# Chapter 3: Angle (Nonlinear) Modulation Techniques



Addis Ababa Institute of Technology አዲስ አበባ ቴክኖሎጂ ኢንስቲታዎታ Addis Ababa University አዲስ አበባ ዩኒቨርሲቲ Undergraduate Program School of Electrical and Computer Engineering

# **Angle Modulation**

- Angle modulation
  - Frequency modulation (FM)
  - Phase modulation (PM)
- Basic idea
  - Vary frequency (FM) or phase (PM) of a carrier signal according to the message signal
- While AM is (almost) linear, FM or PM is highly nonlinear
  - Linear => Superposition applies



# **Angle Modulation**

#### • In amplitude modulation

- Spectrum of the modulated signal is the translated message spectrum
- Transmission bandwidth never exceeds twice the message bandwidth
- In angle modulation
  - Spectrum of the modulated signal are **not related** in any simple fashion to message spectrum
  - Transmission bandwidth are much greater than twice the message bandwidth



## **Angle Modulation**

- FM/PM provide many advantages
  - Main noise immunity over AM
- At a cost of
  - Larger bandwidth and
  - Increased system complexity
- Demodulation may be complex, but modern ICs allow costeffective implementation
- Example: FM radio (high quality, not expensive receivers)



## Angle Modulation: Basic Definitions

• Angle-modulated signal (PM or FM) can be expressed as

• Phase modulation

$$x(t) = A_c \cos(\psi(t))$$

$$\psi(t) = \omega_c t + \varphi(t), \quad \varphi(t) = \Delta \varphi \cdot m(t)$$

- $\Delta \phi$  phase deviation constant
  - Radians per unit of m(t)
- Frequency modulation

$$\Psi(t) = \omega_c t + \int_0^t \Omega(\tau) d\tau, \quad \Omega(t) = \Delta \Omega \cdot m(t)$$

- $\Delta\Omega$  angular frequency deviation constant
  - In radians per second per unit of m(t)
  - $\Delta \Omega = 2\pi . \Delta f$ ; in Hz per second per unit of m(t)



#### Angle Modulation: Basic Definitions

- Max phase deviation:  $\Delta \varphi = Max \{ |\varphi(t)| \} = Max \{ |\psi(t) \omega_c t| \}$
- Max frequency deviation:  $\Delta \Omega = Max \{ |\Omega(t)| \} = Max \{ |\omega(t) \omega_c| \}$
- Normalized message signal:  $|m(t)| \le 1$
- Note: deviation is w.r.t. unmodulated value



#### Angle Modulation: Analysis

Instantaneous frequency

$$\omega(t) = \frac{d\psi(t)}{dt} = \begin{cases} \omega_c + \frac{d\varphi(t)}{dt} = \omega_c + \Delta \varphi \frac{dm(t)}{dt}, & PM \\ \omega_c + \Omega(t) = \omega_c + \Delta \Omega \cdot m(t), & FM \end{cases}$$

• Instantaneous phase

$$\psi(t) = \int_{0}^{t} \omega(\tau) d\tau = \begin{cases} \omega_{c}t + \varphi(t) = \omega_{c}t + \Delta\varphi \cdot m(t), & PM \\ \omega_{c}t + \int_{0}^{t} \Omega(\tau) d\tau = \omega_{c}t + \Delta\Omega\int_{0}^{t} m(\tau) d\tau, & FM \end{cases}$$

• Effect of mod. signal amplitude:  $M(t) = A \cdot m(t), \max[|m(t)|] = 1$ 

$$\begin{cases} \Delta \varphi = k_p A, PM \\ \Delta \Omega = 2\pi k_f A FM \end{cases} \begin{array}{c} k_f, k_p \text{ - modulation constants,} \\ \text{Hz/V \& rad./V} \end{cases}$$



#### Angle Modulation: Analysis





#### Angle Modulation: Analysis





#### Chapter 3 – Nonlinear Modulation Techniques

#### **Example: Sinusoidal Modulating Signal**

• Assume that  $m(t) = \cos(\omega_m t)$ 

• Instantaneous phase: 
$$\psi(t) = \begin{cases} \omega_c t + \Delta \varphi \cdot \cos(\omega_m t), & PM \\ \omega_c t + \frac{\Delta \Omega}{\omega_m} \sin(\omega_m t), & FM \end{cases}$$

• Modulated signal: 
$$x(t) = \begin{cases} A_c \cos\left[\omega_c t + \Delta \varphi \cdot \cos\left(\omega_m t\right)\right], & PM \\ A_c \cos\left[\omega_c t + \frac{\Delta \Omega}{\omega_m} \sin\left(\omega_m t\right)\right], & FM \end{cases}$$

$$\begin{cases} \beta_p = \Delta \varphi, & PM \\ \beta_f = \frac{\Delta \Omega}{\omega_m}, & FM \end{cases}$$

Valid in general case as well, with



• Consider sinusoidal modulating signal

$$x(t) = A_c \cos\left[\omega_c t + \beta \cdot \sin(\omega_m t)\right] = \operatorname{Re}\left[A_c e^{j\beta \cdot \sin(\omega_m t)} e^{j\omega_c t}\right]$$

Complex envelope is expanded in Fourier series

$$C(t) = A_c e^{j\beta \cdot \sin(\omega_m t)} = A_c \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_m t}$$

Expansion coefficients are

$$c_n = \frac{1}{T_m} \int_0^{T_m} e^{j\beta \sin \omega_m t} e^{-jn\omega_m t} dt \stackrel{u=\omega_m t}{=} \frac{1}{2\pi} \int_0^{2\pi} e^{j(\beta \sin u - nu)} du = J_n(\beta)$$

• Finally, 
$$x(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos[(\omega_c + n\omega_m)t]$$

 $J_n(\beta)$  - Bessel function of 1st kind & n-th order,  $J_{-n}(\beta) = (-1)^n J_n(\beta)$ 

#### Chapter 3 – Nonlinear Modulation Techniques





| n  | $\beta = 0.1$ | $\beta = 0.2$ | $\beta = 0.5$ | $\beta = 1$ | $\beta = 2$ | $\beta = 5$ | $\beta = 8$ | $\beta = 10$ | n  |
|----|---------------|---------------|---------------|-------------|-------------|-------------|-------------|--------------|----|
| 0  | 0.998         | 0.990         | 0.938         | 0.765       | 0.224       | -0.178      | 0.172       | -0.246       | 0  |
| 1  | 0.050         | 0.100         | 0.242         | 0.440       | 0.577       | -0.328      | 0.235       | 0.043        | 1  |
| 2  | 0.001         | 0.005         | 0.031         | 0.115       | 0.353       | 0.047       | -0.113      | 0.255        | 2  |
| 3  |               |               |               | 0.020       | 0.129       | 0.365       | -0.291      | 0.058        | 3  |
| 4  |               |               |               | 0.002       | 0.034       | 0.391       | -0.105      | -0.220       | 4  |
| 5  |               |               |               |             | 0.007       | 0.261       | 0.186       | -0.234       | 5  |
| 6  |               |               |               |             | 0.001       | 0.131       | 0.338       | -0.014       | 6  |
| 7  | the las       | st significa  | 0.053         | 0.321       | 0.217       | 7           |             |              |    |
| 8  | spectr        | al compoi     | 0.018         | 0.223       | 0.318       | 8           |             |              |    |
| 9  |               | -[0, 1]       | 1             |             |             | 0.006       | 0.126       | 0.292        | 9  |
| 10 | n             | =[p+1         |               |             |             | 0.001       | 0.061       | 0.207        | 10 |
| 11 |               |               |               |             |             |             | 0.026       | 0.123        | 11 |
| 12 |               |               |               |             |             |             | 0.010       | 0.063        | 12 |
| 13 |               |               |               |             |             |             | 0.003       | 0.029        | 13 |
| 14 |               |               |               |             |             |             | 0.001       | 0.012        | 14 |
| 15 |               |               |               |             |             |             |             | 0.004        | 15 |
| 16 |               |               |               |             |             |             |             | 0.001        | 16 |



- The spectrum consists of a carrier-frequency component plus an infinite number of sidebands components at frequencies  $\omega_c \pm n\omega_m$  (n=1,2,3,...)
- The relative amplitude of the spectral lines depend on the value of  $J_n(\beta)$ 
  - The value of  $J_n(\beta)$  becomes very small for larger of n
- The number of significant spectral lines (i.e., is having appreciable relative amplitude) is a function of the modulation index  $\beta$ 
  - With  $\beta \ll 1$ , only  $J_0$  and  $J_1$  are significant, so the spectrum will consists of carrier and two sideband lines
  - But if  $\beta >>1$ , there will be many sideband lines



#### Amplitude Spectrum Sinusoidally Modulated FM Signal



Fig. 4-2 Amplitude spectra of sinusoidally modulated FM signals ( $\omega_m$  fixed)



#### Spectrum: Examples





Sem. II, 2018/19

#### Chapter 3 – Nonlinear Modulation Techniques

## Bandwidth of Angle-Modulated Signal

• Power bandwidth (98% of the power) of angle-modulated signal (Carson's rule)

$$\Delta \omega \approx 2(\beta + 1)\omega_m$$

• Power bandwidth of PM and FM signals

$$\Delta \omega \approx 2(\beta + 1) \omega_m = \begin{cases} 2(\Delta \varphi + 1) \omega_m, & PM \\ 2(\Delta \Omega + \omega_m), & FM \end{cases}$$

- These expressions hold for a general modulating signal as well
  - $\omega_m$  the max. modulating frequency
- Angle modulation with large index expands spectrum!



### Arbitrary Modulation

• For arbitrary angle modulating signal m(t) bandwidth limited to  $\omega_{\rm M}$  rad/s, the deviation ratio is defined as

| – ת | maximum frequency deviation | = | Δω         |
|-----|-----------------------------|---|------------|
| D - | bandwidth of $m(t)$         |   | $\omega_M$ |

- D plays the same role as the modulation index  $\beta$  plays for sinusoidal modulation
- Replacing  $\beta$  by D and  $\omega_{_{M}}$  by  $\omega_{_{M}}$  we have

 $W_B \approx 2(D+1)\omega_M$ 

- This expression is referred to as Carson's rule
  - If D<<1, the bandwidth is approximately 2  $\omega_M$ : Narrowband signal
  - If D>>1, the bandwidth is approximately 2  $D\omega_M$ : Wideband signal



#### Narrowband Angle Modulation

- Modulation index is low,  $\beta << 1$
- Modulated signal can be expressed as:

$$x(t) = A_c \cos\left[\omega_c t + \beta \cdot \sin\left(\omega_m t\right)\right] =$$
$$= A_c \cos\omega_c t + \frac{A_c \beta}{2} \cos\left(\omega_c + \omega_m\right) t - \frac{A_c \beta}{2} \cos\left(\omega_c - \omega_m\right) t$$

• The bandwidth (both, PM & FM) is similar to AM signal  $2|S_x(f)|$ 





### Wideband Angle Modulation

- Modulation index is high,  $\beta >> 1$
- The signal bandwidth is:

$$\Delta \omega \approx 2\beta \omega_m = \begin{cases} 2\Delta \varphi \cdot \omega_m, & PM \\ 2\Delta \Omega, & FM \end{cases}$$

- Different for PM and FM!
- Wideband FM
  - The bandwidth is twice the frequency deviation
  - Does not depend on the modulating frequency
- Wideband PM
  - The bandwidth depends on modulating frequency







#### **PM Modulator**





#### Narrowband Angle Modulator





#### Indirect Wideband Angle Modulator





#### Chapter 3 – Nonlinear Modulation Techniques

## **Direct Wideband Angle Modulator**



- Explain how it operates
  - Hint: consider it without feedback first
  - Explain why feedback is required
  - Explain why frequency divider is required



#### **FM Demodulators**



- FM-to-AM conversion
  - Possible candidate:  $|H(f)| = 2\pi f$  (differentiator)



#### **FM Demodulators**

• Anther possible candidate: FM Slope Detector





#### Balanced Discriminator: Block Diagram





Sem. II, 2018/19

#### Chapter 3 – Nonlinear Modulation Techniques

#### Phased Locked Loop (PLL) Detector





Sem. II, 2018/19

#### **PLL Detector: Linear Model**





# Comparison of AM and FM/PM

- Amplitude modulation
  - Is simple (envelope detector) but no noise/interference immunity (low quality)
  - Bandwidth is twice or the same as the modulating signal (no bandwidth expansion)
  - Power efficiency is low for conventional AM
  - DSB-SC & SSB good power efficiency, but complex circuitry
- FM/PM
  - Spectrum expansion & noise immunity
  - Good quality
  - More complex circuitry
  - However, ICs allow for cost effective implementation



#### Important Properties of Angle-Modulated Signals: Summary

- FM/PM signal is a nonlinear function of the message
- The signal's bandwidth increases with the modulation index
- The carrier spectral level varies with the modulation index, being 0 in some cases
- Narrowband FM/PM
  - Signal's bandwidth is twice that of the message (same as for AM)
- Amplitude of the FM/PM signal is constant
  - Hence, the power does not depend on the message



## Summary

- Angle modulation: PM & FM
- Spectra of angle-modulated signals. Modulation index.
- Narrowband (low-index) & wideband (large-index) modulation.
- Signal bandwidth.
- Relation between PM and FM.
- Generation of angle-modulated signals. Narrowband & wideband modulators.
- Demodulation of PM and FM signals. Slope detector & balanced discriminator. PLL detector.
- Comparison of AM and FM/PM.

