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II.  Fluid Statics 
 
 
 
From a force analysis on a triangular fluid element at rest,  the following three  
concepts are easily developed: 
For a continuous, hydrostatic, shear free fluid:  

1.  Pressure is constant along a horizontal plane, 
2.  Pressure at a point is independent of orientation, 
3.  Pressure change in any direction is proportional to the fluid density, 

local g, and vertical change in depth. 
 
These concepts are key to the solution of problems in fluid statics, e.g. 

1. Two points at the same depth in a static fluid have the same pressure. 
2. The orientation of a surface has no bearing on the pressure at a point 

in a static fluid. 
3. Vertical depth is a key dimension in determining pressure change in a 

static fluid. 
 

 
If we were to conduct a more general force analysis on a fluid in motion, we would 
then obtain the following: 

 

    ∇ P = ρ g − a { } + µ ∇ 2V  
 

Thus the pressure change in fluid in general depends on: 

effects of fluid statics (ρ g),  Ch. II 

inertial effects (ρ a),  Ch. III 

viscous effects  ( µ∇ 2 V  )  Chs VI & VII 

 
Note:  For problems involving the effects of both  (1)  fluid statics and  

(2) inertial effects, it is the net    
v g − v a   acceleration vector that controls  

both the magnitude and direction of the pressure gradient. 
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This equation can be simplified for a fluid at rest (ie., no inertial or viscous 
effects) to yield 

 

    

∇ p = ρ g 

∂ p

∂ x
= 0 ;

∂ p

∂ y
= 0 ;

∂ p

∂z 
=

dp

dz 
= −ρ g

P2 − P1 = − ρ g d Z
1

2

∫
 

 

For liquids and incompressible fluids, 
this integrates to 
 

P1 – P2 = -ρg (Z2 – Z1) 
 

Note:   
 

Z2 – Z1 is positive for Z2 above Z1.   
but 

 P2 – P1 is negative for Z2 above Z1. 

2 P
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We can now define a new fluid parameter useful in static fluid analysis: 

γ = ρg ≡ specific weight of the fluid 

With this, the previous equation becomes (for an incompressible, static fluid) 
 

 P2 – P1 = - γ (Z2 – Z1) 

The most common application of this result is that of manometry. 
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Consider the U-tube, multi- 
fluid manometer shown on 
the right.   
If we first label all 
intermediate points between 
A & a, we can write for the 
overall pressure change 

  
 

PA - Pa = (PA- P1) + (P1 - P2) + (P2 - Pa ) 
 

This equation was obtained by adding and subtracting each 
intermediate pressure.  The total pressure difference now is expressed 
in terms of a series of intermediate pressure differences.  Substituting 
the previous result for static pressure difference, we obtain 

 
PA - PB = - ρ g(ZA- Z1) – ρ g (Z1 – Z2) – ρ g (Z2 - ZB ) 
 
 

Again note:   Z positive up and ZA > Z1  ,  Z1 < Z2  ,  Z2 < Za . 
 

In general, follow the following steps when analyzing manometry problems: 
 

 1. On manometer schematic, label points on each end of manometer and each 
intermediate point where there is a fluid-fluid interface:  e.g., A – 1 – 2 - B 

 2. Express overall manometer pressure difference in terms of appropriate 
intermediate pressure differences. 

  PA - PB = (PA- P1) + (P1 – P2) + (P2 - PB ) 

 3. Express each intermediate pressure difference in terms of appropriate 
product of specific weight * elevation change (watch signs) 

  PA - PB = - ρ g(zA- z1) – ρ g (z1 – z2) – ρ g (z2 - zB ) 

 4. Substitute for known values and solve for remaining unknowns. 
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When developing a solution for manometer problems, take care to: 
1. Include all pressure changes 

2. Use correct ∆Z and γ with each fluid 

3. Use correct signs with ∆ Z.  If pressure difference is expressed as  
PA – P1, the elevation change should be written as ZA – Z1 

4. Watch units. 
 

Manometer Example: 

Given the indicated manometer, 
determine the gage pressure at A.  Pa = 
101.3 kPa.  The fluid at A is Meriam red 
oil no. 3. 

ρgw = 9790 N/m3 

ρg A = S.G.*ρgw = 0.83*9790 N/m3 

ρg A = 8126 N/m3 

ρgair = 11.8 N/m3 

1

2

a

A

1

10 cm
18 cm

S.G. = .83

H  0
2

 
With the indicated points labeled on the manometer, we can write 
 

PA - Pa = (PA- P1) + (P1 – P2) + (P2 - Pa ) 
 

Substituting the manometer expression for a static fluid, we obtain 
 

PA - Pa = - ρgA(zA- z1) – ρgw(z1 – z2) – ρga(z2 - za ) 
 

Neglect the contribution due to the air column.  Substituting values, we obtain 
 
PA - Pa = - 8126 N/m3 * 0.10 m – 9790 N/m3 * -0.18  = 949.6 N/m2 
  
Note why:  (zA- z1) = 0.10 m   and   (z1 – z2) = -0.18 m, & did not use Pa 
 
Review the text examples for manometry. 
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Hydrostatic Forces on Plane Surfaces 
 

Consider a plane surface 
of arbitrary shape and 
orientation, submerged in 
a static fluid as shown: 
 
If  P  represents the local 
pressure at any point on 
the surface and h the depth 
of fluid above any point 
on the surface, from basic 
physics we can easily 
show that 

  
 

the net hydrostatic force on a plane surface is given by (see text for development): 
 

 F = PdA
A
∫ = Pcg A  

  
The basic physics says that the hydrostatic force is a distributed load equal to the 
integral of the local pressure force over the area.  This is equivalent to the following: 
 

The hydrostatic force on one side of a plane surface submerged in a static 
fluid equals the product of the fluid pressure at the centroid of the surface 
times the surface area in contact with the fluid. 
 

Also:  Since pressure acts normal to a surface, the direction of the resultant force will 
always be normal to the surface. 
 
Note: In most cases since it is the net hydrostatic force that is desired and the 
contribution of atmospheric pressure Pa will act on both sides of a surface, the result 
of atmospheric pressure Pa will cancel and the net force is obtained by 
 

 

F = ρ gh cgA

F = Pcg A  
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Pcg is now the gage pressure at the centroid of the area in contact with the fluid. 
Therefore, to obtain the net hydrostatic force F on a plane surface: 
 

  1. Determine depth of centroid hcg for the area in contact with the 
fluid 

  2. Determine the (gage) pressure at the centroid Pcg 
  3. Calculate    F = PcgA. 

 
The following page shows the centroid, and other geometric properties of several 
common areas. 
 
It is noted that care must be taken when dealing with layered fluids.  The required 
procedure is essentially that the force on the plane area in each layer of fluid must be 
determined individually for each layer using the steps listed above. 
 
We must now determine the effective point of application of  F.  This is commonly 
called the “center of pressure - cp” of the hydrostatic force. 
 
Define an  x – y  coordinate system whose origin is at  the centroid, c.g, of the area. 
 
The location of the resultant force is determined by integrating the moment of the 
distributed fluid load on the surface about each axis and equating this to the moment 
of the resultant force.  Therefore, for the moment about the  x  axis: 
 

   
F y cp = y P d

A
∫ A

 
 
Applying a procedure similar to that used previously to determine the resultant force, 
and using the definition (see text for detailed development), 

for   Ixx   defined as the     ≡ moment of inertia, or  2nd moment of area we obtain 
 

 

Ycp = −
ρgsinθ I xx

Pcg A
≤ 0

  
 
Therefore, the resultant force will always act at a distance  ycp  below the centroid of 
the surface ( except for the special case of  sin θ = 0 ).
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a
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Proceeding in a similar manner for the  x  location, and defining Ixy = product of 
inertia,  we obtain 

   
X cp = −

ρgsinθ I xy

Pcg A  
 

where Xcp can be either positive or negative since  Ixy  can be either positive or 
negative. 
 
Note: For areas with a vertical plane of symmetry (e.g., squares, circles, isosceles 
triangles, etc.) through the centroid, i.e. the ( y - axis),  the center of pressure is 
located directly below the centroid along the plane of symmetry, i.e.,  Xcp = 0. 
 

Key Points:  The values Xcp and Ycp are both measured with respect to the 
centroid of the area in contact with the fluid.  

 
  Xcp and Ycp are both measured in the plane of the area;  i.e., 

Ycp is not necessarily a vertical dimension, unless θ = 90o. 
 
 
Special Case:  For most problems where (1) we have a single, homogeneous fluid 
( i.e., not applicable to layers of multiple fluids) and (2) the surface pressure is 
atmospheric, the fluid specific weight  γ  cancels in the equation for Ycp and Xcp 
and we have the following simplified expressions: 
 

   F = ρ g h cg A  
 

 
Ycp = −

I xx sinθ
hcgA

Xcp = −
Ixy sinθ
hcgA  

 
However, for problems where we have either (1)  multiple fluid layers, or  (2)  a 
container with surface pressurization > Patm , these simplifications do not occur 
and the original, basic expressions for F , Ycp , and Xcp  must be used; i.e., take 
care to use the approximate expressions only for cases where they apply.  The 
basic equations always work. 



 

II-9 

Summary: 
 

1. The resultant force is determined from the product of the pressure 
at the centroid of the surface times the area in contact with the fluid 

2. The centroid is used to determine the magnitude of the force.  This 
is not the location of the resultant force 

3. The location of the resultant force will be at the center of pressure  
which will be at a location Ycp below the centroid and Xcp as 
specified previously 

4. Xcp = 0 for areas with a vertical plane of symmetry through the c.g. 
 
Example 2.5 
 
Given:  Gate,  5 ft wide 
Hinged at B 
Holds seawater as shown 
 
Find:   
a.  Net hydrostatic force on gate
b.  Horizontal force at wall - A 
c.  Hinge reactions - B 
 
 

8’

θ

Seawater

• c.g.

hc.g.

A

B

64 lbf/ft3

15’

6’

9’

 
 
 

a.  By geometry:   θ  =  tan-1 (6/8)  =  36.87o          Neglect Patm 
 
Since plate is rectangular, hcg = 9 ft + 3ft = 12 ft      A = 10 x 5 = 50 ft2 
 
Pcg  =  γ hcg =  64 lbf/ft3 * 12 ft  =  768 lbf/ft2 
 
∴  Fp =  Pcg A  =  768 lbf/ft2 * 50 ft2  =  38,400 lbf     
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b. Horizontal Reaction at A 
 Must first find the location, c.p., for Fp 
 
 

ycp = −ρ gsinθ Ixx
Pcg A = − Ixx sinθ

hcg A  

 
For a rectangular wall: 
 
Ixx = bh3/12  
 
Ixx = 5 * 103/12 = 417 ft4 
 
Note:  The relevant area is a 

rectangle, not a triangle. 
 

 
 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

yc.p.θ

 

 
Note: Do not overlook the hinged reactions at B. 
 

 
4

2
417 0.6 0.417
12 50cp

fty ft
ft ft

= − = −= − = −= − = −= − = −
4

2
417 0.6 0.417
12 50cp

fty ft
ft ft

= − = −= − = −= − = −= − = −    below  c.g. 

 
 xcp = 0  due to symmetry 
 
 
 

0BM ====∑∑∑∑  
 
(5 0.417) 38,400 6 0P− ⋅ − =− ⋅ − =− ⋅ − =− ⋅ − =  
 
P = 29,330 lbf    ←←←← 

 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

yc.p.θ
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c. Fx∑ =0, Bx + Fsinθ − P= 0 
 
  Bx   +  38,400*0.6 - 29,330  =  0 
 
  Bx  =  6290 lbf  →→→→ 
 
 

 Fz∑ =0, Bz − Fcosθ =0 
 
  Bz  =  38,400 * 0.8  =  30,720 lbf     ↑↑↑↑  
 
 
Note:  Show the direction of all forces in final answers. 
 
 
 
Summary:  To find net hydrostatic force on a plane surface: 
 
 1. Find area in contact with fluid. 
 2. Locate centroid of that area. 
 3. Find hydrostatic pressure Pcg at centroid,  

typically  = γ γ γ γ hcg   ( generally neglect Patm ). 
 4. Find force F = Pcg  A. 
 5. Location will not be at c.g., but at a distance ycp below 

centroid.  ycp is in the plane of the area.  
 
 
 
Review all text examples for forces on plane surfaces. 
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Forces on Curved Surfaces 
 

Since this class of surface is curved, the 
direction of the force is different at each 
location on the surface. 

Therefore,  we will evaluate separate x 
and y components of net hydrostatic 
force. 
 
Consider curved surface, a-b.  Force 
balances in x & y directions yields 
 

Fh = FH  

Fv = Wair +  W1  +  W2  
 
 
From this force balance, the basic rules for determining the horizontal and vertical 
component of forces on a curved surface in a static fluid can be summarized as 
follows: 
 
Horizontal Component, Fh 

The horizontal component of force on a curved surface equals the force on 
the plane area formed by the projection of the curved surface onto a 
vertical plane normal to the component. 

 
 

 

The horizontal force will act 
through the c.p. (not the centroid) 
of the projected area. 

 
b

a

cp

hcg

Fh

ycp

a’

b’

Projected vertical
plane

Curved
surface
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Therefore, to determine the horizontal component of force on a curved surface in a 
hydrostatic fluid: 
 
 

  1. Project the curved surface into the appropriate vertical plane. 
  2. Perform all further calculations on the vertical plane. 
  3. Determine the location of the centroid - c.g. of the vertical plane. 

  4. Determine the depth of the centroid - hcg  of the vertical plane. 

  5. Determine the pressure - Pcg  = g hcg  at the centroid of the 
vertical plane. 

  6. Calculate  Fh = Pcg A, where A is the area of the projection of the 
curved surface into the vertical plane, ie., the area of the vertical 
plane.                     

  7. The location of  Fh  is through the center of pressure of the 
vertical plane ,  not the centroid. 

 
Get the picture? All elements of the analysis are performed with the 

vertical plane.  The original curved surface is important 
only as it is used to define the projected vertical plane. 

 
Vertical Component - Fv 
 
 

The vertical component of force on a curved surface equals the weight of 
the effective column of fluid necessary to cause the pressure on the 
surface. 

 
The use of the words effective column of fluid is important in that there 
may not always actually be fluid directly above the surface. ( See graphic 
that follows.) 
 
This effective column of fluid is specified by identifying the column of fluid 
that would be required to cause the pressure at each location on the surface. 
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Thus to identify the effective volume - Veff: 
 

   1. Identify the curved surface in contact with the fluid. 
   2. Identify the pressure at each point on the curved surface. 
   3. Identify the height of fluid required to develop the pressure. 
   4. These collective heights combine to form Veff. 

 
 

b

aVeff P

P
P

 
Fluid above the surface 

a

b

Veff

P
P P

fluid

 

No fluid actually above surface 
 
These two examples show two typical cases where this concept is used to 
determine Veff. 
 
 
The vertical force acts vertically through the centroid (center of mass) of the 
effective column of fluid.  The vertical direction will be the direction of the 
vertical components of the pressure forces. 
 
Therefore, to determine the vertical component of force on a curved surface in a 
hydrostatic fluid: 
 

 1. Identify the effective column of fluid necessary to cause the fluid 
pressure on the surface. 

 2. Determine the volume of the effective column of fluid. 
 3. Calculate the weight of the effective column of fluid - Fv = ρgVeff. 
 4. The location of Fv is through the centroid of Veff. 
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Finding the Location of the Centroid 
 
A second problem associated with the topic of curved surfaces is that of finding 
the location of the centroid of Veff. 
 
Recall: 
 
Centroid = the location where the first moment of a point area, volume, or mass 

equals the first moment of the distributed area, volume, or mass, e.g. 
 

  xcgV1 = xdV
V1

∫  

 
This principle can also be used to determine the location of the centroid of 
complex geometries. 
 

For example: 
 

If   Veff  =   V1   +   V2 
 
then 

xcgVeff  =   x1V1   +   x2V2 
 
or 
 

VT =  V1   +   Veff 
 

xTVT =  x1V1   +   xcgVeff 
 

b

a

2V

V1

 
 

a

b

V1

Veff

fluid

 

Note:  In the figures shown above, each of the  x  values would be specified 
relative to a vertical axis through  b  since the cg of the quarter circle is most 
easily specified relative to this axis. 
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Example: 
 
Gate AB holds back 15 ft of 
water.  Neglecting the weight of 
the gate, determine the magnitude 
(per unit width) and location of 
the hydrostatic forces on the gate 
and the resisting moment about B. 
 

•

•

15 ft

A

B

Water
H

F

F
V

Width -  W

 
 

 
a.  Horizontal component γ  = ρg = 62.4 lbf/ft3 
 
Rule:  Project the curved surface into 
the vertical plane.  Locate the centroid 
of the projected area.  Find the pressure 
at the centroid of the vertical 
projection.  F = Pcg  Ap 
Note:  All calculations are done with 
the projected area.  The curved 
surface is not used at all in the 
analysis. 

•

•
A

B

a

b

h cg
Pcg

 
 

 
The curved surface projects onto plane  a - b  and results in a rectangle,  
 (not a quarter circle)  15 ft x W.  For this rectangle: 
 
 
hcg = 7.5, Pcg = γhcg  = 62.4 lbf/ft3 * 7.5 ft  = 468 lbf/ft2 
 
Fh = Pcg A = 468 lbf/ft2 * 15 ft*W=  7020 W  lbf   
 
Location:  Ixx = bh3/12  =  W * 153 /12 = 281.25 W ft4 
 

ycp = − Ixx sinθ
hcg A = −281.25W ft4 sin90o

7.5 ft15W ft2 = −2.5 ft
 

The location is 2.5 ft 
below the c.g. or 10 ft 
below the surface, 5 ft 
above the bottom.   
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b.  Vertical force: 
 
 
Rule:  Fv equals the weight of the 
effective column of fluid above the 
curved surface. 

A
•

c.g.

C

B

•

b
Fv

•  
 

 
Q:  What is the effective volume of fluid above the surface? 
 
 What volume of fluid would result in the actual pressure distribution on the 
curved surface? 
 

Vol = A - B - C 
 

Vrec = Vqc + VABC, VABC = Vrec - Vqc 
 

VABC = Veff  = 152 W - π 152/4*W  =  48.29 W ft3 

Fv = ρg Veff  = 62.4 lbf/ft3 * 48.29 ft3 = 3013 lbf  
 
Note: Fv is directed upward even though the effective volume is above the surface. 
 
c. What is the location? 
 

Rule:  Fv will act through the 
centroid of the “effective volume 
causing the force. 
 
 

A
•

c.g.

C

B

•

b
Fv

•  
 
We need the centroid of volume A-B-C.       How do we obtain this centroid? 
 
Use the concept which is the basis of the centroid, the  “first moment of an area.” 
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Since:  Arec  =  Aqc  + AABC Mrec  =  Mqc  +  MABC MABC  =  Mrec  -  Mqc 
 
Note:  We are taking moments about the left side of the figure, ie., point b. WHY? 
 

(The c.g. of the quarter circle is known to be 4 R/ 3 π  w.r.t.  b.) 
 

xcg A  = xrec Arec - xqc Aqc  

 

xcg {152  -  π*152/4}  =  7.5*152 - {4*15/3/π}* π*152/4 
 
 xcg = 11.65 ft    { distance to rt. of  b  to centroid } 
 
 
Q:  Do we need a   y  location?   Why? 
 
 
d.  Calculate the moment about  B 

needed for equilibrium. 
 

0BM ====∑∑∑∑    clockwise positive. 
 
MB +5Fh + 15−xv( )Fv = 0 

 

 
(((( ))))5 7020 15 11.65 3013 0BM W W+ × + − =+ × + − =+ × + − =+ × + − = (((( ))))5 7020 15 11.65 3013 0BM W W+ × + − =+ × + − =+ × + − =+ × + − =

aP g y G gρρρρ≠ ≠≠ ≠≠ ≠≠ ≠  
 
MB +35,100W +10,093.6W = 0 
 
MB = −45,194W ft −lbf  Why negative? 
 
The hydrostatic forces will tend to roll the surface clockwise relative to  B, 
thus a resisting moment that is counterclockwise is needed for static 
equilibrium. 
 
Always review your answer (all aspects: magnitude, direction, units, etc.) to 
determine if it makes sense relative to physically what you understand 
about the problem.    Begin to think like an engineer. 
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Buoyancy 

 
 
An important extension of the procedure for vertical forces on curved surfaces is 
that of the concept of buoyancy. 
 
The basic principle was discovered by Archimedes. 
 
 

 
It can be easily shown that 
  (see text for detailed 
development) the buoyant  
force  Fb  is given by: 

 
Fb  =  ρ g Vb 
 
where   Vb is the volume of 
the fluid displaced by the 
submerged body and ρ g is the 
specific weight of the fluid 
displaced. 
 

Vb

P
atm

Fb

 
Thus, the buoyant force equals the weight of the fluid displaced, which is 
equal to the product of the specific weight times the volume of fluid 
displaced. 
 
 

The location of the buoyant force is: 
 
 

Through a vertical line of action, directed upward, which acts through the 
centroid of the volume of fluid displaced. 

 
Review all text examples  and material on buoyancy. 
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Pressure distribution in rigid body motion 
 
 
All of the problems considered to this point were for static fluids.  We will now 
consider an extension of our static fluid analysis to the case of rigid body motion, 
where the entire fluid mass moves and accelerates uniformly (as a rigid body). 
 
The container of fluid shown below is accelerated uniformly up and to the right as 
shown. 
 

 
 
 
From a previous analysis, the general equation governing fluid motion is 
 

   ∇ P = ρ( g − a ) + µ ∇ 2 V  
 
For rigid body motion, there is no velocity gradient in the fluid, therefore 
 
 µ∇ 2 V = 0  
 
The simplified equation can now be written as 
 
   ∇ P = ρ( g − a ) = ρG  
 

where   G = g − a ≡  the net acceleration vector acting on the fluid. 
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This result is similar to the equation for the variation of pressure in a hydrostatic 
fluid. 
 

However, in the case of rigid body motion: 
 

 *   ∇ P  = f {fluid density & the net acceleration vector-  G = g − a  } 
 
 *   ∇ P  acts in the vector direction of  G = g − a  
 

* Lines of constant pressure are perpendicular to     G  .  The new 
orientation of the free surface will also be perpendicular to   G . 

 
 
The equations governing the analysis for this class of problems are most easily 
developed from an acceleration diagram. 
 
 

 Acceleration diagram: 
 
For the indicated geometry: 
 

1tan x

z

a
g a

θθθθ −−−−====
++++

1tan x

z

a
g a

θθθθ −−−−====
++++

 

 

  
dP
ds

= ρG where G = a x
2 + (g + a z ) 2{ } 1

2

 

and        P2 − P1 = ρG(s 2 − s1 )  
 
Note:  P2 − P1 ≠ ρ g z2 − z1( ) 

and 

s2 – s1  is not a vertical dimension 
 

a

-a

g

G

θ

θ

Freesurface

P2

P1
s

ax

az

 

 
Note:  s  is the depth to a 
given point perpendicular 
to the free surface or its 
extension.  s is aligned 
with   G . 
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In analyzing typical problems with rigid body motion: 
 

1. Draw the acceleration diagram taking care to correctly indicate –a, g, 
and θ, the inclination angle of the free surface. 

2. Using the previously developed equations, solve for G and θ. 

3. If required, use geometry to determine s2 – s1  (the perpendicular 
distance from the free surface to a given point)  and then the pressure 
at that point relative to the surface  using  P2 – P1 = ρ G (s2 – s1) . 

 
Key Point:  Do not use  ρg  to calculate  P2 – P1, use  ρ G. 

 
Example 2.12 
Given:  A coffee mug, 6 cm x 6 cm 
square, 10 cm deep, contains 7 cm of 
coffee.  Mug is accelerated to the right 
with  ax = 7 m/s2 .  Assuming rigid body 
motion.  ρc = 1010 kg/m3, 
Determine:  a.  Will the coffee spill? 
b.  Pg at  “a & b”. 
c.  Fnet on left wall. 

a.  First draw schematic showing 
original orientation and final 
orientation of the free surface. 

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

 

ρc = 1010 kg/m3 ax = 7m/s2 az = 0 g = 9.8907 m/s2 
 

Have a new free surface angle  θ  where 
1tan x

z
a

g aθθθθ −−−−==== ++++  

θ = tan−1 7
9.807 =35.5°  

∆z = 3 tan 35.5  = 2.14 cm 

a-a

gG

θ
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 hmax =  7 + 2.14 = 9.14 cm < 10 cm  ∴   Will not spill. 
 
b.  Pressure at “ a & b.” 

Pa = ρ G ∆ sa 

G = {a2
x + g2}.5 = { 72 + 9.8072}.5 

G = 12.05 m/s2 

∆ sa = {7 + z} cos θ  

∆ sa = 9.14 cm cos 35.5 = 7.44 cm 

Pa = 1010 kg/m3*12.05m/s2*0.0744 m 

Pa = 906 (kg m/s2)/m2 = 906 Pa 
Note:   aP g y G gρρρρ≠ ≠≠ ≠≠ ≠≠ ≠   

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

θ
∆ sa

 

 
Q:  How would you find the pressure at b,  Pb? 
 
c.  What is the force on the left wall? 
We have a plane surface, what is the rule? 

Find  cg, Pcg, F = Pcg. A 
Vertical depth to cg is: 

zcg = 9.14/2 = 4.57 cm 

∆scg = 4.57 cos 35.5 = 3.72 cm 

Pcg = ρ G ∆scg  

Pcg = 1010 kg/m3*12.05 m/s2* 0.0372 m 

Pcg = 452.7 N/m2 

F = Pcg A = 452.7 N/m2*0.0914*0.06m2 

F = 2.48 N  ← 

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

θ

•cg

∆ scg
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What is the direction? 
 
Horizontal, perpendicular to the wall;  
 
i.e., Pressure always acts normal to a surface. 
 
Q:  How would you find the force on the right wall? 
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