
Software Quality Assurance: An Analytical
Survey and Research Prioritization

Arun Rai
Department of Decision Sciences, College of Business Administration, Geolgia State University,
Georgia Atlanta

Haidong Song
Software Quality Consultant, San Francisco, California

Marvin Troutt
Department of Management, 214 Rehn Hall, Southern Illinois University at Carbondale,
Carbondale, Illinois

We present an overview of the Software Quality As-
surance MlA) research domain. An extensive review
of the literature was conducted to identify areas that
are being currently investigated or have received at-
tention from the research community. Articles appear-
ing in outlets appropriate for software and information
engineering were considered. Our categorization
scheme includes four key dimensions: technical, man-
agerial, organizational, and economic. These primary
dimensions were deduced from the literature, and
sub-dimensions were induced to lead to a finer cate-
gorization scheme. We present a summary of the
content and methodological orientation of present re-
search. In its present state, the SCM domain has
largely drawn upon principles and theories from other
reference areas but their integration with the actual
task and technology context is still in a rudimentary
stage. This is especially true for research dealing with
organizational and managerial issues. Further, there
is limited examination of related thematic issues
across the technical, managerial, organizational and

Address comspondence to Dr. Arm Rai, Georgia State Uninersity,
College of Business Administmtion, Department of Decision Sci-
ences, Atlanta, GA 30303. E-mail: arunrai@gsu_edu

economic strands. We conclude by recommending di-
rections for future research. 0 1998 Elsevier Sci-
ence Inc.

1. INTRODUCTION

Quality of products and services is greatly empha-
sized in today’s society, and we have seen significant
improvements in quality levels during the last few
decades. The movement was triggered by Japanese
firms putting a high priority on quality and using it
as a means to gain competitive advantage in global
markets. However, no systematic theories have
evolved for the management of the quality of soft-
ware and computer systems. “If a company adopted
the level of quality of current software in manufac-
turing, it would go out of business tomorrow” (Cho,
1987). This statement, to a certain extent, portrays
the status of software quality commonly developed
by information departments in organizations. With
an increasing recognition that computer systems are
a competitive necessity for modem businesses
(Crosby, 1980), it is not surprising that software
quality is becoming an important topic for both
practitioners and researchers.

J. SYSTEMS SOFTWARE 1998; 40:67-83
0 1998 Elsevier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

0164-1212/98/$19.00
PII SOl64-1212(97)00146-5

68 J. SYSTEMS SOFIWARE
1998; 40:67-83

Over the last decade, there has been a substantial
rise in the research on and practice of software
quality assurance. This paper provides an overview
of the current research status and an analysis of the
present state of knowledge in the area of software
quality assurance. An extensive literature survey was
conducted for this purpose. The articles identified
were systematically classified into suitable cate-
gories. We first present the categorization scheme
employed and the rationale for the scheme. We then
go on to discuss the articles in each category, thrust
of research to date within each identified category,
and issues not currently addressed. This in turn
forms the basis for our recommendations for future
research.

2. ESTABLISHING THE DOMAIN

When discussing the research work in any domain,
there are two important questions to consider:

1.

2.

What topics define the domain of the area of
study?
What constitutes research within the domain?
(Dickson and DeSanctis, 1990)

A. Rai et al.

Henderson and Cooprider (1990) define produc-
tion, coordination and organization as three dimen-
sions for the development of computerized systems.
The production dimension deals mainly with techni-
cal aspects; coordination focuses on managing the
interrelationships and dependencies between activi-
ties and people; organizational technology deals with
the environment for the technology and associated
processes. In this paper we analyze the software
quality assurance domain through a revised version
of these dimensions-technical, managerial and or-
ganizational. Further, given the increasing impor-
tance of justifying investments in information tech-
nology (DOS Santos, 1991) and quality initiatives
(Crosby, 19801, economics of software quality assur-
ance has been included as a separate fourth dimen-
sion. The classification system employed in this study
is schematically shown in Figure 1.

A review of the articles was used as a basis to
identify sub-dimensions under each of the above
primary dimensions. Software quality characteristics,
quality assurance techniques, and software quality
metrics were three sub-dimensions that emerged
under the technical dimension. Characteristics of

* Charactenstlcs
F(

t

Portebility
RCikbilii
EUiChlCy
Human
EngiMng
MaintainabMy
RWMWii

--) Software

I
Metrics

1 PmJ@
Managenlenl
StafRng 6 Training
Rmoulm Aocation

Software Quality Assurance

I Management of
--) System Develop-

ment Process

DWdOplllOlll

Pnxess r Maintenanca
Pmcear,
User Partidplion

+I lDsvelopnenfTeam1

Development Team Structure
Communication Among
wow
Dwalopam’ Pemonflllty

Figure 1. Classification scheme for software quality assurance.

Software Quality Assurance .I. SYSTEMS SOFTWARE 69
1998; 40~67-83

software quality are adopted from Boehm, Brown,
Kasper, Lipow, MacLeod and Merrit (1978) with
some elaborations to accommodate for emergent
themes such as reusability.

Under the managerial dimension, we identified
two sub-dimensions: resource management, and
management of the development process. The orga-
nizational dimension encompasses the organization
of software quality assurance (SQA) activity, and the
structural and behavioral characteristics of the de-
velopment team. Two sub-dimensions are identified
under the organizational dimension: organizational
structure of SQA function, and characteristics of
the development team. The fourth dimension-
economics of software quality assurance-focuses
on the cost and benefits associated with software
quality assurance activities and models used to study
them. Further elaboration of these sub-dimensions
are included in the classification scheme to illustrate
the emphasis of research efforts based on analysis of
the literature.

3. STUDY METHODOLOGY

The articles included in this study were gathered
using two methods. First, a key word search was
employed using the WILSONDISC online index
which includes over 1000 journals in various areas
such as business, science, and medicine published
during the past 10 years (Version 2.3.1, The H.W.
Wilson Co.). Software Quality Assurance was used
as the key word for the search.

Second, several leading journals in the areas of
software quality, software engineering, and informa-
tion systems were searched manually to identify
articles relevant to our classification system. The
journals were scanned for the 1980 to 1994 time
period. A total of 401 articles were identified from
these sources. The distribution of the articles by
journals is shown in Table 1 and Figure 2 shows the
distribution of articles by the primary topic areas.

In assessing disciplinary development of a field, it
is useful to assess the methodological orientation of
extant literature. Areas that are in their infancy are
normally characterized by sporadic borrowing from
other areas that can serve as appropriate reference
disciplines. This stage of disciplinary development is
typically characterized by a growth of frameworks
and conceptual models. With time, researchers move
to a “testing” mode and increasing amounts of em-
pirical research are typically reported. Theories are
refined to become more global and accommodate
for appropriate contingencies. For example, frag-
mentation of results in the technological innovation

Table 1. Journals Reviewed for SQA Research

Title of the Journal Number of Articles

Journal of Systems and Software 67
Software Engineering Journal 33
IEEE Transactions on Software

Engineering 28
IEEE Software 28
Software Quality Journal 48
Communications of the ACM 77
Management Science 6
MIS Quarterly 29
J. of Management Information

Systems 17
Quality Progress 8
Information & Software

Technology 25
Software: Practice & Experience 5
Other Journals 30

Each journal in the “Other Journals” category has at most three
articles concerning software quality assurance.

area led researchers to focus substantial attention
on resolving contradictory results.

Given the above discussion, it is useful to assess
the methodological orientation of specific strands
that characterize the SQA domain. Figure 3 presents
the distribution of articles by methodological orien-
tation and Figures 4 through 7 present the distribu-
tion of articles over different time periods indicating
the trends in research activity for specific issues.

4. THE TECHNICAL DIMENSION OF SQA

4.1. Software Quality Characteristics
(114 articles)

A second level of sub-dimensions was employed by
drawing upon the Boehm et al. (1978) framework for
the characteristics of software quality. In addition to
the dimensions identified by Boehm et al., two other
dimensions-efficiency and reusability-were in-
cluded in this study to accommodate emergent
trends. All the articles identified as dealing with
software quality characteristics fit well into this elab-
orated framework.

4.1.1. Portability (3 articles). For portability, which
means that software can be operated easily and well
on different computer configurations (Boehm et al.,
19781, only three articles were identified (Feinawer,
1991; Halasz, 1988; Wilden et al., 1991). Today,
there are software packages which perform the same
tasks on different computer configurations. With
advances in data communication technology and the
proliferation of concepts such as electronic data
interchange (EDI), the focus has shifted to data
exchange between different machines. A close look

70 J. SYSTEMS SOFTWARE
1998; 40~67-83

A. Rai et al.

Technical

Managerial
Economic

Organizational 35

Figure 2. SQA literature topical coverage.

at the limited research indicates that there is also a
call to shift emphasis from assessing portability of a
program on different host machines, operating sys-
terns, compilers and compiler options (Feinawer,
1991) to the study of specification-level portability
between different application programs (Wilden et
al., 1991). Therefore, although the ability to process
data from and transfer data to other computer con-

figurations is important, it is
searchers recognize portability
facto vendor initiative and as
actively studied this subject.

4.1.2. Efficiency (2 articles). Efficiency is a major
concern of software developers and an important
topic associated with system design and develop-

possible that re-
as an ongoing de
a result have not

Prescriptive
(n=299)

7

Longitudinal 0.2% (n=l)

Case Study 10.7% (n=43)

.O% (n=32)

Experimental Study 6.5% (n=26)

Figure 3. Research methodologies used.

Software Quality Assurance J. SYSTEMS SOFTWARE 71
1998; 40~67-83

250

Managerial

1986-1989

Time Frame

Note: Some articles are classified into multiple dimensions.

Figure 4. Evolution of research on SQA.

ment. However, the issue has been largely over- timely manner. Therefore, the needs and attention
looked by researchers examining software quality. for research on efficiency in the conventional sense
One possible reason is that hardware performance has been somewhat diminished. We point out that
has exponentially increased in the last several years. the ease with which data can be accessed is treated
This improved performance when coupled with de- under the human engineering sub-dimension.
creases in the unit cost for computing significantly Clearly, difficulties in accessing data can negatively
diminish the hurdles to processing operations in a influence the efficiency of the computer system.

1980-I 985 1986-1989
Time Frame

Figure 5. Evolution of research within technical dimension.

72 J. SYSTEMS SOFIWARE
1998: 40~67-83

A. Rai et al.

Resource Management

Management of System
Development Process

Other Manageriel Issues

1980-l 985 1986-1989
Time Frame

Figure 6. Evolution of research within managerial dimension.

4.1.3. Human Engineering (29 articles). Human
engineering describes how easily a system can be

the importance of the issue at hand. Among the

understood and used. Among all the software quality
works on human engineering, a lot of research has

characteristics, this is the only one that can be
focused on user cognition (Lucas and Nielson, 19801,
behavioral (Napier et al., 19891, attitudinal (Carrol

considered as user oriented. This issue has been
consistently regarded as very important for the ac-

and McKendrea, 19871, and anthropometric charac-

ceptance and the success of computer systems. The
teristics. The research methodologies vary and in-
clude direct contact with intended or actual users,

number of articles identified in this category reflects interviews, surveys, and experiments (Lucas and

Development Team

Other Organizational Issues

01’ I 1

1@30-1985 1986-I 989
Time Frame

1990-1994

Figure 7. Evolution of research within organizational dimension.

Software Quality Assurance J. SYSTEMS SOFIWARE 73
1998; 40:67-83

Nielson, 1980; Napier et al., 1989). From these stud-
ies, some relationships between user characteristics
and interface design have been developed. However,
the measurement of the human engineering aspects
has been primarily based on users’ reaction to the
software. Objective measurements of user behavior
in a specific interaction of task and software technol-
ogy have not been defined or used.

4.1.4. Reliability (38 articles). Reliability is the
most extensively studied software quality character-
istic. This is understandable given the importance of
the issue in the case of mission-critical systems such
as nuclear plant control systems (Feinawer, 19911,
telephone switching systems (Rush et al., 1990) and
others (Allot, 1992; Hansen, 1990). Consequently,
reliability is suggested as one measure of computer
systems success (Zahedi, 1987).

There has been a noticeable growth in research
on the subject since 1986. This is understandable as
business and society become increasingly dependent
on computer systems. The failed CONFIRM project
of American Airlines and the failure of the routing
systems of AT&T on the east coast turned out to
be management nightmares for the firms concerned.
By one estimate, financial institutions have between
20% and 80% of their cash on-line at a given point
in time.

Most articles either discuss methods and ap-
proaches to achieve software reliability or propose
models for the measurement, analysis, and predic-
tion of software reliability. It is suggested that a
software engineering approach should be applied to
every phase of the development life cycle in order to
predict, measure and manage reliability (Muss and
Everett, 1990). Various techniques such as Markov
processes (Siegrist, 1988) and software fault trees
(Leveson et al., 1991) have been suggested as model-
ing approaches to study software reliability. A com-
pilation of commonly used modeling methods and
their applicability is provided by (Ramamoorthy and
Bastani, 1982).

4.1.5. Maintainability: Understandability, Testa-
bility, and Modifiability (20 articles). With mainte-
nance cost accounting for more than 60% of the
overall cost in an application system’s life cycle, the
need for attention on software maintainability is
exigent. In the Boehm et al. framework (Boehm et
al., 19781, maintainability is divided into three sub-
dimensions: testability, understandability and modi-
fiability. In all but one article, the maintenance of
software has been treated as a singular concept.
Only the understandability sub-dimension is explic-

itly discussed (Tenny, 1988). The other two sub-
dimensions are not explicitly discussed in any of the
articles, reflecting inadequate attention by software
quality researchers to the multidimensional and
complex nature of the “maintainable software” con-
struct.

In general, the content of published work in this
area is quite dispersed. The topics examined include
software maintenance and its relation to personnel
and procedures (Edwards, 1984); the impact of
maintenance practices on software quality (Col-
lofello and Buck, 1987); the perceptions of EDP
professionals on factors that impact software main-
tainability (Kim and Westin, 1988); and the effect of
software attributes (Rombach, 1987) and program-
mer’s skills and programming styles (Vessey and
Weber, 1983) on software maintainability. Behav-
ioral issues such as the use of a communication-
oriented approach have been suggested (Cashman
and Holt, 1980) as a means to structure the software
maintenance environment.

4.1.6. Reusability (17 articles). The concept of
reusability has been explored by some firms and a
few case studies are reported in the recent literature
(Apte et al., 1990; Banker and Kauffman, 1991).
Software reusability is regarded by some researchers
as the key to improved software development, pro-
ductivity and quality (Biggerstaff and Richter, 1987).
Some Japanese software producers have applied the
concept of reusability and report significant im-
provements in both productivity and quality
(Cusumano, 1989). However, there is very limited
work on evaluating the effectiveness of alternative
reusability implementation strategies. One exception
is a set of economic models of reuse (Gaffrey and
Durek, 1989) that relate system development pro-
ductivity to the proportion of reuse and the cost of
developing reusable components. In addition,
Pfleeger and Bollinger (1994) presented a set of
techniques to be used for modeling and assessing
costs associated with software reuse. Methodologies
and techniques to achieve reusability are also illus-
trated in other articles (Biggerstaff and Richter,
1987; Karimi, 1990; Prieto-Diaz and Freeman, 1987).

4.2. Software Metrics (86 articles)

Software metrics are critical to any quality initiative
in the area and are used as a mechanism to quantify
and measure some aspects of software quality (Ince,
1990). Keeping in line with the “management
by fact” principle associated with Total Quality

74 J. SYSTEMS SOFTWARE A. Rai et al.
1998; 40:67-83

Management (TQM) systems, it is important that
appropriate metrics be designed and used. These
measures should reflect both software product and
development process quality. The increasing impor-
tance of software metrics is shown by the increase in
published research articles over time. During the
period from 1980 to 1985, there were only four
articles dealing with software metrics. However, the
figure rose to 17 in the period from 1986 to 1989 and
to 64 for the 1990 to 1994 period.

Most of the articles classified into this category
were found to be descriptive in nature. More specif-
ically, the topics addressed include a general discus-
sion on metrics (Grumen, 1991; Ince, 1990), the
application of metrics to software quality assurance
(Carpenter and Murine, 1984; Murine, 1988; Nenz,
1985; Siegel, 19921, metrics appropriate for different
phases of the software development life cycle
(Farbey, 1990; Heitkoetter et al., 1990; Kitchenham
and Linkman, 1990; McCabe and Butler, 1989;
Siegel, 19921, and productivity metrics (Yu et al.,
1990).

Some authors have suggested that a standard set
of metrics are needed for software quality measure-
ment (Buckley and Poston, 1984). Others have
pointed out that such a goal is not attainable. Re-
cently, Poore (1988) proposed a theory to derive
localized software quality metrics, and the same has
been tested through two field experiments (Binder
and Poore, 1990; Trammel and Poore, 1992). The
results of these experiments support Poore’s original
thesis that IS managers should design localized soft-
ware quality metrics rather than search for a “com-
monly accepted metrics set.” Since software metrics
are measures of software quality, they need to be
validated prior to use. A comprehensive metrics
validation methodology which includes six criteria
has been proposed by Schneidwind (1992).

As with other products, the quality of the software
product is tightly related to the development pro-
cess. Considering only product quality is not enough
as the process must also be monitored and con-
trolled (Basili and Rombach, 1987). More than 60%
of the articles have focused on product-oriented
software metrics. There has been some attention by
more recent works on process-oriented metrics

metrics, the focus is on one project or one phase in
the system development life cycle.

In contrast, there is growing emphasis in organiza-
tions to construct an enabling global information
infrastructure. Construction of such an infrastruc-
ture has been recognized as among the top priorities
of CIOs today (Niederman et al., 1991). A recent
paper (Swanson et al., 1991) reported the construc-
tion of an Application Software Factory. Similar
efforts by Japanese corporations have been reported
too (Cusumano, 1989; Cusumano and Kemerer,
1990). There appears to be a clear gap in the present
orientation of unit metrics and the increased empha-
sis on global information infrastructures.

4.3. Software Quality Techniques and Tools
(135 articles)

The articles in this category deal with the techniques
and tools that can be employed to control or im-
prove software quality. Some articles in this category
discuss the application of statistical techniques to
software quality assurance (Ahituv and Zelek, 1987;
Camuffo et al., 1990; Munson and Khoshgoftaar,
1992; Okumoto, 1985). Other articles cover a variety
of techniques and methods to control and improve
software quality using qualitative suggestions advo-
cated by quality gurus such as Edward Deming
(Miller, 1989; Zulter, 1988).

Some of the techniques and tools are adapted
from existing approaches in general quality manage-
ment such as statistical quality control methods,
quality function deployment (QFD) (Van Treeck
and Thackeray, 1991), and the application of a man-
ufacturing process in systems development
(Cusumano, 1989; Levendel, 1991). These adapted
techniques and tools account for approximately 30%
of the articles in this category. Other research ef-
forts deal with techniques and tools that are unique
to the system and software development process.
Whether the techniques and tools are adapted from
existing general quality management approaches or
are unique to the system and software development
process, most researchers focus on a specific quality
characteristic or a particular phase of the develop-
ment process.

(Bhide, 1990; Farbey, 1990; Harrison, 1988; Pfleeger
and McGown, 1990; Reynolds, 1987). Some others 5. THE MANAGERIAL DIMENSION OF SQA

have discussed both product- and process-oriented
metrics (Hallonan et al., 1978; Kitchenham and
Linkman, 1990). Moreover, the focal level of the
metrics discussed to date tends to be solely at the
unit level: for product metrics, the focus is on single
module or single quality characteristics; for process

Although 68 articles fall into this category, most of
the articles are descriptive or prescriptive in nature.
Among various topics in the resources management
category, project management (23 articles), and de-
velopment team staffing and training (10 articles)
have received some attention. Boehm and Ross

Software Quality Assurance J. SYSTEMS SOFTWARE 75
1998; 40~67-83

(1989) developed a software project management
theory called “Theory-W’ where the primary task of
the software project manager is to make winners of
all parties involved in the development process.
Swanson et al. (1991) demonstrate that there is a
paradigm shift in project management when a tran-
sition is made to a software factory development
approach. Other articles discuss project manage-
ment as an approach to ensure productivity of per-
sonnel and quality of software products. Only one
article (Carpenter and Hallman, 1985) provides a
detailed discussion of the training content and pro-
cess. Other articles discuss the need for training and
their impact on quality in very general terms.

The research on management of the system deliv-
ery process includes topics such as management of
the development process, management of the main-
tenance process and user participation. The general
focus is on the application of quality assurance ap-
proaches to the development process, and on moni-
toring and controlling the development process. The
application of general quality control/ assurance ap-
proaches used in other industries and various quality
standards such as IS09001 are suggested by several
researchers as useful means to manage the system
delivery process. For example, Kane (1992) de-
scribed how TQM methodologies can be applied to
software development and Rahman (1987) discussed
the application of the quality circle concept in the
context of the development process.

Some studies have focused on the impact of devel-
opment methodologies on system quality (Alavi,
1984; Apte et al., 1990; Cerveny et al., 1986; Swan-
son et al., 1991). A few articles deal with quality
assurance issues within individual phases in the de-
velopment process. The use of CASE and other
automated tools can help with the design phase, but
requirement specification still remains a communi-
cation issue between the developers and users, and
within the development team. Mantei and Teorey
(1988) suggested the incorporation of behavioral
techniques in the system development life cycle to
enable effective management of the development
process. In addition, user participation and involve-
ment have been found to have a significant impact
on management and quality of system delivery pro-
cess (Dagwell and Weber, 1983; Franz, 1985; Gould
and Lewis, 1985; Tait and Vessey, 1988).

6. THE ORGANIZATIONAL DIMENSION OF
SQA

Under the organizational dimension of SQA we
identified 39 relevant articles. Of these, seven deal

with the structure of the software quality assurance
function and 22 others deal with the characteristics
of development teams including team structure,
communication among developers, and developer’s
personality.

The articles relating to organizational structure of
SQA have two distinct characteristics. First, they all
deal with the placement of the SQA function or
team in the organizational structure. Second, only
two out of the seven articles were empirical in
nature. The primary research question addressed by
these articles is the independence of SQA teams
from or affiliation with software development teams
(Brelsford, 1988; Buckley and Poston, 1984; Gru-
men, 1991; Nenz, 1985).

The other 10 articles are very broad and cover a
variety of organizational and behavioral issues, such
as the level of motivation of developers to achieve
high quality (Apte et al., 1990; Karimi, 1990; Kishida
et al., 1987); the impact of the development environ-
ment on software maintenance performance (Bend-
ifallah and Scacchi, 1987; Kim and Westin, 1988); a
social dynamics perspective on user-analyst relation-
ships (Newman and Robey, 1992); the centralization
or decentralization of the control structure associ-
ated with IS planning and design (Henderson and
Lee, 1992); communication in the development team
(Poston and Bruen, 1987; Swanson et al., 1991); and
the importance of organizational culture in achiev-
ing software quality (Kane, 1992).

7. THE ECONOMICS DIMENSION OF SQA

“Quality is Free” is an often quoted motto (Crosby,
1980). Yet the question of “What is it going to cost
me?” is asked by many project managers whenever a
quality goal is established. This is further con-
founded as the costs and benefits related to software
and their impacts are more difficult to estimate than
with other products and processes (Boehm, 1981).

In our assessment of the literature, we found 36
articles related to the economic dimension of SQA.
Most of these articles provide general discussions of
costs and benefits of software quality activities. Cost
effectiveness of various software quality assurance
practices are dealt with by Abdel-Hamid (1988),
Barnes and Bollinger (19911, Levendel (19901, and
Murine (1988). Hollocken (19861, Paughtrey (1988),
and Zulter (1988) present a more detailed list of cost
items related to software quality assurance, while
Rivard and Kaiser (1989) looked at quality benefits
descriptively.

A significant amount of effort has been devoted to
establish a model for the cost and benefit involved in

76 J. SYSTEMS SOFTWARE
1998; 40~67-83

A. Rai et al.

the software development process (Grady, 1987;
Grumen, 1991; Hollocken, 1986; Mukhopadhyay et
al., 1992). However, these models are far from accu-
rate (Kuster et al., 1990) and, therefore, only limited
confidence should be placed in such estimates. In
addition, only a handful of papers focus on the cost
and benefit associated with software quality assur-
ance activities. Others focus on the general cost and
benefit of the overall development effort. However,
estimation and analysis of costs and benefits of
quality remains a significant issue. Only two articles
have specifically looked at economic models and
employed an empirical approach for the validation
of these cost estimation models (Kemerer, 1987;
Mukhopadhyay et al., 1992).

8. PRESENT STATUS AND FUTURE
DIRECTIONS

8.1. Summary of issues Examined

SQA research activity is dominated by descriptive
and prescriptive writings (299 articles), with fewer
empirical studies (102 articles). Furthermore, most
reported empirical articles are exploratory in nature.
This suggests that the SQA domain is still in an
evolutionary stage with limited empirical and con-
firmatory research.

8.1.1. Technical Dimension. Only one article was
found that dealt with efficiency from a quality per-
spective. Among all the other software quality char-
acteristics, human engineering can be expected to
grow significantly in importance, given the move-
ment toward large-scale information infrastructures
and the rapidly growing user base of computer sys-
tems. The interface design of interactive systems
raises significant issues from a human information
processing standpoint. Issues such as whether cer-
tain interfaces such as those in typical executive
information system applications enforce cognitive
biases have been recently raised (Rai et al., 1994).

Another interesting finding from the literature is
that significant attention has been paid to the mea-
surement, analysis, and prediction of software relia-
bility (54% of the articles in this dimension). The
majority of these articles view the reliability issue
from the system developer’s point of view. As relia-
bility assessment should reflect the degree to which
the software product performs intended functions
correctly and satisfactorily (Boehm et al., 1978), an
accurate assessment of reliability should involve user
inputs.

Unlike other published work under the technical
dimensions of software quality, about half the arti-

cles examining maintainability are empirical in na-
ture. However, none of the empirical articles are
longitudinal. Taken collectively, these articles exam-
ine the relationships between individual characteris-
tics, software development characteristics and other
technical attributes and software maintainability. We
did not identify any study which examined these
issues collectively or studied the interaction between
these issues.

Implementing a development infrastructure de-
signed around the principles of reusability calls for a
fundamental rethinking of how software is devel-
oped. It can, in a sense, be construed as a prime
example of business process redesign in software
development, considering the fact that the ultimate
reuse will include domain knowledge and develop-
ment methodologies in addition to the software pro-
grams. Clearly, this is an area where significant work
is needed to explore and understand the technical
infrastructure, characteristics of process technology,
organizational standards, and management practices
required to move an IS organization toward a
reusability-oriented environment.

There has been a steady increase in research
efforts on software metrics and their use in the
software development process for industrial applica-
tions (Andersen, 1992). However, the SQA literature
does not provide frameworks to guide the selection
and use of metrics. This area warrants future work
as the central notion of quality can be argued to be
“management by fact.” Furthermore, the literature
shows a paucity of research dealing with the deploy-
ment process of software metrics: How do these
metrics originate in organizations? How are they
used to monitor the development process and its
management? The few articles in this area are either
descriptive or based on single case studies, such as
the experiences of Contel and Motorola with soft-
ware measurement programs reported in (Daska-
lantonakis, 1992; Pfleeger, 1993). In order to fully
utilize the benefits of software metrics, the dynamics
of the deployment process and its relationship with
contextual variables need to be explored.

In addition, metrics need to be developed to mea-
sure quality issues at levels higher than individual
projects. Also, as IS organizations reconceptualize
their systems delivery methods, the metrics used
during transitory periods can be quite important.
Consider an organization that is in the process of
implementing reusability. If management continues
to assess productivity based on lines of code pro-
duced or function-point analysis, they may get incor-
rect signals and misallocate resources, thereby nega-
tively impacting otherwise well-conceived transition

Software Quality Assurance J. SYSTEMS SOFTWARE ‘I.1
1998; 40~67-83

plans. The metrics designed to promote reusability
should recognize effort expended on parameteriza-
tion of design and code.

Despite the research on software quality tech-
niques and tools, software development does not
employ quality control techniques as extensively as
other production processes (Cho, 1987). A frame-
work to guide the selection and application of tech-
niques and tools in accordance with quality charac-
teristics and development phases has not emerged.
This situation is changing gradually with the emer-
gence of some software factories in the U.S.A. and
Japan (Cusumano, 1989). Little applied theory exists
to systematically guide adoption of statistical tech-
niques, methods, and automated tools, and assess
the impact of different development approaches on
product and process quality.

8.1.2. Managerial Dimension. The distribution of
articles over time suggests that project management
and management of the development processes have
received relatively more attention from researchers.
An assessment of the distribution in other areas
does not reveal any significant trends. In general,
the research focus has been on managing a single
project or a specific development approach. There is
no reported research on quality issues associated
with infrastructure-oriented management practices
(as opposed to project-oriented management prac-
tices). Furthermore, we did not identify any compar-
ative studies of management approaches for differ-
ent process technologies.

The research, in general, appears to have adopted
managerial concepts from the TQM and organiza-
tional literatures. Management can play a major role
in the “conversion effectiveness” of investments in
such technologies to actual performance improve-
ments. A similar theme has been expressed by Weill
(1992) in his recent study examining the relationship
between IT investments and organizational perfor-
mance.

8.1.3. Organizational Dimension. The paucity of
work in a single topic shows the diversity of interest
on organizational issues among the researchers. The
current knowledge can be characterized as frag-
mented with a need for consolidation and theory-
building. The distribution of articles over time shows
that there has been no growth in research activity in
these areas. Moving beyond generic principles de-
rived from TQM and organization theories will re-
quire that researchers address systematic differences
in software process technology. The organizational
dimension should be considered as an integral part

of the effective adaptation and application of a
specific process technology. As per Cooprider and
Henderson (19901, organizational technology should
be considered in conjunction with the production
and coordination technologies used for software de-
velopment. General organizational guidelines, while
useful, have limited power in a prescriptive sense.

The managerial and organizational sub-dimen-
sions reveal some common attributes. Both are broad
and diffused and integrated theories do not exist
presently. Also, there is a strong need for consolida-
tion of existing fragments and theory building cou-
pled with appropriate longitudinal empirical studies.

8.1.4. Economic Dimension. The economics of
software quality assurance has received broad treat-
ment primarily from a descriptive perspective. Few
mathematical models have been developed. A better
understanding of the costs and benefits of SQA and
improvements to existing quantitative models should
be useful to decision-makers. A look at the distribu-
tion of articles over time illustrates that there has
been a significant increase in research efforts in the
area during the recent two year period. It is plausi-
ble that IS managers are under increasing pressure
to justify quality assurance programs/initiatives prior
to experimenting with or embracing them. This no-
tion is consistent with the ever-increasing pressure
on senior IS executives to justify investments in
information technology or manage information tech-
nology from a performance standpoint (Weill, 1992).

8.2. The Need to Build Thematic Bridges

There were some cases where the classification was
problematic because themes explored crossed over.
It is useful to provide a sense of such thematic
bridges between the dimensions identified, as SQA
calls for a managerial and organizational approach
to the study of tools, techniques and technology.

There are a few thematic bridges between the
managerial/organizational and the technical area.
However, these bridges have to be substantially de-
veloped to come up with appropriate contingency
theories. For example, while the placement/struc-
ture of the SQA function in general has received
some attention, it is important to understand how
the structure and role of the SQA function should
differ for different development methodologies. As
another example, the relationships between specific
software characteristics and tools and techniques
have not been explored in detail. Further, advances
in one particular sub-dimension have not been fac-
tored in adequately in other sub-dimensions. The

78 J. SYSTEMS SOFIWARE
1998; 40~67-83

A. Rai et al.

recent advances in object-oriented systems have im-
plications for both the software metrics and software
characteristics sub-dimensions. Given the radically
different approaches to building software and struc-
ture of software products under this approach, it is
clearly important for researchers to carefully exam-
ine whether additional characteristics may be needed
to define object-oriented software products and the
relevance and adequacy of present metric systems
from both a product and process standpoint.

Moreover, recent research shows that the conver-
sion effectiveness of the managerial and organiza-
tional context can better explain the relationship
between IT investments and organizational perfor-
mance (Weill, 1992). Further, a recent study suggests
and empirically demonstrates that the technological
context of the IT investment should be addressed
while studying the relationship with performance
(DOS Santos et al., 1993). The evidence from the IT
investment literature suggests that researchers in
the SQA domain will benefit by considering such
thematic bridges between the dimensions while
studying performance impacts of SQA activities and
techniques.

8.3. Integrating SQA with the
Development Process

Consistent with the idea of building thematic bridges,
we suggest that SQA should become an integral part
of the development process. This approach recog-
nizes quality as an ongoing effort during every step
of the development process. Some work has been
reported in this direction, noticeably the Capability
Maturity Model proposed by Humphrey (1989) and
his colleagues at the Software Engineering Institute.
Software quality assurance is discussed with one or
more development phases. However, the focus is on
the assessment of the development process, and the
overall linkage between software quality assurance
and the development process has not been well
explored. Among all the articles, we found 80 of
them dealing with SQA and the development pro-
cess in tandem. We note three themes directed at
integrating SQA and the development process.

One theme linking SQA to the development pro-
cess focuses on the application of general quality
control/assurance approaches used in other indus-
tries. The techniques discussed include various qual-
ity standards such as ISO9001, and quality assurance
activities such as quality function deployment and
process control. However, the “fit” between these

standards and techniques and particular software
development processes has not been explored. For
example, Hunter (1992) argued that many standards
fail to take into account the essential differences,
and occasionally the similarities, between software
products and processes and other engineering prod-
ucts and processes. The applicability of such stan-
dards and techniques in software development still
remains an unanswered question. Moreover, in light
of rapid advances in software technologies, how
standards and general quality assurance techniques
will adapt to the change, and how the new technol-
ogy will affect the quality practices in the system
development process are areas for future research.

The second theme identified here focuses on
“localized” quality practices. Specifically, quality as-
surance activities within individual phases in the
development process, and techniques that can be
used during the development process to improve
software quality are examined. Many researchers
and practitioners have argued that quality should be
designed, not tested, into the software product.
However, testing and various other review and con-
trol mechanisms are still the dominant approaches
reported and discussed for ensuring quality. The
coupling of testing to early stage activities, the usage
of measurement, reusable components, etc., do not
solve the problem entirely. What is still missing is
the techniques and mechanisms to ensure quality
from the very start and through the entire life cycle
of the project. This calls for a revamping of the
requirement specification and design process so that
quality is embedded into the system from the begin-
ning.

The third theme identified is an assessment of the
impact of development methodology on quality. The
discussion is mostly from a technical perspective,
and managerial and organizational issues are not
considered in tandem. However, the managerial and
organizational aspects are likely to moderate the
relationship between characteristics of the develop-
ment methodology and the quality of outcomes. For
example, as systems are built differently under alter-
nate development approaches, it is reasonable to
expect that the role of the SQA function should
differ for these different process technologies. For
instance, the structure and role of the SQA function
would not be the same for systems built using the
data-driven information engineering or structured
systems analysis and design approaches.

Furthermore, the roles of programmer/analysts,
content of communication between developers and
users, and media deployed tend to be different un-

Software Quality Assurance J. SYSTEMS SOFTWARE 79
1998; 40~67-83

der different process technologies. For example, un-
der the object-oriented approach, communication
would focus on the definition of and relationships
between objects. Under the data-driven information
engineering approach, communication would mostly
center on the data architecture and interrelation-
ships between data entities. The nature of the pro-
cess technology used for the construction of soft-
ware significantly influences what can be referred to
as the four Ws (why, what, who, where) and the H
(how) of software production: why are certain steps
needed in the process; what is produced during the
intermediate steps; who is responsible for specific
steps and outputs in the process; where will the
activities be carried out and where intermediate
outputs be stored; and how are all of the steps
interrelated in an architectural sense so as to result
in the final software product.

8.4. Implications of Shifts in Technological
Context

While evaluating directions for future research in an
area such as SQA, it is important to assess the
technology context that was considered while the
body of knowledge evolved and compare the same to
changes that are taking place. We consider it useful
to point out two dramatic shifts in technological
context that are redefining software delivery in orga-
nizations and therefore should have substantial im-
plications for the SQA domain. These are rapid
advances in development process technology and
client/server distributed computing.

In general, several new system development ap-
proaches have been introduced in the last few years.
These include CASE tools, integrated methodolo-
gies such as information engineering, and object-
oriented prototyping approaches. These new process
technologies are radically different from traditional
methods and several companies have failed in the
implementation of these approaches. However, the
proponents of each approach claim that the technol-
ogy can significantly redefine software quality and
development productivity. There is little empirical
research examining the actual impact of these ap-
proaches on specific quality and productivity metrics.
Of course, the emergence of new process technology
calls for a careful reexamination of the appropriate-
ness and completeness of the software characteris-
tics considered. It is conceivable that a finer grained
specification of certain characteristics may be war-
ranted in certain methodology contexts.

Future research should consider the contingencies

associated with variations in software process tech-
nology from a technical, managerial, organizational
and economic standpoint. While some commonali-
ties may exist, some quality assurance issues associ-
ated with different approaches should conceivably
be different. The problem is further accentuated
with a radical shift taking place in organizational
computing as firms go from centralized mainframe
approaches to distributed computing infrastructures.
Here again, there is a clear need to carefully re-
assess the software characteristics associated with a
radically different environment.

While distributed systems are being conceptual-
ized as an enabling technology to transform organi-
zations and dismantle hierarchical structures, the
promise assumes that development methods will be
able to deliver software that possesses key attributes
such as reliability and maintainability. The vendor
community has attempted to respond to the chal-
lenge with the introduction of tools such as
client/server based CASE and object-oriented prod-
ucts. As per our earlier discussion on contingencies
associated with process technology, it is necessary
that researchers consider the contingencies associ-
ated with distributed environments.

8.5. The Conceptual Orientation of SQA
Research

A comment is warranted about the conceptual ori-
entation of SQA research. SQA programs and their
successful implementation have been modeled as
rational decisions made by managers. Their impacts,
in turn, have largely been studied from a rationalis-
tic perspective. The IS implementation area adopted
a similar approach in the early ’80s. However, over
time the IS implementation area (as with the organi-
zational innovation area) was characterized by frag-
mented and contradictory results. The term “sub-
theories” is normally used while discussing present
theoretical understanding in these areas to empha-
size the lack of a theory (Damanpour, 1991).

It is not our purpose to take a position against
rational models. On the contrary, evidence from the
IS implementation area suggests that such models
are useful to model adoption behavior but they
possess little power in explaining post-adoption be-
havior. In a recent study investigating the uptake of
I-CASE technology, Orlikowski and Robey (1991)
emphasize the importance of studying the social
context into which the technology is being intro-
duced. A process based approach that embraces a
social-interaction perspective can provide useful in-

80 J. SYSTEMS SOFTWARE
1998; 40:67-83

sights into the dynamics associated with the effective
implementation of an SQA program.

8.6. CONCLUDING REMARKS

We conclude by making the following broad obser-
vations:

There is a need for continuity of research effort
and systematic studies in a specific area. The se-
ries of studies on localized quality metrics by
Poore (19881, Binder and Poore (19901, and Tram-
mel and Poore (1992) are good examples of an
approach that should benefit the field tremen-
dously.

Rapid technological changes call for a careful
reassessment of software characteristics, metrics,
managerial and organizational issues.

Changes in technology may obliterate existing un-
derstanding regarding quality and productivity. A
good example is reusability which clearly questions
lines of code and function-point based measures
to assess productivity.

The technological context should be an integral
part of SQA research. Quality assurance in radi-
cally different technological contexts may call for
substantially different approaches. The study of
the interaction between technological and organi-
zational context is clearly important and presently
overlooked.

Some critical areas have received little or no re-
search attention as yet. A good example is the
study of efficiency from a quality perspective.

Interrelationships between dimensions have been
minimally investigated. Given the interdisciplinary
thrust of the SQA domain, key thematic bridges
between the (subjdimensions need to be further
developed. These thematic bridges will in turn
define the knowledge structure of the SQA do-
main.

Future research should examine how quality can
be engineered into the development process. Some
research in this direction has been initiated.

There is a scarcity of empirical research and only
one longitudinal study was identified.

A social interaction perspective may prove useful
in understanding the dynamics of implementing
SQA programs or redefining development process
technology. This understanding should facilitate
better management of implementation efforts dur-
ing organizational change.

A. Rai et al.

l As the field evolves, the classification system em-
ployed here should be reevaluated.

ACKNOWLEDGMENT

The authors would like to thank the Pontikes Center for the
Management of Information at Southern Illinois University at
Carbondale for partially supporting this project.

REFERENCES

Abdel-Hamid, T., The Economics of Software Quality
Assurance: A Simulation-Based Case Study. MIS Quar-
terly, 12, 395-411 (1988).

Ahituv, N. and M. Zelek, Instant Quality Control of Large
Batch Processing Jobs. MIS Quarterly, 11, 313-323
(1987).

Alavi, M., An Assessment of the Prototyping Approach to
Information Systems Development. Communications of
the ACM, 27, 556-563 (1984).

Allot, K, The Weak Link in the Safety Chain. Process
Engineering, 72,41-42, (1992).

Andersen, O., Industrial Applications of Software Mea-
surements. Information and Sofrware Technology, 34,
681-693, (1992).

Apte, U., Sanker, C., Thakur, M. and J. Turner, Reusabil-
ity-Based Strategy for Development of Information Sys-
tems: Implementation Experience of a Bank. MIS Quar-
terly, 14, 421-433 (1990).

Banker, R. and R. Kauffman, Reuse and Productivity in
Integrated Computer-Aided Software Engineering: An
Empirical Study. MIS Quarterly, 15, 375-401 (1991).

Barnes, B. and T. Bollinger, Making Reuse Cost-Effective.
IEEE Software, 8, 13-24 (1991).

Basili, V. and H. Rombach, Implementing Quantitative
SQA: A Practical Model. IEEE Sofhvare, 4, 6-9 (1987).

Bendifallah, S. and W. Scacehi, Understanding Software
Maintenance Work. IEEE Trans. on Software Engineer-
ing, 13,311-323 (1987).

Bhide, S., Generalized Software Process-Integrated Met-
rics Framework. J. of Systems and Software, 12,249-254
(1990).

Biggerstaff, T. and C. Richter, Reusability Framework,
Assessment, and Directions. IEEE Software, 4, 41-49
(1987).

Binder, L. and J. Poore, Field Experiments with Local
Software Quality Metrics. Software: Practice and Experi-
ence, 20, 631-647 (1990).

Boehm, B., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

Boehm, B., Brown, J., Kasper, H., Lipow, M., MacLeod,
G. and M. Merrit, Charactetitics of SojIware Quality,
North-Holland Publishing Company, Amsterdam, Hol-
land, 1978.

Boehm, B. and R. Ross, Theory-W Software Project Man-
agement: Principles and Examples. IEEE Trans. on
Software Engineering, SE-15, 902-916 (1989).

Software Quality Assurance J. SYSTEMS SOFlWARE 81
1998; 40~67-83

Brelsford, J., Establishing a Software Quality Program.
Quality Progress, 21, 34-37 (1988).

Buckley, F. and R. Poston, Software Quality Assurance.
IEEE Trans. on Sofbvare Engineering, SE-lo, 36-41
(1984).

Camuffo, M., Maiocchi, M. and M. Morselli, Automatic
Software Test Generation. Information and Software
Technology, 32, 337-346 (1990).

Carpenter, M. and H. Hallman, Quality Emphasis at IBM’s
Software Engineering Institute. IBM Systems J., 24,
121-133 (1985).

Carpenter, C. and G. Murine, Measuring Software Prod-
uct Quality. Quality Progress, 17, 16-20 (1984).

Carrol, J. and J. McKendrea, Interface Design Issues for
Advice-Giving Expert Systems. Communications of the
ACM, 30, 14-31 (1987).

Cashman, P. and A. Holt, A Communication-Oriented
Approach to Structuring the Software Maintenance En-
vironment. Software Engineering Notes, 5, 4-17 (1980).

Cerveny, R., Garrity, E. and G. Sandes, Prototyping in
Systems Development. J. of Management Znformation
Systems, 3-2, 52-62 (1986).

Cho, C., Quality Programming: Developing & Testing Soft-
ware with Statistical Quality Control, John Wiley & Sons,
Inc., New York, New York, 1987.

Collofello, J. and J. Buck, Software Quality Assurance for
Maintenance, IEEE Software, 5, 46-51 (1987).

Cooprider, J. and J. Henderson, Technology-Process Fit:
Perspectives on Achieving Prototyping Effectiveness, J.
of Management Information Systems, 7-3, 67-87 (1990).

Crosby, P., Quality is Free: The Art of Making Quality
Certain, New American Library, New York, New York,
1980.

Cusumano, M., The Software Factory: A Historical Inter-
pretation. IEEE Software, 6, 23-30 (1989).

Cusumano., M. and C. Kemerer, A Quantitative Analysis
of U.S. and Japanese Practice and Performance in Soft-
ware Development, Management Science, 36, 1384-1406
(1990).

Dagwell, R. and R. Weber, Systems Designers’ User Mod-
els: A Comparative Study and Methodological Critique.
Communications of the ACM, 26, 987-997 (1983).

Damanpour, F., Organizational Innovation: A Meta-
Analysis of Effects of Determinants and Moderators.
Academy of Management J., 34, 555-590 (1991).

Daskalantonakis, M., A Practical View of Software Mea-
surement and Implementation Experiences within Mo-
torola. IEEE Trans. on Software Engineering, 18,
998-1010 (1992).

Dickson, G. and DeSanctis, The Management of Informa-
tion Systems: Research Status and Themes, in Research
Issues in IS: An Agenda for the 1990s (M. Jenkins, H.
Siegle, W. Wojtkowski and G.Wojtkowski, eds.), Wm. C.
Brown, Dubuque, Iowa, 1990.

DOS Santos, B., Justifying Investments in New Information
Technologies. J. of Management Information Systems,
7-4, 91-106 (1991).

DOS Santos, B., Peffers, K. and D. Mauer, The Impact of
Information Technology Investment Announcements on
the Market Value of the Firm. Information Systems
Research, 4, l-23 (1993).

Edwards, C., Information Systems Maintenance: An Inte-
grated Perspective. MIS Quarter&, 8, 237-256 (1984).

Farbey, B., Software Quality Metrics: Considerations about
Requirements and Requirement Specifications, Znfor-
mation and Software Technology, 32,60-64 (1990).

Feinawer, L., Compiler Issues Associated with Safety-
Related Software. Nuclear Technology, 93, 116-122
(1991).

Franz, C., User Leadership in Systems Development Life
Cycle. J. of Management Znformation Systems, 2-2, 5-25
(1985).

Gaffrey, J. and T. Durek, Software Reuse-Key to En-
hanced Productivity: Some Quantitative Models. Znfor-
mation and Software Technology, 31, 258-267 (1989).

Gill, G. and C. Kemerer, Cyclomatic Complexity Density
and Software Maintenance Productivity. IEEE Trans.
on Software Engineering, 17,1284-1288 (1991).

Gould, J. and C. Lewis, Designing for Usability: Key
Principles and What Designers Think. Communications
of the ACM, 28, 300-310 (1985).

Grady, R., Measuring and Managing Software Mainte-
nance. IEEE Software, 4, 35-45 (1987).

Grumen, G., How to Assure Quality: Debate Shows Divi-
sions. IEEE Sof?ware, 8, 99 + (1991).

Halasz, F., Reflections on Note Cards: Seven Issues for
the Next Generation of Hypermedia Systems. Commu-
nications of the ACM, 31, 836-852 (1988).

Hallonan, D., Manches, S., Moriarty, J., Riley, R.,
Rohrman, J. and T. Skramstad, Systems Development
Quality Control. MIS Quarterly, 2, 1-14 (1978).

Hansen, M., Software: The New Frontier in Safety. Profes-
sional Safety, 35,20-23 (1990).

Harrison, W., Using Software Metrics to Allocate Testing
Resources. J. of Management Znformation Systems, 4-4,
93-105 (1988).

Heitkoetter, U., Helling, B., Nolte, H. and M. Kelly,
Design Metrics and Aids to Their Automatics Collec-
tion. Information and Software Technology, 32, 79-87
(1990).

Henderson, J. and J. Cooprider, Dimensions of I/S Plan-
ning and Design Aids: A Functional Model of CASE
Technology. Information Systems Research, 1, 227-254
(1990).

Henderson, J. and S. Lee, Managing I/S Design Teams: A
Control Theories Perspective. Management Science, 38,
757-777 (1992).

Hollocken, C., Finding the Cost of Software Quality. IEEE
Trans. on Engineering Management, 33, 223-228 (1986).

Humphrey, W., Managing the Software Process, Addison-
Wesley, Reading, MA, 1989.

Hunter, R., Where Next in Software Standards. Software
Quality J., 1, l-8 (1992).

Ince, D., Software Metrics: Introduction. Znformation and
Software Technology, 32, 297-303 (1990).

82 J. SYSTEMS SOFTWARE
1998; 40~67-83

A. Rai et al.

Kane, E., Implementing TQM at Dun & Bradstreet Soft-
ware. National Productivity Review, 405-416 (1992).

Karimi, J., An Asset-Based Systems Development Ap-
proach to Software Reusability. MIS Quarterly, 14,
179-198 (1990).

Kemerer, C., An Empirical Validation of Software Cost
Estimation Models. Communications of the ACM, 30,
416-432 (1987).

Kim, C. and S. Westin, Software Maintainability: Percep-
tions of EDP Professionals. MIS Quarterly, 12, 167-179
(1988).

Kishida, K., Teramoto, M., Torii, K_ and Y. Urano,
Quality-Assurance Technology in Japan. IEEE Software,
4, 11-17 (1987).

Kitchenham, B. and S. Linkman, Design Metrics in Prac-
tice. Information and Software Technology, 32, 304-310
(1990).

Kuster, R., van Genuchten, M. and F. Heemstra, Are
Software Cost-Estimation Models Accurate? Informa-
tion and Software Technoiogy, 32, 187-190 (1990).

Levendel, Y., Reliability Analysis of Large Software Sys-
tems: Defect Data Modeling. IEEE Trans. on Software
Engineering, 16, 141-152 (1990).

Levendel, Y., Improving Quality with a Manufacturing
Process. IEEE Software, 8, 13-25 (1991).

Leveson, N., Cha, S. and T. Shimeall, Safety Verification
of Ada Programs Using Software Fault Trees. IEEE
Software, 8, 48-59 (1991).

Lucas, H. and N. Nielson, The Impact of the Mode of
Information Presentation on Learning and Perfor-
mance. Management Science, 26, 982-993 (1980).

Mantei, M. and T. Teorey, Cost/Benefit Analysis for
Incorporating Human Factors in the Software Life Cy-
cle. Communications of the ACM, 31, 428-439 (1988).

McCabe, T. and C. Butler, Design Complexity Measure-
ment and Testing. Communications of the ACM, 32,
1415-1425 (1989).

Miller, H., Quality Software: The Future of Information
Technology. J. of Systems Management, 12,8-14 (1989).

Mukhopadhyay, T., Vicinanza, S. and M. Prietula, Examin-
ing the Feasibility of a Case-Based Reasoning Model
for Software Effort Estimation. MIS Quarterly, 16,
155-171 (1992).

Munson, J. and T. Khoshgoftaar, The Detection of Fault-
Prone Programs. IEEE Trans. on SofhYare Engineering,
18,423-433 (1992).

Murine, G., Integrating Software Quality Metrics with
Software Quality Assurance. Quality Progress, 21, 38-41
(1988).

Musa, J. and W. Everett, Software Reliability Engineer-
ing: Technology for the 1990s. IEEE Software, 7, 36-43
(1990).

Napier, H., Lane, D., Batsell, R. and N. Guadango, The
Impact of a Restricted Natural Language Interface on
Ease of Learning and Productivity. Communications of
the ACM, 32, 1190-1198 (1989).

Nenz J., Software Quality Assurance: Systems 12. Electri-
cal Communication, 59, 68-73 (1985).

Newman, M. and D. Robey, A Social Process Model of
User-Analyst Relationships. MIS Quarterly, 16, 249-266
(1992).

Niederman, F., Brancheau, J. and J. Wetherbe, Informa-
tion Systems Management Issues for the 199Os, MIS
Quarterly, 15, 475-500 (1991).

Okumoto, K., A Statistical Method for Software Quality
Control. IEEE Trans. on Software Engineering, 11,
1424-1430 (1985).

Orlikowski, W. and D. Robey, Information Technology
and the Structuring of Organizations. Information Sys-
tems Research, 2, 143-169 (1991).

Paughtrey, T., The Search for Software Quality. Quality
Progress, 21, 29-31 (1988).

Pfleeger, S., Lessons Learned in Building a Corporate
Metrics Program. IEEE Software, 10, 67-74 (1993).

Pfleeger, S. and T. Bollinger, The Economics of Reuse:
New Approaches to Modeling and Assessing Cost. In-
formation and Sofhvare Technology, 36,475-484 (1994).

Pfleeger, S. and C. McGown, Software Metrics in the
Process Maturity Framework. J. of Systems and Soft-
ware, 12, 255-263 (1990).

Poore, J., Derivation of Local Software Quality Metrics
(Software Quality Circles). Software: Practice and Expe-
rience, 18, 1017-1027 (1988).

Poston, R. and M. Bruen, Counting Down to Zero Soft-
ware Failures. IEEE Software, 4, 54-61 (1987).

Prieto-Diaz, R. and P. Freeman, Classifying Software for
Reusability. IEEE Software, 4, 6-16 (1987).

Rai, A., Stubbart, C. and D. Paper, Can Executive Infor-
mation Systems Reinforce Biases? Accting., Mgmt. &
Znfo. Tech., 4, 87-106 (1994).

Rahman, W., Software Quality by Management: Learning
from the Manufacturing Industries. Information and
Software Technology, 29,511-516 (1987).

Ramamoorthy, C. and F. Bastani, Software Reliability-
Status and Perspectives. IEEE Trans. on Software Engi-
neering, 8, 354-371 (1982).

Reynolds, R., The Partial Metrics System: Modeling the
Stepwise Refinement Process Using Partial Metrics.
Communications of the ACM, 30, 956-963 (1987).

Rivard, E. and K. Kaiser, The Benefit of Quality IS.
Datamation, 35, 53-58 (1989).

Rombach, A., A Controlled Experiment on the Impact of
Software Structure on Maintainability. IEEE Trans. on
Software Engineering, 13,344-354 (1987).

Rush, K., Draving, S. and J. Kerley, Technical Challenges
to a Decentralized Phone System. IEEE Spectrum, 21,
32-37 (1990).

Schneidwind, N., Methodology for Validating Software
Metrics. IEEE Trans. on Software Engineering, 20,
410-422 (1992).

Schneidwind, N., The State of Software Maintenance.
IEEE Trans. on Software Engineering, 15,303-310 (1987).

Software Quality Assurance J. SYSTEMS SOFTWARE 83
1998; 40~67-83

Siegel, S., Why We Need Checks and Balances to Assure
Quality. IEEE Softwure, 9, 102-103 (1992).

Siegrist, K., Reliability of System with Markov Transfer of
Control, II. IEEE Trans. on SofhYare Engineering, 14,
1478-1480 (1988).

Swanson, K., McComb, D., Smith, .I. and D. McCubbrey,
The Application Software Factory: Applying Total
Quality Techniques to Systems Development. MIS
Quarterly, l&567-579 (1991).

Tait, P. and I. Vessey, The Effect of User Involvement on
System Success: A Contingency Approach. MZS Quar-
terly, 12, 91-108 (1988).

Tenny, T., Program Readability: Procedures Versus Com-
ments. IEEE Trans. on Sofrware Engineering, 14,
1271-1279 (1988).

Trammel, C. and J. Poore, A Group Process for Defining
Local Software Quality: Field Applications and Valida-
tion Experiments. Sojbvare: Practice and Experience, 22,
603-636 (1992).

Van Treeck, G. and R. Thackeray, Quality Function De-
ployment at Digital Equipment Corporation. Concurrent
Engineering, 1, 14-20 (1991).

Vessey, I. and R. Weber, Some Factors Affecting Program
Repair Maintenance: An Empirical Study. Communica-
tions of the ACM, 26, 128-134 (1983).

Weill, P., The Relationship Between Investment in Infor-
mation Technology and Firm Performance: A Study of
the Valve Manufacturing Sector. Information Systems
Research, 3, 307-333 (1992).

Wilden, J., Wolft, A., Rosenblatt, W. and P. Tarr, Specifi-
cation-Level Interoperability. Communications of the
ACM, 34, 72-87 (1991).

Yu, W., Smith, D. and S. Huang, Software Productivity
Measurement. AT& T TechnicalJ., 69, 110-120 (1990).

Zahedi, F., Reliability of Information Systems Based on
the Critical Success Factors-Formulation. MIS Quar-
terly, 11, 187-203 (19871.

Zulter, R., The Deming Approach to Software Quality
Engineering. Qualify Progress, 21, 58-64, (1988).

