
Given Enough Eyeballs, all Bugs are Shallow –
A Literature Review for the Use of Crowdsourcing in Software Testing

Niklas Leicht

University of St.Gallen, Institute of Information Management
 niklas.leicht@unisg.ch

Abstract

Over the last years, the use of crowdsourcing has

gained a lot of attention in the domain of software
engineering. One key aspect of software development
is the testing of software. Literature suggests that
crowdsourced software testing (CST) is a reliable
and feasible tool for manifold kinds of testing.
Research in CST made great strides; however, it is
mostly unstructured and not linked to traditional
software testing practice and terminology. By
conducting a literature review of traditional and
crowdsourced software testing literature, this paper
delivers two major contributions. First, it synthesizes
the fields of crowdsourcing research and traditional
software testing. Second, the paper gives a
comprehensive overview over findings in CST-
research and provides a classification into different
software testing types.

1. Introduction

Today, many IT departments face an increasingly
dynamic environment, shorter product lifecycles and
cost pressure. The rapid development of new IT-
enabled business models and a fast growing hardware
market as well as its segmentation - smartphones,
tablets, wearable technologies, or the Internet of
Things - are making software testing increasingly
complex. Given the increased complexity, the
domain of software testing is about to develop
manifold approaches to overcome this issue. One
approach is test automation, that is the automated
execution of pre-scripted tests via software [1].
However, since automated testing is still not
applicable in many settings [2] and most tasks still
require human intelligence in order to be performed,
traditional approaches are becoming less applicable –
both economically and practicably [3].

With the advent of digitization and the rise of
advanced web technologies, more and more
companies are using IT to connect with groups of

individuals for resource [4] and value creation
purposes [5, 6]. Using groups of individuals over the
internet that voluntarily undertake tasks based on a
flexible open call is known as crowdsourcing [7, 8]
and recently found its application in software testing
[9, 10].

In crowdsourced software testing (CST) or
crowdtesting, a diverse pool of people test software
in real environments using their own devices [11].
This form of quality assurance is adapted from open
source code reviews, following the mantra: “Given
enough eyeballs, all bugs are shallow” [12]. Research
on CST made great strides over the last years. It was
applied for various testing types (i.e., usability
testing, validation testing, etc.) and in various
research contexts (i.e., education, corporate context,
and experimental settings) and has shown to be a
feasible and reliable tool in software testing. Despite
these merits, CST research is mostly unstructured and
often lacks a proper “terminology” and classification
into existing software testing practices. Thus, there is
no systematization of CST research.

To address this issue, I have conducted a
literature review [13, 14]. By doing so, the
contribution of this paper is twofold. At first, I will
portray the research landscape and provide a
comprehensive overview and systematization.
Thereby, I synthesize the fields of crowdsourcing
research and traditional software testing to provide a
comprehensive overview of the application of CST.
Second, I will provide in-depth knowledge to the
growing body of literature for crowdsourcing in
software engineering. For practitioners, the paper
illustrates when and where CST has successfully
been applied and where it gives an indication to when
CST might be a feasible mechanism compared to
other testing techniques such as traditional manual
testing or test automation.

The remainder of the paper is structured as
follows. The next section provides the conceptual
background of crowdsourced software testing, as well
as a definition of the term software testing. The third
section explains the review approach, providing

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50404
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 4102

insights into the methodology. Following that, I
present descriptive findings before providing a
systematization of CST research and present specific
issues addressed in the papers. Thus, I discuss the
results and lay out interesting topics for future
research [15]. Finally, I present the papers’
contributions for theory and practice before closing it
with respective limitations and a conclusion.

2. Conceptual Background

2.1. Software Testing

Software testing is an integral component of
software development and arguably the least
understood part of the software development process
[16]. There are several definitions of the activity
itself and the purpose of software testing. Often
times, software testing is defined as the “the process
of executing a program with the intent of finding
errors” [17]. Another very common definition is:
“Software testing is the process of executing a
software system to determine whether it matches its
specification and executes in its intended
environment.” [16]

Thereby, it is important to note that the fact that
the system is being executed is a characteristic that
distinguishes software testing from code reviews, in
which uncompiled source code is analyzed
(sometimes referred to as “static testing”) [18].

While this definition offers a very important
confinement to code review, it is quite mechanistic
and does not take account for the increasing
emergence of digital software products as well as
increasing expectations of users towards software.

In this vein, software testing can be seen as the
verification process for the assessment of software
quality and a process for achieving that quality by
supporting the interests of all stakeholders of an
application, that is, end-users, developers, software
designers, and software testers [19, 20]. To achieve
that goal, it becomes clear that different types of
testing by various stakeholders at different times
(during or subsequent to development) need to be
performed [18]. Subsequently, this definition implies
that there are different types and methods of testing
and, indeed, there are numerous classifications
depending on one’s standpoint. Most of the following
typologies are not mutually exclusive and sometimes
used interchangeably.

One approach to classify software testing is based
on the software’s environment, which it is modeled
at. That is, unit testing, integration testing, and
system testing. In unit testing, the tester is only

concerned with individual software components or a
collection of components. In integration testing,
multiple components are tested. Here, the focus of
integration lies on the communication between the
components. System testing refers to the testing of all
components as deliverable products [16].

Another classification, which is not mutually
exclusive to the prior one, is based on the “visibility”
of the code for the tester and it divides white-box-
testing (also referred to as structural or glass-box
testing) and black-box-testing. (also referred to as
end-user testing) [18]. In white-box testing, the tester
performs testing through examination and knowledge
of source code. The goal is to ensure that internal
operation performs according to the software
specification and all internal components have been
adequately exercised [21]. In contrast, in black-box-
testing, the tester does not know the source code and
only inputs and outputs are visible. This form of
testing covers not only functional aspects; it may also
cover non-functional aspects such as performance,
reliability, and security of a software. Thus, the main
concern is the production of the correct output given
specific inputs [18]. In this vein, there is also often
the distinction between functional testing and non-
functional testing.

The last pair of terms often used in software
testing is verification testing and validation testing.
Again, these terms are not mutually exclusive to
black-box or white-box-testing and are used
depending on the stakeholder.

Verification testing is the evaluation of products
in a given development activity to determine both
correctness and consistency with respect to the
products and standards provided as input to that
specific activity. To sum up, verification ensures that
“you have built the software right”. In contrast,
validation testing (also referred to as acceptance
testing) ensures that the application as provided will
fulfill its intended use. Thus, validation testing
ensures that “you built the right software” [22].

Last, thus not part of the “traditional” testing
terminology, there are several forms of testing that
are concerned with neither verification or validation
testing nor functional/non-functional testing. These
testing methods examine the usability or quality of
experience (QoE) of a software; respectively the
entire service provided by an application. Usability
testing is defined as “the extent to which a product
can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction
in a specified context of use” [23]. Subsequently,
usability testing is a software test with the goal of
improving it [24]. Quality of experience refers to the
“degree of delight or annoyance of the user of an

Page 4103

application or service. It results from the fulfilment of
his or her expectations with respect to the utility
and/or enjoyment of the application or service in the
light of the users personality and current state” [25].
Quality of experience testing refers to four levels that
are the context, the user, the system, and the content
level [26].

For this paper, I use the following classification
of testing practices:

(1) Functional (black-box-testing) and verification
testing: All testing activities (on every software
level) that are concerned with functionality and
the verification that the software is “built the right
way”

(2) Non-functional testing (e.g., performance testing
or vulnerability testing): All testing activities
referring to the verification and validation of non-
functional aspects, such as reliability,
performance, security, etc.

(3) Validation and acceptance testing: All testing
activities conducted by potential end users (or
similar groups) to ensure that the “right software”
is built.

(4) Usability testing: All testing activities concerned
with the testing of the effectiveness, efficiency,
and satisfaction in a specified context of use.

(5) Quality of experience testing: All testing activities
that examine the overall experience with the
software product (i.e., context, user, system, and
content level).

2.2. Crowdsourced Software Testing (CST)

Crowdsourced software testing (CST) or
crowdtesting is a specific application of
crowdsourcing in the domain of software
development. It refers to the outsourcing of software
testing activities to the crowd. It grants access to a
diverse pool of people who voluntarily test software
in real environments using their own devices [11].
Depending on the type of testing (e.g., functional
testing, usability testing), these tasks as well as the
targeted crowds can be very diverse [27]. Usually,
crowds are engaged via an episodic or collaborative
IT structure [4]. However, CST incorporates parts of
both. While testers usually participate in a
“competition”-like bug hunt, the result of a crowdtest
– a list of bugs – is a collaborative effort of the entire
crowd. Further, testers have an elaborated online
profile to display their skills and experience. Thus,
they act as crowd workers in a virtual labor market
(VLM) [8]. In this vein, CST can be considered as
both tournament crowdsourcing and a VLM [28].

CST can be applied in a number of different types
of testing, but research, so far, usually applied CST in

dynamic testing scenarios where a written code is
executed and examined by the crowd. Further, the
crowd is usually concerned with output given by
specific inputs since they do not know or see the
source code.

To a certain degree, these characteristics match to
the definition of beta testing, as well. Beta testing is
defined as “operational testing by potential and/or
existing users/customers…to determine whether or
not a component or system satisfies the user/customer
needs and fits within the business processes. Beta
testing is often employed as a form of external
acceptance testing for commercial off-the-shelf
software in order to acquire feedback from the
market” [29].

Thus, CST and beta testing both use external
resources to test software under real-world
conditions. Subsequently, the terms are sometimes
used interchangeable; however, there are four
substantial differences between CST and traditional
beta testing:
(1) CST has an increased scope compared to beta

testing: With CST, it is possible to acquire
testers without addressing the general public and
let the crowd evaluate software mock-ups or
designs, perform regression testing, perform
even non-functional testing such as performance
testing, and conduct verification and quality
assurance tests right before the release. In
contrast, beta testing usually functions as the
final quality gate before software release.

(2) CST is task-based: Whereas beta testing usually
has a strong explorative focus (“Use the software
and report bugs”), crowdsourced software testing
tasks are much more specific. Testers are asked
to go on a user journey and test certain use cases
or even conduct traditional test cases.

(3) CST users are trained and have an incentive to
report bugs: In beta testing, testers usually do
not receive a reward. In CST, testers frequently
receive monetary rewards (often on a per bug
basis). Sometimes, the payment is on a first-
come, first-served basis, so that testers have a
strong incentive to be fast and to train
themselves to properly report bugs.

(4) CST has tester-task matching: In beta testing, the
call for participation is rather open. With CST,
companies are able to select testers from a large
pool of individuals based on a variety of factors
and characteristics (e.g., testing skills, language,
devices, age, gender, etc.). Thus, the selection
provides an efficient way to match tasks and
testers, thereby ensuring that only suitable
people test the software. [10]

Page 4104

3. Methodology

The literature review is an essential approach to
conceptualize research areas and synthesize prior
research [30]. Thus, there are very different
approaches and goals to conduct a literature review
ranging from purely qualitative (narrative literature
review) to a meta-analysis where the goal is to
provide support for a research topic by synthesizing
and analyzing the quantitative results of numerous
empirical studies [31].

The objective of this paper is to portray the
landscape of CST as an emerging research area and
provide a comprehensive overview over the work
researchers have done so far. Further, the paper
provides a classification into existing testing types on
the one hand, while also providing insights regarding
the research foci of the current body of literature on
the other hand. Given the infancy of this research
area, it is not the goal to examine any variables,
correlations, or theories. Therefore, a descriptive
review approach is the most suited for the current
state of research in this area. A descriptive literature
review focuses on revealing reproducible and
quantifiable results. It offers quantification
concerning publication time, research methodology,
and research outcomes [31]. While this descriptive
approach is more of a traditional narrative literature
review regarding its purpose, I follow a protocol-
based approach to conduct the review. Thus, I
explicitly describe the steps and processes for
searching, selecting, and validating studies and
summarizing results – characteristics of a systematic
literature review [14].

The literature on CST is at the interface between
information systems research, software engineering,
and computer science. Since the topic is relatively
new, it is unlikely that there are many publications in
top journals in the respective fields already. Hence, I
started by searching literature in the major databases
for these research streams: IEEE Xplore, ACM
digital library, the electronic library of the AIS
(AISeL), and EBSCO Host Business Source Premier
(BSP). I searched in each of these databases using the
search strings “crowd*” AND “software*”, “crowd*"
AND "testing”, “crowd” AND “usability”, as well as
“crowd” AND “user experience”. I looked for the
strings in a paper’s title, keywords, and abstracts.
Since the keyword search was very broad and various
databases have different formats, adaptations to the
specific search strings were made. Overall, the search
revealed more than 2.000 hits in the respective
databases. The search was conducted in March 2017.

In a screening and selection step, I examined the
papers regarding their titles and abstracts based on

three inclusion criteria. These criteria included a
research focus on crowdsourcing, software testing or
a related field (i.e., usability testing, user
experience/quality of experience testing), a not purely
descriptive purpose of the paper, as well as full-text
online availability of the paper in one of the
mentioned databases. Thirty papers matched these
criteria. Backward and forward searches were
performed to identify more relevant literature [30]. I
applied the same inclusion criteria and quality
standards. Five papers were identified through
forward and backward search.

4. Findings

4.1. Descriptive Findings

The literature review identified 35 relevant papers

that had been published in 2016 or earlier. Figure 1
depicts the number of publications per year. It
indicates that CST research is a rather new research
field. There are very few publications before 2012.
The field of research gained track in 2013. Since
then, the number of publications stays at about the
same level.

1
0

2

7

9

7

9

0

2

4

6

8

10

2010 2011 2012 2013 2014 2015 2016

Figure 1: Number of Publications per Year

It is worth remarking that the papers were mainly

presented at conferences (27 out of 35). Only six
papers have been published in peer-reviewed journals
(cf. figure 2). Further, only three contributions came
from the field of information systems research. With
15 contributions, conferences affiliated to or
organized by the Association for Computer
Machinery (ACM) contribute the highest number of
papers in the analysis. Eight publications are from the
Institute of Electrical and Electronics Engineers
(IEEE) conferences and two publications from joint
IEEE/ACM conferences. To conclude, there is a
tendency that research so far is mostly conducted in
the field of software engineering and computer
science.

Page 4105

27

6

1 1
0

5

10

15

20

25

30

Conference Journal Book Misc.

Figure 2: Number of Publications per Outlet

Given the fact that CST research is carried out

mostly in computer science and software engineering,
it is no surprise that different forms of experiments or
the development of prototypes for a particular
application purpose dominate the research
methodologies used in literature. Experiments
account for more than 50% (18 out of 35) of the
applied research methods in the papers. Many
experiments were conducted in the field using micro
task platforms such as Amazon Mechanical Turk
(e.g., [32]) or other platforms (e.g., [33], [34]) to
confirm hypotheses. However, laboratory
experiments are also amongst the research methods
chosen (e.g., [35], [36]). Next to experiments, the
development and evaluation of prototypes for
different CST scenarios and purposes was applied in
five papers (e.g., [37], [38]). Only five papers (e.g.,
[11], [39] conducted case studies related to CST in a
real-world context. Last, certain aspects of CST were
also examined with other research methods such as
action research [40], focus group interviews [41], and
quantitative survey research [42]. Figure 3 provides
an overview over the research methods used in the
identified papers.

2

4

5

6

18

0 5 10 15 20

quant. Modelling

Other

Prototype

Case Study

Experiment

Figure 3: Research Methodology of
Publications

4.2. Application of Crowdsourced Software
Testing

The major research goal of this paper was to
provide a comprehensive overview and classification
of CST research in existing types of testing. Hence,
the paper uses the definition of testing derived in
section two including the classification of testing
types. Then the identified literature according to the
type of testing that was conducted or investigated in
the study were grouped. However, there were papers
investigating CST from a rather conceptual
perspective, thus, they were not classified. Besides, a
paper can be in more than one category if it
investigates multiple test types. Figure 4 depicts the
percentages of papers classified per testing type.

While there tends to be the perception (especially

in the industry) that CST is solely used for usability
and acceptance testing (end-user testing), research
shows that this statement is not true, at least for
research publications. Validation and usability testing
account only for about 45% of the testing types
applied in the identified papers. Hence, there is a lot
of research conducted in other areas of testing, for
instance functional testing (20%).

It is also noteworthy that crowdsourced software
testing can be applied for the testing of non-
functional software aspects such as vulnerability,
privacy, or performance. Last, quality of experience
testing is also an established field of research that
discovered crowdsourcing mechanisms as an
interesting approach to conduct studies compared to
the traditional laboratory setting. Table 1 depicts the
references identified per type of testing.

Figure 4: Classification per Testing Type

Page 4106

Table 1: Crowdsourced Software Testing
Research Classification

Type of
Testing Articles

Functional and
Verification

Testing

[3], [43], [44], [45], [46], [47],
[48]

Non-
Functional

Testing

[32], [43], [44], (performance);
[49] (vulnerability);
[50] (privacy)

Validation and
Acceptance

Testing
[11], [34], [35], [36],

Usability
Testing/ User
Experience

[35],[41], [51], [52], [53], [54],
[55], [56], [57]

Quality of
Experience [26], [58], [59], [60], [61], [62]

Research in functional and verification testing

demonstrated that even complex testing tasks such as
the verification of cross-browser issues [46] or the
reproduction of context-sensitive app crashes [45] are
possible to be tested with the crowd. In this vein, also
non-functional testing such as performance testing
[32] is possible. Other research deals with the base
condition of the test itself. It was found that time
constraints actually improve test performance [47]
and that explorative testing is more effective in terms
of bug detection than traditional test case-based
testing [63]. However, one issue identified relates to
the number of test reports test managers receive when
conducting CST [10]. Hence, researchers developed
approaches to effectively prioritize [44] and classify
[48] test reports and support automation techniques
[50] to make CST more scalable. Although, this is
particularly interesting for functional testing, it is
transferable to all of the following types of
crowdsourced testing.

As for validation and acceptance testing, two in-
depth case studies that compare CST to traditional in-
house testing provide deep insights. The cases unveil
that CST delivers comparable quality while being
more flexible and CST provides other valuable
insights such as a very good documentation and
additional suggestions to improve the software [11].
Other scholars looked at the task design and the
expertise of the crowd testing the software. First
results indicate that it is not always necessary to have
“experts” testing the software, especially regarding
validation and usability testing [34].

Usability testing is somewhat the natural habitat
for CST. Research in this area has shown that
usability testing with a crowd is feasible, produces

reliable and high quality results [11, 56], is cost
efficient [53, 56], and can help reduce critical
usability testing obstacles such as resource
constraints, limited understanding of the usability
concept, and resistance to the adoption of usability
practices [51]. In addition to that, scholars have
developed several workflows and corresponding tools
to use crowdsourced usability testing [35, 54, 55],
including machine learning approaches to group
similar responses and filter meaningless submissions
to reduce workload for test managers [64].

For quality of experience testing the concept of
crowdsourcing is a relatively new phenomenon.
Thus, scholars predominantly focused on feasibility
and best practices for crowdsourced quality of
experience testing [26] to provide recommendations
to conduct such tests [59]. Overall, the studies
suggest that crowdsourcing is a reliable alternative to
traditional QoE approaches. There are also first
attempts to provide in-depth knowledge regarding
conditions, such as test conditions [61] and the
provision of an evaluation framework [62].

5. Discussion and Future Research

The research of crowdsourced software testing is
at an early stage. This is not just reflected by the
publication dates and the fact that most papers have
been published at conferences. In fact, research is
dominated by experimentation and the application for
different scenarios und purposes, rather than
attempting to conceptualize the topic. This
experimentation, however, presents positive results
for all described testing types. The main take away is
that at least on an experimental and rather specific
level, CST seems to be a promising solution – in
terms of feasibility or quality and cost effectiveness.
Thus, the results clearly substantiate the fact that
“crowdsourced software testing is not beta testing”.
However, the lack of application in “real-world”
scenarios becomes apparent; only six papers
examined CST in a real-world setting. Accordingly,
to gain more relevance and explore the topic further,
qualitative case studies and a conceptualization in a
real-world organizational context are necessary. First
studies attempted to conduct case studies within a
real-world context and under real-world conditions
including corresponding restrictions and constraints
[11, 53, 58].

Overall, the focus of the reviewed papers is of
rather technical nature. Accordingly, I attempted to
identify existing research foci. Thus, I detected four
overarching topics within the papers’ research (cf.
Table 2).

Page 4107

Table 2: Summary of Research Foci

Research
Focus Description

Application

+ Application in different scenarios
provides in-depth knowledge
- Limited generalization and
conceptualization of the topic

Performance
Factors

+ identification of important
performance factors (e.g., crowd
composition [34], process guidance
[36])
- No comprehensive overview or
conceptualization

Prototypes

+ Optimization/improvement of
process steps and workflows
- Underlying design principles are
not unveiled

Evaluation

+ increase comparability to other
test approaches
- lack of robustness of results (only
few studies)

Primarily, the majority of the papers (1) applied

CST in different scenarios. Those papers are valuable
contributions. By providing in-depth descriptions and
an analysis of the results, they contribute to
knowledge, for instance by providing best practices
[59] and demonstrate that CST, in fact, is applicable
and feasible. However, the studies have oftentimes
been conducted in specific contexts and only provide
limited generalization and conceptualization of the
topic. Thus, avenues for future research are to
provide conceptualization and real-world context,
especially for organizations that intend to use CST.

So far, little is known regarding the (2) factors
influencing the performance of crowdsourced
software testing. Scholars made great strides and this
literature review identified various papers
investigating potentially important factors in the
process, such as crowd composition [34], guidance
throughout the process [36], as well as time
constraints [47]. However, there is no comprehensive
overview or conceptualization regarding factors
influencing the performance of CST.

Most papers are published in IEEE or ACM
affiliated conferences, hence it is not of surprise that
many of the papers (3) develop prototypes (e.g., [49],
[37]) or attempt to optimize parts of the
crowdsourcing process with algorithms (e.g., test
report prioritization [48]) to increase the feasibility
and cost efficiency of CST. However, these solutions
are practical examples and the underlying design
principles remain unknown. Scholars should attempt
to identify the underlying process steps and design

principles to provide a conceptualization of the
process as well as design guidelines.

While there are first attempts to (4) evaluate CST
and compare it to traditional testing approaches such
as in-house testing with test experts [11] that
identified favorable scenarios for the application of
CST, there is a clear need to extend the evaluation.
Much more work is needed to achieve a certain
robustness of results and thus be able to compare
crowdsourced software testing with testing by test
experts, traditional lab usability testing, outsourced
testing, or even test automation.

6. Contribution

This paper investigates the use of crowdsourced
software testing by conducting a literature review and
thereby delivering two main contributions.

First, the main objective of a descriptive literature
review is the description of the existing state-of-the
art. Hence, the paper provides a comprehensive
overview of the fields of application in CST so far,
clustered by the type of testing applied in the
respective paper. While there is often the perception
that CST is only applicable in end-user testing
scenarios, the literature review revealed that this is
not entirely true. There are many examples of other
papers demonstrating that CST is, in fact, applicable
even for complex testing tasks such as the functional
testing of cross-browser issues [33] or even delicate
testing such as vulnerability testing [49]. This in-
depth knowledge and synthesis contributes to the
growing body of literature of crowdsourcing for
software engineering. This paper might serve as an
example to conduct literature reviews in other areas
of software engineering in a similar fashion to create
knowledge from a bottom-up research approach
across related disciplines as a first step to develop a
theory or systematization of crowdsourcing in this
particular area.

Second, by developing the classification and
clustering the research papers in the according testing
types, the paper synthesizes the research of
crowdsourcing in software testing and traditional
software testing research and practices. This will help
scholars of both research fields to gain better
understanding of the phenomenon of crowdsourcing
on the one hand, and conduct research with CST to
better position their research in the domain of
software testing on the other hand.

On top of that, the literature review identified
manifold papers that have effectively shown that very
complex tasks, such as non-functional testing or
quality of experience testing can effectively be
crowdsourced. While the area of crowdsourcing

Page 4108

simple tasks is well explored, there is still a lot of
research necessary to understand crowdsourcing of
complex tasks.

For practitioners, this literature review illustrates
the areas in which crowdsourced software testing has
successfully been applied and gives an indication to
when CST might be a feasible sourcing mechanism
compared to other testing techniques such as
traditional manual testing or test automation.

7. Limitations

As with every literature review, this review faces

some limitations. These are the restricted scope of the
literature review, the selection of the included papers,
and the extraction of the contained information.
Naturally, there is always a trade-of between
completeness and practicality in a literature review
[13].

 Certainly, the choice of databases is one
limitation. However, since the topic is at the interface
between software engineering and information
systems, the review did cover the most relevant
databases. Second, the selection of the included
literature is influenced by interpretation. That means
the selection has not been standardized. However, I
based the selection on objective criteria. Last, since
the review process included the selection of the found
papers only based on their title, keywords, and
abstracts, the information were limited. Similar to the
selection of databases, objectivity of the findings
might be challenged by the extraction of the included
information. To achieve robust results, the
established categories for the data extraction and the
results were discussed with other researchers from
the respective fields.

8. Conclusion

In this paper, I examined the state-of-the-art in
crowdsourced software testing research and presented
a comprehensive overview of research in that area.
While research in crowdsourced software testing
made great strides in recent years, it is mostly
unstructured and not linked to traditional software
testing practice and terminology. On top of that,
results are not integrated and often without a real-
world context that could effectively determine the
applicability in an organizational context. By
conducting a literature review, this paper delivered
two major contributions. First, the paper provides a
comprehensive overview and synthetization of
findings in CST-research and presents a classification
into software testing types. Second, the paper

synthesizes the research of scholars from
crowdsourcing research in software testing and
traditional software testing practices and thereby
helps scholars to better explain and position their
research.

9. References

[1] D. Huizinga and A. Kolawa, Automated defect

prevention: best practices in software
management: John Wiley & Sons, 2007.

[2] D. M. Rafi, K. R. K. Moses, K. Petersen, and M.
V. Mäntylä, "Benefits and limitations of
automated software testing: Systematic literature
review and practitioner survey," in Proceedings
of the 7th International Workshop on Automation
of Software Test, 2012, pp. 36-42.

[3] E. Dolstra, R. Vliegendhart, and J. Pouwelse,
"Crowdsourcing GUI Tests," presented at the
International Conference on Software Testing,
Verification and Validation (ICST 2013), 2013.

[4] J. Prpic and P. Shukla, "Crowd science:
Measurements, models, and methods," in Hawaii
International Conference on System Sciences
(HICSS 2016), 2016, pp. 4365-4374.

[5] A. Afuah and C. L. Tucci, "Crowdsourcing as a
solution to distant search," Academy of
Management Review, vol. 37, pp. 355-375, 2012.

[6] L. B. Jeppesen and K. R. Lakhani, "Marginality
and Problem-Solving Effectiveness in Broadcast
Search," Organization Science, vol. 21, pp. 1016-
1033, 2010.

[7] I. Blohm, J. M. Leimeister, and H. Krcmar,
"Crowdsourcing: How to Benefit from (Too)
Many Great Ideas," MIS Quarterly Executive,
vol. 4, pp. 199-211, 2013.

[8] D. Durward, I. Blohm, and J. M. Leimeister,
"Crowd Work," Business & Information Systems
Engineering, vol. 58, pp. 281–286, 2016.

[9] T. D. LaToza and A. van der Hoek,
"Crowdsourcing in Software Engineering:
Models, Motivations, and Challenges," IEEE
Software, vol. 33, pp. 74-80, 2016.

[10] N. Leicht, I. Blohm, and J. M. Leimeister,
"Leveraging the Power of the Crowd for
Software Testing," IEEE Software, vol. 34, pp.
62 - 69, 2017.

[11] N. Leicht, N. Knop, I. Blohm, C. Müller-Bloch,
and J. M. Leimeister, "When is Crowdsourcing
advantageous? The Case of Crowdsourced
Software Testing," presented at the European
Conference on Information Systems (ECIS
2016), Istanbul, Turkey, 2016.

[12] E. Raymond, "The cathedral and the bazaar,"
Knowledge, Technology & Policy, vol. 12, pp.
23-49, 1999.

[13] J. vom Brocke, A. Simons, K. Riemer, B.
Niehaves, R. Plattfaut, and A. Cleven, "Standing
on the shoulders of giants: challenges and
recommendations of literature search in

Page 4109

information systems research," Communications
of the Association for Information Systems, vol.
37, pp. 205-224, 2015.

[14] S. K. Boell and D. Cecez-Kecmanovic, "On
being ‘systematic’in literature reviews in IS,"
Journal of Information Technology, vol. 30, pp.
161-173, 2015.

[15] F. Rowe, "What literature review is not:
diversity, boundaries and recommendations,"
European Journal of Information Systems, vol.
23, pp. 241-255, 2014.

[16] J. A. Whittaker, "What is software testing? And
why is it so hard?," IEEE Software, vol. 17, pp.
70-79, 2000.

[17] G. J. Myers, C. Sandler, and T. Badgett, The art
of software testing: John Wiley & Sons, 2011.

[18] R. F. Roggio, J. S. Gordon, and J. R. Comer,
"Taxonomy of Common Software Testing
Terminology: Framework for Key Software
Engineering Testing Concepts," Journal of
Information Systems Applied Research, vol. 7,
pp. 4-12, 2014.

[19] A. Bertolino, "Software testing research:
Achievements, challenges, dreams," in Future of
Software Engineering (2007), 2007, pp. 85-103.

[20] K. Naik and P. Tripathy, Software testing and
quality assurance: theory and practice: John
Wiley & Sons, 2011.

[21] R. S. Pressman, Software engineering: a
practitioner's approach: Palgrave Macmillan,
2005.

[22] R. D. Stutzke, Estimating software-intensive
systems: projects, products, and processes:
Pearson Education, 2005.

[23] ISO 9241-11, Ergonomics Requirements for
Office with Visual Display Terminals (VDTs).
Geneva: International Organization for
Standardization, 1998.

[24] J. S. Dumas and J. Redish, A practical guide to
usability testing: Intellect Books, 1999.

[25] K. Brunnström, S. A. Beker, K. De Moor, A.
Dooms, S. Egger, M.-N. Garcia, T. Hossfeld, S.
Jumisko-Pyykkö, C. Keimel, and M.-C. Larabi,
"Qualinet white paper on definitions of quality of
experience," ed, 2013.

[26] T. Hoßfeld, C. Keimel, M. Hirth, B. Gardlo, J.
Habigt, K. Diepold, and P. Tran-Gia, "Best
practices for QoE crowdtesting: QoE assessment
with crowdsourcing," IEEE Transactions on
Multimedia, vol. 16, pp. 541-558, 2014.

[27] K.-J. Stol and B. Fitzgerald, "Two's company,
three's a crowd: a case study of crowdsourcing
software development," presented at the
International Conference on Software
Engineering (ICSE 2014), 2014.

[28] J. Prpić, A. Taeihagh, and J. Melton, "The
fundamentals of policy crowdsourcing," Policy &
Internet, vol. 7, pp. 340-361, 2015.

[29] Standard Glossary of Terms Used in Software
Testing vol. v.3.1: International Software Testing
Qualifications Board (IQSTB).

[30] J. Webster and R. T. Watson, "Analyzing the past
to prepare for the future: Writing a literature
review," MIS Quarterly, vol. 26, p. 3, 2002.

[31] W. R. King and J. He, "Understanding the role
and methods of meta-analysis in IS research,"
Communications of the Association for
Information Systems, vol. 16, p. 32, 2005.

[32] B. Taylor, A. K. Dey, D. Siewiorek, and A.
Smailagic, "Using Crowd Sourcing to Measure
the Effects of System Response Delays on User
Engagement," in Proceedings of the 2016 CHI
Conference on Human Factors in Computing
Systems, 2016, pp. 4413-4422.

[33] A. J. Ko and P. K. Chilana, "How power users
help and hinder open bug reporting," in
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2010, pp.
1665-1674.

[34] N. Leicht, M. Rhyn, and G. Hansbauer, "Can
Laymen Outperform Experts? The Effects of
User Expertise and Task Design in Crowdsourced
Software Testing," presented at the European
Conference on Information Systems (ECIS
2016), Istanbul, Turkey, 2016.

[35] M. Gordon, "Web accessibility evaluation with
the crowd: using glance to rapidly code user
testing video," in Proceedings of the 16th
International ACM SIGACCESS Conference on
Computers & Accessibility, 2014, pp. 339-340.

[36] Y.-H. Tung and S.-S. Tseng, "A novel approach
to collaborative testing in a crowdsourcing
environment," Journal of Systems and Software,
vol. 86, pp. 2143-2153, 2013.

[37] M. Yan, H. Sun, and X. Liu, "iTest: testing
software with mobile crowdsourcing," in
Proceedings of the 1st International Workshop on
Crowd-based Software Development Methods
and Technologies, 2014, pp. 19-24.

[38] X. Zhang, Z. Chen, C. Fang, and Z. Liu,
"Guiding the crowds for Android testing," in
Proceedings of the 38th International Conference
on Software Engineering Companion, 2016, pp.
752-753.

[39] S. Zogaj, U. Bretschneider, and J. M. Leimeister,
"Managing crowdsourced software testing: a case
study based insight on the challenges of a
crowdsourcing intermediary," Journal of
Business Economics, vol. 84, pp. 375-405, 2014.

[40] N. Leicht, I. Blohm, and J. M. Leimeister, "How
to Systematically Conduct Crowdsourced
Software Testing? Insights from an Action
Research Project," presented at the International
Conference on Information Systems (ICIS 2016),
Dublin, Ireland, 2016.

[41] N. Sherief, N. Jiang, M. Hosseini, K. Phalp, and
R. Ali, "Crowdsourcing software evaluation,"
presented at the International Conference on
Evaluation and Assessment in Software
Engineering, 2014.

[42] F. Guaiani and H. Muccini, "Crowd and
Laboratory Testing, Can They Co-exist? An

Page 4110

Exploratory Study," in International Workshop
on CrowdSourcing in Software Engineering
(CSI-SE 2015), 2015, pp. 32-37.

[43] Z. Chen and B. Luo, "Quasi-crowdsourcing
testing for educational projects," presented at the
International Conference on Software
Engineering (ICSE 2014), 2014.

[44] Y. Feng, Z. Chen, J. A. Jones, C. Fang, and B.
Xu, "Test report prioritization to assist
crowdsourced testing," in Proceedings of the
2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 225-236.

[45] M. Gómez, R. Rouvoy, B. Adams, and L.
Seinturier, "Reproducing context-sensitive
crashes of mobile apps using crowdsourced
monitoring," in Proceedings of the International
Workshop on Mobile Software Engineering and
Systems, 2016, pp. 88-99.

[46] M. He, H. Tang, G. Wu, J. Wei, and H. Zhong,
"A Crowdsourcing framework for Detecting
Cross-Browser Issues in Web Application," in
Proceedings of the 7th Asia-Pacific Symposium
on Internetware, 2015, pp. 239-242.

[47] M. V. Mäntylä and J. Itkonen, "More testers–The
effect of crowd size and time restriction in
software testing," Information and Software
Technology, vol. 55, pp. 986-1003, 2013.

[48] J. Wang, Q. Cui, Q. Wang, and S. Wang,
"Towards effectively test report classification to
assist crowdsourced testing," in Proceedings of
the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and
Measurement, 2016.

[49] H.-J. Su and J.-Y. Pan, "Crowdsourcing platform
for collaboration management in vulnerability
verification," presented at the Asia-Pacific
Network Operations and Management
Symposium (APNOMS 2016), 2016.

[50] S. Amini, J. Lin, J. Hong, J. Lindqvist, and J.
Zhang, "Towards scalable evaluation of mobile
applications through crowdsourcing and
automation," presented at the CMU-CyLab-12-
006, Carnegie Mellon University, 2012.

[51] A. Bruun and J. Stage, "New approaches to
usability evaluation in software development:
Barefoot and crowdsourcing," Journal of Systems
and Software, vol. 105, pp. 40-53, 2015.

[52] D. Liu, R. G. Bias, M. Lease, and R. Kuipers,
"Crowdsourcing for usability testing,"
Proceedings of the American Society for
Information Science and Technology, vol. 49, pp.
1-10, 2012.

[53] V. H. Gomide, P. A. Valle, J. O. Ferreira, J. R.
Barbosa, A. F. da Rocha, and T. Barbosa,
"Affective crowdsourcing applied to usability
testing," International Journal of Computer
Scienceand Information Technologies, vol. 5, pp.
575-579, 2014.

[54] H. He, Z. Ma, H. Chen, and W. Shao, "How the
crowd impacts commercial applications: A user-
oriented approach," presented at the International

Workshop on Crowd-based Software
Development Methods and Technologies, 2014.

[55] M. Nebeling, M. Speicher, and M. C. Norrie,
"Crowdstudy: General toolkit for crowdsourced
evaluation of web interfaces," in Proceedings of
the 5th ACM SIGCHI symposium on Engineering
interactive computing systems, 2013, pp. 255-
264.

[56] C. Schneider and T. Cheung, "The Power of the
Crowd: Performing Usability Testing Using an
On-Demand Workforce," in Information Systems
Development, ed: Springer, 2013, pp. 551-560.

[57] R. Vliegendhart, E. Dolstra, and J. Pouwelse,
"Crowdsourced user interface testing for
multimedia applications," in Proceedings of the
ACM multimedia 2012 workshop on
Crowdsourcing for multimedia, 2012, pp. 21-22.

[58] B. Gardlo, S. Egger, M. Seufert, and R. Schatz,
"Crowdsourcing 2.0: Enhancing execution speed
and reliability of web-based QoE testing," in
IEEE International Conference on
Communications (ICC 2014), 2014, pp. 1070-
1075.

[59] T. Hoßfeld and J. Redi, "Journey through the
crowd: Best practices and recommendations for
crowdsourced QoE," presented at the Seventh
International Workshop on Quality of
Multimedia Experience (QoMEX), 2015.

[60] R. K. Mok, W. Li, and R. K. Chang, "Detecting
low-quality crowdtesting workers," in
International Symposium on Quality of Service
(IWQoS 2015), 2015, pp. 201-206.

[61] M. Seufert, O. Zach, T. Hoßfeld, M. Slanina, and
P. Tran-Gia, "Impact of test condition selection in
adaptive crowdsourcing studies on subjective
quality," presented at the International
Conference on Quality of Multimedia Experience
(QoMEX 2016), 2016.

[62] Q. Xu, J. Xiong, Q. Huang, and Y. Yao, "Robust
evaluation for quality of experience in
crowdsourcing," in Proceedings of the 21st ACM
international conference on Multimedia, 2013,
pp. 43-52.

[63] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A.
Andrews, and K. Bhatti, "An experiment on the
effectiveness and efficiency of exploratory
testing," Empirical Software Engineering, vol.
20, pp. 844-878, 2015.

[64] M. Rhyn and I. Blohm, "A Machine Learning
Approach for Classifying Textual Data in
Crowdsourcing," presented at the International
Conference on Wirtschaftsinformatik (WI2017),
St.Gallen, Switzerland, 2017.

Page 4111

