
Chapter - two

Process Management

Process and Threads…

Lecture 2.2

1

Outline
• Inter process communication
• Race conditions
• Mutual exclusion
• Algorithms to avoid critical region problem
Disabling Interrupts
 Lock Variables
 Strict Alternation
 Semaphores
Message passing

2

Inter Process Communication

• Process need to communicate with other processes.
• Three issues are there:

1- How one process can pass information to another process.
2- Making sure that two or more processes do not get into each

other’s way when engaging in critical activities.
3- Proper sequencing when dependencies are present.

• Example: If Process A produces data and process B prints
them, B has to wait until A has produced some data.

3

Inter Process Communication…

Race Condition
• The situation where several processes access – and

manipulate shared data concurrently.
– (E.g, Main memory, printer spooler,…)

• The final value of the shared data depends upon which
process finishes last.

• To prevent race conditions, concurrent processes must be
synchronized.

4

IPC: Race condition, print spooler

5

abc
prog.c
file.n

• If process wants to print a
file, it enter the file name
in spooler directory

• Another process printer
daemon prints and
remove their name

Assumption

• Slot 0-3 are printed out
• 4-6 are ready to be printed
• next_free_slot is 7

4
5
6
7

out=4out=4

in=7in=7

Process A

Process B
Spooler directorySpooler directory

reads IN and
next_free_slot=7
CPU switches to B

reads IN and
next_free_slot=7
Put file in 7
Update IN=8

A runs again
put file in 7
update IN=8

A runs again
put file in 7
update IN=8

Process B will
never receive
any output

Process B will
never receive
any output

Inter Process Communication…
The Critical-Section Problem

• How do we avoid race conditions? (i.e. shared variables, files,
memory)

• n processes all competing to use some shared data
• Sometimes a process has to access shared memory or files that

can lead to races.
– That point of the program where the shared memory access is called

critical region.

Problem
• How do we ensure that when one process is executing in its

critical section, no other process is allowed to execute in its
critical section?

6

Inter Process Communication…
Mutual Exclusion
Solution to Critical-region problem
• To avoid races we need four conditions to hold to have

a good solutions:
– No two processes may be simultaneously inside the critical

regions.
– No assumptions may be made about speeds or the number

of CPUs.
– No process running outside its critical region may block other

processes.
– No process should have to wait forever to inter its critical

region.
7

Inter Process Communication…
Mutual Exclusion
Solution to critical-region problem

8

Inter Process Communication…

Mutual Exclusion
Algorithms to avoid critical region problem

• Disabling Interrupts
• Lock Variables
• Strict Alternation
• Semaphores
• Message passing

9

Disabling Interrupts
• Each process disable all interrupts just after entering its critical

region and re-enable them just before leaving it.
• Thus, once a process has disabled interrupts, it can update the

shared memory with out problem.

Time

TaskTask

Interrupt
Occurs

ISRISR

First Instruction in
Interrupt Service Routine

(ISR) is executed

TaskTask

Task
resumes

ISR ends

Interrupt
Latency

Interrupt
Dispatch Latency

Interrupt Latency should be very small
Kernel has to respond to real time events 10

Disabling Interrupts…

while (true)

{

disable_interrupts();

critical_section();

enable_interrupts();

}

11

Disabling Interrupts…
• Drawbacks

– It is unwise to give user processes the power to turn off
interrupts.

– Suppose that one of them did it, and never turned
them on again? That could be the end of the system.

– For a multiprocessor system, with two or more CPUs,
disabling interrupts affects only the CPU that executed
the disable instruction.

– The other ones will continue running and can access
the shared memory.

12

13

Lock Variables
– Consider having a single shared variable X.

– The following code performs the lock operation:

B: if LOCK (X) = 0 (*item is unlocked*)
then LOCK (X)  1 (*lock the item*)
enter critical region
else begin
wait (until lock (X) = 0) and
the OS wakes up the process;

goto B
end;

14

Lock Variables…

– The following code performs the unlock operation:

LOCK (X)  0 (*unlock the item*)
if any processes are waiting then
wake up one of the waiting processes;

Strict Alternation
• the integer variable turn, initially 0, keeps track of whose

turn it is to enter the critical region and examine or update
the shared memory.

p0 p1

while (TRUE) { /* loop */ while (TRUE) { /*loop*/
while (turn != 1) while (turn != 0)

critical_region(); critical_region();
turn =1; turn =0;

noncritical_region(); noncritical_region();
} }

15

Strict Alternation…

• Problem:
– busy waiting: Continuously testing a variable

until some value appears, which wastes CPU time
• If P0 set turn 0, P1 will continuously check turn till it

becomes 1.

– Suppose turn is set to 1 and P1 is in non-critical
region, if P0 wants to enter in critical-region, not
possible.

• Violets condition 3, P0 is being block by a process not in
its critical region

16

Sleep and wakeup
• is IPC primitives that block instead of wasting

CPU time when they are not allowed to enter
critical regions.

• Sleep is a system call that causes the caller to
block.
– be suspended until another process wakes it up.

• The wakeup call has one parameter, the
process to be awakened.

17

Sleep and wakeup…
The Producer-Consumer Problem (the bounded_buffer problem)
• Two processes share a common, fixed size buffer.
• One of them, the producer, puts information into the buffer,

and
• the other one, the consumer, takes it out.
• Case 1: when the producer wants to put a new item in the

buffer, but it is already full.
– go to sleep to be awakened when the consumer has removed one or

more items.

• Case 2: if the consumer wants to remove an item from the
buffer and sees that the buffer is empty,
– it goes to sleep until the producer puts something in the buffer and

wakes it up. 18

Code for producer
#define N 100 /* number of slots in the buffer */

int count = 0 /* number of items in the buffer */

void producer(void) {

int item;

while (TRUE) { /* repeat forever */

item = produce_item(); /* generate next item */

if (count == N) sleep(); /* if buffer=full, go to sleep */

insertitem(item); /* put item in buffer */

count = count + 1; /* increment count of items in buffer */

if (count == 1) wakeup(consumer); /* was buffer empty? */

}

}
19

Code for consumer
void consumer(void)

{

int item;

while (TRUE) { /* repeat forever */

if (count == 0) sleep(); /* if buffer= empty,got to sleep */

item = remove_item(); /* take item out of buffer */

count= count - 1; /* decrement count of items in buffer*/

if (count == N - 1)wakeup(producer);/* was buffer full? */

consume_item(item); /* print item */

20

The producer-consumer: problem
Race condition.
• The buffer is empty and the consumer has just read

count=0 .
• At that instant, the scheduler decides to stop running the

consumer temporarily and start running the producer.
• Case 1:

– Producer sees count = 0, insert item, inc. count =1, and it wakes up
the consumer. However, consumer is not asleep.

– Problem: wakeup signal is lost.
• Case 2:

– next when consumer runs, count =0 and go to sleep…
• Case 3:

– producer will fill buffer and will go to sleep.
– Both will sleep forever.

21

The producer-consumer: problem…

Problem
• The problem here is that a wakeup sent to a

process that is not (yet) sleeping is lost.

Solution
• Semaphore

22

Semaphore

• Semaphore was proposed by Dijkstra to manage
concurrent processes by using a simple integer value,
which is known as a semaphore.

• Semaphore is simply a variable which is non-negative and
shared between threads/processes.

• This variable is used:
– to solve the critical section problem and
– to achieve process synchronization in the multiprocessing

environment.

23

Semaphore…
• Dijkstra suggested using an integer variable to count

the number of wakeups saved for future use.
• In his proposal, a new variable type, called a

semaphore, was introduced.
• A semaphore could have the value 0, indicating that no

wakeups were saved, or
• some positive value if one or more wakeups were

pending.
• Dijkstra proposed having two operations,

– down – sleep
– up - wakeup,

24

Semaphore…
TWO OPERATIONS
Case 1
• The down operation on a semaphore checks to see if the

value is greater than 0.
• If so, it decrements the value (i.e., uses up one stored

wakeup) and just continues.
• If the value is 0, the process is put to sleep without

completing the down for the moment.
Case 2
• The up operation increments the value of the semaphore
• If one or more processes were sleeping on that semaphore,

unable to complete an earlier down operation, one of them
is chosen by the system (e.g., at random) and is allowed to
complete its down.

25

Solving the producer consumer problem
using Semaphore

• Semaphores that are
initialized to 1 and used by
two or more processes to
ensure that only one of
them can enter its critical
region at the same time are
called binary semaphores.

• If each process does a
down just before entering
its critical region and an up
just after leaving it, mutual
exclusion is guaranteed.

26

Solving the producer consumer problem
using Semaphore

• Semaphores solve the lost-wakeup problem.
• This solution uses three semaphores:

1. full for counting the number of slots that are full,
2. empty for counting the number of slots that are empty,
3. mutex to make sure that producer and consumer do not

access the buffer at the same time

• full is initially 0,
• empty is initially equal to the number of slots in the buffer,
• mutex is initially 1.

27

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind*/
semaphore mutex = 1; /* controls access to critical region*/
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void prducer(void) {
int item;

while (TRUE) { /* TRUE is the constant 1 */
item =produce_item();/*generate something to put in the buffer*/
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insertitem(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */ 28

void consumer(void)

{

int item;

while (TRUE) { /* infinite loop */

down(&full); /* decrement full count */

down(&mutex); /* enter critical region */

item = remove_item(); /* take item from buffer */

up(&mutex); /* leave critical region */

up(&empty); /* increment count of empty slots*/

consume_item(item); /* do something with the item */

29

Semaphore: Java implementation

Gentle reminder
• As we have seen, the producer-consumer problem is

an example of a multi-process synchronization
problem.

• The problem describes two processes, the producer
and the consumer, which share a common, fixed-size
buffer used as a queue.
– The producer’s job is to generate data, put it into the

buffer, and start again.
– At the same time, the consumer is consuming the data

(i.e. removing it from the buffer), one piece at a time.
30

Semaphore: Java implementation…
Problem
To make sure that:

– the producer won’t try to add data into the buffer if it’s full and
– the consumer won’t try to remove data from an empty buffer.

Solution
• The producer is to go to sleep if the buffer is full.
• The next time the consumer removes an item from the buffer, it

notifies the producer, who starts to fill the buffer again.
• In the same way, the consumer can go to sleep if it finds the

buffer to be empty.
• The next time the producer puts data into the buffer, it wakes up

the sleeping consumer.
31

Semaphore: Java implementation…

• Producer-consumer problem can be solved using
semaphore to control synchronization.

• The program consists of four classes:
– Buffer : the buffer that you’re trying to synchronize
– Producer : the producer thread that is producing item
– Consumer : the consumer thread that is consuming

item from the buffer
– Producer-Consumer : the main class that creates the

single Buffer, Producer, and Consumer.

32

Semaphore, java…
import java.io.*;
import java.util.concurrent.Semaphore;
class Buffer {

int item;
//semConsumer is initialized to 0 to ensure put executes first
static Semaphore semConsumer=new Semaphore(0);
static Semaphore semProducer=new Semaphore(1);

//get item from buffer
public void get() {

try {
// Before consumer can consume an item, it must acquire a permit fromsemConsumer

semConsumer.acquire();
}

catch(InterruptedException e) {
System.out.println("Unable to enter CS!");

} 33

Semaphore, java…
//consumer consumes item
System.out.println("Consumer consumed item:"+ item);

//after consumer consumes item, it should release semProducer to notify producer
semProducer.release();

}

//put item in buffer
public void put(int item) {

try {

//Before producer can produce an item, it must acquire a permit from semProducer

semProducer.acquire();

}

catch(InterruptedException e) {

System.out.println("Unable to put item on buf");

}
34

Semaphore, java…

//producer producing item
this.item=item;

System.out.println("Producer produces item"+
item);

// After producer produces the item, it releases semConsumer to notify
consumer

semConsumer.release();

}

}

35

Semaphore, java…
//Producer class

class Producer implements Runnable {

Thread myThread;

Buffer b;

Producer(Buffer b) {

this.b=b;

myThread=new Thread(this, "Producer");

myThread.start();

}

public void run() {

for(int i=0; i<10;i++)

//producer puts item

b.put(i);

}

}

36

Semaphore, java…
//Consumer class

class Consumer implements Runnable {

Thread myThread;

Buffer b;

Consumer(Buffer b) {

this.b=b;

myThread=new Thread(this, "Consumer");

myThread.start();

}

public void run() {

for(int i=0; i<10;i++)

//consumer get item

b.get();

} }
37

Semaphore, java…
//main class

public class ProducerConsumer {

public static void main(String[] args) {

//creating buffer queue

Buffer b=new Buffer();

//starting consumer thread

Consumer cons=new Consumer(b);

//starting producer thread

Producer prod=new Producer(b);

}

} 38

39

Processes communication using
message passing

Process: program running
within a host.

• within same host, two
processes communicate
using inter-process
communication (defined by
OS).

• processes in different
hosts communicate by
exchanging messages

Client process: process that
initiates communication

Server process: process
that waits to be
contacted

40

Sockets

• process sends/receives
messages to/from its socket

• socket analogous to door
– sending process gives message

out door
– sending process relies on

transport infrastructure on
other side of door which brings
message to socket at receiving
process

process

TCP with
buffers,
variables

socket

host or
client

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

41

Addressing processes
• to receive messages,

process must have
identifier

• host device has unique
32-bit IP address

• Q: does IP address of
host on which process
runs suffice for identifying
the process?
– A: No, many processes

can be running on same
host

• identifier includes both IP
address and port numbers
associated with process on
host.

• Example port numbers:
– HTTP server: 80
– Mail server: 25

• to send HTTP message to a
web server with IP
address:217.110.45.12, we
use:

– 217.110.45.12:80

42

Socket Addresses

 process-to-process
delivery needs two
addresses:
 IP address and
 port number at

each end

 the combination of an IP
address and a port
number is called a socket
address

 a transport-layer protocol needs a
pair of socket addresses:
 the client socket address and
 the server socket address

 the IP header contains the IP
address; the UDP or TCP header
contains the port number

43

Port Protocol Description
20 FTP, Data File Transfer Protocol (data connection)
21 FTP, Control File Transfer Protocol (control connection)
23 TELNET Terminal Network
25 SMTP Simple Mail Transfer Protocol
53 DNS Domain Name Server
67 BOOTP Bootstrap Protocol
79 Finger Lookup information about a user
80 HTTP Hypertext Transfer Protocol

some of the well-known ports used by TCP

44

Socket programming

Socket API
• introduced in BSD4.1 UNIX,

1981
• explicitly created, used, released

by apps
• client/server paradigm
• two types of transport service

via socket API:
– reliable, byte stream-oriented

TCP
– unreliable datagram UDP

a host-local,
application-created,
OS-controlled interface (a
“door”) into which
application process can
both send and
receive messages to/from
another application process

socket

Goal: learn how to build client/server application that communicate using
sockets

45

Socket programming using TCP
Client must contact server
• server process must first be running
• server must create socket (door) that welcomes client’s contact

Client contacts server by:
• creating client-local TCP socket
• specifying IP address, port number of server process
• When client creates socket: client TCP establishes connection to server

TCP
• When contacted by client, server TCP creates new socket for server

process to communicate with client
– allows server to talk with multiple clients
– source port numbers used to distinguish clients

46

Client/server socket interaction: TCP

wait for incoming
connection request

Socket link =
servSock.accept()

create socket,
port=x, for

incoming request:
ServerSocket servSock =new

ServerSocket(x)

create socket,
connect to hostid, port=x

Socket clientSocket = new
Socket(h,x)

close
servSock

read reply from
clientSocket

close
clientSocket

Server
(running on hostid)

Client

send request using
clientSocketread request from

servSock

write reply to
servSock

TCP
connection setup

47

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Stream terminology

• A stream is a sequence of
characters that flow into or out
of a process.

• An input stream is attached to
some input source for the
process, e.g., keyboard or
socket.

• An output stream is attached to
an output source, e.g., monitor
or socket.

Server-Socket programming
• The java.net package provides ServerSocket and

DatagramSocket objects for servers at the TCP/IP
socket level.

Establishing a stream server involves five steps:
1- Create a new Socket with port number.
2- Set a Socket connect for a client using the accept()

method.
3- Create inputstream and outputstream objects.
4- Process stream data.
5- Close the streams.

48

Server-Socket programming cont’d…

 The server program establishes a socket
connection on Port 1234 in its listenSocket
method.

 It reads data sent to it and sends that same data
back to the client in its listenSocket method.

ListenSocket Method
 The listenSocket method creates a ServerSocket

object with port number on which the server
program is going to listen for client
communications.

49

Server-Socket Programming cont’d…

 The port number must be an available port, which
means the number cannot be reserved or already in use.
 For example, Unix systems reserve ports 1 through 1023

for administrative functions leaving port numbers greater
than 1024 available for use.
public static void listenSocket(){

try {

ServerSocket servSock = new ServerSocket(1234);

}

catch(IOException e){

System.out.println("Unable to create port!");

System.exit(-1);

}
50

Server-Socket Programming cont’d…

 Next, the listenSocket method creates a Socket
connection for the requesting client.

 This code executes when a client starts up and requests
the connection on the host and port where this server
program is running.

 When the connection successfully established, the
servSock.accept() method returns a new Socket
object.

51

Server-Socket Programming cont’d…

Socket link=null;

try

{

link = servSock.accept();

}

catch(IOException e)

{

System.out.println("Accept failed: 1234");

}

52

Server-Socket Programming cont’d…

 Then, the listenSocket method creates a BufferedReader
object to read the data sent over the socket connection
from the client program.

 It also creates a PrintWriter object to send the data
received back to the client.

BufferedReader in = new BufferedReader(new
InputStreamReader(link.getInputStream()));

PrintWriter out = new
PrintWriter(link.getOutputStream(), true);

53

Server-Socket Programming cont’d…

 Lastly, the listenSocket method loops on the input stream
to read data as it comes in from the client and writes to
the output stream to send the data back.

int numMessages = 0;
String message = in.readLine();

while (!message.equals("close")) {
System.out.println("Message received.");

numMessages++;
out.println("Message " + numMessages + ": " +
message);

message = in.readLine();
}

54

Lab: Server -Socket source code

55

import java.io.*;

import java.net.*;

public class Server {

private static ServerSocket servSock;

private static final int PORT=1234;

public static void main(String[] args)
throws IOException {

System.out.println("Openning port.....");

while(true)

{

listenSocket();

}

}

Lab: Server-Socket source code …

56

public static void listenSocket() {

try {

servSock=new ServerSocket(PORT);

} catch(IOException e) {

System.out.println("Unable to create
socket with port no:1234!");

System.exit(-1); }

Socket link=null;

try {

link=servSock.accept();

} catch(IOException e){

System.out.println("Accept failed:
Port 1234");

}

Create
server socket
at port 1234

Create socket
connection

with the client

Lab: Server-Socket source code …

57

try {

BufferedReader in=new BufferedReader(new
InputStreamReader(link.getInputStream(
)));

PrintWriter out=new
PrintWriter(link.getOutputStream(),tru
e);

int numMessages=0;

String message=in.readLine();
while(!message.equals("close")) {

System.out.println("Message
recieved.");

numMessages ++;

Create input
stream, attached

to socket

Create output
stream, attached

to socket

Read in line
from socket

Lab: Server-Socket source code…

58

out.println("Message" + numMessages+
":" + message);

message=in.readLine();

}

}

catch(IOException e)

{

System.out.println("Message is not
recieved");

}

}

}

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Client-Socket Programming

• Establishing a stream client involves four
steps:

1- Create a new Socket with a server IP address and
port number.

2- Create input stream and output stream objects.
3- Process stream data and
4- Close the streams.

59

Client-Socket Programming cont’d…

 The client program establishes a connection to the
server program on a particular host and port
number in its listenSocket method, and

 It then sends data entered by the end user to the
server program.

 The listenSocket method also receives the data
back from the server and prints it to the command
line.

60

Client-Socket Programming cont’d…
listenSocket Method
 The listenSocket method first creates a Socket object

with the IP address (“local host”) and port number (1234)
where the server program is listening for client connection
requests.
Socket link= new Socket(host,PORT);

• It then provide a place where the data shall be stored by
creating BufferedReader object to read the streams
sent by the server back to the client.
BufferedReader in=new BufferedReader(

new
InputStreamReader(link.getInputStream()));

61

Client-Socket Programming cont’d…

 Next, it creates a PrintWriter object to send data over
the socket connection to the server program.

PrintWriter out=

New
PrintWriter(link.getOutputStream(),true);

 It also creates a BufferedReader object Set up stream
for keyboard entry...

BufferedReader userentry=new BufferedReader(

new InputStreamReader(System.in));

62

Client-Socket Programming cont’d…
 This listenSocket method code gets the input streams

and passes it to the PrintWriter object, which then sends
it over the socket connection to the server program.

 Lastly, it receives the input text sent back to it by the
server and prints the streams out.

String message, response;
do {

System.out.print("Enter message:");
message=userentry.readLine();
out.println(message);
response=in.readLine();
System.out.println("\nSERVER>" + response);

} while(!message.equals("close"));

63

Lab: Client-Socket Programming
import java.io.*;
import java.net.*;
public class Client {
private static InetAddress host;
private static final int PORT=1234;

public static void main(String[] args) throws
IOException {
try {

host=InetAddress.getLocalHost();
}

catch(UnknownHostException e)
{
System.out.println("Host id not found!");
System.exit(-1);
}
listenSocket();
}

64

Server is
local

Lab: Client-Socket Programming
public static void listenSocket() {

Socket link=null;

try {

link=new Socket(host,PORT);}

catch(IOException e){

System.out.println("Unable to connect");

System.exit(-1);}

try {

BufferedReader in=new BufferedReader(new
InputStreamReader(link.getInputStream()));

PrintWriter out=new
PrintWriter(link.getOutputStream(),true);

BufferedReader userentry=new
BufferedReader(new
InputStreamReader(System.in));

String message, response; 65

Create
input stream for

user entry

Create
client socket,

connect to server

Create
output stream

attached to socket

Create
input stream

attached to socket

Client-Socket Programming …
do {

System.out.print("Enter message:");

message=userentry.readLine();

out.println(message);

response=in.readLine();

System.out.println("\nSERVER>" + response);

} while(!message.equals("close"));

}

catch(IOException e)

{

System.out.println("Message is not sent.");

}

}

}
66

Project

• Make the client-server program as multithreading
client-server for any type of application:

• E.g. it may be chat room, or client –server, where
the server can be any server application, web
server, ftp server, scientific calculator,…

67

