
Quality assurance under the open source development model

Luyin Zhao a,1, Sebastian Elbaum b,*

a Philips Research USA, 345 Scarborough Road, Briarcliff Manor, NY 10510, USA
b Department of Computer Science and Engineering, 210 Ferguson Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

Received 2 April 2002; received in revised form 12 April 2002; accepted 15 April 2002

Abstract

The open source development model has defied traditional software development practices by generating widely accepted

products (e.g., Linux, Apache, Perl) while following unconventional principles such as the distribution of free source code and

massive user participation. Those achievements have initiated and supported many declarations about the potential of the open

source model to accelerate the development of reliable software. However, the pronouncements in favor or against this model have

been usually argumentative, lacking of empirical evidence to support either position. Our work uses a survey to overcome those

limitations. The study explores how software quality assurance is performed under the open source model, how it differs from more

traditional software development models, and whether some of those differences could translate into practical advantages given the

right circumstances. The findings indicate that open source has certainly introduced a new dimension in large-scale distributed

software development. However, we also discovered that the potential of open source might not be exploitable under all scenarios.

Furthermore, we found that many of the open source quality assurance activities are still evolving.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Software development models; Open source; Quality assurance; Survey

1. Introduction

Our interest in development a survey on this subject

originated in the popularity gained by the open source

model in the last few years through the delivery of

successful products such as Linux, Apache, Perl and

sendmail. This software development model seemed to

be yielding products in rapid succession and with high
quality, without following traditional quality practices

of accepted software development models (Raymond,

1999). Furthermore, it appears that the emergence of

open source might be able to challenge certain estab-

lished quality assurance approaches, claiming to be

successful through techniques and principles that defy

some of the current and standard software development

practices.
Under a traditional software development model,

software quality assurance constitutes the set of sys-

tematic activities providing evidence of the ability of the

software process to generate a software product that is

fit to use (Schulmeyer and McManus, 1999). The ac-

tivities that a traditional quality assurance group carries

out, and the quantification mechanisms for those ac-

tivities, have been the focus of considerable research.

For example, the effectiveness of inspections and re-

views, the efficiency of testing techniques, and the im-
pact of certain development processes have all been

extensively investigated (Fagan, 1986; Porter and Votta,

1995; Frankl et al., 1998; Rothermel and Harrold, 1996;

Perry et al., 1994; Schulmeyer and McManus, 1999).

However, the quantification of such activities for open

source is not abundant, which makes it difficult to sup-

port or deny the model�s claimed advantages (Glass,

2001). In a preliminary survey, we confirmed some of the
uniqueness of this model (Zhao and Elbaum, 2000). For

example, we found that the most popular open source

projects encouraged (and leveraged) user participation to

levels not observed in more traditional software devel-

opment environments. However, we also discovered that

some of the open source claims could not be substanti-

ated with the existing survey and data. In this paper, we

* Corresponding author. Tel.: +1-402-472-6748.

E-mail addresses: luyin.zhao@philips.com (L. Zhao), elbaum@

cse.unl.edu (S. Elbaum).
1 Tel.: +1-914-945-6616.

0164-1212/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00064-X

The Journal of Systems and Software 66 (2003) 65–75

www.elsevier.com/locate/jss

mail to: luyin.zhao@philips.com


present a more comprehensive survey study that at-

tempts to further uncover how software quality assur-

ance is performed on the open source model, how it

differs from more traditional models, and whether those

differences could translate into practical advantages.

In the next section we present the related work in this
area and provide a concise introduction to the open

source development model and its major claims. Section

3 presents the survey methodology. Section 4 introduces

the major survey results. Last, Section 5 summarizes the

findings of this effort.

2. Related work

2.1. Open source model

The open source initiative and its followers propose a

software development model that promotes free distri-

bution and complete access to source code (Open source,

2002; Wu and Lin, 2001). This model has been labeled

‘‘the open source development model’’, ‘‘the open source
model’’, or just plainly ‘‘open source’’. Its origins can be

traced back to the ‘‘hacker culture’’ that created Unix,

Linux, and parts of the Internet infrastructure (Ray-

mond, 1999; Wu and Lin, 2001). However, recent success

stories of many products developed under this model

have given it enormous momentum and visibility, mak-

ing it an interesting alternative for large software de-

velopment companies (Behlendorf, 1999). Netscape
pioneered this movement by making its browser publicly

available in 1998. Other companies such as IBM, Apple,

and SGI soon started to explore this path (Open source,

2002). This growth sparked a need to capture the attri-

butes that make open source products successful (Wang

and Wang, 2001), and our work fits that profile, within

the area of quality assurance.

The argument behind the open source model is that
source code availability allows faster software evolution.

The idea is that multiple contributors can be writing,

testing, or debugging the product in parallel, which

supposed to accelerate software evolution. Raymond

repeatedly observes that more people looking at the

code, will results in more ‘‘bugs’’ found, which is likely to

accelerate software improvements (Raymond, 2001).

User participation is then a major foundation in this
model, where the distinction between user and develop-

ers becomes blurrier; the motivators of that commitment

have been discussed in a recent survey (Hars and Ou,

2001). The model also claims that this rapid evolution

produces better software than the traditional closed

model because in the later ‘‘only a very few programmers

can see the source and everybody else must blindly use an

opaque block of bits’’ (Open source, 2002). In this paper,
we will be trying to quantify and analyze these state-

ments from the quality assurance perspective.

2.2. Quality assurance under the open source model

Despite the number of heated informal discussions on

and about the open source development model, empir-

ical studies regarding open source quality assurance

activities and quality claims are rare (Glass, 2001). One
of the exceptions is the study Mockus performed on the

popular Apache web server (Mockus et al., 2000). This

study gives a fairly comprehensive comparison of

Apache against five commercial products in terms of

developer participation, team size, productivity and

defect density, and problem resolution.

Wu and Lin (2001) and Cubranic and Booth (1999)

focus on cooperative work and configuration manage-
ment to support distributed development. Cubranic and

Booth (1999) discusses major issues of coordinating

open source development projects, including collabora-

tive communication mediums and configuration man-

agement tools. Criticisms about the lacking of high-level

coordination approaches in open source community are

raised, emphasizing that the most successful open source

projects have a centralized control structure (e.g., Linux,
Apache server). Wu and Lin (2001) concentrate in the

study of three version control systems––diff and patch

for Unix, RCS and CVS––that support the coordination

effort required by open source development.

Another aspect that has been the target of attention is

the reliability of open source systems (Glass, 2001).

Miller studied the reliability of several Unix utilities and

services, which included several applications that are
now open source (Miller et al., 1995). The study con-

sisted of providing random input streams to the appli-

cations in order to measure failure rate. The Gnu and

Linux distribution were among the evaluated systems.

The results indicated that the reliability of the ‘‘freely

distributed’’ products was superior to those of com-

mercial vendors, with the caveat that the compared

products did not provide exactly the same services.
Our preliminary survey on open source (Zhao and

Elbaum, 2000) explored quality assurance activities in

open source. The results indicated that testing takes a

significant portion of the software life cycle, planning is

not regularly done, and user participation usually did

not include looking at the source code. The findings and

limitations of this study served as the motivators for the

current work.

3. Survey methodology

3.1. Goals

We established three main goals for this study. First,

we want to capture the quality assurance techniques
used by open source developers and their perceptions

about software quality. We would like to understand

66 L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75



developers� expectations regarding the quality of their

product, and whether those are met through the tech-

niques they employ. Second, we want to quantify how

much the software user really contributes to the soft-

ware evolution. Quantifying this aspect will provide

unique evidence on the level and type of user partici-
pation, which constitutes one of the major claimed

reasons behind the open source model successes. Last,

we want to determine if attributes such as project size,

maturity, and programming language have an impact on

how quality assurance is carried. Answering this last

question will provide a valid context for the generalized

statements made about the open source model potential.

3.2. Data collection

The first task was to identify the sample universe of

open source products to initiate our study. We were

familiar with many web sites hosting open source pro-

jects over the world. We decided to limit our universe to

www.sourceforge.net and www.freshmeat.net (hence-

forth referred to as sourceforge and freshmeat) because
they are well known, they host a large number of open

source projects, 2 they include a great variety of projects,

and they have the support and participation of several

leaders of the open source community. Then, in order to

reflect projects that are active and evolving, we reduced

the pool of subjects based on posting dates, considering

all projects posting a version on freshmeat from Dec

4th, 2001 to Jan 4th, 2002 (1532 postings), and all pro-
jects on sourceforge from Dec 28th, 2001 to Jan 25th,

2002 (1549 postings).

The next step was to stratify the refined universe. Our

experience in the pilot survey (Zhao and Elbaum, 2000)

clearly indicated that certain factors such as program-

ming language could have a large impact on the quality

assurance activities. Hence, we defined three attributes

to control the influence of these factors, and obtain a
sample with an even number of observations per at-

tribute combination. The attributes are programming

language (Java, c, scripting), environment (X11, win-

dows32, web, daemon, console), and topic or applica-

tion domain (communications, databases, games,

internet, desktop, software development, system). We

then proceeded to randomly select a project for each

combination group until we had eight observations in
each, or there were not more possible observations for

that group. With this procedure, the maximum number

of surveyed projects turns out to be 840 (7 topics�
5 environments � 3 languages � 8 observations on each

combination). Based on the fact that sourceforge hosts

three times more projects as freshmeat, we assigned 630

to sourceforge and 210 to freshmeat. Although a higher

number of observations per combination would be de-

sirable, the number eight was selected in an attempt to

ensure that all combinations are balanced in terms of

available observations. However, and in spite of the
large universe, some combinations did not have even

eight observations. We found that some combinations

had very few projects (e.g., system applications are

rarely programmed in Java) and many projects did not

provide all the needed attributes. In spite of that, our

conservative scheme let us target 474 open source pro-

jects, with a fair distribution across programming lan-

guages, environments, and topics. While planning the
sampling scheme, we started the preparation of the

questionnaire with 22 items organized into four groups:

project characterization, respondent characterization,

process, testing, and user participation and feedback. To

maximize the accuracy of the answers, and minimize the

load on the respondents, the questionnaire followed a

multiple-choice format. In addition, an explanation de-

scribing the purpose of this survey was attached to the
distributed survey. The questionnaire can be found in

the appendix at the end of the paper.

4. Results

The data collection process was automated whenever

possible. Several scripts were developed to retrieve in-
formation from web sites and contact respondents. We

received a total of 232 responses, which corresponds to a

respond rate of 48.5%. We did not perceive any pattern

among the respondents and non-respondents that could

represent any bias in the collected data. Out of the total

responses, 229 were used for data analysis (three ob-

servations were not used due to corrupted response file

or lack of responses). We then proceeded to interpret the
collected data, using Microsoft Excel and Statistica to

assist us in the analysis. The findings are presented in the

following sections.

4.1. General descriptive findings

The questions grouped under project characterization

were used to provide a general appreciation of the
project profile, including project size, staffing, number of

users, release frequency, and time in the market. In our

sampling, almost half of the projects fall into the small

size category (1000–10,000 lines of code). Other projects

are distributed in the remaining size categories as fol-

lows: tiny––10% (less than 1000 lines of code), medium––

31% (10,000–100,000 lines of code), and large–6% (more

than 100,000 lines of code). Although we are not certain
of the methods employed by the developers to compute

2 In December 2001, there were over 30,000 open source projects

registered on sourceforge and �9000 projects on freshmeat (with some

overlapping).

L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75 67

http://www.sourceforge.net
http://www.freshmeat.net


the lines of code, this estimate helps us to quantify the

impact of product size on different quality attributes.

The vast majority of projects are developed by tiny

groups of less than five core developers (51% projects

have one developer, 43% have one to five developers).

Only 5% of the projects have more than five developers.
However, over half (59%) of the projects said to have

user groups with more than 50 people, 15% projects

have 10 to 50 users, 13% have 5 to 10 users, and 10%

have less than five users. Again, our source of infor-

mation to estimate the number of users for each appli-

cation was provided by the developers� estimates. In

general, we found that developers differentiated from

users in that the former had a continuous and active role
in modifying the source code and building the software,

while the later participated mainly through feature

suggestions, bug reports, or assistance requests.

We also found that for 43% of the products, a new

version is released every month. The average release

intervals with other projects are: 29%––every quarter,

11%––every week. Very few projects (7%) have new

versions every six months, while 10% projects answered
‘‘other’’ or stated that their new versions were released

very irregularly. Most of these products have been

posted recently, with relatively little time in the open

source market. More specifically, only 10% of the pro-

jects have been in the market for more than three years,

while 39% projects have been in the market for less than

six months.

Most of the projects started in the tiny and small
category, and tend to grow steady as they reach matu-

rity, with over 50% of the projects being large by their

third year in the market. There are some exceptions to

this tendency within the medium and large new projects

where, for example, 3 of the 14 large projects have re-

cently moved from a traditional to an open source

model. Fig. 1 provides more detail about the relation-

ship between size and project maturity.
We also attempted to characterize the respondents to

determine how it could impact the other responses. Al-

though the questions leave some latitude regarding the

quality of the ‘‘years of experience’’, it is interesting to

note that most responses came from developers with

several years of experience. For example, 61% of the

respondents had more than five years development ex-

perience, while 33% had one to five years experience. It

was also very interesting to observe that 77% of the

respondents performed open source development in

their personal time (12% were partially supported by

employer, and only 5% respondents are dedicated to
open source full-time). This actually seems to reflect the

‘‘giving spirit’’ described by the open source promoters

(Hars and Ou, 2001).

4.2. Process

From the pilot survey (Zhao and Elbaum, 2000) we

learned that open source projects largely stay in the ‘‘ad
hoc’’ initial phases in terms of traditional software

process engineering as formulated by models like the

Capability Maturity Model (Humphrey, 1989) and ISO

9000 (Baker, 2001). On the other hand, although many

key process areas (KPA) defined by these process

frameworks may not be applicable to open source

software (e.g., subcontract, requirement, or process

management and definition), some of the KPA em-
ployed by open source belong to higher maturity levels

(e.g., configuration management, project tracking).

Therefore, our process questions attempt to explore

primarily how the open source projects support and

manage change. The questions consider project purpose,

changes between releases, configuration management,

fault tracking systems, 3 and documentation.

First, we validated the anecdotal evidence presented
by Raymond (2001) regarding the origin of the open

source projects. Close to 60% of the projects started to

meet personal needs (categorized as ‘‘external rewards

motivation’’ by Raymond and also in (Hars and Ou,

2001)), while 28% products were initiated with the

software community in mind, and 24% for company

needs. 4 However, as projects mature and grow in size to

fit the needs of more users, the tendency becomes less
obvious as exposed by Fig. 2. It was also interesting to

see that while 50% of web applications were started to

meet company needs, less than 30% of the other type of

applications had that objective, indicating a greater

likelihood of open source development in a traditional

business environment if the target application fits the

web domain.

A second aspect we evaluated was the use of software
configuration management processes and tools. Since

open source is based on the premise of extensive (and

likely distributed) collaboration, this aspect becomes

even more critical (as addressed in Cubranic and Booth,

1999). In our survey, �75% of the respondents use

configuration management tools. Within these projects,

Fig. 1. Time in market by project size.

3 Problem tracking and fault tracking systems are generally referred

to as ‘‘bug’’ tracking systems within the open source community.
4 Note that some projects have multiple purposes.

68 L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75



89% use the CVS tool (Bar and Fogel, 2001), which was
provided by default for the hosted projects. Interestingly

enough, only 2% answered ‘‘not sure’’ to this question,

the rest of the respondents were aware of the availability

of these tools and their purpose. The percentages are

similar for bug tracking tools. Over 61% of the projects

also employ bug tracking tools, and a majority of projects

use bug tracking tools provided by the host web sites.

As expected, larger projects made more extensive use
of the configuration management and fault tracking

capabilities. However, it is noticeable that almost 50% of

the tiny and most recent products make use of these

facilities. Figs. 3 and 4 provides more details about the

use of these supporting tools.

Documentation did not play such a dominant role.

Over 84% of the respondents prepare a ‘‘TODO’’ list

(including list of pending features and open bugs). 62%
build installation and building guidelines, 32% projects

have design documents, and 20% have documents to

plan releases (including dates and content).

As evident from Fig. 5, these numbers do not vary

much across the type of application type, nor did they

change due to application size or time in the market.

4.3. Testing

Traditionally, testing constitutes the last validation

stage to ensure that a product meets the user require-

ments and quality specifications. Basili et al. (1996) re-

ported than testing efforts during software maintenance

at the Flight Dynamic Division of NASA Goddard

ranged from 13% to 24%, while Zhang�s survey (Zhang

and Pham, 2000) on 13 software companies reports that
the average percent of time spent in testing is 21%. Al-

though the reported testing efforts for industry vary, it is

clear that testing receives considerable attention. How-

ever, this activity seems to receive less importance in

open source, where some of the validation responsibili-

ties are (supposedly) transferred to the user (Vixie,

1999).

In the survey we found that 58% of the projects spent
more than 20% of the time on testing, while more than

15% of the projects spent more than 40% of their time in

Fig. 3. SCM usage by project size.

Fig. 4. Bug tracking tools usage by project size.

Fig. 5. Documentation by project topic.

Fig. 2. Project startup purpose by project size.

L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75 69



testing. This confirms the existence of a testing activity

that consumes significant resources, even though some

of the testing responsibility is shifted to the user. Fig. 6

provides more insights about the testing time discrimi-

nated by project size. It seems that larger projects tend

to spend less time in their testing phase compared with
smaller projects.

When inquiring about testing techniques, we con-

centrated on a small set of testing approaches that we

felt were most likely to be employed in the open source

context. Preliminary evaluations of the questionnaire by

a few respondents helped us to shape this list in terms of

content and terminology.

Our findings indicate that 68% of the respondents
‘‘provide inputs trying to imitate user behavior’’, 25%

‘‘provide extreme values as inputs’’, 25% ‘‘use assertions

(assert, Junit, others.)’’, and 26% people adopt other

validation methodologies. The respondents were famil-

iar with the notion of coverage, but only 5% of them

employed tools to assess it accurately. Furthermore,

almost 30% of the projects had an estimated coverage of

less than 30%, independently of project size or maturity.
Given the large percentage of time spent at the testing

stage, this lack of attention to basic, accepted, and

mature testing techniques was surprising. However, as

projects get larger, the validation techniques tend to

become a bit more mature. For example, almost 35% of

the large projects use some kind of assertions. Fig. 7

presents more details about the validation activities

across program size.

Another interesting fact is that only 48% of the pro-

jects use a baseline test suite to support testing. This is

surprising because the lack of a baseline indicates the

likely absence of regression testing, which could jeop-
ardize the ability to generate multiple ‘‘reliable’’ releases

in a short time frame (see Section 4.1). Even among the

large systems, only 53% had a regression test suite.

When categorizing by programming languages we found

that over 69% of the Java projects used baseline test

suites, while for C/C++ it was 41%. The availability of

more open source tools to support the testing of soft-

ware developed in Java might explain this variation
among programming languages.

4.4. User participation and feed back

Although different types of user participation are

relatively common and desirable in industry (Ljung and

Allwood, 1999), open source attempts to put even more

emphasis on field-testing and user reviews, taking ad-
vantage of the user�s willingness to experiment with an

‘‘unpolished’’, but free product (Vixie, 1999). This user

participation and feedback constitutes one of the back-

bones of the open source model (Raymond, 1999), but

until now there were no clear indications about the ef-

fectiveness or efficiency of that process.

Fig. 7. Validation by project size.

Fig. 6. Testing time by project size.

70 L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75



We found that user suggestions generate over 20% of

the changes on almost 50% of the projects. We also

found that in almost 20% of the projects, the users dis-

covered 20–40% of the bugs, and 44% of the respondents

thought that users found ‘‘hard’’ bugs (not likely to be

found by the developers).
Although not as extreme, respondents thought user

suggestions are usually ‘‘reasonable’’, and only 14%

people thought the users ‘‘don�t help too much’’. Figs. 8

and 9, and Tables 1 and 2 provide more details about

the user participation in the open source model.

When categorizing the influence of project size on

user feedback, we found that for the choice ‘‘users found

hard bugs’’, the percentage is higher in medium and
large projects than in small and tiny projects. For ex-

ample, in large projects users find 80% of the ‘‘hard’’

bugs, while in the tiny and small projects users find an

average of 40% of the ‘‘hard’’ faults. Also, for the

question on user change suggestions, the choice ‘‘not

fitting into my design’’ was selected in �20% of large

projects, while this response is almost absent in small

projects, which indicates a higher flexibility in smaller
projects to incorporate user suggestions. It is also in-

teresting to see that user participation is reflected in a

shorter feedback loop. This is more evident in medium

or large products where, given the large number of us-

ers, the feedback is received sometimes in hours as evi-

dent in Fig. 10.

As shown in Fig. 11, ‘‘Users found hard bugs’’ for

almost 60% of web applications, while only 30% for

Win32 applications. This could be explained by the

nature of web applications, which are distributed among

many heterogeneous components and platforms that

make them particularly hard to validate for an individ-

ual developer. However, more regular problems were

found for Win32 applications than other categories. For
the choice ‘‘They don�t help much’’, Daemons 5 take the

highest percentage while X11 is in the lowest percentage.

Last, we found that user contributions in terms of

percentage of faults found increased for more mature

products. This was expected, as products that have been

in the market for longer periods of time are likely to

have a greater user base. This also implies that even in

the presence of a larger market and a mature product,
user participation remained consistently high. Last, in

Fig. 12, we observe the relationship between the time

invested in testing and the percentage of faults found by

the users. As expected, it is clear that users find less

Fig. 8. Percent of ‘‘bugs’’ found by users.

Fig. 9. Code changed by user suggestions.

Fig. 10. How soon to hear user feedback by project size.

Table 1

Bug locating effectiveness

Bug locating effectiveness Percent of projects (%)

They found ‘‘hard’’ bugs that could have

taken us a long time to find

44

Given some more time, I would have

found most of them

30

They don’t help too much 14

Other 15

Table 2

User suggestion usefulness

User suggestion usefulness Percent of projects (%)

Very creative 25

Reasonable 55

Useful but not so necessary 11

Not fitting into my application design 8

Other 16

5 A daemon is a background and long-running process without

controlling terminal that provides particular services.

L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75 71



number of faults in projects that spend more time in

testing.

5. Conclusions and final remarks

Through this study we have gained a greater appre-

ciation of the quality assurance activities employed in

the open source model. Perhaps more important is that

we were also able to collect evidence and quantify cer-

tain open source activities to more objectively assess the
virtues of this model. We now proceed to summarize our

findings, their implications, and how they can adjust the

expectations on this software development model.

First, we found that the level of user participation in

open source projects was extremely high, generating up

to 20% of the changes for almost 50% of the projects,

and discovering 20–40% of the faults in 20% of the

projects. This substantiates one of the potential advan-
tages of the model in terms of having the resources

available to parallelize, for example, the task of identi-

fying the inputs that cause failures. We cannot assert,

however, whether the parallelization could be translated

into debugging tasks, which would definitely require

much more knowledgeable personnel. Furthermore, in

some instances (e.g., Mozilla, 2002) increasing user

participation has only shifted the bottleneck from de-

tection to debugging. Also note that the activities car-
ried by those users were significantly different depending

on project size. In general, smaller projects cannot ex-

pect much contribution from the users except for feature

suggestions. On the other hand, larger and more ma-

tured applications can expect users that will contribute

to finding faults, but individual user�s feature sugges-

tions are likely to be discarded.

Second, we found evidence that supports the life cycle
of open source projects described by Raymond (2001).

Almost 60% of the projects were started to meet the

developer�s personal needs, later migrating to the com-

munity (if that need was common to many users) and

growing in size while trying to accommodate an in-

creasing number of features. This is a commonality with

non-open source projects: successful projects grow as

part of their evolution (Lehman and Belady, 1985).
However, we also found an increasing number of larger

projects that have been moved to the open source

model, which might indicate a new tendency among the

latest open source projects.

Third, the use of configuration and bug tracking tools

to support collaborative and distributed software de-

Fig. 12. Testing time vs. the percentage of faults found by users.

Fig. 11. Bug locating effectiveness by project environment.

72 L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75



velopment reached �75% of the projects. This is quite

greater than the 5–25% estimations for more traditional

models (Estublier, 2000). The open source processes and

tools for change management employed by some of the

projects definitely seemed to be at the cutting edge of

large-scale collaborative software development (Mozilla,
2002). However, we also realize that these numbers

might be confounded by the fact that the host sites for

all these projects provided a supporting tool and infra-

structure to manage change (e.g., CVS repositories are

provided by default by sourceforge). Still, it was very

interesting to find that these types of host sites can have

such a degree of impact, educating the developers and

effectively shaping the open source model.
Fourth, documentation was not a high priority for

most projects. A simple ‘‘TODO’’ list and installation

guidelines were the most common documents. Although

this was expected from the often loosely controlled

evolution of the open source projects, it was striking

that less than 20% of the projects have planned re-

lease dates. It was not clear that even mature and large

projects had more formal planning, which might be a
bit unsettling for companies depending on these pro-

grams.

Last, open source projects supposed to take advan-

tage of the users to validate the software. With that

premise in mind, most developers seemed to invest little

time in utilizing testing techniques and tools. For ex-

ample, most developers just attempt to informally imi-

tate user behavior to test their software, and only 5%
employ any tools to compute any type of test coverage.

Another example is the lack of regression testing in spite

of the high release rate observed across most projects.

The contradiction is that over half of the projects spend

over 20% of the time testing their system. Since in-house

testing still takes a considerable amount of time under

the open source model, embracing known and mature

testing techniques would seem recommendable.
Overall there is still much to be learned about the

open source model. With this effort we have started to

quantify this model and its potential. However, further

studies are necessary to provide additional empirical

evidence to support the claims of open source promot-

ers, to put those claims into the proper context, or to

just contradict those claims. Our future work will head

in that direction.

Acknowledgements

We are very thankful to all the open source devel-

opers who took the time to respond to our survey. We

also want to thank the J.D. Edwards Honor Program

for supporting Luyin Zhao while he was attending at
University of Nebraska-Lincoln, and Philips Research

USA for understanding the value of this work.

Appendix A. Survey questionnaire

Part A: Project characterization

1. What is the estimated number of lines of code of the

project?

A. <1000
B. 1000–10,000

C. 10,000–100,000

D. >100,000 Lines of code

2. How many software developers are actively involved

in this project?

A. 1

B. 1–5

C. 5–20
D. þ20

3. What is the estimated current number of users of

this product?

A. 1–5

B. 5–10

C. 10–50

D. þ50

4. How often are the product releases (on average)?
A. Every week

B. Every month

C. Every quarter

D. Every six months

E. Other

5. How long has the product been available in the mar-

ket?

A. Less than six months
B. Between six months and a year

C. Between one and three years

D. More than three years

Part B: Respondent characterization

6. Software development experience

A. <1 year

B. 1–5 years

C. þ5 years
7. What level of participation do you have in the project?

A. Dedicated full-time

B. Part-time, supported by employer

C. Part-time, personal time

D. Other

Part C: Process

8. Did the project start to satisfy:

A. Personal needs
B. Company needs

C. Community needs

D. Other

9. What percentage of your product changes from re-

lease to release (major releases)?

A. <20%

B. 20–40%

C. 40–60%
D. 60–80%

E. >80%

L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75 73



10. Do you use software configuration management

tools (version control tools)?

A. Yes (Name )

B. No

C. Not sure

11. Do you use any ‘‘bug’’ tracking tool?
A. Yes (Name )

B. No

C. Not sure

12. Which of the following documents is used to support

the project?

A. Document to plan releases (dates and content)

B. Design document

C. Installation and building guidelines
D. ‘‘TODO’’ List (including list of pending fea-

tures and open bugs)

Part D: Testing

13. How do you validate your product before release?

A. Provide inputs trying to imitate user behavior

(ad hoc)

B. Use script to provide random values as inputs

C. Provide extreme values as inputs
D. Use assertions (assert, Junit, others)

E. Other

14. What percentage of your time and effort is spent on

testing?

A. <20%

B. 20–40%

C. 40–60%

D. 60–80%
E. >80%

15. Do you have a ‘‘baseline’’ test suite that you re-run

on your software before every release?

A. Yes

B. No

16. What percentage of source code is covered by the

testing activity?

A. <20%
B. 20–40%

C. 40–60%

D. 60–80%

E. >80%

17. The previous coverage information was based on:

A. Reports by coverage tool (Name it: )

B. Personal estimation

Part E: Users participation and feedback

18. How soon after release do you hear back from users?

A. Hours

B. Days

C. Weeks

19. What percentage of ‘‘bugs’’ did users find?

A. <20%

B. 20–40%

C. 40–60%
D. 60–80%

E. >80%

20. What percentage of code has changed in response to

users suggestions?

A. <20%

B. 20–40%

C. 40–60%

D. 60–80%
E. >80%

21. How do you evaluate the ‘‘bug’’ locating effective-

ness of external users?

A. They found ‘‘hard’’ bugs that could have taken

us a long time to find

B. Given some more time, I would have found

most of them

C. They don�t help too much
D. Other

22. The modifications suggested by users, are:

A. Very creative

B. Reasonable

C. Useful but not so necessary

D. Not fitting into my application design

E. Other

References

Baker, E., 2001. Which way, SQA? IEEE Software 18 (1), 16–18.

Bar, M., Fogel, K., 2001. Open Source Development with CVS, second

ed., Coriolis Group, Scottsdale, Arizona.

Basili, V., Briand, L., Condon, S., Yong-Mi, K., Melo, W., Valen, J.,

1996. Understanding and predicting the process of software

maintenance releases. In: Proceedings of the 18th International

Conference on Software Engineering. pp. 464–474.

Behlendorf, B., 1999. In: Open source as a business strategy, Open

Sources: Voices from the Open Source Revolution, first ed.

O�Reilly, pp. 149–170.

Cubranic, D., Booth, K., 1999. Coordinating open-source software

development. In: Proceedings of IEEE Eighth International

Workshop on Enabling Technologies: Infrastructure for Collabo-

rative Enterprises. pp. 61–69.

Estublier, J., 2000. In: Filkenstein, A. (Ed.), The Future of Software

Engineering. ACM Press in conjunction with the 22nd Interna-

tional Conference on Software Engineering.

Fagan, M., 1986. Advances in software inspections. IEEE Transac-

tions on Software Engineering 12 (7), 744–751.

Frankl, P., Hamlet, R., Littlewood, B., Strigini, L., 1998. Evaluating

testing methods by delivered reliability. IEEE Transactions on

Software Engineering 24 (8), 586–601.

Glass, R., 2001. Is open source software more reliable? An elusive

answer. The Software Practitioner 11 (6).

Hars, A., Ou, S., 2001. Working for Free?-Motivations of Participat-

ing in Open Source Projects. In: Proceedings of the 34th Annual

Hawaii International Conference on System Sciences. pp. 2284–2292.

Humphrey, W., 1989. Managing the Software Process, The SEI Series

in Software Engineering. Addison-Wesley.

Lehman, M., Belady, L., 1985. Program Evolution––Processes of

Software Change. Academic Press, London, UK.

Ljung, K., Allwood, C.M., 1999. Computer consultants� views of user

participation in the system development process. Computers in

Human Behavior 15 (6), 713–734.

Miller, B., Koski, D., Lee, C., Maganty, V., Murthy, R., Natarajan,

A., Steidl, J., 1995. Fuzz revisited: a re-examination of the

reliability of UNIX utilities and services. Available from <http://

www.cs.wisc.edu/~bart/fuzz/fuzz.html>.

74 L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html


Mockus, A., Fielding, R.T., Herbsleb, J., 2000. A case study of open

source software development: the Apache server. In: The 22nd

International Conference on Software Engineering. pp. 263–272.

Mozilla, 2002. Mozilla tinderbox framework. Available from <http://

tinderbox.mozilla.org>.

Open source initiative, 2002. Available from <http://www.open-

source.org/>.

Perry, D., Staudenmayer, P., Votta, L., 1994. People, organizations,

and process improvement. IEEE Software 11 (4), 36–45.

Porter, A., Votta, L., 1995. Comparing detection methods for software

requirements inspections: a replication using professional subjects.

Empirical Software Engineering: An International Journal 3 (4),

355–379.

Raymond, E.S., 1999. Linux and open-source success. IEEE Software

16 (1), 85–89.

Raymond, E.S., 2001. The Cathedral and the Bazaar: Musings on

Linux and Open Source by an Accidental Revolutionary, revised

ed. O�Reilly.

Rothermel, G., Harrold, M., 1996. Analyzing regression test selection

techniques. IEEE Transaction on Software Engineering 22 (8),

529–551.

Schulmeyer, G., McManus, J., 1999. Handbook of Software Quality

Assurance. Prentice Hall.

Vixie, P., 1999. In: Software Engineering, Open Sources: Voices from

the Open Source Revolution, first ed. O�Reilly, pp. 91–100.

Wang, H., Wang, C., 2001. Open source software adoption: a status

report. IEEE Software 18 (2), 90–95.

Wu, M.W., Lin, Y.D., 2001. Open source software development: an

overview. Computer 34 (6), 33–38.

Zhang, X., Pham, H., 2000. An analysis of factors affecting software

reliability. Journal of Systems and Software 50 (1), 43–56.

Zhao, L., Elbaum, S., 2000. A survey on software quality related

activities in open source. ACM SIGSOFT Software Engineering

Notes 25 (3), 54–57.

Luyin Zhao received his Master of Software Engineering and Business
Management from the J.D. Edwards Honors Program at University of
Nebraska-Lincoln in 2001, a Master of Computer Science from Beijing
University, and a Bachelor of Computer Science from Beijing Uni-
versity of Aeronautics and Astronautics. He is currently a member
research staff at the Healthcare Information Technology department of
Philips Research USA and a part-time Ph.D. student at the State
University of New Jersey––Rutgers. His research interests include
software engineering in open source, object-oriented technology,
workflow systems in medical IT, and application of latest web tech-
nologies in the business domain.

Sebastian Elbaum received the Ph.D. and M.S. in Computer Science
from the University of Idaho, and a degree in Systems Engineering
from the Universidad Catolica de Cordoba, Argentina. He is an As-
sistant Professor in the Department of Computer Science and Engi-
neering at the University of Nebraska Lincoln. He has served on the
program committees for the 2000 IEEE International Symposium on
Software Reliability Engineering, and the 2001 Workshop on Empir-
ical Studies of Software Maintenance. His research interests include
software measurement, testing, maintenance, and reliability. He is a
member of IEEE, IEEE Computer Society, IEEE Reliability Society,
ACM, and ACM SIGSOFT.

L. Zhao, S. Elbaum / The Journal of Systems and Software 66 (2003) 65–75 75

http://tinderbox.mozilla.org
http://tinderbox.mozilla.org
http://www.opensource.org/
http://www.opensource.org/

	Quality assurance under the open source development model
	Introduction
	Related work
	Open source model
	Quality assurance under the open source model

	Survey methodology
	Goals
	Data collection

	Results
	General descriptive findings
	Process
	Testing
	User participation and feed back

	Conclusions and final remarks
	Acknowledgements
	Survey questionnaire
	References


