
Chapter - three

Deadlock Management

1

Outline
• Deadlock: definition
• Conditions for Deadlock
• Deadlock examples
• Starvation
• Resource types
• Methods for handling deadlock

- Ostrich algorithm
- Deadlock detection and recovery
- Deadlock prevention
- Deadlock avoidance

2

Deadlock
• For many applications, a process needs exclusive access to not

one resource, but several.
• Suppose, for example, two processes each want to record a

scanned document on a CD.
– Process A requests permission to use the scanner and is granted it.
– Process B is programmed differently and requests the CD recorder first

and is also granted it.

• Now A asks for the CD recorder, but the request is denied until
B releases it.

• Unfortunately, instead of releasing the CD recorder B asks for
the scanner.

• At this point both processes are blocked and will remain so
forever.

• This situation is called a deadlock.
3

Deadlock…
• Deadlock can be defined formally as follows:

– A set of processes is deadlocked if each member of
the set of deadlocked processes is waiting for a
resource that is owned by a deadlocked process.

– None of the processes can run,
– none of them can release any resources, and
– all the processes continue to wait forever.

4

Conditions for Deadlock
• Four conditions must hold for there to be a deadlock:
1. Mutual exclusion condition. Each resource is either currently assigned

to exactly one process or is available.
2. Hold and wait condition. Processes currently holding resources

granted earlier can request new resources.
3. No preemption condition. Resources previously granted cannot be

forcibly taken away from a process. They must be explicitly released
by the process holding them.

4. Circular wait condition. There must be a circular chain of two or more
processes, each of which is waiting for a resource held by the next
member of the chain.

• All four of these conditions must be present for a deadlock to
occur.

• If one of them is absent, no deadlock is possible.
5

Possibility of Deadlock

• Mutual Exclusion
• No preemption
• Hold and wait

6

Existence of Deadlock

• Mutual Exclusion
• No preemption
• Hold and wait
• Circular wait

7

Deadlock Examples
• examples

– studying students
– traffic intersection
– airline reservation system…

• evaluation
– four conditions: mutual exclusion, hold and wait, no

preemption, circular wait

Studying Students

Student A
get coursenotes
get textbook
study
release textbook
release coursenotes

Student B
get textbook
get coursenotes
study
release coursenotes
release textbook

 studying students: both students need the textbook
and the course notes to study, but there is only one
copy of each

 consider the following situation:

Students Evaluation
• mutual exclusion

– books and course notes can be used only by one
student

• hold and wait
– a student who has the book waits for the course notes,

or vice versa
• no preemption

– there is no authority to take away book or course notes
from a student

• circular wait
– student A waits for resources held by student B, who

waits for resources held by A

Traffic Intersection
• at a four-way intersection, four cars arrive

simultaneously
• if all proceed, they will be stuck in the middle

Traffic Evaluation
• mutual exclusion

– cars can’t pass each other in the intersection
• hold and wait

– vehicles proceed to the center, and wait for their path
to be clear

• no preemption
– there is no authority to remove some vehicles

• circular wait
– vehicle 1 waits for vehicle 2 to move, which waits for 3,

which waits for 4, which waits for 1

Starvation
• a process can’t proceed because other

processes always have the resources it needs
• the request of the process is never satisfied
• in principle, it is possible to get the resource,

but doesn’t happen because of
– low priority of the process
– timing of resource requests
– ill-designed resource allocation or scheduling

algorithm
• different from deadlock

Examples Starvation

• batch processes with low priority in a heavily
used time-sharing system

• crossing a very busy road
• trying to call a very popular phone number

– radio station giveaways
• getting into a very popular course with limited

enrollment

Solution Starvation

• fairness: each process gets its fair share of all
resources it requests
– how is fair defined?
– how is it enforced?

• aging
– the priority of a request is increased the longer the

process waits for it

Starvation vs Deadlock
– Starvation: process waits indefinitely

• Example, low-priority process waiting for resources
constantly in use by high-priority processes

– Deadlock: circular waiting for resources
• Process A owns Res 1 and is waiting for Res 2
• Process B owns Res 2 and is waiting for Res 1

– Deadlock Starvation but not vice versa
• Starvation can end (but doesn’t have to)
• Deadlock can’t end without external intervention

Res 2Res 1

Process
B

Process
A

Wait
For

Wait
For

Owned
By

Owned
By

Resource Types
• reusable resources

– can be used repeatedly by different processes
– does not imply simultaneous use
– OS examples: CPU, main memory, I/O devices, data

structures
• consumable resources

– are produced by one entity, and consumed by
another

– reuse is not possible, or impractical
– OS examples: messages

Example Reusable Resources
• main memory allocation

– two processes make successive requests for main
memory

– the overall memory size is 16 MByte

Process A
request 5 MBytes;
request 8 MBytes;

Process B
request 7 MBytes;
request 7 MBytes;

 deadlock
 no process can proceed unless one gives up some memory

(preemption)
 frequent solutions: preallocation, virtual memory

Example Consumable Resources

• message passing
– two processes wait for a message from each other, and

then send one to each other
– receive operation is blocking (process can’t continue)

Process A
receive (B);
send (B);

Process B
receive (A);
send(A);

 deadlock
 no process can proceed because it is waiting for a message from the

other
 no easy solution

Dining Philosophers

• Philosophers sitting around a dining table
• Philosophers only eat and think
• Need two forks to eat
• Exactly as many forks as philosophers
• Before eating, a philosopher must pick up the

fork to his right and left
• When done eating, each philosopher sets

down both forks and goes back to thinking

Dining Philosophers…

• Five chopsticks/Five Philosophers
– Free-for all: Philosophers will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let philosopher take last chopstick if no hungry

philosopher has two chopsticks afterwards

Dining Room Philosophers…
• Only one philosopher can hold a fork at a

time
• One major problem

• what if all philosophers decide to eat at once?
– if they all pick up the right fork first, none of them

can get the second fork to eat
– deadlock

Philosopher Deadlock Solutions
• Make every even numbered philosopher pick up

the right fork first and every odd numbered
philosopher pick up the left fork first

• Don’t let them all eat at once
– a philosopher has to enter a monitor to check if it

is safe to eat
– each philosopher checks and sets some state

indicating their condition

Symbols
Resource-Allocation Graph

• System Model
– A set of Processes P1, P2, . . ., Pn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each process utilizes a resource as follows:

• Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set processes in the system.
• R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge Pi Rj

– assignment edge – directed edge Rj Pi

R1
R2

P1 P2

Resource Allocation Graph Examples

P1 P2 P3

R1 R2

R3
R4

Simple Resource
Allocation Graph

P1 P2 P3

R1 R2

R3
R4

Allocation Graph
With Deadlock

P1

P2

P3

R2

R1

P4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge P1 Rj
– assignment edge – directed edge Rj Pi

Basic Facts

• If graph contains no cycles no deadlock.

• If graph contains a cycle
– if only one instance per resource type, then

deadlock.
– if several instances per resource type, possibility of

deadlock.

26

Methods for Handling Deadlocks
• Ensure that the system will never enter a

deadlock state.
– have strict rules that prevent a deadlock from occurring

• Allow the system to enter a deadlock state and
then recover.

• Ignore the problem and pretend that deadlocks
never occur in the system; frequently used by
most operating systems, like

• Windows, MacOS, Unix, ...

27

What kind of resources?
• Resources come in two types:

– Pre-emptible and non pre-emptible.

• A pre-emptible resource is one that can be taken
away from the process owning it with no ill effects.
– Memory is an example of a pre-emptible resource.

• A nonpreemptable resource, in contrast, is one
that cannot be taken away from its current owner
without causing the computation to fail.
– Burning file into CD

• Deadlocks involve in nonpreemptable resources.
28

What kind of resources?
• Potential deadlocks that involve pre-emptible

resources can usually be resolved:
– by reallocating resources from one process to another.

• Thus our treatment will focus on nonpreemptable
resources:

• The sequence of events required to use a resource
is given below in an abstract form.
1. Request the resource.
2. Use the resource.
3. Release the resource.

29

Deadlock modeling
• The above four conditions can be modeled using directed

graphs.
• The graphs have two kinds of nodes:

– Processes, shown as circles, and
– Resources, shown as squares.

• -An arc from a resource node (square) to a process node
(circle) means that the resource has previously been requested
by, granted to, and is currently held by that process.

• Resource R is currently assigned to process A.

Resource allocation graphs. (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock

A

R B

S

T U

C

D

a) b) c)

30

Deadlock modeling…

• An arc from a process to a resource means that the process is
currently blocked waiting for that resource. In Fig. (b), process
B is waiting for resource S.

• In Fig. (c) We see a deadlock: process C is waiting for resource
T, which is currently held by process D. Process D is not about
to release resource T because it is waiting for resource U, held
by C. Both processes will wait forever.

• A cycle in the graph means that there is a deadlock involving
the processes and resources in the cycle (assuming that there
is one resource of each kind).

• In this example, the cycle is C-T-D-U-C.

31

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R

a) b) c)

1. A requests R
2. B requests S
3. C requests T
4. A requests S
5. B requests T
6. C requests R

Deadlock

d)

Deadlock modeling (Example)…

The Operating system
is free to run any
unblocked process at
any instant, so it could
decide to
run A until A finished
all its work, then run B
to completion, and
finally run C.
This ordering
does not lead to any
deadlocks.

suppose that the
processes do both I/O
and computing, so that
round robin is a
reasonable scheduling
algorithm.
The resource requests
might occur in the order

32

• If these six requests
are carried out in
this order, the six
resulting resource
graphs are shown in
Fig. (e)-(j).

A

R

B

S T

C

e)

R S T

A B C

f)

CBA

R S T

g)

A B C

R S T

h) i) j)

R S T

A B C A B C

R S T

1. A requests R
2. B requests S
3. C requests T
4. A requests S
5. B requests T
6. C requests R

Deadlock

Deadlock
modeling…

33

• If granting a particular request might lead to deadlock, the
operating system can simply suspend the process with out
granting the request.
– i.e., just not schedule the process until it is safe.

• If the operating system knew about the impending deadlock, it
could suspend B in stead of granting it S.

• By running only A and C, we would get the requests and
releases of (k) instead of Fig. (d).

Deadlock modeling…

34

A

R

B

S T

C

l)

R S T

A B C

m)

CBA

R S T

n)

A B C

R S T

o) p) q)

R S T

A B C A B C

R S T

1. A requests R
2. C requests T
3. A requests S
4. C requests R
5. A releases R
6. A releases S
No deadlock

Deadlock
modeling…

35

Four strategies are used for dealing with
deadlocks:

1- Just ignore the problem altogether - Maybe if you
ignore it, it will ignore you.

2- Detection and recovery - Let deadlocks occur, detect
them, and take action.

3- Dynamic avoidance by careful resource allocation.

4- Prevention - by structurally negating one of the four
conditions necessary to cause a deadlock.

36

THE OSTRICH ALGORITHM

• The simplest approach the ostrich algorithm:
• stick your head in the sand and pretend there is no

problem at all.
– Mathematicians find it totally unacceptable and say that

dead locks must be prevented at all costs.
– Engineers ask how often the problem is expected, how often

the system crashes for other reasons, and how serious a
deadlock is.

37

Deadlock Detection and Recovery

Detection Algorithms
– Deadlock Detection with One Resource of Each Type
– Deadlock Detection with Multiple Resources of Each Type

Recovery from Deadlock
– Recovery through Preemption
– Recovery through Rollback
– Recovery through Killing Processes

38

Deadlock Detection with One Resource of
Each Type

• Assume that only one resource of each type
exists.
– Such a system might have one scanner, one CD

recorder, one plotter, and one tape drive.
• We can construct a resource graph.
• If this graph contains one or more cycles, a deadlock

exists.
• Any process that is part of a cycle is deadlocked.
• If no cycles exist, the system is not deadlocked.

39

Deadlock Detection with One Resource of
Each Type…

• Maintain wait-for graph
– Nodes are processes
– Pi Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches
for a cycle in the graph.

• If there is a cycle, there exists a deadlock.

• An algorithm to detect a cycle in a graph
requires an order of n 2 operations, where n is
the number of vertices in the graph

40

Example
• Consider a system with seven

processes, A though G, and six
resources, R through W.

• The state are as follows:
1. Process A holds R and wants S.
2. Process B holds nothing but wants T.
3. Process C holds nothing but wants S.
4. Process D holds U and wants S and T.
5. Process E holds T and wants V.
6. Process F holds W and wants S.
7. Process G holds V and wants U.

Question
• "Is this system deadlocked, and if so,

which processes are involved?”

Answer
Construct wait for graph

R A

SC

F

W

D T E

G

U V

B

Process D,E, and G are
deadlocked

41

Algorithm to detect deadlock
For each node, N in the graph, perform the following 5 steps
with N as the starting node.
1. Initialize L to the empty list, and designate all the arcs as unmarked.
2. Add the current node to the end of L and check to see if the node now

appears in L two times. If it does, the graph contains a cycle (listed in L)
and the algorithm terminates.

3. From the given node, see if there are any unmarked outgoing arcs. If
so, go to step 4; if not, go to step 5.

4. Pick an unmarked outgoing arc at random and mark it. Then follow it to
the new current node and go to step 2.

5. We have now reached a dead end. Remove it and go back to the
previous node, that is, the one that was current just before this one,
make that one the current node, and go to step 2.

42

Algorithm to detect deadlock…
• The order of processing the nodes is

arbitrary, so let us just inspect them:

– from left to right,
– top to bottom,

• first running the algorithm starting at R,
then successively, A, B, C, S, D, T, E, F, and
so forth. If we hit a cycle, the algorithm
stops.

• We start at R and initialize L to the empty
list. Then we add R to the list and move to
the only possibility, A, and add it to L, giving
L = [R, A].

• From A we go to S, giving L = [R, A, S]. S
has no outgoing arcs, so it is a dead end,
forcing us to backtrack to A.

• Since A has no unmarked outgoing arcs, we
backtrack to R, completing our inspection of
R.

Restart for A, no cycle
For B
L=[B,T,E,V,G,U,D,T]
discovered cycle and stop
alg. Declare DEADLOCK

43

Deadlock Detection with Multiple Resources
of Each Type

• Matrix-based algorithm for detecting deadlock among n
processes, P1 through Pn.

• Let number of resource classes be m, with E1 resources of
class 1, E2 resources of class 2, and generally resources of
class i (1 <= i <= m).

• E is the existing resource vector. It gives the total number of
instances of each resource in existence.

• For example, if class 1 is tape drives, then E1 = 2 means the
system has two tape drives.

• Let A be the available resource vector, with Ai giving the
number of instances of Resource i that are currently
available (i.e unassigned).

44

Deadlock Detection with Multiple Resources…
• Two arrays: C - the current allocation matrix, and R - the request

matrix.
• Cij is the number of instances of resource j that are held by process i.
• Rij is the number of instances of resource j that Pi wants.

Resource in existence
(E1, E2, E3,… Em)

C11 C12 C13 … C1m

C21 C22 C23 … C2m

… … … … …

Cn1 Cn2 Cn3 … Cnm

Row n is current allocation
to process n

Current allocation matrix

Resource available
(A1, A2, A3,… Am)
Request matrix

R11 R12 R13 … R1m

R21 R22 R23 … R2m

… … … … …

Rn1 Rn2 Rn3 … Rnm

Row 2 is what process 2
needs 45

Deadlock Detection with Multiple Resources…
•

46

Deadlock Detection with Multiple Resources…

Algorithm

1. Look for an unmarked process, Pi, for which the i-th row
of R is less than or equal to A.

2. If such a process is found, add the i-th row of C to A,
mark the process, and go back to step 1.

3. If no such process exists, the algorithm terminates.

4. When the algorithm finishes, all the unmarked
processes, if any, are deadlocked.

47

Example

E = (4 2 3 1) A = (2 1 0 0)

0 0 1 0
2 0 0 1
0 1 2 0

Current allocation matrix

2 0 0 1
1 0 1 0
2 1 0 0

Request matrix

Process 3 run first and return all its resources: A = (2 2 2 0)

Process 2 can run next and return its resources: A = (4 2 2 1)

Now process 1 can run. There is no deadlock in the system.

P1

P2

P3

P1

P2

P3

48

Detection-Algorithm Usage

• When, and how often, to invoke depends on:
– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource graph
and so we would not be able to tell which of the
many deadlocked processes “caused” the
deadlock.

49

Recovery from Deadlock

• Suppose that our deadlock detection algorithm
has succeeded and detected a deadlock.

• What is next?

• Some way is needed to recover and get the
system going again.

• In this section, we will discuss various ways of
recovering from deadlock.

50

Recovery from Deadlock…
• Roll back each deadlocked process to some

previously defined checkpoint, and restart all
process
– Original deadlock may occur

• Successively kill deadlocked processes until
deadlock no longer exists

• Successively preempt resources until deadlock
no longer exists

51

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes.
• Abort one process at a time until the deadlock

cycle is eliminated.

• In which order should we choose to abort?
– Priority of the process.
– How long process has computed, and how much longer

to completion.
– Resources the process has used.
– Resources process needs to complete.
– How many processes will need to be terminated.
– Is process interactive or batch?

52

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart
process for that state.

• Starvation – same process may always be
picked as victim, include number of rollback in
cost factor.

53

Deadlock Prevention
• set of rules ensures that at least one of the four

necessary conditions for deadlock doesn’t hold

– mutual exclusion
– hold and wait
– no preemption
– circular wait

• may result in low resource utilization, reduced
system throughput

54

Deadlock Prevention…
1. Prevent the circular-wait condition by defining a linear ordering of

resource types
• A process can be assigned resources only according to the linear

ordering (e.g., sequence number)
• Disadvantages

- Resources cannot be requested in the order that are needed
- Resources will be longer than necessary

2. Prevent the hold-and-wait condition by requiring the process to
acquire all needed resources before starting execution

• Disadvantages
– Inefficient use of resources
– Reduced concurrency
– Process can become deadlocked during the initial resource

acquisition
– Future needs of a process cannot be always predicted

55

Deadlock Prevention…

3. Denying No Preemption
• means that processes may be preempted by the OS

– should only done when necessary
• resources of a process trying to acquire another unavailable

resource may be preempted
• preempt resources of processes waiting for additional

resources, and give some to the requesting process
• possible only for some types of resources

– state must be easily restorable
– e.g. CPU, memory

56

Deadlock Prevention …
1.e Use of time-stamps

• Example: Use time-stamps for transactions to a database – each
transaction has the time-stamp of its creation

• The circular wait condition is avoided by comparing time-stamps: strict
ordering of transactions is obtained, the transaction with an earlier time-
stamp always wins

• “Wait-die” method
if [e (T2) < e (T1)]

halt_T2 (‘wait’);
else

kill_T2 (‘die’);
• “Wound-wait” method

if [e (T2) < e (T1)]
kill_T1 (‘wound’);

else
halt_T2 (‘wait’);

57

Timestamped Deadlock-Prevention
Scheme

• Each process Pi is assigned a unique timestamp

• Timestamps are used to decide whether a process Pi
should wait for a process Pj; otherwise Pi is rolled back.

• The scheme prevents deadlocks.
• For every edge Pi Pj in the wait-for graph, Pi has a

higher priority (lower timestamp) than Pj.
• Thus a cycle cannot exist.

58

Wait-Die Scheme
• Based on a nonpreemptive technique.

• If Pi requests a resource currently held by Pj , Pi is allowed
to wait only if it has a smaller timestamp than does Pj (Pi
is older than Pj).

• Otherwise, Pi is rolled back (dies).

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.
– if P1 request a resource held by P2, then P1 will wait.
– If P3 requests a resource held by P2, then P3 will be

rolled back (dies).
59

Wound-Wait Scheme
• Based on a preemptive technique; counterpart to the wait-

die system.

• If Pi requests a resource currently held by Pj, Pi is allowed
to wait only if it has a larger timestamp than does Pj (Pi is
younger than Pj).

• Otherwise Pj is rolled back (Pj is wounded by Pi).

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.
– If P1 requests a resource held by P2, then the resource

will be preempted from P2 and P2 will be rolled back.
– If P3 requests a resource held by P2, then P3 will wait.

60

Deadlock Avoidance
• Basic Principle: Requires that the system has some

additional a priori information available
• Simplest and most useful model requires that each process

declare the maximum number of resources of each type
that it may need to hold simultaneously. (maximum
demand)

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

• Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

61

Deadlock Avoidance…
• The system must be able to decide whether granting a

resource is safe or not and only make the allocation
when it is safe.

• Thus, the question arises: Is there an algorithm that
can always avoid deadlock by making the right choice
all the time?

• The answer is a qualified yes-we can avoid deadlocks.

• Algorithms
– Safe and Unsafe States
– The Bankers algorithm

62

Safe state
• When a process requests an available resource, system

must decide if immediate allocation leaves the system in a
safe state

• A state is safe if the system can allocate resources to
each process (up to its maximum) in some order and still
avoid a deadlock.

• We are considering a worst-case situation here.
• Even in the worst case (process requests up their

maximum at the moment), we don’t have deadlock in a
safe state.

63

Safe state…
• More formally: A system state is safe if there exists a

safe sequence of all processes (<P1, P2, …, Pn>)
• such that

– for each Pi , the resources that Pi can still request can be
satisfied by currently available resources + resources held by all
the Pj, with j < i

• That is:
– If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished
– When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed resources,

and so on. 64

Basic Facts
• If a system is in safe state no deadlocks
• If a system is in unsafe state possibility of deadlock

• Avoidance ensure that a system will never enter an
unsafe state.
– When a request is done by a process for some

resource(s):
– check before allocating resource(s);
– if it will leave the system in an unsafe state, then do not

allocate the resource(s);
– process is waited and resources are not allocated to that

process.
65

Safe State Space
• if a system is in a safe state there are no deadlocks
• in an unsafe state, there is a possibility of

deadlocks

Deadlock
unsafe

safe

66

Deadlock Avoidance Algorithms

• Single instance of a resource type
– Use a resource-allocation graph

• Multiple instances of a resource type
– Use the banker’s algorithm

67

Example
• Bank gives loans to customers

– maximum allocation = credit limit

BANK
$10

A B C

$5 $7 $3

Maximum Allocation
68

BANK
$2

A $3 B $4 C $1

$5 $7 $3

Maximum Allocation

Current Allocation

• Safe State?
– Will the bank be able to give each customer a loan up to

the full credit limit?
• not necessarily all customers simultaneously
• order is not important
• customers will pay back their loan once their credit limit is

reached

69

BANK
$1

A $3 B $5 C $1

$5 $7 $3

Maximum Allocation

Current Allocation

• Still Safe?
– after customer B requests and is granted $1, is the bank

still safe? NO

70

Safe
unsafe

deadlock

Safe State Space

71

Safe unsafe

deadlock

(3,4,1)
x

(3,5,1)
x

Bank Safe State Space

72

Safe and Unsafe States: Example

Has Max

A 3 9

B 2 4

C 2 7

Free = 3

Has Max

A 3 9

B 4 4

C 2 7

Free = 1

Has Max
A 3 9

B 0 --

C 2 7

Free = 5

Has Max

A 3 9

B 0 --

C 7 7

Free = 0

Has Max

A 3 9

B 0 --

C 0 --

Free = 7

• A total of 10 instances of the resource exist, so with 7 resources
already allocated, there are 3 still free. Is the state safe or not?

• Scheduler can run B first, then C and finally A.
• Thus, the state is safe because the system, by careful scheduling can

avoid deadlock.
Has Max

A 3 9

B 2 4

C 2 7

Free = 3

Has Max
A 4 9

B 2 4

C 2 7

Free = 2

Has Max
A 4 9

B 4 4

C 2 7

Free = 0

Has Max
A 4 9

B -- --

C 2 7

Free = 4

unsafe

73

The Banker’s Algorithm

• before a request is granted, check the system’s
state
– assume the request is granted
– if it is still safe, the request can be honored
– otherwise the process has to wait
– overly careful

• there are cases when the system is unsafe, but not in a
deadlock

74

The Banker’s Algorithm: Single resource
• What the algorithm does is check to see if granting the request leads to

an unsafe state. If it does, the request is denied.
• If granting the request leads to a safe state, it is carried out.
• The banker reserved 10 instead of 22.

Has Max
A 0 6

B 0 5

C 0 4

D 0 7

Free = 10

Has Max
A 1 6

B 1 5

C 2 4

D 4 7

Free = 2

Has Max
A 1 6

B 1 5

C 4 4

D 4 7

Free = 0

Has Max
A 1 6

B 1 5

C -- --

D 4 7

Free = 4

Has Max
A 1 6

B 5 5

C -- --

D 4 7

Free = 0

SAFE

Has Max
A 0 6

B 0 5

C 0 4

D 0 7

Free = 10

Has Max
A 1 6

B 1 5

C 2 4

D 4 7

Free = 2

Has Max
A 1 6

B 2 5

C 2 4

D 4 7

Free = 1

UNSAFE

75

Banker’s Algorithm: Multiple resource

• Each process must a priori claim maximum
use

• When a process requests a resource it may have
to wait

• When a process gets all its resources it must
return them in a finite amount of time

76

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If Available[j] == k, there
are k instances of resource type Rj at the time deadlock
avoidance algorithms is run.

• Max: n x m matrix. If Max [i,j] == k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation [i,j] == k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need [i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need[i,j] = Max[i,j] – Allocation[i,j]

Let n = number of processes, and
m = number of resources types.

77

An example system state

Allocation
A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
3 3 2

Max
A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Need = Max - Allocation

Existing
A B C
10 5 7

system state at some t (may change)

Available
A B C
10 5 7All

resources
in the
system

Initially Available == Existing

78

Notation

X
A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

X is a matrix.

Xi is the ith row of the
matrix: it is a vector.
For example, X3 = [2 1 1]

Ex: compare V with Xi

V

Xi

V
A B C
3 3 2

V is a vector; V = [3 3 2]

V == Xi ?
V <= Xi ?
Xi <= V ?
….

Ex: Compare [3 3 2] with [2 2 1]
[2 2 1] <= [3 3 2]

Compare two vectors:

79

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available (initialize Work temporary vector)
Finish [i] = false for i = 0, 1, …, n-1

(Work is a temporary vector initialized to the Available (i.e., free) resources at
that time when the safety check is performed)

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system state is safe; o.w. unsafe.

Need
A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
[3 3 2]

Allocation
A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

80

Resource-Request Algorithm
for Process Pi

Request : request vector for process Pi.
If Requesti [j] == k, then process Pi wants k

instances of resource type Rj

Algorithm

1. If Requesti Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi
must wait, since resources are not available

81

Resource-Request Algorithm
for Process Pi

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Requesti ;
Allocationi = Allocationi + Requesti ;
Needi = Needi – Requesti ;

Run the Safety Check Algorithm:
• If safe the requested resources are allocated to Pi
• If unsafe The requested resources are not allocated to Pi.

Pi must wait.
The old resource-allocation state is restored.

82

Example of Banker’s Algorithm

• 5 processes P0 through P4;
3 resource types: A, B, and C

Existing Resources: A (10 instances), B (5 instances), and C (7 instances)
Existing = [10, 5, 7]

initially, Available = Existing.
Assume, processes indicated their maximum demand as follows:

Max
A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Initially, Allocation matrix will
be all zeros.
Need matrix will
be equal to the Max matrix.

83

Example of Banker’s Algorithm

• Assume later, at an arbitrary time t, we have the following system state:

Existing = [10 5 7]

Allocation
A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
3 3 2

Max
A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Is it a safe state?

Need = Max - Allocation

84

Example of Banker’s Algorithm

Allocation
A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
3 3 2

Try to find a row in Needi that is <= Available.
P1. run completion. Available becomes = [3 3 2] + [2 0 0] = [5 3 2]
P3. run completion. Available becomes = [5 3 2] + [2 1 1] = [7 4 3]
P4. run completion. Available becomes = [7 4 3] + [0 0 2] = [7 4 5]
P2. run completion. Available becomes = [7 4 5] + [3 0 2] = [10 4 7]
P0. run completion. Available becomes = [10 4 7] + [0 1 0] = [10 5 7]

We found a sequence of execution: P1, P3, P4, P2, P0. State is safe

85

Example: P1 requests (1,0,2)

• At that time Available is [3 3 2]
• First check that Request Available (that is, (1,0,2) (3,3,2) true.
• Then check the new state for safety:

Allocation
A B C

P0 0 1 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
2 3 0

Max
A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

new state (we did not go to that state yet; we are just checking)

86

Example: P1 requests (1,0,2)

Allocation
A B C

P0 0 1 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
2 3 0

new state

Can we find a sequence?
Run P1. Available becomes = [5 3 2]
Run P3. Available becomes = [7 4 3]
Run P4. Available becomes = [7 4 5]
Run P0. Available becomes = [7 5 5]
Run P2. Available becomes = [10 5 7]

Sequence is:
P1, P3, P4, P0, P2
Yes, New State is safe.
We can grant the request.
Allocate desired resources
to process P1.

87

P4 requests (3,3,0)?

Allocation
A B C

P0 0 1 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
2 3 0

Current state

If this is current state, what happens if P4 requests (3 3 0)?

There is no available resource to satisfy the request. P4 will be waited.

88

P0 requests (0,2,0)? Should we grant?

Allocation
A B C

P0 0 1 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
2 3 0

Current state

System is in this state.
P0 makes a request: [0, 2, 0]. Should we grant.

89

P0 requests (0,2,0)? Should we grant?

Assume we allocate 0,2,0 to P0. The new state will be as follows.

Allocation
A B C

P0 0 3 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

Need
A B C

P0 7 2 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

Available
A B C
2 1 0

New state
Is it safe?

No process has a row in Need matrix that is less than or equal to Available.
Therefore, the new state would be UNSAFE.
Hence we should not go to the new state.
The request is not granted. P0 is waited.

90

Combined Approach to Deadlock
Handling

• Combine the three basic approaches
– prevention
– avoidance
– detection

allowing the use of the optimal approach for each of
resources in the system.

• Partition resources into hierarchically ordered classes.

• Use most appropriate technique for handling deadlocks
within each class.

91

Project

• Solve the dinning Philosophers problem using any
method. Research the methods. You can program
and implement using any programming language
like C,C++, Java,…

92

