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Ch. VIII  Potential Flow and Computational  
Fluid Dynamics 

 
 
Review of Velocity-Potential Concepts 
 
This chapter presents examples of problems and their solution for which the 
assumption of potential flow is appropriate.   
 
For low speed flows where viscous effects are neglected, the flow is irrotational 
and 
 

 ∇ × V = 0  V = ∇ φ u = ∂φ
∂ x

 v = ∂ φ
∂ y

 w = ∂ φ
∂ z

 

 
The continuity equation ,  ∇ ⋅ V = 0  ,  now reduces to 
 

∇ 2 V = ∂ 2 φ
∂ x2 + ∂ 2 φ

∂ y2 + ∂ 2 φ
∂ z2 = 0  

 
The momentum equation reduces to Bernoulli�s equation: 
 

∂φ
∂ t

+ P
ρ

+ 1
2

V 2 + gz = const  

 
Review of Stream Function Concepts 
 
For plane incompressible flow in x-y coordinates a stream function exists such that 
 

u = ∂ Ψ
∂ y

and v = − ∂ Ψ
∂ x

 

 
The condition of irrotationality reduces to Lapace�s equation for  Ψ  and 
 

∂ 2 Ψ
∂ x2 + ∂ 2 Ψ

∂ y2 = 0  
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Elementary Plane-Flow Solutions 
 
Three useful plane-flow solutions that are very useful in developing more complex 
solutions are: 
 
Uniform stream, iU, in the x direction: Ψ = U y  φ = U x  
 
Line source or sink: Ψ = mθ  φ = m ln r  
 
Line vortex: Ψ = −K ln r  φ = Kθ  
 
In these expressions, the source strength, �m� and vortex strength, � K �, have the 
dimensions of velocity times length, or [L2/t]. 
 
If the uniform stream is written in plane polar coordinates, we have 
 
Uniform stream, iU: Ψ = U r sinθ  φ = U rcosθ  
 
For a uniform stream moving at an angle, a , relative to the  x-axis, we can write 
 

 u = Ucosα = ∂ Ψ
∂ y

= ∂ φ
∂ x

 v = Usin α = −∂ Ψ
∂ x

= ∂ φ
∂ y

 

 
After integration, we obtain the following expressions for the stream function and 
velocity potential: 
 
 Ψ =U y cosα − x sin α( ) φ =U x cosα + y sinα( ) 
 
 
Circulation 
 
The concept of fluid circulation is very useful in the analysis of certain potential 
flows, in particular those useful in aerodynamics analyses.  Consider Figure 8.3 
shown below: 
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We define the circulation, Γ   , as 
the counterclockwise line integral 
of the arc length, ds times the 
velocity component tangent to the 
closed curve, C, e.g. 
 
Γ = V cosα d s

c
∫ = V ⋅ds

c
∫  

 
Γ = u dx + vdy + wdz( )

c
∫  

 

 

 
 
For most flows, this line integral around a closed path, starting and stoping at the 
same point, yields  Γ  = 0.  However,  
 
 for a vortex flow for which φ  =  K θ 
 
 the integral yields Γ  =  2 π K 
 
 
An equivalent calculation can by made by defining a circular path of radius r 
around the vortex center to yield 
 

Γ = vθ
c
∫ d s = K

r0

2π

∫ r dφ = 2π K  

 
 
Superposition of  Potential Flows 
 
Due to the mathematical character of the equations governing potential flows, the 
principle of superposition can be used to determine the solution of the flow which 
results from combining two individual potential flow solutions. 
 
Several classic examples of this are presented as follows: 
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1. Source m at ( -a,0) added to an equal sink at (+a, 0). 
 

 ψ = −m tan−1 2a y
x 2 + y2 − a2  φ = 1

2
m ln

x + a( )2 + y2

x − a( )2 + y2  

 
The streamlines and potential lines are two families of orthogonal circles (Fig. 
4.13). 
 
2. Sink m plus a vortex K, both at the origin. 
 
 ψ = mθ − K ln r  φ = m ln r + K θ  
 
The streamlines are logarithmic spirals swirling into the origin (Fig. 4.14).  They 

resemble a tornado or a bathtub vortex. 
 
3. Uniform  steam i U∞  plus a source m at the origin (Fig. 4.15), the Ranking half 

body.  If the origin contains a source, a plane half-body is formed with its nose 
to the left as shown below.  If the origin contains a sink, m < 0, the half-body 
nose is to the right..   For both cases, the stagnation point is at a position 
a = m / U∞   away from the origin. 
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Example 8.1 
 
An offshore power plant cooling water intake has a flow rate of 1500 ft3/s in water 
30 ft deep as in Fig. E8.1.  If the tidal velocity approaching the intake is 0.7 ft/s,  
(a) how far downstream does the intake effect extend and (b) how much width of 
tidal flow in entrained into the intake? 
 

The sink strength is related to the volume flow, 
Q and water depth by 
 

m = Q
2πb

= 1500 ft3 / s
2π30 ft

=7.96 ft2 / s 

 
The lengths  a  and  L  are given by  
 

a = m
U∞

= 7.96 ft 2 / s
0.7 ft / s

= 11.4 ft  

 
L = 2πa = 2π11.4 ft = 71 ft  

 

 
 
Flow Past a Vortex 
 
Consider a uniform stream, U∞  flowing in the x direction past a vortex of strength 
K with the center at the origin.  By superposition the combined stream function is 
 

ψ = ψ stream + ψ vortex = U∞ rsinθ − K ln r  
 
The velocity components of this flow are given by 
 

 vr = 1
r

∂ψ
∂ θ

= U∞ cosθ  vθ = − ∂ψ
∂ r

= −U∞ sinθ + K
r

 

 
Setting  vr   and  vθ   = 0, we find the stagnation point at θ   =  90û, r = a  = K/ U∞  
or  (x,y) = (0,a).  
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An Infinite Row of Vortices 
 
Consider an infinite row of vortices of equal strength K and equal spacing a.  A 
single vortex,  i , has a stream function given  by 
 

 
Fig. 8.7  Superposition of vortices 

 
 

ψ i = −K ln ri
i=1

∞

∑  

 
This infinite sum can also be expressed as 
 

ψ =− 1
2

K ln 1
2

cosh 2π y
a

− cosh 2πx
a

 
 

 
 

 
  

 
  

 

 
The resulting left and right flow above and below the row of vortices is given by 
 

u = ∂ ψ
∂ y y >a

= ± πK
a
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Plane flow past Closed-Body Shapes 
 
Various types of external flows over a closed-body can be constructed by 
superimposing a uniform stream with sources, sinks, and vortices.   
 
Key Point:  The body shape will be closed only if the net source of the outflow 

equals the net sink inflow. 
 
Two examples of this are presented below. 
 
The Rankine Oval 
 
A Rankine Oval is a cylindrical 
shape which is long compared to 
its height.  It is formed by a 
source-sink pair aligned parallel to 
a uniform stream.   
The individual flows used to 
produce the final result and the 
combined flow field are shown in 
Fig. 8.9.  The combined stream 
function is given by 
 

ψ = U∞ y − m tan−1 2a y
x2 + y2 − a2

or 
 

ψ = U∞ rsinθ + m θ1 −θ2( )  
Fig. 8.9  The Rankine Oval 

 
The oval shaped closed body is the streamline, ψ = 0.  Stagnation points occur at 
the front and rear of the oval, x = ± L, y = 0 .  Points of maximum velocity and 
minimum pressure occur at the shoulders, x = 0, y = ± h.  Key geometric and 
flow parameters of the Rankine Oval can be expressed as follows: 
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h
a

= cot h / a
2m / U∞ a( ) 

L
a

= 1+ 2m
U∞ a

 
  

 
  

1/ 2

 

 
 

 
umax

U∞

=1 +
2m / U∞ a( )
1 + h2 / a2  

 
As the value of the parameter  m / U∞ a( )  is increased from zero, the oval shape 
increases in size and transforms from a flat plate to a circular cylinder at the 
limiting case of  m / U∞ a( )= ∞. 
 
Specific values of these parameters are presented in Table 8.1 for four different 
values of the dimensionless vortex strength, K / U∞ a( ).  
 

Table 8.1  Rankine-Oval Parameters 
m / U∞ a( ) h / a L / a  L / h  umax /U∞  

 0.0 0.0 1.0 ∞  1.0 
 0.01 0.31 1.10  32.79  1.020 
 0.1 0.263 1.095  4.169  1.187 
 1.0 1.307 1.732  1.326  1.739 

 10.0 4.435 4.458  1.033  1.968 
 10.0 14.130 14.177  1.003  1.997 

∞ ∞ ∞  1.000  2.000 
 
 
Flow Past a Circular Cylinder with Circulation 
 
It is seen from Table 8.1 that as source strength m becomes large, the Rankine 
Oval becomes a large circle, much greater in diameter than the source-sink spacing 
2a.  Viewed, from the scale of the cylinder, this is equivalent to a uniform stream 
plus a doublet.  To add circulation, without changing the shape of the cylinder, we 
place a vortex at the doublet center. For these conditions the stream function is 
given by 
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ψ = U∞ sinθ r − a2

r
 
  

 
  

− K ln r
a

 

 
Typical resulting flows are shown in Fig. 8.10 for increasing values of non-
dimensional vortex strength  K / U∞ a . 
 

 
Fig. 8.10  Flow past a cylinder with circulation for values of  

K / U∞ a   of (a) 0, (b) 1.0, (c) 2.0, and (d) 3.0 
 
Again the streamline  ψ = 0   is corresponds to the circle  r = a.  As the counter-
clockwise circulation  Γ = 2π K  increases, velocities below the cylinder increase 
and velocities above the cylinder decrease.  In polar coordinates, the velocity 
components are given by 
 

vr = 1
r

∂ψ
∂ θ

= U∞ cosθ 1 − a2

r2
 
  

 
  

 

 

vθ = − ∂ψ
∂ r

= −U∞ sinθ 1 + a2

r 2
 
  

 
  

+ K
r

 

 
For small K, two stagnation points appear on the surface at angles  θs   or for which 
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sinθs = K
2U∞ a

 

 
Thus for  K = 0, θs  = 0 and 180o.   For K / U∞ a  = 1,  θs   =  30 and 150o .  Figure 
8.10c is the limiting case for which with  K / U∞ a  = 2,  θs  = 90o  and the two 
stagnation points meet at the top of the cylinder.    
 
 
The Kutta-Joukowski Lift Theorem 
 
The development in the text shows that from inviscid flow theory,   
 

The lift per unit depth of any cylinder of any shape immersed in a 
uniform stream equals to ρU∞ Γ  where Γ  is the total net circulation 
contained within the body shape.  The direction of the lift is 90o from 
the stream direction, rotating opposite to the circulation. 
 

This is the well known Kutta-Joukowski lift theorem. 
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