
The explosive growth of the software industry in recent years has

focused attention on the problems long associated with software

development: uncontrollable costs, missed schedules, and unpre-

dictable quality. To remain competitive, software firms must deliver high quality products on time

and within budget. However, to bring their products more quickly to market, software managers

may avoid quality improvement processes such as design reviews and code inspections, believing

that these processes only add time to the development cycle. Certainly the economics of improv-

ing quality are not well understood in the software development world [9].

Sandra A. Slaughter,
Donald E. Harter, and
Mayuram S. Krishnan

Evaluating the
Cost of Software Quality

The time has come to financially justify investments in
software quality improvements, just like we justify

other software projects.

There is some confusion about the business value of
quality even outside the software development con-
text. On the one hand, there are those who believe that
it is economical to maximize quality. This is the
“quality is free” perspective espoused by Crosby [7],
Juran and Gryna [8], and others. Their key argument
is that as the voluntary costs of defect prevention are
increased, the involuntary costs of rework decrease by
much more than the increase in prevention costs. The
net result is lower total costs, and thus quality is free.
On the other hand, there are those who believe it is
uneconomical to have high levels of quality and
assume they must sacrifice quality to achieve other
objectives such as reduced development cycles. For
example, a study of adoption of the Software Engi-
neering Institute’s Capability Maturity Model
(CMM™) reports the following quote from a software
manager: “I’d rather have it wrong than have it late.
We can always fix it later” [11].

Experiences in manufacturing relating to the cost

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 67

and return of quality improvements suggest that
there are diminishing returns to quality expenditures
[12]. However, quality improvements can often result
in quantifiable cost savings that outweigh the money
spent on the quality efforts. A key management prob-
lem therefore is how to make profitable decisions on
quality expenditures. This problem is particularly
salient in software development due to limited empir-
ical evidence on the economics of software quality.

In this article, we focus on evaluating the cost of
quality and return on quality from the perspective of
software development. We introduce three new met-
rics in the software engineering economics context:
cost of software quality (COSQ), return on software
quality (ROSQ), and software quality profitability
index (SQPI).1 We then report the results from a
detailed longitudinal study on the economics of soft-
ware quality at BDM International, a major informa-
tion technology company.2 Our analysis yields a
number of important insights for software managers
who are interested in improving their decisions on soft-
ware quality expenditures.

Cost of Software Quality
The costs of quality as originally articulated by
Juran and Gryna are those that would be eliminated
if all workers were perfect in their jobs. Quality costs
are important because every dollar and labor hour
not spent on rework can be used for making better
products more quickly or for improving existing
products and processes. The costs of quality are
divided into two major types: conformance and
nonconformance.

The cost of conformance is the amount spent to
achieve quality products. It is further divided into costs
of prevention and appraisal. Prevention costs are those asso-
ciated with preventing defects before they happen. In

software development, examples of prevention costs
include the costs of training staff in design methodolo-
gies, quality improvement meetings, and software
design reviews. Appraisal costs include measuring, evalu-
ating, or auditing products to assure conformance to
quality standards and performance. For software, exam-
ples of appraisal costs include code inspections, testing,
and software measurement activities.

The cost of nonconformance includes all expenses
that are incurred when things go wrong. Internal failure
costs occur before the product is shipped to the cus-
tomer. For software these include the costs of rework in
programming, reinspection, and retesting. External
failure costs arise from product failure at the customer
site. For software, examples include field service and
support, maintenance, liability damages, and litigation
expenses.

So how can companies reduce the costs of software
quality? A basic strategy is to drive failure costs to zero,
invest in the “right” prevention activities to bring
about improvement, reduce appraisal efforts as quality
improves, and continue to evaluate and alter preventive
efforts for further improvement [5]. The idea behind
this approach is that real software failure costs can be
measured and then reduced through the proper analy-
sis of cause and effect. Elimination of root causes means
identifying and permanently fixing defects as early in
the software life cycle as possible, because the cost of
correction increases the later in the software process the
defect is discovered and corrected. As software failure
costs are reduced, appraisal costs can also be reduced,
and the total software quality costs decrease.

Important questions then arise concerning
whether and how much to invest in specific software
quality improvement initiatives. It is useful to
approach these questions from a financial return on
investment (ROI) perspective. We refer to this as the
return on software quality.

Return on Software Quality (ROSQ)
The rationale behind ROSQ is that software quality
expenditures must be financially justified. Increas-
ingly, the chief financial officers in many companies
are promoting disciplines for financial evaluation to

68 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

Important questions arise concerning whether and

how much to invest in specific software quality improvement initiatives.

1Our work extends an important stream of research on metrics for assessing the eco-
nomics of software engineering. Readers are referred to the work of Chidamber and
Kemerer on object-oriented metrics [6]; Banker, Kauffman, Wright, and Zweig on
metrics for software reuse leverage and value [2]; Banker and Slaughter [3] and Banker,
Chang, and Kemerer [1] on project scale size in software development and maintenance;
and Mukhopadhyay and Kekre on features for software cost estimation [10].
2The authors would like to thank BDM International for providing access to archived
data for this study.

encourage investments that yield the greatest
response for limited resources. Such disciplines are
particularly important in the context of software
engineering, as software expenditures account for
larger portions of capital budgets. Software quality is
an investment that should provide a financial return
relative to the initial and ongoing expenditures in the
software quality improvement initiatives. One way to
evaluate software quality improvement efforts is to
consider them in terms of specific initiatives. Examples
of software quality improvement initiatives include
implementation of design reviews, testing and debug-
ging tools, code walkthroughs, and quality audits. Ini-
tiatives require an initial investment—the software
quality investment (SQI)—that includes the initial
expenses for training, tools, effort, and materials
required to imple-
ment the quality
initiative. There
are also ongoing
expenditures for
meetings, tool
upgrades, and
training that are
required to main-
tain the quality
process once it is
in place. We call
this software qual-
ity maintenance
(SQM). Finally,
each software
quality improve-
ment initiative
should result in
annual revenues.
These software
quality revenues
(SQR) can be derived from the projected increases in
sales or estimated cost savings due to the software qual-
ity improvement.

The return on the software quality initiative is
the net present value of the software quality rev-
enues and costs or cash flows (NPVCF) divided by
the net present value of the initial investment and
ongoing maintenance costs for the software quality
initiative (NPVIC). More formally, by selecting a
financial discounting factor (r) that reflects the
company’s weighted average cost of capital, we can
calculate the ROSQ over T periods of time for
which the project yields value for the firm. Related
to the concept of financial ROI is the SQPI, which
is the ratio of the present value of the difference
between the software quality revenues and costs

divided by the software quality investment.3

A value greater than 1 for the SQPI implies that the
initiative will create value that exceeds its investment.
SQPI provides a method for comparing the return on a
number of initiatives. When there are limited funds for
investment, only the highest value SQPI initiatives are
selected. To illustrate the application of these concepts,
we examine the COSQ and ROSQ for software quality
initiatives at BDM International.

Evaluating COSQ and ROSQ at BDM
BDM International is a $1 billion per year IT company.
(In December 1997 BDM International was acquired
by TRW.) From 1985 to 1994, BDM’s Systems Inte-
gration group in Dayton, Ohio developed approxi-
mately 3.5 million lines of code for the requirements

determination portion of a material requirements plan-
ning (MRP) system. The impetus of software quality
improvement at BDM for this project was its fixed price
incentive contract. BDM agreed to absorb any costs
above a ceiling price, but would retain a percentage of
any savings below the original estimated cost that
resulted from improved efficiency. BDM focused on
improving quality in order to increase efficiency and
minimize software costs.

Major Software Quality Initiatives. To reduce
defect rates over the life of the project, four major

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 69

100.0%

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

C
um

ul
at

iv
e

Pe
rc

en
t

of
 D

ef
ec

ts

200

150

100

50

0

48.3%

61.2%

72.1%
81.1%

25.4%51 46

26 22 18 13 11 8 6

87.6% 93.0% 97.0% 100.0%

Pareto Analysis

N
um

be
r

of
 D

ef
ec

ts

JCL

Progra
m Logic

Support D
ocumentati

on

Data
base

Specif
icat

ion
CICS

Migra
tion

Tes
t Plan

Requirem
ents C

hange

Defect Category

Figure 1. Identifying process improvement opportunities using
Pareto analysis

3Contact the authors for the formulas for COSQ, ROSQ, and SQPI.

software quality improvement initiatives were
implemented:

• Process Improvement #1: Creation of life-cycle
development standards and the introduction of
computer-aided software engineering (CASE)
tools.

• Process Improvement #2:
Increasing minimum educa-
tional requirements for hir-
ing, integration of BDM’s
Software Blueprint®

methodology with the
CASE tools, creation of
detailed style guides for
documentation, and institu-
tionalization of weekly pro-
gram management status
reviews.

• Process Improvement #3:
Seamless integration of the
CASE technology with the
publications department,
addition of schedule and per-
formance metrics, automated development cost
estimation, automated software configuration, and
Pareto analysis.

• Process Improvement #4: Cycle time analysis and
development of an automated support cost estima-
tion methodology.

BDM’s basic objective was to drive failure costs to
zero by implementing quality initiatives that would
dramatically reduce defect rates. For example, key
problem areas were identified that were causing the
majority of the
defects. An early
Pareto analysis (Figure
1) suggested that most
of the defects were
related to job control
language (JCL) errors.

To analyze the cause and effect of
the defects arising from JCL errors,
BDM used fishbone analysis (Figure
2). As indicated in Figure 2, the
causes of the errors were incorrect
syntax, parameters, volume serial
numbers, and data set names. As a
result of this analysis, BDM insti-
tuted increased emphasis on JCL
walkthroughs, mandatory use of
automated JCL check software, and

team leader approval for data set names and hard
coded volume serial numbers.

Impact of Quality Initiatives. Were the quality
improvement initiatives over the life of the project
successful at BDM? Figure 3 plots defect density
(defects per 1,000 lines of code) over the 10-year
development period of the project, identifying where
the major quality improvement initiatives occurred.

As indicated in this figure, defect density improves
after each quality improvement, but the data suggests
that this improvement diminishes, that is, the largest
reductions are toward the beginning of the project.

Total Quality Costs, Conformance, and Noncon-
formance Costs. We examined the behavior of total

70 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

$1,814,370
$937,550

194%
3.83

Improvement #1 Improvement #3

$2,099,510
$3,580,990

59%
2.96

NPVCF
NPVQC
ROSQ
SQPI

Return Type Improvement #2

$1,193,420
$2,266,290

53%
3.65

Improvement #4

$1,115,470
$1,058,850

105%
2.74

Table 1. Return on investment analysis

Volume Serial #

Parameter Data

Data Set Name

Syntax

JCL

Hard Coded VSN

No Parameter Passed

Incorrect DSN
Naming Standard

Misplaced period, comma
Uncommented Comment

8

7

6

5

4

3

2

1

0

D
ef

ec
ts

 p
er

 1
00

0
Li

ne
s

of
 C

od
e

Average Defect Rates

Jun-85Jan-84 Oct-86 Feb-88 Jul-89 Nov-90 Apr-92 Aug-93 Jan-95

Process
improvement # 4

Process
improvement # 3

Process
improvement # 2

Process
improvement #1

Process improvements reduce the
defect density at a decreasing rate

Defect Density

Figure 2. Cause-effect analysis using Fishbone chart

Figure 3. Defect rates vs. process improvements

quality costs as well as the conformance and noncon-
formance costs associated with this project. Total qual-
ity costs are the sum of conformance and
nonconformance costs. Conformance costs include the
initial and ongoing expenditures for software quality
initiatives, baseline configuration management,
design reviews, system-level testing, and quality
assurance audits. Nonconformance costs include soft-
ware debugging, configuration management migra-
tions of software fixes, regression testing, operations
support for retesting, and additional audits and
reviews due to defects. Crosby [4] and others have
argued that both nonconformance and conformance
costs should decrease with quality improvement. As
shown in Figure 4, total quality costs and nonconfor-
mance costs per line of code decrease over the life of
the project (from $46 and $32 per line of code at the
beginning of the project to $23 and $9 per line of code
at the end). However, conformance costs appear to be
largely fixed over the project (starting and ending at
$14 per line of code with relatively little variance).
This could reflect the limited degree to which BDM’s
appraisal and prevention policies were changed due in
part to contractual obligations. While some minor
adjustments to appraisal and prevention efforts did
occur as a result of defect reduction, the costs associ-
ated with conformance did not appear to change.

Marginal Analysis of Nonconformance Costs.
We then examined where the greatest nonconfor-

mance cost impacts of defect reduction occurred at
BDM. Costs were tracked in 10 different software
quality cost centers at BDM:

• Data Element Dictionary—for database
element names, field descriptions,
edit criteria

• Integration—for management of product interfaces
to ensure compatibility and system-level
integration

• Documentation—for system, user, and support
documentation

• ADPT Support—for automated data processing
technical support from hardware and system soft-
ware specialists

• Operations—for computer operator support for
development, testing, and production

• Quality Assurance (QA)—for auditing of processes
and products

• Configuration Management (CM)—for manage-
ment of baseline documents and software, and for-
mal reviews

• Program Control—for schedule and budget
tracking

• Management—for senior executive management of
development, operations, and support
activities

• Development—for software design, coding, and
testing through customer acceptance

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 71

Process improvements reduce
non-conformance costs while
conformance costs remain stable

Tool
Non-Conformance
Conformance

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

D
ol

la
rs

 p
er

 L
in

e
of

 C
od

e

Jan-84 Jun-85

Total, Conformance, and Non-Conformance Costs per Line of Code

Oct-86 Feb-88 Jul-89 Nov-90 Apr-92 Aug-93 Jan-95
Process
Improvement # 4

Process
Improvement # 3

Process
Improvement # 2

Process
Improvement # 1

Figure 4. Costs of quality

We calculated the marginal cost effects of defect
reduction by estimating parsimonious log linear regres-
sions that related each nonconformance cost type to
lines of code and defects. The coefficients from these
regressions were used to determine the marginal
impact of 10% reductions in defect rates at different
levels of initial defect rates. Marginal analysis of non-
conformance costs at three different defect density lev-
els (Figure 5) indicates that the greatest marginal cost
effects of defect reduction were in the Development,
Management, Operations, and Quality Assurance areas.
There are a number of reasons for these findings. Devel-
opment costs were directly impacted by defect reduc-
tion due to less rework in debugging, testing, and
programming. Management costs experienced a large
marginal impact from defect reduction due to the
involvement of senior managers when errors occurred
and the high cost of their time. Quality Assurance costs
were also impacted because fewer defects led to less
reinspection, reappraisal, and re-testing activities.
Operations costs are driven by software testing, pro-
duction, and maintenance support. Defect rates have a
high marginal impact on operations costs because they
influence allocation of operations staff support for
regression testing and maintenance workload.

Return on Software Quality. To determine the
return on investment of software quality improve-
ment at BDM, we calculated the Net Present Value,
ROSQ, and SQPI for the four quality initiatives
(Table 1). We determined the software quality rev-
enues in terms of nonconformance cost savings due to
defect reduction. Specifically for each quality

improvement, we calculated the cost savings as the
difference between the nonconformance costs associ-
ated with the average defect density level prior to the
investment (projecting these to the end of the project)
less the nonconformance costs associated with the
average improved defect level after the investment
(projecting these to the end of the project). We used
actual figures on defects and costs for these calcula-
tions in our analysis.

How should companies estimate the cost leverage
from defect density reduction for a project a priori?
One approach is to use actual historical defect and
effort data from the project itself (if it is done over a
long period of time) or to obtain defect and effort data
from a similar project. This data can then be input
into a data-driven cost estimation model (such as
Capers Jones’ SPQR™ or Checkpoint™) to estimate
cost leverage. In BDM’s case, defect density was mea-
sured before and after the first process improvement
in the project to gauge the effect of the process
improvement. Beginning in the third year of the pro-
ject, the actual defect density and effort were com-
pared with the estimated defect density and effort
from SPQR. Actual data on process, productivity, and
effort were used to update the SPQR estimation mod-
els and to recalibrate the defect density and effort pre-
dictions for the following year. Thus, BDM could
estimate the cost leverage from each process improve-
ment (after the first initiative) using data from the
SPQR models.

As shown in Table 1, all four quality initiatives
(numbered 1 through 4) generated a positive return as

72 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

Data Element Dictionary

Integration

Documentation

ADPT Support

Operations

Quality Assurance

Configuration Management

Program Control

Management

Development

120.00

100.00

80.00

60.00

40.00

20.00

0.00
3.5 2.8 1.2

Initial Defect Rate (Errors per 1000 Lines of Code)

D
o

ll
ar

s
in

 1
0

0
0

s
Marginal Cost Reduction per Quarter from 10% Reduction in Defect Rates

at Different Levels of Initial Defect Rates

Figure 5. Marginal cost analysis

measured by ROSQ and SQPI. However, the value for
SQPI declines over time, because the investments later
in the project have less time to recover their large up-
front expenditures in our fixed time horizon. For both
ROSQ and SQPI, the highest values are at the begin-
ning of the project. This suggests that it would be
more profitable to invest in quality early in the project
so that the quality improvements could benefit more
of the project.

Managerial Implications
A number of interesting observations emerged from
our analysis. We found that defect density improved
at BDM with each software quality initiative, but at
a decreasing rate. This could reflect BDM’s strategy
for quality improvement, which was to focus on
eliminating the major problems first. An implica-
tion of this finding is that much of the effect of
quality improvement may be realized from the ini-
tial quality improvement efforts. Our analysis of
BDM’s software quality costs reveals that confor-
mance costs per line of code were relatively fixed
over the life of the project, which could have
resulted in part from BDM’s contractual obligations
to keep certain processes in place. We speculate that
conformance costs may be difficult to change in
general, as they may involve relatively fixed compo-
nents, counter to the claims of Crosby [4]. It could
also be, as Campanella [5] notes, that companies
must be diligent in reevaluating and adjusting their
appraisal and preventive efforts so that they do not
overinvest in conformance activities as quality
improves. Further studies of software conformance
and nonconformance costs to clarify this issue would
be helpful. Finally, we found that the largest mar-
ginal returns in terms of nonconformance cost
reduction at BDM were for the Development, Man-
agement, Quality Assurance, and Operations cost
centers. This result suggests that it may be most
cost-effective to implement software quality
improvement initiatives that are specifically
directed at reducing effort in these areas.

We find the larger returns from quality
improvement occur early in the project (both
ROSQ and SPQI are highest then) and the rest of
the project can benefit from these improvements.
The implication is to avoid making large invest-
ments in software quality toward the end of a proj-
ect. We did not explore this at BDM, but it may be
profitable to invest early in software quality
improvement initiatives that have synergies with
future initiatives or that make future improvements
possible. For example, investing in a software met-
rics program at time t may enable use of other qual-

ity techniques like Pareto analysis and Statistical
Process Control at time t + 1. Such investments cre-
ate an option for future software quality improve-
ments, and their value can be assessed using option
pricing analysis [4].

The intent of our analysis has been to emphasize
that software quality improvement should be viewed
as an investment. It is possible to spend too much on
software quality. Thus, it is important that companies
financially justify each software quality improvement
effort. Finally, we have seen that it is important to
monitor software conformance and nonconformance
costs so that conformance policies can be adjusted to
reduce the total costs of software quality.

References
1. Banker, R., Chang, H., and Kemerer, C. Evidence on economies of scale

in software development. Info. and Softw. Technology 36, 5 (1994),
275–282.

2. Banker, R., Kauffman, R., Wright, C. and Zweig, D. Automating output
size and reuse metrics in a repository-based computer-aided software engi-
neering (CASE) environment. IEEE Trans. Softw. Eng. 20, 3 (1994),
169–187.

3. Banker, R. and Slaughter, S. A field study of scale economies in software
maintenance. Manage. Sci. 43, 12 (Dec. 1997), 1709–1725.

4. Benaroch, M. and Kauffman, R. A case for using option pricing analysis
to evaluate information technology project investments. Info. Syst.
Research, Forthcoming.

5. Campanella, J. Principles of Quality Costs, 2nd ed., ASQC Press, Milwaukee,
1990.

6. Chidamber, S. and Kemerer, C. A metrics suite for object-oriented design.
IEEE Trans. Softw. Eng. 20, 6 (1994), 476–493.

7. Crosby, P. Quality Is Free: The Art of Making Quality Certain. McGraw-
Hill, New York, 1979.

8. Juran, J. and Gryna, F. Quality Control Handbook, 4th ed., McGraw-Hill,
New York, 1988.

9. Krishnan, M.S. Cost and Quality Considerations in Software Product Manage-
ment. Ph.D. dissertation, Graduate School of Industrial Administration,
Carnegie Mellon University, 1996.

10. Mukhopadhyay, T. and Kekre, S. Software Effort Models for Early Esti-
mation of Process Control Applications. IEEE Trans. Softw. Eng. 18, 10
(Oct. 1992), 915–924.

11. Paulk, M., Weber, C., Curtis, W., and Chrissis, M. The Capability Matu-
rity Model: Guidelines for Improving the Software Process. Carnegie Mellon
University Software Engineering Institute, 1994.

12. Wiesendanger, B. Deming’s luster dims at Florida Power & Light. J. Busi-
ness Strategy 14 (Sept.–Oct. 1993), 60–61 .

Sandra A. Slaughter (sandras@andrew.cmu.edu) is an
assistant professor at Carnegie Mellon University.
Donald E. Harter (harter@cmu.edu) is a Ph.D. candidate at
Carnegie Mellon University.
Mayuram S. Krishnan (mskrish@umich.edu) is an assistant
professor at University of Michigan Business School.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0800 $5.00

c

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 73

