Work sheet-5

- 1. Using Euler's method solve the I.V.P. $y' = t^2 + y^2$ with y(0) = 1 over $0 \le t \le 1$.
- 2. Compute Euler's solution to the I.V.P $\mathbb{Y}' = 1 t \sqrt[3]{\mathbb{Y}}$ with $\mathbb{Y}(0) = 1$ over $0 \le t \le 5$.
- 3. Do Q#1 using 4th order Runge-Kutta method.
- 4. Do Q#2 using 4th order Runge-Kutta method.
- 5. Given $f[x] = e^{-x} Sin[x]$, find numerical approximations to the second derivative $f^{(1,0)}$, using three points and the central difference formula, use step sizes, h=0.1, 0.01, 0,001.
- 6. 2. Numerically approximate the integral $\int_0^{\frac{3}{2}} (3e^{-x} \sin[x^2] + 1) dx$ by using the trapezoidal rule with m = 1, 2 and 4 subintervals.
- 7. 3. Numerically approximate the integral $\int_0^3 (3e^{-x} \sin[x^2] + 1) dx$ by using Simpson's rule with m = 1, 2 and 4.
- 8. Numerically approximate the integral $\int_{0}^{3} (3e^{-x} \sin[x^{2}] + 1) dx$ by using Simpson's 3/8 rule with m = 1, 2 and 4.