffraction theory is also presented. 

The second half of the chapter is concerned with two specific design 
issues. These are the viscous damping of roll motions of a monohull and 
considerations of vessel operability. Monohull vessels tend to exhibit a 
high level of viscous damping of roll motions which cannot be predicted by 
diffraction theory with its inviscid, irrotational flow assumptions. Methods 
for determining the corrections to inviscid, irrotational theory predictions 
due to viscous damping are presented in Section 5.4. Fur thermore , the 
ultimate aim of the analysis methods given in this chapter is to provide 
calculation methods for vessel design - principally aimed at achieving a 
high level of operability (low down-time) due to wave induced motions for 
vessels working in the oceans. Section 5.5 gives calculations for operability 
based on motions and for structural fatigue at typical offshore locations. 
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Consider a semisubmersible hull form of the type shown in Figure 5.1 
with the cylindrical columns and bracing and the rectangular pontoon 
being of small diameter in relation to the vessel's overall length and also in 
relation to the wave length of incident gravity waves. Figure 5.1 shows the 
reference axis system used in the calculations. The Gxz axes are taken in 
the vessel's fore and aft vertical plane of symmetry, with the centre of 
gravity taken as the origin and the Gz axis vertically upwards. For vessels 
with lateral symmetry about the Gxz plane, these correspond to principal 
axes. The structure data required by the computation includes the total 
platform displacement, the radn of gyration in roll, pitch and yaw and the 
centre of gravity position. The hull configuration is idealized into indi­
vidual members (such as member 1-2 in Figure 5.1) described by their 
member type (circular cylinder, rectangular cylinder or non-elongated 
member) , and co-ordinates (of points 1 and 2 relative to reference axes 
Gxyz), cross-sectional dimensions and relevant drag and inertia coeffi­
cients. 

A routine hydrostatics calculation is performed as a prelude to the 
dynamic calculation - see Chapter 3 for details. The vessel structure 
description is used to compute the contributions of water plane area, 
displaced volume, centre of buoyancy and second moments of water plane 
area for each of the members in the structure. This information is used, 
together with an assumed draught, to compute the buoyancy force on the 
structure. If this buoyancy force differs from the required displacement, 
the draught is adjusted accordingly and the buoyancy force recomputed. 
This procedure is repeated until the vessel's weight equals the buoyancy 
force. The draught value obtained from the above calculation is then used 
to determine the structure's overall centre of buoyancy position, the 
metacentric heights in roll and pitch and the ζ co-ordinate ( = 5 ) in Figure 
5 .1 , of the water surface relative to the origin at the centre of gravity. 

From first principles, the semisubmersible vessel equation for rigid body 
motions in six degrees of freedom can be written as 

Μ X = ΣΜΑ(ή - Χ) + ΣΜρκ ή + ΣΒ I ή - Χ I (ή - Χ) 

- Κ Χ - Κ^Χ (5.1) 

where Χ, Χ and Χ are the six component column vectors of displacement, 
velocity and acceleration in surge, sway, heave, roll, pitch and yaw 
respectively; M , M a and Μρκ are the (6 x 6) matrices of structure physical 
mass, added mass and the Krylov added inertia respectively; Β is a (6 x 6) 
matrix representing non-linear drag force contribution; Κ and are the 
semisubmersible (6 x 6) stiffness matrices contributed by the hydrostatic 
and mooring restoring forces respectively. The mooring stiffness can be 
provided by a catenary system (described further by Patel , 1989) or by taut 
tethers, as described in Chapter 6. 

The wave particle velocities and accelerations are denoted by vectors ή 
and ή , respectively, with the summation signs in the wave force terms 
indicating a numerical integration over the submerged members to take 
account of spatial variations in wave properties. The small contribution of 
a potential damping term due to wave diffraction effects is neglected in the 
analysis for vessels with very slender members . 
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Equation ( 5 . 1 ) incorporates the Morison equation for wave loading on 
slender cylinders (see Morison et al., 1 9 5 0 ) . The first term is the added 
inertia due to relative accleration between the fluid and vessel, whereas the 
second term is the contribution of the fluid acceleration induced pressures 
acting on vessel members . This latter force is called the undisturbed 
pressure force or the Froude-Krylov force. The third term on the right 
hand side of Equation ( 5 . 1 ) is the drag force in the Morison equation which 
is proportional to the square of the relative velocity between fluid and 
vessel with a modulus sign to ensure reversal of force with reversal of 
velocity. 

Equation ( 5 . 1 ) can be rewritten to give 

( M + M a ) X + B I X I X + ( K + K n , ) X 

= Σ ( Μ α + Μρκ)ή + Σ Β | ή - Χ | ( ή - Χ ) + Β | Χ | Χ ( 5 . 2 ) 

with a Β I Χ I Χ term added to both sides of the equation to obtain a 
conventional form for the left hand side. Equat ion ( 5 . 2 ) would be difficult 
to solve in its present form due to the presence of X in the wave force on 
the right hand side of the equation. However , two features of this wave 
force expression suggest a useful simplification. These are concerned with 
the relatively large magnitude of the ΣΜρκή term in the wave force and 
the decay, with depth of wave particle velocities which makes the 
ΣΒ I ή - X I (ή - X ) + Β I X I X term small for members with signifi­
cant submergence below still water level. It should be pointed out that this 
approximation was first used by Tasai et al. ( 1 9 7 0 ) for a single degree of 
freedom system. A similar formulation to that presented below has also 
been repeated by Matsushima et al. ( 1 9 8 2 ) . 

With these approximations in mind. Equat ion ( 5 . 2 ) can be simplified to 

( M + M a ) X + B I X I X + ( K + K n , ) X 

= Σ ( Μ α + Μρκ)ή + ΣΒ I ή I ή ( 5 . 3 ) 

with the ΣΒ I η - Χ I (η - Χ) + Β I Χ I Χ term replaced by a ΣΒ | ή | ή 
term. In order to explore the effects of this simplification, a residue wave 
force fraction, /?, for a particular motion (heave, say) can be defined as 

^ ^ I ΣΒ I ή X I (ή - X ) + Β I X I X - ΣΒ I ή I ή I 
{ΚΉ/2) 

The residue force is non-dimensionalized with respect to the wave force 
amplitude at zero frequency by using the hydrostatic stiffness, K', in the 
mode of motion being considered and the wave height, H. 

Results presented later demonstrate that , after drag force linearization, 
the residue wave force that remains unaccounted for due to the simplifica­
tion is negligible at wave frequencies even for large wave heights where the 
drag forces will be greater. The drag force linearization used here is based 
on the well-known technique of specifying equal energy dissipation at 
resonance between the non-linear damping forces and their equivalent 
linear values - see Chapter 4 for further details. However, it should be 
pointed out that this linearization is a fundamentally different assumption 
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cosa = , cosß = , ςο8·γ = 
(5.5) 

from that imphed in the reformulation of Equation (5.1) into (5.3) which is 
quantified by residue factor R. 

The assumptions used in the equation formulation and solution are 
formally stated below: 

1. The semisubmersible vessel structure is assumed to be an assembly of 
cylindrical elements, horizontal rectangular pontoons and non-
elongated members . The cylindrical members and rectangular pon­
toons are assumed to have small ratios of cross-sectional dimension to 
length. The non-elongated elements are assumed to have comparable 
dimensions in three orthogonal directions, all these dimensions being 
small when compared to incident wavelengths. 

2. The motion amplitudes of the platform and waves are assumed to be 
small. As a consequence hnear wave theory is used. 

3. Wave forces on individual elements of the structure are computed as 
though other members were not present, that is, hydrodynamic 
interference between members is ignored. 

4. The forces associated with sinusoidal wave motions are computed 
independently of the forces associated with absolute motions of the 
structure. 

5. The non-linear drag damping term is linearized by assuming an 
effective linear damping which would dissipate the same energy at 
resonance as the non-linear damping. The contribution of wave 
radiation effects to the damping terms is assumed to be negligibly 
smaH. 

We turn now to evaluating the coefficient matrices in Equation (5.3) prior 
to its solution. 

Since the reference axes chosen are principal axes, the physical mass 
matrix, M, is diagonal. The total hydrodynamic added mass of the 
semisubmersible huh is computed as a sum of the added masses of each 
individual submerged or partly submerged structural member . Since the 
structure is assumed to be a collection of circular cylinders, rectangular 
cylinders and non-elongated members , the added mass for each element 
type needs to be evaluated separately. 

The general added mass matrix of a circular cylinder with arbitrary end 
co-ordinates can be calculated by assuming that only the components of 
acceleration normal to the cylinder axis are significant. Thus , given the 
cylinder end co-ordinates, diameter and applicable normal flow added 
mass coefficient, a generalized added mass matrix for the cylinder can be 
readily evaluated. 

Consider an arbitrary cylinder, FG , in a system of Cartesian co­
ordinates, as shown in Figure 5.3. The point F h a s co-ordinates (jci, >ί, Ζχ) 
and G has co-ordinates (JC2, ^2, 22)· The cyhnder has a diameter d with an 
added mass coefficient of for flow normal to the cylinder axis. Thus the 
cylinder length and direction cosines are given by 

L = V{(jc2 - χ,Ϋ + ( y 2 - yxY + {zi - ζ,γ] 
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0 ' 

Figure 5.3. Definition diagram for added mass of a circular cylinder 

Now a unit acceleration parallel to the χ axis will yield acceleration 
components parallel and perpendicular to the cylinder axis. Only the 
acceleration component perpendicular to the cylinder axis will have a 
significant added mass force. The components of this normal flow added 
mass force in the three co-ordinate directions and the moments of this 
force about Ox, Oy, O ζ make up the first (left hand) column of the added 
mass matrix. Note that added mass equals added mass force for unit 
acceleration. 

Thus for unit acceleration parallel to Ox, the component perpendicular 
to the cylinder axis is sina and the resultant added mass force in this 
direction is k\ sin α where = pC^ ird^ LIA. Then the component force 
ki sina in the χ direction is ki sin^a and the component of ki sina in the y 
direction is 

{ki sina) cosß ' = k^ s i n a ( - cota cosß) = -ki cosa cosß 

and in the ζ direction is > (5.6) 

{ki sina) COS7' = ki s i n a ( - c o t a COS7) = -k^ cosa COS7 

The angles β' and 7' are defined in Figure 5.3 and are related to angles β 
and 7 through the equations 

OF = h cota 

DF = CE = h cota cosß 
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¿jsin^a 

- /c icosa cosß 

- kx cosa cosß - kx cosa C0S7 

/cisin^ß - kx cosß COS7 

-kx cosa COS7 - kx cos β cos 7 kx sin^ 7 

(5.7) 

The matrix components w,y for / = 4 to 6 and / = 1 to 3 consist of added 
mass force induced moments about Ox, Oy, Oz due to linear accelerations 
along the x, y and ζ axes. These moments are computed by integrating the 
moments due to added mass forces along the cylinder length. Note that the 
above matrix (Equation (5.7)) is symmetric. 

Unit acceleration parallel to Ox results in forces 

mil d/ dl m^i dl 

in the X, y and ζ directions, respectively, on a cylinder element of length dl. 
The total moment of the forces about the χ axis is 

^ 4 1 = 
W3I 

Y D / -
m2i 

zdl 
Jo 

But 

L 

and 

J_ 

L 

for 

ydi = — — = YN, 

zdl = —:— = Z„ 
Jo 

^ yi - y \ , 

and 

2 = Zi + ; / 

(5.8) 

Thus 

cosß ' = - c o t a cosß 

COS-Y' = - c o t a COS7 

Thus the added masses due to hnear accelerations parallel to the JC, y and ζ 
axes are 
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Similarly, 

— - '"31 Xm 

^61 = - mu ym 

= ym - '«22 Zm 

^52 = - "132 -«̂m 

^62 = m22 ~ '"12 >Ίη 

^43 '"33 - '"32 Zm 

= ^«31 Zm - "»33 JCm 

^63 = '«32 - "Í31 ym 

(5.9) 

Now for / = 1 to 6 and / = 4 to 6 are added mass matrix terms due to 
angular accelerations about the Ox, Oy and Oz axes. In the same way as 
before, for unit angular accelerations about Ox, the linear accelerations of 
element Ρ with co-ordinates {x, y, x) are 0, -z and + y along the Ox, Oy 
and O ζ axes respectively. 

Then the added mass force components on an element of length dl due 
to the acceleration of - z are 

-mi2 zdllL, -niiizdllL, -rriT^izdllL 

parallel to the Ox, Oy and O ζ directions, and the force components due to 
acceleration y are 

mi^ydl/L, m2^ydllL, m^^ydUL. 

The integrated sum of these forces along the Ox, Oy and O ζ axis will give 
terms ruu, m24, which are identical to the m4i, terms given by 
Equations (5.9) above - thus confirming the matrix symmetry. 

Also the summed moment of these forces about the χ axis gives 

m44 - -
L 

m 3 2 z y 

dl-
m23 y ζ 

dl 
Jo 

dl + 
^0 

L 2 
m33 / dl 

Jo 

= m22 — dl - 2 ^23 d/ + /n33 

Now 

L y^ái = yn = \iy\ + yi yi + yl) 

i r 
Z2 d/ = Z„ = + ^1^2 + zi) (5.10) 
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and 

L 

rL 

yz dl = {yz\ = I [ly^z^ + 2>^2^2 + yi^i + ^1)^2] 
^0 

using the functions of y and ζ given in Equation (5.8). Then 

= m22 ZN - 2m23 iyz)N + ^ 3 3 y^ ( 5 . 1 1 ) 

Taking moments about the Oy and Oz axes also yields 

and [ ( 5 . 1 2 ) 

^ 6 4 = - ^ 3 1 + ^32 ( -^> ' )n + ^ 2 Ι ( ^ ^ ) Μ " ^22{zx)N . 

where 

{xy)N = Ϊ {2xiyi + 2A:2y2 + XXY2 + X2YI) 

and i (5.13) 

{zx)„ = ^ ( 2 z i X i + 222^2 + ^1^2 + 22^1) 

Repeating the process of imposing unit angular accelerations about the Oy 
and Oz axes yields the remaining resuhs of 

^ 5 5 = ^ 3 3 ^ « - 2m^x)N + m i l 

mee = ^ i i ^ n - 2m2i{xy)N + m22 x„ · (5.14) 

^ 6 5 = - ^ 3 2 ^ n - ^ 1 1 ( y ^ ) « + ^ 2 1 {zx)N + ^ 3 ΐ ( · ^ ^ ) η . 

where 

XN = H^L + ^1^2 XL) (5.15) 

with the remaining terms known from matrix symmetry. 
A simplified form of the added mass matrix can be obtained for a 

non-elongated body. The derivation given below applies for an arbitrary 
non-elongated body that has different added mass forces for acceleration 
components parallel to the three reference axes directions. For a non-
elongated body in a reference system Oxyz, the first three diagonal terms 
of the added mass matrix can be written as 

^ 1 1 = Ρ Cmi V 

m22 = 9C^2V (5.16) 

^ 3 3 = Ρ Cn,3 V ^ 

where ρ is fluid density, V is the body volume and C ^ i , €^2 and C^s are 
added mass coefficients for body accelerations parallel to the Ox, Oy and 
Oz axes respectively. For a spherical body of radius a, however, 

V = ^ 77 fl^ and Cmi = €^2 = C^3 = 0.5 

The remaining terms of the added mass matrix are obtained by calculating 
the acceleration reaction forces due to unit linear and angular acceleration 
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along the reference axes. For a body with centre of volume (jci, yi, Zi), this 
yields 

= ^13 = ^23 = 0 

mi4 = ^25 = m36 = 0 

mi5 = 

= -ηίγιΖχ, ηΐ2β = rn22X\ 

= fn33yh ^35 = - ^ 3 3 ^ 1 

m44 = m22Zl + m33>'f 

= ^33-^1 + ^ l l ^ i 

^66 - mnyl + m22^i 

^45 = - ^ 3 3 xiyi 

m46 = 

^56 = -mn yizi 

(5.17) 

A special case of the above derivation is used to obtain the hydrodynamic 
added mass matrix for horizontal rectangular pontoons. 

The fluid damping matrix, B , for the structure is evaluated in a similar 
manner to the added mass matrix - as a sum of the contributions from each 
individual member . The derivation of the generalized damping matrix for 
an arbitrarily oriented circular cylinder depends on the assumption that 
only drag forces normal to the cylinder axis are significant. Unlike the 
added mass matrix, the non-linear velocity square proport ionahty gene­
rates an asymmetric damping matrix. Only the results of the damping 
matrix for circular cylinders and non-elongated members are presented 
here for brevity. 

The damping matrix relates the velocity square dependent drag force on 
an immersed circular cyhnder to the fluid-structure relative velocity 
vector. An equation of the form 

(5.18) 

describes the relation. The column vector Xj of surge, sway and heave 
velocity and angular velocities about these axes appear as individual vector 
element square terms. The modulus sign exists to ensure that negative 
velocity corresponds to a negative drag force. The notation is identical to 
that used before, with bij being the (6 x 6) damping coefficient matrix. 
The velocity squared non-linearity generates a non-symmetric matrix 
where all 36 elements need to be evaluated. 

For a circular cylinder at an arbitrary orientation, taking an effective 
drag coefficient of for flow normal to the cylinder axis, a constant 
given by 

k^ = \pC^Ld (5.19) 
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(5.20) 

bn 

hi 

bn 

¿22 

hi 

623 

¿'33 

¿ 4 1 

bsi 

¿ 6 1 

¿ 4 2 

¿ 5 2 

¿ 6 2 

¿ 4 3 

¿ 5 3 

¿ 6 3 

A set of further expressions have to be defined for the remaining terms. 
Now 

Xp = sgn{xm){xl + XyXj + X2)ß for ^1X2 ^ 0 

and 

sgn(j:2)(-»:i + ^^2) 

/C3 1 sin^7 1 

^ 3 1 ym - bll^m 

- b3\ Xm 

- buym 

b32 ym - bll ^m 

bn ^m - b32 Xm 

bll Xm - bn ym 

b33 ym - ¿ 2 3 

b\3 - ¿ 3 3 

¿ 2 3 - ^ m - ¿ 1 3 ym 

for X1X2 < 0 

(5.21) 

3{X2 - xi) 

where sgn(j«:2) is a function which returns the sign of X2 muhiphed by 1. 
Similarly, 

yp = sgn(yj{y\ + yiy2 + ylV^ for ^1^2 ^ 0 

sgn0'2)(>'i + yi) 
yp = 3Cy2 - yi) 

for X1X2 < 0 

and 

2p = sgn(z„,)(2? + 2,22 + 2Í)/3 for X1X2 ^ 0 

sgn(22)(2^ + 2I) 

3(22 - 2,) 
for Z1Z2 < 0 

(5.22) 

and other notation as above; it can be shown that 

/c3 I sin-^a I 

-k^, cosa cosß I sina | 

-/C3 COS7 cosa I sina | 

-ki, cosa cosß I sinß | 

^3 I sin^ß I 

-k^ cosß COS7 [ sinß I 
-k^ cosa COS7 I sin7 | 

-/C3 cosß COS7 I sin7 I 
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^ {x\ + jcix; + -̂ 1X2 + ^2) . 
Ιχ = sgníxj) : + 

Χι 

ly = sgnCv] + yly2 + yiyl + 3'2)/4 

2{X2 - Xl) 

for )'i>'2 > 0 

for X1X2 < 0 

ly = SgnO'2) 
(y\ + ybi + y\y\ + yi) y\ 

^iyi - yi) 
for yiy2 < 0 

/ , = sgn(2„,)(zi + z{z2 + zi2^ + 4)/4 for ZjZj > 0 

J z j + Z|Z2 + ZiẐ 2 + 22) , 
/ , = sgn(z2) - - + 2(Z2 - Zi) 

for Z1Z2 < 0 

(5.23) 

The description of a number of other terms is simplified if variables q and r 
can each denote either x, y or z. Thus, the expression 

V I Η = TÍ [<l2{ñ + 2γιΓ2 + 3, i ) + 9,(3,^ + 2γιΓ2 + ;^)] if r,r2 ^ O 

= í2('Í + 2/·ιΓ2 + 3,^) + íi(3/i + 2ri,-2 + r^i) 
, '^(4ήΊ'·2 - 3 ί ι Γ ι - (72Γι) 

6(,·2 - r,Y 
if ΓιΓ2 < O 

(5.24) 

(5.24) 

can be used to create values for terms such as Ιζχ\χ\ if Ζγ = qi, Z2 = qi, 
Χχ = τχ and X2 = ^2-

Then, the remaining coefficients in the matrix are 

¿14 = -bx2 2„ + bx4 y„ 

¿24 = - ¿ 2 2 ζ η + ¿23 y η 

¿34 = - ¿ 3 2 + ¿33 yn 

¿44 = ¿33 ~ ¿32 íyz \ ζ 1 ¿23 + ¿22 

¿54 = ¿13 Iyz\y\ " ¿12 ¿33 fxy\y\ + ¿32 Izx Ζ 

¿64 = ¿23 hy\y\ ~ ¿22 , 1 - ¿13 íy + ¿12 Ζ 

¿15 = ¿11 - ¿13 Xn 

¿25 = ¿21 - ¿23 -̂ n 

¿35 = ¿31 - ¿33 -̂ n 

¿45 = ¿31 Izy\z \ - ¿33 /xy U 1 - ¿21 + ¿23 Χ 

¿55 = ¿11 - ¿13 tzx 1 ̂1 - ¿31 + ¿33 

¿65 = ¿21 lzx\z \ - ¿23 ¿11 Iyz\z\ + ¿13 hy χ 

(5.25) 

The numerical problems associated with (xj - Xi ) , (yi - yi), or (z2 - Zi) 
being equal to zero is eliminated by adding an offset to one co-ordinate if a 
zero is detected. 

Also, 

= sgn(jCm)(x? + xixi + X\X2 + X2)/4 for ΧχΧ2 ̂  0 
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¿ 1 6 = 

¿ 2 6 = 

¿ ' 3 6 = 

¿»46 = 

¿ 5 6 = 

¿ 6 6 = 

' ' 1 2 - ¿ 1 1 Vn 

¿ 2 2 · ί « - ¿ 2 1 y η 

¿ 3 2 - ¿ 3 1 y η 

¿ 3 2 U I - ¿ 3 1 ly - b '22 lzx\x\ + ¿ 2 1 ^yz I y I 

¿ 1 2 hx\x \ - ¿ 1 1 ^yzly I " ¿^ '32 4 + ¿ 3 1 4 y I y I 

¿ 2 2 h - ¿ 2 1 4 y I y I " ¿ 1 2 hy\x \ + ¿ 1 1 ly 

The corresponding matrices for the rectangular cyUnder and non-elongated 
body are evaluated as special cases of the circular cylinder. Results are 
presented here for a non-elongated body with faces parallel to the Oxy, 
Oxz, Oyz planes. Taking the co-ordinates {x\, y\, z\) as the centre of 
volume of the body; and p', q' and r' as equivalent rectangular body 
dimensions in the a:, _y and ζ directions gives 

¿ 1 1 

¿ 3 3 

¿ 2 1 

¿ 5 1 

¿ 4 2 

¿ 4 3 

¿ 4 1 

¿ 2 4 

¿ 4 4 

¿ 5 4 

¿ 6 4 

¿ 1 5 

¿ 4 5 

¿ 5 5 

¿ 6 5 

¿ 1 6 

¿ 4 6 

¿ 5 6 

¿ 6 6 

¿ 1 4 

i p C d ^ ^ V ¿ 2 2 = l p C d , p V 

I ρ Cd, ρ V 

¿ 3 1 = ¿ 1 2 = ¿ 3 2 = ¿ 1 3 = ¿ 2 3 = O 

¿ 1 1 2 l ¿ 6 1 = - ¿ 1 1 y\ 

- ¿ 2 2 Z l ¿ 6 2 = ¿ 2 2 -«1 

¿ 3 3 y\ ¿ 5 3 = - ¿ 3 3 X\ 

¿ 5 2 = ¿ 6 3 = O 

- ¿ 2 2 Ζ 1 2 i I ¿ 3 4 = ¿ 3 3 y \ \ y \ \ 

¿ 3 3 I >Ί Ρ + ¿ 2 2 I ^ 1 Ρ + ¿ 2 2 I Z l ί 
- ¿ 3 3 Χι y \ \ y \ \ 

- ¿ 2 2 Χι ^ 1 I ^ 1 I 
¿ 1 1 2χ\ζχ\ ¿ 3 5 = - ¿ 3 3 | Λ ι̂ | 

- ¿ 3 3 y x \ x \ 

¿ 1 1 I .^1 ? + ¿ 3 3 I X\ ? 

- ¿ 1 1 yiZl I Zl I 

- ¿ 1 1 yi ¿ 2 6 = ¿ 2 2 X\ 

-022 ZlXl I Xl I 

- ¿ 1 1 ζύΊ I >Ί I 
¿ 1 1 I y i ρ + ¿ 2 2 I J^l Ρ 
¿ 2 5 = ¿ 3 6 = 0 

(5.26) 

Contributions to the hydrostatic stiffness matrix K , will only arise in the 
heave, roll and pitch degrees of freedom due to buoyancy forces in the 
water plane cutting members of the hull. If, for member number , n , Ay,„ 
denotes the water plane area, (x^, y„) are the co-ordinates of this water 
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plane area centroid, then the stiffness elements k^j can be written as the 
summations 

/ : 3 3 = pglA^^ 

/ : 4 3 = pgXy^A^n 

ks3 = -pglx^A^n (5 27) 

/ C 4 4 = P g V ( G M ) p 

kss= P g V ( G M ) R 

where V is the vessel displacement by volume and ( G M ) r , ( G M ) p are 
metacentric heights in roll and pitch, respectively, while aU other stiffness 
terms are zero. 

The wave force calculation is based on the reduction of the terms on the 
right hand side of Equation (5.3) into an oscillating force column vector by 
summing the effects of wave particle velocities, accelerations and pressures 
on all structural members of the semisubmersible. The equation for the 
vertical wave surface elevation, η , relative to still water level is 

η = ηο exp[i(Ä:;c cosB + ky sine - ω/)] (5.28) 

for a wave oriented at angle θ to the χ axis (Figure 5.1), k is the wave 
number (k = Ιττ/λ where λ is the wave length), ω is the wave frequency 
and ηο is the wave amplitude. 

Taking, 

ψ = exp[i(Ä:jc cos0 + ky sine)] (5.29) 

as a complex spatial description of the wave direction. Equat ion (5.28) can 
be written as 

η = ηoΨe-^"^ (5.30) 

Then the wave surface vertical velocities and accelerations are 

ή = iωψηoe-·^' (5.31) 

and 

ή = -iω2ψηoe"*"'• (5.32) 

In order to account for the decay of the vertical wave velocities and 
accelerations with depth below the sea surface, a depth attenuation factor 
is defined as 

sinhkih - 5· + z ) 
^1 = (5.33) 

for water of depth h. Thus the vertical veolcity component due to the wave 
at any depth is 

w = - iωψσlηoe- ' " ' (5.34) 

and the acceleration is 

w = - ω V l η o e " * " ' (5.35) 
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Β | ή | ή = Β 
Λ ι - f i i i a A 
377 

equivalent coefficient 

(5.38) 

This result can be derived by assuming equal work done at resonance by 
the non-linear and equivalent linear damping (see Chapter 4). The 
Froude-Krylov (or undisturbed wave dynamic pressure) force on 
elongated members is computed taking due account of water plane cutting 
members for which the axial component of this force will apply at one 
member end only. 

Wave forces on elongated rectangular members are calculated by 
assuming that such members are generally pontoons which are always 
submerged for all draughts except the transit draught. Non-elongated 
members are not segmented - the wave conditions applying at the centre 
of volume are regarded as uniform in the vicinity of the structure for the 
drag, added mass and Froude-Krylov force calculations. 

Once all the coefficient matrices and wave force vector, F(i) , have been 
evaluated for Equation (5.3) the vessel's response is computed by using an 
iterative technique to account for the non-linear damping term. A first 
approximation diagonal linear damping coefficient matrix is obtained by 
ignoring all non-diagonal terms in the total mass and stiffness matrices and 
assuming damping of 10% of critical. The equation of motion is then 
solved with the first approximation to the damping value and the column 

Similarly, for the horizontal velocities and accelerations, an attenuation 
factor of 

coshk(h - s + z) 
-TT, - (5-36) 
sinh/c/z 

is used. After the effect of wave orientation is accounted for, horizontal 
wave velocities and accelerations along structure axes can be written as 

u = ωψσ2 cosG ηο6~"^^ 

V = ωψσ2 sine ηοβ'^'^' 

I" (5-37) 
ü = -ω^ψσ2 cos0 ηoe '"̂ ^ 

V = -ω^ψσ2 sine r\QQ~^^^ 

This completes the specification of the wave velocity and acceleration at 
any point around the semisubmersible submerged members . 

For a semisubmersible with elongated circular and rectangular cylinders 
and other non-elongated members , the wave force calculations can be split 
into two categories. Wave forces on elongated members are computed by 
segmenting the member into sections and applying local wave velocity and 
acceleration to compute the wave force on the segment. These forces are 
then summed to obtain the total member wave force. The spatial variation 
of wave particle velocities and accelerations and particularly the wave 
decay due to depth are accounted for in this manner . The drag force on the 
right hand side of Equation (5.3) is computed after applying an equivalent 
linearization given by 
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vector of resultant velocities is substituted into the modulus sign in the 
damping terms such that the equation 

( M + Μ Λ ) Χ + B I X „ , t approx | X + ( K + K , ) X = F ( 0 (5.39) 

is being solved to obtain a better approximation for the displacement 
vector, X . The iteration is only significant in the vicinity of resonant 
frequencies. Thus, the equation solution is dependent on amplitude so that 
the wave height is a necessary part of the overall computat ion. 

The complete motion response calculation outlined above is imple­
mented in a program called U C L R I G (see Patel and Badi , 1980). 

An interesting series of model tests and their comparison with many 
different methods of hydrodynamic analysis offers a useful means of 
vahdating the Morison equation based analysis described above. Takagi et 
al. (1985) have carried out comprehensive series of tests on a 1:64 scale 
model of an eight column semisubmersible in a wave tank of 3 m (192 m 
full scale) depth. Takagi and his colleagues compared their experimental 
data with theoretical estimates based on the Morison equation and 
potential flow methods from 34 different sources including program 
U C L R I G in a study reported by the 17th International Towing Tank 
Conference (ITTC) of Japan. 

The prototype vessel had pontoons of length, beam and height of 115 m, 
15 m and 8 m, respectively, with eight circular columns of 35 m and 24 m 
height, 60 m longitudinal and transverse spacing, the inner two columns 
being of 8 m diameter, the outer two of 10 m diameter. Full dimensions 
and hydrostatic data for the vessel are given in hues l a of Tables 5.1 and 
5.2. A schematic of the vessel is shown in Figure 5.4. 

The model tests were used to determine wave induced rigid body 
motions in 6 degrees of freedom with the vessel in 0°, 45° and 90** 
orientation to waves (90° being beam seas). Testing was carried out with 
long crested regular waves of 2.944 m and 10.24 m full scale wave height 
over a wave period range from 6 to 28 s. A variety of irregular wave tests 
was also performed, though, for the sake of brevity, these will not be 
commented on. 

The main conclusions from the study were as follows: 

1. For constant water depth, most of the programs indicated surge and 
sway motions in excellent agreement with each other and with the 
experimental data. 

2. There was considerable scatter predicted in the heave motion close to 
the heave natural period. Methods based on three dimensional poten­
tial flow were in good agreement with each other , but overpredicted 
the natural period by approximately 10%, the resonant heave ampli­
tude being overestimated significantly. Calculations using the Morison 
equation gave heave estimates in closer agreement to the test data if 
the drag and inertia coefficients. C D and C ^ , were chosen carefully. 

3. Variations in wave height had virtually no effect on either the 
experimental or theoretical wave induced motions, except for heave 
modon above wave periods of 20 s in the region of the heave natural 
period. 
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Pontoon dimensions Column spacing Column diameter* No. of bracing 
(m) members 

Length Breadth Height Longitudinal Transverse 
(m) (m) (m) (m) (m) 

la 110.0 15.0 8.0 24.0 60.04 10.0 & I ̂ .0 16 

lb 110.0 15.0 8.0 24.0 60.04 10.0 & I ̂ .0 16 

2 80.56 16.0 7.5 46.7 50.7 12.9 2 

3 120.0 30.0 10.0 70.0 76.0 23.4 6 

4 140.8 32.0 14.0 72.0 66.0 39.0 4 

Notes: 
Vessel descriptions 
la: Takagi model test semisubmersible 8 circular columns; 
l b : Takagi semisubmersible (vessel 1) 8 circular columns; 
2: Small displacement semisubmersible (vessel 2) 4 circular columns; 
3: Medium displacement semisubmersible (vessel 3) 4 circular columns; 
4: Large displacement semisubmersible (vessel 4) 4 rectangular columns. 

* For vessel 4 the column diameter is replaced by the column side length in longitudinal direction. 

Table 5.2 Dynamic and hydrostatic data for the semisubmersible vessels at prototype scale 
(vessel key as in Table 5.1) 

No. d* Displ. in sea Draught GM values Radii of gyration No. of facets 

L 
water (t) (m) Roll Pitch Roll Pitch Yaw in mesh 

(m) (m) (m) (m) (m) 

la 0.064 35011 20.0 2.88 2.36 34.3 35.5 40.6 — 

lb 0.064 35638 20.0 2.88 2.36 34.3 35.5 40.6 376 

2 0.080 24960 20.0 6.50 4.40 26.4 28.9 27.7 408 

3 0.150 100000 24.0 8.40 4.80 32.0 40.0 40.0 416 

4 0.250 160478 25.0 4.0 10.25 32.0 52.0 52.0 440 

Notes: 
Vessel key as in Table 5 .1 . 
*d/L is defined as largest column diameter (or column side length in longitudinal direction for rectangular columns) 
divided by wavelength in 10 s deep water wave 

4. In general, theoretical estimates of pitch and roll motions agreed with 
experimentally measured values to within 1 5 % , resuhs being closer for 
lower wave periods. 

In the work presented here the experimental data obtained by Takagi and 
colleagues are examined in conjunction with theoretical estimates from the 
Morison equation using program U C L R I G in two water depths and wave 
heights. Motions are calculated for waves of 2.944 m height in 192 m 
corresponding to experimental conditions at full scale. Results are also 
presented for waves of 10.24 m height in deep water. The calculated 
motions in deep water are also compared with estimates made from 

Table 5.1 Prototype semisubmersible dimensions 
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Figure 5.4. Hydrostatic mesh of Takagi semisubmersible 

potential flow diffraction theory with non-hnear drag and damping correc­
tions apphed as described in Section 5.3. 

Before performing the Morison or diffraction theory based calculations, 
it is necessary to obtain various hydrostatic characteristics of the vessel 
using the method outlined in Chapter 3. Knowing the vessel draught, 
pressure integration on the vessel surface element array is used to compute 
the water plane area, displaced volume, centre of buoyancy and second 
moment of water plane area of the structure, from which the metacentric 
heights in pitch and roll are found. This hydrostatic pressure integration 
technique is described in further detail in Chapter 3. The hydrostatic 
characteristics of the eight column vessel are given in line l b of Table 5.2. 

Results are calculated from the Morison equation based method 
described above. For the Takagi semisubmersible, drag and added mass 
coefficients of 1.2 and 1.0 for fluid flow perpendicular to the vessel 
cylindrical members were used. For the pontoons, added mass and drag 
coefficients for horizontal flow perpendicular to the pontoon fore and aft 
centre lines were 0.55 and 0.43 respectively. The added mass and drag 
coefficients for vertical fluid motion around the pontoons were taken as 
1.72 and 1.49. These values were obtained from recommendations made 
by Det Norske Veritas (1981). 

Potential flow estimates of motions of the Takagi semisubmersible have 
also been found using the method outlined in Section 5.3. The mesh 
describing the submerged body boundary consisted of 376 facets. As 
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described in Section 5.3, the diffraction theory method has been enhanced 
to include the effect of drag forces on vessel bracing members though the 
wave diffraction effects of such members has been ignored. Drag damping 
coefficients calculated from the Morison based method are also used and 
are shown to significantly modify estimated Hnear motions near resonance, 
particularly for large wave heights. 

The model test data, together with the Morison and diffraction theory 
based estimates for motions and forces, are presented in Figures 5.5 and 
5.6 - natural period and added mass values are given in Table 5.3. The 
motion and force results in the figures have been divided by wave 
amplitude for direct comparison with the experimental data, though the 
values only apply for motions to the wave heights given in the diagrams due 
to non-Hnear drag effects. Unless indicated, the values presented are those 
calculated in deep water to waves of large ampHtude (10.24 m wave 
height). In the following discussion of results it should be borne in mind 
that the experimental data were measured in waves of 2.944 m height in a 
relatively shallow water depth of 192 m (full scale values), whereas some of 
the theoretical runs correspond to a wave height of 10.24 m. 

Figure 5.5(a) presents the surge motions of the Takagi semisubmersible 
in head seas. There are discrepancies in deep water surge motions 
predicted by the Morison and potential flow based methods for the Takagi 
vessel over the complete wave period range examined. The differences are 
due to the fact that the potential flow method does not include bracing 
members . It is felt that much closer agreement would be obtained between 
the two methods if the potential flow analysis included the influence of 
bracing. This is of particular importance for the Takagi vessel as it has 16 
bracing members of 2068 t displacement, 6% of the total displacement of 
the vessel. The sway motions predicted by the two methods are in much 
closer agreement. Many of the bracing members have axes in the trans­
verse direction and, therefore, have little influence on sway motions. The 
inclusion of non-Hnear drag and damping effects in the potential flow 
calculation does not alter the predicted motions. 

Figure 5.5(b) presents heave motions in head seas. At wave periods 
below 16 s experimental data agree well with theoretical estimates from 
both methods, with the effects of water depth and wave height being 
negligible. 

At wave periods from 11 to 18 s the heave results are broadly in 
agreement for both head and beam seas, though theoretical estimates 
underpredict the test data. Conversely, in the region of the heave force 
cancellation at approximately 22 s the theoretical methods significantly 
overpredict the test data, with results from the shallow water Morison 
based method being closest, overestimating the experimentally measured 
heave values by approximately 80%. It is anticipated that this discrepancy 
would be reduced if the residue force function representing the relative 
wave particle to body motion drag force terms, ignored in the analysis, 
were included in the method. It was shown earher that the residue force is 
negligible when compared to the total heave force amplitude over the 
complete wave period range, except at heave force cancellation where the 
magnitude of the residue is of the same order as the total force. However , 
in practice it would be difficult to include the residue term in either analysis 
method due to the extensive numerical iteration required for solution. 
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Figure 5.5. Vessel 1 - Takagi semisubmersible head sea data; wave height (wht) 10.24 m. 
Key: a - Morison equation, theory; b - potential flow, theory; c - potential flow (including 
Morison drag damping), theory; d - experimental data, Takagi model (wht = 2.944 m, 
depth = 192 m); e - Morison equation, theory (wht = 2.944 m, depth = 192 m) 
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Figure 5.6. Vessel 1 - Takagi semisubmersible head sea data; wave height = 10.24 m. 
Key. a - total force on vessel, Morison equation; b - wave force on surface piercing 
members, Morison equation; c - inertia force on pontoons, Morison equation; d - drag 
force on vessel, Morison equation; e - total force on vessel, potential flow and drag force 

Another relevant feature of the heave response around the force 
cancellation period is that the potential flow estimates without the inclu­
sion of non-linear drag and damping agree closely with the Morison based 
results at small wave heights. When drag and damping effects are included 
in the potential flow analysis the predicted heave motions are much closer 
to those from the Morison based method at high wave heights. This is 
expected because heave motions in the region of the force cancellation will 
be larger at higher wave heights because of the non-linear influence of drag 
force terms in the equations of motion. 

The theory and test data both indicate heave natural periods at 
approximately 24 s, as indicated in Table 5.3. However, the resonant 
heave amphtude predicted by the Morison based method in shallow water 
differs significantly from the experimental data indicating the inability of 
the method to predict the level of heave damping. Care should be taken 
when comparing theoretical data for the deep water case with test data 
since heave motions are influenced by water depth at large wave periods. 
However, it should be noted that the potential flow estimate of resonant 
heave motion is significantly higher than that obtained experimentally, 
inclusion of drag damping into the method reducing the motions signifi­
cantly to a similar level to those predicted by the Morison based method. 
This level is approximately half that obtained experimentally due to the 
higher wave height used and consequently higher drag damping level. 
However, the Morison based method sfill overpredicts the level of 
damping significantly when using water depth and wave height values 
corresponding to the experimental tests. 
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5.3 Diffraction analysis 

Calculation of wave forces and consequent motions of large floating bodies 
with dimensions that are greater than 20% of wavelength of incident 
regular waves must account for modification of the incident wave flow by 
the floafing body. This distortion (or diffracfion) of the incident flow can 
only be fully known by a soludon of the governing Laplace equation with 
the usual free surface and sea bed boundary conditions as well as the 
additional condifion of no flow through the body surface. For bodies of 
arbitrary geometry, this calculadon needs to be done numerically. 

There are , in fact, two components with the soludon for the motion of a 
large floadng body responding to gravity waves. The first component is due 
to forces exerted on the body due to its motion in otherwise still water. 
These forces can be decomposed into two contributions, one proportional 
to body acceleration, called the added mass force, and the other propor­
tional to body velocity, called the potendal damping force. The resultant 
added mass and potential damping coefficients are used on the left hand 
side of the equation of motion and the determination of the coefficients is 
called the radiation wave problem. 

The second component is called the scattered wave solution and is 
concerned with determining forces on a stadonary floadng body in 
waves - these forces being on the right hand side of the equation of 
motion. Both these component problems are addressed below. 

The conditions that determine the use of diffraction theory first need to 
be estabhshed. Convendonally, for floating vessels with members of 
cross-section dimension D , diffracdon theory is considered necessary if 
D/λ > 0.2 where λ is the incident wave length. However, the ratio of wave 

Figure 5.6 presents heave forces calculated by the two methods. 
Amplitude and phase values are given for the total force on the vessel 
found from the Morison based method as well as the individual inertia 
force on the pontoons, wave pressure force on surface piercing members 
and drag force on the complete vessel. The total force values are compared 
with the wave exciting force estimates calculated from potential flow 
including non-linear drag force effects. 

The force results underhne the relatively small contributions of drag to 
the total wave force. However, since the two major forces due to wave 
pressure on the surface piercing members and inertia on the pontoons are 
180° out of phase with each other (see Figure 5.6(b)), there is a possibihty 
of the small drag force dominating at some wave periods due to mutual 
cancellations of the above forces. This phenomenon occurs just below the 
resonant wave period which for heave is at approximately 24 s. 

The potential flow heave force estimates in head seas are in good 
agreement with those from the Morison based calculation over the entire 
wave period range when the effects of drag are included. These results 
show that the Morison equation based approach is valid for semisubmer­
sible vessels with slender members , although the diffraction analysis of 
such vessels, excluding bracing members , also gives reasonable results. 
This method is described further in the next section. 
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height, / / , to wave length, X, satisfies the condition Η/λ < 111 approxi­
mately for coherent waves to exist. If both of the above conditions are 
satisfied, the ratio HID is smaller than 1. Since wave flow orbital diameters 
will be equal to or less than / / , the wave flow regime around the floating 
body will not exhibit large scale separated flow. Consequently, drag forces 
will be small and a potential flow solution of the wave diffraction problem 
will be representative of reaHty. However , there is one exception to this 
argument and this concerns the roll response of ship shape vessels which is 
considered further in Section 5.4. 

It is useful at this stage to explicitly set down the assumptions underlying 
the solution of diffraction problems. These are: 

1. The vessel motions are assumed to be small. 
2. The submerged vessel surface is taken to correspond to the instanta­

neous body surface beneath the still water plane. 
3. The vessel response is linear, harmonic loading being due to incident 

linear sinusoidal waves of small amplitude. 
4. Fluid pressures are obtained from the linearized Bernoulli equat ion, 

assuming that the wave flow is in viscid and irrotational, the fluid 
motions being described by a velocity potential. 

For space frame structures, diffraction analysis can be adapted to incor­
porate non-linear drag and drag induced damping forces. This is described 
further below. A statement of the full wave diffraction problem in three 
dimensions can be written as follows using an axes system with Oxy in the 
still water surface and O ζ pointing vertically upwards. The governing 
Laplace equation in terms of the velocity potential , φ , is 

a > θ^Φ θ^φ 
+ + = o (5.40) 

dx^ dy^ dz^ ^ ^ 

with the linearized free surface boundary condition at ζ = 0 of 

θ^φ dé 

^ . , - = 0 ( 5 . 4 1 ) 

and the sea bed boundary condition at ζ = -d oí 

together with the no-flow through the immersed body boundary condition 
of 

θφ 
- = y . ( 5 . 4 3 ) 

at the body surface where η denotes a direction normal to this surface. is 
the velocity of the body surface in the direction normal to the surface. All 
the assumptions inherent in the governing equations and the linearized free 
surface boundary condition thus apply to this linear diffraction problem, 
that is, irrotational and inviscid flow of small wave ampHtude. The solution 
of the full wave diffraction and radiation problem is stated by writing the 
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Lim Γ 1/2 - - Ι / : φ . = O (5.46) 

where the factor r^^^ takes account of the directional spreading of waves. 
Since the incident wave potential , φΐ, is known, the boundary condition 

at the stationary body surface can also be written as 

^ = - ^ (5.47) 
dn dn 

total velocity potential as the sum of incident, scattered and radiated 
potentials, φι, and Φγ respectively. Thus 

φ = φί + φ̂  + Φγ (5.44) 

The scattered and radiated wave potentials are found by solving the two 
corresponding problems separately. 

The radiation problem can also be solved by using either boundary 
integral or boundary element techniques. Only the solution using bound­
ary integral techniques is described here for brevity. The analysis assumes 
inviscid, irrotational flow and that wave amplitudes are small. The 
unsteady flow around the floating vessel is calculated by introducing 
oscillating sources of unknown velocity potential on the vessel submerged 
surface that is discretized by a mesh of facets with an oscillating source on 
each facet. Further details on the solution of wave diffraction/radiation 
problems are given by Eatock Taylor and Waite (1978), Eatock Taylor 
(1982), Mei (1978) and Shaw (1979). 

A Green 's function is used to represent the velocity potential of each 
source which, because of the form of the Green 's function, satisfies 
Laplace's equation, zero flow at the horizontal sea bed, the free surface 
and radiation boundary conditions. 

Now, the solution for scattered wave potential due to the stationary 
floating body, subjected to incident waves of potential , φΐ, is described 
below. A set of linear simultaneous equations is obtained by equating the 
flow due to the local source plus the additional flow due to all other sources 
to the negative of the flow due to the undisturbed wave for each facet on 
the body surface. Solution of these equations yields the unknown source 
strengths and, therefore, the velocity potential , φς, which is used to derive 
pressures and wave forces by integration over the body surface. Thus the 
wave force vector, F , may be obtained for an incident wave of specified 
frequency and direction. 

The scattered wave problem is associated with waves that are generated 
by the stationary body boundary in incident waves. Therefore, the 
scattered wave problem is restricted in the mathematical formulation to 
outgoing waves only. This requires that the scattered wave potential 
satisfies the condition 

^ + - ^ = 0 (5.45) 
dr c dt 

where r is radial distance from a point on the body surface and c is wave 
celerity. This can be written (see Sommerfield, 1949; and Stoker, 1957) as 
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φ; {Χ, y, ζ) = 
4 7 Τ 

/ (ξ , η , ζ) G{x, y , ζ; ξ, η , ζ) dS (5.50) 

where (JC, y , ζ) denotes a point in the fluid with (ξ, η , ζ) denoting a point on 
the body surface, / (ξ , η , ζ) is the source strength distribution on this 
surface and d 5 is a differential area on the body surface. The Green 's 
function G(jc, y , z; ξ, η , ζ) must be such that it satisfies the Laplace 
condition, the radiation condition as well as the sea bed and free surface 
boundary conditions. Such a function is given by Wehausen and Laitone 
(1960) and can be written in an infinite series form as 

Gix, y, z; ξ, η , ζ) = ,^2"!^^ + 
k^d - ß^d + β 

cosh[/:(η + d)] [yo{kr)-iMkr)] 

^ 4 Σ 2 ^ 2 ^ o ^^^[^^(^ + [^^(η + d)] KoM (5.51) 
^ vid + ß^d - β 

where are positive roots of equation 

Vf, idinv^d -h β = 0, 

r = V[(x - ξ γ ^ { γ - η)^], 

β = Ä: ianhkd 

and 

k = 2π/λ 

JQ and YQ denote Bessel functions of the first and second kind, respectively, 
and of zero order and KQ denotes the modified Bessel function of the 
second kind of zero order. The scattered velocity potential , φ ' ^ , is 
determined by imposing a no flow boundary condition on the body surface. 
This condition can be implemented by imposing the condition that at an 
element of the immersed body surface, the flow due to a local source plus 
the flow due to all other sources on the body surface must be equal and 

Once φ ς is obtained as a solution to this problem, wave induced pressures 
can be obtained from the linearized Bernoulli equation and integrated to 
obtain forces and moments . 

For floating bodies of arbitrary geometry, the scattered wave problem 
can be solved by simulating the flow using oscillating point sources placed 
on facets covering the body surface. If the total incident and scattered wave 
potential is written as 

φ = Re { φ ' ( ; ^ , y, ζ) (5.48) 

the spatial variation of potential φ ' can be split up into its incident and 
diffracted components: 

Φ' = φ; + φ; (5.49) 

Then Lamb (1975) shows that the scattered wave potential may always be 
represented as a continuous distribution of point sources over the im­
mersed body surface through a summation integral of the form 
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dG 
/ (ξ , η , ζ) · — {χ, y, ζ; ξ, η , ζ) d5 

dn 47Τ 

= -W{x,y,z) (5.52) 

where the undisturbed incident wave flow is given by 

ún\ik{z + d) . cosh/:(z + d) 
+ i 

cosh/cd Qoúikd 
(5.53) 

In Equation (5.52), the factor of \ in the first term is due to the fact that 
half the surface source fluid will be streaming into the body's interior 
volume. A negative sign on the right hand side of this equation defines 
fluid flow into the surface from the exterior. 

Now the unknown source strengths, /(jc, y, z), are found by satisfying 
Equation (5.52) at all points on the body surface. However, since the 
derivation of dGlbn is complicated for an arbitrary body, a closed form 
solution is not possible and a discretized numerical method is adopted 
i n s t e a d - s e e , for example. Garrison and Chow (1972). The submerged 
surface of the body is divided into a lattice of facets and Equation (5.52) is 
satisfied at nodal points on each facet to reduce the integral equation to a 
finite number of simultaneous linear equations. Taking // as the source 
strength at the centroid (jC/, y/, Z/) of the /th facet of area δ5/. Equat ion 
(5.52) can be written as 

- / ; - f a ,y / , = 2W.- (5.54) 

where 
Ν 

1 dG 
^ij = — Z j ~ (^h yh Zi\ ξ/, η/ , ζ/) hSi (5.55) 

277 ^ dn 

for a total of Ν facets with the summation excluded for / = y. The 
derivative of G is evaluated using the equation 

dG dG dG dG , , 
— = — n^ + — / I . + — n, (5.56) 
dn dx dy ^ dz 

where n^, ny and are components of the unit normal vector to the facet 
surface. Once the coefficient matrix is obtained from Equation (5.55), 
Equation (5.54) is solved for aU by matrix inversion and the scattered 
potentials obtained through the equation 

Ν 

= Σ ^ ( ^ ' - ' y- ^'-' ^^-^^^ 

Then taking the hydrodynamic pressure as 

p{x, y,z,t) = - p — 
at 

= Re{ipw Wi(x, y, z) + <\>',{x, y, z)] e " - ' (5.58) 

opposite to the flow at the element due to the undisturbed wave. This can 
be written mathematically as 
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the total hydrodynamic forces and moments are given by the integrals 

Fe-*- ' = - p{x, y , z, ή η d 5 

Js 
and 

Me p{x, y, z, ή (r X n )d5 

Js 

(5.59) 

where η denotes the unit normal to the surface and r denotes the moment 
arm vector. Numerical values are computed by discretizing these equations 
and using the scattered wave potential from Equation (5.57). 

The numerical integrations defined by Equations (5.55) and (5.57) pose 
some difficulties due to singularities in the Green 's function form. 
However, the integrals are readily evaluated by using numerical integra­
tion schemes designed to cope with singularities. Fur thermore , for some 
so-called 'irregular' wave frequencies, the matrix to be inverted for solving 
Equation (5.54) becomes non-positive definite and no unique solution of 
the boundary integral problem is possible. This feature of the solution is 
not due to the numerical discretization employed but arises inherently 
from the source distribution representation of the scattered wave potential , 
see John (1950) and Murphy (1978). Irregular wave frequencies generally 
correspond to wavelengths which are smaller than the size of the body and 
are, therefore, usually at frequencies that are too high to be of concern in 
most wave loading calculations. Boundary integral techniques also suffer 
from numerical problems when modelling re-entrant structure geometries 
or structures with small holes or sharp corners - these problems are 
triggered by numerical problems due to the close proximity of adjacent 
surface panel sources. Ursell (1981) gives further details on irregular 
frequencies. 

Turning now to the radiated wave problem, the full velocity potential 
equation (5.44) must satisfy the boundary conditions at the body surface 
given by 

Οφι-

dn dn dn 
(5.60) 

where is the velocity of the body surface in the direction normal to the 
surface. This boundary condition can be applied at the mean body surface 
since the theory is appHed for small motions; φ, together with its three 
components , must also satisfy the Laplace equation and the free surface 
and sea bed boundary conditions. Fur thermore , and Φγ must satisfy the 
radiation conditions. 

Boundary conditions for the scattering and radiation wave problems can 
be spHt up from Equation (5.60) as 

dn dn 
(5.61) 
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and 

dn 
= V, (5.62) 

respectively, both being applied on the body surface. 
The radiation velocity potential, Φγ, is obtained in a similar way to the 

scattered velocity potential except for the use of a different boundary 
condition (Equation 5.62), which reflects the fact that Φγ arises from body 
motions in otherwise still water. Thus, at all facets, the source strengths, 
Φί, are such that the flow due to the local source plus the flow due to all 
other sources equals the velocity component of the body along the facet 
normal. This velocity component will depend on the mode of motion 
(surge, sway, heave, and so on) in which the body is moving. All this can 
be represented by equating the normal velocity of the fluid and of the / th 
facet for the vessel moving in its kth mode of motion. This yields the 
equation 

where Vjf, is the normal velocity of the / th facet with the vessel moving in its 
kih mode of motion. Fur thermore , nj is the normal to the / th facet, d^^Jdnj 
is the normal fluid velocity at the / th facet due to a unit source at the /th 
facet, and o/^ are the unknown source strengths required in the A:th mode. 
Application of Equat ion (5.63) for all facets produces a system of complex 
equations to be solved for the source strengths. Once these are known, the 
pressures at the facets are evaluated and their effects integrated over the 
vessel surface to yield forces in each mode of motion to unit motion in the 
kih mode. 

Since the wave excitation is harmonic, the response of the floating body 
will be harmonic and of the form Xe""^' where X is the complex response 
amplitude vector. 

Solution of the above procedure for the radiated wave force, Fr, yields 

ΓΓ(ω) = 0 ( ω ) Χ e-'"^ (5.64) 

where 0 ( ω ) is a complex square matrix. 
The equation of motion for large floating bodies is given by 

d2 
Μ — (X e'̂ ^O + (K + Kn,) X = 0 ( ω ) X e"'^' 

^ +α(ω) Ρ , (ω) e-*'^' (5.65) 

where Γω(ω) is the complex wave force amplitude vector obtained from 
Equation (5.59), and α(ω) is the wave amplitude; Μ is the physical mass 
matrix; Κ is the hydrostatic stiffness matrix; and is the mooring stiffness 
matrix. The hydrostatic stiffness matrix, K, can be obtained from the 
hydrostatic pressure integration techniques described in Chapter 3. 

The above equation of motion (Equation 5.69) does not contain any 
viscous flow effects, such as quadratic drag damping, as it is a potential 
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flow formulation. It is convenient to decompose 0 ( ω ) into its real and 
imaginary parts through the equation 

0 ( ω ) = Μ α (ω) ~ ίω Βρ(ω) (5.66) 

to yield frequency dependent added mass and damping matrices ΜΑ(ω) 
and Βρ(ω). 

Equat ion (5.65) now becomes 

[-ω\Μ + M A ) + ίωΒρ + ( Κ + K J ] X = (5.67) 

The above equation forms a set of complex linear algebraic equations 
which may be readily solved for the motion amplitude vector, X , by 

X = A - ^ (5.68) 

where 

A = [ K + Kn, - ω\Μ + M A ) + iωBp] (5.69) 

The hydrodynamic coefficient matrices in Equation (6.67) are frequency 
dependent and thus a diffraction analysis needs to be carried out for all 
frequencies at which motions are required. 

The exciting force vector ¥^^{ω) and the coefficient matrices, ΜΑ(ω) and 
Βρ(ω), can also be derived using finite element methods in an analogous 
way to that described for the boundary integral approach described above 
(Eatock Taylor and Zietsman, 1981). 

There is one further point of interest regarding the relationship between 
the scattered and radiated wave potentials (φ^ and φ^) for a floating vessel 
problem. The use of equations called Haskind relations (see Newman, 
1962) enables the scattered wave potential , φ^, to be expressed in terms of 
the incident and forced wave potentials, φ} and ΦΓ. Thus , once ΦΓ is 
calculated, φ^ need not be computed by diffraction analysis but can instead 
be derived using the Haskind relations. 

The equation of motion for the floating body is often modified to 
incorporate additional effects not present in the standard linear formula­
tion of the potential flow equations of motion. The equation of motion 
(6.67) now becomes 

[-ω\Μ + ΜΑ(ω)) -h iω Βρ(ω) -h iω 0 ( ω ) -h Κ -h Κπ,] Χ(ω) 

= α(ω) F , (ω) + F^ (ω) (5.70) 

where D and F¿ provide additional sources of damping and excitation 
respectively. The additional terms are used for diffraction analysis of 
semisubmersible hull forms where the major pontoons and columns can be 
included in the submerged surface description, but it is computationally 
too expensive to include all the bracing members . Terms D and F^ are 
included to take account of the damping contribufion of drag forces due to 
vessel motions on bracing members , and also to account for the direct 
loading of vessel main members and bracing by drag forces due to wave 
induced velocities. The linearized damping matrix D given by 

_ _8_ 

~ Β 2 ^ I ^ last approximation I (5-71) 
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Figure 5.7. Hydrodynamic mesh of Vessel 4 - large displacement semisubmersible 

Figures 5.8 and 5.9 present some representative head and beam sea 
heave motions calculated from the two methods, as well as the diffraction 
theory calculations including drag damping for vessels 2, 3 and 4 having 
cross-sectional column dimensions of 12.9, 23.4 and 39 m respectively. 

Surge and sway motions calculated by the two methods are not shown 
here but are in general agreement with each other over the wave period 
range from 9 to 28 s. At lower periods, however, differences occur for 
vessels 3 and 4. 

Figures 5.8 and 5.9(a) present selected heave modon data in head and 
beam seas for all three vessels. Vessel 2 with columns of 12.9 m diameter 
shows agreement between potential flow and the Morison approach for 
wave periods up to 15 s in head seas. Over the range of heave force 

accounts for drag force induced damping due to vessel motion. For 
simplicity, matrix Β only contains the diagonal terms of the drag force 
damping matrix derived in Section 5.2. The term F^ is the force vector due 
to wave induced drag forces on vessel members and bracings. Terms D and 
Fd are first found from a Morison equation based analysis as described in 
Section 5.2. Equation (5.70) is then solved for X by matrix inversion with 
an iterative procedure employed to take account of the non-linear damping 
term. 

In order to illustrate the applications of diffraction analysis for floating 
vessels, consideration is given first to semisubmersible designs as a 
continuation of the Morison equation based analysis of Section 5.2. In 
particular, the respective limitations of Morison and diffraction theory 
based analyses can be illustrated by analysing three additional semisubmer­
sible designs chosen to cover a wide range of column diameters and 
displacements. Two twin pontooned designs of small and medium displace­
ment having four circular columns are selected together with a large 
displacement semisubmersible heavy lift crane vessel (SSCV) with rec­
tangular columns. Dimensions and hydrostatic data for the rigs, denoted 
vessels 2, 3 and 4, are given in Tables 5.1 and 5.2. 

Hydrostatic and hydrodynamic analyses were performed on these vessels 
in an identical manner to that described for the Takagi semisubmersible in 
Section 5.2. In all diffraction analyses, between 376 and 440 triangular 
surface elements were used to define the submerged body boundary in a 
sufficiently accurate manner . Figure 5.7 shows a typical hydrodynamic 
mesh for the submerged hull of vessel 4. 
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Figure 5.8. Heave motion transfer functions: (a) Vessel 2 - small displacement, head seas; 
wave height = 10.24 m; (b) Vessel 3 - medium displacement, head seas; wave 
height = 10.00 m. Key: a - Morison equation, theory; b - potential flow, theory; 
c - potential flow (and Morison drag damping), theory 
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Figure 5.9. Vessel 4 - large displacement semisubmersible, head sea data; 
height = 10.00 m. Key: a - Morison equation, theory; b - potential flow, 
c - potential flow (and Morison drag damping), theory 
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cancellation from 16 to 19 s, the potential flow method yields significantly 
lower heave motions for vessel 2 than the potential flow method with drag 
forces included for the Morison based approach. If results had been 
calculated for small wave heights using the Morison equation, it is 
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anticipated that agreement with the potential flow method would have 
been much closer due to the small non-Hnear drag force effects. .The 
potential flow method overpredicts the heave resonant amplitude by a 
factor of two, while the methods that include non-linear damping are in 
broad agreement. The heave motions of vessel 2 in head seas display the 
same trends as those of the Takagi semisubmersible and hence the relevant 
discussion of heave results discussed in Section 5.2 also applies here. 

The agreement in head and beam heave results between the two 
methods for vessels 3 and 4 having columns of dimensions 23.4 and 39 m is 
not particularly good, especially for the larger vessel see Figures 5.8(b) and 
Figure 5.9(a). Heave motions below wave periods of 18 s are significantly 
underpredicted by the Morison based analysis. The reason for this is 
clearly the wave diffraction and radiation due to the large columns and 
pontoons of the vessel which are not accounted for in the Morison analysis. 
Drag effects on the members over the wave period range from 10 to 18 s do 
reduce the potential flow heave motions to values that are closer to the 
Morison based predictions, but there are still large discrepancies in the 
Morison results. 

At the heave force cancellation period of approximately 23 s for vessels 3 
and 4, the basic potential flow method significantly underpredicts the head 
and beam sea heave motions since non-linear drag effects are not included. 
However, the Morison based results do not predict a force cancellation 
probably because of the high drag forces due to the high wave heights 
considered. It is believed that the most accurate heave response in this 
wave period range is obtained from the potential flow method with drag 
and damping forces included. In the region of heave resonance (above 23 s 
wave period), similar conclusions apply as for the heave motions of vessel 
2. 

Figure 5.9(b) presents head sea pitch motion for vessel 4. Here the 
Morison based estimates are significantly different from the potential flow 
values, even when drag effects are included. Again, the neglect of wave 
diffraction by the Morison equation approach is believed to be at fault. At 
wave periods above 20 s, the Morison based pitch motion estimates of 
vessel 4 are still in error, though there is agreement in the roll motions. 

Table 5.3 presents the natural period estimates and added mass and 
inertia values for vessels 2, 3 and 4. The added mass and inertia values 
calculated from the potential flow method have been averaged over the 
calculated wave period range to give a mean estimate for comparison with 
the constant values used in the Morison approach. In general there is good 
agreement between results from the two methods, indicafing that the 
simplification of assuming constant added mass and inertia values made in 
the Morison method is adequate , although the difficulties of choosing 
appropriate added mass coefficients sfill remains. 

A review of the above results and those of Section 5.2 indicates that the 
Morison equation approach is valid for calculating wave induced motions 
for vessel having D/\ values of less than 0.2. Thus the Morison approach 
may be used with the Takagi vessel 1 and vessel 2 considered here . 
However, application of the potential flow method to these vessels does 
require that drag forces due to vessel motion as well as wave motions are 
included in the analysis. Inclusion of the drag force due to vessel motion 
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Figure 5.10. Heave and pitch transfer function in head seas for 1:36 scale. R A O is 
response amplitude operator. Key: a - theory; b - data for rounded keel-edge profile; 
c - data for sharp keel-edge profile 

leads to greater accuracy around resonant wave periods, whereas inclusion 
of the drag force due to wave particle motion yields more accurate motions 
in the vicinity of wave cancellation periods. 

For vessels 3 and 4 of large displacement and member size, it is clear that 
the Morison equation approach is inadequate , particularly in estimating 
heavy motions. In such cases, it is more appropriate to use a full potential 
flow analysis, though it is essential to include drag forces both due to vessel 
motion and wave particle velocities. 

Attention is now focused on application of diffraction theory to a 
monohull configuration. An example is taken from a study by Brown et al. 
(1983) that compares model tests on a barge of 1:36 and 1:108 scale with 
predictions from a diffraction theory analysis. Only the 1:36 scale tests are 
described briefly here. They were carried out in a complex sea basin that 
was 18 m square and 1.5 m deep. The 36th scale rectangular barge model 
was of 2.40 m length, 0.80 m beam and 0.34 m height with a draught of 
0.105 m. The mass of the model was 200.8 kg and the model 's roU, pitch 
and yaw moments of inertia about centre of gravity axes were 11.95, 95.05 
and 71.81 kg m^ respectively. The vessel centre of gravity was at 0.111 m 
above the keel. It was installed with two types of keel edges on the 
submerged horizontal edges - one being a sharp right angled edge and the 
other a rounded profile of 40 mm radius. 

Measurements of the wave induced motion of the model in all six 
degrees of freedom were made with both regular and irregular long crested 
seas. These measurements were reduced to response amphtude operators 
using the techniques described by Brown et al. (1983). This paper also 
describes the calculation method used for the numerical diffraction analysis 
which exploits hull symmetry about both vertical axes to enable 156 facets 
to be used on one-quarter of the hull form. This is, of course, analogous to 
using 624 facets on the whole hull form. 

A selection of test results and comparisons with theory are presented 
here . Figure 5.10(a) presents the heave response to head seas for both 
rounded and sharp keel edges and demonstrates that they both agree 
reasonably well with theory. The discrepancies between theory and tests 
are believed to be due to experimental errors. Figure 5.10(b) presents the 
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F r e q u e n c y ( r a d / s ) 

Figure 5.11. Roll transfer function in beam seas for 1:36 scale. Key: a - theory; b - data 
for rounded keel-edge profile; c - data for sharp keel-edge profile 

The differences between rounded and sharp keel edge experimental data 
are also brought out by the plot of roll angle against time displayed in 
Figure 5.12 for the two conditions. Peak roU angles for the rounded keel 
edges are approximately double those measured for the sharp keel edges. 

pitch response in head seas. The resuhs for both rounded and sharp keel 
edges are very close and agree well with theory. The surge response in 
head seas as well as heave and sway in beam seas show good agreement 
similar to that presented in Figure 5.10 between the sharp and rounded 
keel edge profiles and with theory. 

The measured roll motion transfer function in beam seas shown in 
Figure 5.11 shows substantial differences between the sharp and rounded 
keel edge experimental data, as well as between experiment and theory. 
The plotted roll responses are centred around the roll resonance frequency 
(5.8 rad/s for 1:36 scale). Roll motions for the rounded keel edges are seen 
to be up to 50% greater than those for sharp edges near and above the roll 
resonance frequency. The physical phenomenon behind these differences 
is illustrated by the observed changes in local water motions close to the 
barge in the cases of rounded and sharp keel edges, the latter generating a 
large amount of turbulence in and under the free surface. Despite the 
relatively smoother flow observed close to the rounded keel edges during 
the tests, experiment and theory for this case still disagree substantially at 
resonance. The roll response data also shows a slight reduction in the roll 
natural frequency from rounded to sharp keel edge data. This would be 
consistent with an increase in damping, due to vortex shedding and fluid 
turbulence induced by the sharp keel edges. 
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Figure 5.12. Comparison of roll-time history from 1:36 scale tests for two keel-edge 
profiles (significant wave height = 3.4 cm; characteristic period = 0.9 s). Key: — data for 
rounded keel-edge profiles; — data for sharp keel-edge profiles 

thus illustrating the need for a sound theory to account for the viscous 
effects at the vessel keel, and to predict the roll motion responses of 
cargo-carrying barges more accurately. It is worth noting the manner in 
which the difference between the rounded and sharp keel edge data 
develops with t ime. It suggests a vortex shedding or turbulence-generation 
process which is triggered off by roll motions reaching a particular 
amplitude. The discrepancy caused by these viscous effects persists for a 
while before decaying and the triggering process is then repeated. 

Additional work, described further in Section 5.4, shows that the 
observed discrepancies in roll motion can be accommodated by increasing 
the potential flow radiation damping by approximately 20% of critical 
damping for the rounded keel edge and 80% of the same for the s h a φ keel 
edge. Fur thermore , visualization studies of the flow close to the keel edge 
reveal the presence of strong vortex shedding and consequent vortex 
movements around the keel. Such vortex shedding is not detected for the 
rounded keel edges. These studies suggest that the observed discrepancies 
in roll motions can be predicted by an analytical model which uses point 
vortices in a background potential flow together with skin-friction calcula­
tions to predict the energy dissipated and consequential additional damp­
ing due to these viscous effects. Section 5.4 takes these matters further. 

5.4 MonohuU roll response 

The preceding section highlights the inability of potential flow theory to 
predict the lighfly damped roll resonance peak of ship shape vessels. 
Attempts have been made to predict the magnitude of this roll resonance 
peak from the very beginning of the development of a scientific basis of 
naval architecture. These efforts have been motivated by the need to 
reduce the levels of roll resonance peaks in order to improve vessel sea 
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keeping and operating effectiveness. A brief review of this work is 
presented below. 

Bilge keels, which are essentially flat plates or similar structures 
protruding outwards from the submerged vessel corners, have been 
commonly used to reduce the roll motions of floating vessels. Froude 
(1874), one of the earliest workers in this area, realized that the total roll 
damping of a ship, with or without bilge keels, was not proportional to the 
square of the rate of rolling but was better represented by a combination of 
linear and square-law terms. Froude's hypothesis was based on exper­
iments performed with a flat plate oscillating in water at various frequen­
cies. Martin (1958) extended these investigations to vary the amphtude of 
plate oscillation and concluded that the drag on the plate varied with 
amplitude to a power between 1 and 2. 

White (1895) performed experiments on battleships and found that the 
additional damping produced by fitting bilge keels was linear, rather than 
square-law in character. He therefore concluded that surface wave radia­
tion must be an important element in bilge keel damping. Bryan (1900) 
indicated that for ships with fairly large bilge keels, the transverse velocity 
of the water could be considerably greater than the product of the radius 
from the roll centre to the bilge keel and the rate of change of roll angle. 
Bryan also observed that when the ship was rolling, a pressure force would 
act on the hull ahead of each keel and a suction force behind it, these forces 
exerting a moment on the vessel that opposed the roUing motion. Other 
workers include Gawn (1940) and Dalzell (1978) who performed and 
analysed roll tests on battleships. They found that the test data fitted well 
to quadratic and cubic variations with roll amplitude. 

Over the last two decades a large number of measurements have been 
made on the roll motions of ships by the 17th Research Committee of the 
Shipbuilding Research Association of Japan. Kato (1958) developed a 
method using results of experiments that measured the resistance to rolling 
of immersed suspended cylinders, and concluded that the frictional damp­
ing of ships was insignificant compared to the dominant effects of wave 
damping. Tanaka (1960) refined the experiments to measure the total 
resistance to rolling due to eddy making (shedding of vortices from the 
bilge keels) and friction and hence calculated the resistance due to eddy 
making alone by subtracting the effects of frictional resistance calculated 
by Kato's method. 

Semiempirical methods based on Tanaka 's results have had varying 
degrees of success in predicting resonant roll mofions. For example, 
Slavesen et al. (1970) developed a method using strip theory and a 
representation of viscous damping to predict vessel roll motions in 
significantly closer agreement with experimental measurements than the 
same theory gave without viscous damping. Tanaka has published further 
work with Ikeda and Himeno (1978) which develops other semiempirical 
formulae for the roll-damping terms due to friction, wave, eddy and lift 
components for the hull and bilge keel contributions, with no interaction 
accounted for between the various terms. The friction term was based on 
work by Blasius (see, for example, Newman, 1977); the wave-damping 
term was calculated using strip theory; the eddy-making term was derived 
from earlier work by Ikeda et al. (1977) on two dimensional cylinders of 
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various cross-section (resulting in rather long and complicated formulae 
giving a result depending quadratically on roll frequency and ampHtude); 
and the lift and bilge keel contributions were both semianalytical in nature , 
agreeing reasonably weH with experimental results. The authors concluded 
that the sum of the five damping components showed good agreements 
with experimental results for ordinary ship forms. However , for ships with 
high breadth to draught ratios, such as flat-bottomed barges, this method 
was not always accurate. 

Investigations into the motions of flat-bottomed barges have been 
carried out only recently as these vessels have now come into regular use 
due to the development of the offshore oil industry. Keuning and 
Beukelman (1979) performed forced roll-osciUation tests to measure the 
added mass and damping values of rectangular barges in various water 
depths, comparing the results with both a strip theory and diffraction 
model. They indicated that the effects of viscosity played an important role 
at high wave frequencies, where a growing amount of eddy shedding from 
the sharp corners could be observed. Surprisingly they found that the sway 
added mass, and damping coefficients, remained independent of the 
oscillation ampHtude even when there was much vortex shedding, though 
the roll coefficients were amplitude dependent . Keuning and Beukelman 
concluded that the predicted damping coefficients were low, especiaHy at 
higher frequencies where viscous effects were dominant , the damping in 
roll being particularly difficult to estimate accurately. 

Stewart et al. (1979) arrived at similar conclusions after comparing roll 
motion results for full and 1:30 scale models with predictions from 
commercially available computer programs. They indicated that the results 
of model tests showed that roll damping was a non-linear phenomenon, the 
equation of motion being represented by 

(/ + / ')θ + θιθ -h J52Ó^ -h 5Θ = f cos(ωí -f Φ) (5.72) 

where / and / ' are the roll inertia and added inertia, 5 the roll stiffness, F 
the roll exciting force to waves of frequency ω, φ is a phase angle and Βχ 
and B2 are constants. Stewart et al, found that the barge roll response per 
unit wave amplitude decreased with increasing wave height due to in­
creased damping forces and that, in general, the inability of programs to 
account accurately for the viscous damping in roll led to enormous 
variations in roll motion predictions close to resonance. By considering an 
equafion of the form of (5.72) a better representation of the roll motions 
could be found, though they did not know of any theoretical method that 
existed to calculate appropriate values of Βχ and B2 for a particular hull 
form and, therefore, it was always necessary to resort to model tests. 

Kaplan et al. (1982) proposed a method for represenfing non-linear 
contributions to the roll damping based on the concept of cross-flow drag. 
An expression for the non-linear roll moment due to skegs, bot tom and 
barge sides was derived in which the roll damping was proportional to 
I Ó I Θ, where θ denotes roH angular velocity. For regular sinusoidal waves 
this non-Hnear damping term, 5NL, is approximated in an equivalent linear 
form as 
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ß N L I θ I θ = BLL θη,ωηθ (5.73) 
377 

where ωη is the roll natural frequency and is the roll amplitude. 
The non-linear roll motion response of ocean-going barges has been 

thought to be partially due to features other than the viscous phenomena of 
vortex shedding and skin friction. Denise (1983) indicates that linear 
models are inadequate because ocean-going barges have very shallow 
draught, of the same order of magnitude as the wave amplitudes consi­
dered, and hence the basic assumption of smaU motions required by linear 
theory is not satisfied. Ahhough a full representation of the additional 
non-hnear effects is difficult, Denise has developed a method to quantify 
the additional loads due to non-linearities that he refers to as buoyancy-
restoring forces and moments . These corrections to the linear forces on the 
barge cause a non-hnear detuning at resonance. 

The additional forces primarily apply in the region of the vessel splash 
zone and depend on the wave profile and relative barge motion. Denise 's 
non-linear model accounts for these effects and he compared his roll 
motion estimates with model and full scale test data and hnear potential 
flow theory, with and without empirical additions allowing for 'viscous roll 
damping' . In general, his resonant roll amplitudes agree closely with 
measured values, the linear potential flow theory consistently overpredict-
ing the motions. However, it is noted that Denise has applied the method 
only to barges having well rounded keel edges where the effects of vortex 
shedding would be relatively unimportant . The experimental evidence of 
Section 5.3 does suggest that a major part of the viscous force acting on a 
barge with bluff right angle keel edges is due to vortex shedding. 

The mechanisms that could contribute to additional damping are 
described in more detail here and illustrated in Figure 5.13. One of these is 
associated with the fact that a vessel responding with large roll amplitude 
violates the assumptions of small motions inherent in hnear theory. It is 
thus entirely possible that non-linear forces arise that modify large angle 
roll motions without viscosity playing any part in the roll reduction. Two 
other mechanisms contributing to roll damping are due to the viscous 
effects of separation and vortex shedding from large changes in hull slope 
or bilge keels on the vessel, as well as energy dissipation induced by 
boundary layer friction between the hull and surrounding fluid. 

One possible reason for the inability of linear potential flow theory to 
predict marine vehicle roll motions close to resonance accurately is 
discussed by Denise (1983). Denise presents a numerical investigation to 
demonstrate that a linear potential-flow model can be inadequate because 
the draughts of many marine vehicles are of the same order of magnitude 
as the wave height. Thus, for large angle roH motions, the vessel keel edges 
can be displaced through large distances relative to the local wave fluid. 
The assumptions of linear theory are therefore violated and non-linear 
force mechanisms must be accounted for. 

Denise asserts that by far the most significant non-linearity arises from 
wave structure interaction in the splash zone. An exact representation of 
this phenomenon is extremely difficult as it involves second or even third 
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Figure 5.13. Flows associated with a barge in roll motion 

order diffraction theory. Denise uses physically realistic assumptions in an 
attempt to predict the forces caused by non-linear effects. This yields 
additional force and moment terms in the equations of motion, referred to 
as the buoyancy restoring force and moment contributions. The buoyancy 
restoring moment , denoted here by M b r m , is given as 

BRM - pgC (r - Fg) X nd5 

pg (ξ + 2)(r - Fg) X n d 5 (5.74) 

where ξ is the instantaneous wave elevation, f is the position of a surface 
panel, Fg is the position of the centre of gravity, η is the unit outward 
normal, and ζ is measured vertically from still water level. The first integral 
is included to subtract the 'hydrostatic ' contribution from the hnear 
equation due to the existence of a finite amplitude wave crest and trough. 
This effect is already included in the second integral of Equat ion (5.74). In 
the first term of the expression, integration is performed over the 
submerged surface, 5o, up to still water level, corresponding to the body 
fixed in the static position but in the presence of waves. In the second 
integral the surface, 5 , corresponds to that of the instantaneous wetted 
body. 

Denise solves the equations of roll motion, including the additional 
buoyancy restoring force and moment terms, and obtains reasonably good 
agreement with results of model tests. H e concludes that the reductions in 
roll motion are due to these non-linearities causing a detuning at roll 
resonance, thus providing an explanation for the discrepancies between 
present roll motion prediction methods and experimental data. The 
non-linear effects as presented by Denise are used to deduce predictions 
for roll motions of the 1:36 scale model test barge described in the 
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W2= -
2 7 Γ 

2 [^ylog (λ - λ;) - kj log (λ - kj)] (5.77) 
/•=1 

where kj and Xj are the strength and position of the yth vortex and an 
overbar represents a complex conjugate quantity. Note that Equat ions 
(5.75) and (5.76) apply in both the physical and transformed planes as 
complex potential is invariant with respect to orthogonal transformation. 

The complex potential of the complete flow is thus given by 

w(z) = νν(λ) = wi + W2 (5.78) 

preceding section. No specific calculations have been performed for the 
test model due to the complicated nature of the theoretical problem. 

Another possible cause of the overprediction of roll motions by diffrac­
tion theory is the additional damping forces induced by vortex shedding. 
At tempts have been made to predict these forces by using point vortex 
distributions to simulate the physics. A brief summary of one typical 
method is presented below with further details given in Brown and Patel 
(1985) . 

The free shear layers that develop from the keel edges are theoretically 
modelled by point vortices placed in the flow at suitable positions close to 
the corners of a two dimensional wall-sided block representing the barge in 
cross-section. A transformation is used to project the exterior of the barge 
boundary onto a flat plane to simplify the positioning of image vortices in 
the flow. These image vortices are used to ensure the condition of no fluid 
flow through the body walls. The transformation from the physical (z) 
plane to the projected (λ) plane is given by 

ζ = - - [ s i n - ^ + λ (1 - Κψ^] ( 5 .75 ) 
TT 

where z{x -h iy) and λ{α -h ib) are complex variables, and s is the 
half-beam of the vessel. In particular, the corners of the barge ζ = ± 5 -f 0/ 
transform into the points λ = ± 1 -h 0/ . 

A two dimensional oscillating irrotational base flow potentiaLgiven by 

45 

Wi = — λ 0m ω r sinωí ( 5 . 76 ) 
TT 

for roll of amplitude θ^, and frequency ω about the roll centre a distance r 
from the keel is used to represent the rolling motion of the vessel. It can be 
shown that the base flow potential given by Equation (5 .76) satisfies 
conditions of zero flow at infinity and pure sinusoidal motion at the origin 
which is at the centre of the barge keel. Fur thermore , Equat ion (5 .76 ) 
gives realistic base flow velocities in the region of the barge keel edges for 
roll centres that He above the barge keel. The vortex shedding model is 
stepped through time with increments dr, and point vortices are introduced 
into the base flow close to the points λ = ± 1 at each time instant. 

These vortices subsequently move under the influence of the base flow 
and other vortices and images in the flow field. The complex potential for a 
total of m vortices in the flow is given by 
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Vortex strengths, k, are found by considering the rate of shedding of 
vorticity in the wake, as used by Stansby (1977) and others , giving 

δί 
'- = \υΙ (5.79) 

where is the velocity at the shedding position. The vortex sheet is 
stepped through time using Eulerian first or second order schemes. For the 
p th vortex, positions at times t + át are found from those at time t using 

á\ 
KJt + dt) = kp{t) + — \„(Odi 

di 

λ„(ί + di) = λ„(ί) + ¡ 
dX dk 

dt 
(5.80) 

where d \ /d í for the vortex is found from the equation of motion of the 
sheet given by 

dz 

di 

dw 

d7 
Kit) 

The term dwidz for the vortex is found from Equat ion (5.81) as 

dw 

d l 

dw 

dk " 

ák 
λ dz 

xkp d\{zp)ldz^ 

(5.81) 

(5.82) 
IT: 2dk{zp)ldz 

The last term of this expression arises because kp is a vortex position and 
not a general point in the flow field - for a further dicussion see Clements 
(1973). 

The moment , M , induced on the rolling vessel due to the creation and 
motions of vortices is calculated from a numerical integration of the 
pressure, p, around the barge cross-section, 5 , at each time instant using 

Μ = p ( r X n) L d 5 (5.83) 

Js 
where η is the unit normal into the vessel which is of length L. The pressure 
is found from Bernoulli 's equation as 

Ρ = - p [I ("^ + v^) + θφ/aí] (5.84) 

where 

φ = Real {w} (5.85) 

and 

/dw\ 
(«2 + v^) = 

dw 

dz \dz 
(5.86) 

both of which may be obtained using Equat ion (5.78). Figure 5.14 shows 
the vortex positions from running the point vortex model for two cycles of 
vessel roll motion. After a vortex has been shed, a flow reversal leads to 
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Figure 5.14. Motions at vortices shed from both barge corners over the first two cycles of 
vessel roll motion 

this vortex being swept round the keel edge and a vortex of opposite sign is 
created on the second face, as shown in Figure 5.14(b). This process 
continues with the dominant force inducing vortex flow arising from the 
most recently generated vortices close to each keel edge. The resultant 
moment , Mys, from integrating surface pressures can be non-
dimensionalized by the factor M D given by 

Mo = 1 ρ υΐβ (5.87) 

where is the base velocity at the centre of the keel. The functional 
dependence of Mys obtained from the calculation can be written as 

Mvs = - / ι ( θ , ) / 2 ( Γ / ί / ) 6 χ ρ [ ΐ ( ω ί + α ) ] (5.88) 

where α is the phase of the induced moment relative to the wave, and / i 
and / 2 are given by curve fitting to the linearized moment amplitudes close 
to roll resonance as 

/ι(θπ.) = 504.9 - 37.03 θ^, + 0.877 (5.89) 
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where is in radians, and 

f2{r/d) = 0.8187(r/d)3 - l.50í{r/df + Í299{r/d) - 0.3474 (5.90) 

Including (5.88) in the equation of roll motion and ignoring the effects of 
coupling with the sway mode gives 

( / + / ' ) Ö N L + ßONL + S0NL = aMo + M v s (5.91) 

where / and / ' are the vessel roll inertia and added inertia, β is the potential 
flow damping coefficient, S is the roll stiffness, a and MQ are the wave 
ampHtude and roll wave exciting moment respectively. Assuming harmo­
nic roll modons of the form ONL^'^' where 6NL is complex allows the 
solution 

BNL = (fl MO + M J / [ 5 - ω\ΐ + / ' ) + ίωβ] (5.92) 

A good estimate of MQ may be obtained using potenfial flow calculafions. 
Hence 

θο = (5.93) 
^ S - ω2(/ + / ' ) + ί ω β ^ ' 

and 

5 - ω^(/ -h / ) -h ίωβ 

Equation (5.94) may be solved using (5.88) and noting that | 6NL | is given 
by Wrifing the denominator of the last term in Equafion (5.94) as 
{a + ib) allows simplification to 

θπ, exp[i(ωr + α)] = I θο I exp[i(ωí + α)] - exp[i(ωí + α)] 
« + 1 * (5.95) 

and hence 

= I % I - ^^^2)1/2 exp[i(a - a i - a,¿,)] (5.96) 

where α̂ ,̂ is the argument of α - ife and a i is the phase of the roU motion 
of the barge relative to the wave. It should be noted that the roll phases of 
the rounded and sharp keel edged vessels are taken to be identical to each 
other , the validity of this assumption again being confirmed by the results 
of experimental tests described in Brown et al. (1983). Equat ing the 
imaginary part of (5.96) to zero gives 

sin(a - tti + aab) = 0 and a = αχ - a^b ηττ (5.97) 

where η is an integer. Solving for the real part gives 

K = \%\-fifAa'-^by' (5.98) 

which is quadratic in θ ^ . Hence (5.98) may be solved over a wave 
frequency range spanning roll resonance, assuming that the functional 
forms of / i and /2 remain unaltered, to predict the additional reductions in 
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Table 5.4 Theoretical estimates for reductions in resonant roll motions due to vortex 
shedding 

No. Roll centre rid Wave freq. ω Wave amp. Ι θ . Ι 1 ö s 1 71 (%) θα, 72 (%) 
(rad/s) (cm) (deg) (deg) 

1 3.2 5.96 1.33 6.80 3.33 51.0 3.21 52.8 
2 3.2 5.96 1.65 7.17 3.91 45.4 3.29 54.0 
3 3.2 6.07 1.88 9.11 4.18 54.1 3.68 59.6 
4 3.2 5.91 1.90 8.85 4.47 49.5 3.64 58.8 

Notes: 

I θ, |: r o u n d e d kee l e d g e (1 :36 scale barge) roll m o t i o n a m p l i t u d e . 

I Θ, |: sharp keel e d g e (1 :36 scale barge) roll m o t i o n amp l i t u d e . 

θ^: r o u n d e d kee l e d g e (1:36 scale barge) + vortex s h e d d i n g adjus tment roll m o t i o n a m p l i t u d e 

roll motion due to vortex shedding once the influence of other non-linear 
phenomena is known. Final results from the vortex shedding analysis are 
presented later in this section. 

Skin friction induced forces on the surface of a ship shape can be readily 
calculated using the procedures suggested by Schlichting (1968) and Curie 
(1962). However, the resultant roll damping moments are very small in 
magnitude and cannot account for the discrepancy between calculated and 
measured roll angles observed in Figure 5.11. 

It is now worth while testing the two remaining possible roll damping 
mechanisms of higher order roll damping and vortex induced effects 
against the model test data presented in Figure 5.11. Close to the roll 
resonant frequency of 6 rad/s, the theoretical estimates overpredict the 
experimental values by a significant amount . This discrepancy is particu­
larly large for the motions of the barge fitted with sharp keel edges, the 
potential flow roll estimates being over twice the magnitude of the 
measured values. The resonant roll motions of the vessel fitted with 
rounded keel edges are higher than those for the vessel fitted with sharp 
edges, although they are still significantly lower than the theoretical 
estimates. It is reasonable to suppose that the tests with the rounded keel 
edge profile did not trigger any significant effects due to flow separation 
and consequent vortex shedding. The difference between the linear 
potential flow theory and round keel edge data must, therefore, be due to 
higher order potential wave loading. Fur thermore , the differences between 
the data for rounded and sharp keel edge profiles are likely to be entirely 
due to vortex shedding effects. 

Table 5.4 presents the further reductions in regular wave resonant roll 
motions of the rounded keel edged vessel if vorfices were present in the 
flow, using the vortex shedding theory described earlier. The results are 
compared with the resonant roU motions of the 1:36 scale sharp keel edge 
barge. The experimental values |ΘΓ | and |0s | indicate that the vessel fitted 
with sharp keel edges rolls as much as 54% less at resonance than that with 
rounded keel at tachments, both vessels responding to identical sea states. 
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5.5 Design considerations and operability 

Ultimately, the analysis methods outlined in the earlier sections of this 
chapter have to be applied to design floating vessels with sufficient 

The theoretical model of vortex shedding applied to the rounded keel edge 
wave exciting roll moment data as a starting point, but using a roll centre 
position oi rid = 32 (corresponding to that measured for the sharp keel 
vessel), predicts roll motions that are in good agreement with exper­
imentally measured values for the sharp keel edged barge. 

It is clear that calculation of roll motion reductions due to vortex 
shedding requires knowledge of the roll centre position of the vessel in the 
first place. However, the roll centre cannot be calculated unless the 
motions of the vessel, including the influence of vortices, are known. This 
problem is common in many areas of fluid mechanics where separate 
calculation of the far field inviscid flow and the near field viscous flow 
leaves the interaction between the two to be included in the analysis. From 
a strictly academic viewpoint, the interaction needs to be included by 
incorporafing the vortex shedding effects (and those due to the non-hnear 
loading mechanism described earlier) in an extended formulation of the 
diffraction problem. The motion response analysis that would follow from 
solution of the diffraction plus vortex shedding forces could then be used to 
derive motions without prior knowledge of the roll centre posifion. 

However, in order to allow the vortex shedding theory to be used in its 
present form, it needs to be appUed to the rounded keel edge wave exciting 
roll moment data as a starting point, together with a roll centre position of 
rid = 1.4, corresponding to that measured from the rounded keel edge 
tests. This roll centre position is expected to be close to that derived from 
applying the 'buoyancy restoring moment ' non-linearity described earlier 
so that the theoretically derived value could be used instead. 

The roll motion reductions obtained for this case are presented in Figure 
5.15. Theory predicts a reduction in resonant roll motion of 2 8 % due to the 
presence of vortices, whereas measured resonant roll motions for the sharp 
keel edged vessel are 3 3 % less than the rounded keel edge values. Away 
from resonance, the experimental data are in reasonable agreement with 
each other and with predicted values since vortex shedding and non-linear 
'buoyancy restoring moment ' effects are small due to the much decreased 
roll amplitudes here. 

It is clear from the above that resonant roll motions of ship shape hull 
forms are influenced by several physical mechanisms in addition to those 
modelled by linear potenfial flow theory. For a vessel with well rounded 
keel edges, skin friction effects appear to be neghgibly small but the roll 
motions for such a vessel are still substantially modified by non-hnear wave 
loading induced by large roll motions. For a vessel with right angled keel 
edges (equivalent to bilge keels), vortex shedding also contributes to a 
significant further reducfion in roll mofion at resonance. This physical 
mechanism clearly appears as an equivalent damping contribution with the 
expected large reducfion in peak roll angle and a much smaller reduction in 
the natural frequency as damping increases. 
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Figure 5.15. Theoretical estimates of reductions in roll due to vortex shedding applied to 
rounded keel HRS barge compared with s h a φ keel results (wave amplitude = 1.9 cm). 
Key: a - rounded keel-edge experimental data ( | Θ Γ | ) ; b - sharp keel-edge experimental 
data ( |6S|); C - rounded keel-edge experimental data and vortex shedding (θ^) 

Operability in ocean environments. Apar t from payload capability and low 
wave induced motions which can be deduced from the hydrostatic and 
hydrodynamic analysis methods described earher , the effectiveness of the 
vessel is also governed by sea worthiness in storms, mooring system 
integrity, structural strength and fatigue life considerations. These and 
other features that govern the successful use of a floating vessel are 
illustrated in this section by examining the performance of a monohull oil 
production vessel shown in Figure 5.2. The vessel is moored with lines 
attached to a turret just forward of midships so that the vessel weather 
vanes. The riser consists of a flexible bundle running from the turret to a 
submerged tension leg assembly which in turn connects to the manifold on 
the sea bed. 

The vessel houses all the necessary facilities to maintain oil production. 
It has sufficient oil storage capacity to maintain at least seven days of 
production at the minimum instaUed production rate of 40 000 bbls/day. 
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Oil export is achieved via a loading arm which extends from the barge to a 
shuttle tanker. 

The leading dimensions of the vessel are: 

Overall length 231 m 
Beam 36 m 
Depth (deck to keel) 21 m 
Operating draught range 5-16 m 
Displacement (in sea water) at the maximum 

operating draught of 16 m 124 037 t 

Limited analyses for vessels of lengths other than 231 m are also presented. 
The vessel's hull is similar to that of a large crude carrier with the oil 

storage tanks located aft of the turret mooring. The turret mooring is 
located 19.5 m forward of midships (42% of the vessel's length from the 
bow). 

However, these design features do have their complications. The use of 
a turret mooring does require a complex structure near the vessel's 
midships where maximum wave induced bending moments are likely. This 
may lead to structural problems in certain sea states. In addition, the effect 
of non-uniform loading of the vessel associated with oil storage may 
introduce high static bending moments which will result in a large and 
expensive structure. These features are examples of problems that will 
need to be investigated further. 

The distribution of weight within the unit is such that the monohull 
maitains a 4000 t variable deck pay load capacity, together with large fuel 
oil and fresh water capacities. This allows continuous operation with 
relatively infrequent supply intervals. 

The vessel's general tank arrangement is designed so that perimeter 
tanks are for ballast and are generally full for all vessel operating 
conditions. This feature of maintaining full ballast tanks on the perimeter 
of the vessel serves two purposes: 

1. It minimizes the effect of damage in the form of hull penetrat ion on the 
vessel's stability. 

2. The perimeter tanks protect the oil tanks and reduce the risk of 
pollution and fire as a consequence of damage to the hull. 

Ballast tanks arle also located at the stern and bow of the unit in order to 
facilitate trimming of the vessel. The overall process scheme for the unit is 
designed so that the oil, gas and water components are first separated using 
a single train process with three separation stages. Excess gas production 
may be flared if necessary. Produced water is also treated to suitable 
pollution control standards and then discharged. Alternatively, the pro­
duced water may be used for water reinjection. The additional amount of 
water required for water injection is obtained by lifting and treating sea 
water. The crude oil production is metered and then either exported 
immediately or stored in the lower hull oil tanks for later shipment. 

The process equipment is located on the main and lower decks, aft of the 
mooring turret (away from ship utilities and housing quarters) with process 
items that involve liquid-liquid interfaces such as separators, and oil and 
water treaters placed as close as possible to the vessel's centre of gravity 



130 Semisubmersible and ship forms 

with their longitudinal axes parallel to the axis of least significant rotational 
motion. The limiting motions for process equipment operation are taken 
as: 

Rotational motion W double amplitude 
Heave displacement 10 m double amplitude 
Lateral accelerations 0.2 g m/s^ 

The vessel is designed to operate with a range of draughts from 5 to 16 m 
and maintains adequate initial stability in the above range. 

The vessel is turret moored by a system of eight mooring lines. The 
layout is designed to withstand 100 year storm conditions for a range of 
water depths from 30 m to 200 m. The mooring lines and associated 
equipment have the following physical characteristics. 

An eight leg system of 89 mm (3.5 inch) diameter and 2.14 m (84.5 inch) 
gauge length oil rig quality ( O R Q ) chain having a breaking strength of 
6156 kN (1383 kips) and a weight per unit length in air of 1784 N/m 
(122.2 lb/ft) and 1551 N/m (106.2 lb/ft) in sea water. Each anchor is of the 
flipper delta high holding type and weighs approximately 15 t. 

The applicability of the monohull design is assessed at five depths 
corresponding to sites A to Ε as shown below. 

Site Location (North Sea) Water depth (LAT) 

A lat 53° 18 'N long 3" 4 5 Έ 35.0 m 
Β lat 56" 12 'N long 0*» 4 4 Έ 79.2 m 
C lat 57*̂  30 'N long 0" Ε 110.0 m 
D l a t 6 r 5 ' N l o n g r 2 4 T 147.0 m 
Ε lat 6r 20 'N long 0° Ε 170.0 m 

These sites correspond to a range of North Sea locations with latitudes of 
53"* Ν to 63° Ν and typify the environmental conditions associated with 
these geographical locations. Some environmental data is common to all 
sites reflecting general North Sea conditions. Oilfield data and production 
requirements are typical of many hydrocarbon accumulations currently 
being discovered. 

The principal aspects investigated for applicability of the monohull 
floating production system are the mooring system, operability, vessel 
loading and fatigue. 

The mooring pattern has been designed to incorporate a wide 'corridor ' 
for the flexible riser, which is deployed so that mooring lines will not 
interfere with it and the subsea buoy. The 'worst-case' weather situation is 
when the wind, current and wave forces apply colinearly in the direction 
that bisects the riser corridor. Under these circumstances, the vessel 
rotates on the turret until it is predominantly in head seas. The mooring 
forces when the vessel is subjected to 100 year storms for this 'worst-case' 
weather situation have been calculated using a quasi-static mooring 
analysis (Patel, 1989). The analysis calculates mooring line tensions and 
vessel restoring forces using the catenary equations. An initial line 
pretension angle to the horizontal of 50° is assumed. Horizontal vessel 
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motions due to waves are calculated by linear diffraction analysis and 
maximum vessel offset and line tension (quasi-static summation of static 
and dynamic effects) are estimated. 

The vessel's operability limits are calculated in terms of significant wave 
heights of long crested irregular waves of typical sea spectra. The maxi­
mum allowable process plant motion or acceleration values are converted 
to maximum allowable significant motion or accelerations. These are then 
used with the irregular wave short term response amplitude operator at the 
appropriate water depth to yield the maximum allowable significant wave 
height for vessel operations. 

To calculate monthly operabihty for the vessel, weather data have been 
collected from environmental study reports available for locations close to 
those defined earher. In particular, 'average year ' monthly significant wave 
height percentage exceedence figures are documented. Using the weather 
data together with the maximum operational wave height hmits allows the 
monthly percentage operability at each of the five locations to be deter­
mined. 

To calculate the overall strength of the vessel and stress range at critical 
longitudinal positions, it is necessary to estimate the vertical static and 
hydrodynamic forces acting along the vessel's length. This has been carried 
out by dividing the vessel into stations, each approximately 6 m long, from 
stern to bow. Hence the hydrostatic and hydrodynamic load, shear and 
bending moment values are found at each section and their distribution 
along the vessel is established. These calculations have been carried out for 
the fully laden vessel with a draught of 16 m only. 

To calculate structural integrity and fatigue life, weather data are 
required for each of the five locations. In particular the maximum design 
wave height is needed so that strength requirements may be satisfied, and 
the distribution and occurrence of wave heights and associated wave 
periods is required so that fatigue lives may be estimated. 

The vessel structural strength is estimated using a maximum permissible 
bending stress, σ^ , giving the minimum required section modulus, S, as 

sJJ^^^^F (5.99) 

where is the maximum static moment experienced by the vessel, is 
the maximum moment induced by design wave conditions, and F is an 
appropriate factor of safety. 

The fatigue life of the vessel is calculated for operations at each of the 
five locations in head, quartering and beam seas, at two positions on the 
vessel's longitudinal axis, one at the centre hne and the other at the 
mooring turret. The stress range, σ^, experienced by the vessel to waves of 
period, Γ, is calculated from the equation 

Μ^Τ)ΗΚ 
σ,{Τ) = - - (5.100) 

where 5 , is found from Equation (5.99) and is a stress concentration 
factor appropriate to the position on the vessel. The dynamic bending 
moment , M Q , to waves of unit amplitude and period, Γ , is found once the 
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Fatigue lives are presented in Table 5.5(a) for the vessel responding in 
head, quartering and beam seas at each of the five locations. Values have 
been non-dimensionalized so that results for location Ε (the deepest and 
most northerly) are unity, emphasizing the relative magnitudes at different 
locations. Care should be taken when interpreting the results in Table 
5.5(a). In particular, relative fatigue lives should be compared for different 
locations with the vessel at one heading only - quartering seas, for 
example. Table 5.5(a) indicates that fatigue life increases as water depth 
decreases for all three vessel orientations to the waves. The most signifi­
cant differences occur with the vessel head-on to the wave direction, the 
fatigue lives being 15 times higher at the shallow water location. 

Fatigue life data non-dimensionalized by the head sea values are also 
presented in Table 5.5(b). The results for locations D and Ε indicate that 
the fatigue life of the vessel is approximately five times higher in quartering 

annual occurrence of wave period, Γ, and height, H, for each North Sea 
location is established. Once the stress range is known a suitable S-N curve 
may be used to estimate the number of cycles of loading, Nc, required to 
fatigue the vessel at that stress range. The cumulative damage caused by 
cyclic loading from waves of various periods can be calculated from a 
simplified form of Miners ' rule given by 

Y1{NJN,) = 1 (5.101) 

where Y is the fatigue life in years, is the number of cycles encountered 
and summation is performed for all stress ranges experienced annually. 

It is noted that the method used to estimate fatigue life is based on highly 
simplified analysis methods. In a detailed design scenario extensive 
calculations of a more rigorous nature must be performed. However , the 
method outlined above gives representative trends for the relative fatigue 
life of the monohull at different locations. 

Figure 5.16 illustrates monthly percentage operability plotted against 
water depth. As expected, the percentage operability reduces significantly 
for deep water North Sea latitudes. These operability figures when 
translated to loss of revenue due to down-time indicate that an accurate 
assessment of the monthly operability is critical to estimate the feasibility 
of a monohuU, particularly in deeper water. 

ΙΟΟη 

^ 9 5 

9 0 
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Table 5.5 Fatigue life estimates 

(a) Non-dimensionalized by location Ε values 

Vessel location Depth (m) Position 
Head 

Fatigue life (non-dim) 
Quar. Beam 

A 
53*» 18'N, 3*» 4 5 Έ 

35.0 Midships 
Turret 

15.8 
14.8 

5.2 
4.6 

6.2 
5.9 

Β 
56*» 12'N, 0° 4 4 Έ 

79.0 Midships 
Turret 

2.8 
2.8 

1.8 
1.7 

2.0 
1.9 

C 
57° 30'N, Ο-̂ ΟΟΈ 

110.0 Midships 
Turret 

2.6 
2.5 

1.7 
1.7 

1.8 
1.9 

D 
6Γ 05'N, 2 4 Έ 

147.0 Midships 
Turret 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

Ε 
6 Γ 20'N, 0° 0 0 Έ 

170.0 Midships 
Turret 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

(b) Non-dimensionalized by head sea values 

Vessel location Depth (m) Position 
Head 

Fatigue life (non-dim) 
Quar. Beam 

A 
53" 18'N, 3" 4 5 Έ 

35.0 Midships 
Turret 

1.0 
1.0 

1.6 
1.6 

0.7 
0.4 

Β 
56*' 12'N, 0° 4 4 Έ 

79.0 Midships 
Turret 

1.0 
1.0 

3.2 
3.3 

1.4 
0.7 

C 
57° 30'N, 0° 0 0 Έ 

110.0 Midships 
Turret 

1.0 
1.0 

3.3 
3.4 

1.4 
0.8 

D 
61° 05'N, Γ 2 4 Έ 

147.0 Midships 
Turret 

1.0 
1.0 

4.9 
5.2 

2.0 
1.1 

Ε 
61° 20'N, 0° 0 0 Έ 

170.0 Midships 
Turret 

1.0 
1.0 

4.9 
5.2 

2.0 
1.1 

seas than head seas. As fatigue hves could be a problem at these deep 
water locations it would be advantageous to operate a vessel of 213 m 
length in quartering seas rather than head seas if fatigue hfe was of major 
concern. At the shallow water locations the structural integrity of the 
vessel is such that fatigue lives are high and the effect of wave directionality 
is not significant. 
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5.6 Concluding remarks 

The methods of analysis given in this chapter and the corresponding effects 
on vessel structural strength and fatigue life are now sufficiently well 
proven in comparison with model tests and full scale data to form a reliable 
basis for engineering design. Both Morison based and diffraction analyses 
of floating vessels have been researched in depth for first order effects, and 
attention is now increasingly being focused on second order aspects of 
vessel interactions with waves - these latter effects are not considered 
here . One additional feature of first order vessel response that requires 
further work is the motion and structural response of floating vessels to 
directional seas. Although the theoretical basis of such methods is well 
understood, if linearity is assumed for first order calculations, not enough 
work has been done on producing analysis methods which can be used for 
design. Yet comparison of full scale data with predictions from the above 
theories indicates that wave directionality plays an important role in 
obtaining good agreement between reality and theory. 

These resuhs indicate that fatigue life is a crticial parameter in the design 
of a monohull Floating Production System, particularly at the deeper water 
locations of the Nort^ Sea. Although the weather vaning ability of the 
vessel leads to reduced motions and environmental loads, operating the 
vessel in head seas considerably reduces the fatigue life in deep water 
locations. 

A short study was also carried out to indicate the strong influence on 
fatigue life of vessel length, by estimating the fatigue lives at the centre 
section of five monohull floating production systems. The vessels are of 
equal breadth and depth but vary in length from 120 m to 380 m, and 
corresponding displacements of 58 500 to 212 000 t. 

Figure 5.17 shows the variation of fatigue life with water depth in head 
seas. The data presented have been non-dimensionalized with respect to 
the vessel of 231 m length. This vessel has the lowest fatigue life at all 
water depths because its length is equal to that of frequently occurring 
waves causing excessive hogging/sagging. Note that vessel 1 has a fatigue 
hfe factor greater than 12 and hence does not appear in Figure 5.17. 
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C h a p t e r 6 

Tensioned buoyant platforms 

6.1 Introduction 

The difficukies of mooring floating platforms by catenary lines, described 
in the preceding chapter, and the operational need for the virtual elimina­
tion of platform vertical motions, has led to the development of platforms 
moored to the sea bed by vertical tethers which are maintained taut and at 
high tension by excess buoyancy in the surface platform. This class of 
floating structures is referred to variously as tension buoyant platforms 
(TBPs), tension leg platforms (TLPs) , vertically moored platforms and 
tethered production platforms. 

The vertical mooring tethers of a TBP introduce a design feature which 
makes the surface platform highly compliant to horizontal surge and sway 
wave forces and yaw moments . This ensures that the TBP's natural periods 
in surge, sway and yaw are well above the range of predominant wave 
periods. At the same time, the vertical tethers introduce high stiffnesses in 
heave, roll and pitch which serves to virtually eliminate these modes of 
motion and also shorten natural periods in these degrees of freedom to be 
below the periods of predominant wave action. 

These characteristic features of the motion of a T B P in waves leads to a 
number of merits and drawbacks for their use as floating production 
platforms. The suppression of vertical motion by the tether mooring 
system provides a stable operating base and simplifies accessibihty to sea 
bed well heads and equipment . The tethered nature of the floating 
platform also makes its cost less sensitive to water depth, enables early oil 
production and reduces field abandonment costs. The T B P design also 
allows for fabrication and outfitting to be completed in a construction yard 
or inshore location prior to installation. Set against these advantages are 
the drawbacks of the T B P which requires foundations capable of 
withstanding large vertically upward forces, coupled with the fact that high 
tether stresses require careful design and maintenance of these compo­
nents. A TBP is also more sensitive to mass distribution changes and 
introduces significant operational limits on total payload. 

It is worth providing a brief historical overview of TBP development 
here. Following the pioneering work of Paulling and Hor ton (1970), the 
first sea going prototype was installed offshore Santa Catalina Island, 
Cahfornia in 1975 by Deep Oil Technology Inc. (Oil and Gas Journal, 
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1975), The platform was installed in 61 m (200 ft) of water and is shown in 
Figure 1.7. Tests in a variety of sea states were carried out on this platform 
in 1975 and 1978. The platform structure and details of these tests are 
described in a later part of this section. 

Two similar moored platform designs were also developed and small 
scale test structures were installed in offshore locations. Macdonald (1974) 
describes the installation of a 120 t fully restrained (in all six degrees of 
freedom), moored structure off the west coast of Scotland between 1963 
and 1965. A design similar to that of a TBP was installed in the 1960s by 
Mitsubishi Heavy Industries of Japan. Since then a large number of 
engineering and analytical investigations have been carried out on T B P 
designs. Perret and Webb (1980), Addison and Steinsvik (1976), Roven 
and Steinsvik (1977), Yashima (1976), Albrecht et ai (1978), Capanoglu 
(1979), Lonergen (1979, 1980), Kitami et al. (1982), and Tassini and 
Panuzzolo (1981) describe a number of engineering studies. 

These engineering studies culminated in the decision by Conoco in 1979 
to build the first production TBP for drilling and production of hydrocar­
bons - the site being the North Sea Block 211/27 known as Hut ton. This is 
a location with a water depth of 147 m where a conventional fixed structure 
would have been adequate . However, it was decided that this would be an 
opportunity to gain the necessary experience for such a radically different 
design of platform (TBP) before attempting its use in deeper waters where 
its application was envisaged. This T B P is known as the Conoco Hut ton 
Platform, Figure 6.1 and Table 6.1 - see Mercier (1982). It produced its 
first oil in August 1984. 

Moving on from the historical overview given above, many research 
workers have contributed to an understanding of the analysis methods 
suitable for predicting the behaviour of TBPs. Some of the more notable 
contributions are reviewed below. 

Paulling and Hor ton (1970) carried out pioneering work on TBPs. They 
compared a theoretical analysis with experiments at a notional scale of 
l/50th on a model platform of three leg configuration. The variation of 
measured tension amplitude with wave height exhibited non-linear behav­
iour, although surge motions were shown to behave in a nearly linear 
fashion. Comparison of model test data with the theoretical solution using 
quadratic drag coefficients of 1.0 and 1.5 gave a better fit in surge for the 
higher coefficient. Better agreement with theory was obtained for the 
tension in the leg at the apex than tensions in the symmetric pair of legs in 
the base which were underestimated. 

The theory utilized linear superposition by considering the structure as 
an assembly of simple bodies whose individual hydrodynamic properties 
were known. It was assumed that the hydrodynamic force on the 
assembled structure was equal to the sum of the forces on the component 
bodies. The platform dynamic behaviour was assumed to be linear and 
small amplitude linear wave theory was employed. The quadratic drag 
force was replaced by an 'equivalent linear' drag force defined as the linear 
drag force which dissipates the same energy per cycle as the quadratic 
force, given by 

C D L = " T ^ C D Q (6.1) 
3TT 



Introduction 139 

Figure 6.1. Tension leg platform for Hutton Field 



140 Tensioned buoyant platforms 

Dimensions 
Length - between column centres 78.0 m 

- overall 95.7 m 

Breadth - between column centres 74.0 m 
- o v e r a l l 9 1 . 7 m 

Depth - keel to weather deck 69.0 m 
- keel to main deck 57.7 m 
- deck 12.5 m 

Freeboard - to underside of deck at MWL 23.3 m 

Columns - 4 corners 17.7 m 
- 2 centre 14.5 m 

Pontoons - height 10.8 m 
- width 8.0 m 

Operating conditions 
Draught at MWL 32.2 m 
Displacement at MWL 63 300 t 
Tension leg pretension at MWL 15 000 t 

where C ^ L and C D Q are the hnear and quadratic drag coefficients 
respectively; and UQ is the amplitude of the periodic fluid velocity. 

The. tether legs were considered as simple elastic lines with natural 
frequencies far removed from wave and structural natural periods. Paulling 
and Horton considered that the assumption of constant drag and added 
mass coefficients throughout the structures for all wave frequencies yielded 
results which were sufficiently accurate for most design purposes. 
However, a systematic prediction error, which appeared to be a funcfion of 
wave period, was evident. This was attributed to the frequency depen­
dence of drag and added mass coefficients. The success of the simple 
theoretical model was thought to be due to the comparatively open 
platform structure which led to small interference effects between 
members . 

Further to the work by Paulling and Hor ton (1970), 17 oil companies 
joined Deep Oil Technology in sponsoring the construction and evaluation 
of the prototype test platform. Deep Oil X-1, described earlier. Hor ton 
(1975) describes this project. The test platform, like the scale models used 
above, was triangular in shape, 40 m on each side and 20 m in height from 
deck to lower horizontal pontoon. It was considered as a notional one-third 
scale drilling and production platform or a two-thirds scale production and 
workover platform. The test site was in 65 m of water 300 m off the 
Southern Californian coast. There was one tether leg at each corner of the 
platform. Each leg was made up of 73 mm 6 x 25 (independent wire rope 
core) steel with 3 mm thick polyethylene coating for corrosion protection. 
Fifty-one channels of information were monitored including: wave, wind 
and current excitation, mooring loads, structural member stresses, plat-

Table 6.1 Hutton TBP - principal particulars 
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form motion, riser pipe stresses and accelerations. These were then 
compared with the results from wave tank tests by Hor ton (1975). 

Yashima (1976) compared a theoretical model , which was essentially the 
same as that of Paulling and Hor ton , with model tests at l/50th scale. This 
model was a four column platform with four tethers and no submerged 
horizontal members . Three types of tether were used, these being 1 mm 
wire cable, 10 mm polyurethane cable, and 7 mm polyurethane cable - the 
latter was shown to have non-linear elastic behaviour. Yashima investi­
gated the response of the platform in surge with the tethers statically 
inclined to the vertical. In addition to wave dynamic effects, he also 
considered steady state effects and included the couphng of these through 
the tethers in the analysis. 

Reasonable agreement between theory and experiment was obtained, 
although this was based on rather sparse experimental data. Yashima 
concluded that less elasticity in the tethers led to greater tension variation. 
In shallow water the vertical motions would be negligible, but tension 
variations were large, whereas in deep water the vertical motions would no 
longer be negligible but the tension variations would be small. For 
Yashima's model in deep water, the natural periods in surge, sway and yaw 
would be greater than predominant wave periods so that the response due 
to waves would have little dependence on the elasticity of the tethers but 
more on the tether length. However, horizontal displacement by steady 
state forces would be dependent on the elasticities. The damping was 
considered important around resonance for pitch and heave, as was viscous 
damping for this structure. Initial tether tensions had little influence on the 
wave induced motion of the platform. 

Natvig and Pendered (1977) introduced a method for solving the 
non-linear equation of motion based on a Newton-Raphson technique 
which was valid for this weakly non-linear system. This was applied to the 
Aker TPP (Tethered Production Platform). They compared one hnearized 
and two non-linear methods (the Newton-Raphson technique and the time 
integration Newmark method) . Four sources of non-linearity were 
included in the wave force calculations. Wave forces were calculated at the 
displaced and rotated structure position and not the mean position; the 
drag force was calculated using the true relative velocity between the fluid 
and structure (including current velocity) before squaring; all fluid forces 
were calculated up to the water surface and not to the still water level; and 
non-linear mooring forces were included. Natvig and Pendered concluded 
that in general linearized methods give good results, especially when 
proper account is taken of the mean drift offset. The platform velocity was 
found to be the most accurate of the response parameters investigated. The 
linearized method does not give good results for heave motion with taut 
moorings but in this case the displacements are small. Although the 
Newton-Raphson approach compared well with the Newmark method, 
which was intended as a standard for comparison, it could not be used at 
resonance in the form presented. 

Rainey (1977) advanced a theory to predict Mathieu type instability in 
the behaviour of tethered buoyant platforms. The possible occurrence of 
subharmonic oscillations in cross-seas was also investigated. Both of these 
were considered as very important , and could be masked by scale effects in 
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model tests. He showed that tethered platforms are prone to dynamic 
instabihties when subject to single wave-trains at twice the surge or sway 
natural frequency, and to subharmonic osciUations when subject to ortho­
gonal pairs of wave-trains differing by the surge or sway natural frequency. 
In each case, the phenomenon is governed by damping for natural 
oscihations, the motion being particularly serious if the damping ratio is 
below 0 .1 . The former effect, being an instability, gives oscillations which 
will grow until fluid damping reaches a sufficiently high value; the latter 
effect is a resonance, so again oscillation amplitude is governed by 
damping. Since fluid damping is always higher in experiments in model test 
tanks than at full scale, it was considered likely that these effects would be 
concealed. 

Albrecht et al. (1978) formulated mathematical models to demonstrate 
the applicabihty of numerical techniques for the dynamic behaviour of 
TBPs with particular attention to the non-linearities owing to the tension 
rope network. They considered non-vertical networks in which the stiffen­
ing characteristics led to non-hnear restoring forces which result in 
non-linear static and dynamic behaviour of the platform. 

Beynet et al. (1978) described the surge response of the Amoco V M P 
(Vertically Moored Platform) which is unusual in that the mooring tethers 
are also the risers, five in each of the four corners. Comparisons between 
in-house computer programs and model tests for the platform at l/60th 
scale were presented as well as separate tests at l/20th scale for the riser 
which was fixed at its bot tom and oscillated at the top in sfill water. 
Super harmonics were evident for the riser response in still water. 

Denise and Heaf (1979) presented two mathematical models for the 
dynamic analysis of TBPs. One was based on hnear diffraction-radiation 
theory using a finite element technique, while the other model employed a 
non-hnear simulation by direct integration in the fime domain. Compari­
son between these two analyses showed that both models gave consistent 
results. 

Non-hnearifies outlined in the second model were analysed in detail and 
found to be mostly due to the geometry of the mooring system. Other 
causes such as variable buoyancy in the splash zone and drag were also 
investigated but found to be of lesser importance. The influence of these 
non-linearities on the motion response was found to be quite significant, 
especially for heave, pitch and roll mofions. The mooring hne tensions 
were also influenced but to a lesser extent with variations of the order of 
20% from hnear analysis results. 

Lonergan (1980) performed 19 sets of wave tank tests on a series of 
TBPs (the Seafox series) including simple structures and detailed models of 
production platforms over a period from 1975 to 1979. The model scales 
ranged from 1:250 to 1:150. In certain cases, resonance effects with the 
tethers were observed. These appeared as high frequency vibrations which 
were close to the natural frequency in heave and pitch of the platforms. 
The magnitude of these high frequency vibrations increased with decreas­
ing anchorage stiffness and also with waves of larger period and height. 
Lonergan concluded that eddy shedding as a result of wave action on the 
hull members was causing resonance with the structures and their anchor­
age systems in heave and pitch. The effect of simple resonance on anchor 
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6.2 Platform dynamics 

The analysis of a TBP is carried out along the same lines as that of the free 
floating platforms described in Chapter 5. This analysis method is sum­
marized here for completeness. 

A typical TBP structural arrangement with reference axes is shown in 
Figure 6.2. The surface platform equations of rigid body motions in six 
degrees of freedom can be written as 

( M + M A ) X + By I X I X + BpX + (K + Kn,) X = F(t) (6.2) 

where X, X and X are the six component column vectors of displacement, 
velocity and acceleration in surge, sway, heave, roll, pitch and yaw 
respectively; Μ and M A are the (6 x 6) matrices of physical mass and 
added mass respectively; By is the (6 x 6) matrix of drag induced viscous 
damping; Bp is the (6 x 6) matrix of radiation damping; and Κ and are 
the (6 X 6) hydrostatic and tether stiffness matrices. The potential damp­
ing, Bp, is generally small for TBPs with slender members and is not 
included in the analysis presented here . F(i) denotes the 6 x 1 column 
vector of wave forces on the surface platform. The coefficient matrices of 
Equation (6.2) can be evaluated from the given structural data as described 
below. 

The reference axes chosen are principal axes so the physical mass matrix, 
M , is diagonal with the structure total mass in the first three diagonal 
positions and the structure moments of inertia for the remaining three 
diagonal terms. The structure is assumed to be made up of a collection of 
cylindrical and rectangular elements. The contributions of each element to 
the added mass, damping and hydrostatic stiffness matrices are computed 
and then summed for all the elements in the structure. 

The general added mass matrix of a circular cylinder with arbitrary end 
coordinates can be computed by assuming that only the components of 
acceleration normal to the cylinder axis are significant. Thus, given the 
cyhnder end co-ordinates, diameter and appropriate added mass coeffi­
cient, a generalized symmetric added mass matrix can be computed. The 
calculations can be readily adapted to rectangular elements and discrete 
non-elongated members . 

cable forces for models having natural periods in heave or pitch close to 
those of shorter wave periods was also observed. For some tests in small 
waves with a period of twice that of the structure in heave or pitch, the 
cables completely slackened off resulting in snatching. 

This chapter takes the analysis of tensioned buoyant platforms, and 
describes basic hydrodynamic response prediction methods for TBPs and 
for the platform tethers. These are then combined to investigate the 
coupled response of the platform and tethers. Model tests, whether at 
model or full scale, have always been an invaluable tool in the develop­
ment of TBP designs. Section 6.5 describes a typical series of such tests and 
comparisons with theory. Further consideration of the effects of Mathieu 
instabihty on TBP performance are described in Section 6.6. 
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Figure 6.2. TBP reference system. Key: a - wave direction; b - origin at still water level; 
c - tensioned members; d - seabed anchorage 

The viscous damping matrix, By, for the structure is evaluated in a 
similar way to M A as a sum of the matrices for each individual structural 
element. Only drag forces normal to the cyhnder axis are considered 
significant, but the non-linear velocity squared proportionality gives an 
asymmetric damping matrix requiring that all 36 elements have to be 
evaluated separately. These calculations can also be adapted to apply for 
rectangular cyhnders and non-elongated members . 

The contribution of each surface piercing member of the platform to the 
hydrostatic stiffness will arise only from buoyancy forces in the heave, roll 
and pitch degrees of freedom. The contribution of each surface piercing 
member to the hydrostatic stiffness matrix depends only on the magnitude 
and position of its water plane area. Further details on the procedures for 
calculating the above coefficient matrices are given in Chapter 5. 
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The osciUatory wave force column vector on the right hand side of 
Equation (6.2) is obtained by summing the effects of the wave particle 
velocities, accelerations and wave pressures (or Froude-Krylov forces) on 
all the structural members of the surface platform. The wave kinematics 
are obtained from linear wave theory. 

The method for deriving wave forces on the surface platform is also 
identical to that for semisubmersible space frame structures described in 
Section 5.2. 

The symmetric tether stiffness coefficient matrix, K ^ , of Equat ion (6.2) 
has still to be derived. In the absence of tether dynamics, an idealized 
tether stiffness model is usually employed for the platform dynamic 
analysis. This idealized stiffness is derived by assuming that each mooring 
cable is weightless and perfectly elastic with a known tension and elastic 
stiffness. The cable, being weightless, is taken to he along a straight hne 
joining the two end co-ordinates. The resultant stiffness matrix is evaluated 
assuming that the surface platform moves through small displacements 
relative to the cable lengths involved^ 

Each cable has a constant tension, Γ, an elastic stiffness, λ, and is strung 
between co-ordinates (jci, y χ, ζχ) on the seabed and (jC2, yi, z^) at the 
surface platform; both relative to the platform's principal axes system, 
Oxyz, as shown in Figures 6.2 and 6.3. 

The direction cosines are defined as follows: 

xi - xi_ ^ yi - y\ Z2 - ζχ 

cosa = ; cosß = ; COS'y = (6.3) 
L L L 

where L is the cable length given by 

L = V[{X2 - xrf + (y2- yiY + {Z2 - z,f\ 
To evaluate the cable stiffness matrix, consider that the surface platform 
translates in the positive χ direction through a small distance, 8JC. Let 
α = JC2 - JCi, h = y i - yx, and c = z i - Ζχ\ then to first order the new 
cable length becomes 

L + 8L = L + - (6.4) 

Then the additional tension δ Γ in the cable due to extension δL is 

_ \(X2 — X\) 
δ Γ = \hL = — - bx (6.5) 

L 

The resulting restoring force component along the χ axis can be written as 
bTx = ( Γ -h δΓ) costtj - T e o s a , where Τ is the cable tension and a i is 
given by 

Χ 2 + δχ - Χχ 
cosai = — (6.6) 



146 Tensioned buoyant platforms 

Seabed U C^I'^I'^D 

////////////////////////// 
Figure 6.3. Notation for idealized tether stiffness model 

Therefore 

1 + -

δ Γ ι = ( Γ + δ Τ ) 
Χ ι - χ χ 

hx · 

Χ2 - Χχ Τ{Χ2 - Χχ) 

1 + 
8L 
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= T e o s a 
8L δ Γ 

JC2 - x\ L τ 
to first order. Since hL = cosa hx 

(6.7) 

hT^ = — cosa 
Lbx 

X2 - XL 
- cosa δΛ; + 

λ{Χ2 - XL) 
bx 

7 · 7 
λ cos^a + — sm'^a 

In the hmit as ÖA: 0 

δχ 

δΓ, a r . 
= /cn = λ. cos^a + — sin^a 

(6.8) 

(6.9) 
bx dx L 

which is the first term in the (6 x 6) stiffness matrix K ^ . The remaining 
terms corresponding to the restoring forces due to translations can be 
derived in a similar fashion in terms of /c/y where /, / are row and column 
numbers respectively. These are given by: 

k2i = (λ + T/L) cosa cosß = ku 

= (λ + T/L) cosa COS7 = /ci3 

k22 = λ cos^ß + (T/L) sin^ß 

^32 = (λ + T/L) cosß COS7 = k23 

Ä:33 = λ cos^7 -h (T/L) sin^7 

The remaining 27 terms corresponding to restoring moments due to 
translations, restoring forces due to rotations and restoring moments due 
to rotations can all be expressed in terms of the first nine terms. These are 
given below for one-half of the matrix below and including the leading 
diagonal: 

(6.10) 

^41 — K2\22 

^51 = KNZ2 - H\X2 

^61 = k2\X2 - H\Y2 

*42 = KI2Y2 - K22Z2 

ks2 = K2IZ2 - ^2^2 

= K22X2 - HIY2 

= H^YI - ^32^2 

A:53 = H\Z2 - ^33^2 

= H\Y2 

^44 = H^YL - 2^32>'222 + ^22^ 

^54 = H\Y222 - ^21^2 - ^33>'2·Ϊ2 

^64 = KI2X2Y2 - fc22-^2^2 - ^31^2 

(6.11) 
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^55 = ^11^2 - 2 :̂31X222 + k22Á 
= hx^izi - h i n - knyizi + ^3i-^zy2 

^66 = ^22^2 - ^hlXiyi + ^11^2 
The cable stiffness matrix is computed for each cable in a mooring system 
and summed to yield a total mooring stiffness matrix, Kn, . 

The platform response to the apphed oscillating wave force vector is 
then computed by using an iterative technique to account for the non­
linear drag damping force. A first approximation diagonal linear damping 
coefficient matrix is obtained by ignoring all non-diagonal terms in the 
total mass and stiffness matrices and assuming linear damping to be 10% of 
critical. The equations of motion are then solved with the first approxima­
tion to the damping value. The column vector of these computed velocities 
is then substituted into the modulus sign in the damping term such that the 
equation: 

( M + M A ) X + Bv ^ I X ,as, approximation | Χ + (K + K „ ) Χ = F( í ) 

3-^ (6.12) 

is being solved to obtain a better approximation for the column vector X . 
The equivalent damping matrix B^^: 

Beq = B v ^ | X | (6.13) 
OTT 

is a standard result obtained by assuming equal work done at resonance by 
the non-linear and the equivalent hnear damping terms (see Section 5.2). 

The iteration is continued until a specified tolerance (— 1%) between 
successive approximations is achieved. This process converges quickly and 
can be modified to include the dynamic model for the tethers, in which 
can become complex (see Sections 6.3 and 6.4). The convergence is aided 
by the fact that at wave frequencies the platform motion is inertia 
dominated, and tether forces, whatever their precise values, remain smaü 
compared with the D'Alember t forces required to move the platform. For 
example, in 120 m of water, typical tether and inertia forces for unit 
amplitude oscillation of period 10 s are typically 1000 kN and 15 000 kN 
respectively. Thus the effect of the tethers on the platform is small whereas 
the platform's effect on the tethers is important. 

Figure 6.15 shows a typical TBP surge response for both quasi-static and 
dynamic tether models at a water depth of 1500 m with 16 tethers, each of 
mass per unit length 667 kg/m. A conventional surface platform with four 
vertical columns and four horizontal interconnecting pontoons connected 
by bracing members , and four tethers per corner is used for the computa­
tions. Despite the large difference in the tether restoring forces between 
quasi-static and dynamic tether models, the corresponding difference in 
the TBP surge response is much smaller than the variability introduced by 
other uncertainties such as the values of drag and inertia coefficients. 

Vertical TBP motion (heave, roll and pitch) is restrained primarily by 
the longitudinal stiffness of the tethers leading to high natural frequencies 
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6.3 Tether dynamics 

It is clear from the above section that the tethered buoyant platform (TBP) 
is one example of a compliant structure which is heavily dependent on its 
tensioned vertical tethers for a modification of the platform dynamic 
characteristics to suit the prevailing wave environment. The platform is 
very stiff in vertical plane oscillations (heave, roll and pitch) since it is 
restrained by the longitudinal stiffness of the tethers. Typically, these 
modes have oscillation periods ranging from 0.5 to 4 s which are outside 
the band of frequencies where wave energy is significant. On the other 
hand, horizontal plane motions (surge, sway and yaw) are very compliant 
with natural periods from 40 s upwards which are again well away from 
wave frequencies. 

in these modes for low water depth. However, longitudinal tether stiffness 
is inversely proportional to depth and so in deep water, heave, roll and 
pitch natural frequencies will enter the high frequency range of wave 
excitation leading to the possibility of excessive motions in these modes. 
This feature could, of course, be counteracted by increasing total tether 
cross-sectional area while retaining the same total tension and hence the 
same excess buoyancy requirement in the structure. However , the heavier 
tethers may then be subject to higher dynamic magnification by platform 
excitation in the lateral motions. 

The equation of motion (6.2) is more difficult to solve for random wave 
excitation but a number of techniques for stochastic linearization described 
by De Spanos and I wan (1978) may be used to linearize the drag force and 
compute excursion amphtude spectra in an iterative manner . 

It is clear that the most important parameter in the solution for a given 
platform/tether system is the water depth. For horizontal platform mo­
tions, tether spring rates decrease in inverse proportion to the water depth, 
whereas the corresponding drag and inertia forces on the tether increase 
with water depth. In general terms, the tether 's first natural frequency for 
lateral motions is approximately given by 

where Τ is the mean tether tension; is the tether total mass per unit 
length; and L is the tether length or the approximate TBP deployment 
water depth. The resonant period for horizontal platform motions 
increases with the square root of water depth from typically 40 s for 120 m 
tethers to around 80 s for 500 m tethers. Removing the natural period 
further from wave periods is desirable for avoiding the possibility of 
Mathieu excitation at half the wave frequency but the lower tether stiffness 
does increase the drift displacements caused by wind, current and second 
order wave forces. This will not necessarily be a problem but little is known 
of the spectral content of waves at periods greater than 20 s and some 
possibihty of significant second order wave excitation would remain. 
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Despite the separation of excitation and natural periods, the possibility 
of interactions between the dynamics of the mooring system and the 
surface platform can still exist. It is worth noting that in deep water, the 
tether inertia can be of the order of 6% of that of the surface platform. 
Fur thermore, the natural periods of the taut long tethers are of the order of 
5-10 s, well inside the range of wave excitation periods. U p to the present, 
the analysis of taut mooring systems associated with compliant platforms 
has tended to be of a quasi-static nature with the tethers idealized as 
weightless ideal spring elements. It is likely that a more realistic mathema­
tical model of mooring dynamics will reveal a modification of the surface 
platform response and enable a more accurate assessment of the mooring 
system internal forces. The latter feature is of great interest in evaluating 
the fatigue of moorings intended for oil production platforms requiring 
long service lives. 

This section presents three analyses methods for taut vertical mooring 
systems in order to assess their applicabihty to compliant offshore plat­
forms. The derivation of the analyses is given together with a description of 
their comparative performance. The numerical effects of various assump­
tions are presented and discussed. These possible assumptions are itemized 
below: 

1. The tension in the tether is assumed to be constant along its length 
although, in fact, self weight may change this to some extent ( ± 1 0 % ) 
in deep water. 

2. The tethers are assumed to be pin-jointed to the sea bed and surface 
structure. 

3. The tether dynamics are unaffected by bending forces. This is where 
TBP tethers differ from the more lightly tensioned marine risers. 

4. The tether attachment points to the platform are well below the water 
line (typically 20-30 m) . The tether elements are therefore largely 
unaffected by wave forces and excited only by the motion of the 
platform. 

5. Fluid forces on tether elements can be modeUed by a Morison 
approach with 'added mass' and non-linear drag forces corresponding 
to two-dimensional flow around the cylindrical tether cross-section. 

6. The tethers move in two dimensions only. 

Some of the above assumptions have been used elsewhere (see Wilson and 
Garbaccio, 1967; Alexander, 1971; and Sluijs and Blok, 1977) and are 
clearly sensible, whereas others, as pointed out by Folger Whicker (1958); 
Jain (1980); and Hong (1974) do appear doubtful. 

One of the aims of this analysis is to test the validity of assumptions 1 and 
5. On a more rigorous level, assumptions 5 and 6 are questionable 
approximations but they are necessary to obtain an analytical grip on the 
problem. 

Detailed technical studies of catenary mooring systems, as referenced 
above, have been primarily concerned with the mooring restoring forces 
exerted by the catenaries on the surface platform as well as with the 
mooring stresses induced by dynamic excitation due to currents and waves. 
Less attention has been paid to the dynamics of taut tether systems. Hong 
(1974) and Connell (1974) apply an analytic 'transmission hne ' solution 
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6.3.1 Tether linear ^transmission line' model 

Consider an element of a tether of mass m i per unit length moving in two 
dimensions with lateral displacement, at a vertical coordinate, z, as is 
shown in Figure 6.4. 

By equating all the horizontal force components on the tether element 
and neglecting bending and second order forces, we obtain 

mi8z y = Γ 
> • 

2 _dz_ 1. 
- δ 2 w(y, y, r) (6.15) 

Figure 6.4. Tether element and reference axis system 

similar to that given in the next section for the dynamics of hghtly 
tensioned taut rope tethers for small oceanographic surface buoys. 
Richardson and Pinto (1979) have considered the problem of taut TBP 
cable dynamics but their calculations are restricted to simple analytic 
models for heavy catenaries with the fluid damping forces neglected in the 
computations. There is, therefore, a requirement for a taut vertical tether 
dynamic model which accounts for both the inertia and non-linear fluid 
damping forces encountered when operating in the ocean environment. 
Three such models are described here. 
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where w{y, y, r) denotes the force per unit length exerted on the tether due 
to the surrounding fluid flow; r is the radius of the circular tether 
cross-section; and y/y are the tether element lateral velocity and accelera­
tion respectively. In the hmit, as δζ 0, Equation (6.15) becomes 

d'y 
mi'y + w(y, y, r) = Τ—γ (6.16) 

where the tension Τ is assumed to be constant along the tether length. 
Following a conventional hydrodynamics approach, the generalized fluid 
force w{y, r) is represented as the sum of an acceleration dependent 
added mass force and a velocity dependent drag force. Thus: 

^{y^ y^r) = m2y ^ \oy (6.17) 

where rui is a tether added mass per unit length; and λο is a linear drag 
force constant. By renaming m = ηΐχ + ηΐ2, the following equation: 

d^y 
my + \oy = T-^ (6.18) 

is obtained. It can be argued that, strictly, the linear drag force constant is 
incorrect since the drag force can be better represented by a square law for 
cross-sectional tether dimensions which are small compared with likely 
relative lateral motions between the tether and fluid. For this case. 
Equation (6.17) can be replaced by: 

w(y/y,r) = m2y \'^\y\y (6.19) 

The quadratic drag force model will be used later. It is worth noting here 
that, in practice, the tether elements can also shed vortices in lateral flows 
resulting in a very complicated flow regime with significant out-of-plane lift 
forces exciting the tether into three-dimensional oscillafions. 

Regardless of the form of the drag force, it will be found helpful, at a 
later stage, to express Equation (6.16) as a pair of coupled first order 
partial differenfial equations. This is easily achieved by introducing a 
lateral force, / , and lateral velocity, v, such that 

f=-T— (6.20) 
dz 

and 

V = ^ (6.21) 
dt 

Hence 

m V + w ( v , v) = - — (6.22) 
dz 

and 

av 
f = - T - (6.23) 

dz 
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In obtaining a solution to Equation (6.18), it is of interest to model the 
tethers as seen by the platform, that is as a dynamic system to which the 
surface platform applies a horizontal oscillation with the system responding 
by exerting a horizontal force amplitude on the platform. 

Assuming that the surface platform excites the tether harmonically at the 
top, a separable solution of the form 

y(z, 0 = Real[g(z) γ{ϊω) e^T 

can be postulated with g{z) being a complex function of position. 
Substitution in Equation (6.18) gives 

[-ω^ηι + ίωλοΜζ) = Τ g'\z) 

If 

(6.24) 

(6.25) 

(6.26) 

then a solution of the form: 

g(z) = A' sin kz -\- B' cos kz (6.27) 

is obtained with complex constants A' and B'. The boundary condition of 

^ ( 0 , 0 = 0 

and 

y{L, t) = Real[yi ,( ia ,)e- ' ] 

give ß ' = 0 and 

A' = ^'^'''^ 

(6.28) 

(6.29) 

sin/cL 

where L is the length of the tether. The solution, therefore, is 

y{z, ή = Real 
sinkL 

sinkz e'^' (6.30) 

It is now a simple matter to compute the surge forces /s( i) appUed to the 
platform by the tethers 

/ s (0 = Τ 

Thus 

δζ 

= - (kL) cotikL) 

(6.31) 

(6.32) 

Here , the zero frequency 'quasi-static' surge spring stiffness (T/L) is 
multiplied by a factor φ cotφ where 

φ = A:L = ωL 
m + λο/1ω 

(6.33) 
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(L 
[m 
- n = h2. (6.34) 

In general, it is important to ensure that tether natural frequencies are 
above predominant wave excitation frequencies. The tether natural fre­
quencies are primarily dependent on the tether length, L , axial tension, Γ, 
and total mass, m. The parameter which has the most influence on the 

Normal ised f r e q u e n c y ,ω/ω^ 

Figure 6.5. Amplitude and phase of φcotφ for analytic solution. Key: — damping 
coefficient = 0.05 kNs/m; -- damping coefficient = 0.20 kNs/m 

Figure 6.5 shows the amplitudes and phase of the tether stiffness dynamic 
magnification factor (φ cotφ) as a function of frequency for a steel tubular 
tether typical of proposed TBP designs. This tether element is of 500 m 
length with a mass (m) of 300 kg/m and a constant tension (7) of 10 MN. 
At zero frequency φ cotφ is, of course, unity and as the frequency 
increases, the tethers look less like springs and more like dampers . It is 
clear that the tether behaviour is strongly influenced by assumed levels of 
damping. Therefore, a damping force proportional to the square of relative 
velocity between the fluid and the tether will imply that at low amplitudes, 
the apparently lightly damped tether will behave very differently from the 
large oscillation amplitude case. The undamped natural frequencies of the 
tethers are 
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6.3.2 Modal analysis of the tether 

This analysis is initiated by decomposing the lateral displacement, y, at any 
point along a tether into two parts: one , denoted by y^, representing the 
'quasi-static' displacement caused by platform motions and the second, 
denoted by y^ to account for the dynamic effects caused by tether inertia 
and damping. Thus: 

y = ys-^y6 (6.35) 

where the quasi-static component is 

ys=J^yL{t) (6.36) 

for a displacement time history, yM, imposed by the surface platform at 
the tether top end. Substituting Equations (6.35) and (6.36) into Equat ion 
(6.18) gives 

my, + ^o>. = Γ ^ - ^ h i t ) - γ h i t ) (6.37) 

Now, the dynamic displacements, yd(0' ^re expressed in terms of an 
infinite set of modal co-ordinates, q^{t), and the corresponding shape 
function, gi(z), which must satisfy the boundary condition oiy, = 0 at each 
end of the tether. 

A suitable set of shape functions are given by 

gniz) = ύηΚζ (6.38) 

where = T:n/L. This leads to 

yd(0 = 2 ^''(^) ^^"^"^ (6-39) 

Substituting Equation (6.39) into (6.37), we obtain 

2 [m qn{t) + λο9η(0 + ^ Tq^{t)] sinknZ 

= -{mO^ + XoO)yydt) (6.40) 

natural frequency is the tether length. For a given location this parameter 
is effectively constant. Therefore, the natural frequencies of the tethers can 
only be changed by altering the tension or the total mass of the tether. 
Increases in tension or reductions in tether cross-sectional area are limited 
to the point at which the axial stress exceeds the yield stress of the tether 
material. 

The linear transmission line tether model can be very useful if an 
equivalent hnear damping value is identifiable. However , modal analysis 
and finite element dynamic models of the tethers offer possible advantages 
which are explored in the following sections. 
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where the operator D denotes differentiation with respect to t ime. By 
muhiplying both sides of this equation by sin/c^z and integrating with 
respect to ζ between the hmits 0 and L , we obtain an equation relating the 
boundary conditions to the excitation of the rth modal co-ordinate. This 
equation is 

m qM + λο^ΧΟ + k'r TqM = 2{mD^ + λοΟ) 
coskrL 

krL 
ydt) (6.41) 

In this analysis, the horizontal force applied to the platform by the tether 
dynamics is of interest. This force, f i , is 

fL=T 
dz 

τ 
= 7 ydt) + T y\ k„q„{t) cosk„L (6.42) 

Now, for sinusoidal motion, let 

>'^(i) = Re[y¿( ia , )e- ' ] 

q„{t) = Re[Ö„(iw)e- ' ] 

hit) = Re[F^( i« )e - ' ] 

Substituting Equation (6.43) into Equations (6.41) and (6.42) gives 

[ -mω^ + iωλo + A:^!] ο(ίω) 

^ coshL 

(6.43) 

k,L 
(6.44) 

and 

F¿(iω) = - yi,(iω) + Γ 2 /:„β„(ίω) cos^„L (6.45) 

Substituting β„(1ω) from Equation (6.44) into Equat ion (6.45) gives 

^ζ.(ίω) 

Υώ^) 

Τ 

L 
1 + 2 

Finally, by using ω„ from Equation (6.34), we obtain 

fL(»ω) 

η ( ί ω ) 

Τ 

L 

1 
1 -

1 -
^ iωλo 

ωΐίη 

(6.46) 

(6.47) 

It is usual to truncate the above summation after a finite number of terms 
and approximate the system dynamics bv a specific number of modes . 
Figure 6,6 shows the amplitudes and phases of the complex FL(iω)/y¿(iω) 
stiffness term for a seven-mode summation in comparison with the exact 
solution (Φ cotφ) derived in a preceding section. The agreement is good for 
low frequencies but it naturally deteriorates at higher excitation frequen-
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0 1 2 

Normal ised frequency,ω/ω-) 

Figure 6.6. Comparative tether performance for analytical and seven-mode model method. 
Key: — analytical solution; -- model solution 

cies where the amplitude shows a markedly better quality of agreement 
with the exact analysis than does the phase. 

Modal models can be useful if an approximate time domain model of a 
linear distributed system is required for simulation as part of an otherwise 
non-linear system. However, the introduction of non-linear quadratic 
damping on the tether invalidates the modal decomposition and leads to 
coupled equations where the velocity of all modes affects the acceleration 
of all modes. It is much easier to develop a non-linear finite element model 
if the linear dynamics, which are well modelled by a small number of 
modes, can be adequately characterized by a reasonable number of finite 
elements. This model is developed in the next section. 

6.3.2 Finite element analysis of the tether 

The finite element technique is a powerful dynamic analysis tool which can 
be used to simulate systems with non-linear and time varying character­
istics. It is particularly simple to use in the modelling of transmission hne 
structures such as idealized tethers, shafts and electrical lines since it is 
exactly equivalent to the lumped mass approach for such systems. 

Initially, a frequency domain model of the lumped, linearized tether 
under constant tension is developed so that its 'force per unit displacement' 
frequency response can be compared with the analytic solution. If agree­
ment is good, this implies that an adequate number of finite elements are 
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being used to model the hnear dynamics and the model can then be used in 
the frequency domain to calculate the effects of spatial tension variations 
due to self weight. A time domain model of the linearized finite element 
model is also developed and validated against the frequency domain 
model. This simulation is then used to evaluate the effects of non-linear 
quadratic damping and to test l inearizat ion ' techniques. 

The first order differential equations, Equations (6.22) and (6.23), can 
be discretized in many different ways, two of which are shown in Figure 
6.7. They are physically equivalent and only differ notationally. It is often 
helpful to use the electrical transmission line analogy for the elements 
where the equivalences of force to voltage, velocity to current, inertia to 
inductance, damping to resistance and tension (spring) to capacitance 
hold. The equivalent electrical systems required to model the tether are 
also shown in Figure 6.7. 

Using the first model , and hence the analogous electrical element of type 
1 for simplicity, the equations describing its motion are 

D 
Vit - v^+i = δζ 

IT 
fk+l + fk (6.48) 

dz/2 

d z 

d z 

d z 

d z 

d z 

dZA 

1 I 2 

3 

3 

3 

3 

m 1 
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4 

Discretised 
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1st 2nd 
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Xodz mdz 

T 2 T 

Type 1 element 

_ L d z 
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λ odz nndz 

X l z 

Type 4 element 

Figure 6.7. Finite element tether models and electrical analogies 
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fk 1 + — (λο + mO) = fk+i + (^0 + fnD) bz (6.49) 

where D is the differential operator . These rather complicated equations 
are not an obvious discretization of Equations (6.22) and (6.23) but are 
equivalent since they describe the same physical system. Use of the second 
model leads to simpler equations but at the cost of non-standard end 
elements. 

It is relatively easy to evaluate the element transfer matrix relating the 
complex amplitudes o f ( d e n o t e d by f^(iω), ν^(1ω)) to those of their 
neighbours. Rearranging Equation (6.48), and substituting Ίω for D , the 
differential operator , gives 

(6.50) 
Ί + ΥΖ Z(2 + ΥΖ)~\ \ν,,{ΐω) 

-Y ί + ΥΖ \ [F^(iω) 

where 7 = (ΐω + λο)δζ; and Ζ = ίω δζ/2Γ. Renaming Equat ion (6.50) 
gives 

Χ*+ι = A (6.51) 

Values of Vyy, F^, corresponding to the tether lower end, can be evaluated 
by successive matrix multiplication of Vi , F , . Thus: 

A ^ - ' X , X N = 

But Vn = 0 so: 

Α^,ν, + A^2Fi = 0 

The desired harmonic response ratio, then, is 

Fl . Fl 
— = ιω — 
y , Vi 

= - ι ω 
Λ12 

(6.52) 

(6.53) 

(6.54) 

Figure 6.8 displays the amplitudes and phases of the seven finite element 
and analytic models. These are in agreement over at least half the 
frequency range displayed. Higher accuracy could be obtained by dividing 
the tether into more elements. 

Various tests have been performed using a seven-finite-element discreti­
zation compared with a modal model which included the first seven tether 
modes. The finite element technique produced consistently better overall 
results when compared with the analytic model , although, interestingly 
enough, the modal analysis demonstrated better agreement in amplitude 
but significantly greater error in the phase behaviour, leading to greater 
total distances between approximate and ideal phasors in the complex 
plane. 

The tether tension varies over its length due to its immersed self weight. 
However, even for a 600 m tether, the tension varies by no more than 10% 
between the average, top and bottom values. It is easy to quantify the 
effects of this variation by using the local tension value in place of the 
average value in the finite element computation of the overall frequency 
response. Thus 

X , ^ i = \{k) X , (6.55) 
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Normalised frequency , ω/ωι 

Figure 6 .8 . Comparative tether response for analytical and seven-finite element model. 
Key: — analytical solution; -- finite element solution 

and so 
^ N-l 

(6.56) 

where A(A:) is the transfer matrix computed from the local tension value. It 
is found that self weight makes no significant difference to tether frequency 
response. 

A number of linearization techniques are available to quantify the 
effects of quadratic damping in a frequency domain framework. They can 
be tested by simulating the finite element time domain non-linear model of 
the tether with a harmonic velocity time history and comparing the 
amphtude of the resultant force history at the tether top with that predicted 
by equivalent linearization with a linear model. The non-linear damping 
force can be written as 

R(v^) = l/2pdCo\vk\ η (6.57) 

where ρ is the fluid density, d is the projected area per unit length of the 
tether cross-section in the direction of motion and C Q is the drag 
coefficient, generally accepted to be about 1.2 for the Keulegan-Carpenter 
numbers involved here . 

It is desirable to estabhsh an equivalent linear damping for the tethers 
when they are being used to restrain the motions of a structure such as a 
TBP . If it is assumed that the tether response will be dominated by the 
solid body mode and most of the tether velocity is attributable to that 



Tether dynamics 161 

v(z, 0 = ω y ¿ — sinωí 

and therefore the energy dissipated by a hnear damper , λ], is 

λι ω^Υΐ — sin^ωí dt dz = - ω L 7^λ, 
L/ 3 

Similarly, the quadratic damping, Xq, dissipates: 

and equating these gives: 

2ω 
λ, = — y , λ 

\ i — sin^ωr di dz = ^ L 7 Í 

TT 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

Figure 6.9 shows the frequency-amphtude plane contoured with lines of 
constant error derived from simulation of the harmonically forced non-

15 

1 0 1-5 2 0 

Normalised f requency ,ω/ω^ 

2 5 

Figure 6 .9 . Error (t) in equivalent linearization on non-linear drag force for a 600 m 
tether; C D = 1.2, ωι = 0.478 rad/s (13.15 s) ((a) t > 5%; (b) 1% < t < 5%; (c) t < 1%) 

mode, it is reasonable to define an equivalent linear damping factor which 
permits the same energy dissipation over the length of the tether as the 
quadratic damping. 

The velocity at any point on the tether is given by 
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t = 100 
^ι(ίω) - fN( iω) 

ί^Ν(ίω) 
(6.62) 

where Ρφω) is the non-linear force amplitude output at the tether top , 
and Fl(iω)is the equivalent hnear force output . Clearly, this equivalent 
linear damping is adequate for the periods and amplitudes of interest in 
assessing platform dynamics near its resonant frequency. The result implies 
that the precise form of the damping is irrelevant so long as the correct 
amount of energy is dissipated per cycle. 

A similar technique can be used to define an equivalent damping for 
each finite element in the frequency domain model. An iterative computa­
tion results where the damping at each element is initially assumed to be 
that predicted by the 'whole tether ' linearization, the response is evaluated 
and the new amplitudes of motion at each segment are used to re-evaluate 
the damping factors. This technique gives excellent results but is only 
required at frequencies greater than 0.7 times the first tether natural 
frequency since it is only at these frequencies that the first and higher 
modes begin to become significant. Figure 6.9 shows the region in which 
'whole tether ' hnearization is accurate to bet ter than 1% for frequency 
response. 

More complicated stochastic linearization techniques can be used to 
derive equivalent dampings for use in random seas. This is probably 
unnecessary for most tether configurations since their behaviour, if dan­
gerous, need not be known very accurately and conservative (low) 
damping constants can always be assumed. Great mathematical sophistica­
tion is certainly not in order given that there is little convincing evidence 
that quadratic damping is a precise instantaneous model of reality in a 
random sea. 

It is clear from a comparative assessment of the three tether dynamic 
models presented here that the modal model offers a relatively poor 
performance for the computational effort involved. On the other hand, the 
exact and finite element models both offer performance advantages linked 
to their special characteristics. The more complex finite element model can 
account for non-ideal tether characteristics such as tension variation and 
non-hnear damping. The simplicity of the exact analytic calculation is also 
attractive for some purposes since the results presented in this chapter 
demonstrate that both tension variation and non-linear damping can be 
reasonably accurately represented by constant tension and equivalent 
hnear damping in a linear tether model which can be used for the 
investigation of platform dynamics near its resonant frequency. 

The great variation in apparent tether stiffness near wave frequencies is 
relatively unimportant in practice since the horizontal motions of the 
platform are mainly restrained by inertia in this frequency range. 
However, the responsiveness of the tethers to excitation by the platform 
near wave frequencies is disturbingly large and should be investigated 
thoroughly if TBPs are to be deployed in deep water. 

linear damped system in comparison with the linearized analysis. The error 
measure, is defined as 
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Lateral deflection amplitude ( m ) 

Figure 6.10. Tether amplitude variation with length. (Curves a,b,c,d and e are for excita­
tion frequencies ωχ/Ι, 3ωι/4, ωι, ω2 and respectively.) Key: — 'element-by-element' 
Hnearization; -- quasi-static analysis (straight line); - 'whole-tether' linearization (curved 
line) 

A specific case study of a tether is also considered here using the finite 
element analysis to investigate tether response for a range of tether 
frequencies and surface platform excitation amphtudes. The variation with 
excitation frequency was determined by forcing the tether top with a 
displacement of unit amphtude at the frequencies of ωι/2, 3ωι/4, ωχ, ω2 and 
ω3 where ω„ is the nth undamped natural frequency of the tether for lateral 
motions and is given by Equation (6.34). 

The tether properties used in the calculations are a length L = 500 m, 
outer diameter, D = 0.22 m and inner diameter d = 0.07 m. Coefficients, 
Cm and C D , are taken as 1.0 and 1.2, respectively, with a top tether tension 
of 30 MN. This is the tension value per platform corner; each corner 
having three tethers with 10 MN top tension. Figure 6.10 displays the 
variation of lateral deflection amplitude along the tether length and 
illustrates the development of tether mode shapes as the excitation 
frequency is increased. Both the calculations from 'whole-tether ' and 
'element-by-element ' linearization are presented. The expected effect of 
higher modes at larger excitation frequency can be clearly seen. Note the 
tether displacement amplitude slope for the ωι/2 frequency at which the 
restoring force amphtude at the surface platform would be very small. The 
discrepancy between the 'whole-tether ' and 'element-by-element ' lineari­
zation is dependent on the difference between the distance of the tether 
oscillation amplitude from the tether rocking mode amphtude; this is 
consistent with the assumptions embodied in the whole tether lineariza­
tion. 

In all cases, except close to the first natural frequency, the 'whole-tether ' 
linearization is a good approximation to the more exact 'element-by-
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Bending moment ampli tude ( k N m ) 

Figure 6.11. Bending moment variation with length. (Curves a,b,c,d and e are for excita­
tion frequencies ωι/2, 3ωι/4, ωι, ω2 and ω 3 respectively.) Key: — 'element-by-element' 
linearization; - 'whole-tether' linearization 

element ' linearization technique. Figure 6.11 shows the bending moment 
amplitudes corresponding to the results of Figure 6.10. Note that the tether 
bending stiffness has been ignored in the formulation of the tether 
equations of motion. Since the solutions of these equations are used to 
derive equivalent bending moments from the tether curvature, non-zero 
bending moments can be obtained at the surface platform tether connec­
tion. The bending moment amphtude can be seen to rise as frequency is 
increased and the higher mode shapes raise the curvatures in the tether 
displacements. The difference between 'whole-tether ' and 'element-by-
element ' linearization also remains small throughout the frequency range 
except around the first natural frequency. 

In order to investigate the effect of the drag force non-linearity, the 
tether dynamic model is used at the first natural frequency for a number of 
surface vessel displacement amplitudes. Figure 6.12 displays the results for 
tether displacements. As the surface vessel amplitude is increased, the 
corresponding increase in tether velocities raises the drag damping coeffi­
cient and reduces tether displacement amplitudes. This has the effect of 
reducing the discrepancy between 'whole-tether ' and 'element-by-element ' 
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Tether amplitude / tether top amplitude 

Figure 6.12. Variation of non-dimensionaUzed tether amplitude with length. (Curves a,b,c 
and d are for displacement amplitudes of tether top end 10 m, 4 m, 2 m and 0.5 m 
respectively.) Key: — 'element-by-element' linearization; - 'whole-tether' linearization 

tether hnearization which only remains significant for surface platform 
displacement amplitudes in the range 0.5-1.5 m. 

Since the surface platform is only influenced by the restoring force 
amplitude per unit platform amplitude ratio exerted by the tethers , an 
overall picture of tether dynamic performance can be obtained by plotting 
this ratio against the platform displacement amphtude in Figure 6.13 for 
both 'whole-tether ' and 'element-by-element ' linearization over a range of 
excitation frequencies. The equivalent idealized tether stiffness from 
Section 6.2 is indicated. The large effects of tether dynamics on the 
stiffness value experienced by the surface platform is clear. The frequency 
of excitation influences the restoring force ratio through the resultant 
tether mode shapes, whereas the surface platform excitation amplitude 
shows up through the resultant level of viscous damping affecting the 
restoring force ratio. The difference between 'whole-tether ' and 'element-
by-element ' linearization is relatively small. Figure 6.14 shows an equiva­
lent plot of the surface platform vessel restoring force amplitude due to the 
tethers against the surface vessel displacement amplitude. The 'hardening' 
spring nature of the tether restoring force with increasing surface level 
displacement amplitude is evident. 
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Figure 6.13. Harmonic response ratio variation with tether top displacement amplitude. 
(Curves a,b,c and d are for excitation frequencies ω 3 , ω 2 , ω ι and ω ι / 2 respectively.) Key: 
— 'element-by-element' linearization; - 'whole-tether' linearization 

Tether top displacement ampl i tude ( m ) 

Figure 6.14. Force amplitude against tether top displacement amplitude. (Curves a,b,c and 
d are for excitation frequencies ω 3 , ω 2 , ω ι and ω ι / 2 respectively.) Key: — 'element-by-
element' linearization; - 'whole-tether' linearization 
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6.4 Coupling between platform and tether dynamics 

A coupled analysis of the TBP and tethers can be carried out in the 
following manner . First, the finite element model is used to evaluate tether 
velocities and the restoring force amplitude on the surface platform for 
each individual platform tether assuming unit surface platform displace­
ment amplitude and taking due account of the tension variations along the 
tether length due its self-weight. Either the 'whole-tether ' or 'element-by-
element ' drag linearization can be used here . 

The tether displacements and equivalent bending moments along the 
tether are also determined using the equations: 

V 
Y = — 

iω 
(6.63) 

and 

Μ = EI 

~ δζ 

_ ^ 

δζ 

δζ^ 

EI 
T — 

δζ 

EI 
-f{-f) 

= - EI 
fk+i - fk 

δζ 
(6.64) 

where T is the average tether tension; and EI is the bending stiffness of the 
tether. 

The complex amplitude ratio of the tether restoring force on surface 
platform to platform displacement at tether top (equivalent to a complex 
stiffness) arising from the above dynamics calculation for the individual 
tether is substituted in place of the T/L term in the idealized tether stiffness 
calculations described in Section 6.2. This yields a (6 x 6) complex tether 
stiffness matrix which accounts for the orientation of the tether relative to 
the surface platform (for non-vertical taut tethers) as well as the lateral (to 
the tether) dynamics of the tether. 

The calculation of the surface platform dynamics (through Equat ion 
(6.2)) is also altered since the mooring stiffness matrix, K ^ , now has 
complex elements. These complex stiffness elements can be made real by 
transferring parts of the matrix to equivalent inertia or linear damping 
components for the harmonic platform displacements. Then the complex 
stiffness of the moorings may at certain frequencies make the moorings 
appear as equivalent inertias or dampers to the surface platform. It is to be 
noted that the complex stiffness matrix, K ^ , will be frequency dependent 
due to the dynamics of the tethers. 
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Figure 6.15. TBP surge response with and without effects of dynamic tethers. (Curve a for 
surface platform displacement 98 000 t with 16 000 t excess buoyancy and 500 m long 
tethers. Curve b for surface platform displacement 24 000 t with 16 000 t excess buoyancy 
and 1500 m water depth.) Key: full line - quasi-static tether assumptions; dashed line 
c - 'whole-tether' Hnearization; dashed Hne d - 'element-by-element' linearizations 

The coupled dynamics of the TBP and tethers are computed so as to 
account for the non-linear damping in both the surface platform and tether 
motions. Initially, the surface platform's displacement amplitudes are 
calculated assuming quasi-static tether stiffness. These calculated displace­
ment amplitudes are then inserted into the dynamic tether computations to 
re-evaluate the tether stiffness and the consequential platform motions. 
The interaction is only taken through one loop since the high mass and low 
natural frequency of the surface platform are such that its motions are 
inertia dominated and influenced only to a much smaller extent by the 
tether stiffness. Thus the tether stiffnesses affect the platform to a small 
extent only, whereas the platform motions do affect tether displacements 
and bending stresses substantially. 

The influence of tether dynamics on surface platform motions can be 
illustrated by using a notional design of the configuration shown in Figure 
6.2. This has free floating surface platform displacement of 98 000 t and 
500 m long tethers with an excess buoyancy of = 16 000 t. Figure 6.15 
displays the platform transfer function in surge with the ratio of platform 
surge amplitude to unit wave amplitude plotted against wave period for the 
idealized quasi-static tether model and the dynamic tether models with 
both 'whole-tether' and 'element-by-element ' linearization. For this case, 
there is no discernible difference between the surface platform motions 
given by the three tether analyses. Note that the tether first natural period 
is at 4.84 s for this case. 

However, the difference between the quasi-static and dynamic tether 
models becomes greater for lighter surface platforms and/or longer tethers. 
Figure 6.15 displays similar data for a platform of 24 000 t displacement in 
1500 m water depth with a tether first natural period at 14.53 s and an 
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6.5 Model tests 

Tests at model and full scale have played an important role in understand­
ing the behaviour of TBPs in waves and also, of course, in validating 
analysis methods used in design. This section presents the results of model 
tests and comparisons with prediction for two T B P designs and for the case 
of a tether exhibiting dynamic behaviour. 

6.5.1 Tests for surface platforms 

Two series of test results are presented. The first series of tests were 
carried out in a tank of water depth 7.6 m (25 ft). Waves were generated 
by means of a vertical oscillating wedge type wavemaker actuated by 
hydraulic rams. Testing was carried out using both regular and random 
waves with results from some of the regular wave tests presented here . 

Figure 6.16 shows the configuration of the platform used with full scale 
dimensions. Tensioning of the tethers was accomplished using constant 
tension springs at still water for each of the tethers , and clamping the 
tethers at the specified pretension for the test runs. The tethers comprised 
of lengths of multi-strand steel cable of 0.125 inch diamter. Ballasting was 
achieved by pumping water into or out of the columns to obtain the correct 
buoyancy. A model riser was also attached to the platform. 

excess buoyancy of 16 000 t. The higher natural period and consequent 
tether dynamic response shows up in the small difference between the 
different tether analysis models for the surface motions. 

The dynamic analysis of the tethers and a coupled analysis of the 
platform and tethers yields several results which are common to the 
majority of tensioned buoyant platforms. These are: 

1. The bending stresses induced in the tethers due to their dynamic 
motions are very small, the highest values occurring in tubular tethers 
which are relatively short, of large outer diameter and with thin walls. 
The deflections, however, are quite large at mid-length when the 
forcing frequency is approximately equal to the tether first lateral 
natural frequency. 

2. The tether dynamics only affect the motion response of the surface 
platform noticeably if the tethers are long, are of the order of 1500 m 
or more , have a large mass per unit length and the platform has a 
relatively small displacement. 

3. It is not necessary to use an equivalent damping linearization techni­
que for each finite element of the tether because it is only around the 
tether first natural frequency that there is any difference between the 
two techniques, and even then the 'whole-tether ' technique gives the 
more conservative values of bending moment . Fur thermore , there is 
very little difference between the effects of the two on the motion 
response of a platform, even in the worst cases. The technique of 
'each-element ' linearization also takes up more computation time 
depending on the convergence criterion specified. 
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Figure 6.16. Heriot-Watt TBP test model: 
Total mass = 32 100 t 
Total pretension = 14 944 t 
Displacement = 47 044 t 
Centre of gravity = 4.20 m below water level 
Radii of gyration: ky, = 55.93 m, k^ = 52.7 m, k^ = 67.55 m 
Natural periods: heave = 2.98 s, pitch = 2.98 s, roll = 3.14 s, yaw = 84.97 s 

surge = 86.78 s, sway = 96.83 s 
Tether characteristics (per tether): 

axial stiffness = 5762.3 t/m 
total weight = 343 t 

Full size figures given for 1:70 scale, dimensions in (m) 
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Figure 6.17. Surge motions in waves: (a) O** platform heading; (b) 22.5° platform heading. 
Key: a - theory; b - regular wave (H = 21-27 m) 

Tether tensions were measured using strain gauged 'horseshoe' type 
transducers fixed at the base of the wave tank. Care was taken to ensure 
that the natural frequencies of the horseshoes were well above vortex 
shedding and tether natural frequencies. Platform motions were measured 
using a television monitoring system providing a signal proportional to the 
displacement of a moving target. Resistance sensing wave probes were 
used to measure wave heights and to provide a phase angle reference. 
Typical data sampling rates were 50 samples per second for 1500 samples 
per channel. Digital time history data were reduced to amplitudes and 
phases for regular waves using a numerical harmonic analysis and to 
response spectra through fast Fourier transforms for irregular wave tests. 

Figures 6.17 and 6.18 show typical response amplitude operators for 
surge and tether tension. These are calculated from regular wave test data 
and shown together with the predicted response from the hydrodynamic 
analysis described in Section 6.2. Two platform headings are used: 0° and 
22.5"* (see Figure 6.17 for wave direction). Note that the frequency axes of 
the diagrams are given for full scale values in rad/s. 

Predicted tether tension responses compare well with model tests. Phase 
angle comparisons are also shown to be good, this being a critical test of 
computer simulation accuracy. The phase angles are defined relative to the 
wave elevation on the vertical centre hne of the platform in still water with 
phase angle lag being taken as positive. The observed discrepancies in 
surge amplitude are probably due to the additional forces generated by the 
scaled riser installed from the platform during the tests. The horizontal 
restoring force due to the riser is accounted for in the analysis by the total 
riser top tension being distributed equally in the four corner tethers, 
although the horizontal inertia and drag force contributions of the riser are 
ignored. 
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Figure 6.18. Platform tether tensions: (a) 0** platform heading - fore tether; (b) 22.5° 
platform heading - starboard fore tether. Key: a - port; b - starboard; c - theory 

Sample time histories for tether tension responses are shown in Figure 
6.19. The major response is at wave frequency with a pronounced 
superharmonic oscillation superimposed on the tether tension variation. 
The 'relative tension amphtude ' is provided for guidance. Figure 6.19 
shows that the amplitudes of tether tension increase with incident wave 
height (at constant wave frequency) in the expected manner . A digital 
spectral analysis of random wave data from the tests and direct measure­
ments from the regular wave time history data (2.95 rad/s (model scale) 
trace in Figure 6.19, for example) indicate that a superharmonic frequency 
of 17.91 rad/s (model scale) is excited in the tethers. Calculations give a 
tether first natural frequency (at mean tension) of 21.17 rad/s (model 
scale), whereas the vortex shedding frequency at mid-tether based on half 
the tether maximum velocity at this station is computed to be 18.03 rad/s 
(model scale). It is also to be noted, however, that the natural period in 
heave of the platform is 2.98 s full scale corresponding to 17.64 rad/s 
frequency at model scale. 

The form of the tension response is a combination of the in-line 
hydrodynamic response of the tether (with vortex shedding), and the force 
due to the extension of the tether caused by the motion of the platform 
(predominantly heave for the range of frequencies presented) . It is 
interesting that this form of tension variation is similar to results obtained 
in oscillatory flow tests on rigid and flexible cylinders by Verley and Every 
(1977), in which single and grouped stationary slender circular cylinders 
were subjected to regular waves. A complication arises in these tests, 
however, due to the proximity of the natural frequencies of te ther 
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Tether tension response 

Figure 6.19. Tether tension time histories (starboard aft tether TLP with single tube riser, 
wave angle = 0°): (a) relative tension amplitude = 0.80, phase = 258**, wave height = 
0.362 m, period = 1.77 s; (b) relative tension amplitude = 0.70, phase = 256*, wave 
height = 0.366 m, period = 1.92 s; (c) relative tension amphtude = 0.64, phase = 281**, 
wave height = 0.412 m, period = 2.13 s; (d) relative tension amplitude = 0.41, 
phase = 315**, wave height = 0.346 m, period = 2.40 s; (e) relative tension amplitude = 
0.62, phase = 340°, wave height = 0.350 m, period = 2.72 s; (f) relative tension amph­
tude = 0.89, phase = 347**, wave height = 0.358 m, period = 3.15 s 

vibrations, of vortex shedding from a tether and the heave natural 
frequencies of the platform/tether system - these frequencies being 21.17, 
18.03 and 17.64 rad/s, respectively, all at model scale. 

At the same time, it has borne in mind that the tension transducers will 
be most sensitive to platform heave motion induced tensions, with the 
effects of tether vibrations and vortex shedding only appearing as second 
order effects on the tension transducer outputs. The actual superharmonic 
frequency on the tension time histories is measured to be 17.91 rad/s 
(model scale), suggesting that this feature is primarily induced by platform/ 
tether heave dynamics, although the close proximity of the vortex shedding 
and tether first natural frequencies are such as to raise the possibility of 
interaction between the phenomena giving rise to these frequencies. 

Similar testing of a TBP was performed by a Norwegian group (Faltinsen 
et al., 1982). It was felt useful to compare the predicted response of the 
hydrodynamic analysis presented here with the results of some of these 
tests. The comparisons cover a wider range of frequencies than those for 
the first tests and are based on testing in long crested regular waves, in 
bi-frequency wave-trains as well as in long crested irregular sea states. 
Only the results of the irregular wave tests are presented here . Details of 
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Figure 6.20. Norwegion test model 
Total mass = 35 160 t 
Total pretension = 17 000 t 
Displacement = 52 160 t 
Centre of gravity = 3.56 m below water level 
Radii of gyration: = 35.1 m, /Cy = 35.1 m, k^^ - 42.4 m 
Natural periods: heave = 2.2 s, pitch = 2.4 s, roll = 2.4 s, yaw = 87.0 s 

surge = 107.0 s 
Tether characteristics (per tether): 

axial stiffness = 8400 Mm 
total weight = 925 t 

Full size figures given for 1:60 scale, dimensions in m 
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the platform used for this series of tests is shown in Figure 6.20. The 
comparisons presented in Figure 6.21 at full scale are for the platform 
angled at 0 and 45*" to the wave direction. The sea has a 12 m significant 
wave height with a zero-crossing period of 15 s. There is no contribution 
from wind or current. 
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Figure 6.21. Surge motions in waves: (a) 0*̂  platform heading; (b) 22.5** platform heading. 
Key: a - regular wave {H = 12 m); b - random waves (H^ = 12 m); c - theory; 
d - Norwegian program 

The calculated surge response for both headings are in good agreement 
with the measured data for all frequencies except where minima are 
predicted. The recorded surge in these cases is greater than calculated. For 
frequencies over 1.1 rad/s, this might be expected as the wavelength is of 
the same order as the leading platform dimensions. At around 0 .6 -0 .8 
rad/s, the full wave force cancellation does not occur. This cancellation is 
due to equal and opposite forces induced by wave action on different parts 
of the platform structure at wave frequencies with wavelengths close to half 
the platform length. The apparent absence of full wave cancellation is 
thought to be due to the finite band width of an irregular wave data 
analysis causing a loss in resolution of the derived response transfer 
function. 

The surge responses were found to be relatively insensitive to the 
calculated values of added mass and drag forces. However , the prediction 
of tension amplitude response was found to be strongly dependent on the 
vertical flow added mass forces on the platform columns for waves of 
frequencies in the range 0 .5 -0 .8 rad/s. Careful modelling of the column 
lower end geometry was thus required. 



176 Tensioned buoyant platforms 

2 5 0 0 

1875 

5 12501 

O 

< 
6 2 5 

0 2 0 4 0 6 0 8 1 0 

( a ) ( R a d / s e c ) 

1-2 

2 5 0 0 

1875 

^ 12501 

6 2 5 

0 2 0 4 0 6 0 8 

( b ) ( R a d / s e c ) 

1 0 1 2 

2 5 0 0 

1875 

1 2 5 0 
c 
.2 

O 
< 
cc 

6 2 5 

0 2 

( c ) 

0 4 0 6 0 8 

( R a d / s e c ) 

10 12 

2 5 0 0 h 

Figure 6.22. Tether tension amphtudes in waves: (a) (f heading - fore tether; (b) 0° 
heading - aft tether; (c) 45° heading - fore tether; (d) 45° heading - aft tether. Key: 
a - theory; b - experiment - random waves = 12 m) 

Figure 6.22 shows reasonably good comparison between analysis and 
model tests for tether tension variations at full scale. For the model tests 
carried out with a 45° wave direction, the aft tether tension amplitude 
around a frequency of 0.6 rad/s was greater than that for the fore tethers . 
The analysis predicts the reverse of this with the fore tether tension 
amplitudes being slightly larger. This feature is also apparent for the 0"* 
heading case shown in Figure 6.22. The reasons for this are not obvious. 
Apar t from experimental errors, the discrepancy can be ascribed to the 
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Table 6.2 Physical parameters for tether model 

Tether 
Parameter Scaling factor Model scale Full scale 

Length a 4.07 m 110 m 
Outside diameter a 9.5 m m 0.26 m 
Tension βα3 

high 160.19 Ν 875 tf 
low 27.49 Ν 150 tf 

Rigidity βα5 0.4424 N /m2 17.3 MN /m2 
Mass/length βα2 0.0096 kg /m 19 kg /m 
Time V ( a ) 

19 kg /m 

Velocity V (a ) 
Acceleration 1 
Ang. freq. 1 /V(a) 

Notes: 
α = 27 length scaling factor, 
β = 2.725 density scaling factor. 

effects of low interference between adjacent members . There is a further 
discrepancy between predicted and measured tension amphtudes for the 0** 
heading case at higher wave frequencies. In this frequency range, wave 
induced pitching moments on the platform contribute a large proport ion of 
the tension magnitudes - suggesting that an incorrect estimate of this 
moment may lead to the observed discrepancy. 

These model test results show generally good agreement with theory, 
with the exception of high frequency superharmonic tensions vibrations in 
the tethers. At the scales tested, the amplitudes of these superharmonic 
vibrations were significant. The proximity of the first tether natural 
frequency of the platform/tether system raises difficulties in interpreting 
the underlying physical mechanism causing this superharmonic vibration. 

Attention is now focused on using model scale experiments to test the 
validity of the analysis methods used for tether dynamics. These tests were 
carried out in a specially constructed 4.5 m deep by 1.5 m square based still 
water tank. A tether model is mounted on the base of the tank and the 
tether upper end is excited in surge and heave by an electro-hydraulic servo 
mechanism. Tether displacements are measured using a television moni­
toring system described earlier. 

A test model of a tether at l/27th scale (121.5 m; 399 ft fuU scale length) 
was constructed using concentric tubes of a Cellulose Acetyl Butyrate 
material which possessed the properties necessary to scale the tether 
bending stiffness, with the mass per unit length scaled by using wires 
running down the centre of the tether. Table 6.2 gives the various scaling 
rules and dimensions used for the model at high and low tension values. 

First, the fundamental first natural frequencies of the tethers were 
measured in water. The natural frequency of the high tension case was 
3.7 Hz (23.25 rad/s) whereas the low tension case yielded 1.13 Hz (7.1 
rad/s) both at model scale. For both cases, the damping was measured to 
be approximately 20% of critical. 
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Figure 6.23. Tether amplitude response: (a) high tension (amphtude = 2.7 m, period = 
8.93 s); (b) low tension (amplitude = 2.7 m, period = 9.12 s). Key: a - experiment; 
b - theory; c - straight line 

values of top excitation (2.7 m amphtude) at 8.93 s period. As is to be 
expected there is greater bending along the length of the low tension 
tether. It is seen that the finite element model , described in Section 6.3, 
compares reasonably well with experiment. The above resuhs demonstrate 
that there is reasonable agreement between the analysis methods described 
in Section 6.3 and experimental observations of the dynamics of tethers. 

6.6 Mathieu instability 

The variations in tether tension due to wave induced vertical forces on a 
tensioned buoyant platform can lead to the possibility of exciting subhar­
monic parametric oscillations in platform surge and sway motions. This 
physical phenomenon can be described in the following way. The longitu­
dinal stiffness of the tethers restrains the vertical motions of the platform 
against wave excitation forces. The consequential variations in te ther 
tension alter the effective lateral spring stiffness of the platform, leading to 
the possibility of a Mathieu type of platform excitation in horizontal 
motions. There is also the possibility that Mathieu type parametr ic 

The external television cameras were used to measure the in-line 
displacements of the model at low and high tension. This yielded amplitude 
and phase information which is presented in Figure 6.23. Figure 6.23(a) 
shows maximum in-line displacement amphtudes of the model tether at full 
scale values of 2.7 m top excitation amplitude and 9.12 s period as 
measured by experiment and calculated from the finite element analysis 
model (see Section 6.3). For this high tension case, there is minimal 
deviation from the straight line joining the ends of the tether. Figure 
6.23(b) shows the in-line displacement for the low tension case with similar 
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oscillation in the tether itself could be excited at half the frequency of the 
wave excitation. In very deep water, this frequency could coincide with the 
lowest natural lateral tether frequency. Hsu (1975 a,b) has studied such 
oscillations of a freely hanging string (a riser or unattached tether) with 
natural frequencies which are much lower than those of a tether and hence 
more likely to be excited by forcing at half the wave frequency. Hsu has 
concluded that quadratic damping places strict limits on the oscillation 
amphtude. On the basis of his work, it seems unlikely that Mathieu excited 
lateral tether oscillations will be a problem for T B P tethers. 

Nevertheless, a methodology for determining the magnitude of maxi­
mum platform, parametrically excited oscillations of the platform in still 
water is developed here. Further consideration of such instabilities for free 
hanging crane loads is presented in Chapter 7. 

Horizontal motions of a TBP are restrained by the horizontal compo­
nents of the tether tensions and the inertia of the surface platform. In the 
wave frequency range, up to 20 s period, these inertia forces are dominant 
in comparison with the tether forces. At larger periods which include the 
resonant periods of platform horizontal motions, these forces are compar­
able. In this regime, the tether tension variation induced by restraining the 
platform heave, roll and pitch motion can, under certain conditions, inject 
energy into horizontal motions. 

The horizontal restraining force, / , can be written as 

f=-Ko(i^g{t))x{t) (6,65) 

where χ is the horizontal platform motion; t denotes t ime; J^o ( = TIL) is 
the average value of the horizontal spring; g{t) is its proportional variation 
caused by heave forces; Τ is the mean tether tension; and L is tether 
length. Roll and pitch moments will cause equal and opposite tension 
variations in opposing tethers but will not alter the total surge or sway 
spring force. 

Writing the equation of motion with the time dependent stiffness given: 

(M, + MJx -f Q I i I i + /Co (1 + g{t))x = m (6.66) 

where Λ/χ and Μ^χ are the physical and hydrodynamic added mass; Cx is 
the quadratic damping coefficient; and f^{t) is the wave exciting force. 

In sinusoidal waves, this equation represents a Mathieu equation, with a 
square law damping term and exciting force /^ ( i ) . The classic, linear 
Mathieu equation has been studied exhaustively and its properties are well 
known. In canonical form, it is written as 

ψ + (δ + e cos20Ψ = 0 (6.67) 

In certain areas of the δ - e plane, the variable ψ is unstable and grows 
exponentially without limit, even when linear damping is present. Note 
that Equation (6.67) can include a linear damping term, 2οψ, but is 
returned to the original form by the transformation φ = ψe^^ so ψ is stable 
if φ grows slower than e^^ The physical reasons for this behaviour are 
explained later. 

Rainey (1977) first used the above equation for the TBP and included 
forcing and 'equivalent linear' damping terms. Other authors (Hsu, 1975 a, 
b) have studied Mathieu type instabilities of hanging strings (risers) in a 
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fluid and have included square law damping effects but excluded the 
forcing term. Troger and Hsu (1977) subsequently include the forcing term 
in the analysis. Mathieu type instabilities of rolling ships, with time varying 
roll stiffness due to heave motion, have also been investigated. 

Most of these studies have assumed that the spring variation, g{t), is 
sinusoidal since analysis is difficult if g{t) is modelled as a zero mean, fairly 
narrow band Gaussian random process, which is rather closer to reality. 
However, it is also not proven that sinusoidal spring variation is the worst 
possible time history and it is conceivable that a random sea could induce a 
more severe instability instead. A more physical approach to investigate 
the subharmonic motions is thus employed below. 

Instability is the consequence of work being done faster on a system than 
it can be dissipated. In the case of the Mathieu equation, energy is input by 
the non-conservative, time varying spring force and dissipated by the 
damping. 

The rate of working, P , of the spring force over a time period τ is 

Ρ = 
1 

τ 

f{t)x{t)dt 

Ko (1 + g(t)) x{t) x{t) dt (6.68) 

where f (t) is the spring force and; χ (ί) is the resultant motion. 
Integrating by parts yields 

_ 1 
P = — 

2T 
a:O(i + g ( T ) y ( T ) -Ko(i + gmx'io) 

, ^ 0 

2T 
g'{t)x\t) dt (6.69) 

The first term represents the difference in stored energy at the beginning 
and end of the integration interval, while the second term is caused by the 
net rate of working of the spring. It is clear that net positive work will be 
done by the tethers if the rate of change of spring stiffness, KQ g'(t), is 
positive whenever x\t) is large. Since g{t) has an upper and lower bound, 
g'{t) should be negative when x\t) is small so it can increase when χ is 
large. If g{t) varies with period /?, then energy will be put into motions of 
period 2 (M = 1, 2, 3, . . . ) and if one of these periods, particularly the 
first, 2/7, corresponds to the natural frequency 

V[Ko/{M, + M a , ) ] rad/s 

In reality, little is known of the properties of g{t), except that it is 
bounded by the maximum size of heave force which can be applied to the 
platform by waves. The response is the result of continuous energy input so 
the form of the history of g{t) is important as well as its maximum, 
minimum and average values. It is therefore sensible to treat g{t) as a 
controllable input to the system and to try to devise some 'worst case' input 
history, which will always be more destabilizing than any other possible 
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• '̂ x = *^max^ 

Figure 6.24. Spring force variation during subharmonic oscillations 

The strictly optimal solution implies that the switching times are slightly 
modified by the dynamics and damping levels of the particular platform 
being considered since the platform motion is dependent on the switching 
strategy and, on the average, higher frequency motions allow more 
switchings and hence higher input power. However , these modifications 
are found to produce trivial changes in the net average energy input. 

It is illustrative to consider the switching law in the jc - i: (phase) plane 
shown by Figure 6.25 for a lightly damped system starting from an initial 
condition and executing persistently growing oscillations. The spring rate 
here is high when jc i: < 0, low when JC i > 0, and between switches the 
platform moves as a square law damped system at approximately its 
natural frequency. Referring to Figure 6.24, it can be observed that the 
switching law allows the platform to move away from JC = 0 against a weak 
spring and it is forced back by a strong spring. Motions of this nature 
continue to grow until the energy dissipated by the damping is equal to that 
injected by the tethers. Figure 6.25 shows trajectories for the motion of the 

history. For example, the criteria for selecting the worst case input g{t) 
could be based on maximum average displacements, largest peak displace­
ments or maximum energy input into the motion. Problems of this type can 
be solved using the Pontryagin Maximum Principle of optimal control 
theory (Takahashi et al, 1972). The Maximum Principle indicates that the 
spring stiffness should be switched between maximum and minimum 
values, but explicit derivation of the switching times appears extremely 
difficult, particularly in the non-linear case. A physical argument shows 
that the stiffness should be switched 'up ' near a maximum of x\t) and 
'down' near the minimum. This is illustrated by a spring 
force-displacement indicator diagram shown in Figure 6.24. 
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^input (^max ^ m i n ) ^ 

where a is motion amplitude; and Â max̂  
platform stiffnesses. This energy input must balance the energy dissipated 

(6.70) 

are maximum and minimum 

X /ω Γ 

T h e o r e t i c a l 
m i t Cycle 

Figure 6.25. A phase plane plot for unstable TBP oscillations 

by linear and quadratic damping during the approximately sinusoidal 
angle. The energy inputs are 

^linear = Γ̂̂ Μ̂ ω (6.71) 

and 

£quadratic = I (6.72) 

where ω is osciUation frequency; and λι, are linear and quadratic 
damping coefficients. Equating input and output power leads to an 
expression for the steady state value 

a = [^max - ^min " ^^,ω] (6.73) 

platform growing up to the limit cycle amplitude from a small initial 
condition and decaying down to it from a high initial state. The action of an 
upper bound for the amplitude of this limit cycle will give a measure of 
maximum platform oscillation amplitude due to this feature. 

If the sway spring stiffness switches between values of /^max and /Cmin at 
the maximum and minimum displacements of the platform, as shown in 
Figure 6.25, the energy input per cycle wiU be 



Mathieu instabihty 183 

37T 
a = 

^max ^min 
— λιω (6.75) 

This upper bound on the motion amplitude agrees exactly with that derived 
by Hsu when ω, the frequency of spring variation, is coincident with the 
natural frequency of oscillation of the platform. 

It is interesting to note that the maximum motion amplitude is inversely 
dependent on the square law drag term, which could be increased by 
increasing the projected area of the platform below the water line. The 
oscillation amplitude is also predicted to be inversely proportional to water 
depth since A^ âx = T^JL, so if Mathieu oscillations do not affect a 
shallow water platform, they will not affect similar platforms in deeper 
water. Substituting typical parameter values for a 40 000 t platform mass 
and 16 000 t of excess buoyancy in 150 m of water, we obtain a value for 
amphtude ß of 3.8 m if /C^ax = l l ^ a v e . the average stiffness value. The 
natural period of the platform is 40 s so the spring variation must have a 
period of 20 s, a period at which there is very httle power in the wave 
spectrum. The variability in stiffness, assumed to be 10%, may be regarded 
as being conservative since the heave force per unit wave amplitude is 
260 tf/m at this frequency, implying that for the platform in question 5 m 
waves are needed to produce a 10% variation in tether tension and hence 
the heave spring. 

The foregoing stability argument may not seem rigorous since a parame­
tric response is assumed in order that energy input and dissipation can be 
calculated and the amplitude of motion deduced. It is not proven but it is 
reasonable to argue that the assumed sinusoidal response is the worst 
possible from the point of view of energy input. It can be shown by 
simulation that , for typical parameter values (Figure 6.25), the assumed 
response is close to the one caused by the time varying spring. Between 
switches the platform behaves as a square law damped system, perturbed 
by the known small wave frequency forces. 

This decoupling of force and response has made the solution of the 
'worst case' problem relatively easy. The Pontryagin Maximum Principle 
gives conditions that a solution to the true maximum energy input 

Using the more optimistic assumption of a sinusoidal spring variation, the 
energy input per cycle is 

ßinput = — (^max " /^min) siuO (6.74) 

where θ is the phase between the response and the spring variation. Note 
that there is no steady solution for the amplitude if linear damping only is 
present. The system is either stable, in which case Mathieu oscillation 
never occurs, or unstable, resulting in a continuously increasing amplitude. 
The equation of motion could be solved with the method of slowly varying 
parameters used by Hsu (1975b) in his study of a square law damped 
hanging string. 

However, sine in Equation (6.74) is never greater than unity so an upper 
bound on the energy input and hence the motion amplitude is simple to 
derive as 
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(6 .77 ) 
αχχ 

bxi 

Writing Equation (6 .66) in terms of JCi, Xi, the position and velocity of the 
platform, yields 

Χχ = X2 

^0 /Λ / \ \ I I . 

^2 = - — (1 + g(0)^l - I ^2 I + — 
M t M t M t 

(6 .78 ) 

where M t ( = Μ χ + Max) is the platform's total mass. For stability, 

VV^'k^O ( 6 .79 ) 

so 

b b ^ , , 
aXlXl - — ΚοΧχΧ2 - — Kog{t)xxX2 — ^ I ^2 I + — / w ^ 2 ^ 0 ( 6 . 8 0 ) 

M t M t M t M t 

The parameters a and b can be chosen freely so long as V{x) increases with 
I X I and encloses the origin. So we set 

bKn 
a = ( 6 . 8 1 ) 

problems must satisfy but does not provide an explicit solution. It is 
sometimes possible to derive a solution iteratively from the implicit 
conditions but this is probably unnecessary since the control law is the 
same as that derived by naive analysis with some modification to the 
switching time. It is found by numerical experiment that the final oscilla­
tion amplitude is not changed greatly by small changes in the switching 
times. 

The formal solution via the Maximum Principle is difficult because it 
requires the solution of the non-linear equations of motion to yield a 
feedback law for the switching of the spring constant. Another approach to 
follow is to use Lyapunov stability theory which does not require a solution 
for the motion. 

Lyapunov's second stability theorem is most simply explained geome­
trically. Consider a set of closed curves enclosing the origin of the x-x 
plane, defined as a potential function V{x, x) = constant, C. If the phase 
vector of the TBP system always has components parallel to the negative 
origin facing gradient of V{x, x), then once the system state is inside a 
particular potential level, it will never leave it. 

Figure 6 .26 illustrates these ideas; the level function is a function of the 
kinetic and potential energy of the system of the form 

ax] bx\ 
V = — + — ( 6 . 76 ) 

2 2 ^ ^ 

where χχ = x\ X2 = x\ and «, b are constants. 
Thus 
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MAX χ . λ 

Figure 6.26. Contours of equal energy for the Lyapunov stability theory and the Pontrya­
gin principle 

to yield a condition 

(6.82) 

which simply states that rate of energy dissipation must always be greater 
than energy input by wave forcing and spring variation. Clearly, this 
criterion is not always satisfied for all | | > jcib J -̂ 2 I > ^ib where JCib, 
jC2b are the bounds on position and velocity that we are seeking to establish. 
This is not because the equation of motion is unstable but , rather, because 
the Lyapunov function has not been constructed with adequate care. 
Satisfaction of the Lyapunov criterion is a sufficient condition for stability, 
but failure to satisfy it is not a sufficient condition for instability. 
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It is interesting to note that Equation (6.82) imphes that the 'worst' g{t) 
is 

g = - gmax sgn{xxiX2) (6.83) 

which is the condition derived earher, not surprisingly, given the energy 
based Lyapunov function. Figure 6.25 illustrates the way in which the 
phase velocity vector, χ , is varied by c h a n g i n g a n d g. It is clear that for 
almost all level functions enclosing the origin, the 'worst ' χ with the 
greatest tendency to head up the level function will be obtained with 
maximum or minimum values of g and f^. 

Lyapunov stability bounds are usually very conservative unless great 
care is taken over the construction of the potential function. Another 
factor leading to large stability bounds is that it is difficult to include 
knowledge of the frequency constraints on the sway force and g, the spring 
variation. Large excursions might well take place if forces as large as those 
common at wave frequencies were applied at unrealistically low frequen­
cies. Both Lyapunov and the Maximum Principle suffer from this defect 
since the time history of the 'worst ' possible force is derived, not assumed. 
Optimal control theory and Lyapunov stability theory are, in fact, two 
views of the same problem for our purposes (see Figure 6.26), since the 
solution of the energy maximization problem involves the (implicit) 
construction of a function, the normals to which indicate the direction in 
which the system should be controlled (under the constraints on the input) 
for maximum average rate of energy input. In Lyapunov theory, an 
arbitrary level function is chosen and the controllable parameters are 
varied to maximize the rate of change of level, and if this can be made 
positive then the system can leave the area defined by V{x) ^ C. 

Neither the Maximum Principle nor Lyapunov stability theory offer an 
immediate prospect of a flexible routine tool for response analysis of 
non-linear time varying marine systems. However, they offer a powerful 
physical insight into the nature of the stability of TBP wave induced 
motions. 

There are several definitive and interesting performance trends that can 
be deduced from the analysis in this and preceding sections. These trends 
are: 

1. Lateral tether oscillations due to excitation by the surface platform and 
the consequential internal tether stresses become more important in 
deep water, particularly if the tethers are heavier for increased 
longitudinal stiffness. 

2. Heave , roll and pitch resonant periods can he in the region of strong 
wave excitation in deep water. This effect can be counteracted by 
increasing the tether cross-sectional area and thus the longitudinal 
sfiffness, although additional excess buoyancy may then be required to 
avoid lowering the tether lateral motion natural periods further into 
the wave frequency range. 

3. The likelihood and severity of subharmonic Mathieu type excitation is 
greatest for shallow water TBP deployment. This is because, as water 
depth increases the change of horizontal spring rate induced by heave 
forces becomes smaller and the resonant frequency recedes further 
from typical wave frequencies. 
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C h a p t e r 7 

Dynamics of crane vessels 

7.1 Introduction 

The development of oil and gas fields in the North Sea has required 
activities such as exploration drilling, oil production and well maintenance 
to be carried out from floating marine vehicles. One particularly critical 
operation entails lifting and respositioning large loads from cranes 
mounted on floating vessels. This operation often forms part of the 
installation of platforms, topside modules and other related tasks. The 
eventual need for the decommissioning and removal of fixed offshore 
operations from floating marine vehicles are weather sensitive to some 
extent. This is primarily due to the motion of the vessel in waves. Crane 
vessel operations are particularly sensitive to vessel motions since the 
feasibility of a lift is governed by relatively low maximum permissible 
values of crane tilt as well as vertical and horizontal crane boom tip 
accelerations. The weather sensitive nature of crane vessel operations 
requires that studies are carried out to evaluate vessel operability both 
from the point of view of design and for providing operational guidance to 
the lift superintendent. 

Consider the dynamics of a crane vessel operating in waves. The vessel 
hull itself can be regarded as a rigid body with the usual motions in six 
degrees of freedom. The structural stiffness of the crane housing and 
boom, the axial stiffness of lifting wires and lateral pendulum swinging 
motions of the hft mass introduce additional degrees of freedom. These are 
coupled with the vessel hull motions to generate a complex set of motions 
where the possibility of large resonant motions would be of concern. 
Fur thermore , combined vertical and lateral oscillatory motions of the 
crane boom tip can induce large amplitude swinging motions in the 
suspended load due to excitation of a Mathieu instability. The conditions 
required for the occurrence of this instability also need to be investigated. 
Grim (1983) describes some earher work in this area. 

There are several physical parameters that can limit crane operat ions. 
One of these arises from the longitudinal bending moment induced by 
crane operations on the vessel's hull. This bending moment limit is of 
concern for the structural design of the hull, but the analysis techniques 
presented in this chapter are based on the assumption that vessel hull and 
crane tub strength limits on operability exceed those due to wave induced 
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motions by a wide margin. The analysis required for meeting typical 
strength requirements for design and certification are not covered here . 

Thus the remaining limits of operability on the crane vessel are due to 
the wave induced motions of the vessel causing the motion of, or forces 
within, the crane housing, boom and lift hawsers to be outside acceptable 
bounds. These operabihty limits can be hsted as follows: 

1. The crane tik about the plane of the boom and in a plane perpendicu­
lar to that of the boom must not exceed a small value - 3.5*" is typical. 

2. Inertia force limits within the crane housing and boom may be most 
conveniently expressed as allowable vertical and horizontal accelera­
tions of the crane boom tip. Allowable horizontal accelerations 
perpendicular to the plane of the crane boom quantify the lateral force 
limits on the boom. 

3. For certain lifting operations such as pile driving, a maximum allow­
able absolute motion of the crane hook may impose an operational 
hmit. 

4. Wind forces on lifted loads of large surface area may be a limiting 
factor that needs to be investigated. 

5. Other extraneous hmits may arise due , for example, to the fact that the 
vessel mooring or dynamic positioning system must maintain accept­
able station keeping during the lift. 

Offshore installation duties have been carried out using crane vessels with 
both semisubmersible and ship shape hull forms. Since wave induced 
motions are a primary influence on operability, semisubmersible hull forms 
offer the required low wave induced motions but have a limited payload to 
displacement ratio. On the other hand, monohull or ship shape hull forms 
have larger wave induced motions, although these can be reduced by 
installation of a motion suppression system. Ship shape hull forms do have 
large deck payload capacity, high transit speeds between work locations 
and also a low draught in the operating mode. This latter feature is of some 
importance for load out and installation in shallow water. 

This chapter presents mathematical development underlying the consi­
deration of coupling between the motions of the vessel huU and of the hook 
load through the vertical and lateral elasticities of the crane housing and jib 
and of the hft wires. The mathematics is illustrated by a case study with 
results from a typical monohull crane vessel described in Table 7.1 and 
illustrated in Figure 7 .1 . Similar calculation techniques would also apply if 
the vessel hull was of semisubmersible form. The derivation of wave 
induced forces and resultant motions of the rigid vessel hull are followed by 
calculations of the coupled motions for the vessel, elastic crane and lift wire 
assembly and the swinging hook load. The coupled motions that induce 
vertical and lateral motions of the crane jib are presented. The possible 
occurrence of dynamic instability due to combined vertical and lateral 
crane hook motions is also investigated and typical operational criteria are 
presented for avoiding such instabilities. The impact of all the above on the 
overall operability is discussed. 
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Figure 7 .1 . Perspective view of crane vessel McDermott DB50 

7.2 Rigid vessel wave induced forces and motions 

Wave induced motions of a monohull vessel have a dominant influence on 
operability and also form the mechanism through which ocean waves excite 
elastic vibrations of the crane structure and vertical or swinging oscillations 
of the suspended crane load. 

The equation of motion for a rigid vessel in six degrees of freedom can 
be written as 

( M + M A ) X + B R X + B y X + ( K + Kn, ) X = F (7.1) 

where X , X and X are six component column vectors of vessel displace­
ment , velocity and acceleration in surge, heave, sway, roll, yaw and pitch 
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Figure 7.2. Hydrodynamic mesh 

respectively. The (6 x 6) matrix, M , contains the physical mass of the 
structure. The added mass matrix. M A , quantifies the additional mass of 
fluid entrained with the acceleration of the hull form. The damping 
coefficients in matrix B R are associated with a net outward flux of energy in 
radiated waves and represent potential damping only. The damping 
coefficients in By represent a hnearization of the quadratic drag damping 
due to flow separation around the submerged hull. The stiffness matrices, 
Κ and K m , are due to hydrostatic and mooring restoring forces. The six 
component column vector, F , contains wave induced forces and moments 
which are calculated for a stationary body using diffraction theory; see 
Chapter 5. 

Both the fluid structure interaction term coefficients ( M A and BR) on the 
left hand side of Equation (7.1) and the wave induced force ( F ) on the right 
hand side are evaluated using a conventional boundary element numerical 
technique. This method is described further in Chapter 5. For regular wave 
excitation. Equation (7.1) becomes 

[-ω\Μ + Μ Α ) + iω(BR + By) + Κ + Κ^,] Χ = ^ ( ω ) Κ (ω) (7.2) 

in the frequency domain where, for frequency ω, X are the vector 
amphtudes of motion, Α{ω) is the wave amplitude, and Κ (ω) is the 
complex vector of wave induced forces on the vessel. The added mass and 
radiation damping matrices calculated from the diffraction analysis are 
functions of wave frequency. Note that the diffraction analysis also yields 
wave induced forces and moments acting on the vessel which are an 
essential ingredient to the coupled analyses described in the following 
sections. 

Equation (7.2) is solved for the vessel shown in Figure 7.1 with vessel 
data given in Table 7 .1 . Figure 7.2 shows a perspective view of the 
submerged hull geometry represented by the triangular facets used for the 
diffraction analysis. A total of 446 facets was used to define the body in a 
suitably accurate manner . 

It is known that wave induced roll and pitch motions of the monohull 
have a disproportionately large effect on vessel operability by inducing 
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Table 7.1 Leading particulars of crane vessel McDermott DB50 

Displacement (including volume of fluid inside motion suppression 43 500 t 
tanks) 
Length overall 151.5 m 
Beam overall 46.0 m 
Depth, keel to main cargo deck 12.5 m 
Transit draught 4.8 m 
Minimum operational draught 5.0 m 
Maximum operational draught 8.5 m 
Cargo capacity 18 000 t 
Cargo area 2935 m2 
Clear cargo height 21 m 
Deck load 10 t/m2 
Heavy lift crane: 

boom length 105 m 
slewing rate 0.33 rpm (light load) 

0.20 rpm (full load) 
Main hook maximum static load 4000 t at 37 m 
Main hook maximum revolving load 3800 t at 25 m 

1100 t at 75 m 
Minimum radius (main hook) 21.0 m 
Maximum main hook height 93.5 m 
Full load hoist speed 2.75 m/min 

large accelerations at the crane hook. It is, therefore, worth while 
considering the installation of a motion suppression system on monohull 
crane vessels to reduce wave induced roll motions. This has been done for 
the vessel used to illustrate the study. In the interests of brevity, the motion 
suppression system is not described here . Its operation on board the vessel 
is represented within the diffraction analysis by additional degrees of 
freedom and the full procedure is described in Chapter 10. 

Figures 7.3 and 7.4 show heave and pitch wave induced motion 
responses as a function of wave period for the vessel with no crane load in 
head seas. The roll and pitch motions are both reduced by the effect of the 
motion suppression system. 

7.3 Coupled motions of vessel and crane load 

The wave induced motions of a crane vessel are made up of a complex 
interaction of the rigid body motions of the hull, elastic deformations of the 
hull and also of the crane tub, housing and jib, together with vertical 
stretching of the cable suspending the hook load and swinging pendulum 
oscillations of the load. All these degrees of freedom pose a cumbersome 
(but not intractable) problem. However , these degrees of freedom can be 
significantly reduced by recognizing that the motions and forces at the 
crane hook will be primarily governed by the relatively low stiffnesses 
associated with the rigid body motions of the vessel and the vertical or 
lateral movement of the hook load, with the crane tub and housing playing 
a smaU part. 
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Figure 7 .3 . Heave motions in head seas 
(stern lift) for crane load masses of 0 to 
4000 t. Key: a - crane load = 0.0 t; 
b - crane load = 500.0 t; c - crane load 
1000.0 t; d - crane load = 2000.0 t; 
e - crane load = 4000.0 t 
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Figure 7 . 4 . Pitch motions in head seas 
(stern lift) for crane load masses of 0 to 
4000 t. Key: a - crane load = 0.0 t; 
b - crane load = 500.0 t; c - crane load 
1000.0 t; d - crane load = 2000.0 t; 
e - crane load = 4000.0 t 

Thus the system may be adequately described by the six rigid body 
degrees of freedom for vessel motions with the three orthogonal displace­
ments of the lift mass. The equation of motion of this system can be written 
in nine degrees of freedom as 

Z ' + B ' Z ' + ( Κ ' + K c ) Z ' = F ' e'"^ (7.3) 

where Z ' is the complex vector containing the surge, heave, sway, roll, yaw 
and pitch motions of the vessel, together with the surge, heave and sway 
motions of the crane load; M ' combines the physical masses and inertias of 
the crane load with the added masses and inertias of the vessel calculated 
by the previously described diffraction analysis; B ' is the total vessel 
hydrodynamic damping, together with structural damping associated with 
the crane dynamics. The latter damping is estimated as a small percentage 
of critical d a m p i n g - 1 % for vertical motions and 5% for horizontal 
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( _ M + _ M A ) 0 ( B R + Bv) 0 

" 0 
Β = "o" 

0 0 W L 0 0 0 0 

0 0 mt 0 0 

M' = 

(7.4) 

where ( M + M A ) is the (6 x 6) mass plus added mass matrix of the rigid 
vessel in the six rigid body degrees of freedom of surge, heave, sway, roll, 
yaw, and pitch. The remaining three degrees of freedom are crane load 
surge, heave and sway where the physical mass, mL, of the crane load 
remains as a diagonal term. The damping matrix, Β ' , is made up from the 
vessel rigid body (6 x 6) radiation plus linearized drag damping matrix 
( B R + By) together with damping terms bi and taken here as 1% and 
5 % of critical damping for the horizontal and vertical motions respectively. 
The matrix, Κ ' , in Equation (7.3) can be written as foHows: 

K ' = 

0 

1 0 ~0 "o 

o 0 0 0 

' 0 0 0 

(7.5) 

and consists of the (6 x 6) hydrostatic restoring and mooring stiffness 
matrix, K , in the six vessel rigid body with all remaining terms being zero. 
The matrix Κ ς provides the only source of coupling in the equation 
between the vessel's rigid body motion and the crane load motions. The 
matrix K c can be written as shown on page 196, where (JC', y\ z ') are the 
co-ordinates of the crane load suspension point relative to the vessel centre 
of gravity position; is the vertical stiffness of the crane structure and 
load suspension wires with k^ being the transverse stiffness of the swinging 
load on the suspension lines. In Equat ion (7.6), terms kj,, ky and k^ denote 
the linear hydrostatic plus mooring stiffnesses of the vessel with r^, Vy and 
denoting the rotational hydrostatic plus mooring stiffnesses. 

For a load mass, /TIL, and a suspension line length of L , /ct can be written 
as 

(7.7) 

motions of the crane load; K ' is the combined hydrostatic, and linearized 
mooring stiffness matrix; F ' is the complex wave exciting force vector 
evaluated by the diffraction analysis. 

The total mass and damping matrices of the coupled system can be 
written as follows 
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K c = , 

χ Y Ζ Θ, 

X 0 0 0 -y'kr 0 0 

Y 0 A:, + ,̂- 0 -z'k. 0 x'k. 0 -k. 0 

ζ 0 0 + k, -x'k, 0 0 0 -kr 

θχ 0 -z'k. 

. k, + y'^k 

0 -y'kr 

z'k, 0 -x'y'k, fry + . 
yy'z'k, 

0 x'k, 

θ. 0 -x'z'kf. -y'z'k, i ̂  fz + -^'^ -x'k. 0 

( .k, + y' 

-kr 0 0 0 -z'k, y'k, kr 0 0 

η 0 0 z'k. 0 -x'kc 0 /c. 0 

0 0 x'k, 0 0 0 

Note: 

X = surge 

Y = heave 

Ζ = sway 

Θ, = roll 

Θ, = yaw 

Θ, = pitch 

Xc = crane load surge 

Y^ = crane load heave 

Z( = crane load sway 

(7.6) 

The wave force vector, F ' , may be written as 

Κ(ω) 

F ' =.4(ω) 0 

0 

0 

where Λ{ω)Κ(ω) is the ( 6 x 1 ) vector of wave induced forces on the rigid 
vessel. It needs to be emphasized here that the elements of matrices M', B ' 
and F ' are obtained from the boundary element numerical analysis 
described in Chapter 5 and will, therefore, be dependent on incident wave 
frequency. 

The above theory is illustrated by example calculations which address 
two areas of concern where the coupled motions induce either vertical or 
lateral oscillations of the hook load. Both phenomena will occur irrespect­
ive of the type of hft and the wave direction. 

The case of coupled motions inducing vertical oscillations of the hook 
load is illustrated by considering a stern lift in head seas. Equat ion (7.3) is 
solved for a range of wave periods and for crane hood load values of 0, 500, 
1000, 2000 and 4000 t with a line length of 90.5 m. Figure 7.3 shows the 
resultant vessel heave motions and demonstrates that these are not 
significantly affected by the vertical dynamics. Similarly, Figure 7.4 
demonstrates that pitch motions in head seas are only slightly influenced by 
the vertical dynamics of the hook load. A measure of the vertical inertia 
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Figure 7.5. Relative vertical motions of 
crane load (stern lift) for crane load 
masses of 0 to 4000 t. Key. a - crane 
load = 0.0 t; b - crane load = 500.0 t; 
c - crane load = 1000.0 t; d - crane 
load = 2000.0 t; e - crane load = 
4000.0 t 
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Figure 7.6. Relative horizontal motions of 
crane load (stern lift) for crane load masses 
of 0 ^ 0 0 0 t (no tugger lines). Key. 
a - crane load = 0.0 t; b - crane load = 
500.0 t; c - crane load = 1000.0 t; 
d - crane load = 2000.0 t; e - crane 
load = 4000.0 t 

loads in the crane jib and load suspension lines is given by a plot of the 
relative motion between load and vessel as a function of wave period. This 
is presented in Figure 7.5 and shows that the inertia loads are small but 
nevertheless significant in operability considerations. Even for the largest 
hook loads, the crane dynamics do not approach resonance and, therefore, 
dynamic magnification effects are negligible. Figure 7.6 illustrates the 
relative lateral motions of the load (in the vertical plane through the vessel 
fore and aft centre line) for a stern lift in head seas. For low wave periods, 
the swinging of the load remains small. However , as the wave period 
approaches the natural period of the pendulum load the lateral motions 
increase significantly. 
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Figure 7.7. Roll motions in beam seas (side 
lift) for crane load masses of 0-2500 t (no 
tugger lines). Key: a - crane load = 0.0 t; 
b - crane load = 500.0 t; c - crane load = 
1000.0 t; d - crane load = 2000.0 t; e -
crane load = 2500.0 t 
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Figure 7.8. Relative horizontal motions of 
crane load (side lift) in beam seas for crane 
load masses of 0-2500 t (no tugger lines). 
Key: a - crane load = 0.0 t; b - crane 
load = 500.0 t; c - crane load = 1000.0 t; 
d - crane load = 2000.0 t; e - crane load = 
2500.0 t 

The second case of coupled motions exciting swinging hood load motions 
is illustrated by examining a side lift in beam seas. Equation (7.3) is solved 
with numerical values derived from vessel data given in Table 7.1 and from 
the diffraction analysis. Crane load masses of 0, 500,1000, 2000 and 2500 t 
are used together with a line length of 90.5 m. The influence of coupling on 
sway motions of the vessel is very small and is not presented here. Figure 
7.7 displays the roll motion of the vessel for the different crane load 
masses. It is clear that the hook load does not significantly affect the roll 
motions of the vessel for the case considered. Figure 7.8 presents the 
relative lateral motion between the suspended mass and the crane j ib, as a 
function of wave period. This yields a measure of side loads on the crane 
jib. Examination of the diagram and consideration of the suspended mass 
magnitudes shows that significant lateral loads are applied to the crane jib. 
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Figure 7.9. Roll motions in beam seas (side lift) for crane line lengths of 20-100 m (crane 
load = 1500 t) (no tugger lines). Key: a - line length = 20.0 m; b - line length = 40.0 m; 
c - line length = 60.0 m; d - line length = 80.0 m; e - line length = 100.0 m 

7.4 Operability limits 

The wave induced vessel and hook load mofions are only of value 
operafionally if they can be translated into operability limits. In order to do 
this, however, the regular wave motions calculated in the preceding secfion 

These forces need to be accounted for in the assessment of crane operating 
loads. 

Figure 7.9 shows the roll motions of the ship in beam seas with a side lift 
of 1500 t and varying line length. This diagram demonstrates the major 
influence that the load and pendulum length can have on the roll motion of 
the vessel. This feature is not as operationally significant as it may appear 
at first sight, since heavy lifts will be carried out with line lengths in the 
region of 70-100 m. 
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have to be converted into motions and accelerations at specified points 
around the hull, such as the crane boom tip. The regular wave motions and 
accelerations have also to be converted into short term responses to long 
crested irregular waves. These procedures are described below. 

In order to calculate accelerations of the crane boom tip for the various 
lift cases it is necessary to translate the motions of the vessel at its centre of 
gravity into values applicable to the position of the crane boom tip. To do 
this, standard equations for coupling the six rigid body modes of motion 
are used to give the three orthogonal motions per unit wave ampli tude, Y, 
at the position of interest. These motions can be converted into regular 
wave acceleration amplitude operators . A, using the equation 

A = - ω ^ Y (7.9) 

where ω is the radian frequency of the waves. 
Short term responses in irregular waves are calculated using the regular 

wave response amplitude operators (RAOs) obtained from the solution of 
the coupled equation of motion (7.3). The vessel response spectrum, Ξγ{ω), 
is obtained by the usual linear system relationship of 

5,(ω) = I Κ{ω) |2 5 , (ω) (7.10) 

where 5^(ω) is the incident wave elevation spectrum and /?(ω) is the 
appropriate motion or acceleration R A O . 

Once the wave elevation and response spectra are known the significant 
wave height and significant motions {H^ and H,) can be obtained by using 
the narrow band spectra relationships 

H^^4 V ( m ^ ) , 

and I (7.11) 

Hr - 4 V(m,) ^ 

where and m^. are the areas under the wave elevation and the response 
spectra respectively. The ratio H^/H^ is then presented as a short term 
irregular wave response/amplitude ratio for each of the six vessel motions 
of surge, heave, sway, roll, yaw and pitch. The ratio is computed for a 
range of average zero-crossing wave periods. 

Several choices of input spectra can be used for these calculations. 
Among these are the Pierson-Moskowitz, J O N S W A P and ISSC forms. 
These are described further in Chapter 2 and in Patel (1989). 

The vessel's operability limits are then calculated in terms of significant 
wave heights of long crested irregular waves of specified spectra. The 
maximum allowable crane tilt angle or vertical boom tip acceleration is 
converted to a maximum allowable significant angle or acceleration. This is 
then used with the irregular wave short term response amplitude operator 
(ratio of significant response value to significant wave height) to yield the 
maximum allowable significant wave height for vessel operations. 

This procedure is illustrated first for the crane tilt angle limit. The 
maximum allowable crane tilt angle, a^ax, is given by 

«max = (α - β) (7.12) 
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where α is the maximum allowable tilt angle from the vertical, in degrees, 
and β is the maximum steady crane tih angle due to side wind, in degrees; 
β is taken as 0.1° in these calculations. Hence the significant value of the 
maximum crane tilt angle is given by 

with the constant of proportionality, 1/1.86, being calculated to apply for a 
storm of 3 h duration. In practice, the taking up and transfer of the load 
will last rather less time than this and hence the constant of proportionality 
will be lower than that given, resulting in higher values of 

Using Equation (7.13), the maximum allowable significant wave height 
for vessel operations is obtained as 

H, - ^ ( 7 . 1 4 ) 

where F is the greater of the roll or pitch motion short term response 
amplitude operator of the vessel in degrees per metre . 

The maximum significant wave height limit due to maximum vertical 
crane boom tip acceleration being exceeded is also obtained in a similar 
manner . For a maximum permissible crane boom tip vertical acceleration 
of Ajnax, the equivalent maximum significant crane boom tip acceleration, 

is given by 

( 7 . 5 ) 

Then the maximum significant wave height can be derived from the vertical 
crane boom tip acceleration limit by the equation 

/ / s = ^ (7.16) 
Cr 

where G is the crane boom tip vertical acceleration short term response 
amplitude operator (in m/s^/m). This value will vary with the position of 
the crane relative to the vessel. 

Figures 7.10 and 7.11 show typical operability limits plotted on signifi­
cant wave height against average zero-crossing period axes. Operability 
limits due to exceedence of maximum crane tilt and maximum boom tip 
vertical acceleration are given. Combinations of significant wave height 
and average zero-crossing period below the lower of the two lines are , 
therefore, permissible. 

The two graphs also present breaking wave height limits which define 
the maximum value of significant wave height at which the highest 
one-third of the waves within the irregular sea will have broken. This 
significant wave height limit is defined as follows. In a regular wave, a 
breaking wave height limit, / / β , can be written as 

/ / B = ^ (7.17) 
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Figure 7 .10 . Operability significant wave 
height limits in head seas (100 t stern lift at 
40 m radius on whip hook). 
Displacement = 34 784 t, draught = 8.5 m; 
Vessel KG =10.6 m, Vessel GM = 15.5 m; 
Vessel radius of gyration: roll = 11.0 m, 
pitch = 48.0 m, yaw = 48.0m; 
Crane boom tip x,y,z co-ordinates relative to 
vessel stern deck are - 2 6 . 2 m, 0 m, 122.7 m. 
Key: a - breaking wave limit; b - crane tilt 
limit (3.5°); c - crane acceleration limit 
(1.471 m/s') 
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Figure 7 .11 . Operability significant wave 
height limits in quartering seas (2700 t side 
lift at 40 m radius on main hook). 
Displacement = 34 784 t, draught = 8.5 m; 
Vessel KG =16.7 m. Vessel GM = 11.9 m; 
Vessel radius of gyration: roll = 15.2 m, 
pitch = 52.0 m, yaw = 52.0m; 
Crane boom tip x,y,z co-ordinates relative to 
vessel stern deck are 13.8 m, 40 m, 95.7 m. 
Key: a - breaking wave limit; b - crane tilt 
limit (3.5°); c - crane acceleration limit 
(0.490 m/s') 

where λ is the wave length. Writing λ in terms of wave period, Γ, for deep 
water gives 

^ (7.18) 
14TT 

Then an approximation to a significant wave height Hmit, {H^)„ 
written as 

(^s )max -
14TT 

X, can be 

(7.19) 

where is an average zero-crossing period. This is the breaking wave limit 
plotted in Figures 7.10 and 7.11. In conditions where the tilt angle or crane 
boom tip acceleration induced significant wave height limit exceed the 
breaking significant wave height limit, the lowest of these limits is taken to 
apply. 
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1 ^ cosωr z, = 0 (7.22) 

after division by m. The unstable behaviour is clearly independent of the 
magnitude of mass m and is only affected by parameters g, L , ω and y^. It is 
unnecessary to consider the right hand side of Equation (7.20) if only the 
stability of the equation is being examined. Therefore this is equated to 
zero. 

A transformation χ = ωί permits Equation (7.22) to be converted to the 
classical Mathieu equation form of 

d^z Γ £ Vi 
— + + ^ cosjc ζ = 0 (7.23) 
dx^ [ΐω^ L \ ^ ^ 

and taking 

one obtains 

d^z 
— + [δ + € cosx] ζ = 0 (7.25) 
djc^ 

Stoker (1950) presents stabihty diagrams for Equat ion (7.25) to identify 
the ranges of δ and e for which unstable and stable solutions will arise. 

An interesting feature of the dynamics of coupled vertical and lateral 
motions of the crane hook load is the possibility of exciting unstable large 
amplitude swinging oscillations through a parametric instability. This can 
occur due to the oscillatory variation of tension in the suspension lines 
which is induced by vertical motions of the crane hook. 

The fundamental theory underlying such instabilities is described by the 
Mathieu equation. The development of this theory is comprehensively 
described by Stoker (1950). This section applies the theory to the crane 
vessel of Figure 7.1 and demonstrates the derivation of readily usable 
criteria for ensuring that such unstable hook load swinging motions are 
avoided during vessel operations. 

The equation for lateral motions, Z\, of the crane hook load can be 
written as 

mz\-\— Z\ = m Zj (7.20) 

where the line tension Τ is no longer constant, m is the mass of the hook 
load and L is the suspended line length. The small level of damping is 
ignored and 'ij is the lateral acceleration of the crane jib at the load 
suspension point. If the vertical motion of the suspension point is of 
amplitude y-^ and radian frequency ω, then, the tension Τ may be given by 

Τ = m g -\- m y^ cosω/ (7.21) 

and the equation of motion becomes 
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Figure 7.12. Stability diagram for small e (shaded regions are stable) 

Since e will be small for the crane vessel problem, a small amplitude 
approximation to the stability diagram may be used. This diagram is also 
given by Stoker and is reproduced in Figure 7.12. If the length of the lift 
wires varies from 10 to 80 m, the wave period from 5 to 15 s and the crane 
jib vertical motion from 0 to 4 m, then parameters δ and e will vary from 
0.078 to 5.59 and 0 to 0.40 respectively. These ranges are represented by a 
box on Figure 7.12 and indeed show that the crane may operate in two 
regions (A and B) where the values of parameters δ and e are such that 
unstable oscillations could arise. 

Figure 7.12, however, needs to be transformed into a form which is more 
suitable for operational use. This has been done in Figure 7.13 which plots 
the lift wire length, L , against wave period, Γ, with crane jib vertical 
amplitudes (y^) of 1 and 4 m. The first unstable region (A) in Figure 7.12 
maps onto Figure 7.13 as a narrow band whose width is governed by the 
magnitude of y y The second unstable region (B) is dominated by the 
parameter δ being approximately equal to unity and effectively maps as an 
unstable line except for very short suspended line lengths. In general, the 
lift superintendent has to be aware that large oscillations of the load may 
occur when the wave period is an integral multiple of half of the natural 
period of the pendulum load and that this may occur if the suspended line 
length and incident wave period were to map onto either of the unstable 
regions A or B. Note that for small boom tip motion amplitudes, the region 
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Figure 7.13. Operations advisory diagram for Mathieu instability. Key: a - boom tip 
motion amplitude (Zj) = 4 m; b - boom tip motion amplitude (zj) = 1 m 

of potential unstable motions becomes very small. The existence of load 
tugger hues reduces the possibility of the instability occurring. 

The stability diagram of Figure 7.13 is useful for identifying conditions 
where 'unstable ' swinging hook load oscillations may occur. Clearly, 
avoiding these conditions during operations is advisable. Nevertheless, the 
occurrence of Mathieu instability does generally require that regular waves 
approach the vessel with constant properties over a long period of t ime. 
Figure 7.13 shows that the unstable regions are very narrow with respect to 
wave period. Hence it would be difficult for a real sea state, which has 
energy distributed over a reasonably wide period range, to excite and 
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7.5 Transient line tension at lift-off 

Transient peaks in crane hne tension peaks can occur during load lift off 
and have to be predicted using a time domain numerical analysis of the 
vessel dynamics, crane and lift line flexibility and the dynamic behaviour of 
the floating load delivery barge or of the fixed platform. In order to 
illustrate this phenomenon the results of four typical lifts carried out by the 
monohull crane vessel shown in Figure 7.1 are presented. These are 

(a) side (port) lift of 2400 t at 40 m radius from a transportation barge; 
(b) side (port) lift of 2400 t at 40 m radius from a fixed platform; 
(c) stern lift of 4000 t at 37 m radius from a transportation barge; 
(d) stern lift of 4000 t at 37 m radius from a fixed platform. 

As an example Lloyd's Register 's (LR) combined duty and speed factor 
limits for offshore cranes are used. These factors limit the maximum 
permissible dynamic line tension to 1.15 and 1.05 of the stafic load for the 
2400 t and 4000 t loads respectively. 

The theoretical basis of the numerical analysis is described first. The 
equation of motion of the crane vessel is given by 

M x + D i + K x = F(0 (7.26) 

where Μ is the total mass matrix; D is the equivalent linear damping 
matrix; Κ is the stiffness matrix which incorporates both hydrostatic and 
mooring stiffnesses; F{t) is the general disturbing or exciting force vector 
which may be due, for example, to waves or a crane hft; x, χ and χ are the 
displacement, velocity and acceleration vectors respectively. The displace­
ment vector contains the six rigid body degrees of freedom of the vessel: 
surge, heave, sway, roll, yaw and pitch. 

The property matrices, M, D and K, are functions of the vessel geometry 
and the vessel flow field interaction. For the vessel of Figure 7 .1 , linear 
hydrodynamic diffraction theory (Chapter 5) is used to generate the added 
mass, damping and stiffness properties. 

For the time domain computafion, the dynamics of the load delivery 
barge should also be included. The vertical equation of motion of the barge 
when the load and the barge are in contact is given by 

Mb 'ib + D^z^-^ K^z^ = T- ma (7.27) 

where Zb is the verfical displacement of the barge; K^^ is the hydrostatic 
stiffness in heave of the barge; Τ is the hne tension; Mb is the barge total 
mass of which its added mass component and the damping coefficient, Db, 
were also computed using a diffraction analysis; mL is the mass of the load 
and associated lifting equipment. 

maintain a Mathieu instabihty. Thus the presence of irregular, directional 
waves and any non-linear damping within the system does reduce or 
eliminate the risk of large amplitude swinging hook load motions. Work on 
Mathieu instabihties for tension leg platforms in Chapter 6 presents further 
details on this point. 
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Table 7.2 Major simulation parameters 

Crane vessel draught 8.5m 

Load delivery barge 

length 
beam 
total mass 
heave damping 

9L44 m 
27.43 m 
40 856 t 
3120 kNs/m 

Estimated crane stiffness 
revolving mode 
tied back mode 
damping 

20 531 kN/m 
45 665 kN/m 
0.04 V(Ä:cmL) 

Load wind up rate 2.75 m/min 

Line pretensions (% of mig) 

Lift A 
Lift Β 
Lift C 
Lift D 

80% 
90% 
80% 
95% 

Simulation time step 0.05 s 

Plotting time step 0.50 s 

Table 7.3 Results for analysis of transient line tensions 

Lift Lift 
label load 

t - i 

Lift 
radius 
m - i 

Lift 
type 

Line pretension 
at start of lift 
off as % of 
static load 

Maximum line 
tension kN"i 

Minimum 
required LR 

combined duty 
and speed factor 

A 2400 40 SI/TB 80 25 250 1.012 

Β 2400 40 SI/FP 90 25 510 1.083 

C 4000 37 ST/TB 80 40 050 1.021 

D 4000 37 ST/FP 95 40 950 1.044 

Notes: 
SI: Side lift; 
ST: Stern lift; 
TB: Transportation barge; 
FP: Fixed platform. 

For the resuhs presented here , F{t) consists of the crane hft forces only. 
The crane lift induced roll moment is assumed to be counteracted by a 
crane moment compensation system. The equations of motion of the crane 
vessel and the delivery barge are solved by numerical integration using 
conventional techniques. The load on the vessel is due to the line tension at 
the crane boom tip which is given by 

T=kAw{t)^z,-z,] (7.28) 

where is the crane stiffness; z^ is the vertical displacement of the crane 
tip; w{t) is the crane wind up. Table 7.2 lists the major parameters used in 
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Figure 7.14. Line tension for 4000 t stern lift from a fixed platform. Key: a - maximum 
allowable tension 

the numerical computation described here. The simulations are carried out 
in the time domain using a time step of 0.05 s and using the maximum 
crane wind up rate of 2.75 m/min. Figure 7.14 presents a typical time 
history plot of line tension during the lift off phase for the hft D described 
in Table 7.3. This table also presents the lift off maximum tension data 
from calculations for all four lifts. It can be observed that in the cases 
examined, which are typical of the most severe lifts, line tensions do 
remain below the allowable LR combined duty and speed factors by 
reasonable margins. The level of dynamic line tensions may be further 
reduced by lowering the permissible crane wind up rate to less than 
2.75 m/min. 
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C h a p t e r 8 

Tandem hull floating vessels 

8.1 Introduction 

Considerations of the hydrodynamics of semisubmersibles, tensioned leg 
platforms and ship shape hulls in the preceding chapters have illustrated 
the substantial differences in performance directly related to the open 
space frame or the ship shape nature of vessel hull forms. Over recent 
years, the offshore industry has substantiaUy broadened the duties re­
quired from these two types of hull forms. They have been used as drilling 
platforms, crane vessels, diving and maintenance support vessels, for 
marine transportation of very large structures and, lately, for oil produc­
tion. 

These applications have required the vessels to carry reasonably large 
deck payloads and exhibit low wave induced motions. Requirements of 
cruising speed have been secondary to the above and to those of station 
keeping and survival in very heavy seas. The importance of low wave 
induced motions, for oil drilling or production activities, for example, has 
necessitated the use of semisubmersibles, whereas high payload require­
ments have tended to require ship shape hull forms. 

However, an unusual floating vessel design, which can be regarded as a 
hybrid of monohull and semisubmersible hull shapes can offer a combina­
tion of the low wave induced motions and high payload advantages of both 
these hull forms. The tandem hull vessel consists of a surface piercing hull 
separated by a small distance from a fully submerged hull directly below it. 
The gap between the hulls is substantially open, with the hulls connected 
by short vertical bracing members of circular or rectangular cross-section. 
Figure 8.1 shows a perspective view of a typical tandem hull design with an 
upper hull of 124.0 m length, 32.68 m beam and 5.37 m draught. A lower 
hull of 124.0 m length, 32.68 m beam and 10.4 m depth is connected to the 
upper hull by rectangular members bridging a gap of 4.0 m height. For this 
particular vessel, there are 12 inter-gap members , each of 11.25 m length 
and 3.44 m width. The tandem hull veseel is of 58 745 t displacement with 
a 19.77 m total draught. 

The three major performance requirements for a floating production 
platform are high payload capacity for process plant and oil storage, low 
motion response to waves and low construction cost. Both semisubmer-
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Figure 8.1. Perspective view of a tandem hull vessel 

sibles and monohull vessels have shortcomings when viewed against these 
criteria. Semisubmersibles have low wave induced motion characteristics 
but suffer from low payload capacity and high construction cost. Monohull 
vessels, on the other hand, offer high payload capacity and low construc­
tion cost but have higher wave induced motions than semisubmersibles. 
The low wave induced motions of semisubmersibles are due to the open 
'space frame' pontoon/column configuration which allows inertia and 
pressure induced wave forces to partially cancel each other , thereby 
reducing the level of wave forces on the vessel. The low waterplane area of 
a semisubmersible also gives rise to high natural periods which are helpful 
to vessel motions at predominant wave periods. In contrast, a monohull 
vessel achieves its high load carrying capacity due to its large waterplane 
area, but this contributes to its relatively higher wave induced motions. 
The tandem hull platform combines the beneficial design features of both 
conventional monohull vessels and semisubmersibles to satisfy the needs of 
both high payload capacity and low wave induced motion characteristics. 

However, the emergence of these special purpose hull configurations 
requires a unified technical approach to such designs - both to place them 
within the contest of all marine vehicles and to enable better understanding 
of their hydrodynamic behaviour. This chapter at tempts to provide this for 
the tandem hull form in a floating production platform application where 
deck payload capacity and low wave induced motions of the stationary 
vessel are the primary design goals. The chapter presents a survey of 23 
vessels whose leading dimensions, pay loads and displacements are used to 
define non-dimensional ratios for each vessel with the ratios plotted against 
each other to reveal some interesting generic variations. 

A simplified hydrodynamic analysis is then derived for wave induced 
heave forces and motions for typical semisubmersible, tandem and mono-
hull vessels to illustrate their hydrodynamic behaviour. The simplified 
analysis is complemented by a more representative diffraction theory 
based hydrodynamic analysis of the hull form to yield wave induced 
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8.2 Hybrid hull characteristics 

A survey of 23 designs falling within seven distinct vessel types is presented 
here. The vessel types are described further below. 

Type 1 consists of semisubmersibles with pontoons that are deeply 
submerged and vertical columns that connect the deck to the pontoons 
through the water surface. The resultant small water plane area coupled 
with low wave induced forces due to deep pontoon submergence leads to 
low wave induced vessel motions. However, semisubmersibles have 
limited deck payload capacity due to low stability from the small water 
plane area and because of the large separation between centres of gravity 
and buoyancy. Vessel type 2 is the special purpose tensioned buoyant 
platform used for hydrocarbon production. Types 3 and 4 are crane vessels 
of semisubmersible (as in type 1 above) and conventional monohull form 
respectively. Vessel types 5 and 7 consist of conventional cargo carriers and 
naval ships respectively. These vessels have large water plane areas and 
submerged volumes that are close to the water surface compared to the 
hull shapes of type 1. Thus such hulls tend to have higher load carrying 
capacity but poorer wave induced motion characteristics. Vessel type 6 is 
the special purpose tandem hull form being considered in this chapter. 

Table 8.1 lists these vessels together with their displacements, overah 
lengths, water plane areas, normal loaded or operating draughts, sub­
merged pontoon depths, if any, and payloads, with some of the data 
obtained from several sources such as Greenham (1986) and Moore (1986). 
Due to possible inconsistencies in definition of payload, the values 
presented for this parameter must be viewed with caution, particularly for 
crane vessels. No payload data are included for naval ships for the same 
reason. If the water plane area of a monohull is not directly available, it has 
been calculated using a coefficient of fineness of water plane area of 
0.9 - this is characteristic of tanker type vessels with long parallel sides. 
The displacements of commercial cargo carriers are calculated assuming 
that the ratio of summer dead-weight to displacement is equal to 0.86. 
Tanker 2 is selected to be a monohull vessel with a displacement close to 
that of the type 6 tandem hull vessel. 

Since the small water plane area and deeper draught of a semisubmer­
sible vessel contributes to its low wave induced motion response, two 
non-dimensional ratios incorporating these parameters can be written as 
the water plane area ratio: 

« . = 1 ^ 3 ( 8 1 ) 

motions and inter-hull forces. The analyses results are compared with 
model tests at l/75th scale for both wave induced motions and inter-hull 
forces. The theory and model tests are used to deduce principal features of 
the tandem hull's hydrodynamic behaviour in waves. 
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Table 8.1 Vessel data 

Τ Vessel Displacement Overall Water Draught Dimension Payload 
y (t) length, plane D(m) c ( m ) P ( t ) 
ρ L ( m ) Area A Fig.8.5 
e (sq m) 

1 A A k e r H 3 19 636 108.2 305 21.3 14.6 4500 
Β G V A 4000 25 790 80.6 523 20.5 13.0 4020 
C O V A 5000 33 600 98.6 726 22.5 14.5 6900 
D O V A 10000 63 900 82.4 853 24.5 13.5 9300 
Ε BS 8000 40 813 113.0 681 23.0 12.5 8000 
F Western Pacesetter 19 680 79.3 463 18.3 12.2 5428 
G Semiflex II 45 250 150.0 486 50.0 47.0 10 000 
Η Penta 7000 19 710 97.0X 433 22.5 13.5 8000 

2 I Hutton Tension 63 300 95.7 1320 33.2 22.2 7950 
Leg Platform 

3 J Derrick Barge 102 175 000 153.9 5034 26.6 13.0 29 000 
Κ H D GL 100 90 000 3706 12.0 12.0 33 500 

4 L ITM Mariner 5300 95.5 2450 2.0 2.0 900 
Μ ITM Challenger 44 128 140.8 5457 8.5 8.5 6500 

5 Ν Bulk Carrier 155 440 245.0+ 9271 16.9 16.9 46 820@ 
O Tanker 1 277 579 310.0+ 17 183 19.4 19.4 92 062@ 
Ρ Tanker 2 61 150 214.9+ 6430 12.3 12.3 16 726@ 

6 0 Tandem Hull 59 200 130.5 3561 19.8 5.5 15 000 

7 R Aircraft Carrier 24 284 208.8* 5149 8.7 8.7 
S Invincible 16 257 192.8* 4772 7.3 7.3 
Τ Type 82 6198 149.3* 2257 5.2 5.2 
U Type 42 3556 119.5* 1538 5.8 5.8 
V Type 21 2794 109.7* 1254 6.0 6.0 
W Fleet Tanker 36 578 197.5 4550 11.1 11.1 

Notes: 
" Length across apexes; 
* Length at wated ine ; 
+ Length between perpendiculars; 
@ Based on net tonnage. 

1: semisubmersible drilling or production vessels; 2: tension leg platform; 3: semisubmersible crane vessels; 4: monohul l 
crane vessels; 5: commercial cargo carriers; 6: tandem hull; 7: naval vessels 

and the draught ratio: 

D 
yV3 (8.2) 

where A is the surface huU water plane area; Vis the total hull volume; and 
D is the total draught of the vessel. 



214 Tandem hull floating vessels 

Γ ΡΊ 1/3 
(8.7) 

Ρ 

where Ρ is the vessel payload; and ρ is sea water density. 
The ratios defined above are calculated from Table 8.1 and plotted in 

various ways. Three representative variations are presented here with 
Figure 8.2 giving area ratio ( A 4 ) plotted against water plane ratio (i?i) for 
all the surveyed vessels. The distribution of plotted points clearly shows 
distinct clusters corresponding to semisubmersibles including the tensioned 
buoyant platform and those due to monohulls. The hybrid nature of the 
tandem hull, as a vessel configuration midway between the semisubmer­
sible and monohull , is clearly evident in Figure 8.2 with data for the 
tandem hull lying between the semisubmersible and monohull clusters. 

Figure 8.3 shows the lower hull depth ratio (R^) plotted against water 
plane ratio. Once again, the distribution of points reflects the high pontoon 
submergence of semisubmersible vessels which are all within a band of high 
values of from 0.12 to 0.32. For monohulls, however, this ratio is 
approximately 0.05 with the tandem hull (type 6) showing up in a distinctly 
different position from the general trend. Fur thermore , the differing 
demands of higher stability placed on crane vessels are evident since the 
point clusters for both semisubmersible and monohull crane vessels are 
skewed towards higher values of ratio Ri which correspond to greater 
hydrostatic stability. 

Figure 8.4 presents payload to draught ratio against the water plane 
ratio. Naval vessels are excluded from this curve due to the absence of 

Three further ratios which incorporate the water plane area, displaced 
volume and the leading dimensions of the vessel can be written as the 
length ratio 

« 3 = (8.3) 

the area ratio: 

1 V 
« 4 = = — (8.4) 

and the lower hull depth ratio: 

« 5 = (8.5) 

where L is the overaU length; c is the hull draught for a monohull , the 
upper hull draught for the tandem hull, or the depth of submergence of the 
pontoon upper surface for a semisubmersible (see Figure 8.5). 

A further ratio can be written as lower hull depth to length ratio: 

/?5 c 

R . - - - - (8.6) 

A payload to draught non-dimensional ratio can also be written as 

1 
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Figure 8.2. Area ratio against water plane ratio for surveyed marine vehicles. Key: Δ 
Type 1, semisubmersible; V Type 2, Hutton tension buoyant platform; + Type 3, 
semisubmersible crane vessels; x Type 4, ship shape crane vessels; • Type 5, cargo 
vessels; 0 Type 6, tandem hull; O Type 7, naval vessels 

payload data. The tensioned buoyant platform has a smaller value of 
due to the excess buoyancy required to maintain the vertical mooring 
tethers in tension since the excess buoyancy reduces the payload capacity 
compared to a freely floating vessel. The distribution of points presented 
here shows an interesting, approximately straight line relationship between 
the ratios. Once again, the tandem hull lies midway between the semisub­
mersible and monohull point clusters. 

8.3 Simplified wave induced motions analysis 

The difference in the ratios of leading parameters for semisubmersible and 
monohull vessels is reflected in the substantially different wave loading 
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Figure 8.3. Lower hull depth to length ratio against water plane ratio. Key: Δ Type 1, 
semisubmersible; V Type 2, Hutton tension buoyant platform; -I- Type 3, semisubmersible 
crane vessels; x Type 4, ship shape crane vessels; • Type 5, cargo vessels; (} Type 6, 
tandem hull; O Type 7, naval vessels 

mechanisms for such designs, which in turn leads to different methods of 
hydrodynamic analysis. 

Semisubmersible vessels consist of a space frame of slender cylindrical 
members incorporating vertical surface piercing columns which connect 
deeply submerged horizontal pontoons to a deck structure with 
appropriate bracing to stiffen the structure. The low wave induced motions 
of semisubmersibles are primarily due to low wave induced forces and high 
heave, roll and pitch natural periods due to the low water plane area and 
low hydrostatic stiffness. The low wave induced forces are due to the 
deeply submerged pontoons being in the region of lower wave velocities 
and accelerations since wave energy decays rapidly with depth. However , 
force cancellation plays an even greater role in the occurrence of low wave 
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Figure 8.4. Payload to draught ratio against water plane ratio: Key: Δ Type 1, semisub­
mersible; V Type 2, Hutton tension buoyant platform; -I- Type 3, semisubmersible crane 
vessels; x Type 4, ship shape crane vessels; • Type 5, cargo vessels; () Type 6, tandem 
hull; 

induced forces. Such cancellation arises from two sources - the first occurs 
because, for some specific wave periods, a wave length can straddle or be 
some multiple of the vessel length which leads to zero pitch or roll 
moments . The second source of wave cancellation arises for vertical forces, 
say, if vertical wave induced pressure forces on the submerged pontoons 
are 180® out of phase with pressure forces on surface piercing columns 
leading to a smaller net force amplitude than the forces on the pontoons or 
columns on their own. 

For a monohull , on the other hand, a vessel length straddling a wave 
length is the only source of wave cancellation and occurs for the vessel in 
head or stern seas only since such vessels are normally long compared to 
their beam. Also, monohulls generally have low natural periods in heave. 
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Figure 8.5. Side view of multi-hull vessel 

roll and pitch which are much more likely to be within the periods of 
typical wave action. 

The above differences continue into methods of analysis. The slender 
space frame structure of a conventional semisubmersible permits the 
assumption that wave properties are not influenced by the presence of the 
members . Consequently, a Morison equation based approach (see Chapter 
5) can be used for vessel motions analysis with drag forces included in the 
formulation and linearized during solution of the equations of motion. 

The large submerged volume typical of a tandem hull or a monohull is 
such that the hull will interact with incident waves in a complex manner 
depending on the hull shape. Wave and vessel motion induced surface 
pressures on the hull can then only be deduced from a solution of the 
linearized wave problem with no flow boundary conditions satisfied at the 
free surface, the sea bed and the vessel hull. Chapter 5 presents the 
formulation of such a boundary integral hydrodynamic analysis technique. 
This boundary integral technique is used subsequently to predict wave 
induced forces and motions for a tandem hull. 

However, in order to illustrate the physical principles underlying hydro-
dynamic behaviour of these vessels, a simpler analysis is presented here , 
which, brings out the most significant features of the governing physics 
despite the simplifying assumpfions used. 

Consider heave motion of a generic muhi-hull vessel of the configuration 
shown in Figure 8.5. The vessel has dimension, b, perpendicular to the 
paper. It can represent a monohull vessel if dimensions a and d are taken as 
zero. A simple four column semisubmersible vessel can be invoked by 
setfing a at an appropriate value and s equal to zero, whereas the twin hull 
tandem vessel is modelled by setting dimension a equal to zero and s at an 
appropriate value to represent the inter-hull structure. 
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The following simplifying assumptions are used: 

1. The submerged and surface piercing hulls are treated as rectangular 
boxes having the same vertical centre line. 

2. Wave diffraction effects are ignored, including the linear damping due 
to gravity wave radiation from the hulls. Drag forces due to wave 
velocities are also neglected, permitting the undamped dynamic mo­
tion response to be calculated. 

3. Deep water hnear gravity wave theory is used. 
4. Inter-hull bracing members are assumed to be of small volume. Wave 

forces on such members are neglected in comparison with wave forces 
on the hulls. 

The multi-hulled vessel of Figure 8.5 in head seas will experience two types 
of wave induced heave force cancellation periods. These are values of wave 
period at which the heave force amplitude will become zero. Two 
mechanisms give rise to such cancellation periods: 

1. The first is associated with a complete wavelength or a specific 
multiple of a wavelength straddling the vessel length in head seas. At 
this period, the total heave force on the vessel will become zero. 

2. The second cancellation period is associated with wave forces on the 
upper and lower hulls. These forces are 180° out of phase with each 
other and at a particular wave period will cancel out in magnitude to 
give zero heave force amplitude. 

The effects of both cancellation periods can be quantified by deriving an 
expression for vertical wave force on the vessel. 

Now the velocity potential , β» for a deep water linear wave is 

2k 

where ω is wave frequency; Η is wave height; k is wave number ; t is time 
and the axes system Oxz is defined in Figure 8.5. 

Now the pressure force, fp, on the upper hull can be readily derived as 

U2 

- p—-báx + 

'all ^ ' J-LI2 

9Q 
- ρ — · bdx 

dt 

e ""̂  
kL ka 

sin — - sin — 
2 2 

sinwt (8.9) 

where g is the acceleration due to gravity. 
Next, the vertical inertia force, F,, on the lower hull is calculated as 

Fi = 

where is the added mass coefficient for the lower hull in vertical 
motion. 
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Taking C'„ = C„ + l 

Fi = - Ρ ^"^ ^ ^ ^ ^ exp[-A:(c + s + d/2)] sin — sinωí (8.10) 
k 2 

with the wave fluid acceleration calculated at the centre of the submerged 
hull. Therefore, the total vertical wave force on the hulls is 

F = Fp + Fi 

= Pg — A exp{-kc) 
smka/2\ 

[k{L- α)[ ~ sinkm) 

C'n, exp{-Ä:[5 + id/2)]} \ • sin — sinωí (8.11) 
L - 111 1- V \ / IJ I Λ 

- a J 2 
using = gK and a water plane area oíA = b{L - a). For the hull shape 
of Figure 8.5, it can be shown that 

- ^ = R,-Re (8.12) 
L - a 

enabhng Equation (8.11) to be written as 

Η f 2 
F= pg-Átxp{-kc) 

2 ' \ k{L - a) 

I smkal2\ 
1 -

\ sin kL/2 / 

X 

- 2C^ {R, - Re) ^xp{-k[s + {d/2)]} 
kL 

sin — sinωr 

y (8.13) 

Equation (8.13) for vertical wave induced force iUustrates the source of the 
two force cancellation mechanisms. The zeroes of the sin(A:L/2) term 
denote the occurrence of cancellation associated with a whole wavelength 
straddling the hull length. This occurs for vessel hull configurations where 
term a is zero or very small so that term sin(A:a/2) is approximately zero. 
The total force can also go to zero, however, when terms X and Y are equal 
in magnitude, corresponding to the case when the wave force on the upper 
hull is 180** out of phase and equal in magnitude to the wave force on the 
lower hull. Note that even when the magnitudes are not equal , the 
opposite signs of terms X and Y mean that the total heave force is lowered 
due to wave cancellation. 

Now Equation (8.13) can be used to deduce the vertical wave force 
amplitude on various vessel designs. For a single surface hull, a = d = 0 
and /?4 - /?6 = 0. This leads to the disappearance of one source wave 
force cancellation due to term Y vanishing in Equation (8.13). For 
semisubmersibles, the horizontal separation of vertical surface piercing 
columns plays a part in wave force cancellation. This feature is illustrated 
by the role played by term a in Equation (8.13). A conventional four 
column semisubmersible can be represented by choosing a value of a just 
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smaller than that of L and taking s as zero. On the other hand, a tandem 
hulled vessel can be represented by taking a as zero. In this latter case, the 
wave force equation reduces to a simpler expression but the two force 
cancellation mechanisms are still present. 

For all three semisubmersible, tandem hull and monohull vessels, a wave 
force cancellation will occur when the vessel length, L , and dimension, a, 
are multiples of the incident wavelength. However , in practice this is too 
restrictive since such force cancellation for wave periods of interest occur 
for vessel lengths that are unrealistically high. Therefore, the presence of 
wave force cancellation due to out of phase forces on submerged and 
surface piercing hulls is of much more interest. For a tandem hull vessel, 
this cancellation is exact for the condition. 

1 (L - a) exp{-A:[^ + {dll)]) 

1 - [sin(A:a/2)/sin(A:L/2)] ~ C'^ ( A 4 - R¿) 
(8.14) 

where f{k) can be called a cancellation function. 
If this transcendental Equation (8.14) is satisfied for specific values of k 

(and therefore wave period, 7 ) , force cancellation will lead to a zero wave 
force amplitude. The values of wave period at which exact force cancella­
tions occur are primarily influenced by the vessel's ratio of submerged 
longitudinal cross-sectional area to the water plane area (area ratio, 
i?4 = VIAL) and the lower hull depth to length ratio, Ä^, although the 
length scales a, d and s also play a progressively less important part . 

Now for a tandem hull with α = 0, it can readily be shown that the left 
hand side of Equation (8.14) has a maximum value of 

2L 

e{ls + d) 

at a wave number k, and period, T, of 

k = 
1 

or Γ = 2TT 
s + {d/2) 

(8.15) 

(8.16) 
s + {d/2) 

Then from Equations (8.14) and (8.15), a condition for wave force 
cancellation due to opposing forces on the submerged and surface piercing 
hull can be written as 

2L 
< 

1 

e{2s + d) C'^ (R, - R,) 

or 

(8.17) 

(8.18) 

Expressions for heave natural period of the vessel of Figure 8.5 can also be 
readily derived as 

Tu = 271 
p(Ac + Ldb + Cm Ldb) 

Ρ8Λ 
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= (d + c) 

Therefore 

id + c ) 2 

- 2 + 1 0 D 2 ^ D 2 - 2 + 

12{d + c) 

12 Res 

(d 4- c) ' 12 Rj Rj 12 Rl 
1 + (8.21) 

Equations (8.19), (8.20) and (8.21) for heave natural period, motion 
response and stability reinforce the point that ratios R4 and Re play a key 
role in the motions as well as load carrying capacity of marine vessels. 

In order to illustrate the implications of the equations derived above, the 
various functions are examined for four vessel designs ranging from a 
typical four column, twin pontooned semisubmersible to a conventional 
ship shape hull. The leading particulars of these vessels are listed in Table 
8.3, together with the non-dimensional ratios R4 and Re. The semisubmer­
sible design, the tandem hull 1 and the ship shape hull have numerical 
values very close to the data presented in Table 8.1. An additional huh 
shape, called tandem hull 2, is introduced to investigate huU behaviour 
over a wider range of ratios A 4 and for a different value of ratio s/L. 

In particular. Equation (8.14) is investigated. A canceUation function, 
f{k), defined by the left hand side of Equation (8.14), is plotted against 
wave period, Γ, in Figure 8.6 for the three twin hull designs. The right 
hand side of Equation (8.14) is a constant term for each design and is equal 
to 0.868, 2.387 and 4.785 for the semisubmersible, tandem huh 2 and 
tandem hull 1 respectively. These constant values are denoted in Figure 8.6 
by the horizontal full hues. Fur thermore , Equat ion (8.18) identifies a 
condition for inter-huh force cancellation to occur for a tandem huh. 
Figure 8.6 illustrates this point where the condition of Equat ion (8.18) is 
not satisfied for tandem huh 1 implying that Equation (8.14) has no 
solution for this case since the/(A:) = 4.785 line does not intersect thtf{k) 
curve for tandem hull 1. In the case of tandem hull 2, there are two 

= 2-ir [R, + ( A 4 - Re) C'n,] | (8.19) 

and, consequently, the undamped heave motion amplitude, Z , may be 
written as 

Fa e^^' 

^ ^ 9Ä[g-L {R, + ( A 4 - Re) ω'] ^^'^^^ 

where is the total vertical wave force amplitude. 
Finally, an expression for vessel longitudinal stability is required to 

permit examination of vessel load carrying capacity when balanced against 
the force cancellation feature. For simplicity, only the multi-hull vessel 
with α = 0 is considered and the distance of the longitudinal metacentre , 
M, above the keel, K, is evaluated. 

Thus, taking Β as the centre of buoyancy 

KM = KB BM 

CS 
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Figure 8.6. Cancellation function: Key: a - semisubmersible; b - tandem hull 1; 
c - tandem hull 2 

solutions corresponding to f{k) = 2.387 - these being at wave periods of 
5.50 and 11.60 s. 

For the semisubmersible vessel, however, the effect of the s\n{ka/2) term 
due to separation of the surface piercing columns is to change the shape of 
the f{k) curve such that solutions corresponding to interhuU cancellation 
periods will always arise. Thus, Figure 8.6 shows that for f{k) = 0.868, 
such cancellations occur at wave periods of 3.64, 4.53, 6.23 and 18.50 s. 

At the same t ime, satisfying the condition of s\n{kL/2) = 0 leads to wave 
straddling cancellation periods. These are listed in Table 8.2 and labelled 
as W together with inter-hull cancellation periods which are labelled as F. 
Figure 8.7 shows the position of W and F marked for tandem hulls 1 and 2. 
For a ship shape vessel, inter-hull cancellations will not arise. On the other 
hand, for a semisubmersible the combination of sin{ka/2) and sm{kL/2) 
terms means that pure wave straddling cancellations will not occur - all the 
cancehations being given by Equation (8.14). 

Figure 8.7 illustrates the resultant heave force amplitudes, non-
dimensionalized with respect to ^gHA/2 as functions of wave period. 
Curves are presented for all four vessels and indicate the zeroes in force 
magnitudes due to the cancellations described above. For wave periods 
above 16 s, the drop in wave force from ship shape vessel through the 
tandem hulls to the semisubmersible illustrates the role of the inter-hull 
cancellations in being able to reduce wave induced forces. For wave 
periods below 16 s, the reduction in wave forces continues for the ship 
shape and tandem hull designs. The semisubmersible, on the other hand, 



224 Tandem hull floating vessels 

Table 8.2 Summary of cancellation periods 

Semisubmersible Tandem hull 2 Tandem hull 1 Ship 
Periodls Type Periodls Type Periodls Type Periodls Type 

18.50 F 11.60 F 8.91 W 9.50 W 
6.23 F 8.91 W 6.30 W 6.71 W 
4.53 F 6.30 W 5.15 w 5.48 W 
3.64 F 5.50 F 4.46 w 4.75 W 

5.15 W 3.99 w 4.25 W 
4.46 W 3.88 W 
3.99 W 

Notes: 
F: inter-hull force cancellation periods; and W: wave straddling force cancellation periods. 

shows an increase in force amphtude here due to the fact that forces on the 
column and hulls can reinforce each other as well as cancel. It should be 
noted that the absolute magnitude of these forces is small for a semisub­
mersible but so is its sensitivity to these forces due to its small water plane 
area and thus heave stiffness. 

Equations (8.19) and (8.20) also show that only the ratios /?4 and 
appear within the equations and influence the natural period and wave 
induced heave motion response. In the expression for natural period, the 
ratio (7?4 - R¿) is largest for semisubmersibles reducing to zero for a ship 
shape. This mirrors the natural period variation across the range of designs 
listed in Table 8.3. 

As mentioned earlier, the payload capacity of offshore marine vessels is 
of importance. The expression for {kM)l{d + c) in Equation (8.21) is a 
measure of the stabihty of the vessel and, therefore, its payload capacity. 
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Figure 8.7. Non-dimensionalized heave force amplitude: Key. a - semisubmersible (simple 
calculation); b - ship (simple calculation); c - tandem hull 1 (simple calculation); 
d - tandem hull 2 (simple calculation); -I- - semisubmersible (full method); x - tandem 
hull 1 (full method) 
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Table 8.3 Vessel particulars and results for hand calculations 

V Vessel data Non- Heave 
6 
s dimensional nat. 
s ratios period KM 
e 
I 

| L ( m ) d(m) a{m) c(m) s{m) V ( m 3 ) Ra This (d + c) 

1 73.6 7.5 57.2 12.5 0 24 352 524 0.631 0.170 19.79 -

2 124.0 20.8 0 5.5 5 97 836 3720 0.212 0.0444 15.21 2.386 

3 124.0 10.4 0 5.5 4 59 148 3720 0.128 0.0444 11.25 5.696 

4 140.8 0 0 8.5 0 43 052 5457 0.0604 0.0604 5.85 23.343 

Notes: 
1: four column semisubmersible; 2: tandem hull 2; 3: tandem hull 1; and 4: ship shape vessel . 

Equation (8.21) applies only iov a = 0 (ships and tandem hulls 1 and 2) but 
shows up the strong sensitivity to the value of ratio R4. Table 8.3 presents 
values for the designs considered here and shows that the stability, and 
thus payload capacity, reduces sharply as the force cancellation character­
istics are improved. A practical design would need to compromise between 
the demands of motion response and payload capacity through stability. 

One feature of engineering concern in tandem hull design is the 
magnitude of inter-hull forces. These are measured during the model tests 
described later. At this stage, however, it is worth while to extend the 
simplified analysis developed here to yield an expression for the vertical 
component (compression positive) of inter-hull force. This can be written 
as 

= ¡[Fp- (F, - pC^LbdZ)] - \ [ m , - m,\Z - \ pgA Ζ (8.22) 

with Κ and Fi obtained from Equations (8.9) and (8.10) and Ζ obtained 
from Equation (8.20). This expression includes the effects of direct wave 
force in the first term and the inertia force due to the differential physical 
mass of the upper and lower tandem hulls in the second term. Numerical 
values from Equation (8.22) are used subsequently for Section 8.6. 

The validity of the approximate results derived from the simplified 
analysis has been confirmed by computing the heave force amplitudes of 
two of the designs (the semisubmersible and tandem hull 1) using more 
detailed calculations which incorporate fewer simplifying assumptions. The 
wave induced heave force for the semisubmersible has been calculated 
using a Morison equation approach which is described in further detail in 
Chapter 5. A boundary integral brief analysis, described in the following 
section and in more detail in Chapter 5, is used for tandem hull 1. Figure 
8.7 shows an acceptable level of agreement between the simplified analyses 
and the more detailed calculations for the two hull forms, suggesting at 
least that the simplified analysis can be regarded as being adequate for 
preliminary design. 
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8·4 Dynamic analysis of tandem hulls 

Figure 8.1 shows the geometry of a tandem huh design (huh B) for use as a 
floating offshore oil production platform. Hydrodynamic analysis of a 
tandem hull poses two problems. A boundary integral diffraction analysis 
is required for such a large hull structure but the correct surface facet 
representation of the inter-hull geometry is difficult to achieve and is likely 
to require a large number of facets and be prone to numerical errors 
associated with sources on adjacent or opposing facets being in close 
proximity. Additionally, drag forces may be significant and, therefore, 
need to be calculated for the smaller inter-hull members . 

The difficulty in boundary integral analysis of the inter-hull gap structure 
is resolved by using a single equivalent inter-hull structure for the analysis. 
This structure is of the same plan area and aspect ratio as the individual 
members and is placed amidships and on the centre line of the vessel. 
Figure 8.8 shows the equivalent inter-huU structure. It is also shown later 
that drag forces on the inter-hull members are negligibly small compared to 
inertia forces and can, therefore, be ignored. 

The complex amplitudes of wave and motion dependent forces acting on 
the tandem hull are evaluated by a conventional boundary integral 
numerical analysis for the six rigid body degrees of freedom of the vessel. 
A mesh generation program represents the surface of the vessel with a 
large number of triangular facets; the inter-hull connecting structures are 
modelled by a single column in the diffraction analysis (see Figure 8.8). 

Figure 8.8. Tandem-hull facet for diffraction analysis, (a) view from underside; (b) side 
view; (c) perspective view (denser mesh than (a) and (b)) 



Dynamic analysis of tandem hulls 227 

I J 

facets on lower 
facets on upper 
hull and gap 

- \ { m , - m,)Z - ¡ K'L ZL (8.24) 
for the three linear modes of motion (L) corresponding to vessel surge, 
sway and heave. Here , pj is the pressure at facet / of area / ) ; m¡ is the 
normal vector to facet y; and mu, m\ are the masses of the upper and lower 
hull respectively. K'^ is the vessel stiffness in the Lth mode of motion and 
ΖI is the motion in that mode. 

An approximate evaluation of drag forces on the inter-hull structure is 
presented below to confirm that drag forces on inter-hull members are 
small in comparison with inertia forces on the whole vessel. Wave induced 
horizontal particle velocities around the inter-hull structure were calcu­
lated from linear wave theory and the consequent drag forces on the 
inter-hull members were evaluated using the Morison equation. This 
procedure was repeated for a wave period range from 7 to 16 s at 2 m wave 
height and for wave heights of 2, 6 and 12 m at 12 s period. In all cases 
considered, wave induced drag forces on the inter-hull members were less 
than 2 % of the total wave exciting force on the vessel. Despite the fact that 
wave diffraction effects were ignored in the calculation of wave velocities 
incident on the inter-hull members , the level of the drag forces is 
considered small enough to be ignored. 

Predictions of vessel wave induced motions and interhuU forces from the 
above theories were validated by model tests at 1/75th scale. A model of 
the tandem hull vessel shown in Figure 8.1 was used to determine the 
vessel wave induced motions and also to measure forces in the gap 
structure in the vertical and fore and aft directions. 

The boundary integral analysis with the formulation given in Chapter 5 is 
used to derive the coefficient matrices of the governing equation of motion 

{-ω^ [Μ + ΜΑ(ω)] + iω Ν(ω) + Κ '} Χ^ω) = {Η/2) Κ{ιω) (8.23) 

where Μ is the physical mass matrix; ΜΑ(ω) and Ν(ω) are frequency 
dependent added mass and radiation; K' is the vessel hydrostatic stiffness 
matrix; R(iω) is the exciting force vector and ω is the wave frequency. The 
amplitudes of motion, X(iω), are evaluated by matrix inversion. The 
solution of Equation (8.23) is further modified to include typically 2.2, 8 
and 10% of critical damping in the heave, roll and pitch degrees of 
freedom, respectively, to represent the additional effects of viscous 
damping that are not accounted for in the formulation of the diffraction 
analysis. These additional levels of damping have been estimated from 
model tests of the tandem vessel. 

The results of the diffraction analysis are also used to obtain estimates of 
inter-hull force. This is done by summing the incident wave and vessel 
motion induced pressure forces on all the facets of the upper and inter-hull 
structure separately from the pressure forces on the lower hull only. Then 
the total inter-hull force (or more specifically the force at the lower end of 
the inter-hull members) can be written as 
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The tandem huh scale model was tested in two configurations. The first 
configuration, tandem hull A , had a 130.5 m long lower hull that was 
6.50 m longer than the 124.0 m upper hull and protruded ahead of the bow 
of the upper hull. The second tandem hull configuration, B , was tested and 
had a lower hull that had been shortened by 6.50 m such that the upper and 
lower hulls were of the same length. The shape of the upper hull and gap 
structure were identical for both hulls. Table 8.4 describes the full scale 
principal particulars of both hulls, and Figures 8.1 and 8.8(c) show 
perspective views of tandem hull B. 

Table 8.4 Summary of vessel data (all displacements for fresh water conditions) 

Dimensions Tandem hull A Tandem hull Β 

Displacement (t) 60 955 58 745 

Lower hull 
Length (m) 
Width (m) 130.5 124.0 
Height (m) 32.68 32.68 
Displacement (t) 10.4 10.4 

43 222 41 012 
124.0 124.0 

Length (m) 30.0 30.0 
Surface piercing Width (m) 5.37 5.37 
hull Draught (m) 17 576 17 576 

Displacement (t) 3 031 3 031 
Water plane area (m^) 

Total draught (m) 19.77 19.77 
Gap height (m) 4.0 4.0 
Non-dimensional R4 0.1582 0.1525 
Ratios Re 0.0756 0.0756 
Height of CG above keel (m) 9.19 9.19 
Radius of gyration in pitch (m) 41.9 41.9 

The test model was designed to Froude number scaling and care was 
taken to ensure that the mass distributions of the upper and lower hulls 
were separately representative of the proposed full scale design. The 
model was moored by a soft catenary system in head seas. The second test 
model , b, had an internal aluminium frame installed which connected the 
upper and lower hulls. The frame was mounted with load cells to detect 
wave induced inter-hull forces in the vertical and fore and aft directions. 

The results of the model tests are presented in Figures 8.9-8.12. Figures 
8.9, 8.10 and 8.11 present model wave induced motion in heave, pitch and 
surge, respectively, as functions of wave period. Figure 8.12 presents the 
corresponding inter-hull vertical and fore and aft force amplitudes per unit 
wave amplitude, again as functions of wave period. 

Figures 8.9-8.12 also present predictions based on both the simplified 
analysis of Section 8.3 (using an added mass coefficient, C^, of 1.25) and 
on the more detailed diffraction theory described in Section 8.4. Since both 
tandem hulls A and Β had non-rectangular bow shapes, as shown in Figure 
8.8, the simplified hydrodynamic analysis for these hulls is carried out by 
assuming equivalent rectangular hulls of equal volume and by modifying 
the integration limits of Equation (8.10) to accommodate an equivalent 



Dynamic analysis of tandem hulls 229 

Per iod Τ ( s e c ) 

Figure 8.9. Heave motion in head seas. Key: a - Hull A (diffraction theory); b - Hull Β 
(simplified analysis); c - Hull Β (diffraction theory); O - Hull A (model test); * - Hull Β 
(model test) 

lower hull length. Figures 8.9 and 8.10 show generaUy reasonable agree­
ment in overall trends between the diffraction theory analysis and model 
tests for heave and pitch motions. The tandem hull motions are characte­
rized by low motion amplitudes for wave periods up to 12.5 s with high 
resonant peaks for wave periods around 14 s. There is some disagreement 
between theory and tests for heave motion of tandem hull A in the wave 
period range from 9 to 11 s. This is believed to be due to the effect of the 
lower hull bow protruding ahead of the upper hull and causing incident 
waves to exhibit complex local breaking and slamming effects. These were 
observed during the tests with tandem hull A but were absent for tandem 
hull Β with its shortened lower hull bow. 

Figure 8.11 presents surge motions in head seas for tandem hulls A and 
B. The diffraction analyses are in close agreement but again the tandem 
hull A model test data are at significantly higher values than those for 
tandem hull B. The effects of complex wave interactions associated with 
the protruding lower hull are again believed to be responsible for this. 
Surge motion data above 15 s are influenced by mooring system resonance 
(not modelled in the dynamic analysis) and are , therefore, not presented in 
Figure 8.11. 
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Figure 8.10. Pitch motion in head seas. Key. a - Hull A (diffraction theory); b - Hull Β 
(simplified analysis); c - Hull Β (diffraction theory); O - Hull A (model test); * - Hull Β 
(model test) 

Figure 8.12 presents predicted and measured data for inter-hull forces on 
tandem hull B. There is reasonable agreement between the two. In 
particular, the influence of wave induced forces on vertical inter-hull forces 
below 11 s is clearly distinguishable from tandem hull motion induced 
inter-hull inertia forces above 10 s period. The fore and aft inter-hull forces 
are very small compared to vertical forces. 

Figures 8.9 and 8.12 also demonstrate the extent to which the simplified 
hydrodynamic analysis models overall trends for heave and vertical 
inter-hull forces as obtained from the more representative diffraction 
analysis and model tests. The discrepancy at heave and pitch natural 
periods is due to the assumption of undamped motions in the simplified 
analysis, although the motion response and force at the low period 
cancellation region are well represented. It is instructive to note the 
difference in motion response exhibited by tandem hulls A and Β with 
tandem hull A having the lower water plane area ratio corresponding to a 
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Figure 8.11. Surge motion in head seas. Key: a - Hull A (diffraction theory); c - Hull Β 
(diffraction theory); O - Hull A (model test); * - Hull Β (model test) 

greater submerged volume. This leads to reduced heave and pitch natural 
periods for tandem hull B. The remaining difference in motion response 
seems to arise from wave interactions with the protruding lower hull bow 
of tandem hull A. Removal of this feature reduces the wave induced 
motions of the tandem hull (B). 

It is necessary to point out one further feature of the behaviour of the 
tandem hulls that was observed in the model tests. Although only the test 
data for low (2 m) wave heights are presented here , the data for large wave 
heights showed up significant non-linear behaviour which had the primary 
effect of substantially reducing the values of peak resonant response per 
unit wave amplitude. Thus the peak values of motions and forces presented 
in Figure 8.9-8.12 can not be used for estimating the maximum values of 
these parameters in waves of large height. The additional model test data 
for large wave height are not presented here . 
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Figure 8.12. Inter-hull force amplitudes in head seas for Hull B. Key: * - vertical force 
(model tests); b - vertical force (simplified analysis); c - vertical force (diffraction theory); 
d - horizontal force (diffraction theory); • - horizontal force (model tests) 

8.5 Design considerations 

The above comparisons between theory and model tests lead on to the 
equations for wave induced forces, motions and stability derived in Section 
8.3. These simple equations clearly demonstrate that the heave motions 
and stability of stationary marine vessels operating in waves are primarily 
governed by the area ratio R4 and a further length ratio, R^, defined in 
Equations (8.4) and (8.6), respectively, although vessel length L , and 
depth (through variables s and d) also have some influence. 

By appropriate choice of these ratios, the heave force function can be 
shaped to contain zeros due to both inter-hull wave cancellation effects as 
well as wave straddling cancellations. The selection of wave periods at 
which force cancellation occurs has a predominant effect on the motion 
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response. Selection of the above parameters also fixes the natural period 
and the stability of the vessel. The former has an influence on heave 
motion and must, therefore, be included with consideration of force 
cancellation wave periods. It is apparent from the equations that selection 
of parameters for low motion response conflicts with the parameters 
required for high stability to attain a useful deck payload capacity. 
However, the stability parameter varies rapidly with ratio A 4 , whereas the 
motion response is not quite so sensitive. This characteristic offers the 
possibility of carrying out a preliminary vessel design using the simplified 
hydrodynamic analysis to attain just enough stability to cope with the 
required payload and thereby obtain the best resultant low wave induced 
heave motions. 

The material presented in this chapter thus offers two opportunities for 
tandem hull vessel design. The first, as mentioned above, is the possibility 
of optimizing a vessel's payload and motions performance in the early 
stages of preliminary design by selecting leading particulars as described 
here. A second opportunity arises because low heave motion response is 
strongly dependent on the occurrence of wave force cancellation periods. 
The techniques presented here can be used to establish the occurrence of 
multiple wave force cancellations over a larger period range than obtained 
with the vessels examined here. 

The tandem hull vessel shown in Figures 8.1 and 8.8 is one design which 
balances the need for adequate payload capacity from an oil production 
vessel with low wave induced motions in the frequently occurring operating 
wave period range of up to 12.5 s. Above this wave period, the occurrence 
of heave and pitch resonant peaks and the consequently larger motions 
offer further advantages. These are due to the fact that for the much rarer 
occurrence of severe storms, with their characteristic high periods, larger 
vessel motions lead to better sea keeping in terms of water on deck and 
general damage to deck equipment. Thus the freeboard requirements , 
deck production equipment durability and general vessel survivability are 
improved while providing a production platform which exhibits very low 
wave induced motions at the much more frequently occurring operating 
wave period values. 
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Articulated structures 

9.1 Introduction 

One of the obvious ways in which comphance can be introduced into an 
offshore structure is by the use of articulated (or universal) joints allowing 
one part of a structure to rotate relative to another. Many examples of 
structures with such joints are found in the oceans. The most common of 
these are loading/mooring towers which are placed on the sea bed with a 
gravity or piled base and a universal joint permitting rotation relative to the 
base in all vertical planes. The towers are held upright by excess buoyancy 
and can rotate in pitch and roll in response to wave excitation and mooring 
tanker loads. Similar, but more complex, configurations are used for 
mooring tankers as part of a permanent mooring or storage facility. Such 
single anchor legged moorings (SALMs) also have joints connecting the 
upper part of the slender tower structure to the tanker bow allowing it to 
pitch, heave and yaw about the mooring leg. 

Clearly, these fully or partially floating structures with articulated joints 
pose interesting problems in dynamics which are associated with the 
additional degrees of freedom created due to the articulations. In general, 
articulations on structures where one segment is stiffly connected to the sea 
bed do not pose insurmountable dynamic problems during design and 
operation. The articulations serve to reduce system motions and, more 
importantly, reduce wave induced and mooring loads on such structures. 

However, articulated structures do not always offer performance improve­
ments. In the case of fully floating structures with articulations, substantial 
apparent performance advantages during normal operation can be won at 
the cost of major and unacceptable occurrences of catastrophic instabilities 
in off-design conditions. It is instructive to examine the hydrostatics and 
hydrodynamics of one such floating structure with jointed segments to 
illustrate these substantial apparent merits but unacceptable draw backs. 
The analysis methods used here can, however, be apphed to a wide class of 
structures with jointed segments. In particular. Section 9.4 of this chapter 
illustrates techniques which should be used to investigate potential catas­
trophic (in the mathematical sense) behaviour of fully floating structures 
with articulated joints. 

In principle, such catastrophic behaviour can also occur, as a special 
case, for conventional semisubmersibles. Section 9.7 extends the t reatment 
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given in Section 9.4 to investigate the dynamical effects of such behaviour. 
The structure considered in detail in this chapter is a semisubmersible 

with articulated columns. This design can be considered to be an extension 
of conventional rigid semisubmersible designs but in order to put the 
design into context, the essential performance related structure features of 
a rigid semisubmersible are considered here first. Chapter 5 gives consider­
able additional information on semisubmersible and monohull dynamic 
response. 

Semisubmersibles are floating platforms with a geometry that is substan­
tially different from the conventional ship shape, or monohull form. A 
typical modern rigid semisubmersible consists of submerged pontoons 
which are connected to the deck by several large diameter columns 
together with bracing members . A semisubmersible possesses low wave 
induced motions because a large proport ion of its submerged volume is at a 
deep draught where wave pressures have rapidly decayed with depth. The 
small water plane area of the vessel and large submerged volume yield long 
natural periods in heave, roll and pitch. These periods are above the 
periods of predominant wave action, further contributing to a reduction of 
the motions. The hydrostatic stability of a semisubmersible is strongly 
dependent on large inter-column spacings which yield large second mo­
ments of water plane area about the principal axis of the water plane. 
Because of their smaller water plane, semisubmersibles have hmited deck 
payload capacity when compared with monohulls. 

Semisubmersibles are viable contenders for production platforms, 
especially in deep water locations, if their payload capacity could be 
increased and their wave induced motions could be further reduced. The 
latter would decrease the amount of time the vessel had to be disconnected 
from the well due to bad weather, thus minimizing production down-time. 

The payload and motions of a rigid semisubmersible could potentially be 
improved by increasing the span and draught of the vessel. However , the 
increased vessel size would increase wave loading, so necessitating a 
stronger and heavier structure. This would increase the cost of the vessel 
and limit the payload, thus establishing a performance limiting design loop. 
Such a constraint may be avoided by using an articulated column semisub­
mersible such as the one illustrated in Figure 9 .1 . Vessels of this type are 
further described by Biewer (1971), Noble et al, (1984) and in the patents 
of Biewer (1974) and Interig Ltd (1984). The articulations would allow an 
increased span (or pitch radius) and draught, and yet the wave loads on the 
vessel would not increase significantly (if at all) due to the compliance. 

The articulated column semisubmersible exhibits similar geometrical 
features to a rigid semisubmersible. It consists of a hexagonal star shaped 
submerged pontoon base connected to a deck by an inner ring of surface 
piercing columns. There is an outer ring of surface piercing columns which 
are connected to the pontoon base by universal joints about which they are 
free to rotate in all vertical planes through the joint. 

This chapter describes the theoretical development of methods to 
analyse the hydrostatic and hydrodynamic behaviour of articulated column 
semisubmersibles. The theory is complemented by model tests specifically 
designed to compare the wave induced motion response of the articulated 
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Figure 9 .1 . Perspective view of an articulated-column semisubmersible 

column semisubmersible with that of an equivalent rigid vessel. Various 
aspects of the design and engineering of an articulated column semisub­
mersible are discussed. 

9.2 Design criteria 

The primary design objective for a floating oil production platform is to 
maximize the payload while maintaining hydrostatic stability and yet 
minimizing vessel motion response to waves. These requirements conflict 
to a certain extent but they play a dominant role in defining the primary 
characteristics of a semisubmersible. The metacentric height (GM) is often 
used as a measaure of the hydrostatic stability of a floating vessel. It is 
defined by the equation (Ramsey (1961), Clayton et al. (1982)) 

G M = ^ - c 
V 

(9.1) 

where /^pa is the second moment of water plane area about the horizontal 
axis of rotation; V is the submerged volume of the vessel; c is the vertical 
distance between the centres of buoyancy and gravity. The vessel is stable 
if GM is posifive, with the magnitude of GM quantifying the extent of 
stability. 

Most ocean waves have periods between 4 and 20 s. An important 
hydrodynamic consideration is to ensure that the heave natural period of 
the vessel lies outside this wave period range to avoid large motions 
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Tu = 2τΓ 
\ Pg^wpa 

where ρ is the sea water density; is the vessel's heave added mass; 
g represents gravitational acceleration; and ^ ^ p a is the water plane area. 

Consider the implications of Equations (9.1) and (9.2) on the geometry 
of a semisubmersible. The large payload requirement ensures that V is 
large to support the weight and that the position of the centre of gravity 
above the keel is high because of the position of the payload. Most wave 
energy is confined to within half a wavelength of the surface. Therefore, to 
ensure good motion response, the vessel must be as ' t ransparent ' as 
possible at the water line and the major buoyancy contributing components 
of the hull (the pontoons) must be as deeply submerged as possible. This 
implies a low water plane area and a low centre of buoyancy. This situation 
is ideal when considering the heave natural period as it is desirable to have 
a large displacement together with a small water plane area. However , to 
satisfy stability requirements with this small waterplane area, the column 
spacing must be large enough to ensure that the second moment of 
waterplane area is sufficient to maintain adequate hydrostatic stability. 
The limiting factor in column spacing is the fact that increasing the latter 
leads to increased structural steel weight - often at the expense of the 
payload. Thus the final configuration of a semisubmersible will be a 
compromise between obtaining good motion characteristics, an adequate 
payload and a reasonably efficient structural layout. 

By using such considerations, it is possible to examine the effect of a 
desirable increase in payload and the possible design changes that must be 
made to retain sufficient stability and structural strength. Consider the 
design changes required to generate an increase in payload. The conse­
quent increase in buoyancy force can be obtained by using larger or deeper 
columns. The increased payload will require more stability which can be 
attained by larger columns or by moving the columns further away from 
the geometric centre. In the former case, larger wave forces are expe­
rienced by the structure and also the heave natural period may lie within 
the encountered wave spectrum. Projecting the columns further from the 
vessel centre requires additional bracing at deck level due to the increase in 
bending moments . In either case, a heavier structure results which requires 
a further increase in buoyancy and consequently more stabihty. Thus the 
designer is trapped in a design loop which hmits the vessel's payload and 
motions performance. 

An articulated column semisubmersible, such as the one shown in Figure 
9 .1 , presents an opportunity to break out of these design limitations. 
Because the articulated columns are only connected to the vessel at their 
base by universal joints, the articulated column spacing may be increased 
without any increase in structural weight at deck level. The resulting 
increase in stabihty leads to significantly higher payloads compared with 
those for rigid semisubmersibles. The increased stability allows the vessel 
draught to be increased, thus improving the motion characteristics further. 

associated with resonance. The heave natural period (Th) is given approxi­
mately by 

' ' ' (9.2) 
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9.3 Classical hydrostatics 

The hydrostatic stability of marine vehicles floating at the air-water 
interface has been fully investigated and extensively documented in naval 
architecture hterature. Ramsey (1961) presented an early unified treat­
ment of the theory. These theoretical investigations and results have been 
concerned with the hydrostatic stability of marine vehicles which can be 
regarded as rigid bodies in the context of the hydrostatics calculations. The 
presence of articulated segments on a floating vessel requires that the 
theory of hydrostatic stability for rigid vessels be extended to account for 
this feature. 

9.3.1 Small angle hydrostatics 

Consider an arbitrary rigid body from which are mounted a number of 
articulated appendages each of which cuts through the waterplane area and 
has sufficient excess buoyancy (above self weight) to remain in a vertical 
equihbrium posidon. Figure 9.2 shows a sketch of the body with a 
waterplane area of Ay, and just one of the articulated appendages mounted 
at position (JC/, yi, Z/) with a waterplane area of Λ/. The articulation is 
assumed to be universal such that the appendage is free to move in all 
vertical planes through (jC/, y/, z/). When the floadng body is at rest, the net 
forces due to buoyancy and weight (with positive excess buoyancy) exerted 
by the articulated members are transmitted through the joint into the main 
structure with no modification. This implies that the centre of buoyancy 
position is not influenced by whether or not the articulations are consi-

It also allows for columns supporting the deck to be smaller, making the 
vessel more ' t ransparent ' at the waterline, and ensures an acceptably high 
heave natural period. The comphance of the articulations has the effect of 
reducing the horizontal wave forces transmitted to the vessel and thus 
reduces structural steel weight. 

The articulated columns also contribute to some curious features of the 
large angle hydrostatics. The articulated columns normally remain upright 
in still water due to their excess buoyancy over self weight. However , when 
the vessel heels, the emerging articulated columns lose buoyancy until at 
some heel angle the self weight is no longer supported by its buoyancy. In 
this condition, the articulation will assume a stable equilibrium position 
which is inclined at some angle to the vertical and wiU, therefore, alter the 
overall hydrostatic stability of the vessel substantiahy. 

Apparently, this feature does not pose a problem if the small angle 
hydrostatic stability of the vessel is considered. However, deeper conside­
ration of the vessel's stabihty at large angles shows that it leads to an 
unacceptable catastrophic instability which implies that the vessel, in its 
present form, would not be usable. 

Both the small angle classical and larger angle stability aspects are 
examined in this chapter. 
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A r t i c u l a t i o n 

a t ( x i .V i , Z i ) 

Figure 9.2. An arbitrary rigid body with an articulated appendage 

dered rigid, although the orientation of the articulated member relative to 
the body will influence both the centre of buoyancy and centre of gravity 
positions. 

As a result of a small rotation, β, about the Oy axis, the rigid body will 
have emerging and submerging wedges contributing to the hydrostatic 
forces, whereas the articulated members will submerge or emerge ver­
tically as cross-sections with local waterplane area, Λ,. There will be an 
additional shift in centre of buoyancy due to the change of position of the 
submerged volumes in the rotated articulations. Fur thermore , this rotation 
will induce asymmetric articulation waterplane areas about the Oy axis, 
thus causing a shift in the centre of flotation which will induce a deficit in 
submerged volume and a consequent parallel sinkage with increasing angle 
of inclination, β. 

The deficit in submerged volume is given by taking the difference of 
submerged volumes before and after a small rotation β about the Oy axis. 
This gives 

i Ja. 

(ζ - x ß ) d 4 w 
4̂w 

[Za, - {Xi + L ,ß)ß ] (L4w (9.3) 
A. 
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where z^i = z{x, y) describes the submerged shape of articulated member / 
and L, is the draught of the member pivot. For symmetric dispositions of 
rigid and articulated members about the Oy axis 

xdA^ = 0 

AW 

and 

Σ x¡dAy, = o 

/ -Ά. 
Then from Equation (9.3), the deficit of volume is 

(9.4) 

(9.5) 

(9.6) 

where is the waterplane area of articulation number /. The parallel 
sinkage, p , is 

Ρ = (9.7) 

Thus the presence of symmetric articulations does shift the centre of 
flotation and induces a second order parallel sinkage. Turning now to the 
position of the centre of buoyancy, the co-ordinates of the centre of 
buoyancy before inclination can be given by Equations (9.8) to (9.10) 
below with the effects of the articulations included. 

Thus 

1 

y = 
L - ' / Í W 

1 

xzdA^ + ^ 

yzdAw + 2 

1 z^dAw + 2 

xz^idAi 

yz^idAi 
Ja. 

(9.8) 

(9.9) 

(9.10) \zlMi 

After small rotation, β, the centre of buoyancy, B, will be at co-ordinates 
given by 

1 
x{z - x^)dAw + 2 

-Σ 
1 

(χ, + L ,ß) (p - x^)dA, 
Ai 

Ja, 

y =v 

+ 

{X¡ + Lb,ß)2a,cL4, 

y{z - xß)dA^ + ^ \ y(p- ^ .ß)d^/ + 2 

yzaMi 

i JAi 

(9.11) 

yz^idA 

(9.12) 

file:///zlMi
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and 

\ (2 + x^){z - χ^)άΑ^ + 2 

+ (JC, + L,ß)ß} {Za , + ρ - {χ, + L,ß)ß}cL4, (9.13) 

where Lb/ is the distance of the articulation centre of buoyancy above the 
pivot. Then, from Equations (9.10) and (9.13), the vertical movement of 
the centre of buoyancy is given by 

Γ ^ χ'άΑ^ + f x ^ c u , ζ - ζ = 
2V 

Λ, 

(9.14) 

by neglecting cubic and higher powers of β. This equation simplifies to 

Q 2 Γ 

2V 
χ^άΑ (9.15) 

which is also of second order for small β, and is positive. Thus the surface 
of buoyancy for a rigid body with articulations is similar to that of the rigid 
body, that is, horizontal at Β and concave upwards. 

In the same way as before, for small β, Β and B' must he in the same 
plane perpendicular to Oy, Thus 

y = y' (9.16) 

and using Equations (9.9) and (9.12): 
Γ Γ 

xyáA^ + β ^ χ , yáAi - Ρ ^ : 
I JAí i Ja¡ 

Again, if the articulated member waterplane areas are symmetric about the 
Ox axis, then 

yáAi = 0 (9.17) 

I JAí 

ydAi = 0 (9.18) 

(9.19) 

so that 

xyáA„ = 0 
Ja, 

and Ox, Oy still remain principal axes of the total vessel waterplane area. 
Now using Figure 9.2 and Equations (9.18) and (9. 11), we get 

BB' x - x ' 
BMy = 

β 

ßV ßx^dA^ - 2 PXi^i - 2 Ρ ^ ^ ' ^ ' 

(9.20) 
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where is the initial submerged volume of the iih articulation. For initial 
symmetry of waterplane areas: 

^ pXiAi = 0 

and 

Therefore 

BM, = -
LJA. 

x^dAw + 2 Xi xdA¡ - 2 í^biVi (9.21) 

if and higher powers are ignored. 

I f / , , = x^aAw, for the rigid part of the body, 

and 

xdA¡ 
Ai 

is due to the articulations, then 

^^y- V V 

Similarly, 

V V 

where 

ydA¡. 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

Unlike a conventional rigid body, however, the articulated vehicle also has 
an inherent horizontal shift in the centre of gravity position due to rotation 
of the articulations. This shift contributes to additional stability by 
increasing the effective value of G M , as illustrated in Figure 9.2. The 
horizontal shift in centre of gravity position G G ' can be obtained by taking 
moments of forces due to mass about an axis through G perpendicular to 
the Oxz plane. This gives 

MgGG' = g^niiL^fi + g^rriiSi (9.26) 
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G G . = 
GG' XiftiiLo 

β Μ 
(9.27) 

and the effective metacentric height can be written as 

G^My = BMy - BG = GG^ 

pV V 
= BG (9.28) 

where BG is the distance between the centres of buoyancy and gravity at 
zero angle of inclination. 

It is of interest to quantify the effects of articulated appendages by 
comparing the relative influence on distance BM of rigid and articulated 
members of equivalent waterplane area. 

For a rectangular waterplane section of dimensions b and d, with its 
centroid a distance D (parallel to dimension d) away from the vessel axis, 
the rigid body second moment of waterplane area is 

A, 

x^dA^ = — + bd-
12 

(9.29) 

whereas the articulated member value is 

^av 

= D 

xdAi 
JA, 

rD*dl2 

bxdx = bd- (9.30) 
D-d/2 

It is clear that the effect of the articulation is to remove the bd^/í2 term 
from the second moment of waterplane area. For large D {i.e. D > d), this 
term is small and does not influence the value of the overall second 
moment of area unduly. 

Similarly, for the circular waterplane area, of radius r at a distance D 
from the vessel axis, the rigid and articulated resuhs are 

iry = x^dA„ = 
A, 

and 

hy = T^r^-

(9.31) 

(9.32) 

where Μ is the total vessel mass; are the masses of each articulated 
member with its local centre of gravity position, G / , at a distance of Lg/ 
above the articulation point (JC,, Z/) and a horizontal distance of 5/ from 
the vertical through G . The second term on the right hand side of Equat ion 
(9.26) is zero for articulations that are symmetrically disposed about the 
vessel planes of symmetry. Thus the increment in metacentric height due to 
gravity shift can be written for small β as 
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1 
(9.33) 

and for the circular waterplane area 

1 

1 + 
(9.34) 

4D^ 

Figure 9.3 shows a plot of I^y/I,y as a function of D/d and D/2r to illustrate 
the strong influence of this ratio on the second moment of area ratio. Note 
that Equation (9.28) contains terms due to shifts in the centres of gravity 
and buoyancy for the articulations. These cause a net reduction in stability 
which is much greater than the reductions shown in Figure 9.3 due to 
second moments of articulation waterplane areas. 

l o H 

0-8H 

0-6H 

0 - 4 i 

0-2H 

τ 1 Γ 
1 0 1 5 2 0 2 5 3 0 3-5 4 0 4 5 0 0 5 

D / 2 r or D /d 

Figure 9.3. Ratios of articulated to rigid waterplane areas 

9.3.2 Large angle results 

Using conventional rigid body hydrostatic analysis for large angles, it can 
readily be shown that the distance between the centre of buoyancy, ß , and 
metacentre, M, can be written as 

(9.35) 

Then for the rectangular waterplane area 

1 
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Figure 9.4. The semiflex with articulated columns 

for finite angle β. This relationship is referred to as the wall sided formula. 
Figure 9.4 shows a schematic cross-sectional representation of the vessel 
shown in Figure 9 .1 . The /th column pair shown in Figure 9.4 have radii r,, 
water plane area Ai{=urf) at a distance D/ from axis Λ A ' ; Ij^ is the second 
moment of water plane area of the centre body R; and // is the second 
moment of water plane area of the pair of columns about an axis through O 
perpendicular to the plane of the diagram. 

For the case when columns C and C are articulated at Q and Q' (see 
Figure 9.4), an inclination, β, will induce a rotation of angle β in each of 
the columns so that they, in fact, remain vertical with their axes at right 
angles to the waterplane. Figure 9.4 illustrates the new positions of the 
articulated columns perpendicular to the inclined vessel waterline S^S^'. 

Now 

UV = L, t anß 

and 

OU = Di - L, tanß 

Therefore 

OR = {Di - Li tanß) cosß (9.36) 

Also 

QT = Li + Li tanß 

Therefore 

QR = {Li -h Di tanß) cosß 



246 Articulated structures 

So that 

QR - QV = {Li + Di tanß) cosß - Lj 

Similarly, 

U'V = Li tanß 

Ο ί / ' = D, + Li tanß 

O/?' = {Di + tanß) cosß (9.37) 

and 

Q'V - Q'R' = L, - {L, - Di tanß) cosß 

As the vessel shown in Figure 9.4 inchnes, the submerged volume deficit 
between zero inclination and angle β is given by 

A[U'R' - UR] = lAiLi sinß tanß 

for each column pair. The total volume deficit is, therefore. 

^ AiLi sinß tanß 

and the parallel sinkage is 

Ρ = sinß tanß = k sinß tanß 

where 

k = 
A^ + Σ / ^ / 

Taking moments of submerging and emerging volumes about an axis 
through O perpendicular to the plane of the diagram gives 

V ' BB" = IR t anß + (1/2) ^ irrf 
i 

. {QR - QV) . 
sinß 

{QR - ÖVO | O Ä cosß 

- 2 2Lb,y, sinß 

- ^ 2pAiL¡ t anß cos^ß (9.38) 

using volume integrations which are not included here . 
Thus 

V • BB" = IR t anß + Ttrf [(L, + D, tanß) cosß - L,} 

{Di - Li tanß) cos^ß + ^ < (L, - D, tanß)cosß - L, > 

sinß} + {Li - Di tanß) cosß]} (D, + L, tanß) cos^ß 
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+ ¡< Li - {Li - Di t anß) cosß > sinß} 

- ^ 2Lb/L/ sinß - 2pLi t anß cos^ß] 

after multiplying out and simplifying, this reduces to 

BB" = ^ [IR t anß + \ ^ - r r r ? sin^ß + Dj sinß 

(1 + cos^ß) - 2Lb/L/ sinß - 2pL, t anß cos^ß}] (9.39) 

Similarly, by taking moments of volume about an axis through O perpendi­
cular to the plane of the diagram and integrating we get 

V • B"B' = \ /« tan^ß + \ ^ [QR - QV) 
i 

[b + OR sinß -\{QR- QV) cosß} - ( β ' Κ ' - Q'R') 

[b + OR' sinß + \ {Q'V - Q'R') cosß}] 

- ^ 2Lb,Vi (1 - cosß) + 2 2pA{b - L, sin^ß 

+ ^ cosß] (9.40) 

with b denoting the distance OB shown in Figure 9.4. 
Therefore 

VB"B' = \ IR tan^ß + ^ ^ irr? [(L, + D, tanß) cosß - L¡\ 
i 

[b ^ Di - Li tanß) cosß sinß - \ < {Li -h tanß) cosß 

- Li > cosß} - [Li - {Li - Di t anß) cosß}{fc - (D, 

+ Li t anß) cosß sinß -h ^ < L/ - (L, - t anß) cosß > 

cosß - IL^iLi (1 - cosß) + 2p{b - Li sin^ β + cos ß)] 
(9.41) 

Again after multiplying out and simplifying, we get 

V . B"B' = i tan^ß + ^ ^ ^ ^ ' ( ^ z " s in 'ß cosß 

+ 2L?(1 - cosß) - 2bLi + 2¿>L, cosß - 2Lb,¿( l - cosß) 

+ 2p{b - L¡ sin^ß + ^ cosß) (9.42) 
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Then 

BB" 
BM = + B'B" (9.43) 

tanß 

= ^i¡R + 2- h tan^ß] + ¿ 7 2 -^rflLJ sin^ß cosß 

+ DJ cosß( l + cos^ß) + {DJ - L}) sin^ß cosß + 2L}{\ - cosß) 

- 2bL, + 2bLi cosß 2Lb/L/ - 2L/Ä: sin^ß cosß 

+ 2k sinß tanß(fc - L, sin^ß -h ^ k sin^ß)] 

= [//? + W/? tan^ß] + ^^A{D}cos^ + L , (¿ , " ¿)(1 " cosß) 

- Lb/L/ - L/k sin^ß cosß + k sinß tanß(fc - sin^ß 

+ \ k sin^ß) (9.44) 

An identical result can be obtained if the moments of volume are taken 
about an axis through Β and perpendicular to plane 5β5β'. The expression 
in Equation (9.44) shows the contributions of the rigid central waterplane 
cutting member (with second moment of area, //^) and of the articulated 
columns such as C and C. This expression is equivalent to the small angle 
result of Equation (9.20) when β 0. 

It is interesting to note the effects of distances L/ and b on the large angle 
hydrostatics. The D} cosß term is generally dominant for large D/ but the 
additional modification to Β Μ at high angles is eliminated if Li = b. 
Furthermore , this modification changes sign depending on L/ > or 
Li < b. 

The Lb/L/ term causes a constant and significant reduction in BM due to 
movement of the articulation submerged volumes, whereas the terms due 
to parallel sinkage change the BM values by small amounts . 

The movement of the position of the centre of gravity due to the 
articulated columns must be considered for its effect in increasing the 
metacentric height. For the large angle problem. Figure 9.4 illustrates the 
horizontal shift of G to G" together with a vertical downward shift to G ' . 

The effective increase in metacentric height, then, is 

GG" 
GGa = + G 'G" (9.45) 

tanß 

The effects of each pair of columns / can be summed to give a total 
horizontal shift of the centre of gravity as 

GG' = Σ.^-^.-<1 - ^»^β) (9.46) 
Μ 

where is-the mass of each of the columns; L^/ is the vertical distance 
between the column centre of gravity and the pomt of articulation at zero 
angle of inclination; Μ is the total vessel mass. 
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R a t i o ( B M ) a / ( B M ) r 

34 
Ε 
^ 3 2 - 0.9" 

30+08 
I J J ^ 7^ Figure 9.5. Distances BM as functions of angle 

of inclination β. Key: a - rigid BM; b - (BM)a / 
A n g l e Of Inclination/9 * (BM)r ratio; c - articulated vessel BM 

In a similar manner , the vertical shift in the centre of gravity position is 
obtained as 

GG' = - ^"^ß) (9.47) 
Μ 

Then the net increment in GM is obtained via Equation (9.45) as 

= (9.48) 
Μ 

with the contributions of cosß cancelling out. The total metacentric height 
can then be 

G^My = BMy - BG + GG^ 

= -^[IR^\IR tan^ß] + ̂ 2̂ /[̂ / ^«^ß 

+ Li{L, - b){\ - cosß) - Lb/L/ - Lik sin^ß cosß 

Σ ·ΐΎΐ L 

-h k sinß tanß(fe - sin^ß + \ k sin^ß)] + ' ' - BG 
Μ 

(9.49) 

The influence of articulations on the hydrostatics of a floating body is 
illustrated by numerical values for an articulated column pair and sub­
merged pontoon arrangement shown in Figure 9.4. Numerical values of 
Di = 64.95 m, L, = 42 m, = 31.1 m, η = 3.5 m are taken from data for 
a proposed vessel (Figure 9.1) of 30 750 t displacement. Only the Β Μ 
contribution due to the articulated columns is considered first to highlight 
the difference between the articulated and rigid body hydrostatics. 

Figure 9.5 displays the variation of Β Μ as a function of angle of 
inclination, β. The rigid equivalent value is compared with the value 
arising from the articulated columns. 

The BM contribution from the rigid column arises in the conventionally 
accepted manner , whereas the BM contribution of the articulated columns 
starts from a lower value due to the net effect of the shift in total vessel 
centres of buoyancy due to articulation rotation. This feature is not as 



250 Articulated structures 

R a t i o ( G Z ) a / ( G Z ) r 

Figure 9.6. Righting moment arms as functions 
of angle of inclination β. Key: a - rigid vessel 
GZ; b - (GZ)a/(GZ)r ratio; c - articulated 

Angle Of Inclination/9 " vessel GZ 

The extension of the theory of conventional rigid body hydrostatic 
stability to non-rigid bodies with articulated members shows that the 
presence of the articulations reduces the stability by a relatively small 
proportion for articulated member waterplane areas that are well sepa­
rated from the principal axes of the waterplane. The stability reduction is 
primarily due to the movements of the centres of buoyancy and gravity 
induced by rotation of the articulations. 

The predictions of the above analysis have been verified against model 
tests at 1:100 scale (see Section 9.5). Figure 9.7 gives a comparison of 
predicted and measured data. 

A different method of analysis can be employed for hydrostatic analysis 
by using the variation of tension in the articulating columns as they emerge 
or submerge from the water surface. Consider an arbitrary body with each 
of / articulated columns on the body replaced by a tension acting 
vertically upwards. Vertical equilibrium is given by 

rrirg = Fb,(ß) + 2 ^^(ß) ί^·^^) 
i 

where nij. and Fbr ^re respectively the mass of, and buoyancy force on, the 
rigid part of the body. Both and Ti are functions of the angle of 
inclination of the body, β. 

If the body undergoes a rotation, β about a horizontal axis through the 
centroid of the water plane area, the centre of gravity co-ordinate vector 
( x g r ) of the rigid body moves to Xgr and its centre of buoyancy Xbr moves to 
Xbr. Note that the centre of gravity does not move with respect to the rigid 

much of a drawback as it appears at first sight because the existence of 
articulations allows the values of to be large without significant 
structural penalties and, therefore, the base Β Μ (for β = 0°) has a large 
value. 

Figure 9.5 also displays the ratio of articulated to rigid Β Μ value which 
tends to fall off more rapidly with angle due to the increase in rigid column 
Β Μ with angle of inclination. 

Figure 9.6 displays the variation in righting moment arm G Z with angle 
of inclination β. These curves include the effective increase in metacentric 
height which occurs in the presence of the articulations. Despite this 
feature, the articulated columns contribute a smaller righting moment arm 
than the equivalent rigid columns. Figure 9.6 also displays the ratio of 
articulated to equivalent rigid body G Z value. Values of = 657 t and 
Lg/ = 21 m are assumed for each articulated column. 
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Figure 9.7. Comparison of righting moment curves for the articulated-column semisubmer­
sible. Key: a - rigid vessel (theoretical); b - rigid vessel (experimental); c - articulated 
vessel (experimental); d - articulated vessel (theoretical) 

body but it does move with respect to a fixed axes system. The co-ordinates 
of the articulation pivot move from to χ·. 

Resolving moments to find the net restoring moment , M R , gives 

Μκ(β) = x^r(ß)X ni,gk - xUß)XFaß)k - 2 X/(ß)X7',(ß)k (9-51) 

where k is the unit vector along the vertical (z) axis. This equation is true 
provided that vertical equilibrium (Equation (9.50)) is satisfied. 

The tension, Γ/, is a function of the depth of the pivot and hence the 
angle of inclination, β. The theory presented in Section 9.6 demonstrates 
that the joint tension varies linearly with pivot depth for an articulated 
column - the relation being bounded by constant minimum and maximum 
tensions. Maximum tension is reached when a column is completely 
submerged, whereas the minimum tension arises when an emerging 
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Inner column pitch radius 43.3 m 

Outer column pitch radius 75 m 
Inner column buoyancy chamber diameter 8.2 m 
Articulated column diameter 7 m 
Inner pontoon (within inner column pitch circle) cross-sectional 

dimensions 5 m width X 3 m depth 
Draught 50 m 
Height of top of inner column buoyancy chamber above keel 38 m 
Height of underside of deck above keel 65 m 
Height of top of articulated column above keel 64 m 
Height of pivot above keel 8 m 
Displacement (in sea water) 30 526 t 
Vessel GM (in sea water) 11 m 
Articulated column static tension (in sea water) 6867 kN 
VCG of rigid part of vessel above keel 28.8 m 
VCG of articulated column above keel 28 m 
Deck support bracing diameter 2.5 m 
Lower hull bracing diameter 1.6 m 
Outer pontoon cross-sectional dimensions 3 m width X 3 m depth 

column's buoyancy force no longer balances its self weight and leads to the 
column resting in a non-vertical equilibrium position. It is important , in 
terms of hydrostatic stability, to maximize the range in which the tension is 
a linear function of draught since both the maximum and minimum 
tensions represent a loss in the restoring moment contribution of an 
articulated member . The maximum tension may be increased by increasing 
the articulated column length. The vessel heel angle at which non-vertical 
articulation equilibrium positions arise may be increased by lowering the 
mass and centre of gravity position of the articulated column. 

Large angle restoring moments have been evaluated numerically using 
the tension method for the articulated vessel shown in Figure 9.L The 
vessel was modelled by cylindrical volume elements consisting of slender 
circular and rectangular cylinders whose individual submerged volumes 
were summed to obtain f b r - The vessel was rotated an angle β and its 
draught was adjusted iteratively by calculating the new submerged volume 
and tensions at each step until Equat ion (9.50) was satisfied. Then the 
restoring moment was calculated using Equation (9.51). The results of 
these calculations are presented in Section 9.4. 

One of the problems associated with the tension method occurs when 
modelling the rigid part of the vessel and complex deck structure with 
volume elements. This is because, especially at large angles of inchnation, 
it is difficult to determine the submerged volume and its centroid due to the 
way the water plane cuts complex element shapes and intersections. 
Chapter 3 describes a pressure integration technique for hydrostatic 
analysis which overcomes this problem by expressing all hydrostatic 
properties in terms of surface pressure integrals. Integration of pressure 
over the submerged body then yields hydrostatic forces and moments . 

Using the above methods. Figures 9.8 and 9.9 present large angle 
restoring (or righting) moments for the full vessel shown in Figure 9 .1 . 
Details of dimensions and other vessel properties are given in Table 9 .1 . 

Table 9.1 Articulated column semisubmersible dimensions 
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Figure 9 .8 . Large-angle righting moment 
curves for the articulated-column semisub­
mersible: (a) h = 11 m, articulation centre 
of gravity = 16.6 m above pivot; (b) 
h = 13 m, articulation centre of grav­
ity = 16.6 m above pivot; (c) h = 1 1 m , 
equivalent rigid vessel; (Ai - first 
articulated-column instability; A2 - second 
articulated-column instability; Β -
articulated-column immersed; C - possible 
articulated-column joint failure; D - deck 
immersed); Ε - survival wind heeling mo­
ment (wind speed = 51 m/s) 
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Figure 9 . 9 . Large roll-angle righting moment 
curves for the articulated-column semisub­
mersible: (a) h = 11 m, articulation centre of 
gravity = 16.6 m above pivot; (b) h = 1 1 m , 
articulation centre of gravity = 15.0 m above 
pivot; (c) h = 11 m, articulation centre of 
gravity = 13.5 m above pivot; (Ai - first 
articulated-column instability; A2 - second 
articulated-column instability; Β -
articulated-column immersed; C - possible 
articulated-column joint failure; D - deck 
immersed 

Five curves illustrate the effects of vessel initial metacentric height (GM) 
and articulated column centre of gravity. The vessel geometry and static 
tensions are the same for all five cases. 

Figure 9.8 also illustrates the large angle restoring moment of the vessel 
with the articulated columns held rigid. The rigid vessel has an initial GM 
of 11 m and at small angles there is little difference between the rigid and 
articulated vessels. However , at rotations beyond 7°, the respective 
restoring moment curves diverge considerably. The restoring moment for 
the equivalent rigid vessel increases monotonically with rotation. In 
contrast, the restoring moment for the articulated vessel falls rapidly after 
the first articulated column inclines to a non-vertical equihbrium position 
and does not increase until after deck submergence commences. Thus the 
rigid vessel is substantially more stable than the articulated vessel at larger 
angles of heel. 
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There are several features of interest in the curves: Αχ and A2 indicate 
the points where one or more articulated columns have become non-
vertical; Β denotes the point at which one or more articulated columns 
have immersed; and D indicates that the deck has immersed; the point C 
signifies a strong possibility of joint failure as a result of the exceptionally 
large angle of inclination of the articulation from the vertical. 

All the curves exhibit the same general features. There is a reasonably 
linear increase in the restoring moment up to approximately 8-10°, at 
which point the first articulated column inchnes away from the vertical. 
This leads to a large loss in restoring moment which causes the curves to 
level out and then to decrease rapidly. The decrease in restoring moment is 
reinforced further each time a column submerges or moves to an inclined 
equilibrium position. The decrease in restoring moment is eventually 
arrested by the submergence of the deck which generates an increasing 
restoring moment . 

To maximize the area under the restoring moment curve, and hence the 
stability, it is desirable to increase the initial GM and to lower the centre of 
gravities of the columns - the latter change delaying the critical event of 
non-vertical column equihbrium positions. The other alternative is to 
increase the tension at the joint. However , care must be taken to ensure 
that the tension is not too high and that column natural periods are still 
outside the expected wave spectrum. 

The hydrostatic stability of a vessel is important because it provides a 
restoring moment to oppose any disturbing moments that may act on the 
rig. The most obvious of these is the disturbing moment due to wind 
loading. The wind heeling moment (M^) is calculated by 

n' 

Aiw(ß) = 2 \ Pav'Q,ChiAp,/ , (9.52) 
1=1 

where Pa is the air density; Cs/ is a shape coefficient associated with the /th 
vessel member (of a total of n' members) ; is a height coefficient which 
accounts for the effects of the atmospheric boundary layer; ν is the wind 
velocity; A^i is the projected area of the /th member normal to the wind 
velocity; and // is the moment arm which is the distance from the centroid 
of Api to the centre of lateral resistance of the vessel (International 
Maritime Organisation, 1980). 

Figure 9.8 presents wind heehng moment as a function of angle of 
rotation. The positions of vessel equilibrium are located where the wind 
heeling moment curve intersects the positive gradient of the restoring 
moment curve. For example, points Ε and G are stable, whereas the 
intersection at F i s unstable. The presence of stable and unstable intersec­
tions between the restoring moment and wind heeling curves leads to 
unusual physical behaviour at large angles of inclination. 

A typical restoring moment curve (ΟΑ'Β') for an equivalent rigid vessel 
is shown Figure 9.10. Although the restoring moment is positive for all 
angles of heel shown, the vessel is only stable between the points O and A ' . 
For stability to be maintained the vessel must be able to generate a 
hydrostatic restoring moment equal in magnitude, and of opposite sense, 
to an applied overturning moment . Anywhere between the points O and 
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Figure 9.10. Large-angle stability curve for articulated and rigid vessels 

A', the restoring moment wiU be in equihbrium with the overturning 
moment . For disturbing moments that are higher than the level oí A', the 
vessel restoring moment will not be able to counteract the overturning 
moment , thus causing the vessel to become unstable and capsize. 

Figure 9.10 also illustrates a representative restoring moment curve 
(based on Figures 9.8 and 9.9) for the articulated vessel. The point A 
identifies a local maximum in restoring moment - the curve beyond this 
point, shown by the broken hne , decreases to point Β as emerging and 
submerging articulated members contribute to a loss in restoring moment . 
The change of gradient beyond Β is caused by the submerging buoyant 
deck generating additional restoring moment . 

If an overturning moment , the magnitude of which is in the range OA, is 
applied to the vessel, a positive hydrostatic stiffness (restoring moment per 
unit rotation) will ensure that stability is maintained. If the vessel were to 
be released from such a position, it would oscillate about the equihbrium 
position until the motions were damped. Now consider the consequence of 
an increased overturning moment such that it intersects the restoring 
moment curve at A. Here the effective stiffness of the system is zero (as it 
changes from positive to negative). This represents a static instability and is 
characterized by the appearance of an adjacent position of equilibrium at 
the point C . To arrive at this second position of stable equilibrium, the 
vessel cannot follow the computed curve along line AB. In this region, the 
hydrostatic restoring moment is less than the overturning moment and, 
furthermore, the effective stiffness is negative - the latter implying that the 
vessel is unstable between angles and 6¿,. A new equihbrium position is 
then estabhshed at point C , with the vessel moving rapidly from the angle 
of heel and 6¿, in a very short space of t ime. Further increases in 
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9.4 Catastrophic instability at large angles 

An essential aid to the classification of static instabilities is provided by 
catastrophe theory for discrete conservative systems governed by a poten­
tial function (Thompson, 1982). The topological concept of structural 
stability has been invoked to argue that the experimentally observable 
forms of instability depend on the number of operational control para­
meters. The restoring moment , or potential , is governed by a single control 
parameter , the angle of heel. The variation of potential as a function of a 
control parameter will exhibit maxima and minima corresponding to 
unstable and stable states of equilibrium. However, the occurrence of a 
horizontal point of inflection, such as the line AC in Figure 9.10, cannot be 
expected. The point 4̂ is a critical point termed the fold or limit point; 
similarly AC \s called the fold line. The occurrence of a critical point is 
assigned a probability of zero. This simple energy transformation involving 
a single control parameter is termed a fold catastrophe - this is the 
simplest of the seven elementary catastrophes. 

Such large angle catastrophic behaviour has been further investigated by 
numerical time domain simulations of the dynamics of an articulated 
column semisubmersible subjected to a suddenly apphed disturbing 
couple. The equation of motion for such a system in terms of heel angle θ is 

d^e ά% 
I ^ ^ \ — ^ R ( ^ ) = D{t) (9.53) 

where / is the total rotational moment of inertia; λ is the equivalent linear 
damping coefficient; /?(θ) is the large angle restoring moment ; D(t) is the 
applied disturbing couple; and t is t ime. 

/ and λ were evaluated by the standard methods described in Chapter 5 
for the articulated vessel (Table 9.1) and /?(θ) was obtained by digitizing 
the large angle restoring moment curve for the vessel with a metacentric 
height of 13 m, as shown in Figure 9.8. The applied disturbing couple was 
taken to be constant for all time after its application. 

overturning moment result in the curve CE being followed beyond this 
point. During reductions in overturning moments , the positive stiffness 
ensures that the point of stable equilibrium will pass through C to the point 
B. This point is analogous to A during increasing overturning moment in 
that it represents a change from positive to negative stiffness. Again, on 
the point of a static instability, an adjacent position of equilibrium appears 
at D , from which further reduction in overturning moment results in a 
return to the origin, O. Thus, in applying and removing an overturning 
moment to the vessel, large angle behaviour in the form of a hysteresis 
cycle results. If the point Β is located at a negative restoring moment value, 
a feature iUustrated in some of the curves in Figures 9.8 and 9.9, then its 
adjacent equilibrium point, D , will also occur at a negative restoring 
moment . The curves presented here can be extended to negative angles of 
heel by taking successive mirror images in the horizontal and vertical axes. 
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Figure 9.11. Time history of the articulated-column semisubmersible. Key: a - heel angle 
(disturbing couple = 686.7 MNm); b - angular velocity (disturbing couple = 686.7 MNm); 
c - angular acceleration (disturbing couple = 686.7 MNm) 

The equation of motion (9.53) was solved numerically using a fourth 
order Runge-Kut ta -Nyst röm Method (Kreyszig, 1979). This involves a 
Taylor's series expansion where fifth and higher order terms are neglected. 

A disturbing moment of 686.7 MNm was applied to the vessel which was 
initially on an even keel. Figure 9.8 illustrates that this disturbing couple 
gives two stable equilibrium positions corresponding to heel angles of 6.5 
and 33°, respectively, and an unstable equilibrium position at 15.5°. A 
static analysis would suggest that the vessel would heel to 6.5° when this 
couple was apphed. However, the dynamic analysis illustrates a far more 
alarming behaviour. Figure 9.11 shows the heel angle time history follow­
ing application of the disturbing couple at zero t ime. Because of the 
dynamic overshoot the vessel heels over beyond the first equilibrium 
position and beyond the critical point (A in Figure 9.10). Once it has 
overshot the critical point it follows the fold line and heels over to the 
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second equilibrium position (at point C in Figure 9.10). The vessel then 
oscillates at a heel angle of 33° until it comes to rest. Figure 9.11(b) and (c) 
illustrate the corresponding angular velocity and angular acceleration time 
histories. 

There are several alarming features due to the catastrophe. The first is 
the magnitude of the maximum heel angle reached, which is almost 39°, 
and the final equilibrium position of 33°. These angles are exceptionally 
large and, for a floating vessel, would almost certainly lead to down 
flooding with the eventual capsize of the vessel. Yet the first equilibrium 
position of 6.5° would be acceptable. Fortunately, the vessel does not 
experience exceptionally large velocities and accelerations during transi­
tion between its stable states. This is due to the fact that its rotational 
moment of inertia is large with respect to the magnitude of the applied 
couple and the natural period is high. For example, at the time of first 
impact with the still water surface, the deck edge experiences a velocity of 
1.10 m/s and an acceleration of 0.09 m/s^. However, the consequent 
structural loads will sfill be significant due to the large deck mass and the 
small initial impact area. 

It is worth noting that the magnitude of the disturbing couple is not 
unrealistic in that it is equivalent to the disturbing moment resulting from 
the complete flooding of an empty 15 m secfion of an articulated column. 
Further damage stability calculations were carried out using the tension 
method. These results show that the flooding of an articulated column with 
1000 t of sea water would result in a heel angle of approximately 14.5° and 
the complete loss of an arficulated column would result in a heel angle of 
approximately 9°. In terms of dynamic stability considerations and the 
catastrophe phenomenon, these heel angles would be unacceptable. 

Figure 9.12((a)-(f)) shows phase space trajectories for six disturbing 
couples of increasing magnitude. It illustrates the transition between two 
stable states characteristic of a fold catastrophe. The first disturbing couple 
of 294.3 MNm results in the vessel following a smooth path to a stable 
focus at an angle of 2.9°, as illustrated in Figure 9.12(a). The phase space 
trajectory plotted in Figure 9.12(b) is the result of a disturbing couple of 
657.3 MNm. The effects of a non-linear hydrostatic stiffness are clearly 
evident. The initial overshoot of 15° is beyond the critical angle, however, 
vessel dynamics just manage to offset a change in equilibrium state. The 
magnitude of the initial overshoot in comparison with subsequent oscilla­
tions signifies the closeness of the instability. When the disturbing moment 
was increased to 659.7 MNm (an increase of 0.4% from the previous 
value), this was sufficient to induce transition to a new equilibrium 
position. Figure 9.12(c) illustrates that the vessel almost comes to rest 
before transition - the point at which the trajectory would have intersected 
the line JC = 0 is a saddle point. However, the vessel heels over through a 
series of unstable equilibrium states until it oscillates about its stable 
equihbrium posifion at an angle of 32.5°. Subsequently, the applied couple 
is increased through 686.7, 833.9 and 981 MNm (Figure 9.12(d)-(f)). As 
the couple is increased the final resfing angle increases. Higher initial 
couples result in the disappearance of the saddle point. 

The above work demonstrates that the stability curve of the articulated 
vessel is very hmiting. From the point of view of cert if icaron, the 
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Figure 9.12. Phase-space trajectories. Key: a - disturbing couple = 294.3 MNm; 
b - disturbing couple = 657.3 MNm; c - disturbing couple = 659.7 MNm; d - disturbing 
couple = 686.7 MNm; e - disturbing couple = 833.9 MNm; f - disturbing couple = 
981.0 MNm 

conventional requirements of sufficient area ratio between righting to 
disturbing moments up to a second intercept of the moment curves (or up 
to a downflooding angle if this is smaller) and an angle range for positive 
stabihty can, in theory, be met. However , for this vessel, damage to an 
articulated column leading to flooding or other like events would induce 
occurrence of the catastrophic instability. It is clear that conventional 
certification requirements for hydrostatic stability would need to be 
extended or rethought for articulated column vessels, particularly for 
damage stabihty. In practical terms, the occurrence of a rapidly changing 
angle of heel (movement along the fold hues AC in Figure 9.10) would lead 
to complete loss of the vessel as a result of structural failures induced by 
transient accelerations at large angles and water slam loads during this 
motion. Fur thermore , the rapid (or catastrophic) onset of this sudden 
change in angle of heel would lead, in all probability, to heavy loss of life. 

9.5 Hydrodynamic response 

A general hydrodynamic analysis for the articulated column semisubmer­
sible would need to be formulated in 18 degrees of freedom - 6 for the 
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rigid body motions of the primary vessel and 12 degrees of freedom to 
describe the angular motions in two perpendicular vertical planes for each 
of the six articulated columns. There are several drawbacks to this 
approach. First, even a frequency domain solution of the 18 degrees of 
freedom problem is complicated. Despite the complexity, such a calcula­
tion cannot take articulated member non-linear behaviour into account. 
The additional difficulty of an 18 degree of freedom non-hnear time 
domain analysis is similarly not justified by the quality of vessel behaviour 
prediction that it would yield. 

However, the 1:100 scale model tests described later do indicate that the 
articulated and its equivalent rigid vessel yield very similar motion 
responses to waves. Fur thermore , for a small motion amplitude, linear, 
frequency domain hydrodynamic analysis, the articulated columns move 
through small angles and can thus be assumed to be rigidly connected to 
the vessel. These two features have prompted the development of a two 
step analysis of the articulated column semisubmersible. The motion of the 
overall vessel is obtained from a linear analysis of an equivalent rigid 
vessel, whereas motions of the articulated column are obtained from a 
separate non-linear analysis of an articulated column with a fixed pivot. 
The former analysis is briefly described first. 

The general equation of motion for a rigid semisubmersible is of the 
form 

(M + MJi + D | i | i + (/C + KJx = 2 F,(0, (9.54) 

where Μ and are the mass and added mass matrices; D is the damping 
matrix; Κ and /C^ are the hydrostatic and mooring stiffness matrices; and F/ 
is the wave exciting force vector acting on the ith member ; x, χ and χ are 
the displacement, velocity and acceleradon vectors containing the six rigid 
body degrees of freedom (surge, sway, heave, roll, pitch and yaw). The 
solution procedure for this equation is described further in Chapter 5 and is 
not repeated here. Figures 9.13, 9.14 and 9.15 illustrate the heave, pitch 
and surge responses of the articulated vessel obtained from the solution. 
However, this equivalent rigid vessel analysis yields no information on the 
behaviour of the articulated columns or about the forces at the universal 
joints. 

The behaviour of a representative arficulated column is examined, first 
in its static and still water dynamic behaviour. Consider a slender articu­
lated column of radius r, mass Mc, submerged length and a centre of 
gravity distance Lg from the pivot. It has a second moment of inertia, /c, 
about the pivot, an added mass coefficient, Cn,, and a drag coefficient, C^, 
associated with flow normal to its axis. 

Assuming that the column is statically inclined at an angle 7 from the 
vertical axis and resolving forces vertically gives 

r + Meg = ( p g 7 T r 2 L s ) / c o s 7 (9.55) 

where Τ is the tension at the pivot. Taking moments about the pivot gives 

M ^ L g s in7 = {pgTTr^Ll sm^)/{2 cos^y) (9.56) 
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Figure 9.13. Articulated-column semisubmersible heave response in head seas of 6 m wave 
height. Key: a - rigid vessel (theoretical); b - typical semisubmersible heave R A O s ; 
c - articulated vessel (experimental); d - rigid vessel (experimental) 

Re-arranging (9.56) 

cosy = (9.57) 
V 2 m c L g / 

Below a certain critical draught, the column no longer takes up a vertical 
position. It assumes an equilibrium position at some angle to the vertical. 
The critical submerged length is given by 

When the column is at a non-vertical equilibrium position, the tension is 
given by 

(9.58) 
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Figure 9.14. Articulated-column semisubmersible pitch response in head seas of 6 m wave 
height. Key\ a - rigid vessel (theoretical); b - typical semisubmersible R A O s ; c - rigid 
vessel (experimental); d - articulated vessel (experimental) 
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Figure 9.15. Articulated-column semisub­
mersible surge response in head seas of 6 m 
wave height. Key: a - rigid vessel (theore­
tical); b - typical semisubmersible surge 
R A O s ; c - rigid vessel (experimental); d -
articulated vessel (experimental) 

r = V [ ( 2 p i T r 2 M c L g ) - ' (9.59) 

which is constant and independent of the submerged length. 
Now consider the articulated column when it is in its initial vertical 

atti tude. The column is given a small rotational displacement, a , about the 
pivot. Resolving moments about the pivot and ignoring any damping gives 

( /c + / a ) ¿ + (h Pg'^r^Ll - M^L^) sina = 0 (9.60) 

where 4 is the added inertia of the column about the pivot, given by 

l, = pC^^,^\Ll (9.61) 
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Turning now to the column response to waves, the equation of motion for a 
column with a fixed base pivot and subjected to wave action can be written 
as 

(/e + / a ) ¿ + Β\ά\ά + ( i pgTrr^Lg - M e L g g ) a = M „ (9 .64) 

where Β is the rotational viscous damping term; Lb is the instantaneous 
distance of the centre of buoyancy from the pivot; and M „ is the wave 
induced overturning moment . The rotational viscous damping term is 
given by 

Β = \ pC^rL^s ( 9 .65 ) 

where Q is the drag coefficient whose value is a function of Reynolds 
number. The left hand side of the equation contains a non-linear drag 
term, a time variant stiffness due to the instantaneous submerged length 
and a non-linear overturning moment , All such non-linear information 
would be lost in a linear solution. 

The overturning moment , Λί^, is evaluated by integrating the wave force 
given by Morison's equation over the submerged length of the column. The 
small additional moment due to the wave pressure force acting on the base 
of the column is also included. The Morison equation states that the 
incremental wave forces, δ/, acting on a moving cylinder section of length 
8 L is given by 

δ / = {prCdIw - x\{u - i ) + pTTr2(dw/dr) + piir^C^[{du/dt) - x ] } 8 L , 
(9 .66) 

where u and du/dt are the instantaneous normal velocity and acceleration 
of the undisturbed wave flow; χ and Jc are the normal velocity and 
acceleration of the cylinder; is the added mass coefficient which has a 
value of 1 for long circular cylinders. The wave flow field was calculated 
using Stokes' fifth order gravity wave theory (Skjelbreia et al., 1960) . 

Equation (9 .64) is solved in the time domain by using a Newmark 
algorithm and assuming a constant average acceleration between time 
steps (Bathe, 1982) . Time histories of fih angle are obtained from solution 
of the governing equation with forces at the pivot evaluated by considering 
static and dynamic equilibrium of the column at any instant in d m e . 

Figure 9 .16 gives the resuhant column tih response to waves as a 
function of wave period. Fur thermore , the horizontal reaction force 
amplitude at the pivot and the horizontal wave force amplitude on an 
articulated column are compared in Figure 9 .17 for two different wave 
heights. This shows that the component transmitted to the rigid part of the 

Because the rotation α is smah, sina — α and Equat ion (9.60) has the form 

¿ + ω^α = 0 (9.62) 

where ωη is the angular natural frequency. Hence the natural period of the 
column, T^, is given by 

T̂ c = 2π / i , ^ \ (9.63) 
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Figure 9.16. Articulated-column response 
(column diameter = 7 m; draught = 
42 m; Cd = 1.2; C^ = 1.0). Key: 
a - theoretical (wave height = 6 m); 
b - theoretical (wave height = 12 m); 
c - experimental (wave height = 6 m); 
d - experimental (wave height = 12 m) 
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Figure 9.17. Articulated-column horizontal 
force (column diameter = 7 m; draught = 
42 m; Cd = 1.2; C^ = 1.0). Key: a - force 
on rigid column (wave height = 12 m); 
b - force on rigid column (wave height = 
6 m); c - force at pivot (wave height = 
12 m); d - force at pivot (wave height = 
6 m) 

vessel is less than the hydrodynamic force on the column at wave periods 
away from resonance, in particular below 20 s. It can be seen that for a 
large part of the lower wave period range, the ratio of the two forces is less 
than 2 0 % . This would be of benefit to the structural design. The reduction 
in horizontal force transmitted to the rigid vessel at lower wave periods will 
also help to reduce horizontal motion response. However , it should be 
noted that at these lower periods the motions are already small due to the 
fact that the wave forces are relatively small and the vessel displacement is 
large. 

In order to ensure sufficient hydrostatic stability, it is desirable to 
maximize the static tension in the articulated column by increasing the 
excess buoyancy and minimizing the distance of the centre of gravity from 
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the pivot. However, both these objectives also lower the natural period of 
the column. It is preferable that the tilt natural period lies outside the wave 
spectrum in order to avoid large column motions which may result in 
collision with the deck. It can be seen that dynamic and hydrostatic 
considerations conflict and there must be a compromise between the two. 

The theoretical prediction from the equivalent rigid vessel and articu­
lated column analyses described above have been compared with model 
tests of the vessel at 1:100 scale. The test model was designed to ensure 
that pre-selected mass distribution could be obtained for the rigid and 
articulated segments and that the model could be operated either with the 
columns held rigid or moving freely. Motion measurements were carried 
out in waves of both the central rigid platform and the angular motions of 
the articulated columns. 

Still water hydrostatic inclining tests, with the results shown in Figure 
9.7, confirmed the validity of the hydrostatic restoring moment predictions 
given in Section 9.3. Regular wave motion response tests were also 
performed for the vessel with columns held rigid and allowed to move 
freely, and these demonstrated that the differences between the two are 
neghgibly smaU. This justifies the assumptions used in the analysis me­
thods. Figure 9.13 presents a comparison of the articulated and rigid vessel 
heave R A O in head seas. This shows that the articulated compliance has 
no significant effect on the vertical motion of the vessel. The most 
important feature of the amplitude response curve is the magnitude of the 
secondary peak. This indicates that the vessel heave amplitude will be 20% 
of the incident wave amplitude, in comparison with most existing semisub­
mersibles which heave between 40 and 50% of wave amplitude. Figure 
9.14 shows the pitch response to be of the order of 0.17m and shows good 
comparison between calculated and measured rigid vessel responses. In 
this example, rigid and articulated vessel responses are also very similar. 

Figure 9.15 illustrates small differences between articulated and rigid 
vessel surge response amplitudes. Overall , articulated columns do reduce 
horizontal motions, particularly at low wave periods (8 and 9 s), although 
the reductions are not substantial. Discrepant experimental points for the 
pitch and surge results at periods above 16.5 s are due to the influence of 
the mooring lines. The theoretical results have been obtained for a free 
vessel. 

Figure 9.16 illustrates measured and predicted articulated column tilt 
angle amplitudes per unit wave amplitude as a function of wave period in 6 
and 12 m waves. Results are presented for a column of 7 m diameter and 
42 m draught. Curves for both wave heights indicate a similar response 
with tilt angle amphtudes increasing in the vicinity of the column natural 
period (23.0 s, full scale). Increasing the wave height from 6 to 12 m 
illustrates non-hnearities in the response above wave periods of 18 s. 
Experiment and theory compare well, particularly at the smaller wave 
height, suggesting that the column response is not strongly influenced by 
motion of the pivot. 

It is clear from the work presented here that the introduction of 
articulations complicates the hydrostatic stability of a semisubmersible. 
When comparing the articulated vessel with the equivalent rigid vessel, 
some small angle stability is lost as a direct result of articulating the 
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9.6 Rigid vessels with inflected righting moment curves 

The catastrophically unstable behaviour described in the above section is 
not confined to vessels with joints but can also arise, in a weaker form, in 
rigid vessels where the righting moment with heel angle variations has a 
point of inflection within it. 

This section describes the dynamics of roll motion of such vessels in 
greater detail. One of the most common causes of inflected righting 
moment curves is the installation of sponsons around the hulls of rigid 
vessels. This feature usually arises because of the demands of high deck 
payload for offshore oil drilling, production or support duties together with 
the increasingly stringent hydrostatic stability requirements of certifying 
authorities. 

columns. However, the vessel does possess high initial stability due to the 
large column spacings. The large angle hydrostatics (Figures 9.8 and 9.9) 
exhibit large restoring moment losses due to the behaviour of articulations 
at lower draughts. The form of the restoring moment curve is alarming and 
would be of major concern to certifying authorities (Depar tment of 
Energy, 1988; Det Norske Veritas, 1987). Note that large amounts of 
energy would be required to rotate the vessel up to the point where 
instabilities occur due to the large initial metacentric height. Nevertheless, 
such energy inputs are not unrealistic. Further dynamic stability considera­
tions have shown that the vessel exhibits behaviour which is qualitatively 
predicted by the mathematics of classical catastrophe theory. It is certain 
that the stability requirements applied to articulated column semisubmer­
sibles would have to be re-assessed and that in its present form the vessel 
would be unacceptable as a working design. Nevertheless, the articulated 
column semisubmersible at normal operating conditions offers exceptional 
motion response characteristics in all its degrees of freedom. 

An interesting feature of the effect of articulations is the considerable 
reduction in the magnitude of forces transmitted to the main platform due 
to the columns being articulated. This is shown in Figure 9.17 which 
presents the horizontal wave induced force on the articulated column and 
the horizontal shear force at the pivot. For wave periods up to 18 s, the 
shear force is much less than the wave force. If the articulation were held 
rigid, the shear force would be equal in magnitude to the wave force. 
Fur thermore , this would induce a bending moment at the column base. 
This is relieved by articulating the column. For wave periods up to 16 s the 
ratio of pivot shear force to horizontal wave force is less than 2 0 % . 

The articulated column semisubmersible offers potentially exceptional 
motion response characteristics but it appears at the cost of severe 
catastrophic instability in heel and pitch at large angles. It is clear that the 
same feature of the vessel design which gives it exceptionally good motion 
response during normal operations also causes the catastrophic instabihty 
at large angles. There is, therefore, no apparent design refinement that 
could maintain a significant motion response advantage during normal 
operations with acceptable behaviour at large angles of inclination. 
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Figure 9.18. Conventional four-column semisubmersible with sponsons 

Table 9.2 Four column semisubmersible data 

Displacement (in sea water) 25 585 t 
Draught 20.5 m 
Roll metacentric height 1.98 m 
Column diameter 12.92 m 
Column pitch radius 38.69 m 
Pontoon dimensions 73.64L m 
Sponson width/diameter 16 .00Wm 
Sponson height 7.50D m 
Height of underside of sponson 
Above keel 18.0 m 
Deck dimensions {L x W χ D) 70 X 70 X 4 m 
Height of underside of deck above keel 33.0 m 
Bracing diameter 2.0 m 

This section demonstrates the occurrence of such inflectional righting 
moments for a four column semisubmersible installed with sponsons on the 
columns at the water line. A polynomial approximation to the hydrostatic 
moment against roll angle variation is used within the governing equations 
to deduce vessel behaviour under static overturning moments , when 
oscillating in free vibrations and when excited by wave induced roll 
moments . These analyses are used to deduce salient features of vessel 
behaviour due to the presence of inflections in the righting moment curves. 
Solutions of the governing equations derived from a time domain integra­
tion are also used to illustrate vessel behaviour. The section concludes with 
a discussion of the implications of such inflection induced behaviour on 
vessel safety. 

9.6.1 Calculation of righting moment curves 

A four column semisubmersible with sponsons is used as the example 
vessel. Figure 9.18 gives a perspective view of the vessel huh and Table 9.2 
gives principal particulars. A surface pressure integration technique (see 
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Chapter 3) is utihzed to yield hydrostatic righting moment against angle of 
heel curve shown in Figure 9.19. It is important to point out here that the 
addition of sponsons on rigid conventional vessels will not necessarily 
generate an inflected righting moment curve. The presence and precise 
shape of the inflection does depend on the vessel geometry, weight 
distribution and the sponson geometry. Nevertheless, in configurations 
where the inflection does occur, the restoring moment is represented by a 
spring which is effectively linear for small rotations, softens and then 
hardens with increasing rotation. Fur thermore , the restoring moment , 
/?(φ), is an odd function so that /?(φ) = - / ? ( - φ ) where φ is the angle of 
rotation. Thus Κ{φ) may be approximated by the series in odd powers of φ 
given by 

/?(φ) = α φ + βφ^ + 7φ5 + . . . (9.67) 

Figure 9 
righting 
mation 

Roll Angle ^ (degrees 

M9. Roll righting moment for a semisubmersible with sponsons: Key: a - actual 
moment; b - linear approximation; c - cubic approximation; d - pentic approxi-
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9.6.2 Dynamic analysis 

The general equation of roll motion for a marine vehicle is 

/ φ + Ο φ + /?(φ) = M,{t) (9.69) 

where φ is the roll angle; / is the total (physical plus added) inerfia; D is the 
equivalent linear damping; R is the restoring moment ; and M, is the roll 
exciting moment . This equation assumes no coupling between roll and any 
other degrees of freedom and that the total inertia is effectively constant. 
The non-linear quadratic component of the damping associated with 
viscous forces has been linearized and combined with the damping due to 
radiation forces to form the equivalent linear damping. The reader is 
referred to work by Dalzell (1978) and Brown and Patel (1985) where 
non-linear damping is considered. This aspect of the roll equation of 
motion is not considered here . 

If the restoring moment /?(φ) can be approximated by the first three 
terms of the series given in Equation (9.67), then the roll equation of 

Considerable work has been done on systems with non-linear springs 
(Stoker, 1950; Jordan and Smith, 1977; and Nayfeh and Mook, 1979) 
where the restoring force or moment is represented by just the first two 
terms of the above series. However, it can readily be shown that it is 
necessary to include the third term of the series in order to model the local 
maximum and minimum. Thus 7?(φ) may be approximated by the first 
three terms of the series with the local maximum and minimum given by 
the roots of the equation 

57φ^ + 3βφ2 + α = O (9.68) 

This chapter only considers the case where α is positive and β and 7 are 
relatively smaU. In order for an inflectional point to exist, β and 7 must be 
of opposite sign. If β and 7 were of the same sign, then the restoring 
moment may be represented by a continuously hardening or continuously 
softening spring - depending on the sign of β and 7. This section is only 
concerned with inflectional curves and hence the case where β and 7 are of 
opposite sign. 

Figure 9.19 illustrates an approximate fit of the pentic equation (first 
three terms of the series) to the calculated restoring moment curve for the 
semisubmersible shown in Figure 9.18 and with numerical data given in 
Table 9.2. The linear approximation (first term of the series) and the cubic 
approximation (first two terms of the series) are also plotted. These curves 
indicate that a fifth order polynomial adequately models the local maxi­
mum and minimum whereas any lower order fit is not sufficiently 
representative. The coefficients of the curve fit are; α = 0.009 461 16, 
β = - 0 . 2 4 4 598 9, 7 = 2.339 526 80 and λ = 0.017 767 33 ( tonne metre 
second units). Note that the righting moments presented here are calcu­
lated using static condifions and are fime invariant. In pracfice, the 
restoring moments will be time dependent due to changes in the vessel's 
submerged volume during wave action. However , it is reasonable to 
assume that a stafic analysis will generate the mean restoring moment . 
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λvdφ (9.74) y + Ρ(φ) = Λο -

where 

αφ^ βφ"^ 7Φ^ 
Ρ{Φ) = + χ + ^ (9.75) 

and ho is the initial total energy of the system. Equat ion (9.74) states that 
the sum of the kinetic and potential energies is equal to the total energy at 
any instant. If the system is conservative, that is, there is no damping, then 
the total energy would always equal the initial energy. The integral term of 
Equation (9.74) represents energy dissipated by damping (λ > 0 ) which 
tends to ho as time tends to infinity. Thus the system will tend to a 

motion (9.69) becomes 

φ + λφ + α φ + βφ^ = 7Φ^ + m,{t) (9.70) 

where α, β and 7 now include the total inertia; and is the roll exciting 
moment divided by the total inertia; λ is the linearized damping coefficient 
divided by the total inertia. 

An examination of Equation (9.70) will enable the effect of the local 
minimum and maximum in restoring moment on the behaviour of the 
vessel in roll to be deduced. Unfortunately, exact closed form analytical 
solutions of Equation (9.70) do not exist. It may only be solved by 
approximate methods depending on the form of m^. or by numerical 
methods. 

This section uses both approximate methods and numerical integration 
to solve Equation (9.70). A Runge-Kut ta -Nys t röm method is used for the 
numerical integration (Kreyszig, 1979). Jones and Lee (1985) have used 
numerical methods for the solution of non-linear systems with some 
success. 

9,6,2.1 Free motions 
The homogeneous or free equation of motion merits investigation as it 
yields useful information of a qualitative character on the system. The free 
system is described by the equation 

φ 4- λφ -h α φ + βφ^ + 7φ^ = O (9.71) 

This equation cannot be solved directly but it may be transformed to the 
phase plane to yield energy curves. Substituting the following relation­
ships: 

αφ d2φ dv 
— = v; — 7 = V — (9.72) 
dt άφ 

into Equation (9.71) gives 

dv 
- V — = α φ + βφ^ + 7φ^ + λν (9.73) 

dφ 
This equation may be integrated to give the energy integral equation: 
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Figure 9.20. Phase-space trajectory for the non-linear system with zero damping 

Stationary equilibrium position unless more energy is injected by external 
forces. In the phase plane, all equilibrium points lie on the angular 
displacement axis. As φ and ν tend to zero the phase space trajectories of 
the free undamped system are ellipses about the origin similar to those for 
the linear system. The phase space trajectories of the non-linear system 
with no damping presented in Figure 9.20 were obtained using the values 
of coefficients a , β and 7 given in Section 9.6.1. Each closed path 
represents a constant energy trajectory with greater energy further from 
the origin. These closed paths represent periodic solutions where the 
system will oscillate indefinitely. In practice the trajectory will spiral 
towards the equilibrium position at the origin as energy is dissipated by 
positive damping. 

Depending on the values of β and 7, solutions of Ρ (φ) = ho will 
determine whether or not the non-linear systems's maximum angular 
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[2{ho - Ρ(φ)] 

which, for a hnear system, gives Τ = 2π/ν(α). Examination of the 
homogenous system shows that both the amplitude and the periodicity of 
the motion are affected by the non-linear restoring moment . Fur thermore , 
the introduction of non-linear terms make the period of motion dependent 
on the amplitude of oscillation. This will become evident later. 

9,6,2 J Equilibrium positions 
Marine vessels rely on their hydrostatic stability to counteract applied 
moments which may build up to a constant value. While such a moment is 
applied, the vessel maintains a new equilibrium position governed by its 
hydrostatic stability. The build up of the applied moment may be instanta­
neous such as the moment induced by the loss of a crane load or more 
gradual such as an increase in the wind overturning moment . 

If the restoring moment curve of the vessel is monotonic in the range of 
interest, then there is only one equihbrium position given by the point 
where the restoring moment equals the applied moment . However , if there 
is a local maximum and minimum in the restoring moment curve, then 
there exists a range of applied moments where there are three possible 
equihbrium positions. 

For example, if a roll moment of 4000 tfm was applied to the four 
column semisubmersible, then Figure 9.19 shows that there are three 
possible equilibrium angles of approximately 4.4°, 8.0° and 13.1°. This 
would be a major source of alarm to certifying authorities because although 
the first equihbrium position would be acceptable, the second two would 
not. Since all three positions are the result of the same applied moment , 
uncertainty about which position would actually be achieved casts severe 
doubts on the vessel's safety. 

If an overturning moment , the magnitude of which is in the range of OA 
(see Figure 9.19), is applied to the vessel, a positive hydrostatic stiffness 
(righting moment per unit rotation) will ensure that stability is maintained. 
Releasing such a moment would result in the vessel oscillating about its 
initial equilibrium position until the motions were damped out. If the 
overturning moment is increased so that it intersects the righting moment 
curve at A, the effective stiffness will be zero (as it changes over from 
positive to negative). This represents a static instabihty and is characte­
rized by the appearance of an adjacent position of equilibrium, the point C . 
During transition to this position of stable equihbrium, the vessel will not 
follow the computed curve along line AB. In the heel angle range from A 
to C , the righting moment will be less than the overturning moment and. 

displacement is greater than the maximum angular displacement for the 
linear system. For the semisubmersible vessel example presented here with 
ho = 0.0005, the non-hnear terms had the effect of increasing the maxi­
mum angular displacement. The non-linearity in the restoring moment also 
modifies the periodicity of the motion. If the phase space trajectory is a 
closed curve, then v{t) = v(i -h Γ) and (t) = {t + T) where Tis the period 
of motion. The period Τ may be calculated by the integral 

dφ 
-^—ΪΓ2 (9.76) 
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dφ 
> 0 

Φ = Φ5 

(9.80) 

Thus the equilibrium position is stable if the restoring moment gradient 
about the equilibrium position is positive. So although the four column 
semisubmersible has three equilibrium positions (4.4°, 8.0° and 13 .Γ 
respectively) when a moment of 4000 tfm is applied to it. Figure 9.19 shows 
that the positions corresponding to 4.4° and 1 3 . Γ are stable, while the 
position corresponding to 8° is unstable. As a consequence of Equat ion 
(9.80), one of the equilibrium positions has been eliminated. The equili­
brium position finally obtained would depend on the dynamics of the 
system. The governing equation for this is solved by numerical integration 

furthermore, the effective stiffness is negative (in the region from ^4 to ß ) , 
both of which imply that the vessel would be unstable. The vessel will 
rotate rapidly from an angle of 7a (6°) to eventually settle at φς (14.3°). 
Further increases in overturning moment result in the curve CE being 
followed. As the overturning moment is reduced, the positive effective 
stiffness ensures that the locus of stable equilibrium will pass through C to 
point B. This point is analogous to A when the overturning moment was 
increasing, in that it represents a change from positive to negative stiffness 
(although this time it is a minimum point) . Again, on the point of a static 
instability, an adjacent position of stable equilibrium appears at D from 
which further reductions in overturning moment results in a return to the 
initial equilibrium position, O. Thus, in applying and removing an over­
turning moment to the vessel, the angle of heel will follow a hysteresis 
loop. Such a righting moment curve will cause a vessel to behave in a 
manner which exhibits the features of a fold catastrophe (Zeeman, 1977; 
and Thompson, 1982). The point Λ is a critical point termed the fold or 
hmit point - similarly, AC'is called the fold hne. 

So far nothing has been said about the stability of the equilibrium points. 
If the angular displacement, φ , is re-expressed in terms of a small 
perturbation, e, about the equilibrium position, φ^, then 

Φ = Φ5 + € (9.77) 

where is given by solution of s 

m, = αφ^ + + 7Φ8 (9.78) 

ms is the applied moment . Substituting (9.77) and (9.78) into the equation 
of motion (9.70) with m^{t) = yields the variational equation 

ϊ + λέ + (a + 3βφ2 + 57Φ3)€ = O (9.79) 

where second and higher order terms in φ have been neglected. Using this 
equation the stability of the three equilibrium positions associated with the 
applied moment may be investigated. 

Since the damping is positive, the variational equation and hence the 
equilibrium position is stable if 

α = 3βφ2 + 57φ^ > 0 

or 
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Figure 9.21. Phase trajectory for a semisubmersible with sponsons: (a) overturning 
moment = 2000 tfm; (b) overturning moment = 3600 tfm; (c) overturning moment 
= 3800 tfm; (d) overturning moment = 4000 tfm; (e) overturning moment = 3900 tfm; (f) 
overturning moment = 5000 tfm 

in the time domain for the four column semisubmersible whose restoring 
moment curve is shown in Figure 9.19. In the time domain solution, the 
actual restoring moment is used rather than the truncated series approxi­
mation. Inertia and damping coefficients were obtained by a slender 
member discretization described in Chapter 5. 

Two cases are considered. The first is where the applied moment builds 
up slowly and, in the second case, the moment is apphed instantaneously. 
In the case where the moment is applied slowly, the vessel tends to settle at 
the first equilibrium position. However, the situation is very different for 
the instantaneously apphed moment . Figures 9.21((a)-(f)) show the phase 
trajectories for increasing roll moments applied to the four column 
semisubmersible. Figure 9.21(a) shows the phase trajectory spiralling into 
the only equilibrium position (2.27°) associated with the applied moment 
of 19.62 MNm. Similarly for an applied moment of 35.32 MNm, the vessel 
heel angle spirals in towards its only equihbrium position at 4°. However , 
the phase trajectory (Figure 9.21(b)) shows that the vessel rotates beyond 
the local maximum point and then returns. The next apphed moment of 
37.28 MNm has three equilibrium positions - two of them being very near 
the local minimum point. Figure 9.21(c) shows that the phase trajectory 
circumvents the highest equilibrium position near 12° and heads towards 
the unstable equilibrium position at 9.2°. The phase trajectory diverges 
away from the unstable equilibrium position and converges on to the first 
stable equilibrium position at 4.2°. A small increase in the applied moment 
to 38.26 MNm results in the phase trajectory converging on the last 
equilibrium position near 12.5° (see Figure 9.21(d)). Further increases in 
moment resuh in convergence on the last equilibrium position (see Figure 
9.21(e)) until the applied moment is large enough to have only one 
equilibrium position (Figure 9.21(f)). 

The phase trajectories shown in Figures 9,21((a)-(f)) were calculated 
with the four column semisubmersible initially at rest and on an even keel. 
However , the vessel may not be at rest or on a even keel at the instant of 
the application of the disturbing moment because of oscillatory roll motion 
within a seaway. Figure 9.22((a)-(e)) show the phase trajectories for an 
applied moment of 37.5 MNm with a range of initial conditions. The 
moment of 37.5 MNm has three equilibrium positions. Depending on the 
initial conditions the vessel either settles at 4.2° or 12.2°. 

Of the three equilibrium positions that occur for a range of restoring 
moments in the region of the point of inflection, one is unstable. The final 
resting position of the vessel may be either of the two remaining equih­
brium positions. The final posifion depends on the dynamics of the system. 
This is a major concern because the first equilibrium posifion is generally 
acceptable while the last equilibrium position is almost certainly not 
acceptable. Yet both remain feasible. 
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9,6,2,3 Motions with harmonic excitation 
Wave loading is the dominant source of harmonic excitation of a marine 
vessel. The equation of roll motion with regular wave loading in beam seas 
can be written as 

φ = mo(ω)cos (ωί + ψ) - λφ - α φ - βφ^ - ^Φ^ (9.81) 

where mo and ω are the amplitude and frequency of roll exciting moment 
respectively; and ψ is a phase shift between the response and the wave 
induced roll moment . In general, mo is a function of ω. Equation (9.81) 
does not have an exact solution although an approximate solution method 
based on an iterative approach has been proposed by Duffing (Stoker, 
1950). 

If β and 7 are reasonably small then let the first approximate solution of 
φ be 

φο = Λ cosωt (9.82) 

where A is the unknown amplitude of oscillation. Now, substituting 
Equation (9.82) into (9.81) and using trigonometric identities gives 

Φι = mo cos(ωí + ψ) + ωλAsinωí - {αΛ + + cosωr 

βΛ^ 57^^"» 

4 16 

7 ^ ^ 
cos3ωí + cos5ωí 

16 
(9.83) 

Integrating and retaining the periodic solution gives 

- m o , λ>1 . 
Φι = — γ - cos(ω í + ψ) - — Slnωí Η­

ώ 

+ cosωí + 
9ω2 

β ^ 

W 

16 

1 3βΑ^ 5yA^^ 
- (αΑ + + — 
ω ^ 4 8 

5η 
cos3wí + 

400ω2 
ςο85ωί (9.84) 

This is the next approximation to the solution of φ. Note that higher 
harmonics are appearing in the solution. The iteration may be continued 
by substituting Equation (9.84) into (9.81) and integrating to obtain the 
next approximate solution of φ. 

The amplitude of oscillation, A, still remains unknown. However , if 
Equation (9.82) is a good approximation to the solution then 

- m o 1 
A = — c o s ψ + 

and 

0 = - ωλΑ + mo 5ΐηψ 

oA + - ^ + — (9.85) 

(9.86) 

Eliminating ψ gives 

+ ω Μ OLA + Ϋ + ω\^Α^ = ml (9.87) 
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2 ^ 3β^2 
= α + -h 

8 

mo 

A 
(9.88) 

Figure 9.23 illustrates the above relationship as a plot of the magnitude of 
oscillation {\A\) against frequency for the case where β and 7 are less than 
zero. If β and 7 were both greater than zero the curves would bend to the 
right instead of the left. This case represents a softening spring and shows 
all the classical features of the response curve of a system with a non-linear 
spring. For a range of frequencies less than V a , the response curve folds 
over, implying that there are two values of \A \ for a given frequency. This 
leads to jump phenomena in the system response, further discussed by 
Stoker (1950) and Nayfeh and Mook (1979). 

Figure 9.24 illustrates the case where β is less than zero and 7 is greater 
than zero. This represents a spring which softens and then hardens. Near 
the frequency V a , the response curve bends to the left as the spring 
softens and then folds over to the right as the spring hardens. If β was 
greater than zero and 7 was less than zero the response curve would do the 
opposite. 

Increasing mo 

Figure 9.23. Response curve for system 
with softening spring 

Increasing exciting 
tude 

Figure 9.24. Response curve for system 
with softening and then hardening spr­
ing 

The amphtude of oscillation, A, can now be found by solving Equat ion 
(9.87). It is instructive to note that A is now a more complex function of ω 
and the equation coefficients compared with the solution of A for the linear 
stiffness case. This complexity is explored further below. Consider the 
undamped case. Equation (9.87) now becomes 
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l A l n 

Figure 9.25. System response with increasing and decreasing frequencies of excitation 

The response curve of Figure 9.24, which is associated with a local 
minimum and maximum in the restoring moment , exhibits features not 
found in the response curve of Figure 9.23 which is for a conventional 
restoring moment variation. The response curve of Figure 9.24 shows that 
for a range of frequencies on either side of V a , multiple solutions exist for 
\A\. Thus, frequency ωι has solutions for |^4| at αχ, a2 and 03, and ω2 has 
solutions at and 05. This feature leads to more complex jump pheno­
mena and is in direct contrast to the response curve of Figure 9.23 where 
multiple solutions of \ Λ \ exist only on one side of the frequency V a . 

So far the response curves have been obtained for undamped motions 
which lead to unbounded curves at resonance. The response curves with 
damping are given by Equation (9.87). However , if the damping is small 
then the damped response curve is close to the undamped curve but 
bounded. A typical damped response curve with a small amount of 
damping is represented by the dashed hne in Figure 9.25. 

Since there are multiple solutions of \ A \ for frequencies near Va, jump 
phenomena wiU occur as the response amplitude, | ^ | , jumps from one 
stable solution to another. 
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Figure 9.25 shows the damped response curve of a system for a softening 
and then hardening spring with a slowly increasing excitation frequency at 
a constant force amplitude. As the frequency is increased from a value at 
point Λ, the response will follow the path ABC until the point C is reached. 
The response cannot follow the path CI as the frequency is increasing and 
therefore the response must ' jump' to point D. A further increase in 
frequency causes the response to follow path DEH until Η is reached. 
Again the increasing frequency means that the response must drop to G. 
Further increase of frequency results in the path GJ being followed. 

Now, if the frequency is decreased from a value / , then the response will 
follow the path JGF until point F is reached. Using similar arguments to 
those given above, the decreasing frequency results in the path FED IB A 
being followed. Thus there is a hysteresis in the response associated with 
increasing or decreasing frequency. 

If the frequency at C was the same as the frequency at F then a 
bifurcation would occur. If the frequency was increased from its value, C, 
it is possible for the response to follow one of two paths. The response may 
jump to Ε and then follow the path EH or it may jump to F and follow the 
path FG. It is hkely that the latter would occur since the jump from C to £ 
must pass through F and the latter path represents a smaller response. 
However, the former path is still possible and would represent a phenome­
non described by catastrophe theory (Thompson, 1982; Poston and 
Stewart, 1978). 

These jump phenomena have been created by increasing and decreasing 
the excitation frequency while maintaining constant amplitude of excita­
tion. The same jump phenomena would also occur if the frequency was 
held constant and the amplitude of excitation was varied. This would cause 
the system to move to a new response curve associated with the amplitude 
of excitation (see Figures 9.23 and 9.24). 

Two paths on the response curve of Figure 9.25 are never followed due 
to the jump phenomena. These are the paths IC and FH. Thus there exist 
two regions in the response curves where the solutions of | ^ | are unstable. 
The stability of the solutions of Equation (9.68) may be investigated by 
generating a variational equation using the method described earlier. In 
this case the variational equation has time variant periodic coefficients. 
The stability of the variational equation may be investigated by Floquet 's 
theory which is given in detail by Stoker (1950) and hence is not presented 
here. 

9.6.3 Vessel design implications 

It has been demonstrated that points of inflection can occur within the 
righting moment against angle of heel curve for a conventional semisub­
mersible when fitted with sponsons. These may be avoided by dispensing 
with the sponsons or by altering the huU geometry and vessel weight 
distribution. 

The local minima and maxima in an inflected restoring moment curve 
lead to phenomena which are not present in a hnear system or one in which 
the restoring moment is monotonic in the range of interest. The impact on 
the stability and operating safety of the vessel clearly depends on the 
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magnitude and range of the inflection when compared with the fuh righting 
moment curve. 

In the case of the four column semisubmersible, the local inflection is 
relatively smaU and may be acceptable. However, for other vessels such as 
the articulated semisubmersible, the range and magnitude of the inflection 
is so great that the vessel is unlikely to meet acceptable hydrostatic stability 
requirements. From the certifying authorities ' point of view, it is easier to 
adopt the conservative approach of not allowing localized maxima or 
minima in the righting moment curve and avoid involvement with specific 
decisions on phenomena that have uncertain consequences. Indeed, this is 
the case with current draft proposals on stability criteria (Depar tment of 
Energy, 1986). 

Figure 9.24 illustrates the dynamic wave induced roll response of a 
typical vessel with such a softening and then hardening hydrostatic spring 
stiffness. The amplitude of oscillation is a complicated function of frequen­
cy. Also there are multiple solutions for the response amplitude at a given 
frequency on either side of the linear system's natural frequency. Some of 
these solutions are unstable. As a consequence of these multiple solutions, 
complex jump phenomena will occur as the frequency or amplitude of 
excitation is increased or decreased. 

This chapter demonstrates that wave induced harmonic excitation of 
vessels with inflected righting moment curves can lead to increased 
response amplitudes when compared to an equivalent hnear righting 
moment . If the vessel's roll natural frequency lies in the range of expected 
excitation frequencies, then a complex response is observed with jump 
phenomena occurring around the natural frequency. This may lead to 
unacceptable vessel motions. 

Fortunately, semisubmersible roll natural periods lie well outside the 
expected wave period range, although such vessels may be susceptible to 
very long period sweUs. For monohulls, however, the roll natural period 
invariably hes in the expected wave period range. If such a vessel has an 
inflected righting moment curve, wave induced roll motions due to the 
inflection and any consequential jump phenomena need to be fully 
investigated. 

Another point of concern for vessels with inflected righting moment 
curves is the assessment of the likely heel angle to be attained by the vessel 
in conditions where two or more equilibrium heel angles exist. The worst 
case approach of selecting the largest equilibrium heel angle may be unduly 
conservative and make the design unacceptable. A more realistic assess­
ment of such equilibrium heel angles may be made using the time domain 
integration approach used in part of the work presented here. 

This section has only considered the effects of inflectional righting 
moment curves for intact vessels at operating draughts. It is possible that 
changes in vessel draught (such as transit draught for a semisubmersible) or 
damage due to flooding or a cargo shift may generate inflectional righting 
moment curves whose further effects need to be examined in the light of 
this work. 
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C h a p t e r 10 

Floating vessels with trapped air cavities 

10.1 General considerations 

The introduction of trapped air cavities within the open bot tom tanks of a 
floating vessel offers an interesting method of modifying wave induced 
forces acting on the vessel, and its resultant motions. The t rapped air 
introduces a pneumatic comphance with the air's compressibility producing 
a variation in the hull's buoyant volume as a function of vessel motion and 
wave action. This compliance modifies the dynamic behaviour of the vessel 
and can be used to reduce wave induced mofions of semisubmersible and 
ship shape vessels and to reduce dynamic tether forces on tensioned 
buoyant platforms. The pneumatic compliance is used in a passive mode 
for the above applicafions but it can also be used in an active manner (by 
varying the volume of t rapped air) to reduce wave induced motions or to 
counteract disturbing forces due to vessel operation (such as on-board 
crane liffing). 

This chapter is concerned with exploring the mechanics of both passive 
and active pneumatic comphances in modifying and improving the wave 
induced motions and internal forces on a variety of floating vessels. 

In practice, pneumatic comphance on a floafing vessel is achieved 
through the use of open bot tom tanks mounted at the vessel water line and 
extending some distance above and below still water level. In calm water, 
the internal water surface is at the same level as external still water, with a 
volume of air at atmospheric pressure t rapped between the internal water 
level and the boundary of the containing tank. Such air tanks may be 
mounted along both beams of a monohull vessel or they may be mounted 
around the vertical surface piercing columns of semisubmersible vessels or 
tension buoyant platforms. Each air cavity is connected by a valve to 
atmosphere. The air can be trapped by closing the valve or, alternatively, 
by leaving the valve open - the air can then flow freely in and out, thereby 
ehminating the effects of fluctuating air pressures on the vessel. In some 
cases, the trapped air can be pressurized, with the internal water level 
being lowered to generate forces and moments to counteract loads on the 
vessel due to cargo transfer or on-board crane operation. Figures 10.1 and 
10.2 show a typical installation of these air tanks on a semisubmersible 
vessel, whereas Figure 10.3 illustrates an applicafion on a ship shape 
vessel. 

283 
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Figure 10.1. Perspective view of a semisub­
mersible with air tanks and reference axes 
system 

Sect ion Z Z 

Figure 10.2. Schematic views of air tank 
on semisubmersible vessel. Key: 
A - vessel column; W - internal water 
level in the tanks in calm water; 
L - partial bulkheads dividing air tanks; 
V - valves connecting the air volumes to 
atmosphere; Μ - manned access space. 
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Figure 10.3 Monohull vessel. Key: A T - air tank 

These pneumatic comphances introduce additional dynamic systems. 
Linked by the trapped air pressures to their host vessel, the behaviour of 
these systems is governed by the water column masses under the t rapped 
air volumes, and the consequent added masses, radiation and viscous 
damping together with the stiffnesses of the water columns and the t rapped 
air volumes. These dynamic systems interact with the essentially rigid six 
degrees of freedom of the vessel to substantially modify vessel hydrostatic 
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Stiffnesses and the total wave induced foces acting on the vessel. These 
modifications can be designed to reduce wave induced forces and motions 
of the vessel. 

For a monohull vessel, when the valves connecting the t rapped air spaces 
to atmosphere are closed, the compressibility of the air volume increases 
the effective hydrostatic stiffness of the hull and thus shortens its heave, 
pitch and roll natural periods. Thus by opening or closing the t rapped air 
vent valves, the vessel can exhibit two selectable natural periods in each of 
these degrees of freedom. This is particularly effective for wave excited roll 
motions since the pneumatic compliance can be designed with a significant 
shift in roll natural period so that roll resonance can be largely avoided by 
opening or closing the vent valves as a function of incident wave frequency. 
In addition, motion of the water columns within the submerged sections of 
the open bottom tanks yields additional viscous damping which serves to 
reduce vessel motions further. 

Open bottom tanks on a semisubmersible vessel operate in a rather 
different manner to reduce wave induced heave motions. This is necessary 
because semisubmersibles on oil drilling or exploration duty operate on sea 
bed well heads through drill strings and marine risers. Low heave motion 
of the vessel to wave permits smaller relative movement between the vessel 
and riser and, therefore, enhances vessel operabihty. 

The wave induced heave force on semisubmersibles arises from three 
sources. These are inertia loading on submerged horizontal pontoons , 
unbalanced wave pressure forces on the submerged sections of vertical 
surface piercing columns and drag forces on main and bracing members . 
For most wave periods of significant energy, the heave force is inertia 
dominated - implying that the net vertical force is 180° out of phase with 
local wave elevation. Conversely, wave pressure on the base of the 
columns is in phase with wave elevation and if the amplitudes of these 
forces are equal, a heave force cancellation occurs. At a specific cancella­
tion period, the vertical drag force is then the only contributor to the net 
heave force. 

Adopting a system which generates an oscillating force which is in phase 
with wave elevation would reduce the net heave force on a semisubmer­
sible and, consequently, the wave induced motion response. Bot tom 
opening tanks trapping volumes of air above their internal water levels 
offer just such a system. During wave action, the water column in an open 
bot tom tank is excited by the wave pressure force. As with structural 
columns, this wave induced force is in phase with local wave elevation. The 
compressibility of the t rapped air volume generates a vertical force which is 
transmitted to the vessel via the tank air pressure. Thus two dynamic 
systems, the vessel and water column, are coupled in stiffness through the 
trapped air volumes. The oscillating vertical force generated by the 'air 
spring' is in phase with the wave pressure force on the water column and 
hence serves to reduce the net heave force on the vessel. It is shown later 
that this mechanism also reduces net pitching and rolling moments . 

The principles of operation of pneumatic compliances on both monohull 
and semisubmersible vessels shows that the hydrostatic stiffness contribu­
tion of the trapped air and water column beneath it play a crucial role in 
modifying the dynamics of the vessel. A consistent and accurate definition 
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10.2 Hydrostatic analysis 
10.2.1 Air tanks at mean atmospheric pressure 

Figure 10.4 illustrates an open bot tom tank where for 5 = 0, the t rapped 
air pressure for Figure 10.4(a) equals one atmosphere. Consider this tank 
being give a small downward displacement, ζ in still water. This corre-

P + r g s 

( a ) 

Figure 10.4. Open bottom tank notation 

1 i 
1 

f 
Τ"" 

\ τ ^ 
s+x 
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( b ) 

of the air stiffness contribution is thus important for the dynamic analysis 
of the vessel. Fur thermore , national certifying agencies require that any 
proposed vessel design meets minimum safety criteria associated with all its 
operations including the criterion of adequate hydrostatic stability to 
withstand overturning moments due to wind or due to a limited amount of 
flooding caused by damage. The stabihty criteria demanded by certifying 
agencies are becoming increasingly stricter and require that the stability 
contributions of t rapped air volumes on advanced vessel designs be fully 
investigated. 

Section 10.2 of this chapter presents a theory for calculating the air 
stiffness of an individual air volume and the associated water column. This 
is then extended to incorporate the stiffness of a number of air volumes and 
columns into equations to describe the overall hydrostatic stability of the 
vessel. The theory is applied to air volumes whose equilibrium pressure (at 
even vessel keel) is at, or above, one atmosphere. Results from theory are 
verified by comparison with model test data for a monohull vessel and 
semisubmersible mounted with trapped air volumes. 

This is followed by consideration of the coupled dynamics of semisub­
mersibles and ship shape hull forms and their passive pneumatic comp­
hances. The role of these passive compliances in reducing the dynamic 
tensions in tensioned buoyant platform tethers are then described. The last 
section of the chapter examines the performance of active compliances in 
reducing the wave induced motions of a semisubmersible vessel and in 
compensating for the disturbing forces due to the operation of a crane on a 
floating vessel. This latter application is illustrated by description of a 
practical application on an offshore crane vessel. 
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sponds to the external still water level, initially at draught line A, rising a 
distance, z, to B. If the open bot tom air tank valves are closed, the 
compression of the air volume will only permit the internal water level in 
the tank to rise through a distance smaller than ζ such that the difference in 
level between external and internal water levels is JC. 

The using a pressure/volume gas law relationship for a polytropic process 
(Rogers and Mayhew, 1976), we get the pressure, P, and volume, V, 
before and after a displacement of the tank internal water level as 

displacement displacement 
(10.1) 

where η is the gas law index. This gives 
F[Ahf = [P' + 9gx][A{h - ζ + x)f (10.2) 

where P' is atmospheric pressure; A is the plan area of the air tank; h is the 
air height within the tank; g is the acceleration due to gravity; and ρ is 
water density; χ is the difference between the external water level and the 
tank water level due to displacement, ζ , of the tank or of the external 
water level. 

Taking P' = pgH, dividing by pgH{Ahy and rearranging gives 

x = Η 
X ζ 

1 + - - -
h h 

- Η (10.3) 

where Η is the water gauge height equal to atmospheric pressure. 
Differentiating with respect to ζ yields 

djc Γ ^ zY"'^ [1 dx Γ 
— = - « / / 1 + - - - · 7 - - 7 (10.4) 
dz L ' ' J L'' 

and since χ and ζ are small displacements, terms x/h and z/h can be 
neglected. The above equation can then be written as 

tiH d£ _ _ _ 

dz~ ~ h 

and hence 

dx 
— - 1 
dz 

dx 

dz 

1 

1 + 
nH 

(10.5) 

(10.6) 

The resultant stiffness of the tank due to internal t rapped air is 

d F dx 
— = pgA — 
dz dz 

PgA 
(10.7) 

1 + 
nH 
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where d F i s the vertical force on the air tank. The index η equals 1 if the air 
volume behaves isothermally in compression and equals 1.398 (the ratio of 
constant pressure and constant volume specific heat capacities) if the air 
volume behaves adiabatically. Also Η = 10.077 m for P' = 1.013 25 bar 
(101 325 N/m^) and ρ = 1025 k g / m l 

It should be noted that the air stiffness equals pgA if h is zero, that is, in 
the absence of an air spring, and tends to zero if h becomes very large, 
corresponding to a large volume. 

For a typical air height of 2 m and assuming adiabatic conditions, the 
right hand side of Equation (10.7) becomes 0.8757 pgA, whereas if the air 
volume behaves isothermally, this becomes 0.8344 pgA. The air stiffness 
correction factor above is only shghtly sensitive to choice of the index of 
expansion or compression, n. The rate at which the air volume is 
compressed and decompressed by wave action indicates that an adiabatic 
process is occurring and η should be taken as 1.398. On the other hand, if 
the vessel is being inclined slowly, the air process would be closer to 
isothermal conditions and η should be taken as 1.0. In reahstic conditions, 
η seems to take a value between 1.0 and 1.398 as shown later. 

The relationship for air volume and water column stiffness can also be 
derived by separately considering the stiffnesses of the air volume and the 
water column below it. 

The stiffness of the air volume in isolation can be derived by introducing 
perturbations of bP and W to the polytropic gas law to yield 

PQVH = (Po + δΡ)(Κο + δνΟ" (10.8) 

where PQ and VQ are the initial pressure and volume of the air space. 
Dividing the above equation by VQ", expanding binomially and neglecting 
all higher order quantities yields 

δ Ρ nPo 
— = - — (10.9) 

which can be written in terms of stiffness, / C a , for an air column of plan 
area. A, and height, A, in terms of the equation 

df nPoA 

k. = — = -7r (10.10) djc h 
with the sign change arising from transforming air pressure, Po. to a 
restoring force, dp . Also the stiffness of the water column, k^, in the 
earth 's gravitational field is 

k, = pgA (10.11) 

Since the air volume and water column stiffness act in series, the total 
stiffness may readily be deduced as being identical to that given by 
Equation (10.7). 

10.2.2 Air taniis with mean pressure greater than atmospheric pressure 

In this case, the air tanks are taken to contain an air pressure above 
atmospheric pressure in the initial undisturbed condition. Thus , in Figure 
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djc 
- = -n[H + s] 
dz 

1 + 
1 

( Λ + 5 ) 

djc 
— - 1 
dz 

(10.13) 

Since JC and ζ are smah, x/{h + s) and Z/(JC + s) can be neglected. Then , by 
rearranging, we get 

d^ 

dz " 

Then 

s 
1 + -

Η 

1 + 
h {η-l· i)s 

nH 

d f 

nH 

s 
1 + -

Η 

(10.14) 

1 + 
nH 

(̂ ^ + 1) ^ 

η Η 

-=9gÄ'Q (10.15) 

with an air stiffness factor, Q, being used for brevity. The effect of the 
initial pressure head is summarized in Table 10.1 which shows that 
depressing tank water levels reduces the combined stiffness arising from 
the air cavity and water column. 

10.2.3 Application to hydrostatic stability 

The foregoing derivation of air stiffness for an isolated air volume and 
water column can be incorporated into conventional naval architecture in 
two ways. It is common practice for marine vehicle stabihty to be 
calculated on the basis of the submerged hull volume, centre of volume 
(buoyancy) and water plane area prior to a correction being applied to 
account for the centre of gravity shift due to movement of free surface 
within tanks on board the vessel (see Ramsey, 1961, for further details). It 

10.4(a), the internal water level is at a finite distance, s, below external 
water level corresponding to an absolute pressure of (P' + pg^) within the 
open bottom tank. It is assumed that the vessel is at an even keel with the 
excess force due to the air pressure distributed symmetrically around the 
vessel plan. 

Now, in a similar manner to that developed above, consider the vessel 
being given a small downward displacement, z, as in Figure 10.4(b). This is 
equivalent to the external water level rising by a smaU distance, z, from the 
initial draught hne, A. The internal water level will, however, rise a 
distance smaller than ζ due to the trapped air volume being compressed. 
The difference between the internal and external water levels is defined as 
(s + JC) where JC is a small, unknown distance. 

Now, applying Equation (10.1) gives 

[P' + 9gs][A{h + s)r = [P' + pg(5 + JC)] . [A{h + 5 - ζ -f JC)]'^ 

(10.12) 

Using P' = pg// , dividing by pg^'' [H + s][h + 5 ] , rearranging and diffe­
rentiating with respect to ζ yields 

^ Ί - η - Ι 
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Table 10.1 Air stiffness correction factors 

Gas law index Air stiffness correction factor, Q 

s = Om s = 2 m s = 4 m s = 6 m s = 8 m 

Isothermal process η = 1.00 0.8344 0.7512 0.7012 0.6677 0.6438 
Adiabatic process η = 1.398 0.8757 0.8085 0.7664 0.7375 0.7165 

Notes: 
Η = 10.077 m; 
fi = 2.00 m; 
ρ = 1025 kg/m\ 

is, therefore, also possible for the stabihty of a vessel with air volumes and 
water columns to be calculated assuming it to be a rigid vessel with an 
impermeable boundary at the base of the water columns, provided that a 
correction is then applied to account for the fact that the t rapped air spring 
is softer than an identical hard hull surface. The correction for the water 
column free surface would still need to be applied. 

A second approach may also be taken by calculating the hydrostatic 
righting moment due to angle of heel from first principles for the primary 
rigid vessel together with the additional effects of the air tanks. Both these 
approaches are examined below. First, however, the air correction terms 
for a whole hull are derived. 

Consider open bot tom tanks of rectangular plan form installed along 
both beams of a monohull vessel of beam b and length L. The tanks are 
also of length L and width c each, with the distance from the tank centre 
lines to vessel fore and aft centre line being (b - c)/2. 

The increment in BM (distance between centre of buoyancy and 
metacentre) due to solid water plane area corresponding to the plan area of 
the air tanks is 

d(5M)soiid = 
Lc{b - cf 

12 4 

Lc^ ^ Lcjb - cf 

Ζ (10.16) 

where Β is the position of the centre of buoyancy including the water 
columns in open bot tom tanks; Μ is the transverse metacentre; and is a 
reference displaced volume which may be the vessel displaced volume 
including or excluding the volume of the water columns in the open bot tom 
tanks. Here , term 7 is due to the second moment of area of the water plane 
about an axis through its own centroid, whereas term Ζ arises because the 
tank water plane area centroid is offset from the centroid of the total vessel 
water plane area. 

The increment in Β Μ due to the air tanks may be calculated as follows. 
Consider the vessel undergoing a small rotation (angle β) in roll. The 

submergence and emergence of starboard and port air tanks, respectively, 
is given by ß(ft - c)/2. The moment induced by the resultant force due to 
the air springs in port and starboard air tanks is then given by 
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2f)g • Lc 

s 
1 + -

Η 

h 
1 + — + 

nH 

in + 1 \ 

V η J 

s 

Η 

(10.17) 

This corresponds to an effective BM increase which is given by 

Righting moment 
d{BM) air tanks ~ 

Leib - cf 

s ' 

2D, s in + i \ s 
1 + — + — 

nH \ η Η 

(10.18) 

Then the reduction in BM (or GM) due to replacement of solid huh with 
air tanks is given by 

d(ßM),oiid - d(ßM)air tanks = GM^oss 

Lc{b - cf 

ID, 

1 

n{H + s) 
1 + 

(10.19) 

(Λ + 5 ) 

Term Yin Equat ion (10.16) is not included in the above expression since it 
would normally already be accounted for in the free surface corrections for 
the water columns. Only Equat ion (10.19) is required for calculating 
metacentric height corrections during design studies. Note that the choice 
of reference displaced volume D r , alters the magnitude of reduction in Β Μ 
or GM, Such effects are examined further below. 

Also, the correction to the tonnes per centimetre immersion (TCM 
1 cm) can be readily written as 

[TCM 1 cm],oss = 
2pLc 

100 000 

1 

1 + 
n{H + s) 

(10.20) 

(h + s) 

where ρ is in kg m"^ and the 100 000 accounts for the formula units. 
The second approach for evaluating the hydrostatic stability of a marine 

vehicle with trapped air cavities is to calculate hydrostatic righting mo­
ments . This can be done from first principles or by submerged volume 
considerations using an extension of conventional naval architecture. Both 
of these are presented below with the two approaches being used to deduce 
hydrostatic righting moments with and without the air tanks being acti­
vated, that is, with the valves connecting the air spaces to atmosphere in 
the closed and open position respectively. 

Results for the latter case with valves open can be deduced from 
conventional hydrostatic analysis with the volume of the t rapped air and 
water column below it excluded from the submerged vessel volume. 
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( b ) 

Figure 10.5. Cross-section of ship shape vessel with air tanks; B" and M" are centre of 
buoyancy and transverse metacentre position respectively at heel angle β for vessel 
excluding water columns in open bottom tanks. B"" and M"" are centre of buoyancy and 
transverse metacentre position respectively at heel angle β for vessel including water 
columns in open bottom tanks 

However, all such solid body calculations are based on taking moments of 
an inclining submerged solid volume. In this procedure, the submerged 
volume is assumed to have an impermeable boundary - the only volume 
changes occurring close to the free surface in the shapes of emerging and 
submerging wedges. So the Β Μ = HD formula of conventional naval 
architecture can strictly only be applied for solid shapes with an imperme­
able submerged boundary. 

For open bottom tanks with trapped air volumes, the vessel boundary is 
no longer impermeable. As the vessel inclines, the submerged volume can 
eject or take up additional volumes of water from the open bot tom tanks 
due to the effect of trapped air above the water columns (as illustrated in 
Figure 10.5(a)). There are two methods of converting this physical 
phenomenon into an equation to yield the increase in hydrostatic righting 
moments due to the presence of t rapped air volumes. Both of these are 
applied below. 

Figure 10.5(a) shows the cross-section of a vessel with open bot tom 
tanks (and valves closed). If the vessel is inclined through a small angle, β, 
then the internal water levels in the port tanks fall while those in the 
starboard tanks rise relative to the tank sides. The additional pressure 
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induced forces due to these water level changes act on horizontal bulk­
heads AB and CD of the tanks. 
The force per unit depression (or elevation) of the tank water level, or the 
stiffness of the air and water column in vertical motion is given by Equat ion 
(10.7). This relationship applies for a mean pressure of one atmosphere in 
the air cavities. For a smah heel angle, β, the depression and elevation 
of the centre lines of the port and starboard tanks, respectively, are 
{b - c)ß/2. 

The magnitude of restoring moment generated by the forces on the top 
of the air tank tops (see Figure 10.5(a)) is then 

= pg . (d/) . β 

where 

(d/) = lA 
(b - cf 

1 -h 
nH 

(10.21) 

(10.22) 

equivalent IID value air correction 

constitutes an equivalent 'second moment of water plane area ' due to the 
presence of the tanks. 

A righting moment , M[, for the vessel without the effects of open bot tom 
tanks can then be written as 

M ; = pgD' - B'G (10.23) 

where / ' is the transverse second moment of water plane area of the vessel 
excluding air tanks; D ' is the vessel displacement excluding water columns 
in the open bot tom tanks; is the vessel centre of buoyancy excluding the 
open bot tom tanks; and G' is the position of the centre of gravity of the 
vessel excluding water columns in open bot tom tanks. 

Also the total righting moment of the vessel with open bot tom tank 
valves closed is 

Mr = pgD' β + pg(d/)ß - pg(D - D ' ) ß ' G ' ß (10.24) 

where d/ is the effective increment in second moment of water plane area 
due to the air tanks; and D is the vessel displacement including water 
columns in open bot tom tanks. The last term in the above expression 
accounts for the fact that inclination of the water columns in the open 
bottom tanks with the vessel leads to a moment couple which is propor­
tional to the initial weight of water columns and the moment arm ß ' G ' . 

Then the change in righting moment due to the open bot tom tanks is 
given by 

Mr - M ; = pg(d/)ß - pg(D - D ' ) ß ' G ' ß (10.25) 

This restoring moment can be converted to an effective metacentric height 
( G M ) increase in two ways: 
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1. The submerged volume of the vessel excluding the open bot tom tanks 
can be used as the reference volume to convert the above equation into 
an expression for increase in GM. 

2. Alternatively, the righting moments experienced by the vessel without 
and with open bot tom tanks can be converted into corresponding GM 
values by using the appropriate submerged volumes without and with 
the open bot tom tanks. 

These approaches give different values for the increase in GM but are 
consistent if the same procedure is used to convert righting moment to GM 
values and vice versa. 

Approach (1) yields a GM increase of 

d (GM) = m 
D 

1 -
D 

B'G' 

whereas approach (2) yields 

/ ' + (d/) r_ 
D ~ D' 

d(GM) = 

(10.26) 

(10.27) 

Note that the length of water column that enters the bot tom of the open 
bot tom tanks per unit rise of the open bottom tanks relative to local 
external water level will be given by 

h 

dz - djc djc 

dz ~ ~ dz ~ 

nH 1 

1 + 
nH 

1 + 
nH 

(10.28) 

The above results for hydrostatic righting moments can also be obtained 
from the conventional approach of taking moments of volumes provided 
that water column lengths emerging or being drawn into the base of the 
open bot tom tanks are correctly accounted for. 

Consider the vessel Figure 10.5(b) with an effective boundary to the 
vessel denoted by the short dashed line which includes the open bot tom 
tanks. The increment in BM due to the open bot tom tanks can then be 
obtained by taking moments of volume in the horizontal direction. 

In Figure 10.5(b), Β is the centre of buoyancy of the vessel at zero heel 
angle and B" is the centre of buoyancy position at heel angle β for the solid 
vessel excluding the open bot tom tanks; B"" is a further centre of buoyancy 
position of the vessel if the effective buoyancy changes due to the open 
bot tom tanks are accounted for. 

If the vessel inclines through a small angle, β, the magnitude of the 
change in external water level at the centre line of each of the open bot tom 
tanks will be {b - c)ß/2 and, therefore, the height of water column that 
will enter or exit from the open bot tom tanks will be 

{b-c) 1 

1 + 
nH 

(10.29) 
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Then taking moments of added volumes induced by submergence or 
emergence of the hull at the free surface less the volumes of the water 
columns entering or leaving the tanks from their open bottoms yields the 
equation 

B"B"" 0 = 2 

givmg 

Lc^ . (b- c) 2n 

12 
+ A ß - 2 

(b - cf 1 

1 + 
nH 

L<? (b - cf 
B"B"" •D = 2 ^ + A - -

12 4 
1 + 

nH 

β 

(10.30) 

(10.31) 

The above moment increase may be reduced by a correction for the effects 
of free surface within the open bot tom tanks. This removes the first term 
on the right hand side of Equat ion (10.31) after which we get 

M"M"" = 2 A 
(b - cf 1 

1 + 
nH 

= ( d / ) ß (10.32) 

where M" and M"" are metacentre positions corresponding to centre of 
buoyancy positions B" and B"". 

The righting moment for the vessel with t rapped air valves open is given, 
as before, by Equation (10.23). The corresponding righting moment with 
valves closed is 

M , = pgD I' + m 
D' 

- BG (10.33) 

where all of the above variables have been defined earlier. The terms BG 
and B'G' corresponds to the distances between centres of buoyancy and 
gravity for the open bot tom tanks included and excluded respectively. 
Since the inclusion of open bot tom tanks corresponds to including a weight 
of water which is directly and exactly supported by its own buoyancy, the 
shift in centre of buoyancy and centre of gravity due to the inclusion of the 
tanks will be identical leading to BG = B'G'. 

The the change in righting moment is 

M , - M ; = pg(d/)ß - pg{D -D')BGß 

which is the same result as obtained in Equat ion (10.25). 

(10.34) 

10.2.4 Verifícation with model test data 

The theory derived above needs to be verified using model tests. The 
results of this for a monohull and a semisubmersible configuration are 
presented here. 
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A significant source of difficulty arises in maintaining dynamic similarity 
between model and full scale for the behaviour of the stationary vessel in 
gravity waves. Since both Reybolds number (/?e) and Froude number (F^) 
influence the flow around the vessel in waves, these need to be modelled 
for similarity. Another important parameter characterizing the flow is the 
amplitude of fluid motion relative to body size. This is usually expressed as 
the Keulegan-Carpenter number . Ke­

in maintaining similarity of the ratio of inertia to gravity forces (Froude 
number) for a hnear scale force, a , model time scales by a factor 1/V(a) of 
prototype time. Having estabhshed the scaling relationship for t ime, it 
follows that model scale and prototype Keulegan-Carpenter numbers will 
be similar. To ensure equal ratios of inertia to viscous forces (Reynolds 
number) requires kinematic viscosity to scale by a factor of a^^^ from 
prototype to model. The physical impossibihty of this means that there is 
no satisfactory answer to the dilemma and the Reynolds number disparity 
has to be accepted. 

The presence of a pneumatic compliance introduces an additional scaling 
requirement, that is, dynamic similarity between model and prototype air 
spring forces. Now, the model scale air force may be written as 

{F,u)m= , (10.35) 

where P ^ , is the ambient pressure at model scale with the suffix m referring 
to model scale values. Fur thermore , using the suffix ρ for prototype scale, 
the initial air height, Λρ, comphant water plane area, A ^ , and the 
displacement, δχ, of the water columns may be scaled by the relationships 

h, = /Zm' Λρ = a'A^ and (δχ)ρ = α(δ;^)„, (10.36) 

Now, to maintain dynamic similarity, the ratio of air forces must equal a^. 
However, the above equation gives 

( p 3 i r ) p a ^ p ; 

\^ air /m ^ m 

Reducing atmospheric pressure for model purposes is not a practical 
consideration but it is possible to increase the model scale air volume, such 
that 

V̂p = a'Vm (10.38) 

This could be achieved by adjusting either the compliant water plane area 
or initial air height, or both. The latter would involve the use of air 
reservoirs situated on the deck. A second option would be to increase air 
tank wall thicknesses in order to reduce the compliant water plane area 
while maintaining the outer diameter, and hence horizontal wave loading, 
constant. This method would conflict with scaling of the water columns and 
increase hydrodynamic forces on the vessel. For some of the work 
presented here , air tanks are used to achieve correct air stiffness scaling 
whereas for the rest direct comparisons are made by using an artificially 
high (78 times) atmospheric pressure in the calculations. 
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Length (m) - 97.00 
Width (m) - 11.62 
(Height (m) - 6.47 

Surface piercing hull 

Draught (m) 

Vessel depth (m) 

Column diameter (m) 
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Width (m) 

Inner 
Outer 

Column spacing 
Longitudinal (m) \ '""^^ 

^ ^ [outer 
I Transverse (m) 

Cylindrical bracing diameter (m) 

Height of CG above keel (m) 

Total height (m) 
Open bottom tanks < Tank depth below SWL (m) 

Height of air column (m) 

On inner columns (m-) 
Tank plan areas < On outer columns (m-) 

On each beam of vessel (m-) 

Distance betwen tank centre line and longitudinal 
centre line (m) 

114.57 -
33.77 -

4.84 26.33 

15.91 41.03 

_ 6.44 
- 8.92 

_ 25.50 
- 76.28 
- 62.78 

- 1.50 

13.86 13.1 

14.35 11.8 
4.84 6.77 
9.57 5.03 

_ 24.84 
- 52.88 

115.30 -
14.49 31.39 

Tests were carried out on two scale models. The first was a 78th scale 
model of a driU ship of 24 273 t displacement, 128.0 m overall length, 
33.77 m beam, 15.91 m overaü depth and 9.52 m draught. The vessel was 
mounted with air tanks inside sponsons on both beams of the vessel. Each 
air tank was of the same depth and draught as the vessel and of 4.78 m 
width running along 106.35 m of the length of the vessel. The tanks on 
each beam of the vessel wave partitioned into four smaher tanks. Table 
10.2 gives a summary of principal dimensions of the hull and air tanks. 

A 78th scale model of a twin potooned, eight column semisubmersible 
with bracing members was used as the second vessel. The vessel had a 
prototype scale displacement of 22 743 t and an overall length, breadth 
and height of 97.0 m, 74.4 m and 41.0 m, respectively, with an operating 
draught of 26.33 m. The principal dimensions are listed in Table 10.2. 

Both the ship shape and semisubmersible vessel were subjected to 
inclining tests which were carried out in three stages. First each model was 
ballasted down to float at even keel. The position of the vessel centre of 
gravity was measured by suspending the models from these pairs of lifting 
points. Static heeling moments were then applied to the vessels and the 

Table 10.2 Vessel and open bottom tank particulars - full scale values 

Dimensions Monohull Semisubmersible 

Displacement 10 779 22 743 

Pontoon 
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consequent angle of inclination measured with air tank valves open and 
then with these valves closed. Overturning moments were applied to the 
vessels by shifting a known mass on the vessel in a transverse direction 
through a known distance. This permitted the moment to be applied 
without altering the height of the centre of gravity of the vessel above the 
keel (the K G value). Heel and pitch angles were measured by a pointer 
and scale arrangement with an accuracy of ± 0.3°. 

The semisubmersible vessel was tested for small angles of heel (up to T) 
with the trapped air volumes being geometrically scaled only. For large 
angles, however, emergence of the base of the open bot tom tanks above 
still water level will cause the water columns within such tanks to drain out. 
In order to demonstrate this feature and to verify the applicability of the 
theory to it, the ship shape vessel was also tested for large angles of heel of 
up to 35°. This could not be done at a large draught since the remaining 
vessel free board was insufficient to prevent the deck edge from submerg­
ing and flooding the vessel at large heel angles. The large angle tests were , 
therefore, carried out for a small draught of 3.74 m (full scale). Further­
more , in order to limit the overturning moments that needed to be applied 
to the model at large angles of heel with air space valves closed, only valves 
to one of the air tanks (of plan area 115.30) m^, full scale) on each beam 
were closed during the tests, with the remaining valves being kept open. In 
this configuration, the ship model was tested up to large angles of heel 
using two values for the trapped air volumes. The first correspond to 
simple geometric scaling of the trapped air volumes which resulted in the 
model scale air stiffness being too high. In the second test, the t rapped air 
volumes were increased by using supplementary air reservoirs external to 
the model which permitted the air stiffness to be scaled correctly. 

The results of the inclining tests for the ship shape and semisubmersible 
vessel are presented in Figures 10.6 and 10.7 respectively. 

The theory developed in the earlier sections was implemented for the 
two vessels with the dimensions and principal particulars listed in Table 
10.2. It uses an ambient pressure that is higher than atmospheric (by the 
model scale factor) to account for the requirements of the scaling rules. 
The slopes of the righfing moment curves at zero angle of heel are 
compared by evaluating predicted and measured metacentric heights. Note 
that the metacentric heights are evaluated by using the submerged volume 
of the vessel excluding the air space and water column volumes. These are 
listed in Table 10.3 for both vessels. The theoretical predictions are listed 
for both isothermal and adiabatic air processes. The overturning moments 
are plotted together with measured data on Figures 10.6 and 10.7. 

Figure 10.6 presents monohull inclining moment against angle of heel 
using both geometric and air stiffness scaling of the trapped air volumes. 
The curve for trapped air valves open to atmosphere shows the character­
istic features of a conventional righting moment variation with first an 
increase and then a reduction in the slope of the curve as angle of heel 
increases. With the trapped air valves closed, the sharp drop in righfing 
moment due to loss of water column in the emerging open bot tom tanks 
can also be observed. This feature of the righting moment is analogous to 
down flooding in conventional naval architecture. The resultant drop in 
righting moment must be accounted for within calculations at large angles 
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A n g l e of H e e l ( D e g ) 

Figure 10.6. Restoring moment against angle of heel for ship shape vessel. Key: 
a - experiment, valves open; b - experiment, valves closed with geometric scaling; 
c - theory, valves open; d - theory, valves closed with geometric scaling for η = 1.000 and 
1.398; e - experiment, valves closed with air stiffness scaling; f - theory, valves closed with 
air stiffness scaling for η = 1.398; g - theory, valves closed with air stiffness for η = 1.000 

of heel. The theory presented in Figure 10.6 incorporates large angle 
effects using the pressure integration technique presented in Chapter 3. 
The use of geometric or air stiffness scaled trapped air volumes leads to 
differing righting moment curve slopes due to the resultant change in air 
stiffness. The predicted and measured righting moments of Figure 10.6 
show reasonably good agreement. 

Corresponding results for the semisubmersible are presented in Figure 
10.7 for three conditions. Two of these correspond to all tanks open and all 
valves closed. An intermediate condition is also presented which corre­
sponds to the vales on the central four columns being closed, together with 
valves on one of the three segmented tanks in each of the four corner 
columns being closed. Theoretical predictions are presented for both 
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5 0 0 π 

A n g l e of R o t a t i o n ( d e g r e e s ) 

Figure 10.7. Restoring moment against angle of heel for semisubmersible vessel. Key: 
a - theory, valves open; b - experiment, valves open; c - theory, state 2; d - experiment, 
state 2; e - theory, valves closed for η = 1.398; f - theory, valves closed for η = 1.000; 
g - experiment, valves closed 

isothermal and adiabatic conditions. It should be pointed out here that for 
both the ship shape and semisubmersible vessel the results predicted by 
theory do depend on the measured vessel centre of gravity position, to 
which the restoring moment is quite sensitive. This is the only significant 
source of error in the comparisons between tests and theory. 

10.2.5 Design considerations 

The theoretical expressions and model test data presented in this paper 
raise the question of whether the air compression and rarefraction process 
behaves in an isothermal or adiabatic manner . If it is assumed that the air 
temperature in the chambers can equalize during each compression and 
expansion then the process is isothermal, in which case the polytropic 
constant, n, should be 1.0. Alternatively, if the assumption of no heat 
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Table 10.3 Predicted and measured metacentric height - full scale values 

Roll 

Metacentric heights (m) 

Pitch 

Vessel Conditions Theory Model 

tests 

Isothermal Adiabatic 

Theory 

Isothermal Adiabatic 

Model 

tests 

Monohull All vales open 1.34 1.34 1.42 - - -

Air stiffness 
scaling 

All valves closed 
for 2 tanks 

3.78 4.15 3.61 - - -

Monohull All valves open 1.34 1.34 1.42 - - -

Geometric scaling Valves closed for 
2 tanks 

5.03 5.03 5.35 270.42 270.42 268.22 

Semisubmersible All valves open 11.42 11.42 12.12 12.69 12.69 -

All valves closed 24.75 24.79 23.94 26.83 26.88 

Geometric scaling All inner column 
and 1 segment of 
outer columns 
closed 

18.72 18.75 17.60 17.86 17.89 

transfer to or from the air volume is applied, then an adiabatic process 
exists and η equals 1.398, the ratio of specific heat capacities at constant 
pressure and constant volume. The analysis of Sections 10.2.1, 10.2.2 and 
Table 10.1 shows that , for vessels at full scale, the choice of index of 
compression or expansion does not alter the air stiffness dramatically but 
the changes are still significant. It is reasonable to believe that for the 
vessel responding to wave action, the air stiffness should be based on an 
adiabatic process since the wave frequencies present in a typical wave 
spectrum are high enough to prevent temperature equalization between 
the air volume and surroundings. On the other hand, for the inclining tests 
carried out in this work, an isothermal air process should occur since the 
time scale for each test was of the order of 30 min. 

The model tests presented here are carried out with Froude number 
scaling, which means that for correct scaling of the force from trapped air 
volumes, the model scale atmospheric pressure needs to be reduced by the 
linear scale factor 78. Since this is not possible tests on the ship model have 
been carried out in two ways - firstly using geometric t rapped air volume 
scaling and secondly obtaining correctly scaled t rapped air stiffness by 
increasing the trapped air volume of the model by the scale factor. Note 
that geometric scaling of the t rapped air volumes substantially reduces the 
relative effects of the trapped air process on the righting moment and, 
therefore, makes it impossible to use the comparison of theory with model 
tests to determine whether the trapped air process is isothermal or 
adiabatic. As an example, for the semisubmersible vessel at model scale, 
the increment in stiffness due to compression and expansion of the t rapped 
air volumes being considered adiabatic rather than isothermal is only 
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10.3 Semisubmersible vessels 

This secfion describes the mechanics of incorporafing passive open bot tom 
air tanks for improving the motion response in waves of semisubmersible 
vessels. Section 10.1 describes the basic mechanism for ocean waves 
exerting heave forces on semisubmersible vessels and the way in which 

0 .2%, whereas at full scale this increment is 9 .5%. Figure 10.6 presents 
large angle righting moment curves for the geometrically scaled and air 
stiffness scaled trapped air volumes. The agreement between theory and 
model tests is good. The drop in righting moment due to de watering of the 
emerging tanks is also correctly predicted. The theory is implemented in 
this latter case by applying the righting moment equation for the open 
bot tom tanks on one beam of the vessel only and taking due account of the 
resultant change in draught and centre of flotation position of the 
asymmetrically buoyant vessel. It can be seen from the comparison 
between theory and tests for the air stiffness scaled case in Figure 10.6 that 
the trapped air volume appears to be behaving isothermally. This is to be 
expected since the righting moment tests were carried out over time scales 
which were long enough for a large degree of temperature equalization to 
occur between the trapped air and its surroundings. 

Nevertheless, even with representative air stiffness the difference in 
stiffness increment between isothermal and adiabatic air processes is 
reasonably small. From the point of view of certification, since the 
isothermal air process leads to lower righting moments , it would be 
conservative to assume this for assessing stability criteria. 

The theory presented earlier demonstrates that a consistent relationship 
may be defined for the hydrostatic righting moment contributions of open 
bot tom tanks by using either first principles or conventional consideration 
of moments of submerged volume. However, the definition of equivalent 
increase in GM is dependent on selection of the reference displaced 
volume of the vessel. This displaced volume can be selected to be either: 

(a) the displaced volume around the 'hard ' submerged boundary of the 
vessel and excluding the open bot tom tanks, as in Figure 10.5(a), 
when considering both valves open and valves closed cases; or 

(b) the displaced volume around the outer envelope of the ship and 
including the open bottom tanks, as in Figure 10.5(b), when the valves 
are closed but using the definifion in (a) above when the valves are 
open. 

In either case, calculations of change in righting moments from GM values 
must reflect the reference volumes used to derive such lengths in the first 
place. These righting moments will then yield consistent results. 

Fur thermore , calculations in terms of moment arms (called GZ in 
conventional naval architecture) also require that the displaced volume for 
conversion of righting or disturbing moments to GZ values is kept 
consistent in all the calculations such that the magnitudes of righting and 
disturbing moments remain unchanged. 
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Figure 10.8. The effects of system states on the net heave force 

t rapped air in open bot tom tanks modifies this mechanism. This can be 
further iUustrated by example calculations on the semisubmersible vessel 
shown in Figure 10.1. The annular open bot tom tanks on this vessel are 
subdivided by radial bulkheads (Figure 10.2). These tanks ' subdivisions 
can be used to illustrate the operation of the tanks by progressively 
activating their action. If all the valves are open, the vessel can be regarded 
as being in a condition known as state 0. When all chambers on the four 
inner columns are closed, the vessel is in an operational mode called state 
1. Closure of each of the three independent chambers on the four outer 
columns in addition to the four inner columns corresponds to system states 
2, 3 and 4, such that state 4 represents the maximum compliant water plane 
area. Figure 10.8 shows calculated progressive heave force reductions as 
the magnitude of the active comphant water plane area increases. The 
actual wave induced forces on the rigid vessel (that is, the drag, inertia and 
wave pressure forces) are equal for all the states. However , the force 
presented here includes the air spring force which accounts for the 
appreciable reduction of the secondary peaks. Thus , at a given frequency it 
is possible to reduce the net heave force and, therefore, motion response. 

A hydrodynamic analysis for calculating the wave induced motion 
response of a conventional semisubmersible vessel in its six rigid body 
degrees of freedom is used as a starting point for the theoretical work 
described here - see Chapter 5 for further details. 

Figure 10.1 shows the reference axis system used in the calculation. The 
Gxz axes are taken in the vessel's fore and aft vertical plane of symmetry 
with the centre of gravity taken as the origin and the Gz axis vertically 
upwards. For vessels with lateral symmetry about the Gxz p lane, these 
correspond to principal axes. 
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(10.41) 

where m i contains the vessel mass and added mass matrices; bi and kn, are 
the vessel damping and hydrostatic stiffness matrices; and q is the number 
of air tanks. The restoring forces contributed by the mooring stiffness 
matrix, F are the vessel wave forces in surge, sway, heave, roll, pitch and 
yaw, respectively, the remaining q being the forces on each water column. 

The semisubmersible model is based on a Morison formulation. The 
resultant rigid body equation of motion for the vessel in six degrees of 
freedom is rewritten here for convenience: 

( M + M A ) X + B | X | X + ( K + K M ) X = F ( 0 (10.39) 

where X , X and X are the six component column vectors of displacement, 
velocity and acceleration in surge, sway, heave, roll, pitch and yaw 
respectively; Μ and M A are the (6 x 6) matrices of structure mass and 
added mass respectively; Β is a (6 x 6) matrix representing the non-linear 
drag induced damping contribution; Κ and K M are (6 x 6) stiffness 
matrices contributed by hydrostatic and mooring restoring forces respect­
ively; and F{t) is the wave force. 

All the remaining details of the analysis are given in Chapter 5. This rigid 
body analysis in six degrees of freedom is now extended to a multi-degree 
of freedom solution. 

The air tanks are considered as part of the vessel structure but the water 
columns are treated as individual degrees of freedom. The added mass of 
the water columns is calculated by assuming the added volume for a 
vertical cylinder to be equal to that of a hemisphere of equal radius. If ri is 
the radius of a column leg, and Γ2 is the inner radius of a heave can, then 
the added mass of a water column is expressed as 

= I 9<rl - ri) (10.40) 

Damping is taken to be 10% of critical and the hydrostatic stiffness is 
calculated as if the water column were a solid annulus. The wave force on 
the water column is calculated to be the force resulting from changes in 
wave dynamic pressure evaluated at the base of each column. 

The equations of motion can then be written as 
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10.3.1 Pneumatic stiffness and hydrostatics 

Equation (10.41) represents the equation of motion for a 6 + m degree of 
freedom system, its formulation is more clearly illustrated by considering a 
two degree of freedom solution in which one vessel motion is coupled in 
stiffness with a single water column. 

A simple mass, spring and damper ideahsation of such a system is 
illustrated in Figure 10.9. The equations of motion can be written in matrix 
form as. 

' m i 0 " 0 ' ΙχΛ 
0 ηΐ2_ 

+ ΙχΛ + 0 ηΐ2_ 0 bi. Vi) 
-κ ' (fl\ 

-κ k2 + Κ_ Vi/ 
(10.42) 

assuming there is no damping in the air volume. 

fi(t) i 

Figure 10.9. Two degrees of freedom mass, spring and damper idealization 

If the coupling stiffness, is set equal to zero, the systems are 
uncoupled yielding two independent differential equations which can be 
solved for Χχ and x^', Κ is derived by considering the compression and 
expansion process in the trapped air volumes. Using the work of Section 

The terms m2 , b2 and are the mass and added mass, damping and 
hydrostatic stiffness matrices for the water columns (in which only the 
leading diagonal terms are non-zero). 

In Equation (10.41), equivalent hnearization of the vessel damping term 
is included, although the water column damping is taken to be linear. The 
additional stiffness matrix, k, represents the restoring force contributed by 
the compression and expansion of the air above each water column. 
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10.2, the force, F, per relative displacement, JC, between the vessel and 
water column can be writen as 

d F 

djc 

nPaA 
(10.43) 

where h is the height of the air volume; A is it's cross-sectional area in plan; 
Po is atmospheric pressure; and η is the gas law index. The value for air 
stiffness is based on an adiabatic process since wave frequencies present in 
a typical wave spectrum are considered high enough to prevent tempera­
ture equlization between the air volume and surroundings. 

Now by using the expression for linear air spring restoring force 
(Equation 10.43) the air stiffness matrix can be derived. The air springs 
only affect motions acting in the vertical plane, they have no influence on 
vessel surge, sway or yaw motions. Referring to Equat ion (10.41) the 
partitions of the air stiffness matric, k^, are 

" 0 0 0 0 0 0 ~ 

0 0 0 0 0 0 

0 0 k33 ^34 0 

0 0 ^43 ^44 ^45 0 

0 0 k53 IC55 0 

. 0 0 0 0 0 0 _ 

(10.44) 

where 
9 q 

^33 = 2 ^^o^//Ä/, ^44 = 2] riPoAtyj/hi, ks5 = 2 nPoAiXJ/hi, 
i=\ i=\ i=l 

^ q 

^43 = ^34 = 2 ^Po^iyilhi, ks3 = ^35 = 2 -nP^AiXilhi 
/ = 1 / = 1 

q ^54 = ^̂ 45 = 2 -f^Po^iXiyilhi (10.45) 
/ = 1 

With the notation c¡ = nPoAJhi {i = \, q), d, = -nPoAiyßi {¿ = 1, q), 
and ei = ηΡοΑίΧβι {i = í,q), and assuming for simplification that = 4, 
the partition k̂ ^ can be written as 

" 0 0 0 0 " 

0 0 0 0 

- c i -ci -C4 

di di d, 

e\ ei «3 64 

_ 0 0 0 0 _ 

(10.46) 
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κ = (10.47) 

(10.48) 

and by symmetry = kj . 
Finally 

ci 0 0 0 1 

0 C2 0 0 

0 0 C3 0 

0 0 0 C4 

The full governing equation can then be written as 

( M + M A ) X + BAI X | X + B B X + ( K + Ka)X = ¥{t) 

with the mooring system stiffness excluded; Β A contains the vessel 
damping matrix and Ββ represents the linear water column damping terms. 
Assuming small amplitude sinusoidal motions Equat ion (10.48) can be 
re-arranged to give 

[-ω\Μ + M A ) - iω(8/37τ)BA| - ίωΧο,..,,,..| - iwBß + Κ + Kaa]Xo 

= Γο(ω) (10.49) 

which can be solved for X using standard matrix manipulation to yield the 
motion response amplitudes and phases in all 6 + ( 7 degrees of freedom. 

The results of the above analysis have been validated against model tests 
on a '^th model of the configuration shown in Figure 10.1. The scaling laws 
used are described further in Section 10.2. The inability of scaling 
atmospheric pressure by the appropriate amount has required that in 
comparing model tests results with theory, an artificially high atmospheric 
pressure (by the scale factor 78) is used. 

The results of the theory described above and model test results are 
presented in Figures 10.10 to 10.13. 

Figure 10.10 compares experimental and theoretical heave R A O s for the 
modified vessel in 0.06 m (model scale) head seas. The heave amplitudes 
are non-dimensionalized with respect to wave amphtude and are plotted 
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Figure 10.10. Modified vessel heave R A O s 
in 0.06 m head seas. Key: a - state 0, exper­
iment; b - state 0, theory; c - optimum, ex­
periment; d - optimum, theory 
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Figure 10.11. Modified vessel heave R A O s 
in 0.06 m beam seas. Key: a - State 0, exper­
iment; b - state 0, theory; c - optimum, ex-

Full scale wave period ( s ) periment; d - optimum, theory 

against full scale wave period. The motion suppression capabihties are 
clearly evident. With an optimized heave response less than 20% of the 
wave height, for periods up to 16 s the motion has been reduced by up to 
50% in the centre of the period range. 

Figure 10.11 indicates that heave motion is further reduced in beam seas. 
Also, roll motions are reduced, as seen in Figure 10.12. When a vessel of 
this design is in a beam sea the predominant structural members tend to 
possess the same moment arm relative to the axis of rotation. The air 
spring restoring forces oscillate in phase with each other and act with the 
same moment arm as the main vertical hydrodynamic forces, reducing 
beam sea responses more effectively than those in head seas, for which 
vertical forces along the pontoon length are more sensitive to changes in 
wavelength and prone to cancellations. 

A comparison of measured regular and irregular wave heave amplitude 
transfer functions for states 0 and 4 is presented in Figure 10.13. The shift 
in cancellation frequency and suppressed amplitude response are clearly 
shown. The high frequency response of the compliant vessel is slightly 
worse than the state 0 response. At these frequencies state 4 is not the 
optimum operating condition, the motion could be reduced in an alternat­
ive state. 

The vessel response in a number of wave spectra (Houmb and Overvik, 
1976; and Spidsoe and Sigbjornsson, 1980) can be illustrated by short term 
response curves such as those presented in Figure 10.14. These curves were 
formed by generating response amplitude spectra through calculated 
response amplitude operators (Pedersen et al., 1973). Figure 10.14 indi­
cates that appreciable reductions in heave motions can be obtained in sea 
states possessing average wave periods of up to 10 s. 

Motion suppression using pneumatic compliance is an attractive feature 
because it has the potential to reduce the motions down-time of a 
semisubmersible being used for drilling or production purposes. An 
indirect advantage of the annular tanks retro-fitted to column legs arises 
from their protection of the stabihzing columns in the vicinity of still water 
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Figure 10.12. Modified vessel roll R A O s in 0.06 m beam seas. Key: a - State 0, exper­
iment; b - State 0, theory; c - optimum, experiment; d - optimum, theory 
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Figure 10.13. Heave amplitude transfer func­
tion in a head sea JONSWAP spectrum of 
0.03 m significant wave height. Key: 
a - regular waves, State 0; b - irregular waves, 
State 0; c - regular waves, State 4; 
d - irregular waves, State 4 
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Figure 10.14. Short term heave responses in 
beam seas for JONSWAP wave spectra. Key: 
a - State 0; b - State 1; c - State 2; d - State 
3; e - State 4 

level. A collision and breach of the tanks at this level would only affect 
tank operations and not flood the basic vessel. The system described 
possesses a simple on/off, manually operated valve system with no active 
control mechanism. This makes it fail-safe and at any instant it is possible 
to revert to conventional vessel stability and motion response. 

The only penalties of such a system are increased structural weight 
(although this is only a small fraction of vessel displacement) and slightly 
higher surge, drift and mooring forces, as well as a small increase in 
internal forces within transverse bracing members . 

10.4 Tensioned buoyant platforms 

The tensioned buoyant platform (TBP) is a form of vertically restrained 
(but horizontally comphant) floating platform that has been described 
extensively in Chapter 6. 

One of the major design problems associated with TBPs is the high level 
of cyclic tether stresses induced by wave forces on the surface platform. 
High cyclic stresses reduce the fatigue life of the tethers and also require 
high pretensions such that the tethers never become slack. These factors 
complicate the TBP design and usually lead to substantiahy increased 
structural weight. It is of fundamental importance to the design that the 
vessel's geometry is optmized so that the induced tether cyclic stresses are 
minimized. This optimization is often difficult to achieve satisfactorily 
because it is constrained by other practical considerations (see Mercier 
1982, for example). 

The physical mechanism through which vertical wave forces are exerted 
on tensioned buoyant platforms are such that a large proportion of the 
local forces exerted on one part of the structure can be cancelled out by 
opposing forces acting on other parts of the submerged structure. This 
feature can be illustrated by separating out the heave wave forces in beam 
seas acting on the pontoons and the columns of the design shown in Figure 
10.15. The separate pontoon and column forces, together with the total 
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force, are plotted in Figure 10.16(a) as a function of wave period. Curve a 
denotes the vertical inertia force amplitude acting on the pontoons - this 
force being 180° out of phase with wave elevation for wave periods 
between 11 and 18 s. Curve b shows the variation of unbalanced vertical 
wave pressure force amplitude acting on the surface piercing columns. This 
force is in phase with wave elevation for large wave periods. Curve c shows 
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the variation of total vertical wave force with period and illustrates how the 
opposing effects of forces denoted by a, and b cancel each other out - this 
canceUation being complete at wave periods of 11 and 18 s. Note also that 
the total vertical wave force on the platform is out of phase with wave 
elevation over a period range of from 11 s to 18 s (Figure 10.16(b)). 

This is analogous to the mechanism that operates with semisubmersibles, 
but differs in detail due to the specific geometry of TBPs. Again as with 
semisbmersibles, open bot tom tanks with t rapped air can serve to reduce 
total vertical wave induced force amplitudes and thus axial tether forces on 
the platform. Figure 10.17 shows a typical platform layout with configura­
tion details of given in Table 10.4. Figure 10.2 gives a more detailed view of 
an open bottom air tank. 

Now the hydrodynamic analysis of the TBP with open bot tom tanks is 
very similar to that of the semisbmersible except for the inclusion of a 
tether stiffness matrix. The matrix equation of motion for a T B P , 
analogous to Equation (10.41) for a semisubmersible, can be written as 

•(K;,h + KpO 0 

0 Ke 

0 
+ Dp 0 "Xp" + 

0 0 D e . Λ . 

" X p " 

' X p " it)' 
(0 . 

(10.50) 
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Figure 10.17. Six and eight column tensioned buoyant platforms with open bottom tanks 
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Table 10.4 Summary of TBP data 

4 column TBP 6 column TBP 8 column TBP 

Displacement (t) 47 700 74 360 73 750 

Vertical centre of gravity above keel 38.32 m 28 m 28 m 

Draught 42.5 m 32 m 32 m 

Outer column spacing 99.4 m 78 m 1th 80 m Outer column spacing 
74 m wth 

Outer column radius 7.07 m 9.06 m 9 m 

Outer column tank radius 9 m 9.925 m 

Inner column radius 7.25 m 5 m 

Inner column tank radius 8.3 m 8 m 
or 9 m 

Cable axial stiffness (kN/m) 56 528.8 258 307.7 258 303.7 

Cable pretension (t) 3750 4000 4000 

Air tank height above SWL 5 m 5 m 5 m 

Air tank depth below SWL 10 m 10 m 10 m 

Water depth 500 m 150 m 150 m 

Natural periods for TBP with air tanks (s) 
surge 93.7 60.8 61.3 
sway 103.8 60.1 61.3 
heave 2.9 1.8 1.8 
roll 3.2 1.8 1.7 
pitch 3.0 1.8 1.7 
yaw 91.8 49.9 48.9 

Water columns 4.4 4.4 oc 4.2 
4.3 cc or 4.3 

Notes: 
o c = outer air tanks; 
cc = centre air tanks . 

The notation used here is different from that of Equat ion (10.41). Here Μς 
is the water column total mass matrix; Dc is the water column damping 
matrix; Kc is the water column hydrostatic stiffness matrix; Fc(0 is the wave 
exciting force vector acting on the water columns; Mp ' Dp and Kph are the 
corresponding mass, damping and hydrostatic stiffness matrices for the 
platform; Kpt is the tether stiffness matrix; and Xp is the ( 6 x 1 ) vector of 
platform displacements in surge, sway, heave, roll, pitch and yaw; Xc are 
the water column displacements. The only coupling between the water 
columns and the vessel is through the fully populated pneumatic stiffness 
matrix. Kg. All the submatrices associated with the vessel are of order 6 
and if there are 'q' air tanks, then all the square submatrices associated 
with the water columns are of order q. The pneumatic stiffness matrix, Ka , 
is of order 'q + 6\ 
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This equation of motion can be rewritten as 

Mx + Dx + Kx = F{t) 
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(10.51) 

Although, the water column dynamics is incorporated into matrix Equa­
tions (10.50) and (10.51), it is instructive to examine the equation of 
motion for a single column in vertical motion, z^. The equation can be 
written as 

(pAd -l· mJZc + CZc + Pg^^c = (Pwave ' p) ^ (10.52) 

where A is the plan area of the column; m a is the added mass; c is the linear 
damping coefficient; p^ave is the oscillatory wave pressure; ρ is the 
instantaneous pressure of the trapped air; and ρ is water density. From 
linear wave theory Pwave is given by 

fwave 2 
coshA: (z' + d) 

coshkd 
(10.53) 

where z' is vertically up from still water level; d is the water depth; k is the 
wave number; Η is the wave height; and ω is wave frequency. 

If the pitch ( a ) , roll (β) and heave ( Z p ) motions of the rig are also taken 
into account and substituted into the adiabatic gas law relationship, 

pV^ = po(Ahy = constant (10.54) 

then 

Ρ = Po 
1 -

/ z c + l,a - Lß - Zj 

\ h 
(10.55) 

where h is the height of the trapped air column; and {1^,, ly) are the 
co-ordinates of the tank vertical centre line in the G^y plane. 

Substituting Equations (10.53) and (10.55) into Equation (10.52) gives 

{pAd -h m a ) z c -h czc + p g ^ Z c + poA 1 -
Zc + - Lß - Zp 

IT 

= Apg a'*̂ '̂" ^̂ ^̂  ^̂ "̂ ^ 
cosh{k{D - d)) 

cosh/cD 
(10.56) 

where θ is the angle of the incident wave with respect to the χ axis. This 
equation of motion may be linearized by expanding the pneumatic term 



Tensioned buoyant platforms 315 

pg exp[-iÄ:(4 cos9 + ly sinB)] 
coshA:(D - d) 

coshkD 
(10.57) 

The above equation for a single water column is coupled to the platform 
motions a , β and Zp through the pneumatic stiffness term. It is sensible, 
therefore, to solve tne full platform and water column system of equations 
and this has been done for three candidate TBPs to illustrate the influence 
of open bottom tanks on platform motions and tether tensions. Figures 
10.15 and 10.17 show the four column, six column and eight column TBPs 
used for this purpose. The air tanks are positioned on the columns 
shown - with Figure 10.2 showing details of air tank layout. Table 10.4 
gives numerical data on the platform. 

Figure 10.18 shows the four column TBP's most loaded tether tension 
amplitude operator (TAO) as a function of wave period in beam and 
quartering seas for the platform with and without cans. There is a 
considerable reduction in the T A O in beam seas for wave periods up to 
16 s. This reduction also occurs in quartering seas for wave periods 
between 9 and 16 s. For periods greater than 16 s the cans increase the 
T A O . Similarly, Figure 10.19 shows the six column TBP's most loaded 
tether T A O against wave period for the platform with and without tanks in 
head and quartering seas. In a similar manner to the four column T B P , 
there is considerable reduction in the T A O for wave periods around 9-13 s 
due to the addition of the open bot tom tanks. However, the tanks increase 
the T A O for wave periods greater than 14 s. 

These reductions in tether T A O are due to the oscillating water column 
below the trapped air exerting a force on the platform which opposes the 
inertia dominated vertical wave exciting forces. In seas of larger wave 
periods the vertical wave force on the column tends to dominate . This 
force is in phase with the tank forces, which in turn leads to increased 
tether tensions. The point at which the exciting force changes over from 
being dominated by inertia forces on the pontoons to being dominated by 
column forces depends on the platform geometry, in particular the column 
to pontoon volume ratio. The tanks may always be deactivated by releasing 
the trapped air inside the cans. This would return the vessel to very nearly 
its behaviour prior to tank installation. 

Figure 10.18(b) shows an increase in the T A O for the four column TBP 
in quartering seas of around 8 s wave period. This is because the vessel's 
geometry is such that the vertical wave exciting forces are in phase with the 
tank forces and hence increase tether tensions. 

Figure 10.20 illustrates the most loaded tether T A O against wave period 
for the eight column TBP in head and quartering seas. There are three 
curves on each graph. The first curve gives the T A O for the TBP without 
open bot tom tanks. The second two curves give the Τ A O s for the vessel 
with 9 m and 8 m diameter tanks, respectively, on the centre columns. 

and neglecting the higher order terms. The hnear equation of motion for 
the water column then is 

{pAd + mjz, + czc + pgAz, + [z, + l,a - /^ß - Zp] 
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There is a large reduction in the T A O for wave periods between 8 and 13 s. 
The amount of reduction depends on the tank diameter since forces due to 
the tanks are proportional to their plan areas. Subdivision of the tanks into 
smaller compartments would allow more control since the plan area could 
be changed by opening or shutting valves to selected compartments . 
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An additional feature which influences t rapped air behaviour arises from 
the spatial phase shift experienced by tanks with spacings comparable to 
incident wave lengths. For practice T B P configurations, the phase shift 
only plays an important part a t i o w wave periods. However , TBP column 
spacings and air tank layouts can be designed such that the wave induced 
pitching or rolhng moment amphtudes acting on the tanks are 180° out of 
phase with the wave induced pitching or rolling moments on the rest of the 
platform. This, in fact, occurred for the TBPs analysed here for wave 
periods around 9 s in most seeea states. Although this pitch or roll moment 
amplitude cancellation only occurs over a narrow wave period range, it can 
be advantageous to the platform design if the cancellation coincides with a 
pitch or roll moment amplitude maxima. 

The regular wave results have been used to calculate short term T A O s 
for seas modelled by the J O N S W A P wave elevation spectra 5^ν(ω) given in 
Spidsoe and Sigbjornsson (1980). The corresponding tether tension spec­
t rum, 5τ(ω) , is given by the usual linear system relationship of 

5τ(ω) = [r(w)]25w(w) (10.58) 

where Γ(ω) is the tether T A O at frequency ω. The areas under the wave 
elevation and tether tension spectra (Mw and Mj respectively) were 
evaluated numerically and then converted into significant wave heights 
(/ /w) and significant tether tensions (Hj) using the relationships: 

/ /w = 4 V ( M w ) and Hj = V(Mj) (10.59) 

The significant tether T A O is given by the ratio Hj/Ηψ. Figures 10.21 and 
10.22 present the significant tether T A O based on the results given in 
Figures 10.18(a) and 10.19(b) respectively. For the four column T B P , 
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there is a reduction in T A O for beam seas with average wave periods 
between 8 and 16 s due to the addition of the tanks. Similarly, there is a 
reduction due to the tanks for the six column TBP's T A O in quartering 
seas for average wave periods between 8 and 13 s. These results show that 
the general characteristics of the regular frequency results apply to seas 
modelled by narrow banded spectra. 

The addition of the open bot tom tanks will affect the surge, sway and 
yaw motions of the TBP. Figure 10.23 presents a typical surge response 
amphtude operator against wave period for the eight column T B P in head 
seas. It can be seen that the tanks do not have a significant effect on these 
motions. 
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The resuhs presented here show that the inclusion of t rapped air devices 
on the columns of a tensioned buoyant platform offers significant reduc­
tions in tether tension amplitudes. These reductions can have a far 
reaching impact on the overall platform design including the choices of 
tether static pre-tensions and platform strength, among others. 

The designer of a TBP is conventionally faced with the task of optimizing 
a specific platform hull for all likely incident wave conditions. However , 
the inclusion of trapped air tanks offers the fundamentally different 
approach of operating a variable geometry platform. The variable geome­
try arises from the fact that the platform can be operated with the air tank 
valves open or shut - each condition offering opt imum platform perfor­
mance over a specific wave period range. This mode of operation can be 
simply attained by valves connecting the t rapped air spaces to atmosphere 
and designed to operate in the fully open or fully shut condition. 

Open bottom tanks offer some secondary advantages irrespective of 
whether they are operated in the fully passive mode (permanently t rapped 
air volumes) or the ^variable geometry' mode (cans with valves which can 
be opened or shut in). They offer excellent column damage protection and 
serve to reduce internal oscillating vertical forces within the structure, 
although horizontal forces on the columns are increased slightly. 

10.5 Ship shape hull forms 

Open bottom tanks with trapped air on both beams of a ship shape vessel 
(see Figure 10.3) can be used to reduce the wave induced roll motions of a 
vessel. The tanks do not, however, modify the heave and pitch motions 
appreciably because the wave forces inducing these two motions are 
several orders of magnitude higher than the forces exerted by the air tanks. 



320 Floating vessels with trapped air cavities 

Methods of reducing the rohing motions of ships have been pursued 
since the last century. Some ship stabilizing systems in current use do rely 
directly on forward motion to generate the necessary forces, whereas a 
large proportion of vessels used in offshore applications are required to 
maintain station during operation and can only utilize wave action to 
modify the vessel's roll response. 

A brief overview of roll reduction systems is worth giving at this point. 
Watts (1883, 1885) pesented papers on a free surface absorber for roll 

motion reduction to the Institution of Naval Architects. Although the 
method was of limited success, it prompted further work by Frahm (1911) 
on an anti-rolling device utilizing a U-tube configuration. Existing stabili­
zation devices include bilge keels, gyroscopes, active and fixed fins, active 
and passive tanks and moving weight systems (see Rawson and Tupper , 
1976; and Bhattacharyya, 1978). The tank configurations currently in use 
are all of similar design, extending athwartships and consisting of columns 
of water that oscillate due to motion of the vessel. By restricting the 
internal fluid motion, the system can be tuned to the roll natural frequency 
(Seatek Corporation, 1981), enabling reductions in resonant roll ampli­
tudes. 

The use of U-tubes and bot tom opening tanks fitted with venting valves 
has also been investigated with the aim of reducing semisubmersible 
motions (Bassiouny and Miller, 1982). The latter method was suggested in 
the early 1900s and uses constricted air flow as a stabilizing damper for 
ships. The principal reason for this not being extensively developed, 
however, was that difficulties were encountered in tuning the device at 
relatively shallow draughts. There were additional problems with both 
types of device as they were fitted internally to the vessel and, therefore, 
the presence of an internal waterplane caused a reduction in hydrostatic 
stability. 

On ship shape hull forms, the open bot tom tanks for pneumatic 
compliance are usuaUy mounted along both beams of the vessel, as shown 
by the hull centre-section cut out at Figure 10.24. Each of the tanks is fitted 
with a vent valve (or valves) on its upper surface, allowing unrestricted 
flow of air to and from atmosphere. The valves are either open or closed, 
with no further control of the air flow being maintained in any form. When 
the valves are closed, a volume of air is t rapped above the internal water 
level in each tank, the compressibility of the trapped air volume increasing 
the effective hydrostatic stiffness of the hull in heave, roll and pitch and 
thus shortening the vessel natural periods in these modes. Hence by 
opening or closing the vent valves, the vessel can exercise two combina­
tions of natural periods. 

In particular, the pneumatic compliance allows a shift in roll natural 
period which provides the means to avoid resonance by suitable opening or 
closing of the vent valves depending on incident wave frequencies. As 
stated earlier, resonant roU motions of monohuU vessels are commonly 
encountered since the roll natural period is almost always in the range of 
predominant wave periods. Use of open bot tom tanks allows the possibihty 
of readily changing the vessel's resonant roU period. In addition, the 
motions of the water columns within the lower sections of the open bot tom 
tanks generate damping forces which serve to reduce motions further. 
With a conventional monohuU, no convenient and rapid change in roU 
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Figure 10.24. Centre section of a monohull with open bottom tanks 

natural period is possible and furthermore, resonant roll motions are 
higher since no additional damping due to water column motions can be 
utilized. 

The equations of motion for a ship shape vessel are identical to those of 
semisubmersible hull forms described above except that the coefficients 
have to be obtained using a potential flow diffraction analysis. 

The rigid body equation of motion for a ship shape vessel in six degrees 
of freedom can be written as 

( M + M A ) X + B R X + Bvl X | X + ( K + KJX = F (10.60) 

where X , X and X are six component column vectors of vessel displace­
ment , velocity and acceleration in surge, sway, heave, roll, pitch and yaw 
respectively. The (6 x 6) matrix, M , contains the physical mass of the 
structure, with M A being the added mass matrix. 

The damping co-efficients in matrix B R are associated with a net outward 
flux of energy in radiated waves and thus represent damping due to the 
fluid motion only. The viscous damping co-efficients in By are induced by 
drag forces. The stiffness matrices, Κ and K ^ , are due to hydrostatic and 
mooring restoring forces. The six component column vector, F , contains 
wave induced forces and moments which may be calculated using diffrac­
tion theory. 

The introduction of pneumatic compliance requires the analysis to be 
extended for the additional degrees of freedom representing the vertical 
displacements of each of the water columns. This is done in an identical 
manner to that used for semisubmersibles and tensioned buoyant platforms 
in the earlier subsection. It yields the matrix equation 
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where m i , b i , by, kh, and are (6 x 6) matrices of vessel mass physical 
and added masses), radiation damping, viscous damping, hydrostatic 
stiffness and mooring stiffness respectively. The matrices ηΐ2, b2 and kh^ 
represent the {q x q) water column mass, radiation damping and hy­
drostatic stiffness, respectively, for q water columns mounted on the 
vessel. The air stiffness matric has been expressed by four submatrices 
which will be discussed in more detail later. 

The fluid structure interaction terms associated with the added mass, 
damping, hydrostatic stiffness and wave exciting forces on the rigid 
structure needs to be derived using a diffraction analysis. This is based on a 
conventional boundary element numerical technique. The method uses a 
linear potential-flow analysis formulated for inviscid, irrotational flow. The 
submerged vessel surface is represented by a mesh of triangular facets. The 
application of the no-flow boundary condition at each facet then yields a 
system of equations that need to be solved for the source strengths. Once 
these are known, the pressures at the facets are evaluated and their effects 
integrated over the vessel surface to yield hydrodynamic forces. This 
technique is described further in Chapter 5. 

The pneumatic stiffness couphng terms of Equat ion (10.61) contributed 
by the trapped air volumes have already been calculated in Section 10.3. 

The potential flow analysis of a ship shape vessel also needs to be 
extended to incorporate the additional degrees of freedom associated with 
the vertical displacement of each water column in the same manner as for 
the semisubmersible vessel. As with conventional rigid vessels, the added 
mass and radiation damping forces on the water columns are obtained from 
the forces induced by unit amplitude water column motion in still 
water - the radiation problem. The forces exerted on a stationary column 
by incident waves are obtained by solving the alternative diffraction 
problem. Chapter 5 describes this procedure in further detail. Equat ion 
(10.61) can then be readily solved. 

Results from the above theory are presented in conjunction with test 
data obtained from a ^ t h scale model of the ship shape hull of principal 
particulars given in Table 10.5. 

Figure 10.25(a) and (b) compare experimental and theoretical heave 
response amplitude operators (RAOs) obtained in a regular wave head 
sea. Results with and without the pneumatic compliance (valves closed and 
open) are presented. A t wave periods above 9 s, the theoretical and 
measured heave motions are in agreement with each other , the difference 
being explained by standing wave effects associated with the test tank. The 
heave motions with valves closed are slightly higher than those with valves 
open due to the increased vertical wave forces on the vessel. A t wave 
periods between 6 and 9 s, the predicted results in heave for the vessel with 
valves open are significantly higher than for measured valves. This is 
believed to be due to additional viscous damping within the model tests 
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Table 10.5 Vessel and open bottom tank particulars - full scale values 

Particulars Monohull 

Displacement (t) 

ÍLength (m) 
Width (m) 

[^Height (m) 

Surface piercing hull {^'^?μ5^ 

Draught (m) 

Vessel depth (m) 

Column diameter (m) 
Inner 
Outer 

Column spacing I Longitudinal (m) 

I^Transverse (m) 

Cylindrical bracing diameter (m) 

Height of CG above keel (m) 

Total height (m) 
Open bottom tanks 

{ inner 
outer 

Tank depth below SWL (m) 
Height of air column (m) 

On inner columns (m-) 
On outer columns (m-) 
On each beam of vessel (m-) 

Tank plan areas 

Distance between tank vessel and longitudinal centre line (m) 

24 273 

128.00 
33.77 

9.52 

15.91 

7.33 

14.28 
9.52 
4.76 

394 

16.89 

τ r-
8 10 12 14 16 18 

( b ) 
W a v e Per iod ( s e c ) 

Figure 10.25. Monohull head sea heave RAOs: (a) valves open; (b) valves closed. Key: 
a - experimental; b - theory 
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Figure 10.26. Monohull head sea pitch RAOs: (a) valves open; (b) valves closed. Key: 
a - experimental; b - theory 

Measured and calculated roll R A O s (roll amplitude per unit wave 
amphtude) are presented in Figure 10.27(a) and (b). Because the tanks are 
sited along the vessel beams, their air springs generate a larger increase in 
effective stiffness in roll than they do in heave or pitch. The shift in roll 
natural period gives the suppression system a two phase operating strategy, 
the valves controlling the venting of the trapped air being either open or 
closed depending on incident wave frequency. By choosing the appropriate 
operating condition (that is, either opening or closing the valves), the 
effects of resonance on roll response can be appreciably reduced for a 
particular incident wave spectrum. 

There is a discrepancy between predicted and measured resonant roll 
amplitudes with the valves open and closed. This suggests that the flow in 
and out of the open bottom tanks and around the vessel is more heavily 
damped than calculated by potential-flow theory, implying that wave 
radiation is not the only source of damping. Viscous drag, such as that due 
to water column motion inside the tanks, is likely to provide additional 
damping. 

that is not represented in the inviscid potential-flow theory. However, the 
low wave period heave motions for the vessel with valves closed are 
broadly in agreement with each other. 

Measured and predicted pitch motions for the monohull in head seas are 
presented in Figure 10.26(a) and (b). The pneumatic compliance does not 
noticeably shorten the pitch natural period because of the comparative 
magnitudes of second moments of compliant and 'hard ' waterplane areas 
about the vessel's transverse mid-section. Theoretical predictions are in 
close agreement with measured values at low wave periods, though the 
agreement is less good at longer wave periods. 
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Figure 10.27. Monohull beam sea roll RAOs: (a) valves open; (b) valves closed. Key: 
a - experimental; b - theory 

10.6 Active control of trapped air volumes 

10.6.1 Motion reduction in waves 

The passive use of open bot tom tanks, as described earher , may be 
extended to an active system by controlhng the mass of air t rapped inside 
the air tanks. This is done by blowing to or venting from each of the 
t rapped air volumes by a pneumatic power and control system. Thus , 
unlike the passive system, the active system requires the valves connecting 
the tanks to the air reservoirs to open and close within a wave cycle. The 
changing air masses and the consequent pressure variations exert a heave 
force and pitch and roll moments on the vessel. By controlling the air 
masses, these generated forces can be used to counteract wave induced 
forces and moments and hence reduce motions. 

This section examines the use of active air tanks for controlling the heave 
motions of semisubmersibles. This is done both by means of analysis and 
computer based simulations of system performance. The results of such 
calculations are verified by comparisons with model tests at ^ t h scale. The 
development of a mathematical model to describe the behaviour of an 
actively controlled vessel requires that the governing equations for vessel 
hydrodynamics in the usal six rigid body degrees of freedom need to be 
extended to account for the additional degrees of freedom due to vertical 
motions of water columns within the tanks. These equations of motion 
have to incorporate the thermodynamics of air flows within the system as 
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Figure 10.28. An idealized two column semisubmersible 

well as the spring constants associated with compression and rarefaction of 
the trapped air. Fur thermore , time domain simulations of total system 
performance heave to include the characteristics of the pneumatic air 
power equipment (centrifugal blowers and pipe work, for example) , 
control valves, actuators and the control strategy to be used during 
operation. The above need to be accounted for in order to obtain realistic 
estimates of system performance and hence its value. 

The theory underlying the analysis of a semisubmersible with attached 
air tanks is illustrated by two approaches. A simplified frequency domain 
approach is used to demonstrate the reduction of steady state heave 
motions of a semisubmersible in regular waves. The analysis is then 
extended to a time domain simulation and its results compared with data 
from model tests. 

10.6.1.1 Frequency domain analysis 
A fundamental understanding of the mechanisms which govern semisub­
mersible heave motions are best illustrated by a simplified frequency 
domain analysis. Consider the simplest of semisubmersible designs shown 
in Figure 10.28 with dimensions in Table 10.6(b). The vessel consists of two 
large parallel pontoons interconnected by relatively small bracing 
members . Each pontoon has two vertical larger diameter columns which 
are connected to the deck. The typical heave response of such a vessel 
shows little sensitivity to the direction of incident waves. Thus, if only head 
seas are considered and taking account of port-starboard symmetry, the 
semisubmersible may be idealized as two columns connected by a pontoon, 
as shown in Figure 10.28, which also illustrates two open bottom tanks 
attached to each column. This section extends the passive use of t rapped 
air in these open bot tom tanks to an active system where the mass of air 
t rapped by each tank is allowed to vary with t ime. Thus an additional force 
is exerted on the vessel due to resultant pressure changes which are a 
consequence of the variations in t rapped air masses. By controlling the 
mass of air in each tank, forces can be exerted on the vessel which oppose 
external exciting forces and hence reduce the vessel motions. 

A i r Tank 
, ( A r e a A ) 
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Table 10.6 Semisubmersible data for active control 

Ideal 4 column 4 column 8 column 
semisubmersible semisubmersible semisubmersible 
(A) (B) (full scale) 

(C) 

Displacement (t) 30 200 26 000 22 834 

Draught (m) 25.00 20.71 26.47 

Pontoon length (m) 90.60 80.56 97.00 

Pontoon width x ht (m) 12.8 dia 16.00 X 7.5 11.62 X 6.. 

Corner column dia. (m) 10.6 12.0 8.92 

Inner column dia. (m) - - 6.44 

Corner column longitudinal 
spacing (m) 

80.0 54.72 76.28 

Inner column longitudinal 
spacing (m) 

- - 25.50 

Pontoon transverse spacing (m) 80.0 54.72 62.78 

Bracing diameter (m) - 2.0 1.5 

Corner tank inner diameter (m) 13.0 15.00 6.06 

Corner tank outer diameter (m) - 15.10 6.16 

Corner tank air ht(m) 5.0 4.3 5.12 

Corner tank depth below SWL 
(m) 

5.0 5.7 6.91 

Height of deck above keel (m) - - 41.03 

Unmodified vessel heave 
natural periods (s) 

23.93 21.99 21.04 

Vessel heave natural periods 
with passive air tanks (s) 

20.83 18.58 17.86* 
17.29^ 

* = theory ; 

* = c\pcrinu'nl;il 

Now consider the equations of vertical motion for the idealized vessel 
and the water columns shown in Figure 10.30. In this case it is assumed that 
the disturbing force is due to regular head sea waves, although in principle 
the disturbing force may be due to any source. The system has three 
degrees of freedom: the vertical displacement of the vessel (zi) and the 
vertical displacements of the water columns (z2 and 23) in the bow and stern 
open bot tom tanks respectively. The system has two controllable input 
variables - the masses of air (mf(i) and m^(t)) in the forward (bow) tank 
and the rear (stern) tank respectively. 

The following assumptions have been made . 

1. The model consists of slender cylinders with respect to incident wave 
length and the column spacing to diameter ratio is large. 



328 Floating vessels with trapped air cavities 

~2p[AA + L{1 + C M 0 0 

0 pAd + M„c 0 

0 0 pAd + Μ 

"ci 0 0 " ~2pgA 0 0 " Zl 

+ 0 C2 0 ¿2 + 0 pgA 0 22 

0 0 C3 ¿3 0 0 pgA ^3 

•¿2 

•¿3 

+ Ö 

W f + « i r - / M f -m, 

-ttif nif 0 

-m, 0 nij Z3 

= P8H 

'-e-'"'r(A,coskL - ^ h ( l + CJúnkLJ 

nif + 2poA 

+ hQ -ntf - -PoA 

-m. -PoA 

or 

(10.62) 

M ' Z ' + C ' Z ' + K^Z' + β Κ „ ( ί ) Ζ ' = Foe*"' + W ' ( 0 - H ' (10.63) 

in matrix notation, where 

RT 
Q = 

M ' contains the total mass of the vessel and the water columns; the 
elements of the damping matrix, C , are estimated as a prescribed 

2. Wave forces acting on the vessel and on water columns are evaluated 
using deep water linear wave theory and Morison's equation. The drag 
force component of Morison's equation has been neglected and the 
effects of bracing have been ignored. 

3. Vessel and water column displacements are small relative to tank 
trapped air heights. Perturbations of the trapped air masses are also 
assumed smaU. 

4. Each water column behaves like a rigid body. The trapped air is 
assumed ideal and undergoes changes governed by a polytropic 
process. 

Using hnearized air stiffness, as derived in Section 10.2, the equation of 
motion for the semisubmersible can be written as 



Active control of trapped air volumes 329 

percentage of critical damping; Ké is the hydrostatic stiffness matrix; is 
the pneumatic stiffness matrix associated with the t rapped air in each tank. 
The first element of the exciting force vector, FQ, is the vertical wave 
exciting force on the rig. It consists of the summation of the pressure force 
acting at the bases of columns and the inertia force acting on the pontoon. 
The remaining elements of FQ are the forces acting on the water column 
bases due to pressure changes associated with incident waves; W is vector 
of tank pressure forces acting on the vessel and water columns; W is a 
result of variations in air masses t rapped inside the tank, H ' is a constant 
vector which exists because W is expressed in terms of air masses. 

The equation of motion (10.63) is too complicated in its present form to 
solve analytically. Fortunately, and W'( i ) are known since they are 
functions of the inputs, mf{t) and m,{t), and Equat ion (10.63) may be 
solved by using conventional numerical methods. From the control point of 
view, nif and mj- may be functions of the state of the system or they may be 
independently specified. 

In order to obtain a frequency domain solution, it is assumed that during 
active motion suppression, the tank air masses fluctuate harmonically 
about a mean (mo) at the same frequency as the wave and with a known 
controlled amplitude and phase shift with respect to wave elevation at the 
centre of the vessel. The air masses can then be expressed as 

mf(0 = mo + £e*^e'"^ 

m,{t) = mo + Ee'^e*"' 

where Ε is the amphtude of the air mass perturbat ion; and a and b are 
known phase shifts. 

(10.64) 

The time variant stiffness can now be written as 

2 - 1 - Γ e'" + e"' 

Km - trio - 1 1 0 + Ε _g ia 0 

- 1 0 1 0 

(10.65) 

Substituting the above into the equation of motion (10.63) gives 

M ' Z ' + CZ + (K^ + ΟΚπ,ο)Ζ ' + ßKn , t e*"^Z' = (FQ + W t ) e'"' 
(10.66) 

If the air tank system is passive then Kmt and Wt are zero and the equation 
of motion becomes a set of second order linear differential equations with 
constant coefficients. However, if the system is active then the equations 
are complicated by the time variant stiffness term. If the air mass 
perturbation is small, then K ^ t may be assumed to be negligible. The 
equation of motion can then be solved by writing the displacement, Z ' , as 

Z' = X e*"̂  (10.67) 

and substituting into Equation (10.66) with K ^ t taken as zero to yield 

[K¿ + ρ Κ ^ ο - ω^Μ' + iωC'] Χ = Fo + Wt (10.68) 

Χ can now be obtained by using a standard complex matrix inversion 
technique. 
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Although this simplified analysis is concerned with excitation of the 
system by a sinusoidal disturbing force, it is indicative of the way 
pneumatic compliance may be used to counteract a general exciting force 
or moment and thus suppress excessive vessel motions. 

10.6.1,2 Time domain simulation 
The general equation of motion of a floating vessel with attached open 
bot tom air tanks is 

M Z + C Z + KcZ + Kp(OZ = F (0 + W ( 0 - Η (10.69) 

where Μ is the mass matrix; C is the equivalent linear damping matrix; Κ is 
the stiffness matrix which incorporate both hydrodynamic and mooring 
stiffnesses; Kp is the time variant pneumatic stiffness matrix; F(t) is the 
general disturbing or exciting wave forces vector; W( i ) is the force vector 
exerted on the vessel due to air pressures inside the tank; Η is a constant 
force vector which exists due to the fact that W ( 0 is expressed as a function 
of the air mass inside each tank; Z , Ζ and Ζ are the displacement, velocity 
and acceleration vectors respectively. The displacement vector contains 
the six rigid body degrees of freedom of the vessel surge, sway, heave, roll, 
pitch and yaw and q additional degrees of freedom associated with the 
displacement of the q water column contained within the air tanks. 

The equation of motion (10.69) can be then re-expressed as 

Ζ = M-^[¥{t) + W ( 0 - Η - C Z - KeZ - Kp(OZ] 

= fit, Z , Z ) (10.70) 

and integrated numerically using a fourth order Runge-Kut ta -Nys t röm 
method (Kreyszig, 1979). This involves a Taylor 's series expansion where 
fifth and higher order terms are neglected. The terms W ( 0 and Kp(/) are 
functions of the tank air masses which are related to the system state or 
external parameters via a chosen control strategy. The above procedure 
needs to be implemented in a computer program to aUow simulation 
studies to be performed. 

Apar t from the six rigid body degrees of freedom of the vessel and q 
water column displacements there are another q variables which describe 
the system. These are associated with the mass of air (m,) t rapped in the ith 
air tank, which has two effects on the system. The first is that it influences 
the pneumatic stiffness matrix Kp found in Equat ion (10.69). In general Kp 
is given by 
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(10.71) 

where JC/ and yi are the horizontal co-ordinates of the centre of each air 
tank. The degrees of freedom are the six rigid body freedoms of surge, 
sway, heave, roll, pitch and yaw followed by water level displacement in q 
open bottom tanks. The constant ki is given by 

ki = 
tiRTnii 

(10.72) 

which is the linearized stiffness coefficient expressed in terms of the tank's 
trapped air mass m/ and the air height Λ/. The trapped air also exerts a 
vertical force on the vessel due to the varying pressures associated with the 
changing air masses. This is represented by the vector W(i) in Equat ion 
(10.70). In terms of individual air masses, W(i) is given by 

q q q 

W ( 0 ^ = RT 0 
o Σ τ Σ y ' J , Σ " J , \ τ , t 

(10.73) 

and consequently the constant vector, H, is given by 

T T "J 

0 0 2 PqAí 2 yiP^^i 2 -^ '^ο^' ^ -Po^i -pq\ 
i=\ / = 1 ; = 1 

(10.74) 

where Ai is the cross-sectional area of the /th air tank. When the mass of air 
in each tank is constant then W equals the constant vector, H, and the 
pneumatic stiffness, Kp, is also constant. 

Experimental investigation of active control 
Tests were performed on the model of the type shown in Figure 10.1 in a 
wave tank. The equipment used consisted of a microcomputer with an 
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Figure 10.29. Schematic diagram of experimental layout. Lines represent electrical signal 
paths unless otherwise indicated. Key: a - D E C LSI 11/03 microcomputer; b - camera 
system; c - real time clock; d - displacement; e - model; f - air flow; g - reservoir for 
scaling purposes; h - positional servo unit; i - pressure transducer; j - high pressure reser­
voir; k - compressor; 1 - low pressure reservoir; m - air flow; η - valve 

analogue to digital convertor, a digital to analogue converter and a real 
time programmable clock. This equipment was used to log heave motion of 
the model , the air pressure inside the tanks and to control the valve 
position. This experimental set up is illustrated schematically in Figure 
10.29. Air pressures inside the tanks were measured using a pressure 
transducer. The heave motion of the model was measured by a light source 
at the centre of the model and a camera system which gave a voltage 
proportional to the vertical position of the light source. The high and low 
pressure air reservoirs were supplied by a rotary compressor. 

The scaling rules used for the tests are identical to those described in 
Section 10.2. The passive air volumes were modelled to ensure correct 
scaling of resultant air stiffnesses using Froude number similarity, despite 
the fact that the ambient pressure at model scale was one atmosphere. 
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Such scahng was achieved by using large air reservoirs attached to the tank 
air volumes on the test model - the total model scale t rapped air volume 
being larger by a multiple of the scale factor. Thus the pressure variations 
used to achieve active control were scaled correctly. However , the 
individual components and their mechanical propert ies, the valve and its 
response t ime, for example, were not scaled because of the difficulty of 
such a task. 

A valve had to be specifically designed for these tests. It consisted of a 
rotating, electrically driven spindle mounted in a cyhndrical housing with 
air inlets and outlets on its circumference. The valve spindle was installed 
with diametrical passages with a shape designed to proportionally increase 
the flow area as a function of spindle angle of rotation. The valve permits 
connection of the model vessel's air tanks to the low pressure, or high 
pressure reservoirs, or to seal the tanks when in its centre position. 

10.6.1.3 Control algorithm 
Ultimately, the object of introducing pneumatic compliance is to reduce 
vertical motion of the vessel by controlhng the mass of air in each tank. 
This is done in effect by controUing the mass flow rate (m,) associated with 
each tank. In general, will be a function of the state of the system, the 
rate of change of the state of the system and a function of parameters 
external to the system. Thus 

= / ( X s , Xs, E) (10.75) 

where Xs is the state vector; and Ε is a vector of external parameters . The 
state vector contains 

Xj = [Z^, (10.76) 

where Ζ is the displacement vector; Ζ is the velocity vector; and m is the 
vector containing the masses of air t rapped in each tank. If the control is 
hnear , then Equation (10.75) has the form 

= pT X s ( 0 + q7 X s ( 0 + r7 E(r) (10.77) 

where p/, q¿ and η are constant vectors associated with the rth tank. It is 
evident that the number of different feasible permutat ions of p/, q¿ and r, 
are large. However , by considering the nature of the disturbing force, a 
suitable control strategy can be derived. 

The general featues of a control algorithm for the model tests are 
described earlier. In practice, difficulties often arise in the implementation 
because of insufficient information on the state of the system and a 
shortage of available energy which is needed to achieve the controller 's 
demands. These points are best illustrated by using these experiments as an 
example. Here only the heave displacement is measured. Thus any control 
algorithm requiring the velocity or acceleration is demanding information 
that is not directly available. This information would then have to be 
obtained indirectly using approximate methods. In addition, the amount of 
energy available is limited to the compressor and reservoir capacity. 

In the experiments, ' the mass of air in the air tanks was not directly 
controllable. However, by controUing the air flow between the low and 
high pressure reservoirs and the air tank the mass of air t rapped inside the 
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where sign {k^z) = sign (β) . This control strategy ensures that the valve is 
either closed, half-open or fully open depending on the range in which k^^ 
falls. In the experiments, large valves of k^ were used so that the valve 
tended to t ; either closed or fully open over a large part of the wave cycle. 

10,6,1.4 Frequency domain results 
The heave motion of a semisubmersible tends to be the limiting criterion in 
determining whether the vessel can continue to operate . For ocean wave 
periods of between 4 andf 9 s, the semisubmersible has sufficiently low 
response so that heave motion does not impose an operational limit. Heave 
motions become greater in wave periods from 9 to 15 s, making it worth 
while to consider implementing active control to reduce motions in this 
period range and thereby reduce vessel down-time. 

The heave response of the idealized four columns semisubmersible 
(Table 10.6) was investigated using the simphfied frequency domain 
analysis. Figure 10.30 shows the heave response of the vessel with and 
without motion suppression tanks in waves of 2 m height. The results show 
that there is a significant reduction in heave response due to the passive 
tanks for wave periods less than 19 s. The question is whether these 
reductions can be enhanced further by actively controlling the mass of air 
in each tank. The simplified frequency domain analysis allows the mass of 
air in each tank to vary sinusoidally by an amount , £ , about a mean air 
mass (mo). These air mass variations are related to wave elevation at the 
centre of the semisubmersible by phase shifts a and b (see Equation 10.64). 

tank could be controlled by valve position. Thus these experiments utilized 
the control strategy that 

β = k^z (10.78) 

where β is the valve position; ζ is the heave displacement of the vessel; and 
/Cg is the experimental constant of proportionality. The controller was set 
so that when the vessel displaced downwards the low pressure model port 
opened. 

Equation (10.78) reflects the desired control strategy but this had to be 
adjusted for the experiments in order to allow for the time response of the 
valve. Thus, the following control strategy was utilized: 

If 
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Figure 10.30. Ideal active control of a four column semisubmersible in head seas of 2 m 
wave height. Key: a - 10% control, Phase = 180**; b - 10% control, Phase = 135"; c - no 
air tanks; d - 10% control. Phase = 90**; e - passive air tanks; f - 10% control, phase = 45"; 
g - 10% control, phase = 0** 

Figure 10.30 presents results from the simplified frequency domain 
analysis for active control of air masses in the open bot tom tanks. The 
vessel is subjected to waves of 2 m height and the controlhng air mass 
perturbation is set at 10% of the mean air mass with the perturbation phase 
angles, a and b, set to be equal. This strategy is subsequently referred to as 
10% control. 

The air mass phases vary from 0 to 180°. Further reductions in heave 
motions are obtained for phases of less than 90°. The largest reductions are 
obtained for zero phase when the air masses exert a force on the vessel 
which is out of phase with the wave exciting inertia force. Active control 
has no effect if the phase is 90° and the system effectively behaves as if it is 
passive. However Figure 10.32 shows that if the phase is greater than 90°, 
the tanks contribute to the wave exciting forces rather than opposing them, 
thus increasing the total force and hence motions. These results demons­
trate that the phase of the control signal is critical to the performance of 
active control. Lags of up to 90° are permissible with some benefit. 
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However, increasing log does reduce overall performance. In practice 
there will always be some lag between the desired and achieved mass flow 
rates. 

Figure 10.31 shows that increasing the amount of control with zero phase 
reduces the heave response considerably. This is due to the fact that 
increasing the amount of control increases the tank force and hence 
reduces net vertical force. However, as wave height increases, wave forces 
increase in magnitude whereas tank forces generated by active control 
remain constant for a given amount of control. Therefore, as wave height 
increases, the amount of reduction in heave response will reduce. 

The simplified frequency domain analysis has shown that heave motion 
reductions are possible with active control for wave periods of between 10 
and 15 s, provided that the air mass is varied in phase with wave elevation 
at the centre of the vessel. For wave periods of interest, the heave response 
is effectively in phase with wave elevation. Thus the simplified frequency 
domain analysis has identified the control strategy where the mass of air 
(m) trapped in the tanks must be proportional to the vessel's heave 
displacement (z) to yield 

m = kz (10.80) 

Period ( s e c o n d s ) 

Figure 10.31. Ideal active control of a four column semisubmersible in head seas of 2 m 
wave height. Key: a - no air tanks; b - passive air tanks; c - 10% control, zero phase; 
d - 20% control, zero phase; e - 30% control, zero phase 
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The constant of proportionality (k) is taken to be the control constant. 
Since the mass of t rapped air is related to the force exerted by the air on 
the vessel, the basis of operation of this control strategy is clear. Since 
semisubmersible wave exciting heave forces are out of phase with wave 
elevation at typical wave frequencies, the tanks are further reducing 
motions by generating forces which oppose wave exciting forces. Thus for 
wave frequencies where inertia forces dominate , the control strategy is 
given by Equation (10.80). 

In practice, it is easier to control the mass flow rate and so the control 
strategy suggested by (10.80) becomes 

m = k— (10.81) 
dt 

that is, the mass flow rate in and out of the tanks is proportional to the 
vessel's heave velocity. 

10,6.1.5 Time domain simulation results 
The results presented so far have been calculated by the simplified 
frequency domain analysis. The time domain analysis has been used to 
investigate the control strategy suggested by the simplified frequency 
domain analysis where the mass flow rate into each open bot tom tank is 
proportional to the vessel's heave velocity. Figure 10.32 shows the effect 
that the constant of proportionality, k, has on heave response in regular 
waves. The control constant was increased from 0 kg/m (the passive 
system) to 75 kg/m. Increasing the control constant increases the amount 
of heave motion reduction and correspondingly increases the desired mass 
flow rates. The larger reductions occur with increasing wave periods. This 
is because the wave exciting force per unit wave amplitude tends to 
decrease with wave period for waves between 10 and 20 s. Hence the net 
resultant force reduces with increasing wave period. When the control 
constant is negative, the motions deteriorate as the pressures inside the 
cans no longer generate forces which oppose the wave exciting forces. 
These results suggest that for any given wave frequency, the amount of 
heave reduction is approximately proportional to the control constant and 
hence to the maximum flow rates. This is iUustrated in Figure 10.35 where 
the normalized heave response and the maximum air mass flow rates have 
been plotted against the control constant for a wave of 14 s period and 
10 m height. These results suggest that , provided the mass flow rates are 
achievable, then it would be possible to reduce the heave response to very 
small magnitudes if so required. 

Figure 10.33 shows that for a 10% reduction in heave at 14 s, a 
maximum mass flow rate per tank of approximately 30 kg/s is required. 
Fur thermore , this flow rate has to vary sinusoidally with a period of 14 s. 
These numbers are typical of the requirements of active control and, 
therefore, raise questions regarding the practicality of utilizing active 
control for reduction of heave motions. The flow rates are large, which 
would imply large air reservoirs and compressors together with large 
ducting. The control valves would need to have exceptionally fast response 
times. Any buUd-up of air in the tanks has to be avoided. All these 
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Figure 10.32. A comparison of the heave response of a four column semisubmersible with 
active control in head seas of 10 m wave height. Key: a - 0 kg/m; b - 25 kg/m; c - 50 kg/m; 
d - 75 kg/m; e - - 2 5 kg/m; f - - 5 0 kg/m 

requirements need pneumatic components with high performance specifi­
cations. Real components would introduce phase lags into the system 
which would be detrimental to the performance of the system. 

Figure 10.34 shows the calculated and measured heave response of the 
eight column semisubmersible (Figure 10.1 and Table 10.6(c)) without 
tanks and with passive tanks. It can be seen that the introduction of the 
passive tanks reduces the heave of the vessel considerably for wave periods 
between 10 and 15 s. Figure 10.36 also shows the experimental results of 
the vessel without tanks and with passive tanks in beam seas. There is 
reasonable agreement between experiment and theory. The predicted 
heave response of the vessel with active control together with measured 
data in beam seas of 1.9 m and 6 m wave heights are also presented in 
Figure 10.36. Some reduction in the heave motions of the vessel can be 
seen for waves between 10 and 14 s period. It is in this wave period range 
that the heave response is out of phase with the dominant wave forces and 
therefore this is the optimum region for active control. However, it is in 
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Figure 10.33. Normalized heave response and air mass flow rates due to ideal control 
(wave period = 14 s; wave height = 10 m (head seas)) 

this wave period range that forces are a maximum. Therefore, large flow 
rates, and hence large tanks, are required for any significant heave 
reductions. 

As the wave period increases further, the wave forces reduce and active 
control becomes more effective. This is evidenced by the large reductions 
in motions due to active control in the longer wave periods. There is good 
agreement between the predicted active system performance and the 
experimental active system in waves of 1.9 m height. This is because the 
demanded flow rates, and hence masses of air, are proportional to wave 
height. At lower wave heights, the demanded air masses generated by the 
controller in the experiment are within the capability of pneumatic 
equipment. However, in the 6 m high waves the experimental pneumatic 
equipment does not have the capcacity to achieve the demanded air 
masses. Hence there is little reduction in the heave response. 

The work presented in this section shows that , unlike passive use of the 
air tanks, active control involves changing the amount of t rapped air inside 
the tanks within a wave cycle. However, the active system is inherently 
more complex, although the above work demonstrates both theoretically 
and experimentally that it is possible to actively control a semisubmer-
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W a v e Period ( s e c o n d s ) 

Figure 10.34. Heave response of an eight column semisubmersible in beam seas. Active 
control constant = 60 kg/m. Key: a - experimental - active air tanks, 1.9 m wave height; 
b - theory - unmodified vessel, 6 m wave height; c - theory - passive air tanks, 6 m wave 
height; d - theory - active air tanks, 6 m wave height; e - experimental - passive air 
tanks, 1.9 m wave height; f - experimental - passive air tanks, 6 m wave height; 
g - experimental - active air tanks, 1.9 m wave height; h - experimental - active air tanks, 
6 m wave height 

sible's heave motions using pneumatic comphances in the form of trapped 
air in open bottom tanks. The amount of heave reduction depends on the 
size and efficiency of the pneumatic equipment. For significant heave 
motion reductions in high waves, large pneumatic equipment is required. 
The installation of such equipment would be at the expense of available 
payload. This is unlikely to be acceptable to the vessel operator since the 
payload capability of a semisubmersible is already a limiting criterion in its 
utilisation. 

Nevertheless, this work illustrates the characteristics of actively con­
trolled pneumatic compliances and points the way towards the use of such 
active control for compensating out-of-balance operating forces on an 
offshore work vessel. Such an application is described in the next section. 
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10.6.2 Crane compensation 

The construction and instahation phases of most offshore facihties require 
the use of a crane vessel - usually to place pre-fabricated topside modules 
on to a supporting jacket structure. There are two main classes of crane 
vessel in current use. These are the large displacement semisubmersible 
and the monohull barge. There are operational advantages associated with 
both types of vessel. The semisubmersible has inherently low wave induced 
motion characteristics and large clear deck areas. The monohull vessel 
offers improved manoeuvrability and a relatively high transit speed. It is 
also capable of operating in shallow waters because of its low draught. This 
enables the monohull vessel to collect its load from a sheltered inshore site 
and transport it to more exposed offshore location, thus disposing of the 
need for a transportation barge. Further details of crane vessels and their 
coupled dynamics with the crane load hook are given in Chapter 7. 

The lifting and repositioning of a crane load induces large disturbing 
forces and moments which need to be compensated for so that the vessel's 
mean attitude in heel or trim remains close to level. This is normally 
achieved by either ballast transfer or by the use of free flooding/gravity 
discharge tanks. The disadvantage of ballast transfer is that it is slow due to 
the limited capacity of pumps. Free flooding/gravity discharge tanks are 
faster but suffer from poor controllability and therefore considerable care 
has to be exercised in their use. An alternative is to use a pneumatic 
system. This has an inherently fast response t ime, is easily controlled and 
has a relatively small plant size. 

This section describes the design, analysis and performance of a pneu­
matic crane compensation system developed by the authors and installed 
on the monohull crane vessel DB50 (formerly Challenger). The vessel was 
constructed by North East Shipbuilders Ltd and is now operated by 
McDermott Inc. A comprehensive description of the vessel's features is 
given in The Motorship and Figure 7.1 gives a perspective view. 

The pneumatic system, based on open bot tom tanks, was analysed and 
designed using the mathematical methods described earher . The most 
important tool in the design procedure was a real time numerical simula­
tion which allowed an assessment of individual system components and 
then the system overall performance. This simulation is described further 
in this section. 

The pneumatic crane compensation system consists of a set of open 
bottom tanks. Each tank has an inlet and vent butterfly valves which 
connect the internal t rapped air mass to a pneumatic supply and atmos­
phere respectively. Figure 10.35 shows a schematic view of the open 
bottom tank. 

These tanks are also used as passive roll suppression devices as described 
in Section 10.5. This dual role of the pneumatic crane compensation system 
as a motion suppression device is important since it overcomes one of the 
main disadvantages of monohull crane vessels - excessive roll motions in 
moderate sea states. 

At the core of the pneumatic crane compensation system is the active 
operation of the open bottom tanks which involves controlling the mass of 
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Table 10.7 Monohull crane vessel DB50 data 

Displacement 
Length overall 
Beam overall 
Depth, keel to deck 
Draught 
Radius of gyration in roll 
Radius of gyration in pitch 
Longitudinal centre of gravity from stern 
Vertical centre of gravity from keel 
Longitudinal metacentric height (no MST in use) 
Transverse metacentric height (no MST in use) 
Number of centrifugal blowers 
Air height 
Small MST cross-sectional area 
Large MST cross-sectional area 
MST centre to vessel longitudinal centreline 
Heave added mass 
Roll added inertia 
Pitch added inertia 
Small MST water column added mass 
Large MST water column added mass 
Heave damping 
Roll damping 
Pitch damping 
Small MST water column damping 
Large MST water column damping 

34 424 t 
151.5 m 
46.0 m 
12.5 m 
8.5 m 

11 m 
48 m 
67.81 m 

9.96 m 
244.9 m 

15.5 m 
3 
2 m 

118 m-
165 m-

16.4 m 
88 500 t 

3 530 (K)0 tm-
136 000 (K)0 tm-

576 t 
937 t 

23 100 kNs/m 
95 100 kNms 

12 600 000 kNms 
18 kNs/m 
34 kNs/m 

Note: 
M S T = m o t i o n suppress ion tank. 
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Figure 10.35. Motion suppression tanks 



Active control of trapped air volumes 343 

Figure 10.36. General arrangement of crane vessel DB50 

air t rapped in each tank. This is achieved by regulating the air mass flow 
rate into the tank using the inlet and vent valves. The changing air masses 
and consequent pressure variations exert a heave force as well as pitch and 
roll moments on the vessel. By actively controlling the t rapped air masses 
inside the open bot tom tanks, the generated pneumatic forces are used to 
counteract any disturbing forces and moments , thus reducing the vessel's 
heave, pitch and roll motions. 

Large disturbing moments associated with load movements such as crane 
slewing induce large angles of heel and trim if they are not reacted by 
ballast redistribution or by the vessel's hydrostatic stiffness. The introduc­
tion of an active pneumatic system provides an additional mechanism for 
the compensation of disturbing moments by pumping air in and out of open 
bot tom tanks. Monohull crane vessels have sufficient heave and pitch 
hydrostatic stiffness in order to cope with a typical lift. Their roll 
hydrostatic stiffness, however, is inadequate for reacting the roll moment 
induced by the crane load. Thus , these vessels require some other means to 
reduce the induced roll angle. 

Consider the monohull crane vessel DB50 whose profile and general 
arrangement is shown in Figure 10.36. The dimensions of the vessel are 
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Figure 10.37. Monohull crane vessel pneu-

MST = MOTION SU PRESSION TANK matic crane compensation system layout 

given in Table 10.7. The vessel has open bottom tanks which run along its 
port and starboard mid-section. Hydraulic shell doors are located at the 
bottom of the motion suppression tanks which are opened when the tanks 
are in use. A schematic view of the pneumatic crane compensation system 
installed on the DB50 is given in Figure 10.37. The main components of the 
system, apart from the open bottom tanks, are the control valves, the 
pneumatic supply unit and the control panel. 

The pneumatic supply unit consists of three identical SGR55 centrifugal 
blowers manufactured by The Bryan Donkin Company Ltd. Each blower 
is capable of delivering up to 32 500 m^ of free air per hour at a pressure of 
L 8 bar absolute. The blowers are installed with automatic inlet guide vane 
control systems and anti-surge units. The inlet guide vane control systems 
maintain a variable delivery at a constant preset pressure. However, the 
guide vanes are only able to operate successfully down to a fraction of the 
maximum flow rate. If the flow rate drawn is less than this minimum 
controllable value, the automatic anti-surge system opens a relief value 
which vents the excess air to atmosphere. Thus, the anit-surge units 
prevent the blowers from operating with volume flow rates below the 
critical surge volume flow rate. This is important because a surging 
compressor results in violent oscillations in the power input, pressure 
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Figure 10.38. Centrifugal blower pressure-flow curves. Key: a - blower operating line; 
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where is the mass flow rate through the valve; Δ/7 is the pressure drop 
across the valve in kN/m^; p2 is the downstream pressure in kN/m^; is 
the valve lift and is a non-hnear function of valve position, Θ. This is 
illustrated in Figure 10.39 which shows against θ for a 400 mm diameter 
butterfly valve. The choice of valve diameter was based on the large flow 
rates expected with the operation of the pneumatic crane compensation 
system. All pipework uses a minimum diameter of 400 mm. Typical valve 
response times are 10.4 s (8.65°) to open and 5.5 s (16.47s) to close. This 
disparity in response time is due to a spring mechanism which automa-

difference and volume flow, which can damage both the blower and the 
rest of the pneumatic crane compensation system. When the demanded 
flow rate increases again, the above systems bring the blower on line and 
control the delivery. Non-return valves on the blower outlets prevent air 
from being blown back from a running machine to a stationary one. A 
typical blower operating curve is shown in Figure 10.38 for an inlet 
temperature of 15 °C. Note that the operating curve is a function of inlet 
temperature . 

The air flow into and out of each motion suppression tank is controlled 
by 400 mm (16 inch) diameter butterfly valves. Each valve is operated by a 
pneumatic double acting spring return actuator (spring to close) with valve 
position controlled by a electro pneumatic positioner. The flow rate 
through a butterfly valve is a non-linear function of the pressure drop 
across the valve and valve position. This function is characterized by the 
empirical formula 

m, = 9.698 X 10"^ x L,{d) V{p2^p) t/s (10.82) 
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Figure 10.39. 400 mm diameter butterfly valve flow characteristics 

tically closes the valve if there is a loss of pneumatic supply or control 
signal to the actuator. 

At the core of the pneumatic crane compensation system is the con­
troller, which is supplied with information signals giving crane induced 
forces and moments , vessel attitude and inclination in heel and trim, valve 
positions and motion suppression tank water levels and internal pressures. 
The controller generates valve position control signals for all the motion 
suppression tanks based on the net vertical force and pitch and roll 
moments acting on the vessel. 

In the case of DB50, the controller is a human operator with a control 
panel. The control panel displays all the above information. However, 
since only the crane induced roll moment needs to be counteracted on the 
DB50, the principles of operation are simpler, thus making manual control 
feasible. 

For manual control, the operator sees two strip recorder levels on the 
control panel. One strip recorder level represents the crane roll moment 
and the second gives the pneumatic roll moment generated by the motion 
suppression tank internal pressures. The strip recorder levels are calibrated 
so that when they are level the two roll moments cancel. The operator 
adjusts the pneumatic roll moment by controlling the motion suppression 
tanks ' inlet and vent valve positions using throttles located on the control 
panel. The throttles are potentiometer devices whose analogue output 
signals are valve position control signals. 

The use of the pneumatic crane moment compensation system on the 
DB50 is best illustrated by the following example. As the crane boom slews 
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from the vessel's longitudinal centre line to port , the controller opens the 
inlet valves to the port motion suppression tanks. Air flows into the port 
tanks which increases the tank pressures. The operator maintains the 
vessel on an even keel by adjustment of the relative position of the port 
tank's inlet and vent valves. Once the crane boom is directly pointed to 
port, the crane induced roll moment and motion suppression tank pres­
sures have reached their maximum values. As the crane boom slews back 
to the vessel's longitudinal centre line, the crane induced roll moment 
reduces and hence air is vented from the port motion suppression tanks. 

The number of tanks in operation is dictated by the maximum crane roll 
moment and the vessel's draught. The latter governs the maximum motion 
suppression tank internal pressure which is set to be such that the internal 
water level is approximately 1 m above the keel. For example, the 
maximum internal tank pressure is 0.75 bar gauge for a vessel draught of 
8.5 m. Increasing this pressure further will eventually lead to air venting 
from the bottom of the tanks. 

At an operating draught of 8.5 m, the pneumatic crane compensation 
system installed on the DB50 can counteract a maximum crane roll 
moment of 65 412 tfm by only using the tanks along one side of the vessel. 
Maximum crane roll moments in the range of 65 412 tfm to 130 825 tfm 
are compensated for by pre-charging the motion suppression tanks on the 
opposite side of the load swivel and using water ballast to maintain the 
vessel on an even keel. 

An important consideration for any design is the degree of redundancy 
and the consequences of failure. The pneumatic crane compensation 
system has a high degree of redundancy and numerous fail-safe features. 

10,6.2.1 Real time system simulation 
The equation of motion of the vessel (Equation 10.63) together with the 
control system (Equation (10.75)) was integrated numerically in the time 
domain. FQC'^^ is replaced by a discrete time history and W(i ) and Km(0 are 
functions of the motion suppression tank air masses which are related to 
the system state or external parameters via the chosen control strategy. 
The simulation also includes empirical models of real components of the 
pneumatic system such as the centrifugal blowers and valves. This simula­
tion proved to be of considerable value during the design process of the 
pneumatic crane compensation system since it allowed an assessment of 
system performance. 

The simulation has one special feature. It has the facility to run in real 
time at a frequency of 2 Hz and to accept analogue input signals which are 
transformed to digital signals via an analogue to digital convertor. A spare 
set of valve throttles from the control panel used on the DB50, together 
with a video display replicating the actual control panel formed part of the 
simulator. This allowed human operator control to be simulated and thus 
permitted assessment of a human controller 's performance. 

Results from the simulator which illustrate the main performance 
characteristics of the system are presented in the next section. It is useful, 
however, to compare manual control with a controller which utilizes a 
similar control strategy. For the purposes of simplification, active control is 
restricted to either port or starboard slewing lifts. The port lift controller is 
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Position Time (s) Roll moment (kNm) Pitch moment (kNm) 

1 0 0 0 
2 10 0 0 
3 110 - 3 2 3 062 - 8 6 564 
4 210 - 5 5 9 560 - 3 2 3 062 
5 310 - 6 4 6 124 - 6 4 6 124 
6 410 - 5 5 9 560 - 9 6 9 186 
7 510 - 3 2 3 062 - 1 205 684 
8 610 0 - 1 292 248 
9 710 0 - 1 292 248 

described below. The sign convention used is one where positive roll angle 
and moment makes the vessel's port side rise and the starboard side fall. 
The active controller obtains the crane roll moment and the pneumatic roll 
moment . The former is calculated from sensors giving the crane's position 
and line tension. The pneumatic roll moment is calculated from the tank 
pressures. An out of balance or error roll moment is calculated by 
summing the crane roll moment and the pneumatic roll moment . If the 
error roll moment is negative then port inlet valves are opened and port 
vent valves are closed. If the error roll moment is positive then port vent 
valves are opened and port inlet valves are closed. 

The above control strategy operates between the two extremes of valves 
open or valves closed. It relies on the slow response time of the valves 
(which is of order 10 s) to alleviate excessive valve actuation. This may be 
further alleviated by incorporating a deadband of width e into the 
controller. If the error poll moment (V) falls in the deadband then the 
desired valve positions are not adjusted. This control procedure is outlined 
below: 

If V < - e / 2 Open port inlet valves, close port vent valves 

If V > dl Close port inlet valves, open port vent valves 

If - e / 2 <̂  V <̂  e/2 Continue (10.83) 

The choice of deadband must not be large enough to generate large vessel 
roll angles. In this case, a relatively small deadband of 200 kNm was used. 

10.6,2,2 System performance and results 
Results from the simulation are presented here for a lift where the crane 
slews 180° to port. The load starts above the vessel's deck and finishes over 
the vessel's stern. This operation is carried out in a period of ten minutes 
with a hook load of 2500 t. The roll moment induced by the 2500 t load 
together with the slew rate of 180° in 10 min represents the maximum 
capacity of the pneumatic crane compensation system. Table 10.8 gives the 
crane moment time history for the 2500 t lift. Intermediate moment values 
were obtained by linear interpolation. This time history approximates a 
constant slew rate of 18°/min. The roll moment reaches a maximum and 
then falls. Note that the pitch moment steadily increases. 

Table 10.8 2500 t port slewing lift moment time history 
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The requirement for maintaining the vessel on an even keel is due to 
operational limits of the crane. The maximum inclination the crane can 
sustain is 3° for loads less that 3000 t. This reduces to 1.5° for heavier loads. 
These operational limits are typical of heavy lift cranes. Without the 
pneumatic crane compensation system, the maximum roll angle is just over 
4.8° with a pitch angle of 0.43° for the 2500 t slewing lift. This inchnation is 
well beyond the crane's operational limits and therefore demonstrates the 
need to compensate for the crane roll moment . The pitch angle steadily 
increases to a maximum of 0.86°. 

Figure 10.40(a) presents the roll time history for the 2500 t lift with 
active control. It can be seen that the active controller has kept the roll 
angle to less than 0.2°. Transients are observed in the roU response which 
illustrates the effects of rapid changes in the slew rate. Another interesting 
feature is that between 150 and 300 s, the pneumatic crane moment 
compensation system is operating at its maximum capacity. Between 150 
and 210 s the crane induced roll moment increases at a rate which exceeds 
the crane compensation system's capacity and the roll angle steadily 
increases. After 210 s the rate of change of crane roll moment slows down 
and the crane compensation system, still operating at maximum capacity, 
catches up. Hence there is a steady reduction in roll angle between 210 and 
300 s. 

Figure 10.40 also shows the achieved inlet and vent valve positions for 
the port bow motion suppression tank during the 2500 t lift. The inlet valve 
position increases until it is fully open at approximately 150 s. It remains 
fully open until 300 s while the system is operating at its maximum 
capacity. The vent valve remains closed during this period. Once the 
maximum crane moment has been reached at 310 s the inlet valve closes 
and remains virtually closed for the rest of the time history. The vent valve 
starts to open once the maximum crane moment has been reached; it opens 
in steps with each step corresponding to a constant ra te of change of crane 
moment . Towards the end of the lift, the vent valve rapidly opens in order 
to return the tank pressure to atmosphere. It can be seen that the slow 
response time of the valves prevents them from oscillating between their 
open and closed positions. 

Figure 10.40 also shows the time history of the net air mass flow rate into 
the port bow motion suppression tank during the 2500 t lift. The air mass 
flow rate is positive as the tank is pressurized until the crane roll moment is 
a maximum. After this point the air mass flow rate is negative as the tank is 
vented. Between 150 and 200 s the air mass flow rate into the tank steadily 
falls as the tank pressure builds up. Steps in the mass flow rate out of the 
tank are observed. These correspond to constant rates of change of crane 
moment . 

The above results have been for the 2500 t lift with active control but 
with no deadband. Results for the same lift but with a deadband of 
200 kNm are not shown here but show that most small variations in valve 
positions are suppressed, especially during the period when the valves are 
virtually closed. 

Figure 10.41 shows the roll time history for the 2500 t lift using manual 
control with one of the authors as the operator . To a certain extent the 
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Figure 10.41. 2500 t lift roll time history manual control 

performance of an operator depends on the individual. However , some 
comparisons can be made with active control. The performance of the 
system with manual control is comparable with the actively controlled 
results for the first 400 s. Manual control is more difficult in regions of 
relatively rapid decreases in crane roll moment . This is mainly due to 
difficulties experienced in trying to control the release of air from a finite 
volume. However , roll angles are still kept to less than 0.6°, which is well 
within operational limits. Table 10.9 hsts the lifts performed by DB50 
during trials. 

Table 10.9 Lifts performed during sea trials of monohull crane vessel DB50 

Load 
(t) 

Hook 
radius 
( m ) 

Max. 
crane 
roll 
moment 
(tm) 

Crane rotation Max. 
roll 
angle 
(deg) 

Max. 
pitch 
angle 
(deg) 

Duration 
(m\n) 

No. of 
blowers 
operating 

550 50 41 111 stern port 
beam —> stern 

stbd beam 
stern 

0.2 0.4 113 2 

858 77 50 337 stern 30° to 
port stern 
^ 30° to stbd 

stern 

< 0.2 0.4 48 2 

2970 40 129 866 stern -> stbd 
beam bow 

stbd beam 

< 1.0 0.9 15+16-f 10 2 
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C h a p t e r 11 

Vertical marine risers 

11.1 Introduction 

The operation of fixed and floating offshore structures requires the use of 
pipe connections between surface facihties and the sea bed. Pipes bridging 
the vertical separation between surface vessel and sea bed are called 
marine risers and are of two fundamental types. Since the 1950s, drilling 
operations from fixed and floating offshore structures has been carried out 
by using jointed steel pipes of between 0.204 m (8 inch) and 0.762 m 
(30 inch) external diameter to act as a conduit for the drill pipe penetrat ing 
the sea bed. Such drilling risers connect the surface platform to the subsea 
well head. Drilling mud at high pressure is t ransported to the drill face 
through the hollow drill pipe and returns to the surface vessel through the 
annulus between the drill pipe and drilhng riser. Marine risers are also used 
to transport oil and gas from production fields for processing up to a 
surface platform and back down for export through a subsea pipeline or a 
tanker loading system. Vertical steel marine risers used for drilling or 
production break down into two categories. Fixed offshore structures tend 
to use risers which are clamped at intervals to structural members of the 
platform along their vertical run up to the surface. On the other hand, 
floating or compliant offshore structures tend to use freely strung risers 
which are only connected at the surface vessel and sea bed. Such risers 
have to be held up with a sufficiently high tension at their top to prevent 
buckling due to self weight of their very slender geometry. They also need 
to have heave compensating slip joints at their top end to take up the 
relative motion between the moving surface vessel and stationary sea bed. 

Vertical steel risers are examples of highly compliant slender structures 
which have to be carefully analysed during design to ensure that the pipes 
have acceptable levels of deformations, stresses and fatigue lives due to 
forces induced by currents, waves and surface vessel motions. The 
presence of internal hydrostatic pressure and external sea water pressure 
has a fundamental effect on the governing equations for these tubular 
structures. Vertical risers are compliant but are themselves operated from 
floating compliant platforms whose operational effectivenss is directly 
related to the structural integrity of their risers. This chapter is concerned 
with presenting an overview of analysis methods and design considerations 
for vertical steel risers. 

353 



354 Vertical marine risers 

11.2 Governing equations 

A vertical marine riser may be regarded as a hollow *beam column' . The 
difference between a column subjected to lateral loading and a marine riser 
is that the riser is subjected to both internal and external hydrostatic 
pressure as well as axial and lateral loadings. 

If the riser is simply considered as a beam column then the governing 
differential equation used for lateral static deflection is 

EI—A-T{y)—,-w— = f (11.1) 
d y H " " ' d / áy 

where EI is the riser bending stiffness; Τ is axial tension in the riser pipe 
wall; w is the weight per unit length of riser and contents; and / is the 
lateral force per unit length. The co-ordinate system used is shown in 
Figure 11.1 with y measured from the bot tom of the riser and positive 
upwards, while χ denotes horizontal riser deflection from a vertical 
through the riser base. 

If, however, the hydrostatic pressure is included in the analysis, a slightly 
different form of Equation (11.1) is arrived at. The force due to the 
hydrostatic external pressure distribution which exists around the riser, 
and also the force due to internal pressure (which is related to well head 
pressure) are resolved into horizontal and vertical force components and 
incorporated into the governing equation for static deflection to give 

EI- - [T{y) + ΛοΡο - ^ i P i ] 
dy2 V^'dyV '^ '^ ' • ^̂ '"̂ ^ '^''^''áy^ 

- ( 7 s ^ - 7 o ^ o + 7 i ^ i ) ^ = / (11-2) 

where the additional terms are the external hydrostatic pressure around 
the riser, Po\ the internal hydrostatic pressure, ρ,\ with being the 

A brief literature survey of analysis methods and design techniques used 
in marine risers is presented first. Morgan (1974-1976) presents an 
interesting description of the historical development of marine riser 
technology and describes all the fundamental features that govern vertical 
steel riser design and selection. Most analysis work on steel risers has been 
carried out to determine lateral motions and corresponding stresses due to 
forces induced by ocean currents, waves and surface vessel motions. 
Gardner and Kotch (1976), Sparks (1979), Patel et al. (1984), Mciver and 
Lunn (1983), McNamara et al. (1986) and Wang (1983) present some 
typical analysis methods. The role of internal and external hydrostatic 
pressure in modifying the governing equations of motions was first 
identified by Young and Fowler (1978). The resultant concept of effective 
tension has now been incorporated generally into design methods for 
vertical steel risers. Vertical steel risers at high water depths are also 
susceptible to axial vibrations. These have been investigated by Sparks et 
al. (1982) and Miller and Young (1985). 
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Top Tens ion 

Figure 11.1. Conventional vertical riser notation 

cross-sectional area of riser bore and wall; Aj, the cross-sectional area of 
riser bore only; A ^ , the cross-sectional area of riser wall; 7i is the specific 
weight of fluid in the riser bore ; 70 is the specific weight of fluid 
surrounding the riser tube (sea water) ; and 7s is the specific weight of riser 
pipe wah material. 

Equation (11.2) will be drived later but is valid for small deflections 
only, that is, for offset angles less than 10** from the vertical, and thus the 
error is applying this equation to a vertical steel riser is usually negligible. 
Some interesting points concerning the effects of pressure on the riser may 
be deduced by further consideration of the second term in Equat ion (11.2). 
The {AoPo - AiPi) term comes from the lateral effect of external and 
internal hydrostatic pressure. Its effect is similar to that of the actual 
tension in the riser wall since this term also multiplies the second derivative 
of displacement, x. The pressure term does not modify the actual riser axial 
tension or the resultant direct stress in the riser wall. For this reason, the 
collection of parameters that multiply the second derivative is sometimes 
called ^effective tension' , T^, given by 

T,= Τ+Α,ρο-Αφ, (11.3) 

The concept of effective tension is a convenient mathematical grouping of 
parameters that have a similar effect. Equat ion (11.3) demonstrates that 
the effect of external hydrostatic pressure is similar to that of a tensile axial 
force, while the internal pressure influences riser behaviour as would a 
compressive force. The term ( 7 s ^ s + 7 i ^ i - 7 o ^ o ) is equivalent to the 
corresponding term w in Equat ion (11.1). 

Now, the differential equation describing the static behaviour of a 
marine riser of arbitrary geometry is derived using the notation of Figure 
11.2 and the element of Figure 11.3. The analysis is restricted to two 
dimensions for simplicity. The static forces acting on the pipe element of 
Figure 11.3 can be listed as follows: 
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Figure 11.2. Notation for a riser of arbitrary geometry 

T+dT 

0 1 X 

Figure 11.3. Riser element 

(a) an axial tension and shear force within the pipe wall material; 
(b) a horizontal force due to the resultant external and internal hydrosta­

tic pressures, called (F^o + F^i); 
(c) a vertical force due to the resultant of external and internal hydrosta­

tic pressures (Fy^ + F^i); 
(d) a drag force due to steady current. The velocity vector is resolved into 

component normal and tangential to the element, with only the 
normal component assumed to exert a distributed force of Ν per unit 
length; 

(e) the weight of the element ( W R ) acting vertically downwards. 

Summing components of force in the y direction for the element in figure 
11.3 yields the equation 
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(Γ + dT) sin(e + αθ) - Γ sine - {V dV) cos(0 + d0) 

+ V cose + {Fyo + Fy^) -W^- Ν cose r de = 0 ( 1 1 . 4 ) 

where W R is the element weight. Similarly, summing forces in the χ 
direction yields 

(Γ + dT) cos(e + de) - Γ cose + (Κ + dVO sin(e + de) 

- V sine -h (f^o + ^xi) + sine r de = 0 ( 1 1 . 5 ) 

These equations can be simplified for small de to 

(Γ cose -h V sine) de + dT sine - dV cose + (Fyo + fyO 

- W R - Ν cose r de = 0 ( 1 1 . 6 ) 

and 

- (Γ sine - V cose) de + d r cose + dV sine 

+ (Fxo + Fxi) + ^ sine r de = 0 ( 1 1 . 7 ) 

Combining these expressions gives 

Γ de - dK + {Fy; + Fy^ - W R ) cose - (F^o + /';ci) sine 

- iVr de = 0 (11.8) 

Continuing with the above analysis requires that the forces on a cyhndrical 
element due to internal and external hydrostatic pressure (F^o, F^j, Fy^, Fy^) 
be defined. This is done using the derivation presented below: 

A hollow cylindrical member submerged in a fluid and containing a fluid 
within itself will experience a force due to the external and internal 
hydrostatic pressures of both fluids acting on the surfaces of the cylinder. 
An element of the cylinder is shown in Figure 1 1 . 4 . The resultant force is 
obtained by finding the force on an arbitrary section of the element 
(shaded portion of Figure 1 1 . 4 ) , and resolving it into components before 
integrating to obtain the total force on the element. Note that only the 
force on the curved walls of the cylinder due to hydrostatic pressure is 
evaluated. The force on the end cross-sections is not considered here since 
the cylinder is taken to be very long and the end cross-section will usually 
terminate to a coupling such that hydrostatic pressure will not act on the 
cylinder cross-sections. Fur thermore , the axes system used in Figure 1 1 . 4 is 
such that the hydrostatic pressure is taken to increase linearly along the 
vertical axis. 

Angle φ is used to describe position on the circumference of the element 
to be analysed. Initially, only external pressure is considered in the 
derivation. Forces due to internal pressure can be readily deduced from 
those due to external pressure by a simple reversal of signs and change of 
diameter. 

As shown in Figure 1 1 . 4 , the length, ds, of any strip on the cylinder 
circumference parallel to its axis is given by 

ds = (r + ^ D c o s φ ) d e ( 1 1 . 9 ) 

where r is the element radius of curvature; D is the diameter of the 
pressure bearing surface; e and φ are defined in Figure 1 1 . 4 . If the 
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Figure 11.4. Pressure integration variables 

hydrostatic pressure on the centre hne of the element at its lower end is p , 
then the pressure, ^t various levels along the bot tom surface is given by 

Pb = Ρ - 2 7 O cose · sinφ 

where y is the weight per unit volume of the fluid medium. Also the 
corresponding pressure at the top of the element is hydrostatic, and 
given by the equation 

Pt= Pb - Ί ' cos0 as (11.10) 

since 

dy 
cose = — 

d5 

The area of section of element described by arc dφ is given by 

dA=¡D ' ds 'άφ (11.11) 

The force which acts on this section of the element is then 

(11.12) 

Substituting the expressions derived for dA, ph, Pt into (11.12) gives 

d F = i (pb + Pb - Ύ dj cose) (̂  D · d5 · dφ) 

d F = (p - I 7 D cose · siπφ - ¡yds sind) ( | D dj dφ) 

d F = ^ (Pb + Pt) dA 

(11.13) 
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(11.14) 

Replacing (11.9) for dy leads to 

dF = {p - \ y D cose · sinφ -\y{r -^\D cosφ) de sine} 

' {\r-^lD cosφ) D · de · dφ 

Expanding the individual terms gives 

dF=[\pDrdQ-lyDr^ sm{dQf] dφ 

+ ρ de + ^ 7 r 2cose de - ^ 7 r sine (de)^] sinφ dφ 

+ 7 cose de - ^ 7 sine (de)2] s i n > dφ (11.15) 

The differential force may be resolved into its three directional compo­
nents - Fx, Fy and F^ along the JC, y and 2 axes respectively. In this case, the 
analysis is restricted to two dimensions and since there is no deformation 
out of the x-y plane, the resultant force in the ζ direction is taken as zero, 
i.e. 

dF,= 

0.0 

- d F sinO 5 ίηφ 

d F cose 

d F , = 

dF„ = 

0 

- d F sinO 8ΐηφ 

d F cos6 8 ίηφ 

(11.16) 

(11.17) 

(11.18) 

(11.19) 
φ=0 

Therefore 

F,= -[\pDr sine de - \ yr^D sin^e (de)^] sinφ dφ 

φ=0 

-[\p sine de + 1 7 D^r sine cose de - ^ 7 sin^e (de)^] 

sin^φdφ s i n > d φ - [¡y cose sine de - 7 sine (de)^] 
^φ=0 ^=0 

This gives the force in the χ direction on a curved element as 

Fx = -[pA + ry A (cose - sine de)] sine de (11.20) 

When the force due to internal pressure is considered, it's form will be the 
same but of opposite sign. Combining the effects of internal and external 
pressure for the most general case gives: 

(^^o + P'xi) = [(ΡιΛι - PoAo) + r(7¡Ai - 7 o ^ o ) 

(cose - sine de)] sine de (11.21) 

where po, p¡ are the external and internal pressures respectively at the level 
of the bottom of the element centre line. 

The vertical force Fy is obtained in a similar way. Before the integration 
is performed, the expression for the force in the vertical direction appears 
as 
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Fy = [\pDrdU-lyDr^ sinO (αθ)^] cosO 8ίηφ αφ 

+ /7 dB -h ^ 7 r cosO dO - ^ 7 r sinO (de)^] cosG 
Λ 271 

X 
^ 0 

8ίη^φ dφ + 7 cosO dO 

r2^ 

- ^ 7 sinO (de)2] cosO 8 ί η ν φ (11.22) 
^ 0 

Thus Equation (11.22) becomes 

Fy = [ρ Λ + ry A (cosO - sinO dO)] cosO dO (11.23) 

As before, the effect of including the internal pressure acting on the 
element can be seen quite easily. The final expression for the vertical force 
on a curved inclined element due to both internal and external pressure is 
given by; 

{Fyo + Fy{) = [{poAo - PiAd + K 7 o ^ o - ίΛ) 

(cosO - IsinO dO)] cosO dO (11-24) 

Substituting the above expressions. Equations (11.21) and (11.24), for the 
resultant horizontal ( f^o -h f^j) and vertical forces, (fyo + Pyi) due to 
internal and external hydrostatic pressure together with equations for the 
element weight and drag force into Equation (11.6) yields 

T'dd-dV- [{p,A, - PoAo) + r ( 7 i ^ i - 7o^o ) (cose 

- sinO de)] cos^e do - cosG - [(ρ,Α, - p^A^) + Γ{^^Α^ 

- 7o>lo)(cosO - sinO dO)] sin^B dB - TV r dB = 0 (11.25) 

and after simplification this becomes 

[T + p^Ao - ρΛι\ dB - di / + {(cosB - sinB dB) (7o^o - Ί\Α) 

- y,A, cosB - ;V} r dB = 0 (11.26) 

with = 7s>ls ^dB where 7s is the weight per unit volume of the pipe 
material and ̂ s is the pipe wall area of cross-section. It is of interest at this 
stage to rewrite Equation (11.26) for a nearly vertical pipe. This can be 
done by using φ as the angle between the pipe element and the vertical 
such that φ = π/2 - B and dφ = - d B . 

Then, Equation (11.26) can be rewritten in terms of φ as 

-[{T -h p^A^ - p i ^ i ] dφ - d y - {(8ΐηφ -1- cosφ dφ) 

( 7 o ^ o - 7 i^ i ) - ysAs sinφ - r dφ = 0 (11.27) 

Now for small φ , the expressions 

djc dφ dh 
cosφ = 1, smφ = - — , r dφ = -dy, — = " T T 

dy dy dy 
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dV^ 

d>' dy^ 
d^ / dh 

the equation becomes 

d^ dh] f /dxV^-^d^x 
dy^ { dy \dy/ dy' 

dx 
- hsA, - ΊοΑο + liAd — = ^ 1 + 

dy 

Β 

dy) 
(11.28) 

D C 

Note that term A in the above equation arises from the lateral effects of 
internal and external pressure and is the source of the concept of effective 
tension outlined earher. Terms Β and C, on the other hand, are due to the 
effects of riser orientation. Now because small deflections are assumed in 
vertical riser analysis, terms Β and C in Equat ion (2.29) may be equated to 
one to give 

EI 
d^x\ 

dy' \ dy 
- ( Γ + p^Ao - PiA,) 

dh dx 
dy^ dy 

= Ν (11.29) 

which is of similar form to Equation (11.2). 

11.3 Methods of analysis 

A typical finite element analysis method used for vertical marine risers is 
described here. There are, however, some special features of such vertical 
marine risers that have to be accounted for in any analysis. These are 
discussed briefly first. 

It is important to distinguish between the tension and non-tension 
contributing riser internal contents. Since the marine riser is a long, slender 
structure with relatively smaU bending stiffness, it needs to be kept in 
tension to prevent buckling collapse. Thus a tension is applied to the riser 
at its top; and it is the weight in air of the riser pipe, associated choke and 
kill lines and the vertical force due to internal and external hydrostatic 
pressure on a non-vertical pipe segment or buoyancy module which cause a 
variation in tension along the riser's length. The weight of the separately 
tensioned drill pipe and the riser fluid contents do not directly affect the 
tension variation. However, the non-tension contributing elements in a 
riser cross-section must be accounted for when computing an effective 
lateral force component (coefficient A in Equat ion (11.28)). 

are substituted into Equation (11.27). After neglecting products of diffe­
rentials, dividing by dy and using the small deflection equation 
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E l e m e n t n u m b e r 
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Figure 11 .5 . Element and global node description for a finite element idealization of a 
vertical riser: (a) riser element nodes; (b) single beam element 

For deep water risers, the top tension requirement to prevent buckhng 
collapse can become excessive. In order to reduce top tension, buoyancy 
modules can be attached along the length of the riser. The distribution of 
buoyancy modules influences the tension variation in the riser thus altering 
its structural response and internal stresses. However , the increase in 
diameter of a riser cross-section due to buoyancy modules also increases 
current and wave forces. This introduces considerable scope for optimizing 
the intensity and distribution of buoyancy modules in deep water applica­
tions. 

11.3.1 Static analysis 

The finite element analysis presented here is based on a governing 
equation of the form given by Equation (11.28) which is restricted for the 
moment to vertical risers by neglecting coefficients Β and C in Equat ion 
(11.28). The descripfion of the analysis is also restricted to two dimensions 
for simplicity. The vertical riser pipe is idealized as an assembly of beam 
elements, as shown in Figure 11.5. Each element possesses six degrees of 
freedom, two translations and one rotation at each end. Consequently, the 
numerical computation is two dimensional with all external forces on the 
riser, including forces due to current and waves, acting in one plane. 
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where t/^ is the horizontal local component of wave particle acceleration; 
and Cm is an applicable added mass coefficient. 

The total stiffness matrix, S^, for each beam element is derived as the 
sum of the standard elastic stiffness matrix, Se, and a geometric stiffness 
matrix, Sg, which is a function of deflected element geometry and axial 
force on the element. Thus 

Sm = Se + Sg ( 1 1 . 3 2 ) 

For an element of length L and an 'effective' axial tension Τ', in 
member axes is given by the sum of 

S e = 

AL'II 

0 

0 

-AL'II 

0 

0 

1 2 

6 L 

0 

- 1 2 

6 L 

4 L 2 

0 

- 6 L 

2 L 2 

symmetric 

AL'll 

0 

0 

1 2 

- 6 L 

( 1 1 . 3 3 ) 

and 

Τ 
S o = — 

« L 

0 

0 6 /5 

0 L / 1 0 2 L V 1 5 

0 0 0 0 

0 - 6 / 5 - L / I O 0 

0 L / 1 0 - ¿ 2 / 3 0 0 

symmetric 

6 / 5 

- L / 1 0 2θΐ\5 

( 1 1 . 3 4 ) 

where A is the area of steel cross-section; Ε is Young's modulus; and / is an 
appropriate second moment of area. The local effective axial tension, Γ , is 

The current loading q per unit length along the riser due to a lateral drag 
force is 

q = \9oCod\U,\ ( 1 1 . 3 0 ) 

where po is the density of sea water, C D is a drag coefficient, d is an 
effective riser external diameter, and is the current velocity. The 
variation of current velocity with depth needs to be known. 

A static analysis can also be used to relate riser deflections and stresses 
to current and wave loadings in a quasi-static manner . For a known regular 
wave height and period, the current velocity, Uc, can be superimposed on 
to the horizontal component of the wave particle velocity, U^, at any 
instant. The quasi-static hydrodynamic loading can then be written as 

q = \Po C^d I f/e + C/wl (f/c + i/w) + ^ Po ^ d \ l + C J 0^ ( 1 1 . 3 1 ) 
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11.3.2 Dynamic analysis 

The differential equation of motion for a system with many degrees of 
freedom and having a mass matrix Μχ can be written as: 

M T D + CD + S D = F (11 .38 ) 

where D is the matrix of nodal displacements; and C and S are the 
structural damping matrix and the overall stiffness matrix respectively; all 
are defined in global riser axes. 

calculated by accounting for the modification due to hydrostatic pressures 
in the surrounding fluid, as described earlier. 

The fixed end action vectors, AmL, are obtained by using an assumed 
shape function, N{x), in conjunction with a total lateral load distribution, 
w{x). This load is due to both the hydrodynamic loading, q, and an 
effective lateral load derived from term D in governing Equation (2.29), 
with dx/dy obtained from an initially assumed undeflected riser configura­
tion. Thus 

A . L = - w{x)N{x)dx ( 11 .35 ) 
Jo 

where χ is the vertical distance from the bot tom ball joint and / is the total 
riser length. The final static member and actions are then obtained 
from: 

An, = An,L + Sn, Dn, (11 .36) 

where is the nodal displacement matrix. These combined end actions 
are applied incrementally in order to account for the changes in term D and 
the non-linear behaviour caused by large deflecfions of the riser pipe. Thus 
Am is divided into a specified number of equal increments, Δ Am, which are 
applied progressively to obtain the incremental displacements, A D , 
through the equation 

AD = AAm (11 .37) 

where D and S are the overall displacement and overall stiffness matrices in 
global co-ordinates. The overall stiffness matrix is re-evaluated after each 
load increment to account for the change in geometry due to large 
deflecfions. 

The static analysis is executed in different ways depending on the type of 
dynamic analysis which is to follow. For frequency-domain dynamic 
analysis, the effects of current are considered in the preceding static 
analysis. However, the non-hnear time-domain method requires that the 
steady current, unsteady wave velocities and riser velocity be summed 
before applying the non-linear square-law drag force. For this reason, the 
static analysis preceding the time-domain dynamic analysis only accounts 
for self weight, buoyancy and pressure forces on the riser and excludes the 
current velocity. The loading due to current is then accounted for in the 
time-domain dynamic analysis. 
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M T A A M T AB 

M T B A M T BB 
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D B 

C A A C A B 

. C B A C B B 

D A 

D B 
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S B A S B B 
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M H AA M H AB " U A ' -L 
B A A B A B 

M H BA M H B B. . Ü B . 

1 
_ B B A B B B _ 

| U A - D A I · ( U A - D A ) 

| U B - D B I · ( U B - D B ) 

" 0 " 

+ 
. F B . 

( 1 1 . 4 1 ) 

Here , F B is a force required to cause the specified surge motion at the 
surface. The dynamic response of the riser structure in terms of the 
remaining degrees of freedom can be obtained solely from the upper set of 
equations from ( 1 1 . 4 1 ) , which do not contain F B -

113,2,1 Element property formulation 
In the formulation of the beam element mass matrix, the lumped mass or 
the consistent mass approach may be used. In the former, the entire mass is 
assumed to be concentrated at nodes where the translational degrees of 
freedom are defined. For such a system, the mass matrix has a diagonal 
form. Off-diagonal terms disappear since the acceleration of any nodal 
point mass would only produce an inertia force at that point. The 
consistent mass formulation, however, makes use of the finite-element 
concept and requires that the mass matrix be computed from the same 
shape functions that are used in deriving the stiffness matrix. Coupling due 
to off-diagonal terms exists, and rotational as well as translational degrees 
of freedom need to be considered. 

In theory, this consistent mass approach can lead to greater accuracy, 
although this improvement is believed to be smah. On the other hand, the 

The external force matrix F due to wave action on the system is obtained 
from a modified form of Morison's equation: 

F = poVil + PoV C^{V - D ) + Β | U - D | (U - D ) (11 .39) 

where V is the vector of elemental volumes; Β is the matrix of hydrodyna­
mic drag coefficients; and U and U are the horizontal components of wave 
particle velocities and accelerations. It is assumed here that the fluid 
induced forces on a structure are given by the linear superposition of a drag 
force and an inertia force. The first two terms of Equat ion (11 .39) signify 
Froude-Krylov and added mass forces, respectively, while the last term 
describes the drag force. 

By substituting Equat ion (11 .39) into (11 .38) and replacing 
[ M + p o C ^ V ] by M T , po(l + Cm)V by M H and re-arranging we get: 

M T D + C D + S D = M H Ú + B | U - D | ( U - D ) ( 1 1 . 4 0 ) 

The above matrix equation cannot be used directly for incorporating the 
boundary condition at the surface vessel which requires that the riser top 
end must follow the surge motion of the surface platform. This known 
horizontal riser nodal translation at the surface (denoted by suffix Β) can 
be separated from all other unknown degrees of freedom (denoted by 
suffix A ) , through the following matrix partifioning: 
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lumped mass formulation is easier to apply because fewer degrees of 
freedom are involved, leading to a simpler definition of element proper­
ties. The lumped mass formulation is chosen for this analysis because the 
advantages of a small improvement in accuracy for the consistent mass 
approach are outweighed by the additional computational effort entailed in 
its implementation. 

It having been noted that off-diagonal terms of M H , Μχ and Β are zero 
for the lumped mass formulation, the following equations are obtained 
from (11.48): 

M T A A D A + C A A D A + S A A D A = M H A A Ú A + B A A I ( U A " D A ) I 

( U A - D A ) - C A B D - S A B D B (11.42) 

At the end of the static analysis, the stiffness matrix of the structure in its 
deformed position is available. In modelling the dynamic response about 
this mean statically deflected shape, the stiffness matrix is assumed to 
remain constant throughout the dynamic analysis. 

In the lumped mass approach, all the rotational degrees of freedom need 
to be substructured out. Since vertical wave forces are not significant for 
the riser system, the verfical translation degrees of freedom can also be 
eliminated. This feature can lead to a substantial reduction in computer 
time and storage in the dynamic analysis. The horizontal degrees of 
freedom having been segregated, the force-deflection equations can be 
written in partitioned for as: 

(11.43) 

where subscripts Η and Ν denote the horizontal and the other group of 
vertical and rotational degrees of freedom respectively. 

From equation (11.43) 

D N = - S Ñ N S N H D H 

S H H S H N D H ' F H ' 

_ S N H 8 Ν Ν _ D N . 0 

(11.44) 

The condensed stiffness matrix suitable for use in the equafions of motion 
is then 

S H H - S H H ~ S H N S N N S N H (11.45) 

The matrix is further partitioned to separate out the top surge degree of 
freedom: 

^ HH 

S A A S A B 

S B A S B B 

(11.46) 

where subscript Β denotes the vessel motion as before. 
The mass matrix for each element is built up by concentrafing half of the 

total mass of mud, pipes and buoyancy material at each end of the element. 
For a fully submerged vertical element, the added mass associated with 
unit horizontal body acceleration is poCmV, where is the added mass 
coefficient. Taking half the added mass to be lumped at each node , the 
added mass submatrix for each element is 
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0 
(11.47) 

This added mass matrix and the real mass matrix are summed together to 
give the total mass matrix Μχ Α Α · 

The manner in which the partially submerged element at the water 
surface is idealized depends on the amount by which the element is wetted 
at the mean sea level. If the wetted length is less than half the element 
length, all the added mass is lumped at the lower node and the element 
submatrix becomes 

0 0 
(11.48) 

where is the total cross-sectional area of the riser element, including 
buoyancy elements when present. Should be greater than half the 
element length L, the added mass associated with the lower half of the 
element is concentrated at the lower node , while the rest of the hydrodyna­
mic effects are taken to act on the top node. The element submatrix for 
such a situation is 

0 

0 p,CMLs-L/2) 
(11.49) 

For the riser structure, this appears to be a simple and logical way to treat 
the element at the water surface in the lumped mass formulation. The 
hydrodynamic mass matrix M H A A , which includes Froude-Krylov forces, 
is built up from element submatrices in a similar manner . The submatrices 
corresponding to Equations (11.48) and (11.49) respectively are 

Po(l + C J ^ x L s 0 

0 0 
(11.50) 

(11.51) 
•po ( l + C^)A,L, 0 

0 Po(l + C J ^ x ( L s - L/2) 

Due to the unit relative horizontal velocity ( Í / - D ) , the horizontal drag 
force on a full submerged element is ( l / 2 ) p o C D L d . The hydrodynamic 
damping submatrix for such an element is 

{\ PoCoLd 0 

0 i PoCoLd 

The corresponding submatrices for a partially immersed element are: 

' \ POCQL^ 0 ' 

(11.52) 

0 0 
, for Ls < L/2 

and 

\ PoCoLd 0 

0 ^ POCD(LS - L/2)dJ 
, for Ls > L/2 

(11.53) 

(11.54) 
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The structural damping matrix may be explicitly defined as 

C = tto M T + a i S (11.55) 

To obtain the coefficients ao and a i , the damping ratios, ζι and ζ2, in any 
two modes need to be specified. An eigen-value analysis is carried out to 
find the natural frequencies corresponding to the two modes chosen. 

For Rayleigh damping: 

(11.56) 

ζ] 
1 

1 
— ωι 
ωι 

Í2 

~ 2 
1 

— ω2 
ω2 

«1 

From Equation (11.55) 

2(ζιω2 - ζ2ωι) 
α ο = 

α ϊ = 

ω2 ωι 

ωι ω2 

2(ζι/ω2 - ζ2/ωι) 

(11.57) 

(11.58) 
ω2 ωι 

ωι ω2 

Α damping ratio of 5% in the first two modes is usually chosen for all the 
analyses carried out in this work. The actual level of structural damping 
that should be specified is rather unclear in current literature. 

11,3.2.2 Solution in the frequency domain 
A linearized form of the equation of motion may be obtained by replacing 
the drag term in Equation (11.42) with a suitable equivalent linear 
damping term which is proportional to the relative velocity (Uw - D A ) . 
For such a linear system 

M T A A Ö A + ( C A A + B e q A A ) Ó A + S A A ^ A 

= M H A A Ú + Beq A A U - C A B D B - S A B D B (11.59) 

Since the current velocity imposed is not sinusoidal, only the wave particle 
velocity and the structure velocity D A can be included in the fluid 
interaction term. The stiffness matrix in the frequency analysis will 
therefore be obtained from the final statically deformed shape caused by 
current and riser internal forces. 

From linear wave theory, the elevation ξ of a single wave train may be 
represented by 

ξ = r cos(Ä:>' - ωή (11.60) 

The corresponding horizontal wave particle velocities and accelerations are 
given by 

cos(jc - / + h)k 

sinhkh 
cos{ky - ωή (11.61) 
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Rewriting Equation (11 .61) in complex form gives 

= Re 
cos(jc ~ I -\- h) 

sinhkh 
(11 .63) 

or 

Re(C/;,) e-'^^ (11 .64) 

where ¿7^ is a complex amplitude. Similarly, 

Uw = R e ( - i ω í / ; , e-'"0 ( 1 1 6 5 ) 

In the steady state, the response of the system represented by Equat ion 
(11 .59) to a sinusoidal wave wiU also be proportional to e"'"^'. Thus 

D A = R e ( D ' A e - ' ) ( 11 .66 ) 

where D A is complex. 
Differentiating Equation (11 .66) and substituting Equations (11 .64) and 

(11 .65) into (11 .59) gives 

[ S A A - M j A A - iω (CAA + Α Α ) ] Ι > Ά = Μ Η Α Α ( - ί ω υ ^ ) + Beq A A U W 

= F ' (11 .67 ) 

where F ' is a complex forcing function; and Beq is an equivalent damping 
matrix described in the following section. 

Since the matrix Beq contains a term in D , available only from the final 
solution, an iterative calculation scheme needs to be derived. Starting from 
a trial solution for the velocities D , Bgq is estimated and the simultaneous 
complex Equations .(11.67) are solved for a new set of displacements and 
velocities D A and D A - These velocities are compared with the original 
values ( D ) and the whole calculation is repeated with a better estimate of 
Beq until the real and imaginary parts of D and D A differ by a small 
specified tolerance. 

In order to proceed with the frequency domain solution the equivalent 
hnear damping needs to be determined. Since 'damping' forces are 
responsible for the dissipation of energy in a vibratory system, the obvious, 
and most common, way of obtaining Bea is to equate the work done by the 
hnearized and the non-linear forces such that 

Beq (U - D ) = Β I (U - D ) I (U - D ) (11 .68) 

For the purpose of illustration, a convenient node where y is assumed to be 
zero is chosen. From Equation ( 1 1 . 6 1 ) , the wave particle velocity is 

U = R cosωí (11 .69 ) 

where 

^ ωΓ cosh/:(jc - I -\- h) 

sinhkh 

(ú'rcos(x - I Λ- h)k 
Uw = —Γ7, - - ωή ( 11 .62 ) 

smhkh 
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Β I Rj cosß I Rj cosß X Q cos(ß -h Ψ - φ) dß 

Β I Rj cosß I Rj cosß Q cos(ß -h y) dß 
-ψ 

= lQBR\cosy (11.73) 

by splitting up the limits of integration to account for the modulus sign, and 
assuming that 7 = (Ψ - φ) is time independent . The work done by an 
equivalent hnearized damping force ßeq( i^ ~ D) over a wave cycle is 
readily obtained from 

ßeq Rj cos(ωr - Ψ) Q cos(ωí - Φ) d(ωí) 

= 7T ρ 5 e q Ä T C O S7 (11.74) 

Finally, equating the work done by the two damping terms gives 

Seq -^^BRj 

Hence, the damping coefficient can be used in Equat ion (11.67): 

Beq = ^ B | ( U - D ) „ , a x l (11-75) 

To ensure that Equations (11.67) converge rapidly to the final solution, a 
reasonably accurate initial estimate of the displacements D (and thus the 
velocities D ) is required for evaluating the equivalent damping matrix from 

Let the corresponding riser nodal velocity be defined by 

D = Ö cos(ωí - Φ) (11.70) 

where Q is the amplitude of vibration velocity and φ is an arbitrary phase 
difference. The relative velocity is 

(U - D) = R cosωí - Q cos(ωí - φ) = Rj cos(ωí - Ψ) 

where 

Rj = {R^ - IRQ cosφ + ρ2)ΐ/2 

-Q sinφ 
tan Ψ = 

R - Q cosφ 

The work done by the damping force Β \ {U - D) \ (U - D) over an 
elemental displacement d D may be written as 

dW= B\Rj cos(ωí - Ψ) | οο8(ωί - Ψ) x Q cos(ωí - φ) d(ωO 
(11.72) 

On substituting β for (ωί - Ψ ) , we can express the work done over a 
complete wave period by this non-linear term as 

w = 
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ßeq = 0.2 

/i^NN cNN\l/2 
( M j AA ^ A A ) 

(11.76) 

This matrix is substituted into Equations (11.67), which are subsequently 
solved for the initial trial solution. This method leads to rapid convergence 
with only two or three iterations required for forcing frequencies away 
from the structure resonant frequencies. U p to 10 iterations may be 
necessary at and around resonance frequencies. 

11,3.2.3 Time series analysis 
The basic method of analysis here involves integrating Equat ion (11.38) 
through discrete steps in time and accounting for the non-linear drag 
loading without a linearization approximation. 

In the equation of motion (Equation (11.40)), the generalized fluid 
velocity can be decomposed into the static current velocity Uc and a wave 
particle velocity U^. Thus Equation (11.40) becomes: 

M T D + CD + S D = M H U W + Β | ( υ ^ + Uc - D ) | 

X (Uw + Uc - D ) (11.77) 

where Uc is taken to be zero for the current velocity. The requirement to 
sum the current and wave velocities before applying the resultant loading 
through the square-law relationship requires that the current velocity be 
ignored in the static analysis that precedes this t ime-domain calculation. 

The time step integration of the equation of motion also allows irregular 
wave sequences (and the corresponding surface vessel surge responses) to 
generate dynamic excitation forces on the riser. This wave sequence can be 
specified in two ways. A wave elevation spectrum of the incident irregular 
wave can be used to compute the corresponding spectra of the subsurface 
wave velocities and acceleration as well as the spectrum of surface vessel 
surge motions. These spectra can be Fourier transformed to generate 
corresponding time series of these quantities for use in the dynamic 
analysis. However, this procedure is cumbersome and computationally 
time-consuming. Therefore, a simple alternative method is usually 
employed. The incident wave elevation is specified as a 'frequency comb' 
sum of individual sinusoidal components with randomly distributed phase 
angles. The subsurface wave kinematics and surface vessel surge response 
are then readily computed by summing the effects of all the sinusoidal 
components in the wave spectrum. 

The numerical time step integration technique proposed by Newmark is 
used with the following relations 

Dr+A/ = Dt + [(1 - δ ) 0 , + δ Ο , + Δ / ] Δ ί 

D.^^r = D, + DAt + [Ö - ß ) D , + βΌ ,^Λ/ ] At^ (11.78) 

where β ' and δ are parameters which can be varied to achieve an 

the total mass matrix and the diagonal terms of the stiffness matrix. Then, 
assuming a damping ratio of 10%, the initial estimate of Bgq is taken to be: 

" ( M V A A 5 \ ^ A ) ^ ^ ' 0 I 0 

0 ( M f Λ Α s'^^y^' I 0 
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Δ/ 
(11.79) 

Then expressing Equafion (11.77) explicitly at instant {t Λ- At) and using 
the lumped-mass approach with the top vessel surge motion duly separated 
as in Equation (11.42), we get 

Μχ A A ^ A, / + Δ/ + C A A ^ A , t+At + S A A D A , Í + A / = M H A A U W A , t+M 

+ B A A l ( U w A + U C A " ^A)\ t^M x ( U W A + U C A " ^A)Í^M 

~ C/^B^Bj+At ~ S A B D B , / + A / (11.80) 

Substitufing Equations (11.79) into (11.80) and rearranging gives: 

.2 AA , Λ .X C A A + S A A 
D A , / + Δ/ {AtY - ( Δ 0 

= M H A A Ú W A , + B A A I ( U W A + U C A - ¿ A ) I 

X ( U W A + U C A ~ D A ) / + A / ~ C A B ^ B , / + Δ / 

- S A R D A B * ^ B, / + Δ / — M j A A + D A A D A , / 

-h Μ τ AA 
(Δί) 

- AA D A , / + M T A A D A , / = Γ , ^ Δ / ( H - S I ) 

This is the basic equation used in the time step integration scheme. 
The solution scheme assumes that displacement, velocity and accelera­

tion vectors at fime zero, denoted by subscript 0, are known and the 
solution is required from time zero to time τ. The given time span τ is 
subdivided into equal time intervals Δί (where Δί = τ divided by the 

acceptable integration accuracy and stability. Subscript t denotes the 
variable at the beginning of the time interval Δί. 

The direct integration analysis does rely on selection of an appropriate 
time step which must be small enough to obtain sufficient accuracy, 
although a time step smaller than necessary would reflect on the cost of the 
solution. Bathe and Wilson (1976) have analysed the stability and accuracy 
of various numerical integration schemes and suggested that , for reason­
able accuracy, the time step-to-period ratio be not more than 1/6 for the 
highest significant mode. In its standard form, the Newmark technique is 
unconditionally stable. 

The two parameters δ and β' introduced in Equation (11.78) indicate 
how the acceleration is modelled over the fime interval, δ = 1/2 and 
β' = 1/6 correspond to a linearly varying acceleration. Newmark 's original 
scheme which is pursued here uses δ = 1/2 and β' = 1/4 and gives a 
constant-average-acceleration based integration scheme. Using these latter 
values in Equation (2.86) and rearranging gives 
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number of time intervals). The algorithm calculates the solution at the next 
required time from known information at the previous time steps. The 
process is repeated until the solution at all discrete time point is known. 

To initialize the numerical solution, the acceleration corresponding to 
zero time is derived from the reduced form of Equation (11.81) giving 

D A = M f [ M H A A Ú W A , + B A A I ( U W A + U C A ) O I 

X ( U W A + U C A ) O - C A B D B O - S A B D B J (11.82) 

In arriving at Equation (11.82) the unknown value of velocity P A , / + Δ/ of 
the forcing vector of Equation (11.81) has been approximated to D A , The 
approximation gives an acceptable degree of accuracy provided the time 
step chosen is sufficiently small. An alternative approach to this would 
require an elaborate iterative scheme with a significantly greater computa­
tion effort. 

From the set of simultaneous Equations (11.81) the displacements are 
simply obtained from 

D A , . + A. = r^F ,^Ar (11-83) 

where 

J = ¿ M T A A + ^ C A A + S A A (11.84) 

The inversion of matrix J in the above equation can be made more efficient 
by the use of banded equation solvers as suggested by Bathe and Wilson 
(1976). However, J is independent of time and needs to be inverted once 
only. 

When D A , t+M is known, the accelerations and velocities at {t -h Δί) are 
derived from Equations (11.79). 

11.3.3. Typical results 

Finite element calculations of the type presented here can be validated by a 
number of methods. 

For the static analysis, the finite element formulation can be checked by 
comparison with the analytic resuh for an idealized weightless tensioned 
beam. A typical such comparison is shown in Table 11.1. Such comparisons 
can confirm the validity of the computational procedure as well as 
indicating the number of finite elements required for an acceptable level of 
accuracy. 

The American Petroleum Institute Commit tee on the Standardization of 
Offshore Structures defined a set of test risers as a basis for comparing the 
performance of riser analysis methods for both static and dynamic load­
ings. Nine anonymous participants to this study submitted solutions for the 
various test cases and API Bulletin 2J (1977) gives the overall comparisons. 
Table 11.2 gives the input data for one of the API test cases, and Table 
11.3 displays the corresponding static analyses results. These are displayed 
in terms of maximum bending stress value and position, maximum total 
stress (axial plus peak bending), as well as upper and lower riser angles 
from the vertical. Results of the analysis presented here are given in Table 
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Table 11.1 Results of static analyses of API cases (mean figures from the API Bulletin 2J 
are quoted below each solution in parentheses) 

Max. bending stress 
Value Location* Max. total stress Angles from vertical 

Case (ksi) (ft) (ksi) (deg) 

Lower Β J Top 

500-0-1 3.99 104 5.46 3.64 0.44 
(2.53) (111) (4.34) (2.94) (0.82) 

500-0-2 1.62 104 6.98 2.58 0.96 
(0.94) (115) (6.80) (2.20) (1.21) 

500-20-lS 5.92 442 9.43 4.35 - 1 . 1 7 
(5.86) (461) (9.51) (3.66) ( - 0 . 7 9 ) 

500-20-2S 3.90 442 10.381 2.79 0.04 
(4.27) (463) (10.54) (2.51) (0.24) 

Notes: 

ksi is kilo pounds force per square inch; BJ is ball joint. 

* A b o v e lower ball joint. 

Table 11.2 Ten element idealization of weightless tensioned 500 ft beam 

Parameters: 
Total length 152.4 m 
Applied tension 54.422 tf 
Uniform load intensity* 6.035 X 1 0 - 3 t/m 

Results: Analytical solution FE idealization 

Slope at ends (rad) 0.007 1 0.007 1 
Maximum moments (tf-m) 0.863 1 0.868 9 
Lateral displacements (m) 
Node 
1,11 0.0 0.0 
2,10 0.104 4 0.104 4 
3,9 0.191 4 0.191 3 
4,8 0.254 9 0.254 8 
5,7 0.293 3 0.293 1 
6 0.306 1 0.306 0 

* Equivalent to load caused by 0.5 m/s current. 

11.3 with the mean values from the nine API test cases displayed in 
parentheses. It is clear from these comparisons that results from the API 
Bulletin and the present method agree reasonably well. 

The frequency domain and time domain dynamic analyses presented 
here have also been compared with the dynamic analyses in the A P I 
buUetin. Figures 11.6 and 11.7 show typical results for one of the API test 
risers; the plotted API values are the maximum and minimum of the 
combined results from the nine calculations compiled in the bulletin. The 
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frequency domain analysis is computed conventionally using a regular 
wave period of 9 s and wave height of 6.096 m. The time domain analysis 
uses a single frequency 'comb' to produce equivalent data but with the 
non-linear drag force due to current and wave velocities included in the 
calculations. It should be emphasized that none of the results pubhshed in 
the API bulletin has to our knowledge been directly validated by measure­
ments on full scale risers. Nevertheless, this comparison gives an indication 
of agreement between the other methods and the analysis presented here . 

11.3.3.1 Influence of non-linearity on structural response 
A comparison of the time domain and frequency domain analyses pres­
ented in Figures 11.6 and 11.7 gives an indication of the effects of nonlinear 
fluid loading on the riser response. A static current profile is included, and 
so time domain and frequency domain resuhs differ markedly owing to the 
effect of the square law drag force with and without linarization. However , 
the frequency domain results are at lower values for the induced stresses. 

The finite element analysis and the frequency domain and time domain 
solutions outlined in this section at tempt to balance the small computing 
cost advantages of linearization against the additional accuracy available 
from the non-linear time domain calculation. The frequency domain 
analysis uses the linearization approximation of equal energy dissipation 
between non-linear damping and equivalent hnear damping in the solu­
tion. An alternative linearization technique for frequency domain analysis 
has been tested by Krolikowski and Gray (1980). It is based on a statistical 
minimization of mean squared error between the non-linear damping force 

Table 11.3 Input parameters for API cases 

Distance from mean sea level to riser support ring 15.24 m 
Distance from sea floor to bottom ball joint 9.144 m 
Water depth 152.4 m 
Riser pipe outer diameter 0.406 4 m 
Riser pipe wall thickness 0.015 87 m 
Choke line outer diameter 0.101 6 m 
Choke line wall thickness 0.016 51 m 
Kill line outer diameter 0.101 6 m 
Kill line wall thickness 0.016 51 m 
Buoyancy material outer diameter 0.609 6 m 
Modulus of elasticity of riser pipe 2.1 x 10'^ ilm^ 
Density of sea water 1.025 t/m^ 
Density of mud 1.438 t/m^ 
Drag coefficient 0.7 
Added mass coefficient 1.5 
Effective diameter for wave/current load 0.660 4 m 
Density of buoyancy material 0.160 2 t/m^ 
Current at surface 0.257 4 m/s 
Surface vessel static offset 4.572 m 
Weight per unit length of riser joint in air 0.2565 tf/m 
Wave height 6.096 m 
Wave period 9 s 
Vessel surge amplitude 0.609 6 m 
Vessel surge phase angle 15° 
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H o r i z o n t a l D i s p l a c e m e n t ( m ) 

Figure 11.6. Displacement and stresses for a marine riser compared with API case 
500-20-ID. Key: d - static values; a,g - API results envelope; c,e - frequency domain 
analysis envelope; b,f - time domain analysis envelope 

and its linear representation used in the analysis. The statistical approach 
uses linearization at the discrete frequency components of a wave spectrum 
to arrive at a global linearized damping force with a least squares 
minimized error. This technique allows a frequency domain method to be 
applied over a wider frequency range, in contrast to the linearization 
method used in the analysis presented here which is used for regular waves 
only. 

The technique of hnearization by least squares minimization is not 
followed up in the frequency domain analysis presented here . This is 
because both riser methods developed here have been aimed at computing 
riser motions and stresses, the latter for feeding into fatigue calculations 
based on linear elastic theory or fracture mechanics. The fracture mecha­
nics approach demands that representative stress time histories for a 
marine riser in waves be known in detail, particularly in terms of the 
sequences of stress cycles that are likely to occur. A computationally 
efficient time domain analysis is capable of producing this information, 
whereas frequency domain analyses, whatever their level of sophistication 
in linearization, operate in the freqeuncy domain where the phase informa­
tion which governs wave sequencing is lost. 
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200H 

B e n d i n g s t r e s s e s ( Ν / m m 2 ) 

Figure 11.7. Displacement and stresses for a marine riser compared with API case 
500-20-ID. Key: d - static values; a,g - API results envelope; c,e - frequency domain 
analysis envelope; b,f - time domain analysis envelope 

A further feature which has prompted the use of an efficient time 
domain analysis for riser calculations is based on the comparative perfor­
mance of the frequency domain and time domain analyses which shows 
that there are substantial difference in peak stresses between the two 
analyses. These discrepancies may be reduced by a more sophisticated 
linearization technique in the frequency domain analyses, but the discre­
pancies do highlight the importance of modelhng the non-linear fluid 
loading on the riser cross-section in a physically representative manner . 

An additional problem associated with marine risers occurs in the 
analysis of multi-tube production risers of complex cross-sectional geome­
tries. These may be made up of a central structural riser with a number of 
large diameter satellite flow lines or as a bundle or array of low hnes. The 
beam finite element analysis techniques described in this paper need to be 
extended to these production risers. Patel and Sarohia (1982) suggest one 
solution by equivalencing a production riser of complex cross-section to a 
simpler single-tube marine riser, which is then used for the finite element 
analysis. This approach is sufficient for a global riser analysis, but it needs 
to be used with care when localised riser fluid forces or member stresses 
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are required. Kroiikowsky (1981) presents an alternative frequency do­
main approach. 

11.4 Vortex shedding effects 

It was Strouhal (1878) who found Aeohan tones generated by a wire were 
proportional to the wind speed, V, divided by the wire thickness, D. Later 
Rayleigh (1896) proved that the vortex shedding frequency was not only a 
function of V/D but also of Reynolds number (Re = VD/v) where ν is 
kinematic viscosity. Figure 11.8 shows the variation of Strouhal number , 5 , 
with Reynolds number for a smooth stationary circular cylinder as deter­
mined by more recent researchers. Absolute values of S have been shown 
to depend also on cylinder surface roughness, length to diameter ratios and 
turbulence levels - see Sarpkaya and Isaacson (1981). 

The physical mechanism of vortex shedding from bluff cylinders is as 
follows. A particle flows towards the leading edge of the cylinder, the 
pressure in the fluid particle rises from the free stream pressure to the 
stagnation pressure. The high pressure near the leading edge impels the 
developing boundary layers around both sides of the cylinder. However , 
the pressure forces are not sufficient to force the boundary layers around 
the back side of bluff cylinders at high Reynolds numbers . Near the widest 
section of the cylinder, the boundary layers separate from each side of the 
cylinder surface and form two free shear layers that trail aft in the flow. 
These two free shear layers bound the wake. Since the innermost portion 
of the free shear layers moves much more slowly than the outermost 
portion of the layers which are in contact with the free stream, the free 
shear layers tend to roll up into discrete, swirhng vortices. A regular 
pattern of vortices is formed in the wake which can interact with the 
cylinder motion and is the source of vortex induced vibrations. 

The major regimes of vortex shedding from a circular cylinder are given 
in Figure 11.9, adapted from Lienhard (1966). The vortex sheet evolves 
constantly as it flows downstream of the cylinder with the lateral to 
streamwise spacing necking down to a minimum a short distance downs­
tream of the cylinder, before increasing - see Scraeffer and Eskanazi 
(1959). It has been shown that the wake can be strongly three dimen­
sional - see Humphreys (1960) and Roshko (1953). 

11.4.1 Vortex induced vibrations 

Vortex induced forces that act along the in-line and transverse direction to 
the excitation flow give rise to additional riser response. Considerable 
work has been done to investigate these effects in steady flow, Chryssosto-
midis and Patrikalakis (1984), Every et al (1981), Griffin et al. (1973), 
(1980), (1984), Hau (1981), Jacobsen etal. (1984), King eia/ . (1973). Pelzer 
and Rooney (1984), Schafer (1984), Syck (1981), Tsahalis (1984). 
However, the flow around a riser will generally vary with fime and axial 
location owing to the oscillatory and depth decaying nature of waves, 
possibly complicated by surface vessel motions. 
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Figure 11.8. Strouhal number variation for stationary circular cylinders. Key: a - laminar; 
b - transition; c - turbulent 

( a ) 

( b ) 
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Figure 11.9. Regimes of fluid flow across circu­
lar cylinders: 
(a) Re < 5 

(regime of unseparated flow) 
(b) 5 to 15 < Re < 40 

(a fixed pair of FOPPL vortices in wake) 
(c) 40 < Re < 90 and 90 < Re < 150 

(two regions in which vortex street is 
laminar) 

(d) 150 < Re < 300 
(transition range to turbulence in vortex) 
300 < Re < 3 < 10^ 
(vortex street is fully turbulent) 

(e) 3 X 10-*̂  < Re < 3.5 x 10^ 
(laminar boundary layer has undergone 
turbulent transition and wake is narrower 
and disorganised) 

(f) 3.5 X 1 0 ^ < Re 
(re-establishment of turbulent vortex 
street) 

Griffin and Ramberg (1982), Blevins (1977), King (1977), Sarpkaya 
(1979), Sarpkaya and Isaacson (1981), Shaw (1979), and Simpson (1978) 
give comprehensive reivews of the state of the art in respect of vortex 
shedding and associated vibrations. The C I R I A report (1978) presents a 
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/v = /n lock-on 

and 

/v = / s SV/D, otherwise J 

(11.85) 

The following parameters are of major importance in determining the 
amplitude of vibrations and the range of lock-on or synchronization for a 
given body: 

Reduced damping, = (11.86) 

Reduced velocity, = V/{f^ D,) (11.87) 

The reduced damping is the product of the logarithmic decrement of 
structural damping (it does not incude fluid damping) and the mass density 
of the structure relative to the fluid. 

The reduced velocity may be used to determine the existence and degree 
of vortex induced vibration. For transverse vibrations of a cylindrical bluff 
body, it has been shown from experiment in water by many researchers 
that excitation begins when the reduced velocity reaches a value of 
between 3.5 and 5.0. A peak occurs around 6.0 and decay to no vibration 
at around 8.0-12.0 (see Figure 11.10 from Parkinson et al. (1968) and 
Figure 11.11 from Griffin and Ramberg (1982)). For in-line oscillations, 
the onset of vibration occurs at reduced velocities around 1.0 to 1.5 for the 
case where two vortices of opposing sign are shed symmetrically and 
continues to a reduced velocity of about 2.5, when a stream of alternating 
vortices is formed. Vibration ceases for the in-hne case at a reduced 
velocity of 3.0-3.5 - see Figure 11.12 from Dean et al. (1977). 

It has been shown for right circular cylinders in uniform flow, that there 
is a relationship between the maximum possible amplitude of transverse 
vibrations and the reduced damping which applies for flexible and flexibly 
mounted rigid cylinders. Various workers give this relationship as follows 
and as compared in Figure 11.13. 

Griffin et al. (1973) give 

D [1 + 0.43 (2TTS^ k,)] [3.35 

background and some example solutions for simplified vortex induced 
vibration problems. 

Many of the theories that have been developed to predict the vortex 
induced oscillations of bluff cylindrical members at tempt to include 
physical phenomena underlying the fluid mechanics of vortex behaviour 
and the structural member response to the consequent loading. 

The first of these is lock-on of vortex shedding frequencies (determined 
by the Strouhal relationship) to a natural frequency of the cylinder. Thus 
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Figure 11.10. Resonance of a rigid right cyhnder 

h O - 6 
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Blevins (1977) gives 

y^ax 0.07 7 

D (1.9 + k,) S' 

Iwan (1975) gives 

0.3 + 
0.72 η 1/2 

(1.9 + A:s) S 

D [1 + 9.6 (ks/nY^] 

(11.89) 

(11.90) 
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Figure 11.11. Transverse oscillations of a circular cylinder (adapted from Griffin and 
Ramberg, 1982). Key: a - experimental data; b - triangular function used 
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Figure 11.12. In-line oscillations of a circular cylinder. Key: a - symmetric vortex shed­
ding; b - asymmetric vortex shedding; (i) first instability reading, (ii) second instability 
reading 
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Figure 11.13. Maximum cross-flow vibration amplitude using equations by various authors 
for circular cables. Key: a - Griffin et al. \ b - Sarpkaya; c - Blevins 

where a geometric function of mode shape 

Ί = Cmax (X/L) 

(x) dx 

(11.91) 

is used to collapse the data for the different modes of response for the 
systems shown in Figure 11.14; ξ^^^χ is the maximum value of the modal 
shape ξ over the span extending form χ = 0 to χ = L. 

11.4.2 Analysis models 

The non-linear, wake oscillator model initially proposed by Bishop and 
Hassan (1964)) and pursued by others including Blevins (1977) and Hart len 
and Currie (1970) is based on a modified Van der Pol equation. This has 
been developed because it exhibits many of the features of interaction 
between the structure and its wake at resonance. Model parameters must 
be determined from curve fitting of experimental data. Some success has 
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Figure 11.14. Normalized maximum amplitude of response versus mass ratio damping 
parameter. Key: a - theory; b - rigid cylinder experiments; c - pivoted rod experiments; 
d - cable experiments 

been achieved using this method for steady flow. Nordgren (1982) apphed 
Iwan and Belvins' (1974) version of this model , with riser equations 
derived from the theory of elastic rods. He applied a strip theory approach 
with the vortex model acting only on the portion of the riser exposed to a 
current which varied with depth. It is not apparent that this analysis 
accounted for the effects of the limited spatial extent of lock-on and the 
fluid damping of inactive elements. 

The correlation model developed by Blevins and Burton (1976) and 
Kennedy and Vandiver (1979) is a specialized dynamic analysis using 
random vibration theory based on a representative span-wise correlation 
and cylinder amplitude dependence of vortex induced forces. Exper­
imental data on correlation lengths and lift functions or resonant cylinder 
vibration amplitudes are used to determine model parameters . This 
approach is useful in making predictions of non-resonant response condi­
tion which may occur at low amphtudes of vibration where it is probably 
superior to the wake oscillator model. However, existing data is limited to 
steady flow conditions for stationary cylinders. The validity for straightfor­
ward extensions to non-steady flow conditions is questionable, especially in 
respect of correlation length parameters . Whitney and Nickel (1983) 
applied this method to uniform and sheared flows. Their results for 
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Figure 11.15. Lift amphtude correlation 

uniform flow compare well with laboratory and field tests. However , they 
were not able to conclusively validate their predictions for sheared flow. 

Empirical models based on measured fluid dynamic force coefficients 
have been used to predict resonant transverse vibrations in steady and 
harmonic flow - see Sarpkaya and Isaacson (1981), Rajabi (1979) and 
Zedan and Rajabi (1981). Rajabi et al. (1981) applied empirical correla­
tions for lift coefficients and shedding frequencies to an analytic frequency 
domain model for vortex induced vibration of risers. It assumes lock-on 
with one mode and perfect vortex correlation along the length. It makes 
use of the relationship between a lift amplification parameter CJCI^q and 
KCIKC*, where , KC* is Keulegan-Carpenter number KC at perfect 
synchronisation, with KC defined as V^^yTID\ KC/KC* is equal to the 
corresponding rafio of reduced velocities VJV,; CLO is the lift coefficient of 
a stationary cylinder and is a function of Reynolds number . This relation­
ship, shown in Figure 11.15, is analogous to that of YmaJD versus shown 
in Figure U . U . Apparently this model takes no account of the influence of 
one mode upon another nor of the consequences of the hmited capital 
extent of lock-on. 

A statistical vortex shedding linear model based upon flow oscillator 
governing equations has been developed by Benaroya and Lepore (1983). 
This uses a variafion of the Hart len and Currie (1970) uniform flow model 
developed by Landl (1975) which introduces a fifth order fluid dynamic 
damping term to account for the hysteresis effect and the cases of soft and 
hard excitation. Hard excitation refers to a reduced velocity range for 
which two stable states are possible for one value of reduced velocity; the 
poistion of rest and a vibration of finite amplitude. To get an oscillation 
from rest in this case, it is necessary for an external disturbance to exceed a 
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certain displacement threshold. In the case of soft excitation, the rest 
position is unstable so that an oscillation is always generated. The 
statistical model assumes perfect span-wise correlation of the flow and, 
therefore, is not in this form fully applicable to the varying flow cases to 
which risers are generally subjected. 

Other methods such as discrete vortex models and numerical solutions of 
the time depedent Navier-Stokes equations in the presence of an oscillat­
ing cylinder are computationally expensive for the results obtainable. 
Sarpkaya and Shoaff (1979) developed a comprehensive discrete vortex 
model based on potential flow and boundary layer interaction, redicretiza-
tion and the shear layers, and circulation dissipation to determine the 
characteristics of an impulsively started flow. The evolution of the flow 
from start to large times, hft and drag forces, Strouhal number , oscillations 
of the stagnation and separation points and the vortex street character­
istics, were all calculated and found to be in good agreement with 
experiment. This numerical model was then applied to flow about a 
transversely oscillating cyhnder. It produced many of the experimentally 
observed features of the lock-on phenomenon. Apparently, it took about 
three hours of computer time on a CDC-6600 to reach a steady state 
equivalent to a simulated time of 400 s. While such a model provides a 
useful tool for numerical experiments to investigate the underlying physics 
of vortex shedding and associated vibration, it does not in this form 
provide a method of simulating the vortex induced vibration response of 
tethers or risers for engineering design purposes. 

The method favoured by Lyons and Patel (1986) for application to the 
dynamics of marine risers and tethers invokes the following assumptions: 

1. The vortex shedding phenomenon is dependent on instantaneous 
relative flow velocity. 

2. Transverse vibration is approximated to begin at a reduced velocity of 
4, reach a maximum at 6 and cease beyond 10. 

3. The amplitudes of vibration for each mode may be calculated with a 
scheme devised by Iwan (1981) described below where the regions of 
excitation are those defined in (b). 

4. Regions exciting higher modes do not excite lower modes , i.e. modal 
priority of higher modes occurs. 

5. The drag coefficient, which will vary with time and along the length, is 
fixed at 2.0 for computational simplicity. 

6. The added mass coefficient, which is also likely to vary with time and 
along the length, is fixed at 1.0. 

7. Similarly the Strouhal number is fixed at 0.2. 
8. For pinned-end numbers , all higher natural frequencies are integer 

multiples of the fundamental natural frequency. Although it is likely 
that buoyancy dependent effective tension, which varies along the 
length, and added mass will have some effect on natural frequencies 
and mode shapes. 

9. Lock-on frequencies do not vary from the natural frequencies of the 
member . 

10. The mode shapes are given by ξ = sm{niTx/L), 
11. For all such modes, the mode shape factor, /„ , has a value of 1.155. 
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rL 

m{x) Φ) áx 

In = (11.93) 

m{x) ξΙ{χ) dx 
Jo 

The amplification factor is taken to be 

Fn = (1 + 9.6 (μ? ζΙΫ')-' (11.94) 

where ζη is the effective damping, although expressions by other authors 
may be used as in Figure 11.13. A parficularly important parameter is the 
effective mass ratio, 

(ρτΓ Di/4) 

in which the effective mass is given by 
. L 

mix) ilix) dx 

(11.95) 

V n = 

where 

rL 
(11.96) 

six) ilix) dx 

six) = 

1 for those portions of the structure where vortex shedding is 
locked on to the structural motion 

0 otherwise 

The effect of the position of locked-on regions determined by this 
parameter on the amphtude of vibration is demonstrated in Figure 11.17 
for the first mode of vibration. It is clearly seen that the amplitude of 
vibration is greater when the region of excitation is near the centre 
(anfinode) and increases with the extent of the excited region. Similar 
effects result for all other modes. 

Figure 11.16 presents a flow chart of the implementation of the time 
domain theoretical model . Relative velocities along the length are calcu-

Iwan's scheme presents a simple analytical model for the vortex induced 
transverse oscillation of non-uniform structures in which the effects of 
lock-on and fluid damping of inactive elements are accounted for. The 
theory is based on a modal decomposition approach. The appropriate 
equations used are given below. Figure 11.16 shows the solution scheme 
graphically. 

The amplitude of locked-on oscillation of the structure is given by 

Y,{x) = D,F,I-'''Ux) (11.92) 

where is the cylinder diameter and the modal shape factor is 
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Figure 11.16. Transverse vortex-induced vibration production scheme 
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Figure 11.17. Variation of amplitude of vibration with extent of excited region for first 
mode of pinned-end sinusoidal vibrations 

lated and the extent of regions of corrected vortex shedding excitation are 
identified for incremental time steps. Iwan's method is implemented for 
the length of the member in each mode which is excited to obtain the 
modal amplitude. Since this amplitude is the peak resonant amphtude , it is 
necessary to modify it to determine the amplitude of vibration at the 
reduced velocities in the region of excitation. Use is made of assumption 
(b) above. From this an amplitude multiplier is determined, by which the 
peak resonant amplitude is modified dependent on the range of reduced 
velocities in the excited region. The method utilizes the maximum reduced 
velocity in each region of excitation. The amplitude values for each mode 
are constructed into time histories which are then superimposed to obtain 
the overall member vibration time history. During vortex induced vibra­
tion of a particular mode , the member amplitude is set at the value given 
by the above procedure. When this mode is inactive, however, its vibration 
is taken to be due to its damped motion in still water from the vortex 
induced vibration during its last active condition. This time history 
procedure thus accounts for the following features: 

(a) decay of vibration using the member structural and viscous damping 
in still water, ζΐ; 

(b) phase of vibration changes randomly if a mode has a period of 
inactivity; 

(c) vibration amplitude for any mode not being lower than that due to 
decay from a previous event. 

The value of drag coefficient has been fixed within the computation to 
permit a simphfied implementation with good agreement with measure­
ments . In reality, the drag coefficient is a function of Reynolds number and 
of vibration amplitude. Griffin and Ramberg (1982) give this function from 
the results of full scale measurements in current flow as 



CD/CDO = 1 + 1.16/(Wr - 1)^^^ 

and 
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for W,>\ 

(11 .97 ) 

CD/CDO = 1 for < 1 J 

where the wake stabihty parameter , = (1 + 2Y/D)/{V,S). 
King (1977) compares the relationships between steady drag coefficient 

and Strouhal number with Reynolds number variation as shown in Figure 
11 .18 . 
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Figure 11.18. General relationships between Strouhal number, steady drag coefficient and 
Reynold's number. Key: a - subcritical; b - critical; c - supercritical 
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11.4.3 Vortex vibration suppression 

In order to reduce or avoid troublesome vortex induced vibrations, there 
are two approaches which may be adopted. One may consider altering the 
riser physical properties to increase or changing the natural frequencies 
so as to avoid vortex shedding frequencies. This approach is often not 
possible because of other design constraints. The second approach is to 
attach some form of flow spoiling or damping device along the riser length. 
For practical purposes, while they may reduce the vibrations their attach­
ment and riser deployment is often unsatisfactory and their service 
performance variable due to marine fouling and mechanical failure. 

Flow spoiling devices can be categorized into three main groups: 

(a) those which affect the separation lines or separated shear layers; 
(b) those which affect the entrainment layers; 
(c) those which act as near wake stabihzers and inhibit the switching of 

the confluence point of the entrainment layers. 

These devices are discussed in detail by Zdravkovitch ( 1 9 8 1 ) and Every et 
al. ( 1 9 8 2 ) . They include splitter plates, fairings, guide plates and vanes. 
These have the disadvantage that they are unidirectional in action and can 
cause large lateral forces when the flow is at an angle to the design 
direction. Since this is often the case in the offshore environment it is 
beneficial to allow them to 'weathervane ' . In its simplest form this can 
comprise flags along the riser length. However, these may wrap themselves 
around the riser. A more sophisficated design is the use of a series of 
rotatable aerofoil-shaped secfions. These may also provide the advantage 
of reduced steady drag force. Omni-directional performance may also be 
obtained by the use of hehcal strakes as commonly used in chimneys. 
However, they have the disadvantage of increasing the steady drag force. 

Similarly, perforated shrouds, and shrouds of vertical slats offer suppre-
sion with somewhat less of a drag penalty. Investigations have also been 
made into the vortex suppression capabilities of plumes of rising air 
bubbles disrupfing the flow around the riser with success, but this is 
probably only viable as a temporary measure. 

An interesting proposal for riser vibrafion suppression is the nutation 
damper. This device has been used successfully in spacecraft. It is 
essentially a torus which is part filled with a sloshing liquid. Its damping 
characteristics are shown by Modi et al. ( 1 9 8 6 ) to be sensitive to the 
physical properties of the liquid used, its height in the torus, damper 

The definition of drag coefficient to be used remains an unclear area but 
the above equations may be used within this method to incorporate a more 
refined variation of drag coefficient. Values of CQ/CDO of up to 4 . 5 have 
been demonstrated. The situation is complicated for multi-riser bundles. 
Depending upon the configuration, the entrained fluid may often result in 
riser behaviour as if it were a single body. Drag coefficients for bundled 
risers have been obtained by Demirbilik and Halvorsen ( 1 9 8 5 ) . 
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11.5 Design considerations 

Whether the riser be for drilling or production duty, the fitness for purpose 
of the design is determined by the estimates of its hkely loading conditions. 
These conditions include environmental forces and if applicable surface 
support motions. Confident estimates of these are essential. They are not 
limited to static behaviour, but should include dynamic response. For rigid 
risers the likely causes of failure are local material yielding and Euler 
column buckhng. 

The design of all types of tensioned risers is affected by: 

(a) motions of the surface facihty; 
(b) tensioner stroke limits and response rates; 
(c) bottom connection angle limits; 
(d) distribution of buoyancy modules. 

Additionally, drilling risers are particularly affected by: 

(a) mud weight; 
(b) drih string tension; 
(c) possible abnormal gas pressure; 

while production risers are particularly affected by: 

(a) buoyancy modules for the free-standing mode ; 
(b) drag of multiple piping; 
(c) rigidity of multiple piping; 
(d) installation, repair and maintenance procedures. 

11.5.1 Sources of failure 

It is important to understand the likely causes of riser failure when 
designing a riser system. Almost inevitably this understanding comes from 
past experience. Morgan (1974-1976) indicates the following for tensioned 
risers: 

geometry and dynamical parameters representing amplitude and frequen­
cy. Advantages include requirement for only a few dampers along the riser 
length with minimal increase in steady drag, with optimal reduction in 
vibration when placed at anti-nodes of maximum vibration. 
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Response Cause 

1. Buckling 

2. Ball joint damage 
Drill string fatigue 
BOP fatigue damage 
Blowout risk 

3. Riser/conductor failure 

4. Emergency disconnect failure 

5. Riser to supplementary buoy over-
stressing 

6. Conductor pipe failure and BOP stack 
collapse 

Failure to predict multiple curvature 
Failure to predict high curvature 
Inadequate top tension available 
Inadequate tensioner rate 
Excessive bending in free-hanging condition 
Failure of buoyancy modules 

Drill bit, collars, casing causing mechanical 
damage as a result of excessive joint angle 

Excessive bending moment due to vessel 
excursion and BOP weight 

Excessive bending causing binding 

Out-of-phase dynamics of system elements 

Resonant excitation of BOP 

11.5.2 Riser top tension and supplementary buoyancy 

A truly vertical riser connected at the sea bed has no buoyancy force. This 
is because buoyancy is the resultant net force acting vertically on a body 
and if there is no horizontal surface on which the hydrostatic pressures may 
act, the resultant force is zero. However, disconnect the riser from the sea 
bed or incline it and it will exhibit a buoyancy force. Generally for risers 
the combined effects of self weight and buoyancy yields a net negative 
force which is destabihzing in that the riser will continue to move away 
from the vertical unless restrained. This restraint is provided by means of 
top tensioning which may be aided by the use of supplementary buoyancy 
modules along the riser length. 

Near optimum choice of top tension can be arrived at by calculating the 
sum of the reduction in bending stress and the increase in axial stress with 
increase in top tension (see Figure 11.19). Care must be taken to ensure 
that the lateral component of top tension does not result in excessive 
horizontal deflection of the bot tom B O P stack. Figure 11.20. The moment 
due to the B O P weight and its eccentricity may lead to bending failure of 
the sea bed conductor column. Reduction in top tension requirement is 
particularly advantageous in very deep water. Care must be taken to 
ensure that such reductions do not lead to local compression which is more 
hkely to occur near the sea bed. 

Buoyancy modules in use include air-fiUed cans in which the volume of 
air may be controlled from the surface and so alter the buoyancy available. 
Other forms do not offer this control but have cost advantages in certain 
cases. Materials for these include cellular polystyrene, cellular vinyls, 
cellular sihcones, cellular acetate, synthetic foams which may contain 
spheres of various amterials, and foamed aluminium. Some of these 
materials can deteriorate with time resulting in a change in buoyancy. 
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Figure 11.19. Aid to optimizing riser top tension: (a) combined axial and bending stress; 
(b) axial stress = T/A; (c) bending stress = Mc/I; (d) minimal combined stress 

Figure 11.20. BOP eccentricity resulting in bending of the conductor column. Key: 
a - non-linear shear transfer properties of soil; b - non-linear resistance of soil to displace­
ment; c - riser tension; d - wave and current forces; e - BOP weight; f - deflection of 
conductor; g - mudline 
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Appendix - Results of linear wave 
theory 

This section contains resuhs from hnear wave theory. Sarpkaya and 
Isaacson (1981) and Patel (1989) give further details on hnear wave theory. 

The axes system used here has the origin at the still water level with the 
horizontal co-ordinate, JC, positive in the direction of the wave propagation 
and the vertical co-ordinate, z, positive away from the sea bed. 

The following notation is used for the wave parameters : 

c = wave speed or celerity 
d = water depth 
k = wave number {k = 2i:/L) 
Η = wave height 
L = wave length 
Τ = wave period ( Γ = 2ττ/ω) 
ω = wave circular frequency 
θ = wave phase angle (Θ = k[x - ct] = kx - ωt) 
s = vertical co-ordinate {s = ζ d) 
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Results of linear wave theory 

Velocity potential 

Dispersion relation 

Surface elevation 

Horizontal particle displacement 

Vertical particle displacement 

Horizontal particle velocity 

Vertical particle velocity 

TTH cosh{ks) 
φ = sinO 

kT smh{kd) 

gH cosh(Ä:5) 
= sinO 

2ω cosh{kd) 

η g 

' Ic^^k ^'^'^^^^^ 

Η 
η = y cose 

Η cosh(A:5) 
ξ = — sine 

2 sinh(Ä:d) 

Η sinhiks) 
ζ = cose 

2 sinh(Á:d) 

τϊΗ cosh(Ä:5) 

Τ smh(kd) 

ττΗ sinh(A:5) 

u = cose 
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sine 

Horizontal particle acceleration — = 
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— = sine 
dt T' sinhikd) 

dw 
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cose 

Pressure 

Group velocity 

Average energy density 

, cosh(Ä:5) 
ρ = - p g z + \ 9gH — Γ - Γ Τ - cose 

cosh(kd) 

CG = -2 1 + 
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Shallow water Deep water 

Range of 
validity 
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- < 4 

Velocity 
potential 
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•nH 

k^Td 
sin6 

> 0.08 
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kT 

Dispersion 
relation 

Wave length 
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Surface 
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particle 
displacement 
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Ikd 
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Vertical particle Η 
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particle velocity " - T(kd) cose Μ = e"^ cose 
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Vertical partical π / / / z\ 
velocity w = — ( 1 + - | smO w = e sme 

Τ 

Shallow and deep water approximations to linear wave 
theory 
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Shallow water Deep water 

Horizontal ^ ^ lu ^ lu 
particle _ = — _ sine — = —r sine 
acceleration dt T\kd) dt Τ' 

. . dw 2ΊΤΉ , 
1 + - cose — = - — Γ - e^' cose 

Vertical particle dw 2Ί:Ή 
acceleration ~^ ^ y ' dj dt ~ Τ' 

Pressure Ρ = - p g ^ + 2 9gH cosO ρ = - p g z + ^ 9gH e^^cose 

Group velocity = c = \ c 

Average energy Ε = ¡ pgH' Ε = ¡ pgH' 
density 
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Active air tanks, 
crane compensation using, 341-351 
semisubmersible motion reduction using, 

325-340 
Active control of trapped air volumes, 

control algorithm for, 333-334 
crane compensation using, 341-351 
disadvantages, 339-340 
experimental investigation, 331-333 

real time simulation used, 347-348 
semisubmersible motion reduction using, 

325-340 
Added mass, definition diagram for, 87 
Added mass force, 104 
Added mass force components, 

semisubmersible, 89 
Added mass matrix, 

non-elongated bodies, 90-91 
risers, 367 
semisubmersibles, 86-87 

Air stiffness, 
correction factors, 290 
open bottom tanks, 289-295 

calculation, 287-288 
experimental data, 295-300 

Air tanks, 
atmospheric pressure, hydrostatic 

analysis, 286-288 
design considerations, 300-302 
greater than atmospheric pressure, 

hydrostatic analysis, 288-289 
hydrostatic analysis, 286-289 

application of theory to hydrostatic 
stability, 289-295 

design considerations, 300-302 
experimental verification of theory, 

295-300 
on semisubmersibles, 284, 285, 297, 

302-310 
on ship shape hull forms, 284, 285, 297, 

319-325 
on tensioned buoyant platforms, 310-319 

Aker H3 semisubmersible, 213 
Aker TPP (Tethered Production Platform), 

141 
American Petroleum Institute (API) , 

marine riser test cases, 373-375, 376, 
377 

Amoco VMP (Vertically Moored 
Platform), 142 

Archimedes' principle, 51 
Area ratio (for hulls), definition, 214 
Argyll Field development concept, 6-7 
Articulated column semisubmersibles, 15, 

235, 236 
dimensions of typical vessel, 252 
heave response, 261 
hydrostatic analysis, 259-266 
hydrostatic stability, 49, 236, 237-238 
pitch response, 262, 265 
righting moment curves for, 251, 253, 

255 
surge response, 262, 265 
time histories, 257-258 

Articulated columns, 
horizontal force response, 264, 265 
hydrostatic response, 262-265 
hydrostatic behaviour, 260-262 
tilt response, 264, 265 

Articulated loading/mooring towers, 17, 
234 

Articulated structures, 234-266 
catastrophic instability, 256-259, 266 
centre of buoyancy for, 240-241 
design criteria, 236-238 
examples, 234 
hydrodynamic response, 259-266 
large-angle hydrostatic stability, 244-256 
phase space trajectories for, 258, 259 
small-angle hydrostatic stability, 238-244 
submerged volume deficit calculated, 

239-240, 246 
Articulated towers, 15-16 

advantages of, 15-16 

403 



404 Index 

Bandwidth parameter, 27 
range of, 32 
wave amphtude statistics as functions of, 

31, 32 
Bernoulh equation, 105, 107, 123 
Bessel functions, 107 
Bilge keels, effect of, 118 
Blue Water I (semisubmersible), 3 
Boundary integral analysis, 

tandem hull vessel heave force calculated 
using, 225 

tandem hulls, 218, 225, 226-227 
Boundary integral techniques, 106, 109 
BS 8000 semisubmersible, 213 
Bullwinkle platform, 5 
Buoyancy, centre of, 

articulated structures, 240-241 
distance to metacentre, 

air tanks affecting, 290-291 
in articulated structures, 244, 248, 

249-250 
movement of, 55-56, 58 

Buoyancy force, definition, 51 
Buoyancy modules, use in risers, 394 
Buoyancy restoring moment, monohull 

vessels, 120, 121 
Buoys, governing equations for, 70-71 

Cancellation function, 
definition, 221 
plotted against wave period for 

semisubmersibles, 223 
plotted against wave period for tandem 

hull vessels, 222-223 
Cargo ships, 

dimensions of typical vessels, 213 
hull characteristics, 215, 216, 217 

Catastrophic instability, 
articulated structures, 256-259, 266 
rigid semisubmersibles, 266 

Catenary anchor leg mooring, (CALM), 17 
Cellulose acetyl butyrate tether model, 

177-179 
amplitude response, 178 
physical dimensions, 177 

Central difference method, 76-77 
compared with Newmark-ß technique, 78 

Certification purposes, hydrostatic stability 
considered for, 49, 286 

Challenger (crane vessel), see McDermott 
DB50 

Classical hydrostatics, 53-60 
articulated structures analysed using, 

238-256 
Compliance, meaning of term, 1-2 
Compliant marine structures, 

design criteria for, 18-19 
design principles for, 2-3 
dynamic nature, 69 
hydrostatic stability, 49 

purposes, 2 
types, 9, 13-18 

Comphant mechanisms, purposes, 1 
Conoco Hutton Platform, 138, 139, 140 

see also Hutton Field tension leg 
platform 

Crane vessels, 
coupled motions of vessel and crane 

load, 193-199 
crane tilt angle limit calculations, 

200-201 
dimensions of typical vessel, 193 
dynamics, 189-208 
heave response, 194, 196 
hydrodynamic mesh for, 192 
Mathieu instability considerations, 

203-206 
motion suppression system used, 192, 

319-325, 341-351 
operability hmits, 199-206 

factors affecting, 189-190 
operations advisory diagram for Mathieu 

instability, 205 
pitch response, 194, 196 
pneumatic crane compensation system 

used, 341-351 
air tank layout, 344 
blower pressure - flow curves, 345 
real time system simulation, 347-348 
system performance, 348-351 

relative horizontal motions of crane load, 
197, 198 

relative vertical motions of crane load, 
197 

rigid vessel wave induced forces and 
motions, 191-193 

roll response, 198, 199 
semisubmersible, 190, 341 

dimensions of typical vessels, 213 
hull characteristics, 215, 216, 217 

semisubmersible compared with ship hull 
forms, 190 

ship shape hull form, 189, 190, 341 
dimensions of typical vessels, 213 
hull characteristics, 215, 216, 217 

side lift coupled motions, 199 
stern lift coupled motions, 196-199 
transient line tension at lift off, 206-208 

parameters used in calculation, 207 
results of calculation, 207-208 

typical vessel, 191, 193, 343 
vessel response spectrum, 200 
wave height limit calculations, 201-202 
wave spectra used in dynamic analysis, 

200 
weather sensitive nature of operations, 

189 
Currents, effect of, 45 
Cylinders, 

fluid flow across, 379 
in-line oscillations, 382 
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maximum cross-flow vibration amplitude, 
381, 383 

resonance, 381 
transverse oscillations, 382 

Damped response curves, rigid vessels with 
inflected righting moment curves, 
279-280 

Damping matrix, 76 
crane vessels, 195 
semisubmersibles, 91 
tensioned buoyant platforms, 148 

DB50 (crane vessel), 191, 193, 341, 343 
dimensions, 104, 342 

operational data, 342 
pneumatic crane compensation system 

on, 341-342, 343-351 
lifts performed during sea trials, 351 
real time system simulation, 347-348 
roll time history data, 348, 350, 351 
system performance, 348-351 

see also Challenger 
Deep Oil X-1 tension leg platform, 9, 140 
Deep water ocean waves, linear wave 

theory applied to, 4 0 1 ^ 0 2 
Degrees of freedom, 71 
Diffraction theory, 

assumptions made, 105 
crane vessels analysed using, 206 
semsubmersibles analysed using, 104-115 
ship shape hull form response analysed 

using, 115-117, 121, 122, 226-232, 
320 

tandem hulls analysed using, 226-232 
Directional wave spectra, 38-40 
Divergence theorem, 51 
Drag force linearization, 85, 161 
Draught ratio, definition, 213 
Drill ships, 3 , 5 

see also Monohull vessels 
Drilling risers, factors affecting design, 393 
Dynamic analysis, 69-78 

governing equations, 70-72 
rigid vessels with inflected righting 

moment curves, 269-280 
solution techniques used, 72-78 
tandem hulls, 226-232 
tensioned buoyant platforms, 143-169 
vertical marine risers, 364-373 

Fifty-year return period values, 21 
Finite element techniques, 

compared with other methods for TBPs, 
159, 162 

marine risers analysed using, 361-378 
dynamic analysis, 364-373 
static analysis, 362-364 
typical results, 373-378 

tensioned buoyant platforms analysed 
using, 157-166 

discretization used, 158 
electrical analogies used, 158 
linearization techniques used, 160-166 

Fixed offshore structures, 5 
design criteria for, 21 

Flat-bottomed barges, motions of, 119 
Floating body, 

equilibrium of, 50-51 
with attached loads, 50, 52-53 

Floating production systems, 6-7 
design objective for, 236 
world list, 10-11 

Floquet's theory, 280 
Flotation, centre of, 

definition, 55 
expressed in terms of surface integrals, 

57-58 
Flow spoiling devices, vortex induced 

vibration suppressed by, 392 
Fluid flow across cylinders, regimes of, 379 
Fold catastrophe, 256, 273 
Forced response, solution techniques for 

dynamic analysis, 74-78 
Free response, solution techniques for 

dynamic analysis, 72-74 
Free surface effect, 58-59 
Freely suspended masses, centre of gravity 

affected by, 59 
Frequency comb sum, 371, 375 
Frequency domain methods, 74-76 

compared with time domain methods for 
analysis of risers, 375-377 

risers analysed using, 368-371, 375-377 
semisubmersible with active air tanks 

analysed using, 326-330, 334-337 
tensioned buoyant platforms analysed 

using, 157-158 
Froude-Krylov force calculations, 96 
Froude-Krylov forces, 85, 367 
Froude number scaling, modelling using, 

296, 301, 332 

Effective tension, use in analysis of risers, 
355 

Environmental spectra, applicafion of, 
45-46 

Equilibrium positions, 272-275 
stability of, 273, 274 

Exposed location single buoy mooring 
(ELSBM), 17 

Gas law relationship, 287, 314 
Gaussian probability density function, 

26-27 
Governing equations, formulation of, 70-72 
Gravity, centre of, 

articulated structures, 242-243, 248-249 
effect of freely suspended masses, 59 
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Gumbel distribution, 43 
compared with other distributions, 44 

Guyed towers, 7, 8, 16 
G V A semisubmersibles, 213 

Harmonic excitation, 
rigid vessels with inflected righting 

moment curves, 276, 278-280 
source of, 276 

Haskind relations. 111 
Heave force amplitudes, calculated for 

various hull shapes, 223-224 
Heel angle, restoring moment affected by, 

254-255 
Heriot-Watt TBP model, 

dimensions, 170 
surge response, 171 
tests on, 169-173 
tether tension data, 171, 172 
tether tension-time histories, 172, 173 

Hinged ships, 18 
Historical development, 3-9 
Hondo Field development concept, 7, 8 
Hull characteristics, various vessel types, 

212-215 
Hundred-year return period values, 

Weibull distribution used to determine, 
43 

Hutton Field tension leg platform, 9, 138, 
139 

dimensions, 140, 213 
hull characteristics, 215, 216, 217 

Hydrocarbon production, 5 
Hydrostatic analysis, 49-68 

air tanks, 286-289 
application of theory to hydrostatic 

stability, 289-295 
design considerations, 300-302 
experimental verification, 295-300 

articulated column semisubmersible, 
259-266 

articulated structures, 238-256 
semisubmersibles, 84 
trapped air cavities, 286-302 

Hydrostatic stability, 
calculation, 60-68 
certification requirements, 49, 286 
curves representing, 65-67 
loss of, 58-59 

Hydrostatics, classical theory, 53-60 

Inflected righting moment curves, 
cause of, 266 
rigid vessels with, 266-281 

dynamic analysis, 269-280 
equilibrium positions, 272-275 
free motions, 270-272 
harmonic excitation, 276-280 
righting moment curves for, 267-269 

see also Semisubmersibles, with 
sponsons 

Inter-hull forces, tandem hull vessels, 225, 
226, 232 

Irregular wave frequencies, 109 

Joint North Sea Wave Project 
(JONSWAP), 36 

spectral formulation, 36-37 
compared with Pierson-Moskowitz 

spectrum, 37, 38 
Joint-probability-of-occurrence approach, 

21 
Jump phenomena, 278, 279, 280 

Keulegan-Carpenter number, 296 

Laplace equation, 104, 105, 106 
Large angle hydrostatics, 

articulated structures analysed using, 
244-256 

calculation using, 60-68 
Large displacement semisubmersible, 

added-inertia estimates for, 103 
added-mass estimates for, 103 
head sea data for, 113 
hydrodynamic mesh, 112 
natural-period estimates for, 103 

Lena guyed tower, 7, 8, 16 
Length ratio (for hulls), definition, 214 
Line elements, definition, 61-62 
Linear superposition, TBP analysed using, 

138 
Linear transmission line model, tensioned 

buoyant platforms analysed using, 
151-155 

Linear wave theory, 
deep water ocean waves, 23, 401-402 
results of, 399-402 
shallow water weaves, 401-402 
tensioned buoyant platforms analysed 

using, 145 
Linearization, 

drag force, 85, 161 
least-squares minimization used, 376 
use in analysis of tensioned buoyant 

platforms, 162-166, 168, 169 
Lloyd's Register's (LR) combined duty and 

speed factor limits, cranes, 206, 207 
Lock-on phenomena (for vortex shedding), 

380, 386, 387 
Logarithmic normal distribution, 42 

compared with other distributions, 44 
Long-term wave statistics, 40-44 
Lower hull depth ratio, definition, 214 
Lyapunov stability theory, 184-186 

equal energy contours for, 185 
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McDermott DB50 (formerly Challenger), 
191, 193, 2 1 3 , 3 4 1 , 3 4 3 

Marine risers, 353-395 
analysis methods used, 361-378 
design considerations, 393-395 
governing equations, 354-361 
types, 353 
vortex shedding effects, 378-393 

Mariner (crane vessel), 213 
Mass matrix, crane vessels, 195 
Mathieu equation, 179, 203 

energy inputs, 180 
first used on TBPs, 179 

Mathieu instability, 
crane vessels, 203-206 

operations advisory diagram for, 205 
tensioned buoyant platforms, 141, 

178-187 
McDermott DB50 (crane vessel), 

dimensions, 104, 342 
see also DB50 

Metacentre, 
distance to centre of buoyancy, 

air tanks affecting, 290-291 
articulated structures, 244, 248, 

249-250 
Metacentre height, 57 

air tanks affecting, 293-294, 298, 301 
articulated structures, 243, 249 
definition, 236 

Miner's rule, 132 
Mitsuyasu formulation for directional 

distribution, 39 
Modal analysis, 

compared with other methods for 
tensioned buoyant platforms, 159, 
162 

tensioned buoyant platforms analysed 
using, 155-157 

Modal superposition technique, 75-76 
advantage, 76 

Model tests, 
camera monitoring system used, 171, 

177, 178, 336 
dynamic similarity in, 296 
monohull vessles, with air tanks, 

297-298, 299-300 
semisubmersibles, with air tanks, 331-333 
tandem hull vessels, 228-232 
tensioned buoyant platforms, 169-179 

Monohull floating production systems, 16, 
17, 82 

design considerations, 127-134 
dimensions of typical vessel, 129 
fatigue life, 131-134 
mooring systems for, 129, 130-131 
operability limits, 131, 132 
structural strength, 131 
vessel workability, 132 

Monohull vessels, 
air tanks on, 284, 285, 297, 319-325 

dimensions, 323 
model tests for, 297-299 

design considerations, 127-134 
diffraction theory applied to, 115-117 
dimensions of typical vessel, 323 
heave response, 115 

air tanks affecting, 322-324 
with inflected righting moment curves, 281 
keel edge profiles compared, 116-117, 

126-127, 128 
pitch response, 115-116 

air tanks affecting, 324 
pneumatic crane compensation system 

used real-time simulafion studies, 
341-351 

resonant roll response, 320 
air tanks affecting, 320, 324, 325 

roll response, 116-117 
air tanks affecting, 324, 325 
skin friction effects, 120, 121, 126 
vortex shedding model used, 122-126 

wave induced motions analysis, 217-218, 
221-225 

see also Crane vessels 
Moonpool , 82 
Mooring systems, analysis of, 150 
Moorings, 

forces applied on vessel by, 59-60 
single point, 16, 17 

Morison equation, 
articulated columns analysed using, 263 
damping overpredicted by, 102 
large-displacement semisubmersible 

analysed using, 113, 114 
prototype semisubmersible analysed 

using, 99, 102 
risers analysed using, 365 
semisubmersibles analysed using, 83-104, 

225, 304 
tandem hull vessels analysed using, 218, 

225, 227 
tensioned buoyant platforms analysed 

using, 150 
vahdity of use, 114 
vessel motions analysis using, 218 

Motion, equations of, 110-111 
articulated columns, 263 
articulated structures, 256 
crane vessels, 191, 194, 203, 206 
monohull vessels, 119 
roll motion, 269-270, 276 
semisubmersibles, 260, 328, 329 

with air tanks, 304, 305 
ship shape hull forms, 320 
tensioned buoyant platforms, 143, 149, 

180, 312, 314 
water column in air tanks, 315 

Motion suppression devices, 14-15 
in crane vessels, 341-351 
in semisubmersibles, 308, 310 
see also Air tanks; Trapped air cavities 
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Multi-hull vessels, 18 
heave motion analysis for, 218-225 

assumptions used, 219 
cancellation periods calculated, 

219-223, 224 
notation used, 218 

see also Tandem hull vessels 

Naval ships, 
dimensions of typical vessels, 213 
hull characteristics, 215, 216, 217 

Newmark method, 77-78 
articulated structures analysed using, 263 
compared with central difference 

method, 78 
compared with Newton-Raphson 

approach, 141 
risers analysed using, 371-373 

Newton-Raphson technique, TBP response 
analysed using, 141 

Normal co-ordinates, meaning of term in 
dynamic analysis, 75 

Norwegian TBP model, 173-177 
dimensions, 174 
surge response, 175 
tether tension data, 176 

Nutation dampers, vortex, induced 
vibration suppressed by, 392-393 

Ocean going barges, roll response, 120 
Ocean wave excitation, 20-46 

long-term statistics used, 40-44 
random-process considerations, 20-25 
short-term statistics used, 25-33 
wave spectra for, 33-40 

Ocean waves, 
periods of, 236 
superimposed-wave model for, 22 

Open bottom tanks, 
hydrostatic analysis of, 

application of theory to hydrostatic 
stability, 289-295 

calculations, 286-289 
design considerations, 300-302 
verification of theory by model tests, 

295-300 
notation for, 286 
on semisubmersibles, 284, 285, 302-310 
on ship hull forms, 284, 285, 310-319 
on tensioned buoyant platforms, 310-319 

Optimal control theory, TBP instability 
determined using, 181-182, 186 

Payload capacity, 
active air tanks affecting, 344 
calculation for various hull shapes, 

224-225 
values listed, 213 

Penta 7000 semisubmersible, 213 

Phase-space trajectories, 
articulated structures, 258, 259 
non-linear system with zero damping, 

271-272 
semisubmersible with sponsons, 275, 277 

Pierson-Moskowitz wave spectra, 33-38 
compared with JONSWAP spectra, 37, 

38 
energy plot, 34-35 
peak enhancement factor used, 37 
relationships for, 35-36 
spectral moments of, 34 

Pneumatic compliance, 
model tests affected by, 296 
semisubmersibles stabilized by, 284, 

302-310 
ship shape hull vessels stabilized by, 

283-284, 319-325 
see also Trapped air cavities 

Pneumatic crane compensation system, 
341-351 

air tank layout, 344 
blower pressure-flow curves, 343 
controller, 346 
controller simulated, 347 
lifts performed during sea trials, 351 
real time system simulation, 347-348 
roll time history data, 348, 350, 351 
system performance, 348-351 

Point vortex distributions, monohull 
vessels, 122-126 

Pontryagin Maximum Principle, 181, 183, 
186 

equal energy contours for, 185 
Potential damping force, 104 
Potential flow theory, 

semisubmersible response analysed using, 
99-100, 101, 102 

ship shape hull form response analysed 
using, 120, 320 

Pressure integration technique, 
articulated structures analysed using, 252 
compared with volumetric method, 64, 

65 
semisubmersible with sponsons analysed 

using, 267-269 
theoretical background to, 49-53 
use of, 60-68 

Probability density functions, 28-29 
Production risers, factors affecting design, 

393 
Production systems, floating systems, 6-7, 

10-11 

Quadratic damping, 
TBP tethers, 179 
tensioned buoyant platforms, 160, 162 

Radiated wave potential, 110 
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Radiated wave problem, 109 
solution of, 106, 109-110 

Random seas, 
superimposed-wave model for, 22 
TBP instability affected by, 180 
tensioned buoyant platform response in, 

162 
Rayleigh probability density function, 

28-29 
wave height relations based on, 31 

Response amplitude operators, 115 
tensioned buoyant platform, 171 

Restoring couples, 54 
Restoring moment curves, 

air tanks affecting, 299, 300 
plotted vs heel angle, 65, 67 

Restoring moments, 
calculation, 64 
definition, 57 

Return period, meaning of term, 21 
Righting moment curves, 

articulated structures, 250-252, 253, 255 
semisubmersible with sponsons, 267-269 
see also Inflected righting moment curves 

Righting moments, air tanks affecting, 
293-294, 295, 299, 300 

Risers, 353-395 
analysis methods used, 361-378 
buoyancy modules used, 394 
causes of failure, 393-394 
design considerations, 393-395 
governing equations, 354-361 
notations used, 355, 356 
top tension of, 394, 395 
vortex shedding effects, 378-393 
see also Marine risers; Vertical marine 

risers 
Roll reduction systems, 320 

see also Motion suppression devices 
Runge-Kutta-Nyström method, 257, 270, 

330 

Safe vessel loading conditions, curves 
defining, 65, 67 

Safety criteria, air tanks affecting, 286 
Scattered wave potential, 106, 113 

derivation using Haskind relations. 111 
Scattered wave problem, 106 

solution of, 107 
Scattering wave solution, 104 
Seafox platforms, 142 
Semiflex semisubmersibles, 213, 245 
Semisubmersibles, 13-15, 80-139 

active air tanks on, 325-341 
frequency domain analysis, 326-330, 

334-337 
model tests, 331-333 
time domain simulation, 330-333, 

337-340 
air tanks on, 284, 285, 297, 302-310 

mass-spring-damper idealisation, 305 
model tests for, 297-298, 299-300 

articulated-column, 235-236 
design, 49, 236, 237-238 
heave response, 261, 265 
hydrostatic analysis, 259-266 
pitch response, 262, 265 
restoring moment curves, 251, 253, 255 
surge response, 262, 265 
time histories, 257-258 
typical dimensions, 252 

column tilt response, 264, 265 
compared with ship forms, 80 
diffraction of typical semisubmersibles, 213 
eight column, 

dimensions, 327 
heave response, active air tanks 

affecting, 340 
evolution of, 3 , 4 
four column, 

dimensions, 327 
heave response, active air tanks 

affecfing, 335, 336, 338 
heave amplitude transfer function 

affected by air tanks, 308, 309 
heave force amplitude for, 223-224 
heave response, 

air tanks affecting, 307-308, 335, 336, 
338 

effects of system states, 303 
hull characteristics, 215, 216, 217 
hydrodynamic analysis, 83-118 

air tanks affecting, 303-304 
hydrostatic analysis, 84 
hydrostatic stability, 235 
with inflected righting moment curves, 281 
limitation, 14 
Morison equation based analysis, 83-107, 

225, 305 
motion suppression tanks used, 14-15 
payload capacity, 14, 15, 213 

air tanks affecting, 344 
prototype: see Takagi . . . 

semisubmersible 
reference axes system used, 81, 284 
roll response, air tanks affecting, 308, 309 
short-term heave response, 308, 310 
with sponsons, 

design considerations, 280-281 
dimensions of typical vessel, 267 
dynamic analysis, 269-280 
overturning moment phase trajectories, 

275, 277 
righting moment curves for, 267-269 

wave induced heave forces, 285 
wave induced motions analysis, 216-217, 

221-225 
wave induced motions analysis 

cancellation function calculated, 223 
see also Large displacement . . .; 
Takagi . . . 
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Shallow water waves, linear wave theory 
applied to, 401-402 

Ship shape hull forms, 
air tanks on, 284, 285, 297, 319-325 

model tests for, 297-299 
compared with semisubmersibles, 80 
heave force amplitude for, 223-224 
heave response, air tanks affecting, 

322-324 
pitch response of, air tanks affecting, 324 
roll response of, air tanks affecting, 324, 

325 
see also Monohull . . . ; Multi-hull . . . ; 

Tandem hull vessels 
Ship stabilizing systems, 320 
Short-term wave statistics, 25-33 
Significant wave height, definition, 29, 30 
Single anchor leg moorings (SALMs), 7, 

17, 234 
Single point anchor reservoir (SPAR) , 17 
Single point moorings, 16, 17 
Small angle hydrostatics, articulated 

structures analysed using, 238-244 
Solution techniques, 

dynamic analysis, 72-78 
forced response, 74-78 
free response, 72-74 

Spectral models, 33-40 
Sponsons, semisubmersibles with, 

design considerations, 280-281 
dimensions of typical vessel, 267 
dynamic analysis, 269-280 
overturning moment phase trajectories, 

275, 277 
righting moment curves for, 267-269 

Spreading functions, 38-39 
Spring, 

softening, response curve for, 278 
softening then hardening, 

damped response curve for, 279, 280 
response curve for, 278 

Spring force-displacement indicator 
diagram, TBP oscillation modelled by, 
181 

Square law damped hanging strings, 180, 
182, 183 

Stereo Wave Observation Project (SWOP) 
spreading function, 39 

Stokes' fifth order gravity wave theory, 20, 
76, 263 

Strouhal number relationships, cyhnders, 
379, 391 

Submerged volume deficit, articulated 
structures, 239-240, 246 

Superimposed-wave model, 22 
Surface integrals, 

advantage of, 52 
hydrostatic properties in terms of, 57-58 
hne integrals summed, 61-64 
solution of equations for, 60-61 

Takagi (prototype) semisubmersible, 97-99 
added-inertia estimates for, 103 
added-mass estimates for, 103 
diffraction analysis used, 99-100, 101 
dimensions, 98 
dynamic data for, 98 
head sea data for, 100, 101-102 
hydrostatic mesh of, 99 
Morison equation based analysis used, 

99, 102 
natural-period estimates for, 102, 103 

Tandem hull vessels, 18, 210-233 
analysis mesh for, 226 
design considerations, 232-233 
dimension of typical vessels, 228 
dimensions of typical vessel, 213 
dynamic analysis, 226-232 
heave force amplitude for, 223-224 
heave response, 229 
hull characteristics, 215, 216, 217 
inter-hull forces, 225, 226, 232 
model tests, 228-232 
pitch response, 230 
surge response, 231 
wave induced motions analysis for, 

221-223 
cancellation function calculated, 

222-223 
Tankers, dimensions of typical vessels, 213 
Tension leg platforms, 7, 9, 15 

see also Tensioned buoyant platforms 
Tension method, articulated structure 

restoring moments evaluated using, 
252 

Tensioned buoyant platforms, 15, 137-187 
advantages, 137 
air tanks on, 310-319 

hydrodynamic analysis, 312-314 
subdivision into smaller compartments, 

316 
axes reference system for, 144 
coupling between platforms and tethers, 

167-169 
development of, 137-138 
dimensions of typical platforms, 213, 311, 

312, 313 
drawbacks to use, 137 
dynamic analysis, 

coupled analysis, 166-169 
platform, 143-149 
tethers, 149-166 

eight column, 
dimensions, 312, 313 
tether tension response, air tanks 

affecting, 317, 319 
first prototype installed, 137-138 
forces on, 311 
four column, 

dimensions, 311, 313 
tether tension response, air tanks 
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affecting, 316, 318 
hull characteristics, 215, 216, 217 
Lyapunov stability theory used, 184-186 
Mathieu instability considerations, 141, 

178-187 
model tests, 169-179 

cellulose acetyl butyrate model, 
177-179 

Heriot-Watt model, 169-173 
Norwegian model, 173-177 
television monitoring system used, 171, 

177, 178 
Paulling and Horton's studies, 138, 140 
platform dynamics, 143-149 
Pontryagin Maximum Principle used, 

181, 184, 186 
six column, 

dimensions, 312, 313 
tether tension response, air tanks 

affecting, 316, 318 
surge response, 148, 168 
sway spring stiffness switching for, 

181-182 
tether amplitude variation with length, 163 
tether bending moment variation with 

length, 164 
tether dynamics, 149-166 

see also main entry (below): Tether 
dynamics 

tether restoring force variation with 
platform displacement, 165, 166 

tether stiffness coefficient matrix 
evaluated for, 145-148 

tether stiffness model notation used, 146 
tether tension response, air tanks 

affecting, 315-319 
Tensioned risers, 

causes of failure, 393-394 
factors affecting design, 393 
see also Marine risers; Risers 

Tether dynamics, 149-166 
analytic solution, 154, 162 

compared with other solutions, 157, 160 
assumption made, 150 
axes reference system used, 151 
finite element analysis used, 157-166 
frequency response, 159-162 
linear 'transmission line' model used, 

151-155 
linearization techniques used, 160-166, 

168, 169 
modal analysis used, 155-157 
natural frequencies calculated, 154, 162 
self weight considered, 159-160 
stiffness dynamic magnification factor 

used, 154 
vortex shedding effects, 386-387 
'whole-tether' compared with 

'element-by-element' linearization, 
163-166, 168, 169 

Threshold wave height, 42 
Time domain simulation, semisubmersible 

with active air tanks analysed using, 
330-333, 337-340 

Time step integration methods, 76-78 
compared with frequency domain 

methods for analysis of risers, 
375-377 

risers analysed using, 371-373, 375-377 
Trapped air cavities, 

active control of, 325-351 
crane compensation using, 341-351 
experimental investigation, 331-333 
semisubmersible motion reduction 

using, 325-340 
general effects, 283 
hydrostatic analysis, 286-302 
hydrostatic stability affected by, 289-295 
on semisubmersibles, 284, 285, 297, 

302-310 
on ship shape hull forms, 284, 285, 297, 

319-325 
on tensioned buoyant platforms, 310-319 

Turret moorings, 5, 82, 128 
physical details of typical arrangement, 

130 
structural problems caused by, 129 

UCLRIG program, 97, 98 
Undirectional spectrum, 37 

spreading function for, 38-39 
Undisturbed wave dynamic pressure force, 

meaning of term, 85 

Van der Pol equation, 383 
Variable geometry platform, 319 
Vertical marine risers, 353-395 

analysis methods used, 361-378 
design considerations, 393-395 
dynamic analysis, 364-373 

element property formulation, 365-368 
frequency domain solution, 368-371 
time series analysis, 371-373, 375-377 

governing equations, 354-361 
notations used, 355, 356, 362 
static analysis, 362-364 
vortex shedding effects, 378-393 
see also Marine risers; Risers 

Volumetric method (for hydrostatic 
stability), 60 

compared with pressure integration 
technique, 64, 65 

Vortex induced vibrations, 378-383 
analysis models used, 383-392 
drag coefficient effects, 391-392 
suppression of, 392-393 
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Vortex shedding, 
lock-on (to natural frequency of 

cylinders), 380, 386, 387 
mechanism of, 378, 379 
monohull roll response affected by, 117, 

118, 119, 120, 121, 122-127 
risers affected by, 378-393 

Vortex shedding models, 
hard excitation in, 385 
monohull response analysed using, 

122-127 
risers response analysed using, 122-127 
soft excitation in, 386 

Wall sided formula, articulated structures 
analysed using, 244-245 

Waterplane area ratio, definition, 212 
Waterplane areas, 

ratios of articulated to rigid, 243-244 
symmetry of, articulated structures, 

241-242 
Wave energy devices, 2 
Wave height probability density function, 

29 

Wave induced heave force cancellation 
periods, 

calculated for various vessels, 219-224 
see also Cancellation period 

Wave induced motions analysis, various 
hull forms, 215-225 

Wave periods, typical values, 34, 236 
Wave scatter diagram, 40, 41 
Wave spectra, 33-40 
Weibull distribution, 42, 43, 44 

compared with other distributions, 44 
Western Pacesetter semisubmersible, 213 
Wind heeling curves, 65 
Wind heeling moment, 

calculation of, 254 
as function of angle of rotation, 253, 254 

Winds, effect of, 45 

Yoke moored storage (YMS), 17 

Zane Barnes (semisubmersible), 14 


