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ABSTRACT 

This paper presents an examination into the economics 
of software quality assurance. An analysis of the 
software life-cycle is performed to determine where in 
the cycle the application of quality assurance tech­
niques would be most beneficial. The number and types 
of errors occurring at various phases of the software 
life-cycle are estimated. A variety of approaches in 
increasing software quality (including Structured 
Programming, Top Down Design, Programmer Man­
agement Techniques and Automated Tools) are re­
viewed and their potential impact on quality and costs 
are examined. 
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Current realities of large scale computer systems have 
provided the impetus to undertake this examination 
into the need for and potential of a quality assurance 
program. Proponents of quality assurance claim that 
significant savings in both cost and time can be 
achieved in addition to improved system performance 
if a quality assurance program is implemented. The 
purpose of this paper is to examine these claims by 
addressing the economics of software quality assur­
ance. Software rather than hardware is the subject of 
the analysis since the costs of software have far out­
stripped the costs of hardware and the trend seems to 
be continuing in this direction (Figure 1). 

The stakes involved are high. Estimates of recent 
Air Force annual expenditures on software are over 
$1 Billion.'6 WWMCCS alone was estimated to involve 
$% Billion for software (about 10 times its hardware 
costs),2 while major software systems also run into 
hundreds of millions of dollars (IBM OS/360 $200M,X1 

SAGE $250Mn and NASA manned space program 
$1B12). Indirect costs must be added to these huge 
sums and are by no means trivial in of themselves. 
For example, software delays often cause delays in 
reaching the operational phase of a system's life. A 
6-month delay (considered almost on-time) translates 
into a $100M loss of services, based upon a projected 
7 year operational life and a $1.4 billion project. 

Figure 1—Importance of controlling the cost/effectiveness of S/W 

The actions which could be undertaken under the 
umbrella of a quality assurance plan are quite diverse; 
so diverse that it is difficult to separate these actions 
from project management. However, quality assur­
ance is only one aspect of project management. First 
this analysis addresses the software life cycle and the 
relative cost on each portion of the cycle. Next pro­
ductivity is considered insofar as the reduction in 
errors in each portion of the cycle impacts cost. Fi­
nally a variety of methods, techniques and tools which 
can directly affect the error rate/severity experienced 
will be examined. 

Two questions drive this analysis. First, can QA 
work? and second, Is it worth it? This paper brings 
together the experiences and thoughts currently in 
circulation and forms these into an analysis of the 
issues involved and presents composite estimates of the 
potential target of quality assurance (cost of error) 
and the reported experience of quality assurance pro­
grams and methods currently available. Because of 
the difficulty in separating QA methods from project 
management and the absence of good cost accounting 
standards, the costs of a quality assurance program 
are not explicitly treated in this paper. 
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PHASES OF THE SOFTWARE LIFE CYCLE 

To ensure a complete and systematic review of the 
potential for a QA plan, each aspect of the software 
"life cycle" will be examined to determine at what 
point QA can support substantial improvements. Both 
direct and indirect costs will be considered. 

Direct costs are those associated with the actual 
performance of the particular phase of the software 
life cycle under consideration while indirect costs in­
clude schedule slippages, system degradation, and er­
rors which contribute or add to the cost of subsequent 
stages in the process. The software life cycle can be 
broken down into four phases: Conceptual, Require­
ment, Development and Operations. While other au­
thors have broken this cycle down somewhat differ­
ently, either by separating Development into two or 
more separate phases or by extending Requirements 
to include part of the development phase, the categori­
zation shown here more closely corresponds to distinct 
levels of effort or expenditures. 

After a brief qualitative discussion of the potential 
role of QA in each of the four phases of the software 
life cycle, the amount of time and relative costs in­
curred in the performance of each of these phases will 
be reviewed. Available data on contributions of errors 
to cost and delay is examined later. 

The conceptual phase 

This phase begins with the recognition of a need for 
the system. The feasibility and general worthiness of 
a proposed system is addressed. Usually a manage­
ment decision is required to move into the next phase 
which involves more detailed specifications of perform­
ance characteristics. This phase is Lypined by numer­
ous briefings designed to establish a recognized need 
for and cost/effectiveness of the system vis-a-vis orga­
nizational missions and functions. Order of magnitude 
cost figures are the typical modus operandi. 

This phase has a relatively low contribution to total 
cost and may last several years. The question of soft­
ware quality assurance is essentially moot throughout 
this phase of the life cycle. However, the role of soft­
ware as it may interface with hardware, and gross 
estimates of costs and schedules should be reviewed as 
part of a larger quality assurance effort. 

Failure to adequately address these issues could re­
sult in having to incorporate into the software develop­
ment functions or design features which could have 
been accomplished better in other ways and which 
restrict flexibility or increase the complexity of the 
software. 

The requirements phase 

This phase of the software life cycle refines the 
conceptual system, further delineating the functions 

and interplay between hardware, software and the 
user. In general, data inputs and system outputs are 
specified and overall load and performance character­
istics are determined. In many cases, specific determi­
nations of system hardware and user-oriented lan­
guages are made. A properly designed Request for 
Proposal (RFP), even if the system is to be done in-
house (this step in the design process is skipped only 
at considerable risk), treads a thin line between over-
specification and insufficient detail. The former is 
often caused by past contractor failures while the latter 
is a reflection of the fact that the user simply does not 
know what he really wants or needs. 

To a large extent, the "die is cast" with the issuance 
of an RFP (or corresponding internal document). The 
constraints placed on system performance, hardware 
and software at this early stage of the life cycle can 
have enormous repercussions on the flexibility, relia­
bility, maintainability and cost of the system. Implicit 
trade-offs between system throughput and ease and 
cost of use, enhancement and maintenance are often 
made. 

Realistically one cannot expect a prospective vendor 
to do the necessary work required to examine and weigh 
each of the possible solutions to the design problem. 
Even with the most competent of vendors, their objec­
tive function differs from the clients. Specifically, a 
vendor's staff may have certain backgrounds and ex­
pertise, or his equipment characteristics more adapt­
able to one family of solutions than another. To save 
time or money a vendor may modify an already devel­
oped product or assemble a patch work of available 
system modules rather than seek an "optimal" solution. 

Thus, quality assurance cannot begin any later than 
this phase without considerable risk. The phases which 
follow are characterized by much higher expenditures 
than these first two phases, with the obvious result that 
errors carried forward from this point are very costly. 

The development phase 

This phase is a transitional one bridging the gap 
between a well defined concept and an implementable 
system. The big black box between inputs and outputs 
has to be broken down into programmable units, logic 
determined and finally coded. The testing and valida­
tion tasks require the generation of test data and test 
parameters and the development of test tools. Docu­
mentation provides the vital link to connect the test 
activities to the designers, programmers and coders. 

It is during this stage that a QA activity reaches its 
peak, for with increasing detail and concreteness comes 
the need for constant monitoring to assure that the 
system in reality is the system in concept. Quality 
assurance in this phase is simultaneously concerned 
with the correctness of (1) functional requirements, 
(2) detailed design, (3) program logic, and (4) code. 
In addition, the specificity and clarity of the documen-
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tation is also a proper subject of a QA plan. The 
testing and validation of the system or the "quality 
control" function is the most viable aspect of a quality 
assurance plan. For many developers, all too often, 
it is the QA plan. This tendency is to become lost in 
code is at the risk of deviations from intended system 
functions. Correctness of code is not a guarantee that 
the code is doing what the user required, but rather 
that is doing what it was designed to do; quite a dif-
rcnrcnrkT m o t t D v TT1 
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than errors in logic. 

The operations phase 

This phase bridges the gap between the developers 
and the users. If QA proponents are correct, some pay— 
off attributed to QA should be noticed during the imple­
mentation part of this phase, but its greatest contribu­
tion will appear during the productive part of the life 
cycle which is oddly called "maintenance." This termi­
nology may be an indication of the general lack of 
quality assurance which exists. 

More often than expected, the implementation period 
becomes a "field test" with the essential aspects of the 
development phase extending far into the operations 
phase. Design or even worse functional errors are 
frequently uncovered which may require extensive re-
programming. The start of implementation is often 
merely an artificial contrivance to cover a scheduled 
deadline rather than at the completion of the develop­
ment phase. 

THE SHAPE OF THE SOFTWARE LIFE CYCLE 

To place the various aspects of the quality assurance 
function into perspective, it is necessary to look at the 
relative costs and time requirements of each of the 
phases described in the previous section. Figure 2 
represents the idealized shape of the software life 
cycle.2s'ls:!S:,9'10ir' While actual project experience is 
difficult to come by, a search of the literature for real-
world cost and time data has been sufficiently produc-
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Figure 2—Idealized software life-cycle 

tive to enable the construction of a composite software 
life cycle. This composite was developed from bits 
and pieces of available information on different phases 
and parts of phases of large systems. The degree of 
consistency found among projects gives rise to a fair 
degree of confidence that this composite is a useful tool 
in obtaining estimates of the potential benefits of a QA 
plan. Using the composite life cycle concept, this sec­
tion relates the time required for accomplishing each 

The time axis 

The percentages of time thought to be denoted to 
each phase of the software life cycle as implied by the 
shape of the idealized curve are as follows: Conceptual 
15%, Requirements 8%, Development 40%, and Opera­
tions 37%. This differed from the reported experience 
of several large DoD projects.33 In actual practice the 
conceptual phase accounted for 30% rather than 15%, 
while development took only 12% (compared to 40%). 
The requirement phase accounted for the same per­
centage of time in actual practice as was expected, 
while the operations phase (implementation and main­
tenance) lasted longer in actual practice (50%) than is 
implied by the curve (37 % ) . 

In absolute terms, these projects spanned 16 years 
from inception to termination. The percentages trans­
late into a conceptual phase of 4*4-5 years; a require­
ments phase of about 1.5 years (these two were actually 
performed simultaneously for about 6 months) ; 2 years 
for development and 8 years for operations. The re­
quirements phase consists of the preparation of speci­
fications, drafting an RFP and the evaluation and se­
lection of a vendor. About half (314 % of Total Life 
Cycle Time) the time was devoted to specifications. 
The RFP's took slightly less (2i/2% TLCT) with about 
4-5 months (2%) devoted to review, evaluation and 
selection. The components of the development phase 
(2 years) are more difficult to characterize by time, 
since the steps within are either overlapping (require­
ments analysis and design) or simultaneous (code, test, 
document). 

Relative cost of software life cycle phases 

The relative costs of each of the four phases of the 
software life cycle can also be inferred from the shape 
of curve presented in Figure 2. To verify these in­
ferences, data from several studies are pieced together 
and a composite software life cycle (Figure 4) is con­
structed and presented in a following section. The 
shape is compared to the idealized versions found in 
the literature. It should be remembered that the pur­
pose in developing this composite is to obtain estimates 
of the relative costs of each phase to use in the deter­
mination of the potential effects of instituting various 
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forms of quality assurance. Therefore, the cost bal­
ance between development and maintenance as well as 
among steps in the development phase were of greatest 
concern. 

Operations vs. development 

The balance between development and operation de­
pends primarily upon the length of the maintenance 
period used in the calculations. To standardize these 
calculations for comparison purposes a maintenance 
time period equal to 50% of the total life cycle (or 
8 yrs) will be used. A study9 which monitored costs 
fairly closely from requirements through one year of 
maintenance reported expenditures (in terms of man 
years) for Requirements, Development and Operations. 

These figures were weighted (3 for management; 
2 for programmer and 1 for staff support) to deter­
mine costs incurred. Assuming a negligible cost for 
the conceptual phase, say 1% and an operational life 
of 8 years, the percentage of total costs incurred by 
each of the four phases of the life cycle were calculated 
as follows: Requirements 1.5%, Development 51.3% 
and Operations 46.2%. The ratio of Development to 
Operations (Implementation and Maintenance) in this 
case would be 1 to 1.1. 

Implementation is difficult to separate from develop­
ment and maintenance since it in reality is a transi­
tional period between the two. For this reason data 
about implementation is hard to find and interpret. 
This being the case the remainder of this paper treats 
operations as essentially equivalent to maintenance. 

A look at cost data available for development vs. 
maintenance costs for OS releases 18, 19, and 20.013 

are even more heavily weighted toward mainte­
nance with ratios of 3 to 1 for OS 18 with only two 
years of maintenance included and 1.25 to 1 for all 
three releases with only one year of maintenance in­
cluded. The experiences reported on in this section 
with respect to the balance between development and 
maintenance costs show that the costs of maintenance 
consistently exceed costs of development. Since QA 
would be expected to have the greatest impact upon 
costs in the operations phase, a conservative cost equa­
tion (conceptual cost + requirements cost + develop­
ment cost=operations cost) will be used to minimize 
the estimated potential for QA. 

Relative costs within the development phase 

The activities undertaken during the development 
phase can be grouped into (1) analysis and design, 
(2) coding and debugging and (3) testing or vali­
dation. 

The ratio of the cost of these activities to one another 
is often thought to be a function of the complexity of 
the system to be developed. That is, a non-linear 

Figure 3—Breakdown of development costs for selected systems 

(exponential) relationship is said to exist between com­
plexity and the cost of testing. Testing costs are highly 
related to the number and severity of errors to be dis­
covered and fixed, the number of which is related to 
system complexity. Proponents of QA will argue that 
this exponential relationship need not be the case if 
proper management (including a good QA plan) is 
exercised. Since the success of QA is directly related 
to error rates and error rates are the underlying causes 
of the cost relationships among the activities under­
taken during development, this section will concentrate 
on the ratio of testing (or validation) to the total of 
development costs. 

A study8 which looked at the relative costs of design, 
coding and debugging in relationship to validation re­
ported that the ratio of validation (testing) costs to 
the total development effort ran between y3 to %. 

Figure 3 gives a breakdown of the development 
phases of five large projects. The results14 are very 
consistent from project to project and in the range of 
the results of the first study referenced. The range 
ys-Y2 also includes the experience from ALPHA-69 re­
ported on earlier in this chapter. 

A composite software life cycle, based upon a 16 year 
length (50% operational life) and the relative costs 
for the four phases given in Figure 3, is presented in 
Figure 4. The shape is far more leptokurtic than the 
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"idealized" curves found in the literature with the 
length of the maintenance tail spreading its significant 
costs over many years. This is due in larger part to a 
contraction of the development phase. The visual 
impact of the meager resources applied to the Require­
ment phase also represents a departure from the 
idealized shape. 

THE COST OF ERROR 

A measure of system quality is the number of errors 
which occur. Hence, ratios of one kind of error to 
another have been proposed22 as indicators of quality 
software. It is taken on faith that well designed sys­
tems can be put together with little resultant error, 
and for those errors which occur, the mean age of the 
errors becomes a vital statistic with which to judge 
software. 

This section is devoted to estimating the source, 
kind, type and severity of errors generated during 
development. It would be of interest to examine the 
requirements stage to place a value on the "errors** 
which originate there and trace their impact through­
out the rest of the life cycle; but aside from intuitive 
feelings about their impact no real data appears to be 
available. 

Frequency and severity of errors 

No two researchers group errors in quite the same 
way. As a result, the available information on soft­
ware errors hau uo u& mterpreteu and Classified U&SBKX 

upon the explanations provided in individual studies. 
Errors are classified in this paper as either design, 
logic or syntax. These categories are sufficient for the 
purpose at hand. Design errors are those which re­
quire changes in the specifications used by the pro­
grammers. Usually they represent a lack of under­
standing (or proper communication) of a computation 
or process, which results in the wrong "problem" being 
solved. Logic errors occur when the system design is 
translated into programmable form (detailed flow 
charts). Syntax errors are self-explanatory. Few of 
the studies of software errors present actual data per­
taining to frequency and severity. Taken together1'4'6-8'47 

those that present some data all report design error 
as occurring most frequently. Ranging from a high 
of 64%' to 46 %.6 Syntax errors were reported to be 
about 15% of the known errors. Logic errors ranged 
from 21% to 38%>. The significant point to note is the 
large percentage of design errors. 

Available data on cost of detection and correction 
reveals that design errors cost the most to diagnose 
and fix. Syntax errors are reported to be more of a 
nuisance than a significant cost particularly with the 
use of automated precompiler processing. 

Origin and detection of errors 

Where errors originate as well as when and how 
they are discovered are important inputs to the design 
of an effective QA plan. Syntax errors originate, sur­
face and are resolved within a brief period of time and 
for all intents and purposes can be considered totally 
encompassed within the process of coding. Such is not 
the case with design and logic errors. Design errors 
can be caught durin°" a design review îf there is one^ 
during preparation of detailed flow charts or occa­
sionally during coding. Simple logic errors (process 
before read) can be caught at compilation time or dur­
ing program testing. Because of the numerous paths 
in any program which can be tested many logic errors 
are not observed until the validation, implementation 
or maintenance stages. A study of a large software 
development effort1 found that 54% of the errors 
were not caught until acceptance testing or presum­
ably until after development was complete. To make 
matters worse, the overwhelming proportion of these 
were design errors. Reported figures indicated that 
70% of the design errors were not caught at earlier 
stages while by contrast 80% of the programming 
or logic errors were caught during development. If 
the mean age of error were calculated for this case 
it would be quite high due to the high percentage of 
design errors involved. 

Estimation of the costs of errors 

Using the three categories of error (design, logic 
and syntax) it appears that design errors account for 
at least 80 % of the total cost of error. This percentage 
is arrived at by noting that about % of all errors 
caught are design errors; with logic and syntax errors 
making up about equal proportions of the remaining y3. 
Compared to the cost of tracking down and correcting 
coding errors, the cost of syntax mishaps is small. 
However, the cost of design errors is more than double 
(2V£ times) that of coding error. The calculation of 
the contribution of design error to the total cost of 
error consists of taking the weighted (expected) cost of 
an error [% design errors x 2 ^ + % coding+syntax 
errors x 1] and dividing it into the contribution of de­
sign [% design x 2 ^ ] using the percentage given 
above 8 3 ^ % of the total cost of error can be attributed 
to design errors. This relatively large contribution to 
total error cost should play an important role in the 
design of a QA plan and will be used as an input in 
the calculation of the potential effectiveness of quality 
assurance. 

The next calculation which is required for the assess­
ment of the potential of quality assurance is the per­
centage of total life cycle cost which can be attributed 
to error. Once this percentage is obtained, an estimate 
of the benefits of a QA plan can be developed based on 
a "tool by tool" analysis of the kind of error it ad-
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dresses (design, logic or syntax) and the percent error 
reduction claimed or experienced. These calculated 
benefits can then be compared to the cost associated 
with these components of a QA plan for a final assess­
ment of the economics of quality assurance. 

To estimate the cost of error the following method 
was used. For a slightly conservative estimate, it was 
assumed that (i) all costs in design (ii) coding and 
(iii) documentation to be non-error related. All check­
out and validation costs (recognizing that only some of 
these costs can be reduced by reducing the number of 
errors, since some costs are fixed) were attributed to 
error. From the ALPHA-6 data then 47 % of develop­
ment cost (assuming the code, test, and document costs 
were equal) could be traced to errors. Further data on 
developments costs for several large systems (given 
in Figure 3) averaged almost exactly the same per­
centage (48%). 

Maintenance costs can be attributed to correcting 
errors and to enhancements, but "enhancements" often 
result from initial design errors. For the sake of dis­
cussion assume that half can be directly related to 
error. This amounts to the conservative estimate of 
almost half of the total life cycle costs (47.6%) being 
directly tied to error (see Figure 5). On the cost basis 
of a large system, the total cost of error is in the 
hundreds of millions. If quality assurance methods 
can reduce error by even small amounts, they would 
appear to be worthy of serious consideration. For ex­
ample, a 10% reduction in error (% Design, yz logic 
and syntax) as they have been reported in the studies 
reviewed would represent a saving of almost $25 
million based upon a relatively large effort (cost = 
$14 billion over the 16 year cycle). A five percentage 
error reduction (only 1/2 design) would result in a sav­
ings of over $10 million. 

THE EFFECTIVENESS OF THE TECHNIQUES 
AND TOOLS OF QUALITY ASSURANCE 

The assurance of quality can be brought about by 
any number of different approaches which have been 

Error % Total Relative % Total 
Type Errors Severity Cost of Error 

Design 2/3 2.5 83+% 
Logic 1/6 1.0 8 + % 
Syntax 1/6 1.0 8 + % 

Development Operations 
Phase Phase Both 

% Total Life 
Cycle Cost 47.5% 50% 97.5% 
% Cost Due to 
Error 48% 50% — 
% Total Life 
Cycle Cost 
Attributed to 
Error 22.6% 25% 47.6% 

Figure 5—Error and software life cycle costs 

suggested. These range from essentially project man­
agement techniques to methodologies of design to 
syntax checking tools. Many of the methods which will 
be discussed in this section can be expected to have 
a much broader impact on design, development and 
implementation than is pertinent to a discussion of 
quality assurance. This section will address the im­
pact these methods have on error rate and error-related 
productivity. 

In some cases, their contribution to quality is rather 
straightforward, particularly for error detection tools. 
However, for those which promise the most sweeping 
reforms, essentially those dealing with management or 
design effectiveness, measurement is difficult and little 
concrete information is available. 

It is the purpose of this section to analyze based upon 
available data the potential of quality assurance in 
terms of the cost of error, development productivity 
and the cost of quality assurance. In the following 
paragraphs, some of the most widely discussed tech­
niques and tools will be reviewed. 

Structured programming 

The advantages touted for Structured Programs 
range from improved program design to improved 
documentation. Improved design is linked to fewer 
design errors and fewer logic/programming errors. 
Fewer statement types are linked to fewer syntax 
errors and an almost self-documenting program. Fewer 
errors imply greater productivity during development 
and reduced operations costs. Further, the stream­
lined design is claimed to be easier to upgrade and en­
hance. Finally, the planning and conceptualization re­
quired by Structured Programming is said to enhance 
the performance of project management. 

Reported increases in error free productivity ranged 
from 50 %25 to 125 %47 with the introduction of Struc­
tured Programming while error reductions of between 
30%o -90%o were reported by another study.17 Quantita­
tive results of ease of enhancements were not found, 
however, a study of the development cycle56 estimated 
25%o reduction in the elapsed time from requirements 
to implementation, from 6 years to 4.5 years. 

Top-down development 

The essence of Top-Down Development is simul­
taneous systems integration and development which 
results in a viable, executable, if rather skeletal system 
at an early state. This development approach amounts 
to an ordering of the sequence of system decomposi­
tion decisions beginning with a simple description of 
the entire system or process and continuing with 
successive refinements until a programmable design is 
reached. Top-Down Development is a natural com­
panion of Structured Programming, so much so that 
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the two concepts are often confused. The claimed ad­
vantages of this approach include the increased ease 
of implementing a QA plan with a resultant reduc­
tion in design error and productivity improvements as­
sociated with the systems integration and testing 
efforts during the development phase. 

Perhaps the most significant advantage claimed from 
a QA perspective, is the early existence of a complete 
system's design replete with the design specification 
rxt a\TC*i'£nm nmmr\r\Trk£iirf¥ct o n A l i r f a v f o n o c "\Tr\+- A T I I T T r\s\ac* 

such a document enhance the changes of a coherent and 
consistent design, but it also serves as a vehicle for 
establishing a correspondence with "user" oriented 
functional specs. The system components are placed 
into perspective for all to see and comment upon. Mis­
understandings that often were not surfaced until ac­
ceptance testing can be resolved at this time. Design 
problems often not found until systems integration 
may be corrected reducing the high cost currently as­
sociated with these problems. 

The incorporation of the testing function throughout 
development, made possible by the continual existence 
of a testable system, offers QA with an opportunity 
to be more of a pro-active force in development. 

There are recognized pitfalls as well. Care must be 
taken to ensure design feasibility in terms of existing 
software and hardware, since actual coding is sig­
nificantly delayed. 

Holistic design is difficult to achieve and false starts 
are likely. However, when weighted against the known 
shortcomings of bottom-up design there is little ques­
tion that a Top Down approach when combined with 
some common sense offers substantial advantages to 
both developer and user. 

Hard estimates of the reduction in error and in­
creases in productivity from the use of this approach 
alone are not readily available. However, when used 
in conjunction with Structural Programming and a De­
velopment Support Library,-"' a productivity improve­
ment of over 300% (when compared to a system using 
a Development Support Library alone) was experi­
enced. With Structural Programming alone, produc­
tivity gains of 50 %. -100 % were experienced; thus, the 
addition of a Top Down Design approach seems to 
further enhance performance significantly. 

For the purposes of this analysis, the expected per­
formance of this approach will be conservatively 
bounded from above. In terms of development produc­
tivity, a very conservative range which includes gains 
made by reduced systems integration and testing, and 
by better manpower and computer time scheduling 
would be between a 5-10% improvement in produc­
tivity. This improvement could be reasonably expected 
from the savings in the integration step alone. 

As far as design errors are concerned, the increased 
attention to overall design could be expected to reduce 
configuration and architecture errors significantly and 
virtually eliminate errors in the specification of offered 

system functions. One study6 showed that machine 
configuration and architecture errors accounted for 
just over 20% of all design errors while errors in the 
functions offered accounted for about 25% of the de­
sign erorrs. Both are susceptible to being caught 
early. An examination of specs by others not involved 
in their formulation resulted in the detection of be­
tween 30%-40% of these errors. An increase from 
this to a 50 % rate of error detection might realistically 

Other recent innovations 

In addition to Structured Programming and Top 
Down Development, a number of other approaches to 
improving software quality and productivity have been 
advanced. Among these are the techniques of the Chief 
Programmer Teams, Egoless Programming, and auto­
matic or semi-automatic tools ranging from Design As­
sertion Consistency Checkers to Automated Test Case 
Generators. 

The management oriented techniques are aimed at 
achieving increased communications and coordination 
while the automated tools seek to provide complete, 
systematic and low cost verification. This section will 
briefly explain some of these innovations concentrat­
ing on the contribution or impact likely on the per­
formance of the QA functions. 

Programming organizations 

In this section, the effects of the Chief Programmer 
Team, Egoless Programming and Democratic Team 
Organization on the performance of the QA function 
will be addressed. Egoless Programming and Demo­
cratic Teams are essentially loosely structured pro­
gramming environments in direct contrast to the Chief 
Programmer approach which is highly structured. It is 
interesting that the changes from current practice 
being advanced to improve software quality are in 
opposite directions. Both approaches, however, take 
aim at the individualist who becomes ego-involved 
with code to the extent that error detection is thwarted. 
The loosely structured approaches attack this problem 
directly by eliminating "ownership" of code to reduce 
defensiveness. The Chief Programmer Team approach 
is meant to be employed in conjunction with Structured 
Programming and Top Down Design which systemati­
cally eliminates tricks and gimmicks in programming 
and imposes ridged forms. Users of both types of ap­
proaches claim better communication leading to re­
duced misunderstandings and error rates. On the one 
hand, the Chief Programmer Team approach is criti­
cized for being too authoritarian while the other ap­
proaches are said to tend to alleviate the individualist 
and require more sophisticated management tech­
niques. Experience indicates that managing bright 
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Error 
Type 

Design 
Logic/ 
Coding 

MetJiods of Detection 

Manual 
Inspection 

45% 

24% 

Formal 
Methods 

'Simulation, 
etc.) 

20% 

22% 

Tests 
Runs 

35% 

54% 

100% 

100% 

Figure 6—Error detection for design and logic/coding error 
types 

creative staff is no mean task regardless of the tech­
niques employed. The key seems to be in the actions 
taken to increase the understanding and clarity of 
assignments not in what abstract management philoso­
phy is employed. 

Automated tools for quality asssurance 

The literature contains countless tools developed to 
check out design, flow charts, code and even documen­
tation systematically and quickly. Their performance 
can more easily be measured than the techniques previ­
ously discussed, but their contribution to the potential 
of an overall QA plan is limited. Their very nature 
(highly specified and deterministic) limits their effec­
tiveness in dealing with other than highly structured 
situations. Thus, these tools are most applicable to the 
detection of errors in code and simple sorts of logic 
errors rather than major flaws in program logic or 
design approach. Nevertheless, they can significantly 
contribute to increased productivity, earlier detection 
and VIPTIPP csornp rpHnr>tin;n of +VIP " r i T ^ l o " effect ^19"^: 

of the errors introduced as a result of error correc­
tion55)- An analysis of error types and means of de­
tection'3 showed that (See Figure 6) manual inspection 
uncovered only 24% of logic and coding errors com­
pared to 45% of design errors indicating the potential 
for the use of automated tools. Such tools could have 
an impact in reducing the percentage of logic and 
coding errors (54%) not caught until testing. One 
study gave evidence to support this feeling21. The 
use of automated instruction and path checkers (AS­
SIST and NODAL) reportedly catch between 67%-
100% of the errors and at between 2-5 months earlier 

than they would have otherwise been detected. Auto­
mated error checking is currently at the state of de­
velopment where it is either language or application 
specific and it would probably be of marginal value to 
develop such a tool for a specific project. 

Figure 7 summarizes the results with respect to the 
reported effectiveness of quality assurance methods 
and shows the dollar impact that improvements in de­
velopment productivity can have based upon a project 
whose total life cycle costs equal $.5 billion. 

SUMMARY AND CONCLUSIONS 

This section places the relevant estimates developed 
during this report in perspective and highlights im­
portant aspects in the assessment of the economics of 
Software Quality Assurance. This paper first ad­
dressed the software life cycle to identify the areas 
which could be improved by a QA plan. Second, an 
examination of the frequency of software error, its 
sources or origins, methods of detection and associated 
costs was presented. This was followed by an examina­
tion of some of the methods and techniques suggested 
for quality assurance. Highlights of these examina­
tions and analyses follow. 

Summary of findings 

The examination of the software life cycle revealed 
that costs were concentrated in the Development and 
Operations phases. The typical Development Phase 
accounted for just under 50% of the total costs while 
lasting about 2 years (12% of a 16 yr. cycle). About 
half of the development costs were spent on check-out 

, r l f n o - K v w TltlCE tras ibout 
analysis and design and % for actual coding. The 
Operations phase while consuming just under 50% 
of the total life cycle costs was spread over an eight 
year period. 

Errors were classified into three types (design, 
programming/logic, syntax). The last accounting for 
some 15% of all errors. Design errors outpaced pro­
gram/logic errors by a little less than 2 to 1 accounting 
for a little more than half of all errors. Program/logic 
errors ran about one-third of the total. 

The severity of errors, as measured by the cost of 
detection and correction, was found to be higher for 

Technique 

Structured Programming 
Top-Down Design 
Management Organization 
Automated Tools 

Error 
Reduction 

30-90% 
Substantial 

Caught earlier 

Productiv 

Range 

50%-100+% 
10%-200% 

Up to 25% 

ity 

Mid-Point 

75% 
100% 

10% 

$ Impact of 
1% Improvement 
In Development 

$2,375,000 

Potential 
Impact 

$175 Million 
$250 Million 

$ 25 Million 

Figure 7—Performance of quality assurance techniques 
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design errors than program/logic or syntax errors 
(least costly). Weighted by costs it was calculated 
that design errors accounted for just over 80% of the 
total cost of error. In terms of the total software life 
cycle then, with 47.5% of its costs in development and 
50 % in maintenance, the cost of error could easily run 
over 50 % of the total software life cycle cost. 

To combat error and improve software quality a 
variety of methods have been suggested. Preliminary 
reports have been encoura°°in°" in both the areas of 
productivity improvement and error reduction. 

Conclusions 

While the data drawn upon comes from a large 
variety of sources (different systems, different en­
vironments and from studies using different definitions 
and analysis methodologies), the experiences reported 
were so compatible that, while more detailed data is 
necessary for the actual development of a QA plan 
specific to a given set of system and organizational 
circumstances, the conclusion that QA can be cost effec­
tive is inescapable. 

From the analysis presented in this paper, the de­
velopment of a QA plan should concentrate on tech­
niques and methods for the early detection and elimi­
nation of design errors. The researchers reporting on 
the development of ALPHA-69 indicated that if more 
resources were applied during design, it would have 
resulted in substantial savings in the costs of testing 
and maintenance. An extrapolation of the data they 
presented gives a multiplicative factor of 5; that is, 
a dollar more spent in design would have saved 5 dol­
lars spent on testing and maintenance. While this 
example may be unusual, it, together with the fact that 
a significant portion of total system cost can be at­
tributed to error point to the cost impact that a QA 
function can provide. 

A parameterization of the impact that error and 
productivity improvements have on total software 
system costs based upon a $14 billion total life cycle 
cost (about $250 million for S/W Development) has 
been made. For each 1 % of error reduction (14 coding 
+ 14 design) a savings of just over $ 1 ^ million could 
be expected. For each 1% improvement in Develop­
ment productivity a saving of $2,375,000 could be ex­
pected. It should be noted that Design errors have 
more than double the impact than do coding errors. 

Thus the leverage of QA in large programs is sig­
nificantly high to warrant serious consideration. The 
costs of developing and implementing a QA plan are 
difficult to specify for a given organization, especially 
in light of their management considerations. However, 
even with the additional expense QA still promises to 
be cost-effective. For example, if management over­
head for software development is approximately 5% 
of development costs and a QA plan increased this 
overhead by 14, then a reduction of error by approxi­

mately 1% (coding) alone could offset these additional 
costs. 
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