Work sheet-2

1. Use the Gauss-Jordan elimination method to solve the linear system

$$
\left(\begin{array}{cccc}
4 & 8 & 4 & 0 \\
1 & 4 & 7 & 2 \\
1 & 5 & 4 & -3 \\
1 & 3 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
10 \\
-4 \\
-4
\end{array}\right)
$$

2. Given $\quad \boldsymbol{A}=\left(\begin{array}{cccc}4 & 2 & -1 & 3 \\ 3 & -4 & 2 & 5 \\ -2 & 6 & -5 & -2 \\ 5 & 1 & 6 & -3\end{array}\right)$. Find matrices \mathbf{L} and \mathbf{U} so that $\mathbf{L U}=\mathbf{A}$.
3. Use Gauss-Seidel iteration to attempt solving question number 1. Try 10 iterations.
