Work sheet-5

1. Using Euler's method solve the I.V.P. $Y^{\prime}=t^{2}+y^{2}$ with $Y(0)=1$ over $0 \leq t \leq 1$.
2. Compute Euler's solution to the I.V.P $Y^{\prime}=1-t \sqrt[3]{y}$ with $Y(0)=1$ over $0 \leq t \leq 5$.
3. Do $\mathrm{Q} \# 1$ using $4^{\text {th }}$ order Runge-Kutta method.
4. Do $\mathrm{Q} \# 2$ using $4^{\text {th }}$ order Runge-Kutta method.
5. Given $f[x]=\mathbb{E}^{-x} \sin [x]$, find numerical approximations to the second derivative $\mathrm{f}^{\prime \prime}[1.0]$, using three points and the central difference formula, use step sizes, $\mathrm{h}=0.1,0.01,0,001$.
6. 2. Numerically approximate the integral $\int_{0}^{3}\left(3 \mathbb{e}^{-x} \sin \left[x^{2}\right]+1\right) d d x$ by using the trapezoidal rule with $\mathrm{m}=1,2$ and 4 subintervals.
1. 3. Numerically approximate the integral $\int_{0}^{3}\left(3 \mathbb{E}^{-x} \sin \left[x^{2}\right]+1\right) d x$ by using Simpson's rule with $\mathrm{m}=1,2$ and 4 .
1. Numerically approximate the integral $\int_{0}^{3}\left(3 \mathbb{E}^{-x} \sin \left[x^{2}\right]+1\right) d x$ by using Simpson's $3 / 8$ rule with $\mathrm{m}=1,2$ and 4 .
