
Software
Quality

Assurance
From theory to implementation

Softw
are Q

uality
A

ssurance

Software Quality Assurance
From theory to implementation

DANIEL GALIN
GALIN

DANIEL GALIN

www.pearson-books.com

Software quality assurance (SQA) is becoming increasingly important to the software
and electronics industries as software systems become more complex and integrative.
This book is designed to serve the three audiences who will be facing the SQA
challenge: students at universities and colleges, participants in vocational training
courses and software development and maintenance practitioners/professionals.

The book is a product of the author’s many years of consulting and teaching
experience.

Features:
✦ A broad view of SQA. Discussion goes beyond classic custom-made software to

include issues of in-house software development, outsourcing, and SQA in small
organizations.

✦ Comprehensive discussion of practical issues. Stress is placed throughout on
SQA application, operation, organization and control.

✦ Comprehensive coverage of SQA topics.Topics rarely covered in SQA texts are
included: procedures and work instructions, supportive quality devices, costs of
software quality and the actors participating in the SQA framework.

✦ State-of–the-art topics.Automated testing, computerized SQA tools and interna-
tional standards (e.g., ISO 9000-3) are among the topics covered.

✦ Pedagogical support. Each chapter includes summary frames, case studies, real-life
examples and implementation tips, review questions and topics for discussion.

✦ On-line instructor’s guide.The guide contains lesson planning guidelines,
PowerPoint presentations and a test bank.

The book comprehensively covers the ISO 9000-3 requirements. It also provides a
substantial portion of the body of knowledge required for the CSQE (Certified
Software Quality Engineer) as outlined by the ASQ (American Society for Quality).

Dr Daniel Galin currently serves as Head of Information Systems Studies, the
Ruppin Academic Center. In addition to his many papers, Dr Galin has also authored
several books on the analysis and design of information systems as well as co-
authoring (with Dr Z. Bluvband) a book on software quality assurance in Hebrew.
His professional experience includes numerous consulting projects in software quality
assurance and information systems design for major Israeli firms. He received his BSc,
MSc and DSc from the Faculty of Industrial and Management Engineering of the
Technion, Israel Institute of Technology, Haifa, Israel.

Cover image © Getty Images

CYAN MAGENTAYELLOW BLACK

Galin_ppc 21/9/05 8:51 PM Page 1

Software Quality Assurance

SQAS_A01.QXD 21/9/05 8:34 PM Page i

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison Wesley, we craft high quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

SQAS_A01.QXD 21/9/05 8:34 PM Page ii

Software Quality
Assurance
From theory to implementation

Daniel Galin

SQAS_A01.QXD 21/9/05 8:34 PM Page iii

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies around the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2004

© Pearson Education Limited 2004

The right of Daniel Galin to be identified as the
author of this work has been asserted by him in accordance
with the Copyright, Designs, and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London W1T 4LP.

All trademarks used herein are the property of their respective owners. The use
of any trademark in this text does not vest in the author or publisher any
trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 0201 70945 7

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Galin, Daniel,
Software quality assurance / Daniel Galin.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-70945-7
1. Computer software--Quality control. I. Title.

QA76.76.Q35G35 2003
005.1'068'5--dc21

2003050668

10 9 8 7 6 5 4 3 2
09 08 07 06 05

Typeset in 10/12pt Sabon by 30.
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn

The publisher’s policy is to use paper manufactured from sustainable forests.

SQAS_A01.QXD 21/9/05 8:34 PM Page iv

To my parents,
Blima and Elchanan,

who inspired me with their love of learning,
scholarship, and teaching

SQAS_A01.QXD 21/9/05 8:34 PM Page v

SQAS_A01.QXD 21/9/05 8:34 PM Page vi

Contents

Preface xvii
Unique features of this text xviii
The book’s audience xix

Acknowledgements xx

Publisher’s acknowledgements xxi

About the author xxii

Guides for special groups of readers xxiii
Guide to readers interested in ISO 9000-3 requirements xxiii
Guide to readers interested in ASQ’S CSQE body of knowledge xxiv

Part I Introduction 1

Chapter 1 The software quality challenge 3

1.1 The uniqueness of software quality assurance 4
1.2 The environments for which SQA methods

are developed 7
Summary 11
Review questions 12
Topics for discussion 12

Chapter 2 What is software quality? 14

2.1 What is software? 15
2.2 Software errors, faults and failures 16
2.3 Classification of the causes of software errors 19
2.4 Software quality – definition 24
2.5 Software quality assurance – definition and objectives 25
2.6 Software quality assurance and software engineering 30

Summary 30
Selected bibliography 32
Review questions 32
Topics for discussion 33

SQAS_A01.QXD 21/9/05 8:34 PM Page vii

Chapter 3 Software quality factors 35

3.1 The need for comprehensive software quality
requirements 36

3.2 Classifications of software requirements into
software quality factors 37

3.3 Product operation software quality factors 38
3.4 Product revision software quality factors 41
3.5 Product transition software quality factors 43
3.6 Alternative models of software quality factors 44
3.7 Who is interested in the definition of quality

requirements? 47
3.8 Software compliance with quality factors 49

Summary 51
Selected bibliography 52
Review questions 52
Topics for discussion 54

Chapter 4 The components of the software quality
assurance system – overview 56

4.1 The SQA system – an SQA architecture 57
4.2 Pre-project components 60
4.3 Software project life cycle components 61
4.4 Infrastructure components for error prevention

and improvement 65
4.5 Management SQA components 68
4.6 SQA standards, system certification, and

assessment components 69
4.7 Organizing for SQA – the human components 70
4.8 Considerations guiding construction of an

organization’s SQA system 72

Part II Pre-project software quality components 75

Chapter 5 Contract review 77

5.1 Introduction: the CFV Project completion
celebration 78

5.2 The contract review process and its stages 79
5.3 Contract review objectives 80
5.4 Implementation of a contract review 82
5.5 Contract review subjects 85
5.6 Contract reviews for internal projects 85

viii

Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page viii

Summary 87
Selected bibliography 88
Review questions 89
Topics for discussion 89
Appendix 5A: Proposal draft reviews –

subjects checklist 92
Appendix 5B: Contract draft review –

subjects checklist 94

Chapter 6 Development and quality plans 95

6.1 Development plan and quality plan objectives 97
6.2 Elements of the development plan 97
6.3 Elements of the quality plan 101
6.4 Development and quality plans for small projects

and for internal projects 103
Summary 106
Selected bibliography 108
Review questions 109
Topics for discussion 110
Appendix 6A: Software development risks and

software risk management 112

Part III SQA components in the project life cycle 119

Chapter 7 Integrating quality activities in the
project life cycle 121

7.1 Classic and other software development
methodologies 122

7.2 Factors affecting intensity of quality assurance
activities in the development process 131

7.3 Verification, validation and qualification 133
7.4 A model for SQA defect removal effectiveness

and cost 135
Summary 143
Selected bibliography 145
Review questions 146
Topics for discussion 147

Chapter 8 Reviews 149

8.1 Review objectives 150
8.2 Formal design reviews (DRs) 152

ix
Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page ix

8.3 Peer reviews 158
8.4 A comparison of the team review methods 168
8.5 Expert opinions 170

Summary 171
Selected bibliography 172
Review questions 172
Topics for discussion 174
Appendix 8A: DR report form 175
Appendix 8B: Inspection session findings report form 176
Appendix 8C: Inspection session summary report 177

Chapter 9 Software testing – strategies 178

9.1 Definition and objectives 180
9.2 Software testing strategies 182
9.3 Software test classifications 187
9.4 White box testing 189
9.5 Black box testing 197

Summary 209
Selected bibliography 211
Review questions 212
Topics for discussion 213

Chapter 10 Software testing – implementation 216

10.1 The testing process 217
10.2 Test case design 232
10.3 Automated testing 235
10.4 Alpha and beta site testing programs 245

Summary 247
Selected bibliography 249
Review questions 250
Topics for discussion 251

Chapter 11 Assuring the quality of software
maintenance components 254

11.1 Introduction 255
11.2 The foundations of high quality 257
11.3 Pre-maintenance software quality components 261
11.4 Maintenance software quality assurance tools 264

Summary 273
Selected bibliography 275
Review questions 275
Topics for discussion 277

x

Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page x

Chapter 12 Assuring the quality of external
participants’ contributions 279

12.1 Introduction: the HealthSoft case 280
12.2 Types of external participants 282
12.3 Risks and benefits of introducing external

participants 283
12.4 Assuring quality of external participants’

contributions: objectives 286
12.5 SQA tools for assuring the quality of external

participants’ contributions 287
Summary 293
Selected bibliography 295
Review questions 295
Topics for discussion 296

Chapter 13 CASE tools and their effect on software
quality 298

13.1 What is a CASE tool? 299
13.2 The contribution of CASE tools to software

product quality 302
13.3 The contribution of CASE tools to software

maintenance quality 304
13.4 The contribution of CASE tools to improved project

management 304
Summary 305
Selected bibliography 306
Review questions 306
Topics for discussion 307

Part IV Software quality infrastructure
components 309

Chapter 14 Procedures and work instructions 311

14.1 The need for procedures and work instructions 312
14.2 Procedures and procedures manuals 313
14.3 Work instructions and work instruction manuals 316
14.4 Procedures and work instructions: preparation,

implementation and updating 317
Summary 318
Selected bibliography 319
Review questions 319
Topics for discussion 320
Appendix 14A: Design review procedure 322

xi
Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xi

Chapter 15 Supporting quality devices 325

15.1 Templates 326
15.2 Checklists 329

Summary 332
Selected bibliography 333
Review questions 333
Topics for discussion 334

Chapter 16 Staff training and certification 335

16.1 Introduction: Surprises for the “3S”
development team 336

16.2 The objectives of training and certification 337
16.3 The training and certification process 338
16.4 Determining professional knowledge requirements 338
16.5 Determining training and updating needs 339
16.6 Planning training and updating programs 340
16.7 Defining positions requiring certification 340
16.8 Planning the certification processes 341
16.9 Delivery of training and certification programs 342

16.10 Follow-up subsequent to training and certification 344
Summary 345
Selected bibliography 346
Review questions 347
Topics for discussion 347

Chapter 17 Corrective and preventive actions 349

17.1 Introduction: the “3S” development team revisited 350
17.2 Corrective and preventive actions – definitions 351
17.3 The corrective and preventive actions process 352
17.4 Information collection 353
17.5 Analysis of collected information 354
17.6 Development of solutions and their implementation 356
17.7 Follow-up of activities 359
17.8 Organizing for preventive and corrective actions 360

Summary 361
Selected bibliography 362
Review questions 362
Topics for discussion 363

xii

Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xii

Chapter 18 Configuration management 365

18.1 Software configuration, its items and its management 367
18.2 Software configuration management – tasks and

organization 369
18.3 Software change control 371
18.4 Release of software configuration versions 373
18.5 Provision of SCM information services 380
18.6 Software configuration management audits 380
18.7 Computerized tools for managing software

configuration 381
Summary 382
Selected bibliography 383
Review questions 384
Topics for discussion 384

Chapter 19 Documentation control 387

19.1 Introduction: where is the documentation? 388
19.2 Controlled documents and quality records 389
19.3 The controlled documents list 392
19.4 Controlled document preparation 393
19.5 Issues of controlled document approval 393
19.6 Issues of controlled document storage and retrieval 394

Summary 395
Selected bibliography 396
Review questions 397
Topics for discussion 397

Part V Management components of software
quality 399

Chapter 20 Project progress control 401

20.1 The components of project progress control 402
20.2 Progress control of internal projects and external

participants. 404
20.3 Implementation of project progress control regimes 405
20.4 Computerized tools for software progress control 406

Summary 408
Selected bibliography 409
Review questions 410
Topic for discussion 411

xiii
Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xiii

Chapter 21 Software quality metrics 412

21.1 Objectives of quality measurement 414
21.2 Classification of software quality metrics 415
21.3 Process metrics 416
21.4 Product metrics 420
21.5 Implementation of software quality metrics 427
21.6 Limitations of software metrics 432

Summary 434
Selected bibliography 436
Review questions 438
Topics for discussion 440
Appendix 21A: The function point method 442

Chapter 22 Costs of software quality 449

22.1 Objectives of cost of software quality metrics 450
22.2 The classic model of cost of software quality 451
22.3 An extended model for cost of software quality 455
22.4 Application of a cost of software quality system 458
22.5 Problems in the application of cost of software

quality metrics 462
Summary 463
Selected bibliography 465
Review questions 465
Topics for discussion 468

Part VI Standards, certification and assessment 471

Chapter 23 Quality management standards 475

23.1 The scope of quality management standards 476
23.2 ISO 9001 and ISO 9000-3 477
23.3 Certification according to ISO 9000-3 481
23.4 Capability Maturity Models – CMM and CMMI

assessment methodology 485
23.5 The Bootstrap methodology 490
23.6 The SPICE project and the ISO/IEC 15504

software process assessment standard 492
Summary 497
Selected bibliography 499
Review questions 500
Topics for discussion 501
Appendix 23A: CMMI process areas 502
Appendix 23B: ISO/IEC 15504 model processes 505

xiv

Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xiv

Chapter 24 SQA project process standards –
IEEE software engineering standards 507

24.1 Structure and content of IEEE software engineering
standards 509

24.2 IEEE/EIA Std 12207 – software life cycle processes 510
24.3 IEEE Std 1012 – verification and validation 514
24.4 IEEE Std 1028 – reviews 519

Summary 521
Selected bibliography 524
Review questions 524
Topics for discussion 525
Appendix 24A: IEEE Software Engineering Standards 526
Appendix 24B: MIL-STD-498: list of Data Item

Descriptions (DIDs) 528
Appendix 24C: Task structure for a primary process

according to IEEE/EIA Std 12207 – example 528

Part VII Organizing for quality assurance 539

Chapter 25 Management and its role in software
quality assurance 543

25.1 Top management’s quality assurance activities 544
25.2 Department management responsibilities for quality

assurance 549
25.3 Project management responsibilities for quality

assurance 550
Summary 551
Selected bibliography 552
Review questions 553
Topics for discussion 554

Chapter 26 The SQA unit and other actors in the SQA
system 555

26.1 The SQA unit 556
26.2 SQA trustees and their tasks 563
26.3 SQA committees and their tasks 563
26.4 SQA forums – tasks and methods of operation 564

Summary 565
Review questions 568
Topics for discussion 568

xv
Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xv

Epilogue The future of SQA 570

Facing the future: SQA challenges 571
Facing the future: SQA capabilities 574

Author index 577

Subject index 580

xvi

Contents

SQAS_A01.QXD 21/9/05 8:34 PM Page xvi

Preface

The opening of the new Denver International Airport (DIA) in February
1995 was a day of celebration for Colorado citizens but it was certainly the
end of a traumatic period for the information technology industry. DIA was
planned to be the largest airport in the United States, to serve 110 000 000
passengers annually by 2020, to handle 1750 flights daily through 200 gates
and 12 operating runways. Operations at DIA were delayed by 16 months,
mainly due to the failure of the software-based baggage handling system,
causing estimated total losses of $2 billion. Moreover, the baggage handling
system finally put into service was substantially downscaled in comparison
to the system originally specified. Although several other colossal failures of
software systems unfortunately have been recorded since 1995, the failure of
IT technology at DIA was especially traumatic to the profession, whether
due to the scale of the losses or the public interest and criticism it raised.

Many SQA professionals, including the author, believe that had appro-
priate software quality assurance systems been applied to the project at its
start, a failure of this scale would not have occurred or, at least, its losses
would have been dramatically reduced. The methods and tools discussed in
this book, especially the risk management procedures, could have identified
the severity of the situation at very early stages and enabled timely employ-
ment of the appropriate corrective measures throughout the project. Other
SQA tools could probably have assured completion of the system on schedule
and in full compliance with its specifications.

According to the author’s conception of software quality assurance, an
acceptable level of software quality can be achieved by:

■ Combined application of a great variety of SQA components.
■ Special emphasis on quality in the early phases of software development,

including the pre-project phase.
■ Performance of comprehensive SQA activities to control the quality of the

work carried out by external participants (subcontractors, suppliers of
reused software modules and COTS software products, and the cus-
tomers themselves in cases where they carry out parts of the project).

■ Extension of SQA activities to project schedules and budget control,
based on the expectation that functional requirements, schedule and
budget plans behave according to the principle of communicating vessels,
that is, a failure (or reduced level of achievement) in one of these three
fluid components induces immediate failure in the others.

This conception of software quality assurance guides us throughout the book.

SQAS_A01.QXD 21/9/05 8:34 PM Page xvii

Unique features of this text

The following features of this book are of special importance:

■ A broad view of SQA
■ Comprehensive discussion of SQA implementation issues
■ Comprehensive coverage of SQA topics
■ State-of-the-art topics.

A detailed discussion of these features follows.

A broad view of SQA
The book extends discussion of SQA issues much beyond the classic bound-
aries of custom-made software development by large established software
houses. It dedicates significant attention to the other software development
and maintenance environments that reflect the current state of the industry:

■ In-house software development by information systems departments. The
book discusses SQA of in-house projects, situations where traditional
customer–supplier relations are missing or vague, and outlines recom-
mended solutions to the attendant risks (see Sections 5.6 and 6.4.2).

■ COTS software packages. COTS software packages represent a growing
proportion of software packages used throughout the industry. Assurance
of the quality of these packages, which are integrated directly into the cus-
tomer’s software systems, has become an important issue (see Chapter 12).

■ Small projects and small organizations. Issues related to software devel-
opment by small organizations and the execution of small software
projects are likewise dealt with in the book (see Section 6.4.1).

Comprehensive discussion of SQA implementation issues
Stress is placed throughout the book on organization, control and other
aspects arising in the implementation of SQA components:

■ Specialized chapter sections and subsections dealing with implementation
processes.

■ Examples that refer to real-life situations, especially those involving
implementation issues, are integrated into the text.

■ Implementation tips related to special implementation problems are inte-
grated into most of the chapters.

■ Topics for discussion, found at the conclusion of each chapter, encourage
the reader to suggest innovative solutions to implementation issues.

Comprehensive coverage of SQA topics
The book is very comprehensive in the range of SQA subjects covered. It
includes topics rarely if ever covered in other SQA texts. These topics include:

xviii

Preface

SQAS_A01.QXD 21/9/05 8:34 PM Page xviii

■ Procedures and work instructions, their preparation, implementation and
updating (Chapter14).

■ Supporting quality devices, that is, templates and checklists, their prepa-
ration, implementation and updating (Chapter 15).

■ Costs of software quality, estimated according to the classic quality costs
model in addition to a new extended model that better represents the spe-
cial nature of software quality costs (Chapter 22).

■ The SQA unit and other actors in the SQA framework, specifically the
activities and responsibilities of active and occasional bodies that pro-
mote SQA issues within the organization: the SQA unit, SQA trustees,
SQA committees and SQA forums (Chapter 26).

State-of–the-art topics
The text emphasizes up-to-date SQA topics:

■ Automated testing, including a discussion of the various types of auto-
mated tests and their implementation, concluding with a review of the
advantages and disadvantages of automated testing (Section 10.3).

■ Computerized SQA tools, discussed in conjunction with almost all SQA
components mentioned in the book. A special chapter (Chapter 13),
entirely dedicated to computerized tools, reviews CASE tool issues.
Special emphasis is placed on techniques that dramatically improve the
performance of SQA tools, such as automated testing, software configu-
ration management and documentation control.

■ International SQA standards. Two chapters (Chapters 23 and 24) are
dedicated to a survey of recent developments in software quality man-
agement standards and project process standards.

A downloadable Instructor’s Guide, PowerPoint Slides and additional test-
ing material are also available free of charge to lecturers and tutors adopting
the main book. They can be accessed at www.booksites.net/galin.

The book’s audience

The book is intended to meet the needs of a wide audience of readers inter-
ested in software quality assurance. We can identify four main groups of
such readers, as follows:

■ Managers of software development departments, project managers
and others

■ Those attending or presenting vocational training courses
■ University and college students
■ Practitioners involved in quality issues of software development and

maintenance.

In addition, there are special groups of readers who are addressed on page
xxiii.

xix
Preface

SQAS_A01.QXD 21/9/05 8:34 PM Page xix

Acknowledgements

This book has benefited from comments by software consumers as well as
questions from students in the many courses I have taught at the Technion,
Israel Institute of Technology, the Ruppin Academic Center and elsewhere.
They helped me improve my explanations and inspired many of my exam-
ples. Others helped by directly answering questions or supplying valuable
articles, books and other material. Their numbers prevent my mentioning all
their names. I am grateful to each.

Special thanks to Andrea Shustarich, representative of Pearson
Education in Israel, who encouraged me to write this book and followed its
progress. My editor, Keith Mansfield, a senior acquisition editor at Pearson
Education in the UK, also deserves special recognition for his cooperation,
continuous guidance and valuable advice throughout the long months of
writing. I would especially like to express my appreciation to Nicola
Chilvers, responsible for production of this book at Pearson Education,
whose efficiency and amiable manner made working together such pleasure.
In addition, I wish to express my appreciation to Nina Reshef, who edited
my drafts with devotion and contributed substantially to the book’s read-
ability and accuracy.

Finally, I wish to say how grateful I am to my family, my wife Amira
Galin, my daughter Michal Nisanson and my son Yoav Galin for their con-
tinuous support and encouragement as well as for their important comments
on the book’s drafts.

SQAS_A01.QXD 21/9/05 8:34 PM Page xx

Publisher’s acknowledgements

We are grateful to the following for permission to reproduce copyright material:

Figure 7.1 adapted from Royce, W.W. (1970) Managing the Development of
large Software Systems: Concepts and Techniques, Proceedings of the IEEE
WESCON, August 1970 and Software Engineering Economics by Boehm,
B.W. © 1981. Reprinted by permission of Pearson Education, Inc., Upper
Saddle River, NJ. Figure 7.3 adapted from Boehm, B.W. (1988) A Spiral
Model of Software Development and Enhancement, Computer, Vol. 21, No.
5, pp. 61–72; Figure 7.4 adapted from Boehm, B.W. (1998) Using the Win-
Win Spiral Model: A case study, Computer, Vol. 31, No. 7, pp. 33–44; Table
8.3 and Table 21.11 from Japan’s Software Factories: A Challenge to U.S.
Management by Michael A. Cusumano, copyright 1991 by Oxford
University Press, Inc. Used by permission of Oxford University Press, Inc.;
Table 10.6 adapted from Dustin/Rashka/Paul, Automated Software Testing:
Introduction, Management and Performance, Table 2.4 (p. 53), © Pearson
Education, Inc. Reprinted by permission of Pearson Education, Inc.; Table
23.1 and Table 23.2 reproduced with the permission of BSI under licence no.
2003SK/0025. British Standards can be obtained from BSI Customer
Services, 389 Chiswick High Road, London W4 4AL (Tel. +44 (0) 208 996
9001). Figure 23.2 Capacity Maturity Model by Paulk et al. © Reprinted by
permission of Pearson Education, Inc., Upper Saddle River, NJ. Table 23.5
and 23.6 adapted from Jung, H.-W., Hunter, R., Goldenson, D.R. and El-
Eman, K. (2001) Finding the Phase 2 of the SPICE Trials, Software Process
Improvement and Practice, 7(6) pp. 205–42. © John Wiley & Sons Limited.
Reproduced with permission. Figure 24.1 reprinted with permission from
IEE Std 1045-19992 by IEEE. The IEEE disclaims any responsibility or lia-
bility resulting from the placement and use in the described manner.

BSI for the eight principles of ISO 9000.3 and the structure of the ISO/IEC
TR 15504 Standard (under licence number 2003DH0143), and IEEE for
IEEE Std. 10278 (reviews) © 1994 IEEE and list of IEEE Software
Engineering Standards.

In some instances we have been unable to trace the owners of copyright
material, and we would appreciate any information that would enable us to
do so.

SQAS_A01.QXD 21/9/05 8:34 PM Page xxi

About the author

Dr Daniel Galin received his B.Sc. in Industrial and Management
Engineering, and his M.Sc. and D.Sc. in Operations Research from the
Faculty of Industrial and Management Engineering, the Technion, Israel
Institute of Technology, Haifa, Israel. He serves on the faculty of the Ruppin
Academic Center, where he is the current Head of Information Systems
Studies.

Dr Galin acquired his expertise in SQA through teaching, writing and
consulting in the field. He teaches courses in software quality assurance and
information systems at the Ruppin Academic Center, Information Systems
Studies, at the Faculty of Computer Sciences, the Technion, Haifa and at the
College of Administration, Tel-Aviv.

Dr Galin co-authored (with Dr Z. Bluvband) the book Software Quality
Assurance. His many papers have been published in professional journals,
the majority in English-language journals. All his former books on analysis
and design of information systems and software quality assurance were written
in Hebrew and published by Israel’s leading publishers.

Dr Galin’s professional experience of over 20 years includes consulting
on numerous projects in software quality assurance as well as analysis and
design of information systems.

SQAS_A01.QXD 21/9/05 8:34 PM Page xxii

Guides for special groups
of readers

Among the readers interested in software quality assurance, one can distin-
guish two special groups:

■ Readers interested in ISO 9000-3 requirements
■ Readers interested in the American Society for Quality’s (ASQ) CSQE

(Certified Software Quality Engineer) body of knowledge.

The following tables direct the reader to the chapters and sections relevant
to their interests.

Guide to readers interested in ISO 9000-3 requirements

The reader interested in ISO 9000-3 requirements will find a comprehensive
discussion of standard ISO issues in Chapter 23. In addition, related materi-
al is spread throughout the book, as detailed in the following table. The ISO
9000-3 requirements numbers quoted are taken from the outline of ISO/IEC
9000-3:2001 (final draft).

ISO 9000-3 ISO 9000-3 requirements: Book references
requirements: subject (chapter/section)
chapter

4. Quality 4.1 General requirements Ch. 4
management 4.2 Documentation requirements Ch. 19
system

5. Management 5.1 Management commitments Sec. 25.1
responsibilities 5.2 Customer focus Sec. 25.1.1

5.3 Quality policy Sec. 25.1.1
5.4 Planning Ch. 25
5.5 Responsibility authority and communication Ch. 25
5.6 Management review Sec. 25.1.3

6. Resource 6.1 Provision of resources Sec. 25.1.1
management 6.2 Human resources Ch. 16

6.3 Infrastructure Secs 10.3, 11.4,
Chs 13, 14, 15,
Secs 18.7, 19.5, 20.4

6.4 Work environment Sec. 1.2

SQAS_A01.QXD 21/9/05 8:34 PM Page xxiii

Guide to readers interested in ASQ’s CSQE body of knowledge

Almost all the elements of the CSQE (Certified Software Quality Engineer)
body of knowledge, as outlined in ASQ (American Society for Quality) Item
B0110, are included in the book. The following table directs the reader to
the relevant chapters and sections.

xxiv

G
uides

for specialgroups
ofreaders

ISO 9000-3 ISO 9000-3 requirements: Book references
requirements: subject (chapter/section)
chapter

7. Product realization 7.1 Planning of product realization Chs 6, 23, 24
7.2 Customer-related processes Chs 3, 5, 6, 12, 20
7.3 Design and development Chs 7, 8, 9, 10,

Sec. 18.3
7.4 Purchasing Ch. 12
7.5 Production and service provision Chs 11, 12,

Secs 18.4–18.6,
Ch. 20

7.6 Control of monitoring and measuring devices Sec. 18.1

8. Measurement, 8.1 General Secs 21.1, 21.2,
analysis and 22.1–22.3
improvement 8.2 Monitoring and measurement Secs 21.3, 21.4,

22.4, 22.5
8.3 Control of non-conforming product Secs 21.5, 22.4,

22.5, 26.1
8.4 Analysis of data Sec. 17.6
8.5 Improvement Ch. 17

CSQE body of CSQE body of knowledge: Book references
knowledge: subject (chapter/section)
chapter

I. General A. Standards Sec. 2.1, Ch. 23
knowledge, conduct, B. Quality philosophy and principles Secs 2.4, 2.5
and ethics C. Organizational and interpersonal techniques Ch. 25

D. Problem-solving tools and processes Secs 6.2, 6.3,
App. 6A

E. Professional conduct and ethics –

II. Software quality A. Planning Ch. 6, Secs 7.4,
management 17.2, 17.3

B. Tracking Ch. 6,
Secs 17.4–17.8,
Ch. 18

C. Organizational and professional software Sec. 11.4, Ch. 16
quality training

III. Software processes A. Development and maintenance methods Sec. 7.1,
Chs 8, 11, 13, 19

B. Process and technology change management Secs 18.3–18.7,
Ch. 25

SQAS_A01.QXD 21/9/05 8:34 PM Page xxiv

xxv
G

uides
for specialgroups

ofreaders
CSQE body of CSQE body of knowledge: Book references
knowledge: subject (chapter/section)
chapter

IV. Software project A. Planning Chs 3, 5, 6,
management Secs 7.2, 12.2,

App. 21A
B. Tracking Chs 20, 22, 25
C. Implementation Secs 7.4, 12.3, 12.4,

Ch. 20, Sec. 22.4

V. Software metrics, A. Measurement methods Secs 21.1, 21.2
measurement and B. Analytical methods Sec. 21.5
analytical methods C. Software measurement Ch. 21

VI. Software A. Inspection Ch. 8, Sec. 25.1.3
inspection, testing, B. Testing Chs 9+10
verification and C. Verification and validation Sec. 7.3, Chs 8, 10,
validation Sec. 18.3, Ch. 24

VII. Software audits A. Audit types Secs 23.3, 26.1.4
B. Audit methodology Ch. 17, Secs 23.3,

26.1.4
C. Audit planning Secs 23.3, 26.1.4

VIII. Software A. Planning and configuration identification Secs 18.1, 18.2,
configuration 18.4
management B. Configuration control, status accounting Secs 18.3, 18.5

and reporting

SQAS_A01.QXD 21/9/05 8:34 PM Page xxv

SQAS_A01.QXD 21/9/05 8:34 PM Page xxvi

par t I

Introduction

chapter 1

The software quality challenge

Two basic questions should be raised before we proceed to list the variety of
subjects and details of the book:

(1) Is it justified to devote a special book to software quality assurance (SQA)
or, in other words, can we not use the general quality assurance textbooks
available that are applicable to numerous areas and industries?

(2) Having decided to develop specialized books for software quality assur-
ance, at which of the various environments of software development, from
amateurs’ hobby to professionals’ work, should we aim our main efforts?
Put simply, what are the unique characteristics of the SQA environment?

The objective of this chapter is to answer these questions by exploring the
related issues.

After completing this chapter, you will be able to:

■ Identify the unique characteristics of software as a product and as pro-
duction process that justify separate treatment of its quality issues.

■ Recognize the characteristics of the environment where professional soft-
ware development and maintenance take place.

■ Explain the main environmental difficulties faced by software develop-
ment and maintenance teams as a result of the environment in which
they operate.

Chapter outline

1.1 The uniqueness of software quality assurance 4
1.2 The environments for which SQA methods are developed 7

Summary 11
Review questions 12
Topics for discussion 12

1.1 The uniqueness of software quality assurance

“Look at this,” shouted my friend while handing me Dagal Features’s
Limited Warranty leaflet. “Even Dagal Features can’t cope with software
bugs.” He pointed to a short paragraph on page 3 of the leaflet that states
the conditions of the warranty for AMGAL, a leading Software Master product
sold all over the world. The leaflet states the following:

LIMITED WARRANTY
Dagal Features provides no warranty, either expressed or implied, with
respect to AMGAL’s performance, reliability or fitness for any specified
purpose. Dagal Features does not warrant that the software or its docu-
mentation will fulfil your requirements. although Dagal Features has
performed thorough tests of the software and reviewed the documenta-
tion, Dagal Features does not provide any warranty that the software and
its documentation are free of errors. Dagal Features will in no case be
liable for any damages, incidental, direct, indirect or consequential,
incurred as a result of impaired data, recovery costs, profit loss and third
party claims. the software is licensed “as is”. the purchaser assumes the
complete risk stemming from application of the AMGAL program, its
quality and performance.

If physical defects are discovered in the documentation or the CD on
which AMGAL is distributed, Dagal Features will replace, at no charge,
the documentation or the CD within 180 days of purchase, provided
proof of purchase is presented.

“Is the AMGAL software really so special that its developers are incapable
of meeting the challenge of assuring a bug-free product?” continued my
friend. “Do other software packages limit their warranties in the same way?”

Though Dagal Features and AMGAL are fictitious, an examination of
the warranties offered by other software developers reveals a similar pattern.
No developer will declare that its software is free of defects, as major man-
ufacturers of computer hardware are wont to do. This refusal actually
reflects the essential elemental differences between software and other industrial
products, such as automobiles, washing machines or radios. These differ-
ences can be categorized as follows:

(1) Product complexity. Product complexity can be measured by the num-
ber of operational modes the product permits. An industrial product,
even an advanced machine, does not allow for more than a few thou-
sand modes of operation, created by the combinations of its different
machine settings. Looking at a typical software package one can find
millions of software operation possibilities. Assuring that the multitude
of operational possibilities is correctly defined and developed is a major
challenge to the software industry.

4

1
The softw

are quality
challenge

(2) Product visibility. Whereas the industrial products are visible, software
products are invisible. Most of the defects in an industrial product can be
detected during the manufacturing process. Moreover the absence of a
part in an industrial product is, as a rule, highly visible (imagine a door
missing from your new car). However, defects in software products
(whether stored on diskettes or CDs) are invisible, as is the fact that parts
of a software package may be absent from the beginning.

(3) Product development and production process. Let us now review the
phases at which the possibility of detecting defects in an industrial prod-
uct may arise:

(a) Product development. In this phase the designers and quality assur-
ance (QA) staff check and test the product prototype, in order to
detect its defects.

(b) Product production planning. During this phase the production
process and tools are designed and prepared. In some products there
is a need for a special production line to be designed and built. This
phase thus provides additional opportunities to inspect the product,
which may reveal defects that “escaped” the reviews and tests con-
ducted during the development phase.

(c) Manufacturing. At this phase QA procedures are applied to detect
failures of products themselves. Defects in the product detected in the
first period of manufacturing can usually be corrected by a change in
the product’s design or materials or in the production tools, in a way
that eliminates such defects in products manufactured in the future.

In comparison to industrial products, software products do not benefit
from the opportunities for detection of defects at all three phases of the
production process. The only phase when defects can be detected is the
development phase. Let us review what each phase contributes to the
detection of defects:

(a) Product development. During this phase, efforts of the development
teams and software quality assurance professionals are directed
toward detecting inherent product defects. At the end of this phase
an approved prototype, ready for reproduction, becomes available.

(b) Product production planning. This phase is not required for the soft-
ware production process, as the manufacturing of software copies
and printing of software manuals are conducted automatically. This
applies to any software product, whether the number of copies is
small, as in custom-made software, or large, as in software packages
sold to the general public.

(c) Manufacturing. As mentioned previously, the manufacturing of
software is limited to copying the product and printing copies of the
software manuals. Consequently, expectations for detecting defects
are quite limited during this phase.

5

1.1 The uniqueness
ofsoftw

are quality
assurance

The differences affecting the detection of defects in software products versus
other industrial products are shown in Table 1.1 and Frame 1.1.

It should be noted that significant parts of advanced machinery as well
as of household machines and other products include embedded software
components (usually termed “firmware”) that are integrated into the prod-
uct. These software components (the firmware) share the same
characteristics of the software products mentioned above. It follows that the
comparison shown above should actually be that of software products ver-
sus other industrial products and non-software components of industrial
products that include firmware. Hereinafter, when mentioning software, we
will mean software products as well as firmware.

The fundamental differences between the development and production
processes related to software products and those of other industrial products
warrant the creation of a different SQA methodology for software. The need
for special tools and methods for the software industry is reflected in the pro-
fessional publications as well in special standards devoted to SQA, such as
ISO 9000-3, “Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software”. This point is supported by the fact
that targeted guidelines have not been prepared by ISO for other industries,

6

1
The softw

are quality
challenge

Table 1.1: Factors affecting defect detection in software products vs. other industrial products

Characteristic Software products Other industrial products

Complexity Usually, very complex product Degree of complexity much
allowing for very large number lower, allowing at most a few
of operational options thousand operational options

Visibility of product Invisible product, impossible Visible product, allowing
to detect defects or omissions effective detection of defects
by sight (e.g. of a diskette or by sight
CD storing the software)

Nature of development Opportunities to detect defects Opportunities to detect
and production process arise in only one phase, defects arise in all phases of

namely product development development and production:
■ Product development
■ Product production

planning
■ Manufacturing

Frame 1.1 The uniqueness of the software development process

■ High complexity, as compared to other industrial products

■ Invisibility of the product

■ Opportunities to detect defects (“bugs”) are limited to the product
development phase

and the only other targeted guidelines have been prepared for services (ISO
9004-2, “Quality management and quality systems elements: Guidelines for
the services”).

The great complexity as well as invisibility of software, among other
product characteristics, make the development of SQA methodology and its
successful implementation a highly professional challenge.

1.2 The environments for which SQA methods are
developed

The software developed by many individuals and in different situations ful-
fills a variety of needs:

■ Pupils and students develop software as part of their education.

■ Software amateurs develop software as a hobby.

■ Professionals in engineering, economics, management and other fields
develop software to assist them in their work, to perform calculations,
summarize research and survey activities, and so forth.

■ Software development professionals (systems analysts and programmers)
develop software products or firmware as a professional career objective
while in the employment of software houses or by software development
and maintenance units (teams, departments, etc.) of large and small
industrial, financial and other organizations.

All those who participate in these activities are required to deal with soft-
ware quality problems (“bugs”). However, quality problems in their most
severe form govern the professional software development.

This book is devoted, therefore, to defining and solving many of the soft-
ware quality assurance (SQA) problems confronted by software development
and maintenance professionals. However, all other types of software devel-
opers can find portions of the book applicable to and recommended for their
own software development efforts.

Let us begin with the examination of the environment of professional soft-
ware development and maintenance (hereafter “the SQA environment”), as it
is a major consideration in the development of SQA methodologies and their
implementation. The main characteristics of this environment are as follows:

(1) Contractual conditions. As a result of the commitments and conditions
defined in the contract between the software developer and the customer,
the activities of software development and maintenance need to cope with:

■ A defined list of functional requirements that the developed software
and its maintenance need to fulfill.

■ The project budget.
■ The project timetable.

7

1.2 The environm
ents

for w
hich SQ

A
 m

ethods
are developed

The managers of software development and maintenance projects need
to invest a considerable amount of effort in the oversight of activities in
order to meet the contract’s requirements.

(2) Subjection to customer–supplier relationship. Throughout the process of
software development and maintenance, activities are under the over-
sight of the customer. The project team has to cooperate continuously
with the customer: to consider his request for changes, to discuss his crit-
icisms about the various aspects of the project, and to get his approval
for changes initiated by the development team. Such relationships do not
usually exist when software is developed by non-software professionals.

(3) Required teamwork. Three factors usually motivate the establishment of
a project team rather than assigning the project to one professional:

■ Timetable requirements. In other words, the workload undertaken
during the project period requires the participation of more than one
person if the project is to be completed on time.

■ The need for a variety of specializations in order to carry out the project.
■ The wish to benefit from professional mutual support and review for

the enhancement of project quality.

(4) Cooperation and coordination with other software teams. The carrying-
out of projects, especially large-scale projects, by more than one team is
a very common event in the software industry. In these cases, coopera-
tion may be required with:

■ Other software development teams in the same organization.
■ Hardware development teams in the same organization.
■ Software and hardware development teams of other suppliers.
■ Customer software and hardware development teams that take part

in the project’s development.

An outline of cooperation needs, as seen from the perspective of the
development team, is shown in Figure 1.1.

(5) Interfaces with other software systems. Nowadays, most software sys-
tems include interfaces with other software packages. These interfaces
allow data in electronic form to flow between the software systems, free
from keying in of data processed by the other software systems. One can
identify the following main types of interfaces:

■ Input interfaces, where other software systems transmit data to your
software system.

■ Output interfaces, where your software system transmits processed
data to other software systems.

■ Input and output interfaces to the machine’s control board, as in med-
ical and laboratory control systems, metal processing equipment, etc.

Salary processing software packages provide good examples of typical
input and output interfaces to other software packages – see Figure 1.2.
First let us look at the input interface. In order to calculate salaries, one
needs the employees’ attendance information, as captured by the time

8

1
The softw

are quality
challenge

clocks placed at the entrance to the office building and processed later
by the attendance control software system. Once a month, this informa-
tion (the attendance lists including the overtime data) is transmitted
electronically from the attendance control system to the salary process-
ing system. This information transmission represents an input interface
for the salary processing software system; at the same time it represents
an output interface to the attendance control system. Now, let us examine
the output interface of our system. One of the outputs of the salary
processing system is the list of “net” salaries, after deduction of the
income tax and other items, payable to the employees. This list, including
the employees’ bank account details, has to be sent to the banks. The
transmission of the list of salary payments is done electronically, repre-
senting an output interface for the salary processing system and an input
interface for the bank’s account system.

9

1.2 The environm
ents

for w
hich SQ

A
 m

ethods
are developed

Our software
development

team

Hardware
development

team
Software

development
team

Software
development

team

Other
supplier’s

development
team

Customer’s
development

team

Other
supplier’s

development
team

Other
supplier’s

development
team

Software
development
organization

Cooperation and
coordination

Other
supplier’s

development
team

Figure 1.1: A cooperation and coordination scheme for a software development team of a large-
scale project

(6) The need to continue carrying out a project despite team member
changes. It is quite common for team members to leave the team during
the project development period, whether owing to promotions to higher
level jobs, a switch in employers, transfers to another city, and so forth.
The team leader then has to replace the departing team member either
by another employee or by a newly recruited employee. No matter how
much effort is invested in training the new team member, “the show
must go on”, which means that the original project contract timetable
will not change.

(7) The need to continue carrying out software maintenance for an extend-
ed period. Customers who develop or purchase a software system expect
to continue utilizing it for a long period, usually for 5–10 years. During
the service period, the need for maintenance will eventually arise. In
most cases, the developer is required to supply these services directly.
Internal “customers”, in cases where the software has been developed
in-house, share the same expectation regarding the software mainte-
nance during the service period of the software system.

The environmental characteristics create a need for intensive and continuous
managerial efforts parallel to the professional efforts that have to be invest-
ed in order to assure the project’s quality, in other words to assure the
project’s success.

A summary of the main characteristics of the SQA environment is shown
in Frame 1.2.

A significant amount of software as well as firmware development is not
carried out subject to formal contracts or formal customer–supplier rela-
tionships, as mentioned in the first two SQA environment characteristics. This
type of activity usually concerns software developed in-house for internal use

10

1
The softw

are quality
challenge

Attendance
control
system

Monthly attendance report, including overtime calculationsInput Interface

Salary
processing

system

Money transfers to employees’ bank accountsOutput Interface

Bank
information

system

Figure 1.2: The salary software system – an example of software interfaces

or for marketing as software packages and in-house development of firm-
ware. The relationships between the marketing department that initiates and
defines the qualifications of a new product and the respective in-house soft-
ware development department often resemble a contract and customer–
supplier relationship. The same applies to internal requests for a new soft-
ware system or for the upgrading of current software or firmware to be
implemented by the organization’s software department. Actual relation-
ships between the internal “customers” and the development departments
are found to vary greatly when measured by a formal–informal scale. Some
managers claim that the closer the relationships to the formal form, the
greater the prospects for the project’s success.

Summary

(1) The uniqueness of software quality assurance.

The fundamental differences between software products (including firmware) and
other products are caused by the higher product complexity, by the invisibility of
software and by the nature of the product development and production process.
These differences create the need for an SQA methodology and tools for SQA that
will meet the special and different challenges for the development and operation of
quality assurance for software.

(2) The environments for which SQA methods were developed.

The SQA methods and tools discussed in this book are specially aimed at the needs
of professional software development and maintenance, activities where quality
problems appear in their most severe form, and where the most painful losses are
expected. Therefore any method or tool to be applied is subject to the environmen-
tal characteristics of their activities, namely:

■ Contract conditions and commitments defining the contents and timetable.
■ The conditions of the customer–supplier relationship, as realized by the need

for consultation with the customer and the acquisition of his approval.

11

S
um

m
ary

Frame 1.2 Summary of the main characteristics of SQA environment

1. Being contracted

2. Subjection to customer–supplier relationship

3. Requirement for teamwork

4. Need for cooperation and coordination with other development teams

5. Need for interfaces with other software systems

6. Need to continue carrying out a project while the team changes

7. Need to continue maintaining the software system for years

■ Teamwork requirements.
■ Need for cooperation and coordination with other software and hardware devel-

opment teams both internally and externally.
■ Need for interfaces with other software systems.
■ Need to continue carrying out a project when team members change.
■ Need to conduct maintenance of the software system for several years.

These environmental characteristics also apply to internal development of software
and firmware, though only informal contract or informal customer–supplier rela-
tionships exist in these cases. These characteristics demand that intensive and
continuous managerial efforts be expended in parallel to the professional efforts
that have to be invested in order to ensure the project’s quality or, in other words,
to assure the project’s success.

Review questions

1.1 There are three major differences between software products and other industrial
products.

(1) Identify and describe the differences.
(2) Discuss the ways in which these differences affect SQA.

1.2 It is claimed that no significant SQA activities are expected to take place during the
phase of production planning for software products.

(1) Discuss this claim.
(2) Compare the required production planning for a new automobile model with the

production planning efforts required for a new release of a software product.

1.3 Seven issues characterize the professional software development and mainte-
nance environment.

(1) Identify and describe these characteristics.
(2) Which of these environmental characteristics mainly affect the professional

efforts required for carrying out software development and maintenance proj-
ects? List the characteristics and explain why a professional effort is needed.

(3) Which of these environmental characteristics mainly affect the managerial
efforts required for carrying out software development and maintenance proj-
ects? List the characteristics and explain why such efforts are needed.

Topics for discussion

1.1 Educational systems are assumed to prepare the students to cope with real-life
conditions. Examine the procedural requirements of a software development proj-
ect or final software project, and determine which of the requirements could be
considered as preparatory to professional life situations as discussed above.

1.2 Referring to the seven environmental characteristics of software development and

12

1
The softw

are quality
challenge

maintenance, consider the characteristics of future software products, discussing
whether the professional and managerial burden of coping with these characteris-
tics in future is expected to be higher or lower when compared with the current
performance of these activities.

1.3 The interfaces of a salary processing system are exhibited in Figure 1.2.

(1) Suggest what are the main benefits of applying computerized interfaces
instead of transferring printouts.

(2) Give two additional examples where input interfaces are applied.
(3) Give two additional examples where output interfaces are applied.
(4) Suggest additional situations where the use of input and output interfaces is

not applied and should be recommended.
(5) Would you advise all information transfers from one organization to another

be performed by computerized interface? Discuss the reasons behind your
answer.

1.4 The need to carry out work by a team demands additional investment in coordina-
tion of the team members. Discuss whether these managerial efforts could be
saved if the work were performed as a “one-man job”.

1.5 It is clear that a software development project carried out by a software house for
a specific customer is carried out under content and timetable obligations, and is
subject to the customer–supplier relationship.

(1) Discuss whether a customer–supplier relationship is expected when the soft-
ware developed is to be sold to the public as a software package.

(2) Discuss whether a customer–supplier relationship is expected when software
is developed for in-house use, as in the case where a software development
department develops an inventory program for the company’s warehouses.

(3) Some managers claim that the closer relationships are to a formal pattern, the
greater the prospects are for the project’s success. Discuss whether imple-
menting customer–supplier relationships in the situations mentioned in (1)
and (2) are a benefit for the company (referring to the internal customer and
supplier) or an unnecessary burden to the development team.

1.6 It has been claimed that environmental characteristics create the need for inten-
sive and continuous managerial efforts parallel to the professional efforts that
have to be invested in order to ensure the project’s quality or, in other words, to
assure the project’s success. Discuss the reasons behind this claim, including an
analysis of the managerial effort created by each of the SQA environmental char-
acteristics.

13

Topics
for discussion

chapter 2

What is software quality?

Before we proceed to study the components of the SQA system, the basic
concepts and objectives of software quality assurance should be discussed.
Later, it will be possible to examine how and to what extent various method-
ologies and tools conform to these concepts and objectives.

After completing this chapter, you will be able to:

■ Define software, software quality and software quality assurance.
■ Distinguish between software errors, software faults and software failures.
■ Identify the various causes of software errors.
■ Explain the objectives of software quality assurance activities.
■ Distinguish and explain the difference between software quality assur-

ance and quality control.
■ Explain the relationship between software quality assurance and software

engineering.

Chapter outline

2.1 What is software? 15
2.2 Software errors, faults and failures 16
2.3 Classification of the causes of software errors 19
2.4 Software quality – definition 24
2.5 Software quality assurance – definition and objectives 25

2.5.1 Software quality assurance definitions 26
2.5.2 Software quality assurance vs. software quality control 28
2.5.3 The objectives of SQA activities 29

2.6 Software quality assurance and software engineering 30

Summary 30
Selected bibliography 32
Review questions 32
Topics for discussion 33

15

2.1 W
hatis

softw
are?

2.1 What is software?

Intuitively, when thinking about software, we imagine an accumulation of
programming language instructions and statements or development tool
instructions, that together form a program or software package. This pro-
gram or software package is usually referred to as the “code”. Is it enough
to take care of the code in order to assure the quality of the services provid-
ed by the software program? Are additional elements necessary to assure
their quality and thus assure the operational success of the software system?

As a preliminary answer, let us review the IEEE definition for “software”
(IEEE, 1991), shown in Frame 2.1.

The IEEE definition of software, which is almost identical to the ISO defini-
tion (ISO, 1997, Sec. 3.11 and ISO/IEC 9000-3 Sec. 3.14), lists the following
four components of software:

■ Computer programs (the “code”)
■ Procedures
■ Documentation
■ Data necessary for operating the software system.

All four components are needed in order to assure the quality of the software
development process and the coming years of maintenance services for the
following reasons:

■ Computer programs (the “code”) are needed because, obviously, they
activate the computer to perform the required applications.

■ Procedures are required, to define the order and schedule in which the pro-
grams are performed, the method employed, and the person responsible for
performing the activities that are necessary for applying the software.

■ Various types of documentation are needed for developers, users and
maintenance personnel. The development documentation (the require-
ments report, design reports, program descriptions, etc.) allows efficient
cooperation and coordination among development team members and
efficient reviews and inspections of the design and programming prod-
ucts. The user’s documentation (the “user’s manual”, etc.) provides a
description of the available applications and the appropriate method for

Frame 2.1 Software – IEEE definition

Software is:
Computer programs, procedures, and possibly associated documentation and
data pertaining to the operation of a computer system.

their use. The maintenance documentation (the “programmer’s software
manual”, etc.) provides the maintenance team with all the required infor-
mation about the code, and the structure and tasks of each software
module. This information is used when trying to locate causes of software
failures (“bugs”) or to change or add to existing software.

■ Data including parameters, codes and name lists that adapt the software
to the needs of the specific user are necessary for operating the software.
Another type of essential data is the standard test data, used to ascertain
that no undesirable changes in the code or software data have occurred,
and what kind of software malfunctioning can be expected.

To sum up, software quality assurance always includes, in addition to code
quality, the quality of the procedures, the documentation and the necessary
software data.

2.2 Software errors, faults and failures

■ “We’ve used the Simplex HR software in our Human Resources Department
for about three years and we have never had a software failure.”

■ “I started to use Simplex HR two months ago; we had so many failures
that we are considering replacing the software package.”

■ “We have been using the same software package for almost four years.
We were very satisfied throughout the period until the last few months,
when we suddenly faced several severe failures. The Support Center of
the software house from which we bought the package claims that they
have never encountered failures of the type we experienced even though
they serve about 700 customers who utilize Simplex HR.”

All these views, expressed by participants in a human resources management
conference, refer to the same software package. Is it possible for such a vari-
ation in users’ experience with failure to appear with the same software
package? Can a software package that successfully served an organization for
a long period “suddenly” change its nature (quality) and become “bugged”?

The answer to these questions is yes, and it is rooted in the characteris-
tics of software.

The origin of software failures lies in a software error made by a pro-
grammer. An error can be a grammatical error in one or more of the code lines,
or a logical error in carrying out one or more of the client’s requirements.

However, not all software errors become software faults. In other words,
in some cases, the software error can cause improper functioning of the soft-
ware in general or in a specific application. In many other cases, erroneous
code lines will not affect the functionality of the software as a whole; in a
part of these cases, the fault will be corrected or “neutralized” by subsequent
code lines.

16

2
W

hatis
softw

are quality?

17

2.2 S
oftw

are errors, faults
and failures

We are interested mainly in the software failures that disrupt our use of
the software. This requires us to examine the relationship between software
faults and software failures. Do all software faults end with software fail-
ures? Not necessarily: a software fault becomes a software failure only when
it is “activated” – when the software user tries to apply the specific, faulty
application. In many situations, a software fault is never activated due to the
user’s lack of interest in the specific application or to the fact that the com-
bination of conditions necessary to activate the fault never occurs.

Example 1: The “Pharm-Plus” software package
“Pharm-Plus”, a software package developed for the operations required of
a pharmacy chain, included several software faults, such as the following:

(a) The chain introduced a software requirement to avoid the current sale
of goods to customers whose total debts will exceed $200 upon com-
pletion of the current sale. Unfortunately, the programmer erroneously
put the limit at $500, a clear software fault. However, a software failure
never occurred as the chain’s pharmacies do not offer credit to their cus-
tomers, that is, sales are cash sales or credit card sales.

(b) Another requirement introduced was the identification of “super cus-
tomers”. These were defined as those customers of the pharmacy who
made a purchase at least once a month, the average value of that pur-
chase made in the last M months (e.g., 12 months) being more than N
times (e.g., five times) the value of the average customer’s purchase at the
pharmacy. It was required that once “super customers” reached the
cashier, they would be automatically identified by the cash register. (The
customers could then be treated accordingly, by receiving a special dis-
count or gift, for example.) The software fault (caused by the system
analyst) was that “super customers” could be identified solely by the
value of their current purchase. In other words, customers whose regu-
lar purchases consisted of only one or two low-cost items could
mistakenly be identified as “super customers”.

At this particular chain, this software fault never turned into a software fail-
ure because its pharmacies, which allow for cash sales or credit card sales
only, were unconcerned about identifying their customers, and were thus
uninterested in applying the “super customer” option. This was the case for
several years until the management of a new pharmacy decided to promote
sales by developing customer–pharmacy relationships, and chose to imple-
ment the “super customer” option offered by “Pharm-Plus”. The pharmacy
defined a “super customer” to be a person whose average purchase in the
last three months (M = 3) was over 10 times (N = 10) the value of the aver-
age purchase made in the pharmacy. In order to execute their marketing
strategy, management began to distribute a pharmacy ID card to their cus-
tomers, who were asked to show the card to the cashier. The cashiers were

instructed to give special treatment to customers who were identified by the
cash register as “super customers”. It was soon observed that customers who
entered the pharmacy for the first time as well as those who were recognized
as frequent purchasers of only one or two items were identified as “super
customers”. In this case, the severe software fault turned into a severe soft-
ware failure. Obviously, circumstances could have hidden this serious case of
a severe software fault forever.

Example 2: The “Meteoro-X” meteorological equipment firmware
The software requirements for “Meteoro-X” meteorological equipment
firmware (software embedded in the product) were meant to block the
equipment’s operation when its internal temperature rose above 60°C. A
programmer error resulted in a software fault when the temperature limit
was coded as 160°. This fault could cause damage when the equipment was
subjected to temperatures higher than 60°. Because the equipment was used
only in those coastal areas where temperatures never exceeded 60°, the soft-
ware fault never turned into a software failure.

These examples should adequately make the point that only a portion of the
software faults, and in some cases only a small portion of them, will turn
into software failures in either the early or later stages of the software’s appli-
cation. Other software faults will remain hidden, invisible to the software
users, yet capable of being activated when the situation changes.

Figure 2.1 illustrates the relationships between software errors, faults
and failures. In this figure, the development process yields 17 software
errors, only eight of which become software faults. Of these faults, only three
turnout to be software failures.

Importantly, developers and users have different views of the software
product regarding its internal defects. While developers are interested in soft-
ware errors and faults, their elimination, and the ways to prevent their
generation, software users are worried about software failures.

18

2
W

hatis
softw

are quality?

Software development process

software error software fault software failure

Figure 2.1: Software errors, sotware faults and software failures

2.3 Classification of the causes of software errors

As software errors are the cause of poor software quality, it is important to
investigate the causes of these errors in order to prevent them. A software
error can be “code error”, a “procedure error”, a “documentation error”, or
a “software data error”. It should be emphasized that the causes of all these
errors are human, made by systems analysts, programmers, software testers,
documentation experts, managers and sometimes clients and their represen-
tatives. Even in rare cases where software errors may be caused by the
development environment (interpreters, wizards, automatic software gener-
ators, etc.), it is reasonable to claim that it is human error that caused the
failure of the development environment tool. The causes of software errors
can be further classified as follows according to the stages of the software
development process in which they occur.

(1) Faulty definition of requirements
The faulty definition of requirements, usually prepared by the client, is
one of the main causes of software errors. The most common errors of this
type are:

■ Erroneous definition of requirements.

■ Absence of vital requirements.

■ Incomplete definition of requirements. For instance, one of the require-
ments of a municipality’s local tax software system refers to discounts
granted to various segments of the population: senior citizens, parents of
large families, and so forth. Unfortunately, a discount granted to students
was not included in the requirements document.

■ Inclusion of unnecessary requirements, functions that are not expected to
be needed in the near future.

(2) Client–developer communication failures
Misunderstandings resulting from defective client–developer communication
are additional causes for the errors that prevail in the early stages of the
development process:

■ Misunderstanding of the client’s instructions as stated in the requirement
document.

■ Misunderstanding of the client’s requirements changes presented to the
developer in written form during the development period.

■ Misunderstanding of the client’s requirements changes presented orally to
the developer during the development period.

■ Misunderstanding of the client’s responses to the design problems pre-
sented by the developer.

19

2.3 Classification ofthe causes
ofsoftw

are errors

■ Lack of attention to client messages referring to requirements changes
and to client responses to questions raised by the developer on the part of
the developer.

(3) Deliberate deviations from software requirements
In several circumstances, developers may deliberately deviate from the doc-
umented requirements, actions that often cause software errors. The errors
in these cases are byproducts of the changes. The most common situations of
deliberate deviation are:

■ The developer reuses software modules taken from an earlier project
without sufficient analysis of the changes and adaptations needed to cor-
rectly fulfill all the new requirements.

■ Due to time or budget pressures, the developer decides to omit part of the
required functions in an attempt to cope with these pressures.

■ Developer-initiated, unapproved improvements to the software, intro-
duced without the client’s approval, frequently disregard requirements
that seem minor to the developer. Such “minor” changes may, eventual-
ly, cause software errors.

(4) Logical design errors
Software errors can enter the system when the professionals who design the
system – systems architects, software engineers, analysts, etc. – formulate the
software requirements. Typical errors include:

■ Definitions that represent software requirements by means of erroneous
algorithms.

■ Process definitions that contain sequencing errors. For example, the soft-
ware requirements for a firm’s debt-collection system define the
debt-collection process as follows. Once a client does not pay his debts,
even after receiving three successive notification letters, the details are to
be reported to the sales department manager who will decide whether to
proceed to the next stage, referral of the client to the legal department.
The systems analyst defined the process incorrectly by stating that after
sending three successive letters followed by no receipt of payment, the
firm would include the name of the client on a list of clients to be han-
dled by the legal department. The logical error was caused by the
analyst’s erroneous omission of the sales department phase within the
debt-collection process.

■ Erroneous definition of boundary conditions. For example, the client’s
requirements stated that a special discount will be granted to customers
who make purchases more than three times in the same month. The ana-
lyst erroneously defined the software process to state that the discount
would be granted to those who make purchases three times or more in
the same month.

20

2
W

hatis
softw

are quality?

■ Omission of required software system states. For example, a real-time
computerized apparatus is required to react according to a combination
of temperatures and pressures. The analyst did not define the needed
reaction when the temperature is over 120°C and the pressure is between
6 and 8 atmospheres.

■ Omission of definitions concerning reactions to illegal operation of the
software system. For example, in a computerized theater ticketing system
operated by the customer with no human operator interface, the software
system is required to limit the sales to 10 tickets per customer.
Accordingly, any request for the purchase of more than 10 tickets is “ille-
gal”. In his design, the analyst included a message stating that sales are
limited to 10 tickets per customer, but did not define the system’s reaction
to the case where a customer (who might not have listened carefully to
the message) keys in a number higher than 10. When performing the ille-
gal request, a system “crash” is to be expected as no computerized
reaction was defined for this illegal operation.

(5) Coding errors
A broad range of reasons cause programmers to make coding errors. These
include misunderstanding the design documentation, linguistic errors in the
programming languages, errors in the application of CASE and other devel-
opment tools, errors in data selection, and so forth.

(6) Non-compliance with documentation and coding instructions
Almost every development unit has its own documentation and coding stan-
dards that define the content, order and format of the documents, and the
code created by team members. To support this requirement, the unit devel-
ops and publicizes its templates and coding instructions. Members of the
development team or unit are required to comply with these requirements.

One may ask why non-compliance with these instructions should cause
software errors. The quality risks of non-compliance result from the special
characteristics of the software development environment, discussed in
Chapter 1. Even if the quality of the “non-complying” software is accept-
able, future handling of this software (by the development and/or
maintenance teams) is expected to increase the rate of errors:

■ Team members who need to coordinate their own codes with code mod-
ules developed by “non-complying” team members can be expected to
encounter more than the usual number of difficulties when trying to
understand the software developed by the other team members.

■ Individuals replacing the “non-complying” team member (who has
retired or been promoted) will find it difficult to fully understand his or
her work.

■ The design review team will find it more difficult to review a design pre-
pared by a non-complying team.

21

2.3 Classification ofthe causes
ofsoftw

are errors

■ The test team will find it more difficult to test the module; consequently,
their efficiency is expected to be lower, leaving more errors undetected.
Moreover, team members required to correct the detected errors can be
expected to encounter greater difficulties when doing so. They may leave
some errors only partially corrected, and even introduce new errors as a
result of their incomplete grasp of the other team members’ work.

■ Maintenance teams required to contend with the “bugs” detected by
users and to change or add to the existing software will face difficulties
when trying to understand the software and its documentation. This is
expected to result in an excessive number of errors and the expenditure
of an excessive amount of maintenance effort.

(7) Shortcomings of the testing process
Shortcomings of the testing process affect the error rate by leaving a greater
number of errors undetected or uncorrected. These shortcomings result from
the following causes:

■ Incomplete test plans leave untreated portions of the software or the
application functions and states of the system.

■ Failures to document and report detected errors and faults.

■ Failure to promptly correct detected software faults as a result of inap-
propriate indications of the reasons for the fault.

■ Incomplete correction of detected errors due to negligence or time pressures.

(8) Procedure errors
Procedures direct the user with respect to the activities required at each
step of the process. They are of special importance in complex software
systems where the processing is conducted in several steps, each of which
may feed a variety of types of data and allow for examination of the inter-
mediate results.

For example, “Eiffel”, a chain of construction materials stores, has
decided to grant a 5% discount to customers, who are billed once a month.
The discount is offered to customers whose total purchases in the last
12 months exceed $1 million. Nevertheless, Eiffel’s management has decid-
ed to withdraw this discount from customers who returned goods valued in
excess of 10% of their purchases during the last three months. The chain’s
billing system is decentralized, so that every store processes the monthly
invoices independently. Table 2.1 presents a comparison of correct and
incorrect procedures regarding application of the discount.

(9) Documentation errors
The documentation errors that trouble the development and maintenance
teams are errors in the design documents and in the documentation

22

2
W

hatis
softw

are quality?

integrated into the body of the software. These errors can cause addi-
tional errors in further stages of development and during maintenance.

Another type of documentation error, one that affects mainly the users,
is an error in the user manuals and in the “help” displays incorporated in the
software. Typical errors of this type are:

■ Omission of software functions.
■ Errors in the explanations and instructions given to users, resulting in

“dead ends” or incorrect applications.
■ Listing of non-existing software functions, that is, functions planned in

the early stages of development but later dropped, and functions that
were active in previous versions of the software but cancelled in the cur-
rent version.

23

2.3 Classification ofthe causes
ofsoftw

are errors
Table 2.1: “Eiffel” billing procedures – correct and incorrect discount procedures

Correct procedure Incorrect procedure

At the beginning of each month, Eiffel’s central At the end of each year, Eiffel’s central
information processing department: information processing department:

(1) Collects the sales data and returned (1) Collects the previous year’s sales data
goods data for the previous month for for each of the customers from all the
each of its customers from all the stores in chain’s stores.
the chain. (2) Calculates the cumulative purchases

(2) Calculates the cumulative purchases of of each customer for the previous year
each customer for the last 12 months in in all the chain’s stores.
all the chain’s stores. (3) Prepares a list of all customers whose

(3) Calculates the percentage of returned purchases exceed $1 million and
goods for the last 3 months of each distributes it to all the stores.
customer in all the chain’s stores.

(4) Prepares a list of all the customers who At the end of the each quarter, the
deserve the 5% discount and distributes it individual store’s information processing
to each store before the end of the month. unit:

At the beginning of the month the individual (1) Calculates the percentage of goods
store’s information processing unit: returned during the last quarter for

each customer.
(1) Processes the monthly purchases for each (2) Prepares a list of all customers whose

of the customers. returned goods for the last quarter
(2) Calculates the discount according to the exceed 10% of that quarter’s purchase.

updated list that was received at the end
of the previous month. At the beginning of the month, the store’s

information processing unit:

(1) Processes the monthly purchases for
each of the customers.

(2) Calculates the discount according to the
last year’s purchase data in all the
stores, and according to the store’s
records of returns in the last quarter.

Frame 2.2 summarizes the causes of software errors.

2.4 Software quality – definition

Our introduction to software components and to errors and their causes, and
our knowledge that errors harm the quality of the software, have prepared
us to define our target – software quality.

The definition suggested by IEEE (IEEE, 1991) shown in Frame 2.3 is
the definition we have chosen to apply in this text.

Frame 2.3 offers two alternative definitions of software quality, held by
the founders of modern quality assurance, Philip B. Crosby and Joseph M.
Juran. Each definition reflects a different conception of software quality:

■ “Quality means conformance to requirements” (Crosby, 1979).
■ “(1) Quality consists of those product features which meet the needs of

customers and thereby provide product satisfaction.
(2) Quality consists of freedom from deficiencies” (Juran, 1988).

Crosby’s definition of software quality refers to the degree to which the written
software meets the specifications prepared by the customer and his professional

24

2
W

hatis
softw

are quality?

Frame 2.3 Software quality – IEEE definition

Software quality is:
1. The degree to which a system, component, or process meets specified

requirements.

2. The degree to which a system, component, or process meets customer or
user needs or expectations.

Frame 2.2 The nine causes of software errors

1. Faulty requirements definition

2. Client–developer communication failures

3. Deliberate deviations from software requirements

4. Logical design errors

5. Coding errors

6. Non-compliance with documentation and coding instructions

7. Shortcomings of the testing process

8. Procedure errors

9. Documentation errors

team. This means that errors included in the software specification are not
considered and do not reduce the software quality, a characteristic that can
be considered the approach’s deficiency.

Juran’s definition is aimed at achieving customer satisfaction, and views
the fulfillment of customers’ real needs as the true goal of software quality.
Adopting the second definition demands that the developer invest significant
professional efforts in examining and correcting, if necessary, the customer’s
requirements specifications. The main deficiency of this definition is the fact
that it frees the customer of any professional responsibility for the accuracy
and completeness of the software specifications. Also, following this con-
ception, the customer is allowed to express his real needs, which may differ
from the project specifications on one or more issues, at a very late stage of
the project, even at the final stage. As a result, difficulties are expected to
arise during the development process of the project, especially when attempt-
ing to prove how well the program fulfills the user’s needs.

Additional aspects of software quality are included in the definition sug-
gested by Pressman (Pressman, 2000, sec. 8.3), shown in Frame 2.4.

Pressman’s definition suggests three requirements for quality assurance
that are to be met by the developer:

■ Specific functional requirements, which refer mainly to the outputs of the
software system.

■ The software quality standards mentioned in the contract.
■ Good Software Engineering Practices (GSEP), reflecting state-of-the-art

professional practices, to be met by the developer even though not explic-
itly mentioned in the contract.

In effect, Pressman’s definition provides operative directions for testing the
degree to which the requirements are met.

2.5 Software quality assurance – definition and objectives

In this section we discuss:

■ The alternative SQA definitions
■ Software quality assurance compared with software quality control
■ The objectives of SQA.

25

2.5 S
oftw

are quality
assurance –

 definition and objectives

Frame 2.4 Software quality – Pressman’s definition

Software quality is defined as:
Conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics
that are expected of all professionally developed software.

2.5.1 Software quality assurance definitions

One of the most commonly used definitions of software quality assurance
(SQA) is offered by the IEEE Glossary (IEEE, 1991), cited in Frame 2.5.

This definition may be characterized in the following:

■ Plan and implement systematically. SQA is based on planning and the
application of a variety of actions that are integrated into all the stages of
the software development process. This is done in order to substantiate
the client’s confidence that the software product will meet all the techni-
cal requirements.

■ Refer to the software development process.
■ Refer to the specifications of the technical requirements.

Despite its emphasis on planning and systematic implementation, the IEEE
definition restrains the scope of SQA in several directions, excluding main-
tenance and timetable and budget issues. This author adopts a broader
conception of SQA that, of course, affects its definition. A broader defini-
tion, though placing additional burdens on the SQA function, is expected to
yield better results and greater customer satisfaction. The main deviations
from the IEEE definition are:

■ SQA should not be limited to the development process. Instead, it should
be extended to cover the long years of service subsequent to product
delivery. Adding issues directly related to the software product introduces
quality issues that integrate software maintenance functions into the
overall conception of SQA.

■ SQA actions should not be limited to the technical aspects of the func-
tional requirements, but should include also activities that deal with
scheduling and the budget. The reasoning behind this expansion in scope
is the close relationship between timetable or budget failure and the meet-
ing of functional technical requirements. Very often, when projects are
under severe time constraints, professionally “dangerous” changes that
can seriously harm the prospects of meeting the functional requirements
are made in the project schedule. Similar undesirable results can be expect-
ed with projects that are under budgetary constraints and unable to cope
with the inadequate resources allocated to the project and its maintenance.

26

2
W

hatis
softw

are quality?

Frame 2.5 Software quality assurance – The IEEE definition

Software quality assurance is:
1. A planned and systematic pattern of all actions necessary to provide

adequate confidence that an item or product conforms to established
technical requirements.

2. A set of activities designed to evaluate the process by which the products
are developed or manufactured. Contrast with quality control.

The resulting expanded SQA definition is shown in Frame 2.6.

The expanded SQA definition corresponds strongly with the concepts at
the foundation of the ISO 9000 standards regarding SQA (see the various
requirements of ISO 9000-3, 1997). The expanded definition also corre-
sponds to the main outlines of the Capacity Maturity Model (CMM) for
software (Paulk et al., 1993; Tingey, 1997).

Table 2.2 compares elements of the expanded SQA definition with:

■ The IEEE SQA definition
■ The relevant ISO 9000-3 sections
■ CMM requirements.

This book adopts the expanded definition of SQA, which will serve as the basis
for the inclusion and evaluation of various components of the SQA system.

27

2.5 S
oftw

are quality
assurance –

 definition and objectives

Frame 2.6 SQA – expanded definition

Software quality assurance is:
A systematic, planned set of actions necessary to provide adequate
confidence that the software development process or the maintenance
process of a software system product conforms to established functional
technical requirements as well as with the managerial requirements of keeping
the schedule and operating within the budgetary confines.

Table 2.2 The expanded SQA definition – comparisons with other versions

No. SQA expanded IEEE SQA Relevant sections Relevant SEI-CMM
definition definition from ISO 9000–3 requirements

1 Systematic, planned + Management Software quality
actions are required responsibilities (4.1) management

Quality system (4.2) Requirement management
Contract review (4.3) Software project planning

Software tracking and
oversight

2 Deals with the + Contract review (4.3) Requirement management
process of software Design control (4.4) Software project planning
development Control of customer-supplied Software tracking and

product (4.7) oversight
Process control (4.9) Software configuration
Inspection and testing (4.10) management
Control of non-conforming Software product
product (4.13) engineering
Control of quality records Peer review
(4.16) Software subcontractor
Statistical techniques (4.20) management

Quantitative process
management
Software quality
management

▲

2.5.2 Software quality assurance vs. software quality control

Two phrases are constantly repeated within the context of software quality:
“Quality control” and “quality assurance”. Are they synonymous? How are
they related? According to the IEEE software quality assurance definition (see
Frame 2.5), “quality control” is to be contrasted with “quality assurance”.

These two terms represent separate and distinct concepts:

■ Quality control is defined as “a set of activities designed to evaluate the
quality of a developed or manufactured product” (IEEE, 1991); in other
words, activities whose main objective is the withholding of any product
that does not qualify. Accordingly, quality control inspection and other

28

2
W

hatis
softw

are quality?

Table 2.2 Continued

No. SQA expanded IEEE SQA Relevant sections Relevant SEI-CMM
definition definition from ISO 9000–3 requirements

3 Deals with software Contract review – Requirement management
maintenance management concerns Software project planning
(re. the product) (4.3.2c) Software tracking and

Process control (4.9) oversight
Servicing (4.19) Software product
Statistical techniques (4.20) engineering

Quantitative process
management
Software quality
management

4 Deals with + Contract review (4.3) Requirement management
functional technical Design control (4.4) Software project planning
requirements Control of customer-supplied Software tracking and

product (4.7) oversight
Inspection and testing (4.10) Software configuration
Control of non-conforming management
product (4.13) Software product

engineering
Peer reviews
Software subcontractor
management

5 Deals with Contract review – Requirement management
scheduling management concerns Software project planning
requirements (4.3.2c) Software tracking and

Identifying the schedule oversight
(4.4.2g)
Suppliers’ review of
progress of software
development (4.4.3)

6 Deals with Identifying the schedule Requirement management
budgetary controls (4.4.2g) Software project planning

Software tracking and
oversight

activities take place as the development or manufacturing of the product
is completed yet before the product is shipped to the client.

■ The main objective of quality assurance is to minimize the cost of guar-
anteeing quality by a variety of activities performed throughout the
development and manufacturing processes/stages. These activities prevent
the causes of errors, and detect and correct them early in the development
process. As a result, quality assurance activities substantially reduce the
rate of products that do not qualify for shipment and, at the same time,
reduce the costs of guaranteeing quality in most cases.

In sum:

(1) Quality control and quality assurance activities serve different objectives.

(2) Quality control activities are only a part of the total range of quality
assurance activities.

2.5.3 The objectives of SQA activities

The objectives of SQA activities refer to the functional, managerial and eco-
nomic aspects of software development and software maintenance. These
objectives are listed in Frame 2.7.

29

2.5 S
oftw

are quality
assurance –

 definition and objectives

Frame 2.7 The objectives of SQA activities

Software development (process-oriented):

1. Assuring an acceptable level of confidence that the software will conform
to functional technical requirements.

2. Assuring an acceptable level of confidence that the software will conform
to managerial scheduling and budgetary requirements.

3. Initiating and managing of activities for the improvement and greater
efficiency of software development and SQA activities. This means
improving the prospects that the functional and managerial requirements
will be achieved while reducing the costs of carrying out the software
development and SQA activities.

Software maintenance (product-oriented):

1. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to the functional technical requirements.

2. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to managerial scheduling and
budgetary requirements.

3. Initiating and managing activities to improve and increase the efficiency of
software maintenance and SQA activities. This involves improving the prospects
of achieving functional and managerial requirements while reducing costs.

2.6 Software quality assurance and software engineering

According to the IEEE (1991), software engineering is defined as follows:

(1) The application of a systematic, disciplined, quantifiable approach to
the development, operation and maintenance of software; that is, the
application of engineering to software.

(2) The study of approaches as in (1).

The characteristics of software engineering, especially the systematic, disci-
plined and quantitative approach at its core, make the software engineering
environment a good infrastructure for achieving SQA objectives. The
methodologies and tools that are applied by software engineering determine,
to a considerable extent, the level of quality to be expected from the software
process and the maintenance services. Therefore, it is desirable that when
making decisions about software methodologies and tools, SQA considera-
tions be added to the efficiency and economy considerations associated with
software engineering.

It is commonly accepted that cooperation between software engineers
and the SQA team is the appropriate way to achieve efficient and economic
development and maintenance activities that, at the same time, assure the
quality of the product of these activities.

Summary

(1) Define software, software quality and software quality assurance.

■ Software, from the SQA perspective, is the combination of computer programs (the
“code”), procedures, documentation, and data necessary for operating the software
system. The combination of all four components is needed to assure the quality of
the development process as well as the ensuing long years of maintenance.

■ Software quality, according to Pressman’s definition, is the degree of confor-
mance to specific functional requirements, specified software quality
standards, and Good Software Engineering Practices (GSEP).

■ Software quality assurance: this book adopts an expanded definition of the
widely accepted IEEE definition of software quality assurance. According to the
expanded definition, software quality assurance is the systematic, planned set
of actions necessary to provide adequate confidence that a software develop-
ment or maintenance process conforms to established functional technical
requirements as well as the managerial requirements of keeping to schedules
and operating within the budget.

(2) Distinguish between software errors, software faults and software failures.

■ Software errors are sections of the code that are partially or totally incorrect as
a result of a grammatical, logical or other mistake made by a systems analyst, a
programmer, or another member of the software development team.

30

2
W

hatis
softw

are quality?

■ Software faults are software errors that cause the incorrect functioning of the
software during a specific application.

■ Software faults become software failures only when they are “activated”, that
is, when a user tries to apply the specific software section that is faulty. Thus,
the root of any software failure is a software error.

(3) Identify the various causes of software errors.

There are nine causes of software errors: faulty requirements definition, client–
developer communication failures, deliberate deviations from software require-
ments, logical design errors, coding errors, non-compliance with documentation
and coding instructions, shortcomings of the testing process, procedure errors, and
documentation errors. It should be emphasized that all causes of error are human,
the work of systems analysts, programmers, software testers, documentation
experts, and even clients and their representatives.

(4) Explain the objectives of software quality assurance activities.

The objectives of SQA activities for software development and maintenance are:

(1) Assuring, with acceptable levels of confidence, conformance to functional tech-
nical requirements.

(2) Assuring, with acceptable levels of confidence, conformance to managerial
requirements of scheduling and budgets.

(3) Initiating and managing activities for the improvement and greater efficiency of
software development and SQA activities.

(5) Distinguish and explain the differences between software quality assurance and
quality control.

Quality control is a set of activities carried out with the main objective of withhold-
ing products from shipment if they do not qualify. In contrast, quality assurance is
meant to minimize the costs of quality by introducing a variety of activities through-
out the development and maintenance process in order to prevent the causes of
errors, detect them, and correct them in the early stages of development. As a
result, quality assurance substantially reduces the rates of non-qualifying products.

(6) Explain the relationship between software quality assurance and software engineering.

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software. The charac-
teristics of software engineering, especially its systematic, disciplined and
quantitative approach, make software engineering a good environment for achiev-
ing SQA objectives. It is commonly accepted that cooperation between software
engineers and the SQA team is the way to achieve efficient and economic develop-
ment and maintenance activities that, at the same time, assure the quality of the
products of these activities.

31

S
um

m
ary

Selected bibliography

1. Crosby, P. B. (1979) Quality is Free, McGraw-Hill, New York.
2. IEEE (1991) “IEEE Std 610.12-1990 – IEEE Standard Glossary of Software

Engineering Terminology”, Corrected Edition, February 1991, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

3. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn. International Organization for Standardization (ISO), Geneva.

4. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

5. Juran, J. M. (1988) Juran’s Quality Control Handbook, 4th edn, J. M. Juran,
Editor in Chief; I. M. Gryne, Associate Editor. McGraw-Hill, New York.

6. Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V. (1993) Capability
Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, ESC-TR-93-
177, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

7. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

8. Tingey, M. O. (1997) Comparing ISO 9000, Malcolm Baldridge, and the SEI
CMM for Software. A Reference and Selection Guide, Prentice Hall, Upper
Saddle River, NJ.

Review questions

2.1 A software system comprises four main components.

(1) List the four components of a software system.
(2) How does the quality of each component contribute to the quality of the

developed software?
(3) How does the quality of each component contribute to the quality of the soft-

ware maintenance?

2.2 (1) Define software error, software fault and software failure. Explain the differ-
ences between these undesirable software statuses.

(2) Suggest a situation where a new type of software failure (“bug”) appears in a
software package that has been serving 300 clients for the first time six years
since the software package was first sold to the public.

2.3 (1) List and briefly describe the various causes of software errors.
(2) Classify the causes of error according to the groups responsible for the error:

the client’s staff, the systems analysts, the programmers, the testing staff – or
is it a shared responsibility belonging to more than one group?

2.4 What are the differences between the IEEE definition of SQA and the expanded
definition used in this book?

32

2
W

hatis
softw

are quality?

33

Topics
for discussion

2.5 Mr Johnson is a customer of the Adams and Lincoln stores belonging to the
Eiffel chain (see Section 2.3). His purchase records and returned goods records are
as follows:

(1) Find for which of the months – Jan. 2001, Feb. 2001 or Mar. 2001 – does
Mr Johnson qualify for the 5% discount? What is the sum discounted?
Calculate according to the correct procedure.

(2) According to the erroneous procedures, find for which of the months – Jan.
2001, Feb. 2001 or Mar. 2001 – does Mr Johnson qualify for the 5% discount
in the Adams store and in the Lincoln store? What is the sum discounted?

2.6 According to the IEEE definition of SQA, quality control (QC) is not equated with
quality assurance (QA).

(1) In what respects does QC vary from QA?
(2) Why can QC be considered part of QA?

2.7 Examine the definitions of SQA and the objectives of SQA activities.

(1) Is there a correspondence between the two definitions?
(2) If yes, show how the objectives of SQA activities aim at the implementation of

the SQA concepts.

Topics for discussion

2.1 A programmer claims that because only a small proportion of software errors turn
into software failures, it is unnecessary to make substantial investments in the pre-
vention and elimination of software errors.

(1) Do you agree with this view?
(2) Discuss the outcome of accepting these views.

Adams Store Lincoln Store

Purchases Returned goods Purchases Returned goods
Month ($000) ($000) ($000) ($000)

Jan 2000 100 20 60 5
Feb 2000 120 10 40 –
Mar 2000 10 – 30 10
Apr 2000 80 5 50 10
May 2000 30 – 20 –
Jun 2000 60 20 30 10
Jul 2000 10 – 40 –
Aug 2000 60 5 10 –
Sep 2000 20 – 20 5
Oct 2000 20 5 40 10
Nov 2000 40 – 20 –
Dec 2000 20 – 60 5
Jan 2001 30 10 40 –
Feb 2001 60 5 30 5
Mar 2001 20 5 40 10

2.2 George Wise is an exceptional programmer. Testing his software modules reveals
very few errors, far fewer than the team’s average. He keeps his schedule promptly,
and only rarely is he late in completing his task. He always finds original ways to
solve programming difficulties, and uses an original, individual version of the coding
style. He dislikes preparing the required documentation, and rarely does it according
to the team’s templates.

A day after completing a challenging task, on time, he was called to the office
of the department’s chief software engineer. Instead of being praised for his
accomplishments (as he expected), he was warned by the company’s chief soft-
ware engineer that he would be fired unless he began to fully comply with the
team’s coding and documentation instructions.

(1) Do you agree with the position taken by the department’s chief software engineer?
(2) If yes, could you suggest why his or her position was so decisive?

2.3 Pressman’s definition of quality requires the client to specify the software require-
ments because only documented requirements are binding for the developer. Any
omissions or errors made by the client are considered as his or her fault, and not
listed among the developer’s errors.

(1) How can a client be sure that his or her organization has the professional
capabilities to cope with this issue?

(2) In what ways can the developer support the client in this matter?
(3) Suggest pro and con arguments to Pressman’s definition of the client’s

responsibility.

2.4 It is claimed that the expanded definition of SQA supports those who are interest-
ed in increasing client satisfaction.

(1) Do you agree with this claim?
(2) If yes, provide arguments to substantiate your position.

2.5 (1) Examine the correct and erroneous procedures determining the discount qual-
ification outlined in Table 2.1.

(2) List the procedure errors.

34

2
W

hatis
softw

are quality?

chapter 3

Software quality factors

We have already established (see Chapter 2) that the requirements document
is one of the most important elements for achieving software quality. Here we
ask: What is a “good” software requirements document? We want to explore
what subjects and aspects of software use should be covered in the document.

This chapter is, therefore, dedicated to the review of the wide spectrum
of aspects of software use that may be operative throughout the life cycle of
software systems. Some SQA models suggest that the wide spectrum of
requirements should be classified into 11 to 15 factors (subject areas) that
can be amalgamated into three or four categories.

After completing this chapter, you will be able to:

■ Explain the need for comprehensive requirements documents and char-
acterize the contents of such documents.

■ Explain the structure (categories and factors) of McCall’s classic factor
model.

Chapter outline

3.1 The need for comprehensive software quality requirements 36
3.2 Classifications of software requirements into software

quality factors 37
3.3 Product operation software quality factors 38
3.4 Product revision software quality factors 41
3.5 Product transition software quality factors 43
3.6 Alternative models of software quality factors 44

3.6.1 Formal comparison of the alternative models 44
3.6.2 Comparison of the factor models – content analysis 46
3.6.3 Structure of the alternative factor models 47

3.7 Who is interested in the definition of quality requirements? 47
3.8 Software compliance with quality factors 49

Summary 51
Selected bibliography 52
Review questions 52
Topics for discussion 54

■ List the factors, other than those included in McCall’s model, that are
suggested by the alternative SQA models.

■ Identify who is interested in the definition of quality requirements.

3.1 The need for comprehensive software quality
requirements

■ “Our new sales information system seems okay, the invoices are correct,
the inventory records are correct, the discounts granted to our clients
exactly follow our very complicated discount policy, but our new sales
information system frequently fails, usually at least twice a day, each time
for twenty minutes or more. Yesterday it took an hour and half before we
could get back to work Imagine how embarrassing it is to store
managers Softbest, the software house that developed our comput-
erized sales system, claims no responsibility”

■ “Just half a year ago we launched our new product – the radar detector.
The firmware RD-8.1, embedded in this product, seems to be the cause for
its success. But, when we began planning the development of a European
version of the product, we found out that though the products will be
almost similar, our software development department needs to develop
new firmware; almost all the design and programming will be new.”

■ “Believe it or not, our software package ‘Blackboard’ for schoolteachers,
launched just three months ago, is already installed in 187 schools. The
development team just returned from a week in Hawaii, their vacation
bonus. But we have been suddenly receiving daily complaints from the
‘Blackboard’ maintenance team. They claim that the lack of failure-
detection features in the software, in addition to the poor programmer’s
manual, have caused them to invest more than the time estimated to deal
with bugs or adding minor software changes that were agreed as part of
purchasing contracts with clients.”

■ “The new version of our loan contract software is really accurate. We
have already processed 1200 customer requests, and checked each of the
output contracts. There were no errors. But we did face a severe unex-
pected problem – training a new staff member to use this software takes
about two weeks. This is a real problem in customers’ departments suf-
fering from high employee turnover The project team says that as
they were not required to deal with training issues in time, an additional
two to three months of work will be required to solve the problem.”

There are some characteristic common to all these “but’s”:

■ All the software projects satisfactorily fulfilled the basic requirements for
correct calculations (correct inventory figures, correct average class’s
score, correct loan interest, etc.).

■ All the software projects suffered from poor performance in important
areas such as maintenance, reliability, software reuse, or training.

36

3
S

oftw
are quality

factors

■ The cause for the poor performance of the developed software projects in
these areas was the lack of predefined requirements to cover these impor-
tant aspects of the software’s functionality.

The need for a comprehensive definition of requirements
There is a need for a comprehensive definition of requirements that will
cover all attributes of software and aspects of the use of software, including
usability aspects, reusability aspects, maintainability aspects, and so forth in
order to assure the full satisfaction of the users.

The great variety of issues related to the various attributes of software
and its use and maintenance, as defined in software requirements documents,
can be classified into content groups called quality factors. We expect the
team responsible for defining the software requirements of a software system
to examine the need to define the requirements that belong to each factor.
Software requirement documents are expected to differ in the emphasis
placed on the various factors, a reflection of the differences to be found
among software projects. Thus, we can expect that not all the factors will be
universally “represented” in all the requirements documents.

The next sections deal with the classification of quality requirements
into quality factors. Obviously, only the major approaches to this topic will
be covered.

3.2 Classifications of software requirements into software
quality factors

Several models of software quality factors and their categorization in factor
categories have been suggested over the years. The classic model of software
quality factors, suggested by McCall, consists of 11 factors (McCall et al.,
1977). Subsequent models, consisting of 12 to 15 factors, were suggested by
Deutsch and Willis (1988) and by Evans and Marciniak (1987). The alter-
native models do not differ substantially from McCall’s model. The McCall
factor model, despite the quarter of a century of its “maturation”, continues
to provide a practical, up-to-date method for classifying software require-
ments (Pressman, 2000).

McCall’s factor model
McCall’s factor model classifies all software requirements into 11 software
quality factors. The 11 factors are grouped into three categories – product
operation, product revision and product transition – as follows:

■ Product operation factors: Correctness, Reliability, Efficiency, Integrity,
Usability.

■ Product revision factors: Maintainability, Flexibility, Testability.
■ Product transition factors: Portability, Reusability, Interoperability.

37

3.2 Classifications
ofsoftw

are requirem
ents

into softw
are quality

factors

McCall’s model and its categories are illustrated by the McCall model of
software quality factors tree (see Figure 3.1).

The next three sections are dedicated to a detailed description of the
software quality factors included in each of McCall’s categories.

3.3 Product operation software quality factors

According to McCall’s model, five software quality factors are included in the
product operation category, all of which deal with requirements that directly
affect the daily operation of the software. These factors are as follows.

Correctness
Correctness requirements are defined in a list of the software system’s
required outputs, such as a query display of a customer’s balance in the sales
accounting information system, or the air supply as a function of temperature
specified by the firmware of an industrial control unit. Output specifications
are usually multidimensional; some common dimensions include:

■ The output mission (e.g., sales invoice printout, and red alarms when
temperature rises above 250°F).

38

3
S

oftw
are quality

factors

Pr
od

uc
t

op
er

at
io

n

Product

transition

Reusability

Portability

In
te

ro
pe

ra
bi

lit
y

Productrevision

Flexibility

Maintainability

Testability

Ef
fic

ie
nc

y

Re
lia

bi
lit

yCorre
ctness

Integrity

Usability

Quality software

Figure 3.1: McCall’s factor model tree

Source: Based on McCall et al., 1977

■ The required accuracy of those outputs that can be adversely affected by
inaccurate data or inaccurate calculations.

■ The completeness of the output information, which can be adversely
affected by incomplete data.

■ The up-to-dateness of the information (defined as the time between the
event and its consideration by the software system).

■ The availability of the information (the reaction time, defined as the time
needed to obtain the requested information or as the requested reaction
time of the firmware installed in a computerized apparatus).

■ The standards for coding and documenting the software system.

Example
The correctness requirements of a club membership information system
consisted of the following:

■ The output mission: A defined list of 11 types of reports, four types of
standard letters to members and eight types of queries, which were to be
displayed on the monitor on request.

■ The required accuracy of the outputs: The probability for a non-accurate
output, containing one or more mistakes, will not exceed 1%.

■ The completeness of the output information: The probability of missing
data about a member, his attendance at club events, and his payments will
not exceed 1%.

■ The up-to-dateness of the information: Not more than two working days
for information about participation in events and not more than one
working day for information about entry of member payments and per-
sonal data.

■ The availability of information: Reaction time for queries will be less
than two seconds on average; the reaction time for reports will be less
than four hours.

■ The required standards and guidelines: The software and its documenta-
tion are required to comply with the client’s guidelines.

Reliability
Reliability requirements deal with failures to provide service. They determine
the maximum allowed software system failure rate, and can refer to the
entire system or to one or more of its separate functions.

Examples
(1) The failure frequency of a heart-monitoring unit that will operate in a

hospital’s intensive care ward is required to be less than one in 20 years.
Its heart attack detection function is required to have a failure rate of
less than one per million cases.

39

3.3 Productoperation softw
are quality

factors

(2) One requirement of the new software system to be installed in the main
branch of Independence Bank, which operates 120 branches, is that it
will not fail, on average, more than 10 minutes per month during the
bank’s office hours. In addition, the probability that the off-time (the
time needed for repair and recovery of all the bank’s services) be more
than 30 minutes is required to be less than 0.5%.

Efficiency
Efficiency requirements deal with the hardware resources needed to perform
all the functions of the software system in conformance to all other require-
ments. The main hardware resources to be considered are the computer’s
processing capabilities (measured in MIPS – million instructions per second,
MHz or megahertz – million cycles per second, etc.), its data storage capa-
bility in terms of memory and disk capacity (measured in MBs – megabytes,
GBs – gigabytes, TBs – terabytes, etc.) and the data communication capabil-
ity of the communication lines (usually measured in KBPS – kilobits per
second, MBPS – megabits per second, and GBPS – gigabits per second). The
requirements may include the maximum values at which the hardware
resources will be applied in the developed software system or the firmware.

Another type of efficiency requirement deals with the time between
recharging of the system’s portable units, such as, information systems units
located in portable computers, or meteorological units placed outdoors.

Examples
(1) A chain of stores is considering two alternative bids for a software sys-

tem. Both bids consist of placing the same computers in the chain’s
headquarters and its branches. The bids differ solely in the storage vol-
ume: 20 GB per branch computer and 100 GB in the head office
computer (Bid A); 10 GB per branch computer and 30 GB in the head
office computer (Bid B). There is also a difference in the number of com-
munication lines required: Bid A consists of three communication lines
of 28.8 KBPS between each branch and the head office, whereas Bid B
is based on two communication lines of the same capacity between each
branch and the head office. In this case, it is clear that Bid B is more effi-
cient than Bid A because fewer hardware resources are required.

(2) An outdoor meteorological unit, equipped with a 1000 milli-ampere
hour cell, should be capable of supplying the power requirements of the
unit for at least 30 days. The system performs measurements once per
hour, logs the results, and transmits the results once a day to the mete-
orological center by means of wireless communication.

Integrity
Integrity requirements deal with the software system security, that is, require-
ments to prevent access to unauthorized persons, to distinguish between the
majority of personnel allowed to see the information (“read permit”) and a

40

3
S

oftw
are quality

factors

limited group who will be allowed to add and change data (“write permit”),
and so forth.

Example
The Engineering Department of a local municipality operates a GIS
(Geographic Information System). The Department is planning to allow cit-
izens access to its GIS files through the Internet. The software requirements
include the possibility of viewing and copying but not inserting changes in
the maps of their assets as well as any other asset in the municipality’s area
(“read only” permit). Access will be denied to plans in progress and to those
maps defined by the Department’s head as limited access documents.

Usability
Usability requirements deal with the scope of staff resources needed to train
a new employee and to operate the software system. For more about usabil-
ity see Juristo et al. (2001), Donahue (2001) and Ferre et al. (2001).

Example
The software usability requirements document for the new help desk
system initiated by a home appliance service company lists the following
specifications:

(a) A staff member should be able to handle at least 60 service calls a day.

(b) Training a new employee will take no more than two days (16 training
hours), immediately at the end of which the trainee will be able to han-
dle 45 service calls a day.

3.4 Product revision software quality factors

According to the McCall model of software quality factors, three quality fac-
tors comprise the product revision category. These factors deal with those
requirements that affect the complete range of software maintenance activi-
ties: corrective maintenance (correction of software faults and failures),
adaptive maintenance (adapting the current software to additional circum-
stances and customers without changing the software) and perfective
maintenance (enhancement and improvement of existing software with
respect to locally limited issues). These are as follows.

Maintainability
Maintainability requirements determine the efforts that will be needed by
users and maintenance personnel to identify the reasons for software fail-
ures, to correct the failures, and to verify the success of the corrections. This
factor’s requirements refer to the modular structure of software, the internal
program documentation, and the programmer’s manual, among other items.

41

3.4 Productrevision softw
are quality

factors

Example
Typical maintainability requirements:

(a) The size of a software module will not exceed 30 statements.

(b) The programming will adhere to the company coding standards and
guidelines.

Flexibility
The capabilities and efforts required to support adaptive maintenance activ-
ities are covered by the flexibility requirements. These include the resources
(i.e. in man-days) required to adapt a software package to a variety of cus-
tomers of the same trade, of various extents of activities, of different ranges
of products and so on. This factor’s requirements also support perfective
maintenance activities, such as changes and additions to the software in
order to improve its service and to adapt it to changes in the firm’s technical
or commercial environment.

Example
TSS (teacher support software) deals with the documentation of pupil achieve-
ments, the calculation of final grades, the printing of term grade documents,
and the automatic printing of warning letters to parents of failing pupils. The
software specifications included the following flexibility requirements:

(a) The software should be suitable for teachers of all subjects and all school
levels (elementary, junior and high schools).

(b) Non-professionals should be able to create new types of reports accord-
ing to the schoolteacher’s requirements and/or the city’s education
department demands.

Testability
Testability requirements deal with the testing of an information system as
well as with its operation. Testability requirements for the ease of testing are
related to special features in the programs that help the tester, for instance by
providing predefined intermediate results and log files. Testability require-
ments related to software operation include automatic diagnostics performed
by the software system prior to starting the system, to find out whether all
components of the software system are in working order and to obtain a
report about the detected faults. Another type of these requirements deals
with automatic diagnostic checks applied by the maintenance technicians to
detect the causes of software failures.

Example
An industrial computerized control unit is programmed to calculate various
measures of production status, report the performance level of the machin-
ery, and operate a warning signal in predefined situations. One testability

42

3
S

oftw
are quality

factors

requirement demanded was to develop a set of standard test data with
known system expected correct reactions in each stage. This standard test
data is to be run every morning, before production begins, to check whether
the computerized unit reacts properly.

3.5 Product transition software quality factors

According to McCall, three quality factors are included in the product tran-
sition category, a category that pertains to the adaptation of software to
other environments and its interaction with other software systems.

Portability
Portability requirements tend to the adaptation of a software system to other
environments consisting of different hardware, different operating systems,
and so forth. These requirements make it possible to continue using the same
basic software in diverse situations or to use it simultaneously in diverse
hardware and operating systems situations.

Example
A software package designed and programmed to operate in a Windows
2000 environment is required to allow low-cost transfer to Linux and
Windows NT environments.

Reusability
Reusability requirements deal with the use of software modules originally
designed for one project in a new software project currently being developed.
They may also enable future projects to make use of a given module or a group
of modules of the currently developed software. The reuse of software is
expected to save development resources, shorten the development period, and
provide higher quality modules. These benefits of higher quality are based on
the assumption that most of the software faults have already been detected by
the quality assurance activities performed on the original software, by users of
the original software, and during its earlier reuses. The issues of software reuse
became a subject of software industry standards (see IEEE, 1999).

Example
A software development unit has been required to develop a software system
for the operation and control of a hotel swimming pool that serves hotel
guests and members of a pool club. Although the management did not define
any reusability requirements, the unit’s team leader, after analyzing the infor-
mation processing requirements of the hotel’s spa, decided to add the
reusability requirement that some of the software modules for the pool
should be designed and programmed in a way that will allow its reuse in the
spa’s future software system, which is planned to be developed next year.

43

3.5 Producttransition softw
are quality

factors

These modules will allow:

■ Entrance validity checks of membership cards and visit recording.
■ Restaurant billing.
■ Processing of membership renewal letters.

Interoperability
Interoperability requirements focus on creating interfaces with other soft-
ware systems or with other equipment firmware (for example, the firmware
of the production machinery and testing equipment interfaces with the pro-
duction control software). Interoperability requirements can specify the
name(s) of the software or firmware for which interface is required. They can
also specify the output structure accepted as standard in a specific industry
or applications area.

Example
The firmware of a medical laboratory’s equipment is required to process its
results (output) according to a standard data structure that can then serve as
input for a number of standard laboratory information systems.

3.6 Alternative models of software quality factors

Two factor models, appearing during the late 1980s, considered to be
alternatives to the McCall classic factor model (McCall et al., 1977),
deserve discussion:

■ The Evans and Marciniak factor model (Evans and Marciniak, 1987).
■ The Deutsch and Willis factor model (Deutsch and Willis, 1988).

3.6.1 Formal comparison of the alternative models

A formal comparison of the factor models reveals:

■ Both alternative models exclude only one of McCall’s 11 factors, namely
the testability factor.

■ The Evans and Marciniak factor model consists of 12 factors that are
classified into three categories.

■ The Deutsch and Willis factor model consists of 15 factors that are clas-
sified into four categories.

Taken together, five new factors were suggested by the two alternative factor
models:

■ Verifiability (by both models)
■ Expandability (by both models)

44

3
S

oftw
are quality

factors

■ Safety (by Deutsch and Willis)
■ Manageability (by Deutsch and Willis)
■ Survivability (by Deutsch and Willis).

The factors included in the various factor models are compared in Table 3.1.
The additional factors are defined as follows.

Verifiability (suggested by Evans and Marciniak)
Verifiability requirements define design and programming features that
enable efficient verification of the design and programming. Most verifiabil-
ity requirements refer to modularity, to simplicity, and to adherence to
documentation and programming guidelines.

Expandability (suggested by Evans and Marciniak, and Deutsch
and Willis)
Expandability requirements refer to future efforts that will be needed to
serve larger populations, improve service, or add new applications in order
to improve usability. The majority of these requirements are covered by
McCall’s flexibility factor.

Safety (suggested by Deutsch and Willis)
Safety requirements are meant to eliminate conditions hazardous to opera-
tors of equipment as a result of errors in process control software. These
errors can result in inappropriate reactions to dangerous situations or to the
failure to provide alarm signals when the dangerous conditions to be detect-
ed by the software arise.

45

3.6 A
lternative m

odels
ofsoftw

are quality
factors

Table 3.1: Comparison of McCall’s factor model and alternative models

Alternative factor models

Software quality McCall’s classic Evans and Deutsch and
No. factor model Marciniak Willis

1 Correctness + + +
2 Reliability + + +
3 Efficiency + + +
4 Integrity + + +
5 Usability + + +
6 Maintainability + + +
7 Flexibility + + +
8 Testability +
9 Portability + + +

10 Reusability + + +
11 Interoperability + + +
12 Verifiability + +
13 Expandability + +
14 Safety +
15 Manageability +
16 Survivability +

Example
In a chemical plant, a computerized system controls the flow of acid accord-
ing to pressure and temperature changes occurring during production. The
safety requirements refer to the system’s computerized reactions in cases of
dangerous situations and also specify what kinds of alarms are needed in
each case.

Manageability (suggested by Deutsch and Willis)
Manageability requirements refer to the administrative tools that support
software modification during the software development and maintenance
periods, such as configuration management, software change procedures,
and the like.

Example
“Chemilog” is a software system that automatically logs the flows of chem-
icals into various containers to allow for later analysis of the efficiency of
production units. The development and issue of new versions and releases of
“Chemilog” are controlled by the Software Development Board, whose
members act according to the company’s software modifications procedure.

Survivability (suggested by Deutsch and Willis)
Survivability requirements refer to the continuity of service. These define the
minimum time allowed between failures of the system, and the maximum
time permitted for recovery of service, two factors that pertain to service
continuity. Although these requirements may refer separately to total and to
partial failures of services, they are especially geared to failures of essential
functions or services. Significant similarity exists between the survivability
factor and the reliability factor described in McCall’s model.

Example
Taya operates a national lottery, held once a week. About 400000 to 700000
bets are placed weekly. The new software system the customer (the Taya
National Lottery) has ordered will be highly computerized and based on a
communication system that connects all the betting machines to the central
computer. To its other high reliability requirements, Taya has added the fol-
lowing survivability requirement: The probability that unrecoverable damage
to the betting files will occur in case of any system failure is to be limited to
less than one in a million.

3.6.2 Comparison of the factor models – content analysis

After comparing the contents of the factor models, we find that two of the
five additional factors, Expandability and Survivability, actually resemble
factors already included in McCall’s factor model, though under different
names, Flexibility and Reliability. In addition, McCall’s Testability factor can
be considered as one element in his own Maintainability factor.

46

3
S

oftw
are quality

factors

This implies that the differences between the three factor models are
much smaller than initially perceived. That is, the alternative factor models
add only three “new” factors to McCall’s model:

■ Both models add the factor Verifiability.
■ The Deutsch and Willis model adds the factors Safety and Manageability.

3.6.3 Structure of the alternative factor models

Nevertheless, despite their similarities, the categories employed by the alter-
native factor models and the classification of the specific factors into these
categories differ from those offered by McCall’s model. Table 3.2 compares
the structure of the three models according to the factors and their classifi-
cation into the categories.

3.7 Who is interested in the definition of quality
requirements?

Naturally, one might think that only the client is interested in thoroughly
defining his requirements in order to assure the quality of the software prod-
uct he contracted. The requirements document he prepares does indeed serve
as a fundamental protection against low quality. However, our analysis of
the various quality factors indicates how the software developer can add
requirements that represent his own interest. Following are some examples:

(1) Reusability requirements. In cases where the client anticipates develop-
ment in the near future of an additional software system having strong
similarities to the present software, the client will himself initiate reusabil-
ity requirements. In other cases, the client is interested in reusing parts of
software systems that were developed earlier in a new system. However,
it is more likely that the developer, who serves a great variety of clients,
will recognize the potential benefits of reuse, and will enter reusability
into the list of requirements to be fulfilled by the project team.

(2) Verifiability requirements. These requirements are meant to improve the
design reviews and software tests carried out during software develop-
ment. Their aim is to save development resources and they are,
therefore, of interest to developers. The client, however, is usually unin-
terested in placing requirements that deal with the internal activities of
the developer team.

Some quality factors not included in the typical client’s requirements docu-
ment may, in many cases, interest the developer. The following list of quality
factors usually interest the developer whereas they may raise very little inter-
est on the part of the client:

■ Portability
■ Reusability
■ Verifiability.

47

3.7 W
ho is

interested in the definition ofquality
requirem

ents?

48

3
S

oftw
are quality

factors

Ta
bl

e
3.

2:
Co

m
pa

ri
so

n
of

th
e

st
ru

ct
ur

e
of

M
cC

al
l’s

fa
ct

or
 m

od
el

vi
s-

à-
vi

s
th

e
th

re
e

al
te

rn
at

iv
e

m
od

el
s

D
eu

ts
ch

 a
nd

 W
ill

is
m

od
el

ca
te

go
ri

es
Ev

an
s

an
d

M
ar

ci
ni

ak
m

od
el

ca
te

go
ri

es

M
cC

al
l’s

m
od

el
S

of
tw

ar
e

qu
al

it
y

ca
te

go
ri

es
fa

ct
or

s
Fu

nc
ti

on
al

Pe
rf

or
m

an
ce

Ch
an

ge
M

an
ag

em
en

t
D

es
ig

n
Pe

rf
or

m
an

ce
A

da
pt

at
io

n

Pr
od

uc
to

pe
ra

ti
on

Co
rr

ec
tn

es
s

x
x

Re
lia

bi
lit

y
x

x
Ef

fic
ie

nc
y

x
x

In
te

gr
it

y
x

x
U

sa
bi

lit
y

x
x

Pr
od

uc
tr

ev
is

io
n

M
ai

nt
ai

na
bi

lit
y

x
x

Fl
ex

ib
ili

ty
x

x
Te

st
ab

ili
ty

Pr
od

uc
tt

ra
ns

it
io

n
Po

rt
ab

ili
ty

x
x

Re
us

ab
ili

ty
x

x
In

te
ro

pe
ra

bi
lit

y
x

x

Fa
ct

or
s

of
th

e
Ve

ri
fia

bi
lit

y
x

x
al

te
rn

at
iv

e
m

od
el

s
Ex

pa
nd

ab
ili

ty
x

x
S

af
et

y
x

M
an

ag
ea

bi
lit

y
x

Su
rv

iv
ab

ili
ty

x

So, one can expect that a project will be carried out according to two
requirements documents:

■ The client’s requirements document
■ The developer’s additional requirements document.

3.8 Software compliance with quality factors

Throughout the software development process, the extent to which the
process complies with the requirements of the various quality factors is
examined by design reviews, software inspections, software tests, and so
forth. Comprehensive discussions of design reviews, software testing, soft-
ware quality metrics and other tools for verifying and validating the quality
of software are provided in the balance of this book.

Furthermore, the software product’s compliance to the requirements
belonging to the various quality factors is measured by software quality met-
rics, measures that quantify the degree of compliance. In order to allow for
valid measurements of compliance, sub-factors have been defined for those
quality factors that represent a wide range of attributes and aspects of soft-
ware use. Software quality metrics are suggested for each of these
sub-factors. Chapter 21 is dedicated to the subject of software metrics.

Table 3.3 presents some of these sub-factors, the majority of which were
suggested by Evans and Marciniak (1987).

49

3.8 S
oftw

are com
pliance w

ith quality
factors

Table 3.3: Factors and sub-factors

Factor model Software quality Sub-factors
factors

McCall’s model: Correctness Accuracy
Product operation Completeness
category Up-to-dateness

Availability (response time)
Coding and documentation guidelines
compliance (consistency)

Reliability System reliability
Application reliability
Computational failure recovery
Hardware failure recovery

Efficiency Efficiency of processing
Efficiency of storage
Efficiency of communication
Efficiency of power usage (for portable units)

Integrity Access control
Access audit

Usability Operability
Training

▲

50

3
S

oftw
are quality

factors

Table 3.3 Continued

Factor model Software quality Sub-factors
factors

McCall’s model: Maintainability Simplicity
Product revision Modularity
category Self-descriptiveness

Coding and documentation guidelines
compliance (consistency)
Document accessibility

Flexibility Modularity
Generality
Simplicity
Self-descriptiveness

Testability User testability
Failure maintenance testability
Traceability

McCall’s model: Portability Software system independence
Product transition Modularity
category Self descriptive

Reusability Modularity
Document accessibility
Software system independence
Application independence
Self descriptive
Generality
Simplicity

Interoperability Commonality
System compatibility
Software system independence
Modularity

Factors of the Verifiability Coding and documentation guidelines
alternative models compliance (consistency)

Document accessibility
Traceability
Modularity

Expandability Extensibility
Modularity
Generality
Simplicity
Self-descriptiveness

Safety Avoidance of hazardous operating situations
Unsafe conditions alarm reliability

Manageability Completeness and ease of support of
infrastructure services for software
modification in the development process

Completeness and ease of support of
infrastructure services for software
modification in the maintenance activities

Survivability System reliability
Application reliability
Computational failure recovery
Hardware failure recovery

As you have probably noticed, several sub-factors relate to more than
one factor. This reflects the fact that some attributes contribute to successful
compliance in more than one aspect of software use. For example, simplici-
ty (a sub-factor) contributes to maintainability, flexibility, reusability and
expandability factors.

Summary

(1) The need for comprehensive requirements documents and their contents.

Many cases of low customer satisfaction are situations where software projects
have satisfactorily fulfilled the basic requirements of correctness, while suffering
from poor performance in other important areas such as maintenance, reliability,
software reuse, or training. One of the main causes for these lapses is the lack of
defined requirements pertaining to these aspects of software functionality.
Therefore, there is a need for the comprehensive definition of requirements that will
cover all aspects of software use throughout all stages of the software life cycle.

Factor models define the broad spectrum of software requirements. We expected
that those individuals who define software requirements will refer to each factor
and, accordingly, examine the need to incorporate the respective requirements in
their requirements documents.

(2) The structure (categories and factors) of McCall’s classic factor model.

McCall’s factor model classifies all software requirements into 11 software quality
factors. The 11 factors are grouped into three categories – product operation, prod-
uct revision and product transition – as follows:

■ Product operation factors: Correctness, Reliability, Efficiency, Integrity, Usability.
■ Product revision factors: Maintainability, Flexibility, Testability.
■ Product transition factors: Portability, Reusability, Interoperability.

(3) The additional factors suggested by alternative factor models.

The two factor models from the late 1980s, alternatives to the McCall classic factor
model, are:

■ The Evans and Marciniak factor model.
■ The Deutsch and Willis factor model.

These alternative models suggest adding five factors to McCall’s model. Two of
these factors are very similar to two of McCall’s factors; only three factors are “new”:

■ Both models add the factor Verifiability.
■ The Deutsch and Willis model adds the factors Safety and Manageability.

51

S
um

m
ary

(4) Those interested in defining software quality requirements.

The client is not the only party interested in thoroughly defining the requirements
that assure the quality of the software product. The developer is often interested in
adding requirements that represent his own interests, such as reusability, verifia-
bility and portability requirements. These may not, however, be of interest to the
client. Thus, one can expect that a project will be carried out according to two
requirements documents:

■ The client’s requirements document
■ The developer’s additional requirements document.

Selected bibliography

1. Deutsch, M. S. and Willis, R. R. (1988) Software Quality Engineering, A Total
Technical Management Approach, Ch. 3, Prentice Hall, Englewood Cliffs, NJ.

2. Donahue G. M. (2001) “Usability and the bottom line”, IEEE Software, 18 (1),
31–37.

3. Evans, M. W. and Marciniak, J. J. (1987) Software Quality Assurance and
Management, Chs 7 and 8, John Wiley & Sons, New York.

4. Ferre, X., Juristo, N., Windl, H. and Constantine, L. (2001) “Introducing usability”,
IEEE Software, 18 (1), 20–21.

5. IEEE (1999) “IEEE Std 1517-1999 – IEEE Standard for Information Technology
– Software Life Cycle Processes – Reuse Processes”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

6. Juristo, N., Windl, H. and Constantine, L. (2001) “Usability basics for software
developers”, IEEE Software, 18 (1), 22–29.

7. McCall, J., Richards, P. and Walters, G. (1977) Factors in Software Quality, Vols
1–3, NTIS AD-A049-014, 015, 055, November 1977.

8. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, Ch. 19, McGraw-Hill International,
London.

9. Vincent, J., Waters, A. and Sinclair, J. (1988) Software Quality Assurance, Vol.
2, A Program Guide, Appendix B, Prentice Hall, Englewood Cliffs, NJ.

Review questions

3.1 (1) What are the three factor categories belonging to McCall’s factor model?
(2) What factors are included in each of the categories?

3.2 The software requirement document for the tender for development of “Super-lab”,
a software system for managing a hospital laboratory, consists of chapters according
to the required quality factors as follows: correctness, reliability, efficiency, integrity,
usability, maintainability, flexibility, testability, portability, reusability and interoper-
ability. In the following table you will find sections taken from the mentioned
requirements document. For each section, fill in the name of the factor that best fits
the requirement (choose only one factor per requirements section).

52

3
S

oftw
are quality

factors

53

Review
 questions

No. Section taken from the software requirements document Requirements factor

1 The probability that the “Super-lab” software system will
be found in a state of failure during peak hours
(9 am to 4 pm) is required to be below 0.5%.

2 The “Super-lab” software system will enable direct transfer
of laboratory results to those files of hospitalized patients
managed by the “MD-File” software package.

3 The “Super-lab” software system will include a module
that prepares a detailed report of the patient’s laboratory
test results during his or her current hospitalization.
(This report will serve as an appendix to the family
physician’s file.) The time required to obtain this printed
report will be less than 60 seconds; the level of accuracy
and completeness will be at least 99%.

4 The “Super-lab” software to be developed for hospital
laboratory use may be adapted later for private
laboratory use.

5 The training of a laboratory technician, requiring no more
than three days, will enable the technician to reach level C
of “Super-lab” software usage. This means that he or she
will be able to manage reception of 20 patients per hour.

6 The “Super-lab” software system will record a detailed
users’ log. In addition, the system will report attempts
by unauthorized persons to obtain medical information
from the laboratory test results database. The report will
include the following information: network
identification of the applying terminal, system code
of the employee who requested that information, day
and time of attempt, and type of attempt.

7 The “Super-lab” subsystem that deals with billing patients
for their tests may eventually be used as a subsystem in
the “Physiotherapy Center” software package.

8 The “Super-lab” software system will process all the
monthly reports for the hospital departments’
management, the hospital management, and the hospital
controller according to Appendix D of the
development contract.

9 The software system should be able to serve 12 work-
stations and eight automatic testing machines with a single
model AS20 server and a CS25 communication server
that will be able to serve 25 communication lines. This
hardware system should conform to all availability
requirements as listed in Appendix C.

10 The “Super-lab” software package developed for the
Linux operating system should be compatible for
applications in a Windows NT environment.

3.3 What differentiates the Evans and Marciniak model from the Deutsch and Willis model?

3.4 Consider McCall’s model and the Deutsch and Willis model.

(1) What are the formal differences between the models?
(2) What are the content differences between the models?
(3) What new subjects were actually added by the Evans and Marciniak model to

McCall’s model?

3.5 Southcottage Inc. is a manufacturer of washing machines and dishwashers. The
requirements document for the new control unit included the following specifications:

(a) The firmware should be suitable for all six variations of model 2002 washing
machines.

(b) The water level control module of the washing machine should be suitable for
use as a water level control module in the new model 2002 dishwasher.

(1) To which of the factors do the above requirements belong?
(2) Explain your answer.

3.6 Some people claim that testability and verifiability are actually different names for
the same factor.

(1) Do you agree?
(2) If not, could you explain why?

Topics for discussion

3.1 Four “but” complaints are mentioned in Section 3.1. All of them reflect items miss-
ing from the requirement documents.

(1) To which factors do the missing requirements belong?
(2) Can you suggest software quality requirements that could fill the gap?

3.2 Some professionals claim that increased software usability necessarily involves
decreased efficiency. Others claim no dependence between software efficiency
and usability.

(1) Do you agree with the first or the second group?
(2) Discuss your answer.

3.3 The City of Mountain View has decided to develop a software package that will
serve the youth clubs operated by the city. The software’s main tasks will be:

■ Follow-up of monthly payments of the members.
■ Preparing lists of participants in the various courses offered by the clubs.
■ Production of reminder notices to course participants who fail to appear regularly.
■ Statistical reports about membership and participation in club activities.

The city already implements the following software packages:

■ Tax collection
■ Public library

54

3
S

oftw
are quality

factors

■ School follow-up and achievements control
■ Water consumption billing.

The City Council has asked the Information Technology Unit to report to the coun-
cil about the possibilities for reuse of the city software packages already available
to the city in the youth club software package.

(1) Could you suggest which modules of the existing city software packages could
be reused in the new software? List your assumptions about the contents of
the existing software packages and the required new software.

(2) Could you grade the reused modules suggested in (1) according to the scope
of adaptation efforts required to apply the reused module in the youth club
software package?

3.4 It is said that failure to meet the interoperability requirements can negatively affect
the correctness level of the software system, and even can cause non-conformance
with correctness requirements.

(1) Elaborate on the above statement and explain the mentioned interconnec-
tions between factors.

(2) Provide an example of a situation where such effects are to be expected.

3.5 It is claimed that with respect to subjects where qualitative and quantitative
requirements can be defined, the quantitative alternatives should be preferred.

(1) Provide three examples each of alternative qualitative and quantitative
requirements.

(2) Explain why the customer should prefer the quantitative option.
(3) Explain why the software developer should prefer the quantitative option.

55

Topics
for discussion

chapter 4

The components of the
software quality assurance
system – overview

Chapter outline

4.1 The SQA system – an SQA architecture 57
4.2 Pre-project components 60

4.2.1 Contract review 60
4.2.2 Development and quality plans 60

4.3 Software project life cycle components 61
4.3.1 Reviews 61
4.3.2 Expert opinions 62
4.3.3 Software testing 63
4.3.4 Software maintenance components 63
4.3.5 Assurance of the quality of the external

participant’s work 64
4.4 Infrastructure components for error prevention

and improvement 65
4.4.1 Procedures and work instructions 65
4.4.2 Supporting quality devices 66
4.4.3 Staff training, instruction and certification 66
4.4.4 Preventive and corrective actions 66
4.4.5 Configuration management 67
4.4.6 Documentation control 67

4.5 Management SQA components 68
4.5.1 Project progress control 68
4.5.2 Software quality metrics 68
4.5.3 Software quality costs 69

4.6 SQA standards, system certification, and assessment
components 69
4.6.1 Quality management standards 69
4.6.2 Project process standards 70

4.7 Organizing for SQA – the human components 70
4.7.1 Management’s role in SQA 70
4.7.2 The SQA unit 71
4.7.3 SQA trustees, committees and forums 71

4.8 The considerations guiding construction of an
organization’s SQA system 72

57

4.1 The SQ
A

 system
 –

 an SQ
A

 architecture
This chapter, the final chapter of the introductory portion of the text, is ded-
icated to a schematic overview of the wide range of SQA components
available to planners of an intra-organizational SQA system. As a local sys-
tem, an intra-organizational SQA system bears “local colors”, which are
affected by the characteristics of the organization, its development projects,
software maintenance activities, and professional staff. The concise descrip-
tion of SQA components is followed by a discussion of the considerations
guiding construction of an organization’s SQA system. This glimpse will
allow you to obtain some preliminary understanding about the potential
contribution of each component, about the entire range of components, and
about the system as a defined entity.

4.1 The SQA system – an SQA architecture

An SQA system always combines a wide range of SQA components, all of
which are employed to challenge the multitude of sources of software errors
and to achieve an acceptable level of software quality. As stated in Chapter
1, the task of SQA is unique in the area of quality assurance due to the spe-
cial characteristics of software. In addition, the environment in which
software development and maintenance is undertaken directly influences the
SQA components (see Chapter 1).

SQA system components can be classified into six classes:

■ Pre-project components. To assure that (a) the project commitments have
been adequately defined considering the resources required, the schedule
and budget; and (b) the development and quality plans have been cor-
rectly determined.

■ Components of project life cycle activities assessment. The project life
cycle is composed of two stages: the development life cycle stage and the
operation–maintenance stage.

The development life cycle stage components detect design and pro-
gramming errors. Its components are divided into the following four
sub-classes:

– Reviews
– Expert opinions
– Software testing.

The SQA components used during the operation–maintenance phase
include specialized maintenance components as well as development life
cycle components, which are applied mainly for functionality improving
maintenance tasks.

An additional sub-class of SQA project life cycle components deals with
assuring the quality of project parts performed by subcontractors and other
external participants during project development and maintenance.

■ Components of infrastructure error prevention and improvement. The
main objectives of these components, which are applied throughout the

58

4
Com

ponents
ofsoftw

are quality
assurance system

entire organization, are to eliminate or at least reduce the rate of errors,
based on the organization’s accumulated SQA experience.

■ Components of software quality management. This class of components
is geared toward several goals, the major ones being the control of devel-
opment and maintenance activities and the introduction of early
managerial support actions that mainly prevent or minimize schedule and
budget failures and their outcomes.

■ Components of standardization, certification, and SQA system assess-
ment. These components implement international professional and
managerial standards within the organization. The main objectives of this
class are (a) utilization of international professional knowledge, (b)
improvement of coordination of the organizational quality systems with
other organizations, and (c) assessment of the achievements of quality
systems according to a common scale. The various standards may be clas-
sified into two main groups: (a) quality management standards, and (b)
project process standards.

■ Organizing for SQA – the human components. The SQA organizational
base includes managers, testing personnel, the SQA unit and practition-
ers interested in software quality (SQA trustees, SQA committee members
and SQA forum members). All these actors contribute to software quali-
ty; their main objectives are to initiate and support the implementation of
SQA components, detect deviations from SQA procedures and method-
ology, and suggest improvements.

The entire range of SQA system components by its classes is presented in
Frame 4.1.

The spectrum of SQA components presented in this book reflects the
comprehensive conception of SQA adopted by the author (see Frame 2.6).
Accordingly, several of the SQA components presented here are unique to
this volume, and not found in other SQA texts.

A graphic illustration of SQA system components as the SQA architec-
ture is presented in Figure 4.1. Included are references to the chapters that
discuss each component in detail. An overview of the system immediately
follows.

Frame 4.1 SQA system component classes

Pre-project quality components

Project life cycle quality components

Infrastructure error preventive and improvement components

Software quality management components

Standardization, certification and SQA assessment components

Organizing for SQA – the human components

59

4.1 The SQ
A

 system
 –

 an SQ
A

 architecture

Pr
oc

ed
ur

es
Ch

. 1
4

S
up

po
rt

in
g

de
vi

ce
s

Ch
. 1

5

Tr
ai

ni
ng

in
st

ru
ct

io
n

Ch
. 1

6

Pr
ev

en
ti

ve
ac

ti
on

s
Ch

. 1
7

Co
nf

ig
ur

at
io

n
m

an
ag

em
en

t
Ch

. 1
9

D
oc

um
en

t
-a

ti
on

co
nt

ro
l

Ch
. 1

9

Pr
oj

ec
t

pr
og

re
ss

co
nt

ro
l

Ch
. 2

0

S
of

tw
ar

e
qu

al
it

y
m

et
ri

cs
Ch

. 2
1

S
of

tw
ar

e
qu

al
it

y
co

st
s

Ch
. 2

2

Q
ua

lit
y

m
an

ag
em

en
t

st
an

da
rd

s
Ch

. 2
3

Pr
oj

ec
t

pr
oc

es
s

st
an

da
rd

s
Ch

. 2
4

Q
ua

lit
y

m
an

ag
em

en
t

O
rg

an
iz

at
io

na
l b

as
e

–
hu

m
an

 c
om

po
ne

nt
s

SQ
A

 F
or

um
s

–
 S

ec
. 2

6.
4

SQ
A

 C
om

m
it

te
es

 –
 S

ec
. 2

6.
3

SQ
A

 T
ru

st
ee

s
–

 S
ec

. 2
6.

2
SQ

A
 U

ni
t –

 S
ec

. 2
6.

1
M

an
ag

em
en

t –
 C

h.
 2

5

St
an

da
rd

s
Q

ua
lit

y
in

fr
as

tr
uc

tu
re

 c
om

po
ne

nt
s

Formal design reviews
Sec. 8.2

Peer reviews
Sec. 8.3

Experts’ opinion
Sec. 8.5

Software testing
Chs 9–10

Software maintenence
Ch. 11

SQA of external participants
Ch. 12

Pr
oj

ec
t l

ife
 c

yc
le

 S
Q

A
co

m
po

ne
nt

s

Pr
oj

ec
t

de
ve

lo
pm

en
t p

la
n

an
d

qu
al

it
y

pl
an

Ch
. 6

Co
nt

ra
ct

 re
vi

ew
Ch

. 5
Pr

e-
pr

oj
ec

t S
Q

A
co

m
po

ne
nt

s
Pr

e-
pr

oj
ec

t S
Q

A
co

m
po

ne
nt

s

Figure 4.1: “The software quality shrine” – the SQA architecture

4.2 Pre-project components

The SQA components belonging here are meant to improve the preparatory
steps taken prior to initiating work on the project itself:

■ Contract review
■ Development and quality plans.

4.2.1 Contract review

Software may be developed within the framework of a contract negotiated
with a customer or in response to an internal order originating in another
department. An internal order may entail a request for developing a
firmware software system to be embedded within a hardware product, an
order for a software product to be sold as a package, or an order for the
development of administrative software to be applied within the company.
In all these instances, the development unit is committed to an agreed-upon
functional specification, budget and schedule.

Accordingly, contract review activities must include a detailed examina-
tion of (a) the project proposal draft and (b) the contract drafts. Specifically,
contract review activities include:

■ Clarification of the customer’s requirements
■ Review of the project’s schedule and resource requirement estimates
■ Evaluation of the professional staff’s capacity to carry out the proposed

project
■ Evaluation of the customer’s capacity to fulfill his obligations
■ Evaluation of development risks.

A similar approach is applied in the review of maintenance contracts. Such
reviews take into account that besides error corrections, maintenance servic-
es include software adaptation and limited software development activities
for the sake of performance improvement (termed “functionality improve-
ment maintenance”).

4.2.2 Development and quality plans

Once a software development contract has been signed or a commitment
made to undertake an internal project for the benefit of another department
of the organization, a plan is prepared of the project (“development plan”)
and its integrated quality assurance activities (“quality plan”). These plans
include additional details and needed revisions based on prior plans that pro-
vided the basis for the current proposal and contract. It is quite common for
several months to pass between the tender submission and the signing of the
contract. During this period, changes may occur in staff availability, in pro-
fessional capabilities, and so forth. The plans are then revised to reflect the
changes that occurred in the interim.

60

4
Com

ponents
ofsoftw

are quality
assurance system

The main issues treated in the project development plan are:

■ Schedules
■ Required manpower and hardware resources
■ Risk evaluations
■ Organizational issues: team members, subcontractors and partnerships
■ Project methodology, development tools, etc.
■ Software reuse plans.

The main issues treated in the project’s quality plan are:

■ Quality goals, expressed in the appropriate measurable terms
■ Criteria for starting and ending each project stage
■ Lists of reviews, tests, and other scheduled verification and validation

activities.

4.3 Software project life cycle components

The project life cycle is composed of two stages: the development life cycle
stage and the operation–maintenance stage.

Several SQA components enter the software development project life
cycle at different points. Their use should be planned prior to the project’s
initiation. The main components are:

■ Reviews
■ Expert opinions
■ Software testing
■ Software maintenance
■ Assurance of the quality of the subcontractors’ work and the customer-

supplied parts.

4.3.1 Reviews

The design phase of the development process produces a variety of docu-
ments. The printed products include design reports, software test documents,
software installation plans and software manuals, among others. Reviews
can be categorized as formal design reviews (DRs) and peer reviews.

Formal design reviews (DRs)
A significant portion of these documents requires formal professional
approval of their quality as stipulated in the development contract and
demanded by the procedures applied by the software developer. It should be
emphasized that the developer can continue to the next phase of the devel-
opment process only on receipt of formal approval of these documents.

61

4.3 S
oftw

are projectlife cycle com
ponents

Ad hoc committees whose members examine the documents presented by
the development teams usually carry out formal design reviews (widely known
as “DRs”). The committees are composed of senior professionals, including
the project leader and, usually, the department manager, the chief software
engineer, and heads of other related departments. The majority of participants
hold professional and administrative ranks higher than the project leader. On
many occasions, the customer’s representative will participate in a DR (this
participation is generally indicated among the contractual arrangements).

The DR report itself includes a list of required corrections (termed
“action items”). When a design review committee sits in order to decide
upon the continuation of the work completed so far, one of the following
options is usually open for consideration:

■ Immediate approval of the DR document and continuation to the next
development phase.

■ Approval to proceed to the next development phase after all the action
items have been completed and inspected by the committee’s representative.

■ An additional DR is required and scheduled to take place after all the action
items have been completed and inspected by the committee’s representative.

Peer reviews
Peer reviews (inspections and walkthroughs) are directed at reviewing short
documents, chapters or parts of a report, a coded printout of a software
module, and the like. Inspections and walkthroughs can take several forms
and use many methods; usually, the reviewers are all peers, not superiors,
who provide professional assistance to colleagues. The main objective of
inspections and walkthroughs is to detect as many design and programming
faults as possible. The output is a list of detected faults and, for inspections,
also a defect summary and statistics to be used as a database for reviewing
and improving development methods.

Because a peer’s participation is usually voluntarily and viewed as a sup-
plement to the regular workload, “reciprocity” considerations frequently
enter. Thus, a current participant is expected to initiate a future inspection
or walkthrough in which other colleagues will probably exchange roles
regarding the inspection activities.

4.3.2 Expert opinions

Expert opinions support quality assessment efforts by introducing additional
external capabilities into the organization’s in-house development process.
Turning to outside experts may be particularly useful in the following situations:

■ Insufficient in-house professional capabilities in a given area.

■ In small organizations in many cases it is difficult to find enough suitable
candidates to participate in the design review teams. In such situations,
outside experts may join a DR committee or, alternatively, their expert
opinions may replace a DR.

62

4
Com

ponents
ofsoftw

are quality
assurance system

■ In small organizations or in situations characterized by extreme work
pressures, an outside expert’s opinion can replace an inspection.

■ Temporary inaccessibility of in-house professionals (waiting will cause
substantial delays in the project completion schedule).

■ In cases of major disagreement among the organization’s senior profes-
sionals, an outside expert may support a decision.

4.3.3 Software testing

Software tests are formal SQA components that are targeted toward review
of the actual running of the software. The tests are based on a prepared list
of test cases that represent a variety of expected scenarios. Software tests
examine software modules, software integration, or entire software packages
(systems). Recurrent tests (usually termed “regression tests”), carried out
after correction of previous test findings, are continued till satisfactory
results are obtained. The direct objective of the software tests, other than
detection of software faults and other failures to fill the requirements, is the
formal approval of a module or integration setup so that either the next pro-
gramming phase can be begun or the completed software system can be
delivered and installed.

Software testing programs are constructed from a variety of tests, some
manual and some automated. All tests have to be designed, planned and
approved according to development procedures. The test report will include
a detailed list of the faults detected and recommendations about the perform-
ance of partial or complete recurrent tests following a subsequent round of
corrections based on the test findings. (The advantages and disadvantages of
automated testing are discussed later.) It is recommended that software tests
be carried out by an independent, outside testing unit rather than by the proj-
ect team, as the project team will naturally find it difficult to detect faults they
failed to detect during development as well as to avoid conflicts of interest.

4.3.4 Software maintenance components

Software maintenance services vary in range and are provided for extensive
periods, often several years. These services fall into the following categories:

■ Corrective maintenance – User’s support services and correction of soft-
ware code and documentation failures.

■ Adaptive maintenance – Adaptation of current software to new circum-
stances and customers without changing the basic software product.
These adaptations are usually required when the hardware system or its
components undergo modification (additions or changes).

■ Functionality improvement maintenance – The functional and perform-
ance-related improvement of existing software, carried out with respect
to limited issues.

63

4.3 S
oftw

are projectlife cycle com
ponents

Software maintenance services should meet all kinds of quality requirements,
particularly functionality and scheduling requirements (generally decided
together with the customer) as well as budget limitations (determined by the
service provider). The provision of ongoing maintenance services involves the
application of a great variety of SQA components. The main SQA components
employed in the quality assurance of the maintenance system are as follows.

Pre-maintenance components
■ Maintenance contract review
■ Maintenance plan.

Software development life cycle components
These components are applied for functionality improvement and adaptive
maintenance tasks, activities whose characteristics are similar to those of the
software development process.

Infrastructure SQA components
■ Maintenance procedures and instructions
■ Supporting quality devices
■ Maintenance staff training, retraining, and certification
■ Maintenance preventive and corrective actions
■ Configuration management
■ Control of maintenance documentation and quality records.

Managerial control SQA components
■ Maintenance service control
■ Maintenance quality metrics
■ Maintenance quality costs.

The above corresponding SQA components for the software development
process have been described briefly in other sections of this overview. We
will return to them in greater detail in the chapters dedicated to the individ-
ual topics.

4.3.5 Assurance of the quality of the external participant’s
work

Subcontractors and customers frequently join the directly contracted devel-
opers (the “supplier”) in carrying out software development projects. The
larger and more complex the project, the greater the likelihood that external
participants will be required, and the larger the proportion of work trans-
mitted to them (subcontractors, suppliers of COTS software and the
customer). The motivation for turning to external participants lies in any

64

4
Com

ponents
ofsoftw

are quality
assurance system

number of factors, ranging from the economic to the technical to personnel-
related interests, and reflects a growing trend in the allocation of the work
involved with completing complex projects. The contribution of external
participants may therefore vary. The assignment may thus concern carrying
out phased tasks such as programming or testing, or the entire range of tasks
required by a development stage of the project.

Most of the SQA controls applied to external participants are defined in
the contracts signed between the relevant parties. If an external participant’s
work is performed using software assurance standards below those of the
supplier’s, risks of not meeting schedule or other requirements are intro-
duced into the project. Hence, special software assurance efforts are required
to establish effective controls over the external participant’s work. Special
SQA efforts are needed to assure the quality of the hardware, software, staff
and training supplied by the customer.

4.4 Infrastructure components for error prevention and
improvement

The goals of SQA infrastructure are the prevention of software faults or, at
least, the lowering of software fault rates, together with the improvement of
productivity. SQA infrastructure components are developed specifically to
this end. These components are devised to serve a wide range of projects and
software maintenance services. During recent years, we have witnessed the
growing use of computerized automatic tools for the application of these
components. This class of SQA components includes:

■ Procedures and work instructions
■ Templates and checklists
■ Staff training, retraining, and certification
■ Preventive and corrective actions
■ Configuration management
■ Documentation control.

4.4.1 Procedures and work instructions

Quality assurance procedures usually provide detailed definitions for the
performance of specific types of development activities in a way that assures
effective achievement of quality results. Procedures are planned to be gener-
ally applicable and to serve the entire organization. Work instructions, in
contrast, provide detailed directions for the use of methods that are applied
in unique instances and employed by specialized teams.

Procedures and work instructions are based on the organization’s accu-
mulated experience and knowledge; as such, they contribute to the correct
and effective performance of established technologies and routines. Because

65

4.4 Infrastructure com
ponents

for error prevention and im
provem

ent

they reflect the organization’s past experience, constant care should be taken
to update and adjust those procedures and instructions to current techno-
logical, organizational, and other conditions.

4.4.2 Supporting quality devices

One way to combine higher quality with higher efficiency is to use support-
ing quality devices, such as templates and checklists. These devices, based as
they are on the accumulated knowledge and experience of the organization’s
development and maintenance professionals, contribute to meeting SQA
goals by:

■ Saving the time required to define the structure of the various documents
or prepare lists of subjects to be reviewed.

■ Contributing to the completeness of the documents and reviews.
■ Improving communication between development team and review com-

mittee members by standardizing documents and agendas.

4.4.3 Staff training, instruction and certification

The banality of the statement that a trained and well-instructed professional
staff is the key to efficient, quality performance, does not make this obser-
vation any less true. Within the framework of SQA, keeping an
organization’s human resources knowledgeable and updated at the level
required is achieved mainly by:

■ Training new employees and retraining those employees who have
changed assignments.

■ Continuously updating staff with respect to professional developments
and the in-house, hands-on experience acquired.

■ Certifying employees after their knowledge and ability have been
demonstrated.

4.4.4 Preventive and corrective actions

Systematic study of the data collected regarding instances of failure and suc-
cess contributes to the quality assurance process in many ways. Among them
we can list:

■ Implementation of changes that prevent similar failures in the future.
■ Correction of similar faults found in other projects and among the activ-

ities performed by other teams.
■ Implementing proven successful methodologies to enhance the probabili-

ty of repeat successes.

66

4
Com

ponents
ofsoftw

are quality
assurance system

The sources of these data, to mention only a few, are design review reports,
software test reports, and customers’ complaints. It should be stressed, how-
ever, that for these data to make a substantial contribution to quality, they
must be systematically collected and professionally analyzed.

4.4.5 Configuration management

The regular software development and maintenance operations involve
intensive activities that modify software to create new versions and releases.
These activities are conducted throughout the entire software service period
(usually lasting several years) in order to cope with the needed corrections,
adaptations to specific customer requirements, application improvements,
and so forth. Different team members carry out these activities simultane-
ously, although they may take place at different sites. As a result, serious
dangers arise, whether of misidentification of the versions or releases, loss of
the records delineating the changes implemented, or loss of documentation.
Consequently failures may be caused.

Configuration management deals with these hazards by introducing pro-
cedures to control the change process. These procedures relate to the
approval of changes, the recording of those changes performed, the issuing
of new software versions and releases, the recording of the version and
release specifications of the software installed in each site, and the preven-
tion of any changes in approved versions and releases once they are issued.
Most configuration management systems implement computerized tools to
accomplish their tasks. These computerized systems provide the updated and
proper versions of the installed software for purposes of further development
or correction. Software configuration procedures generally authorize an
administrator or a configuration management committee to manage all the
required configuration management operations.

4.4.6 Documentation control

SQA requires the application of measures to ensure the efficient long-term
availability of major documents related to software development (“con-
trolled documents”). The purpose of one type of controlled document – the
quality record – is mainly to provide evidence of the SQA system’s perform-
ance. Documentation control therefore represents one of the building blocks
of any SQA system.

Documentation control functions refer mainly to customer requirement
documents, contract documents, design reports, project plans, development
standards, etc. Documentation control activities entail:

■ Definition of the types of controlled documents needed
■ Specification of the formats, document identification methods, etc.
■ Definition of review and approval processes for each controlled document
■ Definition of the archive storage methods.

67

4.4 Infrastructure com
ponents

for error prevention and im
provem

ent

Controlled documents contain information important to the long-term
development and maintenance of the software system, such as software test
results, design review (DR) reports, problem reports, and audit reports.
Quality records mainly contribute to the system’s ability to respond to cus-
tomer claims in the future.

4.5 Management SQA components

Managerial SQA components support the managerial control of software
development projects and maintenance services. Control components include:

■ Project progress control (including maintenance contract control)
■ Software quality metrics
■ Software quality costs.

4.5.1 Project progress control

The main objective of project progress control components is to detect the
appearance of any situation that may induce deviations from the project’s
plans and maintenance service performance. Clearly, the effectiveness and
efficiency of the corrective measures implemented is dependent on the time-
ly discovery of undesirable situations.

Project control activities focus on:

■ Resource usage
■ Schedules
■ Risk management activities
■ The budget.

4.5.2 Software quality metrics

Measurement of the various aspects of software quality is considered to be
an effective tool for the support of control activities and the initiation of
process improvements during the development and the maintenance phases.
These measurements apply to the functional quality, productivity, and orga-
nizational aspects of the project.

Among the software quality metrics available or still in the process of
development, we can list metrics for:

■ Quality of software development and maintenance activities
■ Development teams’ productivity
■ Help desk and maintenance teams’ productivity
■ Software faults density
■ Schedule deviations.

68

4
Com

ponents
ofsoftw

are quality
assurance system

4.5.3 Software quality costs

The quality costs incurred by software development and application are,
according to the extended quality costs model, the costs of control (preven-
tion costs, appraisal costs, and managerial preparation and control costs)
combined with the costs of failure (internal failure costs, external failure
costs, and managerial failure costs). Management is especially interested in
the total sum of the quality costs. It is believed that up to a certain level,
expanding the resources allocated to control activities yields much larger
savings in failure costs while reducing total quality costs. Accordingly, man-
agement tends to exhibit greater readiness to allocate funds to profitable
proposals to improve application of existing SQA system components and
further development of new components.

With respect to the specific SQA strategy applied, analysis of software
quality costs can direct SQA efforts to the improvement of activities that
cause significant failures with their attendant high failure costs or, alter-
natively, to make expensive control activities more efficient. This analysis,
by directing attention to the teams whose activities keep their quality costs
substantially below the average, enables others to learn from them and
reproduce their success. Concomitantly, quality cost analysis can help
identify those teams whose ineffective quality assurance efforts result in
higher than average quality costs. The results can then be used to help the
teams improve.

4.6 SQA standards, system certification, and assessment
components

External tools offer another avenue for achieving the goals of software quali-
ty assurance. Specifically, the main objectives of this class of components are:

(1) Utilization of international professional knowledge.

(2) Improvement of coordination with other organizations’ quality systems.

(3) Objective professional evaluation and measurement of the achievements
of the organization’s quality systems.

The standards available may be classified into two main sub-classes: quality
management standards and project process standards. Either or both of the
two sub-classes can be required by the customer and stipulated in the accom-
panying contractual agreements.

4.6.1 Quality management standards

The organization can clearly benefit from quality standards of the second
sub-class that guide the management of software development, maintenance,

69

4.6 SQ
A

 standards, system
 certification, and assessm

entcom
ponents

and infrastructure. These standards focus on what is required and leave the
decision about how to achieve it to the organization. The application of a
managerial quality system provides a fairly objective assessment of the orga-
nization’s achievements. Organizations that comply with quality
achievement requirements can then seek SQA certification. The most famil-
iar examples of this type of standard are:

■ SEI CMM assessment standard
■ ISO 9001 and ISO 9000-3 standards.

4.6.2 Project process standards

Project process standards are professional standards that provide method-
ological guidelines (dealing with the question of “how”) for the development
team. Well-known examples of this type of standards are:

■ IEEE 1012 standard
■ ISO/IEC 12207 standard.

4.7 Organizing for SQA – the human components

The preceding section pointed out that SQA components cannot be applied
in an organizational vacuum: they require an organizational base. This base
includes the organization’s management, software testing personnel and
SQA units in addition to professionals and other practitioners interested in
software quality (SQA trustees, SQA committee members and SQA forum
members). All these form the organizational software quality framework or,
in our terms, the SQA organizational base. The main objectives of the SQA
organizational base are as follows:

■ To develop and support implementation of SQA components.
■ To detect deviations from SQA procedures and methodology.
■ To suggest improvements to SQA components.

Although the entire SQA organizational base shares these objectives, each
segment of the organizational base concentrates on specific tasks.

4.7.1 Management’s role in SQA

The responsibilities of top management (through the executive in charge of
software quality), departmental management and project management
include the following:

■ Definition of the quality policy
■ Effective follow-up of quality policy implementation

70

4
Com

ponents
ofsoftw

are quality
assurance system

■ Allocation of sufficient resources to implement quality policy
■ Assignment of adequate staff
■ Follow-up of compliance of quality assurance procedures
■ Solutions of schedule, budget and customer relations difficulties.

4.7.2 The SQA unit

This unit and software testers are the only parts of the SQA organizational base
that devote themselves full-time to SQA matters. All other segments of the SQA
organizational base (managerial and professional staff) contribute only some of
their time to software quality issues. Thus, the SQA unit’s task is to serve as the
main moving force, initiator, and coordinator of the SQA system and its appli-
cation. This task can be broken down into a number of primary roles:

■ Preparation of annual quality programs
■ Consultation with in-house staff and outside experts on software

quality issues
■ Conduct of internal quality assurance audits
■ Leadership of quality assurance various committees
■ Support of existing quality assurance infrastructure components and their

updates, and development of new components.

4.7.3 SQA trustees, committees and forums

SQA trustees are members of development and maintenance teams who have
a special interest in software quality and are prepared to devote part of their
time to these issues. Their contributions include:

■ Solving team or unit local quality problems
■ Detecting deviations from quality procedures and instructions
■ Initiating improvements in SQA components
■ Reporting to the SQA unit about quality issues in their team or unit.

SQA committee members are members of various software development and
maintenance units, and are usually appointed for term or ad hoc service. The
main issues dealt with by the committees are:

■ Solution of software quality problems.
■ Analysis of problem and failure records as well as other records, followed

by initiation of corrective and preventive actions when appropriate.
■ Initiation and development of new procedures and instructions; updating

existing materials.
■ Initiation and development of new SQA components and improvement of

existing components.

71

4.7 O
rganizing for SQ

A
 –

 the hum
an com

ponents

SQA forums are composed of professionals and practitioners who meet
and/or maintain an Internet site on a voluntary basis for discussion of qual-
ity issues pertaining to development and maintenance processes. They share
their experiences and difficulties as well as try to initiate improvements in the
software process. The forums can therefore be considered as important
sources of information and SQA initiatives.

4.8 Considerations guiding construction of an
organization’s SQA system

Software quality assurance systems differ among themselves, showing the
flexibility inherent in the construction of such systems. Moreover, variations
in the characteristics of the particular organizations using SQA systems are
reflected in the considerations applied, which means that different organiza-
tions employ different SQA systems.

Decisions regarding the organization’s software quality management sys-
tem fall into two main categories:

(a) The SQA organizational base

(b) The SQA components to be implemented within the organization and
the extent of their use.

These decisions are affected by a number of fundamental considerations that
reflect the characteristics of (a) the organization, (b) the software develop-
ment projects and maintenance services to be performed, and (c) the
organization’s professional staff. The main considerations are as follows.

Organizational considerations:

■ The type of software development clientele. Possible clienteles include
buyers of software packages, customers of custom-made software pack-
ages, and internal clientele (the organization’s departments and
sub-units).

■ The type of software maintenance clientele. The maintenance clienteles
may differ substantially from the software development clienteles. For
example, an internal maintenance unit may serve purchased software
packages or custom-made software specially developed for the organiza-
tion’s departments by software houses. Also, a software house may
employ a subcontractor to maintain its software packages sold to clients
during the warranty period and afterwards.

■ The range of products. The possible situations vary from a wide range of
products to a limited range that includes specialized products and/or services.

■ The size of the organization. A common measure of the size of an organ-
ization is the number of professionals employed. In general, the larger the

72

4
Com

ponents
ofsoftw

are quality
assurance system

number of professionals occupied by the organization, the greater the
number of different specializations, and the greater the variety of SQA
components developed and applied.

■ The degree and nature of cooperation with other organizations carrying
out related projects. The range of cooperative options available covers
organizations that carry out entire projects independently (no cooperation),
organizations that undertake projects with partners, and organizations
that employ subcontractors to complete specific parts of a project.
Usually, the greater the cooperation the greater the number of required
SQA components.

■ Optimization objectives. The organization is required to select SQA com-
ponents while taking into account the optimal combined contribution in
the following areas: (a) software quality, (b) team productivity, (c) process
efficiency, and (d) financial savings.

Project and maintenance service considerations:

■ The level of software complexity and difficulty. Complexity and difficul-
ties can be caused by the algorithms applied, the project’s size, the variety
of development tools used, interfaces to other software and firmware sys-
tems required, and so forth.

■ The degree of staff experience with project technology. Experience can
reduce the resources required, the rate of software errors, and the time
required for project completion. Usually, the greater the staff’s experi-
ence, the fewer the SQA components required.

■ The extent of software reuse in new projects. Higher proportions of soft-
ware reuse allow for the reduction of SQA efforts (staff, finances, time,
etc.) and the employment of fewer SQA components within the project.

Professional staff considerations:

■ Professional qualifications. In general, a highly qualified professional
staff usually enables a reduction in the SQA efforts required to complete
and maintain a project.

■ Level of acquaintance with team members. How well acquainted the
team members are with each other and the level of acquaintance of the
department with the team members represents an oft-neglected SQA con-
sideration. Teams can be composed of individuals who have worked
together for a long time, or who have only recently met. At the same time,
teams may contain differing proportions of recently hired employees.
Projects performed by teams who have not worked together or have
served the organization for only a short time require greater and more
intense SQA efforts due to the uncertainty surrounding the members’
ability to cooperate and coordinate among themselves as well as the
uncertainty about their professional experience and qualifications.

73

4.8 Considerations
guiding construction ofan organization’s

SQ
A

 system

Frame 4.2 summarizes the main considerations listed above.74

4
Com

ponents
ofsoftw

are quality
assurance system

Frame 4.2 The main considerations affecting the use of the
SQA components

Organizational considerations

■ Type of software development clientele

■ Type of software maintenance clientele

■ Range of software products

■ Size of the organization

■ Degree and nature of cooperation with other organizations carrying out
related projects

■ Optimization objectives

Project and maintenance service considerations

■ Level of complexity and difficulty

■ Degrees of experience with the project technology

■ Extent of software reuse in the new projects

Professional staff considerations

■ Professional qualifications

■ Level of acquaintance with team members

par t I I

Pre-project software quality
components

chapter 5

Contract review

A bad contract is always an undesirable event. From the viewpoint of SQA,
a bad contract – usually characterized by loosely defined requirements, and
unrealistic budgets and schedules – is expected to yield low-quality software.
So, it is natural for an SQA program to begin its preventive quality assurance
efforts with a review of the proposal draft and, later, the contract draft
(“contract review” covers both activities). The two reviews are aimed at
improving the budget and timetable that provide the basis for the proposal
and the subsequent contract, and revealing potential pitfalls at an early
enough stage (in the proposal draft and in the contract draft).

This chapter is dedicated to the study of the objectives of contract review
and the wide range of review subjects that correspond to these objectives. The
contract review process originates in the customer–supplier relationship, and
is expected to make a substantial contribution to internal projects as well.

Chapter outline

5.1 Introduction: the CFV Project completion celebration 78
5.2 The contract review process and its stages 79
5.3 Contract review objectives 80

5.3.1 Proposal draft review objectives 80
5.3.2 Contract draft review objectives 82

5.4 Implementation of a contract review 82
5.4.1 Factors affecting the extent of a contract review 82
5.4.2 Who performs a contract review? 83
5.4.3 Implementation of a contract review for a major proposal 83

5.5 Contract review subjects 85
5.6 Contract reviews for internal projects 85

Summary 87
Selected bibliography 88
Review questions 89
Topics for discussion 89
Appendix 5A: Proposal draft reviews – subjects checklist 92
Appendix 5B: Contract draft review – subjects checklist 94

After completing this chapter, you will be able to:

■ Explain the two contract review stages.
■ List the objectives of each stage of the contract review.
■ Identify the factors that affect the extent of the review.
■ Identify the difficulties in performing a major contract review.
■ Explain the recommended avenues for implementing a major contract review.
■ Discuss the importance of carrying out a contract review for internal projects.

5.1 Introduction: the CFV Project completion celebration

A happy gathering of the CFV project team at a popular restaurant down-
town was called to celebrate the successful completion of a 10-month project
for Carnegie Fruits and Vegetables, a produce wholesaler. The new informa-
tion system registers product receipts from growers, processes clients’ orders
and produce shipments to clients (greengrocers and supermarkets), bills
clients, and calculates payments made to the growers.

The team members were proud to emphasize that the project was conducted
in full as originally scheduled. The team was especially jubilant as earlier that
morning each member had received a nice bonus for finishing on time.

The third speaker, the software company’s Vice President for Finance,
altered the pleasant atmosphere by mentioning that this very successful project
had actually lost about $90000. During his remarks, he praised the planners
for their good estimates of the resources needed for the analysis and design
phase, and for the plans for broad reuse of software from other systems that
were, this time, completely realized. “The only phase where our estimates
failed was one of the project’s final phases, the client’s instruction, that where
the client’s staff are instructed on how to use the new information system. It
now appears that no one had read the relevant RFP (requirement for pro-
posal) section carefully enough. This section stated in a rather innocuous
manner that the personnel in all the CFV branches where the software was
to be installed would be instructed in its use by the software supplier.” After
a short pause he continued thus: “Nobody tried to find out how many
branches our client operates. Nobody mentioned that CFV operates 19
branches – six of them overseas – before signing the contract!” He continued:
“We tried to renegotiate the installation and instruction budget items with
the client, but the client insisted on sticking to the original contract.”
Though no names were mentioned, it was clear that he blamed the sales
negotiating team for the loss.

Similar, and in many cases much heavier, losses stem from sloppily writ-
ten proposals or poorly understood contracts. Shallow and quick resource
estimates, as well as exaggerated software sales efforts, have led to unrealis-
tic schedules and budgets, or to unrealistic professional commitments. A
proposal suffering from one of these faults or, worse, a combination of them
and that later becomes a contract provides a certain recipe for project or

78

5
Contractreview

service failure. It is clear that unrealistic professional commitments lead to
failure to achieve the required software quality. Furthermore, in most cases,
schedule and budget failures are accompanied by lower than acceptable soft-
ware quality, due to pressures exerted on team members by management “to
save time” and “to save resources”. We can quite unrestrictedly state that
such excessive pressures eventually lead to high rates of software failure.

Contract review is the software quality element that reduces the proba-
bility of such undesirable situations. Contract review is a requirement by the
ISO 9001 standard and ISO 9000-3 Guidelines (see Sec. 4.3 of ISO (1997)
and Sec. 7.2 of ISO/IEC (2001)). See Oskarsson and Glass (1996) for a dis-
cussion of some application aspects of contract review.

5.2 The contract review process and its stages

Several situations can lead a software company (“the supplier”) to sign a
contract with a customer. The most common are:

(1) Participation in a tender.

(2) Submission of a proposal according to the customer’s RFP.

(3) Receipt of an order from a company’s customer.

(4) Receipt of an internal request or order from another department in
the organization.

Contract review is the SQA component devised to guide review drafts of
proposal and contract documents. If applicable, contract review also pro-
vides oversight of the contacts carried out with potential project partners and
subcontractors. The review process itself is conducted in two stages:

■ Stage One – Review of the proposal draft prior to submission to the
potential customer (“proposal draft review”). This stage reviews the final
proposal draft and the proposal’s foundations: customer’s requirement
documents, customer’s additional details and explanations of the
requirements, cost and resources estimates, existing contracts or contract
drafts of the supplier with partners and subcontractors.

■ Stage Two – Review of contract draft prior to signing (“contract draft
review”). This stage reviews the contract draft on the basis of the pro-
posal and the understandings (including changes) reached during the
contract negotiations sessions.

The processes of review can begin once the relevant draft document has been
completed. The individuals who perform the review thoroughly examine the
draft while referring to a comprehensive range of review subjects. A check-
list is very helpful for assuring the full coverage of relevant subjects (see
Appendices 5A and 5B).

79

5.2 The contractreview
 process

and its
stages

After the completion of a review stage it is required that the necessary
changes, additions and corrections are introduced by the proposal team
(after the proposal draft review) and by the legal department (after the con-
tract draft review).

5.3 Contract review objectives

As can be expected, the two contract review stages have different objectives,
which we detail in the following.

5.3.1 Proposal draft review objectives

The objective of the proposal draft review is to make sure that the following
activities have been satisfactorily carried out.

(1) Customer requirements have been clarified and documented.
RFP documents and similar technical documents can be too general and
imprecise for the project’s purposes. As a result, additional details
should be obtained from the customer. Clarifications of vague require-
ments and their updates should be recorded in a separate document that
is approved by both the customer and the software firm.

(2) Alternative approaches for carrying out the project have been examined.
Often, promising and suitable alternatives on which to present a propos-
al have not been adequately reviewed (if at all) by the proposal team. This
stipulation refers especially to alternatives encompassing software reuse,
and partnerships or subcontracting with firms that have specialized
knowledge or staff that can qualify for meeting the proposal’s terms.

(3) Formal aspects of the relationship between the customer and the soft-
ware firm have been specified.
The proposal should define formalities that include:

■ Customer communication and interface channels
■ Project deliverables and acceptance criteria
■ Formal phase approval process
■ Customer design and test follow-up method
■ Customer change request procedure.

(4) Identification of development risks.
Development risks, such as insufficient professional know-how regard-
ing the project’s professional area or the use of required development
tools, need to be identified and resolved. For a comprehensive descrip-
tion of identification of software risk items and methods for risk
management actions, see Appendix 6A.

(5) Adequate estimation of project resources and timetable.
Resources estimation refers to professional staff as well as the project’s
budget, including subcontractors’ fees. Scheduling estimates should take into
account the time requirements of all the parties participating in the project.

80

5
Contractreview

(6) Examination of the company’s capacity with respect to the project.
This examination should consider professional competence as well as
the availability of the required team members and development facilities
on the scheduled time.

(7) Examination of the customer’s capacity to meet his commitments.
This examination refers to the customer’s financial and organizational
capacities, such as personnel recruitment and training, installation of the
required hardware, and upgrading of its communications equipment.

(8) Definition of partner and subcontractor participation.
This covers quality assurance issues, payment schedules, distribution of
project income/profits, and cooperation between project management
and teams.

(9) Definition and protection of proprietary rights.
This factor is of vital importance in cases where reused software is insert-
ed into a new package or when rights for future reuse of the current
software need to be decided. This item also refers to the use of propri-
etary files of data crucial for operating the system and security measures.

The objectives of a proposal draft review are summarized in Frame 5.1.

81

5.3 Contractreview
 objectives

Implementation tip

In some situations, a supplier deliberately offers a below-cost proposal,
considering factors such as sales potential. In these cases, where the proposal is
based on realistic estimates of schedule, budget and professional capabilities,
the loss incurred is considered to be a calculated loss, not a contract failure.

Frame 5.1 Proposal draft review objectives

The nine proposal draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. Customer requirements have been clarified and documented.

2. Alternative approaches for carrying out the project have been examined.

3. Formal aspects of the relationship between the customer and the software
firm have been specified.

4. Identification of development risks.

5. Adequate estimation of project resources and timetable have been prepared.

6. Examination of the firm’s capacity with respect to the project.

7. Examination of the customer’s capacity to fulfill his commitments.

8. Definition of partner and subcontractor participation conditions.

9. Definition and protection of proprietary rights.

5.3.2 Contract draft review objectives

The objectives of the contract draft review are to make sure that the follow-
ing activities have been performed satisfactorily:

(1) No unclarified issues remain in the contract draft.

(2) All the understandings reached between the customer and the firm are to be
fully and correctly documented in the contract and its appendices. These
understandings are meant to resolve all the unclarified issues and differences
between the customer and the firm that have been revealed so far.

(3) No changes, additions, or omissions that have not been discussed and
agreed upon should be introduced into the contract draft. Any change,
whether intentional or not, can result in substantial additional and
unanticipated commitments on the part of the supplier.

The objectives of a contract draft review are summarized in Frame 5.2.

5.4 Implementation of a contract review

Contract reviews vary in their magnitude, depending on the characteristics
of the proposed project. This complexity may be either technical or organi-
zational. Accordingly, different levels of professional effort are justified for
the various contract reviews. Special professional efforts are required for
major proposals.

5.4.1 Factors affecting the extent of a contract review

The most important project factors determining the extent of the contract
review efforts required are:

■ Project magnitude, usually measured in man-month resources.

■ Project technical complexity.

82

5
Contractreview

Frame 5.2 Contract draft review objectives

The three contract draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. No unclarified issues remain in the contract draft.

2. All understandings reached subsequent to the proposal are correctly
documented.

3. No “new” changes, additions, or omissions have entered the contract draft.

■ Degree of staff acquaintance with and experience in the project area.
Acquaintance with the project area is frequently linked with software
reuse possibilities; in cases where a high proportion of software reuse is
possible, the extent of the review is reduced.

■ Project organizational complexity. The greater the number of organiza-
tions (i.e., partners, subcontractors, and customers) taking part in the
project, the greater the contract review efforts required.

We may therefore assume that “simple” contract reviews will be carried out
by one reviewer, who will focus on a few subjects and invest little time in his
review. However, a large-scale contract review may require the participation
of a team to examine a wide range of subjects, a process demanding the
investment of many working hours.

5.4.2 Who performs a contract review?

The task of contract review can be completed by various individuals, listed
here in ascending order, according to the complexity of the project:

■ The leader or another member of the proposal team.

■ The members of the proposal team.

■ An outside professional or a company staff member who is not a mem-
ber of the proposal team.

■ A team of outside experts. Usually, a contract review team composed of
outside experts is called in, especially for major proposals (see Section
5.4.3). Outside experts may be called also for contract reviews in small
software development organizations that are unable to find enough ade-
quate team members in their staff.

5.4.3 Implementation of a contract review for a major proposal

Major proposals are proposals for projects characterized by at least some of
the following: very large-scale project, very high technical complexity, new
professional area for the company, and high organizational complexity (real-
ized by a great number of organizations, i.e., partners, subcontractors, and
customers, that take part in the project). Implementation of a contract
review process for a major project usually involves substantial organization-
al difficulties. Some avenues for overcoming these difficulties are suggested
here, following a review of the factors that introduce difficulties to a smooth
completion of the task.

The difficulties of carrying out contract reviews for major proposals
Almost everybody agrees that contract review is a major procedure for
reducing the risks of major project failures. Several substantial, fundamental,

83

5.4 Im
plem

entation ofa contractreview

and inherent difficulties in performing the contract review exist, especially for
those situations requiring a review of a major proposal.

■ Time pressures. Both stages of the contract review, proposal draft review
and contract draft review are usually performed when the tender team is
under considerable time pressures. As a result, each stage of the contract
review has to be completed within a few days to allow for the subsequent
corrections of documents to take place.

■ Proper contract review requires substantial professional work.
Professional performance of each stage of the contract review requires
investment of substantial professional expertise (the amount of time
required varies, of course, according to the nature of the project).

■ The potential contract review team members are very busy. The potential
members of the contract review team are often senior staff members and
experts who usually are committed to performing their regular tasks at
the very time that the review is needed. Freeing professional staff can
therefore be a significant logistical problem.

Recommended avenues for implementing major contract reviews
The careful planning of contract reviews is required for their successful com-
pletion. As should be clear by now, this holds doubly for major contract
reviews. It is recommended that the following steps be taken to facilitate the
review process.

■ The contract review should be scheduled. Contract review activities
should be included in the proposal preparation schedule, leaving suffi-
cient time for the review and the ensuing corrections to be made.

■ A team should carry out the contract review. Teamwork makes it possi-
ble to distribute the workload among the team members so that each
member of the contract review team can find sufficient time to do his or
her share (which may include preparing a written report that summarizes
his or her findings and recommendations).

■ A contract review team leader should be appointed. It is important that
the responsibility for organizing, managing and controlling the contract
review activities be defined, preferable by appointing a team leader. The
activities of the team leader include:

– Recruitment of the team members
– Distribution of review tasks among the team’s members
– Coordination between the members of the review team
– Coordination between the review team and the proposal team
– Follow-up of activities, especially compliance with the schedule
– Summarization of the findings and their delivery to the proposal team.

84

5
Contractreview

5.5 Contract review subjects

Contract reviews examine many subjects, based on the contract review
objectives. Checklists are useful devices for helping review teams to organize
their work and achieve high coverage of the relevant subjects. It is clear that
many of the subjects on these lists are irrelevant for any specific project. At
the same time, even a comprehensive checklist may exclude some important
subjects relevant to a given project proposal. It is the task of the contract
review team, but especially of its leader, to determine the list of subjects per-
tinent for the specific project proposal.

Lists of contract review subjects, classified according to contract review
objectives, are presented in the appendices to this chapter:

■ Appendix 5A: Proposal draft review – subjects checklist
■ Appendix 5B: Contract draft review – subjects checklist.

5.6 Contract reviews for internal projects

A substantial number, if not the majority, of software projects are internal
projects — “in-house” projects – carried out by one unit of an organization
for another unit of the same organization. In such cases, the software devel-
opment unit is the supplier, while the other unit can be considered the
customer. Typical internal projects and their in-house customers are listed in
Table 5.1.

Frequently, internal software development projects are not based on
what would be considered a complete customer–supplier relationship. In
many cases, these projects are based on general agreements, with goodwill
playing an important role in the relationships between the two units. It fol-
lows that the developing unit will perform only a short and “mild” contract
review, or none at all.

85

5.6 Contractreview
s

for internalprojects

Implementation tip

As contract reviews may impose a substantial workload and additional
pressures on the proposal team, thought should be given to when it may be
appropriate to abstain from conducting a contract review. Such situations may
occur with small-scale projects, or small- to medium-scale cost-plus projects.
Contract review procedures should therefore define those types of projects for
which a contract review is not obligatory.

For other defined types of “simple” projects, it is recommended that
authority be given to a senior manager to make the decision as to whether to
perform the review.

Unfortunately, loose relationships are usually characterized by insuffi-
cient examination of the project’s requirements, its schedule, resources and
development risks. As a result, the following problems are likely to arise:

(1) Inadequate definition of project requirements.

(2) Poor estimates of required resources.

(3) Poor timetable/scheduling.

(4) Inadequate awareness of development risks.

As this list indicates, we can easily conclude that in-house projects performed
for internal customers are more prone to failure than are outside-contracted
projects. The potential disadvantages of the loose relationships evidenced by
internal projects are shown in Table 5.2.

It could be concluded that the customer–supplier relationship and con-
tract review which proved to be fruitful for external projects should be
applied for internal projects as well. The chances of avoiding the above-
mentioned potential problems can be considerably improved by implement-
ing procedures that will define:

■ An adequate proposal for the internal project
■ Applying a proper contract review process for internal projects
■ An adequate agreement between the internal customer and the internal

supplier.

86

5
Contractreview

Table 5.1: Typical internal projects and their in-house customers

Type of internal The in-house Project examples
project customers

(1) Administrative or Administration and ■ Sales and inventory systems
operative software to be operating units ■ Financial resource
applied internally management systems

■ Human resource management
systems

(2) Software packages Software marketing ■ Computer games
originally intended to be department ■ Educational software
sold to the public as ■ Word processors
“off-the-shelf” packages ■ Sales and inventory

management software
packages

(3) Firmware to be Electronic and mechanical ■ Electronic instrumentation
embedded in the product development and control products
company’s products departments ■ Household amusement

equipment and machinery
■ Advanced toys

Summary

(1) Explain the two contract review stages.

■ Proposal draft review. This stage reviews the final proposal draft and the docu-
ments on which it is based: customer documents and customer’s detailed
explanations of the requirements, resource and financial estimates, existing
contracts with partners and subcontractors, etc.

■ Contract draft review. This stage reviews the contract draft on the basis of the
proposal and the understandings reached during the subsequent negotiations.

(2) List the objectives of contract review.

The objectives of the proposal draft review are to make sure that the following activ-
ities have been completed satisfactorily:

■ Customer requirements have been clarified and documented.
■ Alternatives for carrying out the project have been examined.
■ A formal relationship with the customer has been defined.
■ Development risks have been identified.
■ Resources and schedules for the project have been adequately estimated.
■ The company’s capacity to perform the project has been examined.
■ The customer’s capacity to fulfill his commitments has been examined.
■ Partner and subcontractor participation has been defined.
■ Proprietary rights have been defined and protected.

87

S
um

m
ary

Table 5.2: Disadvantages of “loose relationships” internal projects

Subject Disadvantages to the Disadvantages to the
internal customer internal developer

(1) Inadequate definition ■ Implementation deviates ■ Higher than average change
of project from needed applications requirements
requirements ■ Low satisfaction ■ Wasted resources due to

introducing avoidable changes

(2) Poor estimate of ■ Unrealistic expectations ■ Substantial deviations from
required resources about project feasibility development budget

■ Friction between units induced
by requirements for budget
additions

(3) Poor timetable ■ Missing scheduled dates ■ Development activities are
for beginning distribution under time pressures and tend
of new products to suffer from low quality

■ Late project completion causes
delays in freeing staff for their
next project

(4) Inadequate awareness ■ Customer unprepared for ■ Tardy initiation of efforts to
of development risks project risks and their overcome difficulties

consequences

The objectives of the contract draft review are to guarantee satisfactory completion
of the following activities:

■ No unclarified issues remain in the contract draft.
■ All understandings subsequent to the proposal are correctly documented.
■ No changes, additions, or omissions are to be found.

(3) Identify the factors that affect the extent of the contract review.

The efforts to be expended on the contract review depend on the characteristics of
the project. The most important factors are the project magnitude and complexity,
the staff’s acquaintance with and experience in the project area, and the number
of additional organizations carrying out the project (partners, subcontractors, and
the customer).

(4) Identify the difficulties in performing a major contract review.

The main difficulties are the pressures of time and the need to invest substantial
professional working hours when the contract review team member is already occu-
pied by other commitments.

(5) Explain the recommended avenues for implementing a major contract review.

To conduct a proper major contract review, one should abide by the following
guidelines:

■ The contract review should be part of the proposal preparation schedule.
■ The contract review should be carried out by a team.
■ A contract review leader should be appointed.

(6) Discuss the importance of carrying out a contract review for internal projects.

The loose relationships maintained between the internal customer and the internal
developer increase the probability of project failure. This trend can be reduced by
adequate procedures that will define the preparation and by applying the same
guidelines used for external project contract review.

Selected bibliography

1. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization, Geneva.

2. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

3. Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Ch. 3, Prentice Hall, Upper Saddle River, NJ.

88

5
Contractreview

Review questions

5.1 The CFV case is described at the beginning of this chapter. From the Vice
President’s short speech, it can be understood that the proposal preparation was
conducted as follows: (a) a negotiating team was appointed by the management,
(b) a proposal was prepared by the negotiating team, (c) management approved
the proposal before it was presented to the customer, (d) management signed
the contract.

(1) Can you suggest steps that would reduce the possible losses caused by a
faulty contract?

(2) What relevant contract review subjects, listed in Appendices 5A and 5B, could
have revealed the contract faults described in the CFV case?

5.2 List the various aspects involved with the examination of the customer’s capabilities.

5.3 One of the objectives of a contract review is to examine development risks.

(1) List the most common types of development risks.
(2) What proposal team activities are required regarding each of the revealed

development risks?

5.4 The extent of a contract review depends on the project’s characteristics.

(1) Describe an imaginary project that requires an intensive and comprehensive
contract review.

(2) Describe an imaginary project where a small-scale contract review would
be adequate.

5.5 Performing a contract review raises many difficulties.

(1) List the “built-in” difficulties to carrying out a large-scale contract review.
(2) List the steps that should be taken to make a large-scale contract review feasible.

5.6 List those issues involved with estimating the resources required for a project that
should be considered by the contract review team.

5.7 List the supplier’s capability issues that should be considered by the contract
review team.

5.8 List the partner and subcontractor participation issues that should be considered
by the contract review team.

Topics for discussion

5.1 MJS, Mount Jackson Systems, signed a contract to develop a comprehensive CRM
(Customer Relations Management) system for a large food preparation corpora-
tion. In order to fulfill the project’s requirements, MJS employed three
subcontractors. MJS’s experience with the subcontractors turned out to be trou-
blesome, especially in regard to not keeping timetables, high rates of software
faults of all kinds, and many interface faults with system parts developed by other

89

Topics
for discussion

participants in the project. The head of the software quality assurance unit stated
that if his unit had carried out the contract review procedure, most of the described
problems would have been averted.

(1) What contract review subject is relevant to this case?
(2) What process would you recommend when applying a contract review in

this case?

5.2 An SQA professional claims: “I find all the reasons given for a proposal draft review
to be justified. I also believe that a review contributes to the quality of the pro-
posal, especially in clarifying and precisely defining requirements, and in
preparing more realistic estimates, among other issues. However, once the pro-
posal has been presented to the customer, there is no need for a contract draft
review. The task of reviewing the final negotiations results and the final version of
the contract should be left to the legal department and to management.”

(1) Do you agree with the above statement? List your arguments.
(2) In what situations is a contract draft review not necessary?
(3 In what situations is a contract draft review absolutely necessary?

5.3 Many organizations do not apply their contract review procedures to internal proj-
ects even though they perform comprehensive contract reviews for all their
external projects.

(1) List arguments that support this approach.
(2) List arguments that oppose this approach.
(3) Suggest types of internal projects where omission of a contract review could

result in severe damage to the organization (mention the main components of
damage listed for each project type).

5.4 One of the objectives of a contract review is to examine the customer’s capability
of fulfilling his commitments. Accordingly, a comprehensive list of contract review
subjects is suggested in Appendix 5A. Some managers believe that because the sup-
plier can sue the customer in the event that he does not fulfill his commitments,
there is no justification to invest resources in reviewing the customer’s capabilities.

(1) Do you agree with these managers?
(2) If you disagree, list your arguments in favor of a comprehensive examination

of the customer’s capabilities.
(3) Can you describe a real or imaginary situation where a customer’s capability

failures could create substantial direct and indirect damages to the software
developer (“the supplier”)?

5.5 A contract draft review of a properly prepared contract document is expected
to yield no negative findings. Still, in reality, discrepancies in contracts do
appear frequently.

(1) List real cases and common situations where such discrepancies could arise.
(2) In what situations are discrepancies in the contract draft expected to be least

likely?

90

5
Contractreview

5.6 The examination of alternatives is one of the major tasks of a proposal team, espe-
cially for tender proposals. However, in many cases, important alternatives are
omitted or neglected by the proposal team.

(1) List real cases and common situations where negligence in defining and
examining important alternatives can be expected.

(2) In what situations are these types of discrepancies least likely to occur?

5.7 National Software Providers is very interested in the newly developing area of BI
(Business Intelligence) for electronic commerce firms. As the company is very keen
to gain experience in this area, they were especially interested in winning a tender
issued by one of the leading cosmetics manufacturers. The proposal team esti-
mated that in order to win the contract, their proposal should not exceed the sum
of $650 000. Accordingly, their quotation was $647 000. As all the team members
were aware that the cost of completing the project by the company’s inexperienced
development department would substantially exceed this sum, they decided that
there was little use in investing efforts to estimate the actual costs of the project.

(1) Do you agree with the team’s decision not to estimate the project’s costs?
(2) If you disagree, what are your arguments in favor of estimating the costs?

5.8 Consider the case of a custom-made software package developed by a supplier
according to the unique RFP (request for proposal) specifications of the customer.

(1) What proprietary issues are expected in such a project?
(2) What security issues related to the proprietary rights listed in your answer to

(1) should be examined?

5.9 Contract review subjects include a variety of financial issues.

(1) Why should an SQA activity such as contract review be so heavily involved in
financial issues?

(2) Is it likely that an SQA unit member will be able to review the financial issues?
Who do you believe should do it, and how should the review be organized?

5.10 A contract review can be performed by “insiders” (members of the organization’s
proposal team or other staff members) or by “outsiders”.

(1) What are the advantages and disadvantages of employing outsiders com-
pared with insiders for a proposal draft review?

(2) What are the advantages and disadvantages of employing outsiders com-
pared with insiders for a contract draft review?

5.11 A medium-sized firm submits 5–10 proposals per month, 10%–20% of which
eventually evolve into development contracts. The company takes care to per-
form a thorough project draft review for each of the proposals.

(1) Do the proposal draft reviews performed for each of the individual projects
guarantee that the company will be capable of carrying out all the proposals
that eventually evolve into development contracts? List your arguments.

(2) If your answer to (1) is negative, what measures should be taken to reduce
the risk of being unable to perform the contracts?

91

Topics
for discussion

Appendix 5A Proposal draft reviews – subjects checklist92

5
Contractreview

Proposal draft Proposal draft review subjects

review objective

1. Customer requirements have 1.1 The functional requirements.
been clarified and documented 1.2 The customer’s operating environment (hardware,

data communication system, operating system, etc.).
1.3 The required interfaces with other software packages

and instrument firmware, etc.
1.4 The performance requirements, including workloads

as defined by the number of users and the
characteristics of use.

1.5 The system’s reliability.
1.6 The system’s usability, as realized in the required

training time for an operator to achieve the required
productivity. The total of training and instruction
efforts to be carried out by the supplier, including
number of trainees and instructed stuff, locations
and duration.

1.7 The number of software installations to be
performed by the supplier, including locations.

1.8 The warranty period, extent of supplier liability, and
method of providing support.

1.9 Proposals for maintenance service provision
extending beyond the warranty period, and its
conditions.

1.10 Completion of all the tender requirements, including
information about the project team, certification and
other documents, etc.

2. Alternative approaches for 2.1 Integrating reused and purchased software.
carrying out the project have 2.2 Partners.
been examined 2.3 Customer’s undertaking to perform in-house

development of some project tasks.
2.4 Subcontractors.
2.5 Adequate comparison of alternatives.

3. Formal aspects of the 3.1 A coordination and joint control committee,
relationship between the including its procedures.
customer and the software 3.2 The list of documentation that has to be delivered.
firm have been specified 3.3 The customer’s responsibilities re provision of

facilities, data, and answers to the team’s inquiries.
3.4 Indication of the required phase approval by the

customer and the approval procedure.
3.5 Customer participation (extent and procedures) in

progress reviews, design reviews, and testing.
3.6 Procedures for handling customer change requests

during development and maintenance stages,
including method of costing introduction of changes.

3.7 Criteria for project completion, method of approval,
and acceptance.

3.8 Procedures for handling customer complaints and
problems detected after acceptance, including
non-conformity to specifications detected after the
warranty period.

93

A
ppendix

5A
Proposaldraftreview

s
–

 subjects
checklist

Proposal draft Proposal draft review subjects

review objective

3.9 Conditions for granting bonuses for earlier project
completion and penalties for delays.

3.10 Conditions to be complied with, including financial
arrangements if part of or the entire project is
cancelled or temporarily halted upon the customer’s
initiative. (Issues include the expected damages to
the firm if such actions are taken at various stages of
the project.)

3.11 Service provision conditions during warranty period.
3.12 Software maintenance services and conditions,

including customer’s obligation to update his
version of the software as per supplier’s demands.

4. Identification of 4.1 Risks re software modules or parts that require
development risks substantial acquisition of new professional

capabilities.
4.2 Risks re possibility of not obtaining needed

hardware and software components according to
schedule.

5. Adequate estimation of 5.1 Man-days required for each project phase and their
resources and timetable cost. Do the estimates include spare resources to

cover for corrections following design reviews, tests,
and so forth?

5.2 Do the estimates of man-days include the required
work to prepare the required documentation,
especially the documentation to be delivered to the
customer?

5.3 Manpower resources needed to fulfill warranty
obligations and their cost.

5.4 Does the project schedule include time required for
reviews, tests, etc. and making the required
corrections?

6. Examination of the firm’s 6.1 Professional pool of knowledge.
capacity to perform the project 6.2 Availability of specialized staff (on schedule and in

the required numbers).
6.3 Availability of computer resources and other

development (including testing) facilities (on
schedule and in the required numbers).

6.4 Ability to cope with the customer requirements
demanding use of special development tools or
software development standards.

6.5 Warranty and long-term software maintenance
service obligations.

7. Examination of customer’s 7.1 Financial capability, including contract payments
capacity to fulfill his and additional internal investments.
commitments 7.2 Supply of all the facilities, data and responses to

staff queries as they arise.
7.3 Recruitment and training of new and existing staff.
7.4 Capacity to complete all task commitments on time

and to the requisite quality.

Appendix 5B Contract draft review – subjects checklist

94

5
Contractreview

Proposal draft Proposal draft review subjects

review objective

8. Definition of partner and 8.1 Allocation of responsibility for completion of tasks
subcontractor participation by the partners, subcontractors, or the customer,
conditions including schedule and method of coordination.

8.2 Allocation of payments, including bonuses and
penalties, among partners.

8.3 Subcontractor payment schedule, including bonuses
and penalties.

8.4 Quality assurance of work performed by
subcontractors, partners and the customer,
including participation in SQA activities (e.g., quality
planning, reviews, tests).

9. Definition and protection of 9.1 Securing proprietary rights to software purchased
software proprietary rights from others.

9.2 Securing proprietary rights to data files purchased
from others.

9.3 Securing proprietary rights to future reuse of
software developed in custom-made projects.

9.4 Securing proprietary rights to software (including
data files) developed by the firm (the supplier) and
his subcontractors during the development period
and while in regular use by the client.

Contract draft Contract draft review subjects

review objective

1. No unclarified issues remain 1.1 Supplier’s obligations as defined in the contract
in the contract draft draft and its appendices.

1.2 Customer’s obligations as defined in the contract
draft and its appendices.

2. All understandings reached 2.1 Understandings about the project’s functional
subsequent to the proposal requirements.
are correctly documented 2.2 Understandings about financial issues, including

payment schedule, bonuses, penalties, etc.
2.3 Understandings about the customer’s obligations.
2.4 Understandings about partner and subcontractor

obligations, including the supplier’s agreements
with external parties.

3. No “new” changes, additions, 3.1 The contract draft is complete; no contract section or
or omissions have entered the appendix is missing.
contract draft 3.2 No changes, omissions and additions have been

entered into the agreed document, regarding the
financial issues, the project schedule, or the
customer and partners’ obligations.

chapter 6

Development and
quality plans

Imagine that you have just been appointed head of a sizable project. As is
often the case in the software industry, you come under serious time pres-
sures from the very first day. Because you were a member of the proposal
team and participated in most of the meetings held with the customer’s rep-
resentatives, you are confident that you know all that is necessary to do the
job. You intend to use the proposal plans and internal documents that the
team had prepared as your development and quality plans. You are prepared
to rely on these materials because you know that the proposal and its esti-
mates, including the timetable, staff requirements, list of project documents,
scheduled design reviews, and list of development risks have all been thor-
oughly reviewed by the contract review team.

Chapter outline

6.1 Development plan and quality plan objectives 97
6.2 Elements of the development plan 97
6.3 Elements of the quality plan 101
6.4 Development and quality plans for small projects and for

internal projects 103
6.4.1 Development plans and quality plans for small projects 104
6.4.2 Development plans and quality plans for

internal projects 105

Summary 106
Selected bibliography 108
Review questions 109
Topics for discussion 110

Appendix 6A: Software development risks and software
risk management 112
6A.1 Software development risks 112
6A.2 Risk management activities and measures 113
6A.3 The risk management process 115

You are therefore a bit disappointed that at this crucial point of the proj-
ect, the Development Department Manager demands that you immediately
prepare new and separate project development plans (“development plan”)
and project quality plans (“quality plan”). When you claim that the com-
pleted proposal and its appendices could serve as the requested plans, the
manager insists that they be updated, with new and more comprehensive
topics added to guarantee the plans’ adequacy. “By the way,” the manager
mentions almost as an aside, “don’t forget that a period of seven months has
elapsed between the proposal preparation and the final signing of the con-
tract. Such a period is a hell of time in our trade”

You should expect that your department manager is right. The effort
invested in preparing the development and quality plans will certainly be
beneficial. You may discover that some team members will not be available
at the scheduled dates due to delays in completion of their current assign-
ments, or that the consulting company that had agreed to provide
professional support in a highly specialized and crucial area has suffered
heavy losses and gone bankrupt in the interim. These are just two of the
types of problems that can arise.

To sum up, the project needs development and quality plans that:

■ Are based on proposal materials that have been re-examined and thor-
oughly updated.

■ Are more comprehensive than the approved proposal, especially with
respect to schedules, resource estimates, and development risk evaluations.

■ Include additional subjects, absent from the approved proposal.

■ Were prepared at the beginning of the project to sound alerts regarding
scheduling difficulties, potential staff shortages, paucity of development
facilities, problems with meeting contractual milestones, modified devel-
opment risks, and so on.

Development and quality plans are major elements needed for project com-
pliance with 9000.3 standards (see Sections 4.2 and 4.4 of ISO (1997) and
Sections 7.1 and 7.3 of ISO/IEC (2001), and with the IEEE 730 standard
(IEEE, 1998). It is also an important element in the Capability Maturity
Model (CMM) for assessment of software development organization matu-
rity (see Paulk et al., 1995, Sec. 7.2; Humphrey, 1989; Felschow, 1999).
Given their importance, these plans deserve a special chapter.

Therefore, this chapter is dedicated to the study of project development
and quality plans, their objectives and elements.

After completing this chapter, you will be able to:

■ Explain the objectives of a development plan and a quality plan.
■ Identify the elements of a development plan.
■ Identify the elements of a quality plan.

96

6
D

evelopm
entand quality

plans

■ Identify the major software risk items.
■ Explain the process of software risk management.
■ Discuss the importance of development and quality plans for small projects.
■ Discuss the importance of development and quality plans for internal

projects.

6.1 Development plan and quality plan objectives

Planning, as a process, has several objectives, each of which is meant to pre-
pare adequate foundations for the following:

(1) Scheduling development activities that will lead to the successful and
timely completion of the project, and estimating the required manpow-
er resources and budget.

(2) Recruiting team members and allocating development resources (accord-
ing to activity schedules and manpower resource requirement estimates).

(3) Resolving development risks.

(4) Implementing required SQA activities.

(5) Providing management with data needed for project control.

6.2 Elements of the development plan

Based on the proposal materials, the project’s development plan is prepared
to fulfill the above objectives. The following elements, each applicable to dif-
ferent project components, comprise a project development plan.

(1) Project products
The development plan includes the following products:

■ Design documents specifying dates of completion, indicating those
items to be delivered to the customer (“deliverables”)

■ Software products (specifying completion date and installation site)
■ Training tasks (specifying dates, participants and sites).

(2) Project interfaces
Project interfaces include:

■ Interfaces with existing software packages (software interface)
■ Interfaces with other software and/or hardware development teams

that are working on the same system or project (i.e., cooperation and
coordination links)

■ Interfaces with existing hardware (hardware interface).

97

6.2 Elem
ents

ofthe developm
entplan

(3) Project methodology and development tools to be applied at each phase
of the project

(4) Software development standards and procedures
A list should be prepared of the software development standards and
procedures to be applied in the project.

(5) The mapping of the development process
Mapping of the development process involves providing detailed defini-
tions of each of the project’s phases. These descriptions include
definitions of inputs and outputs, and the specific activities planned.
Activity descriptions include:

(a) An estimate of the activity’s duration. These estimates are highly
dependent on the experience gained in previous projects.

(b) The logical sequence in which each activity is to be performed,
including a description of each activity’s dependence on previously
completed activities.

(c) The type of professional resources required and estimates of how
much of these resources are necessary for each activity.

Several methods are available for scheduling and graphically present-
ing the development process. One of the most commonly used methods is
the GANTT chart, which displays the various activities by horizontal bars
whose lengths are proportional to the activity’s duration. The bars repre-
sent the activities themselves, and are placed vertically, according to their
planned initiation and conclusion. Several computerized tools can prepare
GANTT charts in addition to producing lists of activities by required time
for their beginning and conclusion, and so forth.

More advanced scheduling methodologies, such as CPM and PERT,
both of which belong to the category of critical path analysis, take

98

6
D

evelopm
entand quality

plans

Implementation tip

When evaluating the suitability of proposed project methodology and
development tools, one should also take into account the professional
experience of the staff, including the subcontractors’ personnel, even
if temporary.

Implementation tip

SQA activities, such as design review and software tests, should be
included among the scheduled project activities. The same applies to the
design and code correction activities. Failing to schedule these activities
can cause unanticipated delays in the initiation of subsequent activities.

sequence dependencies into account in addition to duration of activities.
They enable calculation of the earliest and latest acceptable start times
for each activity. The difference between start times determines the activ-
ity’s scheduling flexibility. Special attention is awarded to those activities
lacking scheduling flexibility (which explains their being called “critical
path” activities), and whose tardy completion may cause delay in the
conclusion of the entire project.

Several software packages, used in conjunction with these method-
ologies, support the planning, reporting and follow-up of project
timetables. An example of a software package of this type is Microsoft
Project™. For a more detailed discussion of scheduling, refer to the lit-
erature dealing with project management.

(6) Project milestones
For each milestone, its completion time and project products (docu-
ments and code) are to be defined.

(7) Project staff organization
The organization plan comprises:

■ Organizational structure: definition of project teams and their tasks,
including teams comprised of a subcontractor’s temporary workers.

■ Professional requirements: professional certification, experience in a
specific programming language or development tool, experience with
a specific software product and type, and so forth.

■ Number of team members required for each period of time, according
to the activities scheduled. It is expected that teams will commence their
activities at different times, and that their team size may vary from one
period to the next, depending on the planned activities.

■ Names of team leaders and team members. Difficulties are expected
to arise with respect to the long-term assignment of staff members to
teams because of unanticipated changes in their current assignments.
Therefore, the names of staff are required to help keep track of their
participation as team members.

99

6.2 Elem
ents

ofthe developm
entplan

Implementation tip

The long-term availability of project staff should be carefully examined. Lags
in completing former assignments may result in delays in joining the project
team, which increases the risk of failing to meet project milestones. In
addition, staff “evaporation” caused by resignations and/or promotions,
phenomena that are particularly frequent in the software industry, can
cause staff shortages. Therefore, estimates of staff availability should be
examined periodically to avoid “surprises”. Early warning of unforeseen
staff shortages makes it easier to resolve the problem.

(8) Development facilities
Required development facilities include hardware, software and hard-
ware development tools, office space, and other items. For each facility,
the period required for its use should be indicated on the timetable.

(9) Development risks
Development risks are inherent in any project. To understand their perva-
siveness, and how they can be controlled, we should first define the
concept. A development risk is “a state or property of a development task
or environment, which, if ignored, will increase the likelihood of project
failure” (Ropponen and Lyytinen, 2000). Typical development risks are:

■ Technological gaps – Lack of adequate and sufficient professional
knowledge and experience to carry out the demands of the develop-
ment contract.

■ Staff shortages – Unanticipated shortfalls of professional staff.

■ Interdependence of organizational elements – The likelihood that
suppliers of specialized hardware or software subcontractors, for
example, will not fulfill their obligations on schedule.

The top 10 major software risk items, as listed by Boehm and Ross
(1989), are shown in the Appendix to this chapter in Table 6A.1.
Systematic risk management activities should be initiated to deal with
them. The risk management process includes the following activities:
risk identification, risk evaluation, planning of risk management
actions (RMAs), implementation of RMAs, and monitoring of RMAs.
Software RMAs are incorporated in the development plan.

For further discussion of software development risks and software
risk management, see Appendix 6A.

The growing importance of software risk management is expressed
in the spiral model for software development. To cope with this type of
risk, a special phase dedicated to software risk assessment is assigned
to every cycle of the spiral (Boehm, 1988, 1998).

(10) Control methods
In order to control project implementation, the project manager and the
department management apply a series of monitoring practices when
preparing progress reports and coordinating meetings. A comprehensive
discussion of project control methods is found in Chapter 19.

(11) Project cost estimation
Project cost estimates are based on proposal costs estimates, followed
by a thorough review of their continued relevance based on updated
human resource estimates, contracts negotiated with subcontractors
and suppliers, and so forth. For instance, part of the project, planned
to be carried out by an internal development team, needs to be per-
formed by a subcontractor, due to unavailability of the team. A change
of this nature is usually involved in a substantial additional budget.

100

6
D

evelopm
entand quality

plans

The elements comprising a development plan are listed in Frame 6.1.

Development plan approval
Development plan review and approval is to be completed according to the
procedures applied within the organization.

6.3 Elements of the quality plan

All or some of the following items, depending on the project, comprise the
elements of a project quality plan:

(1) Quality goals

The term “quality goals” refers to the developed software system’s sub-
stantive quality requirements. Quantitative measures are usually
preferred to qualitative measures when choosing quality goals because
they provide the developer with more objective assessments of software
performance during the development process and system testing.
However, one type of goal is not totally equivalent to the other. The pos-
sible replacement of qualitative with quantitative measures is illustrated
in the following example.

Example

A software system to serve the help desk operations of an electrical appli-
ance manufacturer is to be developed. The help desk system (HDS) is
intended to operate for 100 hours per week. The software quality assur-
ance team was requested to prepare a list of quantitative quality goals
appropriate to certain qualitative requirements, as shown in Table 6.1.

101

6.3 Elem
ents

ofthe quality
plan

Frame 6.1 The elements comprising a development plan

1. Project products, specifying “deliverables”

2. Project interfaces

3. Project methodology and development tools

4. Software development standards and procedures

5. Map of the development process

6. Project milestones

7. Project staff organization

8. Required development facilities

9. Development risks and risk management actions

10. Control methods

11. Project cost estimates

The quality goals should reflect the major acceptance criteria indicated
in the customer’s requirement document (i.e., the RFP document). As
such, quality goals serve as measures of the successful achievement of the
customer’s quality requirements.

(2) Planned review activities

The quality plan should provide a complete listing of all planned review
activities: design reviews (DRs), design inspections, code inspections,
and so on, with the following determined for each activity:

■ The scope of the review activity

■ The type of the review activity

■ The schedule of review activities (as defined by its priority and the
succeeding activities of the project process)

■ The specific procedures to be applied

■ Who is responsible for carrying out the review activity?

(3) Planned software tests

The quality plan should provide a complete list of planned software
tests, with the following designated for each test:

■ The unit, integration or the complete system to be tested

■ The type of testing activities to be carried out, including specification
of computerized software tests to be applied

■ The planned test schedule (as defined by its priority and the succeed-
ing activities of the project process)

102

6
D

evelopm
entand quality

plans

Table 6.1: Help desk requirements and quantitative goals

HDS qualitative Related quantitative quality goals
requirements

The HDS should be A new help desk operator should be able to learn the details
user friendly of the HDS following a course lasting less than 8 hours, and

to master operation of the HDS in less than 5 working days.

The HDS should be HDS availability should exceed 99.5% (HDS downtime should not
very reliable exceed 30 minutes per week).

The HDS should The system’s recovery time should not exceed 10 minutes in 99%
operate continuously of cases of HDS failure.

The HDS should be An HDS operator should be able to handle at least 100 customer
highly efficient calls per 8-hour shift.

The HDS should Waiting time for an operator response should not exceed
provide high quality 30 seconds in 99% of the calls. Achievement of this goal depends
service to the on the combination of software features and number of
applying customers workstations installed and operated.

■ The specific procedures to be applied

■ Who is responsible for carrying out the test.

(4) Planned acceptance tests for externally developed software

A complete list of the acceptance tests planned for externally developed
software should be provided within the quality plan. Items to be includ-
ed are (a) purchased software, (b) software developed by subcontractors,
and (c) customer-supplied software. The acceptance tests for externally
developed software should parallel those used for internally developed
software tests.

(5) Configuration management

The quality plan should specify configuration management tools and
procedures, including those change-control procedures meant to be
applied throughout the project.

The required software quality plan elements are listed in Frame 6.2.

The quality plan document, its format and approval
The quality plan may be prepared as part of the development plan or as an
independent document. In some cases, the plan is divided into several docu-
ments by item category, such as DR plan, testing plan, and plan for
externally developed software acceptance tests. Review and approval of the
quality plan should be conducted according to the organization’s standard
procedures for such plans.

6.4 Development and quality plans for small projects
and for internal projects

It is quite natural for project leaders to try to evade the “hassle” of prepar-
ing a development plan and a quality plan (and the hustle surrounding
reviews and plan approvals). This behavior reflects the tendency to avoid
“bureaucracy work” and the sweeping control that customers may attempt

103

6.4 D
evelopm

entand quality
plans

for sm
allprojects

and for internalprojects

Frame 6.2 Elements of a software quality plan

1. List of quality goals

2. Review activities

3. Software tests

4. Acceptance tests for software externally developed

5. Configuration management tools and procedures

to exercise. This tendency is especially common in two different situations:
small projects and internal projects. The argument for preparing these plans
for such projects is discussed in the following two sections.

6.4.1 Development plans and quality plans for small projects

■ Does a project of only 40 working days’ duration, to be performed by one
professional and completed within 12 weeks, justify the investment of a
man-day in order to prepare full-scale development and quality plans?

■ Does a project to be implemented by three professionals, with a total
investment of 30 man-days and completed within five weeks, require full-
scale plans?

It should be clear that the development and quality plan procedures applica-
ble to large projects cannot be automatically applied to small projects.
Special procedures are needed. These procedures determine how to treat the
project in question with respect to the plans:

(1) Cases/situations where neither development nor quality plans are
required, e.g. projects requiring 15 man-days.

(2) Cases/situations where the decision to prepare the plans is left to the
project leader’s discretion. One example could be a project requiring less
than 50 man-days where no significant software risk item had been iden-
tified – in this case it might be decided that no plans will be prepared.
Another example could be a small but complicated project that has to be
completed within 30 days, in which there is a heavy penalty on not being
completed on time. In this case, planning is needed in order to cope with
the project difficulties.

(3) Cases/situations where development and quality plans are obligatory.

A list of elements recommended for inclusion in development and quality
plans for small projects is shown in Frame 6.3.

104

6
D

evelopm
entand quality

plans

Frame 6.3 Recommended elements of development and quality
plans for small projects

The development plan:

■ Project products, indicating “deliverables”

■ Project benchmarks

■ Development risks

■ Estimates of project costs

The quality plan:

■ Quality goals

Several advantages to “planned” small projects over “unplanned” proj-
ects can be identified, even for “reduced” plans:

(1) A more comprehensive and thorough understanding of the task is attained.

(2) Greater responsibility for meeting obligations can be assigned.

(3) It becomes easier for management and customers to share control of the
project and to identify unexpected delays early on.

(4) Better understandings with respect to the requirements and timetable
can be reached between the developer and the customer.

6.4.2 Development plans and quality plans for internal projects

Internal projects are those projects intended for use by other departments in
the organization or by the entire organization, as well as those projects deal-
ing with software package development for the software market. Common
to all these project types is the fact that no external body participates as cus-
tomer in their development. Internal projects can be of medium or large
scale. Yet even in these cases, there is a tendency to avoid preparation of ade-
quate development and quality plans. The following example illustrates the
negative consequences of an “unplanned” internal project.

Example
The Marketing Department of Toyware Ltd, a new computer games manu-
facturer, had planned to hit the market with “Super-Monster 2000”, the
firm’s new, advanced computer game, during the upcoming Christmas sea-
son. The Software Development Department claimed that work on the game
should commence immediately in order to complete the project on time.
Therefore, preparation of a proposal for discussion by the Marketing and
Software Development Departments, and the subsequent preparation of
development and quality plans, were not viewed as necessary. The
Development Department estimated the project budget at $240 000, which
was transferred to the Department. According to the marketing timetable,
system tests were to be completed no later than 1 October so as to allow the
Marketing Department to carry out the required promotion and advertising
campaigns in time for the Christmas sales season.

As the project progressed, it appeared that there might be a delay, but
only at the end of June was it obvious that a three-month delay could not
be avoided. The promotional and advertising activities that had taken place
before 30 June thus became worthless. The project was finally completed
at the end of February. The project’s cost overrun was significant – actual
costs exceeded $385 000 – but most painful was the company’s lost oppor-
tunity to exploit the Christmas market. Last week, the company’s
management decided to avoid any future internal computer game develop-
ment projects.

105

6.4 D
evelopm

entand quality
plans

for sm
allprojects

and for internalprojects

This example makes clear that preparation of full-scale development and
quality plans for internal projects – in addition to regular monitoring – can
be highly beneficial for implementation of internal projects as well.

Software development departments can enjoy the following advantages
of plan preparation:

(1) Avoiding budget overruns. This is of special importance where the prof-
it center system is applied.

(2) Avoiding damage to other projects caused by delays in release of profes-
sionals occupied in an internal project.

(3) Avoiding loss of market status, especially regarding the firm’s reputa-
tion, caused by delayed completion of external projects triggered by late
completion of internal projects.

Internal “customers” can enjoy the following advantages:

(1) Smaller deviations from planned completion dates and smaller budget
overruns.

(2) Better control over the development process, including earlier identifica-
tion of possible delays that enables the search for and resolution of
their causes.

(3) Fewer internal delay damages.

The organization can enjoy these advantages:

(1) Reduced risk of market loss (i.e., opportunity window) due to late
arrival of the product.

(2) Reduced risk of being sued for late supply of products; hence, reduced
penalties for non-compliance with contract demands.

(3) Reduced risk of impairing the firm’s reputation as a reliable software
developer.

(4) Reduced risk of requesting a budget supplement.

Summary

(1) Explain the objectives of development and quality plans.

The plans’ objectives are to provide the basis for:
■ Scheduling development activities
■ Recruiting team members and allocating development facilities
■ Resolving development risks
■ Implementing required SQA activities
■ Providing management with needed data for project control.

106

6
D

evelopm
entand quality

plans

(2) Identify the elements of a development plan.

Eleven types of elements constitute a development plan:
(1) Project products
(2) Project interfaces
(3) Project methodology and development tools
(4) Software development standards and procedures
(5) Mapping of the development process
(6) Project milestones
(7) Project staff organization
(8) Required development facilities
(9) Development risks

(10) Control methodology
(11) Project cost estimates.

(3) Identify the elements of a quality plan.

Five elements constitute a quality plan:
(1) Quality goals
(2) Planned review activities
(3) Planned software tests
(4) Planned acceptance tests for externally developed software
(5) Planned configuration management.

(4) Identify the major software risk items.

Typical development risks are:
■ Technological gaps – lack of adequate and sufficient professional knowledge
■ Staff shortages
■ Interdependence on other organizations: suppliers, subcontractors, etc.

(5) Explain the process of software risk management.

The activities involved in risk management include planning, implementation, and
monitoring of implementation. The pertinent planning activities are identification of
SRIs, evaluation of those SRIs, and planning RMAs to resolve the SRIs.

(6) Discuss the benefits of preparing development and quality plans for small projects

For small development projects (of not less than 15 man-days), preparation of
development and quality plans is optional. However, one should consider the sub-
stantial advantages obtained by the plan’s developer. The main advantages of plan
preparation are improvements in the developer’s understanding of the task, and
greater commitment to complete the project as planned. In addition, the plan doc-
uments contribute to a better understanding between the developer and the
customer, and easier and more effective project control.

107

S
um

m
ary

(7) Discuss the benefits of preparing development and quality plans for
internal projects.

It is recommended that internal projects, undertaken on behalf of other depart-
ments and for development of software packages geared toward the market, be
treated as “regular projects”. This implies that full-scale development and quality
plans are to be prepared. Their benefits include:

(a) The development department will avoid losses incurred by unrealistic timeta-
bles and budgets, as well as the consequent damage to other projects and to
the firm’s reputation.

(b) The internal “customer” will enjoy reduced risk of late completion and budget
overruns in addition to and by improved project control and coordination with
the developer.

(c) The firm will enjoy reduced risk of its software product’s late entry into the mar-
ket, reduced risk of a decline in its reputation resulting from late supply, and
reduced risk of budget overruns.

Selected bibliography

1 Barki, H., Rivard, S. and Talbot, J. (1993). “Toward an assessment of software
development risk”, Journal of Management Information Systems, 10(2), 203–225.

2 Boehm, B. W. (1988). “A spiral model of software development and enhance-
ment”, Computer, 21(5), 61–72.

3 Boehm, B. W. (1991). “Software risk management: principles and practices”,
IEEE Software, January, 32–41.

4 Boehm, B. W. (1998). “Using the Win-Win spiral model: a case study”,
Computer, 31(7), 33–44.

5 Boehm, B. W. and Ross, R. (1989). “Theory-W project management: principles
and examples”, IEEE Transactions on Software Engineering, 15, 902–916.

6 Carnegie-Mellon University Software Engineering Institute (1994) The
Capability Maturity Model: Guidlines for Improving the Software Process,
Addison-Wesley, Reading, MA.

7 Felschow, A. (1999). “Understanding the Capability Maturity Model (CMM)
and the role of SQA in Software Development Maturity”, in G. G. Schulmeyer
and J. I. McManus (eds), Handbook of Software Quality Assurance, 3rd edn,
Prentice Hall, Upper Saddle River, NJ, pp. 329–350.

8 Hall, E. M. (1998) Managing Risk – Methods for Software Systems
Development, Addison-Wesley, Reading, MA.

9 Humphrey, W. S. (1989) Managing the Software Process, Addison-Wesley,
Reading, MA.

10 IEEE (1998) “IEEE Std 730-1998 – IEEE Standard for Software Quality
Assurance Plans”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York,

11 IEEE (2001) “IEEE Std 1540-2001 – IEEE Standard for Software Life Cycle
Processes - Risk Management”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

12 ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the

108

6
D

evelopm
entand quality

plans

Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn. International Organization for Standardization (ISO), Geneva.

13 ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

14 Jones, C. (1994) Assessment and Control of Software Risks, Yourdon Press,
Prentice Hall, Upper Saddle River, NJ.

15 Karolak, D. W. (1996) Software Engineering Risk Management, IEEE Computer
Society Press, Los Alamitos, CA.

16 Keil, M., Cule, P. C., Lyytinen, K. and Schmidt, R. C. (1998). “A framework for
identifying software project risks”, Communications of the ACM, 41(11),
76–83.

17 Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Ch. 3, Prentice Hall. Upper Saddle River, NJ.

18 Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995). The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

19 Ropponen, J. and Lyytinen, K. (2000) “Components of Software Development
Risk: How to Address Them? A Project Manager Survey”, IEEE Transactions on
Software Engineering, 26 (2), pp. 98–111.

Review questions

6.1 Significant similarity exists between the proposal draft review and the develop-
ment plan.

(1) Compare these documents with reference to the subjects reviewed.
(2) Compare these documents while referring to the aim of preparing the individ-

ual documents.

6.2 Development and quality plans have five objectives.

(1) Can you list the objectives?
(2) Suggest ways in which each objective contributes to the successful and time-

ly completion of the project.

6.3 Some development elements are included in the requirement document, yet are
not compiled by development planners.

(1) Which elements of the development plan belong to this category?
(2) Explain the importance of gathering this information from the customer’s

documents.

6.4 Development process mapping is one of the most important elements of the
development plan.

(1) List the possible phases of the development process.
(2) List possible inputs and outputs for each of the phases suggested in (1).
(3) What components of each activity, as associated with each project phase,

should be described in the development plan?

109

Review
 questions

6.5 The project’s organization is an important element of the development plan.

(1) List the components of the organization element.
(2) Which of the components in (1) are based on components of project mapping?
(3) Why is it necessary to mention team members by name? Isn’t it sufficient to

list the number of team members by their expertise as required for each phase
of the project?

6.6 Boehm and Ross (1989) mentioned 10 major software risk items.

(1) Can you list the 10 SRIs?
(2) For each of the SRIs mentioned in (1), suggest the three most effective RMAs

for handling them (refer to Table 6A.2 in the Appendix to this chapter). Explain
your choice.

6.7 Only four out of the 11 elements of a development plan and only one out of five of
the quality plan are considered obligatory for small projects.

(1) Do you agree with this choice? If yes, list your main arguments.
(2) If you do not agree with this choice, present your improved list and explain

your choice.

6.8 “Preparing full-scale development and quality plans for internal projects, and
applying regular full customer–supplier relationships for the implementation of
internal projects, is highly beneficial to both sides.”

(1) Explain the benefits of these procedures to the developer.
(2) Explain the benefits to internal customers.

Topics for discussion

6.1 “As long as the proposal was properly prepared and approved, following an ade-
quate contract review, there is no justification for redoing all this work. Its resource
estimates and schedule can serve as the project’s plan” You often hear claims
like this one.

(1) Do you agree with this claim? If not, list your arguments against it.
(2) Suggest situations where it is clear that the proposal and its materials can

serve as development and quality plans.
(3) Suggest situations where it is clear that the proposal and its materials cannot

serve as development and quality plans.

6.2 Martin Adams, an experienced project leader at David’s Software Ltd, a medium-
sized software house, has been appointed project leader for development of an
advanced help desk software system for a leading home appliance maintenance
service. This is the 12th help desk system developed by his department in the last
three years.

The current project is somewhat special with respect to its timetable. The con-
tract with the customer was signed six days after submission of the proposal, and
the development team is scheduled to begin working at full capacity, with eight

110

6
D

evelopm
entand quality

plans

team members, 10 days later. The contract offers a significant early completion
bonus for each week below 26 weeks, but determines high late completion penal-
ties for each week after 30 weeks.

In a meeting with his superior, Adams claims that the comprehensive propos-
al documentation “as is”, which has been thoroughly checked by the contract
review team, should serve as the project’s development and quality plans. His
superior does not agree with him and demands that he immediately prepare com-
prehensive project and quality plans, according to company procedures.

(1) Do you agree with Adams? If yes, list the arguments that support his claim.
(2) Do you agree with his superior? If yes, list the arguments that support the

superior’s claim.
(3) Considering the circumstances of the project, what, in your opinion, should be

done in this case?
(4) Comparing the circumstances described here to those of the opening anec-

dote, are there any justifications for different recommendations?

6.3 This topic refers to Section 6A.3 in the Appendix to this chapter. An experienced
project leader has identified six SRIs inherent in his project and estimated their
Est(dam) and Prob(mat). The results are listed in the following table:

(1) Determine the priorities for these SRIs, using the formula given in Section 6A. 3.
(2) Can you suggest an alternative method for prioritizing the SRIs?
(3) Determine the SRI priorities according to the alternative method. Compare the

resulting priority list with that obtained in (1), and discuss the implications of
the differences, if any.

111

Topics
for discussion

No. SRIs Prob(mat) Est(dam) ($)

1 Networking at the customer’s 23 sites will not 0.2 150 000
be completed on time

2 Subcontracted modules will fail the 0.5 12 000
acceptance tests

3 The programming team will be 2–3 0.7 50 000
programmers short for more than 2 months

4 The software quality assurance activities will 0.05 600 000
fail to detect major software errors in the
complicated discount module; these errors
will be discovered by the customer during the
guarantee period

5 The final test of the user’s guide will detect 0.3 2500
significant errors that will cause a delay of
more than 2 weeks in delivery to the customer

6 The planned server’s capacity will be found 0.25 40 000
insufficient in the final system tests

6.4 It is said that three of the quality plan’s elements must be coordinated with an ele-
ment of the development plan – the mapping of the development process.

(1) Can you identify these elements?
(2) Explain the nature of the required coordination.

6.5 Quoting from Section.6.3: “Quantitative measures are usually preferred to qualita-
tive measures when choosing quality goals because they provide the developer
with more objective assessments of software performance during the develop-
ment process and system testing. However, one type of goal is not totally
equivalent to the other.”

(1) How are quantitative goals applied during the development process?
(2) Explain in what way quantitative goals enable more objective evaluation of

performance when compared with qualitative goals.

Appendix 6A Software development risks and software risk
management

6A.1 Software development risks

Several lists of potential software development risks (“software risk items”
or SRIs) are mentioned in the literature. Ropponen and Lyytinen (2000) have
classified software risk items into the following six classes:

(1) Scheduling and timing risks

(2) System functionality risks

(3) Subcontracting risks

(4) Requirement management risks

(5) Resource usage and performance risks

(6) Personnel management risks.

Boehm and Ross (1989) suggest a list of the 10 major software risk items.
Table 6A.1 shows how this list can be integrated with the six risk classes pro-
posed by Ropponen and Lyytinen (2000).

Methodologies for identification of software risk items have been
offered by Boehm (1991), Keil et al., (1998), Ropponen and Lyytinen (2000),
Barki et al., (1993) and IEEE (2001). One of the most effective tools for iden-
tifying and evaluating software risk items is specialized checklists, also
mentioned by several authors.

Karolak (1996) and Jones (1994) have broadened the scope of software
risk items to include strategic risk, such as marketing risks and financial
risks. This author believes that despite the importance of strategic risks, they
are beyond the scope of software quality assurance and thus beyond the
scope of this book.

112

6
D

evelopm
entand quality

plans

6A.2 Risk management activities and measures

Various activities and measures (usually termed “risk management actions” or
RMAs) can be taken. The purposes of RMAs are to prevent software risks, to
achieve early identification of software risk items, and to resolve them.

Boehm and Ross (1989), Boehm (1991), Ropponen and Lyytinen
(2000), and Karolak (1996), among others, have suggested a wide variety of
risk management actions (see Table 6A.2).

113

A
ppendix

6A
S

oftw
are developm

entrisks
and softw

are risk
m

anagem
ent

Table 6A.1: The top 10 software risk items

No. Software risk No. Software risk item Description
class (Ropponen (Boehm and Ross)
and Lyytinen)

1 Personnel 1 Personnel shortfalls Lack and turnover of
management risks qualified personnel

2 Scheduling and timing 2 Unrealistic schedules Incorrectly estimated (too
and budgets low) development time

and budget

3 System functionality 3 Developing wrong Development of software
software functions functions that are not

needed or are incorrectly
specified

4 Developing wrong user Inadequate or difficult
interface user interface (GUI)

4 Requirement 5 Gold plating Addition of unnecessary
management features (“whistles and

bells”) due to
professional interests,
pride, or user demands

6 Continuing stream of Uncontrolled and
requirement changes unpredictable changes in

system functions and
features

5 Subcontracting 7 Shortfalls in externally Poor quality of externally
furnished components delivered system

components

8 Shortfalls in externally Poor quality or
performed tasks unpredictable

accomplishment of
externally performed
tasks

6 Resource usage and 9 Real-time performance Poor system performance
performance shortfalls

10 Straining computer Inability to implement the
science capabilities system due to lack of

technical solutions
and/or computing power

114

6
D

evelopm
entand quality

plans

Table 6A.2: Commonly recommended risk management actions and their contributions

Contribution of the RMA

No. Software risk management Prevention Early identification Resolution
action (RMA) of SRI of SRI

Internal RMA

1 Application of detailed and thorough x
analysis to requirements and
estimated schedules and costs

2 Efficient project organization, x
adequate staff and team size

3 Personnel training x

4 Arranging for and training x
replacements to take over in case of
turnover and unanticipated workloads

5 Arranging for user participation in x
the development process

6 Applying efficient change control x
(change requests screening)

7 Applying intensive software quality x
assurance measures such as
inspections, design reviews, and
benchmarking

8 Periodic checking for timely x
availability of firm professionals
currently occupied with other projects

9 Arranging for participation of x
professional staff members having
knowledge and experience with SRIs

10 Scheduling SRI-related activities as x
early as possible to provide leeway in
case of difficulties

11 Prototyping SRI-related modules or x
project applications

12 Preparing scenarios for complicated x
SRI-related modules or project
applications

13 Simulating SRI-related modules x
or project applications

Subcontracting RMA

1 Preparing comprehensive and x
thorough contracts with
subcontractors and suppliers,
including contract reviews

2 Participating in internal progress x
control and software quality
assurance activities of subcontractors
to be incorporated in the contract

These risk management actions can be grouped into the following classes:

■ Internal risk management actions, applied within the software developing
organization.

■ Subcontracting risk management actions, dealing with the relationship
between the software developer and his subcontractors and suppliers.

■ Customer risk management actions, dealing with the relationship
between the software developer and the customer.

6A.3 The risk management process

The risk management process combines planning activities, implementation
activities and monitoring activities. Elaine M. Hall (1998) has written a book
dedicated mainly to this process.

115

A
ppendix

6A
S

oftw
are developm

entrisks
and softw

are risk
m

anagem
ent

Table 6A.2 Continued

Contribution of the RMA

No. Software risk management Prevention Early identification Resolution
action (RMA) of SRI of SRI

3 Arranging for “loans” of professionals x
with specialized knowledge and
experience if the need arises

4 Hiring consultants to support the x
team in the absence of sufficient
know-how and experience

Customer RMA

1 Formulating comprehensive and x
thorough contracts with customers,
including contract reviews

2 Negotiating with the customer to x
change requirements re risky parts
of the project

3 Negotiating with the customer to change x
schedules re risky parts of the project

Implementation tip

In planning RMAs, one should be aware that:

■ Some RMAs can prevent, identify or resolve SRIs of various types.

■ Some SRIs can be treated by several RMAs.

■ The efficiency of an RMA varies significantly with different projects and in
different environments.

Planning activities
Several planning activities are aimed to initiate those risk management
actions that can respond to the software risks identified and evaluated earli-
er. Similar planning activities (although not to the same degree of
thoroughness) are part of the proposal draft review process (see Chapter 5).

The respective planning activities include:

■ Identification of software risk items

The main tool supporting identification of SRIs is those checklists that
specify the team, project and customer situations that are likely to bring
about software risks. Checklists of this type have been suggested by
Boehm and Ross (1989), Boehm (1991), Barki et al. (1993), and
Ropponen and Lyytinen (2000).

Identification of software risk items should begin with the actual
start of the project (pre-project stage) and be repeated periodically
throughout the project until its completion.

■ Evaluation of the identified SRIs

Evaluation of the identified SRIs is concerned mainly with:

– Estimating the probability that a software risk will materialize if no
RMA is taken – i.e., Prob(mat)

– Estimating damages in case an SRI does materialize – i.e., Est(dam).

Estimates of Prob(mat) and Est(dam) can be based on experience gained
in earlier projects, by means of simulation models, and so forth.

Evaluation should be followed by determination of priorities regard-
ing the SRIs and their resolution. It should be clear that an SRI displaying
a high Prob(mat) and high Est(dam) is of high priority and that an SRI
displaying a low Prob(mat) and low Est(dam) is of low priority.

One common method used to prioritize SRIs is by calculating their
expected damage, termed “risk exposure” – Exp(risk) – where:

Exp(risk) = Est(dam) × Prob(mat)

■ Planning RMAs

It is incumbent upon the software risk team to consider alternative ways
to resolve the identified SRIs. RMAs include a range of internal, subcon-
tractor and customer actions. Table 6A.2 provides a list of possible
RMAs and their contributions to the prevention or resolution of SRIs.

In preparing the recommended list of RMAs, the planning team
should consider:
– The priority assigned to the SRI

– The expected results of a planned RMA (complete or partial resolution)

– The costs and organizational efforts required for implementation of
the RMA.

116

6
D

evelopm
entand quality

plans

Implementation
Implementation of a risk management plan requires that the staff members
be assigned personally responsible for each RMA and its implementation
schedule.

Monitoring implementation of the risk management plan
Systematic, periodic activities are required to monitor implementation of the
risk management plan. The aim of the monitoring activities is to:

■ Determine the efficiency of the RMAs
■ Update the risk evaluation by considering newly identified SRIs.

The process of software risk management is illustrated in Figure 6A.1.

117

A
ppendix

6A
S

oftw
are developm

entrisks
and softw

are risk
m

anagem
ent

Monitoring
software risk
management

activities

Implementing
risk management

actions
(risk resolution)

Planning and
risk management

activities

Risk identification
and assessment

Planning and
updating risk
management

activities

New project

Pre-project

Identifying and
assessing new
software risks

Ongoing
projects

Evaluate
monitoring

results

Required results
achieved Unsatisfactory results

Figure 6A.1: The software risk management process

par t I I I

SQA components in the
project life cycle

The project life cycle encompasses two stages: the development life cycle stage
and the operation–maintenance stage. Most of the SQA components to be
reviewed in Part III support at least one of the phases comprising these stages.

Development life cycle SQA components are meant to detect design
and programming errors in the design and programming (coding) phases.
The components applied in this stage belong to one of the following four
sub-classes:

■ Formal design reviews
■ Peer reviews
■ Expert opinions
■ Software testing.

Operation–maintenance stage SQA components include special components
to be applied for corrective maintenance but also development life cycle SQA
components that can also be used for functionality improvement mainte-
nance tasks.

An additional sub-class of SQA components, other than those listed
above, deals with assuring the quality of project parts performed by subcon-
tractors and other external participants during the project life cycle. The
importance of this sub-class stems from the high risks associated with func-
tional failures and the failure to keep to the project timetable. Both types of
risk are directly related to the difficulty of controlling the external partici-
pants’ performance.

The project characteristics determine which SQA components enter the
project life cycle at any particular point. To guarantee their effectiveness, the
choice of components is decided upon prior to the project’s initiation.

The first chapter of this part, Chapter 7, is dedicated to a general dis-
cussion of the integration of software quality assurance components within
each phase of the project’s life cycle. A model for assessing the effectiveness
and costs of integration is also presented in this chapter.

Chapter 8 discusses the review components of the design phase: formal
design reviews, peer review and expert opinions.

Chapters 9 and 10 are dedicated to software testing issues, with
Chapter 9 focusing on testing strategies and Chapter 10 on software testing

implementation. Among the implementation issues discussed are manual and
automated testing.

Chapter 11 deals with SQA components appropriate to the opera-
tion–maintenance stage. Although functionality improvement and adaptive
maintenance tasks employ primarily development life cycle SQA components
(see Chapters 8–10), corrective maintenance, the subject of this chapter, has
distinctive requirements and special SQA components.

Chapter 12, the final chapter in this part, explores the SQA issues raised
by the participation of external participants in a project.

120

PartIII
SQ

A
 com

ponents
in the projectlife cycle

chapter 7

Integrating quality activities in
the project life cycle

The first part of this chapter is dedicated to the various software develop-
ment models in current use. The remaining sections deal with the objectives
of the software quality assurance activities conducted throughout the project
life cycle, their integration in the development process, and the factors con-
sidered before applying them.

One might inquire why not begin with SQA activities and omit the dis-
cussion of the software development models? This question is not simply
rhetorical. Software development models provide a coordinated set of con-
cepts and methodologies needed to implement software development. As
such, they include definitions of the main activities needed for development,
the appropriate sequence for their performance, and their milestones. By
deciding what models are to be applied, the project leader determines how
the project will be carried out. Most quality assurance activities take place in
conjunction with the completion or examination of activity milestones,
which require review of the product development activities previously

Chapter outline

7.1 Classic and other software development methodologies 122
7.1.1 The software development life cycle (SDLC) model 123
7.1.2 The prototyping model 125
7.1.3 The spiral model 127
7.1.4 The object-oriented model 129

7.2 Factors affecting intensity of quality assurance activities in
the development process 131

7.3 Verification, validation and qualification 133
7.4 A model for SQA defect removal effectiveness and cost 135

7.4.1 The data 135
7.4.2 The model 137

Summary 143
Selected bibliography 145
Review questions 146
Topics for discussion 147

completed. Therefore, SQA professionals should be acquainted with the var-
ious software engineering models in order to be able to prepare a quality
plan that is properly integrated into the project plan.

The rest of the first part of the chapter deals with the factors affecting
the choice of software quality activities to be integrated in the development
process. The following four chapters (Chapters 8 to 11) deal with the spe-
cific software quality methodologies to be applied at each phase of the
development stage and in the operation–maintenance stage.

The second part of the chapter is dedicated to a model for assessing a
plan for SQA defect-removal effectiveness and cost. The model, a multiple
filtering model, is based on data acquired from a survey of defect origins,
percentages of defect removal achieved by various quality assurance activi-
ties, and the defect-removal costs incurred at the various development
phases. The model enables quantitative comparison of quality assurance
policies as realized in quality assurance plans.

After completing this chapter, you will be able to:

■ Describe the various software development models and discuss the dif-
ferences between them.

■ Explain the considerations affecting intensity of applying quality assur-
ance activities.

■ Explain the different aspects of verification, validation and qualification
associated with quality assurance activities.

■ Describe the model for the SQA plan’s defect-removal effectiveness
and cost.

■ Explain possible uses for the model.

7.1 Classic and other software development methodologies

Four models of the software development process are discussed in this section:

■ The Software Development Life Cycle (SDLC) model
■ The prototyping model
■ The spiral model
■ The object-oriented model.

The models presented here are not merely alternatives; rather, they represent
complementary view of software development or refer to different develop-
ment contexts.

The Software Development Life Cycle model (the SDLC model) is the
classic model (still applicable today); it provides the most comprehensive
description of the process available. The model displays the major building
blocks for the entire development process, described as a linear sequence. In the
initial phases of the software development process, product design documents

122

7
Integrating quality

activities
in the projectlife cycle

are prepared, with the first version of the computer program completed
and presented for evaluation only at quite a late stage of the process. The
SDLC model can serve as a framework within which the other models are
presented.

The prototyping model is based on replacement of one or more SDLC
model phases by an evolutionary process, where software prototypes are
used for communication between the developer and the users and cus-
tomers. Prototypes are submitted to user representatives for evaluation. The
developer then continues development of a more advanced prototype,
which is also submitted for evaluation. This evolutionary process continues
till the software project is completed or the software prototype has reached
the desired phase. In this case, the rest of the development process can be
carried out according to a different methodology, for example the classic
SDLC model.

The spiral model provides a methodology for ensuring effective per-
formance at each of the SDLC model phases. It involves an iterative process
that integrates customer comments and change requirements, risk analysis
and resolution, and software system planning and engineering activities. One
or more iterations of the spiral model may be required to complete each of
the project’s SDLC phases. The associated engineering tasks may be per-
formed according to any one model or a combination of them.

The object-oriented model incorporates large-scale reuse of software by
integrating reusable modules into new software systems. In cases where no
reusable software modules (termed objects or components) are available, the
developer may perform a prototyping or SDLC process to complete the
newly developed software system.

All four models will be presented in detail in the next four sections.
Detailed discussions of the respective methodologies are available in the soft-
ware engineering and system analysis literature, particularly Pressman
(2000) and Kendall and Kendall (1999).

7.1.1 The software development life cycle (SDLC) model

The classic Software Development Life Cycle (SDLC) model is a linear
sequential model that begins with requirements definition and ends with reg-
ular system operation and maintenance. The most common illustration of
the SDLC model is the waterfall model, shown in Figure 7.1.

The model shown in Figure 7.1 presents a seven-phase process, as follows:

■ Requirements definition. For the functionality of the software system to
be developed, the customers must define their requirements. In many
cases the software system is part of a larger system. Information about
the other parts of the expanded system helps establish cooperation
between the teams and develop component interfaces.

■ Analysis. The main effort here is to analyze the requirements’ implica-
tions to form the initial software system model.

123

7.1 Classic
and other softw

are developm
entm

ethodologies

■ Design. This stage involves the detailed definition of the outputs, inputs
and processing procedures, including data structures and databases, soft-
ware structure, etc.

■ Coding. In this phase, the design is translated into a code. Coding
involves quality assurance activities such as inspection, unit tests and
integration tests.

■ System tests. System tests are performed once the coding phase is com-
pleted. The main goal of testing is to uncover as many software errors as
possible so as to achieve an acceptable level of software quality once cor-
rections have been completed. System tests are carried out by the
software developer before the software is supplied to the customer. In
many cases the customer performs independent software tests (“accept-
ance tests”) to assure him or herself that the developer has fulfilled all the
commitments and that no unanticipated or faulty software reactions are
anticipated. It is quite common for a customer to ask the developer to

124

7
Integrating quality

activities
in the projectlife cycle

REQUIREMENTS
DEFINITION

ANALYSIS

DESIGN

CODING

SYSTEM TESTS

INSTALLATION
AND CONVERSION

OPERATION AND
MAINTENANCE

Figure 7.1: The waterfall model

Source: After Boehm (1981) and Royce (1970) (© 1970 IEEE)

join him or her in performing joint system tests, a procedure that saves
the time and resources required for separate acceptance tests.

■ Installation and conversion. After the software system is approved, the
system is installed to serve as firmware, that is, as part of the information
system that represents a major component of the expanded system. If the
new information system is to replace an existing system, a software con-
version process has to be initiated to make sure that the organization’s
activities continue uninterrupted during the conversion phase.

■ Regular operation and maintenance. Regular software operation begins
once installation and conversion have been completed. Throughout the
regular operation period, which usually lasts for several years or until a
new software generation appears on the scene, maintenance is needed.
Maintenance incorporates three types of services: corrective – repairing
software faults identified by the user during operation; adaptive – using
the existing software features to fulfill new requirements; and perfective
– adding new minor features to improve software performance.

The number of phases can vary according to the characteristics of the proj-
ect. In complex, large-scale models, some phases are split, causing their
number to grow to eight, nine or more. In smaller projects, some phases may
be merged, reducing the number of phases to six, five or even four phases.

At the end of each phase, the outputs are examined and evaluated by the
developer and, in many cases, by the customer as well. Possible outcomes of
the review and evaluation include:

■ Approval of the phase outputs and progress on to the next phase, or
■ Demands to correct, redo or change parts of the last phase; in certain

cases, a return to earlier phases is required.

The width of the lines connecting the rectangular boxes in the illustration
reflects the relative probabilities of the different outcomes. Thus, the most
commonly performed process is a linear sequence (no or only minor correc-
tions). We should note, however, that the model emphasizes direct
development activities and does not indicate customer stakes in the develop-
ment process.

The classic waterfall model was suggested by Royce (1970) and later
presented in its commonly known form by Boehm (1981). It provides the
foundations for the majority of the major software quality assurance stan-
dards employed, such as IEEE Std 1012 (IEEE, 1998) and IEEE Std 12207
(IEEE, 1996, 1997a, 1997b), to mention just two.

7.1.2 The prototyping model

The prototyping methodology makes use of (a) developments in information
technology, namely, advanced application generators that allow for fast
and easy development of software prototypes, combined with (b) active

125

7.1 Classic
and other softw

are developm
entm

ethodologies

participation in the development process by customers and users capable of
examining and evaluating prototypes.

When applying the prototyping methodology, future users of the system
are required to comment on the various versions of the software prototypes
prepared by the developers. In response to customer and user comments, the
developers correct the prototype and add parts to the system on the way to
presenting the next generation of the software for user evaluation. This
process is repeated till the prototyping goal is achieved or the software sys-
tem is completed. A typical application of the prototyping methodology is
shown in Figure 7.2.

126

7
Integrating quality

activities
in the projectlife cycle

REQUIREMENTS
DETERMINATION
BY CUSTOMER

PROTOTYPE
DESIGN

PROTOTYPE
IMPLEMENTATION

PROTOTYPE
EVALUATION

BY CUSTOMER

REQUIREMENTS
FULFILLED ?

SYSTEM TESTS
AND ACCEPTANCE

TESTS

SYSTEM
CONVERSION

SYSTEM OPERATION
AND MAINTENANCE

DEMANDS FOR
CORRECTIONS, CHANGES

AND ADDITIONS

YES

NO

Figure 7.2: The prototyping model

Prototyping can be applied in combination with other methodologies or as a
“stand alone” methodology. In other words, the extent of prototyping can
vary, from replacement of one SDLC (or other methodology) phase up to
complete prototyping of the entire software system.

Prototyping as a software development methodology has been found to
be efficient and effective mainly for small- to medium-sized software devel-
opment projects. The main advantages and deficiencies of prototyping over
the complete SDLC methodology, summarized in Frame 7.1, result from the
user’s intense involvement in the software development process. Such
involvement facilitates the user’s understanding of the system while it limits
the developer’s freedom to introduce innovative changes in the system.

7.1.3 The spiral model

The spiral model, as revised by Boehm (1988, 1998), offers an improved
methodology for overseeing large and more complex development projects
displaying higher prospects for failure, typical of many projects begun in the
last two decades. It combines an iterative model that introduces and empha-
sizes risk analysis and customer participation into the major elements of
SDLC and prototyping methodologies.

According to the spiral model, shown in Figure 7.3, software develop-
ment is perceived to be an iterative process; at each iteration, the following
activities are performed:

■ Planning
■ Risk analysis and resolution
■ Engineering activities according to the stage of the project: design, cod-

ing, testing, installation and release
■ Customer evaluation, including comments, changes and additional

requirements, etc.

127

7.1 Classic
and other softw

are developm
entm

ethodologies

Frame 7.1 Prototyping versus SDLC methodology – advantages and
disadvantages (mainly for small to medium-sized projects)

Advantages of prototyping:

■ Shorter development process

■ Substantial savings of development resources (man-days)

■ Better fit to customer requirements and reduced risk of project failure

■ Easier and faster user comprehension of the new system

Disadvantages of prototyping:

■ Diminished flexibility and adaptability to changes and additions

■ Reduced preparation for unexpected instances of failure

An advanced spiral model, the Win–Win Spiral model (Boehm, 1998),
enhances the Spiral model (Boehm, 1988) still further. The advanced model
places extra emphasis on communication and negotiation between the cus-
tomer and the developer. The model’s name refers to the fact that by using this
process, the customer “wins” in the form of improved chances to receive the
system most satisfying to his needs, and the developer “wins” in the form of
improved chances to stay within the budget and complete the project by the
agreed date. This is achieved by increasing emphasis on customer participation
and on engineering activities. These revisions in the development process are
shown graphically by two sections of the spiral dedicated to customer partici-
pation: the first deals with customer evaluation and the second with customer
comments and change requirements. Engineering activity is likewise shown in
two sections of the spiral: the first is dedicated to design and the second to con-
struction. By evaluating project progress at the end of each of these sections,
the developer is able to better control the entire development process.

Accordingly, in the advanced spiral model, shown in Figure 7.4, the fol-
lowing six activities are carried out in each iteration:

128

7
Integrating quality

activities
in the projectlife cycle

Planning
based on

customer’s
comments

Analysis of customer’s
requirements and
project planning

Planning Risk analysis and resolution

Risk evaluation
of customer’s
requirements

Risk evaluation
of customer’s

comments
and changes

Initial
prototype

Advanced
prototype

Detailed design,
coding, testing

and release

Engineering

Customer’s evaluation
comments and change

requirements

Evaluation by customer

Figure 7.3: The spiral model (Boehm, 1988)

Source: After Boehm (1988) (© 1988 IEEE)

■ Customer’s specification of requirements, comments and change demands
■ Developer’s planning activities
■ Developer’s risk analysis and resolution
■ Developer’s design activities
■ Developer’s construction activities pertaining to coding, testing, installa-

tion and release
■ Customer’s evaluation.

7.1.4 The object-oriented model

The object-oriented model differs from the other models by its intensive
reuse of software components. This methodology is characterized by its easy
integration of existing software modules (called objects or components) into
newly developed software systems. A software component library serves this
purpose by supplying software components for reuse.

So, according to the object-oriented model as shown in Figure 7.5, the
development process begins with a sequence of object-oriented analyses and
designs. The design phase is followed by acquisition of suitable components

129

7.1 Classic
and other softw

are developm
entm

ethodologies

Customer’s
comments

and change
requirements

Customer’s
comments

and change
requirements

Defining
customer’s

requirements

Planning
based on

customer’s
comments

Requirements
analysis and

project planning

Planning Risk analysis

Risk evaluation
of customer’s
requirements

Risk evaluation
of customer’s

comments
and changes

Initial
prototype

design

Advanced
prototype

design

Detailed
design

Design

Customer’s
evaluation

Customer’s
evaluation

Constructing
initial

prototype

Constructing
advanced
prototype System

implementation

Construction

Figure 7.4: The advanced spiral model (Boehm, 1998)

Source: After Boehm (1988) (© 1988 IEEE)

from the reusable software library, when available. “Regular” development
is carried out otherwise. Copies of newly developed software components
are then “stocked” in the software library for future reuse. It is expected that
the growing software component stocks in the reusable software library will
allow substantial and increasing reuse of software, a trend that will allow
taking greater advantage of resources as follows:

■ Economy – The cost of integrating a reusable software component is
much lower than the cost of developing new components.

■ Improved quality – Used software components are expected to contain
considerably fewer defects than newly developed software components
due to detection of faults by former users.

130

7
Integrating quality

activities
in the projectlife cycle

Requirements
definition

Object-oriented
analysis

Object-oriented
design

Reusability survey of
components library

Availability
of component

in library

System
construction

System
tests

Customer’s
evaluation

Installation
and conversion

Operation and
maintenance

Accepted

Not
accepted

Reusable
component is

available

Component
not available

Reusable
components

library

Requirements
definition

Analysis and
design

Coding

Component
tests

Addition
to library

Development of a
new component

Figure 7.5: The object-oriented model

■ Shorter development time – The integration of reusable software compo-
nents reduces scheduling pressures.

Thus, the advantages of the object-oriented methodology over other
methodologies will grow as the storage of reusable software grows.

7.2 Factors affecting intensity of quality assurance
activities in the development process

Project life cycle quality assurance activities are process oriented, in other
words, linked to completion of a project phase, accomplishment of a project
milestone, and so forth. The quality assurance activities will be integrated into
the development plan that implements one or more software development
models – the waterfall, prototyping, spiral, object-oriented or other models.

Quality assurance planners for a project are required to determine:

■ The list of quality assurance activities needed for a project.

■ For each quality assurance activity:

– Timing

– Type of quality assurance activity to be applied

– Who performs the activity and the resources required. It should be
noted that various bodies may participate in the performance of qual-
ity assurance activities: development team and department staff
members together with independent bodies such as external quality
assurance team members or consultants

– Resources required for removal of defects and introduction of changes.

The intensity of the quality assurance activities planned, indicated by the
number of required activities, is affected by project and team factors, as
shown in Frame 7.2.

131

7.2 Factors
affecting intensity

ofquality
assurance activities

Implementation tip

In some development plans, one finds quality assurance activities spread
throughout the process, but without any time allocated for their performance
or for the subsequent removal of defects. Someone probably assumed that a
late afternoon meeting would be sufficient for performing the quality
assurance activities and the corrections to be made. As nothing is achieved
without time, the almost guaranteed result is delay, caused by the
“unexpectedly” long duration of the quality assurance process. Hence, the
time allocated for quality assurance activities and the defects correction work
that follow should be examined.

The following two examples can illustrate how these factors can influ-
ence quality assurance activities.

Example 1
A software development team has planned the quality assurance activities for
its new consumer club project. The current project contract, signed with a
leading furniture store, is the team’s 11th consumer club project dealing in
the last three years. The team estimates that about seven man-months need
to be invested by the two team members assigned to the project, whose dura-
tion is estimated at four months. It is estimated that a reusable components
library can supply 90% of the project software.

Three quality assurance activities were planned by the project leader.
The quality assurance activities and their duration are listed in Table 7.1.

132

7
Integrating quality

activities
in the projectlife cycle

Frame 7.2 Factors affecting the required intensity of quality
assurance activities

Project factors:

■ Magnitude of the project

■ Technical complexity and difficulty

■ Extent of reusable software components

■ Severity of failure outcomes if the project fails

Team factors:

■ Professional qualification of the team members

■ Team acquaintance with the project and its experience in the area

■ Availability of staff members who can professionally support the team

■ Familiarity with the team members, in other words the percentage of new
staff members in the team

Table 7.1: Duration of quality assurance activities – the consumer club example

No. Quality assurance activity Duration of Duration of
quality assurance corrections and

activity (days) changes (days)

1 Design review of requirements definition 0.5 1

2 Inspection of the design 1 1

3 System test of completed software package 4 2

The main considerations affecting this plan are:

■ Degree of team acquaintance with the subject
■ High percentage of software reuse
■ Size of the project (in this case, medium)
■ Severity of failure results if the project fails.

Example 2
The real-time software development unit of a hospital’s information systems
department has been assigned to develop an advanced patient monitoring
system. The new monitoring unit is to combine of patient’s room unit with
a control unit. The patient’s room unit is meant to interface with several
types of medical equipment, supplied by different manufacturers, which
measure various indicators of the patient’s condition. A sophisticated control
unit will be placed at the nurses’ station, with data to be communicated to
cellular units carried by doctors.

The project leader estimates that 14 months will be required to complete
the system; a team of five will be needed, with an investment of a total of 40
man-months. She estimates that only 15% of the components can be
obtained from the reusable component library. The SDLC methodology was
chosen to integrate application of two prototypes of the patient’s room unit
and two prototypes of the control unit for the purpose of improving com-
munication with the users and enhancing feedback of comments at the
analysis and design phases.

The main considerations affecting this plan are:

■ High complexity and difficulty of the system
■ Low percentage of reusable software available
■ Large size of the project
■ High severity of failure outcomes if the project fails.

The quality assurance activities and their duration, as defined by the project
leader, are listed in Table 7.2.

7.3 Verification, validation and qualification

Three aspects of quality assurance of the software product (a report, code, etc.)
are examined under the rubrics of verification, validation and qualification.

IEEE Std 610.12-1990 (IEEE, 1990) defines these aspects as follows:

■ “Verification – The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.”

133

7.3 Verification, validation and qualification

■ “Validation – The process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
specified requirements.”

■ “Qualification – The process used to determine whether a system or com-
ponent is suitable for operational use.”

According to the IEEE definitions, verification examines the consistency of
the products being developed with products developed in previous phases.
When doing so, the examiner follows the development process and assumes
that all the former development phases have been completed correctly,
whether as originally planned or after removal of all the discovered defects.
This assumption forces the examiner to disregard deviations from the cus-
tomer’s original requirements that might have been introduced during the
development process.

Validation represents the customer’s interest by examining the extent of
compliance to his or her original requirements. Comprehensive validation
reviews tend to improve customer satisfaction from the system.

Qualification focuses on operational aspects, where maintenance is the
main issue. A software component that has been developed and documented

134

7
Integrating quality

activities
in the projectlife cycle

Table 7.2: Duration of quality assurance activities – the patient monitoring system example

No. Quality assurance activity Duration of Duration of
quality assurance corrections and

activity (days) changes (days)

1 Design review of requirements definition 2 1

2 Design review of analysis of patient’s room unit 2 2

3 Design review of analysis of control unit 1 2

4 Design review of preliminary design 1 1

5 Inspection of design of patient’s room unit 1 2

6 Inspection of design of control unit 1 3

7 Design review of prototype of patient’s room unit 1 1

8 Design review of prototype of control unit 1 1

9 Inspection of detailed design for each software 3 3
interface component

10 Design review of test plans for patient’s room 3 1
unit and control unit

11 Unit tests of software code for each interface 4 2
module of patient’s room unit

12 Integration test of software code of patient’s 3 3
room unit

13 Integration test of software code of control unit 2 3

14 System test of completed software system 10 5

15 Design review of user’s manual 3 2

according to professional standards and style and structure convention pro-
cedures is expected to be much easier to maintain than one that provides
marvelous coding improvisations yet does not follow known coding style
procedures and so forth.

Planners are required to determine which of these aspects should be
examined in each quality assurance activity.

7.4 A model for SQA defect removal effectiveness
and cost

The model deals with two quantitative aspects of an SQA plan consisting of
several defect detection activities:

(1) The plan’s total effectiveness in removing project defects.

(2) The total costs of removal of project defects.

The plan itself is to be integrated within a project’s development process.

7.4.1 The data

The application of the model is based on three types of data, described under
the following headings.

Defect origin distribution
Defect origins (the phase in which defects were introduced) are distributed
throughout the development process, from the project’s initiation to its com-
pletion. Surveys conducted by major software developers, such as IBM and
TRW, summarized by Boehm (1981, Chapter 24) and Jones (1996, Chapter
3), reveal a similar pattern of defect distribution. Software development pro-
fessionals believe that this pattern has not changed substantially in the last
two decades. A characteristic distribution of software defect origins, based
on Boehm (1981) and Jones (1996), is shown in Table 7.3.

135

7.4 A
 m

odelfor SQ
A

 defectrem
ovaleffectiveness

and cost

Table 7.3: A characteristic distribution of software defect origins

No. Software development phase Average percentage of
defects originating

in phase

1 Requirements specification 15%

2 Design 35%

3 Coding (coding 30%, integration 10%) 40%

4 Documentation 10%

Defect removal effectiveness
It is assumed that any quality assurance activity filters (screens) a certain per-
centage of existing defects. It should be noted that in most cases, the
percentage of removed defects is somewhat lower than the percentage of
detected defects as some corrections (about 10% according to Jones, 1996)
are ineffective or inadequate. The remaining defects, those undetected and
uncorrected, are passed to successive development phases. The next quality
assurance activity applied confronts a combination of defects: those remain-
ing after previous quality assurance activities together with “new” defects,
created in the current development phase. It is assumed that the filtering
effectiveness of accumulated defects of each quality assurance activity is not
less than 40% (i.e., an activity removes at least 40% of the incoming
defects). Typical average defect filtering effectiveness rates for the various
quality assurance activities, by development phase, based on Boehm (1981,
Chapter 24) and Jones (1996, Chapters 3 and 5), are listed in Table 7.4.

Cost of defect removal
Data collected about development project costs show that the cost of
removal of detected defects varies by development phase, while costs rise
substantially as the development process proceeds. For example, removal of
a design defect detected in the design phase may require an investment of 2.5
working days; removal of the same defect may require 40 working days dur-
ing the acceptance tests. Several surveys carried out by IBM, TRW, GTE,
Boehm and others, summarized by Boehm (1981, Chapter 4), estimate the
relative costs of correcting errors at each development phase. Estimates of
effectiveness of software quality assurance tools and relative costs of defect
removal are provided by Boehm and Basili (2001). Although defect removal
data are quite rare, professionals agree that the proportional costs of defect
removal have remained constant since the surveys conducted in the 1970s
and 1980s. Representative average relative defect-removal costs, based on
Boehm (1981) and Pressman (2000, Chapter 8), are shown in Table 7.5.

136

7
Integrating quality

activities
in the projectlife cycle

Table 7.4: Average filtering (defect removal) effectiveness by quality assurance activities

No. Quality assurance activity Average defect filtering
effectiveness rate

1 Requirements specification review 50%

2 Design inspection 60%

3 Design review 50%

4 Code inspection 65%

5 Unit test 50%

6 Unit test after code inspection 30%

7 Integration test 50%

8 System tests / acceptance tests 50%

9 Documentation review 50%

7.4.2 The model

The model is based on the following assumptions:

■ The development process is linear and sequential, following the waterfall
model.

■ A number of “new” defects are introduced in each development phase.
For their distributions, see Table 7.3.

■ Review and test software quality assurance activities serve as filters,
removing a percentage of the entering defects and letting the rest pass to
the next development phase. For example, if the number of incoming
defects is 30, and the filtering efficiency is 60%, then 18 defects will be
removed, while 12 defects will remain and pass to be detected by the next
quality assurance activity. Typical filtering effectiveness rates for the var-
ious quality assurance activities are shown in Table 7.4.

■ At each phase, the incoming defects are the sum of defects not removed
by the former quality assurance activity together with the “new” defects
introduced (created) in the current development phase.

■ The cost of defect removal is calculated for each quality assurance activ-
ity by multiplying the number of defects removed by the relative cost of
removing a defect (see Table 7.5).

■ The remaining defects, unfortunately passed to the customer, will be
detected by him or her. In these circumstances, full removal entails the
heaviest of defect-removal costs.

In the model, each of the quality assurance activities is represented by a filter
unit, as shown for Design in Figure 7.6.

The model presents the following quantities:

■ POD = Phase Originated Defects (from Table 7.3)
■ PD = Passed Defects (from former phase or former quality assurance activity)

137

7.4 A
 m

odelfor SQ
A

 defectrem
ovaleffectiveness

and cost
Table 7.5: Representative average relative defect-removal costs

No. Software development phase Average relative
defect cost
(cost units)

1 Requirements specification 1

2 Design 2.5

3 Unit tests 6.5

4 Integration tests 16

5 System tests / acceptance tests / system documentation review 40

6 Operation by customer (after release) 110

■ %FE = % of Filtering Effectiveness (also termed % screening effective-
ness) (from Table 7.4)

■ RD = Removed Defects
■ CDR = Cost of Defect Removal (from Table 7.5)
■ TRC = Total Removal Cost: TRC = RD × CDR.

The first illustration of the model applies to a standard quality assurance
plan (“standard defects filtering system”) that is composed of six quality
assurance activities (six filters), as shown in Table 7.6.

A process-oriented illustration of the standard quality assurance plan
model is provided in Figure 7.7.

138

7
Integrating quality

activities
in the projectlife cycle

Table 7.6: Standard quality assurance plan

No. Quality assurance activity Defect removal Cost of removing
effectiveness a detected defect

(cost units)

1 Requirement specification review 50% 1

2 Design review 50% 2.5

3 Unit test – code 50% 6.5

4 Integration test 50% 16

5 Documentation review 50% 16

6 System test 50% 40

7 Operation phase 100% 110

Phase
originated

defects
35

Passed
defects

7.5

Filter
effectiveness

50%

Removed
defects

21.3

Cost of
defects
removal

2.5

Total
removal

cost
53.2 units

Design
35 21.2

Figure 7.6: A filter unit for defect-removal effectiveness: example

139

7.4 A
 m

odelfor SQ
A

 defectrem
ovaleffectiveness

and cost

POD = 15 PD = 0 %FE = 50

RD = 7.5

CDR = 1

TRC = 7.5cu

Requirement specification

15 7.5

POD = 35 PD = 7.5 %FE = 50

RD = 21.3

CDR = 2.5

TRC = 53.2cu

Design

35 21.2

POD = 30 PD = 21.2 %FE = 50

RD = 25.6

CDR = 6.5

TRC = 166.4cu

Unit test

30 25.6

POD = 10 PD = 25.6 %FE = 50

RD = 17.8

CDR = 16

TRC = 284.8cu

Integration test

10 17.8

POD = 10 PD = 17.8 %FE = 50

RD = 13.9

CDR = 16

TRC = 222.4cu

Documentation

10 13.9

POD = 0 PD = 13.9 %FE = 50

RD = 7

CDR = 40

TRC = 280cu

System tests

6.9

POD = 0 PD = 6.9 %FE = 100

RD = 6.9

CDR = 110

TRC = 759cu

Operation

Figure 7.7: Defect-removal effectiveness and costs — standard plan model of the process of
removing 100 defects

A comprehensive quality assurance plan (“comprehensive defects filter-
ing system”) achieves the following:

(1) Adds two quality assurance activities, so that the two are performed in
the design phase as well as in the coding phase.

(2) Improves the “filtering” effectiveness of other quality assurance activities.

The comprehensive quality assurance plan can be characterized as shown in
Table 7.7.

Figure 7.8 provides a process-oriented illustration of the comprehensive
plan model.

A comparison of the outcomes of the standard software quality plan ver-
sus the comprehensive plan is revealing. The results of the comparison are
shown in Table 7.8.

The main conclusions drawn from the comparison are:

(1) The standard plan successfully removes only 57.6% (28.8 defects out of
50) of the defects originated in the requirements and design phase, com-
pared to 90.2% for the comprehensive plan, before coding begins. This
is to be expected as a direct result of the more intensive defect-removal
efforts that characterize the comprehensive plan.

(2) The comprehensive plan, as a whole, is much more economical than the
standard plan as it saves 41% of total resources invested in defect
removal, compared to the standard plan.

(3) Compared to the standard plan, the comprehensive plan makes a greater
contribution to customer satisfaction by drastically reducing the rate of
defects detected during regular operations (from 6.9% to 2.6%).

140

7
Integrating quality

activities
in the projectlife cycle

Table 7.7: Comprehensive quality assurance plan

No. Quality assurance activity Defect-removal Cost of removing
effectiveness a detected defect

(cost units)

1 Requirement specification review 60% 1

2 Design inspection 70% 2.5

3 Design review 60% 2.5

4 Code inspection 70% 6.5

5 Unit test – code 40% 6.5

6 Integration test 60% 16

7 Documentation review 60% 16

8 System test 60% 40

9 Operation phase 100% 110

In general, the quantitative results of the comparison comply nicely with the
SQA approach. The comparison also supports the belief that additional
investments in quality assurance activities yield substantial savings in defect
removal costs.

Alternative models dealing with the cumulative effects of several quality
assurance activities are discussed by Pressman (2000, Chapter 8) and Perry
(1995, Chapter 2).

141

7.4 A
 m

odelfor SQ
A

 defectrem
ovaleffectiveness

and cost

POD = 15 PD = 0 %FE = 60

RD = 9

CDR = 1

TRC = 9cu

Requirement specification

15 6

POD = 35 PD = 6 %FE = 70

RD = 28.7

CDR = 2.5

TRC = 71.8cu

Design inspection

35 12.3

POD = 30 PD = 4.9 %FE = 70

RD = 24.4

CDR = 6.5

TRC = 158.6cu

Code inspection

30 10.5

POD = 10 PD = 6.3 %FE = 60

RD = 9.8

CDR = 16

TRC = 156.8cu

Integration test

10 6.5

POD = 10 PD = 6.5 %FE = 60

RD = 9.9

CDR = 16

TRC = 158.4cu

Documentation

10 6.6

POD = 0 PD = 6.6 %FE = 60

RD = 4

CDR = 40

TRC = 160cu

System tests

2.6

POD = 0 PD = 2.6 %FE = 100

RD = 2.6

CDR = 110

TRC = 286cu

POD = 0 PD = 12.3 %FE = 60

RD = 7.4

CDR = 2.5

TRC = 18.5cu

Design review

4.9

POD = 0 PD = 10.5 %FE = 40

RD = 4.2

CDR = 6.5

TRC = 27.3cu

Unit test

6.3

Figure 7.8: Defect-removal effectiveness and costs – comprehensive plan model of the process
of removing 100 defects

142

7
Integrating quality

activities
in the projectlife cycle

Ta
bl

e
7.

8:
Co

m
pa

ri
so

n
of

th
e

st
an

da
rd

 a
nd

 c
om

pr
eh

en
si

ve
 q

ua
lit

y
as

su
ra

nc
e

pl
an

s

N
o.

Q
ua

lit
y

as
su

ra
nc

e
ac

ti
vi

ty
S

ta
nd

ar
d

pl
an

Co
m

pr
eh

en
si

ve
 p

la
n

Pe
rc

en
ta

ge
 o

f
Co

st
of

re
m

ov
in

g
Pe

rc
en

ta
ge

 o
f

Co
st

of
re

m
ov

in
g

re
m

ov
ed

 d
ef

ec
ts

de
fe

ct
s

(c
os

tu
ni

ts
)

re
m

ov
ed

 d
ef

ec
ts

de
fe

ct
s

(c
os

tu
ni

ts
)

1
Re

qu
ir

em
en

ts
sp

ec
ifi

ca
ti

on
 re

vi
ew

7.
5%

7.
5

9%
9

2
D

es
ig

n
in

sp
ec

ti
on

—
—

28
.7

%
71

.8

3
D

es
ig

n
re

vi
ew

21
.3

%
53

.2
7.

4%
18

.5

4
Co

de
 in

sp
ec

ti
on

—
—

24
.4

%
15

8.
6

5
U

ni
tt

es
t–

 c
od

e
25

.6
%

16
6.

4
4.

2%
27

.3

6
In

te
gr

at
io

n
te

st
17

.8
%

28
4.

8
9.

8%
15

6.
8

7
D

oc
um

en
ta

ti
on

 re
vi

ew
13

.9
%

22
2.

4
9.

9%
15

8.
4

8
Sy

st
em

 te
st

7.
0%

28
0

4%
16

0

To
ta

lf
or

 in
te

rn
al

qu
al

it
y

as
su

ra
nc

e
ac

ti
vi

ti
es

93
.1

%
10

14
.3

97
.4

%
76

0.
4

D
ef

ec
ts

de
te

ct
ed

 d
ur

in
g

op
er

at
io

n
6.

9%
75

9
2.

6%
28

6

To
ta

l
10

0.
0%

17
73

.3
10

0.
0%

10
46

.4

Summary

(1) Describe the various software development models and discuss the differences
between them.

Four models of software development process are discussed in this chapter:
■ The Software Development Life Cycle (SDLC) model
■ The prototyping model
■ The spiral model
■ The object-oriented model.

The classic SDLC model is a linear sequential model comprising several phases,
beginning with requirements definition and concluding with regular system opera-
tion and maintenance.

At the end of each phase, outputs are reviewed and evaluated by the develop-
er as well as, in many cases, by the customer. The outcomes range from approval of
the phase results and continuation to the next phase, to demands to correct, redo
or alter parts of the respective phase.

The waterfall model can be viewed as the basic framework for the other models,
which can be considered as complementary and represent different perspectives of
the process, or as referring to diverse development contexts.

According to the prototyping methodology, the developed system’s users are
required to comment on versions of the software prototypes prepared by the devel-
opers. The developers thereafter correct the prototype and incorporate additional
parts into the system. This process is repeated till the software system is complet-
ed or till the goal of prototyping is achieved.

The main advantages of the prototyping over the SDLC model, for small to medium-
sized projects, are the shorter development process, substantial savings in devel-
opment resources, better fit to customer requirements, reduced risk of project
failure, and clearer user comprehension of the new system.

The spiral model provides an improved methodology for larger and more com-
plex projects. This improvement is achieved by introducing and emphasizing
elements of risk analysis and customer participation in the development process.
Each of the model’s iterations includes planning, risk analysis and resolution, engi-
neering, and customer evaluation.

The advanced spiral model (the Win–Win model) places extra emphasis on com-
munication and negotiation between customer and developer. The customer wins
by improving chances to receive a system that satisfies most of his needs while the
developer wins by improving chances of completing the project within budgetary
and timetable constraints.

The object-oriented model deals with the situation of intensive reuse of soft-
ware components. According to this model, the development process begins with a
sequence of object-oriented analysis and design activities. The design phase is fol-
lowed by acquisition of a reusable software library together with “regular”
development of the unavailable software components. Copies of newly developed
software components are “stocked” in the library for future reuse.

143

S
um

m
ary

(2) Explain the considerations affecting application of quality assurance activities.

The decision about the number of quality assurance activities to be applied is affect-
ed by project and team factors. Project factors include project magnitude, its
complexity and difficulty, extent of reusable software components, and the severity
of the outcomes if the project fails. Team factors include its professional qualifica-
tions as well as acquaintance with the project and related experience, availability of
professional support, and staff familiarity with team members.

(3) Explain the different aspects of verification, validation and qualification for quali-
ty assurance activities.

Quality assurance activities examine three different aspects of quality by means of
software product verification, validation and qualification.
■ Verification examines the consistency of current development activities with the

products from previous phases. Doing so enables the examiner to confirm
whether the developer has fulfilled his requirements while disregarding devia-
tions from the original requirements that may have arisen during development.

■ Validation represents the customer’s interests by examining the extent to which
the customer’s original requirements have been fulfilled.

■ Qualification focuses on operational aspects, where maintenance is the main
issue. Qualification reviews project application of professional standards and
coding procedures, based on the assumption that applying these standards
facilitates maintenance.

Quality assurance activity planners are required to determine which of these
aspects should be examined in each of the planned quality assurance activities.

(4) Describe the model for SQA defect removal effectiveness and cost.

The model deals with two quantitative aspects of an SQA plan designed for a spe-
cific project:
(1) Total effectiveness of defect removal.
(2) Total cost of defect removal.

The model is based on the following assumptions:
■ The development process is linear and sequential (the waterfall model).
■ A number of “new” defects are introduced in each development phase.
■ Various review and test software assurance activities serve as filters, removing

a percentage of the entering defects while allowing the rest to pass to the next
software assurance activity.

■ Incoming defects are the sum of defects passed from the former quality assur-
ance activity together with “new” defects created in the current development
phase.

■ The cost of defect removal is calculated by multiplying the number of defects
removed by the relative cost of removing a defect.

■ Defects passed to the customer will be detected by him or her; their full removal
at this phase will incur heavy costs.

144

7
Integrating quality

activities
in the projectlife cycle

(5) Explain possible uses for the model.

The model allows calculating estimates of the cost of decisions regarding the qual-
ity assurance plan, e.g.:
■ Addition or elimination of a quality assurance activity from a given plan.
■ Application of current quality assurance procedures activity versus application

of a more efficient yet more costly procedure.

Utilization of the model thus enables comparison of SQA policies/strategies and
activity plans.

Selected bibliography

1. Boehm, B. W. (1981) Software Engineering Economics, Ch. 4 Prentice Hall,
Upper Saddle River, NJ.

2. Boehm, B. W. (1988) “A spiral model of software development and enhance-
ment”, Computer, 21(5), 61–72.

3. Boehm, B. W. (1998) “Using the Win–Win spiral model: a case study”,
Computer, 31(7), 33–44.

4. Boehm, B. and Basili, V. R. (2001) “Software defect reduction – Top 10 list”,
Computer, 34(1) 135–137.

5. IEEE (1990) “IEEE Std 610.12-1990 – IEEE Standard Glossary of Software
Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

6. IEEE (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

7. IEEE (1997a) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Life Cycle Data”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

8. IEEE (1997b) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

9. IEEE (1998) “IEEE Std 1012-1998 – IEEE Standard for Software Verification
and Validation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

10. Jones, C. (1996) Applied Software Measurement – Assuring Productivity and
Quality, 2nd edn, McGraw-Hill, New York.

11. Kendall, K. E. and Kendall, J. E. (1999) Systems Analysis and Design, 4th edn,
Prentice Hall, Upper Saddle River, NJ.

12. Perry, W. (1995) Effective Methods for Software Testing, John Wiley & Sons,
New York.

13. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach.
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

14. Royce, W. W. (1970) “Managing the development of large software systems:
concepts and techniques”, Proceedings of IEEE WESCON, August 1970.

145

S
elected bibliography

Review questions

7.1 Referring to the SDLC model:

(1) What are the seven basic phases of the development process suggested by
the model?

(2) Suggest situations where the number of process phases should be reduced.
(3) Suggest situations where the number of process phases should be increased.

7.2 With respect to the prototyping methodology:

(1) List the conditions necessary for the prototyping model to be applied.
(2) Can you suggest an imaginary project ideally suitable for the prototyping

methodology?
(3) Can you suggest an imaginary project that is obviously unsuitable for the pro-

totyping methodology?

7.3 Comparing the SDLC and prototyping methodologies:

(1) List the advantages of prototyping compared to the SDLC methodology for
development of small to medium-sized projects.

(2) Explain why the advantages of prototyping cannot be realized for large soft-
ware systems.

(3) In what ways can prototyping support the development of large-scale projects?

7.4 Referring to the spiral model:

(1) Describe the four activities to be repeated in each iteration of the develop-
ment process. Explain why the four activities designated are to be repeated in
each iteration of the development process.

(2) What new activities were added to the classic SDLC model and what is their
main contribution to the success of projects?

7.5 Comparing the SDLC and spiral models:

(1) Explain the advantages of the spiral model as compared with the SDLC model.
(2) What characteristics of a project enable these advantages to be best realized?
(3) Provide three examples of projects that would obviously benefit from applica-

tion of the spiral model.

7.6 With respect to verification, validation and qualification:

(1) Explain the differences between these three aspects of SQA activities.
(2) Can a project that successfully passed verification and validation reviews but

failed part of the qualification review adequately supply users with the infor-
mation needed? Explain your answer.

(3) In which respects is the project described in (2) inferior to a project that
passed all three reviews? In what way will this difference affect operation of
the software system?

146

7
Integrating quality

activities
in the projectlife cycle

7.7 Theoretically, verification reviews should be sufficient. Still, SQA professionals rec-
ommend performance of validation and qualification reviews as well.

(1) What do they expect to gain by adding a validation review?
(2) What do they expect to gain by adding a qualification review?

7.8 Referring to the model for defect removal efficiency and costs:

(1) What assumptions rest at the foundations of the model?
(2) Which three of the model’s data components are based on published

survey results?

Topics for discussion

7.1 Consider the expected severity of software system failure.

(1) What are the main issues that cause the degree of severity?
(2) Referring to your answer to (1), can you list three examples of software devel-

opment projects displaying highly severe failures?
(3) Referring to your answer to (1), can you list three examples of software devel-

opment projects displaying low-severity failures?

7.2 A software development firm is planning a new airport luggage control project. The
system is to control luggage transfer from the terminal to the planes, from the
planes to the terminal’s luggage release system, and from plane to plane (for tran-
sit passengers). The airport requires the highest reliability for the system and
wishes to initiate several new applications that have yet to be implemented in
another airport.

(1) What SQA methodology should be implemented for this project? List
your arguments.

(2) Would you recommend integration of additional methodologies in the plan? If
yes, what are they and what are their main contributions to the project?

7.3 HRS Ltd is a software house that specializes in human resource management pack-
ages sold mainly to small and medium-sized organizations. Its incentive control
and management recruitment software packages are already very popular.

(1) What methodology should be applied by HRS? List your arguments.
(2) The company wishes to penetrate the area of custom-made human resource

management software systems for large organizations such as banks and gov-
ernment agencies. What methodology or combination of methodologies can
best fit their new needs?

7.4 Software reuse has become an important factor in the software development
industry.

(1) Explain the advantages of software reuse.
(2) How can a software development firm organize for efficient software reuse?
(3) What similar trends can you identify in manufacturing industries (automo-

biles, home appliances, etc.)?

147

Topics
for discussion

7.5 Finding herself under time and budget pressures, a project leader has decided to
introduce an “economy plan” that limits the quality assurance activities to a stan-
dard design review, as required by the contract with the customer (50% filter), and
a comprehensive system test (60% filter). Considering the model’s contribution to
defect-removal efficiency and costs:

(1) What are the expected savings, if any, in resources invested for defect
removal during the development process as opposed to the standard quality
assurance plan?

(2) What are the expected effects of the “economy plan” on customer
satisfaction? Support your answer with a quantitative comparison to the
standard plan.

(3) Compare the overall results of the “economy plan” to the results of the stan-
dard and comprehensive plans.

(4) Based on your answer to (3), can you suggest some general rules about
choosing the preferred quality assurance plan?

148

7
Integrating quality

activities
in the projectlife cycle

chapter 8

Reviews

A common product of the software development process, especially in its
analysis and design phases, is a design document in which the progress of the
development work performed is recorded. The system analyst or analysts
who prepared the document will check it repeatedly, it is to be assumed, in
order to detect any possible error that might have entered. In addition, devel-
opment team leaders are also expected to examine this document and its
details so as to detect any remaining errors before granting their approval.

Chapter outline

8.1 Review objectives 150
8.2 Formal design reviews (DRs) 152

8.2.1 The participants in a DR 153
8.2.2 Preparations for a DR 154
8.2.3 The DR session 155
8.2.4 Post-review activities 156

8.3 Peer reviews 158
8.3.1 Participants of peer reviews 160
8.3.2 Preparations for a peer review session 162
8.3.3 The peer review session 163
8.3.4 Post-peer review activities 165
8.3.5 The efficiency of peer reviews 165
8.3.6 Peer review coverage 168

8.4 A comparison of the team review methods 168
8.5 Expert opinions 170

Summary 171
Selected bibliography 172
Review questions 172
Topics for discussion 174

Appendix 8A: DR report form 175
Appendix 8B: Inspection session findings report form 176
Appendix 8C: inspection session summary report 177

However, it is clear that because these professionals were involved in pro-
ducing the document, they are unlikely to detect some of their own errors
irrespective of the number of checks. Therefore, only others – such as peers,
superiors, experts, and customer’s representatives (those having different
experiences and points of view, yet not directly involved in creating the doc-
ument) – are capable of reviewing the product and detecting the errors
unnoticed by the development team.

As defined by IEEE (1990), a review process is:

“A process or meeting during which a work product, or set of work prod-
ucts, is presented to project personnel, managers, users, customers, or
other interested parties for comment or approval.”

As these documents are products of the project’s initial phases, reviews
acquire special importance in the SQA process because they provide early
detection and prevent the passing of design and analysis errors “down-
stream”, to stages where error detection and correction are much more
intricate, cumbersome, and therefore costly.

Several methodologies can be implemented when reviewing documents.
In this chapter, the following methods will be discussed:

■ Formal design reviews
■ Peer reviews (inspections and walkthroughs)
■ Expert opinions.

Standards for software reviews are the subject of IEEE Std 1028 (IEEE, 1997).
It should be noted that successful implementations of inspections and

walkthroughs also detect defects in the coding phase, where the appropriate
document reviewed is the code printout.

A case study of the contribution of formal design reviews and inspec-
tions to software quality is presented by MacFarland (2001).

After completing this chapter, you will be able to:

■ Explain the direct and indirect objectives of review methodologies.
■ Explain the contribution of external experts to the performance of

review tasks.
■ Compare the three major review methodologies.

8.1 Review objectives

Several objectives motivate reviews. The review’s direct objectives deal with
the current project, whereas its indirect objectives, more general in nature,
deal with the contribution of the review proper to the promotion of team
members’ professional knowledge and the improvement of the development
methodologies applied by the organization.

150

8
Review

s

The main review objectives are presented in Frame 8.1.

The various review methods differ in the emphasis attached to the dif-
ferent objectives and in the extent of success achievable for each objective.
Therefore, for better “filtering out” of errors and greater long-term impacts,
a double or even triple “net”, constructed from among the range of review
methods available, should be applied.

Reviews are not activities to be conducted haphazardly. Procedural order
and teamwork lie at the heart of formal design reviews, inspections and walk-
throughs. Each participant is expected to emphasize his or her area of
responsibility or specialization when making comments. At each review ses-
sion, one individual is assigned the task of inscribing mutually agreed
remarks. The subsequent list of items should include full details of defect loca-
tion and description, documented in a way that will later allow full retrieval
by the development team. However, because of the human propensity to try
to design solutions on the spot and, often, to digress to tangential issues or,
even worse, to personal matters during the course of a meeting, a coordina-
tor is needed to maintain control of the discussion and keep it on track.

In general, the knowledge that an analysis or design product will be
reviewed stimulates the development team to work at their maximum. This
represents a further contribution of reviews to improved product quality.

151

8.1 Review
 objectives

Frame 8.1 Review objectives

Direct objectives

■ To detect analysis and design errors as well as subjects where corrections,
changes and completions are required with respect to the original
specifications and approved changes.

■ To identify new risks likely to affect completion of the project.

■ To locate deviations from templates and style procedures and conventions.
Correction of these deviations is expected to contribute to improved
communication and coordination resulting from greater uniformity of
methods and documentation style.

■ To approve the analysis or design product. Approval allows the team to
continue to the next development phase.

Indirect objectives

■ To provide an informal meeting place for exchange of professional
knowledge about development methods, tools and techniques.

■ To record analysis and design errors that will serve as a basis for future
corrective actions. The corrective actions are expected to improve
development methods by increasing effectiveness and quality, among other
product features. (For more about corrective actions, see Chapter 17.)

In the following, the various review methods are presented. A compari-
son of team review methods is the subject of Section 8.4; expert opinions are
discussed in Section 8.5.

8.2 Formal design reviews (DRs)

Formal design reviews, variously called “design reviews”, “DRs” and “for-
mal technical reviews (FTR)”, differ from all other review instruments by
being the only reviews that are necessary for approval of the design product.
Without this approval, the development team cannot continue to the next
phase of the software development project. Formal design reviews may be
conducted at any development milestone requiring completion of an analy-
sis or design document, whether that document is a requirement
specification or an installation plan. A list of common formal design reviews
is given in Frame 8.2.

Sauer and Jeffery (2000) discuss a broad range of factors affecting the
effectiveness of DRs, based on research results and a wide-ranging survey of
the literature. Our discussion of formal design reviews will focus on:

■ The participants
■ The prior preparations
■ The DR session
■ The recommended post-DR activities.

152

8
Review

s

Frame 8.2 Some common formal design reviews

DPR – Development Plan Review

SRSR – Software Requirement Specification Review

PDR – Preliminary Design Review

DDR – Detailed Design Review

DBDR – Data Base Design Review

TPR – Test Plan Review

STPR – Software Test Procedure Review

VDR – Version Description Review

OMR – Operator Manual Review

SMR – Support Manual Review

TRR – Test Readiness Review

PRR – Product Release Review

IPR – Installation Plan Review

8.2.1 The participants in a DR

All DRs are conducted by a review leader and a review team. The choice of
appropriate participants is of special importance because of their power to
approve or disapprove a design product.

The review leader
Because the appointment of an appropriate review leader is a major factor
affecting the DR’s success, certain characteristics are to be looked for in a
candidate for this position:

■ Knowledge and experience in development of projects of the type reviewed.
Preliminary acquaintance with the current project is not necessary.

■ Seniority at a level similar to if not higher than that of the project leader.

■ A good relationship with the project leader and his team.

■ A position external to the project team.

Thus, appropriate candidates for review team leadership include the devel-
opment department’s manager, the chief software engineer, the leader of
another project, the head of the software quality assurance unit and, in cer-
tain circumstances, the customer’s chief software engineer.

Small development departments and small software houses typically
have substantial difficulties finding an appropriate candidate to lead the
review team. One possible solution to this predicament is the appointment
of an external consultant to the position.

The review team
The entire review team should be selected from among the senior members
of the project team together with appropriate senior professionals assigned
to other projects and departments, customer–user representatives, and in
some cases, software development consultants. It is desirable for non-project
staff to make up the majority of the review team.

153

8.2 Form
aldesign review

s
(D

Rs)

Implementation tip

In some cases, the project leader is appointed as the review leader, the main
justification for this decision being his or her superior knowledge of the
project’s material. In most cases, this choice proves to be undesirable
professionally. A project leader who serves as the review team leader tends,
whether intentionally or nor, to limit the scope of the review and avoid incisive
criticism. Review team members tend to be chosen accordingly. Appointments
of this type usually undermine the purpose for the review and only delay
confrontation with problems to a later, more sensitive date.

An important, oft-neglected issue is the size of the review team. A review
team of three to five members is expected to be an efficient team, given the
proper diversity of experience and approaches among the participants are
assured. An excessively large team tends to create coordination problems,
waste review session time and decrease the level of preparation, based on a
natural tendency to assume that others have read the design document.

8.2.2 Preparations for a DR

Although preparations for a DR session are to be completed by all three
main participants in the review – the review leader, the review team and the
development team – each participant is required to focus on distinct aspects
of the process.

Review leader preparations
The main tasks of the review leader in the preparation stage are:

■ To appoint the team members
■ To schedule the review sessions
■ To distribute the design document among the team members (hard copy,

electronic file, etc.).

It is of utmost importance that the review session be scheduled shortly after
the design document has been distributed to the review team members.
Timely sessions prevent an unreasonable length of time from elapsing before
the project team can commence the next development phase and thus reduce
the risk of going off schedule.

Review team preparations
Team members are expected to review the design document and list their
comments prior to the review session. In cases where the documents are siz-
able, the review leader may ease the load by assigning to each team member
review of only part of the document.

An important tool for ensuring the review’s completeness is the check-
list. In addition to the general design review checklist, checklists dedicated to
the more common analysis and design documents are available and can be
constructed when necessary. Checklists contribute to the design review’s
effectiveness by reminding the reviewer of all the primary and secondary
issues requiring attention. For a comprehensive discussion of checklists, see
Chapter 15.

Development team preparations
The team’s main obligation as the review session approaches is to prepare a
short presentation of the design document. Assuming that the review team
members have read the design document thoroughly and are now familiar

154

8
Review

s

with the project’s outlines, the presentation should focus on the main pro-
fessional issues awaiting approval rather than wasting time on description of
the project in general.

8.2.3 The DR session

The review leader’s experience in leading the discussions and sticking to the
agenda is the key to a successful DR session. A typical DR session agenda
includes:

(1) A short presentation of the design document.

(2) Comments made by members of the review team.

(3) Verification and validation in which each of the comments is discussed
to determine the required actions (corrections, changes and additions)
that the project team has to perform.

(4) Decisions about the design product (document), which determines the
project’s progress. These decisions can take three forms:

■ Full approval – enables immediate continuation to the next phase
of the project. On occasion, full approval may be accompanied
by demands for some minor corrections to be performed by the proj-
ect team.

■ Partial approval – approval of immediate continuation to the next
phase for some parts of the project, with major action items (correc-
tions, changes and additions) demanded for the remainder of the
project. Continuation to the next phase of these remainder parts will
be permitted only after satisfactory completion of the action items.
This approval can be given by the member of the review team
assigned to review the completed action items, by the full review team
in a special review session, or by any other forum the review leader
thinks appropriate.

■ Denial of approval – demands a repeat of the DR. This decision is
applied in cases of multiple major defects, particularly critical defects.

155

8.2 Form
aldesign review

s
(D

Rs)

Implementation tip

One of the most common techniques used by project leaders to avoid
professional criticism and undermine review effectiveness is the
comprehensive presentation of the design document. This type of
presentation excels in the time it consumes. It exhausts the review team and
leaves little time, if any, for discussion. All experienced review leaders know
how to handle this phenomenon.

In cases where the project leader serves as the review leader, one can observe
especially potent tactics aimed at stymieing an effective review: appointment
of a large review team combined with a comprehensive and long presentation.

8.2.4 Post-review activities

Apart from the DR report, the DR team or its representative is required
to follow up performance of the corrections and to examine the corrected
sections.

The DR report
One of the review leader’s responsibilities is to issue the DR report immedi-
ately after the review session. Early distribution of the DR report enables the
development team to perform the corrections earlier and minimize the atten-
dant delays to the project schedule.

The report’s major sections contain:

■ A summary of the review discussions.
■ The decision about continuation of the project.
■ A full list of the required actions – corrections, changes and additions that

the project team has to perform. For each action item, the anticipated
completion date and project team member responsible are listed.

■ The name(s) of the review team member(s) assigned to follow up per-
formance of corrections.

The form shown in Appendix 8A presents the data items that need to be
documented for an inclusive DR report.

The follow-up process
The person appointed to follow up the corrections, in many cases the review
leader him or herself, is required to determine whether each action item has
been satisfactorily accomplished as a condition for allowing the project to
continue to the next phase. Follow-up should be fully documented to enable
clarification of the corrections in the future, if necessary.

156

8
Review

s

Implementation tip

Unfortunately, the entire or even parts of the DR report are often worthless,
whether because of an inadequately prepared review team or because of
intentional evasion of a thorough review. It is fairly easy to identify such cases
from the characteristics of the review report:

■ An extremely short report, limited to documented approval of the design
product, listing no detected defects.

■ A short report, approving continuation to the next project phase in full,
listing several minor defects but no action items.

■ A report listing several action items of varied severity, but no indication of
follow-up (correction schedule, etc.), and no available documented follow-
up activities.

Pressman (2000, Chapter 8) lists guidelines for completing a successful
DR, while focusing on infrastructure, preparations for a DR, and conduct of
a DR session are summarized in Frame 8.3. Pressman’s golden “guidelines”
for formal design reviews also apply to inspection and walkthrough sessions.

157

8.2 Form
aldesign review

s
(D

Rs)

Frame 8.3 Pressman’s 13 “golden guidelines” for a successful design
review (based on Pressman 2000, Chapter 8)

Design review infrastructure

■ Develop checklists for each type of design document, or at least for the
common ones.

■ Train senior professionals to treat major technical as well as review process
issues. The trained professionals serve as a reservoir for DR teams.

■ Periodically analyze past DR effectiveness regarding defect detection to
improve the DR methodology.

■ Schedule the DRs as part of the project activity plan and allocate the
needed resources as an integral part of the software development
organization’s standard operating procedures.

The design review team

■ Review teams should be limited in size, with 3–5 members usually being
the optimum.

The design review session

■ Discuss professional issues in a constructive way while refraining from
personalizing those issues. This demands keeping the discussion
atmosphere free of unnecessary tension.

■ Keep to the review agenda. Drifting from the planned agenda usually
interferes with the review’s efficiency.

■ Focus on detection of defects by verifying and validating the participants’
comments. Refrain from discussing possible solutions to the detected
defects so as to save time and avoid wandering from the agenda.

■ In cases of disagreement about the significance of an error, it is desirable
to end the debate by noting the issue and shifting its discussion to
another forum.

■ Properly document the discussions, especially details of the participants’
comments and the results of their verification and validation. This step is
especially important if the documentation is to serve as input or a basis for
preparation of the review report.

■ The duration of a review session should not exceed two hours. ▲

The formal design review process is illustrated in Figure 8.1.
The next section deals with peer review methods, and discusses the two

most commonly used methods: inspection and walkthrough.

8.3 Peer reviews

Two peer review methods, inspections and walkthroughs, are discussed in
this section. The major difference between formal design reviews and peer
review methods is rooted in their participants and authority. While most par-
ticipants in DRs hold superior positions to the project leader and customer
representatives, participants in peer reviews are, as expected, the project
leader’s equals, members of his or her department and other units. The other
major difference lies in degree of authority and the objective of each review
method. Formal design reviews are authorized to approve the design docu-
ment so that work on the next stage of the project can begin. This authority
is not granted to the peer reviews, whose main objectives lie in detecting
errors and deviations from standards.

Today, with the appearance of computerized design tools, including
CASE tools, on the one hand, and systems of vast software packages on the
other hand, some professionals tend to diminish the value of manual reviews
such as inspections and walkthroughs. Nevertheless, past software surveys as
well as recent empirical research findings provide much convincing evidence
that peer reviews are highly efficient as well as effective methods.

What differentiates a walkthrough from an inspection is the level of for-
mality, with inspection the more formal of the two. Inspection emphasizes
the objective of corrective action. Whereas a walkthrough’s findings are lim-
ited to comments on the document reviewed, an inspection’s findings are also
incorporated into efforts to improve development methods per se.
Inspections, as opposed to walkthroughs, are therefore considered to con-
tribute more significantly to the general level of SQA.

Inspection is usually based on a comprehensive infrastructure, including:

■ Development of inspection checklists developed for each type of design doc-
ument as well as coding language and tool, which are periodically updated.

■ Development of typical defect type frequency tables, based on past find-
ings, to direct inspectors to potential “defect concentration areas”.

158

8
Review

s

Post-review activities

■ Prepare the review report, which summarizes the issues discussed and the
action items.

■ Establish follow-up procedures to ensure the satisfactory performance of
all the corrections included in the list of action items.

■ Training of competent professionals in inspection process issues, a
process that makes it possible for them to serve as inspection leaders
(moderators) or inspection team members. The trained employees serve
as a reservoir of professional inspectors available for future projects.

159

8.3 Peer review
s

Team
appointment,

schedule review
and preparing

agenda

Prepare the
design

document

Prepare a
presentation

The design
product

Presentation
of the design product

Read the
document

1. Review schedule
2. Document for

review

Comments

Formal review session

Review report

Is the
document
approved?

Corrections reviewed

Follow-up
report

Are the
corrected parts

approved?

Carry out
major

corrections

Carry out
major

corrections of
non-approved

parts

Carry out
next

development
phase

Full approval
(No corrections

required)

Corrected design
product – to be
reviewed again No approval

(Major corrections
required)

Partial approval
(Major corrections required)

Non-approved parts of project –
major corrections to be carried out

Corrected
parts of
design
product

Document
parts not
approved

Document
parts

approved

Approved parts

The review leaderThe development
team

The review team

Figure 8.1: The formal design review process

■ Periodic analysis of the effectiveness of past inspections to improve the
inspection methodology.

■ Introduction of scheduled inspections into the project activity plan and
allocation of the required resources, including resources for correction of
detected defects.

The inspection and walkthrough processes described here are the more com-
monly employed versions of these methods. Organizations often modify
these methods, with adaptations representing “local color”, that is, the char-
acter of the development and SQA units, the software products developed,
team structure and composition, and the like. It should be noted that in
response to this variability, especially in walkthrough procedures, differences
between the two methods are easily blurred. This state of affairs has con-
vinced some specialists to view walkthroughs as a type of inspection, and
vice versa.

The debate over which method is preferable has yet to be resolved, with
proponents of each arguing for the superiority of their favored approach.
Based on their survey of studies of each method, Gilb and Graham (1993)
conclude that as an alternative to inspections, walkthroughs display “far
fewer defects found but at the same cost”.

Our discussion of peer review methods will thus focus on:

■ Participants of peer reviews
■ Requisite preparations for peer reviews
■ The peer review session
■ Post-peer review activities
■ Peer review efficiency
■ Peer review coverage.

With minor adaptations, the principles and process of design peer reviews
can also be successfully applied to code peer reviews.

Design and code inspections, as procedural models, were initially described
and formulated by Fagan (1976, 1986). As to walkthroughs, Yourdon (1979)
provides a thorough and detailed discussion of the related principles
and processes.

8.3.1 Participants of peer reviews

The optimal peer review team is composed of three to five participants. In
certain cases, the addition of one to three further participants is acceptable.
All the participants should be peers of the software system designer-author.
A major factor contributing to the success of a peer review is the group’s
“blend” (which differs between inspections and walkthroughs).

A recommended peer review team includes:

■ A review leader
■ The author
■ Specialized professionals.

160

8
Review

s

The review leader
The role of review leader (“moderator” in inspections, “coordinator’ in
walkthroughs) differs only slightly by peer review type. Candidates for this
position must:

(1) Be well versed in development of projects of the current type and famil-
iar with its technologies. Preliminary acquaintance with the current
project is not necessary.

(2) Maintain good relationships with the author and the development team.

(3) Come from outside the project team.

(4) Display proven experience in coordination and leadership of profession-
al meetings.

(5) For inspections, training as a moderator is also required.

The author
The author is, invariably a participant in each type of peer review.

Specialized professionals
The specialized professionals participating in the two peer review methods
differ by review. For inspections, the recommended professionals are:

■ A designer: the systems analyst responsible for analysis and design of the
software system reviewed.

■ A coder or implementer: a professional who is thoroughly acquainted
with coding tasks, preferably the leader of the designated coding team.
This inspector is expected to contribute his or her expertise to the detec-
tion of defects that could lead to coding errors and subsequent software
implementation difficulties.

■ A tester: an experienced professional, preferably the leader of the
assigned testing team, who focuses on identification of design errors usu-
ally detected during the testing phase.

For walkthroughs, the recommended professionals are:

■ A standards enforcer. This team member, who specializes in development
standards and procedures, is assigned the task of locating deviations from
those standards and procedures. Errors of this type substantially affect the
team’s long-term effectiveness, first because they cause extra difficulties for
new members joining the development team, and later because they will
reduce the effectiveness of the team that will maintain the system.

■ A maintenance expert who is called upon to focus on maintainability, flex-
ibility and testability issues (see Chapter 3), and to detect design defects
capable of impeding correction of bugs or performance of future changes.
Another area requiring his or her expertise is documentation, whose com-
pleteness and correctness are vital for any maintenance activity.

161

8.3 Peer review
s

■ A user representative. Participation of an internal (when the customer is
a unit in the same firm) or an external user’s representative in the walk-
through team contributes to the review’s validity because he or she
examines the software system from the point of view of the user-
consumer rather than the designer–supplier. In cases where a “real” user
is not available, as in the development of a COTS software package, a
team member may take on that role and focus on validity issues by com-
paring of the original requirements with the actual design.

Team assignments
Conducting a review session requires, naturally, assignment of specific tasks
to the team members. Two of these members are the presenter of the docu-
ment and the scribe, who documents the discussions.

■ The presenter. During inspection sessions, the presenter of the document
is chosen by the moderator; usually, the presenter is not the document’s
author. In many cases the software coder serves as the presenter because
he or she is the team member who is most likely to best understand the
design logic and its implications for coding. In contrast, for most walk-
through sessions, it is the author, the professional most intimately
acquainted with the document, who is chosen to present it to the group.
Some experts claim that an author’s assignment as presenter may affect
the group members’ judgement; therefore, they argue that the choice of a
“neutral” presenter is to be preferred.

■ The scribe. The team leader will often – but not always – serve as the
scribe for the session, and record the noted defects that are to be correct-
ed by the development team. This task is more than procedural; it
requires thorough professional understanding of the issues discussed.

8.3.2 Preparations for a peer review session

The review leader and the team members are to assiduously complete their
preparation, with the type of review determining their scope.

Peer review leader’s preparations for the review session
The main tasks of the review leader in the preparation stage are:

■ To determine, together with the author, which sections of the design doc-
ument are to be reviewed. Such sections can be:

– The most difficult and complex sections
– The most critical sections, where any defect can cause severe damage

to the program application and thus to the user
– The sections prone to defects.

■ To select the team members.

162

8
Review

s

■ To schedule the peer review sessions. It is advisable to limit a review ses-
sion to two hours; therefore, several review sessions should be scheduled
(up to two sessions a day) when the review task is sizable. It is important
to schedule the sessions shortly after the pertinent design document sec-
tions are ready for inspection. This proximity tends to minimize the scope
and/or number of design additions based on parts of the document that
might be found defective later in the scheduled review. Moreover, for the
process to unfold smoothly, the inspection’s review leader should sched-
ule an overview meeting for his team.

■ To distribute the document to the team members prior to the review session.

Peer review team’s preparations for the review session
The preparations required of an inspection team member are quite thorough,
while those required of a walkthrough team member are brief.

Inspection team members are expected to read the document sections to
be reviewed and list their comments before the inspection session begins.
This advance preparation is meant to guarantee the session’s effectiveness.
They will also be asked to participate in an overview meeting. At this meet-
ing, the author provides the inspection team members with the necessary
relevant background for reviewing the chosen document sections: the proj-
ect in general, the logic, processes, outputs, inputs, and interfaces. In cases
where the participants are already well acquainted with the material, an
overview meeting may be waived.

An important tool supporting the inspector’s review is a checklist. In
well-established development departments, one can find specialized check-
lists dedicated to the more common types of development documents (see
Chapter 15).

Prior to the walkthrough session, team members briefly read the materi-
al in order to obtain a general overview of the sections to be reviewed, the
project and its environment. Participants lacking preliminary knowledge of
the project and its substantive area will need far more preparation time. In
most organizations employing walkthroughs, team participants are not
required to prepare their comments in advance.

8.3.3 The peer review session

A typical peer review session takes the following form. The presenter reads
a section of the document and adds, if needed, a brief explanation of the
issues involved in his or her own words. As the session progresses, the par-
ticipants either deliver their comments to the document or address their
reactions to the comments. The discussion should be confined to identifica-
tion of errors, which means that it should not deal with tentative solutions.
Unlike inspection sessions, the agenda of the typical walkthrough session
opens with the author’s short presentation or overview of the project and the
design sections to be reviewed.

163

8.3 Peer review
s

During the session, the scribe should document each error recognized by
location and description, type and character (incorrect, missing parts or extra
parts). The inspection session scribe will add the estimated severity of each
defect, a factor to be used in the statistical analysis of defects found and for the
formulation of preventive and corrective actions. The error severity classifica-
tion appearing in Appendix C of MIL-STD-498 (DOD, 1994) and presented in
Table 8.1, provides an accepted framework for classifying error severity.

Concerning the length of inspection and walkthrough sessions, the same
rules apply as to DRs: sessions should not exceed two hours in length, or
schedule for more than twice daily. Pressman’s “golden guidelines” for con-
ducting successful DR sessions are also helpful here (see Frame 8.3).

Session documentation
The documentation produced at the end of an inspection session is much
more comprehensive than that of a walkthrough session.

Two documents are to be produced following an inspection session and
subsequently distributed among the session participants:

(1) Inspection session findings report. This report, produced by the scribe,
should be completed and distributed immediately after the session’s clos-
ing. Its main purpose is to assure full documentation of identified errors
for correction and follow up. An example of such a report is provided
in Appendix 8B.

164

8
Review

s

Table 8.1: Classification of design errors by severity

Severity Description

5 (critical) (1) Prevents accomplishment of essential capabilities.
(2) Jeopardizes safety, security or other critical requirements.

4 (1) Adversely affects the accomplishment of essential capabilities,
where no work-around solution is known.

(2) Adversely affects technical, cost or schedule risks to project or
system maintenance, where no work-around solution is known.

3 (1) Adversely affects the accomplishment of essential capabilities,
where a work-around solution is known.

(2) Adversely affects technical, cost or schedule risks to the
development project or to the system maintenance, where a work-
around solution is known.

2 (1) User/operator inconvenience that does not affect required mission
or operational essential capabilities.

(2) Inconvenience for development or maintenance personnel, but
does not prevent the realization of those responsibilities.

1 (minor) Any other effect.

Source: After DOD (1994)

(2) Inspection session summary report. This report is to be compiled by the
inspection leader shortly after the session or series of sessions dealing
with the same document. A typical report of this type summarizes the
inspection findings and the resources invested in the inspection; it like-
wise presents basic quality and efficiency metrics. The report serves
mainly as input for analysis aimed at inspection process improvement
and corrective actions that go beyond the specific document or project.
An example of an inspection session summary report appears in
Appendix 8C.

At the end of a session or series of walkthrough sessions, copies of the error
documentation – the “walkthrough session findings report” – should be
handed to the development team and the session participants.

8.3.4 Post-peer review activities

A fundamental element differentiating between the two peer review methods
discussed here is the issue of post-peer review.

The inspection process, contrary to the walkthrough, does not end with
a review session or the distribution of reports. Post-inspection activities are
conducted to attest to:

■ The prompt, effective correction and reworking of all errors by the
designer/author and his team, as performed by the inspection leader (or
other team member) in the course of the assigned follow-up activities.

■ Transmission of the inspection reports to the internal Corrective Action
Board (CAB) for analysis. This action initiates the corrective and pre-
ventive actions that will reduce future defects and improve productivity
(see Chapter 17).

A comparison of the peer review methods, participants and process elements
is presented in Figure 8.2.

8.3.5 The efficiency of peer reviews

The issue of defect detection efficiency of peer review methods proper and in
comparison to other SQA defect detection methods is constantly being
debated. Some of the more common metrics applied to estimate the efficien-
cy of peer reviews, as suggested in the literature, are:

■ Peer review detection efficiency (average hours worked per defect detected).

■ Peer review defect detection density (average number of defects detected
per page of the design document).

■ Internal peer review effectiveness (percentage of defects detected by peer
review as a percentage of total defects detected by the developer).

165

8.3 Peer review
s

The literature provides rather meager indications about findings inspection
effectiveness. Dobbins (1998) quotes Madachy’s findings from an analysis of
the design and code inspections conducted on the Litton project. Madachy’s
findings regarding the first two metrics cited above are presented in Table 8.2.

Dobbins (1998) also cites Don O’Neill’s 1992 National Software
Quality Experiment, conducted in 27 inspection laboratories operating in
the US. This experiment provides some insight into the code inspection
process, especially at the preparation stage. A total of 90 925 source code
lines were code-inspected, with the following results:

166

8
Review

s

Follow-up of corrections
and reworking

Corrections
and reworking

Inspection session(s)

Thorough review of
document

Overview meeting

Organizational
preparations

Inspection session report
Inspection summary report

PROCESS

Walkthrough session(s)

Brief overview
reading

Organizational
preparations

Walkthrough
session report

PARTICIPANTS

Moderator (scribe)

Coder or
implementer
(presenter)

TesterDesigner

Author

Inspection
Coordinator (scribe)

Standards
enforcer

User
representative

Author
(presenter)

Maintenance
expert

Walkthrough

Figure 8.2: Inspection vs. walkthrough – participants and processes

■ Total number of defects detected 1849
■ Number of major defects detected 242
■ Total preparation time (minutes) 22 828

Accordingly:

■ Average preparation time per detected defect
12.3 minutes (0.2 hours)

■ Average preparation time per detected major defect
94.3 minutes (1.57 hours)

Considering the different environments, a comparison of the defect densities
detected in the National Software Quality Experiment and those found in the
Litton project reveal relatively small differences, as shown below:

167

8.3 Peer review
s

Table 8.2: The Litton project’s inspection efficiency according to Madachy

Inspection efficiency metrics

Total Defect Inspection
Type of No. of number of No. of Inspection detection detection
document inspections defects pages resouces density efficiency

and major invested (defects/ (work-hours/
defects (work hours) page) major defect)

Design
inspections

Requirements 21 1243 552 328 2.25 3.69
description (89 major)

Requirements 32 2165 1065 769 2.03 6.57
analysis 117 major

High-level 41 2398 1652 1097 1.45 5.57
design (197 major)

Test 18 1495 1621 457 0.92 3.78
procedures (121 major)

Code
inspections

Code 150 7165 5047* 4612 1.42 5.97
(772 major)

*276 422 lines of code.
Source: After Dobbins (1998)

National Software Litton Project
Quality Experiment

Total defect detection density (defects per KLOC*) 20.3 25.9
Major defect detection density (defects per KLOC*) 2.66 2.80

*KLOC = 1000 lines of code.

The internal effectiveness of inspections is discussed by Cusumano (1991,
pp. 352–353), who reports the results of a study on the effectiveness of design
review, code inspection and testing at Fujitsu (Japan) for the period
1977–1982. After two decades, the findings are still of interest, even though
no efficiency metrics are provided. A comparison by year of inspection, pre-
sented in Table 8.3, shows substantial improvement in software quality
associated with an increased share of code inspection and design reviews and
a reduced share of software testing. The software quality is measured here by
the number of defects per 1000 lines of maintained code, detected by the users
during the first six months of regular software system use.

Though quantitative research results refer only to the inspection method,
we can expect to obtain similar results after application of the walkthrough
method. This assumption will one day have to be verified empirically for us
to be certain.

8.3.6 Peer review coverage

Only a small percentage of the documents and total volume of code ever
undergoes peer review. Coverage of about 5–15% of document pages still
represents a significant contribution to total design quality because the fac-
tor that determines the benefits of peer review to total quality is not the
percentage of pages covered but the choice of those pages. Importantly, with
the increased usage of reused software, the number of document pages and
code lines demanding inspection is obviously declining. Frame 8.4 lists those
document sections that are recommended for inclusion in a peer review as
well as those that can be readily omitted.

8.4 A comparison of the team review methods

For practitioners and analysts alike, a comparison of the three team review
methods discussed in this chapter should prove interesting. Table 8.4 pres-
ents such a comparison.

168

8
Review

s

Table 8.3: Code inspection effectiveness at Fujitsu according to Cusumano

Year Defect detection method Defects per 1000

Test % Design review % Code inspection % lines of maintained code

1977 85 – 15 0.19
1978 80 5 15 0.13
1979 70 10 20 0.06
1980 60 15 25 0.05
1981 40 30 30 0.04
1982 30 40 30 0.02

Source: After Cusumano (1991)

169

8.4 A
 com

parison ofthe team
 review

 m
ethods

Frame 8.4 Sections recommended to be included in or omitted from
peer reviews

Sections recommended for inclusion Sections recommended for omission

■ Sections of complicated logic

■ Critical sections, where defects
severely damage essential
system capability

■ Sections dealing with new
environments

■ Sections designed by new or
inexperienced team members

■ “Straightforward” sections
(no complications)

■ Sections of a type already
reviewed several times by the
team in similar past projects

■ Sections that, if faulty, are not
expected to affect functionality

■ Reused design and code

■ Repeated parts of the design
and code

Table 8.4: Comparison of the review methodologies

Properties Formal design reviews Inspections Walkthroughs

■ Main direct (1) Detect errors (1) Detect errors Detect errors
objectives (2) Identify new risks (2) Identify deviations

(3) Approve the from standards
design document

■ Main indirect Knowledge exchange (1) Knowledge exchange Knowledge exchange
objectives (2) Support corrective

actions

■ Review leader Chief software engineer Trained moderator Coordinator (peer, the
or senior staff member (peer) project leader on

occasion)

■ Participants Top-level staff Peers Peers
and customer
representatives

■ Project leader Yes Yes Yes; usually as the
participation review’s initiator

■ Specialized — (1) Designer (1) Standards enforcer
professionals (2) Coder or implementer (2) Maintenance expert
in the team (3) Tester (3) User representative

Process of
review:

■ Overview No Yes Yes
meeting

■ Participants’ Yes – thorough Yes – thorough Yes – brief
preparations ▲

8.5 Expert opinions

The last review method we will discuss is the use of expert opinions. Expert
opinions, prepared by outside experts, support quality evaluation by intro-
ducing additional capabilities to the internal review staff. The organization’s
internal quality assurance activities are thereby reinforced. Outside experts
transmit their expertise by either:

■ Preparing an expert’s judgement about a document or a code section.

■ Participating as a member of an internal design review, inspection or
walkthrough team.

An outside expert’s judgement as well as his or her participation as an exter-
nal member of a review team is most beneficial in the following situations:

■ Insufficient in-house professional capabilities in a specialized area.

■ Temporary lack of in-house professionals for review team participation
due to intense workload pressures during periods when waiting will cause
substantial delays in the project completion schedule.

■ Indecisiveness caused by major disagreements among the organization’s
senior professionals.

■ In small organizations, where the number of suitable candidates for a
review team is insufficient.

170

8
Review

s

Table 8.4: Continued

Formal design reviews Inspections Walkthroughs

■ Review Yes Yes Yes
session

■ Follow-up of Yes Yes No
corrections

Infrastructure:

■ Formal No Yes No
training of
participants

■ Use of No Yes No
checklists

Error-related Not formally required Formally required Not formally required
data collection

Review Formal design review (1) Inspection session Walkthrough session
documentation report findings report findings report

(2) Inspection session
summary report

Summary

(1) Explain the direct and indirect objectives of the review methodologies.

The direct objectives are:
■ To detect analysis and design errors.
■ To identify new risks expected to affect the completion of the project.
■ To identify deviations from templates and style procedures.
■ To approve the analysis or design product, allowing the team to continue to the

next development phase.

The indirect objectives are:
■ To serve as an informal meeting place for the exchange of knowledge about

development tools, techniques, experience with new tools, methods and relat-
ed items.

■ To promote and support the improvement of development methods by supply-
ing new data for analysis of design errors.

(2) Explain the contribution of outside experts to the performance of review tasks.

An outside expert can support quality assessment efforts by evaluating a document
or a code section or by participating in an internal review team. Turning to outside
experts is useful in situations where in-house capabilities are insufficient in spe-
cialized areas, the professionals needed to form a review team are temporarily
unavailable, an insufficient number of suitable candidates are available (such as in
small organizations), and in cases when professional disagreements make it impos-
sible to reach a decision.

(3) Compare the objectives and participants of the three team review methods.

Three team review methods were discussed: formal design reviews, inspections
and walkthroughs. The direct objective common to all these methods is error detec-
tion. Other objectives, specific to formal design reviews, are identification of new
risks and, for inspections, identification of deviation from standards and support of
corrective actions. An additional objective, exclusive to DRs, is the approval of
design documents, meaning completion of the associated design stages. Another
indirect objective shared by all review methods is the exchange of professional
knowledge between participants.

The project leader participates in the review teams of every method. However,
while the other participants in the DR are superior, professionally or administra-
tively, to the team leader and customer representatives, participants in the other
review methods are all peers. Another major difference between the DR and the
peer review methods is the inclusion of specialized professionals in the team:
designers, coders or implementers and testers in inspections; standards enforcers,
maintenance experts and user representative in walkthroughs.

171

S
um

m
ary

Selected bibliography

1. Biffi, S. (2000) “Using inspection data for defect estimation”, IEEE Software,
17(6), 36–43.

2. Cusumano, M. A. (1991) Japan’s Software Factories – A challenge to U.S.
Management, Oxford University Press, New York.

3. Dobbins, J. H. (1998) “Inspections as an up-front quality technique”, in G.G
Schulmeyer and J. I. McManus (eds), Handbook of Software Quality Assurance,
Prentice Hall, Harlow, Essex, UK.

4. DOD (1994) MIL-STD-498, US Department of Defense.
5. Fagan, M. E. (1976) “Design and code inspections to reduce errors in program

development”, IBM Systems Journal, 15(3), 182–211.
6. Fagan, M. E. (1986) “Advances in software inspections”, IEEE Transactions on

Software Engineering, SE-12, (7), 744–751.
7. Gilb, T. and Graham, D. (1993) Software Inspection, Addison-Wesley, Harlow,

Essex, UK.
8. Hollocker, C. P. (1990) Software Reviews and Audits Handbook, John Wiley &

Sons, New York.
9. IEEE (1990) “IEEE Std 610.12-1990 – IEEE Standard Glossary of Software

Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

10. IEEE (1997) “IEEE Std 1028-1997 – IEEE Standard for Software Reviews”, in
IEEE Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

11. MacFarland, R. (2001) “Case study of an improvement program featuring
reviews and inspections”, Software Quality Professional (ASQ), 3(3), 26–29.

12. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

13. Sauer, C. and Jeffery, D. R. (2000) “The effectiveness of software development
technical reviews: behaviorally motivated program of research”, IEEE
Transactions on Software Engineering, 26(1), 1–14.

14. Shull, F., Rus, I. and Basili, V. (2000) “How perspective-based reading can
improve requirement inspections”, Computer, 33(7), 73–79.

15. Yourdon, E. (1979) Structured Walkthrough, 2nd edn, Prentice Hall
International, London.

Review questions

8.1 There are four direct objectives and two indirect objectives attached to the various
review methods.

(1) List the direct and indirect objectives of each review method surveyed.
(2) For each objective, indicate the review technique or techniques that con-

tribute(s) the most to achieving that objective.

8.2 One of the objectives of reviews is to identify deviations from templates and style
procedures and conventions.

Explain the importance of enforcing templates and sticking to style procedures
and conventions.

172

8
Review

s

8.3 Some people claim that one of the justifications for a small design review team is
the need to schedule the review session within a few days after the design prod-
uct has been distributed to the team members.

(1) Could you list additional reasons for preferring small DR teams apart from the
anticipated delays in convening a DR session composed of large teams?

(2) What reasons motivate attempts to schedule the review session as soon as
possible after distribution of the design reports to the team members?

8.4 One can expect that in many cases, participants in an inspection session are able
to suggest solutions for a detected defect or, at least, point out possible directions
for its solution. While it is clear that these suggestions are crucial for the develop-
ment team, it is commonly recommended to avoid any discussion about solutions
during the inspection session.

(1) List your arguments in favor of this recommendation.
(2) What other kinds of cooperation between the moderator and the review team

would you prefer to observe in a session?

8.5 It is quite natural to expect participation of the document’s author (the designer)
in a review of any type.

(1) What are the arguments in favor of his or her participation?
(2) What are the differences in the part played and the status of the author in

each of the review methods discussed?

8.6 The preparations made by members of inspection teams are considered to be
of greater depth and thoroughness when compared with the preparations for
walkthroughs.

(1) What activities are included in such high levels of preparation?
(2) Do you think that inspection teams having 15 members can achieve similarly

high levels of preparation?

8.7 Pressman lists 13 golden guidelines for successful design review (see Frame 8.3).

(1) Four of the golden rules deal with design review infrastructure. Can you list
these golden guidelines and elaborate on the importance of the infrastructure
elements and how they affect software quality?

(2) It is often claimed that the six golden guidelines dealing with the design
review session are as applicable to inspection as they are to walkthrough ses-
sions. Can you list these common golden guidelines and explain the reasons
for their broad applicability?

173

Review
 questions

174

8
Review

s

Topics for discussion

8.1 A proposal for changing an inspection procedure involves adding a new reporting
requirement, as follows: “At the end of the session or the series of sessions, the
inspection leader will submit to management a copy of the inspection session
findings report and a copy of the inspection session summary report”.

(1) Consider the proposal and list possible arguments, pro and con, regarding
the change.

(2) What is your recommendation – to add the new reporting requirement or not?
Explain.

8.2 David Martin has just finished his inspection coordinator course. After obtaining
his first appointment, he plans to add his personal secretary, who is not an IT pro-
fessional, to the inspection team for the purpose of serving as session scribe and
producing the required reports. He assumes that her participation will free him for
the coordination tasks and enable him to conduct the session successfully.

Is it advisable to employ a secretary who is not an information technology pro-
fessional as a scribe in an inspection session? List your arguments pro and con.

8.3 Compare the various review techniques.

(1) In what aspects are design reviews more formal than inspections?
(2) In what aspects are inspections more formal than walkthroughs?

8.4 The chapter offers three different methodologies for team review of design
documents.

(1) Which of the methodologies should a software development organization
choose?

(2) Can more than one method be chosen and applied for the same document?
Alternatively, is it recommended to apply all three methods? List your
arguments.

175

A
ppendix

8A
 D

R reportform

DR report formAppendix 8A

Design Review Report

DR date: _____________ The report was prepared by: ____________________________

Project name: __

The review document: ______________________________ Version: _________________

The review team: ___

1 Summary of the discussions

Discussion subject Number of action items

2 The action items

Action items to be performed Responsible Completion Approval of completion
employee date Date Signature

3 Decision regarding the design product

■■■■ Full approval

■■■■ Partial approval. Approval granted for continuation to the next phase of the following parts:

■■■■ Denial of approval

Comments:

The report was approved by:

Name of participant Date Signature Name of participant Date Signature

Approval of sucessful completion of all action items

Comments:

Name: Signature: Date:

176

8
Review

s

Inspection session findings report formAppendix 8B Inspection session findings report formAppendix 8B

Inspection Session Findings Report

Session dates: _____________ The report was prepared by: _______________________

Project name: __

The inspected document: ___________________________ Version: _________________

The inspected document sections: __

The inspection team: __

1 The error list

Error Error Error description Error Error
type nature location severity

(W/M/E)*

2 Follow-up decisions

a Follow-up will be carried out by:

b Re-inspection is recommended: Yes/No

c

3 Comments

*W = Wrong M = Missing E = Extra

177

A
ppendix

8C
Inspection session sum

m
ary

report

Inspection session summary reportAppendix 8C

Goldenbug Ltd.
Inspection Session Summary Report

Session date: _____________
Project name: __
The inspected document: ___________________________ Version: _________________
The inspected document sections: _____________ Total: (A) ______ pages/k text lines
The inspection team: __

1 Resources invested (hours worked)

Team member Overview Preparation Inspection Total Comments
meeting session (hours)

2 Error summary

Error severity Error nature Total Severity Total errors Comments
W M E* Errors factor (standardized)

3 Defect detection metrics

(1) Average defects per page = C/A =
15
–––
31

= 0.48

(2) Average defects per page (standardized) = D/A =
53
–––
31

= 1.71

(3) Defects detection efficiency (hours per defect) = B/C =
20.5
––––

15
= 1.37

(4) Standardized defect detection efficiency (hours per standardized defect) =

B/D =
20.5
––––

53
= 0.39

Prepared by: ________________ Signature: __________________ Date: ___________

*W = Wrong M = Missing E = Extra

17/5

Oak Center

3Detailed Design

Ch. 5, Sec. 6.2–6.5

Anita McMahon (inspection leader), John Woo, Ben Kinker

Anita McMahon Anita McMahon 8/5

31 pages

1 Inspection leader 1 3 2.5 6.5 including
Anita report

preparation

2 John 1 4 2 7

3 Ben 1 4 2 7

4

5

Total 3 11 6.5 (B) 20.5

5 – critical 1 1 16 16

4 2 2 8 16

3 3 3 4 12

2 2 2 2 4

1 – minor 4 1 2 7 1 7

Total 8 3 4 (C) 15 (D) 53

chapter 9

Software testing – strategies

Software testing (or “testing”) was the first software quality assurance tool
applied to control the software product’s quality before its shipment or
installation at the customer’s premises. At first, testing was confined to the
final stage of development, after the entire package had been completed.
Later, as the importance of early detection of software defects penetrated
quality assurance concepts, SQA professionals were encouraged to extend
testing to the partial in-process products of coding, which led to software
module (unit) testing and integration testing.

Chapter outline

9.1 Definition and objectives 180
9.2 Software testing strategies 182
9.3 Software test classifications 187

9.3.1 Classification according to testing concept 187
9.3.2 Classification according to requirements 188

9.4 White box testing 189
9.4.1 Data processing and calculation correctness tests 190
9.4.2 Correctness tests and path coverage 190
9.4.3 Correctness tests and line coverage 191
9.4.4 McCabe’s cyclomatic complexity metrics 194
9.4.5 Software qualification and reusability testing 196
9.4.6 Advantages and disadvantages of white box testing 197

9.5 Black box testing 197
9.5.1 Equivalence classes for output correctness tests 198
9.5.2 Other operation factor testing classes 201
9.5.3 Revision factor testing classes 205
9.5.4 Transition factor testing classes 207
9.5.5 Advantages and disadvantages of black box testing 208

Summary 209
Selected bibliography 211
Review questions 212
Topics for discussion 213

Common to all testing activities is their application through the direct
running of code, free of review of development documents. Some authors
tend to broaden the scope of testing even further and consider all software
life cycle quality assurance activities as types of testing activities. In this
book, we limit the scope of testing to quality assurance activities performed
by running code.

Software testing is undoubtedly the largest consumer of software quality
assurance resources. In a survey performed in November 1994, Perry (1995)
found that on average, 24% of the project development budget was allocat-
ed to testing. In addition, 32% of the project management budget was slated
for testing activities. With respect to time resources, an average of 27% of
project time was schedule for testing. The survey’s participants also indicated
that they planned to allocate substantially more time (45% on average) to
testing but that the pressures typically arising toward the close of projects gen-
erally forced project managers to reduce the testing time scheduled.

Testing is certainly not the only type of SQA tool applied to software
code. Additional tools are code inspections and code walkthroughs, methods
implemented on code printout without actually running the program. These
procedures, which are similar to those applied in design inspection and walk-
throughs, yield good results in identifying code defects. Nevertheless, these
tools, because they are based solely on the review of documents, can never
replace testing, which examines the software product’s functionality in the
form actually used by the customer. For further discussion of these software
quality tools see Chapter 8.

This chapter is dedicated to testing strategies and test classifications.
After defining testing and its objectives, the chapter discusses testing strate-
gies and classifies them according to requirement types.

Additional material on testing can be found in the numerous papers and
books dealing with software testing. A sample of these sources are the books
by Beizer (1984), Perry (1995), Kit (1995), Jorgensen (1995), Kaner et al.
(1999), Rubin (1994) and Perry and Rice (1997). Another valuable source of
material on software testing can be found in the software engineering and
software quality assurance literature, such as Pressman (2000), Sommerville
(2001) and Hamlet and Maybee (2001), to mention but a few.

After completing this chapter, you will be able to:

■ Explain testing objectives.
■ Discuss the differences between the various testing strategies, their advan-

tages and disadvantages.
■ Describe the concepts of black box testing and white box testing as well

as discuss their advantages and disadvantages.
■ Define path coverage versus line coverage.
■ Describe the various types of black box tests.

179

S
oftw

are testing –
 strategies

180

9
S

oftw
are testing –

 strategies

9.1 Definition and objectives

The variety of definitions for software testing found in the literature reveals
the varied scope of the process, which may be constricted or broadened.

Quite broad in scope is Myers’ (1979, Chapter 10) classic definition:

“Testing is the process of executing a program with intention of
finding errors.”

According to this rather inclusive definition, activities ranging from code
checks performed by a team leader to trial runs of the software performed
by a colleague, as well as tests carried out by a testing unit, can all be con-
sidered testing activities.

Much more formal and controlled are the two definitions for testing sug-
gested by IEEE Std 610.12 (IEEE, 1990):

“(1) The process of operating a system or component under specified con-
ditions, observing or recording the results, and making an evaluation of
some aspect of the system or component. (2) The process of analyzing a
software item to detect the differences between existing and required con-
ditions (that is, bugs) and to evaluate the features of the software item.”

It should be noted that according to the second definition, running the pro-
gram as part of the testing process is not required.

The definition applied in this book stresses the formal operative charac-
teristics of testing. See Frame 9.1.

The words and phrases stressed in the definition allow us to compare the
key characteristics of software testing with those of other software quality
assurance life cycle tools:

■ Formal – Software test plans are part of the project’s development and
quality plans, scheduled in advance and often a central item in the devel-
opment agreement signed between the customer and the developer. In other
words, ad hoc examination of software by a colleague or regular checks by
the programming team leader cannot be considered software tests.

Frame 9.1 Software tests – definition

Software testing is a formal process carried out by a specialized testing team
in which a software unit, several integrated software units or an entire
software package are examined by running the programs on a computer. All
the associated tests are performed according to approved test procedures on
approved test cases.

181

9.1 D
efinition and objectives

■ Specialized testing team – An independent team or external consultants
who specialize in testing are assigned to perform these tasks mainly in
order to eliminate bias and to guarantee effective testing by trained pro-
fessionals. In addition, it is generally accepted that tests performed by the
developers themselves will yield poor results, as those individuals who
developed the original product will find it difficult to reveal errors that
they were unable to identify earlier. Still, unit tests continue to be per-
formed by developers in many organizations.

■ Running the programs – Any form of quality assurance activity that does
not involve running the software, for example code inspection, cannot be
considered as a test.

■ Approved test procedures – The testing process performed according to a
test plan and testing procedures that have been approved as conforming
to the SQA procedures adopted by the developing organization.

■ Approved test cases – The test cases to be examined are defined in full by
the test plan. No omissions or additions are expected to occur during test-
ing. In other words, once the process has begun, the tester is not allowed
to exercise discretion by omitting a test case he or she considers redun-
dant or by adding a new test case, promising though it may be.

Now that software testing has been defined and the substantial efforts and
resources involved have been recognized, we can turn to a discussion of the
objectives of software testing. These objectives are shown in Frame 9.2.

It should be noted that omission of the frequently stated goal “to prove
that the software package is ready” is not accidental. This goal inherently
contradicts the first operative objective mentioned, and may influence or,
stated more accurately, bias the choice of tests and/or test cases. Myers
(1979) neatly summarized the issue: “If your goal is to show the absence of
errors you won’t discover many. If your goal is to show the presence of
errors, you will discover a large percentage of them.”

Frame 9.2 Software testing objectives

Direct objectives

■ To identify and reveal as many errors as possible in the tested software.

■ To bring the tested software, after correction of the identified errors and
retesting, to an acceptable level of quality.

■ To perform the required tests efficiently and effectively, within budgetary
and scheduling limitations.

Indirect objective

■ To compile a record of software errors for use in error prevention (by
corrective and preventive actions).

The wording of the second objective reflects the fact that bug-free soft-
ware is still a utopian aspiration. Therefore, we prefer the phrase “acceptable
level of quality”, meaning that a certain percentage of bugs, tolerable to the
users, will remain unidentified upon installation of the software. This per-
centage obviously varies by software package and user, but must be lower for
high failure risk packages.

9.2 Software testing strategies

Although test methodologies may vary, often greatly, these are applied with-
in the framework of two basic testing strategies:

■ To test the software in its entirety, once the completed package is avail-
able; otherwise known as “big bang testing”.

■ To test the software piecemeal, in modules, as they are completed (unit
tests); then to test groups of tested modules integrated with newly com-
pleted modules (integration tests). This process continues until all the
package modules have been tested. Once this phase is completed, the
entire package is tested as a whole (system test). This testing strategy is
usually termed “incremental testing”.

Furthermore, incremental testing is also performed according to two basic
strategies: bottom-up and top-down. Both incremental testing strategies
assume that the software package is constructed of a hierarchy of software
modules. In top-down testing, the first module tested is the main module,
the highest level module in the software structure; the last modules to be
tested are the lowest level modules. In bottom-up testing, the order of test-
ing is reversed: the lowest level modules are tested first, with the main
module tested last.

Figure 9.1 illustrates top-down and bottom-up testing of an identical
software development project composed of 11 modules. In the upper part,
Figure 9.1(a), the software development process and its subsequent testing
are carried out bottom-up, in four stages, as follows:

■ Stage 1: Unit tests of modules 1 to 7.

■ Stage 2: Integration test A of modules 1 and 2, developed and tested in
stage 1, and integrated with module 8, developed in the current stage.

■ Stage 3: Two separate integration tests, B, on modules 3, 4, 5 and 8, inte-
grated with module 9, and C, for modules 6 and 7, integrated with
module 10.

■ Stage 4: System test is performed after B and C have been integrated with
module 11, developed in the current stage.

182

9
S

oftw
are testing –

 strategies

In Figure 9.1(b), software development and testing are carried out top-down
in six stages. It should be apparent that the change of testing strategy
introduces major changes into the test schedule. The testing will be per-
formed as follows:

■ Stage 1: Unit tests of module 11.

■ Stage 2: Integration test A of module 11 integrated with modules 9 and
10, developed in the current stage.

183

9.2 S
oftw

are testing strategies

M11

M9 M10

M7M6M3 M4 M5M1 M2

M8

Integration B

Integration A

Integration C

Stage 4

Stage 3

Stage 1

Stage 2

M11

M9 M10

M7M6

M3 M4 M5

M1 M2

M8

Integration B

Integration A

Integration C

Stage 1

Stage 2

Stage 4

Stage 3

Stage 5

Stage 6

Integration D

(a) Bottom-up testing

(b) Top-down testing

Figure 9.1: Bottom-up (a) and top-down (b) testing – an illustration

■ Stage 3: Integration test B of A integrated with module 8, developed in
the current stage.

■ Stage 4: Integration test C of B integrated with modules 6 and 7, devel-
oped in the current stage.

■ Stage 5: Integration test D of C integrated with modules 1 and 2, devel-
oped in the current stage.

■ Stage 6: System test of D integrated with modules 3, 4 and 5, developed
in the current stage.

The incremental paths shown in Figure 9.1 are only two of many possible
paths. The path in the examples is “horizontally sequenced” (“breadth first”),
although one could choose a path that is “vertically sequenced” (“depth
first”). If we were to alter the horizontal path of the top-down sequence shown
in Figure 9.1(b), to a vertical sequence, testing would be performed thus:

■ Stage 1: Unit tests of module 11.

■ Stage 2: Integration test A of the integration of module 11 with module
9, developed in the current stage.

■ Stage 3: Integration test B of A with module 8, developed in the
current stage.

■ Stage 4: Integration test C of B with modules 1 and 2, developed in the
current stage.

■ Stage 5: Integration test D of C with module 10, developed in the
current stage.

■ Stage 6: Integration test E of integration D with modules 6 and 7, devel-
oped in the current stage.

■ Stage 7: System test is performed after E has been integrated with mod-
ules 3, 4 and 5, developed in the current stage.

Other path possibilities involve clustering of modules into one testing stage.
For example, for the top-down path of Figure 9.1(b), one might cluster mod-
ules 8, 1 and 2, and/or modules 10, 6 and 7.

Stubs and drivers for incremental testing
Stubs and drivers are software replacement simulators required for modules
not available when performing a unit or an integration test.

A stub (often termed a “dummy module”) replaces an unavailable lower
level module, subordinate to the module tested. Stubs are required for top-
down testing of incomplete systems. In this case, the stub provides the results
of calculations the subordinate module, yet to be developed (coded), is
designed to perform. For example, at stage 3 of the top-down example
shown in Figure 9.1(b), upper module 9, which activates module 8, is avail-
able; it has been tested and corrected at stage 2 of the testing. Stubs are
required to substitute for the subordinate level modules 1 and 2, which have
not been completed. This test setting is presented in Figure 9.2(a).

184

9
S

oftw
are testing –

 strategies

Like a stub, a driver is a substitute module but of the upper level mod-
ule that activates the module tested. The driver is passing the test data on to
the tested module and accepting the results calculated by it. Drivers are
required in bottom-up testing until the upper level modules are developed
(coded). For example, at stage 2 testing of the bottom-up example shown in
Figure 9.1(a), the lower level subordinate modules 1 and 2 are available; they
have been tested and corrected at stage 1 of the testing. A driver is required
to substitute for upper level module 9, which has not been completed. This
test setting/scenario is shown in Figure 9.2(b).

Bottom-up versus top-down strategies
The main advantage of the bottom-up strategy is the relative ease of its per-
formance, whereas the main disadvantage is the lateness at which the
program as a whole can be observed (that is, at the stage following testing of
the last module). The main advantage of the top-down strategy is the possi-
bilities it offers to demonstrate the entire program functions shortly after

185

9.2 S
oftw

are testing strategies

Implementation tip

Substantial savings of resources can be achieved by maintaining a stubs and
drivers’ library for future reuse.

M9

M8

Stub of
M1

Stub of
M2

Module
on test

Driver of
M9

M8

M1 M2

Module
on test

Figure 9.2: Use of stubs and drivers for incremental testing – examples

(a) Implementing top-down
tests (Stage 3 testing of the
example shown in Figure 9.1)

(b) Implementing bottom-up
tests (Stage 2 testing of the
example shown in Figure 9.1)

activation of the upper-level modules has been completed. In many cases, this
characteristic allows for early identification of analysis and design errors
related to algorithms, functional requirements, and the like. The main dis-
advantage of this strategy is the relative difficulty of preparing the required
stubs, which often require very complicated programming. Another disad-
vantage is the relative difficulty of analyzing the results of the tests.

Testing experts continue to debate over which strategy is preferable –
bottom-up or top-down. While the positions taken vary, it seems that the
strategy chosen is actually determined in most cases by the developers’ choice
of development – not test – strategy, that is, bottom-up or top-down. Clearly,
testers should follow the developers’ approach because it is crucial that test-
ing will be performed immediately after a module has been coded.
Implementation of a testing strategy that differs from the development strat-
egy will cause substantial delays in scheduling of the tests.

Big bang versus incremental testing
Unless the program is very small and simple, application of big bang testing
strategies displays severe disadvantages. Identification of error becomes quite
cumbersome with respect to immense quantities of software. Despite the vast
resources invested, the effectiveness of this approach is relatively meager. The
relatively low rate of big bang error identification justifies this conclusion.
Moreover, when confronted with an entire software package, error correc-
tion is often an onerous task, requiring consideration of the possible effects
of the correction on several modules at one and the same time. These con-
straints obviously make estimation of the required testing resources and
testing schedule a rather fuzzy endeavor. This also implies that prospects of
keeping on schedule and within the budget are substantially reduced when
applying this testing strategy.

In contrast to big bang testing, incremental testing presents several
advantages, the main ones being as follows:

(1) Incremental testing is usually performed on relatively small software
modules, as unit or integration tests. This makes it easier to identify
higher percentages of errors when compared with testing the entire soft-
ware package.

(2) Identification and correction of errors is much simpler and requires
fewer resources because it is performed on a limited volume of software.

To sum up, in incremental testing, a great part of the errors are identified and
corrected at an earlier stage of development and testing, which prevents
“migration” of escaped defects to a later, more complex stage in the devel-
opment where their correction would require significantly greater resources.

The main disadvantage of incremental testing is the quantity of pro-
gramming resources required for preparation of stubs and drivers for the
unit and integration tests. Another major disadvantage is the need to carry
out numerous testing operations for the same program (big bang testing
requires only a single testing operation).

186

9
S

oftw
are testing –

 strategies

It is generally accepted that incremental testing should be preferred
despite its disadvantages.

9.3 Software test classifications

Software tests may be classified according to the testing concept or to the
requirements classification in effect (see Chapter 3).

9.3.1 Classification according to testing concept

There is an ongoing debate over whether testing the functionality of software
solely according to its outputs is sufficient to achieve an acceptable level of
quality. Some claim that the internal structure of the software and the calcu-
lations (i.e., the underlying mathematical structure, also known as the
software “mechanism”) should be included for satisfactory testing. Based on
these two opposing concepts or approaches to software quality, two testing
classes have been developed:

■ Black box (functionality) testing. Identifies bugs only according to soft-
ware malfunctioning as they are revealed in its erroneous outputs. In
cases that the outputs are found to be correct, black box testing disre-
gards the internal path of calculations and processing performed.

■ White box (structural) testing. Examines internal calculation paths in
order to identify bugs. Although the term “white” is meant to emphasize
the contrast between this method and black box testing, the method’s
other name – “glass box testing” – better expresses its basic characteris-
tic, that of investigating the correctness of code structure.

The IEEE (1990) definitions of both testing classes are shown in Frame 9.3.

187

9.3 S
oftw

are testclassifications

Frame 9.3 Black box and white box testing – IEEE definitions

Black box testing:

(1) Testing that ignores the internal mechanism of a system or component and
focuses solely on the outputs generated in response to selected inputs
and execution conditions.

(2) Testing conducted to evaluate the compliance of a system or component
with specified functional requirements.

White box testing:

Testing that takes into account the internal mechanism of a system or component.

When implemented, each concept approaches software testing different-
ly, as we shall see in Sections 9.4 and 9.5. In many cases both concepts are
applicable, although for some SQA requirements only one class of tests is
suitable. Due to cost considerations, most of the testing carried out current-
ly is black box testing, which is relatively less costly.

9.3.2 Classification according to requirements

Chapter 3 presents McCall’s classic model for classification of software qual-
ity requirements. His model has been extended here to the classification of
the tests carried out to ensure full coverage of the respective requirements.
The requirements and their corresponding tests are shown in Table 9.1.

188

9
S

oftw
are testing –

 strategies

Table 9.1: Software quality requirements and test classification

Factor Quality requirement Quality requirement Test classification
category factor sub-factor according to requirements

Operation 1. Correctness 1.1 Accuracy and 1.1 Output correctness
completeness of outputs, tests
accuracy and
completeness of data

1.2 Accuracy and 1.2 Documentation tests
completeness of
documentation

1.3 Availability 1.3 Availability (reaction
(reaction time) time) tests

1.4 Data processing and 1.4 Data processing and
calculations correctness calculations correctness

tests

1.5 Coding and 1.5 Software qualification
documentation standards tests

2. Reliability 2. Reliability tests

3. Efficiency 3. Stress tests (load tests,
durability tests)

4. Integrity 4. Software system
security tests

5. Usability 5.1 Training usability 5.1 Training usability tests
5.2 Operational usability 5.2 Operational usability

tests

Revision 6. Maintainability 6. Maintainability tests
7. Flexibility 7. Flexibility tests
8. Testability 8. Testability tests

Transition 9. Portability 9. Portability tests
10. Reusability 10. Reusability tests
11. Interoperability 11.1 Interoperability with 11.1 Software

other software interoperability tests
11.2 Interoperability 11.2 Equipment
with other equipment interoperability tests

Application of white box and black box testing in the performance of
requirements tests has revealed the advantages and disadvantages of each
testing concept. More specifically, as already implied, white box tests of data
processing and calculation correctness can be replaced by black box tests of
output correctness. Maintainability tests can be implemented by both white
box and black box tests, as the findings of each testing concept are comple-
mentary. Tests for the other requirements, however, because of their specific
characteristics, can be implemented according to only one or the other con-
cept. The applicability of each testing concept for the various requirement
factors is presented in Table 9.2.

9.4 White box testing

Realization of the white box testing concept requires verification of every
program statement and comment. As shown in Table 9.2, white box testing
enables performance of data processing and calculations correctness tests,
software qualification tests, maintainability tests and reusability tests.

In order to perform data processing and calculation correctness tests
(“white box correctness test”), every computational operation in the
sequence of operations created by each test case (“path”) must be examined.
This type of verification allows us to decide whether the processing opera-
tions and their sequences were programmed correctly for the path in

189

9.4 W
hite box

testing

Table 9.2: White box and black box testing for the various classes of tests

Test classification according to requirements White box Black box
testing testing

1.1 Output correctness tests +

1.2 Documentation tests +

1.3 Availability (reaction time) tests +

1.4 Data processing and calculations correctness tests +

1.5 Software qualification tests +

2. Reliability tests +

3. Stress tests (load tests and durability tests) +

4. Software system security tests +

5.1 Training usability tests +

5.2 Operational usability tests +

6. Maintainability tests + +

7. Flexibility tests +

8. Testability tests +

9. Portability tests +

10. Reusability tests +

11.1 Software interoperability tests +

11.2 Equipment interoperability tests +

question, but not for other paths. Turning to software qualification, the
focus here shifts to the examination of software code (including comments)
compliance with coding standards and work instructions. Maintainability
tests refer to special features, such as those installed for detection of causes
of failure, module structures that support software adaptations and software
improvements, etc. Reusability tests examine the extent that reused software
is incorporated in the package and the adaptations performed in order to
make parts of the current software reusable for future software packages.

Given these objectives of SQA tests and the orientation adopted by white
box testing, this section will deal with:

■ White box data processing and calculations correctness tests and the
number of test cases required

■ McCabe’s cyclomatic complexity metrics
■ The performance of software qualification and reusability tests
■ The advantages and disadvantages of white box testing.

9.4.1 Data processing and calculation correctness tests

Applying the concept of white box testing, which is based on checking the
data processing for each test case, immediately raises the question of cover-
age of a vast number of possible processing paths and the multitudes of lines
of code. Two alternative approaches have emerged:

■ “Path coverage” – to plan our test to cover all the possible paths, where
coverage is measured by percentage of paths covered.

■ “Line coverage” – to plan our tests to cover all the program code lines,
where coverage is measured by percentage of lines covered.

These two approaches are discussed in the following sections.

9.4.2 Correctness tests and path coverage

Different paths in a software module are created by the choice in condition-
al statements, such as IF–THEN–ELSE or DO WHILE or DO UNTIL. Path
testing is motivated by the aspiration to achieve complete coverage of a pro-
gram by testing all its possible paths. Hence, the “path coverage” metrics
gauging a path test’s completeness is defined as the percentage of the pro-
gram paths executed during the test (activated by the test cases included in
the testing procedure).

While the concept of path testing naturally flows from application of the
white box testing concept, it is impractical in most cases because of the vast
resources required for its performance. Just how costly these applications
can be is illustrated in the following example.

Let us now calculate the number of possible paths created by a simple
module containing 10 conditional statements, each allowing for only two
options (e.g., IF–THEN–ALSO and DO WHILE). This simple module con-

190

9
S

oftw
are testing –

 strategies

tains 1024 different paths. In other words, in order to obtain full path cover-
age for this module (probably 25–50 lines of code) one should prepare at least
1024 test cases, one for each possible path. A straightforward calculation of
the number of test cases required to test a software package that contains 100
modules of similar complexity (a total of 102 400 test cases) readily indicates
the impracticality of wide use of path testing. Hence, its application is direct-
ed mainly to high risk software modules, where the costs of failure resulting
from software error fully warrant the costs of path testing.

This situation has encouraged development of an alternative yet weaker
coverage concept – line coverage. The line coverage concept requires far
fewer test cases but, as expected, leaves most of the possible paths untested.
The subject of line coverage is discussed next.

9.4.3 Correctness tests and line coverage

The line coverage concept requires that, for full line coverage, every line of
code be executed at least once during the process of testing. The line cover-
age metrics for completeness of a line-testing (“basic path testing”) plan are
defined as the percentage of lines indeed executed – that is, covered – during
the tests.

To better grasp the essence of basic path testing of a program, reference
to a flow chart and a program flow graph can be helpful. In a flow chart,
diamonds present the options covered by conditional statements (decisions),
whereas rectangles or a succession of rectangles represent the software sec-
tions connecting those conditional statements. In program flow graphs,
nodes represent software sections and thus replace one or more flow chart
rectangles. The edges indicate the sequence of software sections. Nodes hav-
ing two or more leaving edges represent conditional statements. The
following example demonstrates a flow chart and a program flow graph for
a taximeter software module that calculates the taxi fares.

Example – the Imperial Taxi Services (ITS) taximeter
Imperial Taxi Services (ITS) serves one-time passengers and regular clients
(identified by a taxi card). The ITS taxi fares for one-time passengers are cal-
culated as follows:

(1) Minimal fare: $2. This fare covers the distance traveled up to 1000 yards
and waiting time (stopping for traffic lights or traffic jams, etc.) of up to
3 minutes.

(2) For every additional 250 yards or part of it: 25 cents.

(3) For every additional 2 minutes of stopping or waiting or part thereof:
20 cents.

(4) One suitcase: no charge; each additional suitcase: $1.

(5) Night supplement: 25%, effective for journeys between 21.00 and 06.00.

191

9.4 W
hite box

testing

Regular clients are entitled to a 10% discount and are not charged the night
supplement.

When planning the basic path testing plan of the new taximeter module,
a flow chart and a program flow graph for the taxi fare calculation process
were prepared. Each figure represents a calculation process that includes five
decisions, as shown in Figure 9.3.

A review of the ITS flow chart and program flow graph demonstrates
the difference between path testing and basic path testing as well as com-
paring the testing requirements of path coverage with those of line coverage.

As mentioned above, full path coverage requires that all the possible
paths be executed at least once. In the ITS flow chart (Figure 9.3), 24 differ-
ent paths may be indicated. In other words, in order to achieve full path
coverage of the software module we have to prepare at least 24 test cases,
which we list in Table 9.3.

192

9
S

oftw
are testing –

 strategies

Table 9.3: The Imperial Taxi example – the full list of paths

No. The path

1 1-2-3-5-6-8-9-11-12-17

2 1-2-3-5-6-8-9-11-13-14-15-17

3 1-2-3-5-6-8-9-11-13-14-16-17

4 1-2-3-5-6-8-10-11-17

5 1-2-3-5-6-8-10-11-13-14-15-17

6 1-2-3-5-6-8-10-11-13-14-16-17

7 1-2-3-5-7-8-9-11-12-17

8 1-2-3-5-7-8-9-11-13-14-15-17

9 1-2-3-5-7-8-9-11-13-14-16-17

10 1-2-3-5-7-8-10-11-12-17

11 1-2-3-5-7-8-10-11-13-14-15-17

12 1-2-3-5-7-8-10-11-13-14-16-17

13 1-2-4-5-6-8-9-11-12-17

14 1-2-4-5-6-8-9-11-13-14-15-17

15 1-2-4-5-6-8-9-11-13-14-16-17

16 1-2-4-5-6-8-10-11-12-17

17 1-2-4-5-6-8-10-11-13-14-15-17

18 1-2-4-5-6-8-10-11-13-14-16-17

19 1-2-4-5-7-8-9-11-12-17

20 1-2-4-5-7-8-9-11-13-14-15-17

21 1-2-4-5-7-8-9-11-13-14-16-17

22 1-2-4-5-7-8-10-11-12-17

23 1-2-4-5-7-8-10-11-13-14-15-17

24 1-2-4-5-7-8-10-11-13-14-16-17

193

9.4 W
hite box

testing

1
Charge the minimal fare

2
Distance

3

5
Waiting time

6

4

7

D � 1000 D � 1000

WT � 3 WT � 3

8
No. of suitcases

9 10

S � 1 S � 1

11
Regular client?

12

13
Yes No

14
Night journey?

15 16

Yes No

17
Print receipt

1

2

43

5
R1

76

8

109

11

1312

15

16

17

R2

R3

R5

R6

14R4

Figure 9.3: The ITS taxi fare calculation process – flow chart and program flow graph

(a) Flow chart of the module

(b) Program flow graph of the
module

In contrast, the program flow graph allows us to observe that full line
coverage of the ITS software module can be reached by inspecting the mini-
mum number of paths – a total of three – as listed in Table 9.4.

The proportion of test cases required to test the system by full line cov-
erage of three test cases (by basic path testing) versus full path coverage of
24 test cases is 1:8! This ratio grows rapidly with program complexity.

Support for the basic path testing strategy is provided by McCabe’s
cyclomatic complexity metrics, which besides being software complexity
metrics also serve to give an upper limit to the number of test cases needed
for full line coverage.

9.4.4 McCabe’s cyclomatic complexity metrics

The cyclomatic complexity metrics developed by McCabe (1976) measures
the complexity of a program or module at the same time as it determines
the maximum number of independent paths needed to achieve full line cov-
erage of the program. The measure is based on graph theory and is thus
calculated according to the program characteristics as captured by its pro-
gram flow graph.

An independent path is defined with reference to the succession of inde-
pendent paths accumulated, that is: “Any path on the program flow graph
that includes at least one edge that is not included in any of the former inde-
pendent paths”.

To illustrate this definition, let us refer once again to Figure 9.3. A set of
independent paths that achieves full line coverage of the program is listed in
Table 9.5.

194

9
S

oftw
are testing –

 strategies

Table 9.5: The ITS example – the set of independent paths to achieve full coverage

Path The path Edges added by the path Number of edges
no. added by the path

1 1-2-3-5-6-8-9-11-12-17 1-2, 2-3, 3-5, 5-6, 6-8, 8-9, 9
9-11, 11-12, 12-17

2 1-2-3-5-6-8-9-11-13-14-15-17 11-13, 13-14, 14-15, 15-17 4

3 1-2-3-5-6-8-9-11-13-14-16-17 14-16, 16-17 2

4 1-2-4-5-7-8-10-11-13-14-15-17 2-4, 4-5, 5-7, 7-8, 8-10, 10-11 6

Table 9.4: The Imperial Taxi example – the minimum number of paths

No. The path

1 1-2-3-5-6-8-9-11-12-17

23 1-2-4-5-7-8-10-11-13-14-15-17

24 1-2-4-5-7-8-10-11-13-14-16-17

As mentioned above, the cyclomatic complexity metric V(G) also deter-
mines the maximum number of independent paths that can be indicated in
the program flow graph.

The cyclomatic complexity metric (V(G)) is expressed in three different
ways, all of which are based on the program flow graph:

(1) V(G) = R

(2) V(G) = E – N + 2

(3) V(G) = P + 1

In these equations R is the number of regions in the program flow graph.
Any enclosed area in the graph is considered a region. In addition the area
around the graph not enclosed by it is counted as one additional region. E is
the number of edges in the program flow graph, N is the number of nodes in
the program flow graph, and P is the number of decisions contained in the
graph, represented by nodes having more than one leaving edge.

Example
Applying the above to the ITS taximeter module example described above,
we can obtain the values of the above parameters from Figure 9.3. We find
that R = 6, E = 21, N = 17, and P = 5. Substituting these values into the met-
rics formulae we obtain:

(1) V(G) = R = 6

(2) V(G) = E – N + 2 = 21 – 17 + 2 = 6

(3) V(G) = P + 1 = 5 + 1 = 6

The resulting metrics calculations indicate that the maximum number of
independent paths in the example is six. One realization of a maximal set of
six independent paths is shown in Table 9.6.

Several empirical studies of the relationships between the cyclomatic
complexity metrics and quality and testability characteristics have been car-

195

9.4 W
hite box

testing

Table 9.6: The ITS example – the maximum set of independent paths

Path The path Edges added by the path Number of edges

no. added by the path

1 1-2-3-5-6-8-9-11-12-17 1-2, 2-3, 3-5, 5-6, 5-8, 8-9, 9
9-11, 11-12, 12-17

2 1-2-4-5-6-8-9-11-12-17 2-4, 4-5 2

3 1-2-3-5-7-8-9-11-12-17 5-7, 7-8 2

4 1-2-3-5-6-8-10-11-12-17 8-10, 10-11 2

5 1-2-3-5-6-8-9-11-13-14-15-17 11-13, 13-14, 14-15, 15-17 4

6 1-2-3-5-6-8-9-11-13-14-16-17 14-16, 16-17 2

ried out over the years. Some of the findings are summarized by Jones
(1996) as follows: “Empirical studies reveal that programs with cyclomat-
ic complexities of less than 5 are generally considered simple and easy to
understand. Cyclomatic complexities of 10 or less are considered not too
difficult; if 20 or more, the complexity is perceived as high. When the
McCabe value exceeds 50, the software for practical purposes becomes
untestable.” Other publications report no confirmation of the relationship
between the cyclomatic complexity metrics and the quality of the software,
or that the relationships found have not been supported statistically
(Fenton, 1995, pp. 279–281).

9.4.5 Software qualification and reusability testing

Software qualification testing
Although the subject of qualification was discussed in Section 7.3, the topic
was not exhausted. Qualification testing is of crucial importance for coding
in the development as well as maintenance stages. To quickly review, soft-
ware that qualifies is coded and documented according to standards,
procedures and work instructions. This makes it easier for the team leader to
check the software, for the replacement programmer to comprehend the
code and continue coding tasks, and for the maintenance programmer to
correct bugs and/or update or change the program upon request.

Software qualification testing ascertains whether software development
responded positively to questions reflecting a specific set of criteria:

■ Does the code fulfill the code structure instructions and procedures, such
as module size, application of reused code, etc.?

■ Does the coding style fulfill coding style procedures?
■ Do the internal program documentation and “help” sections fulfill cod-

ing style procedures?

Specialized software packages (called code auditors) can now perform a por-
tion of the qualification tests by listing instances of non-conformity to coding
standards, procedures and work instructions. Other tests continue to rest on
trained personnel for their manual execution.

Software reusability testing
Software reusability substantially reduces project resources requirements and
improves the quality of new software systems. In doing so, reusability short-
ens the development period, which by itself benefits the software
development organization. Reusability testing supports these functions by
determining whether the packaging and documentation of the programs and
modules listed for reuse conform to the standards and procedures demand-
ed for inclusion in the reusable software library. Reusability testing is
actually one of the tools supporting the growth of software reuse.

196

9
S

oftw
are testing –

 strategies

9.4.6 Advantages and disadvantages of white box testing

The main advantages of white box testing are:

■ Direct statement-by-statement checking of code enables determination of
software correctness as expressed in the processing paths, including
whether the algorithms were correctly defined and coded.

■ It allows performance of line coverage follow-up (applying specialized
software packages) that provides the tester with lists of lines of code that
have not yet been executed. The tester can then initiate test cases to cover
these lines of code.

■ It ascertains quality of coding work and its adherence to coding standards.

The main disadvantages of white box testing are:

■ The vast resources utilized, much above those required for black box test-
ing of the same software package.

■ The inability to test software performance in terms of availability
(response time), reliability, load durability, and other testing classes relat-
ed to operation, revision and transition factors.

The characteristics of white box testing limit its use to software modules of
very high risk and very high cost of failure, where it is highly important to
identify and fully correct as many of the software errors as possible.

9.5 Black box testing

Black box testing allows us to perform output correctness tests and most
classes of tests as shown in Table 9.2. Apart from output correctness tests (if
you are prepared to pay the extra costs, these could be performed by white
box data processing and calculation correctness tests) and maintainability
tests (that could be performed by white box tests), most of the other testing
classes are unique to black box testing. This explains the importance of black
box testing. Still, due to the special characteristics of each testing strategy
and the test classes unique to white box testing, black box testing cannot
automatically substitute for white box testing.

This section will thus deal with the following issues:

■ Equivalence classes and their effect on the number of test cases required
for output correctness test.

■ Performance methodology for other classes of black box tests.
■ Advantages and disadvantages of black box testing.

For additional material on black box testing, Beizer (1995) is one of the
major sources available.

197

9.5 B
lack

box
testing

9.5.1 Equivalence classes for output correctness tests

Output correctness tests are, in most cases, among the tests that consume the
greater part of testing resources. In those frequent cases where output correctness
tests alone are performed, they consume all testing resources. Implementation of
other classes of tests depends on the nature of the software product and its future
users as well as on the developer’s procedures and decisions.

The output correctness tests apply the concept of test cases. Improved
choice of test cases can be achieved by the efficient use of equivalence class
partitioning, a method to be discussed here.

Equivalence class partitioning is a black box method aimed at increasing
the efficiency of testing and, at the same time, improving coverage of poten-
tial error conditions. An equivalence class (EC) is a set of input variable
values that produce the same output results or that are processed identical-
ly. EC boundaries are defined by a single numeric or alphabetic value, a
group of numeric or alphabetic values, a range of values, and so on. An EC
that contains only valid states is defined as a “valid EC”, whereas an EC that
contains only invalid states is defined as an “invalid EC”. In cases where a
program’s input is provided by several variables, valid and invalid ECs
should be defined for each variable.

According to the equivalence class partitioning method, test cases are
defined so that each valid EC and each invalid EC are included in at least one
test case. Test cases are defined separately for the valid and invalid ECs. In
defining a test case for the valid ECs, we try to cover as many as possible
“new” ECs (i.e., classes not included in any of the former test cases) in that
same test case. Test cases are added as long as there are uncovered ECs. As
a result of this process, the total number of required test cases to cover the
valid ECs is equal to and in most cases significantly below the number of
valid ECs. Note that in defining invalid ECs, we must assign one test case to
each “new” invalid EC, as only one invalid EC can be included in a test case.
A test case that includes more than one invalid EC may not allow the tester
to distinguish between the program’s separate reactions to each of the invalid
ECs. Hence, the number of test cases required for the invalid ECs equals the
number of invalid ECs.

Compared to the use of a random sample of test cases, equivalence class-
es save testing resources because they eliminate duplication of the test cases
defined for each EC. Importantly, as the equivalence class method is a black
box method, equivalence class partitioning is based on software specification
documentation, not on the code. Systematic constructing of equivalence class-
es for a program’s input variables increases the coverage of possible valid and
error conditions of input and thus improves the testing plan’s effectiveness.
Further improvement of testing effectiveness and efficiency is achieved by test-
ing for the boundary values of ECs, a subject we elaborate next.

Test cases and boundary values
According to the definition of equivalence classes, one test case should be
sufficient for each class. However, when equivalence classes cover a range of

198

9
S

oftw
are testing –

 strategies

values (e.g. monthly income, apartment area), the tester has a special inter-
est in testing border values when these are considered to be error prone. In
these cases, the preparation of three test cases – for mid range, lower bound-
ary and upper boundary values – is recommended.

Example – the Golden Splash Swimming Center
The following example illustrates the definition of (valid and invalid)
equivalence classes and the corresponding test case values. The software
module in question calculates entrance ticket prices for the Golden Splash
Swimming Center.

The Center’s ticket price depends on four variables: day (weekday, week-
end), visitor’s status (OT = one time, M = member), entry hour (6.00–19.00,
19.01–24.00) and visitor’s age (up to 16, 16.01–60, 60.01–120). The
entrance ticket price table is shown in Table 9.7.

The equivalence classes and the corresponding test case values for the
above example are presented in Tables 9.8 and 9.9.

A total of 15 ECs were defined for the ticket price module: nine valid
ECs and six invalid ECs. The test cases that correspond to these ECs apply
the representing values listed in Table 9.8. The test cases for these ECs,
including their boundary values, are presented in Table 9.9.

A total of 15 test cases cover all the defined ECs, including the respec-
tive EC boundary values:

■ Three test cases for the valid ECs (for our example a total of nine valid
ECs were defined).

■ Six test cases for the boundary value ECs (in our example, boundary test-
ing is applicable for only two of the four input variables).

■ Six test cases for invalid ECs (for our example a total of six invalid ECs
were defined).

199

9.5 B
lack

box
testing

Mon, Tue, Wed, Thurs, Fri Sat, Sun

Visitor’s status OT OT M M OT OT M M

Entry hour 6.00– 19.01– 6.00– 19.01– 6.00– 19.01– 6.00– 19.01–

19.00 24.00 19.00 24.00 19.00 24.00 19.00 24.00

Ticket prices – $

Visitor’s age

0.0–16.00 5.00 6.00 2.50 3.00 7.50 9.00 3.50 4.00

16.01–60.00 10.00 12.00 5.00 6.00 15.00 18.00 7.00 8.00

60.01–120.00 8.00 8.00 4.00 4.00 12.00 12.00 5.50 5.50

Table 9.7: Entrance ticket price table – the Golden Splash Swimming Center

200

9
S

oftw
are testing –

 strategies

Table 9.9: Test cases – the Golden Splash Swimming Center ticket price module

Test case Test case Day of Visitor’s Entry Visitor’s Test case
type no. week status hour age results

For valid ECs 1 Mon OT 7.55 8.4 $5.00

2 Sat M 20.44 42.7 $8.00

3 Sat M 22.44 65.0 $5.50

4 Sat M 6.00 0.0 $3.50

5 Sat M 19.00 16.00 $3.50

6 Sat M 19.01 16.01 $8.00

7 Sat M 19.01 60.00 $8.00

8 Sat M 24.00 60.01 $5.50

9 Sat M 24.00 120.0 $5.50

For invalid ECs 10 Mox OT 7.55 8.4 Invalid day

11 Mon 88 7.55 8.4 Invalid visitor status

12 Mon OT 4.40 8.4 Invalid entry hour

13 Mon OT &@ 8.4 Invalid entry hour

14 Mon OT 7.55 TTR Invalid visitor age

15 Mon OT 7.55 150.1 Invalid visitor age

Table 9.8: Equivalence classes – the Golden Splash Swimming Center ticket price module

Variable Valid Representing values Invalid Representing

equivalence Values for Boundary equivalence values for
classes valid ECs values classes invalid ECs

Day of week (1) Mon, Tue, Mon (1) Any alpha- Mox
Wed, Thurs, Fri numeric value

(not a day)
(2) Sat, Sun Sat

Visitor’s (1) OT OT Other than 88
status (2) M M OT or M

Entry hour (1) 6.00–19.00 7.55 6.00, 19.00 (1) Hours < 6.00 4.40
(2) 19.01–24.00 20.44 19.01, 24.00 (2) Any alpha- &@

numeric
values
(not time)

Visitor’s age (1) 0.0–16.00 8.4 0.0, 16.00 (1) Any alpha- TTR
(2) 16.01–60.00 42.7 16.01, 60.00 numeric value
(3) 60.01–120.00 65.0 60.01, 120.00 (not an age)

(2) Ages > 120.0 150.1

Though the equivalence class method is applied mainly with correctness
tests, it may be used for other operation factor testing classes as well as for
revision and transition factor testing classes.

9.5.2 Other operation factor testing classes

Apart from output correctness tests, operation factor testing classes include
the following classes of tests:

Quality requirements factor Test class

Correctness (1) Documentation tests
(2) Availability (reaction time) tests

Reliability Reliability tests

Efficiency Stress tests (load and durability tests)

Integrity Software system security tests

Usability (1) Training usability tests
(2) Operational usability tests

Documentation tests
Documentation testing, though neglected in many cases, should be consid-
ered as important as code testing or design documents inspections. An
erroneous user manual or programmer manual can lead to mistakes during
program operation and maintenance that may incur damages equivalent in
severity to those caused by software bugs.

Common components of documentation, supplied by the developer, are:

■ Functional descriptions of the software system. This overview enables the
potential user to decide whether the system is suitable for his needs
or not.

■ Installation manual. This document includes a detailed description of the
installation process and hardware requirements as well as instructions for
interfacing with equipment and with other software packages – if such
interfaces are part of the system specifications. In commercial software
packages (COTS software), the installation manual usually includes also
customization instructions.

■ User manual. “How to get started” instructions, detailed instructions for
applying the various system functions, recovery instructions for common
operator mistakes and system errors are all covered in the user manual. In
many cases, the user manual is supplied as a computerized help manual.

■ Programmer manual. This type of documentation is supplied for custom-
made software. It includes the information required for maintaining
the system (bug corrections, adaptation to changing requirements and

201

9.5 B
lack

box
testing

software improvement), program structure, description of program logic
including algorithms, and so on. Users and customers of COTS software
do not require a programmer’s manual as they do not carry out mainte-
nance individually.

Document testing plans should include the following three components:

■ Document completeness check. Based on the requirements specification
and the detailed design reports, its purpose is to check whether all the
required documents have been completed as specified and as intended by
the designer.

■ Document correctness tests. Correctness tests determine whether the
instructions listed in the user document are correct. Implementation of
correctness tests requires designing a test case file in a manner that close-
ly resembles the methodology of output correctness tests discussed in
Section 9.5.1.

■ Document style and editing inspection. Refers to document clarity and its
agreement with documentation standards in cases this requirement is
specified in the contract.

Availability tests
Availability is defined as reaction time – the time needed to obtain the
requested information or the time required for firmware installed in com-
puterized equipment to react. Availability is of highest importance in on-line
applications of frequently used information systems. The failure of firmware
software to meet availability requirements (i.e., retarded reaction time) can
make the equipment useless.

It is relatively difficult to test availability, especially for information sys-
tems planned to serve a large population of users, and for real-time systems
planned to treat high-frequency events. This difficulty stems from the need
to carry out the tests under regular operation load as well as under maximal
load conditions as specified in the requirement specifications. It should be
noted that the availability requirements for regular and maximal workloads
are usually different. The required characteristics of the availability testing
environment support combining of this class of tests with load tests (stress
tests) and performing the adjusted computerized combined tests. (For dis-
cussion of load tests, see below.)

Reliability tests
The software system reliability requirement deals with features that can be
translated as events occurring over time, such as average time between fail-
ures (e.g., 500 hours), average time for recovery after system failure (e.g., 15
minutes), or average downtime per month (e.g., 30 minutes per month).
Reliability requirements are to be in effect during regular full-capacity oper-
ation of the system. It should be noted that in addition to the software factor,

202

9
S

oftw
are testing –

 strategies

reliability tests also relate to the hardware, the operating system and the data
communication system effects.

Like availability testing, reliability testing is especially difficult as it
requires operation of the full range of software applications conducted under
regular workload conditions. To be practical, such tasks should be carried
out only after computerized simulations have been run to obtain average val-
ues, and only once the system is completed. With respect to resources, the
major constraint on performing tests of this type is the scope of resources
required, which is vast as testing may continue for hundreds of hours and a
comprehensive test case file must be constructed.

Statistical reliability testing offers a much less expensive and much speedi-
er option for the assessment of reliability on the basis of statistical models.
Much literature is available on the subject, just a few major sources being
Myers (1976), Musa et al. (1990) and Musa (1998). However, despite their
widespread use and practical benefits, statistical reliability tests have been sub-
jected to criticism ever since their emergence. The main issue debated is the
extent to which statistical models represent real-life software system operation.

Stress tests
The class of stress tests subsumes two main types of tests: load tests and
durability tests. It is possible to perform these tests only subsequent to soft-
ware system completion. Durability tests, however, can generally be carried
out only after the firmware or the information system software has been
installed and is ready for testing.

Stress tests: load tests
Load tests relate to the functional performance of the system under maximal
operational load: maximal transactions per minute, hits per minute to an
Internet site and the like. Load tests, which are usually conducted for loads
higher than those indicated in the requirements specification, are of utmost
importance for software systems planned to serve simultaneously a large
population of users. In most working software systems, the maximal load
figure combines several types of transactions. Due to its variability, the best
way to explain the process is through an example.

Example
“Music in the Air”, a network of music stores, run a service on the Internet
that registers requests for price quotations and orders. On weekdays, the
average rate of customer hits is 10 per minute for orders and 20 per minute
for price quotations. The maximum loads recorded on Saturday afternoon
are 30 per minute for orders and 100 per minute for price quotations. The
maximal load defined in the software specifications, which takes future
growth into account, is 60 per minute for orders and 200 per minute for
price quotation. The loads for which the program will be tested are 75 per
minute for orders and 250 per minute for price quotations. So, this explains
how the test loads were chosen for the example.

203

9.5 B
lack

box
testing

Manual performance of load tests is impractical for most software sys-
tems, and is therefore carried out by computerized tests based on
comprehensive simulations of high loads, again similar to the procedures
adapted for availability testing. These load simulations enable us to measure
the expected reaction times as a function of a range of loads. They thus allow
us to ascertain whether upgrading is necessary and which changes should be
made to allow the software system to meet the planned requirements. For
more about computerized load testing, see Section 10.3 in the next chapter
which deals with computerized software testing.

Stress tests: durability tests
Durability tests are carried out in physically extreme operating conditions
such as high temperatures, humidity, and high-speed driving along unpaved
rural roads, as detailed in the durability specification requirements. Hence,
these durability tests are typically required for real-time firmware integrated
into systems such as weapon systems, long-distance transport vehicles, and
meteorological equipment. Durability issues for firmware include firmware
responses to climatic effects such as extreme hot and cold temperatures, dust,
road bumps, and extreme operation failures resulting from sudden electrical
failure, voltage “jumps” in the supply mains, sudden cutoffs in communica-
tions, and so on. Information system software durability tests focus on
operation failures resulting from sudden electrical failures, voltage “jumps”
in the supply mains and sudden cutoffs in communications.

Software system security tests
Software security components of software systems are aimed at preventing
unauthorized access to the system or parts of it, detection of unauthorized
access and the activities performed by the penetration, and the recovery of
damages caused by unauthorized penetration cases.

The main security issues dealt with by these tests are:

■ Access control, where the usual requirement is for control of multi-level
access (usually by a password mechanism). Of special importance here
are the firewall systems that prevent unauthorized access to Internet sites.

■ Backup of databases and software files and recovery in cases of system
failure.

■ Logging of transactions, system usage, access trials, and so forth.

The challenge of creating and breaking into security systems has bred a spe-
cial brand of delinquent, the hacker. Often very young, these enthusiasts find
their ultimate pleasure first and foremost by breaking into complex comput-
er systems, sometimes accompanied by system disruption, or creation of the
viruses that incapacitate others. Their success has been astounding in some
cases (e.g. national banks, US military security systems, etc.), and embar-
rassing to the same extent. One “payoff” of their success is that it is no

204

9
S

oftw
are testing –

 strategies

longer rare to find hackers invited to join tester teams, especially for software
systems where security requirements are high.

Training usability tests
When large numbers of users are involved in operating a system, training
usability requirements are added to the testing agenda. The scope of training
usability is defined by the resources needed to train a new employee, in other
words, how many hours of training are required for a new employee to
achieve a defined level of acquaintance with the system or to reach a defined
hourly production rate. The details of these tests, like any other, are based
on system characteristics but, more importantly here, on employee charac-
teristics. The results of the tests should inspire a sophisticated plan of
training courses and follow-up as well as improved directions for software
system operation.

Operational usability tests
The focus of this class of tests is the operator’s productivity, that is, those
aspects of the system that affect the performance regularly achieved by sys-
tem operators, or that are applied mainly for information systems that serve
many users. These tests are of high importance in cases where the workings
of the system can affect substantially the productivity of its users.

The implementation of this class of tests deals mainly with the produc-
tivity, quantitatively and qualitatively. Naturally these aspects are highly
important for systems that serve as the main vocational tools for a large
group of users.

Operational usability tests can be performed manually by means of time
studies. In addition to productivity data, these manual tests provide some
insight into the reasons for (high or low) performance levels and initiate
ideas for improvements. Accurate performance records can be achieved by
automated follow-up software that records all user activities throughout
their shift. Software packages of this type supply performance statistics and
comparative figures for different variables, such as specific activity, time peri-
od, and industry.

Comprehensive discussion of usability testing issues and detailed exam-
ples can be found in Rubin (1994).

9.5.3 Revision factor testing classes

Easy revision of software is a fundamental factor assuring a software pack-
age’s successful, long service and its successful sales to larger user
populations. Related to these features are the revision testing classes dis-
cussed in this section:

■ Maintainability tests
■ Flexibility tests
■ Testability tests.

205

9.5 B
lack

box
testing

Maintainability tests
The importance of software maintenance and maintainability can never be
overestimated; consider the fact that these functions consume more than
60% of total design and programming resources invested in a software sys-
tem throughout its life cycle (Pressman, 2000). Although estimates of the
share of maintenance resources vary – from over 50% as reported by Lientz
and Swanson (1980) and 65–75% as reported by McKee (1984) – their sig-
nificance remains undeniable.

Maintainability tests relate mainly to these issues:

(1) The system structure abides by the standards and development proce-
dures imposed on the specific components for support of future
maintenance activities, including the modular structure of self-contained
modules and module size.

(2) The programmer’s manual is prepared according to approved documen-
tation standards and provides complete system documentation.

(3) The internal documentation incorporated in the software code is pre-
pared according to coding procedures and conventions and fully covers
the system’s documentation requirements.

Software qualification testing is the software quality assurance tool preferred
for checking adherence to maintainability requirements as in issue (1) above
(see Section 9.4.4). Testing adherence to the requirements of issues (2) and
(3) fall in the scope of programmer’s documentation testing and are per-
formed unless included in the user documentation tests (see Section 9.5.2).

Flexibility tests
Software system flexibility refers to the system’s capabilities, based on its
structural and programming characteristics. These factors significantly affect
the efforts required to adapt the software to the variety of customer needs as
well as to introduce changes initiated by customers and maintenance teams
for the purpose of improving system functionality.

Flexibility tests are intended to test the software characteristics that sup-
port flexibility, such as adequate modular structure and application of
parametric options to provide a wide range of possible applications.

Testability tests
Testability requirements deal with the ease of testing the software system.
Thus, testability here relates to the addition of special features in the pro-
gram that help the testers in their work, such as the possibility of obtaining
intermediate results for certain checkpoints and predefined log files.
Although often overlooked, these special testing support features should be
specified in the requirements document as integral to the functional soft-
ware requirements.

206

9
S

oftw
are testing –

 strategies

Another objective of testability deals with diagnostic tool applications
implemented for the analysis of the system performance and the report of
any failure found. Some features of this kind are activated automatically
when starting the software package or during regular operation and report
whenever conditions warranting alarm arise. Other features of this type may
be activated by the operator or maintenance technician. Testability is particu-
larly crucial for support of control rooms of large operating systems (e.g.,
electricity plants) and for maintenance teams, especially with respect to diag-
nosis of failures. Maintenance support applications of this type may be
activated at the customer site and/or at some remote help desk support center.

Testability tests will be carried out for applications of both types, as
noted in the requirement specifications. The tests should relate mainly to
aspects of correctness, documentation and availability, as already discussed.

9.5.4 Transition factor testing classes

The software characteristics required to be operative, with minor adapta-
tions, in different environments, and those needed to incorporate reused
modules or to permit interfacing with other software packages are all among
the transition features required from a software system, especially for com-
mercial software packages aimed at a wide range of customers. Hence, the
following testing classes, discussed in this section, must be applied:

(1) Portability tests

(2) Reusability tests

(3) Tests for interoperability requirements:

■ Software interfacing tests
■ Equipment interfacing tests.

Portability tests
Portability requirements specify the environments (or environmental condi-
tions) in which the software system has to be operable: the operating
systems, hardware and communication equipment standards, among other
variables. The portability test to be carried out will verify, validate and test
these factors as well as estimate the resources required for transfer of a soft-
ware system to a different environment.

Reusability tests
Reusability defines which parts of the program (modules, integrations and
the like) are to be developed for future reuse in other software development
projects, whether already planned or not. These parts should be developed,
packaged and documented according to reused software library procedures.
Reusability requirements are of special importance for object-oriented soft-
ware projects. Tests are therefore devised to examine whether reusability
standards were indeed adhered to.

207

9.5 B
lack

box
testing

Software interoperability tests
Software interoperability deals with software capabilities of interfacing
equipment and other software packages, to enable them to operate jointly as
one complex computerized system. The requirements list delineates the spe-
cific equipment and/or software interfaces to be tested, as well as the
applicable data transfer and interfacing standards. A growing share of com-
mercial over-the-counter (COTS) software packages as well as custom-made
software packages are now required to have interoperability capabilities,
that is, to display the capacity to receive inputs from equipment firmware
and/or other software systems and/or to send outputs to other firmware and
software systems. These software capabilities are carried out under rigid data
transfer standards, international and global or industry-oriented interoper-
ability standards, and tested accordingly.

Equipment interoperability tests
Equipment interoperability deals with the equipment’s firmware interfacing
other equipment units and /or software packages, where the requirements list
the specified interfaces, including with interfacing standards. The relevant
tests should examine implementation of the equipment interoperability
requirements throughout the system.

9.5.5 Advantages and disadvantages of black box testing

The main advantages of black box testing are:

■ Black box testing allows us to carry out the majority of testing classes,
most of which can be implemented solely by black box tests. Of the test
classes unique to black box testing, of special importance are system per-
formance tests such as load tests and availability tests.

■ For testing classes that can be carried out by both white and black box
tests, black box testing requires fewer resources than those required for
white box testing of the same software package.

The main disadvantages of black box testing are:

■ Possibility that coincidental aggregation of several errors will produce the
correct response for a test case, and prevent error detection. In other
words, black box tests do not readily identify cases of errors that coun-
teract each other to accidentally produce the correct output.

■ Absence of control of line coverage. In cases where black box testers wish
to improve line coverage, there is no easy way to specify the parameters
of the test cases required to improve coverage. Consequently, black box
tests may not execute a substantial proportion of the code lines, which
are not covered by a set of test cases.

■ Impossibility of testing the quality of coding and its strict adherence to
the coding standards.

208

9
S

oftw
are testing –

 strategies

Summary

(1) Explain testing objectives.

One should distinguish between direct and indirect testing objectives. The direct
objectives are:
■ To identify and reveal as many errors as possible in the tested software
■ To bring the tested software to an acceptable quality level
■ To perform the required testing in an efficient and effective way, within budget

and scheduling limitations.

The indirect objective:
■ To supply records of software errors to be used for error prevention.

(2) Discuss the differences between the various testing strategies, their advantages
and disadvantages.

There are basically two testing strategies:
■ “Big bang testing”: tests the software as a whole, once the completed package

is available.
■ “Incremental testing”: tests the software piecemeal – software modules are test-

ed as they are completed (unit tests), followed by groups of modules composed
of tested modules integrated with newly completed modules (integration tests).
Once the entire package is completed, it is tested as a whole (system test).

There are two basic incremental testing strategies: bottom-up and top-down. In top-
down testing, the first module tested is the main module, the highest level module
in the software structure; the last modules to be tested are the lowest level mod-
ules. In bottom-up testing, the order of testing is reversed: the lowest level modules
are tested first, with the main module tested last.
■ Big bang vs. incremental testing. Unless the program is very small and simple,

applying the “big bang” testing strategy presents severe disadvantages.
Identification of error in the entire software package when perceived as one
“unit” is very difficult and, in spite of the vast resources invested, is not very
effective. Moreover, performing perfect correction of an error in this context is
frequently laborious. Obviously, estimates of the required testing resources and
testing schedule tend to be rather fuzzy. In contrast, the advantages of incre-
mental testing, because it is performed on relatively small software units, yields
higher percentages of identified errors and facilitates their correction. As a
result, it is generally accepted that incremental testing should be preferred.

■ Bottom-up vs. top-down. The main advantage of the bottom-up strategy is its
relative ease of performance, while its main disadvantage is the lateness of the
stage at which it is possible to observe the program as a whole. The main advan-
tage of the top-down strategy is the early stage at which it is possible to
demonstrate the program as a whole, a condition that supports early identifica-
tion of analysis and design errors. The main disadvantage of the approach is the
comparative difficulty of its performance.

209

S
um

m
ary

(3) Describe the concepts of black box testing and white box testing, and discuss their
advantages and disadvantages.

■ Black box testing identifies bugs only according to malfunctioning of the soft-
ware as revealed from its outputs, while disregarding the internal paths of
calculations performed by the software.

■ White box testing examines the internal paths of calculations in order to iden-
tify bugs.

The main advantages of black box testing are:
■ It allows the tester to carry out almost all test classes.
■ For test classes that can be carried out by both white and black box testing,

black box testing requires considerably fewer resources.

The main disadvantages of black box testing are:
■ It allows for identification of coincidental errors as correct.
■ It lacks control of line coverage.
■ It lacks possibilities to test the quality of coding work.

The main advantages of white box testing are:
■ It permits direct checking of processing paths and algorithms.
■ It provides line coverage follow-up that delivers lists of lines of code that have

not yet been executed.
■ It is capable of testing the quality of coding work.

The main disadvantages of white box testing are:
■ It requires vast resources, much above those required for black box testing.
■ It cannot test the performance of software in terms of availability, reliability,

stress, etc.

(4) Define path coverage vs. line coverage.

“Path coverage” is defined as the percentage of possible paths of software pro-
cessing activated by the test cases. “Line coverage” is defined as the percentage of
executed lines of code examined during the tests.

The concepts of path testing and line coverage are applicable for estimating white
box testing coverage only. In most cases, the achievement of full path coverage is
impractical because of the scope of resources required for its implementation.

(5) Describe the various types of black box tests.

The black box tests are classified into three groups:
■ Operation factor testing classes
■ Revision factor testing classes
■ Transition factor testing classes.

Operation factor testing classes include:
(1) Output correctness tests – in most cases, the class of tests that consume the

largest weight of testing resources
(2) Documentation tests (for correctness)
(3) Availability (reaction time) tests (for correctness)
(4) Reliability tests

210

9
S

oftw
are testing –

 strategies

(5) Stress tests (load tests, durability tests) (for efficiency)
(6) Software system security tests
(7) Training usability tests (for usability)
(8) Operational usability tests (for usability).

Revision factor testing classes include:
(1) Maintainability tests
(2) Flexibility tests
(3) Testability tests.

Transition factor testing classes include:
(1) Portability tests
(2) Reusability tests
(3) Software interfacing tests (for interoperability)
(4) Equipment interfacing tests (for interoperability).

Selected bibliography

1. Beizer, B. (1984) Software System Testing and Quality Assurance, Van Nostrand
Reinhold, New York.

2. Beizer, B. (1995) Black Box Testing – Techniques for Functional Testing of
Software and Systems, John Wiley & Sons, New York.

3. Fenton, N. E. (1995) Software Metrics – A Rigorous Approach, International
Thomson Press, London.

4. Hamlet, D. and Maybee, J. (2001) The Engineering of Software – Technical
Foundation for the Individual, Addison-Wesley-Longman, Boston, MA.

5. IEEE (1990) “IEEE Std 610.12-1990 – IEEE Standard Glossary of Software
Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

6. Jones, C. (1996) Applied Software Measurement – Assuring Productivity and
Quality, 2nd edn, McGraw-Hill, New York.

7. Jorgensen, P. C. (1995) Software Testing – A Craftsman’s Approach, CRC Press,
Boca Raton, FL.

8. Kaner, C., Falk, J. and Nguyen, H. Q. (1999) Testing Computer Software, 2nd
edn, John Wiley & Sons, New York.

9. Kit, E. (1995) Software Testing in the Real World – Improving the Process,
Addison-Wesley, Wokingham, UK.

10. Lientz, B. P. and Swanson, E. B. (1980) Software Maintenance Management,
Addison-Wesley, Reading, MA.

11. McCabe, T. J. (1976) “A software complexity measure”, IEEE Transactions on
Software Engineering, 2(6), 308–320.

12. McKee, J. R. (1984) “Maintenance as a function of design”, AFIPS National
Computer Conference, Las Vegas, NV.

13. Musa, J. D. (1998) Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw-Hill, New York.

14. Musa, J. D., Iannino, A. and Okumoto, K. (1990) Software Reliability –
Measurement, Prediction, Application, Professional Edition, McGraw-Hill,
New York.

15. Myers, G. J. (1976) Software Reliability – Principles and Practices, John Wiley
& Sons, New York.

211

S
elected bibliography

16. Perry, W. (1996) Effective Methods for Software Testing, John Wiley and Sons,
New York.

17. Perry, W. E. and Rice, R. W. (1997) Surviving the Top Ten Challenges of
Software Testing – A People-Oriented Approach, Dorset House Publishing, New
York.

18. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

19. Rubin, J. (1994) Handbook of Usability Testing, John Wiley & Sons, New York.
20. Sommerville, I. (2001) Software Engineering, 6th edn, Addison-Wesley, Harlow,

Essex, UK.

Review questions

9.1 Not a few software industry professionals maintain that the main goal of software
testing is “to prove that the software package is ready”.

(1) Explain in your own words why this is not a suitable goal for software testing.
(2) What other goals might replace the goal mentioned above, and what gains in

the effectiveness of the testing team can be expected from this change?

9.2 Explain in your own words why big bang testing is inferior to any method of incre-
mental testing conducted for software packages that are not small.

9.3 Module G12 is coupled with seven lower-level modules and only one upper-
level module.

(1) Discuss how the number of couplings affects the efforts required for incre-
mental testing strategy.

(2) Consider the case described above. What are the effects of module G12’s spe-
cific coupling situation on the resources required to perform unit tests
according to the top-down strategy and the bottom-up strategy?

9.4 Section 9.4 mentions the terms path coverage and line coverage.

(1) Explain in your own words what the terms mean and list the main differences
between these coverage metrics.

(2) Explain why the implementation of path coverage is impractical in most
test applications.

9.5 Bengal Tours is a city center travel agency that specializes in tours and vacations
in Canada. The agency regularly employs 25 permanent employees. During the
spring and summer, the agency employs an additional 20–25 temporary staff,
mostly senior citizens and students. The agency is considering purchasing the right
to use the software system “Tourplanex”, which supports the planning with flight
and vacation site vacancies and price information. If purchased, the software will
become the main working tool for the agency staff.

(1) Discuss the importance of the training usability and operational usability
tests to be performed by the agency before it purchases “Tourplanex”.

(2) Suggest to Bengal Tours management that they should apply training usability
and operational usability tests to be performed on the program.

212

9
S

oftw
are testing –

 strategies

Topics for discussion

9.1 Bhealthy Ltd is a medical insurance company that reimburses the cost of drugs and
various other medical expenses to its customers. According to current procedures,
customers are asked to present receipts of drug purchases together with the rele-
vant physician prescriptions and other medical documents. Reimbursement is
calculated according to the insurance agreement stipulations:

■ Two lists of drugs are in effect for the purpose of reimbursement: class A and
class B.
– Class A: 90% of the costs of each purchased drug are reimbursed by

Bhealthy after a minimum customer participation of $5. For example, a $10
drug is reimbursed by $4.50 and an $85 drug is reimbursed by $72.

– Class B: 50% of the costs of each purchased drug are reimbursed by
Bhealthy (no access).

■ A check is prepared and sent to the customer. The insurance agreement states
the period of 45 days for the company to complete the reimbursement.

■ For some class A drugs the customer should prefer to buy the medications as a
private customer as no reimbursement is expected (the drug’s price is below $5).

The procedure described proved to be very expensive for Bhealthy at the same
time that it provoked much subscriber dissatisfaction. The growth in the number of
subscribers as well as the problems of complying with the current procedure moti-
vated a new agreement with the licensed pharmacies. The agreement authorized
the licensed pharmacy to deduct the reimbursement sums from the drug invoices;
Bhealthy will then reimburse the pharmacies monthly for the deducted sums.

Bhealthy decided to prepare a special pharmacy software package that com-
bines regular pharmacy sales operations with the operations required by its
agreement with the licensed pharmacies and its subscribers.

Consider the invoicing module that prepares invoices for Bhealthy prescriptions
as well as for regular sales of prescriptions and other items at a licensed pharmacy.

(1) Prepare a flow chart for the module.
(2) Prepare a program flow graph for the module.
(3) Calculate the cyclomatic complexity for the module.
(4) Prepare the maximal set of independent paths according to (3). Document the

basic paths and indicate the added edges of each independent path.

9.2 “Police Star 1000 System” is the new prestigious software system for recording all
the verbal communication (line telephone, cellular telephone and wireless) nation-
wide to be instituted by the police force. One feature of the system is its ability to
supply any voice record completed in the last 12 months within 15 minutes in 98%
of the applications. The system is planned to be operative within 10 months.

(1) Discuss the importance of conducting comprehensive load tests for the system.
(2) Suggest the recommended guidelines for these load tests.
(3) What basic data about police activities would you recommend to collect in

order to plan the load test according to your recommended guidelines?

213

Topics
for discussion

9.3 “Super Saving Light” is a new software system for control of street illumination and
enhancement of its economy, developed for municipality maintenance depart-
ments. Among its functions are:

■ Commencement and conclusion of street lighting according to daily timetable,
scheduled annually.

■ Partial illumination (only one of each two lights will be activated) during the
first and last 15 minutes of each illumination period activated by (1).

■ Measurement of natural light conditions by special sensors to ascertain
whether natural lighting is insufficient (e.g., on cloudy days), leading to earlier
commencement of street illumination and later conclusion of illumination. In
these cases, only one of a trio of streetlights will be activated.

■ Reduction of illumination time according to traffic density, monitored by a traf-
fic sensor installed at every road section, which will reduce illumination as
follows: if traffic density is below one vehicle per minute, only half of the street
lights in the road section will be activated; if traffic density is below 0.3 vehi-
cles per minute, only one-third of the lights will be activated.

Mr Jones, head of the testing team, claims that black box testing is insufficient and
that white box tests are necessary for testing “Super Saving Light”.

Support Mr Jones’s claim with three software error examples based on the illu-
mination rules described above. In the examples you choose, black box test results
will be “OK”, while white box testing of the same example will detect at least one
error. For each example, explain why errors undetected by black box testing will be
detected by white box testing.

9.4 Based on the “Super Saving Light” case described above:

(1) What input variables are required for test cases and what are the required out-
put variables?

(2) Suggest three to five simple test cases having low potential to identify errors.
(3) Suggest three to five test cases that you believe contain serious potential for error.
(4) Suggest three to five test cases to deal with boundary value situations.

9.5 Referring to the “Bhealthy” case discussed in Topic 9.1, the following is the list
price for a sample of 12 medications, including the cases’ reimbursement class:

214

9
S

oftw
are testing –

 strategies

Medication Medication classification Price ($)
name code according to Bhealthy

101 Not included $3.45
102 Class B $10.60
103 Class A $5.50
104 Class A $19.50
105 Class A $4.50
106 Class B $28.00
107 Not included $74.99
108 Class B $8.30
109 Class A $3.90
110 Class B $22.70
111 Class A $5.20

(1) Based on the above price list, prepare the set of test cases required for imple-
menting the maximal set of independent paths appropriate for your solution
to Topic 9.1 question (4).

(2) Assume that Bhealthy changes its minimum subscriber participation for class
A medications from $5 to $6. Will the test cases in (1) have to be changed? If
yes, make the necessary changes and present the updated test case file.

215

Topics
for discussion

chapter 10

Software testing –
Implementation

The main issues to be raised with respect to testing implementation are test
effectiveness and efficiency. In other words, constant efforts are to be direct-
ed to reduction of the percentage of undetected errors remaining in the
software or system tested on the one hand, and to performance of those tests
with fewer resources on the other.

Despite the vast resources invested in defect identification, it is com-
monly accepted that software free of defects is still an unrealizable task. This
situation has inspired testing professionals to stress the issues of effectiveness
and efficiency at every opportunity. The two main routes taken toward
improvement involve upgrading the effectiveness of the test cases applied
during testing, and development of automatic software testing.

The processes of designing, planning and carrying out tests at the vari-
ous levels – unit tests, integration test and system test – are discussed in the
first section of this chapter.

Chapter outline

10.1 The testing process 217
10.1.1 Determining the test methodology phase 217
10.1.2 Planning the tests 220
10.1.3 Test design 228
10.1.4 Test implementation 229

10.2 Test case design 232
10.2.1 Test case data components 232
10.2.2 Test case sources 233

10.3 Automated testing 235
10.3.1 The process of automated testing 236
10.3.2 Types of automated tests 236
10.3.3 Advantages and disadvantages of automated tests 242

10.4 Alpha and beta site testing programs 245

Summary 247
Selected bibliography 249
Review questions 250
Topics for discussion 251

An improved test case file exhibits fewer repetitions of test cases cover-
ing the same situation and covers the vast space of possible software
implementations more thoroughly and accurately. Accordingly, improve-
ments in this area are expected to improve test efficiency by reducing the
total number of required test cases and, at the same time, increasing test
effectiveness. Section 10.2 expands on this issue.

As to the second improvement route, we are gradually realizing the
potential of automated computerized testing. A discussion of this subject is
presented in Section 10.3.

An additional informal route for error detection of the software is based
on the contribution of future users to its quality through alpha and beta sites.
This option is discussed in Section 10.4.

Valuable sources for additional material on test implementation can be
found in books dealing with software testing, such as Perry (1995), Kit
(1995), Kaner et al. (1999) and Perry and Rice (1997). Other sources are
books on software engineering and software quality assurance such as
Pressman (2000) and Sommerville (2001), as are standards such as ISO/IEC
9000-3 (ISO/IEC, 2001), IEEE Std 829 (IEEE, 1998a), IEEE Std 1012 (IEEE,
1998b) and IEEE Std 12207 (IEEE, 1996, 1997a, 1997b), to cite some of the
major documents in this category.

After completing this chapter, you will be able to:

■ Describe the process of planning and designing tests.
■ Discuss the sources for test cases, with their advantages and disadvantages.
■ List the main types of automated software tests.
■ Discuss the advantages and disadvantages of automated computerized

testing as compared to manual testing.
■ Explain alpha and beta site test implementation and discuss their advan-

tages and disadvantages.

10.1 The testing process

Planning, design and performance of testing are carried out throughout the
software development process. These activities are divided in phases, begin-
ning in the design stage and ending when the software is installed at the
customer’s site. The testing process is illustrated in Figure 10.1.

10.1.1 Determining the test methodology phase

The main issues that testing methodology has to contend with are:

■ The appropriate required software quality standard
■ The software testing strategy.

Decisions about these two issues are fundamental and must be made before
planning begins.

217

10.1 The testing process

Determining the appropriate software quality standard
The level of quality standard selected for a project depends mainly on the
characteristics of the software’s application.

■ Example 1: A software package for a hospital patient bed monitor
requires the highest software quality standard considering the possibly
severe consequences of software failure.

■ Example 2: A package developed for handling feedback information for
an organization’s internal employee training program could make do
with a medium-level software quality standard, assuming that the cost of
failure is relatively low (or much lower than that of Example 1).

■ Example 3: A software package has been developed for sale to a broad
range of organizations. The sales prospects justify higher quality stan-
dards than would a custom-made software package having similar
characteristics yet developed to serve a single customer.

These examples illustrate the main criterion to be applied when choosing the
software quality standard: the evaluation of the nature and magnitude of
expected damages in case of system failure. These damages may affect the
customers and users on one hand, and the developer on the other. In gener-
al, the higher the expected level of damage resulting from failure, the higher
the appropriate standard of software quality.

Typical types of damage to customers and users as well as to developers
are listed in Table 10.1 (see also Table 8.1).

218

10
S

oftw
are testing –

 im
plem

entation

Performing the tests
(implementation)

Designing the tests

Planning the tests

Determining the test
methodology

Figure 10.1: The testing process

219

10.1 The testing process
Table 10.1: Classification of software failure damage

(a) Damage to customers and users

Type of damage Examples

1. Endangers the safety of human lives ■ Hospital patient monitoring systems
■ Aeronautical and aerospace systems
■ Weapons systems

2. Affects accomplishment of an essential ■ E-business sales
organizational function; no system ■ Nationwide multi-warehouse inventory
replacement capability available systems

3. Affects the functioning of firmware, ■ Household appliances
causing malfunction of an entire system ■ Automobiles

■ Computerized electronic equipment

4. Affects accomplishment of an essential ■ Front-desk sales systems that can be
organizational function but a replacement replaced by manual mechanisms
is available

5. Affects proper functioning of software ■ Slow response time for a point-of-sale
packages for business applications (POS) transaction

■ Because of a fault, information that is
regularly supplied on one screen is
distributed among three different
displays

6. Affects the proper functioning of software ■ Computer games
packages for a private customer ■ Educational software

■ Word processors

7. Affects functioning of a firmware application ■ Blackout of the control board of a
but without affecting the entire system household appliance without harming

its functionality
■ Failure of secondary systems (e.g., the

outside temperature display found in
some automobiles)

8. Inconveniences the user but does not ■ Distorted but not misleading displays
prevent accomplishment of the system’s ■ Inability to produce the output listed
capabilities although alternative routes to obtaining

the required information or performing
the same operation are available

(b) Damage to the software developer

Type of damage Examples

1. Financial losses ■ Damages paid for physical injuries
■ Damages paid to organizations for

malfunctioning of software
■ Purchase cost reimbursed to customers
■ High maintenance expenses for repair of

failed systems

2. Non-quantitative damages ■ Expected to affect future sales
■ Substantially reduced current sales

Determining the software testing strategy
The issues that have to be decided include:

■ The testing strategy: should a big bang or incremental testing strategy be
adopted? If incremental testing is preferable, should testing be performed
bottom-up or top-down?

■ Which parts of the testing plan should be performed according to the
white box testing model?

■ Which parts of the testing plan should be performed according to the
automated testing model?

10.1.2 Planning the tests

The tests to be planned include:

■ Unit tests
■ Integration tests
■ System tests.

While unit tests deal with small units of software or modules, integration
tests deal with several units that combine into a subsystem. System tests refer
to the entire software package/system.

It is incumbent upon planners to consider the following issues before ini-
tiating a specific test plan:

■ What to test?
■ Which sources to use for test cases?
■ Who is to perform the tests?
■ Where to perform the tests?
■ When to terminate the tests?

These five issues will be discussed in this section. The last subject of the sec-
tion will be devoted to documentation.

What to test?
A straightforward approach to perfect testing would recommend a full and
comprehensive software test plan that requires performing unit tests for all
the individual units, integration tests for all the unit integrations, and a sys-
tem test to test the software package as a whole. Implementing this
“straightforward” plan ensures top quality software but requires the invest-
ment of vast resources and an extended timetable.

Relatedly, certain questions will undoubtedly arise with respect to com-
mon situations that pertain to the benefits of such an approach. For instance:

■ Is it justified to perform unit tests for a module composed of 98% reused
software?

■ Is a unit test mandatory for a simple module that represents the 12th ver-
sion of a basic module repeatedly applied by the development team over
the last three years?

220

10
S

oftw
are testing –

 im
plem

entation

Only in rare cases it is justified to test “everything”. Usually, the feasibility of
testing “everything” is highly limited. Apart from performance of the list of
tests specified in the contract or required by the developer’s procedures (e.g.
load tests for the system as a whole), several considerations order our prefer-
ences for the tests to be applied. The factors to be decided revolve around:

■ Which modules should be unit tested
■ Which integrations should be tested
■ The priorities determining allocation of testing resources to the individual

software system applications. As a result, low-priority applications are test-
ed by only some types of tests or not included in the system test at all.

In determining what is to be included and what excluded from the system
tests, the unit and integration tests already planned should be considered.

For the software quality of applications and modules not covered by the
unit, integration and system tests, we rely on the code checks done by the
programmer and his team leader and on code inspections and walkthroughs
initiated by the development team.

Rating units, integrations and applications
The methods for rating units (modules), integrations and applications to
determine their priority in the testing plan are based on two factors:

■ Factor A: Damage severity level. The severity of results in case the module
or application fails. Table 10.1 can serve as a guideline to estimate severity.

■ Factor B: Software risk level. The level of risk represents the probability
of failure. In order to determine the risk level of a module, unit, integra-
tion or application, the issues affecting risk require examination. These
issues can be classified as module/application issues and programmer
issues (see Frame 10.1).

221

10.1 The testing process

Frame 10.1 Issues affecting software risk level

Module/application issues

■ Magnitude

■ Complexity and difficulty

■ Percentage of original software (vs. percentage of reused software)

Programmer issues

■ Professional qualifications

■ Experience with the module’s specific subject matter

■ Availability of professional support (backup of knowledge and experience)

■ Acquaintance with the programmer and the ability to evaluate his or her
capabilities.

It is important to note that the issues raised represent a specific case of
the general problem of determining the adequate intensity of quality assur-
ance activities discussed in Section 7.2. Therefore, their underlying logic
reaches beyond software testing priorities.

Generating a combined rating based on the two factors
The combined rating C will be based on the ratings for A (the damage sever-
ity grading) and B (the risk severity grading). C can be calculated in a variety
of ways, for instance:

C = A + B
C = k × A + m × B
C = A × B

where k and m are constants. The inclusion of a unit, integration or appli-
cation in a testing plan and the amount of resources allocated to each test
depend on priorities as expressed in the combined rating. In order to deter-
mine these priorities, initial calculation of the ratings is necessary. As a rule,
the higher the rating, the higher the testing priority and the greater the allo-
cation for testing resources.

Example
Super Teacher is a software package designed to support teachers in man-
aging the grades of elementary school pupils. The package includes eight
applications. Ratings are required in order to plan the allocation of testing
resources for each application. Applications 7 and 8 are based on high per-
centages of reused code. Application 2 was developed by team C,

222

10
S

oftw
are testing –

 im
plem

entation

Implementation tip

Changes may be required in the testing plan as a result of:

■ Unavailability of resources.

■ Time requirements are too long and will cause the project to go beyond its
completion schedule.

■ Disagreements may arise about the evaluations of the expected damage
and risk severity levels and/or about estimates of time and resources
required for the testing activities.

The final testing plan will be completed only after these issues are resolved. Of
course, the plan may need to be updated as the project proceeds, to reflect
changes in conditions, including delays in project implementation.

composed of new employees. A five-level scale is used for rating damage
severity (Factor A) as well as software risk severity level (Factor B).

The combined rating for the application is calculated according to three
different methods:

(1) C = A + B

(2) C = 7 × A + 2 × B

(3) C = A × B

The applications and their single-factor and combined ratings, are presented
in Table 10.2.

When examining the results, it is noteworthy that the two highest prior-
ities were both determined in the same order by all three methods of
calculating the combined rating.

Which sources to use for test cases?
The planners should consider which of the two main sources of test cases –
samples of real-life test cases and/or synthetic test cases – are most appro-
priate to their needs. Each component of the testing plan, dealing with unit,

223

10.1 The testing process

Table 10.2: Super Teacher – results of alternative combined rating methods

Application Damage severity Risk severity Combined rating method*

level A level B A + B 7 × A + 2 × B A × B

1. Input of test results 3 2 5 (4–5) 25 (5) 6 (4)

2. Interface for input and 4 4 8 (1) 36 (1) 16 (1)
output of pupils’ data to
and from other teachers

3. Preparation of lists of 2 2 4 (6–7) 18 (7) 4 (5-6)
low achievers

4. Printing letters to 1 2 3 (8) 11 (8) 2 (8)
parents of low achievers

5. Preparation of reports 3 3 6 (3) 27 (4) 9 (3)
for school principal

6. Display of a pupil’s 4 3 7 (2) 34 (2) 12 (2)
achievements profile

7. Printing of pupil’s term 3 1 4 (6–7) 23 (6) 3 (7)
report card

8. Printing of pupil’s 4 1 5 (4–5) 30 (3) 4 (5–6)
year-end report card

*The figures in brackets in the combined rating columns represent the application preferences.

integration or the system test, requires an individual decision about the
respective test cases and their source:

■ The use of a single or combined source of test cases or both
■ How many test cases from each source are to be prepared
■ The characteristics of the test cases.

We shall return to the subject of test cases later (see Section 10.2).

Who performs the tests?
Who will perform the various tests is determined at the planning stage:

■ Integration tests, but especially unit tests, are generally performed by the
software development team. In some instances it is the testing unit that
performs the tests.

■ System tests are usually performed by an independent testing team (internal
testing team or external testing consultants team).

■ In cases of large software systems, more than one testing team can be
employed to carry out the system tests. The prerequisite decision to be
made in such cases concerns the allocation of system tests between the
internal and the external testing teams.

In small software development organizations, where a separate testing team
does not exist, the following testing possibilities nonetheless exist:

■ Testing by another development team. Each development team will serve
as the testing team for projects developed by other teams.

■ Outsourcing of testing responsibilities.

Where to perform the tests?
Unit and integration testing are naturally carried out at the software
developer’s site. Location becomes important only when system tests
are concerned: should they be performed at the developer’s site or at the
customer’s site (the “target site”)? If system testing is to be performed
by external testing consultants, a third option arises: the consultant’s site.
The choice depends on the test’s or system’s computerized environment:
as a rule, the computerized environment at the customer’s site differs
from that at the developer’s site, despite efforts to “simulate” that
environment. In such situations, apprehension regarding the occurrence of
unpredicted failures once the system is installed at the customer’s site is
reduced as long as the customer is content with the system tests and plans
no acceptance tests.

224

10
S

oftw
are testing –

 im
plem

entation

When are tests terminated?
The decision about the stage at which software testing should be terminated
is meaningful mainly with respect to system tests. The following five alter-
native routes are available, each chosen on the basis of different criteria.

(1) The completed implementation route. According to this route, testing is
terminated once the entire test plan has been carried out and error free
(“clean”) results are achieved for all the required regression tests. This alter-
native applies the perfection approach, which disregards budget and
timetable constraints.

(2) The mathematical models application route. When following this
route, mathematical models are applied to estimate the percentage of
undetected errors, based on the rate of error detection. Testing would be
terminated once the error detection rate declines below the rate that corre-
sponds to a predetermined level of undetected errors which is considered
an acceptable software quality standard. The disadvantage of this route
is that the mathematical model chosen may not fully represent the project’s
characteristics; hence, reliance on this model may undermine the usefulness
of the tests because they will be terminated either too early or too
late. Another deficiency of this approach arises when the model either cho-
sen or available does not supply estimates about the severity of the
undetected errors.

(3) The error seeding route. According to this approach, errors of various
types are seeded (hidden) in the tested software prior to the outset of
testing. The underlying assumption of this route is that the percentage of
discovered seeded errors will correspond to the percentage of real errors
detected. Accordingly, testing will terminate once the residual percentage
of undetected seeded errors reaches a predefined level considered accept-
able for “passing” the system. Besides the additional workload for the
testers, the main deficiency of this approach lies in the experience
upon which it is based. While the testers are expected to face “new and
original” errors in every new project, the seeding plan is totally based on
past experience. As experience with each system differs, the seeding
method can not accurately estimate the residual rate of undetected errors
in unfamiliar systems.

(4) The dual independent testing teams route. If this route is adopted, two
teams implement the testing process independently. By comparing the lists of
detected errors provided by each team, the number of errors left undetected
is estimated as follows.

The teams’ achievements yield:

Na = number of errors detected by team A
Nb = number of errors detected by team B.

225

10.1 The testing process

The following count of detected errors is arrived at after comparison of
the lists:

Nab = number of errors detected by both team A and team B.

We would expect to find:

Pa = proportion of errors detected by team A

Pb = proportion of errors detected by team B

Pab = proportion of errors detected by both team A and team B

P(a)(b) = proportion of errors undetected by both teams

N(a)(b) = number of errors undetected by both teams

N = total number of errors in the software package/program.

Assuming statistically independent testing by the teams and random detec-
tion of errors, simple probability equations can be applied that yield
estimates of P(a)(b), N and N(a)(b). For this purpose we define:

(1) Pab = Pa × Pb = Nab/N

(2) Pa = Na/N

(3) Pb = Nb/N

(4) P(a)(b) = (1 – Pa) × (1 – Pb)

Simple mathematical manipulation of equations (1), (2), (3) and (4) above
yields the following results:

(5) N = Na × Nb / Nab

(6) Pa = Nab / Nb

(7) Pb = Nab / Na

(8) P(a)(b) = (1 – Pa) × (1– Pb) =

= (Na – Nab) × (Nb – Nab) / (Na × Nb)

(9) N(a)(b) = (Na – Nab) × (Nb – Nab) / Nab

Example: The developers of Super Magic, an electronic game for children
aged 4–7, have decided to employ the dual test method. They determined
their testing termination level to be residual undetected errors of 2.5%. As a
complementary “tool” for identifying the undetected errors, they planned
wide application of beta site testing (see Section 10.4) before beginning the
marketing of Super Magic.

The testing teams summarized their achievements after eight weeks of
testing and regression testing as follows:

Team A detected 160 errors (Na = 160)
Team B detected 180 errors (Nb = 180).

226

10
S

oftw
are testing –

 im
plem

entation

Comparison of the detected errors of the two teams yielded the following
result:

Nab = 144

Application of the probabilistic model (equations. (8), (9) and (5) above) yields:

P(a)(b) = 16 × 36 / (160 × 180) = 0.02

N(a)(b) = 16 × 36 / 144 = 4

N = 160 × 180 / 144 = 200

According to the above results, only 2% of the total number of errors were
undetected; testing may therefore be terminated at this stage.

Applying equations (6), (7), (9) and (5) yields the following results: team
A detected 80% of the total number of 200 program errors, while team B
detected 90% of the total number of errors. Together, the two teams suc-
cessfully detected 196 out of the estimated total number of 200 errors,
leaving four undetected errors.

The main deficiency of the dual testing method is that, by definition, it
can be applied only to projects where two independent testing teams are
employed for the same project. Another deficiency lies in the assumption of
random detection of errors. Its methodological basis may be questioned in
some cases, especially where both teams share similar testing experience and
employ the same testing methodology.

(5) Termination after resources have petered out. Termination of this type
occurs when budgets or the time allocated for testing run out. This situation,
unfortunately not uncommon in the software industry, is, of course, undesirable.

227

10.1 The testing process

Implementation tip

Once you consider terminating testing, whether on the basis of a mathematical
model, the error seeding route, or the dual testing teams route, validation of
the accuracy of the results within your organization’s testing environment is of
highest importance.

Systematic follow-up is required for validation:

(1) Data collection. Collection of quality data on the errors detected in the
project: total number of code errors = errors detected in the testing
process + errors detected by the customer and the maintenance team
during the first 6 or 12 months of regular software use.

(2) Analysis of the error data. The analysis will compare estimates
suppliedby the models with the real figures.

(3) Comparative analysis of severity of errors. Errors detected in the testing
process are compared to errors detected by the customer and the
maintenance team during the first 6 or 12 months of regular software use.

Test planning documentation
The planning stage of the software system tests is commonly documented
in a “software test plan” (STP). A template for the STP is presented in
Frame 10.2.

10.1.3 Test design

The products of the test design stage are:

■ Detailed design and procedures for each test
■ Test case database/file.

228

10
S

oftw
are testing –

 im
plem

entation

Frame 10.2 The software test plan (STP) – template

1 Scope of the tests

1.1 The software package to be tested (name, version and revision)
1.2 The documents that provide the basis for the planned tests (name and

version for each document)

2 Testing environment

2.1 Testing sites
2.2 Required hardware and firmware configuration
2.3 Participating organizations
2.4 Manpower requirements
2.5 Preparation and training required of the test team

3 Test details (for each test)

3.1 Test identification
3.2 Test objective
3.3 Cross-reference to the relevant design document and the requirement

document
3.4 Test class
3.5 Test level (unit, integration or system tests)
3.6 Test case requirements
3.7 Special requirements (e.g., measurements of response times, security

requirements)
3.8 Data to be recorded

4 Test schedule (for each test or test group) including time estimates for the
following:

4.1 Preparation
4.2 Testing
4.3 Error correction
4.4 Regression tests

The test design is carried out on the basis of the software test plan as docu-
mented by STP. The test procedures and the test case database/file may be
documented in a “software test procedure” document and “test case file”
document or in a single document called the “software test description”
(STD). A template for the STD is presented in Frame 10.3.

10.1.4 Test implementation

Commonly, the testing implementation phase activities consist of a series of
tests, corrections of detected errors and re-tests (regression tests). Testing is
culminated when the re-test results satisfy the developers. The implementa-
tion phase process is illustrated in Figure 10.2.

The tests are carried out by running the test cases according to the test
procedures. Documentation of the test procedures and the test case data-
base/file comprises the “software test description” (STD), presented in
Frame 10.3.

Re-testing (also termed “regression testing”) is conducted to verify that
the errors detected in the previous test runs have been properly corrected,
and that no new errors have entered as a result of faulty corrections. It is

229

10.1 The testing process

Frame 10.3 Software test descriptions (STD) – template

1 Scope of the tests

1.1 The software package to be tested (name, version and revision)
1.2 The documents providing the basis for the designed tests (name and

version for each document)

2 Test environment (for each test)

2.1 Test identification (the test details are documented in the STP)
2.2 Detailed description of the operating system and hardware configuration

and the required switch settings for the tests
2.3 Instructions for software loading

3 Testing process

3.1 Instructions for input, detailing every step of the input process
3.2 Data to be recorded during the tests

4 Test cases (for each case)

4.1 Test case identification details
4.2 Input data and system settings
4.3 Expected intermediate results (if applicable)
4.4 Expected results (numerical, message, activation of equipment, etc.)

5 Actions to be taken in case of program failure/cessation

6 Procedures to be applied according to the test results summary

quite common to find that the correction-regression testing sequence is
repeated two to four times before satisfactory test results are achieved.
Usually, it is advisable to re-test according to the original test procedure.
However, in many cases, especially in manual software tests, only a portion
of the original test procedure is re-tested to save testing resources and short-
en re-testing duration. The parts of the software system omitted are those
where no errors were detected or where all the detected errors were proper-
ly corrected at a previous point. Partial reruns of the test procedure save
resources and time but involve the risk of not detecting new errors uninten-
tionally introduced in the omitted parts during erroneous correction of the
errors found in other parts of the software. The results of the individual tests
and re-tests are documented in a “software test report” (STR). A template
for the STR is presented in Frame 10.4.

The summary of the set of tests planned for a software package (or
software development project) is documented in the “test summary
report” (TSR).

230

10
S

oftw
are testing –

 im
plem

entation

Re-testing
(regression testing)

Testing team

STRTSR
STR

TSR

Testing team

Testing

Is the quality
of the software

acceptable?

Testing team

STD

Testing design
phase

Implemetation phase

No

Yes
Correction of the
detected errors

Software development
teamEnd of testing

STD = Software Test Description
STR = Software Test Report
TSR = Test Summary Report

Figure 10.2: Implementation phase activities

Correction of detected errors, as carried out by the software developers,
is a highly controlled process. Follow-up of the process is performed to
ensure that all the errors listed in the STR have been corrected.

231

10.1 The testing process

Frame 10.4 Software test report (STR) – template

1 Test identification, site, schedule and participation

1.1 The tested software identification (name, version and revision)
1.2 The documents providing the basis for the tests (name and version for

each document)
1.3 Test site
1.4 Initiation and concluding times for each testing session
1.5 Test team members
1.6 Other participants
1.7 Hours invested in performing the tests

2 Test environment

2.1 Hardware and firmware configurations
2.2 Preparations and training prior to testing

3 Test results

3.1 Test identification
3.2 Test case results (for each test case individually)

3.2.1 Test case identification
3.2.2 Tester identification
3.2.3 Results: OK / failed
3.2.4 If failed: detailed description of the results/problems

4 Summary tables for total number of errors, their distribution and types

4.1 Summary of current tests
4.2 Comparison with previous results (for regression test summaries)

5 Special events and testers’ proposals

5.1 Special events and unpredicted responses of the software during testing
5.2 Problems encountered during testing
5.3 Proposals for changes in the test environment, including test

preparations
5.4 Proposals for changes or corrections in test procedures and test case files

10.2 Test case design

10.2.1 Test case data components

A test case is a documented set of the data inputs and operating conditions
required to run a test item together with the expected results of the run. The
tester is expected to run the program for the test item according to the test
case documentation, and then compare the actual results with the expected
results noted in the documents. If the obtained results completely agree with
the expected results, no error is present or at least has been identified. When
some or all of the results do not agree with the expected results, a potential
error is identified. The equivalence class partitioning method, discussed in
Section 9.5.1, is applied to achieve efficient and effective definition of the test
cases, as sets, to be used for black box testing.

Example
Consider the following test cases for the basic annual municipal property tax
on apartments. The basic municipal property tax (before discounts to special
groups of city dwellers) is based on the following parameters:

S, the size of the apartment (in square yards)

N, the number of persons living in the apartment

A, B or C, the suburb’s socio-economic classification.

The municipal property tax (MPT) is calculated as follows:

For class A suburbs: MPT = (100 × S) / (N + 8)

For class B suburbs MPT = (80 × S) / (N + 8)

For class C suburbs MPT = (50 × S) / (N + 8)

The following are three test cases for the software module used to calculate
the basic municipal property tax on apartments:

Test case 1 Test case 2 Test case 3

Size of apartment – (square yards), S 250 180 98

Suburb class A B C

No. of persons in the household, N 2 4 6

Expected result:
municipal property tax (MPT) $2500 $1200 $350

Application of the test case will produce one or more of the following types
of expected results:

232

10
S

oftw
are testing –

 im
plem

entation

■ Numerical

■ Alphabetic (name, address, etc.)

■ Error message. Standard output informing user about missing data, erro-
neous data, unmet conditions, etc.

With real-time software and firmware, the expected results can be of one or
more of the following types:

■ Numerical and/or alphabetic messages displayed on a monitor screen or
on the equipment display.

■ Activation of equipment or initiation of a defined operation.

■ Activation of an operation, a siren, warning lamps and the like as a reac-
tion to identified threatening conditions.

■ Error message. Standard output to inform the operator about missing
data, erroneous data, etc.

10.2.2 Test case sources

There are two basic sources for test cases:

■ Random samples of real life cases. Examples:

– A sample of urban households (to test a new municipal tax informa-
tion system)

– A sample of shipping bills (to test new billing software)

– A sample of control records (to test new software for control of man-
ufacturing plant production)

– A recorded sample of events that will be “run” as a test case (to test
online applications for an Internet site, and for real-time applications).

■ Synthetic test cases (also called “simulated test cases”) prepared by test
designers. This type of test case does not refer to an existing customer,
shipment or product but to combinations of the system’s operating

233

10.2 Testcase design

Implementation tip

It is highly important that the test case file include items where the expected
result is an error message, as well as non-standard items and items displaying
undesirable operation conditions, and so forth. Only by testing the software
for non-regular conditions can we be assured that it will remain under control
should undesirable situations arise. In such cases, the software is expected to
activate pre-defined reactions, alarms, operator flags, and so forth – all in
ways appropriate to system and customer needs. See Section 9.5.1 for invalid
equivalence classes.

conditions and parameters (defined by a set of input data). These combi-
nations are designed to cover all known software operating situations or
at least all situations that are expected to be in frequent use or that belong
to a high error probability class. For the equivalence class method, see
Section 9.5.1.

The implications of using each test case source are summarized and com-
pared in Table 10.3.

In most cases, the test case file preferred should combine sample cases
with synthetic cases so as to overcome the disadvantages of a single source
of test cases and to increase the efficiency of the testing process. In the case
of combined test case files, test plans are often carried out in two stages: in
the first stage, synthetic test cases are used. After correction of the detected
errors, a random sample of test cases is used in the second stage.

234

10
S

oftw
are testing –

 im
plem

entation Table 10.3: Comparison of test data sources

Implication Type of test case source

Random sample of cases Synthetic test cases

Effort required to Low effort, especially where High effort; the parameters of
prepare a test expected results are available and each test case must be
case file need not be calculated determined and expected results

calculated

Required size of Relatively high as most cases refer Relatively small as it may be
test case file to simple situations that repeat possible to avoid repetitions of

themselves frequently. In order to any given combination of
obtain a sufficient number of parameters
non-standard situations, a
relatively large test case file needs
to be compiled

Efforts required to High efforts (low efficiency) as Low efforts (high efficiency) due
perform the tests must be carried out for large to the relatively small test case
software tests test case files. The low efficiency file compiled so as to avoid

stems from the repetitiveness of repetitions
case conditions, especially for
the simple situations typical to
most real-life case files

Effectiveness – ■ Relatively low – unless the test ■ Relatively high due to good
probability of error case files are very large – due coverage by design
detection to the low percentage of ■ Good coverage of erroneous

uncommon combinations situations by test case file
of parameters design

■ No coverage of erroneous ■ Little possibility of identifying
situations unexpected errors as all test

■ Some ability to identify cases are designed according
unexpected errors for unlisted to predefined parameters
situations

Stratified Sampling
Substantial improvement in the efficiency of random sampling of test cases is
achieved by using a stratified sampling procedure rather than standard ran-
dom sampling of the entire population. Stratified sampling allows us to break
down the random sample into sub-populations of test cases, thereby reducing
the proportion of the majority “regular” population tested while increasing
the sampling proportion of small populations and high potential error popu-
lations. This method application minimizes the number of repetitions at the
same time that it improves coverage of less frequent and rare conditions.

As an example, Garden City’s population of about 100 000 households
is divided between the city itself (70%), suburb Orange (20%), suburb
Lemon (7%) and suburb Apple (3%). The suburbs and the city differ sub-
stantially in the characteristics of their housing and socio-economic status.
Some 5% of the households, the great majority of them city dwellers, enjoy
tax reductions entailing 40 different types of discounts (disabled, very large
families, low-income single-parent families with more than six children,
etc.). Originally, the standard 0.5% sample had been planned. It was later
replaced by the following stratified random sample:

Households Standard sampling Stratified sampling
(no.) (no.) (no.)

Regular households 65 000 325 100

Households enjoying discounts 5 000 25 250

Suburb A 20 000 100 50

Suburb B 7 000 35 50

Suburb C 3 000 15 50

Total 100 000 500 500

Test cases for reused software.
It is quite common for reused software to include many applications not
required for the current software system in addition to the required applica-
tions. In situations of this kind, planners should consider which reused
software modules should be tested. Other modules of the reused software
will not be tested.

10.3 Automated testing

Automated testing represents an additional step in the integration of com-
puterized tools into the process of software development. These tools have
joined computer aided software engineering (CASE) tools in performing a
growing share of software analysis and design tasks.

235

10.3 A
utom

ated testing

Several factors have motivated the development of automated testing
tools: anticipated cost savings, shortened test duration, heightened thor-
oughness of the tests performed, improvement of test accuracy, improvement
of result reporting as well as statistical processing and subsequent reporting.
The possibility of efficiently performing various classes of tests previously
not feasible or impossible to perform manually, such as load tests, has like-
wise propelled the drive for investment in automating testing development.

Valuable sources for additional material on automated testing can be
found in books such as Buwalda et al. (2002), Fewster and Graham (1999)
and Dustin et al. (1999), as well as in other publications.

This section covers:

■ The process of automated testing
■ The types of automated tests
■ The advantages and disadvantages of automated tests.

10.3.1 The process of automated testing

Typically, automated software testing requires test planning, test design, test
case preparation, test performance, test log and report preparation, re-test-
ing after correction of detected errors (regression tests), and final test log and
report preparation including comparison reports. The last two activities may
be repeated several times.

At this stage of its development, the planning, design and test case prepa-
ration of automated testing require substantial investment of professional
manpower. It is the computerized test performance and the reporting that
yield the main economic, quality and timetable advantages of the process.
The availability of the required professional manpower and the extent they
are to be used represent the main factors to be considered before initiating
automation of software tests.

To better understand the issues, a comparison of automated and manu-
al testing is presented in Table 10.4.

10.3.2 Types of automated tests

Numerous types of automated tests are available; some have become more or
less routine. The more established automated tests are mainly those employed
for testing tasks that have a high number of regression tests and those per-
forming test classes not feasible for manual testing such as load testing. The
main types of automated tests currently used are listed in Frame 10.5.

Code auditing
This test performs automated qualification testing. The computerized code
auditor checks the compliance of code to specified standards and procedures
of coding. The auditor’s report includes a list of the deviations from the stan-
dards and a statistical summary of the findings.

236

10
S

oftw
are testing –

 im
plem

entation

A code auditor can verify the following:

■ Does the code fulfill code structure instructions and procedures?

– Module size. Some code auditors calculate for the tested code com-
plexity metrics, such as McCabe’s cyclomatic complexity metrics

– Levels of loop nesting
– Levels of subroutine nesting
– Prohibited constructs, such as GOTO.

237

10.3 A
utom

ated testing

Frame 10.5 The main types of automated tests

■ Code auditing

■ Coverage monitoring

■ Functional tests

■ Load tests

■ Test management

Table 10.4: A comparison of automated and manual testing by phase

Automated testing Manual testing

Testing process Automated/ Comments Automated/ Comments
phases manual manual

performance performance

Test planning M Preparing test plan M Preparing test plan

Test design M Preparing test database M Preparing testing
procedure

Preparing test M Preparing test cases M Preparing test cases
cases and their recording

into test case database

Performance of A Computerized running M Performing tests
the tests the tests with testers

Preparing test log A Computerized output M Prepared by testers
and test reports

Regression tests A Computerized running M Performing tests by
the tests testers

Preparing test log A Computerized output M Prepared by testers
and test reports
including
comparative
reports

■ Does the coding style follow the coding style procedures?

– Naming conventions for variables, files, etc.
– Unreachable code lines of program or entire subroutines.

■ Do the internal program documentation and help support sections follow
the coding style procedures?

■ Format and size of comments:

– Location of comments in the file
– Help index and presentation style.

Coverage monitoring
Coverage monitors produce reports about the line coverage achieved when
implementing a given test case file. The monitor’s output includes the per-
centage of lines covered by the test cases as well as listings of uncovered lines.
These features make coverage monitoring a vital tool for white-box tests.

Functional tests
Automated functional tests often replace manual black-box correctness tests.
Prior to performance of these tests, the test cases are recorded into the test
case database. The tests are then carried out by executing the test cases
through the test program. The test results documentation includes listings of
the errors identified in addition to a variety of summaries and statistics as
demanded by the testers’ specifications.

After the corrections have been completed, re-testing the whole program
or parts of it (“regression tests”) is commonly required. Automated regres-
sion tests performed for the whole program verify that the error corrections
have been performed satisfactorily and that the corrections have not uninten-
tionally introduced new errors in other parts of the program. The regression
tests themselves are performed with the existing test case database; hence,
these tests can be executed with minimal effort or professional resources. An
additional automated testing tool that supports functional tests, the output
comparator, is of great help in the regression test stage. The automated com-
parison of outputs of successive tests, together with the results of the
functional testing tools, enables testers to prepare an improved analysis of the
regression test results and to help developers to discover the causes of the
errors detected in those tests. It is quite common for a program to require
three or four regression tests before its quality level is considered satisfactory.

Load tests
The history of software system development contains many sad chapters of
systems that succeeded in correctness tests but severely failed – and caused
enormous damage – once they were required to operate under standard full
load. The damage in many cases was extremely high because the failure
occurred “unexpectedly”, when the systems were supposed to start provid-
ing their regular software services. The most spectacular failures tend to take

238

10
S

oftw
are testing –

 im
plem

entation

place in very large information systems that serve large numbers of users at
any one time or in real-time firmware systems that handle a high volume of
simultaneous events.

For load tests to be performed, the maximal load environment must first
be created. If executed manually, the tests must be conducted when the sys-
tem is under maximal user load, a condition that is impractical in most cases
and impossible in others. Therefore the only way to carry out load tests for
medium-sized and large systems is by means of computerized simulations
that can be programmed to closely approach real load conditions.

The load tests themselves are based on scenarios of the maximal load sit-
uations – composed of events or transactions and their frequencies – that the
software system is expected to confront and deal with. This allows automat-
ed load testing (stress tests) to be combined with availability and efficiency
tests, which likewise require maximal load environment for their execution.

At this point, “virtual users and virtual events” come into play. For oper-
ating scenarios devised for load testing, virtual users and virtual events are
generated and operated in a hardware and communication environment
defined by the system planner. A virtual user or event emulates the behavior
of a human user or a real event. Its behavior is “constructed” by applying
real outputs captured from real user applications, that are then used as
inputs for the simulation. The simulation’s required loads and frequencies
are also created by computerization. The simulation then produces outputs
similar to those captured from real-life users at the frequencies and with the
user mix defined by the scenario. These outputs serve as inputs for the test-
ed software. The tests are carried out with the final approved version of
software and with the planned hardware and communication configuration.

The computerized monitoring of the load tests produces software system
performance measurements in terms of reaction time, processing time, and
other desired parameters. These are compared with the specified maximal
load performance requirements in order to evaluate how well the software
system will perform when in daily use. Usually, a series of load tests is con-
ducted, with the load gradually increased to the specified maximal load and
beyond. This step enables a more thorough study of system performance
under full load. The computer-produced tables and graphs, based on the per-
formance measurement information, allow the tester to decide what changes
are to be introduced into each simulation for each test iteration. For exam-
ple, the tester may wish to:

■ Change the hardware, including the communication system, to allow the
software system to fulfill its performance requirements at each load level.

■ Change the scenario in order to reveal the load contributed by each user
or event.

■ Test an entirely different scenario.

■ Test new combinations of hardware and scenario components.

The tester will continue his iterations till he finds the appropriate hardware
configuration.

239

10.3 A
utom

ated testing

Example
The “Tick Ticket” is a new Internet site planned to meet the following
requirements:

■ The site should be able to handle up to a maximum of 3000 hits per hour.

■ Average reaction time required for the maximal load of 3000 hits per
hour is 10 seconds or less.

■ Average reaction time required for the regular load of 1200 hits per hour
is 3 seconds or less.

The plan: The load tests were planned for the following series of hit fre-
quencies (hits per hour): 300, 600, 900, 1200, 1500, 1800, 2100, 2400,
2700, 3000, 3300 and 3600. An initial hardware configuration was defined,
to be adapted according to the load test results.

Implementation: Three series of load tests were run before the adequate
hardware and communication software configuration was determined. After
the first and second series of load tests, the hardware configuration was
changed to increase the system’s capacity so as to achieve the required reac-
tion times. The second configuration fulfilled the reaction time requirements
for the average load but not for the maximal load. Therefore, capacity was
further increased. In its final configuration, the software system could satis-
factorily handle loads 20% higher than the originally specified maximal
load. See Table 10.5 for the average reaction times measured at each round
of load testing.

240

10
S

oftw
are testing –

 im
plem

entation

Table 10.5: Tick ticket load tests – measured reaction times

Average reaction time (seconds) for load tests

Hit frequency Series I Series II Series III
(hits per hour) (hardware (hardware (hardware

configuration I) configuration II configuration III)

300 2.2 1.8 1.5

600 2.5 1.9 1.5

900 3.0 2.0 1.5

1200 3.8 2.3 1.6

1500 5.0 2.8 1.8

1800 7.0 3.5 2.2

2100 10.0 4.5 2.8

2400 15.0 6.5 3.7

2700 22.0 10.5 4.8

3000 32.0 16.0 6.3

3300 55.0 25.0 7.8

3600 95.0 38.5 9.5

Test management
Testing involves many participants occupied in actually carrying out the tests
and correcting the detected errors. In addition, testing typically monitors per-
formance of every item on long lists of test case files. This workload makes
timetable follow-up important to management. Computerized test manage-
ment supports these and other testing management goals. In general,
computerized test management tools are planned to provide testers with
reports, lists and other types of information at levels of quality and availabil-
ity that are higher than those provided by manual test management systems.

Automated test management software packages provide features appli-
cable for manual as well as automated testing and for automated tests only.
The inputs the testers key in, together with the software package’s capabili-
ties, determine the application’s scope. Especially important here is the
package’s interoperability with respect to the automated testing tools.

Frame 10.6 provides a concise summary of the features offered by auto-
mated test management software packages.

241

10.3 A
utom

ated testing

Frame 10.6 Automated test management packages – main features

Type of feature Automated/manual
testing

A. Test plans, test results and correction follow-up

Preparation of lists, tables and visual presentations
of test plans A, M

List of test case A, M

Listing of detected errors A, M

Listing of correction schedule (performer, date of
completion, etc.) A, M

Listing of uncompleted corrections for follow-up A, M

Error tracking: detection, correction and regression tests A, M

Summary reports of testing and error correction follow-up A, M

B. Test execution

Execution of automated software tests A

Automated listing of automated software test results A

Automated listing of detected errors A

C. Maintenance follow-up

Correction of errors reported by users A, M

Summary reports for maintenance correction services
according to customer, software system applications, etc. A, M

The availability of automated testing tools
Most of the automated testing tools are specialized, and planned for use in
specific areas of programming and system applications: client/server systems,
C/C++, UNIX applications, a specific software house’s ERP (Enterprise
Resource Planning) applications, to cite just a few. The variety of tools cur-
rently offered covers most prevailing programming areas and applications,
and they are readily available from the software development companies spe-
cializing in automated testing tools.

10.3.3 Advantages and disadvantages of automated tests

The decision to employ automated testing tools is difficult to make because
of the substantial investments involved in purchasing the tools and in ade-
quately training a team for their effective and efficient implementation.

The first part of this section presents a comprehensive qualitative com-
parison of automated testing and manual testing, conducted by listing the
advantages and disadvantages of automated testing. A quantitative compar-
ison, especially an economic analysis based on empirical data, is sorely
needed to support the qualitative comparison. The second part of the section
deals with some early quantitative findings that point to the economic
advantages of using automated testing tools.

The main advantages of automated tests are:

(1) Accuracy and completeness of performance. Computerized testing guar-
antees – to the maximum degree possible – that all tests and test cases
are carried out completely and accurately. Manual testing suffers from
periods of tester weariness or low concentration, traits that induce inac-
curate keying-in of the test case, omissions, and so forth.

(2) Accuracy of results log and summary reports. Automated tests are pro-
grammed for accuracy of reporting of errors detected. In contrast, the
testers who perform manual tests occasionally do not recognize errors
and may overlook others in their logs and summaries.

(3) Comprehensiveness of information. Naturally, once the test data –
including test results – are stored in a database, queries and reports
about the test and its results are incomparably more available than the
same items would be after performance of manual tests. Besides sup-
porting testing and correction follow up, the improved error
information enhances the input needed for preventive and corrective
actions (see Chapter 16).

(4) Few manpower resources required to perform tests. Manual perform-
ance of testing, in comparison, is a major consumer of manpower
resources.

(5) Shorter duration of testing. The duration of computerized testing is usu-
ally far shorter than that of manual testing. In addition, automated tests
can be carried out, uninterrupted, 24 hours a day, seven days a week, in

242

10
S

oftw
are testing –

 im
plem

entation

contrast to manual testing, which might require one testing team to
work a three-shift day or, alternatively, to employ three testing teams,
both being rather impractical in most cases.

(6) Performance of complete regression tests. Because of the shortage of
time and manpower resources, manual regression tests tend to be con-
ducted on only a relatively small portion of the software package.
Hence, the advantages of automated testing: the minimal time and man-
power resources required make it possible to rerun tests based on
previous results. This option substantially reduces the risk of not detect-
ing any errors introduced during the previous round of corrections.

(7) Performance of test classes beyond the scope of manual testing.
Computerization enables the tester to perform, for example, load tests,
availability tests and efficiency tests for medium- and large-scale sys-
tems. These tests are almost impossible to perform manually on systems
of greater than small size.

The main disadvantages of automated testing are:

(1) High investments required in package purchasing and training. An
organization that decides to implement automated testing must invest in
software packages and additional training to qualify its staff to perform
those tests. Despite the claims of the software package developers,
although the amount of training varies by software package, it is still
long and thus expensive.

(2) High package development investment costs. In cases where available
automated testing packages do not fully suit the system’s requirements,
custom-made packages must be developed.

(3) High manpower requirements for test preparation. The human
resources required for preparing an automated test procedure are usual-
ly substantially higher than those required for preparing a manual
procedure for the same software package.

(4) Considerable testing areas left uncovered. At present, automated software
testing packages do not cover the entire variety of development tools and
types of applications either available manually or still needed. This forces
testers to mix manual and automated testing in their test plans.

The advantages and disadvantages of automated software testing are pre-
sented in Frame 10.7.

Quantitative comparison – empirical findings
Dustin et al. (1999) report the findings of a study carried out during
1997–1998, initiated by the European Systems and Software Institute (ESSI).
Graphical user interface (GUI) software was chosen to be tested. The study
comprised 10 comparative experiments, with parallel manual testing and

243

10.3 A
utom

ated testing

automated testing performed in each experiment. A summary of the results
is presented in Table 10.6.

The study results conform with qualitative evaluations, meaning that the
average preparation time for automated testing is substantially more than
that for manual testing of a similar software system, with 65% more
resources consumed, on average, in preparation for the automated testing.
Also as anticipated, the tester’s run execution time for automated testing is
much less than that for manual testing, or 18.7 times more, on average, than
the time testers need to invest in automated test runs. Based on these figures,
the study’s authors estimated N – the minimum number of test runs (the first
test run and subsequent regression runs) that economically justify applica-
tion of automated testing (the “break-even point”). Assuming that the
resources invested in regression tests, manual as well as automated, are

244

10
S

oftw
are testing –

 im
plem

entation

Frame 10.7 Automated software testing: advantages and
disadvantages

Advantages Disadvantages

1. Accuracy and completeness 1. High investments required in
of performance package purchasing and training

2. Accuracy of results log and 2. High package development
summary reports investment costs

3. Comprehensive information 3. High manpower resources for test

4. Few manpower resources for
preparation

test execution 4. Considerable testing areas left

5. Shorter testing periods
uncovered

6. Performance of complete
regression tests

7. Performance of test classes beyond
the scope of manual testing

Table 10.6: Automated versus manual testing – GUI testing experiment results

Preparation time Tester’s run execution time

Time range Time range

Average Min. Max. Average Min. Max.
(hours) (hours) (hours) (hours) (hours) (hours)

Automated testing 19.2 10.6 56.0 0.21 0.1 1.0

Manual testing 11.6 10.0 20.0 3.93 0.5 24.0

Source: Adapted from Dustin et al. (1999)

similar to those invested in the first test run, N can be derived according to
the following equation:

19.2 + 0.21 × N = 11.6 + 3.93 × N
N = 2.04

Based on this model, if the testing process requires more than one regression
test run, automated testing is to be preferred.

Some reservations, including those mentioned by Dustin et al. (1999),
are evident:

■ The break-even point model ignores or considers negligible the heavy
investments required for acquiring automated testing capabilities and its
regular upgrading.

■ Manual regression test runs, especially second, third and later regression
runs, are usually partial, therefore requiring only a portion of the
resources consumed during the first test run.

■ Automated test runs are carried out without any human interaction dur-
ing the run.

■ No modifications (preparation effort) are required in the automated test
files for performing regression tests.

It should be emphasized that even if considering the above reservations would
change N to be N = 4 or more, the important qualitative advantages of auto-
mated testing would lead us to prefer it to manual testing in many cases.

Much additional research is needed to construct a comprehensive inte-
grated model for the comparison, quantitative and qualitative, of the two
testing approaches. The research efforts should be directed to collecting suf-
ficient empirical data and to developing models capable of quantifying a
good portion of the qualitative advantages of automated testing.

10.4 Alpha and beta site testing programs

Alpha site and beta site tests are employed to obtain comments about quali-
ty from the package’s potential users. They are additional commonly used
tools to identify software design and code errors in software packages in com-
mercial over-the-counter sale (COTS). In a way, alpha and beta site tests
replace the customer’s acceptance test, a test that is impractical under the con-
ditions of commercial software package development. However, an analysis
of the characteristics of these tests leads one to conclude that in no case
should they replace the formal software tests performed by the developer.

Alpha site tests
“Alpha site tests” are tests of a new software package that are performed at
the developer’s site. The customer, by applying the new software to the spe-
cific requirements of his organization, tends to examine the package from

245

10.4 A
lpha and beta site testing program

s

angles not expected by the testing team. The errors identified by alpha site
tests are expected to include the errors that only use by a real user can reveal,
and thus should be reported to the developer.

Beta site tests
Beta site tests are much more commonly applied than are alpha site tests.
The beta site test process can be described as follows. Once an advanced ver-
sion of the software package is available, the developer offers it free of
charge to one or more potential users. The users install the package in their
sites (usually called the “beta sites”), with the understanding that they will
inform the developer of all the errors revealed during trials or regular usage.
Participants in beta site testing are often users of previously released pack-
ages, sophisticated software professionals and the like. Because beta site tests
are considered to be a valuable tool, some developers involve hundreds or
even thousands of participants in the process.

The main advantages of beta site tests are:

■ Identification of unexpected errors. Users usually examine software in an
entirely different way and, of course, apply it in ways far from those
anticipated in the developer’s scenarios. Consequently, they reveal errors
of a type that professional testers rarely identify.

■ A wider population in search of errors. The wide range of participants
involved in beta site testing contributes a scope of software usage experi-
ence and potential for revealing hidden errors that go beyond those
available at the developer’s testing site.

■ Low costs. As the participants are not paid for their participation or for
error information they report, the only costs encountered are the price of
the package and its delivery free of charge to the customer. In most cases
these costs, including the loss of sales, are relatively low.

The main disadvantages of beta site tests are:

■ A lack of systematic testing. As participants in beta site tests are in no
way obligated to prepare orderly reports, they tend to report scattered
experience and leave untouched applications as well as segments of those
applications.

■ Low quality error reports. Participants are not professional testers; hence,
their error reports are often faulty (some report no errors at all), and it is
frequently impossible to reconstruct the error conditions they report.

■ Difficult to reproduce the test environment. Beta site testing is usually
performed in an uncontrolled testing environment, a fact that creates dif-
ficulties when attempting to identify the causes of the reported errors.

■ Much effort is required to examine reports. A relatively high investment
of time and human resources is needed when examining reports due to
the frequent repetitions and low quality of reporting.

246

10
S

oftw
are testing –

 im
plem

entation

Alpha site testing enjoys the same advantages and displays the same disad-
vantages as beta site testing. Alpha site tests are usually more difficult to
organize than beta site tests, but tend to be fruitful.

Summary

(1) Describe the process of planning and designing tests.

The planning activities include:
■ Determining the test methodology
■ Planning unit and integration tests
■ Planning the system test
■ Designing the tests.

Determining the test methodology deals mainly with decisions about the required
software quality standard and the software strategy: big bang or incremental test-
ing (bottom-up or top-down), and the extent of automated testing.
Planning unit and integration tests. Prior to planning the tests, preferences must be
established as to which unit and integration test will be carried out, based on the
system’s characteristics.
Planning the system test. Planners focus on the following main issues:
■ What to test?
■ Which types of sources are to provide the test cases?
■ Who performs the tests?
■ Where will the tests be performed?
■ When to terminate the tests?

Designing the tests. The products of the test design stage are:
■ Detailed design and procedure for each test,
■ Test case database/file.

(2) Discuss the sources for test cases and their advantages and disadvantages.

There are basically two types of test case sources:
■ Random samples of real-life cases
■ Synthetic test cases (“simulated test cases”) prepared by the test designers.

247

S
um

m
ary

Implementation tip

Testers and developers should be especially cautious when applying beta site
testing. Beta site testing of pre-matured software may detect many software
errors but can result in highly negative publicity among potential customers. In
some cases, these negative impressions can reach the professional journals
and cause substantial market damage. We therefore recommend that alpha
site testing be initiated first, and that beta site testing be delayed until the
alpha site tests have been completed and their results analyzed.

Comparison of the advantages and disadvantages of each source yields:
■ The effort required to prepare a test case file is low for random samples, high for

synthetic cases.
■ The required size of test case is relatively high for random samples, relatively

low for synthetic cases. Efforts required to perform the software tests are rela-
tively high for relatively large random samples, relatively low for the relatively
small synthetic cases.

■ Effectiveness (the probability of revealing errors) is relatively low for random
samples unless the files are very large and relatively high for synthetic cases
due to the good coverage of regular and erroneous situations as designed by the
test designers. Moreover, in random sampling, although no coverage is provid-
ed for invalid situations, the probability of identifying unexpected errors for
valid situations exists, a quality that, by definition, is excluded from the cover-
age built into the synthetic cases.

■ The performance of the random sample test cases can be substantially
improved by employing stratified sampling. In most cases, the preferred test
case file will combine random sample test cases with synthetic cases so as to
overcome the disadvantages of a single source.

(3) List the main types of automated software tests.

The main types are:
■ Code auditors. The code auditor checks the compliance of code to specified

standards and procedures of coding. This is an automated type of qualification
testing. The auditor’s report includes a list of the deviations from the standards
and a statistical summary of the findings.

■ Coverage monitors produce reports about the line coverage achieved by imple-
menting a given test case file.

■ Functional tests. Automated functional tests replace manual black-box correct-
ness tests. The first test runs as well as the regression test runs, applied with the
same test files and the same test cases, are performed by a computer program
that replaces the “classic” tester.

■ Load tests. The load tests are based on simulated scenarios of maximal load
situations the software system will confront. An automated testing system
enables measurement of the expected performance of the software system
under various load levels .

■ Test management. The main objectives of these automated tools are to provide
comprehensive follow-up and reporting of the testing and correction of detect-
ed errors.

(4) Discuss the advantages and disadvantages of automated computerized testing
compared to manual testing.

The main advantages of automated tests are:
■ Accuracy and completeness of performance
■ Accuracy of results log and summary reports
■ Ability to obtain much more comprehensive information

248

10
S

oftw
are testing –

 im
plem

entation

■ Performance requires few manpower resources
■ Shorter testing periods
■ Performance of complete regression tests
■ Performance of test classes beyond the reach of manual testing.

The main disadvantages of automated tests are:
■ High investments required in package purchasing and training
■ High manpower tester resources for preparing the tests
■ Considerable testing areas not covered by automated testing.

(5) Explain the inplementation of alpha and beta site test and discuss their advan-
tages and disadvantages.

Alpha site testing is a method by which customers try out the new software package
at the developer’s site. Beta site testing is a method by which a selected group of
users or customers receive an advanced version of the software to be installed in
their sites, and report the errors they find in the process of their experiments with
the program and the program’s regular use.

The main advantages of beta site testing are:
■ Identification of unexpected errors
■ Wide scope of coverage in search for errors
■ Low costs.

The main disadvantages of beta site tests are:
■ Lack of systematic testing
■ Error reports of low quality
■ Much human effort expended to examine participants’ reports.

Selected bibliography

1. Buwalda, H., Jenssen, D. and Pinkster, I. (2002) Integrated Test Design and
Automation Using the TestFrame Method, Addison-Wesley-Longman, Reading,
MA.

2. Dustin, E., Rashka, J. and Paul, J. (1999) Automated Software Testing–
Introduction, Management and Performance, Addison-Wesley-Longman,
Reading, MA.

3. Fewster, M. and Graham, D. (1999) Software Test Automation-Effective Use of
Test Execution Tools, ACM Press, New York.

4. IEEE (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York, NY, USA.

5. IEEE (1997a) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Life Cycle Data”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

6. IEEE (1997b) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life

249

S
elected bibliography

Cycle Processes – Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

7. IEEE (1998a) “IEEE Std 829-1998 – IEEE Standard for Software Test
Documentation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

8. IEEE (1998b) “IEEE Std 1012-1998 – IEEE Standard for Software Verification
and Validation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

9. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

10. Kaner, C., Falk, J. and Nguyen, H. Q. (1999) Testing Computer Software, 2nd
edn, John Wiley & Sons, New York.

11. Kit, E. (1995) Software Testing in the Real World – Improving the Process,
Addison-Wesley, Wokingham, UK.

12. Perry W. (1995) Effective Methods for Software Testing, John Wiley & Sons,
New York, N.Y.

13. Perry, W. E. and Rice, R. W. (1997) Surviving the Top Ten Challenges of
Software Testing – a People-Oriented Approach, Dorset House Publishing, New
York, N.Y.

14. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

15. Sommerville I. (2001) Software Engineering, 6th edn, Addison-Wesley, Harlow,
Essex, UK

Review questions

10.1 “Alpha phone” is a software package that includes the following among its features:

■ It manages a household phone address book.
■ It produces printouts of the phone book according to a variety of classifications.
■ It analyzes the monthly traffic of incoming and outgoing phone calls accord-

ing to the classifications mentioned above.

You are called to perform a documentation test of the very elegant “alpha
phone” users’ manual. List at least five types of possible documentation errors in
the manual.

10.2 “MPT star” is a program for calculating the annual municipal property taxes,
based on the neighborhood, the type of property (house, store, apartment, etc.),
the size of the property, the discounts to which the owner is entitled (pensioners,
low-income large family, single-parent family, etc.).

Suggest a framework for stratified sampling test cases from the citizens’ file.
List your assumptions about the population’s distribution.

10.3 “In most cases, the test case file preferred should combine sample cases
with synthetic cases so as to overcome the disadvantages of a single source of

250

10
S

oftw
are testing –

 im
plem

entation

test cases and to increase the efficiency of the testing process.” Taken from
Section 10.2.2.

(1) Elaborate on how applying a mixed-source methodology overcomes the dis-
advantages of a single-source methodology.

(2) Elaborate on how applying a mixed-source methodology enhances testing
efficiency. Provide a hypothetical example.

10.4 Software testing experts claim that applying a stratified sample of real-life test
cases is more effective for identifying errors and more efficient than regular ran-
dom sampling.

(1) If you agree, list your arguments.
(2) If you disagree, list your contradictory arguments.

10.5 Reviewing the advantages and disadvantages of automated software testing:

(1) Explain the main advantages and disadvantages of automated tests in your
own words.

(2) Referring to your answer to (1), suggest what project characteristics are most
suitable for automated testing. List your assumptions.

(3) Referring to your answer to (1) suggest what project characteristics are most
unsuitable for automated testing. List your assumptions.

10.6 Mr Aleppo, the head of the software development department, claims that beta
site tests should always be carried out as early as possible in the development
process as there are no disadvantages in this method.

(1) Are beta site tests really a “disadvantage free” method? If not, what are their
main disadvantages and risks?

(2) Recommend guidelines that will minimize the risks and disadvantages in
applying beta site tests as listed in (1).

Topics for discussion

10.1 RSM–Real Time Software Magicians Ltd signed a contract with defense authori-
ties for development of “Light in the Darkness”, an advanced night vision system
for infantry use. The system is based on a comprehensive pattern recognition
model, whose development was completed last year at a prestigious university.
It is expected to identify the presence of a human, standing, sitting or lying, from
a distance of 100 meters. The system to be used by the soldier (“soldier’s set”)
contains a unit for geographic identification based on the satellite GPS technolo-
gy, and includes a ciphered communication system linking the soldier to
headquarters.

Headquarters’ central unit for processing the data received from the night vision
system (from the front line) is not part of the “Light in the Darkness” project.

The “Light in the Darkness” system is constructed of four subsystems (inte-
grations) and 13 units (modules) as shown in Table 10.7.

251

Topics
for discussion

Due to timetable and budget considerations, it was decided to carry out only
five unit tests and only two integration tests on the new system.

(1) Provide support for the RSM–Real Time Software Magicians testing team by
planning a comprehensive method to determine the priorities of the differ-
ent modules to be included in the unit testing plan. The priorities will be
based on two criteria:

■ Severity level: the severity of the damages anticipated if this module fails
during real application of the system

■ Risk level: the probability that the module will fail if it is not tested and
corrected accordingly.

(2) Apply the method suggested in (1) to rank the priorities of the 13 modules
of “Light in the Darkness” described above. List your assumptions.

(3) Adapt the same method to determine the priorities of the integrations to be
tested as listed in the description of the example.

(4) Considering that the modules have already been included in the unit test
plan, does this fact change the method for determining the priorities you

252

10
S

oftw
are testing –

 im
plem

entation

Table 10.7: Structure of “Light in the Darkness” system

Subsystems Units (modules)
(integrations)

1. Subsystem for night 1.1 Unit that identifies humans according to a mathematical
recognition of humans pattern recognition model

1.2 Unit for display of the identified humans on the screen of
the “soldier’s set”

1.3 Unit for calculating and displaying on the screen the
distance to the identified humans

1.4 Unit for creating a display on the soldier’s screen of the
combined identification data from all the unit’s soldiers

1.5 Unit for warning the soldier according to the combined
identification data

2. Subsystem for 2.1 Unit for communicating the geographic location of the
ciphered communication military unit

2.2 Unit for communicating the identification of the observed
human figures

2.3 Unit for performing the ciphered communication according
to military communication standards

3. Subsystem for 3.1 Unit for recording set usage time by the soldier
documentation of the 3.2 Unit for daily reporting of the soldier’s set usage according
soldiers sets’ usage to the soldier’s set identification number

3.3 Unit for producing notices about soldier’s sets that exceed
1000 hours of usage (for preventative maintenance)

4. Subsystem for 4.1 Unit for recording communication times from the units
recording of 4.2 Unit for processing daily reports of when communications
communication times were received
of the military units

reached with respect to integrations in (3)? Applying the updated method to
the integrations of “Light in the Darkness”, is there any change in the result-
ing priorities?

10.2 H.C. – Hardware Center Ltd – has developed a new billing software system to bill
regular customers and H.C. credit cardholders, who include private as well as cor-
porate customers. Regular customers are billed as they complete their purchase;
they are not entitled to discounts. All H.C. cardholders are entitled to a 4%–10%
discount, depending on the purchase sum and the items, and are billed month-
ly. Corporate customers are entitled to an additional 1%–5% discount,
depending on their total purchases during the previous year.

The average monthly total number of bills is 30 000; 92% of the bills are reg-
ular customer purchase bills, 6% are monthly bills for private H.C. cardholder,
and the rest are monthly bills for corporate H.C. cardholder. The testing unit has
decided to use a regular random sample of 1000 bills for its test of the new billing
software. Mr Evans, the head of the SQA group, claims that a stratified random
sample of 400 bills would be more effective for revealing the software errors and
much cheaper to perform.

(1) Do you agree with Mr Evans’ claim? List your arguments.
(2) If you agree with Mr Evans, describe the stratified sampling you would sug-

gest and list your arguments for this choice.
(3) List the assumptions that guided you in making your decisions.

10.3 Imagine the results of software system failure.

(1) What are the main issues causing higher severity of failure?
(2) Referring to your answer to (1), give three examples of software develop-

ment projects that display the lowest severity of failure.

10.4 Chapter 2 of the STD (software test description) is dedicated to the test environ-
ment (see Frame 10.3).

(1) Discuss the alternative settings the planner can use, and explain the impor-
tance of professional planning of the test environment.

(2) Suggest the risks incurred by inappropriate planning of the test environment.

10.5 One would expect the STR (software test report) to be limited to a list of test
results and some statistical summaries of the results. However, Chapters 1 and
2 of the report (see template in Frame 10.4) are divided into not less than nine
subsections devoted to the comprehensive description of the test, its site, the
participants, and the test environment.

(1) Refer to the nine sections and explain the importance of the information to
be reported in each.

(2) Some of these sections provide information that could jeopardize the appli-
cability of the test results. List the subjects and the circumstances in which
doubt could be raised.

253

Topics
for discussion

chapter 11

Assuring the quality of software
maintenance components

The major part of the software life cycle is the operation period, usually
lasting for 5 to 10 years, although cases of software being operational for
15 years and even more are not rare. What makes one software package
capable of reaching “old age” with satisfied users, while another package,
serving almost the same population, “perishes young”? The main factor
responsible for long and successful service is the quality of maintenance.
Just how important software maintenance is can be surmised by the
attention given the subject in the ISO 9000-3 Standard (see ISO (1997),
Sec. 4.19 and ISO/IEC (2001), Sec. 7.5), IEEE (1998) and Oskarsson and
Glass (1996).

This chapter will therefore pursue the following quality assurance issues
as they relate to software maintenance:

Chapter outline

11.1 Introduction 255
11.2 The foundations of high quality 257

11.2.1 Foundation 1: software package quality 257
11.2.2 Foundation 2: maintenance policy 259

11.3 Pre-maintenance software quality components 261
11.3.1 Maintenance contract review 261
11.3.2 Maintenance plan 262

11.4 Maintenance software quality assurance tools 264
11.4.1 SQA tools for corrective maintenance 265
11.4.2 SQA tools for functionality improvement maintenance 266
11.4.3 SQA infrastructure components for software

maintenance 267
11.4.4 Managerial control SQA tools for software

maintenance 270

Summary 273
Selected bibliography 275
Review questions 275
Topics for discussion 277

255

11.1 Introduction
■ The foundations for high quality maintenance
■ Pre-maintenance software quality components
■ SQA tools for corrective maintenance
■ SQA tools for functionality improvement maintenance
■ Infrastructure SQA tools for software maintenance
■ Managerial control SQA tools for software maintenance.

After completing this chapter, you will be able to:

■ List software maintenance components and explain their distinction.
■ Explain the foundations of high quality maintenance.
■ Describe and explain pre-maintenance software quality components.
■ List the infrastructure tools that support maintenance quality assurance.
■ List the managerial tools for controlling software maintenance quality

and explain their importance.

11.1 Introduction

The following three components of maintenance service are all essential for
success:

■ Corrective maintenance – user support services and software corrections.

■ Adaptive maintenance – adapts the software package to differences in new
customer requirements, changing environmental conditions and the like.

■ Functionality improvement maintenance – combines (1) perfective mainte-
nance of new functions added to the software so as to enhance performance,
with (2) preventive maintenance activities that improve reliability and system
infrastructure for easier and more efficient future maintainability.

The inclusion of user support services (“user support centers”) in corrective
maintenance may need some clarification. User support services is the
address for solution of all user difficulties arising when using the software
system; software correction services are usually integrated in this service. The
user’s difficulties may have been caused by:

■ Code failure (usually termed “software failure”).

■ Documentation failure in the user’s manual, help screens or other form of
documentation prepared for the user. In this case, the support service can
provide the user with correct instructions (although no correction of the
software documentation itself is performed).

■ Incomplete, vague or imprecise documentation.

■ User’s insufficient knowledge of the software system or his or her failure
to use the documentation supplied. In these situations no software system
failure is encountered.

The first three of the above causes are considered software system failures.
In addition, integration of user support services and software correction
services is generally accomplished in close cooperation, with much sharing of
information. The other components of maintenance services – functionality
improvement and adaptive maintenance – tend not to be initiated by the user
support services. In most cases, the functionality improvement and adaptive
tasks display the characteristics of a small or large project, depending on the
customer’s needs. This being the case, these tasks can be performed by a soft-
ware development unit as well. Considering the above, it is reasonable to
include user support services among the corrective maintenance activities.

Generally, one may say that while corrective maintenance ensures that
current users can operate the system as specified, adaptive maintenance
enables expansion of the user population, while functionality improvement
maintenance extends the package’s service period.

As mentioned in previous chapters, the combination of the three com-
ponents of software maintenance consumes more than 60% of total design
and programming resources invested in a software system throughout its life
cycle (Pressman, 2000). Others estimate that the share of maintenance
resources ranges from over 50% (Lientz and Swanson, 1980) to about
65–75% (McKee, 1984) of total project development resources.

The distribution of maintenance resources to the various maintenance
services is estimated as follows:

Lientz and Oskarsson and
Maintenance service Swanson (1980) Glass (1996)

Corrective maintenance 22% 17%

Adaptive maintenance 24% 23%

Functionality improvement maintenance 54% 60%

Surveys of this issue are rare; however, the figures reported by Nosek and
Palvia (1990) do not significantly diverge from the estimates shown here. It
is believed that the 1980 figures, with minimal changes, continue to repre-
sent actual distribution.

The objectives of software maintenance QA activities are presented in
Frame 11.1 (repeated from Frame 2.7).

As the nature of the different types of software maintenance components
varies substantially, so do the required quality assurance tools. In general,
functionality improvement maintenance activities, most adaptive mainte-
nance activities and the software development process basically share the
same software quality assurance tools. However, SQA tools employed for cor-
rective maintenance tend to display some unique characteristics. It is
important to remember that corrective maintenance activities are service
activities and that, unlike functionality improvement and adaptive tasks, they
are performed under the close supervision of the user/customer. Management of
corrective maintenance services focuses mainly on the availability of services

256

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

257

11.2 The foundations
ofhigh quality

and their quality (measured by time to solution, percentage of cases of cor-
rection failures, etc.) rather than on the budgetary and timetable controls
typically applied when managing functionality improvement and adaptive
maintenance tasks.

General discussion of a variety of software maintenance issues took place
at the IEEE International Conference in Oxford, England (IEEE Computer
Society, 1999).

11.2 The foundations of high quality

It goes without saying that the quality of the software package to be main-
tained is perhaps the single most important foundation underlying the
quality of maintenance services. Another critical foundation is maintenance
policy. The discussion of these subjects follows.

11.2.1 Foundation 1: software package quality

The quality of the software package that is to be maintained clearly stems
from the expertise and efforts of the development team as well as the SQA
activities performed throughout the development process. If the quality of
the package is poor, maintenance will be poor or ineffective, almost by defi-
nition. In light of this fundamental insight, we choose to stress here those
seven of the original 11 quality assurance factors (see Chapter 3) that have
a direct impact on software maintenance. Specifically, we will be discussing
two of the five product operation factors, all three product revision factors
and two of the three product transition factors.

The two product operation factors are as follows.

(1) Correctness – includes:

■ Output correctness: The completeness of the outputs specified
(in other words, no pre-specified output is missing), the accuracy
of the outputs (all system’s outputs are processed correctly), the
up-to-datedness of the outputs (processed information is up to date

Frame 11.1 Software maintenance QA activities: objectives

1. Assure, with an accepted level of confidence, that the software
maintenance activities conform to the functional technical requirements.

2. Assure, with an accepted level of confidence, that the software maintenance
activities conform to managerial scheduling and budgetary requirements.

3. Initiate and manage activities to improve and increase the efficiency of
software maintenance and SQA activities. This involves improving the
prospects of achieving functional and managerial requirements while
reducing costs.

as specified) and the availability of the outputs (reaction times do
not exceed the specified maximum values, especially in online and
real-time applications).

■ Documentation correctness. The quality of documentation: its com-
pleteness, accuracy, documentation style and structure. Documentation
formats include hard copy and computer files – printed manuals as well
as electronic “help” files – whereas its scope encompasses installation
manuals, user manuals and programmer manuals.

■ Coding qualification. Compliance with coding instructions, especial-
ly those that limit and reduce code complexity and define standard
coding style.

(2) Reliability. The frequency of system failures as well as recovery times.

The three product revision factors are as follows.

(1) Maintainability. These requirements are fulfilled first and foremost by
following the software structure and style requirements and by imple-
menting programmer documentation requirements.

(2) Flexibility. Achieved by appropriate planning and design, features that
provide an application space much wider than necessary for the current
user population. In practice, this means that room is left for future func-
tional improvements.

(3) Testability. Testability includes the availability of system diagnostics to
be applied by the user as well as failure diagnostics to be applied by the
support center or the maintenance staff at the user’s site.

Lastly, the two product transition factors are as follows.

(1) Portability. The software’s potential application in different hardware
and operating system environments, including the activities that enable
those applications.

(2) Interoperability. The package’s capacity to interface with other pack-
ages and computerized equipment. High interoperability is achieved
by providing capacity to meet known interfacing standards and match-
ing the interfacing applied by leading manufacturers of equipment
and software.

To sum up – the efforts to assure the quality of maintenance services should
begin early in the software development phase, when each of the quality fac-
tors reviewed above is specified in the project requirements and again later,
when integrated in the project design.

The above seven factors and their distinctive impact on the various soft-
ware maintenance components are presented in Table 11.1.

258

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

259

11.2 The foundations
ofhigh quality11.2.2 Foundation 2: maintenance policy

The main maintenance policy components that affect the success of software
maintenance are the version development and change policies to be applied
during the software’s life cycle.

Version development policy
This policy relates mainly to the question of how many versions of the soft-
ware should be operative simultaneously. While it is clear that this is not an
issue for custom-made software that serves one organization, the number of
versions becomes a major issue for COTS software packages that are
planned to serve a large variety of customers. The version development pol-
icy for the latter can take a “sequential” or “tree” form. When adopting a
sequential version policy, only one version is made available to the entire cus-
tomer population. This version includes a profusion of applications that
exhibit high redundancy, an attribute that enables the software to serve the
needs of all customers. The software must be revised periodically but once a
new version is completed, it replaces the version currently used by the entire
user population.

When adopting a tree version policy, the software maintenance team sup-
ports marketing efforts by developing a specialized, targeted version for
groups of customers or a major customer once it is requested. A new version
is inaugurated by adding special applications or omitting applications, depend-
ing on what is relevant to customer needs. The versions vary in complexity and
level of application – targeted industry-oriented applications and so forth. If
this policy is adopted, the software package can evolve into a multi-version
package after several years of service, meaning it will resemble a tree, with sev-
eral main branches and numerous secondary branches, each branch
representing a version with specialized revisions. As opposed to sequential ver-
sion software, maintenance and management of tree version software is much

Table 11.1: Quality factors: impacts on software maintenance components

Software maintenance components

Quality factor Quality sub-factors Corrective Adaptive Functionality
improvement

Correctness Output correctness High
Documentation correctness High High High
Coding qualification High High High

Reliability High

Maintainability High High High

Flexibility High

Testability High

Portability High

Interoperability High

more difficult and time-consuming. Considering these deficiencies, software
development organizations try to apply a limited tree version policy, which
allows only a small number of software versions to be developed.

Example: After a few years of application, Inventory Perfect, an inventory
management package developed according to the tree policy, has evolved into
a seven-version software package with these main branches: Pharmacies,
Electronics, Hospitals, Bookstores, Supermarkets, Garages–Auto Repairs,
and Chemical Plants. Each of the branches includes four or five secondary
branches that vary by number of software modules, level of implementation
or specific customer-oriented applications. For example, the Bookstores ver-
sion has the following five secondary branches (versions): bookstore chains,
single bookstores, advanced management bookstores, and special versions for
the LP bookstore chain and for CUCB (City University Campus Bookstores).
The software maintenance team tends to a total of 30 different versions of the
software package simultaneously, with each version revised periodically
according to customer requests and the team’s technical innovations.

The daily experience of the maintenance team therefore includes over-
coming hardships created by the version structure of the package that go
beyond those related to the software itself:

■ Faulty corrections caused by inadequate identification of the module
structure of the current version used by the specific customer.

■ Faulty corrections caused by incorrect replacement of a faulty module by
a module of another version that later proved to be inadequate for inte-
gration into the customer’s package version.

■ Efforts invested to convince customers to update their software package
by adding newly developed modules or replacing current module versions
by a new version. Following successful efforts to persuade customers to
update their software package, the problems and failures incurred when
attempting to integrate newly developed modules or to replace current
with advanced versions of the modules.

The head of the maintenance team has often mentioned that she envies her
colleague, the head of Inventory Star’s maintenance team, who had insisted
that the software package developed by his firm was to offer only one com-
prehensive version for all customers.

It is clear that the sequential policy adopted by Inventory Star requires
much less maintenance; as only one version has to be maintained, it is much
easier to maintain its quality level.

Change policy
Change policy refers to the method of examining each change request and
the criteria used for its approval. It is clear that a permissive policy, whether
implemented by the CCB (the Change Control Board) or any other body
authorized to approve changes, contributes to an often-unjustified increase

260

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

in the change task load. A balanced policy, one that requires thorough exam-
ination of change requests, is to be preferred as it allows staff to focus on the
most important and beneficial changes, as well as those that they will be able
to perform within a reasonable time and according to the required quality
standards. This policy will, of course, culminate in the approval of only a
small proportion of change requests.

For more about change control, see Chapter18.

11.3 Pre-maintenance software quality components

Like pre-project SQA components, the pre-maintenance SQA activities to be
completed prior to initiating the required maintenance services are of utmost
importance. These entail:

■ Maintenance contract review
■ Maintenance plan construction.

11.3.1 Maintenance contract review

When considering the maintenance contract, a broad perspective should be
embraced. More than anything else, decisions are required about the cate-
gories of services to be contracted. These decisions depend on the type of
customers served: customers for whom a custom-made package has been
developed, customers who purchased a COTS software package, and inter-
nal customers. So, before commencing to supply software maintenance
services to any of these customers, an adequate maintenance contract should
be finalized that sets down the total range of maintenance obligations
according to the relevant conditions.

261

11.3 Pre-m
aintenance softw

are quality
com

ponents

Implementation tip

Maintenance services to internal customers are often not contracted. In a
typical situation, some of the services provided during the running-in period
are continued, with no one bothering to determine the binding obligations for
continuation of these services. In such situations, dissatisfaction is expected
on both sides: the internal customers feel that they need to ask for favors
instead of receiving the regular service that they deserve, whereas the
development team eventually experiences requests to perform maintenance
tasks as intrusions once they have begun work on another project.

To prevent these tensions, an “internal service contract” should be written. In
this document, the services to be provided by the internal maintenance team
to the internal customer are clearly defined. By eliminating most of the
misunderstanding related to these vital services, such a contract can serve as
the basis for satisfactory maintenance to internal customers.

262

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

The maintenance contract review activities include proposal draft
reviews as well as contract draft reviews. Naturally, the objectives and imple-
mentation of maintenance contract reviews follow the lines of pre-project
contract reviews (see Chapter 5). We next list the major objectives of soft-
ware maintenance contract reviews.

(1) Customer requirements clarification
The following issues deserve special attention:

■ Type of corrective maintenance services required: list of remote services
and on-site services to be provided, hours of service, response time, etc.

■ Size of the user population and the types of applications to be used.
■ Location of users, especially of long-distance (or overseas) sites and

the types of applications installed in each.
■ Adaptive and functionality improvement maintenance to be provided

and procedures for submission of requests for service as well as pro-
posing and approving performance of these services.

(2) Review of alternative approaches to maintenance provision
The following options deserve special consideration:

■ Subcontracting for sites or type of service
■ Performance of some services by the customer himself with support

from supplier’s maintenance team.

(3) Review of estimates of required maintenance resources
First, these estimates should be examined on the basis of the required
maintenance services, clarified by the proposal team. Then, the company’s
capacity to meet its commitments with respect to professional competence
as well as availability of maintenance teams should be analyzed.

(4) Review of maintenance services to be provided by subcontractors and/or
the customer
This review refers to the definition of the services provided by each par-
ticipant, payments to subcontractors, quality assurance and follow-up
procedures to be applied.

(5) Review of maintenance costs estimates
These estimates should be reviewed on the basis of required resources.

11.3.2 Maintenance plan

Maintenance plans should be prepared for all customers, external and inter-
nal. The plan should provide the framework within which maintenance
provision is organized. Hence, as anticipated, the maintenance and develop-
ment plans (see Chapter 6) are based on similar concepts.

The plan includes the following:

(1) A list of the contracted maintenance services
■ The internal and external customers, the number of users, the loca-

tions of each customer site.

■ The characteristics of corrective maintenance services (remote and
on site).

■ The obligations for adaptive and functional improving maintenance
service provision for each customer.

(2) A description of the maintenance team’s organization

The maintenance team organization plan focuses on manpower require-
ments, which should be carefully considered according to these criteria:

■ The number of required team members. If services are to be provided
from several facilities, the team requirement for each facility.

■ The required qualifications for team members according to the main-
tenance tasks, including acquaintance with the software package(s) to
be maintained.

■ Organizational structure of the maintenance teams, including names
of team leaders.

■ Definition of tasks (responsibility for customers, types of applica-
tions, etc.) for each team.

■ Training needs.

(3) A list of maintenance facilities

Maintenance facilities – the infrastructure that makes it possible to pro-
vide services – include:

■ The maintenance support center with its installed hardware and com-
munication equipment to provide user support and software
correction services.

■ A documentation center containing a complete set of documents (in
printed or electronic format):

– The software documentation, including the development
documentation

– The service contracts
– The software configurations for each customer and versions of

the software packages installed at each site, provided by configu-
ration management

– The maintenance history records for each user and customer.

263

11.3 Pre-m
aintenance softw

are quality
com

ponents

Implementation tip

In determining the maintenance team and its organization, one should
consider preparing for peak demand for corrective maintenance services.
The support in peak situations can be based on temporary use of
development and other maintenance teams located at the same or other
facilities. It should be emphasized that effective peak-load support is
based on pre-planning, which includes training. Maintenance teams
require regular training for these tasks; on-the-spot improvised solutions
may prove to be harmful rather than helpful.

(4) A list of identified maintenance service risks

Maintenance service risk relates to situations where failure to provide
adequate maintenance is anticipated. These risks include:

■ Staff shortages, whether throughout the organization’s maintenance
services, in a specific maintenance support center or for a specific
application.

■ Inadequate qualifications or acquaintance with part of the relevant
software packages for performing user support services and/or cor-
rective maintenance tasks.

■ Insufficient team members qualified to perform functional improve-
ment as well as adaptive tasks, in cases where a customer places an
order of a significant size.

(5) A list of required software maintenance procedures and controls

Most of the required procedures refer to the processes implemented by
the corrective maintenance teams and by the user support center. These
procedures typically deal with:

■ Handling customers’ applications
■ Handling a software failure report
■ Periodic reporting and follow-up of user support services
■ Periodic reporting and follow-up of corrective maintenance services
■ Training and certification of maintenance team members.

For more about software quality procedures, see Chapter 14.

(6) The software maintenance budget

The estimates used in the corrective maintenance budget are based on
the manpower organization plan, required facilities and investments
needed to establish these facilities, team training needs and other tasks.
They can be prepared once the manpower, facilities and procedures have
been defined. Estimates for adaptive and functionality improvement
maintenance tasks are prepared according to the expected workload
induced by the changes and improvements to be carried out.

11.4 Maintenance software quality assurance tools

A great variety of software quality assurance tools are used throughout the
operational period of the software life cycle. The specific nature of each com-
ponent of software maintenance – corrective maintenance, adaptive
maintenance and functionality improvement maintenance – demands that
different sets of SQA tools be used for each. Furthermore, the operational
period of the software typically makes intensive use of infrastructure SQA
tools and managerial control tools more probable.

Some indication of the extent of resources invested in SQA during main-
tenance has been prepared by Perry (1995). In a survey he carried out in
November 1994, the participants reported that based on their experience,

264

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

265

11.4 M
aintenance softw

are quality
assurance tools

31% of their maintenance schedules were dedicated to quality assurance
(reviews and testing tasks).

The next sections are dedicated to the following subjects:

■ SQA tools for corrective maintenance
■ SQA tools for functionality improvement maintenance
■ SQA infrastructure tools for software maintenance
■ SQA tools for managerial control of software maintenance.

11.4.1 SQA tools for corrective maintenance

Corrective maintenance activities entail primarily (a) user support services
and (b) software corrections (bug repairs). User support services deal with
cases of software code and documentation failures, incomplete or vague doc-
umentation; they may also involve instruction of users who have insufficient
knowledge of the software or fail to use the available documentation.
Software correction services – bug repairs and documentation corrections –
are called for in cases of software failures, and are typically provided during
the initial period of operation (despite the efforts invested in testing) and
continue to be required, though in lower frequency. As the two types of serv-
ice are inherently different, distinctive sets of quality assurance tools are used
irrespective of the shared focuses on quality of service. Nonetheless, in many
cases the same team performs both types of corrective maintenance.

In addition to infrastructure and management control SQA tools (dis-
cussed later in this section), most bug repair tasks require the use of mini life
cycle SQA tools, mainly mini-testing. Mini-testing procedures are required to
handle repair patch (small-scale) tasks, characterized by a small number of
coding line changes together with intense pressure to complete the correc-
tions rapidly. The implications of delayed repair are such that an abridged –
mini – form of testing is often employed. However, use of these mini testing
tools should be retained to avoid compromise situations of no testing.

In order to assure “mini testing” quality, these guidelines should be
adhered to:

■ Testing is to be performed by a qualified tester, not by the programmer
who carried out the repair.

■ A testing procedure document (in most cases 2–3 pages long) should be
prepared. Included in the document are a description of the anticipated
effects of the repair, the scope of corrections and a list of test cases to be
activated. A re-testing procedure document, similar to the testing proce-
dure document, should be also be prepared to handle testing of repairs of
errors detected in previous tests.

■ A test report fully documenting the errors detected in each stage of test-
ing and re-testing should be completed.

■ The head of the testing team is to review the testing documentation for
the scope of corrections, the adequacy of the test cases and the testing

results. Responsibility for approval of the repaired software for opera-
tional (sometimes termed “production”) use rests with the team’s head.

■ For repairs considered “simple and trivial”, especially for those per-
formed at the customer’s site, mini-testing may be avoided.

Subcontracting (outsourcing) maintenance services, especially user support
services, has become quite common whenever it is too troublesome or uneco-
nomic for the maintenance contractor to directly provide these services. The
main tool to assure the quality of the subcontractor’s maintenance services
and pave the way for smooth relations is the contractor–subcontractor
contract. The SQA tools integrated into the contract focus on:

■ Procedures for handling a specified range of maintenance calls.

■ Full documentation of the service procedures.

■ Availability of records documenting professional certification of the sub-
contractor’s maintenance team members, for contractor review.

■ Authorization for the contractor to carry out periodic review of the main-
tenance services as well as customer satisfaction surveys.

■ Quality-related conditions requiring imposition of penalties and termina-
tion of the subcontracting contract in extreme cases.

Once maintenance becomes operative, the contractor should regularly con-
duct the agreed-upon reviews of maintenance service and customer
satisfaction surveys.

More about subcontracting may be found in Chapter. 12.

11.4.2 SQA tools for functionality improvement maintenance

Due to the similarity of functionality improvement maintenance tasks to
software development project tasks, project life cycle tools (reviews and test-
ing) are regularly applied for functionality improvement maintenance. These
same tools are also regularly implemented for large-scale adaptive mainte-

266

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

Implementation tip

Many of the bitter failures experienced with software maintenance contracts are
due to subcontracting. Failures often result from lax control over the
subcontractor’s performance, not from the absence of software quality assurance
clauses from the contract. The reasons for subcontracting, such as a shortage of
maintenance professionals at the remotely located customer’s site that consumes
the subcontracted services, may induce faulty control over the subcontractor’s
services. In other words, successful subcontracting requires adequate
organization and procedures to implement proper control over performance.

nance tasks where, again, the task characteristics resemble those of func-
tionality improvement tasks.

For a detailed general discussion of reviews and testing, see Chapters 8,
9 and 10.

Additional SQA tools implemented for functionality improvement main-
tenance are infrastructure and management control tools, discussed later in
this section.

11.4.3 SQA infrastructure components for software
maintenance

Software quality assurance infrastructure tools, discussed in Part IV of the
book (Chapters 14 to 19), are vital components of software maintenance. A
great proportion of the array of infrastructure SQA tools are of a general
nature and implemented throughout the life cycle of the software system. In
addition, the similarity of the software functionality improvement and soft-
ware development processes enables both processes to share the same
infrastructure SQA tools with minor changes. Specialized infrastructure tools
are required for corrective maintenance activities, due to the special charac-
teristics of these activities. Adaptive maintenance activities are served by
infrastructure SQA tools, according to their characteristics. The most fre-
quently employed tools are functional improvement SQA tools, followed by
corrective maintenance SQA tools.

Actually, the contribution of infrastructure SQA tools to maintenance does
not begin with the onset of the maintenance process. Obviously, adequate
application of SQA infrastructure tools by the software development teams
contributes substantially to the efficiency and effectiveness of maintenance
team activities. In other words, these tools contribute to maintenance quality
assurance in two ways: first, by supporting the software development teams
when producing high-quality software, and second, by supporting the mainte-
nance teams responsible for the maintenance of the same software product.

Specialized SQA infrastructure tools are required for software mainte-
nance processes, especially corrective maintenance, displaying special
characteristics. Here we focus on specialized SQA infrastructure tools of the
following classes:

■ Maintenance procedures and work instructions
■ Supporting quality devices
■ Training and certification of maintenance teams
■ Preventive and corrective actions
■ Configuration management
■ Documentation and quality record control.

Maintenance procedures and work instructions
Most specialized maintenance procedures and work instructions are applied
for corrective maintenance and user support activities, for example:

267

11.4 M
aintenance softw

are quality
assurance tools

268

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

■ Remote handling of requests for service in cases of software failure
■ On-site handling of customer requests for service in cases of software failure
■ User support service
■ Quality assurance control of software correction and user support activities
■ Customer satisfaction surveys
■ Certification of corrective maintenance and user support team members.

Supporting quality devices
The maintenance department is expected to develop specialized devices to
support software correction and user support activities: templates, checklists
and the like. Such devices may include:

■ Checklists for location of causes for a failure – to be applied by the main-
tenance technician.

■ Templates for reporting how software failure were solved, including find-
ings of the correction process.

■ Checklists for preparing a mini testing procedure document.

Training and certification of maintenance teams
Training of maintenance teams that deal with functional improvement tasks
does not differ substantially from training of other software development
teams. However, special training and certification are crucial for corrective
maintenance teams.

Training of corrective maintenance professionals is motivated by the
need to supply the services specified in maintenance contracts (or agree-
ments, in cases of internal customers) on a continuous basis. Thus, the
training plan should provide solutions to staffing needs during peak load
periods and the organization’s need to replace, at short notice, retiring,
resigning or discharged personnel. In many cases, general training of these
“reserve” maintenance personnel is insufficient, and training in specific sys-
tems must be added. In other words, rigorous training programs are required
to enable the organization to cope with the contracted level of service speci-
fied for peak-load periods and in situations of maintenance personnel
changes, for whatever reason.

Certification requirements for software correction and user support per-
sonnel are rooted in the characteristics of these services. Special attention
should be given to certification of software correction professionals, who
usually perform their tasks under heavy time pressures, work alone, and in
many cases work at the customer’s site, where the availability of profession-
al support from the team leader or others is limited.

Preventive and corrective actions
The operative phase of the software life cycle produces highly valuable infor-
mation: records of software failures and their repair as well as records of
user support requests can lead to preventive and corrective actions and there-

by contribute to improvement of existing and new software systems. For the
process to be effective, there need to be adequate processes for screening the
collected information, reviewing and analyzing findings, and devising rec-
ommendations for improvements of relevant development and maintenance
processes. These SQA activities are directed and controlled by an internal
committee – the CAB (Corrective Action Board), found in major software
development organizations.

Issues typically forwarded to the Board for review include:

■ Changes in content and frequency of customer requests for user support
services

■ Increased average time invested in complying with customer’s user sup-
port requests

■ Increased average time invested in repairing customer’s software failures
■ Increased percentage of software correction failures.

Configuration management
The maintenance teams represent the groups most dependent on configura-
tion management. This dependence results from their intimate involvement
with servicing software packages over many years, during which new ver-
sions are added, old versions replaced and many new installations and
changes of software performed.

Two common applications relying on configuration management are (1)
failure corrections and (2) “group” replacement of the currently used version
of the software by a new version, initiated by the maintaining organization.

(1) Failure repair. In the course of software failure repairs, reliable and
updated support is needed in the form of:

■ Information regarding the version of the software system installed at
the customer’s site

■ A copy of the current code and its documentation.

The contribution to software quality is achieved by fewer errors in fail-
ure correction trials and reduced resources invested in the corrections.

(2) Group replacement. The term “group” in the SQA context refers to all
those customers having the same software version installed at their sites.
Hence, “group” replacement indicates that all the customers using the
stated version will receive the newly developed or updated version of the
software at more or less the same time. Configuration management sup-
port for group replacement, based on information about the members of
a customer group, entails:

■ Decision making about the advisability of performing a group
replacement, based on the extent of the replacement and the type of
contracts signed with the customers.

■ Planning the group replacement, allocating resources and determining
the timetable.

269

11.4 M
aintenance softw

are quality
assurance tools

The contribution to software quality is achieved by replacement of the cur-
rent software version with an improved version that is usually less prone to
software failure and requires less support. The improved quality also con-
tributes to software maintenance efficiency as fewer resources are required
for corrective maintenance.

Maintenance documentation and quality records
The specialized requirements for documentation and quality records are
most closely related to software correction and user support activities.
Documentation and quality records are prepared in order to:

■ Supply vital data for preventive and corrective actions (as mentioned earlier)
■ Support the handling of future customer failure reports and user

support requests
■ Provide evidence in response to future customer claims and/or complaints.

The documentation requirements listed in the various maintenance proce-
dures should respond to all of these documentation needs.

11.4.4 Managerial control SQA tools for software maintenance

While specialized managerial control SQA tools are required for corrective
maintenance activities, the similarity in the software processes characterizing
functionality improvement and adaptive maintenance and software develop-
ment enables these processes to employ the same managerial tools.
Specifically, managerial SQA components are meant to improve control of
maintenance by creating early alarms that signal reduced quality of service
and increasing rates of service failures.

The remainder of this section is dedicated to special managerial
control issues, mainly those touching upon software correction and user
support services:

■ Performance controls for corrective maintenance services
■ Quality metrics for corrective maintenance
■ Costs of software maintenance quality.

For more about managerial control SQA tools, see Part V of the book
(Chapters 20–22).

Performance controls for software maintenance services
Managerial performance controls of corrective maintenance services
differ when applied to software correction (failure repair) services and
to user support services. The managerial control tools yield, beside period-
ic performance information, alarms for management attention, such as
the following:

270

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

(1) Software correction

■ Increased resources utilization
■ Decreased rate of remote failure repairs (low cost repairs) versus cus-

tomer’s on-site repairs
■ Increased rate of on-site repairs at long-distance locations and over-

seas services
■ Increased percentage of failures to meet repair schedule requirements
■ Increased rate of faulty repairs, and list of specific “model” cases of

extreme failure situations
■ Lower customer satisfaction based on customer satisfaction surveys.

(2) User support

■ Increased rates of requests for service for a specific software system,
for service type, etc.

■ Increased resource utilization in user support services
■ Increased rate of failures to provide requested consulting services
■ Increased rate of faulty consulting, and specific cases of “outstand-

ing” failures
■ Customer satisfaction information based on customer satisfaction

surveys.

These managerial failure repair controls (that are expected to yield alarms)
are carried out through periodic reporting, regularly scheduled staff meet-
ings, visits to the maintenance support center providing the services, and
analysis of reports dealing with software maintenance metrics and mainte-
nance quality costs. The accumulated information supports managerial
decisions regarding the planning and operation of corrective maintenance.

Quality metrics for software maintenance
Software maintenance quality metrics are used mainly to identify trends in
maintenance efficiency, effectiveness and customer satisfaction. The software
quality assurance unit usually processes the metrics. Changes in trends, neg-
ative as well as positive, provide the quantitative basis for managerial
decision making regarding:

■ Estimation of resource requirements when preparing maintenance plans
for the next period

■ Comparison of methods of operation
■ Initiation of preventive and corrective actions
■ Estimation of resource requirements as a basis for proposals for new or

adjusted maintenance services.

For examples of quality metrics of software correction and user support serv-
ices, see Section 21.4.

271

11.4 M
aintenance softw

are quality
assurance tools

272

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

Costs of software maintenance quality
As in the former sections, we refer here only to corrective maintenance
issues. As will be shown in Chapter 22, the quality costs of corrective main-
tenance are classified into six classes. Following are definitions for each class
and examples.

■ Costs of prevention – Costs of error prevention, i.e. costs of instruction and
training of maintenance team, costs of preventative and corrective actions.

■ Costs of appraisal – Costs of error detection, i.e. costs of review of main-
tenance services carried out by SQA teams, external teams and customer
satisfaction surveys.

■ Costs of managerial preparation and control – Costs of managerial activities
carried out to prevent errors, i.e. costs of preparation of maintenance plans,
maintenance team recruitment and follow-up of maintenance performance.

■ Costs of internal failure – Costs of software failure corrections initiated
by the maintenance team (prior to receiving customer complaints).

■ Costs of external failure – Costs of software failure corrections initiated
by customer complaints.

■ Costs of managerial failure – Costs of software failures caused by mana-
gerial actions or inaction, i.e. costs of damages resulting from shortage of
maintenance staff and/or inadequate maintenance task organization.

After reviewing these classes of software quality costs, defined according to
the classic as well as the extended model, as will be discussed in Chapter
22, we find that the general considerations for defining classes of cost of
software quality, as discussed in Chapter 22, apply nicely to all but one
class of cost of software maintenance quality. Special definitions are
required for external failure costs at the maintenance phase. This issue will
be discussed next.

Costs of external failure of software corrective maintenance activities
In order to define external failure costs, the two maintenance periods must
be considered separately. These are: (a) the warranty period (usually 3–12
months after the software is installed) and (b) the contracted maintenance
services period, which begins at the end of the warranty period. The issue
here requires a decision as to what situation should be considered an exter-
nal failure; only after making this decision can the quality costs be
identified and estimated. Suggested definitions of external failure costs and
their supporting arguments for software correction and user support serv-
ices follow.

(1) For software corrections:
■ All costs of software correction initiated by users during the warran-

ty period are external quality costs because they are considered to
result directly from software development failures; hence, the devel-
oper is responsible for their correction during this period.

■ Software corrections performed during the contracted maintenance
period are considered part of regular service, as the responsibility of
the developer for corrections is limited to the warranty period. As
such, the costs of these services are considered regular service costs
and not quality costs.

■ During the contracted maintenance period, only costs of re-correction
after failure of the initial correction efforts are considered external
failure costs as the software technician failed in his regular mainte-
nance service.

(2) For user support services:
■ During the warranty period, user support services are considered to

be an inherent part of the instruction effort, and therefore should not
be considered external failure costs.

■ During the contracted maintenance period, all types of user support
services, whether dealing with an identified software failure or con-
sultations about application options, are all part of regular service,
and their costs are not considered external failure costs.

■ During both maintenance periods, an external failure is defined as a case
where a second consultation is required after the initial consultation
proves to be inadequate. The costs of furnishing the second and further
consultations for the same case are considered external failure costs.

As in the general case, maintenance quality cost information, together with
the other managerial control information, is expected to assist management
in making decisions regarding:

■ Directions for investment in the improvement of maintenance services by
indicating weak points of extremely high quality costs and strong points
of extremely low quality costs.

■ Development of an improved version of the software (in the case of
custom-made software) or replacement of a purchased software package.

Summary

(1) List the components of software maintenance and explain their distinctiveness.

There are three components of software maintenance, each doing the following:
■ Corrective maintenance of software corrections and user support services.
■ Adaptive maintenance adjusts the software package to the requirements of new

customers and changing environmental conditions.
■ Functionality improvement maintenance combines maintenance activities with

improvement of software performance and reliability.

(2) Describe the foundations of high quality maintenance.

Two factors are considered to be the foundations of high quality maintenance: the
software package’s quality and the maintenance policy applied. It is clear that the

273

S
um

m
ary

274

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

first could be guaranteed by implementing SQA activities throughout the develop-
ment process, and should begin in the earliest phases of software development
(including the pre-project phase).

The main constituents of maintenance policy are version policy and change pol-
icy. As to version policy, a “strictly one active version” policy is quite preferable to
a “multi-version policy”. The former policy saves the resources needed to cope with
maintenance of several versions and allows the team to focus on effective, reliable
corrective and adaptive maintenance in addition to the development of a compre-
hensive improved version of the original package. As to change policy, the
“balanced” policy that approves only a small proportion of worthwhile changes as
a result of its focus on the most important, beneficial changes is preferable to a
“permissive” policy that approves every change requested.

(3) Describe and explain the pre-maintenance software quality components.

The pre-maintenance software quality assurance components include (a) mainte-
nance contract review and (b) preparation of a maintenance plan. Some of the
objectives of these activities are customer requirements clarification, review of
alternative approaches to providing the services and review of resource and costs
estimates. The maintenance plan’s crucial elements are definition of the mainte-
nance services to be provided, manpower requirements, maintenance service risks,
maintenance procedures, controls to be applied, and costs.

(4) List the infrastructure tools that support maintenance quality assurance.

The major SQA maintenance infrastructure tools are:
■ Software maintenance procedures and work instructions
■ Training and certification of maintenance teams
■ Quality-supporting devices
■ Preventive and corrective actions
■ Configuration management
■ Software maintenance documentation and quality records.

(5) List the main managerial tools for controlling software maintenance quality and
explain their importance.

The main managerial SQA components for corrective maintenance are:
■ Performance controls – implemented by means of periodic reporting, regular

staff meetings and visits to maintenance support centers
■ Quality metrics for corrective maintenance
■ Quality costs of corrective maintenance.

The managerial control of functionality improvement and adaptive maintenance tasks
applies mainly to the tools used for controlling software development projects.

As in the software development phase, managerial SQA tools for the mainte-
nance phase are planned to assist management in making decisions regarding:
■ Directions for investment in the improvement of maintenance services by ana-

lyzing the weak and strong points of extremely high as well as extremely low
quality costs.

■ Development of an improved version of the software exhibiting extremely high
quality problem indications or replacement of such purchased software pack-
ages with other packages.

■ Comparison of methods of operation.
■ Estimation of resource requirements as a basis for preparation of proposals for

new or adjusted maintenance services.

Selected bibliography

1. IEEE (1998) “IEEE Std 1219-1988 – IEEE Standard for Software Maintenance”,
in IEEE Software Engineering Standards Collection, The Institute of Electrical
and Electronics Engineers, New York.

2. IEEE Computer Society (1999) “Proceedings of the IEEE International
Conference on Software Maintenance – 1999 (ICSM99) Software Maintenance
for Business Change”, IEEE Computer Society Press, Los Alamitos, CA, USA.

3. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

4. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

5. Lientz, B. P. and Swanson, E. B. (1980) Software Maintenance Management,
Addison-Wesley, Reading, MA.

6. McKee, J. R. (1984) “Maintenance as a function of design”, AFIPS National
Computer Conference, Las Vegas, NV.

7. Nosek, J. T. and Palvia, P. (1990) “Software maintenance management: changes
in the last decade”, Software Maintenance: Research and Practice, 2(3),
157–174.

8. Oskarsson O. and Glass R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Prentice Hall, Upper Saddle River, NJ.

9. Perry, W. (1995) Effective Methods for Software Testing, John Wiley & Sons,
New York.

10. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

Review questions

11.1 Refer to Section 11.2 on the foundations of software quality assurance.

(1) Explain in your own words the importance of the first foundation.

(2) List and explain the importance of the various factors affecting the
first foundation.

(3) Explain in your own words the second foundation and how it affects the
quality of software maintenance services.

275

Review
 questions

11.2 A company is anxious to sign a three-year maintenance contract for an ERP
(Enterprise Resource Planning) software package for a multinational organization
that employs 6000 people in eight countries. The company has already acquired
experience in the maintenance of the ERP package. The multinational organiza-
tion suggests paying a lump sum for corrective and adaptive maintenance tasks,
and separate payment for functional improvements, based on the characteristics
of each request. The Sales Department’s pressure for immediate signing of the
contract leaves little time for preparation of a proposal and practically no time for
maintenance contract review.

(1) What risks are entailed with neglect of the contract review?
(2) What subjects would you recommend for contract review in this case?
(3) If required maintenance of a similar nature was requested by an internal cus-

tomer (to serve employees of the same company), would you recommend
carrying out a contract review? List your arguments.

11.3 Refer to Section 11.3 on maintenance plans.

(1) What are the basic elements of a maintenance plan? Explain the importance
of each element in your own words.

(2) Who, do you think, should be responsible for preparing the plan? Who
should approve it? List your arguments.

(3) What difficulties would you expect to arise if no plan is prepared?

11.4 Five guidelines are suggested in Section 11.4.1 for testing small repairs of soft-
ware performed by a software maintenance team member.

(1) Explain the importance of each of the guidelines for achieving adequate
quality of software repairs.

(2) Explain how the guidelines cope with the special characteristics of small
repairs (“patches”).

11.5 The six issues to be stipulated in a contract for subcontracting software mainte-
nance services are mentioned in Section 11.4.1.

(1) Explain the importance of each issue in your own words.
(2) Suggest how the subcontractor could benefit from full implementation of the

control clauses included in the contractor’s contract with the customer.

11.6 It is claimed that higher standards are needed for training and certification of
maintenance team members than for development team members.

(1) Do you agree or disagree with this statement? List your arguments.
(2) If you agree with the above, what component of software maintenance (cor-

rective, adaptive or functionality improvement) do you consider most
suitable for the above statement?

11.7 Most software corrective maintenance procedures require extensive documenta-
tion of the activities performed.

(1) List the main uses for the various types of corrective maintenance
documentation.

(2) Explain the importance of the required documentation in your own words.

276

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

277

Topics
for discussion

11.8 Refer to Section 11.4.4 on managerial control of software maintenance services.

(1) List the main issues dealt with by managerial maintenance control.
(2) Once management receives proper reporting from the maintenance teams, is

there a need for meetings and visits? What additional contributions to mana-
gerial control might be achieved by meetings and visits? List your arguments.

Topics for discussion

11.1 A lecturer in a SQA conference concluded his talk by recommending that a soft-
ware maintenance specialist participate in the quality assurance activities
carried out during the development process.

(1) Do you agree with the lecturer?
(2) List your arguments for and against this suggestion.
(3) Do you support “reverse” cooperation, where a development specialist par-

ticipates in quality assurance activities of the maintenance team? List your
arguments for and against this position.

11.2 Mr Steve Barber, a software maintenance expert, was recruited to serve as leader
of the team providing maintenance services for Hotelex, a hotel management soft-
ware package, after the former team leader resigned. The package had been on
the market for six months and the team has already installed and maintained four
different versions of Hotelex in seven hotels. The company is in the first stages of
developing packages for sports clubs and community centers. The software main-
tenance team is expected to serve the customers of all three packages. During the
team’s monthly meeting, Mr Barber mentioned that after a month in service, he
found that the foundations for maintaining Hotelex are inadequate, causing the
high software maintenance costs. While nothing could be done in relation to the
software package’s quality (the first maintenance foundation) at this point, he
hoped to improve maintenance policy (the second foundation) within the next
three months. In general, he declared that he would act to assure proper founda-
tions for the two new software packages being currently developed.

(1) Suggest what findings regarding the maintenance of Hotelex had brought
Mr Barber to his negative evaluation of its maintenance according to its
two foundations.

(2) Suggest what could still be altered, and how to do so.
(3) Suggest what actions Mr Barber might plan to assure proper foundations for

the two new packages.

11.3 The weekly customers’ complaints that were piled on the desk of the head of the
Operations Department included the following:

■ A complaint repeated by several customers: the software maintenance tech-
nician, who was unable to solve the problem on site at the scheduled time,
claimed that he was unaware that he was required to carry the software pro-
grammers’ manual with him at all times; therefore, he could not solve the
problem on time.

■ A complaint by the Operations Manager of a supermarket chain: the software
maintenance team had unsuccessfully tried to correct the software three times;
as a result, several crucial functions could not be activated for four days.

■ A customer’s angry letter complaining about an unfair cost estimate for a
requested minor improvement: 60 man-days. He quoted the head of the
Software Functional Improvement Team, who had said that the high estimate
was the outcome of missing documentation and non-standard coding of the
original package.

Analyze each of the cases and then:

(1) Suggest the reasons for each of the maintenance team’s failures.
(2) Suggest the steps to be taken in each case to prevent the failures mentioned

in (1).

11.4 At a recent SQA conference, a speaker mentioned the following costs as mainte-
nance quality costs:

■ High operating costs due to unanticipated high frequency of overseas service
calls. It has been found that the overseas branches of a firm employ six times
more employees than were estimated by software suppliers’ sales depart-
ments at the time the proposals were prepared.

■ Damages to the Software Development Department due to increasing diffi-
culties in sales and higher rates of tender losses after two leading customers
had decided not to renew their maintenance contracts, claiming inadequate
quality of maintenance services.

■ Increased penalties paid to customers during a two-month period in which
the maintenance team was short of three team members.

(1) Can all the costs in the three cases mentioned above be considered mainte-
nance quality costs? Analyze each case separately. List your arguments.

(2) How would you classify each of quality costs described in the above cases
according to the classic and extended models (see Sections 22.2 and 22.3)?
List your arguments.

278

11
A

ssuring the quality
ofsoftw

are m
aintenance com

ponents

chapter 12

Assuring the quality of external
participants’ contributions

Evidence for the importance of assuring the quality of external participants’
contributions is found in the ISO 9000-3 Standard (see ISO, 1997, Sec. 4.6 and
ISO/IEC, 2001, Sec. 7.4), IEEE Std 1062 (IEEE, 1998) and the software
quality assurance literature (see Basili and Boehm, 2001; Oskarsson and
Glass, 1996).

Chapter outline

12.1 Introduction: the HealthSoft case 280
12.2 Types of external participants 282
12.3 Risks and benefits of introducing external participants 283
12.4 Assuring the quality of external participants’ contributions:

objectives 286
12.5 SQA tools for assuring the quality of external participants’

contributions 287
12.5.1 Requirements document reviews 287
12.5.2 Choice of external participants 288
12.5.3 The project coordination and joint control committee 290
12.5.4 Participation in design reviews 291
12.5.5 Participation in software testing 291
12.5.6 Specialized procedures 291
12.5.7 Certification of external participants’ team leaders

and other staff 292
12.5.8 Progress reports 292
12.5.9 Review of deliverables (documents) and acceptance

tests 293

Summary 293
Selected bibliography 295
Review questions 295
Topics for discussion 296

After completing this chapter, you will be able to:

■ Explain the difference between contractors and external participants.
■ List the types of external participants, and explain the benefits they pro-

vide to the contractor.
■ Describe the risks for the contractor associated with turning to external

participants.
■ List the SQA tools appropriate for use with external participants and add

short statements regarding the risks they help to eliminate or reduce.

12.1 Introduction: the HealthSoft case

The RedAid Health Insurance tender presented a real challenge for
HealthSoft, a software house that specialized in hospital and pharmacy soft-
ware. The tender’s main item was an integrative nationwide system for
online handling of fees charged by hospitals for services, by pharmacies for
prescriptions, by physicians for clinic visits and by medical laboratories for
tests. The tender also included a comprehensive patient’s personal health
information service to be made available through the Internet. The cus-
tomer’s Management Information System (MIS) Department was to develop
the home office modules, based on the existing software. In addition, the
MIS Department will purchase and install the hardware and communication
equipment according to the contractor’s specifications, see to the computer-
ized interfacing agreements required with RedAid’s suppliers of health
services, and instruct RedAid personnel in the new system’s operation. All
the systems were to be under tight security, with high reliability requisite for
all the components. The system was to become fully operative not later than
13 months after signing the contract, with the contractor fully responsible
for the quality and timely completion of all system parts.

Already at the beginning of preparing the RedAid tender proposal, the
HealthSoft tender team realized that they needed the professional support of
companies that specialize in software security and data communication. The
size of the anticipated programming load led the team to decide that a sub-
contractor would carry out 60%–70% of the programming load. Cape-Code,
a very small software house located in a nearby suburb, was chosen as the
programming subcontractor on the basis of the lowest price proposed. Some
“breathing space” when preparing the proposal was obtained when the team
discovered that the new enhanced Medal Software’s product Version 5E of the
widely used Medal Version 5, a laboratory accounting software program,
included important new modules. These new modules for online external
authorization of patient credit and for the preparation of monthly accounts
for organizational customers like RedAid suited the tender requirements.
Medal’s developers had stressed the wide variety of their package’s interfac-
ing capabilities, which were touted as suited to almost any requirements. The
integration of Medal’s 5E version into the proposed software solved one of

280

12
A

ssuring the quality
ofexternalparticipants’ contributions

the remaining difficulties hampering completion of the proposal and enabled
substantial reduction of development costs. Finally, HealthSoft signed agree-
ments with all the potential external participants – Lion Securities, Comcom
and Cape-Code, subcontractors for security, communication and program-
ming, respectively – that framed its responsibility for financial issues as well
as coordination between the various organizations.

The day HealthSoft was announced winner of the tender was one of sat-
isfaction and joy for the company. Within a few days, all the project teams
were working “at full speed”. Monthly coordination meetings were con-
ducted regularly. The subcontractors reported satisfactory progress
according to the project schedule. The first signs of alert appeared in the
tenth meeting. Comcom, the communication subcontractor, reported that
some of RedAid’s major suppliers had refused to supply the information
needed for planning the communication equipment to be installed on their
premises as they had not reached an agreement with RedAid on the issue. As
expected, Lion Securities, the security subcontractor, faced similar difficul-
ties. Both subcontractors declared that even if full cooperation was to be
achieved within a week, a one-month delay in completion of the project was
inevitable. Yet, Cape-Code people continued to express their satisfaction
with the progress of the development tasks they had undertaken. The next
coordination meeting was a special meeting, called after only two weeks, to
discuss the severe delays that had appeared in Cape-Code’s schedule. The
delays had been discovered by a HealthSoft team when it tried to coordinate
a planned integration test. At this late stage, HealthSoft found out that Cape-
Code had subcontracted the development task to another small software
house. It became clear that all the previous calming reports had not been
based on actual information; they were fabrications, meant to satisfy
HealthSoft people (and ensure regular income to Cape-Code).

Integration tests of the Cape-Code modules, begun 10 weeks behind
schedule, identified many more faults – of all kinds – than anticipated.
Correction time required exceeded that planned. About the same time, the
team assigned to integrate the Medal Version 5E software into the system
realized that the enhanced version was not operative for all new modules,
particularly the online external authorization of patients’ credit status. In
addition, the interfacing trials with other system modules failed. Medal
Software assigned a special team to complete the development of the missing
module parts and perform the necessary corrections. Though their efforts
were visible, successful completion of the software integration tests was
accomplished almost 20 weeks behind schedule.

The system test started 19 weeks behind schedule, with the same severi-
ty of quality problems that had been observed at the integration phase.
Finally, about five months late, it became possible to install the hardware
and software equipment in RedAid’s main office and at its suppliers’ sites.

The three-week conversion phase of the project, begun 23 weeks behind
schedule, was, surprisingly, a great success, with no major faults discovered and
immediate repair of all faults that were revealed. However, the implementation

281

12.1 Introduction: the H
ealthS

oftcase

phase was a colossal failure: only one-third of the staff listed for training
actually participated in the instruction courses, and the majority of those
participating displayed insufficient preliminary knowledge of the new sys-
tems. Success with supplier personnel was even lower. Only eight weeks later
could regular operation of the system begin, but with only about half of
RedAid’s suppliers integrated into the new system.

The project, a frustrating one for all who participated, ended with a series
of court claims. RedAid sued HealthSoft, and HealthSoft sued RedAid, Cape-
Code and Medal Software, the developers of the Medal software package.
Lion Securities and Comcom decided not to sue HealthSoft – despite the extra
costs they had incurred following RedAid’s lack of cooperation and the sub-
sequent obstacles raised to efficient performance of their parts in the project
– in expectation of continuing cooperation with HealthSoft on future proj-
ects. The trials lasted for years. The only consolation was that the new
software, once in operation, was a great success, with many of RedAid’s man-
agement admitting that the system worked well beyond their expectations.

You may ask yourself:

■ Could the final gratifying results have been achieved without the “mess”
experienced during the course of the project?

■ Could they have been achieved without the major losses faced by all the
participants?

■ Was the HealthSoft method of choosing subcontractors satisfactory?

■ Was the method of purchasing COTS software appropriate?

■ Was the method of controlling the implementation of the customer’s con-
tribution to the project adequate?

■ Was HealthSoft’s control over its external participants adequate?

Whatever your responses to the specific questions, we can readily claim that
had HealthSoft properly implemented SQA activities, problems like those
described could have been avoided. Prevention of such troubles is the subject
of this chapter.

12.2 Types of external participants

The partners to a software development project – the organization that is inter-
ested in the software system (the “customer”) and the organization that
undertakes to carry out the development (the “contractor”) – are nowadays
often not the only participants in the project. The external participants involved
in a software development project contribute to the project but are not con-
tractors, nor are they the contractor’s partners. Their contributions to the
project are structured through agreements with the contractor (subcontractors
and suppliers of COTS software) or through those clauses of the project con-

282

12
A

ssuring the quality
ofexternalparticipants’ contributions

tract that state what parts of the project will be performed by the customer
himself. The larger and more complex the project, the greater the likelihood
that external participants will be required, and the larger the proportion of
work to be transmitted or parceled out. The motivation for turning to exter-
nal participants rests on several factors, ranging from the economic to the
technical and to personnel-related interests, and reflects a growing trend in
the allocation of the work involved in completing complex projects.

External participants can be classified into three main groups:

(1) Subcontractors (currently called “outsourcing” organizations) that
undertake to carry out parts of a project, small or large, according to cir-
cumstances. Subcontractors usually offer the contractor at least one of
the following benefits: staff availability, special expertise or low prices.

(2) Suppliers of COTS software and reused software modules. The advan-
tages of integrating these ready elements are obvious, ranging from
timetable and cost reductions to quality. One expects that integration of
these ready-for-use elements will achieve savings in development
resources, a shorter timetable and higher quality software. Software of
higher quality is expected as these components have already been tested
and corrected by the developers as well as corrected according to the
faults identified by previous customers. The characteristics of COTS
software and quality problems involved in their use are discussed by
Basili and Boehm (2001).

(3) The customer themselves as participant in performing the project. It is
quite common for a customer to perform parts of the project: to apply
the customers’ special expertise, respond to commercial or other security
needs, keep internal development staff occupied, prevent future mainte-
nance problems and so forth. This situation does have drawbacks in
terms of the customer–supplier relationship necessary for successful per-
formance of a project, but they are overweighed by the inputs the
customer makes. Hence, the inevitability of this situation has become a
standard element of many software development projects and contrac-
tual relations.

Typical contracting structures of projects are presented in Figure 12.1.

12.3 Risks and benefits of introducing external participants

The main risks to project quality associated with introducing external par-
ticipants within the framework of the project are as follows.

(1) Delays in completion of the project. In those cases where external partici-
pants are late in supplying their parts to the software system, the project
as a whole will be delayed. These delays are typical for subcontractors’

283

12.3 Risks
and benefits

ofintroducing externalparticipants

parts and customers’ parts but less so for COTS software suppliers. In
many cases the control over subcontractors’ and the customers’ software
development obligations is loose, a situation that causes tardy recogni-
tion of expected delays and leaves no time for the changes and
reorganization necessary to cope with the delays and to limit their neg-
ative effects on the project.

284

12
A

ssuring the quality
ofexternalparticipants’ contributions

Implementation tip

Purchasing a software package for integration into a newly developed
software system usually entails substantial savings of development
resources, including budgeted funds. This is especially true when the
relevant software has been tested and currently serves a substantial
population of users. In some cases the contractor is persuaded to
purchase a new, supposedly advanced version of an accepted software
package, soon to be put on the market and touted as better suited to
his/her requirements. However, it has become common to discover just a
week or two later that the version’s release is (unexpectedly) delayed –
and repeatedly. More thorough investigation into the status of the new
version, including requests for information from customers, may also reveal
that vital parts – for instance, development of equipment and software
interfaces or an advanced application – have been shifted to a later stage.

Contractor

Customer

Project contract

Contractor

Customer

Contracts

SubcontractorSupplier of
COTS software

Contracts

Project contract

Project contract clauses
that deal with customer-

supplied parts

Figure 12.1: Software development projects: typical contracting structures

(a) “Simple” contracting project
(no external participants)

(b) “Compound” contracting project
(with external participants)

(2) Low quality of project parts supplied by external participants. Quality
problems can be classified as (a) defects: a higher than expected number
of defects, often more severe than expected; and (b) non-standard coding
and documentation: violations of style and structure in instructions and
procedures (supposedly stipulated in any contract). Low quality and
non-standard software are expected to cause difficulties in the testing
phase and later in the maintenance phase. The extra time required to test
and correct low-quality software can cause project delays even in cases
when external participants complete their tasks on time.

(3) Future maintenance difficulties. The fact that several organizations take
part in development but only one of them, the contractor, is directly respon-
sible for the project creates two possibly difficult maintenance situations:

(a) One organization, most probably the contractor, is responsible for
maintenance of the whole project, the arrangement commonly
stipulated in the tender itself. The contractor may then be faced with
incomplete and/or non-standard coding and documentation supplied by
the external participants, causing lower-quality maintenance service
delivered by the maintenance team and higher costs to the contractor.

(b) Maintenance services are supplied by more than one organization,
possibly the subcontractors, suppliers of COTS software and occa-
sionally the customer’s software development department. Each of
these bodies takes limited responsibility, a situation that may force
the customer to search for the body responsible for a specific soft-
ware failure once discovered.

Damages caused by software failures are expected to grow in
“multi-maintainer” situations. Neither of these situations con-
tributes to good and reliable maintenance unless adequate measures
are taken in advance, during the project’s development and mainte-
nance planning phases.

(4) Loss of control over project parts. Whether intentionally or not, the con-
trol of software development by external bodies may produce an
unrealistically optimistic picture of the project’s status. Communication
with external participants’ teams may be interrupted for several weeks,
a situation that prevents assessment of the project’s progress. As a result,
alerts about development difficulties, staff shortages and other problems
reach the contractor belatedly. The possibilities for timely solution of the
difficulties – whether by adaptations or other suitable changes – are
thereby often drastically reduced.

Before entering into these agreements, the contractor must consider the asso-
ciated benefits and risks of introducing external participants in a project.
These are summarized in Frame 12.1.

285

12.3 Risks
and benefits

ofintroducing externalparticipants

12.4 Assuring the quality of external participants’
contributions: objectives

What are the objectives to be obtained by application of SQA tools in the
case of parts supplied by external participants? These objectives can be
derived directly from the risks listed in Frame 12.1:

(1) To prevent delays in task completion and to ensure early alert of antici-
pated delays.

(2) To assure acceptable quality levels of the parts developed and receive
early warnings of breaches of quality requirements.

(3) To assure adequate documentation to serve the maintenance team.

(4) To assure continuous, comprehensive and reliable control over external
participants’ performance.

286

12
A

ssuring the quality
ofexternalparticipants’ contributions

Frame 12.1 Introduction of external participants: benefits and risks

Benefits Risks

For the contractor:

1. Budget reductions

2. Remedy of professional staff
shortages

3. Shorter project schedule

4. Acquisition of expertise in
specialized areas

For the customer (as external
participant):

1. Protecting the customer’s
commercial secrets

2. Provision of employment to internal
software development department

3. Acquisition of project know-how for
self-supplied maintenance

4. Project cost reductions

For the contractor and the customer:

1. Delayed completion of the project
caused by delays in completion of
parts supplied by external
participants

2. Low quality of parts supplied by
external participants

3. Increased probability of
difficulties in maintaining parts
supplied by external participants

4. Loss of control over development
of specific project parts

12.5 SQA tools for assuring the quality of external
participants’ contributions

We can expect external participants to operate their own SQA systems that
include the tools necessary for achieving acceptable quality levels for their
own software products and services. The tools mentioned here are those that
contractors can apply vis-à-vis their external participants. For this purpose,
the issues of quality and timetable are the most important to be addressed.

The main SQA tools to be applied before and during incorporation of exter-
nal participants in a software development project are listed in Frame 12.2.

12.5.1 Requirements document reviews

Requirements documents provide the formal basis for the contracts signed
between the contractor and subcontractors as well as for the contract claus-
es dealing with the customer’s obligations to carry out parts of the project.
The requirements document is vital for the examination of proposals pre-
sented by suppliers of COTS software and the subsequent negotiations
regarding their participation. Hence, review of the requirements documents
to be presented to external participants is meant to assure their correctness
and completeness. The principles guiding the review are similar to those of
contract reviews, adjusted to the different role of the contractor in this case
– as the customer.

In general, the requirements documents presented by contractors to
external participants should be correlated with the customer’s requirements.
The main issues to be dealt with in a requirements document are presented
in Table 12.1.

287

12.5 SQ
A

 tools
for assuring quality

from
 externalparticipants

Frame 12.2 SQA tools applied to external participants in a software
development project

■ Requirements document reviews

■ Evaluation of choice criteria regarding external participants

■ Establishment of project coordination and joint control committee

■ Participation in design reviews

■ Participation in software testing

■ Formulation of special procedures

■ Certification of supplier’s team leaders and members

■ Preparation of progress reports of development activities

■ Review of deliverables (documents) and acceptance tests

12.5.2 Choice of external participants

While it is clear that the case of customer participation in a project is dif-
ficult if not impossible to circumscribe or prevent, a good degree of choice
is available with respect to the other external participants: subcontractors
and suppliers of COTS software. General quality assurance procedures,
with the appropriate adaptations, can be applied in this situation as well.
Any choice of external participants requires collection of information
about the candidates, their products and team qualification, and evaluation
of that information.

288

12
A

ssuring the quality
ofexternalparticipants’ contributions

Table 12.1: Requirements list presented to external participants

Requirements type Requirements subject

Software functionality (1) Functional requirements (related to the customer’s requirements)
(2) Interfaces between the external participant’s part and other parts

of the project
(3) Performance, availability, usability and reliability (related to the

customer’s requirements)
(4) Maintenance services that will be required

Formal and staff (1) Required qualifications of team leaders and members, including
certification where applicable

(2) Establishment of coordination and joint control committee
including procedures for handling complaints and problems

(3) List of documents to be delivered by the external participant
(4) Criteria for completion of external participant’s part
(5) Financial arrangements, including conditions for bonuses and

penalties

SQA (1) Requirements regarding participation in the external participant’s
design reviews

(2) Requirements regarding participation in the external participant’s
software testing

Implementation tip

One of the main surprises encountered by contractors is the revelation that the
subcontractor – without any authorization or prior consent – has subcontracted
his task to another company. Whatever the reason or justification for this step, it
usually leads to a loss of contractor control over project quality, with the
subsequent delays and non-compliance with quality requirements.

Contract clauses dealing with these issues are often inadequate to prevent
such behavior. Improved prospects for elimination of such behavior can be
achieved only by combining stringent contractual clauses with strict
implementation controls.

Collection of information
The main tools that support choice are:

■ Contractor’s information about suppliers and subcontractors based on
previous experience with their services

■ Auditing the supplier’s or subcontractor’s quality assurance system
■ Survey of opinions regarding the external participants from outside sources.

(1) Use of contractor’s internal information about suppliers and subcontrac-
tors. An external participant (subcontractor or supplier) file, that records
past performance, is the main source of information for the contractor.
Such an information system is based on cumulative experience with tasks
performed by the subcontractor or supplier of COTS software, as well as
on information gathered for evaluation of their past proposals.
Implementation of this tool requires systematic reporting, based on SQA
procedures, by the departments involved:

■ Teams of committees that evaluate suppliers’ proposals
■ User representatives and coordination committee members who are

responsible for project follow-up
■ “Regular” users who have identified software faults or have gained

experience with the supplier’s products and maintenance service.

289

12.5 SQ
A

 tools
for assuring quality

from
 externalparticipants

Implementation tip

Two issues impinging on the adequacy of a “Suppliers’ File” should
be considered:

(a) Individuals evaluating a proposal like to receive full documentation
on the organization’s past experience with a prospective
subcontractor/supplier together with information gathered in the past
from various outside sources. Yet, these same individuals are likely to
neglect preparing records related to their own experience with an
external participant.

(b) Difficulties often result from unstructured reporting to the Suppliers’
File. If the information is not properly structured, evaluation and
comparison of suppliers become taxing, if not impossible.

The answer to these difficulties frequently lies in the procedures applied
and forms used. Procedures that define who should report what and in
which situations can limit the reporting burden. A structured reporting
form, supported by unstructured descriptions, can be helpful in
responding to both issues.

(2) Auditing the supplier’s quality system. Auditing the supplier’s SQA sys-
tem is often encouraged by the suppliers themselves in an effort to
promote acceptance of their proposals. In some cases such an audit is
part of the tender requirements. The auditors should take care that the
audited features are relevant to the project in its content, magnitude and
complexity. Another issue to be considered is the demonstration project
and team, which are usually chosen by the supplier. The preferred route
is, of course, for the auditors to randomly choose the project and team
from a list of relevant projects and teams. This approach is, however,
rarely adopted due to objections voiced openly or implicitly by subcon-
tractor and/or supplier.

(3) Opinions of regular users of the supplier’s products. Opinions can be
gathered from internal units that used the supplier’s services in the past,
from other organizations that have experienced the supplier’s services in
the past, from professional organizations that certified the supplier as
qualified to specialize in the field, and from firms that have had profes-
sional dealings with the potential subcontractor or supplier. The purpose
of this step is also to ascertain reliability, among other variables that may
affect contractual relations.

Systematic evaluation of the suppliers
Evaluation and comparison of potential external participants should be car-
ried out according to procedures adequate to their purpose. Among the
factors set down in the procedure are designation of the evaluation commit-
tee or responsible manager and the process of evaluation, including the
method for defining the relative importance attached to each item and source
of information.

12.5.3 The project coordination and joint control committee

The scope of this committee’s activities and responsibilities varies in direct
relation to the part the external participant will play in the project.
Naturally, these will be rather limited in the case of purchased COTS soft-
ware or reused software in cases where the required supplier’s support is
minimal and no maintenance is required. Alternatively, substantial coordi-
nation and progress control are demanded when subcontractors are to carry
out major parts of the project.

The committee’s main activities are:

■ Confirmation of the project timetable and milestones

■ Follow-up according to project progress reports submitted to the committee

■ Meeting with team leaders and others in the field in severe situations

■ Making decisions about solutions to timetable and resource shortage
problems arising during the project that have been identified during
follow-up

290

12
A

ssuring the quality
ofexternalparticipants’ contributions

■ Making decisions regarding solution of problems identified in design
reviews and software tests

■ Solving disagreements about contract implementation.

Application of the specific SQA procedure that regulates follow-up of exter-
nal participants’ work activities can be of great help.

12.5.4 Participation in design reviews

The extent to which contractors’ participation is required in subcontractors’
design reviews or customers’ reviews of other development activities depends
on the nature of the project parts provided by the external participants.
When the contractor participates, we can expect him or her to act as a full
member of the review. In other words, he or she will read and review the
documents before the team’s meeting and participate in the team’s discus-
sions as well as in the decision taken at the end of the review.

12.5.5 Participation in software testing

Participation in software testing, when required, should include all the stages
of the testing process: design reviews of the planning and design of the tests,
reviews of the test results, follow-up meetings for the corrections and regres-
sion testing. That is, the character of participation in the testing process is
sufficiently comprehensive to enable the contractor’s representative to inter-
vene, if necessary, to obtain assurance of the quality demanded of the
supplied software and the expected timetable for completion of the testing
(and correction) process.

12.5.6 Specialized procedures

The specialized procedures that regulate SQA activities within the context
of contractual relations with external organizations (i.e., organizations that
are not partners in the project contract) have already been mentioned in
this chapter. These special procedures are usually adaptations of proce-
dures applied in projects that the organization has carried out. Here, these
procedures are mentioned in greater detail. Usually, they are supported by
templates, checklists and forms that attach extra value to the fundamental
procedures. The main objectives of specialized procedures are:

■ Preparation of requirements documents for external participants

■ Choice of a subcontractor or supplier of COTS software

■ Audit of the subcontractor’s SQA system

■ The Suppliers’ File, its sources of information and mode of operation

291

12.5 SQ
A

 tools
for assuring quality

from
 externalparticipants

■ Appointment of the coordination and joint control committee for project
parts to be carried out by external participants and preparation of
instructions for its operation

■ Progress reporting requirements for project parts carried out by external
participants.

12.5.7 Certification of external participants’ team leaders and
other staff

Qualification and certification of the external participants’ team leaders and
other staff are intended to ensure an acceptable level of professional work as
required by the project or the customer. This requirement is not to be belit-
tled, for the quality of staff is the heart of any contractual relationship. The
SQA activities required here are:

■ Qualification and certification of staff should be listed as a contractual
requirement

■ Implementation of these clauses is to be confirmed by the contractor at
the outset of the work

■ Changes and replacement of the respective team members are to be
approved by the contractor

■ Implementation of these clauses by the contractor is to be periodically
reviewed.

12.5.8 Progress reports

When external participants share the project’s workload, the main progress
reports prepared for the coordination and joint progress control committee
are as follws:

■ Follow-up of the risks identified in the project work. This report
describes the current status of the risks identified in previous reports,
such as shortage of professionals having special expertise, shortage of
equipment, and difficulties in development of a module. For risks still

292

12
A

ssuring the quality
ofexternalparticipants’ contributions

Implementation tip

Subcontractors under pressure from other projects or for other reasons
frequently try to replace qualified and professional certified team members
needed elsewhere with staff who are not fully qualified and/or lack
certification. “Partial” violations – with the team leader or team member
allocating his or her time, without approval, on more than one project – are
also common. The control activities mentioned should deter the subcontractor
from changing staff in this manner and help the contractor quickly identify
violations should they occur.

unsolved, the report should discuss possible remedial actions. The new
risks identified in the period covered by the report, as well as the actions
to be taken and their prospects, should also be mentioned.

■ Follow-up of the project’s schedule. This report focuses on activities that are
behind schedule, and milestones expected to be reached later than sched-
uled. The report describes the actions taken to minimize delays and suggests
further actions and changes in plans to be approved by the committee.

Two other issues to be covered in progress reports are:

■ The follow-up of the usage of resources
■ The follow-up of the project budget.

In most of the cases where subcontractors or suppliers of COTS software
perform their parts as fixed-price tasks, these issues seem to be of importance
mainly to the external participants. However, it is clear that an unfavorable
situation regarding these two issues can affect the project’s quality, an event
that makes them of immediate concern to the contractor.

12.5.9 Review of deliverables (documents) and acceptance
tests

Two of the most powerful tools for assuring the quality of external partici-
pants, primarily subcontractors and customer-supplied software, are
thorough review of software development documents (“deliverables”) by the
contractor and acceptance tests, planned, designed and carried out by the
contractor. These tools provide independent and direct review of develop-
ment documents and testing of the software components of the external
participant’s products.

It has been suggested that the presence of the subcontractor’s represen-
tative in design review teams could replace the contractor’s independent
review of deliverables and acceptance tests. In many cases, cost and timetable
considerations force contractors to be satisfied with participation in the sys-
tem testing process carried out by the subcontractor. Decisions regarding
these options should be taken very carefully.

Summary

(1) Explain the difference between contractors and external participants.

Software development contractors are organizations or groups of organizations that
are contracted by a customer in a project contract to develop a software system.
External participants are organizations that participate in the development process,
performing small to large parts of the work, but are not legally designated sides in
the project’s contract.

293

S
um

m
ary

(2) List the types of external participants, and explain the benefits they provide to
the contractor.

The external participants can be categorized into three main groups:
■ Subcontractors
■ Suppliers of COTS software and reused software modules
■ The customer themselves as an active participant in performing parts of the

project.

The main benefits to the contractor of using external organizations are:
■ Overcoming shortages of professional staff by transferring parts of the project

to be carried out to firms employing staff having those skills.
■ Potentially shorter project schedules, achieved by purchasing COTS software

and reused software rather than developing the software.
■ Expertise acquired in areas that need specialization through the participation

of owners – the subcontractor or the customer’s development department – of
that expertise.

■ Saved budget, achieved when subcontractors offer prices below those incurred by
performing the project internally, and by the use of COTS and reused software.

(3) Describe the risks for the contractor associated with turning to external participants.

■ Delays in completion of the project parts due to the external participants’ com-
peting interests, given that the contractor is the only party committed to living
up to schedule demands as stated in the project contract signed with the cus-
tomer. Even the customer – as supplier for their own project – might prefer
another project and delay completion of their part.

■ Low quality of project parts caused by insufficient capabilities, attempts to save
resources, or other factors.

■ Future maintenance difficulties due to low quality or non-standard software and/or
incomplete or poor documentation of parts carried out by external participants.

■ Loss of control over parts of the project instigated by periods of cut-off com-
munication, whether intentionally or inadvertently initiated.

(4) List the SQA tools appropriate for use with external participants and add short
statements regarding the risks they help to eliminate or reduce.

■ The requirements document review assures a correct and complete list of the
requirements related to software functionality, to formal and staff aspects of the
project and to SQA issues; it contributes mainly to delay reduction and fewer
cases of low quality.

■ Choice of external participants, if done properly, reduces all types of risks,
especially those related to low quality.

■ The project coordination and joint control committee, if it operates properly,
discovers anticipated as well as unanticipated delays, quality problems and
potential for loss of control over the project at early stage. Early alerts and coop-
eration can reduce and even eliminate these risks. The committee’s suggested
solutions to quality problems, especially those related to documentation, also
reduce future maintenance difficulties.

294

12
A

ssuring the quality
ofexternalparticipants’ contributions

■ Participation in design reviews provides an excellent opportunity to examine
the real quality of a subcontractor’s work and to introduce corrections where
necessary. The review’s main contribution is to low-quality product reduction.

■ Participation in software testing, like participation in design reviews, con-
tributes to the reduction of low-quality products. Furthermore, such
participation enables the contractor to be alerted about possible delays in the
work schedule, and can help reduce the effects of those delays.

■ Specialized procedures are part of the contractors’ SQA infrastructure and are
meant to handle all kinds of risky situations.

■ Qualification and certification of the supplier’s team leaders and other staff
assure the professional capacities of the project teams, and contribute to reduc-
tion of low-quality products.

■ Progress reports of external participants’ development activities are prepared
mainly in order to reduce the risk of delays.

■ Review of deliverables (documents) and acceptance tests is aimed at assuring
the quality of the work performed by the external participant and consequently
reduces the risks of future maintenance difficulties.

Selected bibliography

1. Basili, V. R. and Boehm, B. (2001) “COTS-based systems Top 10 list”,
Computer, 34(5), 91–93.

2. IEEE (1998) “IEEE Std 1062-1998–IEEE Recommended Practices for Software
Aqcuisition”, in IEEE Software Engineering Standards Collection, The Institute
of Electrical and Electronics Engineers, New York.

3. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

4. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

5. Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Prentice Hall, Upper Saddle River, NJ.

Review questions

12.1 Customers as suppliers of parts of the project are listed as one of the three types
of external participants. Compared to subcontractors and suppliers of COTS soft-
ware, the customer as supplier causes special difficulties to the contractor before
and during implementation of the project.

List these special difficulties and explain their possible effects on the project.

12.2 External participants introduce four main risks into the project’s quality.
List the main risks and explain in your own words the implications of each.

295

Review
 questions

12.3 Employing external participants provides the contractor with four major benefits
with respect to carrying out a project.

List the main benefits to the contractor and explain in your own words the
implications of each.

12.4 The customer enjoys four principal benefits from the employment of external par-
ticipants when carrying out a project.

List the main benefits to the customer and explain in your own words the
implications of each.

12.5 Qualifications and certification requirements for team leaders and team mem-
bers are included in many subcontracting contracts.

(1) Can you suggest examples of project team functions and list some relevant
qualification and certification requirements?

(2) What do contractors expect to gain from qualification and certification
requirements?

12.6 For contractors, project adherence to schedule and discovery of hitherto
unknown project risks are the main areas of their interest in progress reports.

Explain in your own words what actions are to be taken and what information
items are to be required to assure that progress reports comply with these
two demands.

Topics for discussion

12.1 Refer to the HealthSoft case (Section 12.1).

(1) List the errors made by Healthsoft in the proposal preparation stage.
(2) List the errors committed by HealthSoft during performance of the project.
(3) Suggest SQA tools that could have prevented the above errors.

12.2 A nationwide furniture store chain has issued a tender for the development of its
new generation software system, integrating advanced data communication sys-
tems, online applications and a new feature – an Internet site – to display the
chain’s products. The chain received several proposals, two of which were cho-
sen for the last stage of the tender. Both contenders were well-established
software houses, experienced in large-scale projects and enjoying good profes-
sional reputations. Both proposals fully cope with the tender schedule and other
organizational demands, as well as with the software specification requirements.
The difference in price between the proposals is negligible.

■ Proposal A: The “in-house proposal”, based on entirely in-house develop-
ment, would integrate various company teams. The company declared that
substantial parts of the project will be based on reused software modules
taken from the company’s reused software library.

■ Proposal B: The “big coalition proposal” is based on six external partici-
pants, half of them suppliers of reused software, the others subcontractors
that are leading specialists in their field of expertise.

296

12
A

ssuring the quality
ofexternalparticipants’ contributions

You have been appointed to present your recommendations regarding the final
choice between the final proposals.

(1) Which of the two final proposals do you recommend?
(2) List your arguments for and against your preferred proposal.
(3) Given that the cost of the proposal not preferred (not recommended in ques-

tion (1) is 10% lower than the preferred proposal, would you consider
changing your recommendation? What are your arguments?

12.3 In Topic 12.2, three sources of information are reviewed in the process of choos-
ing external participants.

(1) List each source of information and explain in your own words the contribu-
tion of each.

(2) Why is it important to use all three types of sources?
(3) What are the difficulties involved in employing each type of information

source?

12.4 Some professionals claim that in cases where the contract specifies review of
deliverables and acceptance tests of project parts carried out by external partici-
pants, the contractor has no justification to participate in design reviews and
software tests.

(1) Do you agree with the professionals? List your arguments.
(2) Do you agree with others who suggest that there is no need to carry out

acceptance tests in cases where comprehensive participation in design
reviews and software tests has been executed? List your arguments.

297

Topics
for discussion

chapter 13

CASE tools and their effect on
software quality

An increasing variety of specialized computerized tools (actually software
packages) have been offered to software engineering departments since the
early 1990s. The purpose of these tools is to make the work of development
and maintenance teams more efficient and more effective. Collectively
named CASE (computer-aided software engineering) tools, they offer:

■ Substantial savings in resources required for software development
■ Shorter time to market
■ Substantial savings in resources required for maintenance
■ Greater reuse due to increased standardization of the software systems
■ Reduced generation of defects coupled with increased “interactive” iden-

tification of defects during development.

It is clear that this last characteristic is the one most attracting the interest of
software quality analysts to CASE tools.

In light of their characteristics, CASE tools serve as a source for easing
the amount of effort expended on development of increasingly complex and
large software systems.

The following sections will deal with the subjects:

■ What is a CASE tool?
■ How can CASE tools contribute to the improved quality of

software products?

Chapter outline

13.1 What is a CASE tool? 299
13.2 The contribution of CASE tools to software product quality 302
13.3 The contribution of CASE tools to software maintenance quality 304
13.4 The contribution of CASE tools to improved project management 304

Summary 305
Selected bibliography 306
Review questions 306
Topics for discussion 307

299

13.1 W
hatis

a CA
SE

tool?
■ How can CASE tools contribute to the improved quality of software

maintenance?
■ How and to what extent can CASE tools contribute to maintaining devel-

opment process timetables and keeping with budgets?

After completing this chapter, you will be able to:

■ Explain the difference between “classic” and “real” CASE tools and pro-
vide examples of each.

■ Explain the contribution of CASE tools to software development.
■ List the main contributions of real CASE tools to product quality.
■ Explain the contribution of CASE tools to software quality maintenance.

13.1 What is a CASE tool?

Frame 13.1 contains the basic definition of a CASE tool.

The definition’s generality allows compilers, interactive debugging sys-
tems, configuration management systems and automated testing systems to
be considered as CASE tools. In other words, well-established computerized
software development support tools (such as interactive debuggers, compil-
ers and project progress control systems) can readily be considered classic
CASE tools, whereas the new tools that support the developer for a succes-
sion of several development phases of a development project are referred to
as real CASE tools. When referring to real CASE tools, it is customary to dis-
tinguish between upper CASE tools that support the analysis and design
phases, and lower CASE tools that support the coding phase (where “upper”
and “lower” refer to the location of these phases in the Waterfall Model –
see Section 7.1), and integrated CASE tools that support the analysis, design
and coding phases.

The main component of real CASE tools is the repository that stores all
the information related to the project. The project information accumulates
in the repository as development proceeds and is updated as changes are ini-
tiated during the development phases and maintenance stage. The repository
of the previous development phase serves as a basis for the next phase. The
accumulated development information stored in the repository provides sup-
port for the maintenance stage in which corrective, adaptive and functionality
improvement tasks are performed. The computerized management of the
repository guarantees the information’s consistency and its compliance with
project methodology as well as its standardization according to style and

Frame 13.1 CASE tools – definition

CASE tools are computerized software development tools that support the
developer when performing one or more phases of the software life cycle
and/or support software maintenance.

structure procedures and work instructions. It follows that CASE tools are
capable of producing full and updated project documentation at any time.
Some lower CASE and integrated CASE tools can automatically generate
code based entirely on the design information stored in the repository.
Reverse engineering (re-engineering) tools are also considered to be real
CASE tools. Based on the system’s code, these tools are applied mainly for
recovery and replication of (now non-existing) design documents for cur-
rently used, well-established software systems (“legacy” software). In other
words, reverse engineering CASE tools operate in the opposite direction of
“regular” CASE tools: instead of creating system code on the basis of design
information, they automatically create complete, updated repository and
design documents on the basis of system code.

Figure 13.1 describes the application of CASE tools in the development
process in comparison to the traditional development process.

The support that CASE tools provide the developer can be in one or
more of the following areas, listed in Table 13.1.

300

13
CA

SE
tools

and their effecton softw
are quality

Table 13.1: CASE tools and the support they provide to developers

Type of CASE tool Support provided

Editing and Editing text and diagrams, generating design diagrams according to
diagramming repository records

Repository query Display of parts of the design texts, charts, etc.; cross-referencing
queries and requirement tracing

Automated Automatic generation of requested documentation according to
documentation updated repository records

Design support Editing design recorded by the systems analyst and management of
the data dictionary

Code editing Compiling, interpreting or applying interactive debugging code for
specific coding language or development tools

Code generation Transformation of design records into prototypes or application
software compatible with a given software development language (or
development tools)

Configuration Management of design documents and software code versions, control
management of changes in design and software code*

Software testing Automated testing, load testing and management of testing and
correction records, etc.

Reverse engineering Construction of a software repository and design documents, based on
(re-engineering) code: the “legacy” software system. Once the repository of the legacy

software is available, it can be updated and used to automatically
generate new versions of the system. As new re-engineered software
version is generated, it can be easily maintained and its documentation
automatically updated

Project management Support progress control of software development projects by follow-up
and software metrics of schedules and calculation of productivity and defects metrics

* For more about configuration management, see Chapter 18.

301

13.1 W
hatis

a CA
SE

tool?

Requirements
determination

Customer’s
requirements

document

Customer

Analysis

System
requirements

document

System
analyst

Design

Detailed
design

document

Coding

Program
code files

Programmer

Testing

Tested
code files

Tester

Installation

Installed
code files

Installation
team

Operation and
maintenance

Maintenance
team

Requirements
determination

Customer

Analysis

Upper CASE

System
analyst

Design

Upper CASE

Coding

Lower CASE
Programmer

Testing

CASE testing
tools

Tester

InstallationInstallation
team

Operation and
maintenance

Upper and lower
CASE tools

Maintenance
team

R
e
p
o
s
i
t
o
r
y

Customer’s
requirements

document

Figure 13.1: Traditional vs. CASE-supported development life cycle

(a) Traditional development life cycle (b) Real CASE tool-supported development life cycle

More information about CASE tools can be found in IEEE Std 1462
(IEEE, 1998) and in the software engineering literature, particularly Pressman
(2000), Sommerville (2001) and Kendall and Kendall (1999). The impact of
CASE tools on software quality assurance is discussed by McManus (1999).

13.2 The contribution of CASE tools to software product
quality

CASE tools contribute to software product quality by reducing the number
of errors introduced in each development phase. In order to evaluate this
contribution, we now examine the quality improvements anticipated for
each of the nine causes of software errors listed in Section 2.3. We include
classic and real CASE tools in our evaluation.

Table 13.2 lists the contributions CASE tools can make to quality.

302

13
CA

SE
tools

and their effecton softw
are quality

Table 13.2: CASE tools and the quality of software products

Extent and manner of contribution to quality

Cause of software errors Classic CASE tools Real CASE tools

1. Faulty requirements Almost no contribution
definition Computerized examination of

requirements consistency or
correctness is rarely possible.

2. Client–developer Almost no contribution
communication failures In most cases, computerized

identification of
communication failures is
impossible. Communication
failures can be located or
prevented only when a change
or other information is found
to be inconsistent with
repository information.

3. Deliberate deviations High contribution
from software Based on information stored
requirements in the repository, deviations

from recorded requirements
are identified as inconsistent
and labeled as errors. Such
deviations can also be
identified by repository-based
requirements tracing tools
and cross-referenced query
tools.

4. Logical design errors High contribution
(1) Re-engineering enables

automated generation of
the design of legacy
systems and their
recording in a repository.

303

13.2 The contribution ofCA
SE

tools
to softw

are productquality
Table 13.2 continued

Extent and manner of contribution to quality

Cause of software errors Classic CASE tools Real CASE tools

4. Logical design errors High contribution
(2) Use of the repository is

expected to identify
design omissions,
changes and additions
inconsistent with
repository records.

5. Coding errors Very high contribution Very high contribution
Application of compilers, Application of lower CASE
interpreters and interactive tools for automated code
debuggers. generation achieves full

consistency with the design
recorded in the repository. In
addition, as coding is
automatic, no coding errors
are expected.

6. Non-compliance with Limited contribution Very high contribution
coding and documentation Use of text editors and code Application of lower CASE
instructions auditing supports the tools for automated code

standardization of structure and generation assures full
style of texts and code and compliance with
facilitates identification of documentation and coding
non-compliance. instructions.

7. Shortcomings in the High contribution High contribution
testing process Automated testing tools Application of lower CASE but

perform full regression and especially of integrated CASE
automated load testing. tools prevents coding errors
Computerized management of and reduces design errors.
testing and corrections reduces Application of repository tools
errors by improvement follow-up. (cross-referenced queries and

performance consistency
checks) to corrections and
changes during the
development process prevent
most software errors.

8. Procedural errors High contribution Limited contribution
Control of versions, revisions Use of updated and full
and software installation by documentation is expected to
means of software configuration prevent many of the
management tools. maintenance errors caused by

incomplete and/or inaccurate
documentation, especially if
the design has been revised
several times.

9. Documentation errors Limited contribution High contribution
Application of text editors only Use of repository automatically

generates full and updated
documentation prior to each
correction or change.

13.3 The contribution of CASE tools to software
maintenance quality

Classic but especially real CASE tools contribute to the various types of soft-
ware maintenance quality in several ways.

Corrective maintenance:
■ CASE-generated full and updated documentation of the software enables

easier and more reliable identification of the cause for software failure.

■ Cross-referenced queries enable better identification of anticipated effects
of any proposed correction.

■ Correction by means of lower CASE or integrated CASE tools provides
automated coding, with no expected coding errors as well as automated
documentation of corrections.

Adaptive maintenance:
■ Full and updated documentation of the software by CASE tools enables

thorough examination of possible software package adaptations for new
users and applications.

Functional improvement maintenance:
■ Use of the repository enables designers to assure consistency of new

applications and improvements with existing software systems.

■ Cross-referenced repository queries enable better planning of changes
and additions.

■ Changes and additions carried out by means of lower CASE or integrat-
ed CASE tools enable automated coding, with no expected coding errors
as well as automated documentation of the changes and additions.

13.4 The contribution of CASE tools to improved project
management

Let us compare two projects of similar nature and magnitude: Project A is
carried out by conventional methods, Project B by advanced CASE tools.
The following results were obtained after comparison of the planning and
implementation phases:

Project A Project B

Method of development Conventional tools CASE tools

Planned resources (man-months) 35 20
Actual resources invested 42 27

Planned completion time (months) 15 9
Actual completion time 18 12

304

13
CA

SE
tools

and their effecton softw
are quality

Two items quickly attract our attention:

(1) The advanced CASE method was much more economical than the con-
ventional method.

(2) The quality of management in both projects was similar, with resources
and schedule estimated at below the required levels.

In general, application of CASE tools is expected to reduce project budgets
and development time (“shorter time to market”). However, the contribu-
tion made by CASE tools to the quality aspects of project management,
namely budget control and timetables, is the focus of our interest. At the
moment, it appears that use of real CASE tools does substantially reduce
deviations from the implementation budget and planned schedule from the
plan, especially because they prevent high error rates and provide for easier
and shorter error correction when required.

For project management to be improved still further, project control
tools (considered here under the category of classic CASE tools) and
improved budget and time estimation methodologies must be developed.

Summary

(1) Explain the contribution of CASE tools to software development.

A major contribution of CASE tools to software development is improvement of the
developer’s productivity and shortening of the development period. Even more
impressive is the contribution to productivity and quality of software maintenance.
Another highly relevant contribution is software reuse, supported by the complete,
updated documentation and maximum standardization. Last, but not least impor-
tant is the contribution to software quality attained through substantial reduction
of errors.

(2) Explain the difference between classic and real CASE tools and provide some examples.

Classic CASE tools are long-established computerized tools that support developers
(and maintenance teams) in one of several development phases. Compilers, graph-
ical editors and automated testing tools are examples of these tools. Real CASE
tools are “new” tools that apply repositories for storage of software development
information that can be applied for several development phases. Cross-referencing
tools based on repository data, integrated CASE tools and reverse engineering tools
are examples of real CASE tools.

(3) List the main contributions of real CASE tools to product quality.

■ Identification of deviations from design requirements.
■ Identification of design inconsistencies.
■ Automated generation of code based on the repository design records, with no

expected errors.

305

S
um

m
ary

■ Full compliance with design and coding documentation instructions achieved
by the automated coding and the repository-based documentation.

■ High quality corrections and changes made during development due to the
repository tools support.

■ Automated generation of a repository of legacy systems by CASE reverse engi-
neering tools enables efficient development of new generations of the software
system with maximal assurance of software quality.

(4) Explain the contribution of CASE tools to the quality of software maintenance.

Application of CASE tools affects quality issues for all maintenance service
components:
■ The full and updated documentation provided by CASE repositories assures the

consistency of repairs, changes and additions within the existing system and
enables thorough examination of applications of the existing system.

■ The cross-referencing repository tool facilitates planning and prevents a signifi-
cant proportion of design errors.

■ The automated coding carried out by CASE tools eliminates coding errors.

Selected bibliography

1. IEEE (1998) “IEEE Std 1462-1998 – Information Technology – Guidelines for
the Evaluation of CASE Tools”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

2. Kendall, K. E. and Kendall, J. E. (1999) Systems Analysis and Design, 4th edn,
Prentice Hall, Upper Saddle River, NJ.

3. McManus, J. I. (1999) “Software Quality Assurance CASE Tools”, in G. G.
Schulmeyer and J. I. McManus (eds), Handbook of Software Quality Assurance,
3rd edn, Prentice Hall, Upper Saddle River, NJ, pp. 381–402.

4. Pressman R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

5. Sommerville, I. (2001) Software Engineering, 6th edn, Addison-Wesley, Harlow,
Essex, UK.

Review questions

13.1 Explain in your own words the expected benefits of using CASE tools for software
system developers and software maintenance teams.

13.2 “The main component of real CASE tools is the repository.”

(1) Define “repository” in your own words.
(2) List the functions a repository fulfills and explain their impact on software

development productivity.
(3) List the functions a repository serves and explain their impact on software

quality.

306

13
CA

SE
tools

and their effecton softw
are quality

13.3 Software development and functional improvement maintenance are said to
have much in common.

(1) Discuss their similarities regarding quality assurance and application of CASE
tools. List and explain which CASE tools, if any, can be applied in common.

(2) Discuss the special quality assurance problems typical of functional improve-
ment maintenance and how CASE tools can be applied in their correction.

13.4 The contribution of real CASE tools to the quality of project management is
debatable.

(1) Describe the quality aspects of project management.
(2) Discuss what contributions real CASE tools can make to the quality of proj-

ect management and why.

Topics for discussion

13.1 It has been claimed that “the availability of full and updated documentation pro-
vided by an Integrated CASE (I-CASE) system is of higher value for a maintenance
team than for a development team.”

(1) Discuss the above statement as it relates to the team’s productivity.
(2) Discuss the above statement as it relates to the quality of the work per-

formed by the teams.

13.2 The Shureshure/Ashure Insurance Company has just marked completion of a re-
engineering project that generated a new version of its main legacy software
system. The budget for the re-engineered alternative was 30% below the budget
estimated for development of a similar but new software system. The re-engi-
neered version, which includes a list of additions and changes, was developed
by applying a fourth generation lower CASE tool that replaced the third genera-
tion language of the legacy system. The project, planned to take six months, was
completed one week earlier than scheduled.

The company’s monthly magazine dedicated two pages to a report of the
event. In its description of the satisfaction felt from the project, the following
statements were made:

“. . . The management expressed their full satisfaction from the project’s
budget and their admiration of the team’s punctuality.”

“. . . The leaders of the quality assurance and software maintenance teams
declared that the new software version is a real success. It can be main-
tained more easily and with fewer failures when compared to the former
legacy system.”

“. . . The only staff disappointed with the system were the managers of the
Operations and Local Branches Departments. They claimed that the users
they represent are highly dissatisfied with the new version.”

307

Topics
for discussion

(1) Why was the software maintenance team leader satisfied with the system?
Try to list his arguments.

(2) Why was the software quality assurance team leader satisfied with the sys-
tem? Try to list her arguments.

(3) Can you suggest why users were dissatisfied with the re-engineered version?

308

13
CA

SE
tools

and their effecton softw
are quality

par t IV

Software quality
infrastructure components

Some software quality assurance components are of a general nature; they
are common to many projects and maintenance activities, to all design
reviews, to all testing routines. Components of this nature represent “the
infrastructure of software quality assurance”. As infrastructure, they are the
main tools employed to prevent software errors and promote the quality
level of the entire organization. The responsibility for their development,
updating, maintenance, and distribution is usually laid in the hands of the
quality assurance team.

What are typical infrastructure components?

■ Procedures and work instruction

■ Quality support devices like templates and checklists

■ Staff SQA training and certification activities

■ Preventive and corrective actions

■ Software configuration management

■ Documentation and quality records control.

The elements comprising these components, their development, updating
and use, are the subjects of the chapters found in Part IV of this book.

chapter 14

Procedures and work
instructions

A procedure is “a particular way of accomplishing something or of acting”
(Webster’s New College Dictionary). In other words, procedures, as trans-
mitted in documents, are the detailed activities or processes to be performed
according to a given method for the purpose of accomplishing a task. The
procedures adopted by an organization are considered to be binding on that
organization’s employees, meaning that each employee is to perform his or
her tasks according to the steps appearing in the relevant procedure docu-
ment, often bearing the name of the designated task. Procedures also tend to
be universal within the organization, meaning that they are applied whenev-
er the task is performed, irrespective of the person performing the task or the
organizational context.

Work instructions are used mainly in cases where a uniform method of
performing the task throughout the organization is either impossible or
undesirable. As a result, work instructions are specific to a team or depart-
ment; they supplement procedures by providing explicit details that are
suitable solely to the needs of one team, department, or unit.

The software quality assurance procedures and work instructions of spe-
cial interest to us are those that affect the quality of a software product,
software maintenance or project management.

Chapter outline

14.1 The need for procedures and work instructions 312
14.2 Procedures and procedures manuals 313
14.3 Work instructions and work instruction manuals 316
14.4 Procedures and work instructions: preparation, implementation

and updating 317

Summary 318
Selected bibliography 319
Review questions 319
Topics for discussion 320
Appendix 14A: Design review procedure 322

Professionally developed and maintained SQA procedures are required
to conform to the organization’s quality policy but also tend to conform to
international or national SQA standards. An important point to bear in mind
when preparing them is that procedural conformity with an SQA standard
supports certification of the organization’s SQA system (see Part VI). The
ISO 9000-3 standard (ISO, 1997; ISO/IEC, 2001) is one of the main certifi-
cation standards that guide the preparation of procedures. Smith and Edge
(1991) present examples of procedures.

Figure 14.1 presents a conceptual hierarchy frequently used to govern
development of procedures and work instructions.

This chapter’s sections will discuss the following:

■ The need for SQA procedures

■ Procedures and procedure manuals

■ Work instructions and work instruction manuals

■ The organizational framework for preparing, implementing and updating
procedures and work instructions.

After completing this chapter, you will be able to:

■ Explain the contribution of procedures to software quality assurance

■ Explain the difference between procedures and work instructions

■ List the activities involved in maintaining an organization’s procedures
manual.

14.1 The need for procedures and work instructions

■ “Why should we use SQA procedures and work instructions?”

■ “Wouldn’t it be better if every professional relied on his own experience
and performed his task the best way he knows?”

■ “What are the benefits to the organization of forcing me to perform a
task only in the way chosen by them?”

312

14
Procedures

and w
ork

instructions

The organization’s
SQA policy

The organization’s
SQA procedures

SQA work
instructions

International or national
SQA standard

Figure 14.1: A conceptual hierarchy for development of procedures and work instructions

Questions like these are frequently voiced by staff in most organizations. The
answers uncover the challenge to be met by procedures and work instruc-
tions: application of the organization’s accumulated know-how, experience
and expertise.

SQA procedures and work instructions aim at:

■ Performance of tasks, processes or activities in the most effective and effi-
cient way without deviating from quality requirements.

■ Effective and efficient communication between the separate staffs involved
in the development and maintenance of software systems. Uniformity in
performance, achieved by conformity with procedures and work instruc-
tions, reduces the misunderstandings that lead to software errors.

■ Simplified coordination between tasks and activities performed by the var-
ious bodies of the organization. Better coordination means fewer errors.

14.2 Procedures and procedures manuals

Procedures
Procedures supply all the details needed to carry out a task according to the pre-
scribed method for fulfilling that task’s function. These details can be viewed as
responding to five issues, known as the Five W’s, listed in Frame 14.1.

Standardization – the application of a fixed format and structure – is the
principle applied to all SQA procedures. A typical example for a fixed table
of contents that can be used for all the organization’s procedures is presented
in Frame 14.2.

Although they are not mandatory features, appendices are commonly
used to present reporting forms and documentation related to the activities
included in a procedure. Other appendices provide tables and lists that sup-
port choice of the appropriate sequence of activities among the options, if
any, defined by the procedure.

An example of this approach is presented in Appendix 14A. The method
chapter of the procedure reproduced employs a table format. The main
advantage of a table format as compared with textual descriptions is clarity
of presentation of responsibilities and the activity’s documentation require-
ments. The annex to this sample procedure presents the form to be used
when preparing a design review report.

313

14.2 Procedures
and procedures

m
anuals

Frame 14.1 The Five W’s: issues resolved by procedures

■ What activities have to be performed?

■ HoW should each activity be performed?

■ When should the activity be performed?

■ Where should the activity be performed?

■ Who should perform the activity?

The procedures manual
The collection of all SQA procedures is usually referred to as the SQA pro-
cedures manual. The contents of any one organization’s procedures manual
varies according to:

■ The types of software development and maintenance activities carried out
by the organization

■ The range of activities belonging to each activity type

■ The range of customers (e.g., internal, customers of custom-made soft-
ware, COTS software customers) and suppliers (e.g., self-development
and maintenance, subcontractors, suppliers of COTS software and reused
software modules)

■ The conceptions governing the choice of method applied by the organi-
zation to achieve desired SQA objectives.

314

14
Procedures

and w
ork

instructions

Frame 14.2 Fixed table of contents for procedures

1 Introduction *

2 Purpose

3 Terms and abbreviations *

4 Applicable documents

5 Method

6 Quality records and documentation

7 Reporting and follow-up *

8 Responsibility for implementation *

9 List of appendices *

Appendices *

* Sections included only if applicable

Implementation tip

Constructing and choosing appendices

Documentation and report forms, but especially tables or lists of conditions
that determine alternative sequences of activities and tables that define limits
to authority, tend to change frequently in response to external developments
or internal modifications of the product or task. Most such changes do not
reflect any inherent modification of the procedure. Appendices that provide
these details simply provide a handy way to introduce changes without
interfering with the procedure itself.

How are these differences expressed in the SQA procedures manual? While
one organization may require a broad range of procedures, another organi-
zation may be satisfied with a limited range of procedures. However, the
specific number of procedures and their structure considerably depend on
editorial and style decisions, not just type of procedure.

A useful approach for defining the structure of the table of contents of the
SQA procedures manual is to use the table of contents of the related SQA stan-
dard as a skeleton. Table 14.1 presents an example of applying this approach.
As we can readily see, the organization’s manual divides procedures into cate-
gories according to the corresponding ISO standard sections (in the table, the
table of contents found in ISO 9000-3 is used for illustrative purposes).

315

14.2 Procedures
and procedures

m
anuals

Table 14.1: SQA procedures manual: table of contents

ISO 9000.3 – table of contents SQA procedures manual – table of contents

4.1 Managerial responsibility 1.1 The company’s SQA policy
1.2 Management quality review

4.2 Quality system 2.1 The SQA organization
2.2 Procedures and work instructions –

preparation, approval and distribution
2.3 The annual quality planning

4.3 Contract review 3.1 Contract review

4.4 Design control 4.1 Development and quality plans
4.2 Quality assurance of the design

4.5 Document and data control 5.1 Document control

4.6 Purchasing 6.1 Subcontractors and suppliers file
management

6.2 Pre-contract review for subcontractor
proposal

6.3 Acceptance tests for subcontracted
software

4.7 Control of customer-supplied products 7.1 Acceptance tests for customer-supplied
software

4.8 Product identification and traceability 8.1 Configuration management

4.9 Process control 9.1 Software development process

4.10 Inspection and testing 10.1 Unit tests and integration tests
10.2 Software system tests
10.3 Customer’s acceptance tests

4.11 Control of inspection, measuring and — Not applicable
test equipment

4.12 Inspection and test status 12.1 Progress control for software
development project

4.13 Control of non-conforming product 13.1 Control of design and code corrections

4.14 Corrective and preventive actions 14.1 Corrective and preventive actions

4.15 Handling, storage, packaging, 15.1 Installation and delivery
preservation and delivery

4.16 Control of quality records 16.1 Control of quality records ▲

14.3 Work instructions and work instruction manuals

As mentioned above, work instructions deal with the application of procedures,
adapted to the requirements of a specific project team, customer, or other rele-
vant party. While general methodology is defined in a procedure, the precise
details that allow its application to a specific project or unit are often laid out in
a work procedure. In no case can work instructions contradict their parent pro-
cedure, although several instructions can be associated with any given
procedure. This means that one can add, change or cancel work instructions
without altering the respective procedure.

Examples of work instructions, summarized in their titles, are found in
Frame 14.3.

316

14
Procedures

and w
ork

instructions

Frame 14.3 SQA work instructions subjects – examples

Departmental work instructions

■ Audit process for new software development subcontractors (supplier
candidates)

■ Priorities for handling corrective maintenance tasks

■ Annual evaluation of software development subcontractors

■ On-the-job instructions and follow-up for new team members

■ Design documentation templates and their application

■ C++ (or other language) programming instructions

Project management work instructions

■ Coordination and cooperation with the customer

■ Weekly progress reporting by team leaders

■ Special design report templates and their application in the project

■ Follow-up of beta site reporting

■ Monthly progress reporting to the customer

■ Coordination of installation and customer’s team instructions

Table 14.1: Continued

ISO 9000.3 – table of contents SQA procedures manual – table of contents

4.17 Internal quality audits 17.1 Internal quality audits

4.18 Training 18.1 Training and certification of employees

4.19 Servicing 19.1 Maintenance plan
19.2 Change requests management
19.3 Dealing with customers’ complaints

4.20 Statistical techniques 20.1 Quality metrics
20.2 Quality assurance costs

14.4 Procedures and work instructions: preparation,
implementation and updating

An “active” SQA procedures manual conceals numerous, often ongoing
activities that guarantee the procedures’ continued applicability: for
instance, preparation of the procedures, their implementation and regular
updating. These ongoing activities performed by SQA team members together
with members of the teams and organizational units involved, assure that the
procedures are properly adapted to changes in technology as well as clientele
and competition.

Preparation of new procedures
The initial steps taken in development of a new SQA procedures manual
should deal with the conceptual and organizational frameworks that deter-
mine the menu of the proposed procedures and who will be responsible for
their preparation, updating and approval. This framework is usually also
formulated as a procedure (frequently called the procedure of procedures).
The subsequent steps will, naturally, deal with specific procedures. A com-
mon approach to preparation of procedures is the appointment of an ad hoc
committee of professionals working in the units involved, SQA unit members
and experts in the respective topics to be dealt with. The committee pours
over the proposed drafts until a satisfactory version is reached, and ceases its
work only after the procedure is approved by the authorized person(s). An
alternative approach to procedure manual preparation is dependence on
consulting, where an outside expert is assigned the responsibility of preparing
one procedure, some procedures or the complete manual. The main advan-
tages of employing a consultant are found in the added value of his or her
expertise and experience in other organizations, the reduced burden on the
organization’s senior professionals as well as the shortened task completion
timetable. The main disadvantage experienced with this approach is reduced
applicability due to the organization’s unique characteristics.

Implementation of new or revised procedures
Approval of a new or revised procedure says little about the ease of that pro-
cedure’s implementation, which is a separate and often difficult issue. In
many cases, distribution of the material in printed or e-mail form and
instruction of the team or unit are insufficient to assure full or nearly full
conformity. The fact that members of a team or department were involved in
the procedure’s preparation helps convince their colleagues to abide by the
new requirements but this, too, is often inadequate. Follow-up and individ-
ual instruction of those who lack or disregard the new procedure is
mandatory for the procedure’s integration within daily routines.

317

14.4 Procedures
and w

ork
instructions

Updating procedures
The motivation to update existing procedures is based, among other things,
on the following:

■ Technological changes in development tools, hardware, communication
equipment, etc.

■ Changes in the organization’s areas of activity

■ User proposals for improvement

■ Analysis of failures as well as successes

■ Proposals for improvements initiated by internal audit reports

■ Learning from the experience of other organizations

■ Experiences of the SQA team

Once the need to update is recognized, a mechanism similar to that
applied when preparing new procedures can be put into operation: an ad hoc
team is convened to prepare the updated version, followed by authorization
and implementation activities. This implies that updating should be viewed
as a stage integral to software quality assurance, as important as preparing
new procedures.

Summary

(1) Explain the contribution of procedures to software quality assurance.

SQA procedures are assumed to reflect the most adequate method known to date
for the performance of design and maintenance activities. SQA procedures that are
up-to-date and fully implemented by developers and maintenance teams assure
conformity of their activities to the software’s quality requirements and perform-
ance of the associated activities in an efficient and effective performance. At the
same time, uniform development and maintenance enables easier and more effec-
tive professional review together with better communication with the maintenance
team. It likewise facilitates cooperation and coordination between all the bodies,
internal and external, involved in the project. Not less important is the reduction in
errors made possible by uniformity.

318

14
Procedures

and w
ork

instructions

Implementation tip

A procedure (as well as a work instruction) that has not been updated for a
considerable period (e.g. three years) is, in most cases, obsolete: it is no
longer needed or, more commonly, simply ignored. Both situations justify
review of the procedure and its implementation environment. Periodic review
of “neglected” (i.e., unused) procedures can generally remedy this situation by
initiating updating or removal of the procedures from the manual.

(2) Explain the difference between procedures and work instructions.

Procedures define the activities performed in order to achieve given tasks, where
performance is universal to the entire organization. Work instructions are comple-
mentary tools, used to define local variations in the application of the procedures
by specific teams and/or departments. Work instructions, however detailed and tar-
geted, cannot contradict the organization’s procedures.

(3) List the activities involved in maintaining an organization’s procedures manual.

The activities involved include the activities for preparing new procedures, updat-
ing existing procedures and implementing new and updated procedures. Involved
in these efforts are the organization’s SQA team members in addition to members
of ad hoc committees gathered to prepare a new or update an existing procedure.
Participants in the implementation process include unit leaders and SQA trustees.

Selected bibliography

1. ISO (1997) ISO 9000-3:1997(E), Quality Management and Qualtity Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

2. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

3. Smith, D. J. and Edge, J. S. (1991) Quality Procedures for Hardware and
Software, Elsevier Applied Science, Barking, Essex, UK.

Review questions

14.1 Figure 14.1 presents a conceptual hierarchy for development of SQA procedures
and work instructions.

(1) Describe each of the components of the diagram in your own words.
(2) Explain the meaning of each of the hierarchical relationships defined in the

diagram in your own words.

14.2 List the benefits of implementing an SQA procedures manual in an organization.

14.3 The table of contents suggested in Frame 14.2 includes an optional section,
“Terms and abbreviations”.

(1) Do you recommend including terms like software program, printed output,
configuration management or ATM in this section? List your arguments.

(2) What criteria should be applied when including a term or abbreviation? List
your arguments.

319

Review
 questions

14.4 Some software quality experts claim that a standard procedures manual with no
changes or adaptations can serve 90% of the organization.

Do you agree with this statement? List your arguments.

Topics for discussion

14.1 “The Software Lions” recently completed compilation of their SQA procedures
manual. The following are the “purpose” and “method” sections taken from the
“certification of professional employees” procedure.

2. Purpose

2.1. To determine the professional positions that require certification and the respective
updating processes.

2.2. To define the process by which a candidate is certified.

5. Method

5.1. Candidates for a position that requires certification, whether new or long-term
employees, must successfully pass the relevant certification examination before entry
into the position.

5.2. The content and format of the certification examinations will be prepared by the
Quality Assurance Unit after consultation with the Chief Software Engineer. The certi-
fication examinations will be approved by the General Manager of the company.

5.3. A list of Examiners will be determined for every position that requires certification.
5.4. A candidate for a position that requires certification will be directed to one of the list-

ed Examiners.
5.5. The Examiner will report the results of the certification examinations to the Quality

Assurance Unit. The candidate will be able to appeal against the results. In special cir-
cumstances, the candidate can be re-examined.

5.6. The department that is interested in a candidate’s appointment will be informed
about the certification examination results.

5.7. The Quality Assurance Unit will update the content and format of the certification
examinations in response to organizational changes and information technology
developments.

5.8. Management will receive a summary report of the certification examinations and their
results.

(1) Read the sections of the proposed procedure carefully and list your
comments while referring to any defects and shortcomings (usually incom-
plete sections).

(2) For each item listed in question (1), suggest an appropriate change, addition
or deletion in order to correct the detected defects or shortcomings.

14.2 “Wild Solutions” is a medium-sized software house, employing about 250 staff.
The new SQA manager has decided to prepare several new procedures to replace
very old and outdated procedures. You are asked to join him in his efforts and
prepare a draft for the procedure entitled “Progress control of software develop-
ment projects”.

The procedure should deal with the following subjects:

(a) Preparation of a timetable, manpower resources usage plan and budget
(b) Progress reporting for those parts of the project carried out by the company

320

14
Procedures

and w
ork

instructions

(c) Progress reporting for those parts of the project carried out by subcontrac-
tors, partners and the customer(s)

(d) Control process for progress reporting
(e) Updating of the timetable, manpower resources usage plan and budget
(f) Responses to deviations from the timetable, manpower resources usage

plan and budget in parts carried out by the company
(g) Responses to deviations from the timetable, manpower resources usage

plan and budget in parts carried out by subcontractors
(h) Responses to deviations from the timetable, manpower resources usage

plan and budget in parts carried out by partners or customers.

(1) Sketch what you imagine to be the company’s organizational chart. The
chart will serve for your procedure draft.

(2) Prepare a draft of the “Progress control of software development projects”
procedure. The procedure should cover all eight subjects listed above. Add
appendices if required.

(3) List your assumptions regarding the procedure.

14.3 As an SQA unit member, you are required to prepare the first draft of a new procedure.

(1) Suggest what sources of information may be used to prepare the draft.
(2) Mark those sources mentioned in your answer to (1) that are essential for a

good draft.

14.4 It is recommended that the new and updated procedures be prepared by an ad
hoc committee rather than by an expert member of the SQA unit or a consultant.

(1) List the expected advantages of the “committee” option in preparing new
and updated procedures. Does reliance on “expert” option have any advan-
tages at this stage?

(2) List the expected advantages of the “committee” option to be realized in the
implementation stage.

321

Topics
for discussion

1 Introduction

Design reviews are carried out throughout software development projects according to the
project’s quality plan, as defined in procedure 8-02.

2 Purpose

To define the method for carrying out design reviews in software development projects.

3 Scope

The Procedure will apply to all software development projects, excluding minor projects
carried out according to procedure 8-17.

4 Applicable documents

Procedure 8-02: Project quality plan for software development projects.
Procedure 8-17: Minor software development projects.

5 Method

322

14
Procedures

and w
ork

instructions

Design review procedureAppendix 14A

No. Step Activity Responsibility: Documentation Notes
performer /
approval

5.1 Preparation of Preparation of Perf: project Drafts of design
design complete draft of leader documents
documents design documents Approval: not

required

5.2 Coordination of (1) Define list Perf: project (1) List of (1) See project
DR meeting of participants leader participants quality plan for

Approval: preliminary list
Development of participants
dept. manager (2) See contract for

(2) Coordination of Perf: DR team (2) DR invitation customer’s
DR meeting leader letters to DR participation

Approval: not team (3) Delivery of
required members documents in

(3) Delivery of Perf: DR team printed or
documents to leader electronic form
DR team Approval: not at least 48
members required hours before

DR meeting

5.3 DR meeting Agenda: Perf: DR team DR minutes See DR report
– Presentation members template in Annex

(concise) Approval: not to the procedure
– DR team required

comments and
discussion

– Definition of
action items (AI)

Bla-Bla Software Industries Ltd SQA procedures
SQA Procedure 8-09: Design reviews Revision 8 (8 May 2003)

No. Step Activity Responsibility: Documentation Notes
performer /
approval

5.3 DR meeting Agenda: Perf: DR team DR minutes See DR report
– Designation of

AIs schedule
and person
responsible for
their execution

– Designation of
DR member
responsible for
follow-up of
corrections

– DR team
decision about
continuation of
development
work

5.4 DR report (1) Preparation of Perf: DR team DR report The report should
DR report leader be completed and

Approval: DR signed within 48
team members hours of the

(2) Distribution of Perf: DR team meeting
report to leader.
participants as Approval: not
well as chief required
software
engineer,
development
dept. manager,
head of quality
assurance unit

5.5 Implementation (1) Implementation Perf: project team Re manual
of DR decisions of required Approval: preparation ents

corrections project leader
included in
AIs list

(2) Examination of Perf: DR team (1) Approval of
corrections and member each correction
approval by DR Approval: not (2) Approval of
team member required completion of

all corrections

323

A
ppendix

14A
 D

esign review
 procedure

Bla-Bla Software Industries Ltd SQA procedures
SQA Procedure 8-09: Design reviews Revision 8 (8 May 2003)

Prepared by: Dave Towers QA engineer Date: 3 April 2002 Signed: Dave Towers
Approved: Barry Hotter Head, QA unit Date: 2 May 2002 Signed: Barry Hotter

324

14
Procedures

and w
ork

instructions

Bla-Bla Software Industries Ltd SQA procedures
SQA Procedure 8-09: Design reviews Revision 8 (8 May 2003)

Annex: DR report form

DR report

Date of the DR: __________________ Project title: _______________________________

Participants: __

DR type: __

Documents reviewed

Document title Version and revision

Action items (AIs)

Approval of
completion

No. Description of AI Responsibility Scheduled Completion Signed
completion date

Decisions: () Approved
() Approval conditional upon completion of all AIs
() Corrected document should be submitted for repeated review

The repeated DR will be on __________________
() Other: __

__

DR team member responsible for follow up: ______________

Signed: ____________ ____________ ____________ ____________ ____________

Name: ____________ ____________ ____________ ____________ ____________

Date: ____________ ____________ ____________ ____________ ____________

DR leader Member Member Member Member

chapter 15

Supporting quality devices

We often refer to documents prepared in the past to save time and confirm
that nothing has been forgotten. For example, we scan old reports in order
to apply their tables of contents to the current report we are about to com-
pile. In other situations, we look for lists of previously asked questions prior
to preparing a design review session. In still other cases we wonder why no
form can be found for a quite common reporting task. The element common
to all these situations is the savings in time we expect to realize by using sim-
ple support devices for repetitive tasks.

In addition to saving time, these simple tools – especially templates and
checklists – contribute to software quality assurance in various ways. This
chapter deals with the contributions made by these devices, considered as
infrastructure tools, and the organizational aspects related to their prepara-
tion, implementation and revision.

After completing this chapter, you will be able to:

■ Explain the main contribution of templates to software quality assurance.
■ Explain the main contribution of checklists to software quality assurance.
■ List the activities involved in maintaining templates and checklists.

Chapter outline

15.1 Templates 326
15.1.1 The contribution of templates to software quality 326
15.1.2 The organizational framework for preparing,

implementing and updating templates 327
15.2 Checklists 329

15.2.1 The contribution of checklists to software quality 331
15.2.2 The organizational framework for preparing,

implementing and updating checklists 331

Summary 332
Selected bibliography 333
Review questions 333
Topics for discussion 334

15.1 Templates

In other areas of work, a template is “a gauge, pattern or mold (as a thin
plate or board) used as a guide to the form of a piece being made” (Webster’s
New College Dictionary). When applied to software engineering, the term
template refers to a format (especially tables of contents) created by units or
organizations, to be applied when compiling a report or some other type of
document. Application of templates may be obligatory for some documents
and elective for others; in some cases, only part of a template (e.g., specific
chapters or general structure) is demanded.

Three examples of templates are presented in the following frames:

■ Frame 10.2: Software test plan (STP)
■ Frame 10.3: Software test description (STD)
■ Frame 10.4: Software test report (STR).

Additional examples of templates appear in Chapter 18:

■ Frame 18.4: Software change request (SCR)
■ Frame 18.6: Documentation of software configuration release.

A comprehensive collection of templates was developed by the US
Department of Defense for use with documents to be completed by software
development contractors according to the military standard MIL–STD–498
(DOD, 1994). The military standard uses the term DID – Data Item
Description – in place of template. The DIDs provide the very detailed tables
of contents suitable for the documentation required in the large-scale soft-
ware development contracts typical of military projects. In addition to
section titles, the DIDs include explanations of the contents expected in each
section of the report. A total of 22 DIDs are available for the users of MIL-
STD-498, for instance:

■ Software Requirements Specification (SRS)
■ System/Subsystem Design Description (SSDD)
■ Computer Operator Manual (COM)
■ Interface Design Description (IDD)
■ Software Test Plan (STP)
■ Software Version Description (SVD).

The next section deals with the contribution of templates to software quality and
the efforts required for producing, maintaining and implementing templates.

15.1.1 The contribution of templates to software quality

Template use is quite advantageous to development teams and to review
teams. For development teams, template use:

326

15
Supporting quality

devices

■ Facilitates the process of preparing documents by saving the time and
energy required to elaborate the report’s structure. Most organizations
allow templates to be copied from a SQA public file or downloaded from
the organization’s intranet files, which even saves keying the table of con-
tents to the new document.

■ Ensures that documents prepared by the developer are more complete as
all the subjects to be included in the document have already been defined
and repeatedly reviewed by numerous professionals over the course of the
template’s use. Common errors, such as overlooking a topic, are less like-
ly to occur.

■ Provides for easier integration of new team members through familiarity.
The document’s standard structure, prepared according to templates that
may be known to the new member from previous work in another of the
organization’s units or teams, makes finding information much easier. It
also smoothes ongoing document preparation in cases where parts of the
document have been prepared by another team member who may or may
not have left.

■ Facilitates review of documents by eliminating the need to study a docu-
ment’s structure and confirm its completeness, if the document is based on
the appropriate template. It also simplifies review of the completed docu-
ment as its structure is standard and reviewers are familiar with its expected
contents (chapters, sections and appendices). As a result of this consisten-
cy, the review is expected to be more thorough yet less time-consuming.

For software maintenance teams, template use:

■ Enables easier location of the information required for performing main-
tenance tasks.

15.1.2 The organizational framework for preparing,
implementing and updating templates

Organizations tend to save their internal resources, which often means
employing successful reports prepared for one department or purpose as
models for the entire organization. Thus, if Mr Brown’s or Mr Johnson’s
reports have acquired a reputation as comprehensive and highly profession-
al, their tables of contents may be used as templates by their colleagues. One
disadvantage of this situation is that not everyone who can benefit from
these templates is aware of their existence. Another disadvantage is that fur-
ther improvement of the templates, accomplished through their review by
professional teams, may be thwarted.

The SQA unit is usually responsible for preparing professional templates
of the more common types of reports and documents required of the orga-
nization’s staff. Informal initiatives from the field may spur the SQA unit to
action, but developing the general infrastructure for use of templates, the
subject of this section, is inherent in the unit’s mission.

327

15.1 Tem
plates

Preparation of new templates
Development of a template infrastructure naturally centers on the work of a
group of professionals devoted to the task. This group (or committee) should
include senior staff who represent the various software development lines, the
department’s chief software engineer and SQA unit members. Informal devel-
opers of “template services” should likewise be encouraged to join the group.

One of the group’s first tasks is to compile a target list of templates to
be developed. Once the list is accepted, priorities must be set. Higher prior-
ity should be given to templates of the most commonly prepared documents
as well as to “informal” templates already in use (it is estimated that only
minimal efforts are required for their completion and authorization).
Subcommittees are then assigned the task of preparing the first drafts. An
SQA unit member can be anticipated to undertake the task of leading the
group, but a template “freak” who is also a member of the committee may
just as readily be chosen for the job. Irrespective of who the group’s head
may be, he or she must see to the distribution of template drafts among
members, the organization of meetings and the follow-up of progress made
by template preparation subcommittees. Distribution of template drafts
among team leaders for their comments can yield important improvements
and at the same time promote the templates’ future use.

The most common information sources used in preparing a template are
as follows:

■ Informal templates already in use in the organization
■ Template examples found in professional publications
■ Templates used by similar organizations

Application of templates
Several fundamental decisions are involved in the implementation of new or
updated templates:

■ What channels should be used for advertising the templates?
■ How should the templates be made available to the organization’s inter-

nal “consumers”?
■ Which templates will be compulsory and how can their application

be enforced?

All professional internal means of communication can be used for advertis-
ing templates internally within the organization: leaflets, e-mail, SQA
intranet as well as short presentations at meetings.

One of the most efficient methods of making templates available to the
organization is the internal net (intranet), to be preferred to any paper-based
route. Distribution through the internal net ensures user choice of the updat-
ed version of the template needed and, at the same time, saves keying in
(required for paper-based templates) of the document’s table of contents.

328

15
Supporting quality

devices

Directions regarding compulsory use of specific templates are generally
found in the organization’s procedures or work instructions. The chief soft-
ware engineer or another senior staff member is usually authorized to
determine the list of compulsory templates appropriate to the selected pro-
cedure, although we can expect the template group to submit its own
recommended list.

Updating templates
The decision to update an existing template may be considered a reactive
measure, stemming from any of the following:

■ User proposals and suggestions
■ Changes in the organization’s areas of activity
■ Proposals initiated by design review and inspection teams based on their

review of documents prepared according to the templates
■ Analysis of failures as well as successes
■ Other organizations’ experience
■ SQA team initiatives.

The process of updating templates is quite similar to that of template preparation.

15.2 Checklists

The checklist used by software developers refers to the list of items specially
constructed for each type of document, or a menu of preparations to be
completed prior to performing an activity (e.g., installing a software package
at the customer site). Checklists are planned to be comprehensive if not com-
plete. Usually, checklist use tends to be considered an optional infrastructure
tool, depending mainly on the list’s professional attributes, user acquain-
tance with the list and availability.

Some checklists have dual purposes: while providing a complete list of
items to be verified, they also provide space for documenting findings of the
checks performed. Figure 15.1 presents an example of a dual-purpose check-
list, applied for design reviews of requirement specification documents.

Two additional examples of checklists can be found in Chapter 5:

■ Appendix 5A: Proposal draft reviews – Subjects checklist
■ Appendix 5B: Contract draft review – Subjects checklist

Several examples of comprehensive and detailed checklists may be found in
Perry (1995). For example, one such checklist is entitled “Work Paper 5.1:
Requirement Phase Test Process” (pp. 84–98).

Next we deal with the contribution of checklists to software quality and
the efforts required for establishing, maintaining and applying those lists.

329

15.2 Checklists

Goldenbug Ltd
Checklist for requirement specification report

Project name: __

The reviewed document: ___________________________ Version: _________________

Item Subject Yes No N.A.* Comments
no.

1 The document

1.1 Prepared according to configuration management requirements

1.2 Structure conforms to the relevant template

1.3 Reviewed document is complete

1.4 Proper references to former documents, standards, etc.

2 Specifying the requirements

2.1 Required functions were properly defined and clearly and fully phrased

2.2 Designed inputs conform with required outputs

2.3 Software requirement specifications conform with product requirements

2.4 Required interfaces with external software packages and

computerized equipment are fully defined and clearly phrased

2.5 GUI interfaces are fully defined and clearly phrased

2.6 Performance requirements – response time, input flow capacity,

storage capacity – are correctly defined and fully and clearly phrased

2.7 All error situations and required system reactions are correctly

defined and fully and clearly phrased

2.8 Data interfaces with other existing or planned software package or

products components are correctly defined and fully and clearly

phrased

2.9 Procedures to test fulfillment of the specified requirement are

correctly and fully defined and clearly phrased

3 Project feasibility

3.1 Are the specified requirements feasible considering the project’s

resources, budget and timetable?

3.2 Are the specified performance requirements (see 2.6) feasible

considering the constraints imposed by other system components

and by external systems interfaced with the system?

330

15
Supporting quality

devices

Comments: *N.A. = Not applicable

Signed: Name: _____________Date: __________ Signature: _____________

Figure 15.1: Dual-purpose checklist – DR checklist for requirement specification documents

15.2.1 The contribution of checklists to software quality

Like templates, checklists provide many benefits to development teams, soft-
ware maintenance teams and document quality.

The advantages to development teams are as follows:

■ Helps developers carrying out self-checks of documents or software code
prior to document or software code completion and formal design
reviews or inspections. Checklists are expected to help the developer dis-
cover incomplete sections as well as detect overlooked lapses. Checklists
are also expected to contribute to the quality of documents or software
code submitted for review as the quality issues to be surveyed by the
review team are already listed in the checklist.

■ Assists developers in their preparations for tasks such as installation of soft-
ware at customer sites, performance of quality audits at subcontractors’ sites
or signing contracts with suppliers of reused software modules. Checklists are
expected to help the developers be better equipped for task performance.

The advantages to review teams are:

■ Assures completeness of document reviews by review team members as
all the relevant review items appear on the list.

■ Facilitates improves efficiency of review sessions as the subjects and order
of discussion are defined and well known in advance.

15.2.2 The organizational framework for preparing,
implementing and updating checklists

Though highly recommended, the use of checklists remains discretionary.
Checklist preparation and updating, like promotion of their use, are usually
assigned to the SQA unit. A “checklist group”, headed by a SQA unit mem-
ber, can undertake the task of maintaining a collection of updated lists. The
participation of other staff interested in promoting the use of checklists in the
group is also voluntary; in some cases, however, the assistance of an SQA
consultant is recommended. In the remainder of this section, we describe the
processes required to maintain a checklist infrastructure: preparation of new
checklists, promotion of their use and updating.

Preparation of new checklists
One of the first tasks awaiting the “checklist group” is compilation of a list
of checklists targeted for development, followed by definition of a common
format for all the checklists released by the group.

The first checklists approved by the group are usually informal check-
lists already in use by some development team members and reviewers. In
most cases, a few changes and adaptations of these checklists are sufficient
to satisfy the format and contents defined by the group. Preparation of new
checklists as well as improvement of informal checklists is supported by the
following sources of information:

331

15.2 Checklists

■ Informal checklists already in use in the organization
■ Checklist examples found in books and other professional publications
■ Checklists used by similar organizations.

The process of preparing a new checklist is similar to that for templates.

Promotion of checklist use
As the use of checklists is rarely mandatory, promotion of their use is based
on advertising and guaranteed availability. All internal channels of commu-
nication can be used for publicizing the checklists: leaflets, e-mail, SQA
intranet as well as professional meetings. The internal net remains, however,
the preferred and most efficient method for making checklists available to
the organization’s internal “consumers”.

Updating checklists
Like templates and procedures, initiatives to update an existing checklist
generally flow from the following sources:

■ User proposals and suggestions
■ Changes in technology, areas of activity and clientele
■ Proposals initiated by design review and inspection teams emanating

from document reviews
■ Analysis of failures as well as successes
■ Other organizations’ experience
■ SQA team initiatives.

The process of updating checklists is quite similar to their preparation.

Summary

(1) Explain the main contribution of templates to software quality assurance.

■ Documents submitted for review tend to be more complete. As a result, review
teams can direct their efforts to further improvement of the final product.

■ Document reviews are facilitated as their structure is standard and well known
among reviewers. Freed of structural concerns, reviewers can focus on issues of
document content.

(2) Explain the main contributions of checklists to software quality assurance.

■ Checklists support document completeness and improve document quality as
all the relevant items and quality issues to be reviewed are already listed.

■ Conduct of review sessions becomes less problematic when topics and their
order of priority are defined and well known. An efficient session is expected to
carry out a thorough analysis of comments by reviewers.

(3) List the activities involved in maintaining templates and checklists.

The activities involved in maintaining state-of-the-art compilations of template and
checklist collections include preparation, implementation and updating. The prepa-

332

15
Supporting quality

devices

ration and updating for both types of document is the work of groups of interested
staff, including those who have already offered informal templates and checklists to
their colleagues. Leadership of the group is usually an SQA unit obligation. The group
members decide on target lists of templates and checklists, which they later try to
complete. Drafts are prepared with the assistance of informal templates and check-
lists, releases found in the professional literature and collections used in similar
organizations. Team members, SQA unit members and others, especially those in the
field, can readily initiate updating efforts. Updates are meant to improve current
releases on the basis of team and external experience, cope with organizational
changes, altered consumer tastes, failure analysis results, and so forth.

The implementation of templates and checklist is successful when the majority of
users or the relevant internal consumers apply them regularly. Successful application is
based on promotion activities and on ready availability. Promotion is based on advertis-
ing, especially along internal communication networks, while easy access is usually
achieved through the internal net. In many organizations, use of some or all templates
is compulsory, a situation that demands adequate procedures and/or work instructions.

Selected bibliography

1. DOD (1994) MIL-STD-498 DIDs, US Department of Defense.
2. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance

Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

3. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering – Guidelines
for the Application of ISO 9001:2000 to Software, Final draft”, International
Organization for Standardization (ISO), Geneva, unpublished draft, December 2001.

4. Perry, W. (1995) Effective Methods for Software Testing, John Wiley & Sons,
New York.

Review questions

15.1 Explain the advantages of templates in your own words.

15.2 The SQA unit has prepared a list of eight new additional templates awaiting
preparation.

(1) Whom do you recommend for participation in an ad hoc committee for
preparing the templates?

(2) The head of the SQA unit is considering hiring an SQA consultant to join the
committee. Is this advisable? List your arguments.

(3) If you agree with the unit’s head, what tasks would you prefer the consultant
to attend to? List your arguments.

15.3 Explain the advantages of the use of checklists in your own words.

333

Review
 questions

Topics for discussion

15.1 Mr John Bogart, head of the SQA unit, has decided that henceforth it will be
mandatory for all developers to apply the templates included in the well-known
Templates Manual for the SQA Professional. A procedure has been prepared to
enforce adherence to the templates. The Manager of the Software Development
Department is asked to approve the procedure.

(1) Would you recommend that the manager approve the procedure? List your
arguments.

(2) If your recommendation is against approval of the procedure, suggest how
the department’s informal templates, if deemed more suitable than the
Manual’s templates, can be adopted.

15.2 Tommy, a software development team leader, tends to delete standard (i.e., tem-
plate) sections and chapters that are not applicable from the tables of contents of the
documents he compiles. He claims that by doing this the documents “look nicer”.

(1) Do you agree with this method of adapting templates to current application?
(2) What are the disadvantages of “template editing” by the team leader? What do

you recommend doing in cases of inapplicable template chapters or sections?

15.3 An SQA professional claims that the availability of design review checklists
makes the DR redundant.

(1) Do you agree with this claim? List your arguments.
(2) Compare the expected situation in the following two DR sessions: the first,

when the designers do not use a checklist, and second, when designers
make use of a DR document checklist.

15.4 It is suggested that the revised edition of the Templates and Checklists Procedure
include the following section: “If a template or checklist has not been updated or
changed for a period of 36 months, a team should be nominated to check these
templates and checklists and recommend the required changes and updates.
The SQA unit is responsible for performing the needed review at least semi-annu-
ally. A committee, nominated by the head of the Software Development
Department, should submit its recommended changes and updates not later
than six months after their nomination.”

(1) Is the proposed procedure for updating templates and checklists justified or
a waste of time?

(2) Suggest situations where templates and checklists, accepted as proper and
highly professional when released, deserve to be changed.

15.5 It is recommended that an ad hoc committee (or group) rather than an expert
member of the SQA unit or a consultant prepare a new and updated checklist file.

List the expected advantages and disadvantages of the committee/group
option for performing this task.

334

15
Supporting quality

devices

chapter 16

Staff training
and certification

It goes without saying that keeping staff abreast of the latest professional
knowledge available is the key to achieving quality in development and
maintenance. Moreover, it is generally accepted that regular professional
training, retraining and updating are mandatory if the gap between required
and current professional knowledge is to be kept as narrow as possible.
Internal certification (hereinafter just “certification”) of staff members
assigned to key software development and maintenance positions is another,
complementary tool for assuring professional quality. Internal certification
of staff should not, however, be confused with the certification awarded by
the American Society for Quality (ASQ), which confers CSQE status (see
below) in addition to other types of certification, or the professional certifi-
cation granted by commercial organizations such as Microsoft or Novell.

The importance of professional training as a vital component of any
SQA system is stressed in ISO 9000-3 as well as the CMM Guidelines (see
ISO, 1997; ISO/IEC, 2001; Paulk et al., 1995). Job descriptions and training
program development for SQA personnel are discussed by Mendis (1999).

Chapter outline

16.1 Introduction: Surprises for the “3S” development team 336
16.2 The objectives of training and certification 337
16.3 The training and certification process 338
16.4 Determining professional knowledge requirements 338
16.5 Determining training and updating needs 339
16.6 Planning training and updating programs 340
16.7 Defining positions requiring certification 340
16.8 Planning the certification processes 341
16.9 Delivery of training and certification programs 342
16.10 Follow-up subsequent to training and certification 344

Summary 345
Selected bibliography 346
Review questions 347
Topics for discussion 347

Also of interest is the program for certified software quality engineers
(CSQE) delivered by the American Society for Quality (ASQ), described by
Hamilton (1999) and an ASQ brochure (ASQ, 1999).

The training and certification process and the activities that comprise it
are dealt with in the different sections of this chapter.

After completing this chapter, you will be able to:

■ Explain the main objectives of training and certification.
■ Discuss what is needed to prepare a training and updating program.
■ List the main components of a certification program.
■ Explain the objectives of follow-up of trained and certified staff per-

formance and the main sources of the follow-up data.

16.1 Introduction: surprises for the “3S” development
team

Team 7 of “3S – Sahara Software Specialists” started a new project for
Apollo Ltd three weeks late because of delays in completion of the previous
project. Severely pressured for time, the team leader decided to cancel the
scheduled five-day training course on the new Athena application generator
to be used for subsystem F, as required by the contract. He believed that the
concise Athena manuals supplied by the customer would be an adequate sub-
stitute for the course. This decision proved to be very costly. The two team
members responsible for subsystem F found it very difficult to apply a gen-
erator they had never used. In addition to the three days spent receiving
expert advice, they were forced to spend 25 working days more than were
scheduled to complete the subsystem. At this point, the project was two
weeks behind schedule, yet some hope still existed that they could close the
gap during the 18 weeks left to complete the package prior to the system
tests. Then, within the space of two weeks, two of the team’s six program-
mers abruptly resigned and left. As no programmers could be shifted
in-house, management turned to an employment agency and requested that
they find replacements as quickly as possible. The team leader was relieved
as the urgently needed programmers were located and recruited, on a tem-
porary basis, within a few days. Both new team members were experienced
programmers and almost never troubled the other team members with
requests for assistance or instruction. This arrangement seemed to suit the
situation wonderfully as it did not interfere with the intensive efforts exert-
ed to complete the project with minimal delay.

Considering the project’s unexpected difficulties – the Athena applica-
tion problems and the resignation of the two programmers – the team felt
very lucky to manage to complete the programming stage by 11 November,
only 11 days behind schedule.

The team’s troubles began in earnest with the issuance of the testers’
report three weeks later. Together with a long list of minor defects, the report

336

16
S

tafftraining and certification

mentioned numerous severe faults in units A2, A6, A7, A9 and A11 of sub-
system A and in F5 and F7 of subsystem F. Although correction of the faults
detected in units F5 and F7 required only five days of programmer time, cor-
rection of the faults found in the other units proved to be a different story.
All five units of subsystem A were programmed by John Abrams, one of the
temporary programmers recruited by the agency, who had already left the
company. The two team members who were directed to repair the units were
confronted with unexpected difficulties: in addition to grave programming
errors and incorrect understanding of the relevant design documents, the
coding did not comply with any company coding procedures or work
instructions. When describing the situation, they jokingly stated that they felt
more like archeologists than programmers. Later, they concluded that John
Abrams’ professional qualifications were far below those claimed in his let-
ters of recommendation. After investing several days in attempts to correct
the errors, four out of the five units were recoded because all efforts to repair
the existing code came to naught. In the end, six exhausting weeks were
spent on bringing these units up to shape.

At this point, seven weeks behind schedule, the team leader concluded
that the “super saver strategy” applied to training, as well as the “super
short-cut procedure” implemented in recruitment, instruction and follow-up,
had proven to be quite costly.

16.2 The objectives of training and certification

The objectives of training and certification are listed in Frame 16.1.

337

16.2 The objectives
oftraining and certification

Frame 16.1 The objectives of training and certification

■ To develop the knowledge and skills new staff need to perform software
development and maintenance tasks at an adequate level of efficiency and
effectiveness. Such training facilitates integration of new team members.

■ To assure conformity to the organization’s standards for software products
(documents and code) by transmitting style and structure procedures
together with work instructions.

■ To update the knowledge and skills of veteran staff in response to
developments in the organization, and to assure efficient and effective
performance of tasks as well as conformity to the organization’s style and
structure procedures and work instructions.

■ To transmit knowledge of SQA procedures.

■ To assure that candidates for key software development and maintenance
positions are adequately qualified.

These objectives conform with the general goals of software quality
assurance by inspiring management to persistently nurture the level of
knowledge and skills displayed by staff and to improve their efficiency and
effectiveness (for more about SQA goals, see Section 2.5.3).

16.3 The training and certification process

The operation of a successful training and certification system demands that
the following activities be regularly performed:

■ Determine the professional knowledge requirements for each position
■ Determine the professional training and updating needs
■ Plan the professional training program
■ Plan the professional updating program
■ Define positions requiring certification
■ Plan certification processes
■ Deliver training, updating and certification programs
■ Perform follow-up of trained and certified staff.

All these activities converge into an integrated process in which feedback
from past activities and information about professional developments stim-
ulate a cycle of continuous training, certification and adaptation to changing
quality requirements.

Training and certification activities are meant to fill the needs of veteran
staff and new employees. Comprehensive follow-up of the outcomes of cur-
rent programs as well as keeping track of developments in the profession are
required to make sure that programs are adequately up-to-date. A detailed
discussion of each of these activities is presented in the next sections.

The training and certification process is displayed in Figure 16.1.

16.4 Determining professional knowledge requirements

The most common positions in a software development and maintenance
organization are those of systems analyst, programmer, software development
team leader, programming team leader, software maintenance technician, soft-
ware tester, and software testing team leader. Most organizations set education
and experience requirements for each of these positions. Staff members who
fulfill education requirements still need additional “local” or “internal”
knowledge and skills, related to specific development and maintenance proce-
dures. This specialized knowledge can be grouped into two categories:

■ Knowledge and skills of software engineering topics, such as software
development tools, programming language versions, and CASE tool ver-
sions applied by the specific organization or unit. The relevant
procedures and work instructions that were compiled for their imple-
mentation also belong to this category.

338

16
S

tafftraining and certification

■ Knowledge of SQA topics, such as the procedures pertaining to the vari-
ous development and maintenance activities, assigned to be performed by
the individual occupying a specific position.

16.5 Determining training and updating needs

Training and updating needs are determined by comparison of the staff’s cur-
rent knowledge with the updated knowledge requirements. The type of
training is adapted to the needs of three distinct groups of staff:

■ Training: for new employees, according to their designated assignment
■ Retraining: for employees assigned to new positions or receiving new

assignments
■ Updating: for staff members as demanded by their position.

The need to update staff should be assessed regularly to facilitate planning
of the required programs.

Finally, follow-up of staff performance in the wake of training and
updating provides major input to be used in redefining training needs.

339

16.5 D
eterm

ining training and updating needs

Plan updating
program

Plan training
program

Plan certification
process

Deliver training, updating and certification programs

Performance follow-up of
trained and certified staff

Define functions
for certification Determine training needs

Determine
knowledge

requirements

New
developments

in software
engineering

and SQA

Project
development

and maintenance
tools and

procedures

Knowledge
belonging to
re-assigned

staff

Knowledge
belonging to

new
employees

Knowledge
belonging to

staff
members

Figure 16.1: The training and certification process

16.6 Planning training and updating programs

Practically speaking, two basic programs should be devised – one for soft-
ware engineering topics and one for SQA topics.

Planning training and updating programs for software engineering
topics
The timing of many training and retraining activities cannot be determined
in advance because new personnel are recruited and veteran staff are shifted
often after relatively short notice. However, updating activities can be sched-
uled well ahead (the audience is known), with contents finalized close to the
date of their implementation. Irrespective of whether the programs are car-
ried out in-house or by an outsourcing organization, high-level staff, such as
the chief software engineer, usually participate in their preparation.

Planning training and updating programs for SQA topics
Training programs for SQA topics include training for new employees as
well as updating for veteran staff members. The general characteristics of
SQA training programs allow them to be organized periodically, every one
or two months, and delivered to all new staff recruited in the interim. Typical
SQA updating programs are carried out once a year or once every six
months, depending on the pace of change. The SQA unit or others responsi-
ble for SQA issues in the organization usually prepare these training and
updating programs.

16.7 Defining positions requiring certification

It is commonly accepted that assignment of personnel to key positions in
software development and maintenance organizations requires extreme care.
One of the procedures used to guarantee the suitability of candidates is cer-
tification. Examples of positions frequently requiring certification of their
occupants are software development team leader, programming team leader,

340

16
S

tafftraining and certification

Implementation tip

Unless the software development organization is rather large, it often happens
that only one or a small number of new staff needs to be trained or retrained.
Moreover, as new employees may be recruited to a variety of different
positions, the training program may have to be highly differentiated. When the
same training program applies to the entire staff, the training is frequently
inappropriate for carrying out specific tasks, with the subsequent negative
implications on software quality. On-the-job as well as computer-aided
training (e-learning) can provide appropriate solutions in such situations.

software testing team leader, software maintenance technician and internal
quality auditor. The last two positions are particularly sensitive because their
occupants’ activities are usually performed by one staff member, acting
alone, and subject to little close control or support by superiors.

A certification committee (or a designated senior staff member) defines
the list of positions that require certification and whether the certification will
be effective permanently or for a limited period. Considering the volatility of
the profession, this list should be revised periodically. Renewal of limited peri-
od certification demands that staff members demonstrate up-to-date
knowledge and skills according to the current certification requirements.

The list of positions that require certification naturally varies by firm or
organization. Some use certification sparingly while others apply this tool on
a large scale, even to standard programmers.

16.8 Planning the certification processes

Certification is intended to provide a framework for the thorough investiga-
tion of a candidate’s qualifications and a demonstration of his or her
professional knowledge and skills. The details of the certification process are
unique to the organization; they reflect its special characteristics, areas of
specialization, software development and maintenance tools, customers and
so on. Because the process is geared toward the needs and decisions of spe-
cific organizations, internal certification cannot be automatically substituted
by the general certification that is granted by professional societies and lead-
ing suppliers of development tools and network communication software or
their equivalents.

The certification process, in every detail and for every position, requires
approval as defined in the certification procedure.

Typical certification requirements
For the individual undergoing certification, a typical certification process
entails meeting some or even all of the following requirements:

■ Professional education: academic or technical degrees and in some cases
certification by a professional organization or by a leading commercial
software producer

■ Internal training courses

■ Professional experience in the organization (may be partially or com-
pletely replaced by experience in other organizations)

■ Assessment of achievements and ability as noted in periodic performance
appraisals

■ Evaluation by the candidate’s direct superior (often by completion of a
special questionnaire)

341

16.8 Planning the certification processes

■ Demonstration of knowledge and skills by means of a test or a project

■ Mentor’s supervision for a specified period of time.

Functions of the certification committee
Similar to the pattern recommended for training and retraining programs,
the person or committee members responsible for certification are usually
senior software development and maintenance staff. The responsibilities of
the certifying body include:

■ To perform the certification process on the basis of requests made by indi-
vidual applicants or units and grant certification to those who qualify

■ To follow up certification activities (such as mentoring) carried out by others

■ To update certification requirements in response to developments in the
organization as well as the profession

■ To revise the list of positions requiring certification.

Example: Certification requirements at SKF Advanced Software
SKF Advanced Software is a medium-sized software house. The firm’s certi-
fication requirements document for programming team leader is presented in
Frame 16.2.

16.9 Delivery of training and certification programs

Training and updating can cover topics such as software engineering, soft-
ware quality assurance and management skills (within the framework of
certification or for general information), all of which are coordinated with
the organization’s or firm’s needs. How training and updating are carried
out varies accordingly. Courses can be transmitted in formats that range
from short lectures and demonstrations, often lasting only half a day, to
lengthy courses held over several weeks or months. These may be conduct-
ed in-house, by the organization’s training unit, or externally, by vocational
or academic institutions that prepare programs attuned to the organiza-
tion’s requirements.

More about organizing and delivering training and certification pro-
grams can be found in the human resources management literature.

342

16
S

tafftraining and certification

Implementation tip

An additional task to be performed by those responsible for certification is the
active search for qualified personnel who can be encouraged to become
certified for a future position. The latter may then serve as a “reservoir of
certified candidates”.

343

16.9 D
elivery

oftraining and certification program
s

Frame 16.2 SKF Advanced Software – position certification
document (example)

SKF Advanced Software

Position Certification Document

Position 11.3 – Programmer team leader

Version 5 Valid as from 1.4.2002

Approved by C. Haley Position: Chief software engineer Date of approval: 3 March 2002

Certification requirements

■ Professional education. Two options – (a) BA or BSc in software
engineering or an equivalent degree, or (b) Technician or equivalent degree
in software engineering granted by a recognized school.

■ Internal training courses. Two required courses – (1) Project management:
5-day course. (2) Advanced project management: 5-day course.

■ Professional experience in the organization. For candidates holding a
technician’s degree – three years of experience as a programmer in SKF.
For candidates holding an academic degree – two years of experience as a
programmer in SKF. For candidates having over five years of recognized
experience as a programmer or programming team leader in another
organization – half the respective period of experience in SKF.

■ Periodic performance appraisal. The average score of each of the last two
semi-annual performance appraisals will not fall below 3.8 (out of a
maximum of 5).

■ Targeted evaluation by candidate’s direct superior. The score of each of the
eight items in the questionnaire will be no less than 3 (out of 5), with an
average score of all items of at least 3.8.

■ Demonstration of knowledge and skill by means of a test or project. Eight-
hour test of programming skills according to a specially selected software
design document. Minimum grade: 80.

■ Mentor’s supervision for a designated period. Mentor supervision and
on-the-job instruction by a senior programming team leader for a period of
6 months.

Responsibility for certification

■ Overall responsibility. Chief software engineer.

■ Responsibility for skill demonstration test. Manager of the relevant
software development or software maintenance department (preparation
of the candidate’s test/task and its evaluation).

16.10 Follow-up subsequent to training and certification

Managers and software professionals often express doubts about the effec-
tiveness of training and certification in general or of one of the associated
activities. They question whether the substantial resources and efforts invest-
ed in training are really worthwhile. To assuage these doubts, systematic
follow-up is necessary to provide feedback to the professional units. Such
feedback indicates whether the training efforts were justified at the same
time that it assures continuous improvement of training and certification
activities. The information provided by follow-up relates to:

■ All training activities and certification procedures conducted – records of
the performance of the participants in the program.

■ Information about special cases of training activities that proved to be either
highly successful or clearly unsuccessful in improving staff performance.

■ Information about proven cases of failures of certified staff in the per-
formance that point to clearly inadequate certification requirements.

Analysis of the data accumulated following a training course provides the
information necessary to revise programs by guiding the modification, addi-
tion and deletion of identified activities and materials. Meaningful follow-up
of training requires performance information collected prior as well as sub-
sequent to training. As for certification follow-up, comparisons of the
performance of non-certified with certified staff holding the same principle
of information collection is impossible because non-certified staff are not
expected to hold positions that require certification. Instead, we can base our
follow-up on performance comparisons of certified staff whose achievements
in the certification process were high with certified staff whose achievements
were substantially lower. Given these constraints, the units responsible for
training and certification should regularly perform follow-up using instru-
ments such as the following.

■ Collection of regular performance metrics – such as errors and productivity
statistics, corrective maintenance statistics and resources invested – prepared
by the respective units. For a discussion of software quality metrics in gener-
al and the specific issue of performance metrics, see Chapter 21.

■ Questionnaires completed by staff members who received training, their
superiors, customers and others.

■ Analysis of outstanding achievements as well as failures.

■ Specialized review of software products (documents and code) prepared
by certified and trained employees.

The Corrective Action Board (CAB), based on follow-up subsequent to train-
ing and certification and other sources of information, may initiate training
and/or updating activities subsequent to analysis of the cases presented to it.

344

16
S

tafftraining and certification

For more about corrective and preventive actions in the context of training
and other issues, see Chapter 17.

Summary

(1) Explain the main objectives of training and certification.

■ To develop the knowledge and skills needed by new employees and to update
the knowledge and skills of veteran employees so as to assure efficient and
effective task performance.

■ To impart knowledge of style and structure procedures and work instructions to
assure conformity of software products to the organization’s standards.

■ To impart knowledge of SQA procedures.
■ To assure that the qualifications of candidates for key professional positions

conform to the position’s requirements.

(2) Discuss what is needed to prepare a training and updating program.

The three activities to be performed prior to planning a program are as follows.
■ Determine the knowledge requirements for each position. These include knowl-

edge obtained while acquiring a general professional education with the addition
of the internally generated knowledge and skills required within the organization.

■ Determine training and professional updating needs. These needs are ascer-
tained through comparisons of the staff’s knowledge with the state of the art.
These should be specified for three populations:
– New employees (training)
– Employees assigned to new position (retraining)
– Other staff (professional updating).

Training and updating needs should also be determined by performance require-
ments, based on feedback transmitted by the organization’s various units.
■ Plan training and updating programs. These programs will respond to the fol-

lowing issues:
– The use of in-house training teams and facilities or outsourcing
– The timing of the training and updating activities (whenever possible)
– The use of e-learning programs.

(3) List the main components of a certification program.

A certification program defines position requirements and responsibilities for carrying
out the program and its revision. Certification requirements may include some or even
all of the following components, depending on their relevance to the task or position:
■ Professional education
■ Internal training courses
■ Professional experience in the current organization or another organization
■ Evaluation of the candidate’s achievements and ability as found in periodic per-

formance assessments

345

S
um

m
ary

■ Evaluation by the candidate’s direct superior
■ Demonstration of knowledge and skills by means of a test or a project
■ Mentor’s supervision for a specified period.

Certification responsibilities include:
■ Response to requests made by applications or the organization
■ Conduct of follow-up
■ Revision of certification requirements according to technological developments
■ Revision of the list of positions requiring certification.

(4) Explain the objectives of follow-up of trained and certified staff performance and
main sources of the follow-up data.

Follow-up is meant to provide the information necessary to initiate revisions of the
training and certification programs based on performance data. Sources for per-
formance data include:
■ Regular performance metrics – such as errors and productivity statistics – pre-

pared by the individual units
■ Questionnaires completed by trainees, their superiors and others
■ Analysis of outstanding achievements as well as failures
■ Specialized review of software products (documents and code) produced by cer-

tified and trained employees.

Selected bibliography

1. ASQ (1999) Certified Software Quality Engineer (brochure), American Society
for Quality (ASQ), Milwaukee, WI.

2. Hamilton, D. H. (1999) “American Society for Quality (ASQ) Software Quality
Engineer Certification Program”, in G. G. Schulmeyer and J. I. McManus (eds),
Handbook of Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle
River, NJ, pp. 171–194.

3. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

4. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

5. Mendis, K. S. (1999) “Personnel requirements to make software quality assur-
ance work”, in G. G. Schulmeyer and J. I. McManus (eds), Handbook of
Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle River, NJ,
pp. 147–170.

6. Paulk, M. C., Weber, C. V. Curtis, B. and Chrissis, M. B. (1995) The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

346

16
S

tafftraining and certification

Review questions

16.1 It has been claimed that training and certification objectives conform to SQA
objectives (see Section 2.5.3).

Review each of the SQA objectives and explain, in your own words, how they
conform to the relevant training and certification objectives.

16.2 The main tasks of training are classified into professional training and updating.
Discuss the main characteristics differentiating the two types of tasks.

16.3 Consider the certification requirement “mentor’s supervision”.

(1) Explain, in your own words, the unique contribution of supervision to the
success of the certification process.

(2) Can you suggest certification requirements that can be replaced, wholly or
partially, by a mentor’s supervision? List your arguments.

16.4 The Certification Committee of SKF Advanced Software has decided to enlarge the
list of positions requiring certification. The following positions were added:

■ C++ programmer
■ Automated testing planner
■ Testers’ team leader.

Prepare a proposal for a position certification document (see Frame 16.2) for one
of the above positions.

Topics for discussion

16.1 Refer to the “3S” development team case in the Introduction.

(1) List the decisions made by the team leader that created the problematic
situation.

(2) Can you suggest procedures that could have eliminated or reduced the risk
of arriving at a situation similar to that found in “3S”? Explain, in a few sen-
tences, how each of your proposed procedures can contribute to eliminating
these risks.

16.2 In the last few years, many human resource management departments and staff
training units have invested substantial resources in computer-aided training.

(1) Discuss the advantages of computer-aided training and retraining.
(2) Discuss the advantages of computer-aided training for professional updating.
(3) Discuss the disadvantages of computer-aided training for professional train-

ing, retraining and updating.
(4) Suggest ways to overcome the above disadvantages.

16.3 New Ventures Bank (NVB) operates 87 branches throughout the state. The
Software Development and Maintenance Department employs a professional
staff of 350. Lately, the Bank’s General Manager, who has often expressed his

347

Topics
for discussion

dissatisfaction with the performance of NVB’s certification processes, divested
the Manager of the Software Development Department of the responsibility for
staff certification. A day later, he assigned to Raphael Jones, the very successful
Head of the Finance Department, the responsibility for the staff certification
process.

(1) Do you expect the new choice to be successful? List your arguments in each
direction.

(2) Some senior staff members of the Development Department had suggested
that Victoria McFaden, a senior software development consultant, well expe-
rienced with training and certification, be appointed Head of the new
Certification Committee to be established. Do you agree with this recom-
mendation? List your arguments and compare this solution to the
appointment of Mr Jones.

16.4 The managers of a software development department have decided that all train-
ing and certification programs will be delivered only by members of the
department’s staff. They explained that the decision is based on the importance
of “local color” in any training and certification activity, and stressed that eco-
nomic considerations did not play any role in the decision.

(1) Discuss the appropriateness of the decision.
(2) Suggest ways for improving the decision.

16.5 Follow-up of training, updating and certification, discussed in Section 16.10, rests
on four different sources of information. An SQA expert claims that the quantitative
information provided by performance metrics is sufficient, and that collecting
additional information is unnecessary and may very well be a waste of resources.

(1) Do you agree with the claim? List your arguments for and against.
(2) If you disagree, discuss the unique contribution of each source of information

to a successful feedback process.

348

16
S

tafftraining and certification

chapter 17

Corrective and
preventive actions

Systematic activities that implement organization-wide improvements of
effectiveness and operational efficiency fall under the heading of corrective
and preventive actions (CAPA). These are activities that are not intended to
deal with immediate correction of detected defects but to eliminate the caus-
es of those defects throughout software development departments.

By promoting continuous improvement of effectiveness and efficiency, the
CAPA process has became one of the main tools used to achieve the performance-
oriented objective of SQA: fulfillment of functional and managerial requirements
while reducing the costs of carrying out software development, maintenance and
quality assurance activities. For more about SQA objectives, see Section 2.5.3.

The CAPA process is the subject of this chapter. The last section presents
illustrations of its implementation.

The importance of CAPA in any SQA system is emphasized by the ISO
9000–3 standard (see ISO, 1997, Section 4.14 and ISO/IEC, 2001, Sections
8.5.2 and 8.5.3). The principles underlying the process are major elements of
the CMM Guidelines (they appear under the heading “defect prevention”)
summarized by Paulk et al. (1995).

Chapter outline

17.1 Introduction: the “3S” development team revisited 350
17.2 Corrective and preventive actions – definitions 351
17.3 The corrective and preventive actions process 352
17.4 Information collection 353
17.5 Analysis of collected information 354
17.6 Development of solutions and their implementation 356

17.6.1 Devlopment of solutions 356
17.6.2 Implementation of a CAPA process 359

17.7 Follow-up of activities 359
17.8 Organizing for preventive and corrective actions 360

Summary 361
Selected bibliography 362
Review questions 362
Topics for discussion 363

SQAS_C17.QXD 21/9/05 8:36 PM Page 349

After completing this chapter, you will be able to:

■ Explain the difference between defect correction and corrective and pre-
ventive actions.

■ List the main types of internal sources for CAPA process.
■ List and explain the main approaches for introduction of CAPA.
■ Explain the main CAPA follow–up tasks.
■ List the participants in the CAPA process and their contributions to its

successful implementation.

17.1 Introduction: the “3S” development team revisited

We illustrate corrective and preventive actions by continuing the case of the
“35” project for Apollo Ltd from Chapter 16. This project, completed by
Team 7, had been operative for about seven months but the team’s troubles
continued. Keeping its previous experience in mind, the Development
Department’s manager felt that the causes of the Team’s difficulties should be
analyzed. He believed that some of the conclusions reached might be appro-
priately applied throughout the Department.

Participants at the meeting organized by the Department’s manager
included the Team 7 leader, the head of the SQA unit and the head of the
Human Resources Department. They defined their objective as: “To detect
systematic causes for the improper functioning of Team 7 and to devise
measures to prevent its recurrence”. They raised the cancellation of the
Athena application generator training and the unsuccessful recruitment of a
replacement programmer. In addition to some personal conclusions, the par-
ticipants recommended that the following actions be taken:

(1) The training procedure should be updated to include a clause that requires
a special consultant or mentor to support team members in case of inabili-
ty to undergo needed training prior to the introduction of new applications.

(2) Programmers should be added to the list of positions requiring certifica-
tion (a certification procedure appendix).

(3) Appointment of a mentor for a minimum period of three months for
new department employees and two months for employees changing
positions should be added to the recruiting procedure. Modification of
the mentoring period requires approval of the Department manager.

(4) The new Focus Version 6.1 was found to far exceed the previous Version 5.1
in terms of quality and productivity. It was decided that all the Department’s
teams would begin to use Version 6.1 within the next three months. The rec-
ommended action was based on a comparison of the performance of Version
6.1 Focus application generator (used for Integrations B, C, D, E and G) to
that of Version 5.1 (used for Integrations A and F), both versions having
been applied regularly by Team 7 for the last 10 months.

Before closing the meeting, one of the participants commented that the sub-
ject of their meeting should have been treated long ago by the CAB

350

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 350

(Corrective Action Board), the committee charged with reviewing such inci-
dents and initiating actions in cases similar to the Apollo project. Other
participants agreed. A short investigation revealed that the firm’s CAB com-
mittee had been inactive since the resignation of its last head and his
departure from “3S” some 17 months ago. They also found that no internal
auditing had ever reviewed the CAB’s activities although company proce-
dures require it to do so. Therefore, the participants added two action items
to their list of recommendations:

(5) To “reactivate” the Committee by, first of all, finding a proper candidate
to head the CAB and renew its paralyzed activities.

(6) To prepare a new appendix to the internal quality auditing procedure to
deal with CAB activities.

The above six recommendations are examples of corrective and preventive
actions (CAPA).

17.2 Corrective and preventive actions – definitions

Frame 17.1 presents the standard, most inclusive definitions of corrective and
preventive actions with respect to software development and maintenance.

It should be emphasized that the analytic distinction between corrective
and preventive actions is somewhat artificial, as can be seen by the analo-
gous elements in their definitions. This means that certain items of
information may support both corrective and preventive actions.
Furthermore, it should be remembered that the two aspects of CAPA create,
in practice, a joint response; therefore, they will be treated as one in the
remainder of the chapter.

351
17.2 Corrective and preventive actions

–
 definitionsFrame 17.1 Corrective and preventive actions – definitions

■ Corrective actions: A regularly applied feedback process that includes
collection of information on quality non-conformities, identification and
analysis of sources of irregularities as well as development and
assimilation of improved practices and procedures, together with control of
their implementation and measurement of their outcomes.

■ Preventive actions: A regularly applied feedback process that includes
collection of information on potential quality problems, identification and
analysis of departures from quality standards, development and
assimilation of improved practices and procedures, together with control of
their implementation and measurement of their outcomes.

SQAS_C17.QXD 21/9/05 8:36 PM Page 351

It is noteworthy that changes in training and certification occupy a
major place in the CAPA process (see Chapter 16).

17.3 The corrective and preventive actions process

Successful operation of a CAPA process includes the following activities:

■ Information collection
■ Analysis of information
■ Development of solutions and improved methods
■ Implementation of improved methods
■ Follow-up.

The process is regularly fed by the flow of information from a variety of sources.
In order to estimate the success of the process, a closed feedback loop is applied
to control the flow of information, implementation of the resulting changes in
practices and procedures together with measurement of the outcomes.

A schematic overview of the CAPA process is shown in Figure 17.1.
Each of its stages will be discussed in a separate subsection of this chapter.

352

17
Corrective and preventive actions

Analysis of collected information

Development of solutions and improved methods

Corrective
actions

Preventive
actions

Implementation of improved methods

Follow-up of implementation and outcomes of
corrective and preventive actions

Developmemt process information
Examples:
• Design review reports
• Inspection reports
• Test reports
• Special reports of development

failures and successes

Product and infrastructure information
Examples:
• Customer complaints
• Software quality metrics and

quality costs
• Internal quality audits
• Special reports of current operations

failures and successes

Feedback on
implementation of
improved methods

Feedback on
outcomes of

improved methods

Feedback on content
and regularity of supply
of product information

Feedback on content
and regularity of supply
of process information

Figure 17.1: The corrective and preventive action process

SQAS_C17.QXD 21/9/05 8:36 PM Page 352

17.4 Information collection

The variety of information sources, internal and external, that serve the
CAPA process is quite remarkable. Following this internal/external
dichotomy, the four main internal sources of information are the (1)
Software development process, (2) Software maintenance, (3) SQA infra-
structure and (4) Software quality management procedures. External
sources of information are mainly customers’ application statistics and cus-
tomer complaints. This classification, as it pertains to CAPA, is presented
in Frame 17.2.

353
17.4 Inform

ation collection

Frame 17.2 Information used for corrective and preventive actions
by source and document

Internal information sources

Software development process

■ Software risk management reports

■ Design review reports

■ Inspection reports

■ Walkthrough reports

■ Experts’ opinion reports

■ Test reviews

■ Special reports on development failures and successes

■ Proposals suggested by staff members.

Software maintenance

■ Customer applications statistics

■ Software change requests initiated by customer applications

■ Software change requests initiated by maintenance staff

■ Special reports on maintenance failures and successes

■ Proposals suggested by staff members.

SQA infrastructure class of sources

■ Internal quality audit reports

■ External quality audit reports

■ Performance follow-up of trained and certified staff

■ Proposals suggested by staff members. ▲

SQAS_C17.QXD 21/9/05 8:36 PM Page 353

An alternative classification of information sources (as shown in Figure
17.1) distinguishes between the development process-related and product
and infrastructure-related (including managerial and maintenance) sources
of information.

The analysis of the accumulated information as reported in different
documents is the subject of the next section.

17.5 Analysis of collected information

Regular operation of the CAPA process is expected to create a massive flow
of documents related to a wide range of information.

Analysis involves:

■ Screening the information and identifying potential improvements.
Documents received from the various sources of information are reviewed
by professionals in order to identify potential opportunities for CAPA.

354

17
Corrective and preventive actions

Software quality management procedures class of sources

■ Project progress reports

■ Software quality metrics reports

■ Software quality cost reports

■ Proposals of staff members.

External information sources

■ Customer complaints

■ Customer service statistics

■ Customer-suggested proposals.

Implementation tip

The initiation of inquiries into major project failures is almost instinctive. The
conclusions reached by these inquiries affect a project’s immediate
environment; in many cases they also contribute to improved practices and
procedures through the application of CAPA.

Success stories, however, are rarely investigated. Although the staff
immediately responsible for the success are usually rewarded, the likelihood
of applying a CAPA analysis is low. Such a process can yield meaningful
information about which aspects of the process led to the project’s success as
well as identify elements that could benefit from further improvement.

SQAS_C17.QXD 21/9/05 8:36 PM Page 354

This stage includes comparison of documents of the same type received
from various units as well as comparison of documents of different types
related to the same case.

■ Analysis of potential improvements. Efforts are directed to determine:

– Expected types and levels of damage resulting from the identified fault.
– Causes for faults. Typical causes are non-compliance with work

instructions and procedures, insufficient technical knowledge,
extreme time and/or budget pressures due to unrealistic estimates, and
lack of experience with new development tools.

– Estimates of the extent of organization-wide potential faults of each
type. This information is needed to estimate the total damage expect-
ed and to determine the priority of each fault case.

■ Generating feedback on the content and regularity of information
received from the designated information sources.

Two opposing requirements affect responses at this stage – comprehensive
analysis of masses of information conflicting with the need for swift reac-
tions to a fault. Resolution of this conflict lies in organization and methods.
A team of professionals assigned to deal with incoming information without
delay should be created forthwith. This team will set priorities for solution
of identified faults, with low-priority cases being delayed or even not treated
at all.

355
17.5 A

nalysis
ofcollected inform

ation

Implementation tip

The staff responsible for information analysis are expected to face mounds of
documents, making it unfeasible for all the documents to be screened. One
approach to reduce the load is to report only those cases that the units believe
are amenable to initiation of a CAPA process. This approach can induce a
situation of “no fault” reporting through use of the “no importance” excuse.
Another approach is to ask the units to indicate the priority of each case in
their reports. This information will induce the CAPA team to deal with the
high-priority items first. A third approach is to sample the fault documents.
Application of random sampling to each type of information and document can
reduce the load to a manageable level and increase the probability of
identifying the most important cases. Sampling can also be used in
combination with the second approach, where it is applied to low- and
medium-priority cases. A combination of the second and third approaches is
preferable in most instances.

SQAS_C17.QXD 21/9/05 8:36 PM Page 355

17.6 Development of solutions and their implementation

17.6.1 Development of solutions

Solutions to identified causes of recurrent software systems faults are
required to:

■ Eliminate recurrence of the types of faults detected
■ Contribute to improved efficiency by enabling higher productivity and

shorter schedules.

Several directions for solutions are commonly taken:

■ Updating relevant procedures. Changes may refer to a spectrum of pro-
cedures, from those related to specific stages of software development or
maintenance (e.g., changes in style of software comments, changes of
contract review procedure in clauses dealing with proposals for small
projects) to procedures of a general nature (e.g. changes of employee
recruitment procedures, changes of the maximum and minimum number
of participants in a formal design review).

■ Changes in practices, including updating of relevant work instructions (if
any exist).

■ Shifting to a development tool that is more effective and less prone to the
detected faults.

■ Improvement of reporting methods, including changes in report content,
frequency of reporting and reporting tasks. This direction is expected to
improve prospects for identification of software system faults and their
earlier detection, both resulting in substantial reductions in damages.

■ Initiatives for training, retraining or updating staff. This direction is
taken only in cases when the same training deficiencies are found in sev-
eral teams.

It is worth noting that:

■ In many cases, the recommended solutions combine several action items,
from one or several directions.

■ Changing and updating of procedures and work instructions need to be
discussed and approved by the bodies assigned to their development
and maintenance.

Returning to our example, the “3S” case displays six instances of CAPA:

■ Updating of existing procedure (recommendations (1), (2), (3) and (6))

■ Replacement of development tools of low efficiency and effectiveness by
better tools (recommendation (4))

■ Improvement in the operation of SQA infrastructure tools (recommenda-
tion (5)).

To clarify the point being made, two further examples may be helpful.

356

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 356

Example A: High percentage of severe defects
Analysis of software quality metrics for the Development Department of
“Peak Performance Software Ltd” identified a high proportion of high-sever-
ity software defects in the projects completed by two of its six teams. It was
also found that the resources these teams required to correct the defects were
substantially higher in comparison to other teams.

The analysis was based on documented information related to the two
teams’ current as well as former projects, in addition to projects performed
by the four “healthy” teams. The findings revealed that the characteristic
common to most of the faulty modules was the presence of algorithms of
medium to high complexity. Inquiries related to the SQA tools applied by all
the teams revealed a meaningful difference in the number of applications
inspected, especially in the analysis and design stages. While the “healthy”
teams treated inspection as a more-or-less standard procedure for the more
complicated modules, the other teams used inspections rather sparingly. The
recommended CAPA solution was to introduce definitions of the module
types requiring inspection within the inspection work instructions.

The second example illustrates how a CAPA process can produced unex-
pected findings and recommendations.

Example B: Increase in help desk calls that require service at the
customer’s site
The “Perfect Programming Company” regularly operates two help desk
teams to support users of its two most popular software products: Team 1
specializes in point of sale (POS) packages, Team 2 in accountancy packages.
The Help Desk Unit’s management devised some new quality metrics to sup-
port control of the teams’ effectiveness and efficiency. These new metrics
emphasized control of services performed at the customer’s site, due to their
high costs, and kept track of two variables (metrics), namely, percentage of
customer site visits and average technician time per site visit. The quarterly
metrics reports for the two help desk teams are shown in Table 17.1.

The report for the fourth quarter ignited a warning signal among com-
pany management. Whereas Team 2 showed stability in its performance, a

357
17.6 D

evlopm
entofsolutions

and their im
plem

entation

Table 17.1: Help desk quarterly report – fourth quarter emphasized

The HD team Quality metrics I II III IV
Quarter Quarter Quarter Quarter

Team 1 Number of packages installed 2105 2166 2200 2223
POS packages % of customer’s site visits 8.5% 8.7% 12.8% 20.3%

Average technician time per site 2.8 2.6 3.3 3.8
visit (hours)

Team 2 Number of packages installed 987 1011 1011 1189
Accountancy % of customer’s site visits 10.5% 10.1% 10.4% 10.2%
packages Average technician time per site 2.9 2.7 2.8 2.8

visit (hours)

SQAS_C17.QXD 21/9/05 8:36 PM Page 357

dangerous change in Team 1’s performance was observed. Management was
very concerned by the substantial increase in the percentage of customer’s
site visits and average technician time per site visit. A corrective and preven-
tive action team (CAPA team) headed by an SQA unit staff member was
appointed. The CAPA team held three long meetings devoted to interviewing
the help desk team leaders, reviewing a sample of their customer’s site visit
reports and examining their detailed monthly statistical reports. The team
also observed the help desk teams at work during one afternoon.

The CAPA team discovered that while the previous year was one of con-
servative operations for Team 2, displaying some regression in their
efficiency, it had been a year of major changes in the operations of Team 1.
During the first and second quarters, the team had invested substantial
efforts in improvement of the user interface of the POS package and added
several helpful error messages. In addition, a revised user manual had been
issued. All these improvements were included in the new Version 6.4 that
replaced the Version 6.3 of the POS packages that had served the company
for the last 20 months. Version 6.4 had been installed by most users during
the third quarter.

Analysis of the monthly operations statistics revealed that the currently
used quarterly reports were misleading. Unexpectedly, it soon became obvi-
ous that in the last two quarters Team 1 had actually achieved a substantial
reduction of total help desk efforts, as measured in hours of help desk serv-
ice per customer. Moreover, a dramatic decrease in the number of user calls
was observed, evidently as a result of the new friendlier and more proficient
version of the packages. The increase in average time spent at a customer’s
site visit was due to the higher percentage of services now given to new cus-
tomers. The CAPA team based its conclusions on a revised, extended
quarterly report, presented in Table 17.2. Application of the revised help
desk quarterly report for Team 2 figures revealed a constant decrease in the
efficiency and effectiveness of the team’s HD services.

Two corrective actions were proposed by the CAPA team:

(1) To replace the currently used quarterly report by a more comprehensive
one, based on the lines of Table 17.2.

(2) An inquiry into the practices implemented by Team 2 was suggested to
achieve a substantial improvement in the team’s performance.

17.6.2 Implementation of a CAPA process

Implementation of CAPA solutions relies on proper instructions and often
training but most of all on the cooperation of the relevant units and individ-
uals. Therefore, successful implementation requires that targeted staff
members be convinced of the appropriateness of the proposed solution.
Without cooperation, the contribution of a CAPA can be undermined.

358

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 358

17.7 Follow-up of activities

Three main follow-up tasks are necessary for the proper functioning of a cor-
rective and preventive action process in any organization:

■ Follow-up of the flow of development and maintenance CAPA records
from the various sources of information. This enables feedback that
reveals cases of no reporting as well as low-quality reporting, where
important details are missing or inaccurate. This type of follow-up is con-
ducted mainly through analysis of long-term activity information, which
generates feedback to the CAPA information sources.

■ Follow-up of implementation. This activity is intended to indicate
whether the designated actions – training activities, replacement of devel-
opment tools, procedural changes (after approval) – have been performed
in practice. Adequate feedback is delivered to the bodies responsible for
implementation of the corrective and preventive actions.

■ Follow-up of outcomes. Follow-up of the improved methods’ actual out-
comes, as observed by project teams and organizational units, enables
assessment of the degree to which corrective or preventive actions have
achieved the expected results. Feedback on the outcomes is delivered to
the improved methods’ developers. In cases of low performance, formu-
lation of a revised or new corrective action is needed, a task undertaken
by the CAPA team.

359
17.7 Follow

-up ofactivities
Table 17.2: Revised help desk quarterly report – fourth quarter emphasized

The HD team Quality metrics I II III IV
Quarter Quarter Quarter Quarter

Team 1 Number of packages installed 2105 2166 2200 2223
POS packages Total number of customer’s calls 1454 1433 872 517

Number of phone service calls 1330 1308 755 412
Average technician time per 0.21 0.22 0.18 0.15

phone service call
Number of customer’s site calls 124 125 117 105
% of customer’s site calls 8.5% 8.7% 13.4% 20.3%
Average technician time per 2.8 2.6 3.3 3.8

customer’s site call (hours)
Average HD hours per customer 0.536 0.495 0.379 0.286

Team 2 Number of packages installed 987 1001 1011 1089
Accountancy Total number of customer’s calls 585 604 615 698
packages Number of phone service calls 524 543 551 627

Average technician time per 0.28 0.29 0.31 0.30
phone service call

Number of customer’s site calls 61 61 64 71
% of customer’s site calls 10.4% 10.1% 10.4% 10.2%
Average technician time per 2.9 2.7 2.8 2.8

customer’s site call (hours)
Average HD hours per customer 0.610 0.589 0.650 0.690

SQAS_C17.QXD 21/9/05 8:36 PM Page 359

Obviously, regular follow-up activities that promptly examine incoming
information and initiate adequate flows of feedback are an essential link in
the CAPA chain of activities.

17.8 Organizing for preventive and corrective actions

Proper performance of these CAPA activities depends on the existence of a
permanent core organizational unit as well as many ad hoc team partici-
pants. This nucleus, generally known as the Corrective Action Board (CAB)
committee, although it may have other titles in different organizations, pro-
motes the CAPA cause within the organization. Its tasks include:

■ Collecting CAPA records from the various sources

■ Screening the collected information

■ Nominating entire ad hoc CAPA teams to attend to given subjects, or
heading some of the teams

■ Promoting implementation of CAPA in units, projects, etc.

■ Following up information collection, data analysis, progress made by
ad hoc teams and implementation as well as outcomes of improved
CAPA methods.

Members of the SQA unit, top-level professionals and development and
maintenance department managers are the natural candidates for member-
ship in a CAB committee.

A complementary group of potential participants, taken from regular
staff, join CAPA efforts as members of ad hoc CAPA teams. They regularly
focus on:

■ Analysis of the information related to the team’s topic

■ Initiation of additional observations and inquiries

■ Identification of the causes for the faults

■ Development of solutions and the relevant corrective and preventive
actions

■ Preparation of proposed implementation revisions

■ Analysis of the CAPA implementation outcomes and CAPA revision if
necessary.

Most members of the CAPA ad hoc team are department members, experi-
enced in the subject matter. In cases where localized knowledge is
inadequate, other internal or sometimes external experts are asked to join
the team.

360

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 360

Summary

(1) Explain the difference between defect correction and corrective and preventive
actions.

■ Defect correction is a limited activity directed toward immediate solution of the
defects detected in a project or a software system.

■ Corrective and preventive actions are wider in scope; they are meant to initiate
and guide performance of organization-wide actions that will eliminate the
causes of known or potential faults.

(2) List the main types of internal sources for CAPA processes.

There are four main information source types that support and feed CAPA processes:
■ Software development process
■ Software maintenance
■ SQA infrastructure procedures
■ Software quality management procedures.

(3) List and explain the main approaches for introduction of CAPA.

Five approaches are commonly used:
■ Updating relevant procedures.
■ Changing software development or maintenance practices and updating work

instructions.
■ Changing current to more effective software development tools that are less

prone to faults.
■ Improving reporting methods by revising task content and reporting frequencies.

This approach is meant to achieve earlier detection of faults and thus reduce
damages.

■ Initiating training, retraining and updating of staff.

(4) Explain the main CAPA follow-up tasks.

Three main follow-up tasks necessary for successful CAPA processes are:
■ Follow-up of the flow of development and maintenance CA records enables

feedback regarding cases of no reporting or low-quality reporting.
■ Implementation follow-up determines whether a CAPA has been performed

as required.
■ Outcomes follow-up ascertains the degree to which a CAPA has achieved the

expected results.

(5) List the participants in the CAPA process and their contribution to its successful
implementation.

The CAPA process is carried out by the joint efforts of a permanent CAPA body
together with ad hoc team participants. The permanent CAPA body, commonly
called the CAB, activates the CAPA process by screening information, appointing

361
S

um
m

ary

SQAS_C17.QXD 21/9/05 8:36 PM Page 361

members of targeted ad hoc CAPA teams, promoting implementation and following
up the process. The ad hoc CAPA team’s task is to analyze information about a given
topic in addition to developing solutions and a CAPA process. The team members
are expected to implement the CAPA and use CAB-provided assistance, if needed.
Most members of ad hoc CAPA teams are department staff members experienced in
the subject matter.

Selected bibliography

1. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

2. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

3. Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995) The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

Review questions

17.1 Analysis of the cases discussed in Section 17.5 involves identifying the causes of
the defects but also determining the types and levels of damage expected from
an identified fault, followed by preparation of estimates of those damages and
organization-wide distribution of information about the respective defects and
damages.

(1) Some SQA professionals believe that analysis of the case should be limited
to identifying the causes of the defects. Do you agree?

(2) List your arguments.

17.2 Improved reporting methods are mentioned (in Section 17.6) as possible solutions
for an identified defect, though no change of performance practices is recom-
mended in the associated CAPA.

(1) Some SQA professionals believe that a CAPA has no place for changes in
reporting methods. Do you agree? List your arguments.

(2) If you do not agree, list possible contributions a CAPA can make based on
changed reporting methods.

17.3 Section 17.7 lists three main tasks of CAPA follow-up.

(1) List the three tasks.
(2) Explain, in your own words, the importance of the follow-up tasks to the suc-

cess of the process.

362

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 362

17.4 Section 17.5 lists the following typical causes for defects that should be treated
by CAPA: (1) lack of adherence to work instructions and procedures, (2) insuffi-
cient knowledge, (3) extreme time and/or budget pressures due to unrealistic
estimates, and (4) lack of sufficient experience with new development tools.
Section 17.6 presents five possible approaches to their solution.

Examine the feasibility of applying each of the five directions to each typical
cause of defects.

Topics for discussion

17.1 Frame 17.2 lists four different types of internal CAPA information sources.

(1) Considering the multitude of internal CAPA information sources, are external
information sources necessary?

(2) If you believe that external information sources are required, list your argu-
ments and explain their special contribution to the CAPA process.

17.2 Statement Software Ltd is a software house that specializes in development of
custom-made billing systems for the manufacturing industry. A common
“Statement Software” contract offers the customer 12 months of guarantee serv-
ices. The company’s help desk (HD) supplies solutions to customers’ calls by
phone or on site. The last quarter’s performance report indicates a decline in
service quality, a trend that also characterized the last two quarters. This trend
was identified by the following four help desk quality metrics:

■ Percentage of recurrent calls: the percentage of customer’s site calls that
required a recurrent call to deal with a defect supposedly solved by the prior call.

■ Average reaction time to customer’s site calls (working days).

■ Average hours invested in customer’s site calls, including travel time.

■ Customer satisfaction computed from a quarterly customer satisfaction ques-
tionnaire, using a scale from 0–10.

The ad hoc CAPA team appointed to deal with the subject decided that each
member would prepare his own list of possible causes for the decline in the qual-
ity of HD services before an analysis of the collected information and
complementary observations was begun.

(1) Can you list possible causes for the recorded phenomenon?
(2) Indicate possible solutions for each of the causes proposed in (1).

363
Topics

for discussion

The SQA metrics I Quarter II Quarter III Quarter IV Quarter

Percentage of recurrent calls 12% 13% 19% 21%

Average reaction time (days) 0.7 0.8 1.7 1.8
to customer’s site calls

Average hours per site call 4.7 4.9 3.3 3.1

Customer satisfaction 8.3 8.4 6.7 6.5

SQAS_C17.QXD 21/9/05 8:36 PM Page 363

17.3 The head of the ad hoc CAPA team became quite angry and offended when it was
discovered that the team’s recommendations regarding two procedures, sent to
the Procedures Committee five months ago, had not yet been approved; he sub-
sequently forwarded his protest to the Procedures Committee. In reply to the
angry letter, the Procedures Committee head mentioned that the committee had
already dedicated two of its meetings to the subject and hoped to finalize the
issue in their next meeting.

(1) Is it reasonable for a Procedures Committee to require such a lengthy period
of time to approve a recommended CAPA?

(2) Suggest reasons where such a delay might be justified.
(3) Suggest changes to the route taken by the head of the CAPA team and the

Procedures Committee which could have improved the process in this and
similar situations.

17.4 The head of the CAB suggested adding three new members, and believes that the
extended CAB will be able to handle all the tasks currently carried out by ad hoc
teams. He believes that his proposed change will substantially reduce the diffi-
culties accompanying the operation of ad hoc teams.

(1) Do you support the change proposal of the CAB’s head? List your arguments.
(2) If you disagree, discuss the advantages of ad hoc teams.

364

17
Corrective and preventive actions

SQAS_C17.QXD 21/9/05 8:36 PM Page 364

chapter 18

Configuration management

■ “What is the correct version of the software module that I have to con-
tinue its coding?”

■ “Who can provide me with an accurate copy of last year’s version 4.1 of
the TMY software system?”

■ “What version of the design document matches the software version we
are currently adapting to a new customer’s requirements?”

■ “What version of the software system is installed at ABC Industries?”

■ “What changes have been introduced in the version installed at the ABC
Industries’ site?”

Chapter outline

18.1 Software configuration, its items and its management 367
18.2 Software configuration management – tasks and organization 369

18.2.1 The tasks of software configuration management 369
18.2.2 The software configuration authority 370

18.3 Software change control 371
18.3.1 Approval to carry out proposed changes 371
18.3.2 Quality assurance of software changes 372

18.4 Release of software configuration versions 373
18.4.1 Types of software configuration releases 374
18.4.2 Software configuration management plans (SCMPs) 375
18.4.3 Software configuration evolution models 376
18.4.4 Documentation of software configuration versions 378

18.5 Provision of SCM information services 380
18.6 Software configuration management audits 380
18.7 Computerized tools for managing software configuration 381

Summary 382
Selected bibliography 383
Review questions 384
Topics for discussion 384

■ “What changes have been introduced in the new version of the software?”

■ “Where can I find the full list of customers that use version 6.8 of our
software?”

■ “Can we be sure that the version installed at Top Com Ltd does not include
undocumented changes (and changes that have not been approved)?”

These and many similar questions reflect the fact that an active software sys-
tem is a system that is in constant change. Even a medium-sized software
system, serving only one organization, typically undergoes tens to hundreds
of changes annually; quality assurance steps must therefore be planned to
provide accurate responses to a wealth of questions similar to our examples.
If the software package serves a variety of customers, the number of changes
and questions it must respond to will multiply considerably.

Clearly, the need to cope with rapid software changes is one of the more
important tasks of software systems development and maintenance teams.
The task encompasses adequate quality assurance of all changes performed
and their proper documentation as well as identification of the software ver-
sion (or release) installed by each customer. The efforts required to document
the various items as well as the benefits of proper documentation can be
appreciated only at the end of the service period because software systems
must be maintained for years, regardless of changing technological environ-
ments and staff turnover.

Software configuration management (SCM) is the SQA component
assigned to manage changes and supply accurate answers to inquiries of the
types mentioned above. SCM deals with all the issues related to control of soft-
ware changes, proper documentation of changes, registering and storing the
approved software versions, provision of the relevant information and supply
of copies of registered versions throughout the software system’s life cycle.

The importance of SCM is stressed by ISO 9000–3 standards (see ISO,
1997; ISO/IEC, 2001), as they are in the CMM Guidelines summarized by
Paulk et al. (1995). IEEE dedicates a standard to SCM issues (IEEE, 1998).
Leon (1999) and Siegel and Donaldson (1999) are only two of the books and
numerous papers dedicated to the subject. Chapters dedicated to SCM are
likewise found in software engineering texts such as Van Vliet (2000) and
Pressman (2000), to mention just two.

After completing this chapter, you will be able to:

■ Define the concept software configuration version.
■ Explain the objectives of software configuration management.
■ Explain the objectives of software change management.
■ Explain the difference between baseline and intermediate software con-

figuration versions.
■ Explain the objectives of software configuration management plans.
■ Explain the nature of the tasks fulfilled by software configuration man-

agement audits.

366

18
Configuration m

anagem
ent

18.1 Software configuration, its items and its
management

The definitions of software configuration items and software configuration
versions are presented in Frame 18.1.

A unit of software code, a document or piece of hardware is defined as
an SCI if it is assumed that it may be needed for further development of the
software system and/or its maintenance. In other words, the main criterion
governing a non-code item’s classification as an SCI and its inclusion in a
software configuration version is its potential contribution to the software
development and maintenance process.

A software configuration is composed of as many SCIs as the develop-
ers assume will be needed in the future, with each SCI approved, identified
and registered. The SCIs aggregated in each software configuration version
naturally correspond to the software components and software definitions
reviewed in Section 2.1. The SCIs are generally placed into four classes,
as follows:

■ Design documents

■ Software code

■ Data files, including files of test cases and test scripts

■ Software development tools.

A list of common types of SCIs is presented in Frame 18.2.

367

18.1 S
oftw

are configuration, its
item

s
and its

m
anagem

ent

Frame 18.1 Software configuration items and software configuration
versions – definitions

■ Software configuration item (SCI) or configuration item (CI)
An approved unit of software code, a document or piece of hardware that is
designed for configuration management and treated as a distinct entity in
the software configuration management process.

■ SCI version
The approved state of an SCI at any given point of time during the
development or maintenance process.

■ Software configuration version
An approved selected set of documented SCI versions that constitute a
software system or document at a given point of time, where the activities
to be performed are controlled by software configuration management
procedures. The software configuration versions are released according to
the cited procedures.

368

18
Configuration m

anagem
ent

Frame 18.2 Common types of software configuration items

Design documents

■ Software development plan (SDP)

■ System requirements document

■ Software requirements document (SRD)

■ Interface design specifications

■ Preliminary design document (PDD)

■ Critical design document (CDD)

■ Database description

■ Software test plan (STP)

■ Software test procedure (STPR)

■ Software test report (STR)

■ Software user manuals

■ Software maintenance manuals

■ Software installation plan (SIP)

■ Software maintenance requests (including problem reports)

■ Software change requests (SCRs) and software change orders (SCOs)

■ Version description document (VDD)

Software code

■ Source code

■ Object code

■ Prototype software

Data files

■ Test cases and test scripts

■ Parameters, codes, etc.

Software development tools

(the versions applied in the development and maintenance stages)

■ Compilers and debuggers

■ Application generators

■ CASE tools

To illustrate the process, see Table 18.1, which shows two software con-
figuration versions of the Pepper Mountain Travel software package and the
versions of the SCIs included in each configuration.

The SQA component under whose heading all the activities necessary to
attend to the availability and accuracy of information regarding all aspects
of a software configuration is called software configuration management
(SCM), sometimes referred to simply as configuration management (CM). Its
definition is presented in Frame 18.3.

18.2 Software configuration management – tasks
and organization

18.2.1 The tasks of software configuration management

The tasks of software configuration management may be classified into
four groups:

■ Control software change
■ Release of SCI and software configuration versions

369

18.2 S
oftw

are configuration m
anagem

ent–
 tasks

and organization

Table 18.1: Pepper Mountain Travel (PMT) – software configuration versions, including SCI
versions

Release and release date

SCI version PMT Version 6.0 PMT Version 7.0
January 6, 2002 January 22, 2003

SCI version in the release SCI version in the release

SRD Ver. 1 Ver. 1

CDD Ver. 3 Ver. 4

STP Ver. 3 Ver. 4

SIP Ver. 2 Ver. 2

VDD Ver. 6 Ver. 7

Code Module 1 Ver. 3 Ver. 5

Code Module 2 Ver. 8 Ver. 8

Code Module 3 Ver. 2 Ver. 2

Test cases file Ver. 3 Ver. 4

CL compiler Ver. 5 Ver. 7

Software user manual Ver. 6 Ver. 7

Frame 18.3 Software configuration management – definition

An SQA component responsible for applying (computerized and non-computerized)
technical tools and administrative procedures that enable completion of the tasks
required to maintain SCIs and software configuration versions.

■ Provision of SCM information services
■ Verification of compliance to SCM procedures.

A summary list of SCM tasks, with respect to software configuration items
and software configurations, is presented in Table 18.2.

18.2.2 The software configuration authority

It is practically self-evident that an authority to oversee implementation of
the above tasks is vital in software developing and/or maintaining organiza-
tions. SCM procedures specify who is responsible for SCM issues. This
responsibility is usually assigned to a senior professional or a committee ded-
icated to SCM issues. In many organizations, software change control is

370

18
Configuration m

anagem
ent Table 18.2: Summary of configuration management systems tasks

Task Applicable Applicable to
to SCIs software configurations

(1) Software change control

■ Grant approval to carry out changes + +
■ Control the changes and assure the quality + +

of approved changes
■ Document the approved changes + +
■ Apply mechanisms that coordinate the +

changes made to the SCI by preventing
more than one team from simultaneously
introducing changes into the same SCI

(2) Release of SCI and software configuration
versions

■ Approve the release of new versions +
■ Document the configuration of each released +

software configuration version
■ Document the sites where software +

configuration versions are installed
■ Secure the version source and + +

documentation files from changes,
deletions and other damages

(3) Provision of SCM information services

■ Information about the status of changes + +
■ Information about versions installed at a +

site as well as about the site itself
■ Version history list + +
■ Accurate copies of given versions + +
■ Supply copies of documentation + +

(4) Verification of compliance to SCM procedures

■ Audit compliance to SCM procedures. + +
■ Initiate updating and change of SCM procedures + +

dealt with by a special committee set up for such matters, commonly called
the software change control authority (SCCA) or the software change con-
trol board (SCCB). This body is frequently called the change control
authority (CCA) or the change control board (CCB). During the develop-
ment stage, the project manager may be charged with the authority to carry
out SCM responsibilities.

The activities involved in realizing each of the above objectives are discussed
in Sections 18.3 to 18.6. Section 18.7 deals with computerized SCM tools.

18.3 Software change control

Software change management controls the process of introducing changes
mainly by doing the following:

■ Examining change requests and approving implementation of appropri-
ate requests.

■ Assuring the quality of each new version of software configuration before
it becomes operational.

18.3.1 Approval to carry out proposed changes

Once the baseline version of the software system becomes operational, it is just
a matter of time before proposals for changes begin to flow. These initiatives
may relate to one or several SCIs. In order to coordinate the efforts invested
and guarantee that the changes follow project or customer priorities, an
authorized body must analyze the requests and make the necessary decisions.

The factors affecting the decision whether to implement a proposed
change include:

■ Expected contribution of the proposed change

■ Urgency of the change

■ Effect of the proposed change on project timetables, level of service, etc.

■ Efforts required in making the change operational

■ Required software quality assurance efforts

■ Estimated required professional resources and cost of performing the change.

The information items required before any decision about a change proposal
can be made are reflected in the contents of a typical software change request
(SCR) form. (The same information can be phrased as a change request – CR
– or engineering change request – ECR.) See Frame 18.4 for an example.

Despite the perceived urgency of the change, a favorable decision is not
automatically given to its initiator. The CCA may approve the request for
immediate implementation, delay or deny it.

371

18.3 S
oftw

are change control

For each SCR approved for immediate implementation, a software
change order (SCO) (in some organizations, called a change order (CO) or
engineering change order (ECO)) is issued. The SCO provides the change
details and their schedule, which may differ from the original request
because the authority is free to exercise its discretion on the related issues
(e.g., the list of changes and schedules).

18.3.2 Quality assurance of software changes

While change efforts are directed to one or several SCIs, the user experiences
the changes indirectly, through application of the revised version of the soft-
ware system. The goal of software quality assurance is to assure that the

372

18
Configuration m

anagem
ent

Frame 18.4 Software change request (SCR) document – a template

(1) Change principles

■ The initiator

■ The date the SCR was presented

■ The character of the change

■ The goals

■ The expected contribution to the project/system

■ The urgency of performance

(2) Change details

■ Description of the proposed change

■ A list of the SCIs to be changed

■ Expected effect on other SCIs

■ Expected effect on interfaces with other software systems and hardware
firmware

■ Expected delays in development completion schedules and expected
disturbances to services to customers

(3) Change timetable and resources estimates

■ Timetable for implementation

■ Estimated required professional resources

■ Other resources required

■ Estimated total cost of the requested change

quality of the new software system version does not fall below that of the
previous version.

Quality assurance efforts are required at two levels:

■ Quality assurance of each of the changed SCIs
■ Quality assurance of the entire new software system version (that

includes changed SCIs).

Quality assurance of the changed SCIs
This requires preparation of a reviews and testing plan at a magnitude
appropriate to the character of the change. As mentioned in earlier chapters,
it is most important that reviews and testing be carried out by professional
testers and not by the SCI’s developer. The process of reviews and testing,
corrections and retesting (regression testing) the changed SCIs is expected to
conclude with their approval.

Quality assurance of the entire new software system version
A new version of the software is considered to have been completed once the
changed SCIs replace the former SCIs. Although one might expect the new ver-
sion of the software system to function perfectly and certainly better than the
old original version, many new versions, especially of complex software sys-
tems, actually fail. These system failures generally occur as a result of damage
done to interfaces between the changed SCIs and other SCIs left unchanged
and not retested because they were not expected to be affected by the changes
performed. Unless the entire new version, or at least all the whole software
parts that might be affected, is tested to identify unexpected interface defects,
prospects are meager that the software system will function properly.

18.4 Release of software configuration versions

The need to release a new software configuration version usually stems from
one or more of the following conditions:

■ Defective SCIs
■ Special features demanded by new customers
■ The team’s initiatives to introduce SCI improvements.

A discussion of the following issues, all of which are part of the process of
software configuration version release, occupy the remainder of this section:

■ Types of software configuration releases
■ Software configuration management plans (SCMPs)
■ Software configuration evolution models
■ Documentation of software configuration versions.

373

18.4 Release ofsoftw
are configuration versions

18.4.1 Types of software configuration releases

Among software configuration releases, baseline versions, intermediate ver-
sions and revisions are considered to be the three main types of release.

Baseline versions
Baseline software configuration versions are planned early, during a system’s
development or operating stage. As part of the process, they are reviewed,
tested and approved, as are their SCIs. Baseline versions serve as milestones
in the software system’s life cycle, and represent the foundations for further
system development.

Intermediate versions
When problems arise that require immediate attention – such as the need to
correct defects identified in an important SCI, or perform immediate adap-
tations as defined in a contract with a new customer – an intermediate
version of the software is often prepared.

Usually, intermediate versions serve only a portion of a firm’s customers,
and then for a limited period, until replaced by a new baseline version.
Naturally, we can expect that these versions will not receive the attention
and investment of efforts usually devoted to the release of baseline versions.
An intermediate software configuration version can thus serve as a “pilot”
or springboard to the next baseline version.

Revisions
Revisions introduce minor changes and corrections to a given software con-
figuration version. In some cases, several successive revisions are released
before a new baseline version is released.

Numeration conventions for identification of SCI and software versions
Numeration conventions have been formulated to identify SCIs; the most
commonly used is decimal numeration, which indicates the successive ver-
sion and revision numbers and is registered accordingly. For example, an
SCI design document captioned DD-7 may have several versions and revi-
sions, identified as DD-7 Ver.1.0, DD-7 Ver.1.1, DD-7 Ver.2.0, DD-7 Ver.3.0,
DD-7 Ver.3.1, DD-7 Ver.3.2, etc., where the first number represents the ver-
sion and the second the revision. Put simply, an SCI is identified by its name
in combination with its version and revision numbers.

A similar numeration convention is applied for software configurations.
Each software configuration version (identified by version and revision num-
bers) is composed of SCIs, each of which is identified by its own version and
revision numbers. Examples of such numeration applications are presented
later in Tables 18.3 and 18.4.

The numeration conventions can likewise be used to identify firmware
to be embedded in a variety of product lines and models, but these may
require special adaptations.

374

18
Configuration m

anagem
ent

18.4.2 Software configuration management plans (SCMPs)

The main objective of a software configuration management plan (SCMP) is
to plan ahead the schedule of baseline version releases and the required
resources to carry out all the activities required for the software configura-
tion releases. An additional objective of the SCMP is to enable one to follow
up the progress of activities involved in software version release. SCMPs are
required during the development stage as well as the operation (mainte-
nance) stage. Accordingly, an SCMP usually includes:

■ An overview of the software development project or existing software system.
■ A list of scheduled baseline version releases.
■ A list of SCIs (documents, code, etc.) to be included in each version.
■ A table identifying the relationship of software development project plans

and maintenance plans to scheduled releases of new SCIs or SCI versions.
■ A list of assumptions about the resources required to perform the various

activities required by the SCMP.
■ Estimates of the human resources and budget needed to perform the SCMP.

SCMP for the development stage
Based on the project plan, the SCMP sets the release dates of baseline ver-
sions, which usually coincide with the conclusion of one or more of the
following three events: the design stage, the coding stage and the system test
stage. Quite commonly, these plans represent a segment of the entire system’s
development plans, prepared at a project’s initiation. External participants in
the project are required to comply with the SCMP or to suggest an alterna-
tive SCMP that is appropriate for their part of the project, contingent on its
acceptance by the project manager.

All the instructions and procedures necessary for performing SCM tasks
at this stage are documented in the SCMP. The project manager is usually the
person responsible for carrying out these tasks.

SCMP for the operation (maintenance) stage
During the operation (maintenance) stage, further releases of software base-
line versions are required in order to introduce improved software versions
released after accumulation of SCI changes made during regular customer
use. The plan generally schedules new baseline releases periodically, either
annually, semi-annually, or according to the anticipated number of accumu-
lated changes in SCIs. The periodic releases will include corrected as well as
new versions of SCIs, each of which will contain the adaptations and/or
improvements initiated by the company. Only SCIs for which changes have
been completed and approved by the targeted release date can be included in
new software configuration versions.

All the instructions and procedures for performing SCM tasks during the
operation (maintenance) stage are likewise documented in the respective
SCMP. This stage’s SCMP may be incorporated in the comprehensive SCMP

375

18.4 Release ofsoftw
are configuration versions

that covers the system’s entire life cycle, prepared at the project’s initiation.
The plan also leaves room for release of intermediate software versions and
revisions, as need arises.

18.4.3 Software configuration evolution models

Successive development or evolution of a software system’s configuration
versions should be undertaken according to a route that is planned in
advance by the system’s developer. The choice of routes depends on the sys-
tem’s characteristics, the customer population and the firm’s intentions
regarding the system’s market. Two fundamental software configuration
evolution models – the line model and the tree model – are generally applied.
We discuss these next.

■ The linear evolution model
According to the linear model, only one unique software system’s config-
uration version serves all customers at any given time. Each new
configuration version then replaces the prior version. This model is the
natural choice for software systems developed to serve a single organiza-
tion. The model is also applied to popular software packages, which tend
to be uniform in structure, where the need to meet a wide range of main-
tenance demands for a single version is a great advantage.

■ The tree evolution model
According to this model, several parallel versions of the software are
developed to serve the needs of different customers simultaneously
throughout the system’s life cycle. Tree models are typically applied in
firmware configuration versions, where each branch serves a different
product or product line.

Tables 18.3 and 18.4 illustrate application of the linear and tree evolution
models respectively. In both examples, decimal numeration is implemented,
with the type of configuration version – baseline or intermediate – clearly
marked. Table 18.3 documents the configuration versions of an accounting
software system throughout its development and operation stages. Table
18.4 presents the format for documenting configuration versions of a system
developed for printer firmware, where separate versions were developed for
the printer-fax and regular printer software. Further development of the
product line resulted in two separate configuration versions, one for black-
ink printer and one for color. In this case, the first baseline software
configuration version was defined at the end of the development stage.

Note that Version 1.0 is a design baseline version and Version 2.0 is the
final software product baseline version. Version 2.1 is an intermediate ver-
sion released with only one SCI, SM–4, which was changed to replace its
faulty Version 1.2. Baseline Version 4.0 introduces a new software module,
SM–5, to respond to a new accounting regulation. The version of the com-
mercial CASE tool that was applied for the development and maintenance,
Version 6.03, has been replaced with the more advanced Version 7.0, begin-
ning with Version 3.0 of our software system.

376

18
Configuration m

anagem
ent

377

18.4 Release ofsoftw
are configuration versions

Table 18.3: Application of the linear evolution model – the accounting software package
example

Software configuration version
(BL = baseline, IN = intermediate)

SCI name 1.0 BL 2.0 BL 2.1 IN 2.2 IN 3.0 BL 4.0 BL 4.1 IN

Design document DD–1 1.3 1.3 1.3 1.3 1.4 1.4 1.4

Design document DD–2 1.1 1.2 1.2 1.2 1.3 1.4 1.4

Design document DD–3 1.2 1.4 1.4 1.5 1.5 1.6 1.6

Software module SM–1 — 1.0 1.0 1.1 1.2 1.4 1.4

Software module SM–2 — 1.3 1.3 1.5 1.5 1.5 1.5

Software module SM–3 — 1.3 1.3 1.4 1.7 1.8 1.9

Software module SM–4 — 1.2 1.4 1.4 1.4 1.4 1.5

Software module SM–5 — — — — — 1.0 1.1

Test case file TC — 1.2 1.2 1.2 1.2 1.3 1.3

User manual UM — 1.0 1.0 1.0 2.0 3.0 3.0

CASE tool CA — 6.03 6.03 6.03 7.0 7.0 7.0

Table 18.4: Application of the tree evolution model – the printer firmware example

Software configuration version
(BL = baseline, IN = intermediate)

General Printer Black printer Color printer Printer–fax
SCI name a1.0 b1.0 b1.1 d1.0 d1.1 e1.0 e1.1 c1.0 c1.1 c2.0

BL BL IN BL IN BL IN BL IN BL

Design document DD–1 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.3 1.3 1.4

Design document DD–2 1.1 1.1 1.1 1.1 1.3 2.0 2.4 1.2 1.2 2.4

Design document DD–3 1.2 1.3 1.3 1.3 1.5 1.6 1.6 2.0 2.3 2.6

Design document DD–4 — — — — — — — 1.0 1.1 1.3

Design document DD–5 — — — — — 1.0 1.1 — — 1.1

Software module SM–1 1.0 1.2 1.3 1.4 1.2 1.4 1.4 1.3 1.4 1.4

Software module SM–2 1.0 1.0 1.1 1.2 1.5 1.5 1.6 1.1 1.1 1.5

Software module SM–3 1.0 1.1 1.1 1.1 1.7 3.0 3.0 2.0 2.1 2.2

Software module SM–4 1.0 1.2 1.2 1.4 1.4 3.0 3.1 2.0 2.2 2.2

Software module SM–5 1.4 1.4 1.4 1.5 1.5 3.0 3.0 1.4 1.4 1.6

Software module SM–6 — — — — — — — 1.0 1.1 1.2

Software module SM–7 — — — — — 1.0 1.3 — — 1.3

Test case file TC 1.0 1.0 1.0 3.0 3.0 4.0 4.0 2.0 2.0 2.1

User manual UM 1.0 1.1 1.1 1.2 2.0 3.0 3.0 2.0 2.0 2.1

Development tool DT 2.3 2.3 2.3 2.3 2.3 3.0 3.0 2.3 2.3 3.0

Table 18.4 illustrates evolution of software configurations at the devel-
opment stage according to the tree model. The letters mark the branch of the
evolution tree. In this case, parallel firmware configuration versions evolved
so as to serve three product lines: regular printers, color printers and printer–fax
units. The three firmware configuration versions replace one general
firmware configuration. The table displays two version partitions: first, gen-
eral baseline version a1.0 is partitioned into printer version b1.0 and
printer–fax version c1.0; second, printer baseline version b1.0 is partitioned
into black printer version d1.0 and color printer version e1.0. It also displays
the SCIs common to the firmware of more than one product in addition to
the unique SCIs included in the firmware of only one product. We can
assume that different test procedures, different test case files and different
user manuals serve the respective product–line firmware. Special attention
should be paid to the fact that printer–fax firmware version c2.0 serves a
color printer-fax product; as such, it shares the SCIs DD-1, DD-2, DD-5,
SM-2 and SM-7 with the color printer firmware version e1.1.

18.4.4 Documentation of software configuration versions

Within the framework of software configuration management, the project
manager must see to it that all documentation tasks are properly performed.
Two of these tasks – documentation of SCI versions and documentation of
software configuration releases (versions and revisions) – represent the two
main types of tasks to be completed.

The information items required for documentation of an SCI version are
listed in Frame 18.5.

378

18
Configuration m

anagem
ent

Frame 18.5 SCI version document – a template

Identification

■ SCI Version number

■ Name(s) of software engineer(s) who implemented the change

■ Date the new version was completed and approved

Changes in the new version

■ Former SCI version number

■ Short description of the introduced changes

■ List of other SCIs that had to be changed as a result of the current changes

■ List of SCOs included in the new version

■ List of software problem reports resolved by the new version

■ Operational as well as other implications of the changes introduced in the
new version

The documentation for a new SCI version may be submitted as a docu-
ment or as part of the code (i.e., as “release notes” in the code listing).

Documentation of software configuration releases includes the same
information items listed in Frame 18.6, and is often referred to as a version
description document (VDD).

379

18.4 Release ofsoftw
are configuration versions

Frame 18.6 Software configuration release documentation –
VDD template

Identification and installations

■ Release version and revision number

■ Date of the new version’s release

■ List of installations where the release was entered (site, date, name of
technician who installed the version), if applicable

Configuration of the released version

■ List of SCIs in the released version, including identification of each
SCI version

■ List of hardware configuration items required for operating the specified
version, including specification of each hardware configuration item

■ List of interfacing software systems (including version) and hardware
systems (including model)

■ Installation instructions for the new release

Changes in the new version

■ Previous software configuration version

■ List of SCIs that have been changed, new SCIs introduced for the first time,
and deleted SCIs

■ Short description of introduced changes

■ Operational and other implications of changes introduced in the
new release

Further development issues

■ List of software system problems that have not been solved in the
new version

■ List of SCRs and proposals for development of the software system for
which implementation of development was delayed

18.5 Provision of SCM information services

The SCM is required to provide information to professionals, mainly devel-
opers, maintenance teams and customer representatives, who have requested
that changes be introduced in a software system.

The information provided may be classified into information related to
software change control and information dealing with SCI and software con-
figuration versions.

Information related to software change control
■ Change request status information – based on records for every submis-

sion of an SCR and the decisions made.

■ Change order progress information – based on records for every
approved SCO, its schedule, implementation progress and test results.
Information about delays in performance may also be supplied.

Information about SCIs and software configuration versions
■ Accurate copies of SCI versions (code SCIs, document SCIs, etc.) and

entire software configuration versions.

■ Full reports of changes introduced between successive releases (versions
and/or revisions) of code SCIs as well as between successive releases of
other types of SCIs.

■ Copies of SCI version documentation and software configuration version
documentation (VDDs).

■ Detailed version and revision history for SCIs and software configura-
tions for any specific SCI or software system.

■ Progress information about planned versions and releases (usually includ-
ed in the SCMP).

■ Information correlated about versions installed at a given site and about
the site itself.

■ List of sites where a given software configuration version is installed.

Provision of the above information services is practically impossible for man-
ual SCM systems. Only a computerized service is expected to cope with this
task effectively and reliably. For more about this subject, see Section 18.7.

18.6 Software configuration management audits

SCM involves the execution of a great variety of tasks by the SCM authori-
ty, the CCB and many others involved in software development and
maintenance. All the respective tasks are defined in the SCM procedures.
SCM audits are performed by the SCM authority and the CCB in order to

380

18
Configuration m

anagem
ent

control compliance with SCM procedures. SCM audits may be combined
with internal quality issues (see Chapter 27), and are expected to initiate
updates and changes of SCM procedures and instructions. Hence, SCM
audits check whether and how these tasks were performed for samples of
change requests, SCIs, and software configuration versions. SCM audits may
be also performed for a sample of planned releases, as specified in the SCMP.
However, although we may expect SCM audits to yield information regard-
ing the level of compliance to SCM procedures (including typical failures of
those procedures), they cannot serve as compliance enforcement tools.

The following is a list of typical bits of control information that SCM
audits are meant to discover and transmit to management:

■ Percentage of unapproved changes introduced in the system during devel-
opment or operation.

■ Percentage of SCOs not carried out according to instructions and not
fully complying with procedures.

■ Percentage of design reviews and software tests of changed SCIs that have
not been performed according to the relevant procedures.

■ Percentage of SCOs that have been completed on schedule.

■ Percentages of cases where SCIs affected by changes have not been
checked, with some necessary changes not implemented.

■ Percentages of properly documented new SCIs and software configura-
tion versions.

■ Percentage of properly documented installations of new software config-
uration versions.

■ Percentage of cases of failure to transmit all version–related information
to the customer.

■ Number of cases recorded annually where the SCI work coordination
mechanisms failed (i.e., did not prevent different teams from simultane-
ously introducing changes in the same SCI).

18.7 Computerized tools for managing software
configuration

Computerized SCM tools have been on the market for many years. These
computerized tools differ in their level of comprehensiveness, flexibility of
application and ease of use. More comprehensive tools can supply most or
almost all of the SCM information services listed in Section 18.5.

It is expected that a computerized tool will be able to comply with the
required level of accuracy and completeness of information, and with the
required level of availability (measured by the response time from request of
information to its provision).

381

18.7 Com
puterized tools

for m
anaging softw

are configuration

The computerized SCM tools also operate the mechanisms coordinating
the work on an SCI’s changes and prevent different teams from simultane-
ously introducing changes in the same SCI.

An additional benefit of the use of a computerized SCM system is the
high security level it is able to provide:

■ It secures the code version and documentation files versions by protect-
ing them from any changes, deletions and other damages.

■ It activates back-up procedures required for safe SCM file storage.

Current enhanced tools are characterized by easier input capacities, coordi-
nation of SCM support teams operating in different development
environments, including geographically distributed teams, and provision of
an expanded variety of reporting options.

Summary

(1) Define software configuration version.

A software configuration version is an approved set of the SCI versions that consti-
tute a documented software system at a given point of time. The respective
activities are controlled by software configuration management procedures.

(2) Explain the tasks of software configuration management.

Software configuration management tasks are classified into the following four groups:
■ Control of software change
■ Release of SCI and software configuration versions
■ Provision of SCM information services
■ Verification of compliance to SCM procedures.

(3) List the main tasks of software change control.

The main tasks of software change management can be described as:
■ Examining change requests and approving implementation those requests that

qualify.
■ Controlling the changes and assuring the quality of approved changes.
■ Documenting the approved changes.
■ Applying mechanisms that prevent more than one team from simultaneously

introducing changes into the same SCI.

(4) Explain the difference between baseline and intermediate software configuration
versions.

Baseline versions are configuration versions that are planned ahead, during a sys-
tem’s development or operating stage. As part of the process, baseline versions are
also reviewed and approved. As a rule, they serve as milestones in the software
system’s life cycle.

382

18
Configuration m

anagem
ent

Intermediate versions are software configuration versions released, in most
cases, to respond to immediate needs. These may range from correction of defects
identified in an important SCI to swift introduction of adaptations to meet a new
customer’s requirements. As expected, intermediate versions will not receive the
attention and efforts typically invested in baseline versions.

(5) Explain the objectives of software configuration management plans.

The main objective of a software configuration management plan (SCMP) is to plan
ahead the required resources to carry out all the activities required for the software
configuration releases. An additional objective of the SCMP is to enable one to follow
up the progress of activities involved in software version release. SCMPs are required
during the development stage as well as the operation (maintenance) stage.

(6) Describe the nature of the tasks performed in software configuration management
audits.

SCM audits are based on checking the tasks performed for samples of change
requests, SCIs, and software configurations. Typical checks included in SCM audits
include the percentage of cases of compliance with procedures or, alternatively, of
failure to comply with procedures.

Selected bibliography

1. IEEE (1998) “IEEE Std 828–1998–IEEE Standard for Software Configuration
Management Plans”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

2. ISO (1997) ISO 9000–3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software,
2nd edn, International Organization for Standardization (ISO), Geneva, para-
graph 4.8.

3. ISO/IEC (2001) “ISO 9000–3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

4. Leon, A. (1999) A Guide to Software Configuration Management, Artech
House, Boston, MA.

5. Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995) The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA, pp. 180–191.

6. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.

7. Siegel, G. S. and Donaldson S. D. (1999) “Software configuration management
– a practical look”, in G.G. Schulmeyer and J. I. McManus (eds), Handbook of
Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle River, NJ,
pp. 255–290.

8. Van Vliet, H. (2000) Software Engineering Principles and Practices, Ch. 4, John
Wiley & Sons, New York.

383

S
elected bibliography

Review questions

18.1 One of the tasks of an SCM is to supply information about sites where a given
software configuration version is installed (Table 18.2).

Explain potential uses for this type of information and its contribution to soft-
ware quality.

18.2 Design documents or source code files are identified and stored as SCIs (see
Frame 18.2) for obvious reasons: further development of the software system or
its correction can not take place without accurate copies of these items.

Explain in your own words why the following should be identified and stored
as SCIs:

(1) Test cases
(2) Compiler
(3) Software installation plans
(4) Software change request files.

18.3 An SCR relating to only two of the software source SCIs has been approved.
However, the software test plan prepared by the Testing Unit mentioned nine of
the system’s software source SCIs.

Explain in your own words why it may not be sufficient to test the two SCIs
specified in the SCR after they were changed.

18.4 It is mentioned that a version history of a software system configuration includes
baseline, intermediate and revision version releases.

(1) Explain in your own words the function of each type of release.
(2) Explain in your own words the special importance of baseline versions.

18.5 Frame 18.6 is a template that lists the information items necessary for software
configuration version documentation (VDD).

List possible uses for each of the information items mentioned in the template.

18.6 The SCM Authority is expected to spend a significant part of its resources in car-
rying out software configuration audits.

(1) List the main SQM audit tasks.
(2) Explain the contribution of each task to software quality.

Topics for discussion

18.1 One of the tasks of SCM is to: “Apply mechanisms that coordinate the changes
made to an SCI by preventing more than one team from simultaneously intro-
ducing changes into the same SCI”.

(1) Explain in your own words the importance of this task and its contribution to
software quality.

(2) Supply an example that illustrates the consequences of failure of SCM to
effectively implement this objective.

384

18
Configuration m

anagem
ent

18.2 The success of an SQA system depends to a great extent on compliance to
SCM procedures.

(1) Referring to the software change control tasks of SCM, explain in your own
words the risks incurred to software quality by partial compliance to SCM
procedures.

(2) Referring to the release of new versions of the software system, explain in
your own words the risks incurred to software quality by partial compliance
to SCM procedures.

(3) What tools are available for verification of compliance to SCM procedures?

18.3 Two SCRs have been placed before the CCB for a decision. Some of their charac-
teristics are:

SCR–1:

■ Expected to contribute substantially to the sales of the company’s leading
software package

■ Essence of the change: introduction of new software functions
■ Changes in two software SCIs are required
■ Other SCIs expected to be affected by the requested change – none
■ Estimate of required professional resources – 40 man-days
■ Estimated timetable for implementation – 2 months.

SCR–2:

■ Expected to save substantial help desk resources, due to the improved
user interface

■ Essence of the change: improvement of the user interface to make it easier
and more user-friendly

■ Changes in 11 software SCIs are required
■ Other SCIs expected to be affected by the requested change – 8
■ Estimate of required professional resources – 15 man-days
■ Estimated timetable for implementation – 2 months.

(1) Can you determine which of the requests deserves the higher priority? What
are your supporting arguments?

(2) If you find it difficult to decide the priorities, what additional information do
you require to prioritize the SCRs?

18.4 “Audit trails” are basic requirements of proper SQA documentation. In order for a
document to comply with audit trail requirements, the documentation has to pro-
vide information enabling identification of the source for each event and/or item
recorded. This information enables future location of the source according to doc-
ument reference, name of programmer who coded the software unit, and so forth.

(1) List at least two audit trails required within the framework of SQM and show
how the required audit trail information is meant to become available.

(2) Explain how the audit trails you described in (1) contribute to software quality.

385

Topics
for discussion

18.5 Software houses that develop and maintain COTS software packages to serve
large customer populations are recommended to adopt the line evolution model
for their packages rather than the tree evolution model.

(1) Describe the principles of the line and tree evolution models and the envi-
ronments in which they are used.

(2) Do you agree with the above recommendation? List your arguments for
and against.

(3) What consequences for the structure and size of the COTS software pack-
ages would follow from adopting this recommendation?

(4) What are the consequences of this recommendation from the user’s
perspective?

18.6 The software maintenance department provides services to 215 customers that
use one or more of the company’s three popular software packages. From time to
time a maintenance team discovers that the software version installed in a cus-
tomer’s site includes unrecorded changes, never requested by an SCR nor
approved as part of an SCO.

(1) Who do you believe inserted the unrecorded changes and under what con-
ditions could this occur?

(2) What effect could this event have on maintenance performance, and what is its
expected influence on software quality from the perspective of the customer?

(3) What measures could be taken to make sure that no such unauthorized
changes occur?

18.7 The VDD document (see Frame 18.6) includes a list of unsolved problems per-
taining to a released software version.

Discuss the justification for including this type of information in a VDD.

18.8 Most SCM systems are operated nowadays by specialized software packages.
Explain the special features offered effectively and efficiently only by comput-

erized management software packages and explain their contribution to software
quality.

386

18
Configuration m

anagem
ent

chapter 19

Documentation control

Software development and maintenance processes involve production and
use of a multitude of documents; some are vital immediately while others
may become vital for software quality assurance over the life cycle of the sys-
tem. Special procedures for documentation control (usually called
documentation procedures, documentation control procedures or control of
documents procedures) are therefore introduced to indicate which docu-
ments are indeed expected to be vital at some point and to assure their
appropriate preparation and availability. Documents that display these char-
acteristics and that are treated according to these procedures are called
controlled documents. One type of controlled document – quality records –
is aimed mainly to provide evidence that the development and maintenance
processes were performed in conformity to requirements and that the soft-
ware quality system is operating fully and effectively.

The issues of documentation control together with the characteristics of
controlled documents and quality records are the subject of this chapter.
Documentation control, controlled documents and quality records are
important components of the SQA system, as indicated by the ISO 9000-3
standard conception: see ISO (1997), ISO/IEC (2001) and IEEE/EIA

Chapter outline

19.1 Introduction: where is the documentation? 388
19.2 Controlled documents and quality records 389

19.2.1 Definitions and objectives 389
19.2.2 Documentation control procedures 391

19.3 The controlled documents list 392
19.4 Controlled document preparation 393
19.5 Issues of controlled document approval 393
19.6 Issues of controlled document storage and retrieval 394

Summary 395
Selected bibliography 396
Review questions 397
Topics for discussion 397

Std 12207 (IEEE/EIA, 1996, 1997). A number of specialized documentation
standards, such as IEEE Std 1063 (IEEE, 2001), have been constructed to
this end.

After completing this chapter, you will be able to:

■ Explain the objectives of controlled documents.

■ Describe the tasks involved in establishment and maintenance of a con-
trolled documents list.

■ Discuss the issues covered by documentation control procedures.

19.1 Introduction: where is the documentation?

Jeff, Head of the Legal Department, was obviously furious when he entered
the office of Roberto, the Software Development Department’s Manager.
Ignoring preliminaries, he stated: “You can’t imagine the difficulties I am
having while trying to collect evidence to support our case in the Margaret
Gardens claim. Jerry, who directed the development project, mentioned lots
of documents that could have supported me. You know, the project was
completed just 16 months ago yet so many important documents are already
unavailable or flawed:

■ The minutes of the joint meetings held with the customer to discuss our
proposal prior to signing the contract, during which some major changes
were agreed to, were thrown out or shredded two months ago.

■ A software change request form submitted last August by Margaret
Gardens is available but, unbelievably, it is unsigned. The requested
change was implemented just four months ago; however, the respective
SCO (software change order) as well as the test report for the completed
change are missing.

■ Some of the major claims relate to software design. I managed to find the
minutes of only one of the three design review sessions attended by cus-
tomer representatives. Another review session report, located in the unit’s
filing system, was not signed by the customer’s representatives.

■ Lastly, the summary test report issued by the joint testing committee, with
Margaret Gardens participating, is missing. The Testing Unit’s secretary
believes that the document is in the possession of Ted James, who left us
a year ago and moved to Indiana.

Once Jeff left, Roberto called Martin, his deputy, into his office. “Jeff just left
after voicing some serious complaints. As you remember, quite similar com-
plaints have frequently been heard from our development and maintenance
team leaders. Please prepare a proposal, including the necessary procedures,
to solve these documentation problems.”

388

19
D

ocum
entation control

19.2 Controlled documents and quality records

In this section, we present a detailed definition of controlled documents and
quality records, the objectives of their management, the authority established
for this purpose and the compliance required.

19.2.1 Definitions and objectives

Let us first discuss controlled document and quality records, as defined in
Frame 19.1.

Frame 19.2 presents an overview of the types of documents that may be
categorized as controlled documents. An examination of the document list
reveals that a good number of the controlled documents may be classified as
quality records. The magnitude of the list and its composition vary between
organizations and depend on the characteristics of the customers in addition
to those of the software packages. Contracts for large-scale “custom-made”
software projects usually require quite different lists of controlled documents
than do COTS software packages.

389

19.2 Controlled docum
ents

and quality
records

Frame 19.1 Controlled document and quality record – definitions

Controlled document

A document that is currently vital or may become vital for the development and
maintenance of software systems as well as for the management of current
and future relationships with the customer. Hence, its preparation, storage,
retrieval and disposal are controlled by documentation procedures. The main
objectives for managing controlled documents are:

■ To assure the quality of the document.

■ To assure its technical completeness and compliance with document structure
procedures and instructions (use of templates, proper signing, etc.).

■ To assure the future availability of documents that may be required for
software system maintenance, further development, or responses to the
customer’s (tentative) future complaints.

■ To support investigation of software failure causes and to assign
responsibility as part of corrective and other actions.

Quality record

A quality record is a special type of controlled document. It is a customer-
targeted document that may be required to demonstrate full compliance with
customer requirements and effective operation of the software quality
assurance system throughout the development and maintenance processes.

390

19
D

ocum
entation control

Frame 19.2 Typical controlled documents (including quality records)

Pre-project documents

■ Contract review report

■ Contract negotiation meeting
minutes

■ Software development contract

■ Software maintenance contract

■ Software development
subcontracting contract

■ Software development plan

Project life cycle documents

■ System requirements document

■ Software requirements document

■ Preliminary design document

■ Critical design document

■ Database description

■ Software test plan

■ Design review report

■ Follow-up records of design review
action items

■ Software test procedure

■ Software test report

■ Software user manuals

■ Software maintenance manuals

■ Software installation plan

■ Version description document

■ Software change requests

■ Software change orders

■ Software maintenance requests

■ Maintenance services reports

■ Records of subcontractor evaluations

SQA infrastructure documents

■ SQA procedures

■ Template library

■ SQA forms library

■ CAB meeting minutes

Software quality management
documents

■ Progress reports

■ Software metrics reports

SQA system audit documents

■ Management review report

■ Minutes of management review
meeting

■ Internal quality audit report

■ External SQA certification audit
report

Customer documents

■ Software project tender
documents

■ Customer’s software change
requests

The document types listed in Frame 19.2 are produced during the
implementation of a variety of SQA processes, to mention but a few:

■ Contract and negotiation process
■ Development process
■ Software change process
■ Maintenance services
■ Software quality metrics
■ Internal quality audits.

Many of the processes listed above are readily recognized as SQA processes,
while many of the controlled documents listed in Frame 19.2 are products of
those processes. As other chapters of the book deal with the specific process-
es, they need not be discussed here.

19.2.2 Documentation control procedures

The SQA tools that regulate the handling of a controlled document from its
creation to its final disposal are called documentation control procedures.
Typical components of such procedures are presented in Frame 19.3.

Naturally, documentation control procedures vary among organizations
according to the nature of their software products and maintenance servic-
es, their customers, their structure and their size, among other
characteristics. In other words, one organization’s procedures might be total-
ly inadequate for a different organization.

Two documentation control tasks – namely, storage and retrieval – are
included among the organization’s software configuration management pro-
cedures and performed with a variety of software configuration management
tools. Yet, special efforts are still needed to coordinate documentation pro-
cedures with those of software configuration management.

It should be noted that documentation requirements are integral parts of
most SQA procedures. Therefore, coordination of these requirements with
documentation control procedure requirements is of utmost importance.

391

19.2 Controlled docum
ents

and quality
records

Frame 19.3 Typical components of documentation control procedures

■ Definition of the list of the document types and updates to be controlled

■ Document preparation requirements

■ Document approval requirements

■ Document storage and retrieval requirements, including controlled storage
of document versions, revisions and disposal

The following sections are dedicated to the components of the docu-
mentation control procedure, namely:

■ The controlled documents list
■ Controlled document preparation
■ Controlled document approval issues
■ Issues of controlled document storage and retrieval issues.

19.3 The controlled documents list

The key to management of controlled documents (including quality records) is
the controlled document types list. Proper construction of the list is based on
the establishment of an authority to implement the concept, whether embod-
ied in a person or a committee. Specifically, this authority is responsible for:

■ Deciding which document type is to be categorized as a controlled doc-
ument and which controlled document types are to be classified as
quality records.

■ Deciding whether the level of control is adequate for each document type
categorized as a controlled document.

■ Following up of compliance with the controlled document types list. This
subject can be incorporated in the internal quality audits plan (see
Chapter 26).

■ Analyzing follow-up findings and initiating the required updates,
changes, removals and additions to the controlled documents types list.

Most controlled document types are documents created internally by the
organization itself. Nonetheless, a substantial number of external document
types, such as contract documents and minutes of joint committee meetings,
also fall into this category.

392

19
D

ocum
entation control

Implementation tip

The use of subcontractors in the development and in some cases the
maintenance of software systems is the source of various documentation control
procedures to be applied with subcontractors. These procedures should assure
that subcontractors’ documents – such as design documents – comply with the
contractor’s documentation procedures. Communication difficulties as well as
negligence often result in a subcontractor’s partial compliance. The damages
caused by such lapses may become apparent months or even years later, when
a vital document is missing or is discovered to provide inadequate or only partial
information. Prevention of such situations can be achieved by appropriate
contract clauses as well as by continuous follow-up of subcontractor compliance
with documentation requirements.

19.4 Controlled document preparation

The documentation requirements involved in the creation of a new docu-
ment or the revision of an existing document focus on completeness,
improved readability and availability. These requirements are realized in the
documents:

■ Structure
■ Identification method
■ Standard orientation and reference information.

The document’s structure may be free or defined by a template. Templates
and their contribution to software quality are discussed in Section 15.1.

An identification method is devised to provide each document, version
and revision with a unique identity. The method usually entails notation of
(a) the software system or product name or number, (b) the document (type)
code and (c) the version and revision number. The method can vary for dif-
ferent types of documents.

The document’s orientation and reference information may be required
as well. Orientation and reference information support future access of
required documents by supplying information about the content of the doc-
ument and its suitability to the needs of the future user. Depending on the
document type, a greater or smaller proportion of the following information
items is commonly required:

■ The document’s author(s)
■ Date of completion
■ Person(s) who approved the document, including position(s) held
■ Date of approval
■ Signature(s) of the author(s) and person(s) who approved it
■ Descriptions of the changes introduced in the new release
■ List of former versions and revisions
■ Circulation list
■ Confidentiality restrictions.

The relevant documentation procedures and work instructions pertain to
paper as well as electronic documents (e.g., e-mail and intranet applications).

19.5 Issues of controlled document approval

Certain documents require approval while others may be exempt from the
associated review. For those documents that must be approved, the relevant
procedures indicate the position of the person(s) authorized to do so for each
type of document and the details of the process implemented.

393

19.5 Issues
ofcontrolled docum

entapproval

Position of the person(s) who can approve a document or
document type
Approval can be granted by a person, several persons, or a committee –
such as a formal design review (FDR) committee – according to the type
of document and the organization’s preferences. The holders of the posi-
tions authorized by the documentation control procedures are expected to
have the experience and technical expertise sufficient to the task of docu-
ment review.

The approval process
Approval of documents is required for reasons that go beyond assuring the
documents’ quality; approval is also aimed at detecting and preventing pro-
fessional inadequacies together with deviations from the document template.
In cases where FDR approval is required, the appropriate review procedures
should be applied (see Section 8.2).

19.6 Issues of controlled document storage and retrieval

Requirements pertaining to controlled storage and retrieval of documents
are set mainly to assure a document’s security and its continued availability.
The same requirements should apply to paper documents as well as elec-
tronic and other media. They refer to:

■ Document storage per se
■ Circulation and retrieval of documents
■ Document security, including document disposal.

Document storage requirements apply to (1) the number of copies to be
stored, (2) the unit responsible for storage of each copy, and (3) the storage
medium. Storage on electronic media is usually much more efficient and

394

19
D

ocum
entation control

Implementation tip

Observation of the approval process frequently reveals instances of rubber-
stamping, that is, situations where the process does not contribute to the
document’s quality due to the absence or neglect of thorough document review.
Some claim that formal approval actually reduces a document’s quality because
the person(s) authorized to approve the document, by the very act of approval,
become directly responsible for its quality. Accordingly, two options may be
considered for the relevant document types: (a) exemption of the document type
from approval, meaning that full responsibility is returned to the author, or (b)
implementation of an approval process that assures thorough review of the
document. In other words, the implied solution to rubber-stamping is either
revision of the approval process or its total elimination.

more economical than storage on paper. Still, paper originals of certain doc-
uments are kept in compliance with legal stipulations. In these cases, an
image processing copy is stored in addition to the paper original.

Circulation and retrieval of documents requirements refer to (1) instruc-
tions for circulating a new document, on time, to the designated recipients,
and (2) efficient and accurate retrieval of copies, in full compliance with
security restrictions. The procedures should apply to the circulation of paper
documents as well as use of e-mail, intranet and the Internet.

Document security, including document disposal requirements, (1) pro-
vide restricted access to document types, (2) prevent unauthorized changes
to stored documents, (3) provide back-up for stored paper as well as elec-
tronic files, and (4) determine the storage period. At the end of a specified
storage period, documents may be discarded or removed to lower-standard
storage containers, a shift that usually reduces availability. While paper files
are prone to fire and flood damage, modern electronic storage is subject to
electronic risks. The planned method for back-up storage reflects the level of
these risks and the relative importance of the documents.

Summary

(1) Explain the objectives of controlled documents.

The main objectives for managing controlled documents are:
■ To assure the quality of the document.
■ To assure the document’s technical completeness, compliance with approved

document structure and use instructions (use of templates, proper signing, etc.).
■ To assure future availability of documents that may be required for mainte-

nance, further development of the software system or responding to the
customer’s complaints.

■ To support investigation of software failure causes and to assign responsibility
as part of corrective and other actions.

(2) Describe the tasks involved in establishment and maintenance of a controlled
documents list.

The objectives of this component of the documentation procedure are fulfilled by a
defined authority whose responsibilities entail:
■ Deciding which document types are to be categorized as controlled documents

and which controlled document types are to be classified as quality records.
■ Deciding the level of control adequate for each type of document.
■ Following up of compliance with the controlled documents list. This task may be

introduced into the internal quality audits plan.
■ Analyzing follow-up findings and initiating the required updates, changes,

removals and additions to the controlled documents list.

395

S
um

m
ary

(3) Discuss the issues covered by documentation control procedures.

The issues related to controlled documents and quality records covered by docu-
mentation procedures are:
■ Definition of the types of documents to be controlled
■ Document preparation requirements
■ Document approval requirements
■ Document storage and retrieval requirements.

Definition of the list of controlled documents and their maintenance is carried out by
authorized person(s) responsible for carrying out the activities mentioned above.

Document preparation issues include document structure and identification as
well as standard orientation and reference information.

Document approval issues include designation of the organizational position of
the person(s) authorized to approve a document and delineation of the approval
process that assures the document’s quality and completeness.

Document storage requirements apply to paper documents as well as electronic
media. The main issues involved are the documents’ circulation, assurance of future
availability and retrieval, and security, including disposal at the appropriate time.

Selected bibliography

1. IEEE (2001) “IEEE Std 1063-2001 – IEEE Standard for Software User
Documentation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

2. IEEE/EIA (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York, paragraph 6.1.

3. IEEE/EIA (1997) “IEEE/EIA Std 12207.1–1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York, paragraph 6.1.

4. ISO (1997) ISO 9000–3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software,
2nd edn, International Organization for Standardization (ISO), Geneva, para-
graph 4.16.

5. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001, paragraph 4.2.

396

19
D

ocum
entation control

Review questions

19.1 The following documents are listed in Frame 19.2:

■ Software development contract
■ Design review report
■ Software metrics report.

(1) Which of the above documents do you believe should be defined as con-
trolled documents, and why?

(2) Which of the documents that you have defined as controlled documents do
you believe should also be classified as quality records and why?

(3) Suggest an imaginary situation that illustrates the control of a document
belonging to each of the types you specified.

19.2 Choose six of the document types listed in Frame 19.2 (one from each group).

(1) Which of the above document types do you believe should be defined as
controlled documents? List your arguments.

(2) Which of the document types that you defined as controlled documents do you
believe should also be classified as quality records? List your arguments.

(3) Which of the listed objectives of controlled documents may be achieved by
the use of documents of the specified types you have chosen?

19.3 Section 19.3 discusses the procedure component that manages the controlled
documents list.

(1) Describe in your own words the tasks to be performed by the authority
appointed to implement this component and discuss their importance.

(2) Explain the contribution of controlled documents and quality records to soft-
ware quality assurance.

19.4 It has been said that documentation procedures are the main tool for imple-
menting the objectives of controlled documents and quality records.

(1) Explain in your own words the issues addressed by these procedures.
(2) Discuss how each of the procedural issues mentioned in (1) contributes to

achievement of the objectives of controlled documents and quality records
while indicating the associated objectives.

(3) List other procedures involved in documentation control issues.

Topics for discussion

19.1 The introduction presents four examples of documentation system failure in a
software development company.

(1) Examine each of the examples and determine what type of failure it is – a
controlled document failure or a quality record failure? Explain your answer.

(2) For each of the above examples, describe the lapse in implementation of
documentation control procedures that caused the failure.

397

Topics
for discussion

19.2 The handling of several types of documents requires compliance to SCM (see
Chapter 18) and documentation procedures simultaneously.

(1) Explain in your own words whether the requirements are contradictory or
complementary.

(2) Suggest directions for coordination between documentation control and
SCM procedures.

19.3 Section 19.3 discusses the tasks to be performed in order to provide an updated
controlled documents list and the responsibilities of the appointed authority that
carries out the tasks.

(1) Explain the need for such an authority and why the local solutions proposed
by unit leaders, department managers and so forth are to be rejected.

(2) Who do you think should be appointed as the authority? Refer to specific
organizational positions and explain their suitability for the assignment.

19.4 Paper-based storage systems can be used alongside electronic systems to serve
an organization’s documentation requirements.

Compare the two storage technologies and list, for each, their advantages and
disadvantages for performing the various tasks required by the documentation
control procedure.

398

19
D

ocum
entation control

par t V

Management components of
software quality

As the previous chapters have indicated, the SQA system also includes tools
to be applied by management. The three basic SQA management tools
offered here are:

■ Project progress control
■ Software quality metrics
■ Software quality costs.

The first managerial SQA tool, project progress control, enables manage-
ment to oversee each project and initiate, when required, changes and
improvements in how a project is performed. Software quality metrics and
software quality costs provide overviews of the headway made in assuring
software quality by identifying evolving trends. A fourth category of mana-
gerial SQA tools, those available for control of software maintenance, have
already been discussed in Chapter 11.

Prior to reviewing these managerial SQA tools, we should ourselves ask
a fundamental question: does application of these managerial SQA tools pro-
mote management’s contribution to the achievement of software quality
assurance objectives?

The reasons for our response – a qualified “yes” – can be found in Frame
2.7, which presents a comprehensive list of software quality assurance objec-
tives. Here we cite the following, which are specific to software development:

■ Conformity to functional technical requirements
■ Conformity to scheduling and budgetary requirements
■ Initiation of improvements to the software development process (includ-

ing SQA activities).

A detailed “snapshot” of these contributions, summarized in Table V.1,
reveals that the SQA tools mentioned above provide good coverage for most
managerial SQA objectives. Project process control is, however, the most
encompassing of these tools.

400

PartV
M

anagem
entcom

ponents
ofsoftw

are quality

Table V.1: The contributions of managerial SQA tools

Managerial SQA tools

Objectives of software quality assurance Project Software Software
in the software development process progress quality quality

control metrics costs

Conformity to functional technical requirements +

Conformity to scheduling and budgetary requirements +

Initiation of improvements to the software
development process + + +

chapter 20

Project progress control

Months of delay in completing project phases and budget overruns exceeding
tens of percents are “red flags” for project management. These events, which
are mainly failures of management itself, are caused by situations such as:

■ Overly or even blindly optimistic scheduling and budgeting (often begin-
ning earlier, during the proposal development stage).

■ Unprofessional software risk management expressed as tardy or inappro-
priate reactions to software risks.

■ Belated identification of schedule and budget difficulties and/or under-
estimation of their extent.

Situations of the first type can be prevented by using contract review and
project planning tools. Project progress control is expected to prevent situa-
tions of the second and third types.

While design reviews, inspections and software tests focus on a project’s
professional (technical–functional) aspects, project progress control deals
mainly with its managerial aspects, namely scheduling, human and other
resources, budget and risk management.

The importance of using managerial SQA tools during software devel-
opment is underscored by the consequences of their neglect: the relatively
higher risks of delayed project completion and budget deviations, especially

Chapter outline

20.1 The components of project progress control 402
20.2 Progress control of internal projects and external participants 404
20.3 Implementation of project progress control regimes 405
20.4 Computerized tools for software progress control 406

Summary 408
Selected bibliography 409
Review questions 410
Topic for discussion 411

when compared to other industries (e.g., civil engineering). The seriousness
of these outcomes is directly related to the special characteristics exhibited
by software development projects (see Chapter 1).

The components of project progress control and their implementation
are discussed in this chapter. Special attention is assigned to the difficulties
entailed with controlling external participants and internal projects. Another
section deals with tools for project progress control.

Management’s control over maintenance contracts is discussed in Section
11.4.4, within our comprehensive discussion of quality assurance of software
maintenance (see Chapter 11). Several software maintenance activities, espe-
cially perfective maintenance, include tasks that are similar to software
development tasks. Hence, progress control of these tasks can be performed
by applying the progress control components discussed in this chapter.

The place of project progress control is attested to in SQA general life
cycle standards: the ISO 9000-3 Standard (ISO (1997) Sec. 4.9 and ISO/IEC
(2001) Sec. 7.5) and the IEEE/EIA Std 12207 (IEEE/EIA 1996, 1997a,
1997b). It is also the subject of specialized standards: see IEEE Std 1058
(IEEE, 1998a) and IEEE Std 1490 (IEEE, 1998b).

After completing this chapter, you will be able to:

■ Explain the components of project progress control.
■ Explain the implementation issues involved in project progress control.

20.1 The components of project progress control

Project progress control (CMM uses the term “software project tracking”)
has one immediate objective: early detection of irregular events. Detection
promotes the timely initiation of problem-solving responses. The accumulat-
ed information on progress control as well as successes and extreme failures
also serve a long-term objective: initiation of corrective actions.

The main components of project progress control are:

■ Control of risk management activities
■ Project schedule control
■ Project resource control
■ Project budget control.

Control of risk management activities
This refers to the software development risk items identified in the pre-
project stage, those listed in contract review and project plan documents,
together with other risk items identified throughout the project’s progress
(see Appendix 6A). The software development team copes with software risk
items by applying systematic risk management activities. Control of the
progress of risk management begins with the preparation of periodic assess-

402

20
Projectprogress

control

ments about the state of software risk items and the expected outcomes of
the risk management activities performed in their wake. Based on these
reports, project managers are expected to intervene and help arrive at a solu-
tion in the more extreme cases. Several standards and many books and
articles deal with software project risks, e.g., IEEE (2001) and Jones (1994),
to mention just two.

Project schedule control
This deals with the project’s compliance with its approved and contracted
timetables. Follow-up is based mainly on milestones, which are set (in part)
to facilitate identification of delays in completion of planned activities.
Milestones set in contracts, especially dates for delivery of specified software
products to the customer or completion of a development activity, generally
receive special emphasis. Although some delay can be anticipated, manage-
ment will focus its control activities on critical delays, those that may
substantially affect final completion of the project. Much of the information
needed for management project progress control is transmitted by means of
milestone reports and other periodic reports. In response to this information,
management may intervene by allocating additional resources or even rene-
gotiating the schedule with the customer.

Project resource control
This focuses on professional human resources but it can deal with other
assets as well. For real-time software systems and firmware, software devel-
opment and testing facilities resources typically demand the most exacting
control. Here as well, management’s control is based on periodic reports of
resource use that compare actual to scheduled utilization because, it should
be stressed, the true extent of deviations in resource use can be assessed only
from the viewpoint of the project’s progress. In other words, a project dis-
playing what appears to be only slight deviations in resource utilization
when considering the resources scheduled used up to a specific point of time
(e.g., 5%) may actually experience severe cumulative deviations (e.g., 25%)
if severe delays in its progress are suffered.

Another aspect of resource control is internal composition or allocation.
For example, management may find that no deviations have taken place in
total man-months allocated to system analysts. However, review of itemized
expenditures may disclose that instead of the 25% of man-months original-
ly allocated to senior system analysts, 50% was actually spent, a step that
may eventually undermine the planned budget. Although project budget con-
trols also reveal deviations of this type, they do so at a much later stage of
the project, a fact that impedes introduction of remedial actions. If the devi-
ations are justified, management can intervene by increasing the resources
allocated; alternatively, management can shift resources by reorganizing the
project teams, revising the project’s plan, and so forth.

403

20.1 The com
ponents

ofprojectprogress
control

Project budget control
This is based on the comparison of actual with scheduled expenditures. As
in resource control, a more accurate picture of budget deviations requires
that the associated delays in completion of activities be taken into consider-
ation. The main budget items demanding control are:

■ Human resources
■ Development and testing facilities
■ Purchase of COTS software
■ Purchase of hardware
■ Payments to subcontractors.

Again, like resource control, budget control is based on milestones and the
periodic reports that facilitate early identification of budget overruns. In
cases of deviations by internal bodies, the menu of optional interventions is
similar to that applied in project resource control. In deviations by external
participants, legal and other measures may also be applied.

Budget control is obviously of the highest priority to management
because of its direct effect on project profitability. Managers therefore tend
to neglect other components of project progress control, especially if they are
under serious constraints imposed by monitoring staff. Neglect of other com-
ponents of project progress control naturally reduces the effect of control in
general. This is regrettable because if applied correctly and in a timely man-
ner, these other progress control tools can reveal unresolved software risk
items, delays in completion of activities and excessive use of resources at a
much earlier stage in the project life cycle. This means that reliance solely on
budget control activities may be more costly in the long run than application
of the full spate of project progress control activities because implementation
of effective solutions to problems may be delayed.

20.2 Progress control of internal projects and external
participants

Project progress control is initiated in order to provide management with a
comprehensive view of all the software development activities carried out in
an organization. Nevertheless, in most organizations, project control pro-
vides, for different reasons, a limited view of the progress of internal
software development and an even more limited view of the progress made
by external participants. Control over internal projects and external partici-
pants tends to be somewhat flawed, as we will describe.

Internal projects, such as those undertaken for other departments or
projects dealing with software packages for the general software market,
exclude, by definition, the option of external customers. These projects thus
tend to occupy a lower place among management’s priorities. The inade-
quate attention awarded is often accompanied by inappropriate or lax

404

20
Projectprogress

control

follow-up on the part of the internal customer. (Similar tendencies are
observed in the earlier pre-project stage, in preparation development plans;
see Sections 5.5 and 6.4.2.) Typically, this situation results in tardy identifi-
cation of adverse delays and severe budget overruns, with the ensuing limited
correction of the problems encountered. The inevitable solution to this situ-
ation is the imposition of the full range of project progress controls to
internal projects as well.

External participants include subcontractors, suppliers of COTS soft-
ware and reused software modules and, in some cases, the customer himself
(see Section 12.5.8). The more sizeable and complex the project, the greater
the likelihood that external participants will be required, and the larger the
proportion of work allocated to them. Management turns to external par-
ticipants for any number of reasons, ranging from economic to technical to
personnel-related interests, and this trend has been growing in project con-
tracting and subcontracting. Moreover, the agreements entered into by the
participants in a project have become so intricate that communication and
coordination have become problematic for the project team as well as for
management. In response, more significant efforts are called for in order to
achieve acceptable levels of control. Hence, project progress control of exter-
nal participants must focus mainly on the project’s schedule and the risks
identified in planned project activities.

For a comprehensive discussion of the subject of assuring quality in proj-
ects with external participants, see Chapter 12.

20.3 Implementation of project progress control regimes

Project progress control is usually based on procedures that determine:

■ The allocation of responsibility for performance of the process control
tasks that are appropriate for the project’s characteristics, including size:

– The person or management unit responsible for executing progress
control tasks

– The frequency of reporting required from each of the project’s units
and administrative level

– The situations requiring project leaders to report immediately to
management

– The situations requiring lower management to report immediately to
upper management.

■ Management audits of project progress, which deal mainly with: (1) how
well progress reports are transmitted by project leaders and by lower- to
upper-level managers, and (2) the specific management control activities
to be initiated.

In large software development organizations, project progress control may
be conducted on several managerial levels, such as software department

405

20.3 Im
plem

entation ofprojectprogress
controlregim

es

management, software division management and top management.
Although each level is expected to define its own project progress control
regime, one that reflects the parameters considered adequate for assessing
the project’s progress from that particular location, coordination among the
various levels is mandatory for progress control to be effective.

The entire reporting chain transmits information culled from the lowest
managerial level – the project leader’s periodic progress report – which sum-
marizes the status of project risks, project schedule and resources utilization,
that is, the first three components of progress control. The project leader
bases his or her progress report on information gathered from team leaders.
An example of a project leader’s project progress report is presented in
Figure 20.1.

20.4 Computerized tools for project progress control

Computerized tools for software project progress control are a clear necessi-
ty given the increasing size and complexity of projects on one hand, and the
benefits they bring with them on the other. The comprehensive project man-
agement tools that have been available in the market for many years can
serve most of the control components of software projects quite effectively
and efficiently. The majority of these general-purpose packages apply
PERT/CPM analysis so that the resulting reports take the interactions
between activities and the criticality of each activity into account. These
packages are usually readily adaptable to specific cases due to the great vari-
ety of options that they offer.

Examples of services that computerized tools can provide are as follows.

Control of risk management activities
■ Lists of software risk items by category and their planned solution dates.
■ Lists of exceptions of software risk items – overrun solution dates that

can affect the project completion date.

Project schedule control
■ Classified lists of delayed activities.

■ Classified lists of delays of critical activities – delays that can, if not cor-
rected, affect the project’s completion date.

■ Updated activity schedules generated according to progress reports and
correction measures applied – for teams, development units, etc.

■ Classified lists of delayed milestones.

■ Updated milestone schedules generated according to progress reports and
applied correction measures – for teams, development units, etc.

406

20
Projectprogress

control

407

20.4 Com
puterized tools

for softw
are progress

control

Project Leader’s Progress Report For the period: _____________

The project: __

1 Status of software risks

No. Risk item Activities Other projects Solved Risk Comments
involved involved severity

1
2
3
4
5
6

Risk severity: 1 – Solution expected within one month. 2 – Solution expected within
3 months. 3 – Solution expected within 6 months. 4 – Solution directions are available,
good success prospects. 5 – All trials failed, no possible solution is identified.

2 Status of resources use

Hours Worked

No. Activity Planned Used prior Invested Total Percent of Comments
to report during report invested activity
period period completed

1
2
3
4
5
6
7
8
9

10
11

3 Project completion estimates (mark the most probable estimate)

Human Completed with No additional 10% 20% 30% 40% 50%
resources less than resources Excess Excess Excess Excess Excess

planned required or more

Timetable Completed Completed on 2 1 2 4 6
before planned time weeks month months months months

date delay delay delay delay delay
and more

Comments:

Signed: Name:__________________ Date: ________ Signature:_____________________

Figure 20.1: Project leader’s progress report – example

Project resource control
■ Project resources allocation plan – for activities and software modules,

for teams, development units, designated time periods, etc.

■ Project resources utilization – by period or accumulated – as specified above.

■ Project resources utilization exceptions – by period or accumulated – as
specified above.

■ Updated resources allocation plans generated according to progress
reports and correction measures applied.

Project budget control
■ Project budget plans – by activity and software module, for teams, devel-

opment units, designated time periods, etc.

■ Project budget utilization reports – by period or accumulated – as speci-
fied above.

■ Project budget utilization deviations – by period or accumulated – as
specified above.

■ Updated budget plans generated according to progress reports and cor-
rection measures applied.

Summary

(1) Explain the components of management’s control of project progress.

There are four main components of project progress control. Management is expect-
ed to intervene and contribute to arriving at solutions in extreme cases.
(a) Control of risk management activities refers to actions taken with respect to

software risk items identified in the contract review and project plan documents
as well as to risk items identified later, during the project’s progress. In practice,
the software development team attempts to reduce risk by applying systematic
risk management activities. Management controls these efforts through review
of periodic reports and evaluation of progress information. This component of
progress control directly contributes to achievement of the project’s functional
and technical objectives.

(b) Project schedule control deals with compliance with the project’s approved and
contractual timetables. Follow-up is based on milestones in addition to periodic
reports, which together enable identification of delays in completion of planned
activities. Special emphasis is given to customer-demanded milestones, as
noted in the contract. Management tends to focus control on those critical delays
that threaten to substantially interfere with project completion dates.

(c) Project resource control focuses on professional human resources; it also deals
with software development and testing facilities, typically required by real-time
software systems and firmware. Management exercises control on the basis of
periodic reports of resources used, which should be viewed in terms of actual
project progress.

408

20
Projectprogress

control

(d) Project budget control is based on comparison of actual with scheduled costs.
The main budget items to be controlled are:
– Human resources
– Development and testing facilities
– Purchase of COTS software
– Purchase of hardware
– Payments to subcontractors.

Budget control requires input transmitted by milestone as well as periodic reports.
These reports permit early identification of the budget overruns that affect project
profitability. Ignorance of the other components of progress control is expected to
substantially reduce the effectiveness of project progress control. The other com-
ponents of process control are expected to identify deviant situations earlier than
budget control is capable of doing.

(2) Explain the implementation issues associated with project progress control.

The implementation of project progress control requires:
■ The following to be defined for each project:

– Person or management unit responsible for progress control
– Frequency of progress reports required from the various project manage-

ment levels
– Situations where project leaders are required to report immediately

to management
– Situations where lower-level management is required to report immediately

to upper-level management.
■ Management audits of project progress which deal with how well reporting by

project leaders and other managers, as well as management project control
activities, are functioning.

Selected bibliography

1. IEEE (1998a) “IEEE Std 1058-1998 – IEEE Standard for Software Project
Management Plans”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

2. IEEE (1998b) “IEEE Std 1490-1998 – IEEE Guide – Adoption of PMI Standard
– A Guide to the Project Management Body of Knowledge”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

3. IEEE (2001) “IEEE Std 1540-2001 – IEEE Standard for Software Life Cycle
Processes – Risk Management”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

4. IEEE/EIA (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

5. IEEE/EIA (1997a) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995 – Software Life

409

S
elected bibliography

Cycle Processes – Life Cycle Data”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

6. IEEE/EIA (1997b) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995 – Software Life
Cycle Processes – Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

7. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva, paragraph 4.16.

8. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001, paragraph 4.2.

9. Jones, C. (1994) Assessment and Control of Software Risks, Yourdon Press,
Prentice Hall, Upper Saddle River, NJ.

Review questions

20.1 The introduction of the chapter presents three examples of situations that can
cause managerial failure in the control of a software development project.

(1) What measures could management have taken to prevent each of these
adverse situations?

(2) Which of these adverse situations could have been detected by audits of
project progress control procedures?

20.2 In April, the project progress control system identified an unexpected delay of
three months in the project’s delivery date (originally planned for October), caus-
ing that date to be postponed to the following January.

(1) List your proposed interventions in this situation, including the assumptions
underlying each proposal.

(2) Would you alter your proposals if the project were an internal project for
development of a computer game software package scheduled for the pre-
Christmas market?

20.3 A project progress control process has been planned to involve two levels: (1)
Management of the Development Department, which regularly operates six to
eight software development teams, and (2) Management of the Software
Development Division, which covers three software development departments.

Consider the case of a standard one-year software development project.

(1) Inform the project leader of your suggestions for the proper progress
reporting frequencies and conditions for immediate reporting to depart-
mental management.

(2) Inform the departmental manager of your suggestions for the proper
progress reporting frequencies and conditions for immediate reporting to
divisional management.

410

20
Projectprogress

control

(3) What type of progress-related information would you recommend be report-
ed to divisional management?

Topic for discussion

20.1 The “Golden Bridge” software development project was scheduled to be com-
pleted in about 12 months. Two to six team members were planned to work on
the project. Project progress control was based on a monthly report that would
refer to each of the 32 activities to be performed and to the components (1) risk
item management, (2) timetable, and (3) project’s human resources utilization.

The first three monthly progress reports submitted to management did not
indicate any deviation from the plan. The fourth progress report presented a sub-
stantial overrun in terms of human resources utilization (overtime, etc.) as well as
a one-month delay in the expected completion dates for some of the activities.

(1) Can you suggest possible reasons for the relatively late detection of the devi-
ations from the plan?

(2) For each of the above three components, describe the measures that could
have prevented deviations and their adverse effects.

(3) Suggest some interventions that management could have introduced to
compensate for the project’s failures, including the assumptions behind
each intervention.

411

Topic
for discussion

Chapter 21

Software quality metrics

Chapter outline

21.1 Objectives of quality measurement 414
21.2 Classification of software quality metrics 415
21.3 Process metrics 416

21.3.1 Software process quality metrics 416
21.3.2 Software process timetable metrics 420
21.3.3 Error removal efficiency metrics 420
21.3.4 Software process productivity metrics 420

21.4 Product metrics 420
21.4.1 HD quality metrics measures 422
21.4.2 HD productivity and effectiveness metrics 424
21.4.3 Corrective maintenance quality metrics 424
21.4.4 Software corrective maintenance productivity

and effectiveness metrics 426
21.5 Implementation of software quality metrics 427

21.5.1 Definition of new software quality metrics 428
21.5.2 Application of the metrics — managerial aspects 428
21.5.3 Statistical analysis of metrics data 430
21.5.4 Taking action in response to metrics analysis results 432

21.6 Limitations of software metrics 432

Summary 434
Selected bibliography 436
Review questions 438
Topics for discussion 440
Appendix 21A: The function point method 442
21A.1: Introduction 442
21A.2: The function point method 443
21A.3: Example – the Attend-Master software system 445
21A.4: Function point advantages and disadvantages 448

SQAS_C21.QXD 21/9/05 8:39 PM Page 412

“You can’t control what you can’t measure”
Tom DeMarco (1982)

Tom DeMarco’s statement has become the motto for software quality
experts trying to develop and apply quality metrics in the software industry.

Two alternative but complementary definitions (IEEE, 1990) describe
quality metrics as a category of SQA tools:

(1) A quantitative measure of the degree to which an item possesses a given
quality attribute.

(2) A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the soft-
ware possesses a given quality attribute.

That is, the second definition refers to the process that produces quality met-
rics whereas the first refers to the outcome of the above process.

It is commonly believed that quality metrics should be included in soft-
ware, as in other industries, among the fundamental tools employed to
assist management in three basic areas: control of software development
projects and software maintenance, support of decision taking, and initia-
tion of corrective actions. Statistical analysis of metrics data is expected to
pinpoint (descriptively and statistically significant) changes initiated as a
result of application of new development tools, changed procedures, and
other interventions.

The scope of software quality metrics (hereinafter “metrics”) has
expanded considerably over the past few decades. We will review some of
those most pertinent software development and maintenance issues at the
heart of this chapter. Metrics as a quality assurance tool has not, unfortu-
nately, been applied at an adequate level in the software industry. Nor have
they provided benefits at the anticipated levels. Only a small portion of soft-
ware development organizations apply software quality metrics
systematically, and few of these report successful use of the results of their
efforts. Some of the reasons for this situation and prospects for the future are
discussed in the last part of the chapter.

Experience with metrics in the field has not threatened its potential sig-
nificance, attested to by the ISO 9000-3 standard (see ISO/IEC (1997) Sec.
4.20 and ISO (2001) Sec. 8). Software quality metrics are also an important
part of the CMM guidelines (see Paulk et al., 1995).

Several books, chapters in books, and numerous journal as well as con-
ference papers have been dedicated to this subject. Some are listed in the
bibliography at the end of this chapter. In addition, IEEE offers some soft-
ware quality metrics criteria within its software engineering standards (IEEE
1988, 1998). A comprehensive discussion of metrics for software reuse,
including their economic implications, is presented by Poulin (1997).

413
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 413

After completing this chapter, you will be able to:

■ Explain the objectives of software quality metrics.
■ List the requirements to be fulfilled by successful software quality metrics.
■ Explain how software quality metrics are categorized.
■ Compare the KLOC and function point measures for the size of a soft-

ware system.
■ Describe the process of defining a new software quality metrics.
■ Explain the reasons for limitations characterizing some software quality

metrics.

21.1 Objectives of quality measurement

Software quality and other software engineers have formulated the main
objectives for software quality metrics, presented in Frame 21.1.

Comparison provides the practical basis for management’s application
of metrics and for SQA improvement in general. The metrics are used for
comparison of performance data with indicators, quantitative values such as:

■ Defined software quality standards
■ Quality targets set for organizations or individuals
■ Previous year’s quality achievements
■ Previous project’s quality achievements
■ Average quality levels achieved by other teams applying the same devel-

opment tools in similar development environments

414

21
S

oftw
are quality

m
etrics

Frame 21.1 Main objectives of software quality metrics

(1) To facilitate management control as well as planning and execution of the
appropriate managerial interventions. Achievement of this objective is
based on calculation of metrics regarding:

■ Deviations of actual functional (quality) performance from planned
performance

■ Deviations of actual timetable and budget performance from planned
performance.

(2) To identify situations that require or enable development or maintenance
process improvement in the form of preventive or corrective actions
introduced throughout the organization. Achievement of this objective is
based on:

■ Accumulation of metrics information regarding the performance of
teams, units, etc.

SQAS_C21.QXD 21/9/05 8:39 PM Page 414

■ Average quality achievements of the organization
■ Industry practices for meeting quality requirements.

In order for the selected quality metrics to be applicable and successful, both gen-
eral and operative requirements, as presented in Frame 21.2, must be satisfied.

21.2 Classification of software quality metrics

Software quality metrics can fall into a number of categories. Here we use a
two-level system.

The first classification category distinguishes between life cycle and
other phases of the software system:

■ Process metrics, related to the software development process (see Section
21.3)

■ Product metrics, related to software maintenance (see Section 21.4).

415
21.2 Classification ofsoftw

are quality
m

etrics

Frame 21.2 Software quality metrics – requirements

General requirements Explanation

Relevant Related to an attribute of substantial importance

Valid Measures the required attribute

Reliable Produces similar results when applied under similar conditions

Comprehensive Applicable to a large variety of implementations and situations

Mutually exclusive Does not measure attributes measured by other metrics

Operative requirements Explanation

Easy and simple The implementation of the metrics data collection is simple
and is performed with minimal resources

Does not require Metrics data collection is integrated with other project data
independent data collection collection systems: employee attendance, wages, cost

accounting, etc. In addition to its efficiency aspects, this
requirement contributes to coordination of all information
systems serving the organization

Immune to biased In order to escape the expected results of the analysis of the
interventions by interested metrics, it is expected that interested persons will try to
parties change the data and, by doing so, improve their record. Such

actions obviously bias the relevant metrics. Immunity (total or
at least partial) is achieved mainly by choice of metrics and
adequate procedures

SQAS_C21.QXD 21/9/05 8:39 PM Page 415

The second classification category refers to the subjects of the measurements:

■ Quality
■ Timetable
■ Effectiveness (of error removal and maintenance services)
■ Productivity.

These items are dealt with in the respective sections.
A sizeable number of software quality metrics involve one of the two fol-

lowing measures for system size:

■ KLOC – this classic metric measures the size of software by thousands of
code lines. As the number of code lines required for programming a given
task differs substantially with each programming tool, this measure is
specific to the programming language or development tool used.
Application of metrics that include KLOC is limited to software systems
developed using the same programming language or development tool.

■ Function points – a measure of the development resources (human
resources) required to develop a program, based on the functionality
specified for the software system (see Appendix 21A).

Customer satisfaction metrics are excluded from our presentation; the read-
er can find wide coverage of this topic in the marketing literature.

21.3 Process metrics

Software development process metrics can fall into one of the following
categories:

■ Software process quality metrics
■ Software process timetable metrics
■ Error removal effectiveness metrics
■ Software process productivity metrics.

21.3.1 Software process quality metrics

Software process quality metrics may be classified into two classes:

■ Error density metrics
■ Error severity metrics.

Another group of indirect metrics that relates to software process quality is
the McCabe’s cyclomatic complexity metrics (see Section 9.4.4).

A discussion of the above three classes follows.

416

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 416

Error density metrics
This section describes six different types of metrics. Calculation of error density
metrics involves two measures: (1) software volume, and (2) errors counted.

Software volume measures. Some density metrics use the number of lines
of code while others apply function points. For a comparison of these meas-
ures, see Section 21.2.

Errors counted measures. Some relate to the number of errors and others
to the weighted number of errors. Weighted measures that ascertain the sever-
ity of the errors are considered to provide more accurate evaluation of the
error situation. A common method applied to arrive at this measure is classi-
fication of the detected errors into severity classes, followed by weighting each
class. The weighted error measure is computed by summing up multiples of
the number of errors found in each severity class by the adequate relative
severity weight. Department of Defense standard MIL-STD-498, presented in
Table 8.1, describes a commonly used five-level severity classification system.
It should be noted that application of weighted measures can lead to decisions
different than those arrived at with simple (unweighted) metrics: weighted
measures are assumed to be better indicators of adverse situations.

Example 1. This example demonstrates the calculation of the number of
code errors (NCE) and the weighted number of code errors (WCE). A soft-
ware development department applies two alternative measures, NCE and
WCE, to the code errors detected in its software development projects. Three
classes of error severity and their relative weights are also defined:

The code error summary for the department’s Atlantis project indicated that
there were 42 low severity errors, 17 medium severity errors, and 11 high
severity errors. Calculation of NCE and WCE gave these results:

417
21.3 Process

m
etrics

Error severity class Relative weight

Low severity 1
Medium severity 3
High severity 9

Calculation of NCE Calculation of WCE
Error severity class (number of errors) Relative weight Weighted errors
a b c D = b x c

Low severity 42 1 42
Medium severity 17 3 51
High severity 11 9 99

Total 70 — 192

NCE 70 — —
WCE — — 192

SQAS_C21.QXD 21/9/05 8:39 PM Page 417

Table 21.1 (above) displays six error density metrics.
Example 2. This example follows Example 1 and introduces the factor

of weighted measures so as to demonstrate the implications of their use. A
software development department applies two alternative metrics for calcu-
lation of code error density: CED and WCED. The unit determined the
following indicators for unacceptable software quality: CED > 2 and
WCED > 4. For our calculations we apply the three classes of quality and
their relative weights and the code error summary for the Atlantis project
mentioned in Example 1. The software system size is 40 KLOC. Calculation
of the two metrics resulted in the following:

418

21
S

oftw
are quality

m
etrics

Table 21.1: Error density metrics

Code Name Calculation formula

NCECED Code Error Density CED = –––––
KLOC

NDEDED Development Error Density DED = –––––
KLOC

WCEWCED Weighted Code Error Density WCED = –––––
KLOC

WDEWDED Weighted Development Error Density WDED = –––––
KLOC

WCEWCEF Weighted Code Errors per Function point WCEF = ––––
NFP

WDEWDEF Weighted Development Errors per Function point WDEF = –––––
NFP

Key:
■ NCE = number of code errors detected in the software code by code inspections and testing. Data for

this measure are culled from code inspection and testing reports.
■ KLOC = thousands of lines of code.
■ NDE = total number of development (design and code) errors detected in the software development process.

Data for this measure are found in the various design and code reviews and testing reports conducted.
■ WCE = weighted code errors detected. The sources of data for this metric are the same as those for NCE.
■ WDE = total weighted development (design and code) errors detected in development of the soft-

ware. The sources of data for this metric are the same as those for NDE.
■ NFP = number of function points required for development of the software. Sources for the number

of function points are professional surveys of the relevant software.

Calculation of CED Calculation of WCED
Measures and metrics (Code Error Density) (Weighted Code Error Density)

NCE 70 —
WCE — 192
KLOC 40 40

CED (NCE/KLOC) 1.75 —
WCED (WCE/KLOC) — 4.8

SQAS_C21.QXD 21/9/05 8:39 PM Page 418

The conclusions reached after application of the unweighted versus
weighted metrics are different. While the CED does not indicate
quality below the acceptable level, the WCED metric does indicate quality
below the acceptable level (in other words, if the error density is too
high, the unit’s quality is not acceptable), a result that calls for management
intervention.

Error seveity metrics
The metrics belonging to this group are used to detect adverse situations of
increasing numbers of severe errors in situations where errors and weighted
errors, as measured by error density metrics, are generally decreasing. Two
error severity metrics are presented in Table 21.2.

21.3.2 Software process timetable metrics

Software process timetable metrics may be based on accounts of success
(completion of milestones per schedule) in addition to failure events (non-
completion per schedule). An alternative approach calculates the average
delay in completion of milestones. The metrics presented here are based on
the two approaches illustrated in Table 21.3.

The TTO and ADMC metrics are based on data for all relevant mile-
stones scheduled in the project plan. In other words, only milestones that
were designated for completion in the project plan stage are considered in
the metrics’ computation. Therefore, these metrics can be applied through-
out development and need not wait for the project’s completion.

21.3.3 Error removal effectiveness metrics

Software developers can measure the effectiveness of error removal by the
software quality assurance system after a period of regular operation (usual-
ly 6 or 12 months) of the system. The metrics combine the error records of
the development stage with the failures records compiled during the first year
(or any defined period) of regular operation. Two error removal effectiveness
metrics are presented in Table 21.4.

419
21.3 Process

m
etrics

Table 21.2: Error severity metrics

Code Name Calculation formula

WCEASCE Average Severity of Code Errors ASCE = –––––
NCE

WDEASDE Average Severity of Development Errors ASDE = –––––
NDE

SQAS_C21.QXD 21/9/05 8:39 PM Page 419

21.3.4 Software process productivity metrics

This group of metrics includes “direct” metrics that deal with a project’s
human resources productivity as well as “indirect” metrics that focus on the
extent of software reuse. Software reuse substantially affects productivity
and effectiveness.

An additional term – “benchmarking software development productivity”
– has recently entered the list of metrics used to measure software process
productivity (see Maxwell, 2001; Symons, 2001).

Four process productivity metrics, direct and indirect, are presented in
Table 21.5.

21.4 Product metrics

Product metrics refer to the software system’s operational phase – years of
regular use of the software system by customers, whether “internal” or
“external” customers, who either purchased the software system or con-

420

21
S

oftw
are quality

m
etrics

Table 21.3: Software process timetable metrics

Code Name Calculation formula

MSOTTTO Time Table Observance TTO = ––––––
MS

TCDAMADMC Average Delay of Milestone Completion ADMC = ––––––
MS

Key:
■ MSOT = milestones completed on time.
■ MS = total number of milestones.
■ TCDAM = total Completion Delays (days, weeks, etc.) for All Milestones. To calculate this

measure, delays reported for all relevant milestones are summed up. Milestones completed
on time or before schedule are considered “O” delays. Some professionals refer to completion
of milestones before schedule as “minus” delays. These are considered to balance the effect
of accounted-for delays (we might call the latter “plus” delays). In these cases, the value of
the ADMC may be lower than the value obtained according to the metric originally suggested.

Table 21.4: Error removal effectiveness metrics

Code Name Calculation formula

NDEDERE Development Errors Removal Effectiveness DERE = –––––––––
NDE + NYF

WDEDWERE Development Weighted Errors Removal Effectiveness DWERE = ––––––––––
WDE + WYF

Key:
■ NYF = number of software failures detected during a year of maintenance service.
■ WYF = weighted number of software failures detected during a year of maintenance service.

SQAS_C21.QXD 21/9/05 8:39 PM Page 420

tracted for its development. In most cases, the software developer is required
to provide customer service during the software’s operational phase.
Customer services are of two main types:

■ Help desk services (HD) – software support by instructing customers
regarding the method of application of the software and solution of cus-
tomer implementation problems. Demand for these services depends to a
great extent on the quality of the user interface (its “user friendliness”) as
well as the quality of the user manual and integrated help menus.

■ Corrective maintenance services – correction of software failures identi-
fied by customers/users or detected by the customer service team prior to
their discovery by customers. The number of software failures and their
density are directly related to software development quality. For com-
pleteness of information and better control of failure correction, it is
recommended that all software failures detected by the customer service
team be recorded as corrective maintenance calls.

Commonly, all customer services – namely, HD and corrective maintenance
services – are provided to customers/users by a software support center (the
“customer service center”, among the many titles given to this service). It is
expected that very few customer calls will be related to identified failures. In
other words, most of the software support center’s customer calls will be “non-
failure” calls. For those calls that deal with an identified failure and for cases
where the maintenance team has detected a failure, a failure report is expected.

HD metrics are based on all customer calls while corrective maintenance
metrics are based on failure reports. Product metrics generally rely on per-
formance records compiled during one year (or any other specified period of
time). This policy enables comparisons of successive years in addition to
comparisons between different units and software systems.

421
21.4 Productm

etrics
Table 21.5: Process productivity metrics

Code Name Calculation formula

DevHDevP Development Productivity DevP = –––––
KLOC

DevHFDevP Function point Development Productivity FDevP = –––––
NFP

ReKLOCCRe Code Reuse CRe = –––––––
KLOC

ReDocDocRe Documentation Reuse DocRe = ––––––
NDoc

Key:
■ DevH = total working hours invested in the development of the software system.
■ ReKLOC = number of thousands of reused lines of code.
■ ReDoc = number of reused pages of documentation.
■ NDoc = number of pages of documentation.

SQAS_C21.QXD 21/9/05 8:39 PM Page 421

The array of software product metrics presented here is classified as follows:

■ HD quality metrics
■ HD productivity and effectiveness metrics
■ Corrective maintenance quality metrics
■ Corrective maintenance productivity and effectiveness metrics.

It should be remembered that software maintenance activities include:

■ Corrective maintenance – correction of software failures detected during
regular operation of the software.

■ Adaptive maintenance – adaptation of existing software to new cus-
tomers or new requirements.

■ Functional improvement maintenance – addition of new functions to the
existing software, improvement of reliability, etc.

In the metrics presented here we limit our selection to those that deal with
corrective maintenance. For other components of software maintenance, the
metrics suggested for the software development process (process metrics) can
be used as is or with minor adaptations.

21.4.1 HD quality metrics

The types of HD quality metrics discussed here deal with:

■ HD calls density metrics – the extent of customer requests for HD serv-
ices as measured by the number of calls.

■ Metrics of the severity of the HD issues raised.

■ HD success metrics – the level of success in responding to these calls. A
success is achieved by completing the required service within the time
determined in the service contract.

HD calls density metrics
This section describes six different types of metrics. Some relate to the num-
ber of the errors and others to a weighted number of errors. As for
size/volume measures of the software, some use number of lines of code
while others apply function points. The sources of data for these and the
other metrics in this group are HD reports. Three HD calls density metrics
for HD performance are presented in Table 21.6.

Severity of HD calls metrics
The metrics belonging to this group of measures aim at detecting one type of
adverse situation: increasingly severe HD calls. The computed results may
contribute to improvements in all or parts of the user interface (its “user
friendliness”) as well as the user manual and integrated help menus. We have

422

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 422

selected one metric from this group for demonstration of how the entire cat-
egory is employed. This metric, the Average Severity of HD Calls (ASHC),
refers to failures detected during a period of one year (or any portion there-
of, as appropriate):

WHYC
ASHC = –––––––

NHYC

where WHYC and NHYC are defind as in Table 21.6.

Success of the HD services
The most common metric for the success of HD services is the capacity to
solve problems raised by customer calls within the time determined in the
service contract (availability). Thus, the metric for success of HD services
compares the actual with the designated time for provision of these services.

For example, the availability of help desk (HD) services for an invento-
ry management software package is defined as follows:

■ The HD service undertakes to solve any HD call within one hour.

■ The probability that HD call solution time exceeds one hour will not
exceed 2%.

■ The probability that HD call solution time exceeds four working hours
will not exceed 0.5%.

One metric of this group is suggested here, HD Service Success (HDS):

NHYOT
HDS = ––––––––––

NHYC

where NHYOT = number of HD calls per year completed on time during
one year of service.

423
21.4 Productm

etrics
Table 21.6: HD calls density metrics

Code Name Calculation formula

NHYCHDD HD calls Density HDD = –––––
KLMC

WHYCWHDD Weighted HD calls Density WHDD = –––––
KLMC

WHYC
WHDF Weighted HD calls per Function point WHDF = –––––

NMFP

Key:
■ NHYC = number of HD calls during a year of service.
■ KLMC = thousands of lines of maintained software code.
■ WHYC = weighted HD calls received during one year of service.
■ NMFP = number of function points to be maintained.

SQAS_C21.QXD 21/9/05 8:39 PM Page 423

21.4.2 HD productivity and effectiveness metrics

Productivity metrics relate to the total of resources invested during a speci-
fied period, while effectiveness metrics relate to the resources invested in
responding to a HD customer call.

HD productivity metrics
HD productivity metrics makes use of the easy-to-apply KLMC measure of
maintained software system’s size (see Table 21.6) or according to function-
point evaluation of the software system. Two HD productivity metrics are
presented in Table 21.7.

HD effectiveness metrics
The metrics in this group refer to the resources invested in responding to
customers’ HD calls. One prevalent metric is presented here, HD
Effectiveness (HDE):

HDYH
HDE = –––––––

NHYC

where HDYH and NHYC are as defined in Tables 21.7 and 21.6 respectively.

21.4.3 Corrective maintenance quality metrics

Software corrective maintenance metrics deal with several aspects of the
quality of maintenance services. A distinction is needed between software
system failures treated by the maintenance teams and failures of the mainte-
nance service that refer to cases where the maintenance failed to provide a
repair that meets the designated standards or contract requirements. Thus,
software maintenance metrics are classified as follows:

■ Software system failures density metrics – deal with the extent of demand
for corrective maintenance, based on the records of failures identified
during regular operation of the software system.

■ Software system failures severity metrics – deal with the severity of soft-
ware system failures attended to by the corrective maintenance team.

424

21
S

oftw
are quality

m
etrics

Table 21.7: HD productivity metrics

Code Name Calculation formula

HDYH
HDP HD Productivity HDP = –––––

KLMC

HDYH
FHDP Function point HD Productivity FHDP = –––––

NMFP

Key:
■ HDYH = total yearly working hours invested in HD servicing of the software system.
■ KLMC and NMFP are as defined in Table 21.6.

SQAS_C21.QXD 21/9/05 8:39 PM Page 424

■ Failures of maintenance services metrics – deal with cases where mainte-
nance services were unable to complete the failure correction on time or
that the correction performed failed.

■ Software system availability metrics – deal with the extent of disturbances
caused to the customer as realized by periods of time where the services
of the software system are unavailable or only partly available.

Software system failures density metrics
The software system failures density metrics presented here relate to the
number and/or weighted number of failures. The size of the maintenance
tasks is measured by the total number of code lines of the maintained soft-
ware as well as by the function point evaluation. The sources of data for
these metrics are software maintenance reports. Three software system fail-
ures density metrics are presented in Table 21.8.

Software system failures severity metrics
Metrics of this group detect adverse situations of increasingly severe failures in
the maintained software. Results may trigger retesting of all or parts of the
software system. The events measured relate either to the disturbances and
damages caused to the customer (representing the customer’s point of view) or
to the resources required to resolve the failure (representing the interests of the
maintenance team). The metric presented here can be used for both purposes,
that is, to apply weights that refer to the severity of the disturbances and dam-
ages experienced by the customer, or to the extent of resources required by the
maintainer. This metric, the Average Severity of Software System Failures
(ASSSF), refers to software failures detected during a period of one year (or
alternatively a half or a quarter of a year, as appropriate):

WYFASSSF = –––––
NYF

425
21.4 Productm

etrics

Table 21.8: Software system failures density metrics

Code Name Calculation formula

NYF
SSFD Software System Failure Density SSFD = –––––

KLMC

WYF
WSSFD Weighted Software System Failure Density WSSFD = –––––

KLMC

WYF
WSSFF Weighted Software System Failures per Function point WSSFF = –––––

NMFP

Key:
■ NYF = number of software failures detected during a year of maintenance service.
■ WYF = weighted number of yearly software failures detected during a year of maintenance

service.
■ KLMC = thousands of lines of maintained software code.
■ NMFP = number of function points designated for the maintained software.

SQAS_C21.QXD 21/9/05 8:39 PM Page 425

Failures of maintenance services metrics
As mentioned above, maintenance services can fail either because they were
unable to complete the failure correction on time or when the correction per-
formed failed and a repeated correction is required. The metrics presented
here relate to the second type of maintenance failure.

A customer call related to a software failure problem that was supposed
to be solved after a previous call is commonly treated as a maintenance serv-
ice failure. For practical purposes, many organizations limit the time frame
for the repeat calls to three months, although the period can vary by type of
failure or some other organizational criterion. The metric, Maintenance
Repeated repair Failure (MRepF), is defined as follows:

RepYF
MRepF = –––––––

NYF

where RepYF is the number of repeated software failure calls (service failures).

Software system availability metrics
User metrics distinguish between:

■ Full availability – where all software system functions perform properly

■ Vital availability – where no vital functions fail (but non-vital functions
may fail)

■ Total unavailability – where all software system functions fail.

The source for all availability metrics is user failure records. The latter spec-
ify the extent of damage (non-vital failure, vital failure and total system
failure) as well as duration (hours) for each failure. Three software system
availability metrics are presented in Table 21.9.

21.4.4 Software corrective maintenance productivity and
effectiveness metrics

While corrective maintenance productivity relates to the total of human
resources invested in maintaining a given software system, corrective
maintenance effectiveness relates to the resources invested in correction of
a single failure. In other words, a software maintenance system displaying
higher productivity will require fewer resources for its maintenance
task, while a more effective software maintenance system will require fewer
resources, on average, for correcting one failure. Three software corrective
maintenance productivity and effectiveness metrics are presented in
Table 21.10.

426

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 426

21.5 Implementation of software quality metrics

The application of software quality metrics in an organization requires:

■ Definition of software quality metrics – relevant and adequate for teams,
departments, etc.

■ Regular application by unit, etc.
■ Statistical analysis of collected metrics data.

427
21.5 Im

plem
entation ofsoftw

are quality
m

etrics
Table 21.9: Software system availability metrics

Code Name Calculation formula

NYSerH – NYFH
FA Full Availability FA = ––––––––––––––

NYSerH

NYSerH – NYVitFH
VitA Vital Availability VitA = ––––––––––––––––

NYSerH

NYTFH
TUA Total Unavailability TUA = –––––––

NYSerH

Key:
■ NYSerH = number of hours software system is in service during one year. For an office soft-

ware system that is operating 50 hours per week for 52 weeks per year, NYSerH = 2600
(50 × 52). For a real-time software application that serves users 24 hours a day, NYSerH =
8760 (365 × 24).

■ NYFH = number of hours where at least one function is unavailable (failed) during one year,
including total failure of the software system.

■ NYVitFH = number of hours when at least one vital function is unavailable (failed) during one
year, including total failure of the software system.

■ NYTFH = number of hours of total failure (all system functions failed) during one year.
■ NYFH ≥ NYVitFH ≥ NYTFH.
■ 1 – TUA ≥ VitA ≥ FA.

Table 21.10: Software corrective maintenance productivity and effectiveness metrics

Code Name Calculation formula

CMaiYH
CMaiP Corrective Maintenance Productivity CMaiP = –––––––

KLMC

CMaiYH
FCMP Function point Corrective Maintenance Productivity FCMP = –––––––

NMFP

CMaiYH
CMaiE Corrective Maintenance Effectiveness CMaiE = –––––––

NYF

Key:
■ CMaiYH = total yearly working hours invested in the corrective maintenance of the software

system.
■ KLMC = thousands of lines of maintained software code.
■ NMFP = number of function points designated for the maintained software.
■ NYF = number of software failures detected during a year of maintenance service.

SQAS_C21.QXD 21/9/05 8:39 PM Page 427

■ Subsequent actions:

– Changes in the organization and methods of software development
and maintenance units and/or any other body that collected the met-
rics data

– Change in metrics and metrics data collection
– Application of data and data analysis to planning corrective actions

for all the relevant units.

The technical aspects of Nokia’s experience in applying metrics are summa-
rized by Kilpi (2001). Unfortunately, this paper does not explore Nokia’s
application of metrics to decision making in such areas as productivity, effec-
tiveness and so forth.

21.5.1 Definition of new software quality metrics

The definition of metrics involves a four–stage process:

(1) Definition of attributes to be measured: software quality, development
team productivity, etc.

(2) Definition of the metrics that measure the required attributes and con-
firmation of its adequacy in complying with the requirements listed in
Frame 21.2.

(3) Determination of comparative target values based on standards, previ-
ous year’s performance, etc. These values serve as indicators of whether
the unit measured (a team or an individual or a portion of the software)
complies with the characteristics demanded of a given attribute.

(4) Determination of metrics application processes:

– Reporting method, including reporting process and frequency of reporting
– Metrics data collection method.

The new metrics (updates, changes and revised applications) will be con-
structed following analysis of the metrics data as well as developments in the
organization and its environment. The software quality metrics definition
process is described in Figure 21.1.

21.5.2 Application of the metrics – managerial aspects

The process of applying a metric or a set of metrics is similar to the imple-
mentation of new procedures or methodologies. It involves:

■ Assigning responsibility for reporting and metrics data collection.
■ Instruction of the team regarding the new metrics.
■ Follow-up includes:

– Support for solving application problems and provision of supple-
mentary information when needed.

– Control of metrics reporting for completeness and accuracy.

■ Updates and changes of metrics definitions together with reporting and
data collection methods according to past performance.

428

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 428

429
21.5 Im

plem
entation ofsoftw

are quality
m

etrics

Application of software quality
metrics

Metrics data
collection

(1) Define an attribute to be
measured

(2) Define the metrics that
measure the attributes

Changes of metrics

(3) Determine comparative
target values (indicators)

Changes in comparative
target values (indicators)

(4) Define method of reporting
and metrics data collection

Changes in metrics
data collection

Software quality
metrics procedures

and work instructions

Analysis of metrics
performance and effects

of environmental changes

Developments in the
organization and
its environment

Metrics data for analysis
of metrics’ performance

Metrics data for managerial
control applications

Figure 21.1: The process of defining software quality metrics

Implementation tip

Not a few of the currently applied software quality metrics procedures and
work instructions omit the third stage of the metrics definition process: setting
target values (indicators). In other words, no target values for the metrics are
to be found in the procedure or its appendices, the accompanying work
instructions or any other document. In most cases this situation reflects a lack
of serious commitment to metrics use in managerial control, the major reason
for applying metrics in the first place. When application of metrics goes
beyond lip service, target values should be set even if updates of these values
are expected soon after their first application.

SQAS_C21.QXD 21/9/05 8:39 PM Page 429

An interesting application of software quality metrics for comparison of
national software industries is presented in the following example.

Example – Comparison of US and Japanese software industries
Cusumano (1991) makes use of three metrics in a comparison of the US and
Japanese software industries:

■ Mean productivity

■ Failure density (based on measurements during the first 12 months after
system delivery)

■ Code reuse.

These metrics are presented in Table 21.11, and Cusumano’s results are pre-
sented in Table 21.12.

21.5.3 Statistical analysis of metrics data

Analysis of metrics data provides opportunities for comparing a series of
project metrics. These certainly include comparison of metrics results against

430

21
S

oftw
are quality

m
etrics

Table 21.11: US and Japanese software industries – metrics

Name Calculation formula

KNLOC
Mean productivity (similar to DevP, Table 21.5) ––––––

WorkY
NYF

Failure density (similar to SSFD, Table 21.8) ––––––
KNLOC

ReKNLOC
Code reuse (similar to CRe, Table 21.5) ––––––––

KNLOC

Key:
■ KNLOC = thousands of non-comment lines of code.
■ WorkY = human work-years invested in the software development.
■ ReKNLOC = thousands of reused non-comment lines of code.

Source: Based on Cusumano (1991)

Table 21.12: US and Japanese software industries – comparison of three software quality
metrics

Software quality metrics United States Japan

Mean productivity 7290 12447
Failure density 4.44 1.96
Code reuse 9.71% 18.25%
N – (number of companies) 20 11

Source: Cusumano (1991)

SQAS_C21.QXD 21/9/05 8:39 PM Page 430

predefined indicators, as well as comparisons with former projects or team
performance at different periods of time, and so on. Another important com-
parison relates to the effectiveness with which the metrics themselves fulfill
their respective aims. The following questions are just a sample of those that
can be asked with respect to the metrics portion of the SQA process.

■ Are there significant differences between the HD teams’ quality of service?

■ Do the metrics results support the assumption that application of the new
version of a development tool contributes significantly to software quality?

■ Do the metrics results support the assumption that reorganization has
contributed significantly to a team’s productivity?

For the metrics data to be a valuable part of the SQA process, statistical
analysis is required of the metrics’ results. Statistical tools provide us with
two levels of support, based on the type of statistics used:

■ Descriptive statistics
■ Analytical statistics.

Descriptive statistics
Descriptive statistics, such as the mean, median and mode as well as use of
graphic presentations such as histograms, cumulative distribution graphs,
pie charts and control charts (showing also the indicator values) to illustrate
the information to which they relate, enable us to quickly identify trends in
the metrics values. Exaggerated trends, identified by the appearance of acute
deviations from target values, may indicate the need for corrective actions or,
alternatively, to continue or expand application of a successful innovation.
Because these statistics are so basic to quality assurance, the majority of the
popular software statistical packages (statistical tools) available generally
provide a rather complete menu of graphic presentations, including the ones
mentioned above. However, it should be stressed that descriptive statistics,
however sophisticated, are not intended to analyze the statistical significance
– how much the observed trends are the result of chance rather than sub-
stantive processes – of the events.

Analytical statistics
Description is not always enough. To determine whether the observed
changes in the metrics are meaningful, whatever the direction, the observed
trends must be assessed for their significance. This is the role of analytic sta-
tistics (e.g., regression tests, analysis of variance, or more basic tests such as
the T-test and Chi-square test). However, the application of statistical analy-
sis to software system performance metrics is relatively difficult, which is one
outcome of the complexity of software systems development and mainte-
nance, discussed in the introduction to this book. For further study of the
subject the reader is referred to the literature on statistical analysis.

431
21.5 Im

plem
entation ofsoftw

are quality
m

etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 431

What should be noted here is the fundamental difference between statisti-
cal analysis of production line metrics by application of classical SPC
(statistical process control) methods and of software development and mainte-
nance. While production line activities are repetitive, the development
activities, by definition, vary from one project to the next; they are never repet-
itive in the SPC sense. Although the statistical methods applied may be similar,
the subject matter differs, as may the implications of the statistical results.

21.5.4 Taking action in response to metrics analysis results

The actions taken in response to metrics analysis can be classified as direct
actions if initiated by the project or team management or indirect actions if
initiated by the Corrective Action Board. The CAB indirect actions are a
result of analysis of metrics data accumulated from a variety of projects
and/or development departments.

Examples of the direct changes initiated by management include reor-
ganization, changes in software development and maintenance methods, and
revision of the metrics computed. For a comprehensive discussion of indirect
actions as initiated by the Corrective Action Board, see Chapter17.

21.6 Limitations of software metrics

Application of quality metrics is strewn with obstacles. These can be grouped
as follows:

■ Budget constraints in allocating the necessary resources (manpower, funds,
etc.) for development of a quality metrics system and its regular application.

■ Human factors, especially opposition of employees to evaluation of
their activities.

■ Uncertainty regarding the data’s validity, rooted in partial and
biased reporting.

These difficulties are fairly universal and, as such, apply to software quality
metrics too. However, additional obstacles may appear that are uniquely
related to the software industry. These are discussed in this section. (For an
up-to-date discussion in the literature see Rifkin (2001), McGarry (2001),
Maxwell (2001) and Symons (2001), who discuss the difficulties in applying
software quality metrics, especially for decision making in the context of
software development.)

The unique barriers associated with the application of software quality
metrics are rooted in the attributes measured. As a result, most commonly
used metrics suffer from low validity and limited comprehensiveness.
Examples of software parameters metrics that exhibit severe weaknesses are:

■ Parameters used in development process metrics: KLOC, NDE, NCE
■ Parameters used in product (maintenance) metrics: KLMC, NHYC, NYF.

432

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 432

The main factors affecting development proces parameters, especially their
magnitude, are:

(1) Programming style: strongly affects software volume, where “wasteful”
coding may double the volume of produced code (KLOC).

(2) Volume of documentation comments included in the code: affects vol-
ume of the code. The volume of comments is usually determined by the
programming style (KLOC).

(3) Software complexity: complex modules require much more development
time (per line of code) in comparison to simple modules. Complex mod-
ules also suffer from more defects than simple modules of similar size
(KLOC, NCE).

(4) Percentage of reused code: the higher the percentage of reused code
incorporated into the software developed, the greater the volume of code
that can be produced per day as well as the lower the number of defects
detected in reviews, testing and regular use (NDE, NCE).

(5) Professionalism and thoroughness of design review and software testing
teams: affects the number of defects detected (NCE).

(6) Reporting style of the review and testing results: some teams produce
concise reports that present the findings in a small number of items
(small NCE), while others produce comprehensive reports, showing the
same findings for a large number of items (large NDE and NCE).

The main factors affecting the magnitude of the product (maintenance)
parameters are:

(1) Quality of installed software and its documentation (determined by the
quality of the development team as well as the review and testing teams):
the lower the initial quality of the software, the greater the anticipated
software failures identified and subsequent maintenance efforts (NYF,
NHYC).

(2) Programming style and volume of documentation comments included in
the code: as in the development stage, both strongly affect the volume of
the software to be maintained, where wasteful coding and documenta-
tion may double the volume of code to be maintained (KLMC).

(3) Software complexity: complex modules require investment of many
more maintenance resources per line of code than do simple modules,
and suffer from more defects left undetected during the development
stage (NYF).

(4) Percentage of reused code: the higher the percentage of reused code, the
lower the number of defects detected in regular use as well as the fewer
required corrective maintenance and HD efforts (NYF).

(5) Number of installations, size of the user population and level of appli-
cations in use: affect the number of HD calls as well as the number of
defects detected by users during regular use (NHYC, NYF).

433
21.6 Lim

itations
ofsoftw

are m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 433

By affecting the magnitude of the parameters, these factors distort the soft-
ware product quality metrics on which they are based. The inevitable result
is that a major portion of the metrics we have discussed do not reflect the
real productivity and quality achievements of development or maintenance
teams in what may be the majority of situations. In other words, many of the
metrics reviewed here, like the metrics applied in other industries, most of
which are characterized by relative simplicity of application, are character-
ized by low validity and limited comprehensiveness.

Substantial research efforts are needed in order to develop metrics
appropriate to the software industry. The function point method is an exam-
ple of a successful methodological development aimed at replacing the
problematic KLOC metric. For a comprehensive discussion of the function
point method, see Appendix 21A.

Summary

(1) Explain the objectives of software quality metrics.

Software quality metrics are implemented:
■ To support control of software development projects and software maintenance

contracts. Their aim is to provide management with information regarding:
– Compliance with functional (quality) performance requirements
– Compliance with project timetable and budget.

■ To deliver the metrics accumulated and analyzed by the CAB. Use of these met-
rics data is aimed at enabling preventive and corrective actions throughout the
organization.

(2) List the requirements for successful software quality metrics.

Applicability of quality metrics is determined by the degree to which the following
general and operative requirements are fulfilled:

General requirements
■ Relevant – measures an attribute of considerable importance
■ Valid – measures the required attribute
■ Reliable – produces similar results when applied in similar conditions
■ Comprehensive – applicable to a large variety of situations
■ Mutually exclusive – does not measure attributes already measured by other metrics.

Operative requirements
■ Easy and simple – data collection is implemented with minimal resources
■ Does not require independent data collection – metrics data collection is based

on currently employed data collection systems, e.g. employee attendance
records, cost accounting methods

■ Immune to biased interventions by interested parties (team members and others).

434

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 434

(3) Explain how software quality metrics are categorized.

A two-level system of categories is used here. The first level distinguishes between
two categories:
■ Process metrics, related to the software development process
■ Product metrics, related to software maintenance.

Each first-level category is broken down into one of three sub-categories :
■ Software process quality metrics
■ Software process timetable metrics
■ Software process productivity metrics.

The software product metrics are classified into four HD and corrective maintenance
sub-categories:
■ HD quality metrics
■ HD productivity and effectiveness metrics
■ Software corrective maintenance quality metrics
■ Software corrective maintenance productivity and effectiveness metrics.

(4) Compare the KLOC and function points measures for the size of a software system.

A significant number of the metrics presented here use one of two measures for
software system size, which are compared according to the following criteria:
■ Dependency on the development tool, programming language, or programmer

style. KLOC depends heavily on the development tool’s characteristics and on
the programmer’s style. Alternatively, although the function point method does
not depend on either of these factors, it does depend to some extent on the
function point instruction manual used. It should also be noted that most suc-
cessful implementations and research supporting the results of the function
point method are related to data processing systems, whereas only limited
experience has been gained in other areas of software systems.

■ Professional experience required for implementation. Relatively little experi-
ence is required for counting KLOC, while relatively great experience is needed
to evaluate function points.

■ Amount of professional work required. Relatively little for KLOC; far more work
for evaluation of function points.

■ Subjective factors. Estimation of KLOC requires little subjective judgment,
whereas the opposite is true for function points because subjective evaluations
are required for determining the weight and relative complexity factors for each
software system component, as required by the function point method.

■ Pre-project estimates. Pre-project estimates are unavailable for KLOC but
available for function points as the latter can be based on requirement specifi-
cation documents.

(5) Describe the process of defining a new software quality metric.

The definition of metrics involves a four-stage process:
(a) Definition of attributes to be measured: software quality, development team

productivity, etc.

435
S

um
m

ary

SQAS_C21.QXD 21/9/05 8:39 PM Page 435

(b) Formulation of the metric and assessment of its adequacy with respect to met-
rics requirements.

(c) Determination of comparative target values (indicator) to enable the evaluation
of the performance measured by the metrics.

(d) Determination of the metrics application process:
– Reporting method
– Metrics data collection method.

(6) Explain the reasons for limitation characterizing some software quality metrics.

A unique difficulty faced by use of software quality metrics is rooted in the meas-
ures (parameters) that comprise many software quality metrics. As a result, a large
proportion of software metrics, including most of the commonly used metrics, suf-
fer from low validity and limited comprehensiveness. Examples of metrics that
exhibit severe weaknesses are:
■ Software development metrics that are based on measures such as KLOC, NDE

and NCE
■ Product (maintenance) metrics that are based on measures such as KLMC, NHYC

and NYF.

For example, the KLOC measure is affected by the programming style, the volume of
documentation comments included in the code and the complexity of the software.
NYF is affected by the quality of the installed software and its documentation as well
as the percentage of reused code, among the other factors affecting maintenance.

Selected bibliography

1. Albrecht, A. J. (1979) “Measuring Application Development Productivity”, in
Process Joint SHARE/GUIDE/IBM Application Development Smposium,
October 1979, 34–43.

2. Albrecht, A. J. and Gaffney, J. E. (1983) “Software Functions, Source Lines of
Code and Development Efforts Prediction: A Software Science Validation”,
IEEE Transactions on Software Engineering, SE–9, Nov. 1983, 639–648.

3. Caldiera, G., Antoniol, G., Fiutem, R. and Lokan, C. (1998) “Definition and
experimental evaluation of function points for object-oriented systems”, in IEEE
Computer Society, Proceedings of the Fifth International Software Metrics
Symposium, Metrics 1998, 20–21 November 1998, Bethesda, MD, IEEE
Computer Society Press, Los Alamitos, CA, pp. 167–178.

4. Cusumano, M. A. (1991) Japan’s Software Factories – A Challenge to U.S.
Management, Oxford University Press, New York.

5. Davis, D. B. (1992) “Develop applications on time, every time”, Datamation,
1 Nov, 85–89.

6. DeMarco, T. (1982) Controlling Software Projects: Management, Measurement
and Estimation, Yourdon Press, New York.

7. Fenton, N. E. (1995) Software Metrics – A Rigorous Approach, International
Thomson Press, London.

8. Fenton, N. E. and Pfleger, S. L. (1998) Software Metrics – A Rigorous and
Practical Approach, 2nd edn, International Thomson Press, London.

436

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 436

9. Grable, R., Jernigan, J., Pogue, C. and Davis, D. (1999) “Metrics for small proj-
ects: experience at the SED”, IEEE Software, 16(2), 21–29.

10. Gramus, D. and Herron, D. (1996) Measuring the Software Process – A
Practical Guide to Functional Measurements, Yourdon Press, Prentice Hall,
Upper Saddle River, NJ.

11. Henderson-Sellers, B. (1996) Object-Oriented Metrics – Measures of
Complexity, Prentice Hall, Upper Saddle River, NJ.

12. IEEE (1988) “IEEE Std 982.1-1988 – IEEE Standard Dictionary of Measures to
Produce Reliable Software”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

13. IEEE (1990) “IEEE Std 610.12-1990 – IEEE Standard Glossary of Software
Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

14. IEEE (1998) “IEEE Std 14143.1-2000 – Implementation Note for IEEE
Adoption of ISO/IEC 14143:1998 Information Technology – Software
Measurement – Functional Size Measurement – Part 1: Definition of Concept”,
in IEEE Software Engineering Standards Collection, The Institute of Electrical
and Electronics Engineers, New York.

15. IEEE (2000) “IEEE Std 1061-1998 – Standard for Software Quality Metrics
Methodology”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

16. IEEE Computer Society (1994) Proceedings of the 2nd International Software
Metrics Symposium, IEEE Computer Society Press, Los Angeles, CA.

17. IEEE Computer Society (1998) Proceedings of the Fifth International Software
Metrics Symposium, Metrics 1998, Bethesda, MD, IEEE Computer Society
Press, Los Alamitos, CA.

18. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

19. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

20. Jeffery, D. R., Low, G. C. and Barnes, M. (1993) “A comparison of function
point counting techniques”, Transactions on Software Engineering, 19(5),
529–532.

21. Jones, C. (1996) Applied Software Measurement – Assuring Productivity and
Quality, 2nd edn, McGraw-Hill, New York, Sec. 3.

22. Jones, C. (1998) Estimating Software Costs, McGraw-Hill, New York.
23. Kautz, K. (1999) “Making sense of measurement for small organizations”, IEEE

Software 16(2), 14–20.
24. Kan, S. H. (1995) Metrics and Models in Software Quality Engineering, Addison

Wesley, Reading, MA.
25. Kilpi, T. (2001) “Implementing a software metrics program at Nokia”, IEEE

Software, 18(6), 72–77.
26. Lowe, G. C. and Jeffery, D. C. (1990) “Function Points in the Estimation and

Evaluation of the Software Process”, IEEE Transactions on Software
Engineering, 16(1), 64–71.

437
S

elected bibliography

SQAS_C21.QXD 21/9/05 8:39 PM Page 437

27. Maxwell, K. D. (2001) “Collecting data for comparability: benchmarking soft-
ware development productivity”, IEEE Software, 18(5), 22–25.

28. McGarry, J. (2001) “When it comes to measuring software, every project is
unique”, IEEE Software, 18(5), 19, 21.

29. Mendes, E., Mosley, N. and Counsell, S. (2001) “Web metrics – estimating
design and authoring efforts”, IEEE Multimedia, 8(1), 50–57.

30. Moller, K. H. and Paulish, D. L. (1993) Software Metrics – A Practitioner’s
Guide to Improved Product Development, IEEE Computer Society Press and
Chapman & Hall, London.

31. Oman, P. and Pfleeger S. L. (eds) (1997) Applied Software Metrics, IEEE
Computer Society Press, Los Alamitos, CA.

32. Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995) The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

33. Poulin, J. S. (1997) Measuring Software Reuse – Principles, Practices and
Economic Models, Addison-Wesley, Reading, MA.

34. Pressman, R. S. (2000) Software Engineering – A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill, International, London,
Chs 4, 19 and 24.

35. Rifkin, S. (2001) “What makes measuring software so hard?”, IEEE Software,
18(3), 41–45.

36 Schulmeyer, G. G. (1999) “Software quality assurance metrics”, in G. G. Schulmeyer
and J. I. McManus (eds), Handbook of Software Quality Assurance, 3rd edn,
Prentice Hall, Upper Saddle River, NJ, 403–443.

37 Sedigh-Ali, S., Ghafoor, A. and Paul, R. (2001) “Software engineering metrics
for COTS-based systems”, IEEE Computer, 34(5), 44–50.

38 Shoval, P. and Feldman, O. (1997) “A combination of the Mk-II function points
software estimation method with the ADISSA methodology for systems analysis
and design”, Information and Software Technology, 39, 855–865.

39 Simmons, P. (1994) “Measurement and the evaluation of I.T. investment”, in IEEE
Computer Society, Proceedings of the 2nd International Software Metrics
Symposium, 24–26 October, 1994, IEEE Computer Society Press, Los Angeles, CA.

40 Symons, C. R. (1991) Software Sizing and Estimating – Mk II FPA (Function
Point Analysis), John Wiley, Chichester, UK.

41 Symons, C. (2001) “Software benchmarking: serious management tool or a
joke”, IEEE Software, 18(5), 18, 20.

Review questions

21.1 Section 21.3.1 describes the following three code-error density metrics: CED,
WCED and WCEF.

(1) Compare CED and WCED including references to their managerial application
characteristics as well as to their validity.

(2) Compare WCED and WCEF including references to their managerial imple-
mentation characteristics as well as to their validity.

(3) Which of the above metrics would you prefer? List your arguments.

438

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 438

21.2 Section 21.3.3 describes the following two development productivity metrics:
DevP and FDevP.

(1) Compare DevP and FDevP including references to their managerial imple-
mentation characteristics as well as to their validity.

(2) Which of the above metrics would you prefer? List your arguments.

21.3 Section 21.4 lists metrics for HD and corrective maintenance services.

(1) Explain the difference between these services.
(2) Justify the separate metrics categories and the actions based on their

differences.

21.4 Section 21.4.3 describes two maintenance failure density metrics – WSSFD
and WSSFF.

(1) Evaluate each of the above metrics as to the degree they fulfill the require-
ments for software quality metrics as listed in Frame 21.2.

(2) Indicate the expected direction of distortion for each of the metrics.

21.5 HD services are vital for successful regular use of a software system.

(1) Suggest situations where the HD service is a failure.
(2) What metrics can be applied for the failure situations mentioned in (1)?

21.6 Section 21.3 describes several measures used to construct the software devel-
opment metrics presented in this section.

Based on the listed measures, suggest two new process quality metrics and
two new process productivity metrics.

21.7 Section 21.4 describes several measures used to construct the HD and corrective
maintenance metrics presented in this section.

Based on the listed measures, suggest three new product quality metrics and
two new product productivity metrics.

21.8 Choose one of the product metrics described in Section 21.4 that includes NYF
as one of its measures.

(1) Examine the five factors affecting the maintenance measures listed in
Section 21.6, indicate in what direction each of them might bias the metrics
you have chosen, and indicate how that bias affects the metric’s validity.

(2) Examine the above five factors and indicate how each of them may limit the
comprehensiveness of the metrics you have chosen.

21.9 A human resources software system requires 15000 lines of Visual Basic code
and 5000 lines of SQL code.

(1) Estimate the number of function points required for the software system.
(2) Estimate the number of lines of C code required for the software system.

21.10 Analysis of the requirement specifications for a tender for development of The
Buyers Club CRM System has been publicized in a professional journal.

ABC Software Labs is considering participating in the tender. The team
appointed to prepare the tender analyzed its requirement specifications and
obtained the following results:

439
Review

 questions

SQAS_C21.QXD 21/9/05 8:39 PM Page 439

■ Number of user inputs – 28
■ Number of user outputs – 36
■ Number of user online queries – 24
■ Number of logical files – 8
■ Number of external interfaces – 12.

The team estimated that 50% of the components are simple, 25% average
and 25% complex. The team also evaluated the project’s complexity, with an
estimated RCAF = 57.

(1) Compute the function points estimate for the project.
(2) Mr Barnes, the Chief Programmer, estimated that 3500 lines of C++ code

will be required for the project. Based on the result for (1), do you agree
with his estimate?

Topics for discussion

21.1 Two versions for the measure of software system size – KLOC – are applied: one
version counts every code line, while the other counts only the non-comment
lines of code.

(1) Discuss the advantages and disadvantages of each version. Refer to the
validity of both versions.

(2) Try to suggest an improved version that will comply with the arguments you
mentioned in your answer to (1).

21.2 Money-Money, a software package for financial management of medium-to-small
businesses developed by Penny-Penny Ltd, captured a substantial share of the
market. The Penny-Penny help desk (HD) has gained a reputation for its high level
of professional service to customers who use the software package. During the
third and fourth quarters of 2002, the company invested substantial efforts in
preparing an improved user manual. Its distribution to customers was completed
during December 2002.

The following table presents HD data summarizing the firm’s HD activities for
the first quarters of 2002 and 2003.

440

21
S

oftw
are quality

m
etrics

Data Code 1st Quarter 1st Quarter
2002 2003

Number of customers A 305 485

Total number of calls received during the quarter B 2114 2231

Number of HD calls requiring visit to C 318 98
customer’s site

Average time for customer calls served by D 9.3 8.8
phone (in minutes)

Average time for customer calls served by visits E 95 118
to customer’s site (in minutes)

Number of customer complaints F 38 41

SQAS_C21.QXD 21/9/05 8:39 PM Page 440

(1) Propose three quality metrics for the HD services, based on the HD data.

(2) Calculate the value of the quality metrics according to the data presented in
the above for each quarter, under the following headings.

(3) Evaluate the changes in the service quality according to the metrics
you suggested.

(4) Can the investments made to improve the user’s manual be justified? List
your arguments.

21.3 The selection of quality metrics presented in Sections 21.3 and 21.4 include sev-
eral severity metrics for errors and failures (e.g., ASCE and ASHC).

(1) Explain the importance of these metrics and list the managerial needs not
covered by the other metrics.

(2) Suggest situations where such metrics are unjustified.

21.4 Examine the metrics described in Sections 21.3 and 21.4.

(1) Analyze the measures (parameters) that comprise the respective metrics
and decide whether they are objective or subjective, where objective meas-
ures are based on reliable counts and subjective measures are partly or
totally determined by professional evaluation.

(2) Compare the attributes of objective and subjective measures.
(3) List the advantages and disadvantages of the two types of measures.

21.5 The two Software Development Department teams have recently completed their
projects. Both applied the same development tool and similar programming
style, where comments comprise about a quarter of the total number of lines of
code. The following metrics were supplied:

(1) What additional data would you require to determine which of the teams
achieved better quality results?

(2) After examining the metrics, what differences in software quality conception
held by the team leaders may be concluded from the results?

441
Topics

for discussion

No. Quality metrics Calculation formula

No. Quality metrics Quality metrics for Quality metrics for

1st Quarter 2002 1st Quarter 2003

Team A Team B

NCE 15.4 9.1
NDE 22.3 20.6

SQAS_C21.QXD 21/9/05 8:39 PM Page 441

21.6 Choose one of the process metrics described in Section 21.3 that includes KLOC
as one of the constituent measures.

(1) Examine the three factors listed in Section 21.6 affecting KLOC (as a meas-
ure of the software development process) and indicate in what direction
each of them might bias the metrics you have chosen and how this would
affect its validity.

(2) Examine the above three factors and indicate the way by which each of them
may limit the comprehensiveness of the metrics you have chosen.

21.7 Comparison revealed 188 errors detected during the development process for a
team’s recently completed project compared with 346 errors during the team’s
previous project.

(1) What additional data would you require to determine whether real progress
in software quality has been achieved (as claimed by the team leader)?

(2) Which software quality metrics would you use to examine the team
leader’s claim?

21.8 Statistical analysis software packages enable the user to calculate descriptive
and analytical statistics.

(1) Explain in your own words the difference between descriptive statistics and
analytical statistics.

(2) Explain the differences in the making and implementing decisions based on
each type of statistical tool.

Appendix 21A The function point method

21A.1 Introduction

An important attribute of the function point method is its capacity to pro-
vide pre-project estimates of project size, stated in terms of required
development resources. These estimates represent one major basis for the
resource estimates a firm uses in preparing its tender proposals and project
plans. Use of such a tool prevents or at least reduces substantially the risk of
managerial failure incurred by underestimating (or overestimating, which is
less likely) the expected project costs.

It is clear that KLOC measurement for software size does not possess
this attribute as the number of code lines may be counted only after pro-
gramming completion, which occurs at a very late stage of the project. An
alternative measure – the function point method – possesses the desired
attribute. It measures project size by functionality, indicated in the cus-
tomer’s or tender requirement specification. More accurate estimates are
produced as the analysis phase progresses and the software system functions
and components are thoroughly studied.

442

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 442

An inherent attribute of KLOC use (not shared by the function point
method) is dependence on the programming language or development tool.
This attribute limits the comprehensiveness of the KLOC measure as it lim-
its its applicability to comparisons based on the same development tool –
unless a conversion factor is used. The extreme differences in the number of
lines of code needed for function points is illustrated by the averages pre-
sented by Jones (1998).

The estimates for the average number of lines of code (LOC) required
for programming a function point are the following:

It should be noted that the number of function points for a given soft-
ware system depends to some extent on the function point counting
instruction manual used (the ones most commonly used currently are IFPUG
3, IFPUG 4 and Mark II).

The methodology was first presented in 1979 (Albrecht, 1979; Albrecht
and Gaffney, 1983). The function point method is already in wide commer-
cial use but is still considered experimental by many professionals. A wide
range of research and tool development activity has been carried out. The
main research efforts were directed to validating the method, to improve and
adapt it to special areas of software such as real-time software systems and
object-oriented software systems. Tool development efforts focus on func-
tion point application manuals (especially on function point counting
methods) and applications to large-scale software systems. Here we mention
just a few of the numerous publications: Gramus and Herron (1996), IEEE
(2000), Jeffery et al. (1993), Low and Jeffery (1990), Symons (1991), Davis
(1992), Caldiera et al. (1998), Henderson-Sellers (1996) and Shoval and
Feldman (1997).

21A.2 The function point method

The function point method for estimating project size is conducted as follows:

■ Stage 1: Compute crude function points (CFP). The number of software
system functional components are first identified, followed by evaluation
of each component as “simple”, “average” or “complex”. At this point
we are able to apply weighting factors to the system components and
compute their weighted value. The sum of the weighted values for the
software system is the CFP.

443
A

ppendix
21A

The function pointm
ethod

Programming language/development tool Average LOC

C 128
C++ 64
Visual Basic 32
Power Builder 16
SQL 12

SQAS_C21.QXD 21/9/05 8:39 PM Page 443

■ Stage 2: Compute the relative complexity adjustment factor (RCAF) for
the project. The RCAF varies between 0 and 70.

■ Stage 3: Compute the number of function points (FP):

FP = CFP × (0.65 + 0.01 × RCAF)

Stage 1: Calculation of crude function points
The method relates to the following five types of software system components:

■ Number of user inputs – distinct input applications, not including inputs
for online queries.

■ Number of user outputs – distinct output applications such as batch
processed reports, lists, customer invoices and error messages (not includ-
ing online queries).

■ Number of user online queries – distinct online applications, where out-
put may be in the form of a printout or screen display.

■ Number of logical files – files that deal with a distinct type of data and
may be grouped in a database.

■ Number of external interfaces – computer–readable output or inputs
transmitted through data communication, on CD, diskette, etc.

The function point method applies weight factors to each component
according to its complexity; the form shown in Table 21A.1 can assist in
computation of the CFP.

444

21
S

oftw
are quality

m
etrics

Software Complexity level Total
System CFP
Component Simple Average Complex

Count Weight Points Count Weight Points Count Weight Points
factor factor factor

A B C= D E F= G H I= J=C+F+I
A×B D×E G×H

User inputs 3 4 6

User outputs 4 5 7

User online 3 4 6
queries

Logical files 7 10 15

External 5 7 10
interfaces

Total CFP

Table 21A.1: Crude Function Points (CFP) – calculation form

SQAS_C21.QXD 21/9/05 8:39 PM Page 444

Stage 2: Calculating the relative complexity adjustment factor (RCAF)
The relative complexity adjustment factor (RCAF) summarizes the complex-
ity characteristics of the software system by assigning grades (0 to 5) to the
14 subjects that substantially affect the required development efforts. The list
of subjects is presented in the RCAF calculation form; see Table 21A.2.

Stage 3: Computing the number of function points (FP)
The function point value for a given software system is computed according
to the results of stages 1 and 2, by applying the following formula:

FP = CFP × (0.65 + 0.01 × RCAF)

21A.3 Example – the Attend-Master software system

Attend-Master is a basic employee attendance system that is planned to serve
small to medium-sized businesses employing 10–100 employees. The system
is planned to have interfaces to the company’s other software packages:
Human-Master, which serves human resources units, and Wage-Master,
which serves the wages units. Attend-Master is planned to produce several
reports and online queries. The scheme of the planned software system is
found in the data flow diagram (DFD) shown in Figure 21A.1.

445
A

ppendix
21A

The function pointm
ethod

Table 21A.2: Relative Complexity Adjustment Factor (RCAF) – calculation form

No. Subject Grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 5

2 Requirement for data communication 0 1 2 3 4 5

3 Extent of distributed processing 0 1 2 3 4 5

4 Performance requirements 0 1 2 3 4 5

5 Expected operational environment 0 1 2 3 4 5

6 Extent of online data entries 0 1 2 3 4 5

7 Extent of multi-screen or multi-operation online data input 0 1 2 3 4 5

8 Extent of online updating of master files 0 1 2 3 4 5

9 Extent of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extent of complex data processing 0 1 2 3 4 5

11 Extent that currently developed code can be designed for reuse 0 1 2 3 4 5

12 Extent of conversion and installation included in the design 0 1 2 3 4 5

13 Extent of multiple installations in an organization and variety of 0 1 2 3 4 5
customer organizations

14 Extent of change and focus on ease of use 0 1 2 3 4 5

Total = RCAF

SQAS_C21.QXD 21/9/05 8:39 PM Page 445

Let us now compute the function point value for the proposed Attend-
Master software system.

Stage 1: Calculation of crude function points
Analysis of the software system as presented in the DFD summarizes the
number of the various components:

■ Number of user inputs – 2

■ Number of user outputs – 3

■ Number of user online queries – 3

■ Number of logical files – 2

■ Number of external interfaces – 2.

The degree of complexity (simple, average or complex) was evaluated for each
component (see Table 21A.3), after which CFP calculations were performed.

446

21
S

oftw
are quality

m
etrics

Processing
employees’

input records

Employee files

Human-
Master
system

Employee
attendance file

Processing
attendance

records

Employees
(attendance

clock)

Human
resources

unit

INPUT

Manual
special

attendance
records

Attendance
records

Employee
records

Employees

OUTPUT

Human
resources

unit

Wage-
Master
system

Attendance
warning letter

Employee
attendance query

Daily attendance
exceptions query

Daily
attendance query

Monthly attendance
exceptions report

Monthly
attendance report

Monthly attendance
lists for wages

Processing
reports and

queries

Figure 21A.1: The Attend-Master data flow diagram

SQAS_C21.QXD 21/9/05 8:39 PM Page 446

Stage 2: Calculating the relative complexity adjustment factor (RCAF)
The evaluation of the complexity characteristics of Attend-Master and cal-
culation of the relative complexity adjustment factor (RCAF) are presented
in Table 21A.4.

447
A

ppendix
21A

The function pointm
ethod

Software Compexity level Total
System CFP
Component Simple Average Complex

Count Weight Points Count Weight Points Count Weight Points
factor factor factor

A B C= D E F= G H I= J=C+F+I
A×B D×E G×H

User inputs 1 3 3 ––– 4 ––– 1 6 6 9

User outputs ––– 4 ––– 2 5 10 1 7 7 17

User online 1 3 3 1 4 4 1 6 6 13
queries

Logical files 1 7 7 ––– 10 ––– 1 15 15 22

External ––– 5 ––– ––– 7 ––– 2 10 20 20
interfaces

Total CFP 81

Table 21A.3: Attend-Master Crude Function Points (CFP) – calculation form

Table 21A.4: Attend-Master RCAF – calculation form

No. Affecting subjects Grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 5

2 Requirement for data communication 0 1 2 3 4 5

3 Extent of distributed processing 0 1 2 3 4 5

4 Performance requirements 0 1 2 3 4 5

5 Expected operational environment 0 1 2 3 4 5

6 Extent of online data entries 0 1 2 3 4 5

7 Extent of multi-screen or multi-operation online data input 0 1 2 3 4 5

8 Extent of online updating of master files 0 1 2 3 4 5

9 Extent of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extent of complex data processing 0 1 2 3 4 5

11 Extent that currently developed code can be designed for reuse 0 1 2 3 4 5

12 Extent of conversion and installation included in the design 0 1 2 3 4 5

13 Extent of multiple installations in an organization and variety of 0 1 2 3 4 5
customer organizations

14 Extent of change and focus on ease of use 0 1 2 3 4 5

Total = RCAF 41

SQAS_C21.QXD 21/9/05 8:39 PM Page 447

Stage 3: Competing the number of function points (FP)
After applying the stated formula, the calculation was performed as follows:
FP = CFP × [0.65 + 0.01 × RCAF) = 81 × (0.65 + 0.01 × 41) = 85.86

21A.4 Function point advantages and disadvantages

Main advantages:

■ Estimates can be prepared at the pre-project stage and therefore can sup-
port the management in its project preparation efforts.

■ As it is based on requirement specification documents (i.e., function
points are not dependent on development tools or programming lan-
guages), the method’s reliability is relatively high.

Main disadvantages:

■ To some extent, FP results depend on the function point counting instruc-
tion manual used by the professionals who prepare the estimates.

■ Estimates need to be based on detailed requirements specifications or
software system specifications, which are not always available at the pre-
project stage.

■ The entire process requires an experienced function point team and devo-
tion of substantial resources prior to computation of the FP.

■ The many evaluations required result in subjective results.

■ Most successful applications and research results are related to data pro-
cessing systems. Other areas of software system require specialized
adaptations. In other words, the function point method cannot be uni-
versally applied.

448

21
S

oftw
are quality

m
etrics

SQAS_C21.QXD 21/9/05 8:39 PM Page 448

chapter 22

Costs of software quality

More and more, management – whether of commercial companies or public
organizations – is requiring economic evaluation of their quality assurance
systems. Accordingly, it is becoming ever more likely for proposals for devel-
opment of new quality assurance tools or investment in improved and
expanded operation of existing systems to be examined through an “eco-
nomic” microscope. Quality assurance units are thus being forced to
demonstrate the potential profitability of any request they may make for the
substantial funds required to finance additional system infrastructure or
operating costs.

We would claim that cost of software quality – the economic assessment
of software quality development and maintenance – is just another class of

Chapter outline

22.1 Objectives of cost of software quality metrics 450
22.2 The classic model of cost of software quality 451

22.2.1 Prevention costs 452
22.2.2 Appraisal costs 453
22.2.3 Internal failure costs 454
22.2.4 External failure costs 454

22.3 An extended model for cost of software quality 455
22.3.1 Managerial preparation and control costs 457
22.3.2 Managerial failure costs 457

22.4 Application of a cost of software quality system 458
22.4.1 Definition of a cost of software quality model 458
22.4.2 Definition of the cost data collection method 459
22.4.3 Implementation of a cost of software quality system 460
22.4.4 Actions taken in response to the model’s findings 460

22.5 Problems in the application of cost of software quality metrics 462

Summary 463
Selected bibliography 465
Review questions 465
Topics for discussion 468

software quality metrics, where financial values are used as the measuring
tool. However, whereas quality metrics and costs of quality both support
management control and decision making, costs of quality is a metric dis-
playing a unique characteristic. Application of common financial measures
enables management to obtain the type of general overview of all software
quality assurance activities unavailable with any other metrics.

The unique features of costs of software quality discussed in this chap-
ter reflect the special characteristics of SQA, characteristics that are absent
from quality assurance in manufacturing industry (see Section. 1.1).

The cost of software development has been the subject of many research
projects, books and articles in the last two decades (e.g., Boehm, 1981, 2000;
Jones, 1998; Dobbins, 1999; Hale et al., 2000); publications dedicated to the
cost of software quality are nevertheless rare. One indication of the subject’s
importance is the appearance of publications dedicated to colossal software
system failures. These works make it clear that the quality system applied in
the projects rested at the heart of the failures (Glass, 1998; Montealegre and
Keil, 2000). We can assume that a regularly implemented, effective software
quality assurance system could have prevented or drastically reduced the
immense damages involved in these now “classic” cases.

This chapter discusses the classic model of cost of software quality,
which applies the general costs of quality model to the software industry. An
additional model, the extended costs of software quality model, proposed by
the author, is presented as an alternative that more effectively captures fea-
tures specific to the software industry. The concluding part of the chapter
deals with application of a costs of software quality system and the problems
raised in the process.

After completing this chapter, you will be able to:

■ Explain the objectives of costs of software quality measurements.
■ Compare the classic model to the extended model.
■ Justify development of a unique quality cost model for software development.
■ Describe the process of implementation of a costs of software quality system.
■ Explain the “standard” and unique difficulties arising in application of

cost of software quality systems.

22.1 Objectives of cost of software quality metrics

Frame 22.1 presents the main objectives to be achieved by application of cost
of software quality metrics.

Managerial control over the cost of software quality is achieved by com-
parison of actual performance figures with:

■ Control budgeted expenditures (for SQA prevention and appraisal
activities)

■ Previous year’s failure costs

450

22
Costs

ofsoftw
are quality

■ Previous project’s quality costs (control costs and failure costs)
■ Other department’s quality costs (control costs and failure costs).

After introducing changes in SQA procedures or SQA infrastructure, the fol-
lowing relations may provide better indications of the success of an SQA
plan than those just mentioned:

■ Percentage of cost of software quality out of total software development
costs

■ Percentage of software failure costs out of total software development
costs

■ Percentage of cost of software quality out of total software maintenance
costs

■ Percentage of cost of software quality out of total sales of software prod-
ucts and software maintenance.

22.2 The classic model of cost of software quality

The classic quality cost model, developed in the early 1950s by Feigenbaum
and others (see Feigenbaum, 1991), provides a methodology for classifying
the costs associated with product quality assurance from an economic point
of view. Developed to suit the quality situations found in manufacturing
organizations, the model has since been widely implemented.

The model classifies costs related to product quality into two general
classes:

■ Costs of control include costs that are spent to prevent and detect soft-
ware errors in order to reduce them to an accepted level.

■ Costs of failure of control include costs of failures that occurred because
of failure to prevent and detect software errors. The model further sub-
divides these into subclasses.

451

22.2 The classic
m

odelofcostofsoftw
are quality

Frame 22.1 Cost of software quality metrics – objectives

Application of cost of software quality metrics enables management to achieve
economic control over SQA activities and outcomes. The specific objectives are:

■ Control organization-initiated costs to prevent and detect software errors

■ Evaluation of the economic damages of software failures as a basis for
revising the SQA budget

■ Evaluation of plans to increase or decrease SQA activities or to invest in a new
or updated SQA infrastructure on the basis of past economic performance

Costs of control are assigned to either the prevention or the appraisal costs
subclass:

■ Prevention costs include investments in quality infrastructure and quality
activities that are not directed to a specific project or system, being gen-
eral to the organization.

■ Appraisal costs include the costs of activities performed for a specific
project or software system for the purpose of detecting software errors.

Failures of control costs are further classified into internal failure costs and
external failure costs:

■ Internal failure costs include costs of correcting errors that have been
detected by design reviews, software tests and acceptance tests (carried
out by the customer) and completed before the software is installed at
customer sites.

■ External failure costs include all costs of correcting failures detected
by customers or the maintenance team after the software system has
been installed.

The classic model of cost of software quality is presented in Figure 22.1.
Although attempts to apply the classic model to software development

and maintenance have been reported, success has been very partial. Reasons
for the difficulties confronted are discussed later in the chapter. But before
doing so, the model is reviewed.

22.2.1 Prevention costs

Prevention costs include investments in establishing a software quality infra-
structure, updating and improving that infrastructure as well as performing
the regular activities required for its operation. A significant share of the

452

22
Costs

ofsoftw
are quality

Prevention
costs

Appraisal
costs

Internal
failure costs

External
failure costs

Failure of
control costs

Control
costs

Cost of
software quality

Figure 22.1: The classic model of cost of software quality

activities performed by the SQA team is preventive in character, as reflected
in the SQA budget. Typical preventive costs include:

(1) Investments in development of new or improved SQA infrastructure
components or, alternatively, regular updating of those components:

■ Procedures and work instructions
■ Support devices: templates, checklists, etc.
■ Software configuration management system
■ Software quality metrics.

(2) Regular implementation of SQA preventive activities:

■ Instruction of new employees in SQA subjects and procedures relat-
ed to their positions

■ Instruction of employees in new and updated SQA subjects and
procedures

■ Certification of employees for positions that require special certification
■ Consultations on SQA issues provided to team leaders and others.

(3) Control of the SQA system through performance of:

■ Internal quality reviews
■ External quality audits by customers and SQA system certification

organizations
■ Management quality reviews.

22.2.2 Appraisal costs

Appraisal costs are devoted to detection of software errors in specific proj-
ects or software systems. Typical appraisal costs cover:

(1) Reviews:

■ Formal design reviews (DRs)
■ Peer reviews (inspections and walkthroughs)
■ Expert reviews.

(2) Costs of software testing:

■ Unit tests
■ Integration tests
■ Software system tests
■ Acceptance tests (participation in tests carried out by the customer).

(3) Costs of assuring quality of external participants, primarily by means of
design reviews and software testing. These activities are applied to the
activities performed by:

■ Subcontractors
■ Suppliers of COTS software systems and reusable software modules
■ The customer as a participant in performing the project.

453

22.2 The classic
m

odelofcostofsoftw
are quality

22.2.3 Internal failure costs

Internal failure costs are those incurred when correcting errors that have
been detected by design reviews, software tests and acceptance tests per-
formed before the software has been installed at customer sites. In other
words, internal failure costs represent the costs of error correction subse-
quent to formal examinations of the software during its development, prior
to the system’s installation at the customer’s site. It should be noted that cor-
rections and changes resulting from team leader checks or other
team-initiated reviews are generally not considered internal failure costs
because they are conducted informally. Typical costs of internal failures are:

■ Costs of redesign or design corrections subsequent to design review and
test findings

■ Costs of re-programming or correcting programs in response to test findings

■ Costs of repeated design review and re-testing (regression tests).
Importantly, although the costs of regular design reviews and software
tests are considered appraisal costs, any repeated design reviews or soft-
ware tests directly resulting from poor design and inferior code quality
are considered internal failure costs.

22.2.4 External failure costs

External failure costs entail the costs of correcting failures detected by cus-
tomers or maintenance teams after the software system has been installed at
customer sites. These costs may be further classified into “overt” external
failure costs and “hidden” external failure costs. In most cases, the extent of
hidden costs is much greater than that of overt costs. This gap is caused, not
least, by the difficulty of estimating hidden external failure costs in compar-
ison to overt external failure costs, which are readily recorded or estimated.
In addition, the estimates obtained are frequently disputed among the pro-
fessionals involved. Hidden external failure cost estimation is rarely
undertaken as a result. Therefore, we will use the term external failure costs
to refer exclusively to overt failure costs. Typical external failure costs cover:

■ Resolution of customer complaints during the warranty period. In most
cases, this involves a review of the complaint and transmission of instruc-
tions. In most cases, complaints result from failure of the “help” function
or the guidelines found in the instruction manual.

■ Correction of software bugs detected during regular operation. Those
involving correction of code (including tests of the corrected software) fol-
lowed by installation of the corrected code or replacement of the
erroneous version by the correct version are often performed at the cus-
tomer’s site.

■ Correction of software failures after the warranty period is over even if
the correction is not covered by the warranty.

454

22
Costs

ofsoftw
are quality

■ Damages paid to customers in case of a severe software failure detected
during regular operation.

■ Reimbursement of customer’s purchase costs, including handling, in case
of total dissatisfaction (relates to COTS software packages as well as to
custom-made software).

■ Insurance against customer’s claims in case of severe software failure.

The listed items reflect only overt external failure costs, costs that represent
a small proportion of the full range of external failure costs. These costs are
directly incurred by software failures detected and recorded during regular
operation of the software. The greater proportion of external failure costs –
hidden costs – reflect the indirect damages suffered by the software develop-
ment organization as a result of those same failures. Typical examples of
hidden external failure costs are:

■ Damages of reduction of sales to customers suffering from high rates of
software failures

■ Severe reduction of sales motivated by the firm’s damaged reputation

■ Increased investment in sales promotion to counter the effects of past
software failures

■ Reduced prospects to win a tender or, alternatively, the need to under-
price to prevent competitors from winning tenders.

22.3 An extended model for cost of software quality

Analysis of the software quality costs defined by the classic model reveals
that several costs of substantial magnitude are excluded. These costs are
either unique to the software industry or negligible for other industries. For
example, typical software quality failure costs include:

■ Damages paid to customers as compensation for late completion of the
project due to unrealistic scheduling

■ Damages paid to customers in compensation for late completion of the
project as a result of failure to recruit sufficient staff.

The element common to these two failures is that they result not from any
particular action of the development team or any lack of professionalism;
they are actually outcomes of managerial failure.

Management can perform several activities to prevent or reduce the costs
that result from the types of failure particular to its functions:

■ Contract reviews (proposal draft review and contract draft review). The
cost of these reviews is usually negligible for contracts in the manufac-
turing industries. However, in the software industry, considerable

455

22.3 A
n extended m

odelfor costofsoftw
are quality

professional work is required to assure that a project proposal is based
on sound estimates and comprehensive evaluations. The significant dif-
ference in required resources results from the nature of the product and
the production process covered by the contract. While a typical contract
in the manufacturing industry deals with repeated manufacturing of cat-
alog-listed products, a typical contract in the software industry deals with
development of a new, unique software system (see Chapter 1).

■ Thorough appropriate progress control of the software project. While
production control carried out in the manufacturing industry is a repeti-
tive task that can, in most cases, be performed automatically by machines,
software development progress control supervises task design and coding
activities performed for the first time by the development team.

The important effect of management on the cost of software quality is reflect-
ed by the title of Flowers’ book: Software Failure: Management Failure
(Flowers, 1996). In this book Flowers describes and analyzes several colossal
software project failures; he concludes by discussing the critical managerial
failures at their root and suggests ways to prevent or reduce them.

The extended cost of software quality model, as proposed by the author
of this volume, extends the classic model to include management’s “contri-
butions” to the total cost of software quality. According to the extended
model, two subclasses are added to complete the model’s coverage: manage-
rial preparation and control costs, and managerial failure costs. The
extended cost of software quality model is shown in Figure 22.2. In the sec-
tions below, the new cost subclasses are discussed in full.

456

22
Costs

ofsoftw
are quality

Prevention
costs

Appraisal
costs

Managerial preparation
and control costs

Failure of
control costs

Control
costs

Cost of
software quality

Internal
failure costs

External
failure costs

Managerial
failure costs

Figure 22.2: The extended cost of software quality model

22.3.1 Managerial preparation and control costs

Managerial preparation and control costs are associated with activities per-
formed to prevent managerial failures or reduce prospects of their
occurrence. Several of these activities have already been discussed in previ-
ous chapters related to various SQA frameworks. Typical managerial
preparation and control costs include:

■ Costs of carrying out contract reviews (proposal draft and contract draft
reviews) – see Chapter 5.

■ Costs of preparing project plans, including quality plans and their review
– see Chapter 6.

■ Costs of periodic updating of project and quality plans.

■ Costs of performing regular progress control of internal software devel-
opment efforts – see Chapter 20.

■ Costs of performing regular progress control of external participants’
contributions to the project – see Chapter 12.

22.3.2 Managerial failure costs

Managerial failure costs can be incurred throughout the entire course of soft-
ware development, beginning in the pre-project stage. They are most likely
to crop up in connection with failed attempts to estimate the appropriate
project schedule and budget as well as detect in a timely fashion those devi-
ations and problems that demand management intervention. Several of these
activities have already been discussed previously and are repeated here for
the sake of completeness. Typical managerial failure costs include:

■ Unplanned costs for professional and other resources, resulting from
underestimation of the resources upon which the submitted proposals
are based.

■ Damages paid to customers as compensation for late completion of the
project, a result of the unrealistic schedule presented in the company’s
proposal.

■ Damages paid to customers as compensation for late completion of the
project, a result of management’s failure to recruit sufficient and appro-
priate team members.

■ Domino effect: damages to other projects performed by the same teams
involved in the delayed projects. These damages should be considered
managerial failure costs of the original project, whose scheduling prob-
lems interfered with the progress of other projects. Should it materialize,
we can expect a domino effect to obstruct the progress of several other
company projects and induce considerable hidden external failure costs.

457

22.3 A
n extended m

odelfor costofsoftw
are quality

22.4 Application of a cost of software quality system

In order to apply a cost of software quality system in an organization, the
following are required:

■ Definition of a cost of software quality model and array of cost items
specifically for the organization, department, team or project. Each of the
cost items that constitute the model should be related to one of the sub-
classes of the chosen cost of software quality model (the classic model or
the extended model).

■ Definition of the method of data collection.

■ Application of a cost of software quality system, including thorough
follow-up.

■ Actions to be taken in response to the findings produced.

22.4.1 Definition of a cost of software quality model

At a preliminary stage in a project, the organization has to choose its pre-
ferred type of cost model – the classic or the extended model. Whichever
model is selected, its effectiveness is determined to a great degree by its suit-
ability for the organization or project of the cost items designed to be
measured for the model. In other words, these model items are defined
specifically for the case involved, a process that requires determination of a
list of the software quality cost items considered relevant to the organiza-
tion’s budgeted expenditures. Each item should belong to one of the
subclasses comprising the cost model. Classification of cost items along the
lines set in Section 22.3 is strongly recommended.

Example
The SQA unit of the Information Systems Department of a commercial com-
pany adopted the classic model as its cost of software quality model. The
SQA unit defined about 30 cost items to comprise the model. Some of the
cost items are listed in Table 22.1 including their cost subclass.

458

22
Costs

ofsoftw
are quality

Implementation tip

The software development and maintenance departments should agree upon
the structure of the cost of software quality model and the related cost items.
It is preferable to omit those items over which agreement is difficult to reach,
even at the expense of reduced coverage of quality costs.

Some software quality cost items may be shared by several departments or
projects. In such cases, the rules determining allocation of costs should be as
simple as possible and should be agreed by all the relevant parties.

Updates and changes of the quality cost items can be expected. These are
based on analyses of the cost of software quality reports as well as on
changes in the organization’s structure and environment.

22.4.2 Definition of the cost data collection method

The method of cost data collection is a key (although regularly underesti-
mated) factor in the success or failure of the cost of software quality system.

Once the list of software quality cost items is finalized, a method for col-
lecting the relevant data must be determined. One of the major issues raised
at this stage is whether to develop an independent system for collecting data
or to rely on the currently operating management information system (MIS).
After some adaptations, the MIS is usually capable of serving the needs of
data collection for the chosen cost model. For instance, its human resources
costing system can record working hours invested in quality issues.
Relatively simple changes in ledger categories enable the accounting system
to record the costs of external services and purchases for the SQA system as
well as damages paid to customers. In general, use of MIS systems in place
is preferable to creating new systems. To be more precise, the reasons for pre-
ferring the existing system are:

459

22.4 A
pplication ofa costofsoftw

are quality
system

Table 22.1: Cost items and cost of quality subclasses (example)

Cost item Cost of quality subclass

Head of SQA Unit (personnel costs) 50% prevention costs,
50% internal failure costs

SQA team member reviewing compliance with instructions Prevention costs
(personnel costs)

Other team SQA members (personnel costs) Prevention and appraisal
costs according to monthly
personnel records

Development and maintenance team participation in internal Prevention costs – recorded
and external SQA audits (personnel costs) time spent on audits

Testing team – first series of tests (personnel costs) Appraisal costs – recorded
time spent

Testing team – regression tests (personnel costs) Internal failure costs –
recorded time spent

Development and maintenance team correction of errors Internal failure costs –
identified by the testing team (personnel costs) recorded time spent

Maintenance team correction of software failures identified External failure costs –
by the customer (personnel costs + traveling costs to the recorded time spent
customer’s site)

Regular visits of unit’s SQA consultant (standard monthly fee) Prevention costs

Unit’s SQA consultant’s participation in external failure External failure costs
inquiries (special invoices)

SQA journals, seminars, etc. Prevention costs

■ Expected savings in costs by running a working data collection system
already operating instead of creating and running an independent system.

■ Avoidance of disagreements in interpretation of the data provided by the
MIS versus the data provided by the independent system, typical events
when operating an independent data collection system. Disagreements of
this type reduce the reliability of the software quality cost results.

22.4.3 Implementation of a cost of software quality system

Like any other new procedure, implementation of a new cost of software
quality system involves:

■ Assigning responsibility for reporting and collecting quality cost data.

■ Instruction of the team in the logic and procedures of the new system.

■ Follow-up:
– Support for solving implementation problems and providing supple-

mentary information when needed
– Review of cost reporting, proper classification and recording
– Review of the completeness and accuracy of reports by comparing

them with records produced by the general MIS system and the cost
and activity records from previous periods. This task requires special
efforts during the initial implementation period.

■ Updating and revising the definitions of the cost items together with the
reporting and collecting methods, based on feedback.

22.4.4 Actions taken in response to the model’s findings

Most of the actions taken in response to the model’s findings – that is, the
results obtained after analysis of the software quality reports based on com-
parisons with previous periods, with other units, etc. – are rooted in the
application of the cost of software quality balance concept. According to this
concept, an increase in control costs is expected to yield a decrease in failure
of control costs and vice versa: a decrease in control costs is expected to lead
to an increase in failure of control costs. Moreover, the effect of changes in
control costs is expected to vary by the desired software quality level. This
relationship is expected to yield a minimal total cost of software quality, a
cost that is achievable at a specified quality level – the optimal software qual-
ity level. See Figure 22.3 for a graphic illustration of the cost of software
quality balance concept and the relationships between control and failure of
control costs for all the quality levels.

Management is usually interested in minimal total quality costs rather
than in control or failure of control cost components. Therefore, managers
tend to focus on the optimal quality level and apply this concept when budg-
eting the annual SQA activity plan as well as when budgeting a project.

460

22
Costs

ofsoftw
are quality

Examples of typical decisions taken in the wake of cost of software qual-
ity analysis and their expected results are shown in Table 22.2.

In addition to the direct actions taken by management, other actions can
be initiated by the Corrective Action Board, which bases its analysis of the
accumulated cost of quality data on factors other than those considered by
management. A comprehensive discussion of such indirect actions is found
in Chapter 17.

461

22.4 A
pplication ofa costofsoftw

are quality
system

Total cost of
software quality

Q
ua

lit
y

co
st

s

Low High
Software quality level

Total failure
of control costs

Total control
cost

Optimal software
quality level

Minimal total cost
of software quality

Figure 22.3: Cost of software quality balance by quality level

Table 22.2: Cost of software quality analysis – typical actions and expected results

No. Action Expected results

1 Improvement of software package’s help function Reduction of external failure
costs

2 Increased investment of resources in contract review Reduction of managerial failure
costs

3 Reduction in instruction activities yielding no Reduction of prevention costs
significant improvement with no increase in failure costs

4 Increased investment in training inspection team Reduction of internal and
members and team leaders external failure costs

5 Adoption of more intensive project progress Reduction of managerial failure
control procedures costs

6 Construction of certified list of subcontractors Reduction of failure costs,
allowed to participate in the company’s projects especially of external failure

costs

7 Introduction of automated software tests to Reduction of internal and
replace manual testing with no substantial increase external failure costs
in testing costs

22.5 Problems in the application of cost of software
quality metrics

Application of a cost of software quality model is generally accompanied by
problems to be overcome, whatever the industry. These impinge upon the
accuracy and completeness of quality cost data caused by:

■ Inaccurate and/or incomplete identification and classification of
quality costs

■ Negligent reporting by team members and others

■ Biased reporting of software costs, especially of “censored” internal and
external costs

■ Biased recording of external failure costs due to indirect if not “camou-
flaged” compensation of customers for failures (e.g., discounted future
services, delivery of free services, etc.) whose implications remain
unrecorded as external failure costs.

The above-mentioned problems do arise within the context of the software
industry but there are others as well, some of which are unique to software.
We shall focus on the problems faced when recording managerial prepara-
tion and control costs and managerial failure costs because these items
significantly affect the validity and comprehensiveness of the total cost of
software quality, especially when the extended cost of software quality
model is applied.

Problems arising when collecting data on managerial preparation and
control costs include:

■ Contract review and progress control activities are performed in many
cases in a “part-time mode”, and in addition they are subdivided into sev-
eral disconnected activities of short duration. The reporting of time
invested in these activities is usually inaccurate and often neglected.

■ Many participants in these activities are senior staff members who are not
required to report use of their time resources.

Problems encountered in collection of data on managerial failure costs, espe-
cially schedule failures include:

■ Determination of responsibility for schedule failures. These costs may be
assigned to the customer (in which case the customer is required to com-
pensate the contractor), the development team (considered as an external
failure cost), or management (considered as a managerial failure cost).
Schedule failure costs are frequently deliberated for lengthy periods
because their direct causes or the specific contributions of each partici-
pant to the initial failures are difficult to pinpoint. Table 22.3 shows
examples of typical causes for delays and the associated quality costs.

462

22
Costs

ofsoftw
are quality

■ Payment of overt (not “camouflaged”) and formal compensation usual-
ly occurs quite some time after the project is completed, and much too
late for efficient application of the lessons learned. This tardiness opens
up the question of whether the failure was managerial or external.

Summary

(1) Explain the objectives of cost of software quality measurements.

The objectives of cost of software quality measurements relate to management
interventions on the basis of economic data:
■ To control the costs associated with error prevention (prior to occurrence) and

detection of errors (once they occur).
■ To evaluate the extent of economic damages of software failures and prevention

and appraisal costs as a basis for revising and updating the SQA budget.
■ To facilitate economic evaluation of planned increases or decreases in SQA

activities or investment in new or updated SQA infrastructure, based on past
economic performance.

(2) Compare the classic software quality costs model with the extended model.

The classic model for quality costs delivered by Feigenbaum and others in the early
1950s presents a general concept that classifies manufacturing quality costs into
two classes: costs of control (prevention costs and appraisal costs) – costs con-
trolled by the organization and expended to prevent and detect failures so as to
reduce total failures to an acceptable level; and costs of failure of control (internal
failure costs and external failure costs) – costs of failures, regarded as conse-
quences, caused by failure to prevent and detect software errors.

The extended model expands the scope of the classic model by introducing fac-
tors related to management’s contribution to project success and failure. The

463

S
um

m
ary

Table 22.3: Typical causes for delays and associated costs

Cause for deviation from schedule Class of quality costs

1. Changes introduced in the project’s specifications No internal failure costs;
during development customer responsibility for

failure costs

2. Customer-delayed installation of communication No internal failure costs,
and other hardware, and/or delays in staff customer responsibility for
recruitment and training failure costs

3. Poor performance by development team, requiring External failure costs
extensive rework and corrections of software

4. Project proposal based on unrealistic schedules Managerial failure costs
and budgets

5. Late or inadequate recruitment of staff or reliance Managerial failure costs
on company professionals whose release from other
projects does not meet project needs

subclasses added are managerial preparation and control costs (a third subclass to
the costs of control class), and managerial failure costs (a third subclass to the
costs of failure of control class).

(3) Justify the formulation of a unique quality cost model for software development.

The need for the extended cost of software quality model, unique to the software
industry, is justified by its inclusion of managerial quality costs. While managerial
costs – i.e., managerial preparation and control costs and managerial failure costs
– as a proportion of quality costs are usually negligible in manufacturing, they may
be quite considerable in software development. The extent of losses (failure costs)
incurred by management’s erroneous actions and decisions or by its failure to act
on time can be colossal. Also, as preparations and progress control involve much
effort, the associated costs are very high. This situation stems from the special char-
acteristics of the software industry as described in Chapter 1.

(4) Describe the implementation of a cost of software quality system.

Implementation of a cost of software quality system in an organization requires:
■ Delineation of the cost of software quality model for the particular organization,

with each quality cost item related to one of the model’s cost subclasses.
■ Determination of the method of cost data collection for each cost item.
■ Institution of the planned cost of software quality system, including follow-up

procedures.
■ Taking actions on the basis of the cost model’s findings.

(5) Explain the standard and unique problems involved in implementing a cost of soft-
ware quality system.

Implementation of such a system for software is generally confronted by problems
as in other industries. The standard difficulties that affect accuracy and complete-
ness of quality cost data are:
■ Inaccurate and incomplete identification and classification of quality costs
■ Negligent reporting
■ Human tendency for biased reporting, especially of internal and external costs
■ Biased external failure cost records due to indirect if not “camouflaged” com-

pensation of customers that is not officially recorded as external failure costs.

These problems also impinge on the cost of software quality, to which obstacles
unique to the software industry must be added. Together they significantly affect
the validity and comprehensiveness of the collected cost of software quality data.

Typical difficulties in collecting quality costs on managerial preparation and
control costs include:
■ Segmentation of contract review and progress control activities into several

short and disconnected activities, which interferes with accurate reporting of
time invested.

■ Many senior staff members are not required to report their use of time
resources.

464

22
Costs

ofsoftw
are quality

Typical difficulties in collecting managerial failure cost data, especially regarding
schedules, are:
■ Difficulties in determining the responsibility for schedule failures. The costs of

such failures may be assigned to the customer (in which case the customer is
required to compensate the contractor), the development team (classified as
external failure costs) or management (classified as managerial failure costs).

■ Compensation often occurs too late in the process for the lessons learnt to be
applied. Still, in most cases, determination of responsibility for failure costs
remains problematic; in other words, the debate remains open as to whether
they are managerial or external failures.

Selected bibliography

1. Boehm, B. W. (1981) Software Engineering Economics, Prentice Hall, Upper
Saddle River, NJ.

2. Boehm, B. W. (2000) “Safe and simple software cost analysis”, IEEE Software,
17(5), 14–17.

3. Crosby, P. B. (1992) Quality is Free, McGraw-Hill, New York.
4. Dobbins, J. H. (1999) “The cost of software quality” in G. G. Schulmeyer, and

J. I. McManus, (eds), Handbook of Software Quality Assurance, 3rd edn,
Prentice Hall, Upper Saddle River, NJ, pp. 403–443.

5. Feigenbaum, A. V. (1991) Total Quality Control, 3rd edn, McGraw-Hill, New
York.

6. Flowers, S. (1996) Software Failure: Management Failure, John Wiley & Sons,
Chichester, West Sussex, UK.

7. Glass, R. L. (1998) Software Runaways, Prentice Hall, PTR, Upper Saddle River,
NJ.

8. Hale, J., Parrish, A., Dixon B. and Smith, R. K. (2000), “Enhancing the Cocomo
estimation models”, IEEE Software, 17(6), 45–49.

9. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3 Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

10. Jones, C. (1998) Estimating Software Costs, McGraw-Hill, New York.
11. Montealegre, R. and Keil, M. (2000) “De-escalating information technology

projects: lessons from the Denver International Airport”, MIS Quarterly, 24(3),
417–447.

Review questions

22.1 Section 22.1 presents the classic cost of software quality model. It classifies
quality costs into four classes: prevention costs, appraisal costs, internal failure
costs and external failure costs.

(1) Explain in your own words the main characteristics of each class of costs and
indicate the differences between them.

(2) Suggest three items for each class.

465

Review
 questions

22.2 Both cost of software quality models, the classic and the extended, assign costs
to two main classes: costs of control and costs of failure of control.

(1) Explain in your own words the nature of each class.
(2) What would you consider to be the idea guiding this classification and what

are its managerial aspects?

22.3 Section 22.2 presents the extended cost of software quality model.

(1) Explain the difference between the classic and the extended models in your
own words.

(2) Justify the formulation of a special extended cost of quality model for soft-
ware. Base your arguments on a comparison of the characteristics of the
software development project environment with those of industrial manu-
facturing companies.

22.4 The annual report issued by Leonard Software Inc. includes several expenditure
items as listed in Table 22.4.

(1) Indicate the subclass of cost of software quality to which each of the follow-
ing expenditures belongs: prevention costs, appraisal costs, managerial
preparation and control costs, internal failure costs, external failure costs,
managerial failure costs. In case an expenditure item is not a software qual-
ity cost, mark “X” in the “Non-software quality cost” column.

(2) For each software quality cost, indicate the expected direction of reporting
distortions: upward, downward or none.

466

22
Costs

ofsoftw
are quality

Table 22.4: Leonard Software Inc.: expenditure

No. Expenditure item Subclass Expected Non-
of direction of software

software reporting quality cost
quality distortions

cost

1 Working hours spent installing
software in customer’s site in Singapore

2 Customer’s debt as agreed in
compromise following software failures
detected in the installed software

3 Payment for Dr Jacobs’ participation
in a design review

4 Payments made to King SQA Consultants
for preparing the new version of the
software quality procedures

5 Repair of a color printer

6 Participation in monthly meetings of
the Coordination and Control
Committee headed by the Department
Manager, total hours

22.5 Leonard Software’s last year’s annual costs of software quality are shown in
Table 22.5.

The Software Quality Assurance Manager has proposed a dramatic change in
Leonard Software’s software quality expenditures policy that is expected to reduce
failure costs by significant percentages, as follows: internal failure costs by 10%,
external failure costs by 25%, and managerial failure costs by at least 25%.

467

Review
 questions

Table 22.4: Continued

No. Expenditure item Subclass Expected Non-
of direction of software

software reporting quality cost
quality distortions

cost

7 Travel to Switzerland for examination
of advanced software testing system
offered to company

8 Purchase of barcode stickers software
package to be integrated in the inventory
management software system

9 Working hours spent in correcting
errors listed in a design review report

10 Customer’s compensation for delay in
schedule resulting from the company’s
inability to recruit sufficient professional
manpower for the development team

11 Working hours spent by the Chief
Software Engineer and Senior Project
Manager in examining the
schedule estimates for the
“Top Assets” tender

12 Preparation of an updated version of
Leonard Software’s C Programming
Instructions

13 Working hours spent by programmer
in correcting program bugs detected by
her team leader in their weekly meeting

Table 22.5: Leonard Software Inc.: costs of software quality

Cost of software quality class Previous year’s annual costs, $000s

Prevention costs 1238
Appraisal costs 3450
Managerial preparation and control costs 300
Internal failure costs 4243
External failure costs 2890
Managerial failure costs 6444

The SQA manager’s proposal involves increasing expenditures as follows: pre-
vention costs by $400 000, appraisal costs by $1 100 000, and managerial
preparation and control costs by $900 000.

The company’s management commented about the proposed fourfold expen-
ditures on its preparations and control, but promised to seriously evaluate the
proposal. You were asked to evaluate for the management the SQA manager’s
proposal.

(1) Examine the proposal and calculate its results from the financial point
of view.

(2) Explain, in your own words, how this dramatic program’s additional funds
should be utilized in order to bring about the expected reduction in
failure costs.

(3) Can you list any hidden costs of failure that have not been mentioned in the
program but which are expected to be reduced as a result of implementing
the proposal?

Topics for discussion

22.1 Software Runaways by Glass (1998) is dedicated to the description and analysis
of software development projects that ended in catastrophic failure.

(1) Choose one of the projects described in the book and try to determine the
extent of the project’s failure costs. What do you think was management’s
contribution to these failure costs?

(2) List the management decisions, activities and oversights that caused the
colossal failure.

(3) Try to suggest an improved mode of management practice that could have
minimized or even prevented the failure costs.

22.2 In their paper “De-escalating information technology projects: lessons from the
Denver International Airport”, Montealegre and Keil (2000) analyze the colossal
failure of the Denver International IT project and suggest improvements in man-
agement’s reactions.

(1) Based on the paper, how do you think management contributed to the fail-
ure costs of the project?

(2) Summarize the Denver Airport management’s erroneous reactions and the
project’s management suggestions in your own words.

(3) Classify management’s erroneous reactions by project stage. What should
management have done at each stage?

22.3 A good part, if not the majority, of external failure costs are “hidden” costs.

(1) List some examples of hidden failure costs. For each example, indicate for
what type of software development organization and situation these failure
costs could become extremely high.

(2) Explain the difficulties faced in estimating the extent of failure costs for each
of the examples mentioned in (1).

468

22
Costs

ofsoftw
are quality

22.4 Xrider, a leading software house, employs 500 professionals distributed among
five departments, each of which carries out 20–30 software development proj-
ects simultaneously. The company’s new cost of software quality system has
successfully completed its second year of operation. The periodic cost of soft-
ware quality report produces data on departments, teams and projects.

(1) Suggest a systematic method, based on the compiled data, for comparing
the system’s achievements.

(2) Discuss the limitations of some or all of the comparisons suggested in (1)
and propose checks to be carried out to prevent reaching erroneous conclu-
sions based on questionable comparisons.

22.5 The SQA unit of AB Dynamics has summarized its “seven years of success” in a
colorful brochure. One of the brochure’s tables (Table 22.6) presents the unit’s
SQA achievements by summarizing the cost of software quality over the period.

(1) Analyze the data in the above table regarding the progressively higher effi-
ciency and effectiveness achieved by the SQA system during the period
1996–2002.

(2) Draw a diagram displaying the cost of software quality balance by quality
level (see Figure 22.3), based on the data in the above table. For this pur-
pose, assume quality cost to be the cost of quality per $1 million of sales,
calculated by applying the formula F/G. Software quality level is inversely
proportional to the percentage of external failure costs out of annual sales,
calculated by applying the formula (10 × F)/(D + E). The lower the percentage
of external failure costs, the higher the quality level.

(3) Analyze the data in the diagram drawn in (2) according to the cost of soft-
ware quality balance concept.

469

Topics
for discussion

Table 22.6: AB Dynamics: cost of software quality and annual sales – 1996–2002

Cost of software quality, $000s

Year Prevention Appraisal Internal External Total Total annual
costs costs failure failure cost of sales,

costs costs software $millions
quality

A B C D E F G

1996 380 2200 930 1820 5330 38
1997 680 2270 760 1140 4850 43
1998 840 2320 500 880 4540 49
1999 1200 2020 490 700 4410 56
2000 1110 2080 420 640 4250 58
2001 1170 2080 400 510 4160 66
2002 1330 2120 410 450 4310 76

22.6 The classic cost of software quality model employs – unchanged – the general
quality cost model applied in manufacturing industries.

(1) Compare the characteristics of prevention costs for software development
with any manufacturing industry (e.g. wood product industry, metal prod-
ucts industry).

(2) Compare the characteristics of appraisal costs for software development
with any manufacturing industry.

(3) Compare the characteristics of internal failure costs for software develop-
ment with any manufacturing industry.

(4) Compare the characteristics of external failure costs for software develop-
ment with any manufacturing industry.

470

22
Costs

ofsoftw
are quality

par t VI

Standards, certification
and assessment

One can easily imagine professionals asking themselves these questions: Why
should SQA standards be implemented in our organization and software
projects? Wouldn’t it be preferable to apply our experience and professional
knowledge and continue enjoying the best procedures and methodologies
that best suit our organization?

Despite the legitimacy of pondering such issues, it is widely accepted that
the benefits gained from standardization are far beyond those reaped from
professional independence.

To introduce the subject, let us refer to the following issues:

■ The benefits of use of standards
■ The organizations involved in standards development
■ The ways in which SQA standards contribute to SQA
■ The classification of standards.

VI.1 The benefits of use of standards

The main benefits gained by use of standards (benefits that are not expected
in “professionally independent” organizations) are listed in Frame VI.1.

Frame VI.1 The benefits of use of standards

■ The ability to apply software development and maintenance
methodologies and procedures of the highest professional level

■ Better mutual understanding and coordination among development teams
but especially between development and maintenance teams

■ Greater cooperation between the software developer and external
participants in the project

■ Better understanding and cooperation between suppliers and customers,
based on the adoption of known development and maintenance standards
as part of the contract

SQAS_C23.QXD 21/9/05 8:40 PM Page 471

These advantages, together with the growing complexity and scope
of software projects, have prompted wider application of standards in
the industry.

VI.2 The organizations involved in standards development

Development of SQA standards has been undertaken by several national and
international standards institutes, professional and industry-oriented organ-
izations that invest remarkable amounts of resources in these projects.

The following institutes and organizations, among the most prominent
developers of SQA and software engineering standards, have gained interna-
tional reputation and standing in this area:

■ IEEE (Institute of Electrical and Electronics Engineers) Computer Society
■ ISO (International Organization for Standardization)
■ DOD (US Department of Defense)
■ ANSI (American National Standards Institute)
■ IEC (International Electrotechnical Commission)
■ EIA (Electronic Industries Association).

VI.3 The ways in which organizations contribute to SQA

International and national professional organizations contribute to software
quality assurance in a variety of ways. One avenue involves provision of
updated international standards for use by professionals and managers of
SQA activities. These activities contribute to the quality of the professional
and managerial activities performed in software development and mainte-
nance organizations. Among the organizations that contribute in this way we
should mention the ISO (for its SQA management standards) and the IEEE
(for its SQA/software engineering professional standards).

Another avenue taken by international organizations is SQA certifica-
tion, provided through independent professional quality audits. These
external audits assess achievements in the development of SQA systems and
their implementation. Certification, which is granted after the periodic
audits, is considered valid only until the next audit, and therefore must be
renewed. At present, the ISO 9000 Certification Service is the most promi-
nent provider of SQA certification in Europe and other countries.

Yet another important way is the professional support. International and
other organizations provide the tools for “self-assessment” of an organiza-
tion’s SQA system and its operation. The detailed documentation provided
by assessment programs serves as “manuals” for SQA system development.
The Capacity Maturity Model (CMM) developed by the Software
Engineering Institute (SEI), Carnegie Mellon University, and ISO/IEC Std
15504 are the best-known examples of this approach.

472

PartVI
S

tandards, certification and assessm
ent

SQAS_C23.QXD 21/9/05 8:40 PM Page 472

VI.4 Classification of SQA standards

Software quality assurance standards can be classified into two main classes:

■ Software quality assurance management standards, including certifica-
tion and assessment methodologies (quality management standards)

■ Software project development process standards (project process standards).

Quality management standards
These focus on the organization’s SQA system, infrastructure and require-
ments, while leaving the choice of methods and tools to the organization. By
complying with quality management standards, organizations can steadily
assure that their software products achieve an acceptable level of quality.
ISO 9000-3 and the Capability Maturity Model (CMM) are, respectively,
examples of a standard and a methodology belonging to this class.

Some current software development tenders require participants to be
certified according to one of the quality management standards.

Project process standards
These focus on the methodologies for carrying out software development and
maintenance projects, that is, on “how” a software project is to be imple-
mented. These standards define the steps to be taken, design documentation
requirements, the contents of design documents, design reviews and review
issues, software testing to be performed and testing topics, and so forth.

Naturally, due to their characteristics, many SQA standards in this class
can serve as software engineering standards and vice versa.

The characteristics of these two classes of standards are summarized in
Table VI.1.

473
V

I.4 Classification ofSQ
A

 standards

Table VI.1: Classes of SQA standards – comparison

Characteristics Quality management standards Project process standards

The target unit Management of software development A software development and/or
and/or maintenance and the specific maintenance project team
SQA units

The main focus Organization of SQA systems, Methodologies for carrying out
infrastructure and requirements software development and

maintenance projects

The standard’s “What” to achieve “How” to perform
objective

The standard’s Assuring supplier’s software quality Assuring the quality of a
goal and assessing its software process specific software project

capability

Examples ISO 9000-3 ISO/IEC 12207
SEI’s CMM IEEE Std 1012-1998

SQAS_C23.QXD 21/9/05 8:40 PM Page 473

VI.5 Examples of standards in use

As might be anticipated, standards vary in their scope, from comprehensive
standards that cover all (or almost all) aspects to specialized standards that
deal with one area or issue. ISO 9000-3 and IEEE/IEA 12207 are examples
of comprehensive standards that cover all aspects of software quality man-
agement and the software development life cycle, respectively. Examples of
specialized standards of both classes may be found in IEEE software engi-
neering standards, such as IEEE Std 730-1998 for software quality assurance
plans, IEEE Std 1012-1998 for software verification and validation, and
IEEE Std 1045-1992 for software productivity metrics.

The 1990s was a decade of rapid development in international SQA
standards, expressed in increasing coverage of topics and greater compre-
hensiveness. Another development was the growing tendency for
standards-developing organizations to issue joint standards, a trend that pro-
motes internationalization of standards. Examples of such “joint ventures”
are the standards issued by the IEEE/ANSI, the ISO/IEC and the IEEE/ISO.
An example of a “merger” covering five institutes is standard ISO/IEC
12207:1995, adopted in 1996 by the IEEE, the EIA and ANSI, now referred
to as IEEE/EIA 12207. Further movement in this direction was the DOD’s
decision to cancel MIL-STD-498 and replace it by IEEE/EIA 12207. Another
parallel and growing trend is the adoption of international standards as
national standards by national standards institutes. This trend further sup-
ports internationalization.

The above developments inaugurated a trend toward application of soft-
ware industry standards worldwide. This trend, as observed at the time of
writing, is directed toward three complementary directions, so as to guaran-
tee that the following standards become universally accepted tools:

■ ISO/IEC 9000-3 – Quality certification standards for software develop-
ment and maintenance organizations

■ ISO/IEC 15504 – Organizational software process capability/capacity
assessment

■ ISO/IEC/IEEE 12207 – Software development practices.

The next two chapters discuss some of the most commonly used software
quality assurance standards belonging to each of the two classes. Chapter 23
is dedicated to quality management standards, including certification and
assessment of SQA systems based on these standards. Chapter 24 is dedicat-
ed to project process standards.C

474

PartVI
S

tandards, certification and assessm
ent

SQAS_C23.QXD 21/9/05 8:40 PM Page 474

chapter 23

Quality management
standards

Chapter outline

23.1 The scope of quality management standards 476
23.2 ISO 9001 and ISO 9000-3 477

23.2.1 ISO 9000-3 quality management system: guiding
principles 478

23.2.2 ISO 9000-3: requirements 479
23.2.3 ISO 9001 – application to software: the TickIT

initiative 480
23.3 Certification according to ISO 9000-3 481

23.3.1 Planning the process leading to certification 481
23.3.2 Development of the organization’s SQA system 483
23.3.3 Implementation of the organization’s SQA system 483
23.3.4 Undergoing the certification audits 484
23.3.5 Procedures for retaining ISO certification 484

23.4 Capability Maturity Models – CMM and CMMI assessment
methodology 485
23.4.1 The principles of CMM 485
23.4.2 The evolution of CMM 485
23.4.3 The CMMI structure and processes areas 487
23.4.4 CMM implementation experience 488

23.5 The Bootstrap methodology 490
23.6 The SPICE project and the ISO/IEC 15504 software process

assessment standard 492
23.6.1 Principles behind the ISO/IEC 15504 assessment model 493
23.6.2 Structure of the ISO/IEC 15504 assessment model 493
23.6.3 Content of the ISO/IEC 15504 assessment model 496
23.6.4 ISO/IEC 15504 processes 496
23.6.5 ISO/IEC 15504 trials 497

Summary 497
Selected bibliography 499
Review questions 500
Topics for discussion 501
Appendix 23A: CMMI process areas 502
Appendix 23B: ISO/IEC 15504 model processes 505

SQAS_C23.QXD 21/9/05 8:40 PM Page 475

Quality management standards and methodologies focus on the software
quality assurance system – its organization, infrastructure and requirements
– yet leave the choice of the methods and tools to be used in the hands of the
organization. In other words these standards focus on the “what” of SQA
and not its “how”. Compliance to quality management standards supports
the organization’s steady efforts to assure an acceptable quality level for its
software products. Standards belonging to this class, especially ISO 9000-3,
structure the SQA certification procedures that are applied to organizations
developing software. Some standards and methodologies of this class, to
mention only the Capability Maturity Model (CMM), Bootstrap and
ISO/IEC 15504, serve mainly for assessment of the organization’s SQA
achievements while they guide development of its SQA system.

One indication of the importance of standards is the current trend in
software development tenders, which requires certification of participants
according to at least one of the dominant quality management standards.

The first section of this chapter describes the scope of certification and
assessment standards. The sections that follow present some of the most
common and important standards.

The references to the main standards mentioned in this chapter are
included in the bibliography. Many publications – El Emam (1998), Ince
(1994), Jung (2001), Jung et al. (2001), Kahoe and Jarvis (1995), Oskarsson
and Glass (1996) – limit themselves to a discussion of just one standard,
although several others are dedicated to the review and comparison of sev-
eral standards, e.g. Tingey (1997) and Paulk (1999), to mention just two.
Schulmeyer (1999) presents a general review of SQA standards from the per-
spective of development.

After completing this chapter, you will be able to:

■ Explain the benefits of using SQA standards.
■ Describe the contributions made by use of standards.
■ Describe the general principles underlying quality management according

to ISO 9000-3.
■ Describe the ISO 9000-3 certification process.
■ Describe the principles embodied in the CMM.
■ Describe the principles underlying ISO/IEC 15504.

23.1 The scope of quality management standards

Certification standards vary from assessment standards by content as well as
by emphasis.

The scope of certification standards is determined by the aims of certifi-
cation, which are to:

■ Enable a software development organization to demonstrate consistent
ability to assure that its software products or maintenance services com-
ply with acceptable quality requirements. This is achieved by certification
granted by an external body.

476

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 476

■ Serve as an agreed basis for customer and supplier evaluation of the sup-
plier’s quality management system. This may be accomplished by customer
performance of a quality audit of the supplier’s quality management sys-
tem. The audit will be based on the certification standard’s requirements.

■ Support the software development organization’s efforts to improve qual-
ity management system performance and enhance customer satisfaction
through compliance with the standard’s requirements.

The scope of assessment standards is also determined by the aims fo assess-
ment, which are to:

■ Serve software development and maintenance organizations as a tool for
self-assessment of their ability to carry out software development projects.

■ Serve as a tool for improvement of development and maintenance
processes. The standard indicates directions for process improvements.

■ Help purchasing organizations determine the capabilities of potential
suppliers.

■ Guide training of assessors by delineating qualifications and training pro-
gram curricula.

To sum up, while the certification standards emphasis is external – to sup-
port the supplier–customer relationships – the emphasis of the assessment
standards is internal because it focuses on software process improvement.

23.2 ISO 9001 and ISO 9000-3

ISO 9000-3, the Guidelines offered by the International Organization for
Standardization (ISO), represent implementation of the general methodolo-
gy of quality management ISO 9000 Standards to the special case of software
development and maintenance. Both ISO 9001 and ISO 9000-3 are reviewed
and updated once every 5–8 years, with each treated separately. As ISO
9000-3 adaptations are based on those introduced to ISO 9001, publication
of the revised Guidelines follows publication of the revised Standard by a
few years. For example, the 1997 edition of ISO 9000-3 (ISO, 1997) relies
on the 1994 edition of ISO 1994 (ISO, 1994). At the time of writing, the
2000 edition of ISO 9001 (ISO, 2000a) has been issued, but only the final
just-completed draft of ISO 9000-3 (ISO/IEC, 2001) is awaiting approval.

The current 1997 edition of ISO 9000-3 Guidelines integrates ISO 9001
with its specialized ISO 9000-3 Guidelines into one “all inclusive” standard
for the software industry. In other words, from the 1997 edition on, the ISO
9000-3 will represent the stand-alone ISO standard for the software indus-
try. The new version of ISO 9000-3 follows this lead and will also serve as
an “all-inclusive” standard for the software industry. Hence, the ISO 9000-3
Standard for the software industry can be considered to provide the require-
ments for ISO 9000-3 certification.

477
23.2 IS

O
 9001 and IS

O
 9000-3

SQAS_C23.QXD 21/9/05 8:40 PM Page 477

The new ISO/IEC 9000-3 version (expected to be issued in 2003) is
planned to serve the entire population of software development and mainte-
nance organizations by adopting a policy of comprehensiveness and
standard redundancy. The individual user is expected to tailor the standard
to specific needs. These features facilitate achievement of the universality
that allows ISO/IEC 9000-3 to fit the immense variety of organizations
belonging to the software industry: big or small, developers of tailor-made
software or COTS software packages, developers of real-time application
software, embedded software or management information systems, etc.

The 2000 edition of ISO 9001 as well as the new edition of ISO 9000-3
are supported by two additional conceptual standards: ISO 9000 (ISO,
2000b), which deals with fundamental concepts and terminology, and ISO
9004 (ISO, 2000c), which provides guidelines for performance improvement.

In the following sections, the principles underlying ISO 9000-3 (Section
23.2.1) are reviewed; in addition, the structure of the new version is com-
pared with that of the current versions (Section 23.2.2) to illuminate their
expanded applications. The last part of this section (Section 23.2.3) is dedi-
cated to TickIT, an organization that significantly contributed to the
adoption of ISO 9000-3.

23.2.1 ISO 9000-3 quality management system: guiding
principles

Eight principles guide the new ISO 9000-3 standard; these were originally set
down in the ISO 9000:2000 standard (ISO, 2000b), as follows:

(1) Customer focus. Organizations depend on their customers and therefore
should understand current and future customer needs.

(2) Leadership. Leaders establish the organization’s vision. They should cre-
ate and maintain an internal environment in which people can become
fully involved in achieving the organization’s objectives via the designat-
ed route.

(3) Involvement of people. People are the essence of an organization; their
full involvement, at all levels of the organization, enables their abilities
to be applied for the organization’s benefit.

(4) Process approach. A desired result is achieved more efficiently when
activities and resources are managed as a process.

(5) System approach to management. Identifying, understanding and man-
aging processes, if viewed as a system, contributes to the organization’s
effectiveness and efficiency.

(6) Continual improvement. Ongoing improvement of overall performance
should be high on the organization’s agenda.

(7) Factual approach to decision making. Effective decisions are based on
the analysis of information.

(8) Mutually supportive supplier relationships. An organization and its sup-
pliers are interdependent; a mutually supportive relationship enhances
the ability of both to create added value.

478

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 478

23.2.2 ISO 9000-3: requirements

The current standard edition of ISO, 9000-3 (ISO 1997) includes 20 require-
ments that relate to the various aspects of software quality management
systems. The new ISO 9000-3 (ISO/IEC, 2001) offers a new structure, with
its 22 requirements classified into the following five groups:

■ Quality management system
■ Management responsibilities
■ Resource management
■ Product realization
■ Management, analysis and improvement.

The new structure is presented in Table 23.1. The new structure realizes a
change in emphasis among the various subjects that make up the require-
ments, a totally new classification of SQA topics into standard sections and
revision of requirement section titles. These changes reflect a gradual rather
than a radical change of concepts as presented in the updated guiding prin-
ciples (see Section 23.2.1). Table 23.2 compares ISO 9000-3:1997 edition
with those of the upcoming edition for a sample of requirement subjects, one
for each requirement class.

479
23.2 IS

O
 9001 and IS

O
 9000-3

Table 23.1: ISO 9000-3 new edition – Requirements and their classification

Requirement class Requirement subjects

4. Quality management system 4.1 General requirements
4.2 Documentation requirements

5. Management responsibilities 5.1 Management commitments
5.2 Customer focus
5.3 Quality policy
5,4 Planning
5.5 Responsibility, authority and communication
5.6 Management review

6. Resource management 6.1 Provision of resources
6.2 Human resources
6.3 Infrastructure
6.4 Work environment

7. Product realization 7.1 Planning of product realization
7.2 Customer-related processes
7.3 Design and development
7.4 Purchasing
7.5 Production and service provision
7.6 Control of monitoring and measuring devices

8. Measurement, analysis 8.1 General
and improvement 8.2 Monitoring and measurement

8.3 Control of non-conforming product
8.4 Analysis of data
8.5 Improvement

Source: ISO (2000a)

SQAS_C23.QXD 21/9/05 8:40 PM Page 479

23.2.3 ISO 9001 — application to software: the TickIT initiative

TickIT was launched in the late 1980s by the UK software industry in coopera-
tion with the UK Department for Trade and Industry to promote development of
a methodology for adapting ISO 9001 to the characteristics of the software
industry known as the TickIT initiative. At the time of its launch, ISO 9001 had
already been successfully applied in manufacturing industry; however, no signif-
icant methodology for its application to the special characteristics of the software
industry was yet available. In the years to follow, the TickIT initiative, together
with the efforts invested in development of ISO 9000-3, achieved this goal.

TickIT is, additionally, a leading provider of ISO 9001 certification, spe-
cializing in information technology (IT); it covers the entire range of
commercial software development and maintenance services. TickIT, now
managed and maintained by the DISC Department of BSI (the British
Standards Institute), is accredited for certification of IT organizations in the
UK and Sweden. In June 2002, TickIT reported a clientele of 1252 organi-
zations in 42 countries, the majority in the UK (882), Sweden (54) and the
United States (109). TickIT is currently authorized to accredit other organi-
zations as certification bodies for the software industry in the UK.

TickIT activities include:

■ Publication of the TickIT Guide, that supports the software industry’s
efforts to spread ISO 9001 certification. The current guide (edition 5.0,
TickIT, 2001), which includes references to ISO/IEC 12207 and ISO/IEC
15504, is distributed to all TickIT customers.

480

23
Q

uality
m

anagem
entstandards

Table 23.2: Current ISO 9000-3:1997 vs. new edition – requirements comparison (sample)

ISO 9000-3: new edition ISO 9000-3:1997 edition
Requirement class and subject Requirement subjects

Requirement class 4 (Quality management system) 4.2 Quality system
Subject 4.2 Documentation requirements 4.5 Document and data control

4.16 Control of quality records

Requirement class 5 (Management responsibilities) 4.1 Management responsibility
Subject 5.4 Planning 4.2 Quality system

Requirement class 6 (Resource management) 4.9 Process control
Subject 6.3 Infrastructure

Requirement class 7 (Product realization)
Subject 7.5 Production and service provision 4.7 Control of customer-supplied product

4.8 Product identification and traceability
4.9 Process control
4.10 Inspection and testing
4.12 Inspection and test status
4.15 Handling, storage, packaging,
preservation and delivery
4.19 Servicing

Requirement class 8 (Measurement, analysis 4.13 Control of non-conforming product
and improvement)
Subject 8.3 Control of non-conforming product

Source: Adapted from ISO (2000a)

SQAS_C23.QXD 21/9/05 8:40 PM Page 480

■ Performance of audit-based assessments of software quality systems and
consultation to organizations on improvement of software development
and maintenance processes in addition to their management.

■ Conduct of ISO 9000 certification audits.

TickIT auditors who conduct audit-based assessments and certification
audits are registered by the International Register of Certificated Auditors
(IRCA). Registered IRCA auditors are required, among other things, to have
experience in management and software development; they must also suc-
cessfully complete an auditors’ course. Registered lead auditors are required
to have demonstrated experience in conducting and directing TickIT audits.

23.3 Certification according to ISO 9000-3

The ISO 9000-3 certification process verifies that an organization’s software
development and maintenance processes fully comply with the standard’s
requirements.

As ISO 9000 standards have been adopted as national standards in
many countries, there is growing worldwide interest in certification accord-
ing to ISO 9000 by organizations in many industries, including the software
industry. The certification service is organized by the International
Organization for Standardization (ISO) through a worldwide network of
certification services that are authorized by means of accreditation bodies
and certification bodies. Each accreditation body is licensed by ISO to
authorize other professional organizations as certification bodies.
Certification bodies, whose number may vary by country, perform the actu-
al certification audits and certify those organizations that qualify.

Organizations wishing to obtain ISO 9000-3 certification are required to
complete the following:

■ Develop the organization’s SQA system
■ Implement the organization’s SQA system
■ Undergo certification audits.

Fulfillment of these requirements demands thorough planning of the structures
and resources necessary to perform the activities culminating in certification.

This process may vary somewhat from one organization to another,
depending on the characteristics of its design and maintenance activities as
well as by the certification bodies. Its basic form parallels the process
demanded by other certification standards. Certification is discussed in
greater detail in the next four sections and is illustrated in Figure 23.1.

23.3.1 Planning the process leading to certification

Once management has made its decision to obtain ISO 9000-3 certification for
its software development and maintenance activities, an action plan is needed.

481
23.3 Certifiction according to IS

O
 9000-3

SQAS_C23.QXD 21/9/05 8:40 PM Page 481

482

23
Q

uality
m

anagem
entstandards

Do
quality manual
and procedures
comply with ISO

9000-3?

Organization’s quality
manual and SQA

procedures

Review of quality
manual and SQA

procedures

Performance audit of
SQA management

system

Does
performance of

SQA management system
comply with ISO

9000-3?

Planning process
leading to

certification

Development of
organization’s

SQA system

The
decision

Implementation of
organization’s

SQA system

Carry out performance
improvements of SQA
management system

ISO 9000-3
certification

No

Yes

Yes

No

Certifying organizationOrganization requesting certification

Figure 23.1: The ISO 9000-3 certification process

SQAS_C23.QXD 21/9/05 8:40 PM Page 482

An internal survey of the current SQA system and how it is implement-
ed is a good place to begin. The survey should supply information about:

■ Gaps between currently employed SQA and required procedures: missing
procedures in addition to inadequate procedures.

■ Gaps between staff know-how and knowledge required regarding SQA
procedures and SQA tools.

■ Gaps regarding documentation of development as well as maintenance
activities.

■ Gaps or lack of parity regarding software configuration system capabili-
ties and implementation.

■ Gaps regarding managerial practices demanded for project progress control.

■ Gap regarding SQA unit organization and its capabilities.

After completing the previous analysis, the plan for obtaining certification
can be constructed. It should include:

■ A list of activities to be performed, including timetables

■ Estimates of resources required to carry out each activity

■ Organizational resources: (a) internal participants – SQA unit staff (includ-
ing staff to be recruited) and senior software engineers; (b) SQA consultants.

23.3.2 Development of the organization’s SQA system

Before proceeding, the organization’s SQA management system should be
developed to a level adequate to meet ISO 9000-3 requirements. These
efforts should include:

■ Development of a quality manual and a comprehensive set of SQA pro-
cedures.

■ Development of other SQA infrastructure:

– Staff training and instruction programs, including staff certification
programs

– Preventive and corrective actions procedures, including the CAB com-
mittee

– Configuration management services, including a software change
control management unit

– Documentation and quality record controls.
■ Development of a project progress control system.

23.3.3 Implementation of the organization’s SQA system

Once the components of the SQA management system conform to certification
demands, efforts are shifted towards implementing the system. These include
setting up a staff instruction program and support services appropriate to the

483
23.3 Certifiction according to IS

O
 9000-3

SQAS_C23.QXD 21/9/05 8:40 PM Page 483

task of solving problems that may arise when implementing SQA tools.
These arrangements are targeted especially at team leaders and unit man-
agers, who are expected to follow up and support the implementation efforts
made by their units.

Throughout this stage, internal quality audits are carried out to verify
the success in implementation as well as to identify units and SQA issues that
require additional attention. The internal quality audit findings will enable
determination of whether the organization has reached a satisfactory level of
implementation.

23.3.4 Undergoing the certification audits

The certification audits are carried out in two stages:

(1) Review of the quality manual and SQA procedures developed by the
organization. The review ascertains completeness and accuracy. In cases
of non-compliance with standards, the organization is obligated to com-
plete the corrections prior to advancing to the second stage of
certification.

(2) Verification audits of compliance with the requirements defined by the
organization in its quality manual and SQA procedures. The main ques-
tions to be answered are:

■ Have the staff been adequately instructed on SQA topics and do they
display a satisfactory level of knowledge?

■ Have the relevant procedures – project plans, design reviews,
progress reports, etc. – been properly and fully implemented by the
development teams?

■ Have documentation requirements been fully observed?

The main sources of information for certification audits are (a) interviews
with members of the audited unit, and (b) review of documents such as proj-
ect plans, design documents, test plans and procedures, and design review
records. In order to assure reliable results and avoid biased conclusions,
audits are based on a random selection of projects and/or teams.

23.3.5 Procedures for retaining ISO certification

Periodic re-certification audits, usually carried out once or twice a year, are
performed to verify continued compliance with ISO 9000-3 requirements.
During these audits, the organization has to demonstrate continuing devel-
opment of its SQA management system, which is expressed in quality and
productivity performance improvements, regular updates of procedures to
reflect technological changes, and process improvements.

484

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 484

23.4 Capability Maturity Models – CMM and CMMI
assessment methodology

Carnegie Mellon University’s Software Engineering Institute (SEI) took the
initial steps toward development of what is termed a capability maturity
model (CMM) in 1986, when it released the first brief description of the
maturity process framework. The initial version of the CMM was released in
1992, mainly for receipt of feedback from the software community. The first
version for public use was released in 1993 (Paulk et al., 1993, 1995;
Felschow, 1999).

23.4.1 The principles of CMM

CMM assessment is based on the following concepts and principles:

■ Application of more elaborate management methods based on quantitative
approaches increases the organization’s capability to control the quality
and improve the productivity of the software development process.

■ The vehicle for enhancement of software development is composed of the
five-level capability maturity model. The model enables an organization
to evaluate its achievements and determine the efforts needed to reach the
next capability level by locating the process areas requiring improvement.

■ Process areas are generic; they define the “what”, not the “how”. This
approach enables the model to be applied to a wide range of implemen-
tation organizations because:

– It allows use of any life cycle model
– It allows use of any design methodology, software development tool

and programming language
– It does not specify any particular documentation standard.

The CMM and its key process areas (KPAs) are presented in Figure 23.2.

23.4.2 The evolution of CMM

After 1993, the SEI expanded the original Software Development and
Maintenance Capability Maturity Model (SW-CMM) through diversifica-
tion. Its main structure was retailored to fit a variety of specialized capability
maturity models. The following variants have been developed:

■ System Engineering CMM (SE-CMM) focuses on system engineering
practices related to product-oriented customer requirements. It deals with
product development: analysis of requirements, design of product sys-
tems, management and coordination of the product systems and their
integration. In addition, it deals with the production of the developed
product: planning production lines and their operation.

485
23.4 Capability

M
aturity

M
odels

–
 CM

M
 and CM

M
I assessm

entm
ethodology

SQAS_C23.QXD 21/9/05 8:40 PM Page 485

■ Trusted CMM (T-CMM) was developed to serve sensitive and classified
software systems that require enhanced software quality assurance.

■ System Security Engineering CMM (SSE-CMM) focuses on security
aspects of software engineering and deals with secured product develop-
ment processes, including security of development team members.

■ People CMM (P-CMM) deals with human resource development in soft-
ware organizations: improvement of professional capacities, motivation,
organizational structure, etc.

■ Software Acquisition CMM (SA-CMM) focuses on special aspects of
software acquisition by treating issues – contract tracking, acquisition
risk management, quantitative acquisition management, contract per-
formance management, etc. – that touch on software purchased from
external organizations.

■ Integrated Product Development CMM (IPD-CMM) serves as a frame-
work for integration of development efforts related to every aspect of the
product throughout the product life cycle as invested by each department.

486

23
Q

uality
m

anagem
entstandards

No key process required

Level 1: Initial

• Software configuration management
• Software quality assurance
• Software subcontract management
• Software project tracking and oversight
• Software project planning
• Requirements management

Level 2: Repeatable

• Peer reviews
• Inter-group coordination
• Software product engineering
• Intergrated software management
• Training program
• Organization process definition
• Organization process focus

Level 3: Defined

• Software quality management
• Quantitive process management

Level 4: Managed

• Process change management
• Technology change management
• Defect prevention

Level 5: Optimizing

Figure 23.2: The CMM model levels and key process areas (KPAs)

Source: After Paulk et al. (1995)

SQAS_C23.QXD 21/9/05 8:40 PM Page 486

Practically speaking, this CMM overlaps key processes of SW-CMM and
SE-CMM rather considerably, hence its elements were integrated into a
CMMI model (see the following) and its development was discontinued.

For an expanded discussion of the diversity of CMM applications, see
Johnson and Brodman (2000).

Capability Maturity Model Integration (CMMI)
In the late 1990s a new developmental direction was taken – development of
integrated CMM models. Development of specialized CMM models involved
development of different sets of key processes for model variants for different
departments that exhibited joint processes. In practice, this created a situation
where departments that applied different CMM variants in the same organi-
zation faced difficulties in cooperation and coordination. The CMMI
approach solved these problems at the same time as the moduals better con-
formed to the emerging ISO/IEC 15504 standard (see Royce, 2002).

At the beginning of 2002, SEI could offer the 1.1 version of three CMMI
models, with each model presenting different integrated components:

■ CMMI-SE/SW integrates the system engineering and software engineering .

■ CMMI-SE/SW/IPPD/SS integrates system engineering, software engineer-
ing and integrated product/process and supplier sourcing engineering
aspects.

■ CMMI-SE/SW/IPPD integrates system engineering, software, integrated
product/process and supplier sourcing aspects.

23.4.3 The CMMI structure and processes areas

The CMMI model, like the original CMM models, is composed of five lev-
els. The CMMI capability levels are the same as those of the original, apart
from a minor change related to capability level 4, namely:

■ Capability maturity level 1: Initial
■ Capability maturity level 2: Managed
■ Capability maturity level 3: Defined
■ Capability maturity level 4: Quantitatively managed
■ Capability maturity level 5: Optimizing.

A substantial change has nonetheless evolved with respect to the processes
included in the models. The 18 key process areas of CMM (frequently
referred to as KPAs) were replaced by 25 process areas (PAs). The PAs are
classified by the capability maturity level that the organization is required to
successfully perform. For each process area, objectives, specific practices and
procedures are defined.

Appendix 23A presents the revised process areas and their descriptions.

487
23.4 Capability

M
aturity

M
odels

–
 CM

M
 and CM

M
I assessm

entm
ethodology

SQAS_C23.QXD 21/9/05 8:40 PM Page 487

23.4.4 CMM implementation experience

At this point it is worthwhile to quickly review some success stories report-
ed by companies that achieved level 5 assessment according to CMM, the
efforts invested and benefits gained. For two of the companies, ISO 9000
certification represented a preparatory step for their final goal of achieving
CMM level 5 assessment. In addition, we relay some of the experience accu-
mulated with CMM implementation by a consulting firm.
The following cases are presented:

■ Boeing’s Space Transportation Systems Software
■ Tata Consultancy Services (TCS)
■ Telcordia Technologies
■ Gartner Inc.

Boeing’s Space Transportation Systems Software
Wigle and Yamamura (1999) discuss the three-year process of gradual qual-
ity assurance improvements that finally yielded the CMM level 5 for Boeing.
The improvements realized in level 5 projects included:

■ A substantial shift in defect detection, from 89% late detection by testing
to 83% early detection by application of various review methods.

■ Earlier detection of defects caused a 31% decrease of rework efforts.

■ Elimination of defects prior to version release increased from 94% to
almost 100%.

■ A 140% increase in general productivity.

Tata Consultancy Services (TCS)
TCS’s quality project, summarized by Keeni (2000), was implemented by a
South Asian company employing a staff of 14 000. For TCS the CMM proj-
ect was a natural continuation of its successful adoption of ISO 9000
standards. It required two years (1992–1994) for the company to adapt its
procedures and entire quality management system (QMS), which culminat-
ed in ISO certification of all the company’s major centers. After the new
QMS was firmly established, the company continued on to the CMM proj-
ect in 1996. As TCS was ISO 9000 certified, very few practices needed
adaptation to achieve the CMM level 3 assessment. The next phase involved
a pilot project, initiated in one of TCS’s centers (professional staff of 1000).
The pilot project’s goal was to achieve level 4 assessment for the center,
which was achieved in 1998. Similar projects were launched in 1997 in two
additional centers; their target – level 5 assessment – was achieved in 1999.
In 1998, TCS decided to expand its CMM project to embrace 17 of its devel-
opment centers in India. By 2000, a significant proportion of those centers
had achieved level 5 assessment, while others had reached level 4 assessment.

488

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 488

One of the company’s major efforts was certification of the software
quality assurance professionals who were to lead the ISO 9000 and CMM
quality projects. The SQA professionals certified included:

■ Three authorized CMM lead assessors
■ Some 77 internally trained CMM assessors
■ Some 678 certified quality analysts
■ Over 300 quality auditors.

Among the main benefits listed by the company are the following improve-
ments, achieved during 1996–2000:

(1) Reduction of average percentage of rework from 12% to about 4%

(2) Reduction of percentage of project schedule slippage from over 3% to
less than 2.5%

(3) Increase in overall review effectiveness from 40% to 80% defect detection

(4) Decreases of 5% in management efforts and of 24% in change request
implementation efforts.

Telcordia Technologies
Telcordia Technologies traveled a remarkable journey from low quality soft-
ware development to ISO 9000 certification and CMM level 5 assessment,
as analyzed by Pitterman (2000). Development efforts by the company’s soft-
ware quality assurance system and progress control teams (about 2% of
overall software development staff) began in 1994. As its goals, the software
quality assurance team set ISO 9000 certification as its primary objective,
followed by CMM assessment. All company software development units
were ISO 9000 certified by September 1996.

The now well-established quality system required relatively limited addi-
tional efforts to achieve CMM level 3 assessment, achieved in December
1996. However, the next stage, CMM level 5 assessment, required substantial
efforts for development of quantitative quality assurance tools and further
development of the QMS. In May 1999, eight development units, employing
more than 3500 software engineers, had successfully realized this goal.

Among the main benefits garnered by Telcordia during its six-year qual-
ity journey, we can cite:

■ A 94% reduction in the field faults (release faults) density
■ Percentage of on-schedule major releases reached 98%
■ Overall customer satisfaction rose from 60% in 1962 and 80% in 1994

to over 95% in 1997.

Gartner Inc.
Gartner Inc. is a consulting firm that specializes in CMM implementation. A
report (Gartner Inc., 2001) summarizing the firm’s accumulated experience
presents some quantitative data to support its claims. Of special interest are

489
23.4 Capability

M
aturity

M
odels

–
 CM

M
 and CM

M
I assessm

entm
ethodology

SQAS_C23.QXD 21/9/05 8:40 PM Page 489

the results dealing with the benefits of CMM application and the time required
for progress from one capability level to the next. The data should, however,
be treated with some reservations as the total number of organizations
observed and the period over which the data were collected are not mentioned.

The mean time required for progress from one CMM assessment level to
the next is shown in Table 23.3.

One of the expected benefits is improved effectiveness of development
efforts. This benefit, which naturally also involves substantial software
development cost reductions, is expressed in reduced time spent on rework-
ing and the subsequent retesting and quality assurance. The Gartner paper
quotes the impressive changes experienced by Raytheon in this respect (see
Table 23.4) as the company progressed up the capability level ladder.

23.5 The Bootstrap methodology

The Bootstrap Institute, a non-profit organization that operates in Europe as
part of the European Strategic Program for Research in Information
Technology (ESPRIT) in cooperation with the European Software Institute
(ESI), offers another route for professional SQA support to organizations,
based on its Bootstrap methodology.

The Bootstrap Institute provides various types of support to its licensed
members:

(1) Access to the Bootstrap methodology for assessment and improvement
of software development processes. The Institute constantly updates and
improves its methodology.

490

23
Q

uality
m

anagem
entstandards

Table 23.3: Time required to progress to the next CMM assessment level (Gartner Inc., 2001)

Capability level transition Mean time (months) No. of organizations

Level 1 to level 2 24 125
Level 2 to level 3 21.5 124
Level 3 to level 4 33 18
Level 4 to level 5 18 19

Table 23.4: Project resources distribution by CMM capability level – the case of Raytheon

Percentage of project resources

CMM capability Original work Reworking Testing and
level quality assurance

1 34 41 25
2 55 18 27
3 67 11 22
4 76 7 17

SQAS_C23.QXD 21/9/05 8:40 PM Page 490

(2) Training and accreditation of assessors.

(3) Access to the Bootstrap database.

The Bootstrap methodology measures the maturity of an organization and its
projects on the basis of 31 quality attributes grouped into three classes:
process, organization and technology. A five-grade scale is applied to each of
the quality attributes separately. The methodology facilitates detailed assess-
ment of the software development process by evaluating its achievements with
respect to each attribute and indicates the improvements required in the soft-
ware development process and in projects. The assessment options include:

■ Evaluation of the current position of the software quality assurance sys-
tem as a basis for improvement initiation

■ Evaluation of level of achievements according to the Capability Maturity
Model (CMM)

■ Evaluation of achievements according to ISO 15504 (the SPICE project)

■ ISO 9000-3 gap assessment to support preparations for a certification audit.

Bootstrap trains three levels of registered assessors, namely trained assessor,
assessor and lead assessor. A person can become a registered lead assessor,
having overall responsibility for planning and performing a Bootstrap
assessment, only after successfully performing as a trained and then a regis-
tered assessor. In order to become a trained assessor, a person has to
successfully complete a basic assessor training program, after which she or
he can participate in Bootstrap assessments. Trained assessors who have
demonstrated knowledge in performance of assessments and been recom-
mended by a registered lead assessor may qualify as a registered assessor.
Registered assessors are likewise required to demonstrate knowledge and
competence in carrying out higher-level assessments in addition to participa-
tion in a lead assessors’ training course. Only then can they applying for
acceptance as lead assessors. The process is illustrated in Figure 23.3.

The Bootstrap database contains the findings of Bootstrap assessments
conducted for its member organizations. Although the sources of the data
are kept anonymous, the assessment results are classified according to type
of organization, country, type of product or service, market and development
effort. Members can obtain the following types of information:

■ Member’s own assessments, retrieved from the database
■ Aggregate assessment results from comparable organizations
■ Data for surveys and research of software development to improve devel-

opment processes and product quality.

491
23.5 The B

ootstrap m
ethodology

SQAS_C23.QXD 21/9/05 8:40 PM Page 491

23.6 The SPICE project and the ISO/IEC 15504 software
process assessment standard

The parallel development of several software process assessment methodolo-
gies raised difficulties of non-standardization. A joint initiative by ISO and
IEC, the SPICE (Software Process Improvement for Capability Determination)
Project was established in 1993 to overcome this problem by developing a
standard software process assessment methodology.

The SPICE Project released its Version 1.0 report in 1995, which became
the basis for the development of the TR (technical report) version of the
ISO/IEC 15504 Standard released in 1998.

The next stage in the development of the ISO/IEC 15504 Standard will
be its release as an international standard. An ISO/IEC working group has
been assigned the responsibility of introducing the revisions required to
transform the standard from technical report status to international standard
status. The working group has solicited revision proposals from the public
(through a special website) as well as from national bodies. Another route
taken to identify features demanding revision was the conduct of a major
three-phase trial within the framework of the SPICE Project.

The next sections are dedicated to the following subjects:

■ Principles behind the ISO/IEC 15504 assessment model
■ Structure of the ISO/IEC 15504 assessment model
■ Content of the ISO/IEC 15504 assessment model

492

23
Q

uality
m

anagem
entstandards

Basic assessor training course

Trained Assessor
Certificate

• Successful participation in assessments
• Positive feedback to Bootstrap by lead assessors
• Recommendation by a lead assessor

Assessor

• Conduct at least two assessments as co-assessor
• Positive feedback to Bootstrap by lead assessors
• Recommendation by a lead assessor

Lead assessor

Candidate

Figure 23.3: Bootstrap assessor accreditation process

SQAS_C23.QXD 21/9/05 8:40 PM Page 492

■ ISO/IEC 15504 processes
■ ISO/IEC 15504 trials.

23.6.1 Principles behind the ISO/IEC 15504 assessment model

The initiators of the SPICE project and the ISO/IEC standard have defined
the following guiding principles for the new assessment model:

■ Harmonize the many existing “independent” assessment methodologies
by providing a comprehensive framework model (instruct the users in
“what” has to be accomplished rather than on “how” it has to be done).

■ Be universal to serve all or almost all categories of software suppliers and
customers as well as software categories.

■ Be highly professional.

■ Aim at reaching international acceptance to emerge as a real world stan-
dard. Becoming a world standard is expected to save suppliers’ resources
by eliminating the need to perform several different capability assess-
ments simultaneously in response to different customer requirements.

23.6.2 Structure of the ISO/IEC 15504 assessment model

The assessment model is composed of six levels of capability, where level 0
is the lowest and level 5 the highest. The model defines which process attrib-
utes have to be attained to achieve each capability level. Process attributes
are generic, defining “what”, not “how”, in order to allow conformity of
existing assessment models to the ISO/IEC standard. Comparative studies
have already proved high conformity of the ISO/IEC 15504 standard with
the CMM model (Paulk, 1999) and Bootstrap model.

The model is composed of:

■ Capability levels and process attribute requirements for each level
■ An achievement grade scale for process attributes
■ Accumulative achievement requirements for each capability level.

Capability levels and process attribute requirements
Level 0: Incomplete. No process attributes are expected. There is no (or only
little) implementation of any planned or identified process.

Level 1: Performed process. Process attribute: Process performance includes
identifying processes and their inputs and outputs.

Level 2: Managed process. Process attributes:

(a) Performance management – processes performed according to proce-
dures; their progress is controlled.

(b) Work products management – work products are controlled and docu-
mented; their compliance is verified.

493
23.6 The SPICE

projectand the IS
O

/IEC
15504 softw

are process
assessm

entstandard

SQAS_C23.QXD 21/9/05 8:40 PM Page 493

Level 3: Established process. Process attributes:

(a) Process definition – the organization applies well-defined processes
throughout. Processes tailored to any specific project originate in stan-
dard processes.

(b) Process resources – the organization controls use of project resources:
human resources, infrastructure resources, etc.

Level 4: Predictable process. Process attributes:

(a) Measurement – performance measurement supports achievement of
project goals.

(b) Process control – the organization controls processes by collection of data
on performance and product measures, analysis and implementation of
needed corrections of process performance to achieve process goals.

Level 5: Optimizing process. Process attributes:

(a) Process change – the organization initiates and controls processes and
managerial systems to improve its effectiveness and efficiency for
achievement of its business goals.

(b) Continuous improvement – the organization persistently monitors the
changes implemented through quantitative measurement to assure con-
tinuous improvement of processes and management.

The model and the process attributes required for each level are illustrated
in Figure 23.4.

494

23
Q

uality
m

anagem
entstandards

• Process performance

Level 1: Performed process

• Performance management
• Work product management

Level 2: Managed process

• Process definition
• Process resource

Level 3: Established process

• Measurement
• Process control

Level 4: Predictable process

• Process change
• Continuous improvement

Level 5: Optimizing process

No requirements

Level 0: Incomplete

Figure 23.4: The ISO/IEC 15504 process assessment model

SQAS_C23.QXD 21/9/05 8:40 PM Page 494

Achievement grades scale
Table 23.5 shows the achievement grades scale applied in association with
the ISO/IEC 15504 process attributes described above.

Accumulative achievement requirements
The ISO/IEC 15504 model likewise determines the achievements required
for each of the relevant process attributes. The accumulated requirements for
each of the capability levels are presented in Table 23.6.

495
23.6 The SPICE

projectand the IS
O

/IEC
15504 softw

are process
assessm

entstandard

Table 23.5: Achievement grades scale for ISO/IEC 15504 process attributes

Grade Rating Achievements

F (Fully achieved) 86–100% Systematic and complete or almost complete
performance of process attributes

L (Largely achieved) 51–85% Significant achievement and systematic
approach are evident. Some areas of low
performance exist

P (Partially achieved) 16–50% Some achievements and partial adoption of
systematic approach are evident. Other
aspects of process attributes are uncontrolled

N (Not achieved) 0–15% Little or no achievement of the process
attributes

Source: After Jung et al. (2001)

Table 23.6: Accumulated achievements required for an ISO/IEC 15504 capability level

Capability Process attributes Grades
level required

1 Process attributes of level 1 F or L

2 Process attributes of level 2 F or L
Process attributes of level 1 F

3 Process attributes of level 3 F or L
Process attributes of levels 1 and 2 F

4 Process attributes of level 4 F or L
Process attributes of levels 1, 2 and 3 F

5 Process attributes of level 5 F or L
Process attributes of levels 1, 2, 3 and 4 F

Source: After Jung et al. (2001)

SQAS_C23.QXD 21/9/05 8:40 PM Page 495

23.6.3 Content of the ISO/IEC 15504 assessment model

The comprehensive ISO/IEC 15504 standard consists of nine parts, as
detailed in Frame 23.1.

23.6.4 ISO/IEC 15504 processes

The ISO/IEC 15504 includes 29 processes that the organization has to per-
form successfully to reach capability level 5. The processes are grouped into
the following five subject areas:

The subject areas correspond to the generic process attributes mentioned
above, where each process or subprocess corresponds to a certain process
attribute. In general, several processes and subprocesses correspond to any
single process attribute.

The 29 processes are listed in Appendix 23B. Subprocesses as well as the
correspondence table of the processes and the process attributes are not
shown in the Appendix.

496

23
Q

uality
m

anagem
entstandards

Frame 23.1 The ISO/IEC TR 15504 Standard – structure

ISO/IEC TR 15504: 1998 Standard. Information technology – Software process
assessment:

■ Part 1: Concepts and introductory guide

■ Part 2: A reference model for processes and process capability

■ Part 3: Performing an assessment

■ Part 4: Guide to performing an assessment

■ Part 5: An assessment model and indicator guide

■ Part 6: Guide to competency of assessors

■ Part 7: Guide for use in process improvement

■ Part 8: Guide for use in determining supplier process capability

■ Part 9: Vocabulary

Subject area No. of processes

Customer–supplier (CUS) 5
Engineering (ENG) 7
Support (SUP) 8
Management (MAN) 4
Organization (ORG) 5

SQAS_C23.QXD 21/9/05 8:40 PM Page 496

23.6.5 ISO/IEC 15504 trials

The SPICE project management planned a large-scale trial of the ISO/IEC
15504 technical report version to facilitate its transformation into an effec-
tive standard. The trials had three goals:

■ To validate the model’s conformity with current standards
■ To verify its usability in determining whether software satisfies user

requirements
■ To gain experience in applying the model.

The trial’s findings were expected to contribute to significant improvement
of the SPICE 1995 report and the 1998 version 1.0 of the standard ISO/IEC
TR 15504.

The three phases of the trial were carried out during 1995–2000. The
required database was built on data collected during full-scale assessments
performed in real organizational environments. An assessment team includ-
ed at least one qualified assessor. Each organization, which had volunteered
to participate, agreed to carry out at least one full-scale assessment. Special
efforts were invested to create a diversified database, including participants
from every continent and a variety of software specializations. During these
trials, more than 200 full-scale assessments were carried out, with the SPICE
report applied in phases 1 and 2 and the 1998 technical report version of
15504 for phase 3. Detailed descriptions of some of the findings can be
found in El Emam (1998), Jung (2001) and Jung et al. (2001).

Summary

(1) Explain the benefits of the use of SQA standards.

■ The ability to make use of the most sophisticated and comprehensive profes-
sional methodologies and procedures

■ Better understanding and cooperation between users of the same standards:
– Between team members and between project teams
– Between software developers and external participants in the project
– Between suppliers and customers.

(2) Describe the contributions made by the use of standards.

■ Provision of superior professional methodologies for use in the development
process and for its management

■ Provision of SQA certification services based on independent professional qual-
ity audits

■ Provision of tools for “self-assessment” of achievements in planning and oper-
ating an organization’s SQA system.

497
S

um
m

ary

SQAS_C23.QXD 21/9/05 8:40 PM Page 497

(3) Describe the general principles underlying quality management according to
ISO 9000-3.

■ Customer focus – understanding a customer’s current and future needs
■ Leadership exercised in the creation and maintenance of a positive internal

environment in order to achieve the organization’s objectives
■ Involvement of people at all levels to further organizational goals
■ Process approach – activities and related resources perceived and managed as

a process
■ Systems approach to management – managing processes as a system
■ Continual improvement of the organization’s overall performance
■ Factual approach to decision-making – decisions based on the analysis of data

and information
■ Mutually beneficial supplier relationships – emphasis on coordination and

cooperation.

(4) Describe the ISO 9000-3 certification process.

To acquire ISO 9000-3 certification, organizations must:
■ Plan the organization’s activities for gaining certification
■ Develop the organization’s SQA system, including procedures
■ Obtain approval of procedures by the certifying organization
■ Implement the organization’s SQA system
■ Undergo certification audits of actual performance of the SQA system.

(5) Describe the principles embodied in the Capability Maturity Model (CMM).

■ Application of more highly elaborated software quality management methods
increases the organization’s capability to control quality and improve software
process productivity

■ Application of the five levels of the CMM enables the organization to evaluate
its achievements and determine what additional efforts are needed to reach the
next capability level

■ Process areas are generic, with the model defining “what” and leaving the
“how” to the implementing organizations, i.e., the choice of life cycle model,
design methodology, software development tool, programming language and
documentation standard.

(6) Describe the principles that guided the developers of ISO/IEC 15504.

■ Harmonization of independent assessment methodologies by providing a con-
ceptual framework based on “what”, not “how.”

■ Universality of applicability to all or almost all categories of software suppliers
and customer organizations as well as software categories

■ Professionalism
■ Worldwide acceptance.

498

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 498

Selected bibliography

1. El Emam, K. (1998) The Internal Consistency of the ISO/IEC 15504 Software
Process Capability Scale, International Software Engineering Research Network
Technical Report ISEERN-98-06.

2. Felschow, A. (1999) “Understanding the Capability Maturity Model (CMM)
and the role of SQA in the software development maturity”, in G. G. Schulmeyer
and J. I. McManus (eds), Handbook of Software Quality Assurance, 3rd edn,
Prentice Hall, Upper Saddle River, NJ, pp. 329–350.

3. Gartner Inc. (2001) “Describing the Capability Maturity Model”, Measure,
Special Edition 2001, Gartner Inc., http//www.gartner.com/measurements.

4. IEEE (1992) “IEEE Std 1045–1992 – IEEE Standard for Software Productivity
Metrics”, in IEEE Software Engineering Standards Collection, The Institute of
Electrical and Electronics Engineers, New York.

5. IEEE (1998a) “IEEE Std 1012–1998 – IEEE Standard for Software Verification
and Validation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

6. IEEE (1998b) “IEEE Std 730–1998 – IEEE Standard for Software Quality
Assurance Plans”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

7. IEEE/EIA (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

8. Ince, D. (1994) ISO 9001 and Software Quality Assurance, McGraw-Hill,
Maidenhead, Berkshire, UK.

9. ISO (1994) ISO 9001:1994 Quality Systems – Model for Quality Assurance in
Design, Development, Production, Installation and Servicing, International
Organization for Standardization (ISO), Geneva.

10. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

11. ISO (2000a) ISO 9000:2000 Quality Management Systems – Requirements,
International Organization for Standardization (ISO), Geneva.

12. ISO (2000b) ISO 9000:2000 Quality Management Systems – Fundamentals and
Vocabulary, International Organization for Standardization (ISO), Geneva.

13. ISO (2000c) ISO 9000:2000 Quality Management Systems – Guidelines for
Performance Improvements, International Organization for Standardization
(ISO), Geneva.

14. ISO/IEC (1998) ISO/IEC TR 15504 Parts 1–9:1998 Information Technology –
Software Process Assessment, International Organization for Standardization
(ISO), Geneva.

15. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

16. Johnson, D. L. and Brodman, J. G. (2000) “Applying CMM project planning
practices to diverse environments”, IEEE Software, 17(4), 79–88.

17. Jung, H-W. (2001) “Rating the process attribute utilizing AHP in SPICE-based
process assessment”, Software Process Improvement and Practice, 7(6),
112–122.

499
S

elected bibliography

SQAS_C23.QXD 21/9/05 8:40 PM Page 499

18. Jung, H.-W. Hunter, R., Goldenson, D. R. and El-Emam, K. (2001) “Findings
from Phase 2 of the SPICE trials”, Software Process Improvement and Practice,
7(6), 205–242.

19. Kahoe, R. and Jarvis, A. (1995) ISO 9000-3 – A Tool for Software Product and
Process Improvement, Springer, New York.

20. Keeni, G. (2000) “The evolution of quality processes at Tata Consultancy
Services”, IEEE Software, 17(4), 79–88.

21. Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Prentice Hall, Upper Saddle River, NJ.

22. Paulk, M. C. (1999) “Analyzing the conceptual relationship between ISO/IEC
15504 (Software Process Assessment) and the Capability Maturity Model for
software, Proceedings of the 1999 International Conference on Software
Quality, Cambridge, MA, 1–11.

23. Paulk, M. C. (2001) “Extreme programming from a CMM perspective”, IEEE
Software, 18(6), 19–25.

24. Paulk, M. C., Curtis B., Chrissis, M. B. and Weber, C. V. (1993) Capability
Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, ESC-TR-93-
177, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

25. Paulk, M. C., Weber, C. V. Curtis, B., Chrissis, M. B. (1995) The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

26. Pitterman, B. (2000) “Telcordia Technologies: the journey to high maturity”,
IEEE Software, 17(4), 89–96.

27. Royce, W. (2002) CMM vs. CMMI: From Conventional to Modern Software
Management, Rational Edge, Rational Software Inc., http//www.thera-
tionaledge.com.

28. Schulmeyer, G. G. (1999) “Standardization of software quality assurance –
where is it all going?”, in G. G. Schulmeyer and J. I. McManus (eds), Handbook
of Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle River, NJ,
pp. 91–113.

29. TickIT (2001) The TickIT Guide, A Guide to Software Quality Systems
Construction and Certification Using ISO 9001:2000, 5.0 edition, BSI DISC
TickIT Office, London.

30. Tingey, M. O. (1997) Comparing ISO 9000, Malcolm Baldridge, and the SEI
CMM for Software: A Reference and Selection Guide, Prentice Hall, Upper
Saddle River, NJ.

31. Wigle, G. B. and Yamamura G. (1999) “SEI CMM Level 5: Boeing Space
Transportation systems software”, in G. G. Schulmeyer and McManus J. I. (eds)
Handbook of Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle
River, NJ, pp. 351–380.

Review questions

23.1 The introduction to Part VI presents the four main benefits of SQA/software engi-
neering standards.

(1) Explain, in your own words, the benefits of using standards for a software
developer.

(2) Explain, in your own words, the benefits of using standards from the vantage
point of customers of software development services.

500

23
Q

uality
m

anagem
entstandards

SQAS_C23.QXD 21/9/05 8:40 PM Page 500

23.2 National and international SQA standards contribute to organizations due to their
distribution along three different ways.

Describe these routes in your own words and explain their importance.

23.3 The introduction to Part VI presents classes of SQA standards.

(1) Define the various classes of SQA standards.
(2) Explain the differences between the classes.

23.4 Section 23.1 presents classes of software quality management standards.

(1) Explain the differences between the two classes.
(2) Compare the scope of the two classes and discuss their differences with

respect to the goals of software quality assurance.

23.5 The evolution and diversification of the CMM methodology have produced sever-
al specialized CMM products that were offered to the software industry. At a
certain point, SEI moved toward creation of integrated CMM models.

(1) Explain the reasons for this move.
(2) List some arguments against integration.

23.6 One of the main activities of the Bootstrap Institute is training and accreditation
of assessors.

(1) Describe the accreditation process in your own words and explain the impor-
tance of each level of the accreditation process.

(2) Discuss the special role of assessors in implementing the Bootstrap
methodology.

23.7 The SPICE project performed a comprehensive trial for the early versions of the
ISO/IEC 15504 Standard.

Explain, in your own words, the contribution of the trial to development of
the standard.

Topics for discussion

23.1 Two ISO/IEC standards were completed during the last few years: a new version
of 9000-3 and the TR version of 15504. Study these standards.

(1) Compare the 9000-3 requirements with the processes to be assessed accord-
ing to 15504. Discuss differences in subject matter as well as approach.

(2) Present three examples of standard subject to demonstrate your conclusions.

23.2 ISO/IEC 9000-3 serves as a certification standard for interested software devel-
opment organizations throughout the world.

(1) The ISO and the IEC are neither capable of nor interested in carrying out cer-
tification audits. How are standards organizations assuring the performance
of audits conducted with the same method and requiring the same level of
achievement in the same subjects for organizations worldwide?

501
Topics

for discussion

SQAS_C23.QXD 21/9/05 8:40 PM Page 501

(2) Describe, in your own words, certification of an organization.
(3) Explain the unique importance of each stage of a certification audit.

23.3 CMM and CMMI are both composed of almost identical capability maturity mod-
els. While CMM bases its assessments on 18 key process areas, CMMI employs
24 process areas.

(1) Explain the differences between the CMM and CMMI process areas in rela-
tion to the respective subject matter.

(2) Indicate which of the capability levels have been substantially changed.
(3) Can you characterize the observed changes?

23.4 Section 23.4.4 describes the CMM implementation experience of four organizations.

(1) Discuss the common experience of these organizations.
(2) What additional information (excluded from the section and the referenced

papers) could be helpful for the successful completion of an evaluation?

23.5 Appendix 23B lists the ISO/IEC 15504 process areas. A parallel list of CMMI process
areas classified into capability maturity levels is provided in Appendix 23A.

(1) Discuss the differences between the ISO/IEC 15504 and the CMMI process
areas in relation to their subject matter.

(2) Regarding the CMMI capability levels, try to relate the ISO/IEC 15504
processes to the appropriate CMMI capability level. Indicate which of the
CMMI capability levels reveal substantial differences in the allocated
processes and which reveal similarity.

(3) Can you pinpoint differences between the models?

Appendix 23A CMMI process areas

502

23
Q

uality
m

anagem
entstandards

Table 23A.1: CMMI process areas

PA code Process area name Process area description

Capability maturity level 1: Initial

— No process area is required.

Capability maturity level 2: Managed

RM Requirements Management Analyzes requirements of the project’s
products and verifies that project plans and
products of planned activities conform to
requirements.

PP Project Planning Plans project activities: resources, schedules
and outputs are to achieve approval and
commitment of all levels involved in the
project.

PMC Project Monitoring and Control Performs project’s progress control: initiates
changes and corrections to solve problems
and update plans.

SQAS_C23.QXD 21/9/05 8:40 PM Page 502

503
A

ppendix
23A

CM
M

I process
areas

Table 23A.1: Continued

PA code Process area name Process area description

Capability maturity level 2: Managed (Cont.)

SAM Supplier Agreement Management Manages acquisition of products and services
from suppliers and subcontractors: contracts,
progress control and quality assurance.

MA Measurement and Analysis Develops, initiates and completes
measurements and analyses required to
support management progress control and
fulfill other information needs.

PPQA Process and Product Develops, implements and follows up
Quality Assurance application of quality assurance tools for

processes and software products.

CM Configuration Management Develops implements and operates a
configuration management system: assures
integrity of work products, configuration
status accounting, etc.

Capability maturity level 3: Defined

RD Requirements Development Prepares and analyzes product component
requirements as required for development
and cooperation with customers.

TS Technical Solution Introduces solutions to requirements:
analyses, designs and implements the
solutions for the product as a whole or its
individual components.

PI Product Integration Integrates systems and product components
developed by different teams into a completed
product that functions according to the
specified requirements.

VER Verification Assures that the product and its components
comply with specifications.

VAL Validation Assures that the product and its components
fulfill the customer’s actual use needs.

OPF Organizational Process Focus Develops and maintains the organization’s
understanding of its process and procedures
infrastructure and the activities for initiation of
corrective actions and process improvements
throughout the organization.

OPD Organizational Process Definition Develops and maintains an adequate
infrastructure of organizational processes
and procedures.

OT Organizational Training Identifies the skills and knowledge needs of
people so they can effectively and efficiently
carry out their professional tasks.

IPM Integrated Project Management Adapts the organization’s management
methodology to the project environment so
that all the managerial levels are coordinated
and share the project’s goals, planning and
progress control processes.

▲

SQAS_C23.QXD 21/9/05 8:40 PM Page 503

504

23
Q

uality
m

anagem
entstandards

Table 23A.1: Continued

PA code Process area name Process area description

Capability maturity level 3: Defined (Cont.)

IT Integrated Teaming Organizes stakeholder teams that collaborate
to support the project team in achieving
project goals.

RM Risk Management Implements continuous activities to identify
project risks and potential risks, prevent
potential risks and eliminate or reduce
damages.

DAR Decision Analysis and Resolution Establishes structured decision-making for
selection of project implementation
alternatives, based on evaluation of
alternatives according to defined criteria.

OEI Organizational Environment Establishes approach and infrastructure for
for Integration integration of teams, implements said

approach.

Capability maturity level 4: Quantitatively managed

OPP Organizational Process Develops, implements and maintains
Performance quantitative projects quality and performance

objectives that conform with organization’s
objectives.

QPM Quantitative Project Management Applies quantitative management of project’s
defined process and product metrics to
control performance and identify improvement
needs and opportunities.

Capability maturity level 5: Optimizing

OID Organizational Innovation Initiates development and implementation of
and Deployment selected incremental productivity and quality

improvements in organization’s processes
and technologies.

CAR Causal Analysis and Resolution Systematically operates corrective and
preventive actions: analyzes failure and
success data, develops and implements
preventive and corrective actions, follows
up results.

Source: Based on Compusol News, August 21, 2002, compusolsoftware.com/gocmmi.htm.

SQAS_C23.QXD 21/9/05 8:40 PM Page 504

Appendix 23B ISO/IEC 15504 model processes 505
A

ppendix
23B

IS
O

/IEC
15504 m

odelprocesses

Table 23B.1: ISO/IEC 15504 model processes

Process Process name Process description
code

CUS.1 Acquire software Activities required for a customer to obtain
contracted software, including requirements
specification, contracting the supplier,
follow-up of development process (if any) and
acceptance testing.

CUS.2 Manage customer needs Establish and maintain the customer’s
software requirements file; update files
according to changing customer’s needs.

CUS.3 Supply software Deliver and install at customer’s site a
software package that conforms with all
specified quality requirements.

CUS.4 Operate software Operate installed software correctly and
efficiently.

CUS.5 Provide customer service Provide an acceptable level of support
services to enable effective use of software
by the customers.

ENG.1 Develop system requirements Analyze and define system requirements;
and design allocate each requirement to a system

element, including delay of implementation
to later releases.

ENG.2 Develop software requirements Analyze and define system’s software
requirements.

ENG.3 Develop software design Prepare a software design that fully complies
with software requirements.

ENG.4 Implement software design Produce the software unit code, perform unit
tests and complete necessary corrections.

ENG.5 Integrate and test software Perform unit integration and integration tests.
Perform entire software integration and test
the software system. Complete integration
and software system corrections.

ENG.6 Integrate and test system Perform product system integration of
software and non-software components.
Perform system test and corrections of
detected defects.

ENG.7 Maintain system and software Perform corrective maintenance according to
user calls; perform adaptive and functional
maintenance according to customer requests.

SUP.1 Develop documentation Develop and implement documentation
procedure for process activities.

SUP.2 Perform configuration Develop and maintain software configuration
management procedures to assure integrity of software

products and support development and
maintenance processes.

▲

SQAS_C23.QXD 21/9/05 8:40 PM Page 505

506

23
Q

uality
m

anagem
entstandards

Table 23 B.1: Continued

Process Process name Process description
code

SUP.3 Perform quality assurance Establish software quality assurance system
to assure that software products comply with
requirements and standards.

SUP.4 Perform work product verification Verify that each product of a process fully
complies with its specified requirements.

SUP.5 Perform work product validation Confirm that the work product fulfills the
requirements of the system’s intended user.

SUP.6 Perform joint reviews Together with customer, maintain joint
follow-up of contract implementation; reach
understanding about required actions and
process changes to satisfy customer.

SUP.7 Perform audits Perform independent reviews and audits of
processes and work products to assure
conformity with project requirements.

SUP.8 Perform problem resolution Analyze all problems detected and assure
their removal; perform preventive actions in
cases of identified recurrent problems.

MAN.1 Manage the project Prepare project plan, including required
resources; coordinate and manage project to
produce the required project products.

MAN.2 Manage quality Define quality of project products and/or
services to fulfill quality requirements and
assure customer satisfaction.

MAN.3 Manage risk Perform periodic risk surveys to detect
risks, analyze their expected impact and carry
out necessary actions to eliminate risks and
reduce damages.

MAN.4 Manage subcontractors Select qualified subcontractors, assure
adequate contract terms, control their
performance and quality of products.

ORG.1 Engineer the business Establish an organizational environment that
supports team members in their efforts;
encourage professional achievements and
improved effectiveness and efficiency.

ORG.2 Define the process Support teams’ performance by defining
procedures, standards and library of reused
software code and design modules.

ORG.3 Improve the process Invest constant effort to improve process
effectiveness and efficiency and control
implementation.

ORG.4 Provide skilled human resources Provide adequate training and instruction to
assure that the organization’s human
resources acquire required professional skills
and knowledge.

ORG.5 Provide software engineering Provide professional teams with adequate
infrastructure integrative software tools and hardware

environments that suit their software
development and maintenance projects.

SQAS_C23.QXD 21/9/05 8:40 PM Page 506

chapter 24

SQA project process standards
– IEEE software engineering
standards

Project process standards focus on methodologies for carrying out software
development and maintenance – on the “how” of software development
project implementation. A project process standard is devised by delineating
each step of a process and its attendant requirements, design documentation
and contents, design review and review issues, software testing and its objec-
tives, and so forth.

Chapter outline

24.1 Structure and content of IEEE software engineering standards 509
24.2 IEEE/EIA Std 12207 – software life cycle processes 510

24.2.1 Purpose 510
24.2.2 The 12207 software life cycle architecture 511
24.2.3 Underlying concepts 512
24.2.4 Contents 514

24.3 IEEE Std 1012 – verification and validation 514
24.3.1 Purpose 514
24.3.2 Underlying concepts 514
24.3.3 The standard’s content 516

24.4 IEEE Std 1028 – reviews 519
24.4.1 Purpose 519
24.4.2 Underlying concepts 519
24.4.3 The standard’s content 520

Summary 521
Selected bibliography 524
Review questions 524
Topics for discussion 525
Appendix 24A: IEEE Software Engineering Standards 526
Appendix 24B: MIL-STD-498: list of Data Item
Descriptions (DIDs) 528
Appendix 24C: Task structure for a primary process according
to IEEE/EIA Std 12207 – example 528

SQAS_C24.QXD 21/9/05 8:42 PM Page 507

The main benefits gained by use of project process standards are:

■ The ability to apply the most professional software development and
maintenance methodologies available.

■ The ability to apply state-of-the-art project process procedures.

■ Better mutual understanding and coordination among teams, especially
between development and maintenance teams.

■ Greater cooperation between the software developer and external partic-
ipants in the project.

■ Better understanding and cooperation between suppliers and customers,
based on incorporation of known standards within the contract.

To better acquaint the reader with the issues involved, the benefits of stan-
dards use, the organizations involved in standards development and the ways
in which standards contribute to SQA are discussed in the introduction to
Part VI.

Due to their comparable characteristics, many SQA project process stan-
dards naturally operate as software engineering standards and vice versa.

Many organizations – international standards organizations, national
standards institutes, professional organizations and industry organizations,
among others – are occupied in developing, adapting and enforcing SQA
project process standards. A 1997 survey quoted by Moore (1999) lists 315
software standards developed by 46 different organizations. There is a grow-
ing tendency among these organizations to abandon local standards and join
in efforts to create international standards, as discussed in the introduction
to Part VI of this book.

One of the organizations leading this trend is the American Institute of
Electrical and Electronics Engineers (IEEE), and the associated IEEE
Computer Society. One of IEEE’s main contributions lies in the generation,
promulgation and promotion of standards use. A subgroup of the IEEE
standards working group was formed in 1976 to develop SQA standards,
later published as the IEEE Software Engineering Standard Collection (in
regularly updated editions). These standards, most of which may be classi-
fied as project process standards, become a major source for international
standards. For this reason – as well as space limitations – this chapter is
devoted to IEEE software engineering standards, a small sample of which
will be reviewed. The complete list of standards available at the time of writ-
ing is presented in Appendix 24A.

For discussions of the directions taken by SQA standardization and the
range of applications, see Schulmeyer (1999) and Heil (1999), respectively.

The chapter deals with the following topics:

■ The structure and content of the IEEE software engineering standards
■ IEEE/EIA Std 12207 (the framework standard)
■ IEEE Std 1012 (on verification and validation)
■ IEEE Std 1028 (on reviews).

508

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 508

After completing this chapter, you will be able to:

■ Explain the concepts embodied in IEEE/EIA Std 12207.
■ Explain the concepts embodied in IEEE Std 1012.
■ Explain the essence of the SVVP as required by IEEE Std 1012.
■ Explain the concepts embodied in IEEE Std 1028.

24.1 Structure and content of IEEE software engineering
standards

IEEE standards may be allocated to three main classes:

(1) Conceptual standards. These set forth the guiding principles and overall
approach to be applied. Examples:

■ IEEE 610.12 – Glossary of Software Engineering Terminology
■ IEEE 1061 – Software Quality Metrics Methodology
■ IEEE 1320.2 – Conceptual Modeling Language, Syntax and

Semantics for IDEF1X97
■ IEEE 1420.1a – Software Reuse, Data Model for Reuse Library

Interoperability: Assets Certification Framework
■ IEEE/EIA 12207.0 – Information Technology Software Life Cycle

Processes.

(2) Prescriptive standards of conformance. These standards address the
requirements to which a software developer must conform. A major por-
tion of the standards collection belongs to this class. Examples:

■ IEEE 828 – Software Configuration Plans
■ IEEE 829 – Software Test Documentation
■ IEEE 1012 – Software Verification and Validation
■ IEEE 1028 – Software Reviews
■ IEEE 1042.1 – Software Reuse – Model for Reuse Library

Interoperability: Basic Interoperability Data Model (BIDM).

(3) Guidance standards. These apply mainly to implementation of Class b
standard conformance requirements. Examples:

■ IEEE 1233 – Guide for Developing System Requirement
Specifications

■ IEEE/EIA 12207.1 – Guide, Information Technology – Software Life
Cycle Processes – Life Cycle Data

■ IEEE/EIA 12207.2 – Guide, Information Technology – Software Life
Cycle Processes – Implementation Technology

The 2002 list of active IEEE standards appears in Appendix 24A.

509
24.1 S

tructure and contentofIEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 509

24.2 IEEE/EIA Std 12207 – software life cycle processes

IEEE/EIA Std 12207 provides a framework that incorporates the entire spec-
trum of software life cycle processes. In this capacity, it refers the reader to other
IEEE standards as sources for specialized details and prescriptive requirements.

Evolution of the standard
IEEE/EIA Std 12207 is the product of intensive cooperative efforts exerted by
several major standards organizations for the purpose of developing a global
software life cycle processes standard. The main contributors were: (1) the US
Department of Defense (MIL-STD-498:1994), (2) ANSI, IEEE and EIA (Joint
Standard 016 (J-Std-016-1995)) and (3) the International Organization for
Standardization (ISO) and the International Electrotechnical Commission
(IEC) (ISO/IEC 12207 Standard). ISO/IEC 12207 was adopted by IEEE and
EIA under the title IEEE/EIA Std 12207. The initial step was followed by adap-
tation of portions of J-Std-016 in the development of a guide for the
implementation of the 12207 standard, and additions to the original 12207.
The supplements, a product of IEEE and EIA collaboration, transformed
ISO/IEC 12207 into a three-part standard:

■ IEEE/EIA Std 12207.0-1996 (IEEE/EIA, 1996): includes the original
ISO/IEC 12207 and new Appendices (also called annexes) contributed by
IEEE/EIA.

■ IEEE/EIA Std 12207.1-1997 (IEEE/EIA, 1997a): Guide – Life Cycle Data,
entirely developed by IEEE/EIA.

■ IEEE/EIA Std 12207.2-1997 (IEEE/EIA, 1997b): Guide – Implementation
Considerations, entirely developed by IEEE/EIA.

A further step was taken with the US Department of Defense’s May 1998
decision to replace its MIL-STD-498 with IEEE/EIA Std 12207. As both stan-
dards share the same concepts and cover similar areas, the DOD’s decision
facilitated coordination between military software developers and customers
and the civil software industry; at the same time, it enabled implementation
of an updated and comprehensive standard. Although MIL-STD-498 was
cancelled, its comprehensive and highly valued collection of templates for
software development process reports (termed “DIDs” – Data Item
Descriptions) remained available. These DIDs are listed in Appendix 24B.

24.2.1 Purpose

The purposes of IEEE/EIA Std 12207, as determined by the IEEE and EIA,
can be summarized thus:

■ To establish an internationally recognized model of common software life
cycle processes that can be referenced by the software industry worldwide.

■ To promote understanding among business parties by application of com-
monly recognized processes, activities and tasks.

510

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 510

24.2.2 The 12207 software life cycle architecture

The software life cycle architecture outlined in the standard is structured as
a four-level tree composed of:

(1) Process classes

(2) Processes

(3) Activities

(4) Tasks.

The three process classes are:

(1) Primary life cycle processes (“Primary processes”)

(2) Supporting life cycle processes (“Supporting processes”)

(3) Organizational life cycle processes (“Organizational processes”).

The two upper levels of the standard’s process architecture, namely the
process classes and their constituent processes, can be illustrated in a fish-
bone diagram: see Figure 24.1.

511
24.2 IEEE/EIA

 S
td 12207 –

 softw
are life cycle processes

Software
life cycleDocumentation

Configuration management

Quality assurance

Verification

Validation

Joint review

Audit

Problem resolution

Management

Infrastructure

Improvement

Training

Acquisition

Supply

Development

Operation

Maintenance

Organizational
processes

Supporting
processes

Primary
processes

Tailoring

Figure 24.1: IEEE/EIA Std 12207 software life cycle processes – fishbone diagram

Source: IEEE (1992). From IEEE Std 1045-1992. Copyright 1992 IEEE. All rights reserved.

SQAS_C24.QXD 21/9/05 8:42 PM Page 511

The standard provides comprehensive definitions of the tasks compris-
ing each activity. Comprehensiveness is realized in the number of tasks
assigned to each activity and the level of detail characterizing the descrip-
tions. A task definition can be of any length from one to 32 lines (almost a
full page). Additional details regarding data and task implementation are
found in the standard’s two guides (IEEE/EIA, 1997a, 1997b). Users are also
directed by the 12207 Guides to other IEEE standards, the majority of which
present prescriptive requirements related to the original task.

The detailed division of activities into tasks and the standard’s tree struc-
ture, demonstrated in an example (primary processes), are presented in
Appendix 24C.

24.2.3 Underlying concepts

Annex E of IEEE/EIA Std 12207.0 (IEEE/EIA, 1996) presents the standard’s
basic concepts, which can be classified into two groups: general concepts and
task-related concepts.

General concepts
(1) Applicability of the standard in general and its adaptation by tailoring.

Tailoring the standard allows it to be applicable to a large variety of
software projects: large, highly complex as well as small, simple projects,
stand-alone projects, and projects that represent parts within extensive
systems. A standard should be planned to fit all parties, whether exter-
nal customers (within the customer–supplier relationship) or internal
customers (developed for other departments within the organization).
However, the standard is not appropriate for projects based on purchase
of COTS software products because, as a rule, no software development
process is involved after purchases of this type. Organizations are
encouraged to tailor the standard to their needs by omitting irrelevant or
unsuitable elements. The remaining processes, activities and tasks thus
become the standard for that particular project.

(2) Applicability for all participants in the software life cycle. The standard
applies to all participants who have a role in the software life cycle:
acquirers, suppliers, developers, operators and maintainers. It provides
separate definitions of processes, activities and tasks for each.

(3) Flexibility and responsiveness to technological change. The standard
instructs its users in “how to do”, not “exactly how to do”, that is, it
leaves room for users to choose their own life cycle model, development
tools, software metrics, project milestones and documentation standards.
Despite this freedom, the standard’s highly detailed tasks as well as
required level of conformance to its principles are firmly imposed. Benefits
of the “how to do” approach include reduction of the user’s dependence
on a specific technology, a property that introduces flexibility and

512

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 512

enhances responsiveness to changes in information technology (software
and hardware).

(4) Software links to the system. The standard establishes strong links
between the software and the system it belongs to (which may be con-
structed from several software components and several hardware
components). These connections are to be implemented at each phase of
the software’s life cycle.

(5) TQM consistency. The standard is consistent with Total Quality
Management concepts, particularly:

■ Quality is integral to every software process.
■ Each process includes “built-in” quality components to be applied by

the teams responsible for each phase of the process.
■ SQA processes are dedicated to achievement of conformance with spe-

cific quality requirements coupled with organizational freedom to affect
conformity and initiate corrective actions of their choice if necessary.

(6) No certification requirements. The standard does not require certification
of the developer organization, a fact that supports its worldwide accept-
ance. It should be noted that ISO/IEC 9000-3 is closely coordinated with
ISO 12207 (adopted by IEEE and EIA as IEEE/EIA Std 12207).

(7) Baselining. The standard requires that software and hardware baseline
configuration versions be prepared in tandem with the project sched-
ule so as to establish successively improved versions of the project that
can, in turn, serve as foundations for further software development
and maintenance.

Task-related concepts
(1) Responsibility for activities and tasks. Responsibility for performance of

each activity and task is assigned to a specific unit or an individual mem-
ber of the organization.

(2) Modularity of components of the software life cycle. The components of
the software life cycle architecture, especially activities and tasks, are
structured to be modular, as cohesive as possible.

(3) Levels of required conformance. The standard defines four levels of
required conformance to the standard. They are, in descending order,
“will”, “shall”, “should” and “may”, where “will” and “shall” refer to
required activities, “should” to those recommended and “may” to those
permissible.

(4) Nature of evaluation task. The standard requires evaluations of entities
with given purposes against defined criteria. Examples of entities are
process, activity, agreement, report and plan. Examples of criteria are
traceability for requirement specifications and correctness of design.

513
24.2 IEEE/EIA

 S
td 12207 –

 softw
are life cycle processes

SQAS_C24.QXD 21/9/05 8:42 PM Page 513

24.2.4 Contents

The standard’s contents reflect the processes that appear throughout the soft-
ware’s life cycle:

■ Description of the primary life cycle processes
■ Definitions of supporting life cycle processes
■ Definitions of organizational life cycle processes
■ Six (out of the standard’s 10) Annexes, each dealing with the following

issues:

– Annexes A and B: The tailoring process
– Annex E: Discussion of the standard’s concepts
– Annex G: Objectives of the life cycle processes
– Annex H: Objectives of the life cycle data
– Annex I: Roles and relationships of the following standards: IEEE Std

1074, ISO/IEC 12207, IEEE Std 1498 and ISO 9001.

24.3 IEEE Std 1012 – verification and validation

The IEEE Std 1012-1998 (IEEE, 1998) deals with the processes for deter-
mining whether a software product conforms to its requirements
specifications (verification) and whether it satisfies the objectives of its
intended use (validation). The standard adopts a broad range of applica-
tions, as demanded by the variety of verification and validation (V&V)
methods available for use throughout the software life cycle. In response to
developments in the field, the current standard has been substantially
expanded from the 1986 version.

24.3.1 Purpose

The purposes of IEEE 1012-1998 are:

■ To establish a common framework for V&V activities and tasks for all
software life cycle processes

■ To define V&V requirements, including their inputs and outputs
■ To define software integrity levels and the V&V tasks appropriate for each
■ To define the content of a SVVP (Software V&V Plan) document.

24.3.2 Underlying concepts

The concepts expressed in IEEE 1012-1998 respond to 10 basic issues:

(1) Broad definition of V&V activities. This enables the standard to
embrace all the checking and investigative activities performed through-
out the software life cycle: review, testing, method evaluation, hazard
identification and risk analysis, among others.

514

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 514

(2) Software integrity levels and their V&V requirements. The standard
defines four integrity levels according to the criticality of a software
function, module or unit, as follows:

■ “High” – a function that affects critical system performance
■ “Major” – a function that affects important system performance
■ “Moderate” – a function that affects system performance; howev-

er, availability of an alternative method of operation enables the
system to overcome the associated difficulties

■ “Low” – a function that affects system performance only by incon-
veniencing the user.

IEEE 1012–1998 grades V&V requirements according to the integri-
ty level; see Table 2 of the standard for the minimum V&V
requirements assigned to each level. The standard also requires that
when preparing the software verification and validation plan (SVVP),
integrity levels be assigned to each component of the product.

(3) Prescriptive requirements. IEEE Std 1012–1998 is a prescriptive stan-
dard in that it lists the tasks that shall be performed in the course of
every activity initiated during the software life cycle. For each of these
tasks, the standard provides the following information:

■ Detailed description of the performance methodology
■ Required inputs
■ Required outputs
■ Definition of integrity levels for which performance of the task is

not mandatory
■ Optional V&V tasks to be performed during selected life

cycle process.

(4–6) Independence of V&V activities. To fulfill their objectives, V&V are
to be undertaken as independent activities (IV&V), classified as man-
agerial, technical and financial functions.

Managerial independence (issue 4) requires that responsibility for
performance of IV&V activities be separated from responsibility for
the general management of the development project. The IV&V team
independently decides which V&V methods are to be applied; accord-
ingly, it bears sole responsibilities for evaluation of the results. This
means that at least in theory, the team is insulated from any pressure
that may be exerted by project management.

Technical independence (issue 5) refers to the status of the V&V
team together with the analytic tools employed. Technical independence
demands that the persons belonging to the team not be involved in the
software’s development, a requirement aimed at allowing them to for-
mulate an independent understanding of the project, “a fresh
viewpoint”. It requires also that the V&V team develops its own analy-
sis and testing tools, separate from those used by the development team.

515
24.3 IEEE

S
td 1012 –

 verification and validation

SQAS_C24.QXD 21/9/05 8:42 PM Page 515

Financial independence (issue 6) requires that control over the V&V
budget not be vested in the development department but determined as
an independent part of the budget defined in the project plan.

Even superficial observation of real-life software development proj-
ects discloses a variety of independent components and associated
levels of independence. Hence, to avoid confusion and minimize ad
hoc decision making, the standard requires that the degree of V&V
independence be determined in advance, as part of the SVVP.

(7) Compliance and compatibility with international standards.
Compliance and compatibility with international and IEEE standards,
especially with IEEE/EIA Std 12207.0-1996 and ISO/IEC
12207:1995, where IEEE Std 1012-1998 complements the tasks des-
ignated in 12207, is essential. (In Appendix A of the IEEE 1012,
ISO/IEC 12207 V&V requirements and IEEE 1074 V&V require-
ments are mapped in relation to IEEE Std 1012 activities and tasks.)

We should note that special standard IEEE Std 1012a-1998 is ded-
icated to mapping the conformance of IEEE Std 1012-1998 to
IEEE/EIA Std 12207.1-1997 and IEEE/EIA Std 12207.0-1996.

(8) Special characteristics of reusable software V&V. IEEE 1012-1998
presents the difficulties of performing V&V activities for reusable soft-
ware (software from a software library, COTS software, etc.). It also
indicates possible directions to facilitate performance of these activities.

(9) Application of V&V metrics. According to IEEE 1012-1998, two
classes of metrics are to be performed:

■ Metrics for evaluation of software development processes and products
■ Metrics for evaluation of the quality and coverage of V&V activities.

While the first class of metrics measures the development process and
its products, the second is dedicated to exploring features such as the
effectiveness of V&V activities as well as metrics that belong to the
first class.

(10) Quantitative criteria for V&V tasks. A list of quantitative criteria for
evaluation of V&V tasks, including correctness, consistency, complete-
ness, accuracy, readability and testability, is defined by the standard.

24.3.3 The standard’s content

The main body of IEEE 1012-1998 is dedicated to:

■ Specification of verification and validation (V&V) software integrity levels.

■ Delineation of V&V processes.

■ Itemization of V&V reporting, administrative and documentation
requirements.

■ Explication of the software V&V plan (SVVP) outline.

516

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 516

■ Eight informative annexes that provide details to the standard’s chapters.
Four of the most important of these annexes are:
– Annex A: Mapping ISO/IEC V&V requirements to IEEE Std 1012

V&V activities and tasks
– Annex C: V&V of reusable software
– Annex D: V&V metrics
– Annex G: Optional V&V task descriptions.

The software life cycle architecture presented in the standard is structured as
a three-level tree composed of:

(1) Processes

(2) Activities

(3) Tasks.

The six processes covered by the standard are:

(1) Management

(2) Acquisition

(3) Supply

(4) Development

(5) Operation

(6) Maintenance.

The description of each process includes the requisite one to six activities,
while three to ten tasks are assigned to each activity.

Table 24.1 presents the structure of the V&V architecture in terms of
processes, activities and tasks, and demonstrates that the higher the integri-
ty level, the greater the number of tasks assigned to the pertinent activity.

517
24.3 IEEE

S
td 1012 –

 verification and validation

Table 24.1: IEEE Std 1012 V&V processes, activities and tasks structure

V&V processes V&V activities Number of V&V tasks
at integrity level:

Low 1 Moderate 2 Major 3 High 4

1. Management 1.1 Management of V&V
1.1.1 Acquisition — 1 2 2
1.1.2 Supply — 1 2 2
1.1.3 Development
1.1.3.1 Concept 2 2 4 5
1.1.3.2 Requirements 1 2 4 4
1.1.3.3 Design 1 2 4 4
1.1.3.4 Implementation 1 2 4 4
1.1.3.5 Test 1 2 4 4
1.1.3.6 Installation and checkout 1 2 4 4
1.1.4 Operation 1 2 4 4
1.1.5 Maintenance 2 2 5 5

▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 517

For the SVVP to conform with the standard’s requirements, planners have
to thoroughly understand the software system and ascertain the professional,
administrative and resource issues implicit in the V&V project as planned. The
scope of the required SVVP is demonstrated by its outline (template). Frame
24.1 duplicates the SVVP shown in standard IEEE Std 1012.

518

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24.1: Continued

V&V processes V&V activities Number of V&V tasks
at integrity level:

Low 1 Moderate 2 Major 3 High 4

2. Acquisition 2.1 Acquisition support V&V 1 3 3 3

3. Supply 3.1 Supply support V&V — 1 1 2

4. Development 4.1 Concept V&V 1 4 6 7
4.2 Requirements V&V 2 6 9 9
4.3 Design V&V 2 6 9 9
4.4 Implementation V&V 3 7 9 9
4.5 Test V&V 2 5 7 7
4.6 Installation and checkout V&V — 1 5 5

5. Operation 5.1 Operation V&V — 2 5 5

6. Maintenance 6.1 Maintenance V&V 2 5 9 9

Frame 24.1 IEEE Std 1012’s SVVP outline (template)

1 Purpose

2 Referenced Documents

3 Definitions

4 V&V Overview
4.1 Organization
4.2 Master Schedule
4.3 Software Integrity Level

Scheme
4.4 Resources Summary
4.5 Responsibilities
4.6 Tools, Techniques, and

Methods

5 V&V Processes
5.1 Process: Management
5.2 Process: Acquisition
5.3 Process: Supply
5.4 Process: Development
5.5 Process: Operation
5.6 Process: Maintenance

6 V&V Reporting Requirements

7 V&V Administrative
Requirements
7.1 Anomaly Resolution and

Reporting
7.2 Task Iteration Policy
7.3 Deviation Policy
7.4 Control Procedures
7.5 Standards, Practices and

Conventions

8 V&V Documentation
Requirements

SQAS_C24.QXD 21/9/05 8:42 PM Page 518

For each section and subsection of the SVVP outline, the IEEE 1012 sup-
plements provide detailed definitions of the requisite contents.

24.4 IEEE Std 1028 – reviews

IEEE Std 1028-1997 (IEEE, 1997) limits itself to the technical issue of “how
to perform a systematic review”. According to the standard, a systematic
review is defined as a review performed by a team according to a document-
ed procedure that produces documented results. Methodological issues, such
as when to carry out a review or what type of review is most appropriate, are
sidestepped, to be determined by other standards or by project management.

The five types of systematic reviews covered are:

■ Management reviews
■ Technical reviews (referred to as “formal design reviews” in this book)
■ Inspections
■ Walkthroughs
■ Audits.

24.4.1 Purpose

The purpose of IEEE Std 1028-1997 is to define systematic review proce-
dures that:

■ Are applicable for reviews performed throughout the software life cycle
■ Conform with the review requirements defined by other standards.

24.4.2 Underlying concepts

Three underlying concepts characterize the standard:

(1) High formality. The standard’s high formality is manifested throughout,
especially by requirements for authorization and documentation.

(2) Follow-up. The standard demands incorporation of follow-up and per-
formance approval for corrections made in all its review activities.

(3) Compliance with international and IEEE standards. IEEE Std 1028-
1997 complies with other IEEE standards and international standards
(e.g., ISO/IEC 9000-3) that prescribe performance of reviews).
Especially noteworthy are IEEE/EIA Std 12207.0-1996, ISO/IEC
12207:1995 and IEEE Std 1012-1998, discussed earlier in the chapter.
Appendix A of the standard presents its relationship to several other
standards applied in the software industry.

519
24.4 IEEE

S
td 1028 –

 review
s

SQAS_C24.QXD 21/9/05 8:42 PM Page 519

24.4.3 The standard’s content

The main portion of IEEE Std 1028-1997 entails:

■ Detailed definition of review requirements

■ An appendix that shows the standard’s relationships to life cycle process-
es described in IEEE 730-1989, IEEE 1012-1998, IEEE 1074-1995 and
ISO/IEC 12207:1995.

The standard devotes one chapter each (Chapters 4–8) to five types of
reviews. It also applies the identical nine-component structure to all the
requirements of the various review types, although the number of compo-
nents varies according to the review’s characteristics. For instance, the last
two components of this structure, namely “data collection recommendation”
and “improvement”, are mentioned only in the chapters dealing with inspec-
tions and walkthroughs.

The components of the review requirement are documented in the
following structure:

(1) Introduction

■ Purposes of each type of review
■ Typical examples of each type of software product.

(2) Responsibilities. The responsibilities section deals with participants in the
review and the role of each. The standard provides a list of participants,
some of whom are mandatory and others optional. For example, the
mandatory participants of a technical review are decision-maker, review
leader, recorder and technical staff. Optional participants are manage-
ment staff, other team members and customer or user representatives.

No optional participants are listed for inspections and walk-
throughs, as these are peer reviews, or for audits, as this type of review
depends solely on the auditors’ professional qualifications.

(3) Input. This section deals with data inputs. Data are divided into
mandatory and optional items, and vary with review type. The manda-
tory data items are common to all review types, as might be expected.
They focus on a statement of the review’s objectives and the software
products to be reviewed.

For example, the data items mandatory for a walkthrough are:

■ A statement of objectives
■ The software product being examined
■ Standards in effect for the acquisition, supply, development, opera-

tion, and/or maintenance of the software product.

Optional data items are:

■ Regulations, standards, guidelines, plans and procedures against
which the software product is to be examined

520

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 520

■ Anomalies.

(4) Entry criteria. The review’s authorization and performance precondi-
tions represent what are otherwise known as entry criteria. Criteria
common to all review types entail:

■ A statement of the review’s objectives
■ Availability of the required input data.

(5) Procedure. Review procedures are required to include:

■ Management preparations
■ Planning of the review
■ Preparation by team members
■ Examination of the software product, including determination of

required reworked software and corrections
■ Follow-up of performance of corrective activities.

(6) Exit criteria. The exit criteria specify what must be accomplished before
the review can be officially concluded. These criteria include:

■ Completion of procedural activities
■ Follow-up and approval of satisfactory completion of action items or

corrective and preventive actions
■ Completion of required review documentation.

(7) Output. The standard specifies the mandatory output items for each
type of review. Additional items may be required by the organization,
other local procedures, or specific cases.

(8) Data collection recommendations. It is recommended that inspection
and walkthrough teams collect data related to anomalies encountered,
where each case is classified and ranked according to its severity. This
data will then be used to study the effectiveness and efficiency of current
practices; they are also expected to stimulate improvements of methods
and procedures.

(9) Improvements. The accumulated inspection and walkthrough data shall
be analyzed in order to:

■ Formulate improved procedures
■ Update checklists used by the participants
■ Improve software development processes.

Summary

(1) Explain the concepts underlying IEEE/EIA Std 12207.

The concepts may be classified into general concepts and task-related concepts
as follows:

General concepts

(a) Applicability of the standard and its adaptation by tailoring
The standard is applicable to projects that vary by size, complexity and user.

521
S

um
m

ary

SQAS_C24.QXD 21/9/05 8:42 PM Page 521

Much of its broad applicability is due to tailoring within the limits allowed
to users.

(b) Applicability for all participants in the software life cycle
The standard serves all the participants of the software life cycle – acquirers,
suppliers, developers, operators and maintainers – and provides separate sec-
tions for each participant.

(c) Flexibility and responsiveness to technological changes
The standard instructs “how to do” and not “exactly how to do” a project;
hence, users can choose their life cycle model, development tools, software
metrics, project milestones and product and documentation standards. As a
consequence, this approach contributes to reduced dependence on specific
technologies coupled with increased responsiveness to technological change.

(d) Software links with its system
For each phase of the life cycle, the standard establishes strong links between
the software and the system of which it is a part.

(e) TQM consistency
The standard is consistent with Total Quality Management concepts.

(f) No certification of developer organizations
The standard does not require certification of the developer organization.

(g) Baselining
The standard requires that the software and hardware baseline configuration
versions be prepared according to the project schedule.

Task-related concepts

(a) Allocation of responsibility for activities and tasks
The performance of each process, activity and task is assigned to a unit or
individual.

(b) Modularity of software life cycle components
Components of the software life cycle, especially activities and tasks, are to be
modular as much as possible.

(c) Levels of required conformance to tasks
The standard defines four levels of required conformance, in descending order:
“will”, “shall”, “should” and “may”.

(d) Nature of evaluation tasks
The standard requires that evaluation of entities (process, activity, report, etc.)
with given purpose be conducted against their defined criteria.

(2) Explain the concepts underlying IEEE Std 1012.

(a) A broad definition of V&V activities
The standard views V&V activities broadly, to be performed throughout the soft-
ware life cycle. These include reviews, tests, evaluations, risk analyses, hazard
analyses, retirement assessments, etc.

(b) Software integrity levels and adapted V&V requirements
The standard distinguishes four integrity levels – high, major, moderate and low
– according to the criticality of the software function, module or unit. Graded

522

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 522

requirements are attuned to the integrity level. The standard requires that
integrity levels shall be assigned to components as early as the SVVP.

(c) Prescriptive standard requirements
The IEEE Std 1012-1998 is a prescriptive standard that lists the tasks to be per-
formed for every activity throughout the software life cycle.

(d) Required independence of V&V activities
Independent V&V (IV&V) are defined in the standard as managerial, technical and
financial independence in the performance of the V&V process. The degree of inde-
pendence will be determined in the SVVP as part of the V&V organization plan.

(e) Compliance with international and IEEE standards
The standard requires compliance with international and IEEE standards, espe-
cially IEEE/EIA Std 12207.0-1996.

(f) Recognition of special characteristics of V&V of reusable software
The difficulties of performing V&V activities for reusable software are recog-
nized, and possible directions to performing V&V activities are shown.

(g) Application of V&V metrics
The Standard requires two classes of metrics:
– Metrics for evaluation of software development process and products
– Metrics for quality and coverage evaluation of V&V activities.

(h) Detailed quantitative criteria for V&V tasks
Specific quantitative criteria for V&V tasks – including correctness, consistency,
completeness, accuracy, readability and testability – are defined.

(3) Explain the essence of the SVVP as required by IEEE Std 1012.

The SVVP is designed to thoroughly delineate a plan for V&V activities that will
include all aspects of their performance, including the schedule, resources, respon-
sibilities, tools and techniques to be used. In addition, the SVVP documents
administrative directions concerning anomaly-resolution procedures, task iteration
and deviation policies, performance control procedures and the standard practices
and conventions that have to be applied. Special instructions are given for docu-
mentation.

(4) Explain the concepts underlying IEEE Std 1028.

The standard applies the following concepts:
(a) High formality

Review processes are formal, as realized in authorization and documentation
contents requirements.

(b) Follow-up
The standard extends the review process to include follow-up and approval of
satisfactory performance of the required corrections listed in the review docu-
ment, irrespective of the type of review.

(c) Compliance with international and IEEE standards
The Standard complies with other IEEE standards and international standards,
e.g., ISO/IEC 9000-3, pertaining to performance of reviews.

523
S

um
m

ary

SQAS_C24.QXD 21/9/05 8:42 PM Page 523

Selected bibliography

1. Heil J. H. (1999) “Practical application of software quality assurance to mission
critical software”, in G. G. Schulmeyer, and J. I. McManus (eds), Handbook of
Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle River, NJ, pp.
445–512.

2. IEEE (1997) “IEEE Std 1028-1997 – IEEE Standard for Software Reviews”, in
IEEE Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

3. IEEE (1998) “IEEE Std 1012-1998 – IEEE Standard for Software Verification
and Validation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

4. IEEE/EIA (1996) “IEEE/EIA Std 12207.0-1996 – IEEE/EIA Standard – Industry
Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

5. IEEE/EIA (1997a) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Life Cycle Data”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

6. IEEE/EIA (1997b) “IEEE/EIA Std 12207.1-1997 – IEEE/EIA Guide – Industry
Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes – Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

7. Moore, J. W. (1999) “An integrated collection of software engineering stan-
dards”, IEEE Software, 16(6), 51–57.

8. Schulmeyer, G. G. (1999) “Standardization of software quality assurance –
where is it all going?”, in G. G. Schulmeyer, and J. I. McManus (eds) Handbook
of Software Quality Assurance, 3rd edn, Prentice Hall, Upper Saddle River, NJ,
pp. 91–113.

Review questions

24.1 IEEE/EIA Std 12207 is considered an international standard. Explain, in your own
words, why this status is warranted.

24.2 Consider the purpose of the two standards IEEE Std 1012 and IEEE Std 1028.

(1) Explain, in your own words, the purpose of each of the standards.
(2) In what way do the standards complement each other?

24.3 The 1998 version of IEEE Std 1012 introduces the notion of “V&V metrics” in one
of its Annexes. This notion was absent from the 1986 version (reaffirmed 1992).

(1) Explain, in your own words, the notion of “V&V metrics” and how it should
be implemented.

(2) Describe the two classes of metrics defined in the Annex.
(3) Discuss the contribution of V&V metrics to software quality and to the effec-

tiveness of V&V activities.

524

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 524

24.4 The “master schedule”, a document that describes the project life cycle and its
milestones together with the planned V&V activities, is one of the IEEE Std 1012
requirements for a SVVP (see Frame 24.1).

(1) Describe, in your own words, the coordination activities that the master
schedule’s planner has to perform in the process of preparing the document.

(2) Discuss the importance of the master schedule and its contribution to the
project’s success.

24.5 “Task iteration policy”, which refers to the criteria and procedure applied to
determine which V&V tasks shall be repeated in case of changes in input or
changes in V&V procedures, is another of the IEEE Std 1012 administrative
requirements for an SVVP (see Frame 24.1).

(1) Describe two situations where you would expect a decision to be made
about repeating a V&V task.

(2) Explain, in your own words, the importance of task iteration policy in such cases.

Topics for discussion

24.1 The 10 concepts at the foundation of IEEE/EIA Std 12207 are listed in Section
24.2.2.

Examine the concepts and determine which of these contributes the most to
the standard’s wide applicability. Explain your choice.

24.2 IEEE/EIA Std 12207 sets levels of conformance to meet the standard’s requirements.

(1) List the four levels of conformance and explain, in your own words, the
significance of each level.

(2) Discuss the contribution made by clear definition of these levels.

24.3 IEEE Std 1012 dedicates a special Appendix to V&V of reusable software.

(1) List the kinds of software that are considered to be “reusable”.
(2) Explain the special characteristics of “reusable software” in relation to

V&V activities.
(3) List what you consider to be options for overcoming the difficulties inherent

in performing V&V of “reusable software”.

24.4 IEEE Std 1028 requires the review team to determine the needed rework and cor-
rections, and include these requirements in the review documentation. It also
requires that the review team follow up the corrections and approve their satis-
factory completion.

(1) Detail the activities that reviewers are expected to perform when conducting
the follow-up.

(2) Explain, in your own words, the importance of follow-up within the frame-
work of software quality assurance.

525
Topics

for discussion

SQAS_C24.QXD 21/9/05 8:42 PM Page 525

24.5 Some senior system analysts claim that as a result of their experience, the SVVP
required in IEEE Std 1012 is simply a “waste of time”, and that a development
(project) plan should suffice.

(1) Do you agree with this claim?
(2) List the arguments backing up your position. Base them on a comparison of

the contents of the two documents (an SVVP and a project plan).

24.6 The 1998 version of IEEE Std 1012 introduces the notion “level of integrity”,
absent from the 1986 version (reaffirmed 1992).

(1) Address the contribution of “level of integrity” to the effectiveness of the
standard’s prescribed V&V activities.

(2) How does your response to (1) influence the standard’s applicability?

24.7 IEEE Std 1012-1998 defines the term “independence of V&V” (absent from the
1986 version).

(1) Explain, in your own words, the three components of V&V and how inde-
pendence is measured.

(2) Discuss the contribution of greater V&V independence to software quality.
(3) Suggest three (real-life or imaginary) examples of organizations that carry

out V&V activities of software development projects. Define the managerial,
technical and financial degree of independence based on the conditions
surrounding each example.

(4) Try to grade your examples according to their integrity level. Support your
grading with the appropriate arguments.

(5) Discuss the contribution of this addition of V&V independence to
software quality.

Appendix 24A IEEE Software Engineering Standards

Updated July 2002

610.12-1990 IEEE Standard Glossary of Software Engineering Terminology
730-1998 IEEE Standard for Software Quality Assurance Plans
828-1998 IEEE Standard for Software Configuration Management Plans
829-1998 IEEE Standard for Software Test Documentation
830-1998 IEEE Recommended Practice for Software Requirements Specifications
982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable Software
1008-1987 (R1993) IEEE Standard for Software Unit Testing
1012-1998 IEEE Standard for Software Verification and Validation
1012a-1998 IEEE Standard for Software Verification and Validation – Supplement

to 1012-1998 – Content Map to IEEE 12207.1
1016-1998 IEEE Recommended Practice for Software Design Descriptions
1028-1997 IEEE Standard for Software Reviews
1044-1983 IEEE Standard Classification for Anomalies
1045-1992 IEEE Standard for Software Productivity Metrics
1058-1998 IEEE Standard for Software Project Management Plans
1058.1-1987 (R1993) IEEE Standard for Software Project Management Plans
1061-1998 IEEE Standard for Software Quality Metrics Methodology

526

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 526

1062-1998 IEEE Recommended Practice for Software Acquisition (includes IEEE
1062a)

1063-2001 IEEE Standard for Software User Documentation
1074-1997 IEEE Standard for Developing Software Life Cycle Processes
1219-1998 IEEE Standard for Software Maintenance
1220-1998 IEEE Standard for the Application and Management of the Systems

Engineering Process
1228-1994 IEEE Standard for Software Safety Plans
1233-1998 IEEE Guide for Developing System Requirements Specifications

(including IEEE 1233a)
1320.1-1998 IEEE Standard for Functional Modeling Language – Syntax and

Semantics for IDEF0
1320.2-1998 IEEE Standard for Conceptual Modeling Language – Syntax and

Semantics for IDEF1X97 (IDEF object)
1362-1998 IEEE Guide for Information Technology – System Definition – Concept

of Operation Document
1420.1-1995 IEEE Standard for Information Technology – Software Reuse – Data

Model for Reuse Library Interoperability: Basic Interoperability Data
Model (BIDM)

1420.1a-1996 IEEE Supplement to Standard for Information Technology – Software
Reuse – Data Model for Reuse Library Interoperability: Asset
Certification Framework

1420.1b-1999 IEEE Trial-use Supplement to IEEE Standard for Information
Technology – Software Reuse – Data Model for Reuse Library
Interoperability: Intellectual Property Rights Framework

1462-1998 Information Technology – Guideline for the Evaluation and Selection
of CASE tools

1465-1998 (ISO/IEC 12119:1998) Information Technology – Software Packages –
Quality Requirements and Testing

1471-2000 IEEE Recommended Practice for Architectural Description of Software
Incentive Systems

1490-1998 IEEE Guide (©IEEE) – Adoption of PMI Standard – A Guide to the
Project Management Body of Knowledge (©PMI)

1517-1999 IEEE Standard for Information Technology – Software Life Cycle
processes – Reuse Processes

1540-2001 IEEE Standard for Software Life Cycle Processes – Risk Management
J-Std-016-1995 EIA/IEEE Interim Standard for Information Technology – Software

Life Cycle Processes – Software Development Acquirer – Supplier
Agreement (Issued for Trial Use)

12207.0-1996 IEEE/EIA Standard: Industry Implementation of International
Standard ISO/IEC 12207:1995 Standard for Information Technology –
Software Life Cycle Processes

12207.1-1997 IEEE/EIA Standard: Industry Implementation of International
Standard ISO/IEC 12207:1995 Standard for Information Technology –
Software Life Cycle Processes – Life Cycle Data

12207.2-1997 IEEE/EIA Standard: Industry Implementation of International
Standard ISO/IEC 12207:1995 Standard for Information Technology –
Software Life Cycle Processes – Implementation Considerations

14143.1-2000 Implementation Note for IEEE Adoption of ISO/IEC 14143–1:1998,
Information Technology – Software Measurement – Functional Size
Measurement – Part 1: Definition of Concepts

527
A

ppendix
24A

IEEE
S

oftw
are Engineering S

tandards

SQAS_C24.QXD 21/9/05 8:42 PM Page 527

Appendix 24B MIL-STD-498: list of Data Item
Descriptions (DIDs)

DID code DID name

COM Computer Operator Manual

CPM Computer Programming Manual

DBDD DataBase Design Description

FSM Firmware Support Manual

IDD Interface Design Description

IRS Interface Requirements Specification

OCD Operational Concept Description

SCOM Software Center Operator Manual

SDD Software Design Description

SDP Software Development Plan

SIOM Software Input/Output Manual

SIP Software Installation Plan

SPS Software Product Specification

SRS Software Requirements Specification

SSDD System/Subsystem Design Description

SSS System/Subsystem Specification

STD Software Test Description

STP Software Test Plan

STR Software Test Report

STRP Software TRansition Plan

SUM Software User Manual

SVD Software Version Description

Appendix 24C Task structure for a primary process
according to IEEE/EIA Std 12207 – example

Table 24C.1 demonstrates the structure of a process class by presenting the
processes, activities and tasks of the primary process affected. The table was
prepared according to Sections 5.1 to 5.5 of the standard (IEEE/EIA, 1996).

Note that whenever “software development” is mentioned, it refers also
to “software services” as found in the original. Also conformance levels are
indicated by the wording.

528

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

SQAS_C24.QXD 21/9/05 8:42 PM Page 528

529
A

ppendix
24C

Task
structure for prim

ary
process

according to IEEE/EIA
 S

td 12207
Table 24C.1: Tasks, activities and processes for primary processes – IEEE/EIA Std 12207

Process Activities Tasks

1. Acquisition – 1.1 Initiation 1.1.1 Acquirer will describe a concept or
performed by need for the system or software product
the acquirer requested.

1.1.2 Acquirer will define and analyze the
system requirements.
1.1.3 If the requirement definition and
analysis are performed by the supplier, the
acquirer will approve.
1.1.4 The requirement definition and
analysis may be performed by the acquirer
or the supplier.
1.1.5 The development process defined in
the Table’s Section 3 should be applied
when performing 1.1.2 and 1.1.4.
1.1.6 Acquirer will consider options for
acquisition and analyze each option.
1.1.7 For COTS software options, specified
conditions will be satisfied.
1.1.8 Acquirer should prepare an
acquisition plan including specified
subjects.
1.1.9 Acquirer should define and
document the acceptance strategy,
including acceptance criteria.

1.2 Request for 1.2.1 Acquirer should prepare an RFP for
proposal preparation (RFP) the acquisition option selected in 1.1.6 to

include specified subjects.
1.2.2 Acquirer should tailor the standard’s
processes, activities and tasks. The
acquirer should specify the applicable
supporting processes and their performing
organizations to be considered in the
suppliers’ proposals.
1.2.3 Acquirer will define milestones as
part of acquisition monitoring.
1.2.4 The RFP should be given to the
organization performing the project.

1.3 Contract preparation 1.3.1 Acquirer should establish procedures
and updating for supplier selection and proposal

evaluation.
1.3.2 Acquirer should select supplier
based on supplier’s proposal, capabilities
and other factors.
1.3.3 Acquirer will tailor the standard to
the contract and attach it as a reference.
1.3.4 Acquirer will negotiate details of the
contract.
1.3.5 Acquirer will control contract changes
during negotiations according to agreed
mechanism. Proposed changes shall be
explored prior to their introduction. ▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 529

530

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24C.1: Continued

Process Activities Tasks

1. Acquisition – 1.4 Supplier monitoring 1.4.1 Acquirer will monitor supplier’s
performed by activities according to joint review, audit,
the acquirer verification and validation processes.

1.4.2 Acquirer will cooperate with supplier
for timely provision of information and
resolution of pending items.

1.5 Acceptance and 1.5.1 Acquirer should prepare for
completion acceptance, including detailed test

procedures and test cases.
1.5.2 Acquirer will conduct acceptance
activities for all deliverable software
products.
1.5.3 Acquirer should take responsibility
for configuration management of accepted
software products.

2. Supply – 2.1 Initiation 2.1.1 Supplier conducts review of RFP
performed by according to its policies and other
the supplier regulations.

2.1.2 Supplier should decide whether to
bid or accept the contract.

2.2 Preparation of response 2.2.1 Supplier should prepare response to
RFP, including recommended tailoring of
standard to response conditions.

2.3 Contract 2.3.1 Supplier shall negotiate and enter
into a formal contract with acquirer.
2.3.2 Supplier may request changes in
contract in accordance with agreed change
control mechanism.

2.4 Planning 2.4.1 Supplier shall review requirements
and define framework for assuring quality
of products, including management of SQA
process.
2.4.2 If not stipulated by the contract,
supplier shall define the appropriate life
cycle model and map the
standard-required processes, activities and
tasks onto the model.
2.4.3 Supplier shall establish requirements
for management and quality assurance
plan, including resources and acquirer
involvement.
2.4.4 Supplier shall consider software
product development options following
risk analysis of each option.
2.4.5 Supplier shall prepare project
management plans based on the selected
development options.

SQAS_C24.QXD 21/9/05 8:42 PM Page 530

531
A

ppendix
24C

Task
structure for prim

ary
process

according to IEEE/EIA
 S

td 12207
Table 24C.1: Continued

Process Activities Tasks

2. Supply – 2.5 Execution and control 2.5.1 Supplier shall execute the project
performed by management plans.
the supplier 2.5.2 Supplier shall develop the software

product in accordance with development,
operation and maintenance processes.
2.5.3 Supplier shall monitor and control
the progress of development and quality of
software products, including problem
identification, analysis and resolution.
2.5.4 Supplier shall monitor and control
subcontractors in accordance with the
acquisition contract, relevant parts of
which have been transferred from the
primary contract to the subcontractor’s
contract.
2.5.5 Supplier shall interface with an
independent verification, validation or test
agent as specified in the contract.
2.5.6 Supplier shall interface with other
parties specified in the contract and
project plan.

2.6 Review and evaluation 2.6.1 Supplier should coordinate contract
review of activities, interfaces and
communication with the acquirer.
2.6.2 Supplier shall conduct or support
informal meetings, acceptance reviews,
acceptance testing and audits as specified
in the project and project plans.
2.6.3 Supplier shall perform verification
and validation to demonstrate that the
software products fully satisfy the
requirements.
2.6.4 Supplier shall make available reports
of evaluations, reviews, audits, testing and
problem resolution as specified in the
contract with the acquirer.
2.6.5 Supplier shall provide acquirer
access to its and subcontractor’s facilities
for review of software product as specified
in the contract and project plans.
2.6.6 Supplier shall perform the specified
software quality assurance activities.

2.7 Delivery and completion 2.7.1 Supplier shall deliver the software
products as specified in the contract.
2.7.2 Supplier shall assist the acquirer in
support of delivered software products as
specified in the contract. ▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 531

532

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24C.1: Continued

Process Activities Tasks

3. Development – 3.1 Process implementation 3.1.1 If not stipulated in the contract,
performed by developer shall select an appropriate life
the developer cycle and map the standard’s activities

and tasks onto the model.
3.1.2 Developer shall place outputs under
configuration management, perform
change control, resolve problems and non-
conformance of software products, and
document outputs, problems and
resolutions.
3.1.3 Developer shall select, tailor and use
those standards, methods and
development tools appropriate for
performance and documentation of the
project.
3.1.4 Developer shall plan the conducting
of the development activities: specific
methods, tools, actions and
responsibilities. Plans are to be
documented and executed.
3.1.5 Non-deliverable items may be
employed during the development process,
but must be independent of any
deliverable item. If such item is not
independent it should be delivered.

3.2 System requirements 3.2.1 Developer shall analyze the intended
analysis use of the system to specify the system

requirements, that fully describe system
functions and capabilities. System
requirements specifications are to be
documented.
3.2.2 System requirements shall be
evaluated according to listed criteria;
results will be documented.

3.3 System architectural 3.3.1 Top-level system architecture shall
design be established, identifying hardware items,

software and manual-operation items to
ensure full coverage of requirements. The
architectural items and their requirements
shall be documented.
3.3.2 System architecture and
requirements for the items shall be
evaluated according to listed criteria;
results shall be documented.

3.4 Software requirements 3.4.1 Developer shall establish and
analysis document software requirements including

quality specifications that are defined
according to listed characteristics.
3.4.2 Developer shall evaluate the
software requirements according to listed
criteria and document the results.

SQAS_C24.QXD 21/9/05 8:42 PM Page 532

533
A

ppendix
24C

Task
structure for prim

ary
process

according to IEEE/EIA
 S

td 12207
Table 24C.1: Continued

Process Activities Tasks

3. Development – 3.4.3 Developer shall conduct joint review
performed by of requirements. A baseline for the
the developer requirements shall be established after

the review.

3.5 Software architectural 3.5.1 Top-level software architecture of the
design software shall be established, software

components identified and full coverage of
requirements ensured. Software
components shall be refined to detailed
design and documented.
3.5.2 Developer shall develop and
document top-level design for the
interfaces.
3.5.3 Developer shall develop and
document top-level design for the
database.
3.5.4 Developer should develop and
document preliminary versions of user
documentation.
3.5.5 Developer shall develop and
document preliminary test requirements
and software integration schedules.
3.5.6 Developer shall evaluate the
architectural items and design performed
according to listed criteria and document
the results.
3.5.7 Developer shall conduct joint
reviews.

3.6 Software detailed 3.6.1 Developer shall perform detailed
review design for each software component and

refine it to lower levels, including software
units to be coded as units. Developer shall
ensure full coverage of software
requirements and document the detailed
design.
3.6.2 Developer shall develop and
document detailed design for the
interfaces.
3.6.3 Developer shall develop and
document detailed design for the
database.
3.6.4 Developer shall update user
documentation as necessary.
3.6.5 Developer shall define and document
test requirements and schedule for unit
testing. Testing requirements include
stress testing of units.
3.6.6 Developer shall update test
requirements and schedule for software
integration.

▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 533

534

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24C.1: Continued

Process Activities Tasks

3. Development – 3.6 Software detailed 3.6.7 Developer shall evaluate detailed
performed by review design and test requirements according to
the developer listed criteria and document the results.

3.6.8 Developer shall conduct joint
reviews.

3.7 Software coding 3.7.1 Developer shall develop and
and testing document software units, database and

the required test procedures.
3.7.2 Developer shall test each unit and
database, ensure that all requirements are
satisfied and document the results.
3.7.3 Developer shall update user
documentation as necessary.
3.7.4 Developer shall update test
requirements and schedule for software
integration.
3.7.5 Developer shall evaluate software
code and test results according to listed
criteria and document the results.

3.8 Software integration 3.8.1 Developer shall develop and
document integration plan for software
units and components.
3.8.2 Developer shall integrate software
units and components into aggregates and
tests the aggregates. Developer shall
document the integration test results.
3.8.3 Developer shall update user
documentation as necessary.
3.8.4 Developer shall develop and
document software qualification test
procedures, including sets of tests, test
cases and procedures.
3.8.5 Developer shall evaluate integration
plan, design, code, test and test results,
and user documentation according to
listed criteria, and document the results.
3.8.6 Developer shall conduct joint
reviews.

3.9 Software qualification 3.9.1 Developer shall conduct and
testing document qualification tests, and ensure

that each requirement is tested for
compliance.
3.9.2 Developer shall update user
documentation as necessary.
3.9.3 Developer shall evaluate design,
code, test and test results and user
documentation according to listed criteria
and document the results.
3.9.4 Developer shall support audits and
document the results.

SQAS_C24.QXD 21/9/05 8:42 PM Page 534

535
A

ppendix
24C

Task
structure for prim

ary
process

according to IEEE/EIA
 S

td 12207
Table 24C.1: Continued

Process Activities Tasks

3. Development – 3.9 Software qualification 3.9.5 Upon successful audits, developer
performed by testing shall update and prepare the deliverable
the developer software products and establish a baseline

for the design and code of the software
item.

3.10 System integration 3.10.1 Software configuration items shall
be integrated with hardware and other
system configuration items and manual
operations into the system. System
integration shall be tested and the results
documented.
3.10.2 Test set, test cases and test
procedure shall be developed for each
system qualification requirement.
3.10.3 The integrated system shall be
evaluated according to listed criteria and
the results documented.

3.11 System qualification 3.11.1 System qualification testing shall be
testing conducted to ensure full coverage of

system requirements until the system is
ready for delivery. Test results shall be
documented.
3.11.2 System shall be evaluated
according to the listed criteria and the
results shall be documented.
3.11.3 Developer shall support audits and
document the results.
3.11.4 Upon successful audits, developer
shall update and prepare the deliverable
software products for installation and
support acceptance testing, as well as
establish baselines for the design and
code for each software configuration item.

3.12 Software installation 3.12.1 Developer shall develop and
document plans to install software
products in the target environment
according to the contract. Developer shall
support acquirer in setup and parallel
ongoing activities as required by the
contract.
3.12.2 Developer shall install software
products according to plans, including
database initialization as specified by the
contract. Installation events shall be
documented.

3.13 Software acceptance 3.13.1 Developer shall support acquirer’s
support acceptance reviews and tests of software

products, considering the joint reviews,
audits and software and system
qualification testing. The results shall be
documented.

▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 535

536

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24C.1: Continued

Process Activities Tasks

3. Development – 3.13 Software acceptance 3.13.2 Developer shall complete and
performed by support deliver software products according to
the developer the contract.

3.13.3 Developer shall provide training and
support the acquirer as specified in the
contract.

4. Operation 4.1 Process 4.1.1 Operator shall develop plan and
processes – implementation operational standards for performing
performed by activities and tasks. Plans shall be
the operator documented and executed.

4.1.2 Operators shall establish procedures
for operation, including problem resolution
and feedback. Problems are to be recorded
and treated by the problem resolution
process.
4.1.3 Operator shall establish test
procedures for testing software products in
the operational environment and for
handling problem reports, and
modification requests and release of
software products for operational use.

4.2 Operational testing 4.2.1 Operator shall perform operational
testing for new releases of software
products. On satisfying the specified
criteria, the new software product will be
released for operational use.
4.2.2 Operator shall ensure that software
code and database initialize, execute and
terminate as planned.

4.3 System operation 4.3.1 The system shall operate in its
intended environment according to user
documentation.

4.4 User support 4.4.1 Operator shall provide assistance
and consultation to the users as
requested. Requests and their handling
process shall be recorded and monitored.
4.4.2 Operator shall forward modification
requests for resolution. The resulting
planned actions shall be reported to the
originator of the request, and resolutions
shall be monitored.
4.4.3 If a temporary problem-resolving
action has been initiated, system
improvements shall be applied before a
permanent solution is implemented.

5. Maintenance 5.1 Process 5.1.1 Maintainer shall develop, document
processes – implementation and execute plans and procedure for
performed by conducting maintenance activities
maintainer and tasks.

SQAS_C24.QXD 21/9/05 8:42 PM Page 536

537
A

ppendix
24C

Task
structure for prim

ary
process

according to IEEE/EIA
 S

td 12207
Table 24C.1: Continued

Process Activities Tasks

5. Maintenance 5.1 Process 5.1.2 Maintainer shall establish
processes – implementation procedures for handling problem reports,
performed by and modification requests and feedback to
maintainer users. Problems shall be recorded and

treated by the problem resolution process.
5.1.3 Maintainer shall implement
configuration management system for
managing modifications.

5.2 Problem and 5.2.1 Maintainer shall analyze problem
modification analysis reports and modification requests for their

impact on the organization. Systems shall
be interfaced according to listed criteria.
5.2.2 Maintainer shall replicate or verify
the problem.
5.2.3 Maintainer shall consider options for
implementing modifications.
5.2.4 Maintainer shall document the
problem reports and modification
requests.
5.2.5 Maintainer shall obtain approval for
modifications according to contract.

5.3 Modification 5.3.1 Maintainer shall conduct analysis to
implementation determine which documentation, software

units and software versions demand
modification. Results shall be documented.
5.3.2 Maintainer shall use development
process to implement modifications.
Modification requirements shall include
test and evaluation criteria. Correct and
complete modification shall be assured, as
will original unmodified and unaffected
parts. The test results shall be
documented.

5.4 Maintenance review/ 5.4.1 Maintainer shall review modification
acceptance together with the modifications authorizer.

5.4.2 Maintainer shall obtain approval of
satisfactory completion of the
modifications.

5.5 Migration 5.5.1 If software product is migrated to a
new operational environment, it shall be
assured that software product, data
produced or modified during migration
conforms with the standard.
5.5.2 A migration plan shall be developed,
documented and executed.
5.5.3 Users shall be notified of the
migration plan, including the reason for
migration, description of the new
environment and support available for the
previous environment once item is
removed.

▲

SQAS_C24.QXD 21/9/05 8:42 PM Page 537

538

24
SQ

A
 projectprocess

standards
–

 IEEE
softw

are engineering standards

Table 24C.1: Continued

Process Activities Tasks

5. Maintenance 5.5 Migration 5.5.4 Parallel operation of new and old
processes – environments may be conducted to assure
performed by that smooth transition and training are
maintainer provided during this period.

5.5.5 All concerned persons shall be
notified about arriving migration. Previous
environment’s documentation, logs and
code should be archived.
5.5.6 A post-migration review shall be
performed to assess results of changing
environments. Results of review shall be
sent to appropriate authority for
information, guidance and action.
5.5.7 Data used in previous environment
shall be accessible according to contract
requirements.

5.6 Software retirement 5.6.1 A retirement plan to remove active
support by the operations and
maintenance organization shall be
developed, documented and executed.
5.6.2 Users shall be notified about
retirement plan and activities, including
retirement description, reasons for
software product and description of
alternative.
5.6.3 Parallel operation of the retired and
new software products should be
conducted to assure smooth transition.
Training shall be provided during the
transition period.
5.6.4 All concerned persons shall be
notified about impending retirement.
Previous documentation, logs and code
should be archived.
5.6.5 Data used in the retired software
product shall be accessible according to
contract requirements.

SQAS_C24.QXD 21/9/05 8:42 PM Page 538

par t VI I

Organizing for
quality assurance

Previous parts of this book dealt with a panoply of SQA components: pre-proj-
ect components, project life cycle components, infrastructure components,
management components, and standards and certification components. But
who initiates, activates and operates all those components? Who is responsible
for all the activities needed to run an effective and efficient SQA system? Partial
answers to these questions are sprinkled throughout the various chapters. In
this part, we take an integrated look at the quality assurance system from the
point of view of the people who create, develop and make sure that system
functions properly, to wit, the managers and team members who implement
the quality assurance organizational framework.

VII.1 The software development organizational structure

Regarding software development organizations one may generalize by
assuming three levels of management structure, found in most organizations
of this type. These three levels are top management, middle management,
and project management. Top management includes the general manager
and executives of the organization. Middle management’s internal structure
is the most susceptible to variation by organizational type and, of course, by
organization size. It can include several roles and levels: department man-
agers and division managers, among others. Project management likewise
varies; depending on the project and its scale, it consists of project managers,
project section managers, team leaders, and so forth.

For the purposes of our discussion, we consider the classic, basic three-
level structure of software development organizations that is found among
many medium to small organizations of the industry. Three managerial lev-
els are considered:

■ Top management, including the organization’s general manager and its
executives (CEOs).

■ Department managers, including managers of software development,
maintenance and software testing departments.

■ Project managers and team leaders of development projects and mainte-
nance services.

The quality assurance organizational framework described in the next sec-
tion is adapted to the organizational structure outlined above.

VII.2 The quality assurance organizational framework

In order for a software quality assurance system to operate successfully,
many or even all of the organization’s employees have to contribute their
share to the quality of the organization’s software products and/or services.
This goal is achieved by their diligent compliance to SQA procedures and
work instructions, and certainly by the professional performance of their
tasks. Special mention should be made of the individuals – managers and
other employees – who people the quality assurance organizational frame-
work: those professionals whose software quality assurance tasks represent
the substance of their positions and those whose participation in SQA activ-
ities represents extensions of their tasks’ formal definitions. The quality
assurance organizational framework that operates within the organizational
structure with which we are concerned includes the following participants
(“actors”), whom we group into the categories of managers, testers and SQA
professionals and interested practitioners:

(1) Managers:

■ Top management executives, especially the executive directly in
charge of software quality assurance

■ Software development and maintenance department managers
■ Software testing department managers
■ Project managers and team leaders of development and maintenance

projects
■ Leaders of software testing teams.

(2) Testers:

■ Members of software testing teams.

(3) SQA professionals and interested practitioners:

■ SQA trustees
■ SQA committee members
■ SQA forum members
■ SQA unit team members.

Of all the above actors in the quality assurance organizational framework,
only members of the SQA unit, managers and employees of the software test-
ing department are occupied full time in the performance of SQA tasks. The
others dedicate part of their time to quality issues, whether during fulfillment
of their managerial functions or professional tasks, or as volunteers in oth-
ers, most often a SQA committee, a SQA forum, or as SQA trustees.

Figure VII.1 shows a schematic organizational chart associated with the
SQA framework. This displays the SQA framework found in the typical

540

PartVII
O

rganizing for quality
assurance

organization. Expanded structures that include divisional managers and
team leaders as well as divisional or departmental SQA units may be appro-
priate to larger organizations. Organizations whose projects include
international and overseas software development and maintenance may find
it necessary to adopt far more complex SQA frameworks. As it is beyond the
scope of this book to deal with the full range of SQA organizational issues
arising in the different contexts, we limit ourselves to a presentation of the
main issues.

Chapter 25 focuses on the contributions made to quality assurance by the
three main managerial levels – top management, department management
and project management.

Chapter 26 dwells on SQA professionals and interested practitioners,
namely SQA unit members and, in addition, SQA committees, trustees and
forums.

541

V
II.2 The quality

assurance organizationalfram
ew

ork

Software
Testing

Department

Software
Development

and
Maintenance
Department

Other
Departments

Exec.
Executive

responsible for
software quality

Exec.Exec.

Management

SQA
Committees

SQA Unit

SQA
Forums

SQA
Trustees

Software
Testing
Teams

Software
Development

Teams

Line of authority
for SQA issues

Flow of Forum’s
recommendations

Legend

Figure VII.1: The SQA framework – organizational chart

chapter 25

Management and its role in
software quality assurance

For the purposes of our discussion, we refer to three levels of management
found in many software development organizations:

■ Top management
■ Department management
■ Project management.

It is beyond the scope of this book to deal with the full range of SQA orga-
nizational structures and to issues arising in the different contexts. We limit
ourselves here to a presentation of the main issues, with implications for spe-
cific organizations left to the reader.

A good many quality assurance managerial tasks are shared by managers
of the same level or of more than one level, with each manager taking on the
responsibilities suitable to his or her level of authority and expertise. Among
these tasks, project progress control was comprehensively discussed in
Chapter 20. Others were mentioned briefly. This chapter provides an
overview of the managerial tasks specifically related to compliance with
functional requirements, schedules and budget, and continuous improve-
ment of the system’s productivity and effectiveness.

Chapter outline

25.1 Top management’s quality assurance activities 544
25.1.1 Software quality policy 545
25.1.2 The executive in charge of software quality 546
25.1.3 Management review 548

25.2 Department management responsibilities for
quality assurance 549

25.3 Project management responsibilities for quality assurance 550

Summary 551
Selected bibliography 552
Review questions 553
Topics for discussion 554

After completing this chapter, you will be able to:

■ List the actors of a typical quality assurance organizational framework.
■ Describe top management’s responsibilities regarding software quality.
■ Describe the software system-related responsibilities of the executive in

charge of software quality issues.
■ Describe the main objectives of management reviews.
■ Explain the SQA-related responsibilities of department management.
■ List the SQA professional hands-on tasks required of project managers.

25.1 Top management’s quality assurance activities

Among its other responsibilities, top management is also responsible for soft-
ware quality. This level’s overall responsibilities in this area are summarized
in Frame 25.1.

The three main tools available to top management for fulfillment of its
responsibilities are:

■ Establishment and updating of the organization’s software quality policy

■ Assignation of one of the executives in charge of software quality issues
(e.g., Vice President for SQA)

544

25
M

anagem
entand its

role in softw
are quality

assurance

Frame 25.1 Top management’s overall responsibilities for
software quality

■ Assure the quality of the company’s software products and software
maintenance services

■ Communicate the importance of product and service quality in addition to
customer satisfaction to employees at all levels

■ Assure satisfactory functioning and full compliance with customer
requirements

■ Ensure that quality objectives are established for the organization’s SQA
system and that its objectives are accomplished

■ Initiate planning and oversee implementation of changes necessary to
adapt the SQA system to major internal as well as external changes related
to the organization’s clientele, competition and technology

■ Intervene directly to support resolution of crisis situations and minimize
damages

■ Ensure availability of resources required by SQA systems

■ Conduct of regular management reviews of performance with respect to
software quality issues.

The next three sections deal with these tools.
ISO 9000-3 relates to management commitment and its translation into

action as major components of the software quality assurance system (ISO,
1997, Sec. 4.1; ISO/IEC, 2001, Ch. 5).

25.1.1 Software quality policy

The organization’s software quality policy, though very general in its con-
tents and their statement, should communicate the following requirements:

■ Conformity to the organization’s purpose and goals
■ Commitment to general software quality assurance concepts
■ Commitment to the quality standards adopted by the organization
■ Commitment to allocate adequate resources for software quality assurance
■ Commitment to continuous improvement of the organization’s quality

and productivity.

An example of a software quality policy, formulated by (the fictional) Lion
Quality Software (LQS) Ltd, is presented in Frame 25.2.

545

25.1 Top m
anagem

ent’s
quality

assurance activitiesFrame 25.2 Lion Quality Software (LQS) Ltd – software quality policy

The Company’s Quality Goal

The principal goal of Lion Quality Software is to provide
software products and software maintenance services that
fully comply with customer requirements and expectations, at
the scheduled time and according to the agreed budget.

The Company’s Quality Policy

The quality policy adopted by LQS supports this goal by:

■ Assigning maximum priority to customer satisfaction by promptly fulfilling
requirements and expectations and requests and complaints.

■ Involving employees in determination of quality objectives and
commitment to their achievement.

■ Performing development and maintenance tasks correctly the first time
around and minimizing the need for rework and correction.

■ Assuring the high and adequate professional and managerial level of its
employees, a value maintained by offering incentives and encouragement
for its employees to achieve professional excellence.

▲

The organization’s software quality policy, as might be anticipated, is
stated in general terms. So, it is quite common to find that one organization’s
software quality policy declaration can be easily transferred to another
organization “as is” or with only minor change.

25.1.2 The executive in charge of software quality

The responsibilities of the executive in charge of software quality issues may
be classified as follows:

■ Responsibility for preparation of an annual SQA activities program
and budget

■ Responsibility for preparation of SQA system development plans

■ Overall control of implementation of the annual SQA regular activities
program and planned SQA development projects

■ Presentation and advocacy of SQA issues to executive management.

The details of these responsibilities will now be discussed in greater detail.

Responsibility for preparation of an annual SQA activities program
and budget
This requires the executive to:

■ Establish the system’s SQA objectives for the coming year

■ Review proposals prepared by the SQA unit for the annual activities pro-
gram and verify the proposals’ potential to fulfill the objectives set for the
SQA system

546

25
M

anagem
entand its

role in softw
are quality

assurance

■ Performing quality assurance activities throughout the software life cycle to
ensure the achievement of the required quality objectives.

■ Applying its quality assurance standards to subcontractors and suppliers.
Only those that qualify will be incorporated in the Company’s development
projects and maintenance services.

■ Aiming at continuous improvement of development and maintenance
productivity as well as SQA effectiveness and efficiency.

■ Allocating all the organizational, physical and professional resources
necessary to realize software quality assurance objectives.

Lionel Johnson Marcel Talbot––––––––––––––––– –––––––––––––––––
L. T. Johnson, President M. Talbot, General Manager

Industrial Park, CA, February 12, 2003

■ Determine whether the activities program is adequate to the characteris-
tics and scope of subcontractor services and software purchases planned
for the coming year

■ Determine the adequacy of the manpower and other resources planned
for implementation of the SQA program

■ Approve the final version of the annual SQA activities program and budget.

Responsibility for preparation of SQA system development plans
Such plans must be able to cope with technological changes as well as shifts in
customer demands and competition. The associated responsibilities include:

■ Review of trends that are expected to affect the organization’s software
quality in the near future.

■ Review proposals for SQA adaptations. For example, attempts to penetrate
a new market induced introduction of new software development tools and
the need to comply with software quality standards never before applied by
the company. The adaptation of the SQA system included:

– Preparation of new procedures appropriate to the new tools and
SQA standards

– Preparation of training programs for veteran software development
teams and newly recruited team members

– Development of software quality metrics appropriate for evaluating the
new tools and standards as well as the success of the training programs.

■ Approval of the final version of the planned SQA development projects,
including their schedules and budgets.

Overall control of implementation of the annual SQA program and
planned projects
The executive in charge is responsible for:

■ General supervision of the annual activities program

■ Review of progress of the SQA adaptation projects

■ General supervision of actions taken to realize the quality achievements
dictated by the teams’ objectives (based on periodic reports)

■ Review of compliance with SQA procedures and standards (based on
internal quality audits)

■ General follow-up of compliance to software development project sched-
ules and budgets

■ General follow-up of provision of quality maintenance services to exter-
nal and internal customers.

547

25.1 Top m
anagem

ent’s
quality

assurance activities

Presentation and advocacy of SQA issues to executive management
In order to promote quality and resolve SQA system difficulties requires:

■ Presentation for final approval of the proposed annual activities program
and budget

■ Presentation for final approval of planned SQA adaptation projects
together with the corresponding budgets

■ Initiation and leadership of periodic management review meetings dedicat-
ed to the organization’s software quality policy and attendant SQA system
issues, summarized in a report on the subjects covered (see Section 25.1.3)

■ Initiation of management-level discussions dedicated to special software
quality events, such as severe quality failures, threats to the successful
completion of projects due to severe professional staff shortages, mana-
gerial crises in the SQA unit, and so on.

25.1.3 Management review

Management review is the name given to the periodic meeting convened to
allow executives to obtain an overview of their organization’s software qual-
ity issues. Management reviews tend to be scheduled for once or twice a year.

A management review report, prepared by the SQA unit, sets the stage
for the discussions by providing items that appear on the meeting’s agenda.
A sample of typical items is presented in Frame 25.3.

548

25
M

anagem
entand its

role in softw
are quality

assurance Frame 25.3 Typical items contained in management review reports

■ Progress reports regarding recommendations for implementation made at
previous management review meetings

■ Periodic performance reports, including quality metrics

■ Customer satisfaction feedback

■ Assessment of successes/failures in achieving quality objectives, staying
within the budget, etc.

■ Follow-up reports for SQA annual regular activity program and SQA projects

■ Summary of special quality events related to customers, suppliers,
subcontractors, etc.

■ Review of significant findings of internal and external quality audits as well
as special surveys

■ Identification of new software quality risks and unsolved pre-existing risks

■ Recommendations for improvements to be introduced in the software quality
management system (e.g., development of new SQA components, purchase
of tools, invitation of consultant) to be submitted for final approval

The main objectives of management reviews are to assess the SQA sys-
tem’s compliance with the organization’s quality policy, that is, to:

■ Assess achievement of the quality objectives set for the organization’s
software quality management system

■ Initiate updates and improvements of the software quality management
system and its objectives

■ Outline directions for remedying major SQA deficiencies and software
quality management problems

■ Allocate additional resources to the software quality management system.

Decisions made during management reviews are expected to guide and direct
the operation of the software quality management system for the subsequent
period, ending at the next review.

25.2 Department management responsibilities for quality
assurance

Middle management’s quality assurance responsibilities include management
of the software quality management system (quality system-related tasks)
and the tasks related to the projects and services performed by units or teams
under the specific manager’s authority (project-related tasks).

Quality system-related responsibilities
These include SQA activities to be performed on the department level:

■ Preparation of the department’s annual SQA activities program and
budget, based on the recommended program prepared by the SQA unit

■ Preparation of the department’s SQA systems development plans, based
on the recommended plan prepared by the SQA unit

■ Control of performance of the department’s annual SQA activities pro-
gram and development projects

■ Presentation of the department’s SQA issues to top management, in the
person of the executive in charge of software quality.

Project-related responsibilities
These vary according to the organization’s procedures and distribution of
authority; they usually involve:

■ Control of compliance to quality assurance procedures in the depart-
ment’s units, including CAB, SCM and SCCA bodies

■ Detailed follow-up of contract review results and proposal approvals

549

25.2 D
epartm

entm
anagem

entresponsibilities
for quality

assurance

■ Review of unit performance of planned review activities; approval of
project documents and project phase completion

■ Follow-up of software tests and test results; approval of project’s soft-
ware products

■ Follow-up of progress of software development project schedules and
budget deviations

■ Advice and support to project managers in resolving schedule, budget
and customer relations difficulties (e.g., during negotiations with the
customer, when recruitment issues arise)

■ Follow-up of quality of maintenance services provision

■ Detailed follow-up of the project risks and their solutions

■ Follow-up of project’s compliance with customer requirements and cus-
tomer’s satisfaction

■ Approval of large software change orders and significant deviations from
project specifications.

25.3 Project management responsibilities for quality
assurance

Most project management responsibilities are defined in procedures and
work instructions; the project manager is the person in charge of making
sure that all the team members comply with the said procedures and instruc-
tions. His tasks include professional hands-on and managerial tasks,
particularly the following.

Professional hands-on tasks
■ Preparation of project and quality plans and their updates

■ Participation in joint customer–supplier committee

■ Close follow-up of project team staffing, including attending to recruit-
ment, training and instruction.

Management tasks
Project managers address the follow-up issues:

■ Performance of review activities and the consequent corrections, includ-
ing participating in some reviews

■ Software development and maintenance units’ performance with respect
to development, integration and system test activities as well as correc-
tions and regression tests

■ Performance of acceptance tests

■ Software installation in customer sites and the running-in of the software
system by the customer

550

25
M

anagem
entand its

role in softw
are quality

assurance

■ SQA training and instruction of project team members

■ Schedules and resources allocated to project activities (may intervene to
correct deviations)

■ Customer requests and satisfaction

■ Evolving project development risks, application of solutions and control
of results (implementation of the risk management process – see
Appendix 6A).

Summary

(1) List the actors in a typical quality assurance organizational framework.

The actors in the SQA framework include employees whose software quality assur-
ance tasks comprise all or part of their position’s functions as well as others who
contribute to the SQA system beyond the confines of their regular position. The
actors are grouped into managers, testers and SQA professionals and interested
practitioners. A typical list includes the following.

■ Managers
– Top management executives, especially the executive directly in charge of

software quality assurance
– Software development and maintenance department managers
– Software testing department managers
– Project managers and team leaders of development and maintenance projects
– Leaders of software testing teams.

■ Testers
– Members of software testing teams.

■ SQA professionals and interested practitioners
– SQA trustees
– SQA committee members
– SQA forum members
– SQA unit team members.

(2) Describe top management responsibilities regarding software quality.

Top management is responsible for:
■ Assuring the quality of the company’s software products and software mainte-

nance services
■ Communicating to all employees the importance of product and service quality

as well as customer satisfaction
■ Assuring satisfactory functioning and full compliance with customer requirements
■ Ensuring that SQA system objectives are established and realized
■ Planning and controlling implementation of changes necessary to adapt the

SQA system to organizational transformations as well as changes in clientele,
competition and technology

551

S
um

m
ary

■ Intervening to resolve and minimize damages in severe quality failures and
other crisis situations

■ Ensuring availability of the resources required by the SQA systems.

(3) Describe the software system-related responsibilities of the executive in charge of
software quality issues.

The executive in charge is required to do the following:
■ Be responsible for preparation of an SQA annual activities program and budget,

for final approval by senior management
■ Be responsible for preparation of SQA development plans to respond to

changes in the organization’s internal and external environments
■ Have overall control for the implementation of the annual SQA regular activities

program and SQA development projects
■ Present and advocate SQA issues to the organization’s executive management

(4) Describe the main objectives of management reviews.

Management reviews are instruments that enable the organization’s executives to:
■ Assess the compliance of the SQA system with the organization’s quality policy
■ Assess the achievement of quality objectives
■ Initiate changes and improvements to the software quality management system
■ Outline directions for solution of major deficiencies and problems in the orga-

nization’s software quality management system
■ Allocate additional resources for software quality activities when necessary.

(5) Explain the SQA system-related responsibilities of department management.

These responsibilities relate to department-level SQA tasks:
■ Preparation of the department’s annual SQA activities program and budget
■ Preparation of the department’s SQA system development plans
■ Control of performance of the department’s annual SQA activities program and

development projects
■ Presentation of the department’s SQA issues to top management, in the person

of the executive in charge of software quality.

(6) List the SQA professional hands-on tasks required of project managers.

■ Preparation of project and quality plans and their updates
■ Participation in joint customer–supplier committee
■ Review of staffing of project teams including recruitment and training.

Selected bibliography

1. ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards – Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization (ISO), Geneva.

552

25
M

anagem
entand its

role in softw
are quality

assurance

2. ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering –
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

Review questions

25.1 The top management contributes to software quality by employing three main
managerial tools.

(1) List the tools applied by top management to achieve its software quality
objectives.

(2) Describe each tool in your own words and explain how it affects
software quality.

25.2 Refer to the software quality policy document presented in Frame 25.2.

(1) List the policy clauses and explain their meanings in your own words.
(2) Explain how each policy clause contributes to the achievement of the com-

pany’s quality goals.

25.3 Refer to the LQS Ltd software quality policy document presented in Frame 25.2.

(1) Examine each clause of the policy document and identify the SQA compo-
nents directly referred to in those clauses.

(2) Examine the document and identify those components of the SQA system
indirectly addressed by the policy document.

(3) List the SQA components not referred to at all.

25.4 The executive in charge of software quality issues is responsible for the prepara-
tion of the annual SQA activities program and budget.

(1) Describe in your own words the activities the executive has to perform to
prepare the mentioned program and budget.

(2) Refer to Chapter 26 and describe the participation of the heads of the SQA
unit and sub-units in the preparation of the program and budget.

25.5 The executive in charge of software quality issues is responsible for overall con-
trol of the performance of SQA activities.

(1) List the types of SQA activities under the executive’s responsibility.
(2) Describe in your own words the activities the executive has to perform to

control the SQA activities listed in (1).

25.6 Nine typical items contained in a management review report are mentioned in
Frame 25.3.

(1) List at least five of these items.
(2) Suggest possible decisions that can be taken, based on the items listed in (1).

553

Review
 questions

25.7 The responsibilities of department management may be classified into quality
system related responsibilities and project-related responsibilities.

List the project-related tasks and explain in your own words the objective of
each task.

25.8 The responsibilities of project management may be classified into hands-on pro-
fessional tasks and project follow-up tasks.

List the project manager’s follow-up tasks and explain the objective of each
task in your own words.

Topics for discussion

25.1 It is commonly agreed that “SQA objectives are achieved through the cooperation
and integrated activities of all actors involved in the quality assurance organiza-
tional framework”.

(1) Define in your own words who should be considered an actor in a quality
assurance organizational framework, and provide a list of typical actors.

(2) Explain the unique contribution of each actor to the SQA system.

25.2 The organization’s software quality policy should conform to the organization’s
purposes and goals.

Suggest at least one example where an organization’s software quality policy
does not conform to the organization’s purpose and goals.

25.3 “Alpha Software” is a medium-sized software house specializing in telecom real-
time software, employing about 180 professionals. As no executive volunteered
for the position of “executive in charge of software quality”, the general manag-
er of Alpha Software did not insist on nominating an executive to this position.
Moreover, he did not assign any great importance to issuing a quality policy doc-
ument because, as he claimed, “the company is anyway committed to quality”;
hence, there was no need for any written document. This situation continued for
about two years without any critical failure.

(1) Suggest what unnoticed and undesired events may have resulted from
this position.

(2) Suggest what an executive in charge of software quality, in addition to an
adequate and updated policy document, could contribute to company prod-
uct quality.

554

25
M

anagem
entand its

role in softw
are quality

assurance

chapter 26

The SQA unit and other actors
in the SQA system

We would like to assume that most if not all of an organization’s staff are
expected to contribute their share to the quality of the organization’s soft-
ware products and/or services. In the previous chapter, Chapter 25, we
discussed the contributions made by management as actors in the software
quality assurance framework. In this chapter, we turn to the SQA profes-
sionals and interested practitioners found among the software development
and maintenance staff. That is, we refer here to those staff members whose
SQA activities represent all or part of their standard assignments or whose
participation in SQA bodies goes beyond their regular activities, namely:

■ SQA unit members

■ SQA trustees

Chapter outline

26.1 The SQA unit 556
26.1.1 Tasks performed by the head of the SQA unit 557
26.1.2 SQA sub-unit tasks related to the project life cycle 558
26.1.3 SQA sub-unit infrastructure operations tasks 559
26.1.4 SQA sub-unit audit and certification tasks 559
26.1.5 SQA sub-unit support tasks 561
26.1.6 SQA sub-unit standards and procedures:

development and maintenance tasks 562
26.1.7 SQA sub-unit engineering development and

maintenance tasks 562
26.1.8 SQA sub-unit information system tasks 562

26.2 SQA trustees and their tasks 563
26.3 SQA committees and their tasks 563
26.4 SQA forums – tasks and methods of operation 564

Summary 565
Review questions 568
Topics for discussion 568

SQAS_C26.QXD 21/9/05 8:32 PM Page 555

■ SQA committee members

■ SQA forum members.

Among the above actors, only members of the SQA unit dedicate all their
work-related activities to the SQA; that is, they can be considered as “full-
time SQA staff”. The others either have part-time responsibilities or are, like
most trustees and members of SQA committees and forums, employees who
volunteer their time due to their interest in quality.

After completing this chapter, you will be able to:

■ Describe the SQA unit’s tasks according to the proposed Organizational
Structure Model.

■ Describe the typical tasks of the head of an SQA unit.

■ Describe typical project life cycle tasks.

■ Describe the types of audits performed by the SQA unit.

■ Describe the development and maintenance tasks associated with SQA
standards and procedures.

■ Describe the tasks of SQA trustees.

■ Describe and compare the types of SQA committees.

■ Describe SQA forum characteristics: scope and participants.

26.1 The SQA unit

SQA unit structure varies by type and, of course, size of the organization. As
it is impossible to describe all the optional arrangements, the chapter pres-
ents a model whose structure and task distribution are readily adaptable to
the characteristics and procedures characterizing the internal environment of
a spate of major organizations. The model is shown in Figure 26.1.

556

26
The SQ

A
 unitand other actors

in the SQ
A

 system

Project
Life

Cycle
SQA

SQA
Infrastructure

Operations

SQA
Internal

Audits and
Certification

SQA
Support

SQA
Standards

and
Procedures

SQA
Engineering

SQA
Information

Systems

SQA
Operations

SQA
Development

and Maintenance

Head
SQA Unit

Figure 26.1: Proposed model for an SQA unit’s organizational structure

SQAS_C26.QXD 21/9/05 8:32 PM Page 556

We first list the tasks typically assigned to the SQA unit head (Section
26.1.1) followed by the sub-units, as indicated in the model (Sections 26.1.2
to 26.1.8).

26.1.1 Tasks performed by the head of the SQA unit

The head of the SQA unit is responsible for all the quality assurance tasks
performed by the SQA unit and its sub-units. In addition, some SQA tasks
are assigned only to him: this allocation reflects the manager’s professional
experience and administrative position.

The typical tasks performed by an SQA unit head may be classified into
the following categories:

■ Planning
■ Management of the unit
■ Tasks related to contacts with customers and other external bodies as

well as with the executive in charge of software quality
■ SQA professional activities.

Planning tasks
■ Preparation of proposed annual activity program and budget for the unit

■ Planning and updating the organization’s software quality management
system

■ Preparation of recommended annual SQA activities programs for the
software development and maintenance departments; assistance from
SQA sub-units may be requested when performing this task

■ Preparation of recommended SQA systems development plans for the
software development and maintenance departments; assistance from
SQA sub-units may be requested when performing this task.

Management tasks
■ Management of the SQA team’s activities

■ Monitoring implementation of the SQA activity program

■ Nomination of team members, SQA committee members and SQA
trustees

■ Preparation of special and periodic reports, e.g., status of software qual-
ity issues within the organization and monthly performance reports.

Contacts with customers and other external bodies and the executive
in charge of software quality
■ Serving as the customer’s address for software quality issues

■ Outreach to customers with respect to quality of software products and
services supplied

557
26.1 The SQ

A
 unit

SQAS_C26.QXD 21/9/05 8:32 PM Page 557

■ Representation of the organization before external bodies regarding soft-
ware quality issues

■ Drafting the management review reports required for management
review meetings

■ SQA organizational issues, preparing requested material, and so forth,
for top management’s consideration (done through the executive in
charge of software quality).

SQA professional activities
■ Participation in project joint committees

■ Participation in formal design reviews

■ Review and approval of deviations from specifications (when required by
procedures)

■ Consultation with project managers and team leaders

■ Participation in SQA committees and forums.

26.1.2 SQA sub-unit tasks related to the project life cycle

The SQA tasks related to the project life cycle sub-unit may be classified into
two groups:

■ “Pure” managerial follow-up and approval tasks (project life cycle con-
trol tasks)

■ “Hands-on” or active participation in project team SQA activities, where
professional contributions are required (participation tasks).

Project life cycle control tasks
■ Follow-up of development and maintenance teams’ compliance with SQA

procedures and work instructions

■ Approval or recommendation of software products (design reports and
code) according to the relevant procedures

■ Monitoring delivery of software maintenance services to internal and
external customers

■ Monitoring customer satisfaction (by means of surveys, etc.) and main-
taining contact with customers’ quality assurance representatives.

Participation tasks
These tasks include participation in:

■ Contract reviews
■ Preparation and updating of project development and quality plans
■ Formal design reviews

558

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 558

■ Subcontractors’ formal design reviews
■ Software testing, including customer acceptance tests
■ Software acceptance tests of subcontractors’ software products
■ Installation of new software products.

26.1.3 SQA sub-unit infrastructure operations tasks

As discussed in Part IV, SQA systems employ a variety of infrastructure com-
ponents to operate smoothly, namely:

■ Procedures and work instructions
■ Supporting quality devices (templates, checklists)
■ Staff training, instruction and certification
■ Preventive and corrective actions
■ Configuration management
■ Documentation control.

More specifically, the SQA sub-unit’s tasks regarding these components include:

■ Publication of updated versions of procedures, work instructions, tem-
plates, checklists, and so forth, together with their circulation in hard
copy and/or by electronic means

■ Transmission of training and instruction regarding adherence to and
application of SQA procedures, work instructions and similar items to
new and current staff

■ Instruction of SQA trustees regarding new and revised procedures as well
as development tools and methods, among other components

■ Monitoring and supporting implementation of new and revised SQA
procedures

■ Follow-up of staff certification activities

■ Proposal of subjects requiring preventive and corrective actions, includ-
ing participation in CAB committees

■ Follow-up of configuration management activities, including participa-
tion in CCA committees

■ Follow-up of compliance with documentation procedures and work
instructions.

26.1.4 SQA sub-unit audit and certification tasks

The types of SQA audits carried out in or by software organizations can be
classified as follows:

■ Internal audits
■ Audits of subcontractors and suppliers to evaluate their SQA systems

559
26.1 The SQ

A
 unit

SQAS_C26.QXD 21/9/05 8:32 PM Page 559

■ External audits performed by certification bodies
■ External audits performed by customers who wish to evaluate the SQA

system prior to accepting the organization as a supplier.

The first two classes of audits are initiated and performed by the SQA sub-
unit, the last two by external bodies. Descriptions of the activities performed
by the sub-unit, by audit type, follow.

Internal SQA audits demand that the following tasks be completed by
the SQA unit:

■ Preparation of annual programs for internal SQA audits
■ Performance of internal SQA audits
■ Follow-up of corrections and improvements to be carried out by the

audited teams and other units
■ Preparation of periodic summary reports of status of audit findings,

including recommendations for improvements.

SQA audits of subcontractors and suppliers demand that the following tasks
be carried out by the SQA unit:

■ Preparation of the annual program for SQA audits of subcontractors
and suppliers

■ Performance of SQA audits of subcontractors and suppliers

■ Follow-up of corrections and improvements to be carried out by the
audited subcontractors and suppliers

■ Collection of data on the performance of subcontractors and suppliers
from internal as well as external sources

■ Periodic evaluation of the organization’s certified subcontractors’ and
suppliers’ SQA systems based on audit reports and information collected
from other internal and external sources. The evaluation report includes
recommendations regarding certification of subcontractors and suppliers.

External audits performed by certification bodies involve the following tasks:

■ Coordination of the certification audit’s contents and schedule
■ Preparation of documents specified by the certification bodies
■ Instruction of the audited teams and performance of the preparations

necessary for certification audits
■ Participation in certification audits
■ Ensuring that required corrections and improvements are performed.

SQA audits performed by the organization’s customers entail these tasks:

■ Coordination of the audit’s contents and schedule
■ Preparation of documents specified by the customer’s auditor

560

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 560

■ Instruction of the audited teams and performance of the preparations
necessary for SQA audits by the organization’s customers

■ Participation in the audits
■ Ensuring that required corrections and improvements are performed.

Table 26.1 compares the SQA activities required for the various types of audits.

26.1.5 SQA sub-unit support tasks

Most of the consumers of SQA support services are located within the organ-
ization: project managers, team leaders and SQA trustees. The support they
need revolves around implementation of SQA procedures, for example:

■ Preparation of project plans and project quality plans
■ Staffing review teams
■ Choice of development methodologies and tools that reflect the failure

experience data accumulated by the SQA unit
■ Choice of measures to solve identified software development risks
■ Choice of measures to solve schedule delays and budget overruns
■ Choice of SQA metrics and software costs components
■ Use of SQA information systems.

561
26.1 The SQ

A
 unit

Table 26.1: Comparison by audit type of SQA sub-unit’s tasks

Class of audits

Task Internal Audits of Certification Audits by
audits subcontractors audits customers

and suppliers

Preparation of annual programs + + – –
for SQA audits

Performance of SQA audits + + – –

Follow-up of corrections + + + +

Preparation of periodic summary reports + – – –

Collection of data on the performance – + – –
of the audited organization from
internal and external sources

Periodic evaluation of the – + – –
audited organization

Coordination of the external audit’s – – + +
contents and schedule

Preparation of documents as – – + +
specified by external auditors

Instruction of the audited teams and – – + +
performance of preparations for
external audits

Participation in the audit – – + +

SQAS_C26.QXD 21/9/05 8:32 PM Page 561

26.1.6 SQA sub-unit standards and procedures: development
and maintenance tasks

The SQA sub-unit is intimately involved in deciding which SQA standards
will be adopted as well as developing and maintaining the organization’s
procedures. To fulfill the attendant obligations, the SQA unit is required to:

■ Prepare an annual program for development of new procedures and pro-
cedure updates, including.

■ Responsibility for development of new procedures and procedure
updates, with participation in appropriate committees and forums

■ Follow-up of developments and changes in SQA and software engineering
standards; introduction of additional procedures and changes relevant to
the organization

■ Initiation of updates and adaptations of procedures in response to
changes in professional standards, including adoption or deletion of stan-
dards applied by the organization.

26.1.7 SQA sub-unit engineering development and
maintenance tasks

Follow-up of professional advances, solution of operational difficulties and
expert analysis of failures are the immediate objectives of this SQA sub-unit.
Hence, the main engineering tasks involved cover the following:

■ Testing quality and productivity aspects with respect to new development
tools and new versions of currently used development tools

■ Evaluation of quality and productivity of new development and mainte-
nance methods and method improvements

■ Development of solutions to difficulties confronted in application of
currently used software development tools and methods

■ Development of methods for measuring software quality and team
productivity

■ Provision of technological support to CAB committees during analysis of
software development failures and formulation of proposed solutions.

26.1.8 SQA sub-unit information system tasks

SQA information systems are meant to facilitate and improve the function-
ing of SQA systems. The tasks involved include:

■ Development of SQA information systems for software development and
maintenance units for

– collection of activity data

562

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 562

– processing of, for example, periodic reports, lists, exception reports and
queries

– processing of, for example, periodic reports, lists, exception reports and
queries

■ Development of SQA information systems facilitating the SQA unit’s pro-
cessing of information delivered by software development and
maintenance units (e.g., data analysis, report preparation, etc.), including
estimates of software quality metrics and software quality costs

■ Updating of SQA information systems

■ Development and maintenance of the organization’s SQA Internet
/intranet site.

26.2 SQA trustees and their tasks

SQA trustees are staff members who, being strongly interested in software
quality, volunteer part of their time to promoting quality. They are frequently
instructed on subjects of interest by the SQA unit. As SQA “agents”, trustees
are expected to provide the internal support necessary to successfully imple-
ment SQA components.

Trustees’ tasks vary substantially among organizations. Tasks may be
unit-related and/or organization-related, and include some or all of the fol-
lowing activities.

Unit-related tasks
■ Support their colleagues’ attempts to solve difficulties arising in the

implementation of software quality procedures and work instructions

■ Help their unit manager in performing his or her SQA tasks (e.g., prepa-
ration of a project’s work instructions, collection of data for calculating
SQA metrics)

■ Promote compliance and monitor implementation of SQA procedures
and work instructions by colleagues

■ Report substantial and systematic non-compliance events to the SQA unit

■ Report severe software quality failures to the SQA unit.

Organization-related tasks
■ Initiate changes and updates of organization-wide SQA procedures and

work instructions

■ Initiate organization-wide improvements of development and mainte-
nance processes and applications to the CAB for solutions to recurrent
failures observed in their units

■ Identify organization-wide SQA training needs and propose an appropri-
ate training or instruction program to be carried out by the SQA unit.

563
26.3 SQ

A
 com

m
ittees

and their tasks

SQAS_C26.QXD 21/9/05 8:32 PM Page 563

26.3 SQA committees and their tasks

SQA committees can be either permanent or ad hoc. The subjects dealt with,
authority as well as division of tasks between permanent and ad hoc com-
mittees, vary considerably among organizations and over time.

Permanent committees commonly deal with SCC (software change con-
trol), CA (corrective actions), procedure s, method development tools and
quality metrics. Ad hoc committees commonly deal with specific cases of
more general interest such as updates of a specific procedure, analysis and
solution of a software failure, elaboration of software metrics for a targeted
process or product, updating software quality costs and data collection
methods for a specific issue.

Permanent SQA committees are integral parts of the SQA organization-
al framework; their tasks and operation are usually defined in the
organization’s SQA procedures. In contrast, ad hoc committees are estab-
lished on a short-term per-problem basis, with members nominated by the
executive responsible for software quality issues, the head of the SQA Unit,
the SQA sub-units, the permanent SQA committees, or any other body that
initiated its formation and has an interest in the work it is to do. This body
also defines the ad hoc committee’s tasks.

26.4 SQA forums – tasks and methods of operation

SQA forums are informal components of the SQA organizational frame-
work; they are established by volunteers and display some features of a
community. The forums operate rather freely, not being subject to any stan-
dard requirements or procedures. A forum’s subjects, activities and
participants vary from one organization to another and reflect, more than
anything else, the individuals belonging to the organization’s software qual-
ity community who are eager to create a meeting place for the exchange of
SQA experiences and ideas. An organization generally benefits from the
activities of its SQA forums, which can function independently or in some
kind of cooperative relationship.

Members of an SQA forum usually define its scope and mode of opera-
tion, which can be limited or broad in scope. The forum can meet regularly
or sporadically, and can define its preferred means of communication
(Internet, intranet, electronic mail, etc.).

SQA forums typically focus on:

■ SQA procedure improvements and implementation
■ Quality metrics
■ Corrective actions – analysis of failure and success cases
■ Quality system issues – development and implementation of new tools
■ Quality line management problems – daily operational software quality

problems brought before it by quality managers from every level.

564

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 564

Participation in SQA forums may be closed (e.g., limited to quality line man-
agers) or open to all. Members of an open forum may include:

■ SQA unit members
■ SQA trustees
■ Software development and maintenance staff
■ SQA and software engineering consultants/experts
■ Customer representatives.

Forums also maintain the option of publication. Publications can include
newsletters to members, periodic reviews of SQA issues, reports of profes-
sional task force or special forum committees. In addition to describing and
analyzing a quality issue, reports may include recommendations for correc-
tive actions. The forum also decides upon a distribution list, and whether
its publications are limited to its members or extended to other members of
the organization.

An example of a forum operating for several years in a well-known soft-
ware house was the “Template Forum”. Four team leaders, two of whom had
a reputation of being outstanding report writers, established the forum,
whose sole objective was to prepare a set of templates for the 11 teams work-
ing within the framework of the Software Development Department. On
average, membership of the forum was 8–11 members, but membership never
exceeded 15. During the forum’s three years of activity, about 20 different
templates were issued, most of which were also updated at least once during
this period. The templates were publicized in the department’s data commu-
nication network and were defined as the department’s standard in the space
of about a year. The forum discontinued its activities after two of its initiators
left the firm. Several attempts by the SQA unit to renew the forum’s activities
failed in the absence of a staff member to drive its reactivation.

Summary

(1) Describe the SQA unit’s tasks according to the proposed Organizational Structure
Model.

The tasks of the SQA unit are grouped into SQA operations functions and SQA devel-
opment and maintenance functions.

SQA operations functions:

■ Project life cycle SQA: performs tasks such as contract reviews, formal design
reviews and software testing.

■ SQA infrastructure operations: performs tasks such as publication of updated ver-
sions of SQA procedures, SQA training activities and follow-up of staff certification.

■ SQA audits and certification, including internal SQA audits, SQA audits of sub-
contractors, external audits performed by certification bodies and external
audits performed by customers.

■ SQA support: performs tasks such as consultations related to project quality plan,

565
S

um
m

ary

SQAS_C26.QXD 21/9/05 8:32 PM Page 565

choice of development methodology and implementation of SQA procedures.

SQA development and maintenance functions:

■ SQA standards and procedures: tasks such as development and updating of
procedures, adaptations to changes in professional standards and recommen-
dations for adoption of additional standards.

■ SQA engineering: tasks such as evaluation of quality and productivity of new
development tools, development of solutions to difficulties encountered in
application of software development tools, and development of methods for
measuring software quality.

■ SQA information system: tasks such as development of software development
and maintenance unit-level SQA information systems, development of systems
for receipt and processing of data by the SQA Unit, and maintenance of the SQA
Internet/intranet site.

(2) Describe the typical tasks of the head of an SQA unit.

■ Planning tasks include preparation of proposed SQA annual activity program and
budget for the SQA unit, planning of the organization’s software quality manage-
ment system, and preparation of recommended SQA activities programs and
SQA system development plans for the software development departments.

■ Management tasks include monitoring implementation of the annual SQA activ-
ities program, appointment of SQA committee members, and preparation of the
unit’s periodic summary reports.

■ Maintaining contacts with customers and other external bodies and the execu-
tive in charge of software quality.

■ SQA professional activities include participation in project joint committees,
formal design reviews, and consultations with project managers, software
development team leaders and others.

(3) Describe typical project life cycle tasks.

■ Control tasks: follow-up of compliance with SQA procedures, approval or rec-
ommendations for approval of software products and monitoring performance
of software maintenance services.

■ Follow-up and participation tasks: contract reviews, review activities, subcon-
tractors’ formal design reviews and software testing, including customer
acceptance tests.

(4) Describe the audit types the SQA unit is involved with.

Organizations carry out four types of SQA audits, two of which are performed by the
SQA unit:
■ Internal SQA audits
■ SQA audits of the organization’s subcontractors and suppliers to evaluate their

566

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 566

SQA systems.

The other two audits, performed by other bodies, are:
■ External audits performed by certification bodies to obtain SQA certification

(e.g., ISO 9001 certification)
■ External audits performed by customers who wish to evaluate their suppliers’

SQA systems.

(5) Describe the development and maintenance tasks associated with SQA standards
and procedures.

The tasks associated with the standards adopted by the organization include fol-
low-up of developments and changes in SQA and software engineering standards
and recommending adoption of additional standards.

The tasks associated with the organization’s SQA procedures include coordina-
tion and participation in development, maintenance and updating of procedures as
well as preparation of an annual program for development of new procedures.

(6) Describe the tasks of SQA trustees.

SQA trustees are involved in unit-related tasks and organization-related tasks,
which vary considerably among organizations.
■ Typical unit-related tasks: support other unit/team members in solving difficul-

ties in implementation of software quality procedures, help their unit manager
in performing his SQA tasks, and report to the SQA unit on substantial and sys-
tematic non-compliance situations and severe software quality failures.

■ Typical organization-related tasks: initiation of changes and updates of SQA
procedures, initiation of organization-wide improvements of development and
maintenance processes and applications to the CAB, identification of SQA train-
ing needs and preparation of proposals for appropriate training and/or
instruction programs.

(7) Describe and compare the types of SQA committees.

SQA committees may be permanent or ad hoc. The subjects, membership criteria
and authority of permanent SQA committees are usually defined by SQA proce-
dures. Ad hoc committees are quite different: establishment of ad hoc committees
and their task definitions are initiated by various bodies, according to circum-
stances and current needs. Members of ad hoc committees are chosen by their
availability; their authority is adjusted to the committee initiators’ needs. One may
expect great variation among the ad hoc committees nominated for the same task
by different initiators and at different times.

(8) Describe SQA forum characteristics: scope and participants.

SQA forums are informal components of the SQA organizational framework. They
are established, operated and developed freely.

The scope of SQA forums is limited or broad. Forum subjects, activities and par-
ticipants vary by organization and typically relate to SQA procedure improvements

567
S

um
m

ary

SQAS_C26.QXD 21/9/05 8:32 PM Page 567

and implementation, quality metrics, development of software engineering tools
and implementation of new tools.

Participation in SQA forums may be closed or open. Participants of open SQA
forums can include SQA unit members, SQA trustees, members of software devel-
opment and maintenance teams, customer representatives and software
engineering consultants.

Review questions

26.1 The organizational structure of an SQA unit according to a model presented in
Figure 26.1 includes four sub-units that deal with SQA operations.

(1) List the four sub-units.
(2) Describe in your own words the tasks performed by each.

26.2 According to a model presented in Figure 26.1, the organizational structure of an SQA
unit includes three sub-units that deal with SQA development and maintenance.

(1) List the three sub-units.
(2) Describe in your own words the tasks performed by each.

26.3 Project life cycle SQA tasks include project life cycle control tasks and participa-
tion tasks.

(1) List at least four participation tasks.
(2) Indicate the unique contribution of an SQA unit member’s participation for

each of the tasks listed in (1).

26.4 SQA infrastructure operations tasks refer to the seven SQA infrastructure compo-
nents discussed in Part IV of the book.

(1) Describe in your own words the SQA infrastructure operations tasks.
(2) Indicate at least one task that relates to each of the infrastructure components.

26.5 The typical SQA unit dedicates a great part of its resources to SQA audits.

(1) Describe the types of SQA audits performed by the SQA unit.
(2) Describe the tasks involved in performing each of the audits listed in (1) and

indicate the differences between them.

26.6 It has become customary in recent years for external bodies to perform SQA
audits of a supplier’s SQA system.

(1) Describe the types of SQA audits performed by external bodies.
(2) Describe the SQA tasks involved in each of the external audits listed in (1)

and indicate the differences between them.

Topics for discussion

26.1 Computerized SQA information systems are already available in most organiza-

568

26
The SQ

A
 unitand other actors

in the SQ
A

 system

SQAS_C26.QXD 21/9/05 8:32 PM Page 568

tions. The SQA tasks related to the information system are meant to make the
SQA system more effective and efficient.

(1) Describe in your own words the SQA tasks related to the SQA information
system.

(2) Improvements of the SQA information systems are expected to contribute to
reduction of failure rates and quality costs. If you agree, give two or three
examples of such reductions.

(3) Suggest types of information services to be provided by an SQA intranet site
and list the advantages for the SQA system of intranet-based systems over
the classic paper-based systems.

26.2 SQA trustees are expected to be SQA agents in their teams/units and provide the
internal support for successful implementation of SQA components.

(1) Explain how SQA trustees complement the formal activities performed by
SQA units and unit managers.

(2) Evaluate the contributions of SQA trustees to software quality.

26.3 The permanent Software Metrics Committee of Venus Software has identified a
significant increase in two failure-related software quality metrics for the new ver-
sion 6.1 of its popular “Customer-Venus” software package, used by about 2500
consumer clubs all around the country. The Committee decided to establish an
ad hoc committee to contend with the failures.

(1) Suggest a list of tasks for the ad hoc committee.
(2) Suggest who should be invited onto the ad hoc committee and who should

head it.
(3) List the assumptions on which you based your answers to (1) and (2).

26.4 SQA forum activities are conducted entirely informally. For instance, participants
may join and leave the forum whenever they wish and they may undertake or
refuse to perform tasks of interest to the forum. Accordingly, some SQA experts
tend to consider forums to be worthless.

(1) Do you agree with this opinion? If not, list your arguments.
(2) In what ways can an organization promote and encourage SQA forum activities?

569
Topics

for discussion

SQAS_C26.QXD 21/9/05 8:32 PM Page 569

Epi logue

The future of SQA

Current SQA systems apply a considerable array of components to achieve an
acceptable level of software quality. Yet, despite all the SQA components
employed and the vast resources invested in assuring the quality of software
developer will declare a product as “free of defects”. This reticence reflects real-
ity: it is far from rare for severe defects to be identified in new software products,
new versions of software packages or firmware of reputable developers.

If such is the case, what can we expect in the future?

■ Will future SQA methodologies enjoy the pleasures of “defect free” software?

■ Or, alternatively, will the rapidly growing demands made of new software
packages cause a decline in achievable software quality?

In the following we attempt to anticipate the future of SQA according to cur-
rent trends in software engineering and software quality assurance. In other
words, we present:

■ The growing future challenges for SQA, expected in response to changes
in software development requirements.

■ These are balanced by a forecasting regarding the growing capabilities of
SQA tools for overcoming the new challenges.

Chapter outline

Facing the future: SQA challenges 571
Growing complexity and size of software packages 571
Growing integration and interface requirements 572
Shorter project schedules 573
Growing intolerance of defective software products 573

Facing the future: SQA capabilities 574
Extended use of CASE tools 574
Expanded use of professional standards 575
Extended use of automated testing 575
Expanded software reuse 576

Facing the future: SQA challenges

The challenges SQA will face in the future can be outlined in terms of already
observable software engineering trends:

■ Growing complexity and size of software packages

■ Growing integration and interface requirements

■ Shorter project schedules

■ Growing intolerance of defective software products.

Growing complexity and size of software packages

Some of the pivotal trends responsible for the growing complexity and size
of software packages include:

■ Incorporation of increasingly com-
plex algorithms. The algorithms
are based on a larger number of
inputs and make use of more com-
plicated calculations.

■ Expansion in the number of
output categories, based on multi-
plying sources of inputs, targeted
to more and larger groups of
users. For instance, sales and
inventory systems, traditionally
internal systems, nowadays also
serve customers, who use the sys-
tems to record orders and check
shipment schedules.

■ Demands for greater accuracy,
more complete information and
shorter reaction times.

Examples
(a) Military radar-driven systems. Although the algorithms are more com-

plex, reaction times for military radar-driven systems are required to be
much shorter than previously in order to respond to the higher speed
and maneuverability of aircraft and missiles.

(b) Municipal tax collection information systems. Systems that were once
allowed to produce notifications of unpaid property tax within not later
than 30 days after payment due date with errors not exceeding 0.5% are
now required to process the same notifications within 7 days but with
errors not exceeding 0.1%.

571

Facing the future: SQ
A

 challenges

SQA
capabilities

Software
requirements

Growing
complexity

Growing integration and interface requirements

New software systems are clearly characterized by growing integration and
interface requirements:

■ Internal intra-organizational inte-
gration. Representative examples
are ERP (Enterprise Resources
Planning) software packages that
combine the functions of several
intra-organizational software sys-
tems such as production planning
and control, sales, inventory
management and financial sys-
tems in one program. Other
examples are CRM (Customer
Relations Management) systems
that deal with all customer-
related systems: purchase
records, payments, complaints,
services provided, consumer
socio-economic characteristics,
etc. The same trend is observed in
firmware and embedded software
applications.

■ Internal interface capabilities among the same developer’s software prod-
ucts. For example, software packages for management of consumer
clubs are increasingly required to interface with CRM and accounting
software packages.

■ External interfaces, namely software–software, software–firmware and
firmware–firmware interfaces. Different developers supply the respective
interfacing software and firmware packages. It is imperative for software
packages to fully interface with leading software packages or firmware
embedded in equipment manufactured by principal manufacturers.

Examples
(a) A new wage-management software system must interface with a list of

leading attendance and human resources software packages.

(b) Patient monitoring software systems need to interface with many patient
vital-sign monitoring devices, that is, devices attached to the patient that
record heartbeat, blood pressure, etc. Requirements of this type are in
many cases set by marketing experts.

572

The future ofSQ
A

Software
requirements

Growing
complexity

Integration
and interfacing
requirements SQA

capabilities

Shorter project schedules

Shorter project scheduling is typical
of COTS software packages as
well as custom-made software.
Competition has shortened the lead
times for developing new versions of
software packages; requests for pro-
posals (RFPs) for custom-made
software cite shorter and shorter
completion times. It is estimated that
project schedules have been cut by
50% every 2–3 years. The implica-
tions of this trend on SQA,
irrespective of other, simultaneously
realized trends, are dramatic:

■ Employment of larger develop-
ment teams. This creates greater coordination and cooperation
difficulties and, quite likely, more severe quality problems.

■ Much less time available for review and testing activities. Again, quality
is expected to suffer.

Growing intolerance of defective software products

As software systems become more comprehensive and sophisticated, users –
whether organizations or individuals – become increasingly dependent on soft-
ware products; the subsequent damage from software failures grows
accordingly. As a result, customer
sensitivity to software damages has
reduced tolerance of software defects,
with even less tolerance of critical
defects. This trend places greater
demands on SQA as pressure intensi-
fies for failure-resistant software. In
other words, quality levels acceptable
in the past are expected to be unac-
ceptable in the future.

To sum up: the combined effects of the
four trends characterizing software
engineering frame vital challenges for
software quality assurance in the near
future. Notwithstanding the obstacles,
can any trends in improved SQA capa-
bilities be expected to offset these
difficulties?

573

Facing the future: SQ
A

 challenges

Software
requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

SQA
capabilities

SQA
capabilities

Software
requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

Intolerance
of defective

software

Facing the future: SQA capabilities

We can expect SQA to meet the challenges outlined in terms of already
observable software engineering trends:

■ Extended use of CASE tools
■ Expanded use of professional standards
■ Extended use of automated testing
■ Expanded software reuse.

Extended use of CASE tools

Progress in upgrading currently used and potentially new CASE tools in the
next few years will support the features that have already been proven cru-
cial to SQA. These tools:

■ Provide updated accurate
documentation to support
development of the interfaces
and integrated systems that are
of special importance for large-
scale software systems.

■ Support coordination of large
teams by providing updated
documentation and online logi-
cal, linguistic and other checks
of design and code products.

■ Enable automation of segments
of the development process
(especially by ICASE), thereby
shortening schedules and reduc-
ing the number of defects.

■ Support maintenance by updating documentation and automating activities.

574

The future ofSQ
A

Software
requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

SQA
capabilities

CASE tools

Intolerance
of defective

software

575

Facing the future: SQ
A

 capabilies
Expanded use of professional
standards

The emergence of international pro-
fessional standards and their spread
is expected to affect software devel-
opment by:

■ Simplifying communication and
coordination between software
developers in the same organiza-
tion but especially from different
organizations.

■ Facilitating mobility and absorp-
tion of software professionals
between teams. In addition to
contributing to the reduction of
errors made by new team mem-
bers, replacement or addition of team members will become easier. The
smoother staffing transitions, in turn, curtail the likelihood of non-com-
pliance with short schedules.

■ Simplify reuse of code, whether the code is the developer’s own or that of
others (e.g., software taken from reused code libraries).

Extended use of automated testing

Automated testing is expected to offer improved SQA tool effectiveness and
efficiency and expand the variety of testing activities covered. As a result, we will
witness a much higher rate of use. The characteristics of automated testing con-
tributing to this trend are improved
performance accuracy, comprehen-
siveness of records and statistics,
efficiency and speed of regression
tests, and reusable testing programs.

Automated testing contends with
SQA challenges in several ways:

■ It provides effective and efficient
tools for dealing with large-scale,
complex software systems, espe-
cially by regression testing and
comprehensive test records and
summaries produced.

■ Its capacity for regression test-
ing and testing program reuse
supports efforts to comply with
shorter schedules.

CASE tools

Professional
standards

Automated
testing

SQA
capabilitiesSoftware

requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

Intolerance
of defective

software

Software
requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

Intolerance
of defective

software

CASE tools

Professional
standards

SQA
capabilities

Expanded software reuse

The capacity to incorporate reused software – that is, software that has already
been tested and corrected according to defects identified in previous tests as
well as by users during regular application – in new systems seems to be a very
effective if not the most effective response to SQA’s future challenges:

■ Significant application of reused
software substantially reduces
development efforts to make
meeting short project schedules
conceivable.

■ Reused software minimizes
efforts needed to test and correct
the new software system (most
defects have already been identi-
fied by previous applications).
These contribute, again, to
shorter project schedules.

■ Software reuse is expected to
increase standardization, resulting
in smoother interface develop-
ment and system integration.

The anticipated combined outcome
of trends already prevalent in SQA development is impressive. Yet, the basic
questions remains: will they be adequate to the challenges? The assumption
guiding preparation of this text is that “Yes” is the proper answer.

576

The future ofSQ
A

CASE tools

Professional
standards

Automated
testing

Software
reuse

SQA
capabilities

Software
requirements

Growing
complexity

Integration
and interfacing
requirements

Shorter
project

schedule

Intolerance
of defective

software

Albrecht, A. J. 436, 443
Antoniol, G. 436

Barki, H. 108, 112, 116
Barnes, M. 437
Basili, V. R. 145, 172, 279, 295
Beizer, B. 179, 211
Biffi, S. 172
Boehm, B. W. 100, 108, 112, 113, 116,

124, 125, 127, 128, 129, 135,
136, 145, 279, 295, 450, 465

Brodman, J. G. 487
Buwalda, H. 236, 249

Caldiera, G. 436, 443
Chrissis, M. B. 32, 109, 346, 362, 383,

438, 500
Constantine, L. 52
Counsell, S. 438
Crosby, P. B. 24, 32, 465
Cule, P. C. 109, 112
Curtis, B. 32, 109, 346, 362, 383, 438,

500
Cusumano, M. A. 168, 172, 430, 436

Davis, D. B. 436, 437, 443
De Marco, T. 413, 436
Deutsch, M. S. 37, 44, 45, 46, 47, 51,

52, 54
Dixon, B. 465
Dobbins, J. H. 166, 172, 450, 465
Donaldson, S. D. 366, 383
Donaue, G. M. 52
Dustin, E. 236, 243, 249

Edge, J. S. 312, 319
El-Emam, K. 476, 497, 499, 500
Evans, M. W. 37, 44, 45, 49, 51, 52, 54
Fagan, M. E. 160, 172

Falk, J. 179, 211, 217
Feigenbaum, A. V. 451, 465
Feldman, O. 438, 443
Felschow, A. 96, 108, 485, 499
Fenton, N. E. 196, 211, 436
Ferre, X. 41, 52
Fewster, M. 236
Fiutem, R. 436
Flowers, S. 456, 465

Gaffney, J. E. 436, 443
Ghafoor, A. 438
Gilb, T. 160, 172
Glass, R. L. 79, 88, 109, 279, 295, 450,

465, 468, 476
Goldenson, D. R. 500
Grable, R. 437
Graham, D. 160, 236
Gramus, D. 437, 443

Hale, J. 450, 465
Hall, E. M. 108
Hamilton, D. H. 336, 346
Hamlet, D. 179, 211
Heil, J. H. 508, 524
Henderson-Sellers, B. 437, 443
Herron, D. 437, 443
Hollocker, C. P. 172
Humphrey, W. S. 96, 108
Hunter, R. 500

Iannino, A. 211
Ince, D. 32, 52, 476, 499

Janssen, D. 236
Jarvis, A. 476, 500
Jeffery, D. R. 152, 437, 443
Jenssen, D. 249
Jernigan, J. 437

Author index

Johnson, D. 487, 499
Jones, C. 109, 112, 135, 136, 145, 196,

211, 403, 410, 437, 443, 450, 465
Jung, H-W 476, 495, 497, 499
Juran, J. M. 24, 25, 32
Jurgensen, P. C. 179, 211
Juristo, N. 41, 52

Kahoe, R. 476, 500
Kan, S.H. 437
Kaner, C. 179, 211, 217
Karolak, D. W. 109, 112, 113
Kautz, K. 437
Keeni, G. 488, 500
Keil, M. 112, 450, 465
Kendall, J. E. 123, 145, 302, 306
Kendall, K. E. 123, 145, 302, 306
Kilpi, T. 437
Kit, E. 179, 211, 217

Leon, A. 366, 383
Lientz, B. P. 206, 211
Lokan, C. 436
Low, G. C. 437, 443
Lyytinen, K. 100, 109, 112, 113, 116

MacFarland, R. 150, 172
Marciniak, J. J. 37, 44, 45, 49, 51, 52,

54
Maxwell, K. D. 420, 432, 438
Maybee, J. 179, 211
McCabe, T. J. 194, 211, 237, 416
McCall, J. 35, 36, 37, 38, 41, 44, 45,

46, 47, 48, 51, 52, 54, 188
McGarry, J. 432, 438
McKee, J. 206, 211
McManus, J. I. 302, 306
Mendes, E. 438
Mendis, K. S. 335, 346
Moller, K. H. 438
Montealegre, R. 450, 465
Moore, J. W. 508, 524
Mosley, N. 438
Musa, J. D. 203, 211
Myers, G. J. 180, 181, 203, 211

Nguyen, H. Q. 179, 211, 217

O’Neill, D. 166
Okumoto, K. 211
Oman, P. 438

Oskarsson, O. 79, 88, 109, 279, 295,
476, 500

Parrish, A. 465
Paul, J. 236, 243, 249
Paul, R. 438
Paulish, D. L. 438
Paulk, M. C. 27, 32, 96, 109, 335, 346,

349, 362, 366, 383, 413, 438,
476, 485, 493, 500

Perry, W. 141, 145, 179, 212, 217, 329,
333

Pfleger, S. L. 436, 438
Pinkster, I. 236, 249
Pitterman, B. 489, 500
Pogue, C. 437
Poulin, J. S. 413, 438
Pressman, R. S. 25, 32, 34, 52, 123,

136, 141, 145, 157, 172, 179,
206, 212, 217, 302, 306, 366,
383, 438

Rashka, J. 243, 249
Rice, R. W. 179, 212, 217
Richards, P. 52
Rifkin, S. 432, 438
Rivard, S. 108, 112
Ropponen, J. 100, 109, 112, 113, 116
Ross, R. 100, 108, 112, 113, 116
Royce, W. W. 124, 125, 145, 487, 500
Rubin, J. 179, 205, 212
Rus, I. 172

Sauer, C. 152, 172
Schmidt, R. C. 109, 112
Schulmeyer, G. G. 438, 476, 500, 508,

524
Sedigh-Ali, S. 438
Shoval, P. 438, 443
Shull, F. 172
Siegel, G. S. 366, 383
Simmons, P. 438
Sinclair, J. 52
Smith, D. J. 312, 319
Smith, R. K. 465
Sommerville, I. 179, 212, 217, 302, 306
Swanson, E. B. 206, 211
Symons, C. R. 420, 432, 438, 443

Talbot, J. 108, 112
Tingey, M. O. 27, 32, 476, 500

578

A
uthor index

Van Vliet, H. 366, 383
Vincent, J. 52

Walters, G. 52
Waters, A. 52
Weber, C. V. 32, 109, 346, 362, 500

Wigle, G. B. 488, 500
Willis, R. R. 37, 44, 45, 46, 47, 51, 52, 54
Windl, H. 52

Yamamura, G. 488, 500
Yourdon, E. 160, 172

579

A
uthor index

Adaptive maintenance 255–57
Alpha site tests 245–46
ANSI (American National Standards

Institute) 472
Application of costs of software quality

458
definition of a costs model 458–59
definition of cost data collection

method 459–60
implementation of costs of software

quality system 460
response to findings 460–61

Appraisal costs 452, 453
Automated testing 235–45

advantages and disadvantages 242–45
availability of automated tools 242
code auditing 236–38
compared with manual testing 237
comparison with manual testing 243–45
coverage monitoring 238
functional tests 238
load tests 238–40
process 236
test management 241
types 236–42

Availability tests 202

Beta site tests 245–47
Big bang testing 182
Big bang vs. incremental testing 186–87
Black box testing 187–89, 208

advantages and disadvantages 208
availability tests 202
documentation tests 201–2
durability tests 204
equipment interoperability tests 208
equivalence classes 198–201
flexibility tests 206

maintainability tests 206
operational usability tests 205
output correctness tests 198
portability tests 207
reliability tests 202–3
reusability tests 207
software interoperability tests 208
stress tests 203–4
testability tests 206–7
training usability tests 205

Bootstrap 476
database 491
methodology 490–92
training and accreditation of assessors

491–92
Bottom-up testing 182–86

drivers 185

Capability Maturity Model see CMM
CASE tools

contribution to product quality 302–3
contribution to project management

304–5
contribution to software maintenance

quality 304
definition 299–302
effect of software quality 298–305
support to developers 300
vs. traditional tools 301

Change policy 260–61
Checklists 329–32

contribution to software quality 331
for requirement specifications

document (example) 330
preparation of 331
promotion of use 332
sources of information for 332
updating 332

Subject index

CMM
assessment methodology 485–90
evolution 485–86
implementation experience 488–90
IPD-CMM 486
P-CMM 486
principles 485
SA-CMM 486
SE-CMM 485–86
Software Engineering Institute (SEI)

485
SPICE project 492, 497
SSE-CMM 486
SW-CMM 485–86
T-CMM 486

CMMI 487
assessment methodology 485–90
process areas 502–4
structure and process 487

Computer Society 472
Configuration items see Software

configuration items
Configuration management see Software

configuration management
Contract review 60, 77–94

contract draft stage checklist 94
contract draft stage objectives 82
factors affecting the extent of 82–83, 88
for a major proposal 83–85
for internal project 85–86
implementation of 82–85
implementation of a major contract

review 88
importance of 88
objectives of 80–82, 87–88
performers of 83
process of 79–80
proposal draft stage checklist 92–94
proposal draft stage objectives 80–81
stages of 79–80, 87
subjects 85

Controlled documents 389–92
approval of 393–94
definition 389–91
disposal of 395
list of 392
preparation 393
security of 395
storage and retrieval 394–95

Corrective action board (CAB) 350–51,
360

Corrective and preventive actions
349–60

definition 351–52
information collection 353–54

Corrective and preventive actions process
352

analysis of information 354–55
development of solutions 356–58
follow-up 359–60
implementation 358–59
organization 360

Corrective maintenance 255–57
user’s difficulties 255

Corrective maintenance quality metrics
424–26

failure of maintenance services metrics
426

software system availability metrics
426–27

software system failure severity metrics
425

Corrective maintenance services 421
Correctness 38–39
Costs of control 451
Costs of failure of control 451
Costs of software maintenance quality

272–73
costs of appraisal 272
costs of internal failure 272
costs of managerial failure 272
costs of managerial preparations and

control 272
costs of prevention 272

Costs of software quality 69, 449–63
application of 458–61
appraisal costs 452, 453
balance of quality costs 461
classic model 451–55
costs of control 451
costs of external maintenance failure

272–73
costs of failure of control 451
costs of software maintenance quality

272–73
extended model 455–57
external failure costs 452, 454–55
hidden external failure costs 455
internal failure costs 452, 454
managerial failure costs 457
managerial preparation and control

costs 457
objectives of 450–51
prevention costs 452–53
problems of application 462–63

Customer as a participant in project see
External participants

581

Subjectindex

Defects detection in software vs. other
products 4–7

Defects removal effectiveness 136–37
Department managers 539
Development plan 60–61, 95–118

cost estimation 100
elements of 97–101
facilities 100
for internal projects 105–6
for small projects 104–5
methodology 98
methods 100
milestones 99
objectives of 97
organization 99
process 98–99
product 97
project interfaces 97
risks 100, 112–18
risks management 112–18
standards and procedures 98

Documentation control 67–68, 387–95
controlled documents 389–92
procedures 391–92
quality records 389–92

Documentation tests 201–2
DOD (US Department of Defense) 472
DR see Formal design review
Durability tests 204

Efficiency 40
EIA (Electronic Industries Association)

472
Equipment interoperability tests 208
Equivalence classes 198–201
Error density metrics 417–19

code error density metric 418
development error density metric 418
weighted code error density metric

418
weighted code errors per function point

metric 418
weighted development error density

metric 418
weighted development errors per

function point metric 418
Error prevention 65–68
Error removal effectiveness metrics 419

development error removal
effectiveness 419

development weighted error removal
effectiveness 419

Error severity metrics 419

average severity of code errors metric
419

average severity of development errors
metric 419

Errors counted measures 417
number of code errors 417
weighted number of code errors 417

Expandability 45
Expert opinions 62–63, 170
External failure costs 452, 454–55
External participants

acceptance tests 293
assuring the quality of 279–93
certification of team leaders and staff

292
choice of 288–90
contracting structures 284
joint control committee 290–91
participants in design reviews 291
participation in software testing 291
progress reports 292–93
project coordination 290–91
quality assurance objectives 286
requirements document reviews

287–88
review of deliverables 293
risks and benefits 283–86
software quality assurance tools

287–93
specialized procedures 291–92
types of 282–83

Failures of maintenance services metrics
426

maintenance repeated repair failure
metric 426

Flexibility 42
Flexibility tests 206
Formal design review (DR)

procedure (example) 322–24
Formal design reviews (DRs) 61–62,

152–58
DR session 155
participants 153–54
post–review activities 156–57
preparations 154–55
Pressman’s golden guidelines 157–58
report form 175
review process 159

Formal technical review see Formal
design review

Function point 442–49
advantages and disadvantages 448

582

Subjectindex

example 445–48
method 443–45

Functional design review (DR)
procedure (example) 322–24

Functionality improvement maintenance
255–57

Functionality testing see Black box testing
Future of software quality assurance

570–76
future software quality assurance

capabilities 574–76
future software quality assurance

challenges 571–73
Future software quality assurance

capabilities 574–76
software reuse 576
use of automated testing 575
use of CASE tools 574
use of professional standards 575

Future software quality assurance
challenges

complexity and size of software
packages 571

integration and interface requirements
572

intolerance of defective software
products 573

project schedules 573

Help desk calls density metrics 422–23
weighted help desk calls density metric

423
weighted help desk calls per function

point metric 423
Help desk effectiveness metrics 424
Help desk productivity metrics 424

function point help desk productivity
metric 424

help desk productivity metric 424
Help desk quality metrics 422–24

help desk calls density metrics 422–23
severity of help desk calls metrics

422–23
success of the help desk services

metrics 423
Help desk services 421

IEC (International Electrotechnical
Commission) 472

IEEE (Institute of Electric and Electronic
Engineers) 472

IEEE software engineering
structure and contents 509

IEEE software engineering standards
507–23

list of 526–27
IEEE Std.610.12 – Glossary of Software

Engineering Terminology 509
IEEE Std.730 474
IEEE Std.828 – Software Configuration

Plans 509
IEEE Std.829 – Software Test

Documentation 509
IEEE Std.1012 474, 514–19

contents 516–19
purposes 514
software verification and validation

plan outline 518–19
verification and validation activities

517–18
verification and validation concepts

514–16
verification and validation processes

517–18
verification and validation tasks

517–18
IEEE Std.1012 – Software Verification

and Validation 509
IEEE Std.1028 519–21

concepts 519
contents 520–21
purpose 519
review requirements 520

IEEE Std.1028 – Software Reviews 509
IEEE Std.1042.1 – Software Reuse –

Model for Reuse Library
Interoperability: Basic
Interoperability Data Model
(BIDM) 509

IEEE Std.1045 474
IEEE Std.1061 – Software Quality

Metrics Methodology 509
IEEE Std.1233 – Guide for Developing

System Requirement Specifications
509

IEEE Std.1320.2 – Conceptual Modeling
Language, Syntax and Semantics
for IDEF1X97 509

IEEE Std.1420.1a – Software Reuse, Data
Model for Reuse Library
Interoperability: Assets
Certification Framework 509

IEEE/ANSI 474
IEEE/EIA Std.12207 474

activities for primary processes 529–37
architecture 511–12

583

Subjectindex

concepts 512–13
contents 514
evolution 510
processes 510–14
processes for primary processes 529–37
purpose 510
task structure for a primary process

(example) 528–38
tasks for primary processes 529–37

IEEE/EIA Std.12207.0 – Information
Technology Software Life Cycle
Processes 509

IEEE/EIA Std.12207.1 – Guide –
Information Technology –
Software Life Cycle Processes –
Life Cycle Data 509

IEEE/EIA Std.12207.2 – Guide –
Information Technology –
Software Life Cycle Processes –
Implementation Technology 509

IEEE/ISO 474
Implementation of software quality

metrics 427–32
analytical statistics 431–32
definition of new metrics 428–29
descriptive statistics 431
managerial aspects of application

428–30
response to metrics analysis results

432
statistical analysis of metrics data

430–32
Improvement 65–68
Incremental testing 182–86

stubs and drivers 184–85
Infrastructure 65–68
Inspections see Peer reviews
Installation manual 201
Integrity 40–41
Internal failure costs 452, 454
Interoperability 44
ISO (International Standards

Organization) 472
ISO 9000-3 474, 477–81

certification 481–84
guiding principles 478
requirements 479

ISO 9000-3 certification
certification audits 484
development of software quality

assurance system 483
implementation of software quality

assurance system 483–84

planning the process 481–83
process 481–84
retaining ISO certification 484

ISO 9001 477–81
TickIT initiative 480

ISO/IEC 474
ISO/IEC 15504

achievement grades scale 495
achievements required 495
assessment model 492–97
contents 496
model processes 505–6
principles 493
processes 496
spice project 497
structure 493–96
trials 497

ISO/IEC 9000-3 Quality certification
standards for software
development and maintenance
organizations 474

ISO/IEC 15504 Organizational software
process capability assessment 474

ISO/IEC/IEEE 12207 Software
development practices 474

Limitations of software metrics 432–34
Load tests 238

see also Stress tests

Maintainability 41–42
Maintainability tests 206
Maintenance see Software maintenance
Maintenance contract review 261–62
Maintenance plan 262–64
Maintenance procedures and work

instructions 267–68
Manageability 46
Management’s role 70–71
Management’s role in quality assurance

top management’s quality assurance
activities 544–49

Management’s role in software quality
assurance 543–51

Management’s role in quality assurance
department management

responsibilities for quality
assurance 549–50

executive in charge of software quality:
responsibilities 546–48

management review 548–49
project management responsibilities for

software quality 550–51

584

Subjectindex

software quality policy 545–46
top management’s responsibilities for

quality 544–45
Managerial failure costs 457
Managerial preparation and control costs

457
Managerial software quality assurance

tools 399–400
project progress control 401–8
software quality metrics 412–34

Managers 540
McCabe’s cyclomatic complexity metrics

194–96
MIL-STD-498 474

list of data item descriptions (DIDs)
528

Object oriented model 129–31
Operational usability tests 205
Organizing for quality assurance 539–41

quality assurance organizational
framework 540–41

software development of organizational
structure 539

software quality assurance:
organizational chart 541

Output correctness tests 198

Peer reviews 62, 158–68
coverage 168
efficiency of 165–68
inspection report forms 176–77
inspection vs. walkthrough 166
participants 160–62
post-review activities 165
preparations for 162–63
review session 163–65
session documentation 164–65

Perfective maintenance 255
Portability 43
Portability tests 207
Pre-maintenance software quality

assurance 261–64
Pre-project SQA see Contract review;

Development plan; Quality plan
Prevention costs 452–53
Preventive and corrective actions 66–67
Preventive maintenance 255
Procedures 65–66, 311–18

conceptual hierarchy 312
design review procedure (example)

322–24
design review sample (DR) 322–24

implementation 317
manuals of 313–16
need for 312–13
preparation 317
work instruction manual 316

Procedures manuals 313–16
table of contents 315–16

Process metrics 416–21
software process productivity metrics

420–21
software process quality metrics

416–19
software process time table metrics

420
Product metrics 420–27

corrective maintenance quality metrics
424–26

help desk effectiveness metrics 424
help desk productivity metrics 424
help desk quality metrics 422–24
software corrective productivity metrics

426–27
software system failures density metrics

425
Programmer manual 201–2
Project managers 539
Project process standards 70, 473,

507–23
Project progress control 68, 401–8

computerized tools for 406–8
implementation of 405–6
of external participants 405
of internal projects 404–5
project resources 403
project schedule 403, 404
report (example) 407
risk management 402–3

Prototyping model 125–27

Qualification 133–35
Quality assurance activities

factors affecting intensity of 131–33
Quality management standards 69–70,

473, 475–97
Bootstrap 476, 490–92
CMM 476
CMMI 487
ISO 9000-3 477–81
ISO 9001 477–81
ISO/IEC 15504 476, 492–97
ISO/IEC 9000-3 477–81
methodologies 476
scope 476–77

585

Subjectindex

SPICE project 492
TickIT initiative 480

Quality metrics see Software quality
metrics

Quality plan 60–61, 95–118
activities 102
configuration management 103
elements of 101–3
for internal projects 105–6
for small projects 104–5
goals 101–2
objectives of 97
tests 102–3

Quality records 389–92
definition 389–91

Reliability 39–40
Reliability tests 202–3
Reusability 43–44
Reviews 61–62, 149–70

comparison of methods 168–70
expert opinions 170
formal design reviews 152–58
objectives 150–52
see also Expert opinions; Peer reviews;

Formal design reviews
Peer reviews 158–68

Safety 45–46
Severity of help desk calls metrics 422–23

average severity of help desk metric
423

Software
definition 15–16
interfaces with other systems 8–10

Software change control 371–73
approval of changes 371–72
change request document 372

Software change control board (SCCB)
371–73

Software configuration item 367–69
software configuration item version

367–69
version documentation 378

Software configuration management 67,
365–82

audits 380–81
computerized tools 381–82
definition 369
definitions 367–69
information services 380
linear evolution model 376–78
organization 370–71

plans 375–76
release of versions 373–74
software change control 371–73
tasks 369–70
tree evolution model 376–78

Software configuration version 367–69
baseline version 374
documentation 378–79
intermediate version 374
revisions 374

Software corrective maintenance
effectiveness metrics 426–27

corrective maintenance effectiveness
metric 427

Software corrective maintenance
productivity metrics

corrective maintenance productivity
metric 427

function point corrective maintenance
productivity metric 427

Software defects see Software errors
Software development life cycle (SDLC)

model 123–25
Software development methodologies

122–31
object oriented model 129–31
prototyping model 125–27
software development life cycle (SDLC)

model 123–25
spiral model 127–29

Software development risks see Software
risk management

Software development team
coordination and cooperation 8, 9

Software Engineering Institute (SEI) 485,
487

Software errors 16–18. See also Software
defects

causes of 19–24
classification by severity 164

Software failures 16–18
classification of damages 219

Software faults 16–18
Software interoperability tests 208
Software maintenance 63–64

assuring quality of 273
change policy 260–61
components 255–57
configuration management 269–70
cost of external failure 272–73
costs of quality 272–73
documentation and quality records

270

586

Subjectindex

foundations of high quality 257–61
maintenance contract review 261–62
maintenance plan 262–64
maintenance policy 259–61
maintenance procedures 267–68
maintenance resources distribution

256
managerial control 270–73
objectives of 256–57
performance controls 270–71
preventive and corrective actions

268–69
quality metrics 271
software package quality factors

257–58
software quality assurance tools

264–73
software quality operation factors

257–58
software quality revision factors

258–59
software quality transition factors

258–59
tools for corrective maintenance

265–66
tools for functionality improvement

maintenance 266–67
training and certification 268
version development policy 259–60

Software process productivity metrics
420–21

code reuse metric 421, 430
development productivity metric 421,

430
documentation reuse metric 421
function point development

productivity metric 421
Software process quality metrics 416–19

error counted measures 417
error removal effectiveness metrics

419
error severity metrics 419

Software process timetable metrics 420
average delay of milestone completion

metric 420
time table observance metric 420

Software quality 28–30
definition 24–25

Software quality assurance
and software engineering 30
definition 25–29
environments 7–11
expanded definition 28

objectives of 29
organizing for 70–72
uniqueness 4–7
vs. software quality control 28–29

Software quality assurance committees
71–72

tasks 563–64
Software quality assurance effectiveness

and cost 135–42
defects removal effectiveness 136–37
model 137
software defects origin 135

Software quality assurance forums
71–72, 564–65

participants 564–65
publications 565
tasks 564

Software quality assurance professionals
540

Software quality assurance system
387–95

architecture 57–59
CASE tools 298–305
contract review 60
corrective and preventive actions

66–67¸ 349–60
costs of software quality 69, 449–63
development plan 60–61
documentation control 67–68
error prevention 65–68
expert opinion 62–63
external participants 279–93
external participant’s work 64–65,

64–65
formal design reviews (DRs) 61–62
human components 70–72
improvement 65–68
infrastructure 65–68, 309
management components 68–69
management’s role 70–71
management’s role in quality assurance

543–51
organization considerations 72–74
organizational considerations 72–73
organizing for quality assurance

539–41
overview 56–74
peer reviews 62
pre-project components 60–61
procedures 311–18
procedures and work instructions

65–66
professional staff considerations 73

587

Subjectindex

project and maintenance service
consideration 73

project life cycle components 61–65
project process standards 507–23
project progress control 68, 401–8
project progress standards 70
quality management standards 69–70,

475–97
quality plan 60–61
reviews 61–62
software configuration management

67, 365–82
software maintenance 63–64
software quality assurance committees

563–64
software quality assurance forums

564–65
software quality assurance trustees:

tasks 563
software quality assurance unit 71,

556–63
software quality metrics 68, 412–34
software system 63
staff certificating 335–44
staff training 335–44
staff training and certification 66
standards 471–74
standards and system certification

69–70
supporting quality devices 66, 325–32
trustees, committees and forums

71–72
Software quality assurance trustees

71–72, 563
Software quality assurance unit 556–63

audit and certification sub-unit: tasks
559–61

comparison of audit types 561
engineering sub-unit: tasks 562
head of unit: tasks 557–58
information systems sub-unit: tasks

562–63
infrastructure operations sub-unit:

tasks 559
organizational structure 556
project life cycle sub-unit: tasks

558–59
standards and procedures sub-unit:

tasks 562
support sub-unit: tasks 561

Software quality challenge 3–11
Software quality costs see Costs of

software quality

Software quality factors 35–51
classification of 37–38
comparison of models 44–47
compliance with 49–51
correctness 38–39
Deutsch and Willis model 44–47
efficiency 40
Evans and Marciniak model 44–47
expandability 45
flexibility 42
integrity 40–41
interoperability 44
maintainability 41–42
manageability 46
McCall’s model 37–44
portability 43
product operation factors 38–41
product revision factors 41–43
product transition factors 43–44
reliability 39–40
reusability 43–44
safety 45–46
survivability 46
testability 42
usability 41
verifiability 45

Software quality infrastructure 309
Software quality metrics 68, 412–34

classification 415–16
for software maintenance 271
implementation 427–32
limitations of 432–34
objectives 414–15
process metrics 416–21
product metrics 420–27
requirements 415

Software quality operation factors 38–41
testing classes 201–5

Software quality requirements
interested bodies 47, 49
need for 36–37

Software quality revision factors 41–43
testing classes 205–7

Software quality standards see
Standards; Quality management
standards; Project process
standards

Software quality transition factors 43–44
testing classes 207–8

Software risk management 112–18
activities 113–15
development risks 112–13
process 115–17

588

Subjectindex

Software system availability metrics
426–27

full availability metric 426–27
total availability metric 426–27
vital availability metric 426–27

Software system failure density metrics
425

software system density metric 430
weighted software system failure

density metric 425
weighted software system failure per

function point metric 425
Software system failures severity metrics

425
average severity of software system

failure metric 425
Software system security tests 204
Software testing 63

alpha site tests 245–46
automated testing 235–45
beta site tests 245–47
big bang vs. incremental testing

186–87
black box testing 208
bottom-up testing 182–86
bottom-up vs. top–down 185–86
classification 187–89
classification by requirements 188
comparison of automated and manual

testing 237, 243–45
definition 180–81
implementation 216–47
incremental testing 182–86
load tests 238–40
objectives 181–82
process 217–31
strategies 208, 182–87
system security tests 204
test case design 232–35
top-down testing 182–86
white box testing 189–97

Software testing documentation
software test description (STD) 229
software test plan (STP) 228
software test report (STR) 231

Software testing priority
combined rating 222–23
damage severity level 221
software risk level 221–22

Software testing process 217–31
implementation 229–31
methodology 217–20

planning tests 220–28
test design 228–29
tests termination 225–27

Software testing termination 225–27
completed implementation 225
dual independent testing 225–27
error seeding 225
mathematical models 225
resources petered out 227

SPICE project 492, 497
Spiral model 127–29
Staff certification

process 338
Staff certification 335–44

certification committee 342
delivery of programs 342
follow–up 344–45
objectives 337–38
planning process of 341–42
position certification document

(example) 343
positions requiring of 340–41

Staff training 335–44
delivery of programs 342
follow–up 344–45
objectives 337–38
planning programs 340
process 338
professional requirements 338–39
training and updating needs 339–40

Staff training and certification 66
Standards 471–74

benefits of use 471
classification 473
comparison of classes 473
contributions by organizations 472
examples 474
organizations involved 472
project process standards 473
quality management standards 473

Stress tests 203–4
Structural testing see White box testing
Stubs and drivers 184–85
Subcontractors see External participants
Success of the help desk services metrics

423
help desk services success metric 423

Suppliers of COTS software see External
participants

Suppliers of reused software see External
participants

589

Subjectindex

590

Subjectindex

Supporting quality devices 66, 325–32
Survivability 46

Templates 326–29
contribution to software quality

326–27
implementation of 328–29
preparation of 328
updating 329

Test case
comparison of data sources 234
data components 232–33
data sources 223–24
design 232–35
for reused software 235
random samples 233
sources 233–35
stratified sampling 235
synthetic test cases 233–34

Testability 115–17
Testability tests 206–7
Testers 540
Testing see Software testing
TickIT initiative 480–81
Top management 539

Top-down testing 182–86
stubs 184–85

Training usability tests 205
Updating 318

US and Japanese software industries:
comparison 430

Usability 41
User manual 201

Validation 133–35
Verifiability 45
Verification 133–35
Version development policy 259–60

Walkthroughs see Peer reviews
Waterfall model 123–25
White box testing 187–97

advantages and disadvantages 197
correctness tests 190
line coverage 191–94
path coverage 190–91
qualification testing 196
reusability testing 196
work instructions see Procedures

