
Testing: A Roadmap
Mary Jean Harrold

Key Research Pointers

Development of techniques and tools that will help component users integrate and test
the components with their applications more efficiently and effectively
Creation of techniques and tools that can use precode artifacts, such as architectural
specifications, for planning and implementing testing activities.
Development of techniques and tools for use in estimating, predicting, and performing
testing on evolving software systems.
Establishment of effective processes for analyzing and testing software systems.
Investigation of methods that use testing artifacts to assist in software development.

The Author

Mary Jean Harrold received the BS and MA degrees in mathematics from Marshall
University and the MS and PhD degrees in computer science from the University of
Pittsburgh. She is currently an associate professor in the College of Computing at
Georgia Institute of Technology. Her research interests include the development of
efficient techniques and tools that will automate, or partially automate, development,
testing, and maintenance tasks. Her research to date has involved program-analysis-
based software engineering, with an emphasis on regression testing, analysis and
testing of imperative and object-oriented software, and development of software tools.
Her recent research has focused on the investigation of the scalability issues of these
techniques, through algorithm development and empirical evaluation. She is a recipient
of the National Science Foundation's National Young Investigator Award. Dr. Harrold
serves on the editorial board of IEEE Transactions on Software engineering. She is
serving as the program chair for the ACM International Symposium on Software
Testing and Analysis (July 2000) and the program co-chair of the 23rd International
Conference on Software Engineering (May 2001). She is a member of the Computing
Research Association's Committee on the Status of Women in Computing, and she
directs the committee's Distributed Mentor Project. She is a member of the IEEE Computer
Society and the ACM.

61

Testing: A Roadmap

Mary Jean Harrold
Col lege o f C o m p u t i n g

G e o r g i a I n s t i t u t e of T e c h n o l o g y

801 A t l a n t i c Dr ive

A t l a n t a , G A 30332-0280

h a r r o l d @ c c . g a t e c h . e d u

ABSTRACT
Testing is an important process that is performed to
support quality assurance. Testing activities support
quality assurance by gathering information about the
nature of the software being studied. These activities
consist of designing test cases, executing the software
with those test cases, and examining the results pro-
duced by those executions. Studies indicate that more
than fifty percent of the cost of software development is
devoted to testing, with the percentage for testing crit-
ical software being even higher. As software becomes
more pervasive and is used more often to perform crit-
ical tasks, it will be required to be of higher quality.
Unless we can find efficient ways to perform effective
testing, the percentage of development costs devoted to
testing will increase significantly. This report briefly as-
sesses the state of the art in software testing, outlines
some future directions in software testing, and gives
some pointers to software testing resources.

1 I N T R O D U C T I O N
A report by the Workshop on Strategic Directions in
Software Quality posits that software quality will be-
come the dominant success criterion in the software in-
dustry [36]. If this occurs, the practitioner's use of pro-
cesses that support software quality assurance will be-
come increasingly important. One process that is per-
formed to support quality assurance is testing. Test-
ing activities support quality assurance by executing the
software being studied to gather information about the
nature of that software. The software is executed with
input data, or test cases, and the output data is ob-
served. The output data produced by the execution of
the program with a particular test case provides a spec-
ification of the actual program behavior [36]. Studies
indicate that testing consumes more than fifty percent
of the cost of software development. This percentage
is even higher for critical software, such as that used

Permission to make digital or hard copies of all or part of this work tbr
personal or classroom use is granted without lee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post oll servers or to redistribute to lists,
requires prior specific permission and/or a li~e.
Future of Sofware En~neering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

for avionics systems. As software becomes more perva-
sive and is used more often to perform critical tasks, it
will be required to be of higher quality. Unless we can
find more efficient ways to perform effective testing, the
percentage of development costs devoted to testing will
increase significantly.

Because testing requires the execution of the software,
it is often called dynamic analysis. A form of verifi-
cation that does not require execution of the software,
such as model checking, is called static analysis. As a
form of verification, testing has several advantages over
static-analysis techniques. One advantage of testing is
the relative ease with which many of the testing ac-
tivities can be performed. Test-case requirements 1 can
be generated from various forms of the software, such
as its implementation. Often, these test-case require-
ments can be generated automatically. Software can be
instrumented so that it reports information about the
executions with the test cases. This information can be
used to measure how well the test cases satisfy the test-
case requirements. Output from the executions can be
compared with expected results to identify those test
cases on which the software failed. A second advantage
of testing is that the software being developed can be
executed in its expected environment. The results of
these executions with the test cases provide confidence
that the software will perform as intended. A third ad-
vantage of testing is that much of the process can be
automated. With this automation, the test cases can
be reused for testing as the software evolves.

Although, as a form of verification, testing has a num-
ber of advantages, it also has a number of limitations.
Testing cannot show the absence of faults - - it can show
only their presence. Additionally, testing cannot show
that the software has certain qualities. Moreover, test
execution results for specific test cases cannot usually be
generalized. Despite these limitations, testing is widely
used in practice to provide confidence in the quality of
software. The emergence of new technologies, such as

1 Test-case requirements are t h o s e a s p e c t s o f t h e s o f t w a r e t h a t
a re t o b e t e s t e d a c c o r d i n g to t h e t e s t plan; examples are s o f t w a r e
requirements, source-code s t a t e m e n t s , a nd module interfaces.

63

IM Status of 1 Testing
ethods, Tools,
a n d Processes in 2000

Fundamental R~e~d~

J testing component-

~.! testing based on
I precode artifacts

I demonstrating effecti,,eness I
~i of testing techniques ~ L

]creating effective k , , --
', -] ,testing processes I -

I using testing ! [-I ~if.c~

i] o, ortes. g k
i - l approaches , I

Figure 1: Software Testing Roadmap.

f Practical
Testing

Methods, Tools,
and Processes

for

Development of

High-Quality
Software

component-based systems and product families, and the
increased emphasis on software quality, highlight the
need for improved testing methodologies.

This report presents a roadmap for testing. Instead of
presenting a comprehensive overview of the state of the
art or the state of the practice in software testing, the
report presents information about the current state only
for those areas that are encountered on the road to our
destination: providing practical testing methods, tools,
and processes that will help software engineers develop
high-quality software. The next section outlines these
areas. Section 3 provides pointers to testing resources,
and Section 4 gives concluding remarks.

2 R O A D M A P F O R T H E F U T U R E
Testing is one of the oldest forms of verification. Thus,
numerous testing techniques have been advanced and
used by software developers to help them increase their
confidence that the software has various qualities. The
ultimate goal of software testing is to help developers
construct systems with high quality. Testing is thus
used by developers of all types of systems. As technol-
ogy has improved, it has become possible to apply test-
ing techniques to larger systems. However, widespread
use of systematic testing techniques is not common in in-
dustry. For example, although a number of code-based
testing techniques have been developed for unit testing,
even the weakest forms of these techniques are not being

employed by many practitioners. For another example,
although the retesting of software after it is modified
can be automated, many practitioners still perform this
task manually.

Figure 1 shows a roadmap for testing that leads to the
destination: providing practical testing methods, tools,
and processes that can help software engineers develop
high-quality software. Progress toward this destination
requires fundamental research, creation of new methods
and tools, and performance of empirical studies to fa-
cilitate transfer of the technology to industry. As the
arrows in the figure show, areas may be revisited on
the way to the destination. For example, after perform-
ing empirical studies using a prototype tool that imple-
ments algorithms for testing component-based software,
both the research and the method and tool development
may be revisited.

F u n d a m e n t a l R e s e a r c h
Research in many areas of testing has provided advances
that hold promise for helping us reach the goal of pro-
viding practical tools that can help software engineers
develop high-quality software. Additional work, how-
ever, needs to be done in a number of related areas, as
illustrated in Figure 1. For example, in providing tech-
niques for testing evolving software, we may incorporate
techniques for architecture-based testing or techniques
that combine static analysis with testing.

64

Testing Component-Based Systems
The increased size and complexity of software systems
has led to the current focus on developing distributed
applications that are constructed from component-
based systems. A component-based system is com-
posed primarily of components: modules that encap-
sulate both data and functionality and are configurable
through parameters at run-time [29]. Given the increas-
ing incidence of component-based systems, we require
efficient, effective ways to test these systems.

We can view the issues that arise in the testing of
component-based systems from two perspectives: the
component-provider and the component-user. The
component-provider perspective addresses testing issues
that are of interest to the provider (i.e., developer) of the
software components. The component provider views
the components independently of the context in which
the components are used. The provider must therefore,
effectively test all configurations of the components in a
context-independent manner. The component-user per-
spective, in contrast, addresses testing issues that con-
cern the user (i.e., application developer) of software
components. The component user views the compo-
nents as context-dependent units because the compo-
nent user's application provides the context in which
the components are used. The user is thus concerned
only with those configurations or aspects of the behavior
of the components that are relevant to the component
user's application.

One factor that distinguishes issues that are pertinent
in the two perspectives is the availability of the compo-
nent's source code: the component providers have ac-
cess to the source code, whereas the component users
typically do not. One type of software for which the
source code is usually not available is commercial off-
the-shelf software (COTS). Although there are no regu-
lations imposed on developers of COTS, to standardize
development and reduce costs, many critical applica-
tions are requiring the use of these systems [32]. The
lack of availability of the source code of the components
limits the testing that the component user can perform.

Researchers have extended existing testing techniques
for use by component providers. For example, Doong
and Frankl describe techniques based on algebraic spec-
ifications [14], Murphy and colleagues describe their
experiences with cluster and class testing [34], and
Kung and colleagues present techniques based on object
states [26]. Other researchers have extended code-based
approaches for use by component providers for test-
ing individual components. For example, Harrold and
Rothermel present a method that computes definition-
use pairs for use in class testing [22]. These definition-
use pairs can be contained entirely in one method or can
consist of a definition in one method that reaches a use

in another method. Buy and colleagues present a simi-
lar approach that uses symbolic evaluation to generate
sequences of method calls that will cause the definition-
use pairs to be executed [6].

Researchers have considered ways that component users
can test systems that are constructed from compo-
nents. Rosenblum proposes a theory for test adequacy
of component-based software [45]. His work extends
Weyuker's set of axioms that formalize the notion of test
adequacy [52], and provides a way to test the compo-
nent from each subdomain in the program that uses it.
Devanbu and Stubblebine present an approach that uses
cryptographic techniques to help component users ver-
ify coverage of components without requiring the com-
ponent developer to disclose intellectual property [13].

With additional research in these areas, we can expect
efficient techniques and tools that will help component
users test their applications more effectively. We need
to understand and develop effective techniques for test-
ing various aspects of the components, including secu-
rity, dependability, and safety; these qualities are espe-
cially important given the explosion of web-based sys-
tems. These techniques can provide information about
the testing that will increase the confidence of develop-
ers who use the components in their applications.

We need to identify the types of testing information
about a component that a component user needs for
testing applications that use the component. For exam-
ple, a developer may want to measure coverage of the
parts of the component that her application uses. To
do this, the component must be able to react to inputs
provided by the application, and record the coverage
provided by those inputs. For another example, a com-
ponent user may want to test only the integration of the
component with her application. To do this, the com-
ponent user must be able to identify couplings between
her application and the component.

We need to develop techniques for representing and
computing the types of testing information that a com-
ponent user needs. Existing component standards, such
as COM and JavaBeans, supply information about a
component that is packaged with the component. Like-
wise, standards for representing testing information
about a component, along with efficient techniques for
computing and storing this information, could be de-
veloped. For example, coverage information for use in
code-based testing or coupling information for use in in-
tegration testing could be stored with the component;
or techniques for generating the information could be
developed by the component provider and made acces-
sible through the component interface.

Finally, we need to develop techniques that use the in-
formation provided with the component for testing the

55

application. These techniques will enable the compo-
nent user to effectively and efficiently test her applica-
tion with the component.

Testing Based On Precode Artifacts
Testing techniques can be based on precode artifacts,
such as design, requirements, and architecture specifi-
cations. In the past, many of these techniques have
been based on informal specifications. Recently, how-
ever, more formal approaches have been used for these
specifications. Techniques that use these precode spec-
ifications for tasks such as test-case planning and de-
velopment can help improve the overall testing process.
This section discusses the use of one type of precode
artifact - - the software's architecture - - for testing.

The increased size and complexity of software systems
has led to the emergence of the discipline of software
architecture. Software architecture involves the descrip-
tion of elements from which systems are built, interac-
tions among those elements, patterns that guide their
composition, and constraints on these patterns [50].
Software-architecture styles define families of systems
in terms of patterns of structural organization. Given
the increasing size and complexity of software systems,
techniques are needed to evaluate the qualities of sys-
tems early in their development. Through its abstrac-
tions, software architecture provides a promising way to
manage large systems.

The emerging formal notations for software architec-
ture specification can provide a basis on which effec-
tive testing techniques can be developed. Recently, re-
searchers have begun to investigate ways to use these
formal architectural specifications in such a way. For
example, Eickelmann and Richardson consider the ways
in which architectural specification can be used to assess
the testability of a software system [15]; Bertolino and
colleagues consider the ways in which the architectural
specification can be used in integration and unit test-
ing [5]; Harrold presents approaches for using software
architecture specification for effective regression testing
[19]; and Richardson, Stafford, and Wolf present a com-
prehensive architecture-based approach to testing that
includes architecture-based coverage criteria, architec-
tural testability, and architecture slicing [42]. These
architecture-based testing techniques and tools can fa-
cilitate dynamic analysis, and thus, detection of errors,
much earlier in the development process than is cur-
rently possible.

To expedite research in this area, in 1998, the Italian
National Research Council and the U. S. National Sci-
ence Foundation sponsored the Workshop on the Role
of Software Architecture in Testing and Analysis [43].
This workshop brought together researchers in software
architecture, testing, and analysis to discuss research

directions. A report on the results of this workshop can
be found at http://www.ics.uci.edu/-~djr/rosatea.

Additional research in this area promises to provide sig-
nificant savings in software testing. We need to develop
techniques that can be used with the architectural speci-
fication for test-case development. These techniques can
provide test-case requirements for assessing various as-
pects of the architecture. This approach will let various
aspects of the system be assessed early in development.
These techniques can also provide functional test-case
requirements that can be used to develop test cases for
use in testing the implementation. These techniques will
facilitate the systematic development of test cases early
in the development process. Finally, these techniques
can provide ways for test cases to be generated auto-
matically. These techniques will enable efficient gen-
eration of test cases at an early stage of the software
development.

We also need to develop techniques that can be used
to evaluate software architectures for their testability.
With this information, developers can consider alterna-
tive designs and select the one that suits their testability
requirements.

Testing Evolving Software.
Regression testing, which at tempts to validate modi-
fied software and ensure that no new errors are intro-
duced into previously tested code, is used extensively
during software development and maintenance. Regres-
sion testing is used to test software that is being devel-
oped under constant evolution as the market or tech-
nology changes, to test new or modified components of
a system, and to test new members in a family of sim-
ilar products. Despite efforts to reduce its cost, regres-
sion testing remain one of the most expensive activities
performed during a software system's lifetime: studies
indicate that regression testing can account for as much
as one-third of the total cost of a software systems [28].

Because regression testing is expensive, but important ,
researchers have focused on ways to make it more effi-
cient and effective. Research on regression testing spans
a wide variety of topics. Chen and colleagues [7], Os-
trand and Weyuker [37], and Rothermel and Harrold
[48] developed techniques that, given an existing test
suite and information about a previous testing, select a
subset of the test suite for use in testing the modified
software. 2 Harrold, Gupta, and Sofia [20] and Wong
and colleagues [53] present techniques to help manage
the growth in size of a test suite. Leung and White [28]
and Rosenblum and Weyuker [44] present techniques
to assess regression testability. These techniques per-
mit estimation, prior to regression test selection, of the

2Rothermel and Harrold present comprehensive comparison of
regression-test selection techniques [46].

66

number of test cases that will be selected by a method.
Other techniques, such as that developed by Stafford,
Richardson, and Wolf evaluate the difficulty of regres-
sion testing on precode artifacts [51].

Because most software development involves the appli-
cation of modifications to existing software, additional
research that provides effective techniques for testing
the modified software can significantly reduce software
development costs. We need to develop techniques that
can be applied to various representations of the soft-
ware, such as its requirements or architecture, to assist
in selective retest of the software. These techniques will
let us identify existing test cases that can be used to
retest the software. These techniques will also let us
identify those parts of the modified software for which
new test cases are required.

We also need to develop techniques to assist in man-
aging the test suites that we use to test the software.
Effective techniques that can reduce the size of a test
suite while still maintaining the desired level of cover-
age of the code or requirements will help reduce testing
costs. Techniques that let us identify test cases that,
because of modifications, are no longer needed will also
help to reduce the cost of testing. Because the testing
may be performed often, there may not be time to run
the entire test suite. Thus, we need techniques that will
let us prioritize test cases to maximize (or minimize)
some aspect of the test cases such as coverage, cost, or
running time. These techniques can help testers find
faults early in the testing process.

Finally, we need to develop techniques that will let us
assess the testability of both software and test suites.
Techniques that will let us assess the testability of the
software using precode artifacts promise to provide the
most significant savings. For example, using the soft-
ware architecture may let us evaluate alternative designs
and select those that facilitate efficient retesting of the
software. These techniques can be applied to evolving
software and product families to help identify the most
efficient designs. Techniques that will let us assess the
testability of a test suite will also provide savings. For
example, a test suite that contains test cases that vali-
date individual requirements may be more efficient for
use in regression testing than one in which a single test
case validates many requirements.

Demonstrating Effectiveness Of Testing Techniques
Numerous testing techniques have been developed and
used to help developers increase their confidence that
the software has various qualities. Most of these tech-
niques focus on selection of the test cases. Goodenough
and Gerhart suggest how to evaluate criteria for deter-
mining adequacy of test suites, and they focus on how
to select test cases that inspire confidence [18].

Since then, many techniques for selection of test cases
have been developed. Some testing techniques select
test cases that are based on the software's intended be-
havior without regard to the software's implementation
and others guide the selection of test cases that are
based on the code.

There have been some studies that demonstrate the ef-
fectiveness of certain test-selection criteria in revealing
faults. However, there are many areas for additional re-
search. We need to identify classes of faults for which
particular criteria are effective. To date, a number of
test-selection criteria been developed that target par-
ticular types of faults. Several researchers, including
Rapps and WTeyuker [40] and Laski and Korel [27], de-
veloped testing criteria that focus test selection on the
data-flow in a program. For critical safety applica-
tions, it is estimated that over half of the executable
statements involve complex boolean expressions. To
test these expressions, Chilenski and Miller developed
a criterion, modified condition/decision coverage, that
specifically concentrates the testing on these types of
statements [8].

Rothermel and colleagues developed testing techniques
based on existing code-based techniques to test form-
based visual programming languages, which include
commercial spreadsheets [49]. Recent studies indicate
that, given the interface, users untrained in testing tech-
niques can effectively test their programs.

We need to perform additional research that provides
analytical, statistical, or empirical evidence of the effec-
tiveness of the test-selection criteria in revealing faults.
We also need to understand the classes of faults for
which the criteria are useful. Finally, we need to de-
termine the interaction among the various test-selection
criteria and find ways to combine them to perform more
effective testing.

Even for test-selection criteria that have been shown to
be effective, there may be no efficient technique for pro-
viding coverage according to the criteria. For example,
although mutation analysis [10] has been shown to be an
effective adequacy criterion, researchers have yet to find
an efficient way to perform the analysis. Given effective
testing criteria, we need to develop ways to perform
the testing efficiently. We also need to investigate tech-
niques that approximate complete satisfaction of the ad-
equacy criterion but are still sufficiently effective. For
example, consider performing data-flow testing on pro-
grams that contain pointer variables. Testing that con-
siders all data-flow relationships involving pointer vari-
ables may be too expensive to perform. However, the
test suite obtained without considering these pointer re-
lationships may provide sufficient coverage. Additional
research can determine if such approximations of corn-

57

plete coverage suffice for data-flow and other testing cri-
teria.

Establishing Effective Processes For Testing
An important aspect of testing is the process that we
use for planning and implementing it. Beizer describes a
process for testing [4]. Such a process typically consists
of construction of a test plan during the requirements-
gathering phase and implementation of the test plan
after the software-implementation phase. To develop
its software, Microsoft, Inc. uses a different model that
(1) frequently synchronizes what people are doing and
(2) periodically stabilizes the product in increments as
a project proceeds. These activities are done continu-
ally throughout the project. An important part of the
model builds and tests a version of the software each
night [9]. Richardson and colleagues advocate the idea
of a perpetual testing process. 3 Their perpetual testing
project is building the foundation for treating analysis
and testing as on-going activities to improve quality.
Perpetual testing is necessarily incremental and is per-
formed in response to, or' in anticipation of, changes in
software artifacts or associated information.

A process for regression testing is implicit in selective
regression testing techniques [7, 37, 48, 53]. For these
techniques to be employed, testing must be performed
on one version of the software, and testing artifacts,
such as input-output pairs and coverage information,
must be gathered. These artifacts are used by the tech-
niques to select test cases for use in testing the next
version of the software. Onoma and colleagues present
an explicit process for regression testing that integrates
many key testing techniques into the development and
maintenance of evolving software [35]. This process con-
siders all aspects of development and maintenance.

Additional research can validate these existing models.
For example, does a nightly build and test, such as that
performed by Microsoft, reduce the testing that is re-
quired later? For another example, how often do testing
artifacts need to be computed for effective regression-
test selection? Additional research can also develop new
process models for testing and validate these models.

Although testing is important for assessing software
qualities, it cannot show that the software possesses cer-
tain qualities, and the results obtained from the testing
often cannot be generalized. A process for developing
high-quality software, however, could combine testing
with other quality tools. Osterweil and colleagues [36]
suggest that various quality techniques and tools could
be integrated to provide value considerably beyond what
the separate technologies can provide.

We need to understand the way in which these various

3 M o r e in format ion can be found at the Perpetua l Test ing h o m e
page: http:/ /www.ics.uci.edu/~djr/edcs/PerpTest.html.

testing and analysis techniques are related, and develop
process models that incorporate them. A process that
combines static analysis techniques with testing has the
potential to improve quality and reduce costs.

Using Testing Artifacts
The process of testing produces many artifacts. Arti-
facts from the testing include the execution traces of
the software's execution with test cases. These execu-
tion traces may include information about which state-
ments were executed, which paths in the program were
executed, or which values particular variables got during
the execution. Artifacts from the testing also include re-
suits of the test-case execution, such as whether a test
ease passed or failed. These artifacts can be stored for
use in retesting the software after it is modified.

Given the magnitude and complexity of these artifacts,
they can also be useful for other testing and software en-
gineering tasks. Researchers have begun to investigate
new ways to use these artifacts. Many techniques have
been developed that use execution traces. Pan, DeMillo,
and Spafford present a technique that uses dynamic pro-
gram slices, 4 which are derived from execution traces,
along with the pass/fail results for the executions, to
identify potential faulty code [38]. They apply a num-
ber of heuristics, which consider various combinations
of the intersections and unions of the dynamic slices for
the subset of the test suite that passed and the subset of
the test suite that failed. In empirical studies on small
subjects, the results of applying the heuristics helped to
localize the faulty code.

Ernst and colleagues present another technique that
uses execution traces that contain values, at each pro-
gram point, for each variable under consideration [16].
The goal of their approach is to identify program in-
variants. After repeated execution of the program with
many test cases, the approach provides a list of likely
invariants in the program. Their empirical results show
that this approach can be quite successful in identifying
these invariants. These dynamically inferred invariants
can be used in many applications. For example, they
may assist in test-case generation or test-suite valida-
tion.

Researchers have also developed techniques that use
coverage information for software engineering tasks.
Rosenblum and Weyuker [44] present a technique that
uses coverage information to predict the magnitude of
regression testing. Their technique predicts, on average,
the percentage of the test suite that must be retested af-
ter changes are made to a program. Later work by Har-

4 A dynamic program slice f o r a p r o g r a m p o i n t , a v a r i a b l e , a n d
a t e s t c a s e is the set of all s t a t e m e n t s in the program t h a t af-
f e c t e d (e i t h e r d i r e c t l y o r i n d i r e c t l y) t h e v a l u e of the v a r i a b l e a t
the program point w h e n the p r o g r a m is r u n w i t h t h e t e s t c a s e .

68

rold and colleagues provided additional evaluation of the
work, and presented an improved model of prediction
[21]. A number of researchers have developed techniques
based on coverage information to select test cases from
a test suite for use in regression testing [7, 37, 48, 53].
Several researchers have used testing artifacts for test-
suite reduction and prioritization [20, 47, 53]. Empirical
studies indicate that these techniques can be effective in
reducing the time required for regression testing. Ball
presented a technique that performs concept analysis on
coverage information to compute relationships among
executed entities in the program [2]. Comparing these
dynamic relationships with their static counterparts can
help testers uncover properties of their test suite.

Reps and colleagues present a technique that compares
path spectra 5 from different runs of a program [41].
Path spectra differences can be used to identify paths
in the program along which control diverges in the two
runs, and this information can be used to assist in de-
bugging, testing, and maintenance tasks. Results of em-
pirical studies using various types of spectra performed
by Harrold and Rothermel suggest that spectra based on
less expensive profiling, such branch spectra, can be as
effective, in terms of their ability to distinguish program
behavior, to spectra based on more expensive profiling,
such as path spectra [23].

Other researchers have provided visualization tech-
niques for testing artifacts. For example, Ball and Eick
present a system for visualizing information, ;ncluding
testing information such as coverage, for large programs
[3], and Telcordia Technologies has several tools that
combine analysis and visualization of testing artifacts
to help software maintainers [24].

Although there have been some successes in using test-
ing artifacts for software engineering tasks, this research
is in its infancy. Additional research can verify that ex-
isting techniques provide useful information for software
engineers. For example, we can determine whether the
heuristics developed by Pan and colleagues [38] help to
identify faulty code when there are many faults or in-
teracting faults in a program. These results can provide
a starting point for other research.

Additional research in this area can also provide new
techniques that use testing artifacts for software engi-
neering tasks. We need to identify the types of infor-
mation that software engineers and managers require
at various phases of the software's development. We
also need techniques that will find important relation-
ships that exist in the software. Techniques such as data
mining may help with this task. Given these types of
information, we need to develop techniques to present

5 A path spectrum is a d i s t r i b u t i o n of p a t h s d e r i v e d f r o m a n

e x e c u t i o n of a p r o g r a m .

the information in a useful way. Techniques for effec-
tive visualization of the testing information can provide
effective tools for software engineers.

Other Testing Techniques
In addition to the areas for fundamental research dis-
cussed in the preceding sections, there are many other
areas in which techniques could help us reach our des-
tination. This section briefly presents a few of them.

Generating test data (inputs for test cases) is often a
labor-intensive process. To date, a number of techniques
have been presented that generate test data automati-
cally. Most of these techniques, however, are applicable
for unit testing, and may not scale to large systems.
We need to develop automatic or semi-automatic test-
data generation techniques that testers can use for large
systems. These data could be generated using precode
representations or using the code itself.

Many testing techniques require some type of static
analysis information. For example, data-flow analysis is
useful for data-flow testing of software units and for in-
tegration testing when these units are combined. How-
ever, existing techniques for computing precise data-
flow information are prohibitively expensive. We need
to develop scalable analysis techniques that can be used
to compute the required information.

Existing techniques for measuring adequacy for rigorous
testing criteria, such as data-flow, require expensive or
intrusive instrumentation. For example, care must be
taken when inserting probes into a real-time system to
ensure that the probes do not cause the program to
behave differently than it does without the probes. If
we expect to use these more rigorous criteria, we need
efficient instrumenting and recording techniques.

M e t h o d s a n d Tools
Ultimately, we want to develop efficient methods and
tools that can be used by practitioners to test their
software. Pfleeger presented reasons why software en-
gineering technology requires, on average 18 years to
be transfered into practice [39]. Researchers must work
with industry to reduce this t ime for technology trans-
fer. She also presented a comprehensive approach to
effecting that transfer. One important aspect of this
approach for technology transfer is the development of
methods and tools that can be used in industrial set-
tings to demonstrate the effectiveness of the techniques
we create. We must develop methods and tools that im-
plement the techniques and that can be used to demon-
strate their effectiveness.

To accomplish this, an important criterion is that these
methods and tools be scalable to large systems. In-
dustrial systems are large and complex, and the meth-
ods and tools must function on these systems. Scalable

69

tools will provide useful information in an efficient way.
Researchers often demonstrate the effectiveness of their
techniques using tools that function on contrived or toy
systems. Thus, the results of their experimentation with
these tools may not scale to large industrial systems. We
need to develop robust prototypes, identify the context
in which they can function, and use them to perform
experiments to demonstrate the techniques.

In developing these tools, we need to consider compu-
tational tradeoffs. For example, we need to consider
precision versus efficiency of the computation, and we
need to consider storing information versus computing
it as needed. Murphy and Notkin [33] and Atkinson
and Griswold [1] provide discussions of some of these
tradeoffs.

An efficient approach for development of methods and
tools is to provide ways to automatically create them; a
similar approach is used to automatically generate com-
pilers. One example of such an approach is the Genoa
framework for generating source code analysis tools [11].
Genoa is retargetable to different parsers; parse tree

• data structures built by such parsers are used in the
analysis. This approach could be used to automatically
generate specialized testing tools.

After demonstrating, with the prototype tools, that the
techniques can be effective in practice, we must work
to develop methods and tools that are attractive to
practitioners. The methods and tools should be easy
to use and learn, and their output should be presented
in a clear and understandable way. Finally, as much as
possible, testing tools should be automated and require
minimal involvement by the software engineers.

E m p i r i c a l S tud i e s
Closely associated with the development of methods and
tools is the performance of empirical studies. Using the
methods and tools, these studies will help to demon-
strate the scalability and usefulness of the techniques
in practice. These studies will also provide feedback
that will help guide fundamental research and tool de-
velopment. Both the transfer of scalable techniques into
practice, and the creation of such techniques, require
significant empirical studies.

There is much evidence of the growing emphasis on ex-
perimentation. In addition to presenting analytical eval-
uation of the scalability and usefulness of software engi-
neering techniques, many recent papers in proceedings
and journals also report the results of empirical studies
that a t tempt to evaluate the scalability and usefulness
of the techniques. Moreover, a new international jour-
nal, Empirical Software Engineering, 6 provides a forum
for reporting on the methods and results of various types

6More information can be found at the journal home page:
http:/ /kapis.www.wkap.nl/aims_scope.htm/1382-3256.

of empirical studies along with descriptions of infras-
tructures for supporting such experimentation. Finally,
funding agencies, such as National Science Foundation,
are supporting a number of large projects for work in
experimental systems.

Efforts to empirically evMuate testing techniques face a
number of obstacles. One obstacle, which was discussed
in the preceding section, is the difficulty of acquiring
sufficiently robust implementations of those techniques.
A second obstacle to significant experimentation with
is the difficulty of obtaining sufficient experimental sub-
jects. The subjects for testing experimentation include
both software and test suites. Practitioners are reluc-
tant, however, to release these types of experimental
subjects.

We need to design controlled experiments to demon-
strate the techniques we develop. We need to collect
sets of experimental subjects, and, if possible, make
them available to researchers. We also need to perform
experimentation with industrial partners. Testing tech-
niques can be implemented in the industry environment,
and industrial subjects can be used for experimentation.
If these subjects cannot be made available publicly, we
may be able to create sanitized information that would
reveal no proprietary information but would still be use-
ful for experimentation.

3 T E S T I N G R E S O U R C E S
Other reports in this volume (e.g., [12, 17, 25, 30, 31])
provide additional information about verification. Sev-
eral recent workshops, including the Workshop on
Strategic Directions in Software Quality (1996) spon-
sored by Association of Computing Machinery, National
Science Foundation, and Computing Research Associa-
tion, International Workshop on the Role of Software
Architecture in Testing and Analysis (1998), sponsored
by the Italian National Research Council and the Na-
tional Science Foundation, and the International Con-
ference on Software Engineering Workshop on Testing
Distributed Component-Based Systems (1999), have ad-
dressed specific testing issues.

A number of web sites contain links to a wealth of infor-
mation about testing, including papers, reports, books,
conferences, journals, projects, tools, educational re-
sources, and people. Some examples of these sites
are Middle Tennessee State's STORM Software Testing
Online Resources at ht tp: / /www.mtsu.edu/ , .~storm/,
Reliable Software Technology's Software Assurance"
Hotlist at h t tp: / /www.rs tcorp.com/hot l is t / , and Soft-
ware Research Institute 's Software Quality Hotlist
at h t tp : / /www.sof t .com/Ins t i tu te /Hot List/index.html.
Online forums include the net newsgroup
comp.software.testing.

70

4 C O N C L U D I N G R E M A R K S
Historically, test ing has been widely used as a way to
help engineers develop high-qual i ty systems. However,
pressure to produce higher-qual i ty software at lower cost
is increasing. Exist ing techniques used in pract ice are
not sufficient for this purpose. W i t h fundamenta l re-
search tha t addresses the challenging problems, devel-
opment of me thods and tools, and empir ica l studies,
we can expect significant improvement in the way we
test software. Researchers will demons t r a t e the effec-
t iveness of many exist ing techniques for large indus t r ia l
software, thus faci l i ta t ing transfer of these techniques to
pract ice. The successful use of these techniques in in-
dus t r ia l software development will va l idate the results
of the research and drive future research. The pervasive
use of software and the increased cost of va l ida t ing i t
will mot iva te the creat ion of par tnersh ips between in-
dus t ry and researchers to develop new techniques and
faci l i ta te their t ransfer to pract ice. Development of effi-
cient tes t ing techniques and tools t ha t will assist in the
creat ion of h igh-qual i ty software will become one of the
most impor t an t research areas in the near future.

5 A C K N O W L E D G M E N T S
The author is suppor ted by NSF under NYI Award
CCR-9696157 and ESS Award CCR-9707792 to Ohio
S ta te Universi ty and by a grant from Boeing Commer -
cial Airplanes. Anthony Finkels tein and James A. Jones
made many helpful comments tha t improved the presen-
ta t ion of the paper .

R E F E R E N C E S

[1] D. C. Atkinson and W. G. Griswold. The design of
whole-program analysis tools. In Proceedings of the
18th International Conference on Software Engineering,
pages 16-27, March 1996.

[2] T. Ball. The concept of dynamic analysis. In Proceed-
ings of the Joint Seventh European Software Engineer-
ing Conference (ESEC) and Seventh ACM SIGSOFT
International Symposium on the Foundations of Soft-
ware Engineering, September 1999.

[3] T. Ball and S. G. Eick. Software visualization in the
large. Computer, 29(4):33-43, April 1996.

[4] B.]3eizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, NY, 1990.

[5] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti.
An approach to integration testing based on architec-
tural descriptions. In Proceedings of the IEEE ICECCS-
97.

[6] U. Buy, A. Orso, and Pezz~. Issues in testing dis-
tributed component-based systems. In Proceedings
of the First International Workshop on Testing Dis-
tributed Component-Based Systems, May 1999.

[7] Y. F. Chert, D. S. Rosenblum, and K. P. Vo. TestTube:
A system for selective regression testing. In Proceed-
ings of the 16th International Conference on Software
Engineering, pages 211-222, May 1994.

[8] J. J. Chilenski and S. P. Miller. Applicability of mod-
ified condition/decision coverage to software testing.
Software Engineering Journal, 9(5):191-200.

[9] M. A. Cusamano and R. Selby. How Microsoft builds
software. Communications of the ACM, 40(6):53-61,
June 1997.

[10] R. A. DeMillo. Test adequacy and program mutation.
In Proceedings of the 11th International on Software
Engineering, pages 355-356, may 1989.

[11] P. Devanbu. GENOA - A customizable, front-end
retargetable source code analysis framework. A CM
Transactions on Software Engineering and Methodol-
ogy, 9(2):177-212, April 1999.

[12] P. Devanbu and S. Stubblebine. Software engineering
for security: A roadmap. In A. Finkelstein, editor, The
Future of Software Engineering. ACM Press, New York,
2000.

[13] P. Devanbu and S. Stubblebine. Cryptographic verifi-
cation of test coverage claims. IEEE Transactions on
Software Engineering, in press.

[14] R.-K. Doong and P. G. Frankl. The ASTOOT approach
to testing object-oriented programs. A CM Transactions
on Software Engineering and Methodology, 3(2):101-
130, April 1994.

[15] N. S. Eickelmann and D. J. Richardson. What makes
one software architecture more testable than another?
In Proceedings of the International Software Architec-
ture Symposium, October 1996.

[16] M. D. Ernst, J. Cockrell, W. Griswold, and D. Notldn.
Dynamically discovering likely program invariants to
support program evolution. In Proceedings of the
$l st International Conference on Software Engineering,
pages 213-224, May 1999.

[17] N. Fenton and M. Neil. Software metrics: A roadmap.
In A. Finkelstein, editor, The Future of Software Engi-
neering. ACM Press, New York, 2000.

[18] J.]3. Goodenough and S. L. Gerhart. Toward a theory
of test data selection. IEEE Transactions of Software
Engineering, pages 156-173, June 1975.

[19] M. J. Haxrold. Architecture-based regression testing
of evolving systems. In International Workshop on the
Role of Software Architecture in Testing and Analysis,
July 1998.

[20] M. J. Harrold, R. Gupta, and M. L. Sofia. A method-
ology for controlling the size of a test suite. A CM
Transactions on Software Engineering and Methodol-
ogy, 2(3):270-285, July 1993.

[21] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. J.
Weyuker. Empirical Studies of a Prediction Model for
Regression Test Selection. IEEE Transactions on Soft-
ware Engineering, in press.

[22] M. J. Harrold and G. Rothermel. Performing dataflow
testing on classes. In Proceedings of the Second A CM
SIGSOFT Symposium on Foundations of Software En-
gineering, pages 154-163, December 1994.

71

[23] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An
empirical evaluation of program spectra. In Proceedings
of ACM Workshop on Program Analysis for Software
Tools and Engineering, pages 83-90, June 1998.

[24] J. R. Horgan. Mining system tests to aid software
maintenance. The Telcordia Software Visualization and
Analysis Research Team, Telcordia Technologies.

[25] D. Jackson and M. Rinard. Reasoning and analysis:
A roadmap. In A. Finkelstein, editor, The Future of
Software Engineering. ACM Press, New York, 2000.

[26] D. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima,
and C. Chen. On object state testing. In Proceedings
of COMPSAC'94, 1994.

[27] J. W. Laski and B. Korel. A data flow oriented pro-
gram testing strategy. IEEE Transactions on Software
Engineering, 9(3):347-54, May 1983.

[28] H. K. N. Leung and L. White. Insights Into Regression
Testing. In Proceedings of the Conference on Software
Maintenance, pages 60~9, October 1989.

[29] T. Lewis. The next 10, 0002 years, part II. IEEE Com-
puter, pages 78-86, May 1996.

[30] B. Littlewood and L. Strigini. Software reliability and
dependability: A roadmap. In A. Finkelstein, editor,
The Future of Software Engineering. ACM Press, New
York, 2000.

[31] R. Lutz. Software engineering for safety: A roadmap.
In A. Finkelstein, editor, The Future of Software Engi-
neering. ACM Press, New York, 2000.

[32] G. McGraw and 3. Viega. Why COTS software in-
creases security risks. In Proceedings of the First Inter-
national Workshop on Testing Distribu ted Component-
Based Systems, May 1999.

[33] G. Murphy and D. Notldn. Lightweight source model
extraction. In Proceedings of the Third A CM SIGSOFT
Symposium on the Foundations of Software Engineer-
ing, pages 116-127, October 1995.

[34] G. Murphy, P. Townsend, and P. Wong. Experiences
with cluster and class testing. Communications of the
ACM, 37(9):39-47, 1994.

[35] K. Onoma, W-T. Tsai, M. Poonawala, and H. Sug-
anuma. Regression testing in an industrial environ-
ment. Commummications of the ACM, 41(5):81-86,
May 1988.

[36] L. J. Osterweil ET AL. Strategic directions in software
quality. ACM Computing Surveys, (4):738-750, Decem-
ber 1996.

[37] T. J. Ostrand and E. J. Weyuker. Using datattow
analysis for regression testing. In Sixth Annual Pacific
Northwest Software Quality Conference, pages 233-247,
September 1988.

[38] H. Pan, R. DeMillo, and E. H. Spafford. Failure and
fault analysis for software debugging. In Proceedings of
COMPSAC '97, August 1997.

[39] S. L. Pfieeger. Understanding and improving technology
transfer in software engineering. Journal of Systems and
Software, 47(2-3):111-124, July 1999.

[40] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, SE-11(4):367-375, April 1985.

[41] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with ap-
plications to the year 2000 problem, pages 432-439,
September 1997.

[42] D. Richardson, J. Stafford, and A. Woff. A formal ap-
proach to architecture-based testing. Technical report,
University of California, Irvine, 1998.

[43] D. J. Richardson, P. Inverardi, and A. Bertolino, edi-
tors. Proceedings of the CNR-NSF International Work-
shop on the Role of Software Architecture in Testing
and Analysis. July 1998.

[44] D. Rosenblum and E. J. Weyuker. Using coverage in-
formation to predict the cost-effectiveness of regression
testing strategies. IEEE Transactions on Software En-
gineering, 23(3):146-156, March 1997.

[45] D. S. Rosenblum. Adequate testing of component-based
software. Technical Report Technical Report UCI-ICS-
97-34, August 1997.

[46] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on Soft-
ware Engineering, 22(8), August 1996.

[47] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault-detection capabifities of test suites. In Pro-
ceedings of the International Conference on Software
Maintenance, pages 34-43, November 1998.

[48] G. Rothermel and M.J. Harrold. A safe, efficient re-
gression test selection technique. ACM Transactions on
Software Engineering and Methodology, 6(~):173-210,
April 1997.

[49] G. Rothermel, L. Li, C. DuPnis, and M. Burnett. What
you see is what you test: A methodology for test-
ing form-based visual programs. In Proceedings of the
20th International Conference on Software Engineering,
pages 198-207, April 1998.

[50] M. Shaw and D. Garlan. Software Architecture Perspec-
tives on an Emerging Discipline. Prentice Hall, New
Jersey, 1996.

[51] J. Stafford, D. J. Richardson, and A. L. Wolf. Chaining:
A dependence analysis technique for software architec-
ture. Technical Report CU-CS-845-97, University of
Colorado, September 1.997.

[52] E. J. Weyuker. Axiomatizing software test da ta ad-
equacy. IEEE Transactions on Software Engineering,
12(12):1128-1138, December 1986.

[53] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal.
A study of effective regression testing in practice.
In Proceedings of the Eighth International Symposium
on Software Reliability Engineering, pages 230-238,
November 1997.

72

