
The economics of software quality assurance

by DAVID S. ALBERTS
The Mitre Corporation
Mclean. Virsrinis

ABSTRACT

This paper presents an examination into the economics
of software quality assurance. An analysis of the
software life-cycle is performed to determine where in
the cycle the application of quality assurance tech­
niques would be most beneficial. The number and types
of errors occurring at various phases of the software
life-cycle are estimated. A variety of approaches in
increasing software quality (including Structured
Programming, Top Down Design, Programmer Man­
agement Techniques and Automated Tools) are re­
viewed and their potential impact on quality and costs
are examined.

irs iRODubiiuiN

Current realities of large scale computer systems have
provided the impetus to undertake this examination
into the need for and potential of a quality assurance
program. Proponents of quality assurance claim that
significant savings in both cost and time can be
achieved in addition to improved system performance
if a quality assurance program is implemented. The
purpose of this paper is to examine these claims by
addressing the economics of software quality assur­
ance. Software rather than hardware is the subject of
the analysis since the costs of software have far out­
stripped the costs of hardware and the trend seems to
be continuing in this direction (Figure 1).

The stakes involved are high. Estimates of recent
Air Force annual expenditures on software are over
$1 Billion.'6 WWMCCS alone was estimated to involve
$% Billion for software (about 10 times its hardware
costs),2 while major software systems also run into
hundreds of millions of dollars (IBM OS/360 $200M,X1

SAGE $250Mn and NASA manned space program
$1B12). Indirect costs must be added to these huge
sums and are by no means trivial in of themselves.
For example, software delays often cause delays in
reaching the operational phase of a system's life. A
6-month delay (considered almost on-time) translates
into a $100M loss of services, based upon a projected
7 year operational life and a $1.4 billion project.

Figure 1—Importance of controlling the cost/effectiveness of S/W

The actions which could be undertaken under the
umbrella of a quality assurance plan are quite diverse;
so diverse that it is difficult to separate these actions
from project management. However, quality assur­
ance is only one aspect of project management. First
this analysis addresses the software life cycle and the
relative cost on each portion of the cycle. Next pro­
ductivity is considered insofar as the reduction in
errors in each portion of the cycle impacts cost. Fi­
nally a variety of methods, techniques and tools which
can directly affect the error rate/severity experienced
will be examined.

Two questions drive this analysis. First, can QA
work? and second, Is it worth it? This paper brings
together the experiences and thoughts currently in
circulation and forms these into an analysis of the
issues involved and presents composite estimates of the
potential target of quality assurance (cost of error)
and the reported experience of quality assurance pro­
grams and methods currently available. Because of
the difficulty in separating QA methods from project
management and the absence of good cost accounting
standards, the costs of a quality assurance program
are not explicitly treated in this paper.

433

434 National Computer Conference, 1976

PHASES OF THE SOFTWARE LIFE CYCLE

To ensure a complete and systematic review of the
potential for a QA plan, each aspect of the software
"life cycle" will be examined to determine at what
point QA can support substantial improvements. Both
direct and indirect costs will be considered.

Direct costs are those associated with the actual
performance of the particular phase of the software
life cycle under consideration while indirect costs in­
clude schedule slippages, system degradation, and er­
rors which contribute or add to the cost of subsequent
stages in the process. The software life cycle can be
broken down into four phases: Conceptual, Require­
ment, Development and Operations. While other au­
thors have broken this cycle down somewhat differ­
ently, either by separating Development into two or
more separate phases or by extending Requirements
to include part of the development phase, the categori­
zation shown here more closely corresponds to distinct
levels of effort or expenditures.

After a brief qualitative discussion of the potential
role of QA in each of the four phases of the software
life cycle, the amount of time and relative costs in­
curred in the performance of each of these phases will
be reviewed. Available data on contributions of errors
to cost and delay is examined later.

The conceptual phase

This phase begins with the recognition of a need for
the system. The feasibility and general worthiness of
a proposed system is addressed. Usually a manage­
ment decision is required to move into the next phase
which involves more detailed specifications of perform­
ance characteristics. This phase is Lypined by numer­
ous briefings designed to establish a recognized need
for and cost/effectiveness of the system vis-a-vis orga­
nizational missions and functions. Order of magnitude
cost figures are the typical modus operandi.

This phase has a relatively low contribution to total
cost and may last several years. The question of soft­
ware quality assurance is essentially moot throughout
this phase of the life cycle. However, the role of soft­
ware as it may interface with hardware, and gross
estimates of costs and schedules should be reviewed as
part of a larger quality assurance effort.

Failure to adequately address these issues could re­
sult in having to incorporate into the software develop­
ment functions or design features which could have
been accomplished better in other ways and which
restrict flexibility or increase the complexity of the
software.

The requirements phase

This phase of the software life cycle refines the
conceptual system, further delineating the functions

and interplay between hardware, software and the
user. In general, data inputs and system outputs are
specified and overall load and performance character­
istics are determined. In many cases, specific determi­
nations of system hardware and user-oriented lan­
guages are made. A properly designed Request for
Proposal (RFP), even if the system is to be done in-
house (this step in the design process is skipped only
at considerable risk), treads a thin line between over-
specification and insufficient detail. The former is
often caused by past contractor failures while the latter
is a reflection of the fact that the user simply does not
know what he really wants or needs.

To a large extent, the "die is cast" with the issuance
of an RFP (or corresponding internal document). The
constraints placed on system performance, hardware
and software at this early stage of the life cycle can
have enormous repercussions on the flexibility, relia­
bility, maintainability and cost of the system. Implicit
trade-offs between system throughput and ease and
cost of use, enhancement and maintenance are often
made.

Realistically one cannot expect a prospective vendor
to do the necessary work required to examine and weigh
each of the possible solutions to the design problem.
Even with the most competent of vendors, their objec­
tive function differs from the clients. Specifically, a
vendor's staff may have certain backgrounds and ex­
pertise, or his equipment characteristics more adapt­
able to one family of solutions than another. To save
time or money a vendor may modify an already devel­
oped product or assemble a patch work of available
system modules rather than seek an "optimal" solution.

Thus, quality assurance cannot begin any later than
this phase without considerable risk. The phases which
follow are characterized by much higher expenditures
than these first two phases, with the obvious result that
errors carried forward from this point are very costly.

The development phase

This phase is a transitional one bridging the gap
between a well defined concept and an implementable
system. The big black box between inputs and outputs
has to be broken down into programmable units, logic
determined and finally coded. The testing and valida­
tion tasks require the generation of test data and test
parameters and the development of test tools. Docu­
mentation provides the vital link to connect the test
activities to the designers, programmers and coders.

It is during this stage that a QA activity reaches its
peak, for with increasing detail and concreteness comes
the need for constant monitoring to assure that the
system in reality is the system in concept. Quality
assurance in this phase is simultaneously concerned
with the correctness of (1) functional requirements,
(2) detailed design, (3) program logic, and (4) code.
In addition, the specificity and clarity of the documen-

Economics of Software Quality Assurance 435

tation is also a proper subject of a QA plan. The
testing and validation of the system or the "quality
control" function is the most viable aspect of a quality
assurance plan. For many developers, all too often,
it is the QA plan. This tendency is to become lost in
code is at the risk of deviations from intended system
functions. Correctness of code is not a guarantee that
the code is doing what the user required, but rather
that is doing what it was designed to do; quite a dif-
rcnrcnrkT m o t t D v TT1

i n riacn

than errors in logic.

The operations phase

This phase bridges the gap between the developers
and the users. If QA proponents are correct, some pay—
off attributed to QA should be noticed during the imple­
mentation part of this phase, but its greatest contribu­
tion will appear during the productive part of the life
cycle which is oddly called "maintenance." This termi­
nology may be an indication of the general lack of
quality assurance which exists.

More often than expected, the implementation period
becomes a "field test" with the essential aspects of the
development phase extending far into the operations
phase. Design or even worse functional errors are
frequently uncovered which may require extensive re-
programming. The start of implementation is often
merely an artificial contrivance to cover a scheduled
deadline rather than at the completion of the develop­
ment phase.

THE SHAPE OF THE SOFTWARE LIFE CYCLE

To place the various aspects of the quality assurance
function into perspective, it is necessary to look at the
relative costs and time requirements of each of the
phases described in the previous section. Figure 2
represents the idealized shape of the software life
cycle.2s'ls:!S:,9'10ir' While actual project experience is
difficult to come by, a search of the literature for real-
world cost and time data has been sufficiently produc-

U-15% »U 8%-»|»
PERCENT OF

TIME

Figure 2—Idealized software life-cycle

tive to enable the construction of a composite software
life cycle. This composite was developed from bits
and pieces of available information on different phases
and parts of phases of large systems. The degree of
consistency found among projects gives rise to a fair
degree of confidence that this composite is a useful tool
in obtaining estimates of the potential benefits of a QA
plan. Using the composite life cycle concept, this sec­
tion relates the time required for accomplishing each

The time axis

The percentages of time thought to be denoted to
each phase of the software life cycle as implied by the
shape of the idealized curve are as follows: Conceptual
15%, Requirements 8%, Development 40%, and Opera­
tions 37%. This differed from the reported experience
of several large DoD projects.33 In actual practice the
conceptual phase accounted for 30% rather than 15%,
while development took only 12% (compared to 40%).
The requirement phase accounted for the same per­
centage of time in actual practice as was expected,
while the operations phase (implementation and main­
tenance) lasted longer in actual practice (50%) than is
implied by the curve (37 %) .

In absolute terms, these projects spanned 16 years
from inception to termination. The percentages trans­
late into a conceptual phase of 4*4-5 years; a require­
ments phase of about 1.5 years (these two were actually
performed simultaneously for about 6 months) ; 2 years
for development and 8 years for operations. The re­
quirements phase consists of the preparation of speci­
fications, drafting an RFP and the evaluation and se­
lection of a vendor. About half (314 % of Total Life
Cycle Time) the time was devoted to specifications.
The RFP's took slightly less (2i/2% TLCT) with about
4-5 months (2%) devoted to review, evaluation and
selection. The components of the development phase
(2 years) are more difficult to characterize by time,
since the steps within are either overlapping (require­
ments analysis and design) or simultaneous (code, test,
document).

Relative cost of software life cycle phases

The relative costs of each of the four phases of the
software life cycle can also be inferred from the shape
of curve presented in Figure 2. To verify these in­
ferences, data from several studies are pieced together
and a composite software life cycle (Figure 4) is con­
structed and presented in a following section. The
shape is compared to the idealized versions found in
the literature. It should be remembered that the pur­
pose in developing this composite is to obtain estimates
of the relative costs of each phase to use in the deter­
mination of the potential effects of instituting various

436 National Computer Conference, 1976

SAGE
NTDS
GEMINI
SATURN V
OS/360
AVERAGE

Analysis and
Design

39%
30%
ZRoi*

32%
33%
34%

SOURCE

Coding and
Debugging

14%
20%
17%
24%
17%
18%

: 14

Validation

47%
50%
47%
44%
50%
48%

forms of quality assurance. Therefore, the cost bal­
ance between development and maintenance as well as
among steps in the development phase were of greatest
concern.

Operations vs. development

The balance between development and operation de­
pends primarily upon the length of the maintenance
period used in the calculations. To standardize these
calculations for comparison purposes a maintenance
time period equal to 50% of the total life cycle (or
8 yrs) will be used. A study9 which monitored costs
fairly closely from requirements through one year of
maintenance reported expenditures (in terms of man
years) for Requirements, Development and Operations.

These figures were weighted (3 for management;
2 for programmer and 1 for staff support) to deter­
mine costs incurred. Assuming a negligible cost for
the conceptual phase, say 1% and an operational life
of 8 years, the percentage of total costs incurred by
each of the four phases of the life cycle were calculated
as follows: Requirements 1.5%, Development 51.3%
and Operations 46.2%. The ratio of Development to
Operations (Implementation and Maintenance) in this
case would be 1 to 1.1.

Implementation is difficult to separate from develop­
ment and maintenance since it in reality is a transi­
tional period between the two. For this reason data
about implementation is hard to find and interpret.
This being the case the remainder of this paper treats
operations as essentially equivalent to maintenance.

A look at cost data available for development vs.
maintenance costs for OS releases 18, 19, and 20.013

are even more heavily weighted toward mainte­
nance with ratios of 3 to 1 for OS 18 with only two
years of maintenance included and 1.25 to 1 for all
three releases with only one year of maintenance in­
cluded. The experiences reported on in this section
with respect to the balance between development and
maintenance costs show that the costs of maintenance
consistently exceed costs of development. Since QA
would be expected to have the greatest impact upon
costs in the operations phase, a conservative cost equa­
tion (conceptual cost + requirements cost + develop­
ment cost=operations cost) will be used to minimize
the estimated potential for QA.

Relative costs within the development phase

The activities undertaken during the development
phase can be grouped into (1) analysis and design,
(2) coding and debugging and (3) testing or vali­
dation.

The ratio of the cost of these activities to one another
is often thought to be a function of the complexity of
the system to be developed. That is, a non-linear

Figure 3—Breakdown of development costs for selected systems

(exponential) relationship is said to exist between com­
plexity and the cost of testing. Testing costs are highly
related to the number and severity of errors to be dis­
covered and fixed, the number of which is related to
system complexity. Proponents of QA will argue that
this exponential relationship need not be the case if
proper management (including a good QA plan) is
exercised. Since the success of QA is directly related
to error rates and error rates are the underlying causes
of the cost relationships among the activities under­
taken during development, this section will concentrate
on the ratio of testing (or validation) to the total of
development costs.

A study8 which looked at the relative costs of design,
coding and debugging in relationship to validation re­
ported that the ratio of validation (testing) costs to
the total development effort ran between y3 to %.

Figure 3 gives a breakdown of the development
phases of five large projects. The results14 are very
consistent from project to project and in the range of
the results of the first study referenced. The range
ys-Y2 also includes the experience from ALPHA-69 re­
ported on earlier in this chapter.

A composite software life cycle, based upon a 16 year
length (50% operational life) and the relative costs
for the four phases given in Figure 3, is presented in
Figure 4. The shape is far more leptokurtic than the

r\

1.0% I 1.5%

4 7 . 5 %

50.0%

1 2 3 4 5 6 7 8

01 »"j 02 | 03 («*-

Figure 4—Composite software life-cycle

10 11 12 13 14 15 16
04 ».

Economics of Software Quality Assurance 437

"idealized" curves found in the literature with the
length of the maintenance tail spreading its significant
costs over many years. This is due in larger part to a
contraction of the development phase. The visual
impact of the meager resources applied to the Require­
ment phase also represents a departure from the
idealized shape.

THE COST OF ERROR

A measure of system quality is the number of errors
which occur. Hence, ratios of one kind of error to
another have been proposed22 as indicators of quality
software. It is taken on faith that well designed sys­
tems can be put together with little resultant error,
and for those errors which occur, the mean age of the
errors becomes a vital statistic with which to judge
software.

This section is devoted to estimating the source,
kind, type and severity of errors generated during
development. It would be of interest to examine the
requirements stage to place a value on the "errors**
which originate there and trace their impact through­
out the rest of the life cycle; but aside from intuitive
feelings about their impact no real data appears to be
available.

Frequency and severity of errors

No two researchers group errors in quite the same
way. As a result, the available information on soft­
ware errors hau uo u& mterpreteu and Classified U&SBKX

upon the explanations provided in individual studies.
Errors are classified in this paper as either design,
logic or syntax. These categories are sufficient for the
purpose at hand. Design errors are those which re­
quire changes in the specifications used by the pro­
grammers. Usually they represent a lack of under­
standing (or proper communication) of a computation
or process, which results in the wrong "problem" being
solved. Logic errors occur when the system design is
translated into programmable form (detailed flow
charts). Syntax errors are self-explanatory. Few of
the studies of software errors present actual data per­
taining to frequency and severity. Taken together1'4'6-8'47

those that present some data all report design error
as occurring most frequently. Ranging from a high
of 64%' to 46 %.6 Syntax errors were reported to be
about 15% of the known errors. Logic errors ranged
from 21% to 38%>. The significant point to note is the
large percentage of design errors.

Available data on cost of detection and correction
reveals that design errors cost the most to diagnose
and fix. Syntax errors are reported to be more of a
nuisance than a significant cost particularly with the
use of automated precompiler processing.

Origin and detection of errors

Where errors originate as well as when and how
they are discovered are important inputs to the design
of an effective QA plan. Syntax errors originate, sur­
face and are resolved within a brief period of time and
for all intents and purposes can be considered totally
encompassed within the process of coding. Such is not
the case with design and logic errors. Design errors
can be caught durin°" a design review îf there is one^
during preparation of detailed flow charts or occa­
sionally during coding. Simple logic errors (process
before read) can be caught at compilation time or dur­
ing program testing. Because of the numerous paths
in any program which can be tested many logic errors
are not observed until the validation, implementation
or maintenance stages. A study of a large software
development effort1 found that 54% of the errors
were not caught until acceptance testing or presum­
ably until after development was complete. To make
matters worse, the overwhelming proportion of these
were design errors. Reported figures indicated that
70% of the design errors were not caught at earlier
stages while by contrast 80% of the programming
or logic errors were caught during development. If
the mean age of error were calculated for this case
it would be quite high due to the high percentage of
design errors involved.

Estimation of the costs of errors

Using the three categories of error (design, logic
and syntax) it appears that design errors account for
at least 80 % of the total cost of error. This percentage
is arrived at by noting that about % of all errors
caught are design errors; with logic and syntax errors
making up about equal proportions of the remaining y3.
Compared to the cost of tracking down and correcting
coding errors, the cost of syntax mishaps is small.
However, the cost of design errors is more than double
(2V£ times) that of coding error. The calculation of
the contribution of design error to the total cost of
error consists of taking the weighted (expected) cost of
an error [% design errors x 2 ^ + % coding+syntax
errors x 1] and dividing it into the contribution of de­
sign [% design x 2 ^] using the percentage given
above 8 3 ^ % of the total cost of error can be attributed
to design errors. This relatively large contribution to
total error cost should play an important role in the
design of a QA plan and will be used as an input in
the calculation of the potential effectiveness of quality
assurance.

The next calculation which is required for the assess­
ment of the potential of quality assurance is the per­
centage of total life cycle cost which can be attributed
to error. Once this percentage is obtained, an estimate
of the benefits of a QA plan can be developed based on
a "tool by tool" analysis of the kind of error it ad-

438 National Computer Conference, 1976

dresses (design, logic or syntax) and the percent error
reduction claimed or experienced. These calculated
benefits can then be compared to the cost associated
with these components of a QA plan for a final assess­
ment of the economics of quality assurance.

To estimate the cost of error the following method
was used. For a slightly conservative estimate, it was
assumed that (i) all costs in design (ii) coding and
(iii) documentation to be non-error related. All check­
out and validation costs (recognizing that only some of
these costs can be reduced by reducing the number of
errors, since some costs are fixed) were attributed to
error. From the ALPHA-6 data then 47 % of develop­
ment cost (assuming the code, test, and document costs
were equal) could be traced to errors. Further data on
developments costs for several large systems (given
in Figure 3) averaged almost exactly the same per­
centage (48%).

Maintenance costs can be attributed to correcting
errors and to enhancements, but "enhancements" often
result from initial design errors. For the sake of dis­
cussion assume that half can be directly related to
error. This amounts to the conservative estimate of
almost half of the total life cycle costs (47.6%) being
directly tied to error (see Figure 5). On the cost basis
of a large system, the total cost of error is in the
hundreds of millions. If quality assurance methods
can reduce error by even small amounts, they would
appear to be worthy of serious consideration. For ex­
ample, a 10% reduction in error (% Design, yz logic
and syntax) as they have been reported in the studies
reviewed would represent a saving of almost $25
million based upon a relatively large effort (cost =
$14 billion over the 16 year cycle). A five percentage
error reduction (only 1/2 design) would result in a sav­
ings of over $10 million.

THE EFFECTIVENESS OF THE TECHNIQUES
AND TOOLS OF QUALITY ASSURANCE

The assurance of quality can be brought about by
any number of different approaches which have been

Error % Total Relative % Total
Type Errors Severity Cost of Error

Design 2/3 2.5 83+%
Logic 1/6 1.0 8 + %
Syntax 1/6 1.0 8 + %

Development Operations
Phase Phase Both

% Total Life
Cycle Cost 47.5% 50% 97.5%
% Cost Due to
Error 48% 50% —
% Total Life
Cycle Cost
Attributed to
Error 22.6% 25% 47.6%

Figure 5—Error and software life cycle costs

suggested. These range from essentially project man­
agement techniques to methodologies of design to
syntax checking tools. Many of the methods which will
be discussed in this section can be expected to have
a much broader impact on design, development and
implementation than is pertinent to a discussion of
quality assurance. This section will address the im­
pact these methods have on error rate and error-related
productivity.

In some cases, their contribution to quality is rather
straightforward, particularly for error detection tools.
However, for those which promise the most sweeping
reforms, essentially those dealing with management or
design effectiveness, measurement is difficult and little
concrete information is available.

It is the purpose of this section to analyze based upon
available data the potential of quality assurance in
terms of the cost of error, development productivity
and the cost of quality assurance. In the following
paragraphs, some of the most widely discussed tech­
niques and tools will be reviewed.

Structured programming

The advantages touted for Structured Programs
range from improved program design to improved
documentation. Improved design is linked to fewer
design errors and fewer logic/programming errors.
Fewer statement types are linked to fewer syntax
errors and an almost self-documenting program. Fewer
errors imply greater productivity during development
and reduced operations costs. Further, the stream­
lined design is claimed to be easier to upgrade and en­
hance. Finally, the planning and conceptualization re­
quired by Structured Programming is said to enhance
the performance of project management.

Reported increases in error free productivity ranged
from 50 %25 to 125 %47 with the introduction of Struc­
tured Programming while error reductions of between
30%o -90%o were reported by another study.17 Quantita­
tive results of ease of enhancements were not found,
however, a study of the development cycle56 estimated
25%o reduction in the elapsed time from requirements
to implementation, from 6 years to 4.5 years.

Top-down development

The essence of Top-Down Development is simul­
taneous systems integration and development which
results in a viable, executable, if rather skeletal system
at an early state. This development approach amounts
to an ordering of the sequence of system decomposi­
tion decisions beginning with a simple description of
the entire system or process and continuing with
successive refinements until a programmable design is
reached. Top-Down Development is a natural com­
panion of Structured Programming, so much so that

Economics of Software Quality Assurance 439

the two concepts are often confused. The claimed ad­
vantages of this approach include the increased ease
of implementing a QA plan with a resultant reduc­
tion in design error and productivity improvements as­
sociated with the systems integration and testing
efforts during the development phase.

Perhaps the most significant advantage claimed from
a QA perspective, is the early existence of a complete
system's design replete with the design specification
rxt a\TC*i'£nm nmmr\r\Trk£iirf¥ct o n A l i r f a v f o n o c "\Tr\+- A T I I T T r\s\ac*

such a document enhance the changes of a coherent and
consistent design, but it also serves as a vehicle for
establishing a correspondence with "user" oriented
functional specs. The system components are placed
into perspective for all to see and comment upon. Mis­
understandings that often were not surfaced until ac­
ceptance testing can be resolved at this time. Design
problems often not found until systems integration
may be corrected reducing the high cost currently as­
sociated with these problems.

The incorporation of the testing function throughout
development, made possible by the continual existence
of a testable system, offers QA with an opportunity
to be more of a pro-active force in development.

There are recognized pitfalls as well. Care must be
taken to ensure design feasibility in terms of existing
software and hardware, since actual coding is sig­
nificantly delayed.

Holistic design is difficult to achieve and false starts
are likely. However, when weighted against the known
shortcomings of bottom-up design there is little ques­
tion that a Top Down approach when combined with
some common sense offers substantial advantages to
both developer and user.

Hard estimates of the reduction in error and in­
creases in productivity from the use of this approach
alone are not readily available. However, when used
in conjunction with Structural Programming and a De­
velopment Support Library,-"' a productivity improve­
ment of over 300% (when compared to a system using
a Development Support Library alone) was experi­
enced. With Structural Programming alone, produc­
tivity gains of 50 %. -100 % were experienced; thus, the
addition of a Top Down Design approach seems to
further enhance performance significantly.

For the purposes of this analysis, the expected per­
formance of this approach will be conservatively
bounded from above. In terms of development produc­
tivity, a very conservative range which includes gains
made by reduced systems integration and testing, and
by better manpower and computer time scheduling
would be between a 5-10% improvement in produc­
tivity. This improvement could be reasonably expected
from the savings in the integration step alone.

As far as design errors are concerned, the increased
attention to overall design could be expected to reduce
configuration and architecture errors significantly and
virtually eliminate errors in the specification of offered

system functions. One study6 showed that machine
configuration and architecture errors accounted for
just over 20% of all design errors while errors in the
functions offered accounted for about 25% of the de­
sign erorrs. Both are susceptible to being caught
early. An examination of specs by others not involved
in their formulation resulted in the detection of be­
tween 30%-40% of these errors. An increase from
this to a 50 % rate of error detection might realistically

Other recent innovations

In addition to Structured Programming and Top
Down Development, a number of other approaches to
improving software quality and productivity have been
advanced. Among these are the techniques of the Chief
Programmer Teams, Egoless Programming, and auto­
matic or semi-automatic tools ranging from Design As­
sertion Consistency Checkers to Automated Test Case
Generators.

The management oriented techniques are aimed at
achieving increased communications and coordination
while the automated tools seek to provide complete,
systematic and low cost verification. This section will
briefly explain some of these innovations concentrat­
ing on the contribution or impact likely on the per­
formance of the QA functions.

Programming organizations

In this section, the effects of the Chief Programmer
Team, Egoless Programming and Democratic Team
Organization on the performance of the QA function
will be addressed. Egoless Programming and Demo­
cratic Teams are essentially loosely structured pro­
gramming environments in direct contrast to the Chief
Programmer approach which is highly structured. It is
interesting that the changes from current practice
being advanced to improve software quality are in
opposite directions. Both approaches, however, take
aim at the individualist who becomes ego-involved
with code to the extent that error detection is thwarted.
The loosely structured approaches attack this problem
directly by eliminating "ownership" of code to reduce
defensiveness. The Chief Programmer Team approach
is meant to be employed in conjunction with Structured
Programming and Top Down Design which systemati­
cally eliminates tricks and gimmicks in programming
and imposes ridged forms. Users of both types of ap­
proaches claim better communication leading to re­
duced misunderstandings and error rates. On the one
hand, the Chief Programmer Team approach is criti­
cized for being too authoritarian while the other ap­
proaches are said to tend to alleviate the individualist
and require more sophisticated management tech­
niques. Experience indicates that managing bright

440 National Computer Conference, 1976

Error
Type

Design
Logic/
Coding

MetJiods of Detection

Manual
Inspection

45%

24%

Formal
Methods

'Simulation,
etc.)

20%

22%

Tests
Runs

35%

54%

100%

100%

Figure 6—Error detection for design and logic/coding error
types

creative staff is no mean task regardless of the tech­
niques employed. The key seems to be in the actions
taken to increase the understanding and clarity of
assignments not in what abstract management philoso­
phy is employed.

Automated tools for quality asssurance

The literature contains countless tools developed to
check out design, flow charts, code and even documen­
tation systematically and quickly. Their performance
can more easily be measured than the techniques previ­
ously discussed, but their contribution to the potential
of an overall QA plan is limited. Their very nature
(highly specified and deterministic) limits their effec­
tiveness in dealing with other than highly structured
situations. Thus, these tools are most applicable to the
detection of errors in code and simple sorts of logic
errors rather than major flaws in program logic or
design approach. Nevertheless, they can significantly
contribute to increased productivity, earlier detection
and VIPTIPP csornp rpHnr>tin;n of +VIP " r i T ^ l o " effect ^19"^:

of the errors introduced as a result of error correc­
tion55)- An analysis of error types and means of de­
tection'3 showed that (See Figure 6) manual inspection
uncovered only 24% of logic and coding errors com­
pared to 45% of design errors indicating the potential
for the use of automated tools. Such tools could have
an impact in reducing the percentage of logic and
coding errors (54%) not caught until testing. One
study gave evidence to support this feeling21. The
use of automated instruction and path checkers (AS­
SIST and NODAL) reportedly catch between 67%-
100% of the errors and at between 2-5 months earlier

than they would have otherwise been detected. Auto­
mated error checking is currently at the state of de­
velopment where it is either language or application
specific and it would probably be of marginal value to
develop such a tool for a specific project.

Figure 7 summarizes the results with respect to the
reported effectiveness of quality assurance methods
and shows the dollar impact that improvements in de­
velopment productivity can have based upon a project
whose total life cycle costs equal $.5 billion.

SUMMARY AND CONCLUSIONS

This section places the relevant estimates developed
during this report in perspective and highlights im­
portant aspects in the assessment of the economics of
Software Quality Assurance. This paper first ad­
dressed the software life cycle to identify the areas
which could be improved by a QA plan. Second, an
examination of the frequency of software error, its
sources or origins, methods of detection and associated
costs was presented. This was followed by an examina­
tion of some of the methods and techniques suggested
for quality assurance. Highlights of these examina­
tions and analyses follow.

Summary of findings

The examination of the software life cycle revealed
that costs were concentrated in the Development and
Operations phases. The typical Development Phase
accounted for just under 50% of the total costs while
lasting about 2 years (12% of a 16 yr. cycle). About
half of the development costs were spent on check-out

, r l f n o - K v w TltlCE tras ibout
analysis and design and % for actual coding. The
Operations phase while consuming just under 50%
of the total life cycle costs was spread over an eight
year period.

Errors were classified into three types (design,
programming/logic, syntax). The last accounting for
some 15% of all errors. Design errors outpaced pro­
gram/logic errors by a little less than 2 to 1 accounting
for a little more than half of all errors. Program/logic
errors ran about one-third of the total.

The severity of errors, as measured by the cost of
detection and correction, was found to be higher for

Technique

Structured Programming
Top-Down Design
Management Organization
Automated Tools

Error
Reduction

30-90%
Substantial

Caught earlier

Productiv

Range

50%-100+%
10%-200%

Up to 25%

ity

Mid-Point

75%
100%

10%

$ Impact of
1% Improvement
In Development

$2,375,000

Potential
Impact

$175 Million
$250 Million

$ 25 Million

Figure 7—Performance of quality assurance techniques

Economics of Software Quality Assurance 441

design errors than program/logic or syntax errors
(least costly). Weighted by costs it was calculated
that design errors accounted for just over 80% of the
total cost of error. In terms of the total software life
cycle then, with 47.5% of its costs in development and
50 % in maintenance, the cost of error could easily run
over 50 % of the total software life cycle cost.

To combat error and improve software quality a
variety of methods have been suggested. Preliminary
reports have been encoura°°in°" in both the areas of
productivity improvement and error reduction.

Conclusions

While the data drawn upon comes from a large
variety of sources (different systems, different en­
vironments and from studies using different definitions
and analysis methodologies), the experiences reported
were so compatible that, while more detailed data is
necessary for the actual development of a QA plan
specific to a given set of system and organizational
circumstances, the conclusion that QA can be cost effec­
tive is inescapable.

From the analysis presented in this paper, the de­
velopment of a QA plan should concentrate on tech­
niques and methods for the early detection and elimi­
nation of design errors. The researchers reporting on
the development of ALPHA-69 indicated that if more
resources were applied during design, it would have
resulted in substantial savings in the costs of testing
and maintenance. An extrapolation of the data they
presented gives a multiplicative factor of 5; that is,
a dollar more spent in design would have saved 5 dol­
lars spent on testing and maintenance. While this
example may be unusual, it, together with the fact that
a significant portion of total system cost can be at­
tributed to error point to the cost impact that a QA
function can provide.

A parameterization of the impact that error and
productivity improvements have on total software
system costs based upon a $14 billion total life cycle
cost (about $250 million for S/W Development) has
been made. For each 1 % of error reduction (14 coding
+ 14 design) a savings of just over $ 1 ^ million could
be expected. For each 1% improvement in Develop­
ment productivity a saving of $2,375,000 could be ex­
pected. It should be noted that Design errors have
more than double the impact than do coding errors.

Thus the leverage of QA in large programs is sig­
nificantly high to warrant serious consideration. The
costs of developing and implementing a QA plan are
difficult to specify for a given organization, especially
in light of their management considerations. However,
even with the additional expense QA still promises to
be cost-effective. For example, if management over­
head for software development is approximately 5%
of development costs and a QA plan increased this
overhead by 14, then a reduction of error by approxi­

mately 1% (coding) alone could offset these additional
costs.

REFERENCES

1. Boehm, B. W., et al, "Some Experince With Automated Aids
to the Design of Large-Scale Reliable Software," IEEE
Transactions on S/W, TRW, March 1975.

2. Boehm, B. W., "Software and Its Impact—A Quantitative
Assessment," Datamation, TRW, May 1973.

C. u i v n u , a. AW., c i a i , JLJ v a i u a u u g u i c .uu.ci;i>i v c u c o s <JJ. dul l . -

ware Verification—Practical Experience With an Auto­
mated Tool," AFIPS Fall Joint Computer Conference, De­
cember 1972.

4. Shooman, M. L., et al, "Types, Distribution, and Test and
Correction Times for Programming Errors," IEEE Trans­
actions, Bell Labs, March 1975.

5. Schneidewind, N. F,, "Analysis of Error Processes in Com­
puter Software," IEEE Transactions, Naval Postgraduate
School, March 1975.

6. Endres, A., "An Analysis of Errors and Their Causes in
System Programs," IEEE Transactions, IBM Lab, Germany,
March 1975.

7. Rubey, R. J., et al, Comparative Evaluation of PL/1, USAF
ESD-TR-68-150, April 1968.

8. Rubey, R. J., "Quantitative Aspects of Software Validation,"
IEEE Transactions, LOGICON, March 1975.

9. Buda, A. O., et al, "Implementation of the ALPHA-6 Pro­
gramming System, IEEE Transactions," Academy of Sci­
ences USSR, March 1975.

10. Ramamoorthy, C. V., et al, "Testing Large Software Evalu­
ation Systems," IEEE Transactions, CSD, ERL, University
of California, Berkeley, March 1975.

11. Alexander, T., "Computers Can't Solve Everything," For­
tune, May 1969.

12. Boehm, B. W., "System Design," Planning Community
Information Utilities (ED) H. Sackman, AFIPS Press,
1972.

18. Barry, B., et al, Software Life Cycle Considerations, IBM,
January 1974.

14. Boehm, B. W., "Some Information Processing Implications
of Air Force Space Missions: 1970-1980," Astronautics and
Aeronautics, January 1971.

15. Vick, C. R., Specification for Reliable Software, EASCON,
1974.

16. Brown, J. R., et al, "Evaluating the Effectiveness of Soft­
ware Verification—Practical Experience with an Automated
Tool," AFIPS Conf., 1972.

17. Cammack, W. B., et al, Improving the Programming Process,
IBM SDD TR002483, October 1973.

18. Cheng, L. and J. E. Sullivan, Case Studies in Software
Design, MTR-2874, Volume I, June 1974.

19. Boden, W. H., "Designing for LCC," EASCON 7k, pp. 624-29.
20. Knight, C. R., "Warranties as a Life-Cycle-Cost Manage­

ment Tool," EASCON 7k, pp. 621-623.
21. Mangold, E. R., "Software Error Analysis and Software

Policy Implications," EASCON 7k, pp. 123-27.
22. Mills, H. D., "How to Buy Quality Software," EASCON 7k,

pp. 120-22.
23. Nashman, A. E., "Software Development Management: The

Key to Quality Software Products," EASON 7k, pp. 31-35.
24. Oliver, P., "Observations on Software Reliability," EASCON

7k, pp. 126-29.
25. Baker, F . T., "Structured Programming in a Production

Programming Environment," IEEE Transactions on S/W
Rel. 75, pp. 172-185.

26. Rain, M., Two Unusual Methods for Debugging S/W Soft­
ware Practice and Experience 3, pp. 61-63.

442 National Computer Conference, 1976

27. Katzenelson, J., Documentation and Management of Soft­
ware Project, SP & E 1, 2, pp. 147-157.

28. Peadi, P., Quality Control for Computer Programming: A
Final Report on an Initial Study, SDC, Santa Monica,
California, September 1965.

29. , QC for Systems and Programming, A Survey of the
Literature, SDC, March 1965.

30. Connolly, J. T., Software Acquisition Management Guide­
book: Regulation, Specifications and Standards, MTR-3080,
The MITRE Corporation, June 1975.

31. Clapp, J. A., Major Contributions to Software Engineering
in the 1980's, MTR-2791, The MITRE Corporation, January
1974.

32. , A Software Error Classification Methodology, MTR-
2648, Volume VII, The MITRE Corporation, June 1973.

33. Reifer, D. J., "Automated Aids for Reliable Software,"
IEEE Transactions on S/W Reliability, March 1975, pp.
131-42.

34. Wulf, W. A., "Reliable Hardware-Software Architecture,"
IEEE Transactions on Software Reliability, March 1975,
pp. 122-30.

35. Cicu, A., et al, "Organizing Tests During Software Evolu­
tion," IEEE Transaction on Software Reliability, March
1975, pp. 43-50.

36. Williams, R. D., "Managing the Development of Reliable
Software," IEEE Transactions on Software Reliability,
March 1975, pp. 43-50.

36. Williams, R. D., "Managing the Development of Reliable
Software," IEEE Transactions on Software Reliability,
March 1975, pp. 3-8.

37. Ceoff, N. S., "Development Project Costs," Journal of
Systems Management, September 1974, pp. 14-17.

38. Aron, 5J. D., Characteristics of the Program System Devel­
opment Life-Cycle, IBM FSD 74-0180.

39. Pietrasanta, A. M., "Resource Analysis of Computer Pro­
gram System Development," On The Management of Com­
puter Programming, G. F. Weinwurm, (Editor) : Auerbach
Publishers, 1970.

40. Brooks, F. P., Jr., "Why is Software Late," Data Manage­
ment, Volume 9/8, August 1971.

41. Clapp, J. A. and J. E. Sullivan, SIMON: Finding the
Ansivers to Softivare Development Problems, MTP-159,

42. Cheng, L. L., Some Case Studies in Structured Program­
ming, MTR-2648, Volume VI, The MITRE Corporation,
June 1973.

43. Fleischer, R. J., Effects of Management Philosophy on Soft­
ware Production, MTR-2648, Volume II. The MITRE
Corporation, June 1973.

44. Corrigan, A. E., Results of an Experiment in the Applica­
tion of Software Quality Principles, MTR-2874, Volume III,
The MITRE Corporation, June 1974.

45. Schiff, J. D., "An Overview of the Software Life-Cycle
Process," Proceedings of the Aeronautical System Software
Workshop, Dayton, Ohio, April 1974, p. 108.

46. Prywes, N. S., Research on Automatic Program Generation,
Report 74-05 University of Pennsylvania Moore School of
Electrical Engineering, January 1974.

47. Boles, S. J. and J. D. Gould, A Behavioral Analysis of
Programming—On the Frequency of Syntactical Errors,
IBM RC 3907, June 1972.

48. McGonagle, J. D., A Study of a Software Development
Project, J. P. Anderson and Company, September 1971.

49. Nichols, B. S., Practical Experience With Structured Pro­
gramming, Bell Systems, November 1973.

50. Mill, H. D., "Top Down Programming in Large System,"
Debugging Techniques in Large Systems, R. Rustin (ED)
Prentice Hall, 1970.

51. Baker, F. T., "Chief Programmer Team Management of
Production Programming," IBM Systems Journal 11, 1972.

52. Sackman, A., Man-Computer Problem Solving, Auerbach
Publishers, 1970.

53. Weinberg, G. M., The Psychology of Computer Program­
ming, Van Nostrand Reinhold, New York, 1971.

54. Baker, F. T., "System Quality Through Structured Pro­
gramming," AFIPS Conference Proceedings, 1972, pp. 339-
343.

55. McGonagle, J. D., A Study of a Software Development
Project, James P. Anderson and Company, Los Angeles,
California, 1971.

56. Haile, A., Command and Control Information Processing in
the 1980's (USAF-CCIP-85) Presentation in DoD Com­
puter Institute Seminar IX, November 1972.

57. Asch, A., et al, DoD Weapon Systems Software Acquisition
and Management Study, Vols. I and II, The MITRE Cor-
JJUliUiUii, I l I T I l - o S u S , IdlO.

