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Preface

Process control has become increasingly important in
the process industries as a consequence of global com-
petition, rapidly changing economic conditions, faster
product development, and more stringent environmen-
tal and safety regulations. Process control and its allied
fields of process modeling and optimization are critical
in the development of more flexible and more complex
processes for manufacturing high-value-added prod-
ucts. Furthermore, the rapidly declining cost of digital
devices and increased computer speed (doubling every
18 months, according to Moore’s Law) have enabled
high-performance measurement and control systems to
become an essential part of industrial plants.

It is clear that the scope and importance of process
control technology will continue to expand during the
21st century. Consequently, chemical engineers need to
master this subject in order to be able to design and op-
erate modern plants. The concepts of dynamics, feed-
back, and stability are also important for understanding
many complex systems of interest to chemical engineers,
such as in bioengineering and advanced materials. An
introductory course should provide an appropriate bal-
ance of process control theory and practice. In particu-
lar, the course should emphasize dynamic behavior,
physical and empirical modeling, computer simulation,
measurement and control technology, basic control con-
cepts, and advanced control strategies. We have orga-
nized this book so that the instructor can cover the basic
material while having the flexibility to include advanced
topics. The textbook provides the basis for 10 to 30
weeks of instruction for a single course or a sequence of
courses at either the undergraduate or first-year graduate
levels. It is also suitable for self-study by engineers in
industry. The book is divided into reasonably short
chapters to make it more readable and modular. This
organization allows some chapters to be omitted with-
out a loss of continuity.

The mathematical level of the book is oriented to-
ward a junior or senor student in chemical engineering
who has taken at least one course in differential equa-
tions. Additional mathematical tools required for the
analysis of control systems are introduced as needed.
We emphasize process control techniques that are used
in practice and provide detailed mathematical analysis
only when it is essential for understanding the material.

Key theoretical concepts are illustrated with numerous
examples and simulations.

The textbook material has evolved at the University
of California, Santa Barbara, and the University of
Texas at Austin over the past 40 years. The first edition
(SEM1) was published in 1989, adopted by over 80 uni-
versities worldwide, and translated into Korean and
Japanese. In the second edition (SEM2, 2004), we added
new chapters on the important topics of process moni-
toring (Chapter 21), batch process control (Chapter 22),
and plantwide control (Chapters 23 and 24). Even with
the new chapters, the length of the second edition was
about the same as SEML1. Interactive computer software
based on MATLAB® and Simulink® software was
extensively used in examples and exercises. The second
edition was translated into Chinese in 2004.

For the third edition (SEMD?3), we are very pleased
to have added a fourth co-author, Professor Frank
Doyle (UCSB), and we have made major changes that
reflect the evolving field of chemical and biological en-
gineering, as well as the practice of process control,
which are described in the following.

The book is divided into five parts. Part I provides an
introduction to process control and an in-depth discus-
sion of process modeling. Control system design and
analysis increasingly rely on the availability of a
process model. Consequently, the third edition includes
additional material on process modeling based on first
principles, such as conservation equations and thermo-
dynamics. Exercises have been added to several chap-
ters based on MATLAB® simulations of two physical
models, a distillation column and a furnace. These sim-
ulations are based on the book, Process Control Modules,
by Frank Doyle, Ed Gatzke, and Bob Parker. Both the
book and the MATLAB simulations are available on
the book Web site (www.wiley.com/college/seborg).
National Instruments has provided multimedia modules
for a number of examples in the book based on their
LabVIEW™ software.

Part II (Chapters 3 through 7) is concerned with the
analysis of the dynamic (unsteady-state) behavior of
processes. We still rely on the use of Laplace transforms
and transfer functions, to characterize the dynamic
behavior of linear systems. However, we have kept ana-
lytical methods involving transforms at a minimum and
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x Preface

prefer the use of computer simulation to determine
dynamic responses. In addition, the important topics of
empirical models and their development from plant
data are presented.

Part III (Chapters 8 through 15) addresses the funda-
mental concepts of feedback and feedforward control.
The topics include an overview of the process instru-
mentation (Chapter 9) and control hardware and soft-
ware that are necessary to implement process control
(Chapter 8 and Appendix A). Chapter 13 (new) pre-
sents the important topic of process control strategies
at the unit level, and additional material on process
safety has been added to Chapter 10. The design and
analysis of feedback control systems still receive con-
siderable attention, with emphasis on industry-proven
methods for controller design, tuning, and trouble-
shooting. The frequency response approach for open
and closed-loop processes is now combined into a single
chapter (14), because of its declining use in the process
industries. Part III concludes with a chapter on feedfor-
ward and ratio control.

Part IV (Chapters 16 through 22) is concerned with
advanced process control techniques. The topics
include digital control, multivariable control, and
enhancements of PID control, such as cascade control,
selective control, and gain scheduling. Up-to-date
chapters on real-time optimization and model predic-
tive control emphasize the significant impact these
powerful techniques have had on industrial practice.
Other chapters consider process monitoring and batch
process control. The two plantwide control chapters
that were introduced in SEM?2 have been moved to the
book Web site, as Appendices G and H. We have
replaced this material with two new chapters on bio-
systems control, principally authored by our recently
added fourth author, Frank Doyle. Part V (new Chap-
ters 23 and 24) covers the application of process control
in biotechnology and biomedical systems, and intro-
duces basic ideas in systems biology.

The book Web site will contain errata lists for current
and previous editions that are available to both students
and instructors. In addition, the following resources for
instructors (only) are provided: solutions manual, lec-
ture slides, figures from the text, archival material from
SEM1 and SEM2, and a link to the authors’ Web sites.
Instructors need to visit the book Web site to register
for a password to access the protected resources. The
book Web ssite is located at www.wiley.com/college/seborg.

We gratefully acknowledge the very helpful suggestions
and reviews provided by many colleagues in academia
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Chapter 1

Introduction to Process Control

CHAPTER CONTENTS

1.1 Representative Process Control Problems
1.1.1 Continuous Processes
1.1.2 Batch and Semi-Batch Processes

1.2 Illustrative Example — A Blending Process

1.3 Classification of Process Control Strategies
1.3.1 Process Control Diagrams

1.4 A More Complicated Example — A Distillation Column

1.5 The Hierarchy of Process Control Activities
1.6 An Overview of Control System Design

Summary

In recent years the performance requirements for
process plants have become increasingly difficult to sat-
isfy. Stronger competition, tougher environmental and
safety regulations, and rapidly changing economic con-
ditions have been key factors in tightening product
quality specifications. A further complication is that
modern plants have become more difficult to operate
because of the trend toward complex and highly inte-
grated processes. For such plants, it is difficult to pre-
vent disturbances from propagating from one unit to
other interconnected units.

In view of the increased emphasis placed on safe,
efficient plant operation, it is only natural that the subject
of process control has become increasingly important in
recent years. Without computer-based process control
systems it would be impossible to operate modern
plants safely and profitably while satisfying product
quality and environmental requirements. Thus, it is im-
portant for chemical engineers to have an understand-
ing of both the theory and practice of process control.

The two main subjects of this book are process
dynamics and process control. The term process dynamics
refers to unsteady-state (or transient) process behavior.
By contrast, most of the chemical engineering curricula

emphasize steady-state and equilibrium conditions in such
courses as material and energy balances, thermodynam-
ics, and transport phenomena. But process dynamics are
also very important. Transient operation occurs during
important situations such as start-ups and shutdowns,
unusual process disturbances, and planned transitions
from one product grade to another. Consequently, the
first part of this book is concerned with process dynamics.

The primary objective of process control is to main-
tain a process at the desired operating conditions, safely
and efficiently, while satisfying environmental and
product quality requirements. The subject of process
control is concerned with how to achieve these goals.
In large-scale, integrated processing plants such as oil
refineries or ethylene plants, thousands of process vari-
ables such as compositions, temperatures, and pressures
are measured and must be controlled. Fortunately,
large numbers of process variables (mainly flow rates)
can usually be manipulated for this purpose. Feedback
control systems compare measurements with their de-
sired values and then adjust the manipulated variables
accordingly.

As an introduction to the subject, we consider repre-
sentative process control problems in several industries.

1



2 Chapter1 Introduction to Process Control

1.1 REPRESENTATIVE PROCESS
CONTROL PROBLEMS

The foundation of process control is process under-
standing. Thus, we begin this section with a basic question:
what is a process? For our purposes, a brief definition is
appropriate:

Process: The conversion of feed materials to
products using chemical and physical operations. In
practice, the term process tends to be used for both
the processing operation and the processing
equipment.

Note that this definition applies to three types of com-
mon processes: continuous, batch, and semi-batch. Next,
we consider representative processes and briefly summa-
rize key control issues.

1.1.1 Continuous Processes

Four continuous processes are shown schematically in
Figure 1.1:

(a) Tubular heat exchanger. A process fluid on
the tube side is cooled by cooling water on the
shell side. Typically, the exit temperature of
the process fluid is controlled by manipulating
the cooling water flow rate. Variations in the
inlet temperatures and the process fluid flow
rate affect the heat exchanger operation. Con-
sequently, these variables are considered to be
disturbance variables.

Continuous stirred-tank reactor (CSTR). If the
reaction is highly exothermic, it is necessary to
control the reactor temperature by manipulating
the flow rate of coolant in a jacket or cooling
coil. The feed conditions (composition, flow rate,
and temperature) can be manipulated variables
or disturbance variables.

(b)

()

Thermal cracking furnace. Crude oil is broken
down (“cracked”) into a number of lighter

petroleum fractions by the heat transferred
from a burning fuel/air mixture. The furnace
temperature and amount of excess air in the flue
gas can be controlled by manipulating the fuel
flow rate and the fuel/air ratio. The crude oil
composition and the heating quality of the fuel
are common disturbance variables.
(d) Multicomponent distillation column. Many dif-
ferent control objectives can be formulated for
distillation columns. For example, the distillate
composition can be controlled by adjusting the
reflux flow rate or the distillate flow rate. If
the composition cannot be measured on-line, a
tray temperature near the top of the column can
be controlled instead. If the feed stream is sup-
plied by an upstream process, the feed conditions
will be disturbance variables.

For each of these four examples, the process control
problem has been characterized by identifying three
important types of process variables.

e Controlled variables (CVs): The process variables
that are controlled. The desired value of a controlled
variable is referred to as its set point.

® Manipulated variables (MVs): The process variables
that can be adjusted in order to keep the controlled
variables at or near their set points. Typically, the
manipulated variables are flow rates.

e Disturbance variables (DVs): Process variables
that affect the controlled variables but cannot be
manipulated. Disturbances generally are related
to changes in the operating environment of the
process: for example, its feed conditions or ambi-
ent temperature. Some disturbance variables can
be measured on-line, but many cannot such as the
crude oil composition for Process (c), a thermal
cracking furnace.

The specification of CVs, MVs, and DVs is a critical step
in developing a control system. The selections should
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Figure 1.1 Some typical continuous processes.
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Figure 1.2 Some typical processes whose operation is noncontinuous.

be based on process knowledge, experience, and control
objectives.

1.1.2 Batch and Semi-Batch Processes

Batch and semi-batch processes are used in many
process industries, including microelectronics, pharma-
ceuticals, specialty chemicals, and fermentation. Batch
and semi-batch processes provide needed flexibility for
multiproduct plants, especially when products change
frequently and production quantities are small. Fig-
ure 1.2 shows four representative batch and semi-batch
processes:

(e) Batch or semi-batch reactor. An initial charge
of reactants is brought up to reaction conditions,
and the reactions are allowed to proceed for a
specified period of time or until a specified
conversion is obtained. Batch and semi-batch
reactors are used routinely in specialty chemical
plants, polymerization plants (where a reaction
byproduct typically is removed during the reac-
tion), and in pharmaceutical and other biopro-
cessing facilities (where a feed stream, e.g.,
glucose, is fed into the reactor during a portion
of the cycle to feed a living organism, such as a
yeast or protein). Typically, the reactor temper-
ature is controlled by manipulating a coolant
flow rate. The end-point (final) concentration of
the batch can be controlled by adjusting the de-
sired temperature, the flow of reactants (for
semi-batch operation), or the cycle time.

(f) Batch digester in a pulp mill. Both continuous
and semi-batch digesters are used in paper man-
ufacturing to break down wood chips in order to
extract the cellulosic fibers. The end point of the
chemical reaction is indicated by the kappa
number, a measure of lignin content. It is con-
trolled to a desired value by adjusting the di-
gester temperature, pressure, and/or cycle time.

(g) Plasma etcher in semiconductor processing. A
single wafer containing hundreds of printed cir-
cuits is subjected to a mixture of etching gases
under conditions suitable to establish and main-
tain a plasma (a high voltage applied at high
temperature and extremely low pressure). The
unwanted material on a layer of a microelec-
tronics circuit is selectively removed by chemical
reactions. The temperature, pressure, and flow
rates of etching gases to the reactor are con-
trolled by adjusting electrical heaters and control
valves.

(h) Kidney dialysis unit. This medical equipment is
used to remove waste products from the blood
of human patients whose own kidneys are failing
or have failed. The blood flow rate is maintained
by a pump, and “ambient conditions,” such as
temperature in the unit, are controlled by ad-
justing a flow rate. The dialysis is continued long
enough to reduce waste concentrations to accept-
able levels.

Next, we consider an illustrative example in more detail.

1.2 ILLUSTRATIVE EXAMPLE—-A
BLENDING PROCESS

A simple blending process is used to introduce some
important issues in control system design. Blending op-
erations are commonly used in many industries to en-
sure that final products meet customer specifications.

A continuous, stirred-tank blending system is
shown in Fig. 1.3. The control objective is to blend
the two inlet streams to produce an outlet stream that
has the desired composition. Stream 1 is a mixture of
two chemical species, A and B. We assume that its
mass flow rate wq is constant, but the mass fraction of
A, xq, varies with time. Stream 2 consists of pure A
and thus x, = 1. The mass flow rate of Stream 2, wj,
can be manipulated using a control valve. The mass
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Figure 1.3 Stirred-tank blending system.

fraction of A in the exit stream is denoted by x and
the desired value (set point) by xy,. Thus for this
control problem, the controlled variable is x, the
manipulated variable is w;, and the disturbance vari-
able is x7.

Next we consider two questions.

Design Question. If the nominal value of x1 is X1,
what nominal flow rate w, is required to produce the
desired outlet concentration, xg,?

To answer this question, we consider the steady-state
material balances:

Overall balance:

0= Wl + WZ - w ( 1- 1)
Component A balance:
0 =wx; + waxy, — wx (1-2)

The overbar over a symbol denotes its nominal steady-
state value, for example, the value used in the process
design. According to the process description, X, = 1
and X = Xxg. Solving Eq. 1-1 for w, substituting these
values into Eq. 1-2, and rearranging gives:

xsp - X1

T - x, (1-3)

Wz =
Equation 1-3 is the design equation for the blending
system. If our assumptions are correct and if x; = Xy,
then this value of w, will produce the desired result,
X = xzp. But what happens if conditions change?

Control Question. Suppose that inlet concentration
x; varies with time. How can we ensure that the outlet

composition x remains at or near its desired value,

Xsp?

As a specific example, assume that x; increases to a
constant value that is larger than its nominal value, x;.
It is clear that the outlet composition will also increase
due to the increase in inlet composition. Consequently,
at this new steady state, x > xg,.

Next we consider several strategies for reducing the
effects of x; disturbances on x.

Method 1. Measure x and adjust w,. It is reasonable to
measure controlled variable x and then adjust w, ac-
cordingly. For example, if x is too high, w, should be
reduced; if x is too low, w, should be increased. This
control strategy could be implemented by a person
(manual control). However, it would normally be more
convenient and economical to automate this simple
task (automatic control).

Method 1 can be implemented as a simple control
algorithm (or control law),

wy(t) = wp + Kc[xsp -

x(1)]

where K, is a constant called the controller gain. The
symbols, w,(f) and x(¢), indicate that w, and x change
with time. Equation 1-4 is an example of proportional
control, because the change in the flow rate, wy(f) — wy,
is proportional to the deviation from the set point,
xgp— x(t). Consequently, a large deviation from set
point produces a large corrective action, while a small
deviation results in a small corrective action. Note that
we require K, to be positive because w, must increase
when x decreases, and vice versa. However, in other
control applications, negative values of K. are appro-
priate, as discussed in Chapter 8.

A schematic diagram of Method 1 is shown in Fig. 1.4.
The outlet concentration is measured and transmitted to
the controller as an electrical signal. (Electrical signals
are shown as dashed lines in Fig. 1.4.) The controller ex-
ecutes the control law and sends the calculated value of
w; to the control valve as an electrical signal. The con-
trol valve opens or closes accordingly. In Chapters 8 and
9 we consider process instrumentation and control hard-
ware in more detail.

(1-4)

Method 2. Measure x1, adjust w,. As an alternative to
Method 1, we could measure disturbance variable x;
and adjust w, accordingly. Thus, if x; > X;, we would
decrease w, so that wy, < wy. If x1 < X, we would
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Figure 1.4 Blending system and Control Method 1.

increase w,. A control law based on Method 2 can be
derived from Eq. 1-3 by replacing x; with x;(¢) and w,
with w,(£):

Xsp — x1(2)
O

wa(l) = wy (1-5)
The schematic diagram for Method 2 is shown in Fig.
1.5. Because Eq. 1-3 is valid only for steady-state condi-
tions, it is not clear just how effective Method 2 will be
during the transient conditions that occur after an x;
disturbance.

Method 3. Measure x1 and x, adjust w,. This approach
is a combination of Methods 1 and 2.

Method 4. Use a larger tank. If a larger tank is used,
fluctuations in x; will tend to be damped out as a result
of the larger volume of liquid. However, increasing
tank size is an expensive solution due to the increased
capital cost.

Composition
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X1 valve x5, =1
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Figure 1.5 Blending system and Control Method 2.
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1.3 CLASSIFICATION OF PROCESS
CONTROL STRATEGIES

Next, we will classify the four blending control strate-
gies of the previous section and discuss their relative
advantages and disadvantages. Method 1 is an example
of a feedback control strategy. The distinguishing fea-
ture of feedback control is that the controlled variable
is measured, and that the measurement is used to ad-
just the manipulated variable. For feedback control,
the disturbance variable is not measured.

It is important to make a distinction between nega-
tive feedback and positive feedback. In the engineering
literature, negative feedback refers to the desirable sit-
uation in which the corrective action taken by the con-
troller forces the controlled variable toward the set
point. On the other hand, when positive feedback oc-
curs, the controller makes things worse by forcing the
controlled variable farther away from the set point.
For example, in the blending control problem, positive
feedback takes place if K. < 0, because w, will in-
crease when x increases.! Clearly, it is of paramount
importance to ensure that a feedback control system
incorporates negative feedback rather than positive
feedback.

An important advantage of feedback control is that
corrective action occurs regardless of the source of
the disturbance. For example, in the blending process,
the feedback control law in (1-4) can accommodate
disturbances in wy, as well as x;. Its ability to handle
disturbances of unknown origin is a major reason why
feedback control is the dominant process control strat-
egy. Another important advantage is that feedback con-
trol reduces the sensitivity of the controlled variable to
unmeasured disturbances and process changes. However,
feedback control does have a fundamental limitation: no
corrective action is taken until after the disturbance has
upset the process, that is, until after the controlled vari-
able deviates from the set point. This shortcoming is evi-
dent from the control law of (1-4).

Method 2 is an example of a feedforward control strat-
egy. The distinguishing feature of feedforward control is
that the disturbance variable is measured, but the con-
trolled variable is not. The important advantage of feed-
forward control is that corrective action is taken before
the controlled variable deviates from the set point. Ide-
ally, the corrective action will cancel the effects of the
disturbance so that the controlled variable is not affected
by the disturbance. Although ideal cancelation is gener-
ally not possible, feedforward control can significantly

INote that social scientists use the terms negative feedback and
positive feedback in a very different way. For example, they would say
that teachers provide “positive feedback” when they compliment
students who correctly do assignments. Criticism of a poor performance
would be an example of “negative feedback.”
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Table 1.1 Concentration Control Strategies for the Blending
System

Measured Manipulated
Method Variable Variable Category
1 x wy FB
2 X1 wy FF
3 x1 and x wy FF/FB
4 — — Design change

FB = feedback control; FF = feedforward control; FF/FB =
feedforward control and feedback control.

reduce the effects of measured disturbances, as discussed
in Chapter 15.

Feedforward control has three significant disadvan-
tages: (i) the disturbance variable must be measured (or
accurately estimated), (ii) no corrective action is taken
for unmeasured disturbances, and (iii) a process model
is required. For example, the feedforward control strat-
egy for the blending system (Method 2) does not take
any corrective action for unmeasured wy disturbances.
In principle, we could deal with this situation by mea-
suring both x; and wy and then adjusting w, accordingly.
However, in industrial applications it is generally un-
economical to attempt to measure all potential distur-
bances. A more practical approach is to use a combined
feedforward—feedback control system, in which feed-
back control provides corrective action for unmeasured
disturbances, while feedforward control reacts to elimi-
nate measured disturbances before the controlled vari-
able is upset. Consequently, in industrial applications
feedforward control is normally used in combination
with feedback control. This approach is illustrated by
Method 3, a combined feedforward-feedback control
strategy because both x and x; are measured.

Finally, Method 4 consists of a process design change
and thus is not really a control strategy. The four strate-
gies for the stirred-tank blending system are summarized
in Table 1.1.

Calculations performed
by controller

_————— e e

1.3.1 Process Control Diagrams

Next we consider the equipment that is used to imple-
ment control strategies. For the stirred-tank mixing
system under feedback control in Fig. 1.4, the exit con-
centration x is controlled and the flow rate w, of pure
species A is adjusted using proportional control. To
consider how this feedback control strategy could be im-
plemented, a block diagram for the stirred-tank control
system is shown in Fig. 1.6. Operation of the concentra-
tion control system can be summarized for the key
hardware components as follows:

1. Analyzer and transmitter: The tank exit concentra-
tion is measured by means of an instrument that
generates a corresponding milliampere (mA)-level
signal. This time-varying signal is then sent to the
controller.

Feedback controller: The controller performs three

distinct calculations. First, it converts the actual set

point xg, into an equivalent internal signal X,

Second, it calculates an error signal e(f) by sub-

tracting the measured value x,,,(¢) from the set point

Xgp, that is, e(t) = Xy, — xp(?). Third, controller out-

put p(¢) is calculated from the proportional control

law similar to Eq. 1-4.

3. Control valve: The controller output p(f) in this case
is a DC current signal that is sent to the control
valve to adjust the valve stem position, which in
turn affects flow rate w,(f). Because many control
valves are pneumatic, i.e., are operated by air pres-
sure, the controller output signal may have to be
converted to an equivalent air pressure signal capa-
ble of adjusting the valve position. For simplicity,
we do not show such a transducer in this diagram.

N

The block diagram in Fig. 1.6 provides a convenient start-
ing point for analyzing process control problems. The
physical units for each input and output signal are also

! ! wqlkg/s]
! I *1 [mass
| ! fraction]
: _ Comparator i
*sp | | Analyzer Xsp < e(t) Feedback | | p(®) Control | ¥2) | stirred x(2)
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Figure 1.6 Block diagram for composition Tl (sensor) and
feedback control system in Fig. 1.4. transmitter
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shown. Note that the schematic diagram in Fig. 1.4.
shows the physical connections between the compo-
nents of the control system, while the block diagram
shows the flow of information within the control system.
The block labeled “control valve” has p(f) as its input
signal and wy(¢) as its output signal, which illustrates
that the signals on a block diagram can represent either
a physical variable such as wy(¢) or an instrument signal
such as p(f).

Each component in Fig. 1.6 exhibits behavior that can
be described by a differential or algebraic equation. One
of the tasks facing a control engineer is to develop suit-
able mathematical descriptions for each block; the de-
velopment and analysis of such dynamic mathematical
models are considered in Chapters 2-7.

Other elements in the block diagram (Fig. 1.6) are dis-
cussed in detail in future chapters. Sensors and control
valves are presented in Chapter 9, and the feedback con-
troller is covered in Chapter 8.

1.4 A MORE COMPLICATED EXAMPLE —
A DISTILLATION COLUMN

The blending control system in the previous section is
quite simple, because there is only one controlled vari-
able and one manipulated variable. For most practical
applications, there are multiple controlled variables and
multiple manipulated variables. As a representative
example, we consider the distillation column in Fig. 1.7,
which has five controlled variables and five manipulated
variables. The controlled variables are product compo-
sitions, xp and xp, column pressure, P, and the liquid
levels in the reflux drum and column base, Ap and Ap.
The five manipulated variables are product flow rates,
D and B, reflux flow, R, and the heat duties for the con-
denser and reboiler, Qp and Qp. The heat duties are ad-
justed via the control valves on the coolant and heating

P

medium lines. The feed stream is assumed to come from
an upstream unit. Thus, the feed flow rate cannot be
manipulated, but it can be measured and used for feed-
forward control.

A conventional multiloop control strategy for this
distillation column would consist of five feedback con-
trol loops. Each control loop uses a single manipulated
variable to control a single controlled variable. But
how should the controlled and manipulated variables
be paired? The total number of different multiloop
control configurations that could be considered is 5!, or
120. Many of these control configurations are impracti-
cal or unworkable, such as any configuration that at-
tempts to control the base level g by manipulating
distillate flow D or condenser heat duty Qp. However,
even after the infeasible control configurations are
eliminated, there are still many reasonable configura-
tions left. Thus, there is a need for systematic techniques
that can identify the most promising configurations. For-
tunately, such tools are available; these are discussed in
Chapter 18.

In control applications, for which conventional multi-
loop control systems are not satisfactory, an alternative
approach, multivariable control, can be advantageous.
In multivariable control, each manipulated variable is
adjusted based on the measurements of all the con-
trolled variables rather than only a single controlled
variable, as in multiloop control. The adjustments are
based on a dynamic model of the process that indicates
how the manipulated variables affect the controlled
variables. Consequently, the performance of multivari-
able control, or any model-based control technique, will
depend heavily on the accuracy of the process model. A
specific type of multivariable control, model predictive
control, has had a major impact on industrial practice,
as discussed in Chapter 20.

@b Coolant
3 o (1)
o D
L @_}Distillate
Feed
M Reflux f
N R D
hg _@ AT: analyzer/transmitter
Heating QB LT: level transmitter
medium @ PT: pressure transmitter
| @ﬁ Bottoms Figure 1.7 Controlled and
B manipulated variables for a
xg typical distillation column.
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1.5 THE HIERARCHY OF PROCESS
CONTROL ACTIVITIES

As mentioned earlier, the chief objective of process
control is to maintain a process at the desired operating
conditions, safely and efficiently, while satisfying envi-
ronmental and product quality requirements. So far, we
have emphasized one process control activity, keeping
controlled variables at specified set points. But there
are other important activities that we will now briefly
describe.

In Fig. 1.8 the process control activities are organized
in the form of a hierarchy with required functions at
the lower levels and desirable but optional functions at
the higher levels. The time scale for each activity is
shown on the left side. Note that the frequency of exe-
cution is much lower for the higher-level functions.

Measurement and Actuation (Level 1)

Measurement devices (sensors and transmitters) and
actuation equipment (for example, control valves)
are used to measure process variables and implement
the calculated control actions. These devices are in-
terfaced to the control system, usually digital control
equipment such as a digital computer. Clearly, the

(days-months) 5. Planning and

scheduling
4. Real-time
(hours—days) optimization
3b. Multivariable
(minutes—hours) and constraint

control

3a. Regulatory

(seconds-minutes) control

2. Safety and
environmental/
equipment
protection

(< 1 second)

1. Measurement
and actuation

p
Process

Figure 1.8 Hierarchy of process control activities.

(< 1 second)

measurement and actuation functions are an indis-
pensable part of any control system.

Safety and Environmental/Equipment Protection
(Level 2)

The Level 2 functions play a critical role by ensuring that
the process is operating safely and satisfies environmen-
tal regulations. As discussed in Chapter 10, process
safety relies on the principle of multiple protection layers
that involve groupings of equipment and human ac-
tions. One layer includes process control functions, such
as alarm management during abnormal situations, and
safety instrumented systems for emergency shutdowns.
The safety equipment (including sensors and control
valves) operates independently of the regular instru-
mentation used for regulatory control in Level 3a. Sensor
validation techniques can be employed to confirm that
the sensors are functioning properly.

Regulatory Control (Level 3a)

As mentioned earlier, successful operation of a process
requires that key process variables such as flow rates,
temperatures, pressures, and compositions be operated
at or close to their set points. This Level 3a activity,
regulatory control, is achieved by applying standard
feedback and feedforward control techniques (Chap-
ters 11-15). If the standard control techniques are not
satisfactory, a variety of advanced control techniques
are available (Chapters 16-18). In recent years, there
has been increased interest in monitoring control sys-
tem performance (Chapter 21).

Multivariable and Constraint Control (Level 3b)

Many difficult process control problems have two dis-
tinguishing characteristics: (i) significant interactions
occur among key process variables, and (ii) inequality
constraints exist for manipulated and controlled vari-
ables. The inequality constraints include upper and
lower limits. For example, each manipulated flow rate
has an upper limit determined by the pump and control
valve characteristics. The lower limit may be zero, or a
small positive value, based on safety considerations.
Limits on controlled variables reflect equipment con-
straints (for example, metallurgical limits) and the oper-
ating objectives for the process. For example, a reactor
temperature may have an upper limit to avoid unde-
sired side reactions or catalyst degradation, and a lower
limit to ensure that the reaction(s) proceed.

The ability to operate a process close to a limiting con-
straint is an important objective for advanced process
control. For many industrial processes, the optimum op-
erating condition occurs at a constraint limit—for exam-
ple, the maximum allowed impurity level in a product
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stream. For these situations, the set point should not be
the constraint value, because a process disturbance could
force the controlled variable beyond the limit. Thus, the
set point should be set conservatively, based on the abil-
ity of the control system to reduce the effects of distur-
bances. This situation is illustrated in Fig. 1.9. For (a),
the variability of the controlled variable is quite high,
and consequently, the set point must be specified well
below the limit. For (b), the improved control strategy
has reduced the variability; consequently, the set point
can be moved closer to the limit, and the process can be
operated closer to the optimum operating condition.
The standard process control techniques of Level 3a
may not be adequate for difficult control problems that
have serious process interactions and inequality con-
straints. For these situations, the advanced control
techniques of Level 3b, multivariable control and con-
straint control, should be considered. In particular, the
model predictive control (MPC) strategy was developed
to deal with both process interactions and inequality
constraints. MPC is the subject of Chapter 20.

Real-time Optimization (Level 4)

The optimum operating conditions for a plant are de-
termined as part of the process design. But during plant
operations, the optimum conditions can change fre-
quently owing to changes in equipment availability,
process disturbances, and economic conditions (for ex-
ample, raw material costs and product prices). Conse-
quently, it can be very profitable to recalculate the
optimum operating conditions on a regular basis. This
Level 4 activity, real-time optimization (RTO), is the
subject of Chapter 19. The new optimum conditions are
then implemented as set points for controlled variables.

The RTO calculations are based on a steady-state
model of the plant and economic data such as costs and
product values. A typical objective for the optimization
is to minimize operating cost or maximize the operat-
ing profit. The RTO calculations can be performed for
a single process unit and/or on a plantwide basis.

The Level 4 activities also include data analysis to
ensure that the process model used in the RTO calcula-
tions is accurate for the current conditions. Thus, data
reconciliation techniques can be used to ensure that
steady-state mass and energy balances are satisfied.

Time
(b)

Also, the process model can be updated using parameter
estimation techniques and recent plant data (Chapter 7).

Planning and Scheduling (Level 5)

The highest level of the process control hierarchy is
concerned with planning and scheduling operations for
the entire plant. For continuous processes, the produc-
tion rates of all products and intermediates must be
planned and coordinated, based on equipment con-
straints, storage capacity, sales projections, and the op-
eration of other plants, sometimes on a global basis.
For the intermittent operation of batch and semi-batch
processes, the production control problem becomes a
batch scheduling problem based on similar consider-
ations. Thus, planning and scheduling activities pose
difficult optimization problems that are based on both
engineering considerations and business projections.

Summary of the Process Control Hierarchy

The activities of Levels 1, 2, and 3a in Fig. 1.8, are re-
quired for all manufacturing plants, while the activities
in Levels 3b-5 are optional but can be very profitable.
The decision to implement one or more of these
higher-level activities depends very much on the appli-
cation and the company. The decision hinges strongly
on economic considerations (for example, a cost/bene-
fit analysis), and company priorities for their limited re-
sources, both human and financial. The immediacy of
the activity decreases from Level 1 to Level 5 in the hi-
erarchy. However, the amount of analysis and the com-
putational requirements increase from the lowest level
to the highest level. The process control activities at
different levels should be carefully coordinated and re-
quire information transfer from one level to the next.
The successful implementation of these process control
activities is a critical factor in making plant operation
as profitable as possible.

1.6 AN OVERVIEW OF CONTROL SYSTEM
DESIGN

In this section, we introduce some important aspects of
control system design. However, it is appropriate first to
describe the relationship between process design and
process control.
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Traditionally, process design and control system de-
sign have been separate engineering activities. Thus, in
the traditional approach, control system design is not ini-
tiated until after plant design is well underway, and
when major pieces of equipment may even have been
ordered. This approach has serious limitations, because
the plant design determines the process dynamics as well
as the operability of the plant. In extreme situations, the
process may be uncontrollable, even though the design
appears satisfactory from a steady-state point of view. A
more desirable approach is to consider process dynamics
and control issues early in the process design. The inter-
action between process design and control is analyzed in
more detail in Chapters 13, 25, and 26.

Next, we consider two general approaches to control
system design:

1. Traditional Approach. The control strategy and
control system hardware are selected based on
knowledge of the process, experience, and insight.
After the control system is installed in the plant,
the controller settings (such as controller gain K,
in Eq. 1-4) are adjusted. This activity is referred to
as controller tuning.

2. Model-Based Approach. A dynamic model of the
process is first developed that can be helpful in at
least three ways: (i) it can be used as the basis for
model-based controller design methods (Chapters
12 and 14), (ii) the dynamic model can be incorpo-
rated directly in the control law (for example,
model predictive control), and (iii) the model can
be used in a computer simulation to evaluate alter-
native control strategies and to determine prelimi-
nary values of the controller settings.

In this book, we advocate the philosophy that, for
complex processes, a dynamic model of the process
should be developed so that the control system can be
properly designed. Of course, for many simple process
control problems, controller specification is relatively
straightforward and a detailed analysis or an explicit
model is not required. For complex processes, how-
ever, a process model is invaluable both for control sys-
tem design and for an improved understanding of the

SUMMARY

In this chapter we have introduced the basic concepts
of process dynamics and process control. The process
dynamics determine how a process responds during
transient conditions, such as plant start-ups and shut-
downs, grade changes, and unusual disturbances.
Process control enables the process to be maintained
at the desired operating conditions, safely and effi-
ciently, while satisfying environmental and product
quality requirements. Without effective process con-
trol, it would be impossible to operate large-scale in-
dustrial plants.

process. As mentioned earlier, process control should
be based on process understanding.

The major steps involved in designing and installing a
control system using the model-based approach are
shown in the flow chart of Fig. 1.10. The first step, for-
mulation of the control objectives, is a critical decision.
The formulation is based on the operating objectives for
the plants and the process constraints. For example, in
the distillation column control problem, the objective
might be to regulate a key component in the distillate
stream, the bottoms stream, or key components in both
streams. An alternative would be to minimize energy
consumption (e.g., heat input to the reboiler) while
meeting product quality specifications on one or both
product streams. The inequality constraints should in-
clude upper and lower limits on manipulated variables,
conditions that lead to flooding or weeping in the col-
umn, and product impurity levels.

After the control objectives have been formulated, a
dynamic model of the process is developed. The dynamic
model can have a theoretical basis, for example, physical
and chemical principles such as conservation laws and
rates of reactions (Chapter 2), or the model can be de-
veloped empirically from experimental data (Chapter 7).
If experimental data are available, the dynamic model
should be validated, with the data and the model accu-
racy characterized. This latter information is useful for
control system design and tuning.

The next step in the control system design is to devise
an appropriate control strategy that will meet the con-
trol objectives while satisfying process constraints. As
indicated in Fig. 1.10, this design activity is both an art
and a science. Process understanding and the experi-
ence and preferences of the design team are key factors.
Computer simulation of the controlled process is used
to screen alternative control strategies and to provide
preliminary estimates of appropriate controller settings.

Finally, the control system hardware and instrumen-
tation are selected, ordered, and installed in the plant.
Then the control system is tuned in the plant using the
preliminary estimates from the design step as a start-
ing point. Controller tuning usually involves trial-and-
error procedures as described in Chapter 12.

Two physical examples, a continuous blending sys-
tem and a distillation column, have been used to intro-
duce basic control concepts, notably, feedback and
feedforward control. We also motivated the need for a
systematic approach for the design of control systems
for complex processes. Control system development
consists of a number of separate activities that are
shown in Fig. 1.10. In this book we advocate the design
philosophy that for complex processes, a dynamic
model of the process should be developed so that the
control system can be properly designed.
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SYSTEM

A hierarchy of process control activities was pre-
sented in Fig. 1.8. Process control plays a key role in
ensuring process safety and protecting personnel,
equipment, and the environment. Controlled variables
are maintained near their set points by the application
of regulatory control techniques and advanced control
techniques such as multivariable and constraint control.

EXERCISES

1.1 Which of the following statements are true?

(a) Feedback and feedforward control both require a mea-
sured variable.

(b) The process variable to be controlled is measured in
feedback control.

Real-time optimization can be employed to determine
the optimum controller set points for current operating
conditions and constraints. The highest level of the
process control hierarchy is concerned with planning
and scheduling operations for the entire plant. The dif-
ferent levels of process control activity in the hierarchy
are related and should be carefully coordinated.

(¢) Feedforward control can be perfect in the theoretical
sense that the controller can take action via the manipulated
variable even while the controlled variable remains equal to
its desired value.
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(d) Feedforward control can provide perfect control; that is,
the output can be kept at its desired value, even with an im-
perfect process model.

(e) Feedback control will always take action regardless of
the accuracy of any process model that was used to design it
and the source of a disturbance.

1.2 Consider a home heating system consisting of a natural
gas-fired furnace and a thermostat. In this case the process
consists of the interior space to be heated. The thermostat
contains both the measuring element and the controller. The
furnace is either on (heating) or off. Draw a schematic diagram
for this control system. On your diagram, identify the controlled
variables, manipulated variables, and disturbance variables. Be
sure to include several possible sources of disturbances that can
affect room temperature.

1.3 In addition to a thermostatically operated home heating
system, identify two other feedback control systems that can be
found in most residences. Describe briefly how each of them
works; include sensor, actuator, and controller information.

1.4 Does a typical microwave oven utilize feedback control
to set cooking temperature or to determine if the food is
“cooked”? If not, what mechanism is used? Can you think of
any disadvantages to this approach, for example, in thawing
and cooking foods?

1.5 Driving an automobile safely requires a large amount of
individual skill. Even if not generally recognized, the driver
needs an intuitive ability to utilize feedforward and feedback
control methods.

(a) In the process of steering a car, the objective is to keep
the vehicle generally centered in the proper traffic lane. Thus,
the controlled variable is some measure of that distance. If so,
how is feedback control used to accomplish this objective?
Identify the sensor(s), the actuator, how the appropriate con-
trol action is determined, and some likely disturbances.

(b) The process of braking/accelerating an auto is highly
complex, requiring the skillful use of both feedback and feed-
forward mechanisms to drive safely. For feedback control, the
driver normally uses distance to the vehicle ahead as the mea-
sured variable. The “set point” then is often recommended to
be some distance related to speed, for example, one car length
separation for each 10 mph. If this assertion is correct, how
does feedforward control come into the accelerating/braking
process when one is attempting to drive in traffic at a constant
speed? In other words, what other information—in addition
to distance separating the two vehicles, which obviously should
never equal zero—does the driver utilize to avoid colliding
with the car ahead?

1.6 The distillation column shown in the drawing is used to
distill a binary mixture. Symbols x, y, and z denote mole frac-
tions of the more volatile component, while B, D, R, and F
represent molar flow rates. It is desired to control distillate
composition y despite disturbances in feed flow rate F. All
flow rates can be measured and manipulated with the excep-
tion of F, which can only be measured. A composition ana-
lyzer provides measurements of y.

(a) Propose a feedback control method and sketch the
schematic diagram.

(b) Suggest a feedforward control method and sketch the
schematic diagram.

D,y

F,z ——

ZZ2Croo

B, x

1.7 Two flow control loops are shown in the drawing. Indi-
cate whether each system is either a feedback or a feedfor-
ward control system. Justify your answer. It can be assumed
that the distance between the flow transmitter (FT) and the
control valve is quite small in each system.
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1.8 I. M. Appelpolscher, supervisor of the process control
group of the Ideal Gas Company, has installed a 25 X 40 X
5-ft swimming pool in his backyard. The pool contains
level and temperature sensors used with feedback con-
trollers to maintain the pool level and temperature at de-
sired values. Appelpolscher is satisfied with the level
control system, but he feels that the addition of one or
more feedforward controllers would help maintain the
pool temperature more nearly constant. As a new member
of the process control group, you have been selected to
check Appelpolscher’s mathematical analysis and to give
your advice. The following information may or may not be
pertinent to your analysis:

(i) Appelpolscher is particular about cleanliness and thus
has a high-capacity pump that continually recirculates the
water through an activated charcoal filter.

(i) The pool is equipped with a natural gas-fired heater that
adds heat to the pool at a rate Q(¢) that is directly propor-
tional to the output signal from the controller p(¢).




(iii) There is a leak in the pool, which Appelpolscher has deter-
mined is constant equal to F (volumetric flow rate). The liquid-
level control system adds water from the city supply system to
maintain the level in the pool exactly at the specified level. The
temperature of the water in the city system is 7}, a variable.
(iv) A significant amount of heat is lost by conduction to the
surrounding ground, which has a constant, year-round tem-
perature Tg. Experimental tests by Appelpolscher showed
that essentially all of the temperature drop between the pool
and the ground occurred across the homogeneous layer of
gravel that surrounded his pool. The gravel thickness is Ax,
and the overall thermal conductivity is k¢.

(v) The main challenge to Appelpolscher’s modeling ability
was the heat loss term accounting for convection, conduction,
radiation, and evaporation to the atmosphere. He determined
that the heat losses per unit area of open water could be repre-
sented by

losses = U(T, — T,)
where

T, = temperature of pool
T, = temperature of the air, a variable
U = overall heat transfer coefficient

Appelpolscher’s detailed model included radiation losses and
heat generation due to added chemicals, but he determined
that these terms were negligible.

(a) Draw a schematic diagram for the pool and all control
equipment. Show all inputs and outputs, including all distur-
bance variables.

Feedforward
controller

(=)
\Z/
(1)
\ZJ
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(b) What additional variable(s) would have to be measured
to add feedforward control to the existing pool temperature
feedback controller?

(c¢) Write a steady-state energy balance. How can you de-
termine which of the disturbance variables you listed in part
(a) are most/least likely to be important?

(d) What recommendations concerning the prospects of
adding feedforward control would you make to Appelpolscher?

1.9 In a thermostat control system for a home heating system
(a) Identify the manipulated variable
(b) Identify the controlled variable

(c) How is a valve involved in the control system? What
does it manipulate?

(d) Name one important disturbance (it must change with
respect to time).

1.10 Identify and describe three automatic control systems in
a modern automobile (besides cruise control).

1.11 In Figure 1.2 (h), identify the controlled, manipulated,
and disturbance variables (there may be more than one of
each type). How does the length of time for the dialysis treat-
ment affect the waste concentration?

1.12 For the steam-heated tank shown below, identify manip-
ulated, controlled, and disturbance variables. What distur-
bances are measured for feedforward control? How would
the control system react to an increase in feed temperature in
order to keep the tank temperature at its setpoint?

Figure E1.12. Feedforward control with a

D feedback control loop for outlet temperature.
(Entered manually)
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Theoretical Models of
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Distributed Parameter Systems (the Double-Pipe Heat Exchanger)

2.5 Solution of Dynamic Models and the Use of Digital Simulators

Summary

In this chapter we consider the derivation of unsteady-
state models of chemical processes from physical and
chemical principles. Unsteady-state models are also re-
ferred to as dynamic models. We first consider the ratio-
nale for dynamic models and then present a general
strategy for deriving them from first principles such as
conservation laws. Then dynamic models are developed
for several representative processes. Finally, we de-
scribe how dynamic models that consist of sets of ordi-
nary differential equations and algebraic relations can
be solved numerically using computer simulation.
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2.1 THE RATIONALE FOR DYNAMIC
PROCESS MODELS

Dynamic models play a central role in the subject of
process dynamics and control. The models can be used to:

1. Improve understanding of the process. Dynamic
models and computer simulation allow transient
process behavior to be investigated without hav-
ing to disturb the process. Computer simulation
allows valuable information about dynamic and
steady-state process behavior to be acquired, even
before the plant is constructed.



2. Train plant operating personnel. Process simula-
tors play a critical role in training plant operators
to run complex units and to deal with emergency
situations. By interfacing a process simulator to
standard process control equipment, a realistic
training environment is created.

3. Develop a control strategy for a new process. A
dynamic model of the process allows alternative
control strategies to be evaluated. For example, a
dynamic model can help identify the process vari-
ables that should be controlled and those that
should be manipulated. For model-based control
strategies (Chapters 16 and 20), the process model
is part of the control law.

4. Optimize process operating conditions. It can be
advantageous to recalculate the optimum operat-
ing conditions periodically in order to maximize
profit or minimize cost. A steady-state process
model and economic information can be used to
determine the most profitable operating condi-
tions (see Chapter 19).

For many of the examples cited above —particularly
where new, hazardous, or difficult-to-operate processes
are involved —development of a suitable process model
can be crucial to success. Models can be classified based
on how they are obtained:

(a) Theoretical models are developed using the prin-
ciples of chemistry, physics, and biology.

(b) Empirical models are obtained by fitting experi-
mental data.

(¢) Semi-empirical models are a combination of the
models in categories (a) and (b); the numerical
values of one or more of the parameters in a
theoretical model are calculated from experi-
mental data.

Theoretical models offer two very important advan-
tages: they provide physical insight into process behavior,
and they are applicable over wide ranges of conditions.
However, there are disadvantages associated with the-
oretical models. They tend to be expensive and time-
consuming to develop. In addition, theoretical models
of complex processes typically include some model
parameters that are not readily available, such as reac-
tion rate coefficients, physical properties, or heat trans-
fer coefficients.

Although empirical models are easier to develop
than theoretical models, they have a serious disad-
vantage: empirical models typically do not extrapo-
late well. More specifically, empirical models should
be used with caution for operating conditions that
were not included in the experimental data used to
fit the model. The range of the data is typically quite
small compared to the full range of process operating
conditions.
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Semi-empirical models have three inherent advantages:
(i) they incorporate theoretical knowledge, (ii) they
can be extrapolated over a wider range of operating
conditions than empirical models, and (iii) they re-
quire less development effort than theoretical models.
Consequently, semi-empirical models are widely used
in industry. Interesting industrial case studies that in-
volve semi-empirical models have been reported by
Foss et al. (1998).

This chapter is concerned with the development of
theoretical models from first principles such as conser-
vation laws. Empirical dynamic models are considered
in Chapter 7.

2.1.1 An Illustrative Example:
A Blending Process

In Chapter 1 we developed a steady-state model for a
stirred-tank blending system based on mass and com-
ponent balances. Now we develop an unsteady-state
model that will allow us to analyze the more general
situation where process variables vary with time. Dy-
namic models differ from steady-state models because
they contain additional accumulation terms.

As an illustrative example, we consider the isother-
mal stirred-tank blending system in Fig. 2.1. It is a more
general version of the blending system in Fig. 1.3 be-
cause the overflow line has been omitted and inlet
stream 2 is not necessarily pure A (that is, x, # 1). Now
the volume of liquid in the tank V can vary with time,
and the exit flow rate is not necessarily equal to the
sum of the inlet flow rates. An unsteady-state mass bal-
ance for the blending system in Fig. 2.1 has the form

rate of accumulation | _ J rateof | _ ] rate of
of mass in the tank mass in mass out
1)

The mass of liquid in the tank can be expressed as
the product of the liquid volume V and the density p.

wi I I wo

L0

g8

Figure 2.1 Stirred-tank blending process.
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Consequently, the rate of mass accumulation is simply
d(Vp)/dt, and (2-1) can be written as

d(Vp)
dt

where wq, w;, and w are mass flow rates.

The unsteady-state material balance for component
A can be derived in an analogous manner. We assume
that the blending tank is perfectly mixed. This assump-
tion has two important implications: (i) there are no
concentration gradients in the tank contents and (ii)
the composition of the exit stream is equal to the tank
composition. The perfect mixing assumption is valid for
low-viscosity liquids that receive an adequate degree of
agitation. In contrast, the assumption is less likely to be
valid for high-viscosity liquids such as polymers or
molten metals. Nonideal mixing is modeled in books on
reactor analysis (e.g., Fogler, 1999).

For the perfect mixing assumption, the rate of accu-
mulation of component A is d(Vpx)/dt, where x is the
mass fraction of A. The unsteady-state component bal-
ance is

=w+tw, —w (2-2)

d(Vpx)

dt (2-3)

= wix1 + waxp — wx
Equations 2-2 and 2-3 provide an unsteady-state model
for the blending system. The corresponding steady-
state model was derived in Chapter 1 (cf. Egs. 1-1 and
1-2). It also can be obtained by setting the accumula-
tion terms in Eqgs. 2-2 and 2-3 equal to zero,

0=w +w,— W (2-4)

0= Wlfl + szz - wX (2-5)
where the nominal steady-state conditions are denoted
by x and w, and so on. In general, a steady-state model
is a special case of an unsteady-state model that can be
derived by setting accumulation terms equal to zero.

A dynamic model can be used to characterize the
transient behavior of a process for a wide variety of
conditions. For example, some relevant concerns for
the blending process: How would the exit composition
change after a sudden increase in an inlet flow rate or
after a gradual decrease in an inlet composition?
Would these transient responses be very different if the
volume of liquid in the tank is quite small, or quite
large, when an inlet change begins? These questions
can be answered by solving the ordinary differential
equations in (2-2) and (2-3) for specific initial condi-
tions and for particular changes in inlet flow rates or
compositions. The solution of dynamic models is con-
sidered further in this chapter and in Chapters 3-6.

Before exploring the blending example in more de-
tail, we first present general principles for the develop-
ment of dynamic models.

2.2 GENERAL MODELING PRINCIPLES

It is important to remember that a process model is
nothing more than a mathematical abstraction of a real
process. The model equations are at best an approxi-
mation to the real process as expressed by the adage
that “all models are wrong, but some are useful.” Con-
sequently, the model cannot incorporate all of the fea-
tures, whether macroscopic or microscopic, of the real
process. Modeling inherently involves a compromise
between model accuracy and complexity on one hand,
and the cost and effort required to develop the model
and verify it on the other hand. The required compro-
mise should consider a number of factors, including the
modeling objectives, the expected benefits from use of
the model, and the background of the intended users of
the model (for example, research specialists versus
plant engineers).

Process modeling is both an art and a science. Cre-
ativity is required to make simplifying assumptions that
result in an appropriate model. The model should in-
corporate all of the important dynamic behavior while
being no more complex than is necessary. Thus, less
important phenomena are omitted in order to keep the
number of model equations, variables, and parameters
at reasonable levels. The failure to choose an appropri-
ate set of simplifying assumptions invariably leads to
either (1) rigorous but excessively complicated models
or (2) overly simplistic models. Both extremes should
be avoided. Fortunately, modeling is also a science, and
predictions of process behavior from alternative mod-
els can be compared, both qualitatively and quantita-
tively. This chapter provides an introduction to the
subject of theoretical dynamic models and shows how
they can be developed from first principles such as con-
servation laws. Additional information is available in the
books by Bequette (1998), Aris (1999), and Cameron
and Hangos (2001).

A systematic procedure for developing dynamic
models from first principles is summarized in Table 2.1.
Most of the steps in Table 2.1 are self-explanatory, with
the possible exception of Step 7. The degrees of free-
dom analysis in Step 7 is required in model develop-
ment for complex processes. Because these models
typically contain large numbers of variables and equa-
tions, it is not obvious whether the model can be solved,
or whether it has a unique solution. Consequently, we
consider the degrees of freedom analysis in Sections 2.3
and 10.3.

Dynamic models of chemical processes consist of ordi-
nary differential equations (ODE) and/or partial differ-
ential equations (PDE), plus related algebraic equations.
In this book we will restrict our discussion to ODE mod-
els, with the exception of one PDE model considered in
Section 2.4. For process control problems, dynamic mod-
els are derived using unsteady-state conservation laws.



Table 2.1 A Systematic Approach for Developing
Dynamic Models

1. State the modeling objectives and the end use of the
model. Then determine the required levels of model detail
and model accuracy.

2. Draw a schematic diagram of the process and label all
process variables.

3. List all of the assumptions involved in developing the
model. Try to be parsimonious: the model should be no
more complicated than necessary to meet the modeling
objectives.

4. Determine whether spatial variations of process variables
are important. If so, a partial differential equation model
will be required.

5. Write appropriate conservation equations (mass,
component, energy, and so forth).

6. Introduce equilibrium relations and other algebraic
equations (from thermodynamics, transport phenomena,
chemical kinetics, equipment geometry, etc.).

7. Perform a degrees of freedom analysis (Section 2.3) to
ensure that the model equations can be solved.

8. Simplify the model. It is often possible to arrange the
equations so that the output variables appear on the left
side and the input variables appear on the right side. This
model form is convenient for computer simulation and
subsequent analysis.

9. Classify inputs as disturbance variables or as manipulated
variables.

In this section we first review general modeling princi-
ples, emphasizing the importance of the mass and energy
conservation laws. Force-momentum balances are em-
ployed less often. For processes with momentum effects
that cannot be neglected (e.g., some fluid and solid
transport systems), such balances should be considered.
The process model often also includes algebraic rela-
tions that arise from thermodynamics, transport phe-
nomena, physical properties, and chemical Kkinetics.
Vapor-liquid equilibria, heat transfer correlations, and
reaction rate expressions are typical examples of such
algebraic equations.

2.2.1 Conservation Laws

Theoretical models of chemical processes are based on
conservation laws such as the conservation of mass and
energy. Consequently, we now consider important con-
servation laws and use them to develop dynamic mod-
els for representative processes.

Conservation of Mass

rate of mass rate of rate of
L = - (2-6)
accumulation mass 1n mass out
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Conservation of Component i

rate of componenti| _ ] rate of component i
accumulation in

_ ) rate of component i 4 Jrate of component i
out produced

@7

The last term on the right-hand side of (2-7) represents
the rate of generation (or consumption) of component i
as a result of chemical reactions. Conservation equations
can also be written in terms of molar quantities, atomic
species, and molecular species (Felder and Rousseau,
2000).

Conservation of Energy

The general law of energy conservation is also called
the First Law of Thermodynamics (Sandler, 2006). It
can be expressed as

rate of energy | _ ) rate of energy in
accumulation by convection

_ ) rate of energy out
by convection

net rate of heat addition
+ to the system from
the surroundings

net rate of work
performed on the system
by the surroundings

+

(2-8)

The total energy of a thermodynamic system, Uy, is the
sum of its internal energy, kinetic energy, and potential
energy:

Uit = Uit + Ukg + Upg (2-9)

For the processes and examples considered in this
book, it is appropriate to make two assumptions:

1. Changes in potential energy and kinetic energy
can be neglected, because they are small in com-
parison with changes in internal energy.

2. The net rate of work can be neglected, because it
is small compared to the rates of heat transfer and
convection.

For these reasonable assumptions, the energy balance
in Eq. 2-8 can be written as (Bird et al., 2002)
dUint
dt

where Uy, is the internal energy of the system, H is the
enthalpy per unit mass, w is the mass flow rate, and Q is

=-AwH)+Q (2-10)
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the rate of heat transfer to the system. The A operator
denotes the difference between outlet conditions and
inlet conditions of the flowing streams. Consequently,
the —A(wH) term represents the enthalpy of the inlet
stream(s) minus the enthalpy of the outlet stream(s).
The analogous equation for molar quantities is

% = -A(WH) + Q (2-11)
where H is the enthalpy per mole and w is the molar
flow rate.

Note that the conservation laws of this section are
valid for batch and semi-batch processes, as well as for
continuous processes. For example, in batch processes,
there are no inlet and outlet flow rates. Thus, w = 0
and w = 01in (2-10) and (2-11).

In order to derive dynamic models of processes from
the general energy balances in Eqgs. 2-10 and 2-11, ex-
pressions for Uy,; and H or H are required, which can
be derived from thermodynamics. These derivations
and a review of related thermodynamics concepts are
included in Appendix B.

2.2.2 The Blending Process Revisited

Next, we show that the dynamic model of the blending
process in Egs. 2-2 and 2-3 can be simplified and ex-
pressed in a more appropriate form for computer simu-
lation. For this analysis, we introduce the additional
assumption that the density of the liquid, p, is a con-
stant. This assumption is reasonable because often the
density has only a weak dependence on composition.
For constant p, Egs. 2-2 and 2-3 become

=w;+wy,—w (2-12)

Prar
d(Vx)
dt

=wiXx] + Woxy —wx (2-13)
Equation 2-13 can be simplified by expanding the accu-
mulation term using the “chain rule” for differentiation
of a product:

d(Vx) _ dx dv
P PV TPy (2-14)
Substitution of (2-14) into (2-13) gives
d. av
pVﬁ + px= = wix1 + woxpy — wx (2-15)

Substitution of the mass balance in (2-12) for pdV/dt in
(2-15) gives

dx

v
PV

+x(w1 + wp — w) = wixy + wox, — wx (2-16)

After canceling common terms and rearranging (2-12)
and (2-16), a more convenient model form is obtained:

av _ 1

e w1 +wp —w) (2-17)
dx _ M w2

7= Vo 0 (x1—x) + Vo (x2 — x) (2-18)

The dynamic model in Eqgs. 2-17 and 2-18 is quite
general and is based on only two assumptions: perfect
mixing and constant density. For special situations, the
liquid volume V is constant (that is, dV/dt = 0), and
the exit flow rate equals the sum of the inlet flow rates,
w = wi + w,. For example, these conditions occur when

1. An overflow line is used in the tank as shown in
Fig. 1.3.

2. The tank is closed and filled to capacity.

3. A liquid-level controller keeps V essentially con-
stant by adjusting a flow rate.

In all three cases, Eq. 2-17 reduces to the same form as
Eq. 2-4, not because each flow rate is constant, but be-
cause w = wq + wj at all times.

The dynamic model in Eqgs. 2-17 and 2-18 is in a
convenient form for subsequent investigation based
on analytical or numerical techniques. In order to ob-
tain a solution to the ODE model, we must specify
the inlet compositions (x; and x;) and the flow rates
(w1, wy and w) as functions of time. After specifying
initial conditions for the dependent variables, V(0)
and x(0), we can determine the transient responses,
V(¢) and x(¢). The derivation of an analytical expres-
sion for x(¢) when V is constant is illustrated in
Example 2.1.

EXAMPLE 2.1

A stirred-tank blending process with a constant liquid
holdup of 2 m® is used to blend two streams whose densi-
ties are both approximately 900 kg/m3. The density does not
change during mixing.

(a) Assume that the process has been operating for a long
period of time with flow rates of w; = 500 kg/min
and w, = 200 kg/min, and feed compositions (mass
fractions) of x; = 0.4 and x, = 0.75. What is the
steady-state value of x?

(b) Suppose that wy changes suddenly from 500 to 400 kg/
min and remains at the new value. Determine an ex-
pression for x(¢) and plot it.

(¢) Repeat part (b) for the case where w, (instead of wy)
changes suddenly from 200 to 100 kg/min and remains

there.
(d) Repeat part (c¢) for the case where x; suddenly
changes from 0.4 to 0.6.
(e) For parts (b) through (d), plot the normalized
response xy(?),
_ x() - x(0)
O = ) — 20



where x(0) is the initial steady-state value of x(¢) and
x(oo)represents the final steady-state value, which is
different for each part.

SOLUTION

(a) Denote the initial steady-state conditions by x, w, and
so on. For the initial steady state, Egs. 2-4 and 2-5 are
applicable. Solve (2-5) for x:

wix; + wax,  (500)(0.4) + (200)(0.75)

W _ 700 _

(b) The component balance in Eq. 2-3 can be rearranged
(for constant V and p) as

0.5

x =

dx wix1 + waxp
T—fx=—— %%
dt w
where 7 2 Vp/w. In each of the three parts, (b)—(d),
7 = 3 min and the right side of (2-19) is constant for this

example. Thus, (2-19) can be written as

3£+x=C* x(0) = 0.5

dt

x(0) = % = 05 (2-19)

(2-20)
where

A

= (2-21)

The solution to (2-20) can be obtained by applying
standard solution methods (Kreyszig, 1999):

x(t) = 0.5¢ P + C*(1 — e ) (2-22)
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For case (b):

cn _ (400 kg/min)(04) + (200 kg/min)(0.75)

600 kg/min =

Substituting C* into (2-22) gives the desired solution
for the step change in wy:

x(®) = 0.5¢ " + 0.517(1 — e ™) (2-23)
(¢) For the step change in wj,
Cr — (500 kg/min)(()ég()) 1—: g/(;?g kg/min)(0.75) _ 0458
and the solution is
x(2) = 0.5 + 0.458(1 — e ) (2-24)

(d) Similarly, for the simultaneous changes in x; and wp,
Eq. 2-21 gives C* = 0.625. Thus, the solution is

x(f) = 0.5¢ + 0.625(1 — e ) (2-25)

(e) The individual responses in (2-22)-(2-24) have the
same normalized response:

A=l
o0 .

The responses of (b)—(e) are shown in Fig. 2.2.

(2-26)
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blending process to step changes in

(b) Flow rate wq

(c) Flow rate w;

(d) Flow rate w; and inlet composition x;

0 5 10 15 20
Time (min)

25 (e) Normalized response for parts (b)-(d)



20 Chapter2 Theoretical Models of Chemical Processes

The individual responses and normalized response have
the same time dependence for cases (b)—(d) because
7 = Vp/w = 3 min for each part. Note that 7 is the mean
residence time of the liquid in the blending tank. If w
changes, then 7 and the time dependence of the solution
also change. This situation would occur, for example, if
w1 changed from 500 kg/min to 600 kg/min. These more
general situations will be addressed in Chapter 4.

2.3 DEGREES OF FREEDOM ANALYSIS

To simulate a process, we must first ensure that its
model equations (differential and algebraic) constitute
a solvable set of relations. In other words, the output
variables, typically the variables on the left side of the
equations, can be solved in terms of the input variables
on the right side of the equations. For example, con-
sider a set of linear algebraic equations, y = Ax. In
order for these equations to have a unique solution for
x, vectors x and y must contain the same number of ele-
ments and matrix A must be nonsingular (that is, have
a nonzero determinant).

It is not easy to make a similar evaluation for a large,
complicated steady-state or dynamic model. However,
there is one general requirement. In order for the model
to have a unique solution, the number of unknown
variables must equal the number of independent model
equations. An equivalent statement is that all of the
available degrees of freedom must be utilized. The num-
ber of degrees of freedom, Ng, can be calculated from
the expression

NF=NV_NE (2-27)
where Ny is the total number of process variables and
Ng is the number of independent equations. A degrees
of freedom analysis allows modeling problems to be
classified according to the following categories:

1. Np = 0: The process model is exactly specified. If
Np = 0, then the number of equations is equal to
the number of process variables and the set of equa-
tions has a solution. (However, the solution may not
be unique for a set of nonlinear equations.)

2. Ng> 0: The process is underspecified. If Np > 0,
then Ny > Ng, so there are more process variables
than equations. Consequently, the Ny equations
have an infinite number of solutions, because Np
process variables can be specified arbitrarily.

3. Ng < 0: The process model is overspecified. For
Np < 0, there are fewer process variables than
equations, and consequently the set of equations
has no solution.

Note that N = 0 is the only satisfactory case. If Np> 0,
then a sufficient number of input variables have not

Table 2.2 Degrees of Freedom Analysis

1. List all quantities in the model that are known constants
(or parameters that can be specified) on the basis of
equipment dimensions, known physical properties,
and so on.

2. Determine the number of equations Ng and the number
of process variables, Ny. Note that time ¢ is not considered
to be a process variable, because it is neither a process
input nor a process output.

3. Calculate the number of degrees of freedom,

N, F= N vV — N, E-

4. Identify the Ng output variables that will be obtained by
solving the process model.

5. Identify the Nrinput variables that must be specified as
either disturbance variables or manipulated variables, in
order to utilize the N degrees of freedom.

been assigned numerical values. Then additional inde-
pendent model equations must be developed in order
for the model to have an exact solution.

A structured approach to modeling involves a sys-
tematic analysis to determine the number of degrees of
freedom and a procedure for assigning them. The steps
in the degrees of freedom analysis are summarized in
Table 2.2. In Step 4 the output variables include the de-
pendent variables in the ordinary differential equations.

For Step 5 the Ny degrees of freedom are assigned
by specifying a total of N input variables to be either
disturbance variables or manipulated variables. In gen-
eral, disturbance variables are determined by other
process units or by the environment. Ambient temper-
ature and feed conditions determined by the operation
of upstream processes are typical examples of distur-
bance variables. By definition, a disturbance variable d
varies with time and is independent of the other Ny — 1
process variables. Thus, we can express the transient
behavior of the disturbance variable as

d(r) = fr)

where f(¢) is an arbitrary function of time that must be
specified if the model equations are to be solved. Thus,
specifying a process variable to be a disturbance vari-
able increases Ng by one and reduces N by one, as in-
dicated by Eq. 2-27.

In general, a degree of freedom is also utilized when
a process variable is specified to be a manipulated vari-
able that is adjusted by a controller. In this situation, a
new equation is introduced, namely the control law
that indicates how the manipulated variable is adjusted
(cf. Egs. 1-4 or 1-5 in Chapter 1). Consequently, Ng in-
creases by one and Ny decreases by one, again utilizing
a degree of freedom.

We illustrate the degrees of freedom analysis by con-
sidering two examples.

(2-28)



EXAMPLE 2.2

Analyze the degrees of freedom for the blending model
of Eq. (2-3) for the special condition where volume V is
constant.

SOLUTION

For this example, there are
2 parameters: V,p
4 variables (Ny = 4): X, X1, Wi, Wy
1 equation (Ng = 1): Eq.2-3

The degrees of freedom are calculated as Np =4 — 1 = 3.
Thus, we must identify three input variables that can be
specified as known functions of time in order for the equa-
tion to have a unique solution. The dependent variable x is
an obvious choice for the output variable in this simple
example. Consequently, we have

1 output: x
3 inputs: X1, Wi, Wp

The three degrees of freedom can be utilized by specifying
the inputs as

2 disturbance variables: X1, W1
1 manipulated variable: wy

Because all of the degrees of freedom have been utilized,
the single equation is exactly specified and can be solved.

EXAMPLE 2.3

Analyze the degrees of freedom of the blending system
model in Eqgs. 2-17 and 2-18. Is this set of equations linear,
or nonlinear, according to the usual working definition?!

SOLUTION

In this case, volume is now considered to be a variable
rather than a constant parameter. Consequently, for the
degrees of freedom analysis we have

1 parameter: p
7 variables (Ny = 7): V, x, X1, X2, W, W1, Wy
2 equations (Ng = 2): Egs. 2-17 and 2-18

Thus, Ngp = 7 — 2 = 5. The dependent variables on the left
side of the differential equations, V and x, are the model
outputs. The remaining five variables must be chosen as
inputs. Note that a physical output, effluent flow rate w, is
classified as a mathematical input, because it can be speci-
fied arbitrarily. Any process variable that can be specified
arbitrarily should be identified as an input. Thus, we have

2 outputs: V. x
5 inputs: W, W1, W, X1, X3

1A linear model cannot contain any nonlinear combinations of
variables (for example, a product of two variables) or any variable
raised to a power other than one.
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Because the two outputs are the only variables to be de-
termined in solving the system of two equations, no de-
grees of freedom are left. The system of equations is
exactly specified and hence solvable.

To utilize the degrees of freedom, the five inputs are
classified as either disturbance variables or manipulated
variables. A reasonable classification is

3 disturbance variables: Wi, X1, X
2 manipulated variables: w, wa

For example, w could be used to control V and w, to con-
trol x.

Note that Eq. 2-17 is a linear ODE, while Eq. 2-18 is a
nonlinear ODE as a result of the products and quotients.

24 DYNAMIC MODELS OF
REPRESENTATIVE PROCESSES

For the simple process discussed so far, the stirred-tank
blending system, energy effects were not considered due
to the assumed isothermal operation. Next, we illustrate
how dynamic models can be developed for processes
where energy balances are important.

24.1 Stirred-Tank Heating Process:
Constant Holdup

Consider the stirred-tank heating system shown in
Fig. 2.3. The liquid inlet stream consists of a single
component with a mass flow rate w; and an inlet tem-
perature 7;. The tank contents are agitated and heated
using an electrical heater that provides a heating rate,
Q. A dynamic model will be developed based on the
following assumptions:

1. Perfect mixing; thus, the exit temperature 7 is also
the temperature of the tank contents.

T;
w; I
| T
w
14
Q |
’ Heater |

Figure 2.3 Stirred-tank heating process with constant
holdup, V.
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2. The inlet and outlet flow rates are equal; thus,
w; = w and the liquid holdup V is constant.

3. The density p and heat capacity C of the liquid are
assumed to be constant. Thus, their temperature
dependence is neglected.

4. Heat losses are negligible.

In general, dynamic models are based on conservation
laws. For this example, it is clear that we should con-
sider an energy balance, because thermal effects pre-
dominate. A mass balance is not required in view of
Assumptions 2 and 3.

Next, we show how the general energy balance in
Eq. 2-10 can be simplified for this particular example. For
a pure liquid at low or moderate pressures, the internal
energy is approximately equal to the enthalpy, Uy, =~ H,
and H depends only on temperature (Sandler, 2006).
Consequently, in the subsequent development, we as-
sume that Uy, = H and U, = H where the caret ()
means per unit mass. As shown in Appendix B, a differ-
ential change in temperature, d7, produces a correspond-
ing change in the internal energy per unit mass, d Uy,

dU=dH=CdT (2-29)

where C is the constant pressure heat capacity (as-
sumed to be constant). The total internal energy of the
liquid in the tank can be expressed as the product of

A

Uit and the mass in the tank, pV:

Uint=pV Uiy (2-30)

An expression for the rate of internal energy accumula-
tion can be derived from Egs. 2-29 and 2-30:

dUint aTr

a
Note that this term appears in the general energy bal-
ance of Eq. 2-10.

Next, we derive an expression for the enthalpy term
that appears on the right-hand side of Eq. 2-10. Sup-
pose that the liquid in the tank is at a temperature T
and has an enthalpy, H. Integrating Eq. 2-29 from a
reference temperature T to 7 gives

H- I:Iref =C(T — Trer)

(2-31)

(2-32)

where Ii—ef is the value of I—AIA at Tyes. Without loss of gen-
erality, we assume that H,;=0 (see Appendix B).
Thus, (2-32) can be written as:

H=C(T~ Tyer) (2-33)
Similarly, for the inlet stream:
I:\Ii =C(T; — Trep) (2-34)

Substituting (2-33) and (2-34) into the convection term
of (2-10) gives:

—AWH) = W[C(T; — Trep)] — WIC(T — Trep)]  (2-35)

Finally, substitution of (2-31) and (2-35) into (2-10)
gives the desired dynamic model of the stirred-tank
heating system:

daT

VeCT = wC(T; ~ 1) + Q

y (2-36)

Note that the T.¢ terms have canceled, because C was
assumed to be constant, and thus independent of

temperature.
A degrees of freedom analysis for this model gives
3 parameters: V,p,C
4 variables: T,T,w,Q
1 equation: Eq. 2-36

Thus, the degrees of freedom are Ny = 4 — 1 = 3. The
process variables are classified as

1 output variable: T
3 input variables: T, w,Q

For control purposes, it is reasonable to classify the
three inputs as

2 disturbance variables: T;,w
1 manipulated variable: 0

2.4.2 Stirred-Tank Heating Process:
Variable Holdup

Now we consider the more general situation in which
the tank holdup can vary with time. This analysis also is
based on assumptions 1, 3 and 4 of the previous section.
Now an overall mass balance is needed, because the
holdup is not constant. The overall mass balance is

d(Vp)

—a Wi (2-37)
The energy balance for the current stirred-tank heating
system can be derived from Eq. 2-10 in analogy with
the derivation of Eq. 2-36. We again assume that Uy, =
H for the liquid in the tank. Thus, for constant p:

Ui _dH _d(eVH) _ d(VH)
. dt a ° 4

From the definition of —A(wﬁ) and Eqgs. 2-33 and 2-34,
it follows that

_A(Wﬁ) = WiI:Ii — wH = WiC(T;— Trer)
- WC(T - Tref)

(2-38)

(2-39)

where w; and w are the mass flow rates of the inlet and
outlet streams, respectively. Substituting (2-38) and
(2-39) into (2-10) gives

d(VH)
P

= WiC(Ti_ Tref) - WC(T_ Tref) + Q
(2-40)



Next we simplify the dynamic model. Because p is
constant, (2-37) can be written as
av _
P
The chain rule can be applied to expand the left side of
(2-40) for constant C and p:

w; —w (2-41)

(2-42)

From Eq. 2-29 or 2-33, it follows that dH/dt = CdT/dt.
Substituting this expression and Eqgs. 2-33 and 2-41 into
Eq. 2-42 gives

d(VH
(TtH) = C(T — Twp)(w; — w) + pCV% 2.43)

Substituting (2-43) into (2-40) and rearranging gives

aT
C(T — Trep)(w; — w) + PCVE

= WiC(T; — Tret) — wC(T — Trep) + O (2-44)

Rearranging (2-41) and (2-44) provides a simpler form
for the dynamic model:

av _1
dT _ w; )
G _v; (T; - T) + % (2-46)

This example and the blending example in Section 2.2.2
have demonstrated that process models with variable
holdups can be simplified by substituting the overall
mass balance into the other conservation equations.

Equations 2-45 and 2-46 provide a model that can be
solved for the two outputs (V and T) if the two parame-
ters (p and C) are known and the four inputs (w;, w, T},
and Q) are known functions of time.

2.4.3 Electrically Heated Stirred Tank

Now we again consider the stirred-tank heating system
with constant holdup (Section 2.4.1), but we relax the
assumption that energy is transferred instantaneously
from the heating element to the contents of the tank.
Suppose that the metal heating element has a signifi-
cant thermal capacitance and that the electrical heating
rate Q directly affects the temperature of the element
rather than the liquid contents. For simplicity, we ne-
glect the temperature gradients in the heating element
that result from heat conduction and assume that the
element has a uniform temperature, 7,. This tempera-
ture can be interpreted as the average temperature for
the heating element.

Based on this new assumption, and the previous as-
sumptions of Section 2.4.1, the unsteady-state energy
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balances for the tank and the heating element can be
written as

mC% = WC(T; — T) + hA(T, — T) (2-47)
ar,
meCeTte =0 - heAe(Te - T) (2'48)

where m = Vp and m,C, is the product of the mass of
metal in the heating element and its specific heat. The
term Ah.A, is the product of the heat transfer coefficient
and area available for heat transfer. Note that mC and
m,.C, are the thermal capacitances of the tank contents
and the heating element, respectively. Q is an input
variable, the thermal equivalent of the instantaneous
electrical power dissipation in the heating element.

Is the model given by Eqgs. 2-47 and 2-48 in suitable
form for calculation of the unknown output variables
T, and T? There are two output variables and two dif-
ferential equations. All of the other quantities must
be either model parameters (constants) or inputs
(known functions of time). For a specific process, m,
C, mg, C,, h,, and A, are known parameters deter-
mined by the design of the process, its materials of
construction, and its operating conditions. Input vari-
ables w, T;, and Q must be specified as functions of
time for the model to be completely determined — that
is, to utilize the available degrees of freedom. The dy-
namic model can then be solved for 7T and T, as func-
tions of time by integration after initial conditions are
specified for 7 and 7.,.

If flow rate w is constant, Eqs. 2-47 and 2-48 can be
converted into a single second-order differential equa-
tion. First, solve Eq. 2-47 for T, and then differentiate
to find dT,/dt. Substituting the expressions for 7, and
dT,/dt into Eq. 2-48 yields

mmeC, d*T (meCe mC, m)d_T
whod, a2 \ha, " wC "w)a T T
_ mC, dT; 1
A a t Tt g2 99)

The reader should verify that the dimensions of each
term in the equation are consistent and have units of
temperature. In addition, the reader should consider
the steady-state versions of (2-36) and (2-49). They are
identical, which is to be expected. Analyzing limiting
cases is one way to check the consistency of a more
complicated model.

The model in (2-49) can be simplified when m,C,, the
thermal capacitance of the heating element, is very small
compared to mC. When m,C, = 0, Eq. 2-49 reverts to
the first-order model, Eq. 2-36, which was derived for
the case where the heating element has a negligible ther-
mal capacitance.
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It is important to note that the model of Eq. 2-49
consists of only a single equation and a single output
variable, 7. The intermediate variable, T,, is less im-
portant than 7" and has been eliminated from the ear-
lier model (Egs. 2-47 and 2-48). Both models are
exactly specified; that is, they have no unassigned de-
grees of freedom. To integrate Eq. 2-49, we require ini-
tial conditions for both T and dT/dt at t = 0, because it
is a second-order differential equation. The initial con-
dition for d7/dt can be found by evaluating the right
side of Eq. 2-47 when ¢t = 0, using the values of T,(0)
and 7(0). For both models, the inputs (w, T;, Q) must
be specified as functions of time.

EXAMPLE 24

An electrically heated stirred-tank process can be modeled
by Egs. (2-47) and (2-48) or, equivalently, by Eq. (2-49)
alone. Process design and operating conditions are charac-
terized by the following four parameter groups:

% = 10 min %f:: = 1.0 min
meCe _ 1.0 min . 0.05 °C min/kcal
wC wC
The nominal values of Q and T; are
0 = 5000 kcal/min T, = 100°C

(a) Calculate the nominal steady-state temperature, 7.

(b) Assume that the process is initially at the steady state
determined in part (a). Calculate the response, 7(¢), to
a sudden change in Q from 5000 to 5400 kcal/min
using Eq. (2-49). Plot the temperature response.

(¢) Suppose that it can be assumed that the term m,C,/h.A,
is small relative to other terms in (2-49). Calculate the
response 7(¢) for the conditions of part (b), using a first-
order differential equation approximation to Eq. (2-49).
Plot 7(¢) on the graph for part (b).

(d) What can we conclude about the accuracy of the ap-
proximation for part (¢)?

SOLUTION
(a) The steady-state form of Eq. 2-49 is
e
. e

Substituting parameter values gives T = 350 °C.
(b) Substitution of the parameter values in (2-49) gives

2
102L 4 129T | 7 _ 379
dt2 dt

The following solution can be derived using standard
solution methods (Kreyszig, 1999):

T(r) =350 +20 [1 — 1.089 e 1109 + 0,0884 ¢ #0901

370 T T T =
365 = =
100 360 = |
b
355 -1 a |
[/ a Second-order equation
Y b First-order equation

350 | 1 | | | | |
0 o 20 30 40 50 60 70 80

Time (min)

Figure 2.4 Responses of an electrically-heated stirred-tank
process to a sudden change in the heater input.

This response is plotted in Fig. 2.4 as the slightly
“s-shaped” curve (a).

(¢) If we assume that m,C, is small relative to other
terms, then Eq. 2-49 can be approximated by the first-
order differential equation:

dT

12 =

+ T =370, T(0) = 350°C

The solution is

T(t) = 350 + 20 (1 — e "12)

(d) Figure 2.4 shows that the approximate solution (b) is
quite good, matching the exact solution very well over
the entire response. For purposes of process control,
this approximate model is likely to be as useful as the
more complicated, exact model.

2.4.4 Steam-Heated Stirred Tank

Steam (or some other heating medium) can be con-
densed within a coil or jacket to heat liquid in a stirred
tank, and the inlet steam pressure can be varied by ad-
justing a control valve. The condensation pressure Py
then fixes the steam temperature 7 through an appro-
priate thermodynamic relation or from tabular infor-
mation such as the steam tables (Sandler, 2006):

T, = f(Py)

Consider the stirred-tank heating system of Section
2.4.1 with constant holdup and a steam heating coil. We
assume that the thermal capacitance of the liquid con-
densate is negligible compared to the thermal capaci-
tances of the tank liquid and the wall of the heating
coil. This assumption is reasonable when a steam trap
is used to remove the condensate from the coil as it is
produced. As a result of this assumption, the dynamic
model consists of energy balances on the liquid and the
heating coil wall:

(2-50)



dT
mCE =wC(T; — T) + hyAy(Ty, — 1)

MGy = AT, — T,) — hph(T,y — T) (2-52)

(2-51)

where the subscripts w, s, and p refer, respectively, to
the wall of the heating coil and to its steam and process
sides. Note that these energy balances are similar to
Eqgs. 2-47 and 2-48 for the electrically heated example.

The dynamic model contains three output variables
(Ty, T, and T,) and three equations: an algebraic equa-
tion with 7 related to P; (a specified function of time
or a constant) and two differential equations. Thus,
Eqgs. 2-50 through 2-52 constitute an exactly specified
model with three input variables: Pg, T;, and w. Several
important features are noted.

1. Usually hjA; >> h,A,, because the resistance to
heat transfer on the steam side of the coil is much
lower than on the process side.

2. The change from electrical heating to steam heat-
ing increases the complexity of the model (three
equations instead of two) but does not increase
the model order (number of first-order differen-
tial equations).

3. As models become more complicated, the input
and output variables may be coupled through cer-
tain parameters. For example, 4, may be a function
of w, or hy may vary with the steam condensation
rate; sometimes algebraic equations cannot be
solved explicitly for a key variable. In this situation,
numerical solution techniques have to be used.
Usually, implicit algebraic equations must be
solved by iterative methods at each time step in the
numerical integration.

We now consider some simple models for liquid stor-
age systems utilizing a single tank. In the event that two
or more tanks are connected in series (cascaded), the
single-tank models developed here can be easily ex-
tended, as shown in Chapter 5.

2.4.5 Liquid Storage Systems

A typical liquid storage process is shown in Fig. 2.5
where g; and g are volumetric flow rates. A mass bal-
ance yields

aeV) _

(2-53)

Assume that liquid density p is constant and the tank is
cylindrical with cross-sectional area, A. Then the volume
of liquid in the tank can be expressed as V = Ah, where
h is the liquid level (or kead). Thus, (2-53) becomes

dh

A= =4qi—q

i (2-54)
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Cross-sectional area = A

Figure 2.5 A liquid-level storage process.

Note that Eq. 2-54 appears to be a volume balance.
However, in general, volume is not conserved for fluids.
This result occurs in this example due to the constant
density assumption.

There are three important variations of the liquid
storage process:

1. The inlet or outlet flow rates might be constant;
for example, exit flow rate g might be kept con-
stant by a constant-speed, fixed-volume (meter-
ing) pump. An important consequence of this
configuration is that the exit flow rate is then com-
pletely independent of liquid level over a wide
range of conditions. Consequently, g = g where q
is the steady-state value. For this situation, the
tank operates essentially as a flow integrator. We
will return to this case in Section 5.3.

2. The tank exit line may function simply as a resis-
tance to flow from the tank (distributed along the
entire line), or it may contain a valve that provides
significant resistance to flow at a single point. In the
simplest case, the flow may be assumed to be lin-
early related to the driving force, the liquid level, in
analogy to Ohm’s law for electrical circuits (E = IR)

h = qR, (2-55)

where R, is the resistance of the line or valve.
Rearranging (2-55) gives the following flow-head
equation:
1
=—h
q R,
Substituting (2-56) into (2-54) gives a first-order
differential equation:

Al L
v

(2-56)

2-57
dt R (2-57)
This model of the liquid storage system exhibits
dynamic behavior similar to that of the stirred-
tank heating system of Eq. 2-36.

3. A more realistic expression for flow rate g can be
obtained when a fixed valve has been placed in
the exit line and turbulent flow can be assumed.
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The driving force for flow through the valve is the
pressure drop AP:

AP=P - P, (2-58)

where P is the pressure at the bottom of the tank and
P, is the pressure at the end of the exit line. We as-
sume that P, is the ambient pressure. If the valve is
considered to be an orifice, a mechanical energy bal-
ance, or Bernoulli equation (Bird et al., 2002), can be
used to derive the relation

P-P,

p
where C3 is a constant. The value of Cj depends on
the particular valve and the valve setting (how much

it is open). See Chapter 9 for more information
about control valves.

qg=C% (2-59)

The pressure P at the bottom of the tank is related to
liquid level by a force balance
p=P,+ 2% (2-60)
8c
where the acceleration of gravity g is constant. Substitut-
ing (2-59) and (2-60) into (2-54) yields the dynamic model

B o gi- oV (2-61)
dt
where C, = C,Vglg,. This model is nonlinear due to
the square root term.

The liquid storage processes discussed above could
be operated by controlling the liquid level in the tank
or by allowing the level to fluctuate without attempting
to control it. For the latter case (operation as a surge
tank), it may be of interest to predict whether the tank
would overflow or run dry for particular variations in
the inlet and outlet flow rates. Thus, the dynamics of
the process may be important even when automatic
control is not utilized.

2.4.6 The Continuous Stirred-Tank
Reactor (CSTR)

Continuous stirred-tank reactors have widespread ap-
plication in industry and embody many features of
other types of reactors. CSTR models tend to be sim-
pler than models for other types of continuous reactors
such as tubular reactors and packed-bed reactors. Con-
sequently, a CSTR model provides a convenient way of
illustrating modeling principles for chemical reactors.

Consider a simple liquid-phase, irreversible chemical
reaction where chemical species A reacts to form
species B. The reaction can be written as A — B. We
assume that the rate of reaction is first-order with re-
spect to component A,

r=kcy (2-62)

where r is the rate of reaction of A per unit volume, k is
the reaction rate constant (with units of reciprocal
time), and c4 is the molar concentration of species A.
For single-phase reactions, the rate constant is typically
a strong function of reaction temperature given by the
Arrhenius relation,

k = koexp(—E/RT) (2-63)

where kj is the frequency factor, E is the activation
energy, and R is the gas constant. The expressions in
(2-62) and (2-63) are based on theoretical considera-
tions, but model parameters ky and E are usually deter-
mined by fitting experimental data. Thus, these two
equations can be considered to be semi-empirical rela-
tions, according to the definition in Section 2.2.

The schematic diagram of the CSTR is shown in
Fig. 2.6. The inlet stream consists of pure component A
with molar concentration, c4;. A cooling coil is used to
maintain the reaction mixture at the desired operating
temperature by removing heat that is released in the
exothermic reaction. Our initial CSTR model develop-
ment is based on three assumptions:

1. The CSTR is perfectly mixed.

2. The mass densities of the feed and product streams
are equal and constant. They are denoted by p.

3. The liquid volume V in the reactor is kept constant
by an overflow line.

For these assumptions, the unsteady-state mass balance
for the CSTR is:

d(pV)
= pg;: — -64
g " P Pd (2-64)
Because V and p are constant, (2-64) reduces to
q = g (2-65)

Thus, even though the inlet and outlet flow rates may
change due to upstream or downstream conditions,

Pure A
q; cai» T;

Mixture of A and B

q,ca T
V.o, T

by

Cooling medium
at temperature
T

c

Figure 2.6 A nonisothermal continuous stirred-tank reactor.



Eq. 2-65 must be satisfied at all times. In Fig. 2.6, both
flow rates are denoted by the symbol g.

For the stated assumptions, the unsteady-state com-
ponent balances for species A (in molar units) is

1/ddL;‘1 = Q(CAi - CA) - VkCA (2-66)
This balance is a special case of the general component
balance in Eq. 2-7.

Next, we consider an unsteady-state energy balance
for the CSTR. But first we make five additional
assumptions:

4. The thermal capacitances of the coolant and the
cooling coil wall are negligible compared to the
thermal capacitance of the liquid in the tank.

5. All of the coolant is at a uniform temperature, 7.
(That is, the increase in coolant temperature as
the coolant passes through the coil is neglected.)

6. The rate of heat transfer from the reactor con-
tents to the coolant is given by

Q=UA(T. - 1)

where U is the overall heat transfer coefficient and
A is the heat transfer area. Both of these model
parameters are assumed to be constant.

(2-67)

7. The enthalpy change associated with the mixing of
the feed and the liquid in the tank is negligible com-
pared with the enthalpy change for the chemical
reaction. In other words, the heat of mixing is neg-
ligible compared to the heat of reaction.

8. Shaft work and heat losses to the ambient can be
neglected.

The following form of the CSTR energy balance is
convenient for analysis and can be derived from Egs.
2-62 and 2-63 and Assumptions 1-8 (Fogler, 2006;
Russell and Denn, 1972),

ﬂ = WC(T,‘ - T) + (_AHR)VkCA

Vo€ =
+ UA(T, - T)

(2-68)

where AHp, is the heat of reaction per mole of A that is
reacted.

In summary, the dynamic model of the CSTR con-
sists of Eqgs. 2-62 to 2-64, 2-66, 2-67, and 2-68. This
model is nonlinear as a result of the many product
terms and the exponential temperature dependence
of k in Eq. 2-63. Consequently, it must be solved
by numerical integration techniques (Fogler, 2006).
The CSTR model will become considerably more
complex if

1. More complicated rate expressions are consid-
ered. For example, a mass action kinetics model
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for a second-order, irreversible reaction, 2A — B,
is given by

(2-69)

2. Additional species or chemical reactions are in-
volved. If the reaction mechanism involved pro-
duction of an intermediate species, 2A — B* —
B, then unsteady-state component balances for
both A and B* would be necessary (to calculate
¢4 and cp), or balances for both A and B could be
written (to calculate c4 and cp). Information con-
cerning the reaction mechanisms would also be
required.

r = k2C124

Reactions involving multiple species are described by
high-order, highly coupled, nonlinear reaction models,
because several component balances must be written.

EXAMPLE 2.5

To illustrate how the CSTR can exhibit nonlinear dynamic
behavior, we simulate the effect of a step change in the
coolant temperature 7 in positive and negative directions.
Table 2.3 shows the parameters and nominal operating
condition for the CSTR based on Egs. 2-66 and 2-68 for
the exothermic, irreversible first-order reaction A — B.
The two-state variables of the ODEs are the concentration
of A (c4) and the reactor temperature 7. The manipulated
variable is the jacket water temperature, 7.

Two cases are simulated, one based on increased cooling
by changing 7, from 300 K to 290 K and one reducing the
cooling rate by increasing 7, from 300 K to 305 K.

These model equations are solved in MATLAB with a
numerical integrator (odel5s) over a 10 min horizon. The
decrease in 7, results in an increase in c4. The results are
displayed in two plots of the temperature and reactor
concentration as a function of time (Figs. 2.7 and 2.8).

At a jacket temperature of 305 K, the reactor model has
an oscillatory response. The oscillations are characterized
by apparent reaction run-away with a temperature spike.
However, when the concentration drops to a low value, the
reactor then cools until the concentration builds, then there
is another temperature rise. It is not unusual for chemical
reactors to exhibit such widely different behaviors for
different directional changes in the operating conditions.

Table 2.3 Nominal Operating Conditions for the CSTR

Parameter Value Parameter Value
q 100 L/min E/R 8750 K
CAi 1 mol/L kg 7.2 X 109 min!
7 350 K UA 5 X 10* J/min K
|4 100 L T. (0) 300K
p 1000 g/L ca (0) 0.5 mol/L
¢ 0.239J/g K 7(0) 350K

—AHr 5 X 10* J/mol
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Figure 2.7 Reactor temperature variation with step
changes in cooling water temperature from 300 K to
305 K and from 300 K to 290 K.

Although the modeling task becomes much more com-
plex, the same principles illustrated above can be ex-
tended and applied. We will return to the simple CSTR
model again in Chapter 4.

2.4.7 Staged Systems (a Three-Stage Absorber)

Chemical processes, particularly separation processes,
often consist of a sequence of stages. In each stage,
materials are brought into intimate contact to obtain
(or approach) equilibrium between the individual
phases. The most important examples of staged
processes include distillation, absorption, and extrac-
tion. The stages are usually arranged as a cascade with
immiscible or partially miscible materials (the sepa-
rate phases) flowing either cocurrently or countercur-
rently. Countercurrent contacting, shown in Fig. 2.9,
usually permits the highest degree of separation to be
attained in a fixed number of stages and is considered
here.

The feeds to staged systems may be introduced at
each end of the process, as in absorption units, or a
single feed may be introduced at a middle stage, as is
usually the case with distillation. The stages may be
physically connected in either a vertical or horizontal
configuration, depending on how the materials are
transported, that is, whether pumps are used between

Reactant A concentration (mol/L)

Time (min)

Figure 2.8 Reactant A concentration variation with step
changes in cooling water temperature to 305 K and to 290 K.

stages, and so forth. Below we consider a gas-liquid ab-
sorption process, because its dynamics are somewhat
simpler to develop than those of distillation and extrac-
tion processes. At the same time, it illustrates the char-
acteristics of more complicated countercurrent staged
processes (Seader and Henley, 2005).

For the three-stage absorption unit shown in Fig.
2.10, a gas phase is introduced at the bottom (molar
flow rate G) and a single component is to be absorbed
into a liquid phase introduced at the top (molar flow
rate L, flowing countercurrently). A practical example
of such a process is the removal of sulfur dioxide (SO,)
from combustion gas by use of a liquid absorbent. The
gas passes up through the perforated (sieve) trays and
contacts the liquid cascading down through them. A
series of weirs and downcomers typically are used to
retain a significant holdup of liquid on each stage while
forcing the gas to flow upward through the perfora-
tions. Because of intimate mixing, we can assume that
the component to be absorbed is in equilibrium be-
tween the gas and liquid streams leaving each stage i.
For example, a simple linear relation is often assumed.

For stage i
yi=ax; + b (2-70)

where y; and x; denote gas and liquid concentrations of
the absorbed component. Assuming constant liquid

Feed 1 ——

Product 2<——

——> Product 1

<—— Feed 2

Stage 1

Stage 2

Stage n

Figure 2.9 A countercurrent-flow staged process.
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Figure 2.10 A three-stage absorption unit.

holdup H and perfect mixing on each stage, and ne-
glecting the holdup of gas, the component material bal-
ance for any stage i is

dxi

H— = G(yi-1 — yi) + L(xiz1 — X))

= 2-71)

In Eq. 2-71 we also assume that molar liquid and gas
flow rates L and G are unaffected by the absorption,
because changes in concentration of the absorbed
component are small, and L and G are approximately
constant. Substituting Eq. 2-70 into Eq. 2-71 yields
dxi

HE = aGx;—1 — (L + aG)x; + Lx;1+1 (2-72)
Dividing by L and substituting = = H/L (the stage liquid
residence time), § = aG/L (the stripping factor), and
K = GI/L (the gas-to-liquid ratio), the following model
is obtained for the three-stage absorber:

d

Tl = KO- b) - (Lt 9x tx (2T3)
de

TI = le - (1 + S)xz + X3 (2-74)
d)C3

TW =8x) — (1 + &)x3 + Xf (2-75)

In the model of (2-73) to (2-75) note that the individ-
val equations are linear but also coupled, meaning
that each output variable —xq, x,, x3—appears in more
than one equation. This feature can make it difficult
to convert these three equations into a single higher-
order equation in one of the outputs, as was done in
Eq. 2-49.
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2.4.8 Distributed Parameter Systems

(the Double-Pipe Heat Exchanger)

All of the process models discussed up to this point
have been of the lumped parameter type, meaning that
any dependent variable can be assumed to be a function
only of time and not of spatial position. For the stirred-
tank systems discussed earlier, we assumed that any
spatial variations of the temperature or concentration
within the liquid could be neglected. Perfect mixing in
each stage was also assumed for the absorber. Even
when perfect mixing cannot be assumed, a lumped or
average temperature may be taken as representative of
the tank contents to simplify the process model.

While lumped parameter models are normally used
to describe processes, many important process units are
inherently distributed parameter; that is, the output
variables are functions of both time and position.
Hence, their process models contain one or more par-
tial differential equations. Pertinent examples include
shell-and-tube heat exchangers, packed-bed reactors,
packed columns, and long pipelines carrying compress-
ible gases. In each of these cases, the output variables
are a function of distance down the tube (pipe), height
in the bed (column), or some other measure of loca-
tion. In some cases, two or even three spatial variables
may be considered; for example, concentration and
temperature in a tubular reactor may depend on both
axial and radial positions, as well as time.

Figure 2.11 illustrates a double-pipe heat exchanger
where a fluid flowing through the inside tube with ve-
locity v is heated by steam condensing in the outer
tube. If the fluid is assumed to be in plug flow, the tem-
perature of the liquid is expressed as Ty (z, t) where z
denotes distance from the fluid inlet. The fluid heating
process is truly distributed parameter; at any instant in
time there is a temperature profile along the inside

Steam
T,

S

Ill

| = |
v v
—_— —_—
TL(O, t) TL(L, t)

| = |

L l [
Ts
Condensate

Figure 2.11 Heat exchanger.
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tube. The steam condensation, on the other hand,
might justifiably be treated as a lumped process, be-
cause the steam temperature Ty(f) can be assumed to
be a function of the condensation pressure, itself pre-
sumably a function only of time and not a function of
position. We also assume that the wall temperature
T,(z, t) is different from 77 and 7, due to the thermal
capacitance and resistances.

In developing a model for this process, assume that
the liquid enters at temperature 7;(0, t)—that is,at z = 0.
Heat transfer coefficients (steam-to-wall 4 and wall-to-
liquid A7) can be used to approximate the energy trans-
fer processes. We neglect the effects of axial energy
conduction, the resistance to heat transfer within the
metal wall, and the thermal capacitance of the steam
condensate.”? A distributed parameter model for the
heat exchanger can be derived by applying Eq. 2-8 over
a differential tube length Az of the exchanger. In such a
shell energy balance, the partial differential equation is
obtained by taking the limit as Az — 0 (Bird et al.,
2002). Using the conservation law, Eq. 2-8, the follow-
ing PDE results (Coughanowr, 1991).

Ty, oT),
pLCLSL—, = —pLCLSLY o T h A (T, — Tp)

(2-76)

where the following parameters are constant: p; = liquid
density, C;, = liquid heat capacity, S; = cross-sectional
area for liquid flow, /#; = liquid heat transfer coefficient,
and A; = wall heat transfer area of the liquid. This equa-
tion can be rearranged to yield

oTy, _ Ty, 1

w - Ve + THL (T,—Tyr) (2-77)
where Ty = prCrSp/hi A has units of time and is
called the characteristic time for heating of the liquid.
An energy balance for the wall gives

oT
PwCwSw a—tw = hsAs(Ts - Tw) - hLAL(Tw - TL)

(2-78)

where the parameters associated with the wall are de-
noted by subscript w and the steam-side transport para-
meters are denoted by subscript s. Because 7, depends
on T}, it is also a function of time and position, T,(z, ¢). T
is a function only of time, as noted above. Equation 2-78
can be rearranged as

o,

D TSNS SR e
ot - Tew (Ts Tw) TwL (Tw TL) (2'79)

The condensate temperature is chosen as the reference temperature
for energy balances.

where

_ prwa _ PwaSw
Tew — 7 and TwL = m
s

are characteristic times for the thermal transport
processes between the steam and the wall and the wall
and the liquid, respectively.

To be able to solve Egs. 2-77 and 2-79, boundary
conditions for both 7, and T, at time ¢t = 0 are re-
quired. Assume that the system initially is at steady
state (077/t = 9T/t = 0; Ty(0) is known). The steady-
state profile, 77 (z, 0), can be obtained by integrating
Eq. 2-77 with respect to z simultaneously with solving
the steady-state version of Eq. 2-79, an algebraic ex-
pression. Note that the steady-state version of (2-77) is
an ODE in z, with 7 (0, 0) as the boundary condition.
T,(z, 0) is found algebraically from 7 and T (z, 0).

With the initial and boundary conditions completely
determined, the variations in 77 (z, ) and T,(z, f) result-
ing from a change in the inputs, Ty(¢) or T7(0, {), can now
be obtained by solving Egs. 2-77 and 2-79 simultane-
ously using an analytical approach or a numerical proce-
dure (Hanna and Sandall, 1995). Because analytical
methods can be used only in special cases, we illustrate a
numerical procedure here. A numerical approach invari-
ably requires that either z, ¢, or both z and ¢ be dis-
cretized. Here we use a finite difference approximation
to convert the PDEs to ODEs. Although numerically
less efficient than other techniques such as those based
on weighted residuals (Chapra and Canale, 2010), finite
difference methods yield more physical insight into both
the method and the result of physical lumping.

To obtain ODE models with time as the independent
variable, the z dependence is eliminated by discretization.
In Fig. 2.12 the double-pipe heat exchanger has been re-
drawn with a set of grid lines to indicate points at which
the liquid and wall temperatures will be evaluated. We
now rewrite Egs. 2-77 and 2-79 in terms of the liquid
and wall temperatures 77(0), Tr(1), . . ., Tr(N) and
T,,(0), Ty(1), . . ., T,,(N). Utilizing the backward differ-
ence approximation for the derivative 777/dz yields

(2-80)

9z Az
TS
! ! le— Az—!
I |
e F T T St T, (\)
| | | | | |
TL(0) Tr(1) Tr(2) Tr(i-1) TL() T7(N)
| | | | | |

b

Figure 2.12 Finite-difference approximations for double-pipe
heat exchanger.



where T (j) is the liquid temperature at the jth node (dis-
cretization point). Substituting Eq. 2-81 into Eq. 2-77, the
equation for the jth node is

dri(j) _ ) TL(j)—T(j—1)
dt Az

1 . N
F oL - TG = Lo s ) 82)
The boundary condition at z = 0 becomes
T(0,0) = Tr()) (2-83)

where Tg(f) is a specified forcing (input) function. Re-
arranging Eq. 2-82 yields

%t(]) A (=1 - (Az * THL) Ti()
T,()) (j =1,...,N) (2-84)
Similarly, for the wall equation,
Ml — (L Lhrgy+ L
+ ;i;]}(j) (=1...N) (2-85)

Note that Eqgs. 2-84 and 2-85 represent 2N linear
ordinary differential equations for N liquid and N wall
temperatures. There are a number of anomalies associ-
ated with this simplified approach compared to the
original PDEs. For example, it is clear that heat trans-
fer from steam to wall to liquid is not accounted for at
the zeroth node (the entrance), but is accounted for at
all other nodes. Also, a detailed analysis of the discrete
model will show that the steady-state relations between
T;(j) and either input, Ty or T, are a function of the
number of grid points and thus the grid spacing, Az.
The discrepancy can be minimized by making N
large, that is, Az small, The lowest-order model for
this system that retains some distributed nature would
be for N = 2. In this case, four equations result:

Ty, v ( 1 ) 1
dt A F( ) A + THL TLl + THL Twl
(2-86)
AT, v ( v 1 ) 1
L ¥ - ==+ — =
dr Az Try Az Ty + — Ty,
(2-87)
Ty, _ 1 1 1
o (Tsw + TwL) Ty + — TL1 +— s(t)
(2-88)
dTly, ( 1 1 ) 1 1
Mo (b T+ T+ — Tt
dt Tsw TwL w2 TwL L2 Tsw S( )
(2-89)
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where the node number has been denoted by the second
subscript on the output variables to simplify the notation.
Equations 2-86 to 2-89 are coupled, linear, ordinary
differential equations.

2.4.9 Fed-Batch Bioreactor

Biological reactions that involve microorganisms and
enzyme catalysts are pervasive and play a crucial role
in the natural world. Without such bioreactions, plant
and animal life as we know it simply could not exist.
Bioreactions also provide the basis for production of a
wide variety of pharmaceuticals and healthcare and
food products. Other important industrial processes
that involve bioreactions include fermentation and
wastewater treatment. Chemical engineers are heavily
involved with biochemical and biomedical processes. In
this section we present a dynamic model for a represen-
tative process, a bioreactor operated in a semi-batch
mode. Additional biochemical and biomedical applica-
tions appear in other chapters.

In general, bioreactions are characterized by the con-
version of feed material (or substrate) into products
and cell mass (or biomass). The reactions are typically
catalyzed by enzymes (Bailey and Ollis, 1986; Fogler,
1999). When the objective is to produce cells, a small
amount of cells (inoculum) is added to initiate subse-
quent cell growth. A broad class of bioreactions can be
represented in simplified form as

cells
substrate — more cells + products  (2-90)

The stoichiometry of bioreactions can be very complex
and depends on many factors that include the environ-
mental conditions in the vicinity of the cells. For sim-
plicity we consider the class of bioreactions where the
substrate contains a single limiting nutrient and only
one product results. The following yield coefficients are
based on the reaction stoichiometry:

mass of new cells formed

Y —3
XIS mass of substrate consumed to form new cells

(2-91)

mass of product formed

Y —3
PIS ™ mass of substrate consumed to form product

(2-92)

Many important bioreactors are operated in a semi-
continuous manner that is referred to as fed-batch op-
eration, which is illustrated in Figure 2.13. A feed stream
containing substrate is introduced to the fed-batch re-
actor continually. The mass flow rate is denoted by F
and the substrate mass concentration by Sy Because
there is no exit stream, the volume V of the bioreactor
contents increases during the batch. The advantage
of fed-batch operation is that it allows the substrate
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Figure 2.13 Fed-batch reactor for a bioreaction.

concentration to be maintained at a desired level, in
contrast to batch reactors where the substrate concen-
tration varies continually throughout the batch (Shuler
and Kargi, 2002).

Fed-batch operation is used to manufacture many
important industrial products, including antibiotics
and protein pharmaceuticals. In batch and fed-batch
reactors, cell growth occurs in different stages after
the inoculum is introduced. We will consider only the
exponential growth stage where the cell growth rate is
autocatalytic and is assumed to be proportional to the
cell concentration. A standard reaction rate expres-
sion to describe the rate of cell growth with a single
limiting substrate is given by (Bailey and Ollis, 1986;
Fogler, 2006)

re=pX (2-93)

where r, is the rate of cell growth per unit volume, X is
the cell mass, and p is the specific growth rate, which is
well described by the Monod equation:

_ S
“‘_“‘maxKS T S

Note that w has units of reciprocal time—for example,
h~1. Model parameter pp.y is referred to as the maxi-
mum growth rate, because p has a maximum value of
tmax When S >> K. The second model parameter, Kg,
is called the Monod constant. The Monod equation has
the same form as the Michaelis-Menten equation, a
standard rate expression for enzyme reactions (Bailey
and Ollis, 1986; Fogler, 2006).

A dynamic model for the fed-batch bioreactor in Fig.
2.13 will be derived based on the following assumptions:

1
2.
3.

(2-94)

The cells are growing exponentially.

The fed-batch reactor is perfectly mixed.

Heat effects are small so that isothermal reactor
operation can be assumed.

The liquid density is constant.

. The broth in the bioreactor consists of liquid plus solid

material (i.e., cell mass). This heterogeneous mixture
can be approximated as a homogenous liquid.

X (g/L)

S (g/L)

6. The rate of cell growth 7, is given by (2-93) and (2-94).

7. The rate of product formation per unit volume r,
can be expressed as

(2-95)

where the product yield coefficient Ypx is defined as:

rp= Ypixrg

mass of product formed

Ypix = (2-96)

mass of new cells formed
8. The feed stream is sterile and thus contains no cells.

The dynamic model of the fed-batch reactor consists of
individual balances for substrate, cell mass, and prod-
uct, plus an overall mass balance. The general form of
each balance is

{Rate of accumulation} = {rate in} + {rate of formation}

(2-97)
The individual component balances are
d(XV)
Cells: i Vrg (2-98)
d(P
Product: ( dtV) =Vr, (2-99)
(V)
: = -V 2-
Substrate dr F §; Yxs re (2-100)

where P is the mass concentration of the product and V'
is reactor volume. Reaction rates r; and r, and yield
coefficients were defined in Egs. 2-91 through 2-96. The
overall mass balance (assuming constant density) is
av
—=F
dt
The dynamic model is simulated for two different feed

rates (0.02 L/hr and 0.05 L/hr). Figure 2.14 shows the pro-
file of cell, product, and substrate concentration, together

Mass: (2-101)

6 | 1.0
0.75
4
2 0.50 -
2 0.25
0 0
10 3.0 | |
7.5 2.5
— a
5.0 - ;«' 2.0 —
b
2.5 1.5 =7
lowE="C |
0 10 20 30 0 10 20 30
Time (hr) Time (hr)

Figure 2.14 Fed-batch reaction profile (a: F = 0.05 L/hr;
b: F = 0.02 L/hr).



Table 2.3 Model Parameters and Simulation Conditions for
Bioreactor

Model Parameters Simulation Conditions

Pemax 020 hr! S¢ 100 gL
Ks 1.0 gL X(0) 0.05 g/L
Yyss 05 glg 5(0) 100 gL
Ypx 02 gg P(0) 00 gL

V(0) 10 L

with liquid volume in the reactor. The model parameters
and simulation conditions are given in Table 2.3. For dif-
ferent feed rates, the bioreactor gives different responses;
thus, the product can be maximized by varying F.

2.5 PROCESS DYNAMICS AND
MATHEMATICAL MODELS

Once a dynamic model has been developed, it can be
solved for a variety of conditions that include changes in
the input variables or variations in the model parame-
ters. The transient responses of the output variables as
functions of time are calculated by numerical integration
after specifying the initial conditions, the inputs and the
time interval at which the system is to be integrated.

A large number of numerical integration techniques
are available, ranging from simple techniques (e.g., the
Euler and Runge-Kutta methods) to more complicated
ones (e.g., the implicit Euler and Gear methods). All of
these techniques represent some compromise between
computational effort (computing time) and accuracy.
Although a dynamic model can always be solved in prin-
ciple, for some situations it may be difficult to generate
useful numerical solutions. Dynamic models that exhibit
a wide range of time scales (stiff equations) are quite dif-
ficult to solve accurately in a reasonable amount of com-
putation time. Software for integrating ordinary and
partial differential equations is readily available. Web-
sites for the following popular software packages are
given at the end of the chapter: MATLAB, Mathematica,
POLYMATH, ACSL, IMSL, Mathcad and GNU Octave.

For solving dynamic models that contain large numbers
of algebraic and ordinary differential equations, standard
programs have been developed to assist in this task. A
graphical-user interface (GUI) allows the user to enter the
algebraic and ordinary differential equations and related
information, such as the total integration period, error
tolerances, the variables to be plotted, and so on. The
simulation program then assumes responsibility for:

1. Checking to ensure that the set of equations is exactly
specified.

2. Sorting the equations into an appropriate sequence
for iterative solution.

3. Integrating the equations.
4. Providing numerical and graphical output.
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Examples of equation-oriented simulators include
ACSL, gPROMS, and Aspen Custom Modeler (Luyben,
2002).

One disadvantage of equation-oriented packages is
the amount of time and effort required to develop all of
the equations for a complex process. An alternative ap-
proach is to use modular simulation, in which prewrit-
ten subroutines provide models of individual process
units, such as distillation columns or chemical reactors.
Consequently, this type of simulator has a direct corre-
spondence to the process flowsheet. The modular ap-
proach has the significant advantage that plant-scale
simulations only require the user to identify the appro-
priate modules and to supply the numerical values of
model parameters and initial conditions, which is easily
accomplished via a graphical user inteface. This activity
requires much less effort than writing all of the equa-
tions, and it is also easier to program and debug than
sets of equations. Furthermore, the software is responsi-
ble for all aspects of the solution. Because each module
is rather general in form, the user can simulate alterna-
tive flowsheets for a complex process—for example, dif-
ferent configurations of distillation towers and heat
exchangers, or different types of chemical reactors. Simi-
larly, alternative process control strategies can be quickly
evaluated. Some software packages allow the user to add
custom modules for novel applications.

In many modeling applications, it may be desirable to
develop a simulation using vendor-provided software
packages involving different modules or functionalities
(for example, software packages for thermodynamic
properties, simulation, optimization, and control system
design). Historically, it has been difficult to establish
communication between software packages developed
by different sources, such as software and equipment
vendors, universities, and user companies. Fortunately,
through worldwide efforts such as Global CAPE-
OPEN, standard software protocols have been devel-
oped (open standards) to accommodate plug-and-play
software. A list of websites for simulation software
packages is given at the end of the chapter.

Modular dynamic simulators have been available
since the early 1970s. Several commercial products are
available from Aspen Technology (ASPEN PLUS and
HYSYS), Honeywell (UniSim), Chemstations (Chem-
CAD), and Invensys (PRO/II). Modelica is an example
of a collaborative effort that provides modeling capabil-
ity for a number of application areas. These packages
also offer equation-oriented capabilities. Modular dy-
namic simulators have achieved a high degree of accep-
tance in process engineering and control studies because
they allow plant dynamics, real-time optimization, and
alternative control configurations to be evaluated for
an existing or new plant, sometimes in the context of
operator training. Current open systems utilize OLE
(Object Linking and Embedding), which allows dynamic
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simulators to be integrated with software for other appli-
cations, such as control system design and optimization.
A more recent and widely used standard is OPC (OLE
for Process Control), which is a worldwide standard of
application interface in industrial automation software
and enterprise systems. The OPC Foundation provides
the standard specifications for exchange of process con-
trol data between data sources and hardware, databases,
calculation engines (such as process simulators), spread-
sheets, and process historians.

While a dynamic simulator can incorporate some fea-
tures of control loops, sequences, and the operator inter-
face (e.g., displays and historian), a more practical
approach embeds the simulation in the Distributed Con-
trol System (DCS) and has an adjustable real-time fac-
tor. The process simulator reads the DCS outputs for the

SUMMARY

In this chapter we have considered the derivation of
dynamic models from first principles, especially conser-
vation equations. Model development is an art as well
as a science. It requires making assumptions and sim-
plifications that are consistent with the modeling objec-
tives and the end use of the model. A systematic
approach for developing dynamic models is summarized
in Table 2.1. This approach has been illustrated by de-
riving models for representative processes. Although
these illustrative examples are rather simple, they
demonstrate fundamental concepts that are also valid
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EXERCISES

2.1 A perfectly stirred, constant-volume tank has two input
streams, both consisting of the same liquid. The temperature
and flow rate of each of the streams can vary with time.

- —
Stream 2

wa

T

Stream 3

T,
Stream 1
wi I

w3

Figure E2.1

(a) Derive a dynamic model that will describe transient op-
eration. Make a degrees of freedom analysis assuming that
both Streams 1 and 2 come from upstream units (i.e., their
flow rates and temperatures are known functions of time).

(b) Simplify your model, if possible, to one or more differen-
tial equations by eliminating any algebraic equations. Also,
simplify any derivatives of products of variables.

Notes:

w; denotes mass flow rate for stream i.
Liquid properties are constant (not functions of temperature).

2.2 A completely enclosed stirred-tank heating process is
used to heat an incoming stream whose flow rate varies.

-

T;
B ——
w
Q Ta
Heating
coil
I R m——

Figure E2.2

The heating rate from this coil and the volume are both con-
stant.

(a) Develop a mathematical model (differential and algebraic
equations) that describes the exit temperature if heat losses to
the ambient occur and if the ambient temperature (7,) and the
incoming stream’s temperature (7;) both can vary.
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(b) Discuss qualitatively what you expect to happen as 7; and
w increase (or decrease). Justify by reference to your model.

Notes:

p and C, are constants.

U, the overall heat transfer coefficient, is constant.

Ay is the surface area for heat losses to ambient.

T;> T, (inlet temperature is higher than ambient temperature).

2.3 Two tanks are connected together in the following un-
usual way in Fig. E2.3.

T

w3-<=—Px<
Figure E2.3

(a) Develop a model for this system that can be used to find
h1, hy, wy, and wy as functions of time for any given variations
in inputs.

(b) Perform a degrees of freedom analysis. Identify all input
and output variables.

Notes:

The density of the incoming liquid, p, is constant.

The cross-sectional areas of the two tanks are A1 and A,.
w; is positive for flow from Tank 1 to Tank 2.

The two valves are linear with resistances R, and Rj3.

2.4 Consider a liquid flow system consisting of a sealed tank
with noncondensible gas above the liquid as shown in Fig.
E2.4. Derive an unsteady-state model relating the liquid level
h to the input flow rate g;. Is operation of this system inde-
pendent of the ambient pressure P,? What about for a system
open to the atmosphere?

You may make the following assumptions:

(i) The gas obeys the ideal gas law. A constant amount of
mg/M moles of gas are present in the tank.

(i) The operation is isothermal.

(iii) A square root relation holds for flow through the valve.

q; —> P, P,
SOUUUVUUVTUILUOOUIN
H
h
CU
D¢

Cross-sectional
area=A

Figure E2.4
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Compressor
Py

Air
supply

2.5 Two surge tanks are used to dampen pressure fluctua-
tions caused by erratic operations of a large air compressor.
(See Fig. E2.5.)

(a) If the discharge pressure of the compressor is P,(f) and
the operating pressure of the furnace is Py (constant), develop
a dynamic model for the pressures in the two surge tanks as
well as for the air mass flows at points a, b, and c. You may
assume that the valve resistances are constant, that the valve
flow characteristics are linear, e.g., wp = (P; — P,)/Rp, that the
surge processes operate isothermally, and that the ideal gas
law holds.

(b) How would you modify your model if the surge tanks
operated adiabatically? What if the ideal gas law were not a
good approximation?

2.6 A closed stirred-tank reactor with two compartments is
shown in Fig. E2.6. The basic idea is to feed the reactants
continuously into the first compartment, where they will be
preheated by energy liberated in the exothermic reaction,
which is anticipated to occur primarily in the second compart-
ment. The wall separating the two compartments is quite
thin, thus allowing heat transfer; the outside of the reactor is
well insulated; and a cooling coil is built into the second com-
partment to remove excess energy liberated in the reaction.

Tests are to be conducted initially with a single-component
feed (i.e., no reaction) to evaluate the reactor’s thermal char-
acteristics.

(a) Develop a dynamic model for this process under the con-
ditions of no reaction. Assume that gg, T;, and T all may vary.

(b) Make a degrees of freedom analysis for your model—
identifying all parameters, outputs, and inputs that must be
known functions of time in order to obtain a solution.

(¢) In order to estimate the heat transfer coefficients, the re-
actor will be tested with 7; much hotter than the exit temper-
ature. Explain how your model would have to be modified to
account for the presence of the exothermic reaction. (For

Process
furnace
Py

Figure E2.5

purposes of this answer, assume the reaction is A — B and be
as specific as possible.)

Notes:

U, A Overall heat transfer coefficient and surface area
between compartments.

U,A: Overall heat transfer coefficient and surface area
of cooling tube.

Vi Volume of Compartment 1.

Vy: Volume of Compartment 2.

2.7 Using the blending process described in Example 2.1,
calculate the response of x to a change in x; (the disturbance
from 0.4 to 0.5 and a change in w, from 200 to 100 kg/min.
Plot the response using appropriate software for 0 =¢ =
25 minutes. Explain physically why the composition increases
or decreases, compared to case (d) in Fig. 2.2.

2.8 A jacketed vessel is used to cool a process stream as shown
) in Fig. E2.8. The following information is available:

& (i) The volume of liquid in the tank V and the volume of
coolant in the jacket V; remain constant. Volumetric flow rate
gris constant, but g; varies with time.

(i) Heat losses from the jacketed vessel are negligible.

(iii) Both the tank contents and the jacket contents are well
mixed and have significant thermal capacitances.

(iv) The thermal capacitances of the tank wall and the jacket
wall are negligible.

(v) The overall heat transfer coefficient for transfer between

the tank liquid and the coolant varies with coolant flow rate:
U=Kg)®

U [=] Btwh ft? °F

g;[=]ft’h

K = constant

where

| ]
i Vi T,

Cooling
medium T,

a2
T,

N

Figure E2.6



Derive a dynamic model for this system. (State any additional
assumptions that you make.)

e J
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Figure E2.8

2.9 Solve the nonlinear differential equation (2-61) for
g; = 0, either analytically or numerically, to obtain 4(t). Assume
A =2, C*=05p=60,ggc=1,and h(0) = 10, and that

units of these parameters are consistent.
k1 kz
2.10 Irreversible consecutive reactions A — B — C occur in

a jacketed, stirred-tank reactor as shown in Fig. E2.10. Derive a
dynamic model based on the following assumptions:

(i) The contents of the tank and cooling jacket are well
mixed. The volumes of material in the jacket and in the tank
do not vary with time.

(ii) The reaction rates are given by

r= kle_EllRTCA [=] mol A/h L

~E/RTp [=]1mol B/hL

(iii) The thermal capacitances of the tank contents and the
jacket contents are significant relative to the thermal capaci-
tances of the jacket and tank walls, which can be neglected.

(iv) Constant physical properties and heat transfer coeffi-
cients can be assumed.

rp = kze

Note:

All flow rates are volumetric flow rates in L/h. The concentra-
tions have units of mol/L. The heats of reaction are AH; and
AH,.

J

Feed
CAi» CBi
q;, T;
Coolant out
vV
L0 o
Coolant in
Qeir Tei
Jacketed
reactor Product

caegeen Thq
Figure E2.10
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2.11 Example 2.1 plots responses for changes in input flows
for the stirred tank blending system. Repeat part (b)
@ and plot it. Next, relax the assumption that V is con-
stant, and plot the response of x(¢) and V(¢) for the
change in wq for ¢ = 0 to 15 minutes. Assume that w, and w
remain constant.
2.12 A process tank has two input streams—Stream 1 at mass
flow rate wy and Stream 2 at mass flow rate w,. The tank’s ef-
fluent stream, at flow rate w, discharges through a fixed valve
to atmospheric pressure. Pressure drop across the valve is
proportional to the flow rate squared. The cross-sectional

area of the tank, A, is 5 m2, and the mass density of all
streams is 940 kg/m°.

(a) Draw a schematic diagram of the process and write an
appropriate dynamic model for the tank level. What is the
corresponding steady-state model?

(b) At initial steady-state conditions, with w; = 2.0 kg/s and
wyp = 1.2 kg/s, the tank level is 2.25 m. What is the value of the
valve constant (give units)?

(c) A process control engineer decides to use a feed
forward controller to hold the level approximately constant
at the set-point value (g, = 2.25 m) by measuring wy and ma-
nipulating w,. What is the mathematical relation that will be
used in the controller? If the w; measurement is not very ac-
curate and always supplies a value that is 1.1 times the actual
flow rate, what can you conclude about the resulting level
control? (Hint: Consider the process initially at the desired
steady-state level and with the feedforward controller turned
on. Because the controller output is slightly in error, w, # 1.2,
so the process will come to a new steady state. What is it?)
What conclusions can you draw concerning the need for accu-
racy in a steady-state model? for the accuracy of the measure-
ment device? for the accuracy of the control valve? Consider
all of these with respect to their use in a feedforward control
system.

2.13 The liquid storage tank shown in Fig. E2.13 has two inlet
streams with mass flow rates wy and w, and an exit stream
with flow rate w3. The cylindrical tank is 2.5 m tall and 2 m in
diameter. The liquid has a density of 800 kg/m>. Normal oper-
ating procedure is to fill the tank until the liquid level reaches
a nominal value of 1.75 m using constant flow rates: w; = 120
kg/min, w, = 100 kg/min, and w3 = 200 kg/min. At that point,
inlet flow rate wq is adjusted so that the level remains con-
stant. However, on this particular day, corrosion of the tank
has opened up a hole in the wall at a height of 1 m, producing

wl—l ﬁwz

—Tﬁ%

I Im
i |
Figure E2.13
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a leak whose volumetric flow rate g4 (m/min) can be approx-
imated by

2 =0025Vh — 1

where £ is height in meters.

(a) If the tank was initially empty, how long did it take for
the liquid level to reach the corrosion point?

(b) If mass flow rates wy, wp, and ws are kept constant indefi-
nitely, will the tank eventually overflow? Justify your answer.

2.14 Consider a blending tank that has the same dimen-
sions and nominal flow rates as the storage tank in
Exercise 2.13 but that incorporates a valve on the

outflow line that is used to establish flow rate ws. (For this

exercise, there is no leak in the tank as in Exercise 2.13.) In
addition, the nominal inlet stream mass fractions of compo-

nent A are x; = x, = 0.5.

The process has been operating for a long time with con-
stant flow rates and inlet concentrations. Under these condi-
tions, it has come to steady state with exit mass fraction x =
0.5 and level & = 1.75 m. Using the information below, an-
swer the following questions:

(a) What is the value of w3? the constant, C,?

(b) If x, is suddenly changed from 0.5 to 0.6 without chang-
ing the inlet flow rates (of course, x, must change as well),
what is the final value of x3? How long does it take to come
within 1% of this final value?

(¢) If wy is changed from 120 kg/min to 100 kg/min without
changing the inlet concentrations, what will be the final value
of the tank level? How long will it take to come within 1% of
this final value?

(d) Would it have made any difference in part (c) if the con-
centrations had changed at the same time the flow rate was
changed?

Useful information: The tank is perfectly stirred.
ws=C, Vh

2.15 Suppose that the fed-batch bioreactor in Fig. 2.11 is con-
verted to a continuous, stirred-tank bioreactor (also called a
chemostat) by adding an exit stream. Assume that the inlet
and exit streams have the same mass flow rate F and thus the
volume of liquid V in the chemostat is constant.

(a) Derive a dynamic model for this chemostat by modifying
the fed-batch reactor model in Section 2.4.9.

(b) Derive the steady-state relationship between growth rate
w in Eq. 2-93 and dilution rate D where by definition, D = F/V.
Suggest a simple control strategy for controlling the growth
rate based on this result.

(¢) An undesirable situation called washout occurs when all
of the cells are washed out of the bioreactor and thus cell
mass X becomes zero. Determine the values of D that result
in washout. (Hint: Washout occurs if dX/dt is negative for an
extended period of time, until X = 0.)

(d) For the numerical values given below, plot the steady-
state cell production rate DX as a function of dilution rate D.
Discuss the relationship between the values of D that result in
washout and the value that provides the maximum production
rate. The parameter values are: p,, = 020 h™'; Kg = 1.0 g/l,

and Yy = 0.5 g/g. The steady-state condition is D =
01h 1, X=225¢/L,5=1.0g/L,and Sp=10g/L.

2.16 In medical applications the chief objectives for drug de-
livery are: (i) to deliver the drug to the correct location in the
patient’s body, and (ii) to obtain a specified drug concentra-
tion profile in the body through a controlled release of the
drug over time. Drugs are often administered as pills. In
order to derive a simple dynamic model of pill dissolution, as-
sume that the rate of dissolution r; of the pill in a patient is
proportional to the product of the pill surface area and the
concentration driving force:

rg = kA(cs — caq)

where ¢, is the concentration of the dissolved drug in the
aqueous medium, ¢, is the saturation value, A is the surface
area of the pill, and k is the mass transfer coefficient. Because
Cg- Cag» €ven if the pill dissolves completely, the rate of disso-
lution reduces to r; = kAc,.

(a) Derive a dynamic model that can be used to calculate pill
mass M as a function of time. You can make the following
simplifying assumptions:
(i) The rate of dissolution of the pill is given by r; =
kAc.
(i) The pill can be approximated as a cylinder with ra-
dius r and height 4. It can be assumed that A/r.. 1.
Thus the pill surface area can be approximated as
A = 2zrh.

(b) For the conditions given below, how much time is re-
quired for the pill radius r to be reduced by 90% from its ini-
tial value of rg?

p=12g/ml ry=04cm h=18cm
¢; =500g/L k= 0.016 cm/min

2.17 Bioreactions are often carried out in batch reactors. The

@ fed-batch bioreactor model in Section 2.4.9 is also ap-

plicable to batch reactors if the feed flow rate F is set
— equal to zero. Using the available information shown

below, determine how much time is required to achieve a

90% conversion of the substrate. Assume that the volume V

of the reactor contents is constant.

Available information:

(i) Initial conditions:

X(0) =0.05g/L, S(0)=10g/L, P(0)=0g/L.
(ii) Parameter values:
V=1L, pyu=020hr!, Kg=10gL,

Yxis=05glg, Ypx=02g/g.

2.18 Sketch the level response for a bathtub with cross-
sectional area of 8 ft? as a function of time for the following
sequence of events; assume an initial level of 0.5 ft with the
drain open. The inflow and outflow are initially equal to
2 ft3/min.

(a) The drain is suddenly closed, and the inflow remains
constant for 3 min (0 < ¢ < 3).

(b) The drain is opened for 15 min; assume a time constant
in a linear transfer function of 3 min, so a steady state is es-
sentially reached (3 < ¢ < 18).



(¢) The inflow rate is doubled for 6 min (18 < ¢ < 24).

(d) The inflow rate is returned to its original value for 16
min (24 <t < 40).

2.19 Perform a degrees of freedom analysis for the model in
Egs. 2-64 through 2-68. Identify parameters, output variables,
and inputs (manipulated and disturbance variables).

2.20 Surge and storage tanks are important dynamic
processes in a chemical plant. We can investigate their behav-
ior by using simple experiments at home. Obtain a translucent
paper cup (available at fine fast-food restaurants) approxi-
mately 6 to 8 in high (or more). Puncture the cup on the side
near the bottom with a small hole (~ 1/8 in).

(a) Fill the cup to the top and record how long it takes for
the cup to empty. Try other heights (k) and record the time to
empty (¢,) (and repeat some of the trials due to experimental
error). Plot the results (% vs. t,). Is the relationship between h
and ¢, linear or nonlinear? Note this data is related to the case
if you measure the height vs. time in a single experiment.

(b) Is the outflow rate constant with respect to time? Explain
why, or why not.

(¢) Develop a nonlinear dynamic model (ODE) for the
process that describes the height vs. time:
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dh
o =f(h)

h
(d) A linear model would be % = a1 h. What is its solution

for an initial condition #(0)? Can you estimate a; from the
data in part (a)?

2.21 Plot the level response for a tank with constant cross-
[j sectional area of 4 ft? as a function of time for the fol-
> lowing sequence of events; assume an initial level of

1.0 ft with the drain open, and that level and outflow
rate are linearly related. The steady-state inflow and outflow
are initially equal to 2 ft*/min. The graph should show numer-
ical values of level vs. time.

(a) The drain is suddenly closed, and the inflow remains
constant for 3 min (0 <¢< 3).

(b) The drain is opened for 15 min, keeping the inflow at
2 ft3/min, where a steady state is essentially reached (3 < < 18).

(¢) The inflow rate is doubled to 4 ft¥min for 15 min
(18 << 33).

(d) The inflow rate is returned to its original value of 2 ft>/min
for 17 min (33 <t < 50).



Chapter 3

Laplace Transforms

CHAPTER CONTENTS

3.1 The Laplace Transform of Representative Functions

3.2 Solution of Differential Equations by Laplace Transform Techniques

3.3 Partial Fraction Expansion

3.3.1 General Procedure for Solving Differential Equations

3.4 Other Laplace Transform Properties
34.1
342
343
3.4.4

Final Value Theorem

Initial Value Theorem

Transform of an Integral

Time Delay (Translation in Time)

3.5 A Transient Response Example

Summary

In Chapter 2 we developed a number of mathematical
models that describe the dynamic operation of selected
processes. Solving such models—that is, finding the
output variables as functions of time for some change in
the input variable(s)—requires either analytical or
numerical integration of the differential equations.
Sometimes considerable effort is involved in obtaining
the solutions. One important class of models includes
systems described by linear ordinary differential equa-
tions (ODEs). Such linear systems represent the starting
point for many analysis techniques in process control.

In this chapter we introduce a mathematical tool, the
Laplace transform, which can significantly reduce the
effort required to solve and analyze linear differential
equation models. A major benefit is that this transfor-
mation converts ordinary differential equations to alge-
braic equations, which can simplify the mathematical
manipulations required to obtain a solution or perform
an analysis.

First, we define the Laplace transform and show how
it can be used to derive the Laplace transforms of sim-
ple functions. Then we show that linear ODEs can be

40

solved using Laplace transforms, along with a technique
called partial fraction expansion. Some important gen-
eral properties of Laplace transforms are presented,
and we illustrate the use of these techniques with a series
of examples.

3.1 THE LAPLACE TRANSFORM OF
REPRESENTATIVE FUNCTIONS

The Laplace transform of a function f{¢) is defined as

o
R =20l = [ foeta @
0
where F(s) is the symbol for the Laplace transform, s is
a complex independent variable, f(¢) is some function
of time to be transformed, and £ is an operator,
defined by the integral. The function f(r) must satisfy
mild conditions that include being piecewise continu-
ous for 0 < ¢ < o (Churchill, 1971); this requirement
almost always holds for functions that are useful in
process modeling and control. When the integration is
performed, the transform becomes a function of the
Laplace transform variable s. The inverse Laplace
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transform (£1) operates on the function F(s) and
converts it to f(¢). Notice that F(s) contains no infor-
mation about f(¢) for ¢ < 0. Hence, f(f) = £~ YF(s)} is
not defined for ¢ < 0 (Schiff, 1999).

One of the important properties of the Laplace trans-
form and the inverse Laplace transform is that they are
linear operators; a linear operator satisfies the superpo-
sition principle:

F(ax(t) + by(1)) = aF(x(1)) + bF((1))

where & denotes a particular operation to be performed,
such as differentiation or integration with respect to
time. If % =&, then Eq. 3-2 becomes

L(ax(t) + by(r)) = aX(s) + bY(s)

(32)

(3-3)

Therefore, the Laplace transform of a sum of functions
x(¢) and y(f) is the sum of the individual Laplace trans-
forms X(s) and Y(s); in addition, multiplicative constants
can be factored out of the operator, as shown in (3-3).

In this book we are more concerned with operational
aspects of Laplace transforms—that is, using them to
obtain solutions or the properties of solutions of linear
differential equations. For more details on mathematical
aspects of the Laplace transform, the texts by Churchill
(1971) and Dyke (1999) are recommended.

Before we consider solution techniques, the applica-
tion of Eq. 3-1 should be discussed. The Laplace trans-
form can be derived easily for most simple functions, as
shown below.

Constant Function. For f(t) = a (a constant),

o0

(3-4)

oo a
%(a) = / ae Stdt=—e™*
0 N

()

Step Function. The unit step function, defined as

S(t)={(1) t <0

t =0
is an important input that is used frequently in process
dynamics and control. The Laplace transform of the
unit step function is the same as that obtained for the
constant above when a = 1:

0

(3-5)

18] = (3-6)
If the step magnitude is a, the Laplace transform is a/s.
The step function incorporates the idea of initial time,
zero time, or time zero for the function, which refers to
the time at which S(¢) changes from 0 to 1. To avoid
any ambiguity concerning the value of the step function
at ¢t = 0 (it is discontinuous), we will consider S(¢ = 0)

to be the value of the function approached from the
positive side, = 0.

Derivatives. The transform of a first derivative of f is
important because such derivatives appear in dynamic
models:

<L(dfide) = / (dfidt)e™" dt (3-7)
0
Integrating by parts,
L(dfldt) = / ft)e™'s de + f(t)e™ (3-8)
0 0

= s£(f(1)) — f(0) = sF(s) — f(0) (3-9)

where F(s) is the Laplace transform of f(f). Generally,
the point at which we start keeping time for a solution
is arbitrary. Model solutions are most easily obtained
assuming that time starts (i.e., t = 0) at the moment the
process model is first perturbed. For example, if the
process initially is assumed to be at steady state and an
input undergoes a unit step change, zero time is taken
to be the moment at which the input changes in magni-
tude. In many process modeling applications, functions
are defined so that they are zero at initial time—that is,
f(0) = 0. In these cases, (3-9) simplifies to £(df/dt) = sF(s).

The Laplace transform for higher-order derivatives
can be found using Eq. 3-9. To derive £[f"(¢)], we
define a new variable (¢ = dfidf) such that

2(40) = (%) <00 00) 310
§(5) = $Fs) ~ 0) G-11)
Substituting into Eq. 3-10
2(40) = stsr0) - 701 - 00 612
= PR — O - O) (13)

where f'(0) denotes the value of dfidt at t = 0. The
Laplace transform for derivatives higher than second
order can be found by the same procedure. An nth-
order derivative, when transformed, yields a series of
(n + 1) terms:
$<dnf) — N n—1 n—2¢(1)
—n ) = $"E(@s) — " f(0) — s"f0) —

dt"
= sf®72(0) = FD(0) (3-14)
where f(0) is the ith derivative evaluated at ¢ = 0. If
n =2, Eq. 3-13 is obtained.

Exponential Functions. The Laplace transform of an
exponential function is important because exponential
functions appear in the solution to all linear differential



42 Chapter 3 Laplace Transforms

Table 3.1 Laplace Transforms for Various Time-Domain Functions®

1@

F(s)

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

21.
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" Pn — 1)

= (g7ht _ b
S S— (e e 1

t"_l

e—bt

1 _
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tn—le—bt
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1
1

1
T~ T2
by — by
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e
T~ T2

1 — e—t/‘r
sin wt
cos wt

sin(wt + ¢)

e sin ot

—bi

e % cos wt

1

T™V1 —Zze

. 3(Y) (unit impulse)
. S(t) (unit step)

.t (ramp)

> 0)

{l—l —tlt

e
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by D3 7 ba gy

by — by
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“
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s+ 1
1
(s + )"
1
(s + 1)
1
(s + b)(s + by)
1
(115 + 1)(125 + 1)
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(s + by)(s + by)
738 + 1
(118 + 1)(125 + 1)
1
s(ts + 1)

®
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&+ o?

®cos ¢ + ssin b

_®

(s + b)* + w?
s+ b

(s + b)? + o?

1
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1

s(tis + 1)(ms + 1)

1
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1
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Table 3.1 (Continued)
f0) F(s)
BT gy, BT T2 38 + 1
. + 1+ 2

2.1 T — T2 ¢ T — T ¢ s(’rls + 1)(1'25‘ + 1)

(11 # )

af
24. i sF(s) — f(0)

dn
25. d—t,’: s"F(s) — s" 1 (0) — s 2 D(0) — -

26. ft — tp)S(t — tp)

= sf®=2(0) - F*D(0)
e "F(s)

“Note that f(¢) and F(s) are defined for = 0 only.

equations. For a negative exponential, e~ b with b > 0,
o o
P(e b = / e YeSidr = / e~ +)igr (3-15)
0 0

1

+b

The Laplace transform for b < 0 is unbounded if s < b;
therefore, the real part of s must be restricted to be
larger than —b for the integral to be finite. This condi-
tion is satisfied for all problems we consider in this book.

[ —e 0+ Y (3-16)

=b+s

Trigonometric Functions. In modeling processes and
in studying control systems, there are many other
important time functions, such as the trigonometric
functions, cos wt and sin wt, where w is the frequency in
radians per unit time. The Laplace transform of cos wt
or sin wt can be calculated using integration by parts.
An alternative method is to use the Euler identityl

V -1

ej(nt + e—ju)l
2

A

cos ot = , ] = (3-17)

and to apply (3-1). Because the Laplace transform of a
sum of two functions is the sum of the Laplace transforms,

P(cos w) = 3L(e/") + 1L(e ) (3-18)
Using Eq. 3-16 gives

&(cos wt) = %( L 1
s
= -19
) 2 + w? (3-19)

s —jo 5§+ jo
1/s + jo + 5 — jo
E( ? + o?
Note that the use of imaginary variables above was
merely a device to avoid integration by parts; imagi-
nary numbers do not appear in the final result. To find
£(sin wt), we can use a similar approach.

IThe symbol j, rather than i, is traditionally used for V=T in the
control engineering literature.

Table 3.1 lists some important Laplace transform
pairs that occur in the solution of linear differential
equations. For a more extensive list of transforms, see
Dyke (1999).

Note that in all the transform cases derived above,
F(s) is a ratio of polynomials in s, that is, a rational
form. There are some important cases when nonpoly-
nomial (nonrational) forms occur. One such case is
discussed next.

The Rectangular Pulse Function. An illustration of
the rectangular pulse is shown in Fig. 3.1. The pulse has
height 4 and width z,,. This type of signal might be used
to depict the opening and closing of a valve regulating
flow into a tank. The flow rate would be held at 4 for a
duration of ¢, units of time. The area under the curve
in Fig. 3.1 could be interpreted as the amount of mater-
ial delivered to the tank (= ht,). Mathematically, the
function f(¢) is defined as

0 t<0
f=9h 0=t<y, (3-20)
0 t=t,
h
f(t)
% ty
Time. t

Figure 3.1 The rectangular pulse function.
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The Laplace transform of the rectangular pulse can be
derived by evaluating the integral (3-1) between ¢t = 0
and ¢ = t,, because f(¢) is zero everywhere else:

F(s) =[) f(t)e_s’dt=[)whe_”dt (3-21)

bw

(3-22)

h
F(s) = — g e St = S (1—e™)

0

Note that an exponential term in F(s) results. For a unit
rectangular pulse, h = 1/t,, and the area under the pulse
is unity.

Impulse Function. A limiting case of the unit rectangu-
lar pulse is the impulse or Dirac delta function, which has
the symbol 8(¢). This function is obtained when ¢,, — 0
while keeping the area under the pulse equal to unity. A
pulse of infinite height and infinitesimal width results.
Mathematically, this can be accomplished by substitut-
ing h = 1/t,, into (3-22); the Laplace transform of 8(f) is

LB®) = tiiino i (1 — &™)

Equation 3-23 is an indeterminate form that can be
evaluated by application of L’Hospital’s rule (also
spelled L’Hopital), which involves taking derivatives of
both numerator and denominator with respect to t,:
b5

(3-23)

se

LOB@)) = tliLnO =1 (3-24)
If the impulse magnitude (i.e., area t,/) is a constant a
rather than unity, then

L(ad() = a (3-25)

as given in Table 3.1. The unit impulse function may
also be interpreted as the time derivative of the unit
step function S(¢). The response of a process to a unit
impulse is called its impulse response, which is illus-
trated in Example 3.7.

A physical example of an impulse function is the
rapid injection of dye or tracer into a fluid stream,
where f(f) corresponds to the concentration or the flow
rate of the tracer. This type of signal is sometimes used
in process testing, for example, to obtain the residence
time distribution of a piece of equipment, as illustrated
in Section 3.5.

3.2 SOLUTION OF DIFFERENTIAL
EQUATIONS BY LAPLACE
TRANSFORM TECHNIQUES

In the previous section we developed the techniques
required to obtain the Laplace transform of each term
in a linear ordinary differential equation. Table 3.1 lists

important functions of time, including derivatives, and
their Laplace transform equivalents. Because the
Laplace transform converts any function f(¢) to F(s)
and the inverse Laplace transform converts F(s) back
to f(¥), the table provides an organized way to carry out
these transformations.

The procedure used to solve a differential equation
is quite simple. First Laplace transform both sides of
the differential equation, substituting values for the ini-
tial conditions in the derivative transforms. Rearrange
the resulting algebraic equation, and solve for the
transform of the dependent (output) variable. Finally,
find the inverse of the transformed output variable.
The solution method is illustrated by means of several
examples.

EXAMPLE 3.1

Solve the differential equation,

d
5—};+4y=2 y(0) =1

: (3-26)

using Laplace transforms.

SOLUTION
First take the Laplace transform of both sides of Eq. 3-26:

d
33(5 % T 4y> = %) (327)

Using the principle of superposition, each term can be
transformed individually:

d
513(5 %) + P(4y) = £2) (3-28)

.SB( ﬂ) = 555(%) = 5(sY(s) — 1) = 5sY(s) — 5

dt
(3-29)
E(4y) = 4%(y) = 4Y(s) (3-30)
202) = % (3-31)
Substitute the individual terms:
SsY(s) — 5 + 4Y(s) = % (3-32)
Rearrange (3-32) and factor out Y(s):
Y(s)(5s +4) =5 + % (3-33)
or
Y(s) = % (3-34)



Take the inverse Laplace transform of both sides of Eq. 3-34:

s(5s + 4)
The inverse Laplace transform of the right side of (3-35)
can be found by using Table 3.1. First, divide the numerator
and denominator by 5 to put all factors in the s + b form
corresponding to the table entries:

¥ = 5’3_1(s(ssi%.‘;)>

27Y(s)] = 33—1[ (3-35)

(3-36)

Because entry 11 in the table, (s + b3)/[(s + b1)(s + by)],
matches (3-36) with b; = 0.8, b, = 0, and b3 = 04, the
solution can be written immediately:

y(7) = 0.5 + 0.5¢ 0¥ (3-37)

Note that in solving (3-26) both the forcing function (the
constant 2 on the right side) and the initial condition have
been incorporated easily and directly. As for any differen-
tial equation solution, (3-37) should be checked to make
sure it satisfies the initial condition and the original differ-
ential equation for ¢ = 0.

Next we apply the Laplace transform solution to a
higher-order differential equation.

EXAMPLE 3.2

Solve the ordinary differential equation
s & O
- 6 1]
ar’ ar? dt

with initial conditions y(0) = y'(0) = y"(0) = 0.

+6y =1 (3-38)

SOLUTION
Take Laplace transforms, term by term, using Table 3.1:

.SB<6 %) = 652Y(s)
y

d
Ef(ll E) =11sY(s)
£(6y) =6Y(s)
(1) =%

Rearranging and factoring Y(s), we obtain

Y(s)(s® + 652 + 11s + 6) = % (3-39)

1
s(s® + 65 + 11s + 6)

Y(s) = (3-40)
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To invert (3-40) to find y(¢), we must find a similar expres-
sion in Table 3.1. Unfortunately, no formula in the table has
a fourth-order polynomial in the denominator. This example
will be continued later, after we develop the techniques nec-
essary to generalize the solution method in Section 3.3.

In general, a transform expression may not exactly
match any of the entries in Table 3.1. This problem al-
ways arises for higher-order differential equations,
because the order of the denominator polynomial
(characteristic polynomial) of the transform is equal to
the order of the original differential equation, and no
table entries are higher than third order in the denomi-
nator. It is simply not practical to expand the number
of entries in the table ad infinitum. Instead, we use a
procedure based on elementary transform building
blocks. This procedure, called partial fraction expan-
sion, is presented in the next section.

3.3 PARTIAL FRACTION EXPANSION

The high-order denominator polynomial in a Laplace
transform solution arises from the differential equation
terms (its characteristic polynomial) plus terms con-
tributed by the inputs. The factors of the characteristic
polynomial correspond to the roots of the characteristic
polynomial set equal to zero. The input factors may be
quite simple. Once the factors are obtained, the
Laplace transform is then expanded into partial frac-
tions. As an example, consider

s+5

Y() =5——7—
(s) s+ 55+ 4

(3-41)
The denominator can be factored into a product of
first-order terms, (s + 1)(s + 4). This transform can be
expanded into the sum of two partial fractions:

s+5 _ ™ + )
(s+DE+4) s+1 s+4

(3-42)

where o and a, are unspecified coefficients that must
satisfy Eq. 3-42. The expansion in (3-42) indicates that
the original denominator polynomial has been factored
into a product of first-order terms. In general, for every
partial fraction expansion, there will be a unique set of
o; that satisfy the equation.

There are several methods for calculating the appro-
priate values of oy and o, in (3-42):

Method 1. Multiply both sides of (3-42) by (s + 1)(s + 4):

s+5=oq(s +4) + op(s + 1) (3-43)
Equating coefficients of each power of s gives
shag +ap=1 (3-44a)

0

50 4o oy =5 (3-44b)
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Solving for a1 and o, simultaneously yields oy = %,
Q) = —3.

Method 2. Because Eq. 3-42 must be valid for all values
of s, we can specify two values of s and solve for the
two constants:

s=-50=—ta; — (3-45a)

s=-3 —%2=—Joy+a  (3-45b)

(I

Solving, aq = %, o= —

Method 3. The fastest and most popular method is
called the Heaviside expansion. In this method multiply
both sides of the equation by one of the denominator
terms (s + b;) and then set s = —b;, which causes all
terms except one to be multiplied by zero. Multiplying
Eq. 3-42 by s + 1 and then letting s = —1 gives

4

s=—1 3

_s+5
s+ 4

o

Similarly, after multiplying by (s + 4) and letting
s = —4, the expansion gives

=s+5
s+ 1

1

s=—4 B 3

%)

As seen above, the coefficients can be found by sim-
ple calculations.

For a more general transform, where the factors
are real and distinct (no complex or repeated factors
appear), the following expansion formula can be used:

N N g
PO i+ by

Y(s) =

where D(s), an nth-order polynomial, is the denomina-
tor of the transform. D(s) is the characteristic polyno-
mial. The numerator N(s) has a maximum order of #n — 1.
The ith coefficient can be calculated using the Heavi-
side expansion

N(s)
D(S) s=—b;

Alternatively, an expansion for real, distinct factors
may be written as

o = (s + by) (3-47)

Y(s) = N'(s)= N'(s) _ EH: o (3-48)
i=
Using Method 3, calculate the coefficients by
, N'(s)
a = (15 + 1)D’(s) X (3-49)
S=—;

Note that several entries in Table 3.1 have the 7s + 1
format.

We now can use the Heaviside expansion to com-
plete the solution of Example 3.2.

EXAMPLE 3.2 (Continued)

First factor the denominator of Eq. 3-40 into a product of
first-order terms (n = 4 in Eq. 3-46). Simple factors, as in
this case, rarely occur in actual applications.

s(s> + 652 + 11s + 6) = s(s + 1)(s + 2)(s + 3) (3-50)

This result determines the four terms that will appear in
the partial fraction expansion—namely,

1
YO = {6+ D6+ 26+ 3)
oy oy o3 oy

s+s+l+s+2+s+3 (&1
The Heaviside expansion method gives a; = 1/6, ap = —1/2,
a3 = 1/2, oy = —1/6.

After the transform has been expanded into a sum of
first-order terms, invert each term individually using
Table 3.1:

y(@) = £ [Y()]

(3-52)

Equation 3-52 is thus the solution y(¢) to the differential
equation (3-38). The o;’s are simply the coefficients of the
solution. Equation 3-52 also satisfies the three initial con-
ditions of the differential equation. The reader should ver-
ify the result.

3.3.1 General Procedure for Solving Differential
Equations

We now state a general procedure to solve ordinary
differential equations using Laplace transforms. The
procedure consists of four steps, as shown in Fig. 3.2.
Note that solution for the differential equation in-
volves use of Laplace transforms as an intermediate step.
Step 3 can be bypassed if the transform found in Step 2
matches an entry in Table 3.1. In order to factor D(s) in
Step 3, software such as MATLAB, Mathematica, or
Mathcad can be utilized (Chapra and Canale, 2010).



Time Laplace
<~ domain domain
5 Step 1
ODE Take Laplace
Initial transform
conditions (Table 3.1)
Step 2
Solve for
Yis) = Nis)
D(s)
Step 3
Factor D(s),
perform partial
fraction expansion
Step 4
Solution | Take inverse
y(t) Laplace transform
(Table 3.1)

Figure 3.2 The general procedure for solving an ordinary
differential equation using Laplace transforms.

In Step 3, other types of situations can occur. Both re-
peated factors and complex factors require modifications
of the partial fraction expansion procedure.

Repeated Factors

If a term s + b occurs r times in the denominator, r
terms must be included in the expansion that incorpo-
rate the s + b factor

Y(s)=

(85} - Oy n
s+b (s+b)2 (s+b)

(3-53)
in addition to the other factors. Repeated factors arise
infrequently in process models of real systems, mainly
for a process that consists of a series of identical units
or stages.

EXAMPLE 3.3
For
s k1 aq o 3
Y(s) = = + = 654
) s(P+4s+4) sT2  (s+2)7 )

evaluate the unknown coefficients a;.
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SOLUTION
To find o in (3-54), the Heaviside rule cannot be used
for multiplication by (s + 2), because s = —2 causes

the second term on the right side to be unbounded,
rather than 0 as desired. We therefore employ the
Heaviside expansion method for the other two coeffi-
cients (o, and a3) that can be evaluated normally and
then solve for oy by arbitrarily selecting some other
value of s. Multiplying (3-54) by (s + 2)? and letting
s = —2yields

sl 1
G . (3-55)
Multiplying (3-54) by s and letting s = 0 yields
s B 1
a3 = = 3-56
PR +as+4f=0 4 &0
Substituting the value s = —1 in (3-54) gives
0= o = oy — a3 (3-57)
1
o 4 (3-58)

An alternative approach to find o is to use differentiation
of the transform. Equation 3-54 is multiplied by s(s + 2)?,

s+1=a(s +2)s + aps + az(s + 2> (3-59)
Then (3-59) is differentiated twice with respect to s,
1
0 = 204 + 203; sothata; = —o3 = _Z (3-60)

Note that differentiation in this case is tantamount to
equating powers of s, as demonstrated earlier.

The differentiation approach illustrated above can
be used as the basis of a more general method to evalu-
ate the coefficients of repeated factors. If the denomi-
nator polynomial D(s) contains the repeated factor
(s + b)', first form the quantity

NGe)
D(s)

+ o, + (s + b)"[other partial fractions] (3-61)

(s+b) lag+ (s+b) 20y +...

(s) = (s +b) =

Setting s = —b will generate «, directly. Differentiat-
ing O(s) with respect to s and letting s = —b generates
a,—1. Successive differentiation a total of r — 1 times
will generate all o;, i = 1, 2, . . ., r from which we obtain
the general expression

_1d9Q(s)
LR RO
For i = 0 in (3-62), 0! is defined to be 1 and the zeroth

derivative of Q(s) is defined to be simply Q(s) itself.
Returning to the problem in Example 3.3,

i=0,...,r—1 (3-62)
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s+ 1
() = (3-63)
from which
s+ 1 1
i=0: o = s |y =2 (3-64a)
s+ 1
_, v ISR
Ptk e s ds 57 |s=— 4
s==2
(3-64b)

Complex Factors

An important case occurs when the factored character-
istic polynomial yields terms of the form

c1s + ¢
&+ dys + dy
where
di

— <
; <

Here the denominator cannot be written as the product
of two real factors, which can be determined by using

the quadratic formula.
For example, consider the transform

s+ 2

Y(s) = 50— —
(s) s +s+1

(3-65)

To invert (3-65) to the time domain, we complete the
square of the first two terms in the denominator:

Y(s) = s2+ 2 _ (s+05) +15 ,
(s +0.5)2 —025+1 (s + 057 + (%)
(3-66)
Dividing the numerator of Y(s) into two terms,
s+ 05 1.5
O v (B) erosp s ()
(3-67)

To determine y(¢), we invert each term separately. Note

+
that in Table 3.1, (:bi)zb_kz transforms to e
s ™

b

coswt?, while transforms to e * sinwt.

—°
(s +b)?+w?

Therefore the corresponding time-domain solution is

3 . V3
y(t) =e % cos % t+V3e 03t sm% t (3-68)
If the denominator is factored into a pair of complex
terms (complex conjugates) in the partial fraction
equation, we can alternatively express the transform as

a1 + jB1 o + jB2
s+b+jo s+b—jo

Y(s) = (3-69)
Appearance of these complex factors implies oscillatory
behavior in the time domain. Terms of the form e %!
sinot and e”? coswt arise after combining the inverse
transforms e~ (#*/%) and ¢~ (=), Dealing with complex
factors is more tedious than analyzing real factors.

A partial fraction form that avoids complex algebra is

Y(s) = ai(s + b) + ap e

(s + b)? + ? (3-70)

Using Table 3.1, the corresponding expression for y(?) is
a
y(t) = are”? cos wt + fe"b’ sin ot + -+ (3-71)

However, the coefficients a; and a, must be found by
solving simultaneous equations, rather than by the Heav-
iside expansion, as shown as follows in Example 3.4.

EXAMPLE 34
Find the inverse Laplace transform of

st 1

o= sHs? + 4s + 5)

(3-72)

SOLUTION

The roots of the denominator term (s> + 4s + 5) are
imaginary (s + 2 + j,s + 2 — j), so we know the solution
will involve oscillatory terms (sin, cos). The partial
fraction form for (3-72) that avoids using complex factors
or roots is

. s o 0
26 & 5] 7 & P45 ES

(3-73)
Multiply both sides of Eq. 3-73 by s*(s> + 4s + 5) and
collect terms:

s+1=(yq + a5)33 + (4o + oy + 0L6)32

L
Y (S) _ ass (07

+ (S + 4op)s + Sop (3-74)
Equate coefficients of like powers of s:

Siog + as =0 (3-75a)

s% 4oy +ay +ag=0 (3-75b)



st Soq + 4oy = 1 (3-75¢)
% Sap =1 (3-75d)
Solving simultaneously gives a; = 0.04, oy = 0.2, a5 = 0.04,
ag = —0.36. The inverse Laplace transform of Y(s) is
0. 04) <O 2) _1( —0.04s — 0.36)
1) = + F L

Y0 ( s 5 s +4s+5

(3-76)

Before using Table 3.1, the denominator term (s? + 4s + 5)
must be converted to the standard form by completing the
square to (s + 2)> + 1% the numerator is —0.04(s + 9). In
order to match the expressions in Table 3.1, the argument of
the last term in (3-76) must be written as

—0.04s — 036 _ —0.04(s + 2)
(s+2P%+1 (s+22+1

-0.28
(s+2?2+1
(3-77)
This procedure yields the following time-domain expression:

y(t) = 0.04 + 0.2t — 0.04¢ % cost — 0.28¢ % sin¢

It is clear from this example that the Laplace transform
solution for complex or repeated roots can be quite
cumbersome for transforms of ODEs higher than
second order. In this case, using numerical simulation
techniques may be more efficient to obtain a solution,
as discussed in Chapters 5 and 6.

34 OTHER LAPLACE TRANSFORM
PROPERTIES

In this section, we consider several Laplace transform
properties that are useful in process dynamics and
control.

3.4.1 Final Value Theorem

The asymptotic value of y(f) for large values of time
y(c0) can be found from (3-78), providing that hm [sY(s)]
exists for all Re(s) = 0:

Tim y(¢) = lim [sY(5)] (3-78)

Equation 3-78 can be proved using the relation for the
Laplace transform of a derivative (Eq. 3-9):
o0

Y st gy = _
/ ¢ dt = sY(s) — y(0)
0

Taking the limit as s — 0 and assuming that dy/dt is
continuous and that sY(s) has a limit for all Re(s) = 0,

(3-79)

d
/ 7? dr = lim [sY(s)] — y(0) (3-80)
0
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Integrating the left side and simplifying yields

Jim y() = lim [s¥(s)] (3-81)
If y(t) is unbounded for t—oco, Eq. 3-81 gives
erroneous results. For example, if Y(s) = 1/(s - 5), Eq.
3-81 predicts y(co) = 0 . Note that Eq. 3-79, which is
the basis of (3-79), requires that lim y(z — oco) exists. In
this case, y(t)=e, which is unbounded for t— oo.
However, Eq. 3-79 does not apply here, because sY(s) =
s/(s — 5) does not have a limit for some real value of
s = 0, in particular, for s = 5.

3.4.2 Initial Value Theorem

Analogous to the final value theorem, the initial value
theorem can be stated as

lim ()= lim [s¥(s)] (3-82)

The proof of this theorem is similar to the development
in (3-78) through (3-81). It also requires that y(¢) is
continuous. The proof is left to the reader as an exercise.

EXAMPLE 3.5

Apply the initial and final value theorems to the transform
derived in Example 3.1:

S5y & 2
¥es) = s(5s + 4)
SOLUTION
Initial Value
. . Ssih2
y0)= lim [sY(s)]= lim L——=1 (3-83a)
Final Value
. 5S 12
y(oo)—sh_r)r(l) [sY(s)] = lmb Sst 4 =05 (3-83b)

The initial value of 1 corresponds to the initial condition
given in Eq. 3-26. The final value of 0.5 agrees with the
time-domain solution in Eq. 3-37. Both theorems are useful
for checking mathematical errors that may occur in obtain-
ing Laplace transform solutions.

EXAMPLE 3.6
A process is described by a third-order ODE:
&) +6d2 +11d +6y=4 (3-84)
= - u .
a Cag a7

with all initial conditions on y, dy/dt, and dy*/df* equal to
zero. Show that for a step change in u of 2 units, the
steady-state result in the time domain is the same as apply-
ing the final value theorem.
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SOLUTION

If u = 2 the steady-state result for y can be found by
setting all derivatives to zero and substituting for u.
Therefore

6y =8 or y=4/3 (3-85)

The transform of (3-84) is
(> + 65 + 11s + 6)Y(s) = 8/s (3-86)
Y(s) . (3-87)

465 + 1152 + 65

One of the benefits of the final value theorem is that we do
not have to solve for the analytical solution of y(7).
Instead, simply apply Eq. 3-81 to the transform Y(s) as
follows:

8 8 4
lims¥(s) ~lm -—— - - -
R s’ +6s*+11s+6 6 3

This is the same answer as obtained in Eq. 3-85. The time-
domain solution obtained from a partial fraction
expansion is

y=4/3 — 2" +2e % —2/3e (3-89)

As t— 00, only the first term remains, which is the same
result as in Eq. 3-90 (using the final value theorem).

(3-88)

3.4.3 Transform of an Integral

Occasionally, it is necessary to find the Laplace trans-
form of a function that is integrated with respect to
time. By applying the definition (Eq. 3-1) and integrat-

ing by parts,
&) t
/ / f(t¥) dr* pe™' dt
0 0

(3-90)

o

& A t f(e*) dr*

1 t
——| e / f(r*) dr*
s 0

0
+% /0 e f(dt  (3-91)

The first term in (3-93) yields 0 when evaluated at both
the upper and lower limits, as long as f{(¢*) possesses a
transform (is bounded). The integral in the second
term is simply the definition of the Laplace transform
of f(¢). Hence,

t ok £3 e 1
1% /0 fewy de* § = F(s) (3-92)

Note that Laplace transformation of an integral function
of time leads to division of the transformed function by s.

We have already seen in (3-9) that transformation of
time derivatives leads to an inverse relation—that is,
multiplication of the transform by s.

3.4.4 Time Delay (Translation in Time)

Functions that exhibit time delay play an important
role in process modeling and control. Time delays com-
monly occur as a result of the transport time required
for a fluid to flow through piping. Consider the stirred-
tank heating system example presented in Chapter 2.
Suppose one thermocouple is located at the outflow
point of the stirred tank, and a second thermocouple is
immersed in the fluid a short distance (L= 10 m) down-
stream. The heating system is off initially, and at time
zero it is turned on. If there is no fluid mixing in the
pipe (the fluid is in plug flow) and if no heat losses
occur from the pipe, the shapes of the two temperature
responses should be identical. However, the second
sensor response will be translated in time; that is, it will
exhibit a time delay. If the fluid velocity is 1 m/s, the
time delay (¢p = L/v) is 10 s. If we denote f(¢) as the
transient temperature response at the first sensor and
fa(t) as the temperature response at the second sensor,
Fig. 3.3 shows how they are related. The function f; = 0
for t < ty. Therefore, f; and f are related by

fa(®) = f(t — 1)S( — 1)

Note that f; is the function f{(¢) delayed by ¢, time units.
The unit step function S(¢ — ¢;) is included to denote
explicitly that f;(¢) = 0 for all values of ¢ < f. If L(f(¢)) =
E(s), then

(3-93)

f®

(@)

£4(6)

o~
0 t
(b)

Figure 3.3 A time function with and without time delay. (a)
Original function (no delay); (b) function with delay ¢,




£(fa®)) = L(f (¢ — 10)S(z — 19))
= / f(t — t)S(t — to)e ' dt
0

= / ' At — to)(0)e™*" dt + / fit — tp)e ' dt
0 )

=/ ft — 1p)e e d(r — 1) (3-94)
fo

Because (¢ — ty) is now the artificial variable of integra-
tion, it can be replaced by ¢*.

) = e [ feetar (99)
0
yielding the Real Translation Theorem:
Fy(s) = L(ft = 1)S(t = t5)) = e™"F(s) (3-96)

In inverting a transform that contains an e™* ele-
ment (time-delay term), the following procedure will
easily yield results and also avoid the pitfalls of dealing
with translated (shifted) time arguments. Starting with
the Laplace transform

Y(s) = e *0F(s) (3-97)

1. Invert F(s) in the usual manner; that is, perform
partial fraction expansion, and so forth, to find f{z).

2. Find y(t) = f(t — t5)S(t — ty) by replacing the ar-
gument ¢, wherever it appears in f(7), by (¢ — t);

then multiply the entire function by the shifted
unit step function, S(¢ — ).

EXAMPLE 3.6

Find the inverse transform of
1te?

YO = G+ )@+ 1) (3-98)
SOLUTION
Equation 3-100 can be split into two terms:
Y(s) = Yi(s) + Ya(s) (3-99)
—2s
! s (3-100)

@ rD@Es ] @+DGEs )

The inverse transform of Y;(s) can be obtained directly
from Table 3.1:

yi(t) = e — 73 (3-101)

Because Yy(s) = e 2Yy(s), its inverse transform can be
written immediately by replacing ¢ by (¢ — 2) in (3-101),
and then multiplying by the shifted step function:

yot) = [e7 — DR — 2)  (3-102)
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Thus, the complete inverse transform is
(1) = ch_ B [e—(t—Z)/4 . e—(t—2)/3] Sz - 2)
(3-103)

Equation 3-103 can be numerically evaluated without dif-
ficulty for particular values of #, noting that the term in
brackets is multiplied by 0 (the value of the unit step func-
tion) for ¢ < 2, and by 1 for ¢ = 2. An equivalent and simpler
method is to evaluate the contributions from the bracketed
time functions only when the time arguments are nonnega-
tive. An alternative way of writing Eq. 3-105 is as two equa-
tions, each one applicable over a particular interval of time:

0=¢ 7 y)—e" ¢ (3-104)
and
t=2: y(t) - e—t/4 . e—t/3 4 [e—(t—Z)/4 . e—(t—Z)/S]

- e—t/4(1 4 82/4) . e—t/3(1 4 62/3)

= 2.6487¢ "* — 2.9477¢ "3 (3-105)

Note that (3-104) and (3-105) give equivalent results for
t = 2, because in this case, y(¢) is continuous at ¢ = 2.

3.5 A TRANSIENT RESPONSE EXAMPLE

In Chapter 4 we will develop a standardized approach
for using Laplace transforms to calculate transient re-
sponses. That approach will unify the way process mod-
els are manipulated after transforming them, and it will
further simplify the way initial conditions and inputs
(forcing functions) are handled. However, we already
have the tools to analyze an example of a transient re-
sponse situation in some detail. Example 3.7 illustrates
many features of Laplace transform methods in investi-
gating the dynamic characteristics of a physical process.

EXAMPLE 3.7

The Ideal Gas Company has two fixed-volume, stirred-
tank reactors connected in series as shown in Fig. 3.4. The
three IGC engineers who are responsible for reactor
operations—Kim Ng, Casey Gain, and Tim Delay—are
concerned about the adequacy of mixing in the two tanks
and want to run a tracer test on the system to determine
whether dead zones and/or channeling exist in the reactors.

Their idea is to operate the reactors at a temperature
low enough that reaction will not occur, and to apply a
rectangular pulse in the reactant concentration to the first
stage for test purposes. In this way, available instrumenta-
tion on the second-stage outflow line can be used without
modification to measure reactant (tracer) concentration.

Before performing the test, the engineers would like to
have a good idea of the results that should be expected if
perfect mixing actually is accomplished in the reactors. A
rectangular pulse input for the change in reactant concen-
tration will be used with the restriction that the resulting
output concentration changes must be large enough to be
measured precisely.
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0

Stage 1

Figure 3.4 Two-stage stirred-tank reactor system.

Table 3.2 Two-Stage Stirred-Tank Reactor Process and
Operating Data

Volume of Stage 1 =4m’
Volume of Stage 2 _i;m

Total flow rate q = 2 m*/min
Nominal feed reactant concentration (¢;) = 1 kg mol/m?

The process data and operating conditions required to
model the reactor tracer test are given in Table 3.2.
Figure 3.5 shows the proposed pulse change of 0.25 min
duration that can be made while maintaining the total
reactor input flow rate constant. As part of the theoretical
solution, Kim, Casey, and Tim would like to know how
closely the rectangular pulse response can be approxi-
mated by the system response to an impulse of equivalent
magnitude. Based on all of these considerations, they need
to obtain the following information:

(a) The magnitude of an impulse input equivalent to the
rectangular pulse of Fig. 3.5.

kg-mole
ley

|
0 0.25

Time (min)

Figure 3.5 Proposed input pulse in reactant
concentration.

2

Stage 2

(b) The impulse and pulse responses of the reactant con-
centration leaving the first stage.

(¢) The impulse and pulse responses of the reactant con-
centration leaving the second stage.

SOLUTION

The reactor model for a single-stage CSTR was given in
Eq. 2-66 as

dc
VE = q(c; — ¢) — Vkc

where c is the reactant concentration of component A.
Because the reaction term can be neglected in this exam-
ple (k = 0), the stages are merely continuous-flow mixers.
Two material balance equations are required to model the
two stages:

d

42 4 9, = 2 (3-106)
dt
d

3 f + 26, = 2, (3-107)

If the system initially is at steady state, all concentrations
are equal to the feed concentration:

c(0) = ¢1(0) = ¢(0) = 1 kgmol/m®>  (3-108)

(a) The pulse input is described by

1 t<0
= 0 <t < 0.25min (3-109)
1 t = 0.25 min



A convenient way to interpret (3-109) is as a constant input
of 1 added to a rectangular pulse of height = 5 kg mol/m?:

=6 for 0=t<025min (3-110)

The magnitude of an impulse input that is equivalent to
the time-varying portion of (3-110) is simply the integral
of the rectangular pulse:

kg mol . kg mol - min
X025min — 15—

m’ m?

M=5

Therefore, the equivalent impulse input is
S =1 + 1.255() (3-111)

Although the units of M have little physical meaning, the
product

. kg mol - min

m
M=2 — X1, =25k 1
q — 1.25 . 5 kg mo

m

can be interpreted as the amount of additional reactant
fed into the reactor as either the rectangular pulse or the
impulse.

(b) The impulse response of Stage 1 is obtained by
Laplace transforming (3-106), using c;(0) = 1:

4sCi(s) — 4(1) + 2Cy(s) = 2C(s) (3-112)
By rearranging (3-112), we obtain C(s):

2

4
~ £ -
C) = 7= + -5 ) (3-113)

The transform of the impulse input in feed concentration
in (3-111) is

C(s) = % +1.25 (3-114)

Substituting (3-114) into (3-113), we have

2 6.5

Gis) = s@s+2)  ds+2

(3-115)

Equation 3-115 does not correspond exactly to any entries
in Table 3.1. However, putting the denominator in s + 1
form yields

1 — 3.25
s(2s = 1) Js ¢ |

Q) = (3-116)

which can be directly inverted using the table, yielding
A =1-e"+1625¢ " =1+ 0625¢ " (3-117)

The rectangular pulse response is obtained in the same
way. The transform of the input pulse (3-109) is given by
(3-22), so that

1 5(1 . e—O.ZSs)
C',D(S) - ; + f

(3-118)
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Substituting (3-118) into (3-113) and solving for Cf (s)
yields

10 e—O.ZSs

: = ; (119)

Py + -
GO = 2 @12 s@s 2

Again, we have to put (3-121) into a form suitable for
inversion:

2 6 5 e—OAZSS

g, | _
GO o o o

; (-120)

Before inverting (3-120), note that the term containing
e 925 will involve a translation in time. Utilizing the pro-
cedure discussed above, we obtain the following inverse
transform:

Cf(t) - e—t/2 . 6(1 . e—t/Z) . 5[1 . e—(t—0.25)/2]S(t . 0.25)
(3-121)

Note that there are two solutions; for ¢ < 0.25 min (or ¢,)
the rightmost term, including the time delay, is zero in the
time solution. Thus, for

t<025min: @) =e P +6(1—e") =6-5"

(3-122)
t=025min: L) =e”+6(1—e ")
. 5(1 . e—(t—0.25)/2)
—1 - Se—t/Z L 5e—t/2e+0.25/2
=1+ 0.6657¢ "2 (3-123)

Plots of (3-117), (3-122), and (3-123) are shown in Fig. 3.6.
Note that the rectangular pulse response approximates the
impulse response fairly well for ¢ > 0.25 min. Obviously,
the approximation cannot be very good before ¢t = 0.25
min, because the full effect of the rectangular pulse is not
felt until that time, while the full effect of the hypothetical
impulse begins immediately at ¢z = 0.

(¢) For the impulse response of Stage 2, Laplace trans-
form (3-107), using c,(0) = 1:

3sCy(s) — 3(1) + 2Cy(s) = 2C(s) (3-124)
Rearrange to obtain C,(s):

3 = 2
35 +2 35+72

Cy(s) = Ci(s) (3-125)

For the input to (3-127), substitute the Laplace transform
of the output from Stage 1 —namely, (3-116):

3 2 ( 1 32
- . -
OO o o 2Ls(2s 1) T se1| G120
which can be rearranged to
1.5 1
Cs) =
M) = 15 +1 T @S + D@ + 1)
3 (3-127)

(155 + 1)(2s + 1)
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175

1.50

¢; (kg mol/m®)

1.25

T

——— |mpulse input
Rectangular pulse input

1.00

Figure 3.6 Reactor Stage 1 response.

Because each term in (3-127) appears as an entry in
Table 3.1, partial fraction expansion is not required:

1
dy-—o'v (b

5
0.5

=1 5§75 %

[e—l/2 _ e—t/l.S]
(3-128)

For the rectangular pulse response of Stage 2, substitute
the Laplace transform of the appropriate stage output,
Egq. 3-120, into Eq. 3-125 to obtain

15 2
155 +1  (L5s+1)@2s + 1)

6 5e—0.253
+ il
s(1.5s + D(2s + 1) s(1.5s + 1)(2s + 1)

G(s) =

(3-129)

Again, the rightmost term in (3-129) must be excluded
from the inverted result or included, depending on
whether or not ¢ < 0.25 min. The calculation of the inverse
transform of (3-129) gives

t <025 (1) =6+ 15¢ 715 — 20" (3-130)
t =025 @) =1— 27204 "5 + 2.663¢ "2 (3-131)

Plots of Egs. 3-128, 3-130, and 3-131 are shown in Fig. 3.7.
The rectangular pulse response is virtually indistinguish-
able from the impulse response. Hence, Kim, Casey, and
Tim can use the simpler impulse response solution to com-
pare with real data obtained when the reactor is forced by
a rectangular pulse. The maximum expected value of c(t)
is approximately 1.25 kg mol/m>. This value should be
compared with the nominal concentration before and after

10

Time (min)

the test (¢, = 1.0 kg mol/m?) to determine if the instru-
mentation is precise enough to record the change in con-
centration. If the change is too small, then the pulse
amplitude, pulse width, or both must be increased.
Because this system is linear, multiplying the pulse
magnitude (#) by a factor of four would yield a maximum
concentration of reactant in the second stage of about 2.0
(the difference between initial and maximum concentra-
tion will be four times as large). On the other hand, the so-
lutions obtained above strictly apply only for ¢,, = 0.25 min.
Hence, the effect of a fourfold increase in ¢, can be pre-
dicted only by resolving the model response for ¢, = 1 min.
Qualitatively, we know that the maximum value of ¢, will
increase as t, increases. Because the impulse response

13 T T T T
——— |mpulse input
4 Rectangular pulse input
// \
II \\
120 1 A\ i
] N\
' \
\
¢, (kg mol/m®) ,' A\
\
| \
1 N
1 M _
i
1.0 ! | | I
0 2 4 6 8 10
Time (min)

Figure 3.7 Reactor Stage 2 response.



model is a reasonably good approximation with ¢, = 0.25
min, we expect that small changes in the pulse width will
yield an approximately proportional effect on the maxi-
mum concentration change. This argument is based on a

SUMMARY

In this chapter we have considered the application of
Laplace transform techniques to solve linear differen-
tial equations. Although this material may be a review
for some readers, an attempt has been made to concen-
trate on the important properties of the Laplace trans-
form and its inverse, and to point out the techniques
that make manipulation of transforms easier and less
prone to error.

The use of Laplace transforms can be extended to
obtain solutions for models consisting of simultaneous
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EXERCISES

3.1 The differential equation (dynamic) model for a chemi-
cal process is as follows:

d2
P

where u(¢) is the single input function of time. y(0) and dy/dt (0)
are both zero.

dy
+ 5— + 3y = 2u(s)

What are the functions of the time (e.g., ¢ ") in the solution
to the ODE for output y(¢) for each of the following cases?
@) u(t) = be %
M) u() =

b and c are constants.
Note: You do not have to find y(¢) in these cases. Just deter-
mine the functions of time that will appear in y(f).

3.2 Solve the ODE

T 168 L gLy 176d + 105y = 1

at " dt | dP -
using partial fraction expansion. Note you need to calculate
the roots of a fourth-order polynomial in s. All initial condi-
tions on y and its derivatives are zero.

3.3 Figure E3.3 shows a pulse function.

(a) From details in the drawing, calculate the pulse width, ¢,,.
(b) Construct this function as the sum of simpler time ele-
ments, some perhaps translated in time, whose transforms
can be found directly from Table 3.1.

(¢) Find U(s).

(d) What is the area under the pulse?
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proportional increase in the approximately equivalent im-
pulse input. A quantitative verification using numerical
simulation is left as an exercise.

differential equations. However, before addressing such
extensions, we introduce the concept of input-output
models described by transfer functions. The conversion
of differential equation models into transfer function
models, covered in the next chapter, represents an im-
portant simplification in the methodology, one that can
be exploited extensively in process modeling and control
system design.

Dyke, P. R. G., An Introduction to Laplace Transforms and Fourier
Series, Springer-Verlag, New York, 1999.

Schiff, J. L., The Laplace Transform: Theory and Application,
Springer, New York, 1999.

Slope =-a
u(t)

0

0 tw t

Figure E3.3 Triangular pulse function.

3.4 Derive Laplace transforms of the input signals shown in
Figs. E3.4a and E3.4b by summing component functions
found in Table 3.1.

@)

¢ (min)
Figure E3.4a
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Slope = a

f®)

0

0 t, 2t, 3¢, t
Figure E3.4b

3.5 The start-up procedure for a batch reactor includes a
heating step where the reactor temperature is gradually
heated to the nominal operating temperature of 75°C. The
desired temperature profile 7(¢) is shown in Fig. E3.5. What
is T(s)?

T(°C)
75 ————— =,
|
:
|
l
I
20O 30
t (min)
Figure E3.5

3.6 Using partial fraction expansion where required, find
x(¢) for

@ Xs) =7 2;((:: 31))(s +4)

®) X =% 2)(: : 31)(s2 +4)
© X0 = - 14)2

@ X6 =5

© X0 = Ty

sG+2)s+3)°¢

3.7 Expand each of the following s-domain functions into
partial fractions:

_6(s+1)
@) Y(s) = s2(s + 1)
_12(s +2)
®) Y(s) = s(s2 +9)
© Ys) = (s +2)(s+3)

(s +4)(s +5)(s +6)

1
[(s+ 12+ 1]%s + 2)

3.8 (a) For the integro-differential equation

) Y(s) =

¢
X+3x+2x=2 / e "drt
0

find x(¢). Note that x= dx/dt, etc.
(b) What is the value of x(¢) as t — ?

3.9 For each of the following functions X(s), what can you
say about x(¢) (0 = ¢ = «) without solving for x(z)? In other
words, what are x(0) and x()? Is x(f) converging, or diverg-
ing? Is x(¢) smooth, or oscillatory?

~ 6(s + 2)

(@) X(s) = (s> + 9s + 20)(s + 4)
~ 105> - 3

(b) X(s) = (> — 65 + 10)(s + 2)
_165+5

(¢) X(S) - Sz +9

3.10 For each of the following cases, determine what func-
tions of time, e.g., sin 3¢, e~ will appear in y(¢). (Note that
you do not have to find y(¢)!) Which y(¢) are oscillatory?
Which exhibit a constant value of y(¢) for large values of ?

W () = ﬁ

(i) Y(s) = m

(i) Y(s) = m
(iv) Y(s) = S(SZ“‘ZTS)
®) ¥ - %

3.11 Which solutions of the following equations will exhibit
convergent behavior? Which are oscillatory?

3 2
@ SE 42t 0%

dé  af dt
(b)%—x=2€’
(c)%+x=sint
(d)%+%=4

Note: All of the above differential equations have one com-
mon factor in their characteristic equations.

3.12 The differential equation model for a particular chemi-
cal process has been found by testing to be as follows:

2

d’y dy
—Z b (T +m)—=+y=
T (m1 + ™) a7 Ku(t)



where 71 and 7, are constant parameters and u(t) is the input
function of time.

What are the functions of time (e.g., e”?) in the solution for
each output y(¢) for the following cases? (Optional: find the
solutions for y().)

(@) u(?) = aS(z)

unit step function

M) u(t) =be " TETI#T)
(©) u(t) =ce T=T#ET
@) u(t) =dsinot T #7,

3.13 Find the complete time-domain solutions for the follow-
ing differential equations using Laplace transforms:

d’x . dx(0)
== 4 = = =
(a) P 4x = ¢ with x(0) = 0, i 0,
d*(0
x0) _,
d?
dx .
(b) — —12x =sin3¢t x(0) =0
d2 dx dx(0)
== 4+ 6= + =t = —l =
(©) pr 6 25x=e "t x(0)=0, @ 0
(d) A process is described by two differential equations:
dy1
PTRRCEE!
dy,
_dt - 2y1 + 3y2 = ZXZ

If x; = e " and x, = 0, what can you say about the form of the
solution for y;? for y,?

3.14 The dynamic model between an output variable y and
an input variable u can be expressed by

d* d d
—;tgt) + 3% +y() = 714(; ) u(t —2)

(a) Will this system exhibit an oscillatory response after an
arbitrary change in u?

(b) What is the steady-state gain?
(¢) For a step change in u of magnitude 1.5, what is y(¢)?
3.15 Find the solution of

dx

a + 4x = f(¥)
0 t<0
where f(t) = ¢ h 0=t<1h
0 t=1/h
x0) =0

Plot the solution for values of 2 = 1, 10, 100, and the limiting
solution (A — «) from ¢ = 0 to ¢ = 2. Put all plots on the same
graph.

3.16 (a) The differential equation

Ay, 6dy +9 ¢
— = COS
iR y=

has initial conditions y(0) = 1, y’(0) = 2. Find Y(s) and, with-
out finding y(f), determine what functions of time will appear
in the solution.
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3.17 A stirred-tank blending system initially is full of water
and is being fed pure water at a constant flow rate, q. At a
particular time, an operator shuts off the pure water flow and
adds caustic solution at the same volumetric flow rate g but
with concentration c;. If the liquid volume V is constant, the
dynamic model for this process is

(b) If Y(s) =

+ c = qc¢;
lt q qc;
with ¢(0) = 0.

What is the concentration response of the reactor effluent
stream, c(f)? Sketch it as a function of time.

Data: V=2 m5; q=04 m>/min; =50 kg/m3

3.18 For the dynamic system

y and u are deviation variables—y in degrees, u in flowrate units.

(a) uis changed from 0.0 to 2.0 at ¢ = 0. Sketch the response
and show the value of yg. How long does it take for y to reach
within 0.1 degree of the final steady state?

(b) If uis changed from 0.0 to 4.0 at ¢ = 0, how long does it
take to cross the same steady state that was determined in
part (a)? What is the new steady state?

(¢) Suppose that after step (a) that the new temperature is
maintained at 10 degrees for a long time. Then, at ¢ = ¢, u is
returned to zero. What is the new steady-state value of y?
Use Laplace transformation to show how to obtain the analy-
tical solution to the above ODE for this case. (Hint: select a
new time, ¢ = 0, where y(0) = 10).

3.19 Will the solution to the ODE that follows reach a steady
state? Will it oscillate?

#r e _

ag dt
Show appropriate calculations using partial fraction expan-
sion and Laplace transforms.

4

3.20 Three stirred-tanks in series are used in a reactor train
(see Fig. E3.20). The flow rate into the system of some inert
species is maintained constant while tracer test are conducted.
Assuming that mixing in each tank is perfect and volumes are
constant:

(a) Derive model expressions for the concentration of tracer
leaving each tank, ¢; is the concentration of tracer entering
the first tank.

(b) If c; has been constant and equal to zero for a long time
and an operator suddenly injects a large amount of tracer ma-
terial in the inlet to tank 1, what will be the form of ¢5(¢) (i.e.,
what kind of time functions will be involved) if

1. V1=V2=V3
2. Vi#Vy#V;

(¢) If the amount of tracer injected is unknown, is it possible
to back-calculate the amount from experimental data? How?
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€1

Figure E3.20

3.21 A stirred-tank reactor is operated with a feed mixture
containing reactant A at a mass concentration C4;. The feed
flow rate is w;, as shown in Fig. E3.21. Under certain condi-
tions the system operates according to the model

w; M

€A
Figure E3.21

M
Cz M
c3
\2)
V3
aev) _
dt '
d(pVcea)

i WwiCas—wea —pVkecy
(a) For cases where the feed flow rate and feed concentra-
tion may vary and the volume is not fixed, simplify the model
to one or more equations that do not contain product deriva-
tives. The density may be assumed to be constant. Is the
model in a satisfactory form for Laplace transform opera-
tions? Why or why not?

(b) For the case where the feed flow rate has been steady at
w; for some time, determine how c4 changes with time if a
step change in cy; is made from c4q to cgp. List all assump-
tions necessary to solve the problem using Laplace transform
techniques.
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Chapters 2 and 3 have considered dynamic models in
the form of ordinary differential equations (ODE). In
this chapter, we introduce an alternative model form
based on Laplace transforms: the transfer function
model. Both types of models can be used to determine
the dynamic behavior of a process after changes in
input variables. The transfer function also plays a key
role in the design and analysis of control systems, as
will be considered in later chapters.

A transfer function model characterizes the dynamic
relationship of two process variables, a dependent vari-
able (or output variable) and an independent variable
(or input variable). For example, in a continuous chem-
ical reactor, the output variable could be the exit con-
centration and the input variable a feed flow rate. Thus
the input can be considered to be a “cause” and the
output an “effect.” Transfer function models are only
directly applicable to processes that exhibit linear dy-
namic behavior, such as a process that as can be mod-
eled by a linear ODE. If the process is nonlinear, a
transfer function can provide an approximate linear
model, as described in Section 4.4.

41 ANILLUSTRATIVE EXAMPLE:
A CONTINUOUS BLENDING SYSTEM

Consider the continuous blending process of Section
2.2.2. For simplicity, we make the following assumptions:

1. Liquid density p and volume V are constant.
2. Flow rates wq, w,, and w are constant.

Then the component balance in Eq. 2-3 becomes

dx
pVE = wix; + wpxy — wx 4-1)
Case (i): Inlet concentration x; varies while x; is constant
We will derive a transfer function model between exit
composition x and inlet composition xj, starting with
Eq. 4-1. The steady-state version of (4-1) is

0=wx1 +wyxy — wx 4-2)

where the bar over a symbol denotes a nominal steady-
state value. Subtracting (4-2) from (4-1) gives

dx

A (4-3)

= wixi — wx'

where the two deviation variables (sometimes called
perturbation variables) are defined as

xi A X1—x1 (4’4)
x' Ax—Xx
Because X is a constant, it follows that
dx _dx—X) _ ax (4-5)

dt dt dt

Substituting (4-5) into (4-3) gives the solute component
balance in deviation variable form:

!

V_
P dt

= wix] — wx'

(4-6)

59
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Assume that the blending system is initially at the nom-
inal steady state. Thus, x(0) = x and x'(0) = 0. Taking
the Laplace transform of Eq. 4-6 gives

pVS[X'(s) — #46)) = wiXi(s) — wX'(s) (47)

where X'(s) £ £[x'(1)] and Xi(s) £ £[x{(f)]. Rearranging
gives the transfer function G(s) between the exit and
inlet and compositions:
X'@6) __ wm
Xi(s) pVs+w

(48)

It is useful to place the transfer function in a standard
form by dividing both the numerator and the denomi-
nator by w:

X'(s) v K
= £ —— 4-9
X1i(s) G T+ 1 (4-9)
where constants K; and 7 are defined as
AWM i
K = ” (4-10)
50V
TS (4-11)

Later, useful physical interpretations of K and 7 are
provided in Section 5.2.

Case (ii): Both inlet concentrations, x; and x,, vary
For the case of two input variables, x; and x,, two
transfer functions are needed to describe their effects
on output variable x. Their derivation is analogous to
the derivation for Case (i).

For this case, the steady-state version of (4-1) can be
written as

(4-12)

Subtracting (4-12) from (4-1) and introducing deviation
variables gives

0 =wix] + woxy — wx

!

dt

pV—— = wix] — wpxh — wx' (4-13)

where xj & x, — X,. Again assuming that the blending
system is initially at the nominal steady state, taking the
Laplace transform of Eq. 4-13 gives

pVs[X'(s) — ¥40)] = w1 Xi(s) — waX3(s)—wX'(s)

(4-14)
which can be rearranged as
o K1, K, ,
X(9) = S XI6) + 2 Xa)  (415)
where K is defined as
K, 422 (4-16)

and K; and 7 are defined in (4-10) and (4-11). In order
to derive the transfer function between x and x;, assume
that x, is constant at its nominal steady-state value,
x, = %p. Therefore, x5(t) = 0, X5(s) =0, and (4-15)
reduces to the previous transfer function relating x and
x1 (see Eq. 4-9).

X'(s) A

Xi(s)
Similarly, the transfer function between x and x, can be
derived from (4-14) and the assumption that x; is con-
stant at its nominal steady-state value, x; = ;.

X'(s) A

X5(s)
The models in (4-17) and (4-18) are referred to as first-
order transfer functions, because the denominators are

first-order in the Laplace variable s.
Three important aspects of these derivations are

1. A comparison of (4-15) to (4-18) shows that the
effects of the individual input variables on the
output variable are additive. This result is a conse-
quence of the Principle of Superposition for linear
models (see Section 3.1).

K
Gis) & —

= 4-17
s + 1 ( )

(4-18)

2. The assumption of an input being constant in the de-
rivations of Eqgs. 4-17 and 4-18 seems restrictive but
actually is not, for the following reason. Because a
transfer function concerns the effect of a single input
on an output, it is not restrictive to assume that the
other independent inputs are constant for purposes
of the derivation. Simultaneous changes in both in-
puts can be analyzed, as indicated by Eq. 4-15.

3. A transfer function model allows the output re-
sponse to be calculated for a specified input change.
For example, Eq. 4-17 can be rearranged as

X'(s) = Gi(s) Xi(s) (4-19)

After specifying x/(¢), its Laplace transform Xj(s) can
be determined using Table 3.1. Then the output re-
sponse x'(f) can be derived from (4-19), as illustrated
by Example 4.1.

EXAMPLE 4.1

Consider the stirred-tank blending process for Case (i) and
Egs. 4-1 and 4-2. The nominal steady-state conditions are
w1 = 600 kg/min, w, = 2 kg/min, x; = 0.050, and x, = 1 (for
pure solute). The liquid volume and density are constant:
V =2m3and p = 900 kg/m?, respectively.

(a) Calculate the nominal exit concentration, x.

(b) Derive an expression for the response, x(f), to a sudden
change in x; from 0.050 to 0.075 that occurs at time, ¢ = 0.
Assume that the process is initially at the nominal
steady state.



SOLUTION

(a) Exit flow rate w can be calculated from an overall
mass balance
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EXAMPLE 4.2

Consider the model of the electrically heated stirred-tank
system in Section 2.4.3. Subscript e refers to the heating

element:
w = wy + wp = 600 + 2 = 602 kg/min J
17
and x can be determined from (4-2): mC? =wC(T; = T) + hA[(T, = T) (2-47)
x + 600)(0.05) + (2)(1 drT,
. mas 0 O mCt = Q = heAdT, = T) (248)
w 602 dt

(b) To determine x(¢) for a sudden change in x;, we first
derive an expression for x'(f) and then obtain X'(s).
Thus, the appropriate starting point for the derivation
is the transfer function in (4-9) where K; = 600/602 =
0.997 and 7 = pV/w = (900)(2)/(602) = 2.99 min. The
sudden change in x; can be expressed in deviation vari-
able form as

xXi(0) = x; — % = 0.075 — 0.050

0025 = Xi(s) = % SOLUTION

(a) Derive transfer functions relating changes in outlet
temperature 7 to changes in the two input variables:
heater input Q (assuming no change in inlet tempera-
ture), and inlet temperature 7; (for no change in
heater input).

(b) Show how these transfer functions are simplified when
negligible thermal capacitance of the heating element
(m.C,— 0) is assumed.

(a) First write the steady-state equations:

Rearranging (4-9) and substituting numerical values gives . .
0-wl(lT, —T) +t hA(T, — T) (4-23)

K 0.997 0.025 — = =
"(s) = — 0-0 —hA(T. T 4-24
o (s+l>X1() <2.99s+1>( s > T S22
Next subtract (4-23) from (2-47), and (4-24) from (2-48):
0.0249
~ 5299 + 1) (G2l dT
' mc— Wl 1) (I 1)
Using Item 13 in Table 3.1, the inverse Laplace transform is . .
v heAe[(Te Te) a (T v T)] (4'25)

x'(f) = 0.0249 (1 — e 2%) (4-21)

dT, _ _ _
From (44) meCet = (@ 0) ~ heAd(T. ~ T = (T~ T)] (4:26)

x(f) = % + x'(f) = 0.053 + 0.0249 (1 — e *¥) (4-22) Note that dT/dt = dT'/dt and dT,/dt = dT}/dr. Substitute
deviation variables; then multiply (4-25) by 1/wC and

(4-26) by 1/h,A,:
= ddT —(T'-T) + eA o (T-T)  (427)
Example 4.1 has shown how an expression can be W dl
derived for the response x(f) to a step change in x;. mC,dT; Q' (T2 - T (428)
Analogous derivations could be made for other types hA, dt  h.A, e

of x1 or x, changes, such as a sinusoidal change, or for
simultaneous changes in x; and x;. The starting point
for the latter derivation would be Eq. 4-15. In order
to derive x(¢) for a flow rate change, the process
model must first be linearized, a technique considered
in Section 4.4. m,C, ) . o

(heAe +1])Tys) = — + T'(s) (4-30)
We can eliminate one of the output variables, 7"(s) or
T¢(s), by solving (4-30) for it, and substituting into (4-29).
Because Tj(s) is the intermediate variable, remove it.

The Laplace transform of each equation, after rearrange-
ment, and assuming 7"(0) = 7, (0) = 0, is:

(';‘ +1+ "A*>T'()_T'(s)+ hede Ti(s) (4-29)

42 TRANSFER FUNCTIONS OF

COMPLICATED MODELS Th .
en rearranging gives
In the next example, we extend the concept of a transfer mm,C, m.C, mC. m ,
function model based on a single differential equation [wh 4 s+ ( hA, - ;)s = 1]T ()

model to a model consisting of two differential equations.
A more complicated transfer function results, but the
approach remains the same.

m.C, ,
(heAes+1)T(s) +—Q(s) (4-31)
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By inspection, it is clear that Eq. 2-49, obtained by time-
domain analysis is equivalent to (4-31).

Because both inputs influence the dynamic behavior of
T', it is necessary to develop two transfer functions for the
model. The effect of Q' on 7" can be derived by assuming
that T; is constant at its nominal steady-state value, T;.
Thus, 7T} = 0 and (4-31) can be rearranged as

T'(s) . 1/wC
0'(s) b2S2 +bis +1

=Gi(s) (Tils) = 0) (4-32)

Similarly, the effect of 7} on T’ is obtained by assuming
that Q = QO (thatis, Q' = 0):
m.C,

o .
T;(S) -~ b2S2 + bls T 1 - GZ(S) (Q (S) 0) (4 33)

+1

where
A me—ce o+ me—ce o+ ﬂ i
b = il — = (4-34)
C
by & % (4-35)
e

By the Superposition Principle, the effect of simultaneous
changes in both inputs is given by

T'(s) = Gi(5)Q'(s) + Ga(9)Ti(s)

This expression can also be derived by rearranging (4-31).

(4-36)

(b) The limiting behavior of m,C, — 0 has b, = 0 and
b1 = m/w and simplifies (4-36) to

1/wC
Tl D Ti(s) (4-37)
m m
s 1 st
w w

4.3 PROPERTIES OF TRANSFER
FUNCTIONS

One important property of the transfer function is that
the steady-state output change for a sustained input
change can be calculated directly. Very simply, setting
s = 0 in G(s) gives the steady-state gain of a process if
the gain exists.! This feature is a consequence of the
final value theorem presented in Chapter 3. If a unit
step change in input is assumed, the corresponding out-
put change for t — o0 is lim G(s) as s — 0.

The steady-state gain is the ratio of the output vari-
able change to an input variable change when the input
is adjusted to a new value and held there, thus allowing
the process to reach a new steady state. Stated another

ISome processes do not exhibit a steady-state gain, for example, the
integrating elements discussed in Chapter 5.

way, the steady-state gain K of a process corresponds
to the following expression:
K= M (4-38)
U — U
where 1 and 2 indicate different steady states and (y, u)
denote the corresponding steady-state values of the out-
put and input variables. The steady-state gain is con-
stant for linear processes regardless of the operating
conditions. This is not true for a nonlinear process, as
discussed in Section 4.4.

Another important property of the transfer function is
that the order of the denominator polynomial (in s) is
the same as the order of the equivalent differential equa-
tion. A general linear nth-order differential equation has
the form

dny dn—ly dy
Gigen g U gy
d™u a1y du
=bp——+b, ——+ - + b— + b 4-39
mdtm bm ldtm_l ldt ou ( )

where u and y are input and output deviation variables,
respectively. The transfer function obtained by Laplace
transformation of (4-39) with y(0) = 0 and all initial
conditions for the derivatives of u and y set equal to
Zero is

Gy - YO _ 2
U(s) i st
=

bpys™ + b 1s™ 1+ oo + b
_ Zm . m ln_1 0 (4_40)
ap,s” + a,_1S + - +oa,

Note that the numerator and denominator polynomials
of the transfer function have the same orders (m and n,
respectively) as the differential equation. In order for
the model in (4-40) to be physically realizable, n = m.

The steady-state gain of G(s) in (4-40) is b,la,,
obtained by setting s = 0. If both the numerator and
denominator of (4-40) are divided by a,,, the characteristic
(denominator) polynomial can be factored into a product
II(7s + 1) where T; denotes a time constant.

_Y(s) KB(s)
T UG) (s + D)(ms + 1) (T + 1)

G(s) (4-41)
where gain K and m-th order polynomial B(s) are
obtained from the numerator of (4-40).

In this time constant form, inspection of the individual
time constants provides information about the speed
and qualitative features of the system response. This
important point is discussed in detail in Chapters 5 and
6, after some additional mathematical tools have been
developed.
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Figure 4.1 Block diagram of additive transfer function
model.

The orders of the numerator and denominator polyno-
mials in Eq. 4-40 are restricted by physical reasons so that
n = m. Suppose that a real process could be modeled by

agy = bld—u + bou (4-42)

dt

That is, n» = 0 and m = 1 in (4-39). This system will res-
pond to a step change in u(¢) with an impulse at time
zero, because dx/dt is infinite at the time the step change
occurs. The ability to respond infinitely quickly to a sud-
den change in input is impossible to achieve with any
real (physical) process, although it is approximated in
some instances —for example, in an explosion. Therefore,
we refer to the restriction n = m as a physical realizabil-
ity condition. It provides a diagnostic check on transfer
functions derived from a high-order differential equa-
tion or from a set of first-order differential equations.
Those transfer functions where m > 0, such as (4-33),
are said to exhibit numerator dynamics. There are, how-
ever, many important cases where m is zero.

We have already illustrated the important additive
property of transfer functions in deriving Eqgs. 4-15
and 4-36, which is depicted in Fig. 4.1. Observe that a
single process output variable (Y) can be influenced by
more than one input (U; and U,) acting individually or
together.

EXAMPLE 4.3

The stirred-tank heating process described in Eq. 4-37 op-
erates at steady state with an inlet temperature of 70 °F
and a heater input of 1920 Btu/min. The liquid flow rate is
200 Ib/min, the liquid has constant density (p = 62.4 1b/ft>)
and specific heat (0.32 Btu/lb °F), and the liquid volume is
constant at 1.60 ft>. Then the inlet temperature is changed
to 90 °F, and the heater input is changed to 1,600 Btu/min.
Calculate the output temperature response.

SOLUTION

The steady-state energy balance for the nominal conditions
can be written as

wC(T -T) =0 (+43)
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Substituting numerical values gives T = 100 °F.

- 90 %
T = ===

1600 — 1920 320
s

The time constant T and process gain K are
_ (624)(1.6) 0
== =
1 ., H
- 156
= (200)(0.32) o0 Btu/min
Substituting in Eq. 4-37 yields

.5 min

o 00156 ([ 320 1 20
T(s)_0.5s+l( s>+0.5s+l<s) Gl
After simplification,
> 20 15
T'(s) = L = 4-4
O =505 +1) T 505+ 1) s@ss+ 1) P
The corresponding time-domain solution is
T(2) = 100 + 15(1 — e~ %) (4-46)

Equation (4-43) shows the individual effects of the two
input changes. At steady state, the reduction in the
heater input lowers the temperature 5 °F, while the inlet
temperature change increases it by 20 °F, for a net
increase of 15 °F.

Transfer functions also exhibit a multiplicative prop-
erty for sequential processes or process elements. Sup-
pose two processes with transfer functions Gy and G,
are in a series configuration (see Fig. 4.2). The input
U(s) to Gy produces an output Y;(s), which is the input
to G,. The output from G, is Y,(s). In equation form,

Yi(s) = Gi(s)U(s) (4-47)
Yy(s) = Ga(s)Y1(s) = Ga(s)G1(s)U(s)  (4-48)

In other words, the transfer function between the
original input U; and the output Y, can be obtained
by multiplying G, by G, as shown by the block dia-
gram in Fig. 4.2.

Yl (s)
Uls) G(s)

Go(s) Yols)

Figure 4.2 Block diagram of multiplicative (series) transfer
function model.
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EXAMPLE 44

Suppose that two liquid surge tanks are placed in series
so that the outflow from the first tank is the inflow to the
second tank, as shown in Fig. 4.3. If the outlet flow rate
from each tank is proportional to the height of the liquid
(head) in that tank, find the transfer function relating
changes in flow rate from the second tank, Q5(s), to
changes in flow rate into the first tank, Q/(s). Show how
this transfer function is related to the individual transfer
functions, Hi(s)/Q{(s), Qi(s)/Hi(s), Hj(s)/Qi(s), and
Q5(s)/H5(s). Hi(s) and Hj(s) denote the deviations in
Tank 1 and Tank 2 levels, respectively. Assume that the
two tanks have different cross-sectional areas Ay and A,
and that the valve resistances are Ry and R;.

SOLUTION
Equations 2-56 and 2-57 are valid for each tank; for Tank 1,
dhy
Ar g =4~ q (4-49)
= L h (4-50)
q1 R, 1
Substituting (4-50) into (4-49) eliminates q;:
dhy 1
Arg- =4~ R hy (4-51)

Putting (4-50) and (4-51) into deviation variable form
gives

dh} . 1,
Aq xR hy (4-52)
gl = =i (4-53)
=R M

The transfer function relating Hi(s) to Qj:(s) is found
by transforming (4-52) and rearranging to obtain
HolRE
Q’,(S) A1R1s i T8 + il

(4-54)

where K; A R; and 7 & AR;. Similarly, the transfer
function relating Q'(s) to Hi(s) is obtained by transform-
ing (4-53).
ol T
Hi(s) R K
The same procedure leads to the corresponding transfer
functions for Tank 2,
s & = K
Q’l(S) A2R2S +4 | T8 & 1

ot | 1

Hy(s) R K,

(4-55)

(4-56)

(4-57)

where K, 2 R, and 7, & AyR,. Note that the desired
transfer function relating the outflow from Tank 2 to the
inflow to Tank 1 can be derived by forming the product of
(4-54) through (4-57).

0i(s) _ Q5(s) Hi(s) Qils) Hi(s)

= 4-
0i() M) 0i) Hi) 0ty D)
or
0] 1 5 1K
Ols) Kpmps +1Kyms + 1 (=8
which can be simplified to yield
0i(s) 1 (4-60)

Qi) (ms+ D(ms +1)
which is a second-order transfer function (does the unity
gain make sense on physical grounds?). Figure 4.4 is a block
diagram showing the information flow for this system.

L s
<1 q

Figure 4.3 Schematic diagram of two liquid surge tanks in series.
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Q;ls) K Hi(s) 1 Qyls) K,

Hy(s)

1 Q(s)

T8+ 1 K, T8 + 1

e —> Figure 4.4 Input-output model for
2 two liquid surge tanks in series.

The multiplicative property of transfer functions
proves to be quite valuable in designing process control
systems because of the series manner in which process
units are connected.

44 LINEARIZATION OF NONLINEAR
MODELS

In the previous sections, we have limited the discus-
sion to those processes that can be modeled by linear
ordinary differential equations. However, there is a
wide variety of processes for which the dynamic be-
havior depends on the process variables in a nonlinear
manner.

Prominent examples include the exponential de-
pendence of reaction rate on temperature (considered
in Chapter 2), the nonlinear behavior of pH with flow
rate of acid or base, and the asymmetric responses of
distillate and bottoms compositions in a distillation
column to changes in feed flow. Classical process con-
trol theory has been developed for linear processes,
and its use, therefore, is restricted to linear approxi-
mations of the actual nonlinear processes. A linear
approximation of a nonlinear steady-state model is
most accurate near the point of linearization. The same
is true for dynamic process models. Large changes in
operating conditions for a nonlinear process cannot be
approximated satisfactorily by linear expressions.

In many instances, however, nonlinear processes re-
main in the vicinity of a specified operating state. For
such conditions, a linearized model of the process may
be sufficiently accurate. Suppose a nonlinear dynamic
model has been derived from first principles (material,
energy, or momentum balances):

dy
) (+-61)
where y is the output and u is the input. A linear
approximation of this equation can be obtained by
using a Taylor series expansion and truncating after the
first-order terms. The reference point for linearization
is the nominal steady-state operating point (y, ).

N o-p+dl w-m

_ a
100 = 0.0 + | s

(4-62)

By definition, the steady-state condition corresponds to
f(y,u) = 0. In addition, note that deviation variables

arise naturally out of the Taylor series expansion—
namely, y' = y — y and 4’ = u — u. Hence, the
linearized differential equation in terms of y’ and u' is
(after substituting, dy'/dt = dy/dt)

a _of| o

o 5 Sy ol X (4-63)

s

where (6f/ay)|, is used to denote (9f/ay)l;,z- If another
input variable, z, is in the physical model, then Eq. 4-62
must be generalized further:

a _ofl L of

)
= u’+—f
dat  9yly du

' 4-64
) 2z 2 (4-64)

s

where z' =z — Z.

In order to develop a transfer function of a nonlinear
model, it is useful to summarize the general procedure,
as is shown in Fig. 4.5. We use this procedure in the
next example.

EXAMPLE 4.5

Again consider the stirred-tank blending system in Eqgs. 2-17
and 2-18, written as

av
== +w,—w (4-65)

dx
pV— = wi(x1 — x) + wy(x, — x) (4-66)

dt

Assume that volume V remains constant (due to an over-
flow line that is not shown) and consequently, w = wy + wj.
Inlet composition x; and inlet flow rates wy and w, can
vary, but stream 2 is pure solute so that x, = 1.

Derive transfer functions that relate the exit composi-
tion to the three input variables (wy, wy, and x;) using the
steps shown in the flow chart of Fig. 4.5.

SOLUTION

The nonlinearities in Eq. 4-66 are due to the product
terms, wyxy, and so forth. The right side of (4-66) has the
functional form f (x, x;, wy, w,). For Step 1 of Fig. 4.5, find
the steady-state values of x and w by settings the deriva-
tives of (4-65) and (4-66) equal to zero and substituting the
steady-state values. For Step 2, linearize (4-66) about the
nominal steady-state values to obtain

pV% - pV% = (%)s(x )k (%)s(xl - %)

(L) o =) + (L) on - w0 @D
( Wy owy /s
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Dynamic process model:
Differential equations

1. Obtain stea

dy-state model
by setting derivatives to zero.

2a. If linear, subtract steady-
state equations and substitute
deviation variables.

2b. If nonlinear, use Taylor
series expansion to linearize.

3. Express model in deviation

variable form.

4. Take Laplace transform

(initial conditions are zero).

Repeat for other outputs

5. Algebraically eliminate all
outputs except the desired output.

Repeat for other inputs

6. Set all inputs to zero except
the desired input.

7. Rearrange

to obtain the
desired transfer function.

Result

Figure 4.5 General procedure for developing transfer function models.

The partial derivatives are as follow:

I
o

I
—
|
=

=
5
&,’
— — —
Il
x|
=
|
x|

(4-68)

Substitute (4-68) and introduce deviation variables (Step 3):

dx’
dt

pV— = —wx’ + wix{ + (k% — X)wi + (1 — X)w)
(4-69)

The above equation is general in that it applies to any
specified operating point.
For Step 4 take the Laplace transform of both sides of
Eq. 4-69 with the initial condition, x'(0) = 0:
pVsX'(s) = —wX'(s) + wiX{(s)
+ (® — )Wils) + 1 — )Wi(s)



Rearranging and dividing by w yields

Vp w1 XX
s H X =—Xj o 1
(ws ) () = - Xi(s) — Wi0s)
1 X
+ i
—— Wils)
Define
Vp
T
w
. 1—3% .
Kl=g, K2= _x, and I<3=‘x1
w w

Applying Step 5 gives the relationship for the single out-
put and three inputs:

Ks
s b

K,
s + 1

K
S Xi() +

X’(s) = 75

Wis) + Wi(s)

(4-70)

Three input-output transfer functions can be derived from
Steps 6 and 7:

X6 K

Gl Xi(s) | )
X K

el Wis) s + 1 =
Xy K

) =Wy “m+ 1 o

This example shows that individual transfer func-
tions for a model with several inputs can be obtained
by linearization of the nonlinear differential equation
model. Note that all three transfer functions have the
same time constant 7 but different gains.

Ki=—>0
w
1-%
Ky=—2 >0
w
X1 —X
Kiy=——<0
w

If a gain is positive, a steady-state increase in its input
produces a steady-state increase in the output. A nega-
tive gain (e.g., K3) has just the opposite effect.

Note that the gains of this nonlinear process depend
on the nominal steady-state conditions. Thus, if these
conditions were changed to improve process perfor-
mance, the numerical values of the gains and time con-
stant would also change.
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EXAMPLE 4.6

Consider a single tank liquid-level system where the out-
flow passes through a valve. Recalling Eq. 2-56, assume
now that the valve discharge rate is related to the square
root of liquid level:

q=CVh (4-74)

where C, depends on the fixed opening of the valve (see
Chapter 9). Derive an approximate dynamic model for
this process by linearization and compare with the results
in Example 4.4.

SOLUTION

The material balance for the process (Eq. 2-54) after sub-
stituting (4-74) is
dh
=q-GCVh (4-75)
dt
To obtain the system transfer function, linearize (4-75)
about the steady-state conditions (A, q;). The deviation
variables are

W=h-h
94 =9 —

Applying (4-63) where y = h and x = g;, and f(h, g;) is the
right side of (4-75), the linearized differential equation is

dn’ L CV ’
= V- h (4-76)
If we define the valve resistance R using the relation
1 C,
= = 4-71
R 2Vh &)

the resulting dynamic equation is analogous to the linear
model presented earlier in (4-52):
dn’ , 1
A7 =4 - h (4-78)
The transfer function corresponding to (4-77) was derived
earlier as (4-54).

EXAMPLE 4.7

A horizontal cylindrical tank shown in Fig. 4.6a is used to
slow the propagation of liquid flow surges in a processing
line. Figure 4.6 illustrates an end view of the tank and w,
is the width of the liquid surface, which is a function of its
height, both of which can vary with time. Develop a model
for the height of liquid 4 in the tank at any time with the
inlet and outlet volumetric flow rates as model inputs. Lin-
earize the model assuming that the process initially is at
steady state and that the liquid density p is constant.

SOLUTION

Note that the primary complication in modeling this
process is that the liquid surface area A varies as the level
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q;

Figure 4.6a A horizontal cylindrical liquid surge tank.

Figure 4.6b The end view of a
W;—>1 cylindrical surge tank.

varies. The accumulation term must represent this feature.
For constant density, a mass balance yields

dm

s g 4-79
2 P~ pd (4-79)

The mass accumulation term in (4-79) can be written, not-
ing that dV = Adh = w,L dh, as

dm dv dh

a Pa by &
where w,L represents the changing surface area of the lig-
uid. Substituting (4-80) in (4-79) and simplifying gives

dh
l g 4-81
Wil =4~ 4 (4-81)

The geometric construction in Fig. 4.6b indicates that w,/2
is the length of one side of a right triangle whose hy-
potenuse is R. Thus, w,/2 is related to the level # by

% - VRE = (R - h)? (4-82a)

After rearrangement,
w;=2V(D — h)h (4-82b)

with D = 2R the diameter of the tank. Substituting (4-81b)
into (4-81) yields a nonlinear dynamic model for the tank
with g; and g as inputs:

dh 1

=——  (q,— 4-83
dt  20L\V(D - bk 4 7 -y

To linearize (4-83) about the operating point (& = h), let

f= 9 49

2LV(D — hyh

N

() - of e -
5w L T |
The last partial derivative is zero, because g; — g = 0 from
the steady-state relation, and the derivative term in brackets
is finite for all 0 < 2 < D. Consequently, the linearized model
of the process, after substitution of deviation variables, is

dn’ il

%

Recall that the term 2LV (D — h)h in (4-84) represents
the variable surface area of the tank. The linearized model
(4-84) treats this quantity as a constant (2L V(D — h)h
that depends on the nominal (steady-state) operating
level. Consequently, operation of the horizontal cylindri-
cal tank for small variations in level around the steady-
state value would be much like that of any tank with
equivalent but constant liquid surface. For example, a ver-
tical cylindrical tank with diameter D’ has a surface area
of liquid in the tank = w(D")%4 = 21, V(D — h). Note
that the coefficient 1/27, V(D — 7)i is infinite for 2 = 0 or
h = D and is a minimum at 2 = D/2. Thus, for large varia-
tions in level, Eq. 4-84 would not be a good approximation,
because dh/dt is independent of 4 in the linearized model.
In these cases, the horizontal and vertical tanks would op-
erate very differently.

(4-84)

Finally, we examine the application of linearization

methods when the model involves more than one non-
linear equation.

EXAMPLE 4.8

As shown in Chapter 2, a continuous stirred-tank reactor
with a single first-order chemical reaction has the follow-
ing material and energy balances:

dCA

V7 = g(ca; — cp) — Vkcy (2-66)

wc% =wC(T; = T) + (-AHR)Vkeq + UA(T: — T)
(2-68)

If the reaction rate coefficient & is given by the Arrhenius
equation,

Lk kg PEL (2-63)

this model is nonlinear. However, it is possible to find ap-
proximate transfer functions relating the inputs and outputs.
For the case where the flow rate (g or w) and inlet condi-
tions (ca; and T;) are assumed to be constant, calculate the



transfer function relating changes in the reactor concentra-
tion ¢4 to changes in the coolant temperature 7.

SOLUTION

For this situation, there is a single input variable 7, and
two output variables c4 and T. First, the steady-state oper-
ating point must be determined (Step 1 in Fig. 4.5). Note
that such a determination will require iterative solution of
two nonlinear algebraic equations; this can be done using
a Newton-Raphson method or similar algorithm (Chapra
and Canale, 2010). Normally, we would specify 7;, C4;,
and €4 and then determine 7 and 7 that satisfy (2-66)
and (2-68) at steady state. Then we can proceed with the
linearization of (2-66) and (2-68). Defining deviation vari-
ables ci, T', and T, we obtain the following equations:

dc'y
— = aicq + apT’ (4-85)
ddTl: P a21c’A + (122T' + bZTVC (4-86)
where
q L
an=—; - ke EIRT
= E
[ FRT ( - )
s o
- (_AHR)kOe—E/RT
ax = —
SUMMARY

In this chapter, we have introduced an important con-
cept, the transfer function. It relates changes in a
process output to changes in a process input and can be
derived from a linear differential equation model using
Laplace transformation methods. The transfer function
contains key information about the steady-state and

REFERENCES

Chapra, S. C., and R. P. Canale, Numerical Methods for Engineers,
6th ed., McGraw-Hill, New York, 2010.

EXERCISES

4.1 Consider a transfer function:
Y(s) _a
Uis) bs+c

(a) What is the steady-state gain?
(b) For a step change of magnitude M in the input, will the
output response be bounded for all values of constants a, b,
and c? Briefly justify your answer.
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T [_(Wc L

ap = VoC
+ (—AHR)VzAkOe—E’RT(—E )}
RT?
UA
by = VpC

Note that Eq. 2-66 does not contain input variable 7, so
no 7 term appears in (4-85). We can convert (4-85) and
(4-86) into a transfer function between the coolant tem-
perature T¢(s) and the tank outlet concentration Cj(s) via
Laplace transformation:

(s — a11)Ca(s) = aT'(s)

(s — an)T'(s) = axCu(s) + brTe(s)

(4-87)
(4-88)

Substituting for 7"(s), (4-87) becomes

(s — an)(s — an)Ci(s) = apaxCi(s) + apbrTi(s)
(4-89)
yielding
CaGs) _
Tds) 5% — (ay + ax)s + anay — apay

apb;

(4-90)

which is a second-order transfer function. The a and b
coefficients can be evaluated for a particular operating
condition.

dynamic relations between input and output variables,
namely, the process gain and time constants, respec-
tively. Transfer functions are usually expressed in
terms of deviation variables, that is, deviations from
nominal steady-state conditions.

Henson, M. A. and D. E. Seborg (eds.), Nonlinear Process Control,
Prentice Hall, Upper Saddle River, NJ, 1997.

4.2 Consider the following transfer function:

Yis) 5
Uis) 10s +1

G(s) =

(a) What is the steady-state gain?
(b) What is the time constant?

(¢) If U(s) = 2/s, what is the value of the output y(f) when
t— 00?
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(d) For the same U(s), what is the value of the output when
t = 10? What is the output when expressed as a fraction of
the new steady-state value?

(e) If U(s) = (1 — e ¥)/s, that is, the unit rectangular pulse,
what is the output when ¢ — 00?

(® If u(r) = 8(¢), that is, the unit impulse at ¢ = 0, what is the
output when ¢ — 00?

(g) If u(r) = 2 sin 3¢, what is the value of the output when
t— 00?

4.3 The dynamic behavior of a pressure sensor/transmitter
can be expressed as a first-order transfer function (in devia-
tion variables) that relates the measured value P, to the ac-
tual pressure, P:

B(s) __ 1
P'(s) 30s+1

Both P, and P’ have units of psi and the time constant has
units of seconds. Suppose that an alarm will sound if P,, ex-
ceeds 45 psi. If the process is initially at steady state, and then
P suddenly changes from 35 to 50 psi at 1:10 PM, at what time
will the alarm sound?

4.4 Consider the first-order transfer function model in Exer-
cise 4.2 where y and u are deviation variables. For an initial
condition of y(0) = 1 and a step change in u of magnitude
2 (at t = 0), calculate the response, y(t).

Hint: First determine the corresponding differential equation
model by using the inverse Laplace tranform.

4.5 For the process modeled by

dy
2L gy =3y +2
dt Y1~ 9)2 Uy
d
% = 4y1 — 6y2 + 2u1 + 4u2

Find the four transfer functions relating the outputs (y4, y;) to
the inputs (uy, up). The u; and y; are deviation variables.

4.6 A stirred-tank blending system can be described by a first-
order transfer function between the exit composition x and the
inlet composition x; (both are mass fractions of solute):

X'(s) K
Xi(s) T+1
Lo Vi
) W1
H
Ly Vs
x1 ¥2

Figure E4.7

where K = 0.6 (dimensionless) and 7 = 10 min. When the
blending system is at steady state (x = 0.3), the dynamic be-
havior is tested by quickly adding a large amount of a ra-
dioactive tracer, thus approximating an impulse function
with magnitude 1.5.

(a) Calculate the exit composition response x(¢f) using
Laplace transforms and sketch x(z). Based on this analytical
expression, what is the value of x(0)?

(b) Using the initial value theorem of Section 3.4, determine
the value of x(0).

(¢) If the process is initially at a steady state with x=0.3,
what is the value of x(0)?

(d) Compare your answer for parts (a)—(c) and briefly dis-
cuss any differences.

4.7 A single equilibrium stage in a distillation column is
shown in Fig. E4.7. The model that describes this stage is

dH
E=L0+V2—(L1+V1)
del
a Loxg + Vays — (Lixg + Viyr)

Y1 = ag + axy + ayxd + azxi

(a) Assuming that the molar holdup H in the stage is con-
stant and that equimolal overflow holds, for a mole of vapor
that condenses, one mole of liquid is vaporized, simplify the
model as much as possible.

(b) Linearize the resulting model and introduce deviation
variables.

(¢) For constant liquid and vapor flow rates, derive the four
transfer functions relating outputs x; and y; to inputs xq and y,.
Put in standard form.

4.8 A surge tank in Fig. E4.8 is designed with a slotted weir
so that the outflow rate, w, is proportional to the liquid level
to the 1.5 power; that is,

w = Rh'S

where R is a constant. If a single stream enters the tank with
flow rate w;, find the transfer function H'(s)/W’(s). Identify
the gain and all time constants. Verify units.

The cross-sectional area of the tank is A. Density p is constant.

wj

R

. — Weir

Figure E4.8



4.9 For the steam-heated stirred-tank system modeled by
Egs. 2-51 and 2-52, assume that the steam temperature 7 is
constant.

(a) Find a transfer function relating tank temperature 7 to
inlet liquid temperature T;.

(b) What is the steady-state gain for this choice of input and
output?

(c¢) Based on physical arguments only, should the gain be
unity? Justify your answer.

4.10 The contents of the stirred-tank heating system shown in
Figure E4.10 are heated at a constant rate of Q(Btu/h) using a
gas-fired heater. The flow rate w(lb/h) and volume V(ft’) are
constant, but the heat loss to the surroundings Q; (Btu/h) varies
with the wind velocity v (ft/s) according to the expressions

Or = UA(T - T,
U@ = U + bv(d)
where U, A, b, and T, are constants. Derive the transfer func-

tion between exit temperature 7 and wind velocity v. List any
additional assumptions that you make.

— e

Figure E4.10

4.11 Consider a pressure surge system to reduce the effect of
pressure variations at a compressor outlet on the pressure in
a compressed gas header. We want to develop a two-tank
model and evaluate the form of the resulting transfer func-
tion for the two-tank process shown in Fig. E4.11.

(a) Develop a dynamic model that can be used to solve for
the gas flow rate, ws(¢), to the header given known pressures
at the compressor, P.(), and in the header, Py(¢). Determine
the degrees of freedom.
Available Information:
(i) The three valves operate linearly with resistances
Rl’ Rz, R3. €.g., w1 = (Pc - Pl)R
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(iv) The molecular weight of the gas is M.
(v) Operation is isothermal.

(b) Develop the model (linearize, Laplace transform, etc.)
just to the point where you can identify the following charac-
teristics of the transfer function

Wi(s)
F!(s)
(i) Is it interacting or noninteracting?
(ii)) What is the order of the denominator?
(iii) What is the order of the numerator?

(iv) Are any integrating elements present?
(v) Does the gain equal one?

Note: There is no need to derive the actual transfer function.
On the other hand, you should justify your answer to each
question.

4.12 A simple surge tank with a valve on the exit line is illus-
trated in Figure E4.12. If the exit flow rate is proportional to
the square root of the liquid level, an unsteady-state model
for the level in the tank is given by

dh

AE =4q — thl\2

Figure E4.12

As usual, you can assume that the process initially is at steady
state:

4= 4= Gi
(a) Find the transfer function H'(s)/Qj(s). Put the transfer
function in standard gain/time constant form.
(b) Find the transfer function Q’(s)/Q; (s) and put it in stan-
dard form.

(c) If the algebraic relation for the exit flow rate is linear in-
stead of square root, the level transfer function can be put
into a first-order form,

(ii) The tank volumes (V; and V) are constant. H'(s) __ K*
(iii) The Ideal Gas Law holds. Qi(s) s +1
wy w2 w3
R - —
P el o P ] T ] P o
¢ R ! R 2 R To header Pr
1 2 3
Surge Surge
tank 1 tank 2

Figure E4.11
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with K* = hlg;, v = Vig;, and V = Ah is the initial steady-
state volume.

When written this way, 7* is easily interpreted as the liquid
residence time at the nominal operating conditions. What are
equivalent expressions for K and 7 in the part (a) level trans-
fer function, that is, for the square root outflow relation?

4.13 Liquid flow out of a spherical tank discharging through
a valve can be described approximately by the following non-
linear differential equation:

d(n’)
pVT = pg; - GVh

where the variables used are consistent with other liquid level
models we have developed.

(a) Derive a linearized model (in deviation variables) of the
form

dh’'
dt

(b) Develop a transfer function relating the liquid level to
the volumetric flow of liquid into the tank. Give the final ex-
pression in terms of model coefficients, a and b.

=ah' + bq|

4.14 An exothermic reaction, A — 2B, takes place adiabati-
cally in a stirred-tank reactor. This liquid reaction occurs at
constant volume in a 1,000-gal reactor. The reaction can be
considered to be first-order and irreversible with the rate con-
stant given by

k=24 X 105¢ 200007 (min~1)

where T'is in R.

(a) Using the information below, derive a transfer function
relating the exit temperature 7T to the inlet concentration cg;.
State all assumptions that you make.

(b) How sensitive is the transfer function gain K to the oper-
ating conditions? Find an expression for the gain in terms of

g, T, and ¢4; and evaluate the sensitivities (that is, 9K/dq,
etc.)
Available Information

(i) Nominal steady-state conditions are

T = 150°F, cy; = 0.8 mol/ft3

g = 20 gal/min = flow in and out of the reactor

(ii) Physical property data for the mixture at the nomi-
nal steady state:
Btu 3
C= 0'81b_°F’ p = 521b/ft°, —AHg = 500kJ/mol
4.15 A chemostat is a continuous stirred tank bioreactor that
can carry out fermentation of a plant cell culture. Its dynamic
behavior can be described by the following equations:

X = p(§)X - DX
§ = — w(S)XIYxs — D(S; = S)

X and S are the cell and substrate concentrations, respec-
tively, and Sy is the substrate feed concentration. The dilution
rate D is defined as the feed flow rate divided by the bioreac-
tor volume. D is the input, while the cell concentration X and
substrate concentration S are the output variables. Typically,
the rate of reaction is referred to as the specific growth rate p
and is modeled by a Monod equation,

_ BmS
w(S) = K +5

Assume p,, = 020h™!, K, = 1.0 g/L, and Y5 = 0.5g/g. Use
a steady-state operating point of D = 0.1 h~!, X = 2.25 g/L,
§=1.0g/L, and S, = 10 g/L.

Using linearization, derive a transfer function relating the
deviation variables for the cell concentration (X — X) to the

dilution ration (D — D).




Chapter 5

Dynamic Behavior of

First-Order and

Second-Order Processes

CHAPTER CONTENTS
5.1 Standard Process Inputs

5.2 Response of First-Order Processes
5.2.1 Step Response
5.2.2 Ramp Response
5.2.3 Sinusoidal Response

5.3 Response of Integrating Processes

5.4 Response of Second-Order Processes
5.4.1 Step Response
5.4.2 Sinusoidal Response

Summary

In Chapter 2 we derived dynamic models for several
typical processes, and in Chapter 4 we showed how
these models can be put into standard transfer function
form. Now we investigate how processes respond to
typical changes in their environment, that is, to changes
in their inputs. We have already seen in Chapter 1 that
process inputs fall into two categories:

1. Inputs that can be manipulated to control the
process.

2. Inputs that are not manipulated, classified as dis-
turbance variables.

The transfer function representation makes it easy
to compare the effects of different inputs. For exam-
ple, the dynamic model for the constant-flow stirred-
tank blending system was derived in Section 4.1.

Rewriting Eq. 4-15 in terms of process parameters
yields
wy/

X'(5) = 5 Xi(s) + V’V&Xé(s) (5-1)
—s+1 —s+1
w w
The resulting first-order transfer functions,
KOl X0
! 7‘) s+1 2 7‘) s+1

relate changes in outlet mass fraction X'(s) to changes
in inlet mass fractions X7 (s) and X3(s).

A second advantage of the transfer function repre-
sentation is that the dynamic behavior of a given process
can be generalized easily. Once we analyze the response
of the process to an input change, the response of any
other process described by the same generic transfer
function is then known.

73
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For a general first-order transfer function with out-
put Y(s) and input U(s),

Y(s) = U(s) (5-3)

K
™ + 1
a general time-domain solution can be found once the
nature of the input change is specified (e.g., step or
impulse change). This solution applies to any other
process with a first-order transfer function, for exam-
ple, the liquid surge tanks of Egs. 4-53 and 4-55.
Another benefit of transfer function form (e.g., (5-3)) is
that it is not necessary to re-solve the ODE when X, T,
or U(s) changes.

We will exploit this ability to develop general process
dynamic formulas as much as possible, concentrating on
transfer functions that commonly arise in describing the
dynamic behavior of industrial processes. This chapter
covers the simplest transfer functions: first-order
processes, integrating units, and second-order processes.
In Chapter 6 the responses of more complicated transfer
functions will be discussed. To keep the results as
general as possible, we now consider several standard
process inputs that are used to characterize the behavior
of many actual processes.

51 STANDARD PROCESS INPUTS

We have previously discussed outputs and inputs for
process models; we now introduce more precise work-
ing definitions. The word output generally refers to a
controlled variable in a process, a process variable to be
maintained at a desired value (set point). For example,
the output from the stirred blending tank just discussed
is the mass fraction x of the effluent stream. The word
input refers to any variable that influences the process
output, such as the flow rate of the stream flowing into
the stirred blending tank. The characteristic feature of
all inputs, whether they are disturbance variables or
manipulated variables, is that they influence the output
variables that we wish to control.

In analyzing process dynamics and in designing con-
trol systems, it is important to know how the process
outputs will respond to changes in the process inputs.
There are six important types of input changes used in
industrial practice for the purposes of modeling and
control.

1. Step Input. One characteristic of industrial
processes is that they can be subjected to sudden and
sustained input changes; for example, a reactor feed-
stock may be changed quickly from one supply to an-
other, causing a corresponding change in important
input variables such as feed concentration and feed
temperature. Such a change can be approximated by
the step change

0 t<0
us(®) = {M 1=0

where zero time, as noted earlier, is taken to be the time
at which the sudden change of magnitude M occurs.
Note that ug(¢) is defined as a deviation variable—that
is, the change from the current steady state. Suppose
the heat input to a stirred-tank heating unit suddenly is
changed from 8,000 to 10,000 kcal/h, by changing the
electrical heater input. Then

(5-4)

O() = 8000 + 2000 S(¢)
Q'(£) = 2000 S(?)

(5-5a)
(5-5b)

where S(¢) is the unit step function. The Laplace trans-
form of a step of magnitude M (cf. Eq. 3-4) is
(5-6)

us(s) =

2. Ramp Input. Industrial processes often are sub-
jected to inputs that drift—that is, they gradually
change upward or downward for some period of time
with a roughly constant slope. For example, ambient
conditions (air temperature and relative humidity) can
change slowly during the day so that the plant cooling
tower temperature also changes slowly. Set points are
sometimes ramped from one value to another rather
than making a step change. We can approximate such
a change in an input variable by means of the ramp
function:

0 t<0
ug(®) = {at t=0

where ug(?) is a deviation variable. The Laplace transform
of a ramp input with a slope of 1 is given in Table 3.1 as
1/s%. Hence, transforming Eq. 5-7 yields

(-7)

u(s) = ;% (5-8)

3. Rectangular Pulse. Processes sometimes are sub-
jected to a sudden step change that then returns to its
original value. Suppose that a feed to a reactor is shut
off for a certain period of time or a natural-gas-fired
furnace experiences a brief interruption in fuel gas. We
might approximate this type of input change as a rec-
tangular pulse:

0 t<0
upp(t) = ¢h  0=1<1y, (5-9)
0 t=t,

where the pulse width ¢, can range from very short
(approximation to an impulse) to very long. An alter-
native way of expressing (5-9) utilizes the shifted unit
step input S(¢ — ¢,), which is equal to unity for ¢ = ¢,,
and equal to zero for ¢ < ¢, (cf. Eq. 3-23). Equation 5-9
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Figure 5.1 How two step inputs can be combined to form a
rectangular pulse.

is depicted in Fig. 5.1 as the sum of two steps, one step
of magnitude equal to 1 occurring at t = 0 combined
with a second step of magnitude equal to —1 occurring
at t = t,,. Mathematically, this combination can be ex-
pressed as

ugp(t) = h[S(®) — S — 1,)]

Because the Laplace transform is only defined for ¢t = 0,
this expression can be simplified to

ugp(t) = h[1 — S(t — t,)] t=0 (5-10)
which can be Laplace transformed to yield
_h ~tys
ugp(s) = (1 — ™) (5-11)

which is the same result given in (3-22).

The three important inputs discussed above —step,
ramp, rectangular pulse—are depicted in Fig. 5.2.
Note that many types of inputs can be represented as
combinations of step and ramp inputs. For example, a
unit height (isosceles) triangular pulse of width ¢, can
be constructed from three ramp inputs, as shown in
Fig. 5.3. In this case, we write a single expression for
the triangular pulse function

urp(t) = %[tS(t) - 2(t — t,/2)S(t — t,/2)
+ (¢t — t,)S@ — t,)]
- %[r — 2t — ,R2)S(t — 1,/2)
+ (6 = 1,)8(t — t)]

t=0 (512
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Figure 5.2 Three important examples of deterministic inputs.

where the second relation is valid only for ¢ = 0. Equa-
tion 5-12 can be Laplace transformed term-by-term to
obtain

2 1-2 —tys/2 + —tys
) = & (L2 1)

w S

Note that Eq. 5-12 written without the unit step func-
tion multipliers is incorrect.

Components of a
unit-height _
triangular Slope = 2/t,,
pulse
0 2
tw
Slope = -4/t,,
Triangular 1b——————
pulse
urp(t)
O0 .
Time, ¢

Figure 5.3 How three ramp inputs can be combined to form
a triangular pulse.
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4. Sinusoidal Input. Processes are also subjected to
inputs that vary periodically. As an example, the drift
in cooling water temperature discussed earlier can
often be closely tied to diurnal (day-to-night-to-day)
fluctuations in ambient conditions. Cyclic process
changes within a 24-hour period often are caused by a
variation in cooling water temperature that can be
approximated as a sinusoidal function:

0 <0
Usin(t) = {

Asinot t=0

The amplitude of the sinusoidal function is A, while the
period P is related to the angular frequency by P = 2m/w
(w in radians/time). On a shorter time scale, high-
frequency disturbances are associated with mixing and
pumping operations and with 60-Hz electrical noise aris-
ing from AC electrical equipment and instrumentation.

Sinusoidal inputs are particularly important, because
they play a central role in frequency response analysis,
which is discussed in Chapter 14. The Laplace transform
of the sine function in Eq. 5-14 can be obtained by multi-
plying entry 14 in Table 3.1 by the amplitude A to obtain

Ao
S2 + w?

(5-14)

Usin(s) = (5-15)
5. Impulse Input. The unit impulse function dis-
cussed in Chapter 3 has the simplest Laplace transform,
U(s) = 1 (Eq. 3-24). However, true impulse functions
are not encountered in normal plant operations. To
obtain an impulse input, it is necessary to inject a finite
amount of energy or material into a process in an infini-
tesimal length of time, which is not possible. However,
this type of input can be approximated through the
injection of a concentrated dye or other tracer into the
process (see Example 3.7).

6. Random Inputs. Many process inputs change with
time in such a complex manner that it is not possible to
describe them as deterministic functions of time. If an
input u exhibits apparently random fluctuation, it is con-
venient to characterize it in statistical terms—that is, to
specify its mean value % and standard deviation o. The
mathematical analysis of such random or stochastic
processes is beyond the scope of this book. See Maybeck
(1997) and Box et al. (1994) for more details. Control
systems designed assuming deterministic inputs usually
perform satisfactorily for random inputs; hence that
approach is taken in controller design in this book. Mon-
itoring techniques based on statistical analysis are dis-
cussed in Chapter 21.

Having considered transfer functions in Chapter 4
and important types of forcing functions (process in-
puts) here, we now can discuss the dynamic behavior of
processes in an organized way. We begin with
processes that can be modeled as first-order transfer
functions. Then integrating elements are considered

and finally second-order processes. Despite their sim-
plicity, these transfer functions are quite important be-
cause they represent building blocks for modeling more
complicated processes. In addition, many important in-
dustrial processes can be adequately approximated by
first- and second-order transfer functions. In Chapter 6,
the dynamic characteristics of more complicated sys-
tems, for example, those that contain time delays or nu-
merator terms, or that are of order higher than two, are
considered.

5.2 RESPONSE OF FIRST-ORDER
PROCESSES

In Section 4.1, we developed a relation for the dynamic
response of the simple stirred-tank blending system
(Eq. 4-14). To find how the outlet composition changes
when either of the inputs, X{(s) or Wj(s), is changed,
we use the general first-order transfer function,
Yo) __K
Uis) 7s+1
where K is the process gain and T is the time constant.
Now we investigate some particular forms of input
U(s), deriving expressions for Y(s) and the resulting
response, y(f).

(5-16)

5.2.1 Step Response

For a step input of magnitude M, U(s) = MIs, and (5-16)
becomes

_— K—M -
Yis) = s(ts + 1) (5-17)
Using Table 3.1, the time-domain response is
y(@) = KM(1 — ™' (5-18)

The plot of this equation in Fig. 5.4 shows that a first-
order process does not respond instantaneously to a

10—
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Figure 5.4 Step response of a first-order process.



Table 5.1 Response of a First-Order
Process to a Step Input

t  yO/KM=1-¢"

0 0

T 0.6321
27 0.8647
37 0.9502
47 0.9817
57 0.9933

sudden change in its input. In fact, after a time interval
equal to the process time constant (¢ = 7), the process
response is still only 63.2% complete. Theoretically,
the process output never reaches the new steady-state
value except as t — «; it does approximate the final
steady-state value when ¢ = 57, as shown in Table 5.1.
Notice that Fig. 5.4 has been drawn in dimensionless or
normalized form, with time divided by the process time
constant and the output change divided by the product
of the process gain and magnitude of the input change.

Now we consider a more specific example.

EXAMPLE 5.1

A stirred-tank heating system described by Eq. 4-37 is
used to preheat a reactant containing a suspended solid
catalyst at a constant flow rate of 1000 kg/h. The volume in
the tank is 2 m3, and the density and specific heat of the
suspended mixture are, respectively, 900 kg/m® and
1 cal/g °C. The process initially is operating with inlet and
outlet temperatures of 100 and 130 °C. The following
questions concerning process operations are posed:

(a) What is the heater input at the initial steady state and
the values of K and 1?

(b) If the heater input is suddenly increased by +30%,
how long will it take for the tank temperature to
achieve 99% of the final temperature change?

(¢) Assume the tank is at its initial steady state. If the
inlet temperature is increased suddenly from 100 to
120 °C, how long will it take before the outlet temper-
ature changes from 130 to 135 °C?

SOLUTION

(a) First calculate the process steady-state operating con-
ditions and then the gain and time constant in Eq. 4-37.
Assuming no heat losses, the energy input from the
heater at the initial steady state is equal to the enthalpy
increase between the inlet and outlet streams. Thus,
the steady-state energy balance provides the answer:

0=wC(T-T)
. 68 1cal) o o
(10 h><g°C (130 °C — 100 °C)

= 3 X 107 cal/h
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Using Eq. 4-37, the gain and time constants can be
determined (the disturbance gain is unity):

1 1
r -
wC 1068 )( Leal
h/\g°C
- 10-6—C
T cal/h
3 s 5
. (2m)(9><10 m3>
T =18h
& 1002
h

(b) According to Table 5.1, the time required to attain the
99% response following a step change of any magni-
tude in heater input will be S process time constants—
that is, 9 h. The steady-state change in temperature
due to a change of +30% in Q (9 X 10° cal/h) can be
found from the Final Value Theorem, Eq. 3-94:

10° 9xi10%
18 +1 s >_9C

T'(t— 00) = lim s(
i

Note that we have calculated the outlet temperature
change as a result of the input change; hence, the outlet
temperature at the final steady state will be 130 °C +
9°C = 139 °C. Howeyver, use of the Final Value Theorem
is an unnecessary formality when a process transfer func-
tion is written in the standard form with gain and time
constants. The input change need only be multiplied by
the process gain to obtain the ultimate change in the
process output, assuming that the final value does in fact
exist and is finite. In this case T'(t— ») = K AQ =
(1076 °C/cal - h) (9 X 10° cal/h) = 9°C.

(¢) Because the gain of the appropriate transfer function
(that relates 7" to 7}) is one, an input temperature
change of 20 °C causes an outlet temperature of 20 °C.
The time required for the output to change by 5 °C, or
25% of the ultimate steady-state change, can be esti-
mated from Fig. 5.4 as ¢/t = 0.3 or ¢ = 0.54 h. Equation
5-18 furnishes a more accurate way to calculate this

value:
& . oy
M- 1-—e
L = . T
@eEe
¢’ 075

—% =1n0.75 = —0.288

t=052h

5.2.2 Ramp Response

We now evaluate how a first-order system responds to
the ramp input, U(s) = a/s* of Eq. 5-8. Performing a
partial fraction expansion yields

_ Ka __~
(s + 1)s? 75 +1

Y(s) +22 423 (5:19)
s s
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Figure 5.5 Ramp response of a first-order process
(comparison of input and output).

The Heaviside expansion (Chapter 3) gives
Ka> Kat  Ka

YO =5r1 s e (5-20)
Using Table 3.1
y(¢) = Kar(e™ —1) + Kat (5-21)

The above expression has the interesting property that
for large values of time (t >> 7)

y(&) ~ Ka(t—r) (5-22)

Equation 5-22 implies that after an initial transient pe-
riod, the ramp input yields a ramp output with slope
equal to Ka, but shifted in time by the process time
constant T (see Fig. 5.5). An unbounded ramp input
will ultimately cause some process component to satu-
rate, so the duration of the ramp input ordinarily is lim-
ited. A process input frequently will be ramped from
one value to another in a fixed amount of time so as to
avoid the sudden change associated with a step change.
Ramp inputs of this type are particularly useful during
the start-up of a continuous process or in operating a
batch process.

5.2.3 Sinusoidal Response

As a final example of the response of first-order
processes, consider a sinusoidal input u,(f) = A sin wt,
with transform given by Eq. (5-15):

KAw
= 5-23
) -23)
KA T SOT ® )
= - 5-24
o’ +1 (TS+1 P+’ P+o? (5-24)
Inversion gives
y(t) = %ﬁ-l (wre™ " — wrcos ot + sinwt) (5-25)

or, by using trigonometric identities,
KAot _
y@® = e+
w’r?+1 w’t+1

where

sin (ot + ¢) (5-26)

¢ =—tan"!(wr) (5-27)

Notice that in both (5-25) and (5-26) the exponential
term goes to zero as t — ®, leaving a pure sinusoidal
response. This property is exploited in Chapter 14 for
frequency response analysis.

Students often have difficulty imagining how a real
process variable might change sinusoidally. How can
the flow rate into a reactor be negative as well as posi-
tive? Remember that we have defined the input u and
output y in these relations to be deviation variables. An
actual input might be

3 3
q()=047-+ (0.1 ’”T) sinot (528)
where the amplitude of the deviation input signal A is
0.1 m%s. After a long period of time, the output re-
sponse (5-26) also will be a sinusoidal deviation, similar
to that given in Eq. 5-28.

EXAMPLE 5.2
A liquid surge tank similar to the one described by
Eq. 4-50 has the transfer function form of Eq. 4-53:

T 00
Qi(s) SO0s+1

where £ is the tank level (m), g; is the flow rate (m?s), the
gain has units m/m°/s, or s/m?, and the time constant has
units of seconds. The system is operating at steady state with
G = 04 m%s and & = 4 m when a sinusoidal perturbation in
inlet flow rate begins with amplitude = 0.1 m/s and a cyclic
frequency of 0.002 cycles/s. What are the maximum and
minimum values of the tank level after the flow rate distur-
bance has occurred for 6 min or more? What are the largest
level perturbations expected as a result of sinusoidal varia-
tions in flow rate with this amplitude? What is the effect of
high-frequency variations, say, 0.2 cycles/s?

SOLUTION

Note that the actual input signal g(¢) is given by Eq. 5-28,
but only the amplitude of the input deviation (0.1 m/s) is
required. From Eq. 5-26 the value of the exponential term
6 min after the start of sinusoidal forcing is e 36050 = ¢=72
< 1073, Thus, the effect of the exponential transient term
is less than 0.1% of the disturbance amplitude and can be
safely neglected. Consequently, from Eq. 5-26 the ampli-
tude of the output (level) perturbation is

KA

ot + 1



where A is the input amplitude and o is the frequency
(in radians) = (2w) (cyclic frequency) = (6.28)(0.002)
radians/s. The amplitude of the perturbation in the liquid
level is

10(s/m?)(0.1 m*/s)

\/[ (6.28 rad/cycles)(0.002 cycles/s)(50 s) > + 1

or 0.85 m. Hence, the actual tank level varies from a mini-
mum of 3.15 m to a maximum of 4.85 m.

The largest deviations that can result from sinusoidal vari-
ations of amplitude 0.1 m3/s occur for ® — 0—that is, for
very low frequencies. In this case, the deviations would be
+KA = *(10 s/m?) (0.1 m%s) = *1 m. Hence, the mini-
mum and maximum values of level would be 3 and 5 m,
respectively.

For high-frequency variations (0.2 cycles/s), the ampli-
tude will approach zero. This occurs because the rapid
variations of flow rate are averaged in the tank when the
residence time is sufficiently large, giving a relatively con-
stant level.

5.3 RESPONSE OF INTEGRATING
PROCESSES

In Section 2.4 we briefly considered a liquid-level sys-
tem with a pump attached to the outflow line. Assum-
ing that the outflow rate g can be set at any time by the
speed of the pump, Eq. 2-54 becomes

dh(t)

A— = qi(t) — q(®) (5-29)

Suppose at ¢t = 0, the process is at the nominal steady

state where g; = g and h = h. After subtracting the
steady-state equation (0 = g; — g) from (5-29) and noting
that dh(t)/dt = dh'(¢)/dt,

A0 50 - g0
where the primed deviation variables are all zero at ¢ = 0.
Taking Laplace transforms

(5-30)

SAH'(s) = Qi(s) — Q'(s) (5-31)
and rearranging gives
H)=1-[0/()-Q6)]  (32)

Both transfer functions, H'(s)/Q;j(s) = 1/As and H'(s)/
Q'(s) = —1/As, represent integrating models, character-
ized by the term 1/s. The integral of (5-29) is

h t
[ =% [ tae)-awnae

or

Wo~F =% [l —awnar 639
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hence the term integrating process. Integrating processes
do not have a steady-state gain in the usual sense. For
such a process operating at steady state, any positive
step change in g; (increase in g; above g) will cause the
tank level to increase linearly with time in proportion to
the difference, g(f) — q(¢), while a positive step change
in g will cause the tank level to decrease linearly. Thus,
no new steady state will be attained, unless the tank
overflows or empties. In contrast, a tank with an exit line
valve rather than a pump will reach a steady state when
the outflow rate becomes equal to the inflow rate. This
process is described by a first-order transfer function
rather than an integrator (cf. Example 4.6).

EXAMPLE 5.3

A vented cylindrical tank is used for storage between a
tank car unloading facility and a continuous reactor that
uses the tank car contents as feedstock (Fig. 5.6). The reac-
tor feed exits the storage tank at a constant flow rate of 0.02
m>/s. During some periods of operation, feedstock is simul-
taneously transferred from the tank car to the feed tank
and from the tank to the reactor. The operators have to be
particularly careful not to let the feed tank overflow or
empty. The feed tank is 5 m high (distance to the vent) and
has an internal cross-sectional area of 4 m?.

(a) Suppose after a long period of operation, the tank
level is 2 m at the time the tank car empties. How
long can the reactor be operated before the feed tank
is depleted?

(b) Another tank car is moved into place and connected to
the tank, while flow continues into the reactor at 0.02
m?s. If flow is introduced into the feed tank just as the
tank level reaches 1 m, how long can the transfer pump
from the tank car be operated? Assume that it pumps
at a constant rate of 0.1 m%/s when switched on.

SOLUTION

(a) For such a system, there is no unique steady-state
level corresponding to a particular value of input and
output flow rate. Suppose the initial level is 2 = 2 m
and the constant flow rate from the feed pump to the
reactor, ¢ = 0.02 m%s, is the basis for defining devia-
tion variables for 4, g, and g;. Then

h =2m
g =g = 002m’s

and, from Eq. 5-32, the process model for the tank is
/ 1. /
H'(s) =55 [0/(5) — Q'(5)]

At the time the tank car empties

002

g =0=g¢q,- 00=>0/()= ——

g=002=q =0=>Q'(s) =0
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Figure 5.6 Unloading and storage facility for a continuous reactor.

Thus

vy = L (- 002 _ o) _ _0.005
H(S)_4S( s 0) -

Inversion to the time domain gives A'(f) = —0.005¢
and A(r) = 2 — 0.005¢. The length of time for A(?) to go
to zero is t = 2/0.005 = 400 s.

(b) For the tank-filling period and using the same basis for
deviation variables,

gi = 01 = gf=+0.08 = Qj(s) = Osﬁ

g=002=q¢'=0=Q'(s) =0

Consequently, from (5-32), the tank model is

-28-) 5

A

Inversion to the time domain yields A(f) = 1 + 0.02z.
Thus, the transfer pump can be operated for 200 s until
h(f) = 5 m, when the tank would overflow. Note that this
time (as well as the time to empty the tank in (a)) can be
calculated without using Laplace transforms, simply by
using the constant rate of inflow (or outflow) and the tank
volume.

This example illustrates that integrating process units do
not reach a new steady state when subjected to step
changes in inputs, in contrast to first-order processes
(cf. Eq. 5-18). Integrating systems represent an example of
non-self-regulating processes. Closed pulse inputs, where
the initial and final values of the input are equal, do lead

to a new steady state. For example, the rectangular pulse
with height £ given in Eq. 5-9 has the Laplace transform
given in Eq. 5-10. The response of an integrating process
with transfer function

Y(s) K
Us) s (5-34)
to a rectangular pulse input is
Kh(1 — e —tws
(L5 B WS
s? s s?

There are two regions for the solution of (5-35), depend-
ing on the value of ¢ compared to the pulse width ¢,. For
0 =t <t,, the second term in the parentheses of (5-35)
is 0, hence

y(t) = Kht (5-36)

corresponding to a linear increase with respect to time.
For ¢t = t,, taking the inverse Laplace transform of (5-35)
gives

y(@)=Kh[t— (t—t,)] = Kht, (5-37)

which is a constant value. Combining the solutions yields

_ JKnt t<t,
) = {Khtw t=1, (5-38)

Equation 5-38 shows that the change in y at any time is
proportional to the area under the input pulse curve (the
integral), an intuitive result.



5.4 RESPONSE OF SECOND-ORDER
PROCESSES

As noted in Chapter 4, a second-order transfer function
can arise physically whenever two first-order processes
are connected in series. For example, two stirred-tank
blending processes, each with a first-order transfer func-
tion relating inlet to outlet mass fraction, might be physi-
cally connected so that the outflow stream of the first tank
is used as the inflow stream of the second tank. Figure 5.7
illustrates the signal flow relation for such a process. Here

G(s) = Y(s) KiK, B K
VZU6) ™ (s + D(ags +1)  (1gs + D)(mps + 1)
(5-39)

where K = K;K,. Alternatively, a second-order process
transfer function will arise upon transforming either a
second-order differential equation process model such
as the one given in Eq. 4-29 for the electrically heated
stirred-tank unit, or two coupled first-order differential
equations, such as for the CSTR (cf. Egs. 4-84 and 4-85).
In this chapter we consider the case where the second-
order transfer function has the standard form

G(s) = K

w2 + 2rs + 1
We defer discussion of the more general cases with a
time-delay term in the numerator or other numerator
dynamics present until Chapter 6.

In Eq. 5-40, K and 7 have the same importance as for
a first-order transfer function. K is the process gain,
and 7 determines the speed of response (or, equiva-
lently, the response time) of the system. The damping
coefficient { (zeta) is dimensionless. It provides a mea-
sure of the amount of damping in the system—that is,
the degree of oscillation in a process response after a
perturbation. Small values of { imply little damping and
a large amount of oscillation, as, for example, in an au-
tomobile suspension system with ineffective shock ab-
sorbers. Hitting a bump causes such a vehicle to bounce
up and down dangerously. In some textbooks, Eq. 5-40
is written in terms of w,, = 1/7, the undamped natural
frequency of the system. This name arises because it
represents the frequency of oscillation of the system
when there is no damping ({ = 0).

There are three important classes of second-order
systems as shown in Table 5.2 The case where { < 0 is
omitted here because it corresponds to an unstable
second-order system that would have an unbounded

(5-40)

U(s) K X(s) K, Y(s)
T8 + 1

1'28+].

Figure 5.7 Two first-order systems in series yield an overall
second-order system.
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Table 5.2 The Three Classes of Second-Order Transfer
Functions

Roots of
Damping Characterization Characteristic
Coefficient of Response Equation’
{>1 Overdamped Real and unequal
(=1 Critically damped Real and equal
0<f<1 Underdamped Complex conjugates

(of the form a + jb
and a — jb)

IThis equation is t2s% + 2¢{ts + 1 = 0.

response to any input (effects of instability are covered
in Chapter 11). The overdamped and critically damped
forms of the second-order transfer function most often
appear when two first-order systems occur in series
(see Fig. 5.7). The transfer functions given by Egs. 5-39
and 5-40 differ only in the form of the denominators.
Equating the denominators yields the relation between
the two alternative forms for the overdamped second-
order system:

252+ 215 +1= (15 + 1)(7p5 + 1) (5-41)

Expanding the right side of (5-41) and equating coeffi-
cients of the s terms,

T2=T1T2

2itr=m1+7
from which we obtain
= Vi
+
(= M (5-43)
2V )
Alternatively, the left side of (5-41) can be factored:

(5-42)

Ts
72s2+2§'rs+1=(ﬁ+1>x

s
—+1 5-44
(C Ve -1 ) 4)
from which expressions for 71 and 1, are obtained:

T

™= ﬁ (C = 1) (5-45)
=T = -
™ + m c=1 (5-46)

EXAMPLE 5.4

An overdamped system consists of two first-order processes
operating in series (1 = 4, 7, = 1). Find the equivalent val-
ues of 7 and { for this system.
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SOLUTION
From Egs. 5-42 and 5-43,
T=V@#@Q1) =2
4+1
L= =125
@
Equations 5-45 and 5-46 provide a check on these results:
2 2
il - =4
125- V(1252 -1 125-075
2 2
T

- -1
125+ V(1257 -1 125+075

The underdamped form of (5-40) can arise from some
mechanical systems, from flow or other processes such
as a pneumatic (air) instrument line with too little line
capacity, or from a mercury manometer, where inertial
effects are important.

For process control problems the underdamped form
is frequently encountered in investigating the properties
of processes under feedback control. Control systems are
sometimes designed so that the controlled process re-
sponds in a manner similar to that of an underdamped
second-order system (see Chapter 12). Next we develop
the relation for the step response of all three classes of
second-order processes.

5.4.1 Step Response

For the step input (U(s) = M/s) to a process described
by (5-40),

¥(s) = KM

B s(t2s% + 2Lrs + 1) (5-47)

After inverting to the time domain, the responses can
be categorized into three classes:

Overdamped ({>1)
If the denominator of Eq. 5-47 can be factored using
Egs. 5-45 and 5-46, then the response can be written

—tlty _ —tlty
T1€ e
W) = KM (1 S—— ) (5-48)

The response can also be written in the equivalent form

y(t) = KM {1 — e b |:cosh (ﬁ t)

R sinh('cz_1 t):l} (5-49)

-1 T

Critically Damped ({ = 1)

y(1) = KM [1— (1 +§) e_’/T] (5-50)
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Figure 5.8 Step response of underdamped second-order
processes.

Underdamped (0 <{<1)

y()=KM {1 - e‘“”{cos(@ t)

+ _f_ czsin<V1T_ Cztﬂ} (5-51)

Plots of the step responses for different values of { are
shown in Figs. 5.8 and 5.9, where the time axis is nor-
malized with respect to 7. Thus, when 7 is small, a rapid
response is signified, implying a large value for the un-
damped natural frequency, w, = 1/1.

Several general remarks can be made concerning the
responses shown in Figs. 5.8 and 5.9:

1. Responses exhibit a higher degree of oscillation
and overshoot (y/KM > 1) as { approaches zero.

2. Large values of { yield a sluggish (slow) response.

3. The fastest response without overshoot is ob-
tained for the critically damped case ({ = 1).

Control system designers sometimes attempt to
make the response of the controlled variable to a set-
point change approximate the ideal step response of an
underdamped second-order system, that is, make it ex-
hibit a prescribed amount of overshoot and oscillation
as it settles at the new operating point. When damped
oscillation is desirable, values of { in the range 0.4 to
0.8 may be chosen. In this range, the controlled vari-
able y reaches the new operating point faster than with
{ = 1.0 or 1.5, but the response is much less oscillatory
(settles faster) than with { = 0.2.

Figure 5.10 illustrates the characteristics of the step
response of a second-order underdamped process. The
following terms are used to describe the dynamics of
underdamped processes:
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Figure 5.9 Step response of critically damped and overdamped second-order processes.

1. Rise Time. t, is the time the process output takes
to first reach the new steady-state value.

2. Time to First Peak. t,is the time required for the
output to reach its first maximum value.

3. Settling Time. t; is the time required for the
process output to reach and remain inside a band
whose width is equal to =5% of the total change
in y for 95% response time (99% response time is
also used for some applications).

4. Overshoot. OS = a/b (% overshoot is 100 a/b).
5. Decay Ratio. DR = c/a (where c is the height of
the second peak).

6. Period of Oscillation. P is the time between two
successive peaks or two successive valleys of the
response.

Note that the above definitions generally apply to
the step response of any underdamped process. If the

Period
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Figure 5.10 Performance characteristics for the step response
of an underdamped process.

process does not exhibit overshoot, the rise time defini-
tion is modified to be the time to go from 10% to 90% of
the steady-state response (Astrom and Higglund, 2006).
For the particular case of an underdamped second-order
process, we can develop analytical expressions for
some of these characteristics. Using Eq. 5-51

m/V1 - ¢?
exp(—»ng/w - gz) (5-53)

DR = (0S)? = exp(—2w¢/V1 — )
(5-54)
(5-55)

Time to first peak: ¢, = (5-52)

Overshoot: OS

Il

Decay ratio:

27T
V1-¢
Note that OS and DR are functions of { only. For a sec-
ond-order system, the decay ratio is constant for each
successive pair of peaks. Figure 5.11 illustrates the
dependence of overshoot and decay ratio on damping
coefficient.

For an underdamped second-order transfer function,
Figs. 5.8 and 5.11 and Eq. 5-55 can be used to obtain esti-
mates of { and 7 based on step response characteristics.

Period: P =

EXAMPLE 5.5

A stirred-tank reactor has an internal cooling coil to
remove heat liberated in the reaction. A proportional con-
troller is used to regulate coolant flow rate so as to keep
the reactor temperature reasonably constant. The con-
troller has been designed so that the controlled reactor
exhibits typical underdamped second-order temperature



use the relation for overshoot (rather than decay
ratio) to take advantage of the greater precision of the
first peak measurement. Rearranging (5-53) gives

§= [ [In(0S)I?
w2 +[In(OS)]?
_1025-102_05

oS —m—7= 0.25 (i.e., 25%) (5-56)
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Figure 5.11 Relation between some performance characteristics

of an underdamped second-order process and the process
damping coefficient.

response characteristics when it is disturbed, either by
feed flow rate or by coolant temperature changes.

(a) The feed flow rate to the reactor changes suddenly from
0.4 to 0.5 kg/s, and the temperature of the reactor con-
tents, initially at 100 °C, changes eventually to 102 °C.
What is the gain of the transfer function (under feedback
control) that relates changes in reactor temperature to
changes in feed flow rate? (Be sure to specify the units.)

(b) The operator notes that the resulting response is
slightly oscillatory with maxima estimated to be 102.5
and 102.0 °C occurring at times 1000 and 3060 s after
the change is initiated. What is the complete process
transfer function?

(¢) The operator failed to note the rise time. Predict ¢,
based on the results in (a) and (b).

SOLUTION

(a) The gain is obtained by dividing the steady-state change
in temperature by the feed flow rate (disturbance)
change:

_ 102 — 100 °C

=20

X5 o« kels

(b) The oscillatory characteristics of the response can be
used to find the dynamic elements in the transfer func-
tion relating temperature to feed flow rate. Assuming
the step response is due to an underdamped second-
order process, Figs. 5.8 and 5.11 can be used to obtain

{=04037 =~ 04

Equation 5-55 can be rearranged to find 7:

E

T —

2w
P = 3060 — 1000 = 2060 s (5-57)
T=2300s

(¢) The rise time ¢, can be calculated from Eq. 5-51. When
t = t,, y(¢) is equal to its final steady-state value, KM.
In other words, the bracketed quantity is identically
zeroatt = r:

12
cOS(\/l -7 tr) & Sin(_M,r> e
Vi-o

T 1y

(5-58)
The general solution has multiple values of ¢ that
satisfy y(t) = KM:

n=-12 ... (5-59)

The rise time corresponds to the first time (n = 1) that
y(t) = KM = y(). Solving for the rise time gives

T _ il
.-~ ' (@m cos () (5-60)
r /—1 . {2
where the result of the inverse cosine computation
must be in radians. Because T = 300 s and { = 0.40
t, = 649s

In summary, the disturbance transfer function between
feed flow rate and outlet temperature while under feed-
back control is

15 20
W'(s)  (300)%? + 2(0.4)(300)s + 1
20

90,000s% + 240s + 1

where the process gain has units of °C/kg/s.

5.4.2 Sinusoidal Response

estimates of { and 7. Alternatively, analytical expres-
sions can be used, which is the approach taken here.
Either Eq. 5-53 or 5-54 can be employed to find { in-
dependently of 7. Because the second peak value of
temperature (102.0 °C) is essentially the final value
(102 °C), the calculated value of peak height ¢ will be
subject to appreciable measurement error. Instead, we

When a linear second-order system is forced by a sinu-
soidal input A sin wt, the output for large values of time
(after exponential terms have disappeared) is also a si-
nusoidal signal given by

KA
V1 = (01 + (2Lwr)?

y@) = sin (ot + ¢) (5-61)
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Figure 5.12 Sinusoidal response
amplitude of a second-order system
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The output amplitude A is obtained directly from
Eq. 5-61:
KA
VL - (07)] + (2LoT)?
The ratio of output to input amplitude is the amplitude

ratio AR (= A/A). When normalized by the process
gain, it is called the normalized amplitude ratio ARy

A= (5-63)

A 1

ARN = KA~ \/[1 — (u)'r)z]2 + (2{(1)1')2

(5-64)

ARy represents the effect of the dynamic model para-
meters ({, T) on the sinusoidal response; that is, ARy is
independent of steady-state gain K and the amplitude
of the forcing function, A. The maximum value of ARy
can be found (if it exists) by differentiating (5-64) with
respect to w and setting the derivative to zero. Solving
for wp,x gives

V1 - 2¢%

Omax =~ for0 < ¢ < 0.707 (5-65)

For { = 0.707, there is no maximum, as Fig. 5.12 illus-
trates. Substituting (5-65) into (5-64) yields an expres-
sion for the maximum value of ARy:

~

A

__A _ 1
max KA

max  or\/1 - (2

for0 < ¢ < 0.707

ARy

(5-66)

10 after exponential terms have become
negligible.

We see from (5-66) that the maximum output ampli-
tude for a second-order process that has no damping
(¢ = 0) is undefined. Small values of { are invariably
avoided in the design of processes, as well as in design-
ing control systems. Equation 5-66 indicates that a
process with little damping can exhibit very large out-
put oscillations if it is perturbed by periodic signals
with frequency near wpay.

EXAMPLE 5.6

An engineer uses a temperature sensor mounted in a
thermowell to measure the temperature in a CSTR. The
temperature sensor/transmitter combination operates ap-
proximately as a first-order system with time constant
equal to 3 s. The thermowell behaves like a first-order sys-
tem with time constant of 10 s. The engineer notes that the
measured reactor temperature has been cycling approxi-
mately sinusoidally between 180 and 183 °C with a period
of 30 s for at least several minutes. What can be concluded
concerning the actual temperature in the reactor?

SOLUTION

First, note that the sensor/transmitter and the transmission
line act as two first-order processes in series (Eq. 5-39)
with overall gain K equal to 1, with the approximate trans-
fer function

Trneas(s) _ 1
Treactor(s) (3s + (10s + 1)

(5-67)

From the reported results, we conclude that some distur-
bance has caused the actual reactor temperature (and its
deviation) to vary sinusoidally, which, in turn, has caused
the recorded output to oscillate. The cycling has continued
for a period of time that is much longer than the time
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constants of the process—that is, the instrumentation system.
Hence, the transients have died out and we can infer the
conditions in the reactor from the measured results, using
Eq. 5-63 for the sinusoidal response of a second-order sys-
tem. From (5-67), 71 = 3s and ) = 10 s; 7 and {, etc., are
calculated from Eqs. 5-42 and 5-43:

7= V(3)(10) = 5485
: 13

=)

The frequency of the perturbing sinusoidal signal (reactor
temperature) is calculated from the observed period of 30 s:

_2m 628

P 30

The amplitude of the output perturbation also is obtained
from observed results as

= 02093571

SUMMARY

Transfer functions can be used conveniently to obtain
output responses to any type of input change. In this
chapter we have focused on first- or second-order
transfer functions and integrating processes. Because a
relatively small number of input changes have indus-
trial or analytical significance, we have considered in
detail the responses of these basic process transfer
functions to the important types of inputs, such as step,
ramp, impulse, and sine inputs.

If a process can be modeled as a first-order or
second-order transfer function, the process response to
any standard input change can be found analytically or
numerically. When a theoretical model is not available,

REFERENCES

Astrém, K. J., and T. Higglund, Advanced PID Control, 3d ed.,
Instrument Society of America, Research Triangle Park, NC, 2006.

Box, G.E.P., G. M. Jenkins, and G. C. Reinsel, Time Series Analysis,
Forecasting, and Control, 3d ed., Prentice-Hall, Englewood Cliffs,
NJ, 1994.

EXERCISES

5.1 In addition to the standard inputs discussed in Section
5.1, other input functions occasionally are useful for spe-
cial purposes. One, the so-called doublet pulse, is shown in
Fig. ES.1.

(a) Find the Laplace transform of this function by first ex-
pressing it as a composite of functions whose transforms you
already know.

(b) What is the response of a process having a first-order
transfer function K/(ts + 1) to this input? of the integrating
process K/s?

(¢) From these results, can you determine what special prop-
erty this input offers?

Azwzuoc

Equation 5-63 now can be rearranged to calculate the
amplitude of the actual reactor temperature

i %\/[1 — (01)?]? + 2loT)?

from which A = 4.12 °C. Thus, the actual reactor tempera-
ture is varying between 181.5 — 412 = 177.38 °C and 181.5 +
412 = 185.62 °C, nearly three times the variation indi-
cated by the recorder.

Because the second-order process in this example is
overdamped ({ = 1.19), we expect that sinusoidal pertur-
bations in the reactor temperature always will be attenu-
ated (reduced in amplitude) in the measurement system
regardless of the frequency of the perturbation. Further
discussion of sinusoidal forcing is contained in Chapter 13
on frequency response techniques.

as occurs in many plant situations, data can be used to
obtain an approximate process transfer function if the
input is known, as discussed in Chapter 7. A model per-
mits predictions of how a process will react to other
types of disturbances or input changes.

Unfortunately, not all processes can be modeled by
such simple transfer functions. Hence, in Chapter 6 sev-
eral additional transfer function elements are intro-
duced in order to construct more complicated transfer
functions. However, the emphasis there is to show how
complex process behavior can be explained with com-
binations of simple transfer function elements.

Maybeck, P. S., Stochastic Models, Estimation, and Control, 2d ed.,
Academic Press, New York, 1997.
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5.2 A heater for a semiconductor wafer has first-order dy-
namics, that is, the transfer function relating changes in tem-
perature T to changes in the heater input power level P is

T's) K
P'(s) 75 + 1

where K has units [°C/Kw] and 7 has units [min].
The process is at steady state when an engineer changes the
power input stepwise from 1 to 1.5 Kw. She notes the following:
(i) The process temperature initially is 80 °C.
(ii) Four minutes after changing the power input, the
temperature is 230 °C.

(iii) Thirty minutes later the temperature is 280 °C.
(a) What are K and 7 in the process transfer function?
(b) If at another time the engineer changes the power input
linearly at a rate of 0.5 kW/min, what can you say about the
maximum rate of change of process temperature: When will it
occur? How large will it be?

5.3 A composition sensor is used to continually monitor the
contaminant level in a liquid stream. The dynamic behavior
of the sensor can be described by a first-order transfer func-
tion with a time constant of 10's,

Cn(s) _ 1
C'(s) 10s + 1

where C' is the actual contaminant concentration and C',, is
the measured value. Both are expressed as deviation vari-
ables (e.g., C' = C — C). The nominal concentration is C =
5 ppm. Both C and C,, have values of 5 ppm initially (i.e.,
the values at t = 0).

An alarm sounds if the measured value exceeds the envi-
ronmental limit of 7 ppm. Suppose that the contaminant con-
centration C gradually increases according to the expression
C(t) = 5 + 0.2t, where ¢ is expressed in seconds. After the ac-
tual contaminant concentration exceeds the environmental
limit, what is the time interval, A¢, until the alarm sounds?

5.4 The dynamic response of a stirred-tank bioreactor can
be represented by the transfer function

e _ 4
Cp(s) 25 + 1

where C' is the exit substrate concentration, mol/L, and Cgis
the feed substrate concentration, mol/L.

(a) Derive an expression for ¢’ (¢) if cx(t) is a rectangular pulse
(Fig. 5.2) with the following characteristics:

2 t<0
cp(t) = § 4 0=t<2
2 2=t< ™

(b) What is the maximum value of c¢'(f)? When does it
occur? What is the final value of ¢'(#)?
(¢) If the initial value is ¢(0) = 1, how long does it take for

c(?) to return to a value of 1.05 after it has reached its maxi-
mum value?

5.5 A thermocouple has the following characteristics when it
is immersed in a stirred bath:
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Mass of thermocouple =1 g

Heat capacity of thermocouple = 0.25 cal/g °C

Heat transfer coefficient = 20 cal/cm?h °C (for thermo-
couple and bath)

Surface area of thermocouple = 3 cm?

(a) Derive a transfer function model for the thermocouple
relating the change in its indicated output 7 to the change in
the temperature of its surroundings 7 assuming uniform
temperature (no gradients in the thermocouple bead), no
conduction in the leads, constant physical properties, and
conversion of the millivolt-level output directly to a °C read-
ing by a very fast meter.

(b) If the thermocouple is initially out of the bath and at
room temperature (23 °C), what is the maximum temperature
that it will register if it is suddenly plunged into the bath
(80 °C) and held there for 20 s?

5.6 Consider the transfer function

Y(s) 10

GO) = Uy G+ DB + 1)

What is y(¢ — ) for the following inputs:
(a) step input of height M

(b) unit impulse input (3(¢))

(c) sint

(d) unit rectangular pulse (Eq. 3-20, 2 = 1)

5.7 Appelpolscher has just left a meeting with Stella J. Smarly,
IGC’s vice-president for process operations and develop-
ment. Smarly is concerned about an upcoming extended plant
test of a method intended to improve the yields of a large
packed-bed reactor. The basic idea, which came from IGC’s
university consultant and was recently tested for feasibility in
a brief run, involves operating the reactor cyclically so that
nonlinearities in the system cause the time-average yield at
the exit to exceed the steady-state value. Smarly is worried
about the possibility of sintering the catalyst during an ex-
tended run, particularly in the region of the “hotspot” (axially
about one-third of the way down the bed and at the center-
line) where temperatures invariably peak. Appelpolscher,
who plans to leave the next day on a two-week big game
photo safari, doesn’t want to cancel his vacation. On the
other hand, Smarly has told him he faces early, unexpected
retirement in Botswana if the measurement device (located
near the hot spot) fails to alert operating people and the reac-
tor catalyst sinters. Appelpolscher likes Botswana but doesn’t
want to retire there. He manages to pull together the follow-
ing data and assumptions before heading for the airport and
leaves them with you for analysis with the offer of the use of
his swimming pool while he is gone. What do you report to
Smarly?

Data:

Frequency of cyclic operation = 0.1 cycles/min

Amplitude of thermal wave (temperature) at the measure-
ment point obtained experimentally in the recent brief
run = 15°C

Average operating temperature at the measurement point,
Tmeas = 350 °C
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Time constant of temperature sensor and thermowell =
1.5 min

Temperature at the reactor wall = 200 °C

Temperature at which the catalyst sinters if operated for sev-
eral hours = 700 °C

Temperature at which the catalyst sinters instantaneously =
715°C

Assumptions:

The reactor operational cycle is approximately sinusoidal at
the measurement point.

The thermowell is located near the reactor wall so as to mea-
sure a “radial average” temperature rather than the cen-
terline temperature.

The approximate relation is

Tcenter + 2Twall
3

which also holds during transient operation.

T =

5.8 A liquid storage system is shown below. The normal op-
erating conditions are g; = 10 ft3/min, G =95 ft3/min, = 4 ft.
The tank is 6 ft in diameter, and the density of each stream is
60 Ib/ft>. Suppose that a pulse change in g; occurs as shown in
Fig. E5.8.

(a) What is the transfer function relating H' to Q1?
(b) Derive an expression for A(¢) for this input change.
(¢) What is the new steady-state value of liquid level A?

(d) Repeat (b) and (c) for the doublet pulse input of Exer-
cise 5.1 where the changes in ¢g; are from 10 to 15 to 5 to
10 ft3/min.

5.9 Two liquid storage systems are shown in Fig. ES.9. Each
tank is 4 feet in diameter. For System I, the valve acts as a lin-
ear resistance with the flow-head relation g = 8.33 &, where g

is in gal/min and # is in feet. For System II, variations in
liquid level / do not affect exit flow rate g. Suppose that each
system is initially at steady state with z = 6 ft and g; = 50 gal/
min and that at time ¢ = 0 the inlet flow rate suddenly
changes from 50 to 70 gal/min. For each system, determine
the following information:

(a) The transfer function H'(s)/Qj(s) where the primes
denote deviation variables.

(b) The transient response A(f).
(¢) The new steady-state levels.
(d) If each tank is 8 ft tall, which tank overflows first? when?

5.10 The dynamic behavior of the liquid level in each leg of a
manometer tube, responding to a change in pressure, is given by

da*n’
dr?

Su dw

Rzp dt W= 4L

38 3
2L 4pL

p'(®

where h'(¢) is the level of fluid measured with respect to the
initial steady-state value, p'(¢) is the pressure change, and R,
L, g, p, and p are constants.

(a) Rearrange this equation into standard gain-time con-
stant form and find expressions for K, 7, { in terms of the
physical constants.

(b) For what values of the physical constants does the mano-
meter response oscillate?

(¢) Would changing the manometer fluid so that p (density)
is larger make its response more oscillatory, or less? Repeat
the analysis for an increase in p (viscosity).

5.11 A process is described by the following transfer function:

Yo) K
Uis) s(ts + 1)

q1 92
q1 15
A 10
q
g |
0 12
Time (min)
Figure ES.8
q; q
h h
> — s
System | System ||

Figure ES.9



Thus, it exhibits characteristics of both first-order and inte-
grating processes.

How could you utilize a step change in the input of magni-
tude M to find quickly the two parameters K and 7? (Be
sure to show all work and sketch the anticipated process
response.)

5.12 For the equation

d* d
Ly P

de dt
(@) Find the transfer function and put it in standard
gain/time constant form.

+4y=u

(b) Discuss the qualitative form of the response of this sys-
tem (independent of the input forcing) over the range —10 =
K =10.

Specify values of K where the response will converge and
where it will not. Write the form of the response without
evaluating any coefficients.

5.13 A second-order critically damped process has the transfer
function

Yo) K
U(s) (ts + 1)
(a) For a step change in input of magnitude M, what is the

time (zg) required for such a process to settle to within 5%
of the total change in the output?

(b) For K = 1 and a ramp change in input, u(¢) = at, by what
time period does y(f) lag behind u(f) once the output is
changing linearly with time?

5.14 A step change from 15 to 31 psi in actual pressure
results in the measured response from a pressure-indicating
element shown in Fig. ES.14.

(a) Assuming second-order dynamics, calculate all impor-
tant parameters and write an approximate transfer function
in the form

R'(s) _ K
P'(s) ?s? + 2lts + 1

where R’ is the instrument output deviation (mm), P’ is the
actual pressure deviation (psi).

(b) Write an equivalent differential equation model in terms
of actual (not deviation) variables.

12.7
11.2
R (mm)

Time (s)
Figure E5.14

5.15 An electrically heated process is known to exhibit
second-order dynamics with the following parameter val-
ues: K = 3 °C/kW, 1 = 3 min, { = 0.7. If the process initially
is at steady state at 70 °C with heater input of 20 kW and

Exercises 89

the heater input is suddenly changed to 26 kW and held
there,

(a) What will be the expression for the process temperature
as a function of time?

(b) What will be the maximum temperature observed?
When will it occur?

5.16 Starting with Eq. 5-51, derive expressions for the follow-
ing response characteristics of the underdamped second-
order system.

(a) The time to first peak ¢, (Eq. 5-52).

(b) The fraction overshoot (Eq. 5-53).

(¢) The decay ratio (Eq. 5-54).

(d) The settling time (¢, defined in Fig. 5.10). Can a single
expression be used for ¢; over the full range of {,0 < { < 1?

5.17 A tank used to dampen liquid flow rate surges is
known to exhibit second-order dynamics. The input flow
rate changes suddenly from 120 to 140 gal/min. An operator
notes that the tank level changes as follows:

Before input change: level = 6 ft and steady
11 ft
Forty minutes later: level = 10 ft and steady

Four minutes later: level

(a) Find a transfer function model that describes this
process, at least approximately. Evaluate all parameters in
your model, including units.

(b) Is your model unique? Why or why not?

5.18 A process has the transfer function
2 _ Y(s)
f+s+1 Ul

(a) For a step change in the input U(s) = 2/s, sketch the
response y(f) (you do not need to solve the differential
equation). Show as much detail as possible, including the
steady-state value of y(¢), and whether there is oscillation.

(b) What is the decay ratio?

5.19 A surge tank system is to be installed as part of a pilot
plant facility. The initial proposal calls for the configuration
shown in Fig. 4.3. Each tank is 5 ft high and 3 ft in diameter.
The design flow rate is g; = 100 gal/min. It has been suggested
that an improved design will result if the two-tank system is
replaced by a single tank that is 4 ft in diameter and has the
same total volume (i.e., V = Vi + V).

(a) Which surge system (original or modified) can handle
larger step disturbances in g;? Justify your answer.

(b) Which system provides the best damping of step distur-
bances in g;? (Justify your answer).

G(s) =

In your analysis you may assume that:

(i) The valves on the exit lines act as linear resistances.

(ii) The valves are adjusted so that each tank is half full at
the nominal design condition of g¢; = 100 gal/min.

5.20 The caustic concentration of the mixing tank shown in
Fig. ES.20 is measured using a conductivity cell. The total vol-
ume of solution in the tank is constant at 7 ft*> and the density
(p = 70 1b/ft?) can be considered to be independent of con-
centration. Let ¢, denote the caustic concentration measured
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Figure E5.20

by the conductivity cell. The dynamic response of the conduc-
tivity cell to a step change (at ¢ = 0) of 3 Ib/ft in the actual
concentration (passing through the cell) is also shown in
Fig. E5.20.

(a) Determine the transfer function C,,(s)/Ci(s) assuming
the flow rates are equal and constant: (w; = w, = 5 lb/min):

(b) Find the response for a step change in ¢; from 14 to
17 Ib/fe,

(c¢) If the transfer function Cy,(s)/C'(s) were approximated
by 1 (unity), what would be the step response of the system
for the same input change?

(d) By comparison of (b) and (c), what can you say about
the dynamics of the conductivity cell? Plot both responses, if
necessary.

5.21 An exothermic reaction, A — 2B, takes place adiabati-
cally in a stirred-tank system. This liquid phase reaction
occurs at constant volume in a 100-gal reactor. The reaction
can be considered to be first order and irreversible with the
rate constant given by

k = 24 x 10%5e 200007 (min~1)

where T is in °R. Using the information below, derive a
transfer function relating the exit temperature 7 to the inlet
concentration c4;. State any assumptions that you make.
Simplify the transfer function by making a first-order
approximation and show that the approximation is valid by
comparing the step responses of both the original and the
approximate models.

Available Information
(i) Nominal steady-state conditions are:
T =150°F, ©4; = 0.81bmole/ft’
g = 20 gal/min = flow rate in and out of the reactor

(ii) Physical property data for the mixture at the nominal
steady state: C, = 0.8 Btw/Ib °F,

p = 521b/ft3, —AHg = 500 kJ/Ib mole
5.22 Using the step responses of (1) an integrating element and
(2) a first-order process to an input change of magnitude M.

(a) Show that the step response for an input change M of a
first-order process

K

Gils) = s + 1

3 —
Cm 2l
(Ib/ft3)
1 -
0 | |
0 15 30

Time (s)

can be approximately modeled by the step response of an
integrator.

Ky
Go(s) = e

for low values of t—i.e., t << 7. (Hint: you can use a first-order
Taylor series approximation of e 7.)

(b) What is the relation between K and K; if the two
responses match for ¢t << 7?

(¢) This relationship motivates the use of an integrator
model to approximate a first-order process by means of a single-
parameter model. Explain how you would analyze a single step
test to find K and a time delay (if one exists).

5.23 For a stirred-tank heater, assume the transfer function
between the heater input change u(f) (cal/sec) and the tank
temperature change y(¢) (°C) can be modeled as

K
s+ 1

G(s) =

(a) Using the Final Value Theorem, find the steady-state
response for a unit rectangular pulse change in the heating

rate (U(s) -1 —s e—s>.

(b) Repeat the calculation in (a) for a unit ramp (U(s) = %)
s

(¢) For both cases (a) and (b), explain your answer physi-
cally. Is there a physical limitation on the ramping of the
heating rate?

5.24 An additive process model is depicted in the figure
below.

1 2 -2 ..
For G = S,Gz— T 3—s+1,U(s)—1(un1t1mpulse)
G,
u G; @ Y
Gs




(a) Derive the response Y(s) and describe y(¢) quantitatively.
(b) Sketch the response and show its major characteristics.

5.25 Can a tank with the outflow rate fixed by a constant speed
pump reach a steady state if the inlet flow rate undergoes a step
change? Why, or why not? If the transfer function is G(s) = K/s,
is it possible to calculate a steady-state gain?

5.26 A thermometer with first-order time constant = 0.1 min
and gain = 1.0 is placed in a temperature bath (25 °C). After
the thermometer comes to equilibrium with the bath, the tem-
perature of the bath is increased linearly at a rate of 1°/min.
(a) What is the difference between the measured temperature
T,, and the bath temperature T at ¢t = 0.1 min and ¢ = 1.0 min
after the change in temperature?
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(b) What is the maximum deviation between T,, (f) and
T(¢)? When does it occur?

(c¢) Plot both 7(¢) and T,,(¢) to 3 mins. For large values of t,
determine the time lag between T, and T.

5.27 A thermometer has first-order dynamics with a time
constant of 1 sec and is placed in a temperature bath at 120°F.
After the thermometer reaches steady state, it is suddenly
placed in a bath at 140 °F for 0 =< ¢ =< 10 sec. Then it is re-
turned to the bath at 100 °F.

(a) Sketch the variation of the measured temperature T,,(t)
with time.

(b) Calculate T,,(f) at t = 0.5 sec and at ¢z = 15.0 sec.
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Summary

In Chapter 5 we discussed the dynamics of relatively
simple processes, those that can be modeled as either
first- or second-order transfer functions or as an integra-
tor. Now we consider more complex transfer function
models that include additional time constants in the de-
nominator and/or functions of s in the numerator. We
show that the forms of the numerator and denominator
of the transfer function model influence the dynamic
behavior of the process. We also introduce a very impor-
tant concept, the time delay, and consider the approxima-
tion of complicated transfer function models by simpler,
low-order models. Additional topics in this chapter in-
clude interacting processes, state-space models, and
processes with multiple inputs and outputs.

6.1 POLES AND ZEROS AND THEIR
EFFECT ON PROCESS RESPONSE

An important feature of the simple process elements dis-
cussed in Chapter 5 is that their response characteristics

92

are determined by the factors of the transfer function
denominator. For example, consider a transfer function,

K
s(tis + 1)(t3? + 2Lms + 1)
where 0 = { < 1. Using partial fraction expansion fol-
lowed by the inverse transformation operation, we

know that the response of system (6-1) to any input will
contain the following functions of time:

G(s) = (6-1)

¢ A constant term resulting from the s factor
e An ¢~/ term resulting from the (745 + 1) factor

Vi e,

™

o e %2 gin
terms resulting from the

and (3% + 2¢mps + 1) factor

1 — 2
vi-T
)

o ¢ U2 o

Additional terms determined by the specific input
forcing will also appear in the response, but the
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intrinsic dynamic features of the process, the so-
called response modes or natural modes, are deter-
mined by the process itself. Each of the above
response modes is determined from the factors of
the denominator polynomial, which is also called the
characteristic polynomial (cf. Section 3.3). The roots
of these factors are

S1=0
oL
27 T4 —
_t.o.v1-2
3= +J - (6-2)
¢ V1i-¢
S4=—T——7
2 T

Roots s3 and s4 are obtained by applying the quadratic
formula.

Control engineers refer to the values of s that are
roots of the denominator polynomial as the poles of
transfer function G(s). Sometimes it is useful to plot
the roots (poles) and to discuss process response char-
acteristics in terms of root locations in the complex s
plane. In Fig. 6.1 the ordinate expresses the imaginary
part of each root; the abscissa expresses the real part.
Figure 6.1 is based on Eq. 6-2 and indicates the pres-
ence of four poles: an integrating element (pole at the
origin), one real pole (at —1/7;), and a pair of complex
poles, s3 and s4. The real pole is closer to the imaginary
axis than the complex pair, indicating a slower re-
sponse mode (¢ /™ decays slower than e~%/%). In gen-

Imaginary
part
V1-¢2
_____________ +
T Z
I
|
L 0y
_L _1 0 Real
~r|2 T part
|
I
e V1-¢2
2

Figure 6.1 Poles of G(s) (Eq. 6-1) plotted in the complex s
plane (X denotes a pole location).
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eral, the speed of response for a given mode increases
as the pole location moves farther away from the
imaginary axis.

Historically, plots such as Fig. 6.1 have played an
important role in the design of mechanical and electri-
cal control systems, but they are rarely used in design-
ing process control systems. However, it is helpful to
develop some intuitive feeling for the influence of
pole locations. A pole to the right of the imaginary
axis (called a right-half plane pole), for example,
s = +1/7, indicates that one of the system response
modes is e”". This mode grows without bound as ¢ be-
comes large, a characteristic of unstable systems. As a
second example, a complex pole always appears as
part of a conjugate pair, such as s3 and s4 in Eq. 6-2.
The complex conjugate poles indicate that the re-
sponse will contain sine and cosine terms; that is, it
will exhibit oscillatory modes.

All of the transfer functions discussed so far can be
extended to represent more complex process dynamics
simply by adding numerator terms. For example, some
control systems contain a lead—lag element. The differ-
ential equation for this element is

dy d
TlE +y= K('ra?l: + u)

In Eq. 6-3 the standard first-order dynamics have been
modified by the addition of the du/dt term multiplied by
a time constant 7,. The corresponding transfer function is

(6-3)

(6-4)

Transfer functions with numerator terms such as 7,5 + 1
above are said to exhibit numerator dynamics. Suppose
that the integral of u is included in the input terms:

d t
717}; +y= K(u + 1'1—a Au(t*) dt*) (6-5)

The transfer function for Eq. 6-5, assuming zero initial
conditions, is

K(7,s +1)

Gls) = 725(T1s + 1)

(6-6)

In this example, integration of the input introduces a
pole at the origin (the 7,5 term in the denominator), an
important point that will be discussed later.

The dynamics of a process are affected not only by
the poles of G(s), but also by the values of s that cause
the numerator of G(s) to become zero. These values
are called the zeros of G(s).

Before discussing zeros, it is useful to show several
equivalent ways in which transfer functions can be
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written. In Chapter 4, a standard transfer function form
was discussed:

m

b;s' _
=0 ! bmsm+bm_1sm Ly ... + by

G(S) = n = n n—1

Ea-si a,s” + ap_18 + - F+a

7
i=0

(4-41)

which can also be written as

b (s —20)(s — 22) .- (S — Zm)
an (s = p1)(s = p2).--(s = Pn)

where the z; and p; are zeros and poles, respectively.
Note that the poles of G(s) are also the roots of the
characteristic equation. This equation is obtained by
setting the denominator of G(s), the characteristic
polynomial, equal to zero.

It is convenient to express transfer functions in
gain/time constant form; that is, b is factored out of the
numerator of Eq. 4-41 and a; out of the denominator to
show the steady-state gain explicitly (K = by/ag = G(0)).
Then the resulting expressions are factored to give

(Tgs + D(rps + 1)+
('rls + 1)(1‘25‘ + 1)

G(s) = (6-7)

G(s) = K (6-8)
for the case where all factors represent real roots. Thus,
the relationships between poles and zeros and the time
constants are

71 = —1/7 zp=—1/7p, -~ (6-9)
p1= _1/Tla p2 _1/72’ (6_10)

The presence or absence of system zeros in Eq. 6-7
has no effect on the number and location of the poles
and their associated response modes unless there is an
exact cancellation of a pole by a zero with the same nu-
merical value. However, the zeros exert a profound ef-
fect on the coefficients of the response modes (i.e., how
they are weighted) in the system response. Such coeffi-
cients are found by partial fraction expansion. For
practical control systems the number of zeros in Eq. 6-7
is less than or equal to the number of poles (m =< n).
When m = n, the output response is discontinuous
after a step input change, as illustrated by Example 6.1.

EXAMPLE 6.1

Calculate the response of the lead-lag element (Eq. 6-4)
to a step change of magnitude M in its input.

SOLUTION
For this case,

_ KM(1s + 1)

Yis) = s(mys + 1) (6-11)

20

(@)

Imaginary
part

(i7) (@) ((279)
1} = =
1 Real part
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Figure 6.2. (a) Step response of a lead-lag process

(Eq. 6-13) for five values of a single zero [y(t = 0) =
7,/71]. (b) Pole—zero plot for a lead-lag process showing
alternative locations of the single zero. X is a pole
location; O is a location of single zero.

which can be expanded into partial fractions

gl s
Y(s) = KM (s - = 1) (6-12)
yielding the response
y(@©) = KM{I - (1 - :—‘1‘) e_‘/"l} (6-13)

Note that y(¢) changes abruptly at ¢ = 0 from the initial value
of y = 0 to a new value of y = KMr,/7, (see Exercise 6.3).

Figure 6.2a shows the response for 71 = 4 and five dif-
ferent values of 7.

Caseit 0<m<m, (1, = 8)
Casei: O<7, <711 (7,=12)
Caseiii: 7, <0 (1, = =1, —4)

Figure 6.2b is a pole—zero plot showing the location of the
single system zero, s = —1/7,, for each of these three
cases. If 7, = 74, the transfer function simplifies to K as a
result of cancellation of numerator and denominator
terms, which is a pole—zero cancellation.

6.1.1 Second-Order Processes with
Numerator Dynamics

From inspection of Eq. 6-13 and Fig. 6.2a, the presence
of a zero in the first-order system causes a jump disconti-
nuity in y(¢) at ¢ = 0 when the step input is applied. Such
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an instantaneous step response is possible only when the
numerator and denominator polynomials have the same
order, which includes the case G(s) = K. Industrial
processes have higher-order dynamics in the denomina-
tor, causing them to exhibit some degree of inertia. This
feature prevents them from responding instantaneously
to any input, including an impulse input. Thus, we say
that m =< n for a system to be physically realizable.

EXAMPLE 6.2

For the case of a single zero in an overdamped second-
order transfer function,

K(t,s + 1)

G0 I o

(6-14)
calculate the response to a step input of magnitude M and
plot the results for 71 = 4, 7, = 1 and several values of 7,.

SOLUTION

The response of this system to a step change in input is
(see Table 3.1)

- da 11l 4y a2 s

) KM(l e /4 e /2> (6-15)
Note that y(t — ) = KM as expected; thus, the effect of
including the single zero does not change the final value,
nor does it change the number or locations of the poles.
But the zero does affect how the response modes (expo-
nential terms) are weighted in the solution, Eq. 6-15.

Mathematical analysis (see Exercise 6.3) shows that
three types of responses are involved here, as illustrated
for eight values of 7, in Fig. 6.3:

Case i T, > T (7, = 8,16)
Case ii: 0 <7,=m (7,=05,1,2,4)
Caseijii: 17,<0 (1, = 14

20

1L

Figure 6.3 Step response of an overdamped second-
order system (Eq. 6-14) for different values of 7, (7, = 4,
e 1).
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where 11 > 7, is arbitrarily chosen. Case (i) shows that
overshoot can occur if T, is sufficiently large. Case (ii) is
similar to a first-order process response. Case (iii), which
has a positive zero, also called a right-half plane zero, ex-
hibits an inverse response, an infrequently encountered yet
important dynamic characteristic. An inverse response oc-
curs when the initial response to a step input is in one di-
rection but the final steady state is in the opposite
direction. For example, for case (iii), the initial response is
in the negative direction while the new steady state y() is
in the positive direction in the sense that y(%) > y(0). In-
verse responses are associated with right-half plane zeros.

The phenomenon of overshoot or inverse response
results from the zero in the above example and will not
occur for an overdamped second-order transfer func-
tion containing two poles but no zero. These features
arise from competing dynamic effects that operate on
two different time scales (71 and 7, in Example 6.2).
For example, an inverse response can occur in a distil-
lation column when the steam pressure to the reboiler
is suddenly changed. An increase in steam pressure
ultimately will decrease the reboiler level (in the absence
of level control) by boiling off more of the liquid. How-
ever, the initial effect usually is to increase the amount
of frothing on the trays immediately above the reboiler,
causing a rapid spillover of liquid from these trays into
the reboiler below. This initial increase in reboiler lig-
uid level, is later overwhelmed by a decrease due to the
increased vapor boil-up. See Buckley et al. (1985) for a
detailed analysis of this phenomenon.

As a second physical example, tubular catalytic re-
actors with exothermic chemical reactions exhibit an
inverse response in exit temperature when the feed
temperature is increased. Initially, increased conver-
sion in the entrance region of the bed momentarily
depletes reactants at the exit end of the bed, causing
less heat generation there and decreasing the exit
temperature. Subsequently, higher reaction rates
occur, leading to a higher exit temperature, as would
be expected. Conversely, if the feed temperature is
decreased, the inverse response initially yields a
higher exit temperature.

Inverse response or overshoot can be expected
whenever two physical effects act on the process output
variable in different ways and with different time
scales. For the case of reboiler level mentioned above,
the fast effect of a steam pressure increase is to spill liq-
uid off the trays above the reboiler immediately as the
vapor flow increases. The slow effect is to remove sig-
nificant amounts of the liquid mixture from the reboiler
through increased boiling. Hence, the relationship be-
tween reboiler level and reboiler steam pressure can be
represented approximately as an overdamped second-
order transfer function with a right-half plane zero.
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K
TS + 1

Uls)

+ Y
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TS + 1

Figure 6.4 Two first-order process elements acting in
parallel.

Next, we show that inverse responses can occur for
two first-order transfer functions in a parallel arrange-
ment, as shown in Fig. 6.4. The relationship between
Y(s) and U(s) can be expressed as

Yis) Ky LK

Us)y ms+1 ms+1
_ Ki(ms + 1) + Ky(mis + 1)
B (t1s + D)(mps + 1)

(6-16)

or, after rearranging the numerator into standard gain/
time constant form, we have

Kim + Ko7 )
KKi+K)\——s+1
Y(s) (& 2)( K+ K (6-17)
U(s) (t15 + D(7s + 1)
K=K + K, (6-18)
and
Kyt + Kpmq
WK K (619)
Kim + K
I L < 271 (6-20)
The condition for an inverse response to exist is 7, < 0, or
Kim + K
Kt o, (621

For either positive or negative K, Eq. 6-21 can be re-
arranged to the convenient form
Ky, m
X, > o (6-22)
Note that Eq. 6-22 indicates that K; and K, have oppo-
site signs, because 71 > 0 and 7, > 0. It is left to the
reader to show that K > 0 when K; > 0 and that K <0
when K; < 0. In other words, the sign of the overall
transfer function gain is the same as that of the slower
process. Exercise 6.5 considers the analysis of a right-
half, plane zero in the transfer function.
The step response of the process described by Eq. 6-14
will have a negative slope initially (at ¢ = 0) if the product

of the gain and step change magnitude is positive
(KM > 0), 7, is negative, and 71 and 7, are both posi-
tive. To show this, let U(s) = M/s:

KM(r,s + 1)

Y(s) = G(5)UGs) = s(tis + D)(ms + 1

; (623)

Because differentiation in the time domain corre-
sponds to multiplication by s in the Laplace domain (cf.
Chapter 3), we let z(¢) denote dy/dtr. Then

KM(r,s + 1)

(s + D(ros + 1)
(6-24)

Z@©) = sY(s) = GOM =

Applying the Initial Value Theorem,

©) = dy _ 1 [ KM(7,s + 1) ]
7o T ool (s + D(mas + 1)
i { KM(t, + 1/s) ] _ KM,
T el + UYs)m + 1s)] | mm

(6-25)

which has the sign of 7, if the other constants (KM, 71,
and T,) are positive. Note that if 7, is zero, the initial
slope is zero. Evaluation of Eq. 5-48 for ¢ = 0 yields the
same result.

6.2 PROCESSES WITH TIME DELAYS

Whenever material or energy is physically moved in a
process or plant, there is a time delay associated with the
movement. For example, if a fluid is transported through
a pipe in plug flow, as shown in Fig. 6.5, then the trans-
portation time between points 1 and 2 is given by

_ length of pipe
= Tluid velocity (6-26)

or equivalently, by

__volume of pipe
"~ volumetric flowrate

where length and volume both refer to the pipe seg-
ment between 1 and 2. The first relation in Eq. 6-26
indicates why a time delay sometimes is referred to as a
distance—velocity lag. Other synonyms are transportation

Assumed
flat velocity profile

22222}
22222}

'U
— Q.
E
—+
o
E
—+

2.

Figure 6.5 Transportation of fluid in a pipe for turbulent
flow.
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Figure 6.6 The effect of a time delay is a translation of the
function in time.

lag, transport delay, and dead time. If the plug flow as-
sumption does not hold, for example, with laminar flow
or for non-Newtonian liquids, approximation of the
bulk transport dynamics using a time delay still may be
useful, as discussed below.

Suppose that x is some fluid property at point 1, such
as concentration, and y is the same property at point 2
and that both x and y are deviation variables. Then
they are related by a time delay 6

0 t<0
y(t)z{x(t—ﬁ) t=0

Thus, the output y(¢) is simply the same input function
shifted backward in time by 6. Figure 6.6 shows this
translation in time for an arbitrary x(¢).

Equation 3-97 shows that the Laplace transform of a
function shifted in time by #, units is simply e~ "*. Thus,
the transfer function of a time delay of magnitude 6 is
given by

(6-27)

Y(s)
X(s)

Besides the physical movement of liquid and solid
materials, there are other sources of time delays in
process control problems. For example, the use of a
chromatograph to measure concentration in liquid or
gas stream samples taken from a process introduces a
time delay, the analysis time. One distinctive character-
istic of chemical processes is the common occurrence of
time delays.

Even when the plug flow assumption is not valid,
transportation processes usually can be modeled approx-
imately by the transfer function for a time delay given in
Eq. 6-28. For liquid flow in a pipe, the plug flow assump-
tion is most nearly satisfied when the radial velocity pro-
file is nearly flat, a condition that occurs for Newtonian
fluids in turbulent flow. For non-Newtonian fluids and/or
laminar flow, the fluid transport process still might be
modeled by a time delay based on the average fluid

=G(s)=¢e® (6-28)
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velocity. A more general approach is to model the flow
process as a first-order plus time-delay transfer function

e—ems

G(s) = TS + 1

(6-29)
where T, is a time constant associated with the degree of
mixing in the pipe or channel. Both 7, and 6, may have
to be determined from empirical relations or by experi-
ment. Note that the process gain in (6-29) is unity when
y and x are material properties such as composition.
Next we demonstrate that analytical expressions for
time delays can be derived from the application of con-
servation equations. In Fig. 6.5 suppose that a very small
cell of liquid passes point 1 at time ¢ It contains Vcy(f)
units of the chemical species of interest where V is the
volume of material in the cell and c; is the concentration
of the species. At time ¢ + 0, the cell passes point 2 and
contains V(¢ + 0) units of the species. If the material
moves in plug flow, not mixing at all with adjacent mate-
rial, then the amount of species in the cell is constant:

Vey(t + 0) = Vey(o) (6-30)
or
ot +0) = c1(r) (6-31)
An equivalent way of writing (6-31) is
ex(t) = ex(t — 0) (6-32)

if the flow rate is constant. Putting (6-32) in deviation
form (by subtracting the steady-state version of (6-32))
and taking Laplace transforms gives

Ci(s) = o0
Ci(s)

When the fluid is incompressible, flow rate changes at
point 1 propagate instantaneously to any other point in
the pipe. For compressible fluids such as gases, the sim-
ple expression of (6-33) may not be accurate. Note that
use of a constant time delay implies constant flow rate.

(6-33)

6.2.1 Polynomial Approximations to =%

The exponential form of Eq. 6-28 is a nonrational transfer
function that cannot be expressed as a rational function, a
ratio of two polynominals in s. Consequently, (6-28) can-
not be factored into poles and zeros, a convenient form
for analysis, as discussed in Section 6.1. However, it is pos-
sible to approximate ¢ % by polynomials using either a
Taylor series expansion or a Padé approximation.
The Taylor series expansion for e~ % is:
0% 0% 0%t 0%
/T TR TR T
(6-34)

The Padé approximation for a time delay is a ratio of
two polynomials in s with coefficients selected to match
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the terms of a truncated Taylor series expansion of e~ %.

The simplest pole-zero approximation is the 1/1 Padé
approximation:

0

1- Es
e~ Gis) = 5 (6-35)
1+ ES

Equation 6-35 is called the 1/1 Padé approximation be-

cause it is first-order in both numerator and denominator.

Performing the indicated long division in (6-35) gives

0% 0%

Gi(s) =1 —GS+T—T + .-

A comparison of Egs. 6-34 and 6-36 indicates that

G1(s) is correct through the first three terms. There are

higher-order Padé approximations, for example, the
2/2 Padé approximation:

(6-36)

2.2
e~ Gys) = YY) (6-37)
1+ 7 + F

Figure 6.7a illustrates the response of the 1/1 and 2/2
Padé approximations to a unit step input. The first-
order approximation exhibits the same type of discon-
tinuous response discussed in Section 6.1 in connection
with a first-order system with a right-half plane zero.
(Why?) The second-order approximation is somewhat

y@E) 0
Go(s) Time
-1
(@)
0.4 —
y(t)
? 0.2 Gl(S)

Exact response

| | |

| Gq(s)

Time
(b)

Figure 6.7 (a) Step response of 1/1 and 2/2 Padé
approximations of a time delay (G1(s) and Gy(s),
respectively). (b) Step response of a first-order plus time-
delay process (6 = 0.257) using 1/1 and 2/2 Padé

approximations of ¢ .

more accurate; the discontinuous response and the
oscillatory behavior are features expected for a second-
order system (both numerator and denominator) with a
pair of complex poles. (Why?) Neither approximation
can accurately represent the discontinuous change in
the step input very well; however, if the response of a
first-order system with time delay is considered,

B Ke—es
Gpls) = s + 1

(6-38)

Figure 6.7b shows that the approximations are satisfac-
tory for a step response, especially if 8 << 7, which is
often the case.

EXAMPLE 6.3

The trickle-bed catalytic reactor shown in Fig. 6.8 utilizes
product recycle to obtain satisfactory operating conditions
for temperature and conversion. Use of a high recycle rate
eliminates the need for mechanical agitation. Concentrations
of the single reactant and the product are measured at a
point in the recycle line where the product stream is
removed. A liquid phase first-order reaction is involved.

Under normal operating conditions, the following as-
sumptions may be made:

(i) The reactor operates isothermally with a reaction
rate given by r = kc, where —r denotes the rate of
disappearance of reactant per unit volume, c is the
concentration of reactant, and k is the rate constant.

(ii) All flow rates and the liquid volume V are constant.

(iii) No reaction occurs in the piping. The dynamics of
the exit and recycle lines can be approximated as
constant time delays 6; and 6,, as indicated in the
figure. Let ¢; denote the reactant concentration at
the measurement point.

(iv) Because of the high recycle flow rate, mixing in the
reactor is complete.

q aq
s
c €2
Recycle
line
v Product
c 01 line
i
(1 +a)g

Figure 6.8 Schematic diagram of a trickle-bed reactor
with recycle line. (AT: analyzer transmitter; 6;: time delay
associated with material flow from reactor outlet to the
composition analyzer; 6,: time delay associated with
material flow from analyzer to reactor inlet.)



(a) Derive an expression for the transfer function
Ci(s)/ Ci(s)-

(b) Using the following information, calculate cj(¢) for a
step change in c/(f) = 2000 kg/m?

Parameter Values

V=>5m a1
g = 0.05m%*min 6; = 0.9 min
k=004min"! 6, =1.1min

SOLUTION

(a) In analogy with Eq. 2-66; the component balance
around the reactor is,

V% =gc; + age; — (1 + a)gc — Vke  (6-39)

where the concentration of the reactant is denoted by c.
Equation 6-39 is linear with constant coefficients. Sub-
tracting the steady-state equation and substituting de-
viation variables yields

de'

th

= gc/ + agch — (1 + a)gc’ — Vkc' (6-40)

Additional relations are needed for c5(¢) and ci(¢). Be-
cause the exit and recycle lines can be modeled as
time delays,

ci(®) =c'(t — 8y) (6-41)
ca(t) = ci(t — 62) (6-42)
Equations 6-40 through 6-42 provide the process

model for the isothermal reactor with recycle. Taking
the Laplace transform of each equation yields

sVC'(s) = qCi(s) + aqCi(s) — (1 + a)gC'(s)
— VkC'(s) (6-43)
Ci(s) = e 15C'(s) (6-44)
Ci(s) = e~ *#Ci(s)
. e—((-)1+(-)2)scr(s)
— (6-45)
where 63 £ 6; + 0,. Substitute (6-45) into (6-43) and

solve for C'(s):

q
sV —age ™ + (1 +a)g+ Vk

C'(s) = Ci(s) (6-46)

Equation 6-46 can be rearranged to the following

form:
C'(s) = = Cls) (647)
s+ 1+ oK1 — e )
where
. g
K= pyr (6-48)
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. Vv
= (6-49)
Note that, in the limit as 63— 0, e %3 — 1 and
(i K I}
c(s) = =5~ i) (6-50)

So K and T can be interpreted as the process gain
and time constant, respectively, of a recycle reactor
with no time delay in the recycle line, which is
equivalent to a stirred isothermal reactor with no
recycle.

The desired transfer function Ci(s)/Ci(s) is ob-
tained by combining Eqgs. 6-47 and 6-44 to obtain

Ci(s) _ Ke %1
Ci(s) 15+ 1+ aK(1 —e %)

(6-51)
(b) To find c{() when c¢/(r) = 2000 kg/m>, we multiply
(6-51) by 2000/s

2000Ke %15
s[zs + 1 + aK(1 — e %9)]

Ci(s) = (6-52)

and take the inverse Laplace transform. From inspec-
tion of (6-52) it is clear that the numerator time delay
can be inverted directly; however, there is no trans-
form in Table 3.1 that contains a time-delay term in
the denominator. To obtain an analytical solution, the
denominator time-delay term must be eliminated by
introducing a rational approximation, for example, the
1/1 Padé approximation in (6-35). Substituting (6-35)
and rearranging yields

0
2000K(—3s - 1)e—91s

2
Ci(s) = (6-53)
s|T s + T+%+OLK9 5+ 1
2 2 S
This expression can be written in the form
o« _ 2000K(7,s + 1)e %1
clyi= s(tys + 1)(725 + 1) (654)

where 1, = 63/2 and 7, and 7, are obtained by factor-
ing the expression in brackets. For K63 > 0, 7 and 1,
are real and distinct.

The numerical parameters in (6-53) are

q 0.05

K= vk =005+ (5008 = %2
v
T—q+Vk—20m1n

Substituting these values in (6-53) gives

_ 400(s + 1)e 0%
 s[2082 + (20 + 1 + (24)(02)(1))s + 1]
400(s + 1)e 0%

= 5255 + 1)(08s + 1) (6-55)

Ci(s)
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t (min)
(b)

Figure 6.9 Recycle reactor composition measured at
analyzer: (a) complete response; (b) detailed view of
short-term response.

Taking the inverse Laplace and introducing the de-
layed unit step function S(z — 0.9) gives

ci(?) = 400(1 — 0.99174¢~¢=09/%5
- 0.008266_("09)/08) St — 0.9) (6-56)

which is plotted in Fig. 6.9. A numerical solution of Egs.
6-40 through 6-42 that uses no approximation for the
total recycle delay is indistinguishable from the approxi-
mate solution. Note that in obtaining (6-56), we did not
approximate the numerator delay. It is dealt with exactly
and appears as a time delay of 0.9 min in several terms.

6.3 APPROXIMATION OF HIGHER-
ORDER TRANSFER FUNCTIONS

In this section, we present a general approach for ap-
proximating higher-order transfer function models with
lower-order models that have similar dynamic and
steady-state characteristics. The low-order models are
more convenient for control system design and analy-
sis, as discussed in Chapter 12.

In Eq. 6-34 we showed that the transfer function for
a time delay can be expressed as a Taylor series ex-
pansion. For small values of s, truncating the expan-
sion after the first-order term provides a suitable
approximation:

e ~1-0s

(6-57)

Note that this time-delay approximation is a right-half
plane (RHP) zero at s = +6. An alternative first-order
approximation consists of the transfer function,

—os _ 1 1

~

T 1+ 6s

e

(6-58)

which is based on the approximation, ¢ ~ 1 + 6s.
Note that the time constant has a value of 6.

Equations 6-57 and 6-58 were derived to approxi-
mate time-delay terms. However, these expressions can
be reversed to approximate the pole or zero on the
right-hand side of the equation by the time-delay term
on the left side. These pole and zero approximations
will be demonstrated in Example 6.4.

6.3.1 Skogestad’s “Half Rule”

Skogestad (2003) has proposed a related approximation
method for higher-order models that contain multiple
time constants. He approximates the largest neglected
time constant in the denominator in the following man-
ner. One-half of its value is added to the existing time
delay (if any), and the other half is added to the smallest
retained time constant. Time constants that are smaller
than the largest neglected time constant are approxi-
mated as time delays using (6-58). A right-half plane
zero is approximated by (6-57). The motivation for this
“half rule” is to derive approximate low-order models
that are more appropriate for control system design.
Examples 6.4 and 6.5 illustrate Skogestad’s half rule.

EXAMPLE 64
Consider a transfer function:

K(-0.1s + 1)
(5s + 1)(3s + 1)(0.5s + 1)

G(s) = (6-59)

Derive an approximate first-order-plus-time-delay model,

Ke—es
ms &

G(s) = (6-60)

using two methods:

(a) The Taylor series expansions of Egs. 6-57 and 6-58.
(b) Skogestad’s half rule.

Compare the normalized responses of G(s) and the ap-
proximate models for a unit step input.

SOLUTION

(a) The dominant time constant (5) is retained. Applying
the approximations in (6-57) and (6-58) gives

—01s + 1 ~ ¢ 0ls (6-61)

and

1 - 1

~ - 05 .
T~ e (6-62)

055 +1

Substitution into (6-59) gives the Taylor series approx-
imation, G rs(s):

Ke—O.lse—Bse—O.Ss _ Ke—3.6:
S A 5 =

Grs(s) = (6-63)
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Figure 6.10 Comparison of the actual and approximate
models for Example 6.4.

(b) To apply Skogestad’s method, we note that the largest
neglected time constant in (6-59) has a value of three.
According to his “half rule,” half of this value is added
to the next largest time constant to generate a new time
constant, T = 5 + 0.5(3) = 6.5. The other half provides
a new time delay of 0.5(3) = 1.5. The approximation of
the RHP zero in (6-61) provides an additional time
delay of 0.1. Approximating the smallest time constant
of 0.5 in (6-59) by (6-58) produces an additional time
delay of 0.5. Thus, the total time delay in (6-60) is

6=15+01+05=21

and G(s) can be approximated as

215

Gsils) = £v—+1 (6-64)

The normalized step responses for G(s) and the two
approximate models are shown in Fig. 6.10. Skoges-
tad’s method provides better agreement with the ac-
tual response.

EXAMPLE 6.5
Consider the following transfer function:

K({ — s)e ®
(12s + 1)(3s + 1)(0.2s + 1)(0.05s + 1)

G(s) = (6-65)

Use Skogestad’s method to derive two approximate models:
(a) A first-order-plus-time-delay model in the form of (6-60).
(b) A second-order-plus-time-delay model in the form

G(s) Ke—es

= (115 + V(15 + 1) (2)

Compare the normalized output responses for G(s)
and the approximate models to a unit step input.
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Figure 6.11 Comparison of the actual model and approxi-
mate models for Example 6.5. The actual and second-
order model responses are almost indistinguishable.

SOLUTION

(a) For the first-order-plus-time-delay model, the dom-
inant time constant (12) is retained. One-half of the
largest neglected time constant (3) is allocated to
the retained time constant and one-half to the ap-
proximate time delay. Also, the small time con-
stants (0.2 and 0.05) and the zero (1) are added to
the original time delay. Thus, the model parameters
in (6-60) are

e=1+%+02+aw+1=1%

T =12 + % = 135
(b) An analogous derivation for the second-order-plus-
time-delay model gives
0.2

6=1+7+0.05+1=2.15

n - 17 o =3 +01-=31

In this case, the half rule is applied to the third largest
time constant, 0.2.

The normalized step responses of the original and
approximate transfer functions are shown in Fig. 6.11.
The second-order model provides an excellent approxi-
mation, because the neglected time constants are much
smaller than the retained time constants. The first-
order-plus-time-delay model is not as accurate, but it
does provide a suitable approximation of the actual
response.

Skogestad (2003) has also proposed approximations
for left-half plane zeros of the form, 7,5 + 1, where 7, > 0.
However, these approximations are more compli-
cated and beyond the scope of this book. In these
situations, a simpler model can be obtained by empir-
ical fitting of the step response using the techniques
in Chapter 7.
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6.4 INTERACTING AND
NONINTERACTING PROCESSES

Many processes consist of individual units that are con-
nected in various configurations that include series and
parallel structures, as well the recycle of material or en-
ergy. It is convenient to classify process configurations as
being either interacting or noninteracting. The distin-
guishing feature of a noninteracting process is that
changes in a downstream unit have no effect on upstream
units. By contrast, for an interacting process, downstream
units affect upstream units, and vice versa. For example,
suppose that the exit stream from a chemical reactor
serves as the feed to a distillation column used to sepa-
rate product from unreacted feed. Changes in the
reactor affect column operation but not vice versa—a
noninteracting process. But suppose that the distillate
stream from the column contains largely unreacted feed;
then, it could be beneficial to increase the reactor yield
by recycling the distillate to the reactor where it would be
added to the fresh feed. Now, changes in the column af-
fect the reactor, and vice versa—an interacting process.

An example of a system that does not exhibit interac-
tion was discussed in Example 4.4. The two storage
tanks were connected in series in such a way that liquid
level in the second tank did not influence the level in
the first tank (Fig. 4.3). The following transfer functions
relating tank levels and flows were derived:

Hi(s) _ Ky
Ois) s +1

(4-53)

ot

dn-1

Qis) 1

His) ~ Ki (#59)
Hy(s) K

Oi(s) s + 1 (4-55)
ois) 1

) " Kz 0

where Kl = Rl’ K2 = Rz, T = AlRla Ty = A2R2. Each
tank level has first-order dynamics with respect to its
inlet flow rate. Tank 2 level h, is related to g; by a
second-order transfer function that can be obtained by
simple multiplication:

Hj(s) _ Hj(s) Qi(5) Hi(s)
Qi(s)  Qi(s) Hils) Qils)
_ K>

C (s + (s + 1)

(6-67)

A simple generalization of the dynamic expression
in Eq. 6-67 is applicable to » tanks in series shown in
Fig. 6.12:

Hu(s) _ Ky
Q) 7 (6%
(s + 1)
i=
and
On(s) _ 1 (6.69)
Qis)
I[(ws + 1)
i=1
hn Figure 6.12 A series
q configuration of n
" noninteracting tanks.

D<—
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Figure 6.13 Two tanks in series whose liquid levels interact.

Next consider an example of an interacting process
that is similar to the two-tank process in Chapter 4. The
process shown in Fig. 6.13 is called an interacting system
because h; depends on 4, (and vice versa) as a result of
the interconnecting stream with flow rate g;. There-
fore, the equation for flow from Tank 1 to Tank 2 must
be written to reflect that physical feature:

=L~y (6-70)
q1 R, M 2
For the Tank 1 level transfer function, a much more
complicated expression than (4-53) results:

RiRA;
(Rl + R2)<Rl n st +1

Hi(s) _
Q,’(S) R1R2A1A2S2 + (R2A2 + R1Aq + RzAl)S +1
(6-71)
It is of the form
Hj Kj +1
1(S) _ l(Tas ) (6-72)

Qi(s) o2+ 2lts + 1

In Exercise 6.15, the reader can show that { > 1 by ana-
lyzing the denominator of (6-71); hence, the transfer
function is overdamped and second-order, and has a neg-
ative zero at —1/7,, where 1, = RiRyA3/(R; + Ry).
The transfer function relating 4, and A,,

_ R
H} Ry + R
'2(5) Rt R 673)
Hl(S) R1R2A2 s + 1
R+ R,

is of the form K5/(t,s + 1). Consequently, the overall
transfer function between Hj and Q; is

Hj(s) _ Ry
Ois) %+ 2t +1

(6-74)

The above analysis of the interacting two-tank system
is more complicated than that for the noninteracting
system of Example 4.4. The denominator polynomial
can no longer be factored into two first-order terms,
each associated with a single tank. Also, the numerator
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of the first tank transfer function in (6-72) contains a
zero that modifies the dynamic behavior along the lines
suggested in Section 6.1.

6.5 STATE-SPACE AND TRANSFER
FUNCTION MATRIX MODELS

Dynamic models derived from physical principles typi-
cally consist of one or more ordinary differential equa-
tions (ODE:s). In this section, we consider a general
class of ODE models referred to as state-space models,
that provide a compact and useful representation of dy-
namic systems. Although we limit our discussion to
linear state-space models, nonlinear state-space models
are also very useful and provide the theoretical basis
for the analysis of nonlinear processes (Henson and Se-
borg, 1997; Khalil, 2002).
Consider a linear state-space model,

x=Ax + Bu + Ed
y=Cx

(6-75)
(6-76)

where x is the state vector; u is the input vector of manip-
ulated variables (also called control variables); d is the
disturbance vector; and y is the output vector of mea-
sured variables. (Boldface symbols are used to denote
vectors and matrices, and plain text to represent scalars.)
The elements of x are referred to as state variables. The
elements of y are typically a subset of x, namely, the
state variables that are measured. In general, x, #, d and
y are functions of time. The time derivative of x is de-
noted by x(=dx/dt); it is also a vector. Matrices A, B, C,
and E are constant matrices. The vectors in (6-75) can
have different dimensions (or “lengths”) and are usually
written as deviation variables.

Because the state-space model in Egs. (6-75) and (6-76)
may seem rather abstract, it is helpful to consider a
physical example.

EXAMPLE 6.6

Show that the linearized CSTR model of Example 4.8 can
be written in the state-space form of Egs. 6-75 and 6-76.
Derive state-space models for two cases:

(a) Both ¢4 and T are measured
(b) Only T is measured
SOLUTION

The linearized CSTR model in Eqgs. 4-84 and 4-85 can be
written in vector-matrix form using deviation variables:

dcjy

= a ap || c 0
— = 5 (G
LIE a a T b
= 21 ap 2
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Let x; & ¢iandx, & T', and denote their time der-
ivatives by x; and x,. In (6-77) the coolant temperature 7 is
considered to be a manipulated variable. For this example,
there is a single control variable, u £ T7, and no disturbance
variable. Substituting these definitions into (6-77) gives

el
T

B

(6-78)

which is in the form of Eq. 6-75 with x = col[xy, x;]. (“col”
denotes a column vector.)

(a) If both T and c,4 are measured, theny = xand C = 1
in Eq. 6-76, where I denotes the 2 X 2 identity matrix.
A and B are defined in (6-78).

(b) When only T is measured, output vector y is a scalar,
y =T, and Cis a row vector, C = [0,1].

Note that the state-space model for Example 6.6 has
d = 0, because disturbance variables were not included
in (6-77). By contrast, suppose that the feed composition
and feed temperature are considered to be disturbance
variables in the original nonlinear CSTR model in Egs.
2-66 and 2-68. Then the linearized model would include
two additional deviation variables cj;and 7;, which
would also be included in (6-77). As a result, (6-78)
would be modified to include two disturbance variables,
dl = ‘};i and d2 = T,!.

The state-space model in Eq. 6-75 contains both depen-
dent variables, the elements of x, and independent vari-
ables, the elements of # and d. But why is x referred to as
the “state vector”? This term is used because x(f)
uniquely determines the state of the system at any time, ¢.
Suppose that at time ¢, the initial value x(0) is specified
and u(¢) and d(¢) are known over the time period [0, ].
Then x(7) is unique and can be determined from the ana-
lytical solution or by numerical integration. Analytical
techniques are described in control engineering textbooks
(e.g., Franklin et al., 2005; Ogata, 2008), while numerical
solutions can be readily obtained using software packages
such as MATLAB or Mathematica.

6.5.1 Stability of State-Space Models

A detailed analysis of state-space models is beyond the
scope of this book but is available elsewhere (e.g.,
Franklin et al.,, 2005; Ogata, 2008). One important
property of state-space models is stability. A state-
space model is said to be stable if the response x(¢) is
bounded for all #(¢) and d(¢) that are bounded. The sta-
bility characteristics of a state-space model can be de-
termined from a necessary and sufficient condition:

Stability Criterion for State-Space Models

The state-space model in Eq. (6-75) will exhibit a
bounded response x(¢) for all bounded u(f) and d(¢) if and
only if all of the eigenvalues of A have negative real parts.

Note that stability is solely determined by A; the B,
C, and E matrices have no effect.

Next, we review concepts from linear algebra that
are used in stability analysis. Suppose that Aisann X n
matrix where n is the dimension of the state vector, x.
Let N denote an eigenvalue of A. By definition, the
eigenvalues are the » values of \ that satisfy the equa-
tion A\x = Ax (Strang, 2005). The corresponding values
of x are the eigenvectors of A. The eigenvalues are the
roots of the characteristic equation.

IN - Al =0 (6-79)

where I is the n X n identity matrix and |\I — A| de-
notes the determinant of the matrix A\I — A.

EXAMPLE 6.7

Determine the stability of the state-space model with the
following A matrix:

-4.0 0.3 15
A-| 12 20 1.0
05 20 35

SOLUTION

The stability criterion for state-space models indicates that
stability is determined by the eigenvalues of A. They can
be calculated using the MATLAB command, eig, after
defining A:

A-]400315 12 2 10; 05 20 =35]
eig(A)
The eigenvalues of A are —0.83, —4.33 + 1.18j, and
—4.33 —1.18j where j = & V—1. Because all three eigen-
values have negative real parts, the state-space model is
stable, although the dynamic behavior will exhibit oscilla-

tion due to the presence of imaginary components in the
eigenvalues.

6.5.2 The Relationship between State-Space
and Transfer Function Models

State-space models can be converted to equivalent
transfer function models. Consider again the CSTR
model in (6-78), which can be expanded as

(6-80)
(6-81)

Apply the Laplace transform to each equation (assum-
ing zero initial conditions for each deviation variable,
x1 and x,):

sX1(s) = anXq(s) + appXa(s) (6-82)
sXo(s) = anXq(s) + apXs(s) + byU(s) (6-83)

X1 = a;1x1 + apxp
).62 = ay1xX1 + anxy + bzu



Solving (6-82) for X,(s) and substituting into (6-83)
gives the equivalent transfer function model relating X
and U:

Xi(s) _
U(s)

a2by

s> — (a1 + axn)s + anay — apay
6-84)

Equation 6-82 can be used to derive the transfer func-
tion relating X, and U:

Xo(s) _ by(s — ayq)
UG) s> — (an + axn)s + anaxy — apay
(6-85)

Note that these two transfer functions are also the
transfer functions for Ci(s)/T7(s) and T'(s)/ T (s), re-
spectively, as a result of the definitions for xq, x,, and u.
Furthermore, the roots of the denominator of (6-84)
and (6-85) are also the eigenvalues of A in (6-78).

EXAMPLE 6.8

To illustrate the relationships between state-space models
and transfer functions, again consider the electrically
heated, stirred tank model in Section 2.4.3. First, equa-
tions (2-47) and (2-48) are converted into state-space
form by dividing (2-47) by mC and (2-48) by m,.C,,
respectively:

ﬂ_w heAe

L1+ eq-1) (686
0 wA
dt  m,C, meCe(Te ) ()

The nominal parameter values are the same as in
Example 2.4:

C
e 1.0 min

heA,
.l = 0.05°C min/kcal
wC

2 o 10min
w

m,C,
wC

= 1.0 min

Consequently,

m,C, = 20 kcal/°C
mC = 200 kcal/°C
heA, = 20 kcal/’C min

(a) Using deviation variables (7', T,, Q') determine the
transfer function between temperature 7' and heat
input Q'. Consider the conditions used in Example
2.4: O = 5000 kcal/min and T; = 100°C; at¢t = 0, Q is
changed to 5,400 kcal/min. Compare the expression
for T'(s) with the time domain solution obtained in
Example 2.4.

(b) Calculate the eigenvalues of the state-space model.
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SOLUTION

(a) Substituting numerical values for the parameters gives

Tooim-n+01@-1n  ©8)
% =005Q—-(T.— T) (6-89)

The model can be written in deviation variable form
(note that the steady-state values can be calculated to
be T = 350°C and 7, = 640°C):

dth =01(T}-T)+01(T;-T) (6-90)
dT;
T:= 0050 (T 1) (6-91)

T} = 0 because the inlet temperature is assumed to be
constant. Taking the Laplace transform gives

sT'(s) = =02 T'(s) + 0.1 To(s)
sT,(s) = 0.05Q'(s) — Ti(s) + T'(s)

(6-92)
(6-93)

Using the result derived earlier in (6-84) (see also
(4-32)), the transfer function is
T'(s) _ 0.05 . 0.005
Q'(s) 102+12s+1 2+ 125+01
(6-94)

40
N

For the step change of 400° kcal/min, Q'(s) =
kcal/min, then
2

= s(s? + 125 + 0.1)

The reader can verify that the inverse Laplace trans-
form is

T'(1) = 20 [1 — 1.089% %% + 0.0884e 111] (6-95)

which is the same solution as obtained in Example 2.4.

(b) The state-space model in 6-90 and 6-91 can be writ-
ten as

T -02 01][T 0
. | = + ! -9
[T] ler = [T] logs2 69
The 2 X 2 state matrix for this linear model is the same
when either deviation variables (7", 7,, Q') or the orig-
inal physical variables (T, T, Q) are employed. The

eigenvalues \; of the state matrix can be calculated
from setting the determinant of A — A I equals zero.

—02 -\ 0.1
1 -
(-02=N)(-1=2) —-01=0
M+12A+01=0

det
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Solving for A using the quadratic formula gives

12+ v14dd - D4
2

Ao = —1.11, —0.09

which is the same result that was obtained using the trans-
fer function approach. Because both eigenvalues are real,
the response is non-oscillating, as shown in Figure 2.4.

The state space form of the dynamic system is not
unique. If we are principally interested in modeling the
dynamics of the temperature 7, the state variables of
the process model can be defined as

TI
x = | dT' | (note Ty is not an explicit variable).
dt

The resulting state-space description analogous to (6-88)
and (6-89) would be

dx

dtl % (6-97)
dx,
e —1.2x5 — 0.1xq + 0.05u (6-98)

Note that if (6-97) is differentiated once and we substi-
tute the right hand side of (6-98) for dx,/dt, then the
same second-order model for 7" is obtained. This is left
as an exercise for the reader to verify. In addition, it is
possible to derive other state space descriptions of the
same second-order ODE, because the state-space form
is not unique.

A general expression for the conversion of a state-
space model to the corresponding transfer function
model will now be derived. The starting point for the
derivation is the standard state-space model in Eqs. 6-75
and 6-76. Taking the Laplace transform of these two
equations gives

sX(s) = AX(s) + BU(s) + ED(s)
Y(s) = CX(s)

(6-99)
(6-100)

where Y(s) is a column vector that is the Laplace trans-
form of y(¢). The other vectors are defined in an analo-
gous manner. After applying linear algebra and
rearranging, a transfer function representation can be

derived (Franklin et al., 2005):
Y(s) = Gy(s)U(s) + Ga(s)D(s) (6-101)

where the process transfer function matrix, G,(s) is de-
fined as

G,(s) & C[sI - A]"'B (6-102)

and the disturbance transfer function matrix G 4(s) is de-
fined as

G,(s) 2 C[sI — A]"'E (6-103)

Note that the dimensions of the transfer function ma-
trices depend on the dimensions of Y, U, and D.

Fortunately, we do not have to perform tedious
evaluations of expressions such as (6-102) and (6-103)
by hand. State-space models can be converted to
transfer function form using the MATLAB com-
mand ss2tf.

EXAMPLE 6.9

Determine G,(s) for temperature 7" and input Q' for
Example 6.8 using Equations 6-102 and 6-103.

SOLUTION

For part (a) of Example 6.8, Y(s) = X;(s), and there is one
manipulated variable and no disturbance variable. Conse-
quently, (6-101) reduces to

Y(s) = C(sI — A)'BU(s) (6-104)

where G, (s) is now a scalar transfer function.

The calculation of the inverse matrix can be numerically
challenging, although for this 2 X 2 case it can be done
analytically by recognizing that

adjoint (sI — A)

GI = A)~ = det (s — A)

(6-105)

The adjoint matrix is formed by the transpose of the cofac-

tors of A, so that
{s + 1 0.1 }
10 =s+02

sI—A)! =
( ) &+ 125 + 0.1

(6-106)

Note that the denominator polynomial formed by the
determinant is the same one derived earlier in Example 6.8
using transfer functions and algebraic manipulation. You
should verify that the inverse matrix when multiplied by
(sI — A) yields the identity matrix.

To find the multivariable transfer function for 77(s)/
Q'(s), we use the following matrices from the state-space
model:

B=[0}C=ﬂ 0]

0.05
Then the product
C(sI - A)''B
s+1 0.1
. 2 +12s+1 s2+1.2s+1{0]
=00 1.0 s+02 0.05 ()
P+12+1 #+125+1



0.005

G . e
() 2 +12s + 0.1

(6-108)
which is the same result as in Eq. 6-95. The reader can
also derive Gy(s) relating T'(s) and T/(s) using the
matrix-based approach in Egq. 6-103; see Eq. (4-33) for
the solution.

It is also possible to convert a transfer function matrix in
the form of Eq. 6-102 to a state-space model, and vice
versa, using a single command in MATLAB. Using such
software is recommended when the state matrix is larger
than2 X 2.

6.6 MULTIPLE-INPUT, MULTIPLE-
OUTPUT (MIMO) PROCESSES

Most industrial process control applications involve a
number of input (manipulated) variables and output
(controlled) variables. These applications are referred
to as multiple-input/multiple-output (MIMO) systems
to distinguish them from the single-input/single-output
(SISO) systems that have been emphasized so far.
Modeling MIMO processes is no different conceptually
than modeling SISO processes. For example, consider
the thermal mixing process shown in Figure 6.14. The
level 4 in the stirred tank and the temperature 7 are to
be controlled by adjusting the flow rates of the hot and
cold streams, wy and w,, respectively. The tempera-
tures of the inlet streams 7} and T, are considered to
be disturbance variables. The outlet flow rate w is
maintained constant by the pump, and the liquid prop-
erties are assumed to be constant (not affected by tem-
perature) in the following derivation.

Noting that the liquid volume can vary with time, the
energy and mass balances for this process are

pC d[V(T — Tref)] —

dt th( Th - Tref) + wcC( Tc - Tref)

— WC(T — Trep) (6-109)

B D e

-1

A = cross-sectional area
of tank

Figure 6.14 A multi-input, multi-output thermal mixing
process.
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=wp+w.—w (6-110)

Par
The energy balance includes a thermodynamic refer-
ence temperature Tres (see Section 2.4.1). Expanding
the derivative gives
d[V(T — Tref)]

dt

ar

— (T — av ., ,,ar

(6-111)
Equation 6-111 can be substituted for the left side of
Eq. 6-109. Following substitution of the mass balance
(6-110), a simpler set of equations results with V = Ah

aT 1
ar = —pAh [WnTy + w.T, — (wp + wo)T] (6-112)
dh 1
E = p_A(wh + w, —w) (6-113)

After linearizing (6-112) and (6-113), putting them in
deviation form, and taking Laplace transforms, we ob-
tain a set of eight transfer functions that describe the
effect of each input variable (wyj, wy, T}, T7) on each
output variable (7" and &'):

T'(s) _ (Th - T)/W

Wi(s) s +1 (6-114)
IV A
T B
;hg)) _Y fp (6-118)
;8 = l/sﬂ (6-119)
%((j)) =0 (6-120)
}TIC((;)) =0 (6-121)

where T = pAh/w is the average residence time in the
tank and an overbar denotes a nominal steady-state
value.

Equations 6-114 through 6-117 indicate that all
four inputs affect the tank temperature through first-
order transfer functions and a single time constant
that is the nominal residence time of the tank 7.
Equations 6-118 and 6-119 show that the inlet flow
rates affect level through integrating transfer func-
tions that result from the pump on the exit line. Fi-
nally, it is clear from Eqgs. 6-120 and 6-121, as well as



108 Chapter 6 Dynamic Response Characteristics of More Complicated Processes

from physical intuition, that inlet temperature changes
have no effect on liquid level.

A very compact way of expressing Egs. 6-114 through
6-121 is by means of a transfer function matrix:

T -Tyw (T -Tyw  ww

We/W
[T'(S)]= s+ 1 ™+ 1 s+1 Ts+1
S V7 R V7 VI
L s s
[ Wi(s)
Wis) i
i) (6-122)
L Te(s)

Equivalently, two transfer function matrices can be
used to separate the manipulated variables, wy, and w,,
from the disturbance variables, 7, and 7.

[ ] (T - D/w (T.—T)/w [ ]
()] | s+ 1 w1 |[Wis)

H'(s) 1/Ap 1/4p | W)
s s
Wh/ w Wc/ w
S Ti(s)
+| T+l w+1 . (6-123)
R o

The block diagram in Figure 6.15 illustrates how the
four input variables affect the two output variables.
Two points are worth mentioning in conclusion:

1. A transfer function matrix, or, equivalently, the
set of individual transfer functions, facilitates the
design of control systems that deal with the in-
teractions between inputs and outputs. For ex-
ample, for the thermal mixing process in this
section, control strategies can be devised that
minimize or eliminate the effect of flow changes

SUMMARY

In this chapter we have considered the dynamics of
processes that cannot be described by simple transfer
functions. Models for these processes include numerator
dynamics such as time delays or process zeros. An ob-
served time delay is often a manifestation of higher-order
dynamics; consequently, a time-delay term in a transfer
function model provides a way of approximating high-
order dynamics (for example, one or more small time
constants). Important industrial processes typically have
several input variables and several output variables. For-
tunately, the transfer function methodology for single-

Wi(s) (Th - Tw
s+ 1

Wels) (T, - TDlw

s+ 1

\V;

h L T
{r—

Ty(s) Wyl

\V;

s+ 1

Tes) W, liw

U
U

s+ 1

1/Ap

‘/\ H'(s)

+/7 \+

1/Ap
S

Figure 6.15 Block diagram of the MIMO thermal mixing
system with variable liquid level.

on temperature and level. This type of multivari-
able control system is considered in Chapters 18
and 20.

2. The development of physically-based MIMO mod-
els can require a significant effort. Thus, empirical
models rather than theoretical models often must
be used for complicated processes. Empirical mod-
eling is the subject of the next chapter.

input, single-output processes is also applicable to such
multiple-input, multiple-output processes. In Chapter 7
we show that empirical transfer function models can be
easily obtained from experimental input-output data.

State-space models provide a convenient represen-
tation of dynamic models that can be expressed as a
set of first-order, ordinary differential equations.
State-space models can be derived from first principles
models (for example, material and energy balances)
and used to describe both linear and nonlinear dy-
namic systems.
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EXERCISES

6.1 Consider the transfer function:

07(s* + 25 + 2)
S +554+28° 452+ 6

=2 G(s) =

(a) Plotits poles and zeros in the complex plane. A computer
program that calculates the roots of the polynomial (such as
the command roots in MATLAB) can help you factor the de-
nominator polynomial.

(b) From the pole locations in the complex plane, what can
be concluded about the output modes for any input change?

(¢) Plot the response of the output to a unit step input. Does
the form of your response agree with your analysis for part
(b)? Explain.

6.2 The following transfer function is not written in a stan-
dard form:

2(s + 0.5)

(s+2)2s+1) e

G(s) =
(a) Putitin standard gain/time constant form.
(b) Determine the gain, poles and zeros.
(¢) If the time-delay term is replaced by a 1/1 Padé
approximation, repeat part (b).

6.3 For a lead-lag unit,

Y(s) K(ms +1)
X(s) ms+1

show that for a step input of magnitude M:

(a) The value of y att = 0% is given by y(0*) = KM, /7;.
(b) Overshoot occurs only for 7, > 71, in which case
dy/dt<0.

(¢) Inverse response occurs only for 7, < 0.
6.4 A second-order system has a single zero:
Y(s) K(t,s +1)
= (11> 12)
X(s) (ms+ D(rs + 1)

For a step input, show that:
(a) y(¢) can exhibit an extremum (maximum or minimum

value) in the step response only if
1- Ta/TZ
1 — 7,7
(b) Overshoot occurs only for 7,/71 > 1.
(¢) Inverse response occurs only for 7, < 0.
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(d) If an extremum in y exists, the time at which it occurs can
be found analytically. What is it?

6.5 A process has the transfer function of Eq. 6-14 with
[—j K =2,7 =10, 7, = 2. If 7, has the following values,

< Casei: 7,=20
Caseii: 7, =4
Caseiii: 7, =1
Caseiv: 71, = —2

Simulate the responses for a step input of magnitude 0.5 and
plot them in a single figure. What conclusions can you make,
about the effect of the zero location? Is the location of the
pole corresponding to 7, important so long as 1y > 7,?

6.6 A process consists of an integrating element operating in
parallel with a first-order element (Fig. E6.6).

K
s
+
Uls) X Y(s)
K,
s+ 1
Figure E6.6

(a) What is the order of the overall transfer function, G(s) =
Y(s)/U(s)?

(b) What is the gain of G(s)?

(¢) What are the poles of G(s)? Where are they located in
the complex s-plane?

(d) What are the zeros of G(s)? Where are they located?
Under what condition(s) will one or more of the zeros be lo-
cated in the right-half s-plane?

(e) Under what conditions, will this process exhibit a right-
half plane zero?

(f) For any input change, what functions of time (response
modes) will be included in the response, y()?

(g) Is the output bounded for any bounded input change, for
example, u(t) = M?
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6.7 A pressure-measuring device has been analyzed and can
be described by a model with the structure shown in Fig.
E6.7a. In other words, the device responds to pressure
changes as if it were a first-order process in parallel with a
second-order process. Preliminary tests have shown that the
gain of the first-order process is —3 and the time constant
equals 20 min, as shown in Fig. E6.7a. An additional test is
made on the overall system. The actual output P,, (not P;,)
resulting from a step change in P from 4 to 6 psi is plotted in
Fig. E6.7b.

K R'(s)

252 + 2{7s +1
®—>P,§l(s)

20s +1 Q'(s)

P'(s)

Figure E6.7a

30

26

22
P,, (%)

18 X x x <

14

10
0 20 40 60 80 100
Time (min)

Figure E6.7b

(a) Determine Q'(?).

(b) What are the values of K, 7, and (?

(¢) What is the overall transfer function for the measure-
ment device Py,(s)/P’(s)?

(d) Find an expression for the overall process gain.

6.8 A blending tank that provides nearly perfect mixing is
connected to a downstream unit by a long transfer
pipe. The blending tank operates dynamically like a
first-order process.

The mixing characteristics of the transfer pipe, on the other
hand, are somewhere between plug flow (no mixing) and per-
fectly mixed. A test is made on the transfer pipe that shows
that it operates as if the total volume of the pipe were split into
five equal-sized perfectly stirred tanks connected in series.

The process (tank plus transfer pipe) has the following
characteristics:

Viank = 2 m’
Vpipe = 0.1 m*
Grotal = 1 m3/min

where gioa1 represents the sum of all flow rates into the
process.

(a) Using the information provided above, what would be the
most accurate transfer function Cjy (s)/Ci, (s) for the process
(tank plus transfer pipe) that you can develop? Note: c;, and
Cout are inlet and exit concentrations.

(b) For these particular values of volumes and flow rate, what
approximate (low-order) transfer function could be used to rep-
resent the dynamics of this process?

(¢) What can you conclude concerning the need to model the
transfer pipe’s mixing characteristics very accurately for this
particular process?

(d) Simulate approximate and full-order model responses to a
step change in ¢j,.

6.9 By inspection determine which of the following process
models can be approximated reasonably accurately by a
first-order-plus-time-delay model. For each acceptable
case, give your best estimate of 6 and 7.

(@ K
(10s + 1)(10s + 1)
K
® o5 ¥ DEs + DG + 1)
0 — K
(10s + 1)(s + 1)
K(20s + 1)
( 10s + 1
K(O.55 + 1)
(10s + (s + 1)

K
1052 + 11s + 1

Kk
100s% + 10s + 1

(e)

(®

6.10 A process consists of five perfectly stirred tanks in series.
The volume in each tank is 30 L, and the volumetric
flow rate through the system is 5 L/min. At some partic-
ular time, the inlet concentration of a nonreacting

species is changed from 0.60 to 0.45 (mass fraction) and held

there.

(a) Write an expression for cs (the concentration leaving the
fifth tank) as a function of time.

(b) Simulate and plot ¢y, ¢y, . . ., ¢s. Compare ¢s at ¢ = 30 min
with the corresponding value for the expression in part (a).

6.11 A composition analyzer is used to measure the concen-
tration of a pollutant in a wastewater stream. The relation-
ship between the measured composition C,, and the actual
composition C is given by the following transfer function (in
deviation variable form):

Cu(s) %
C'(s) ws+1

where 6 = 2 min and T = 4 min. The nominal value of the
pollutant is C = 5Sppm. A warning light on the analyzer
turns on whenever the measured concentration exceeds
25 ppm.



Suppose that at time ¢ = 0, the actual concentration begins to
drift higher— C(¢) = 5 + 2¢, where C has units of ppm and ¢ has
units of minutes. At what time will the warning light turn on?

6.12 For the process described by the exact transfer function

5
(10s + 1)(4s + 1)(s + 1)(0.2s + 1)

£—\

)

G(s) =

(a) Find an approximate transfer function of second-order-
plus-time-delay form that describes this process.

(b) Simulate and plot the response y(¢) of both the approx-
imate model and the exact model on the same graph for a
unit step change in input x(z).

(¢) What is the maximum error between the two responses?
Where does it occur?

6.13 Find the transfer functions Pi(s)/E/(s) and P5(s)/E/(s)
for the compressor-surge tank system of Exercise 2.5 when it
is operated isothermally. Put the results in standard (gain/
time constant) form. For the second-order model, determine
whether the system is overdamped or underdamped.

6.14 A process has the block diagram

0.8 5efs
(0.4s + 1)2 252+ 3s+1

Uls) Y(s)

Derive an approximate first-order-plus-time-delay transfer
function model.

6.15 Show that the liquid-level system consisting of two inter-
acting tanks (Fig. 6.13) exhibits overdamped dynamics; that is,
show that the damping coefficient in Eq. 6-72 is larger than one.

6.16 An open liquid surge system (p = constant) is designed
with a side tank that normally is isolated from the flowing
material as shown in Fig. E6.16.

R
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(a) In normal operation, Valve 1 is closed (R; — ) and
g1 = 0. What is the transfer function relating changes in g to
changes in outflow rate g, under these conditions?

(b) Someone inadvertently leaves Valve 1 partially open
(0 < Ry < ). What is the differential equation model for
this system?

(c) What do you know about the form of the transfer func-
tion Q5(s)/Q4(s) for Valve 1 partially open? Discuss but do
not derive.

(d) Is the response to changes in g faster or slower for Case
(b) compared to Case (a)? Explain why but do not derive the
response.

6.17 The dynamic behavior of a packed-bed reactor can be
approximated by a transfer function model

T'(s) 32 - 5)
Ti(s)  (10s + 1)(5s + 1)

where T; is the inlet temperature, T is the outlet tempera-
ture (°C), and the time constants are in hours. The inlet
temperature varies in a cyclic fashion due to the changes in
ambient temperature from day to night.

As an approximation, assume that 7; varies sinusoidally
with a period of 24 hours and amplitude of 12°C. What is the
maximum variation in the outlet temperature, 77

6.18 Example 5.1 derives the gain and time constant for a
—= first-order model of a stirred-tank heating process.

)

~ (a) Simulate the response of the tank temperature to
a step change in heat input from 3 X107 cal/hr to
5% 107 cal/hr.

(b) Suppose there are dynamics associated with changing the
heat input to the system. If the dynamics of the heater itself
can be expressed by a first-order transfer function with a gain
of one and a time constant of 10 min, what is the overall
transfer function for the heating system (tank plus heater)?

(¢) For the process in (b), approximate the time delay by a
polynomial approximation and simulate the step increase in
hy ha heat input.

6.19 Distributed parameter systems such as tubular reac-
<] 71 <} 22 tors and heat exchangers often can be modeled as a set of
Area = A, R Area = Ay R, lumped parameter equations. In this case an alternative
Valve 1 Valve 2 (approximate) physical interpretation of the process is used
Figure E6.16 to obtain an ODE model directly rather than by converting

—

Ty, wy
& T5, wy

—
Tl T3 T5 T7
rame L an! -0 o
w3
— O = O = =
Figure E6.19 Tg 6 4 2
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a PDE model to ODE form by means of a lumping method
such as finite differences. As an example, consider a single
concentric-tube heat exchanger with energy exchange be-
tween two liquid streams flowing in opposite directions, as
shown in Fig. E6.19. We might model this process as if it
were three small, perfectly stirred tanks with heat ex-
change. If the mass flow rates wy and w; and the inlet tem-
peratures T and T, are known functions of time, derive
transfer function expressions for the exit temperatures 75
and Ty in terms of the inlet temperature 77. Assume that all
liquid properties (p1, p3, Cp1, Cpy) are constant, that the
area for heat exchange in each stage is A, that the overall
heat transfer coefficient U is the same in each stage, and
that the wall between the two liquids has negligible thermal
capacitance.

6.20 A two-input/two-output process involving simultane-
ous heating and liquid-level changes is illustrated in Fig.
E6.20. Find the transfer function models and expressions
for the gains and the time constant 7 for this process. What
is the output response for a unit step change in Q? for a
unit step change in w? Note: Transfer function models for
a somewhat similar process depicted in Fig. 6.15 are given
in Egs. 6-80 through 6-87. They can be compared with your
results.

T;
w; I
\'%4
| Q | T
| Heater | g—;

Figure E6.20

6.21 The jacketed vessel in Fig. E6.21 is used to heat a lig-
uid by means of condensing steam. The following informa-
tion is available:

(i) The volume of liquid within the tank may vary, thus chang-
ing the area available for heat transfer.

(i) Heat losses are negligible.

(iii) The tank contents are well mixed. Steam condensate is
removed from the jacket by a steam trap as soon as it has
formed.

(iv) Thermal capacitances of the tank and jacket walls are
negligible.

(v) The steam condensation pressure Py is set by a control
valve and is not necessarily constant.

(vi) The overall heat transfer coefficient U for this system is
constant.

. -
Ere

Ts
—.—) Condensate
a7

. 0
s
Steam—— \4
g
7
q
Figure E6.21

(vii) Flow rates gr and g are independently set by external
valves and may vary.

Derive a dynamic model for this process. The model should
be simplified as much as possible. State any additional as-
sumptions that you make.

(a) Find transfer functions relating the two primary output
variables # (level) and T (liquid temperature) to inputs g, ¢,
and Ts. You should obtain six separate transfer functions.

(b) Briefly interpret the form of each transfer function using
physical arguments as much as possible.

(¢) Discuss qualitatively the form of the response of each
output to a step change in each input.

6.22 Your company is having problems with the feed stream
to a reactor. The feed must be kept at a constant mass flow
rate (w) even though the supply from the upstream process
unit varies with time, w;(¢). Your boss feels that an available
tank can be modified to serve as a surge unit, with the tank
level expected to vary up and down somewhat as the supply
fluctuates around the desired feed rate. She wants you to
consider whether (1) the available tank should be used, or
(2) the tank should be modified by inserting an interior wall,
thus effectively providing two tanks in series to smooth the
flow fluctuations

The available tank would be piped as shown in Fig. E6.22a:

wi(t)

o

—cr

Area=A
Figure E6.22a

In the second proposed scheme, the process would be modi-
fied as shown in Fig. E6.22b:



w;(¢)
) Al + A2 =A
hy T
hy .
wo =w
S s A
A\ 4
Flow = w1(#)
Figure E6.22b

In this case, an opening placed at the bottom of the interior
wall permits flow between the two partitions. You may assume
that the resistance to flow wy(¢) is linear and constant (R).

(a) Derive a transfer function model for the two-tank
process [H5(s)/W!(s)] and compare it to the one-tank
process [H'(s)/W/(s)]. In particular, for each transfer func-
tion indicate its order, presence of any zeros, gain, time
constants, presence or absence of an integrating element,
whether it is interacting or noninteracting, and so on.

(b) Evaluate how well the two-tank surge process would
work relative to the one-tank process for the case A1 = A; =
A/2 where A is the cross-sectional area of the single tank.
Your analysis should consider whether 4, will vary more or
less rapidly than % for the same input flow rate change, for
example, a step input change.

(¢) Determine the best way to partition the volume in the
two-tank system to smooth inlet flow changes. In other
words, should the first tank contain a larger portion of the
volume than the second, and so on.

(d) Plot typical responses to corroborate your analysis. For
this purpose, you should size the opening in the two-tank in-
terior wall (i.e., choose R) such that the tank levels will be the
same at whatever nominal flow rate you choose.

6.23 A process has the following block diagram representation:

&

K K;
Uls) > Y(s)
(0.1s + 1) 452 + 25 + 1

(a) Will the process exhibit overshoot for a step change in u?
Explain/demonstrate why or why not.
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(b) What will be the approximate maximum value of y for K =
K1K; = 1 and a step change, U(s) = 3/s?
(¢) Approximately when will the maximum value occur?

(d) Simulate and plot both the actual fourth-order response
and a second-order-plus-time-delay response that approxi-
mates the critically damped element for values of 1 = 0.1, 1,
and 5. What can you conclude about the quality of the ap-
proximation when T is much smaller than the underdamped
element’s time scale? about the order of the underdamped
system’s time scale?

6.24 The transfer function that relates the change in blood
pressure y to a change in u the infusion rate of a drug
(sodium nitroprusside) is given by’

Ke %15(1 + ae %)
s+ 1

Gp(s) =

The two time delays result from the blood recirculation that
occurs in the body, and « is the recirculation coefficient. The
following parameter values are available:

mm Hg
mlh °

oa=04,00 =30s,0p =45s,and7 = 40s

K=-10

Simulate the blood pressure response to a unit step change
(u = 1) in sodium nitroprusside infusion rate. Is it similar to
other responses discussed in Chapters 5 or 6?

6.25 In Example 4.4, a two-tank system is presented. Using
state-space notation, determine the matrices A, B, C, and E,
assuming that the level deviations is 4{ and A} are the state
variables, the input variable is g{, and the output variable is
the flow rate deviation, g3.

6.26 The staged system model for a three-stage absorber is pre-
s sented in Egs. (2-73)—(2-75), which are in state-space
<~ form. A numerical example of the absorber model sug-

gested by Wong and Luus? has the following parameters:
H =175.721b, L = 40.8 Ib/min, G = 66.7 Ib/min, a = 0.72, and
b = 0.0. Using the MATLAB function ss2tf, calculate the three
transfer functions (Y{/Y}, Y3/ Y}, Y3/Y)) for the three state vari-
ables and the feed composition deviation Y7as the input.

'Hahn, J., T. Edison, and T. F. Edgar, Adaptive IMC Control for Drug
Infusion for Biological Systems, Control Engr. Practice, 10, 45 (2002).
2Wong, K. T., and R. Luus, Model Reduction of High-order
Multistage Systems by the Method of Orthogonal Collocation, Can.
J. Chem. Eng. 58, 382 (1980).
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Summary

Several modeling approaches are used in process control
applications. Theoretical models based on the chemistry
and physics of the process represent one alternative.
However, the development of rigorous theoretical mod-
els may not be practical for complex processes if the
model requires a large number of equations with a sig-
nificant number of process variables and unknown para-
meters (e.g., chemical and physical properties). An
alternative approach is to develop an empirical model
directly from experimental data. Empirical models are
sometimes referred to as black box models, because the
process being modeled can be likened to an opaque box.
Here the input and output variables (x and y, respec-
tively) are known, but the inner workings of the box are
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not. (See Fig. 7.1, where vectors of time-varying variables
u(?), y(t), and d(f) are shown.) The development of empir-
ical steady-state and dynamic models is the subject of this
chapter. This activity is referred to as process or system
identification (Ljung and Glad, 1994; Ljung, 1999). In gen-
eral, empirical dynamic models are simpler than theoreti-
cal models and offer the advantage that they can be
solved in “real time.” In other words, the computational
time required for the model solution (e.g., transient re-
sponse) is much shorter than the actual process response
time. However, this may not be true for complex models
with many variables and equations.

The key differences between process simulation and
process identification can be summarized with the aid
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d(t)
Disturbances

u(e) Process model y@®
Manipulated inputs M Outputs

Figure 7.1 Input-output process model.

of Fig. 7.1. In simulation, the process model M is known,
and we wish to generate the response y(¢) for a speci-
fied input u(¢) and a specified disturbance d(¢). If A is a
linear dynamic model and u(f) and d(¢) are expressed
analytically, y(¢f) can be derived using Laplace trans-
forms (see Chapter 4). Alternatively, y(¢) can be calcu-
lated numerically using software packages such as
MATLAB (Ljung, 2007). If M is a nonlinear dynamic
model, y(¢) can be obtained by numerical integration
(cf. Chapter 2) after u(¢) and d(¢) are specified. By con-
trast, in process identification the model A is deter-
mined from data for u(f), y(t), and d(¢), if d can be
measured. If the model structure is postulated but con-
tains unknown model parameters, then the model para-
meters can be obtained using regression techniques.
This parameter estimation can be done with commer-
cially available software regardless of whether the
process model is linear or nonlinear, or whether it is
theoretically-based or empirical in nature.

Steady-state empirical models can be used for instru-
ment calibration, process optimization, and specific in-
stances of process control. Single-input, single-output
(SISO) models typically consist of simple polynomials
relating an output to an input. Dynamic empirical mod-
els can be employed to understand process behavior
during upset conditions. They are also used to design
control systems and to analyze their performance. Em-
pirical dynamic models typically are low-order differ-
ential equations or transfer function models (e.g., first-
or second-order model, perhaps with a time delay),
with unspecified model parameters to be determined
from experimental data. However, in some situations
more complicated models are valuable in control sys-
tem design, as discussed later in this chapter.

The concept of a discrete-time model will now be in-
troduced. These models are generally represented by
difference equations rather than differential equations.
Most process control tasks are implemented via digital
computers, which are intrinsically discrete-time sys-
tems. In digital control, the continuous-time process
variables are sampled at regular intervals (e.g., every
0.1 s); hence, the computer calculations are based on

sampled data rather than continuous measurements. If
process variables are observed only at the sampling in-
stants, the dynamic behavior can be modeled using a dis-
crete-time model in the form of a difference equation.
The selection of discrete-time models over continuous-
time models is becoming commonplace, especially for
advanced control strategies.

Several methods for determining steady-state and dy-
namic empirical models for both continuous-time and
discrete-time model types will now be presented. We
first consider general model-fitting techniques based on
linear and nonlinear regression that can be used to cal-
culate model parameters for any type of model. Then
simple but very useful methods are presented for obtain-
ing first-order and second-order dynamic models from
step response data using analytical solutions. These
methods yield models suitable for the design of control
systems; however, the resulting models are usually accu-
rate only for a narrow range of operating conditions
close to the nominal steady state, where the process
exhibits linear behavior. We also show the relationship
between continuous-time and discrete-time models. Fi-
nally, we present several methods for developing linear
discrete-time models for dynamic processes.

71 MODEL DEVELOPMENT USING
LINEAR OR NONLINEAR
REGRESSION

Before developing an empirical model for two variables,
a single input u and a single output y, it is instructive
first to plot the available data (e.g., y vs. u for steady-
state data and y and u vs. time for transient response
data). From these plots it may be possible to visualize
overall trends in the data and to select a reasonable
form for the model. After the model form is selected,
the unknown model parameters can be calculated and
the model accuracy evaluated. This parameter calcula-
tion procedure is referred to as parameter estimation or
regression (Ljung, 1999; Montgomery and Runger, 2007).
These calculations are usually based on model fitting,
that is, minimizing a measure of the differences between
model predictions and data. However, the problem of
fitting a model to a set of input-output data becomes
complicated when the model relation is not simple or
involves multiple inputs and outputs.

First, we consider steady-state models. Suppose that
a set of steady-state input-output data is available and
shown as circles in Fig. 7.2. Variable y represents a
process output (e.g., a reactor yield), whereas u repre-
sents an input variable (e.g., an operating condition
such as temperature). Although a straight-line model
(Model 1) provides a reasonable fit, higher-order poly-
nomial relations (Models 2 and 3) result in smaller
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Figure 7.2 Three models for scattered data.

errors between the data and the curve representing the
empirical model. Models 2 and 3 provide better agree-
ment with the data at the expense of greater complexity
because more model parameters must be determined.
Sometimes the model form may be known from theoret-
ical considerations or past experience with the process.

In Fig. 7.2, if the actual process behavior is linear, the
differences (or residuals) between Model 1 and the data
could be due to process disturbances or measurement
errors. In empirical modeling, it is preferable to choose
the simplest model structure that yields a good fit of the
data, providing that the model is physically reasonable.
Note that in Fig. 7.2, if Model 3 is extrapolated beyond
the data range, it would apparently yield significantly
different model predictions than Model 1 or 2. The se-
lection of the best model might require collecting more
data, perhaps outside the range shown in Fig. 7.2, which
then could be used to validate each model.

7.1.1 Model Building Procedure

In this section we present a systematic procedure for
developing empirical dynamic models (Ljung, 1999).
The procedure consists of the following steps:

1. Formulate the model objectives; that is, how will
the model be used, and who will be the user?

2. Select the input and output variables for the
model.

3. Evaluate available data and develop a plan to ac-
quire additional data. A testing plan would specify
the values of u or the form of u(¢), for example, a
step change or some other input sequence (see
Section 7.2).

4. Select the model structure and level of model
complexity (e.g., steady-state vs. dynamic model,
linear vs. nonlinear model).

5. Estimate the unknown model parameters using
linear or nonlinear regression.

6. Using input and output data, evaluate model accu-
racy based on statistical considerations. It is desir-
able to use new data (if available) as well as the
“old” data that were used to develop the model. If
the model does not provide a satisfactory fit, return

to Step 2 and try a different model. If possible, the
model should be tested with new data (that is, vali-
dation data); if the model predictions agree with
these data, the model is said to be validated.

7. For a dynamic model, nonstatistical criteria also
can be used to evaluate a model, such as speed of
response, shape of response, correct stability prop-
erties, and correct steady-state gain. The utility of
a model for designing controllers is also important
in process control, where an overly complex model
can be a disadvantage. Thus control-relevant mod-
els are desirable (Rivera and Jun, 2000).

7.1.2 Linear Regression

Statistical analysis can be used to estimate unknown
model parameters and to specify the uncertainty associ-
ated with the empirical model. It can also be used to
compare several candidate models (Draper and Smith,
1998; Montgomery and Runger, 2007). For linear mod-
els, the least-squares approach is widely used to esti-
mate model parameters. Consider the linear (or
straight-line) model in Fig. 7.2 (Model 1) and let Y;
represent the data point where J; is the model predic-
tion for u = u;. Then for the model, y = B1 + Bou + €,
the individual data points can be expressed as

Yi=PB1 + Boui + &

(7-1)

where B; and B, are the model parameters to be esti-
mated. ¢; is the random error for the particular data point.

The least-squares method is the standard approach
for calculating the values of B; and B, that minimize
the sum of the squares of the errors S for an arbitrary
number of data points, N:

N N

S=2€§=2(Yi—31—ﬁzui)2

i= =1

(72)

In (7-2), note that the values of Y; and w; are known,
while B, and B, are to be calculated so as to minimize
S, the objective function. The optimal estimates of B¢
and (3, calculated for a specific data set are designated
as Py and ,. The model predictions are given by the re-
gression model:

y=Bi+Bu (7-3)
and the residuals e; are defined as
e = Y — (7-4)

These least-squares estimates will provide a good fit if
the errors ¢; are statistically independent and normally
distributed.

For a linear model and N data points, values of B
and B, that minimize (7-2) are obtained by first setting
the derivatives of S with respect to 1 and B, equal to
zero. Because S is a quadratic function, this approach
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leads to two linear equations in two unknowns By and
B,. The analytical solution (Edgar et al., 2001) is

 SuSy — SuS,

Bt = oo (7-5)
NSuu - (Su)2

. NS, — 5.5,

B2=——ou (7-6)
NSuu - (Su)

where

N N

Sué Eui Suué 2 ul2
i=1 i=1
N N

Sy = Vi Suy © > Y

~
Il
-l

i=

These calculations can be made using statistical pack-
ages or spreadsheets such as Excel.

This least-squares estimation approach (also called

linear regression) can be extended to more general
models with

1. More than one input or output variable

2. Functions of the input variables «, such as polyno-
mials and exponentials, providing that the un-
known parameters appear linearly.

A general nonlinear steady-state model which is linear
in the parameters has the form
p
y=2BiX;+e (7-7)
j=1
The p unknown parameters (B;) are to be estimated,
and the Xj are the p specified functions of u. Note that
the unknown parameters B; appear linearly in the
model, and a constant term can be included by setting
X1 =1.
The sum of the squares analogous to (7-2) is

N 14 2

(7-8)

=1

For Xj; the first subscript corresponds to the ith data
point, and the second index refers to the jth function
of u. This expression can be written in matrix nota-

tion as
S = (Y - xp)'(Y - XB) (7-9)

where the superscript 7 denotes the transponse of a
vector or matrix and

y B X1 Xz o Xyp

1 1 Xy Xn o Xy
Y =1: B = X=1" : :
v : : :

" Bp X X o an

The least-squares estimate B is given by Draper and
Smith (1998), and Montgomery and Runger (2007),

B = (xTx)xTy (7-10)

providing that matrix X TX is nonsingular so that its in-
verse exists. Note that the matrix X is comprised of
functions of u; for example, if y = B + Bou + Bsu® + €,
then X; = 1, X, = u, and X3 = 1>

If the number of data points is equal to the number
of model parameters (i.e., N = p), Eq. 7-10 provides a
unique solution to the parameter estimation problem,
one that provides perfect agreement with the data
points, as long as X’X is nonsingular. For N > p, a
least-squares solution results that minimizes the sum
of the squared deviations between each of the data
points and the model predictions.

The least-squares solution in Eq. 7-10 provides a
point estimate for the unknown model parameters B;
but does indicate how accurate the estimates are. The
degree of accuracy is expressed by confidence intervals
that have the form, §; = AB;. The AB; are calculated
from the (u, y) data for a specified confidence level
(Draper and Smith, 1998).

Next we consider the development of a steady-state
performance model, such as might be used in optimiz-
ing the operating conditions of an electrical power gen-
erator (see Chapter 19).

EXAMPLE 7.1

An experiment has been performed to determine the
steady-state power delivered by a gas turbine-driven
generator as a function of fuel flow rate. The following
normalized data were obtained:

Fuel Flow Rate Power Generated

u; Yi

1.0 2.0
2.3 44
2.9 5.4
4.0 715
4.9 9.1
5.8 10.8
6.5 12.3
711 14.3
8.4 15.8
9.0 16.8

The linear model in (7-1) should be satisfactory because
the data reveal a monotonic trend. Compare the best lin-
ear and quadratic models.

SOLUTION

To solve for the linear model, Egs. 7-5 and 7-6 could be ap-
plied directly. However, to illustrate the use of Eq. 7-7, first
define the terms in the linear model: X1 = 1 and X, = u.
The following matrices are then obtained:

+: ¢+ 1 1 1 1 1 1 § 1
10 23 29 40 49 58 65 77 84 9.0
YT =[20 44 54 75 91 108 123 143 158 16.8]

X
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. 2 - g:
(€8} u;
= —
X'x = 110 110 -
2w
L= =
- 10
z‘iYi
-
Xy = | |
E;uiYi
L=

Solving for ’Bl and Bz using Eq. 7-10 yields the same results
given in Egs. 7-5 and 7-6, with Bl = 0.0785 = 0.0039 and
’BZ = 1.859 * 0.093 (95% confidence limits are shown).

To determine how much the model accuracy can be im-
proved by using a quadratic model, Eq. 7-10 is again ap-
plied, this time with X; = 1, X, = u, and X3 = u? The
estimated parameters and 95% confidence limits for this
quadratic model are

By = 0.1707 + 0.0085,
By = 0.0047 + 0.0002

A

B, =1.811 = 0.096, and

The predicted values of y(y) are compared with the mea-
sured values (actual data) in Table 7.1 for both the linear
and quadratic models. It is evident from this comparison
that the linear model is adequate and that little improve-
ment results from the more complicated quadratic model.

Table 7.1 A Comparison of Model Predictions from
Example 7.1

Linear Model Quadratic Model
Prediction Prediction
u; Yi 91:=B1+Bou; $2i= B+ Bow + Bau?
1.0 2.0 1.94 1.99
23 44 4.36 4.36
2.9 5.4 5.47 5.46
4.0 15 152 7.49
4.9 9.1 9.19 9.16
58 108 10.86 10.83
65 123 12.16 12.14
70 143 14.40 14.40
84 158 15.70 15.72
90 16.8 16.81 16.85
(S = 0.0613) (S = 0.0540)

7.1.3 Nonlinear Regression

If the empirical model is nonlinear with respect to the
model parameters, then nonlinear regression rather
than linear regression must be used. For example, sup-
pose that a reaction rate expression of the form
ra = kcj is to be fit to experimental data, where rp is
the reaction rate of component A, cp is the reactant
concentration, and k and » are model parameters.

This model is linear with respect to rate constant k
but is nonlinear with respect to reaction order n. A gen-
eral nonlinear model can be written as

y = f(ula Uy, us, . .. Bl> BZ’ B3 X ) (7'11)

where y is the model output, u; are inputs, and B; are
the parameters to be estimated. In this case, the §; do
not appear linearly in the model. However, we can still
define a sum of squares error criterion to be minimized
by selecting the parameter set Bj:

N
min S = D (Y; — y)? (7-12)
i=1

B
where Y; and J; denote the ith output measurement
and model prediction corresponding to the ith data
point, respectively. The least-squares estimates are
again denoted by @

Consider the problem of estimating the time constants
for first-order and overdamped second-order dynamic
models based on the measured output response to a step
input change of magnitude M. Analytical expressions for
these step response were developed in Chapter 5.

Transfer Function Step Response
Y(S) _ K _ —t/T
Us) ~ w41 y(t) = KM(1 — ™) (5-18)
Y(s) K

T e—t/Tl — Ty e—t/Tz )

T~

Us)~ Gt D +1) 707 KM(l -

(5-48)

In the step response equations, ¢ is the independent vari-
able instead of the input u used earlier, and y is the de-
pendent variable expressed in deviation form. Although
steady-state gain K appears linearly in both response
equations, the time constants are contained in a nonlin-
ear manner, which means that linear regression cannot
be used to estimate them.

Sometimes a variable transformation can be em-
ployed to transform a nonlinear model so that linear
regression can be used (Montgomery and Runger,
2007). For example, if K is assumed to be known, the
first-order step response can be rearranged:

() t
ln<1 KM) =
Because In(1 — y/KM) can be evaluated at each time ¢,
this model is linear in the parameter 1/7. Thus, this model
has the standard linear form as Eq. 7-1, where the left-
hand side of (7-13) is Y;, B1 = 0, and ; = ¢
The transformation in Eq. 7-13 leads to the fraction
incomplete response method of determining first-order
models discussed in the next section. However, for step
responses of higher-order models, such as Eq. 5-48,
the transformation approach is not feasible. For these
calculations, we must use an iterative optimization
method to find the least-squares estimates of the time
constants (Edgar et al., 2001).

(7-13)
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As an alternative to nonlinear regression, a number
of graphical correlations can be used quickly to find ap-
proximate values of 71 and 1, in second-order models.
The accuracy of models obtained in this way is often
sufficient for controller design. In the next section, we
present several shortcut methods for estimating trans-
fer function parameters based on graphical analysis.

7.2 FITTING FIRST- AND SECOND-ORDER
MODELS USING STEP TESTS

A plot of the output response of a process to a step
change in input is sometimes referred to as the process
reaction curve. If the process of interest can be approxi-
mated by a first-order or second-order linear model,
the model parameters can be obtained by inspection of
the process reaction curve. For example, recall the
first-order model expressed in deviation variables,

dy
Tdt

where the system is initially at a steady state, with
u(0) = 0 and y(0) = 0. If the input u is abruptly changed
from 0 to M at time ¢ = 0, the step response in Eq. 5-18
results. The normalized step response is shown in Fig.
7.3. The response y(t) reaches 63.2% of its final value at
t = 7. The steady-state change in y, Ay, is given by
Ay = KM. From Eq. 5-18 or 7-13, after rearranging and
evaluating the limit at ¢ = 0, the initial slope of the nor-
malized step response is

dary } _1
dt KM t= 0 T
Thus, as shown in Fig. 7.3, the intercept of the tangent at
t = 0 with the horizontal line, y/KM = 1, occurs at t = 7.
As an alternative, T can be estimated from a step

response plot using the value of ¢ at which the response
is 63.2% complete, as shown in the following example.

+y=Ku (7-14)

(7-15)

Tangent toy(¢) at¢ =0
0 ) g
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Figure 7.3 Step response of a first-order system and graphical
constructions used to estimate the time constant, 7.
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Figure 7.4 Temperature response of a stirred-tank reactor
for a step change in feed flow rate.

EXAMPLE 7.2

Figure 7.4 shows the response of the temperature 7 in a
continuous stirred-tank reactor to a step change in feed flow
rate w from 120 to 125 kg/min. Find an approximate first-
order model for the process and these operating conditions.

SOLUTION

First note that Aw = M = 125 — 120 = 5 kg/min. Because
AT = T(») — T(0) = 160 — 140 = 20 °C, the steady-state
gain is

_ AT 20€ e

L= Aw  5kg/min = kg/min

The time constant obtained from the tangent construction
shown in Fig. 7.4 is T = 5 min. Note that this result is con-
sistent with the “63.2% method,” because

T = 140 + 0.632(20) = 152.6 °C

Consequently, the resulting process model is

i 4
W'(s) 5s+1

where the steady-state gain is 4 °C/kg/min.

Very few experimental step responses exhibit exactly
first-order behavior, because

1. The true process model is usually rneither first-
order nor linear. Only the simplest processes ex-
hibit such ideal dynamics.

2. The output data are usually corrupted with
noise; that is, the measurements contain a ran-
dom component. Noise can arise from normal
operation of the process, for example, inade-
quate mixing that produces eddies of higher and
lower concentration (or temperature), or from
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electronic instrumentation. If noise is completely
random (i.e., uncorrelated), a first-order response
plot may still be drawn that fits the output data well
in a time-averaged sense. However, autocorrelated
random noise, such as in drifting disturbances, can
cause problems in the analysis.

3. Another process input (disturbance) may change
in an unknown manner during the duration of the
step test. In the CSTR example, undetected
changes in inlet composition or temperature are
examples of such disturbances.

4. It can be difficult to generate a perfect step input.
Process equipment, such as the pumps and control
valves discussed in Chapter 9, cannot be changed
instantaneously from one setting to another but
must be ramped over a period of time. However,
if the ramp time is small compared to the process
time constant, a reasonably good approximation
to a step input may be obtained.

In summary, departures from the ideal response curve
in Fig. 7.3 are common.

In order to account for higher-order dynamics that are
neglected in a first-order model, a time-delay term can
be included. This modification can improve the agree-
ment between model and experimental responses. The
fitting of a first-order plus time-delay model (FOPTD),

Ke—()s
GGs) = s + 1

(7-16)

to the actual step response requires the following steps,
as shown in Fig. 7.5:

1. The process gain K is found by calculating the
ratio of the steady-state change in y to the size of
the input step change, M.

2. A tangent is drawn at the point of inflection of the
step response; the intersection of the tangent line
and the time axis (where y = 0) is the time delay.

3. If the tangent is extended to intersect the steady-
state response line (where y = KM), the point of
intersection corresponds to time ¢ = 6 + 7. There-
fore, T can be found by subtracting 6 from the
point of intersection.

The tangent method presented here for obtaining the
time constant suffers from using only a single point to
estimate the time constant. Use of several points from
the response may provide a better estimate. Again con-
sider Eq. 7-13, but now introduce the time shift t — 6
and rearrange to give the expression

I [Y(OO) - Yi] _ Li— 8
n =
y(®0) T
The final steady-state value, y(c0), equals KM. In 7-17,
y(©0) — y; can be interpreted as the incomplete response

(7-17)
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Figure 7.5 Graphical analysis of the process reaction curve
to obtain parameters of a first-order-plus-time-delay model.

for data point #; dividing by y(co) yields the fraction in-
complete response: a semilog plot of [y(c0) — y;]/y(o0)
vs. (t; — 0) will then yield a straight line with a slope of
—1/z, from which an average value of 7 is obtained. An
equation equivalent to 7-17 for the variables of Exam-
ple 7.2 is

ln[ T(o0) T(t)] __t—-9 (7-18)
T(o0) — T(0) AT

The major disadvantage of the time-delay estimation
method in Fig. 7.5 is that it is difficult to find the point of
inflection, as a result of measurement noise and small-
scale recorder charts or computer displays. The method
of Sundaresan and Krishnaswamy (1978) avoids use of
the point of inflection construction entirely to estimate
the time delay. They proposed that two times # and %,
be estimated from a step response curve. These times
correspond to the 35.3 and 85.3% response times, re-
spectively. The time delay and time constant are then
calculated from the following equations:

0
T

Il

1.3, — 0.29
0.67([2 - t1)

I

(7-19)

These values of 6 and T approximately minimize the dif-
ference between the measured response and the model
response, based on a correlation for many data sets. By
using actual step response data, model parameters K, 0,
and 7 can vary considerably, depending on the operat-
ing conditions of the process, the size of the input step
change, and the direction of the change. These varia-
tions usually can be attributed to process nonlinearities
and unmeasured disturbances.
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7.2.1 Graphical Techniques for
Second-Order Models

In general, a better approximation to an experimental
step response can be obtained by fitting a second-order
model to the data. Figure 7.6 shows the range of step
response shapes that can occur for the second-order
model,

K

G) = s + D(as + 1)

(5-39)

Figure 7.6 includes two limiting cases: Ty/t; = 0,
where the system becomes first-order, and 1,/7y = 1, the
critically damped case. The larger of the two time con-
stants, 71, is called the dominant time constant. The
S-shaped response becomes more pronounced as the
ratio of /11 becomes closer to one.

Model parameters for second-order systems which
include time delays can be estimated using graphical or
numerical methods. A method due to Smith (1972) uti-
lizes a model of the form

Ke—es
Gs) 22 + 2lrs + 1 (7-20)
which includes both overdamped and underdamped
cases. Smith’s method requires the times (with apparent
time delay removed) at which the normalized response
reaches 20% and 60%, respectively. Using Fig. 7.7, the
ratio of t/tg gives the value of {. An estimate of T can
be obtained from the plot of #gy/T vs. tyo/tsp-

When graphically fitting second-order models, some
caution must be exercised in estimating 6. A second-
order model with no time delay exhibits a point-of-
inflection (see Fig. 7.6 when 7 = 7). If the tangent to
the point-of-inflection shown in Fig. 7.5 is applied to this
case, however, a nonzero time delay is indicated. To
avoid this conflict, visual determination of 6 is recom-
mended for graphical estimation, but estimation of 6 by
trial and error may be required to obtain a good fit. In
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Figure 7.6 Step response for several overdamped second-
order systems.
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Figure 7.7 Smith’s method: relationship of { and 7 to 759
and T4p.

the following examples, the time delay is subtracted
from the actual time value; then the adjusted time,
t' =t — 0, is employed for the actual graphical analysis.
An alternative approach to fitting the parameters of
the second-order model utilizes three points in the step
response. Rangaiah and Krishnaswamy (1994, 1996).

7.2.2 Regression of Step Response Data

Model parameters of transfer function models can be
estimated using nonlinear regression and standard soft-
ware such as Excel and MATLAB. To use Excel, the
measured data must be placed in one column. The
model predictions to be compared with the measured
data are placed in a second column. The sum of squares
of the errors is calculated and put into a cell, called the
target cell. The target cell value can be minimized using
the built-in Solver in the Tools menu. The window of
the Solver allows the user to select the cell to mini-
mize/maximize, the range of cells to be adjusted (the
model parameters), and the restrictions, if any, that
apply. Clicking on (solve) will calculate the parameter
values that minimize the sum of squares. The optimiza-
tion method used by Excel is based on the generalized
reduced gradient technique (Edgar et al., 2001).

In order to use MATLAB, it is necessary to write an
M-file that defines the sum of squares of errors. Then
the command fminu is used to calculate the minimum.
The default algorithm in MATLAB is the BFGS quasi-
Newton method (Ljung, 2007).

EXAMPLE 7.3

Step test data have been obtained for the off-gas CO; con-
centration response obtained from changing the feed rate
to a bioreactor. Use Smith’s method as well as nonlinear
regression based on Excel and MATLAB to estimate
parameters in a second-order model from experimental
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Figure 7.8 Normalized experimental step response.

step response data shown in Fig. 7.8. For all three methods,
assume 6 = 0 because the response curve becomes nonzero
immediately after ¢t = 0. Compare the results with a first-
order-plus-time-delay (FOPTD) model that is fit using the
63.2% response method to estimate the time constant.

SOLUTION

Smith’s Method

The two points of interest are the 20% response time,
o = 1.85 min, and the 60% response time, 5o = 5.0 min.
Hence, tyo/tso = 0.37. From Fig. 7.7, { = 1.3 and tgp/7 = 2.8;
thus, T = 5.0/2.8 = 1.79 min. Because the model is over-
damped, the two time constants can be calculated from the
following expressions:

mn=1+tVPZ-1, m=1-1V{Z-1

Solving gives 11 = 3.81 min and T, = 0.84 min.

For Fig. 7.8 the 63.2% response is estimated to occur at
t = 5.3 min. Using the slope at the point of inflection, we
can estimate the time delay to be 6 = 0.7 min. Note that
7 = 4.6 min, which is approximately equal to the sum of 7;
and 7, for the second-order model.

Nonlinear Regression

Using Excel and MATLAB, we calculate the time constants
in Eq. 5-48 that minimize the sum of the squares of the
errors between experimental data and model predictions
(see Eq. 7-12). The data consisted of 25 points between ¢ = 0
and ¢ = 12 min with a sampling period of 0.5 min. A compar-
ison of the model parameters and the sum of squared errors
for each method is shown below; the time delay is set to zero
for the three second-order methods.

Sum of

7y (min) 7 (min) Squares
Smith 3.81 0.84 0.0769
First order (6 = 0.7 min)  4.60 - 0.0323
Excel and MATLAB 3.34 1.86 0.0057

Clearly, the nonlinear regression method is superior in
terms of the goodness of fit, as measured by the sum of
squares of the prediction error, but the required calcula-
tions are more complicated. Note that the nonlinear re-
gression methods employed by Excel and MATLAB
produce identical results.
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Figure 7.9 Comparison of step responses of fitted models
with the original response data.

The step responses are plotted in Fig. 7.9; all three cal-
culated models give an acceptable fit to the original step
response curve. In fact, the nonlinear regression model is
indistinguishable from the experimental response. Non-
linear regression does not depend on graphical correla-
tions and always provides a better fit to the data. It also
permits the experimental step test to be terminated be-
fore the final steady state is reached; however, sufficient
response data must be obtained for the regression
method to be effective.

7.2.3 Fitting an Integrator Model to Step
Response Data

In Chapter 5, we considered the response of a first-order

process to a step change in input of magnitude M:
n(@) = KM(1 - ™) (5-18)

For short times, ¢ < 7, the exponential term can be ap-
proximated by a truncated Taylor Series expansion

a1 (7-21)
so that the response
@) ~ KM[l - ( = %)] = gt (7-22)

is virtually indistinguishable from the step response of
the integrating element

K
Gys) = =7 (7-23)
or in the time domain,
yz(t) = KoMt (7-24)

Thus, a first-order model can be approximated as an
integrating element with a single parameter

(7-25)
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Figure 7.10 Comparison of step responses for a FOPTD
model (solid line) and the approximate integrator plus time
delay model (dashed line).

that matches the early ramp-like response to a step
change in input.

Similarly, the approximate short-term response of
the FOPTD model in (7-16) to a step input of magni-
tude M is

y@) = 2 ¢ - 0)s6 - 0)

that is, a ramp shifted by the time delay, 6. Thus, an ap-
proximate integrator plus time delay model consisting
of a constant K, = K/t and time delay 6 is obtained. As
shown in Chapter 12, whenever 7 is large compared to 0,
a control system can be designed using a two-parameter
(K3 and 0) model that is equally as effective as when
using a three-parameter (X, 7, and 6) FOPTD model.
Figure 7.10 shows that the two responses match well for
relatively short times.

7.2.4 Other Types of Input Excitation

Sometimes a step change in a process input is not per-
missible owing to safety considerations or the possibility
of producing off-specification (off-spec) material as a re-
sult of the process output deviating significantly from the
desired value. In these situations, other types of input
changes that do not move the process to a new steady
state can be selected. They include rectangular pulses
(see Fig. 7.11), pulses of arbitrary shape, or even white
(Gaussian) noise. Such “plant-friendly” inputs should be
as short as possible, stay within actuator limits, and cause
minimum disruption to the controlled variables (Rivera
and Jun, 2000). For pulse forcing, the input is suddenly
changed, left at its new value for a period of time, and
then returned to its original value. Consequently, the
process output also returns to its initial steady state, un-
less the process has an integrating mode (e.g., Eq. 7-23).
Random Binary Sequence (RBS) forcing involves a
series of pulses of fixed height and random duration. At
each sampling instant, a random number generator de-
termines whether the input signal is set at its maximum
or minimum value. However, it is more convenient to

Input
0 ,
Time
(@)
+M
Input O
-M
Time
(b)

Figure 7.11 (a) Pulse and (b) PRBS inputs (one cycle).

implement a pseudo random binary sequence (PRBS),
which is a two-level, periodic, deterministic signal of a
specified length, shown in Fig. 7.11. The actual se-
quence of inputs can be repeated multiple times. The
term pseudo random indicates the input is a repeating
sequence that has the spectral characteristics of a random
signal (Godfrey, 1993). The advantage of a PRBS is that
the input excitation can be concentrated in particular fre-
quency ranges that correspond to the process dynamics
and that are important for control system design (see
Chapter 14 for more information on frequency response
analysis).

A PRBS sequence is characterized by two parame-
ters: the duration of the switching sequence (IN;) and
the switching time or clock period Tj,, which is the
minimum time between changes in the level of the sig-
nal. Ny is a positive integer value, while Ty, is an inte-
ger multiple of the sampling period At. The signal
repeats itself after N;T, units of time. The actual input
sequence is generated by a set of n shift registers such
that Ny = 2" — 1. This means that Ny assumes specific
values such as 3, 7, 15, 31, etc. For example, for n = 4
and N, = 15, the input binary sequence is [0,1,1,1,1, 0,
1,0,1,1,0,0,1, 0,0, 0], where “0” represents the lower
input value and “1” represents the higher input value.
N and Ty, can be determined from a priori information
about the process. Rivera and Jun (2000) have recom-
mended guidelines for specifying T, and Ny,

T,, < 2-787(%0m N, = ZTTBSTSIOm
Qs Tsw
where 'rg)m and TdLom are high and low estimates of the
dominant time constant. 3 is an integer corresponding
to the settling time of the process (e.g., for tos9,, Bs = 3;
for fg99,, Bs = 5), which determines the length of the
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test. Parameter o, represents the expected closed-loop
speed of response, expressed as a multiple of the open-
loop response speed (typically, a; = 2). For arbitrary
input changes such as PRBS, analytical expressions for
the model responses are not available. Consequently,
the model parameters must be estimated using linear
or nonlinear regression.

7.3 NEURAL NETWORK MODELS

Most industrial processes such as chemical reactors and
separation systems exhibit nonlinear behavior. Unfor-
tunately, many processes are so complex that signifi-
cant engineering time and effort is required to develop
and validate detailed theoretical dynamic models. As
an alternative, an empirical nonlinear model can be ob-
tained from experimental data. Neural networks (NN)
or artificial neural networks are an important class of
empirical nonlinear models. Neural networks have been
used extensively in recent years to model a wide range
of physical and chemical phenomena and to model
other nonengineering situations such as stock market
analysis, chess strategies, speech recognition, and med-
ical diagnoses. Neural networks are attractive whenever
it is necessary to model complex or little understood
processes with large input-output data sets, as well as to
replace models that are too complicated to solve in real
time (Su and McAvoy, 1997; Himmelblau, 2008).

The exceptional computational abilities of the
human brain have motivated the concept of an NN.
The brain can perform certain types of computation,
such as perception, pattern recognition, and motor con-
trol, much faster than existing digital computers
(Haykin, 2009). The operation of the human brain is
complex and nonlinear and involves massive parallel
computation. Its computations are performed using
structural constituents called neurons and the synaptic
interconnections between them (that is, a neural net-
work). The development of artificial neural networks is
an admittedly approximate attempt to mimic this bio-
logical neural network, in order to achieve some of its
computational advantages.

A multilayer feedforward network, one of the most
common NN structures, is shown in Fig. 7.12. The neu-
rons (or nodes) are organized into layers (input, output,
hidden); each neuron in the hidden layer is connected to
the neurons in adjacent layers via connection weights.
These weights are unknown parameters that are esti-
mated based on the input/output data from the process
to be modeled. The number of unknown parameters can
be quite large (e.g., 50 to 100), and powerful nonlinear
programming algorithms are required to fit the parame-
ters to the data using the least-squares objective function
(Edgar et al.,, 2001). If enough neurons are utilized, an
input-output process can be accurately modeled by a
neural net model.

Uy

u2 yl
Inputs Y2 Outputs
lt3 y3
Output layer
Ug

Input layer

Figure 7.12 Multilayer neural network with three layers.
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Figure 7.13 Signal diagram for a neuron.

As shown in Fig. 7.13, at each neuron inputs are col-
lected from other neurons or from bias terms, and their
strength or magnitude is evaluated. These inputs are
then summed and compared with a threshold level, and
the appropriate output is determined. The connection
weight (W;;) determines the relative importance of that
input. The sum of the weighted inputs is then passed to a
nonlinear transformation, as shown in Fig. 7.13. One
type of transformation has a sigmoidal shape as is shown
in the figure, although many options are available.

The training of a neural network involves estimating
the unknown parameters; this procedure generally uti-
lizes normal operating data (often large data sets) taken
in the operating region where the model is intended to be
used. After the parameters are estimated (the network is
trained), another large set of data can be used to validate
that the model is adequate. Sometimes the resulting NN
model is not satisfactory, and changes in the model struc-
ture must be made, often by trial and error. Commercial
software packages are available that make automatic em-
pirical modeling of complex processes feasible.

Advanced applications of neural nets have been com-
mercially implemented in the areas of fault detection
and diagnosis, sensor errors, and dynamic modeling and
control (Su and McAvoy, 1997). In some cases, neural
nets have been used to determine controller settings in
advanced control systems.



7.3.1 Soft Sensors

A common problem shared by many industrial processes
is the inability to measure key process variables noninva-
sively and in real time, especially the compositions of
process streams and product properties. The develop-
ment of improved sensors, based on new techniques of
analytical chemistry and modern electronic devices using
fiber optics and semiconductors, has been an active area
(cf. Appendix A). As an alternative, the use of easily
measured secondary variables to infer values of unmea-
sured process variables is now receiving great interest;
the term soft sensors is often used to denote this ap-
proach. Chemometrics is a term related to soft sensors
that describes how data from process analyzers (e.g.,
spectra) can be analyzed and modeled for use in process
monitoring and control (Brown, 1998).

Soft sensors have become an attractive alternative to
the high cost of accurate on-line measurements for ap-
plications where empirical models can accurately infer
(that is, predict) unmeasured variables. For example,
the environmental regulatory agency in Texas permits
NN models to be used for monitoring emissions from
various process units such as power boilers. The NN
models use measurements of selected input and output
variables to predict pollutants at the parts per billion
level (Martin, 1997). In materials manufacturing, the
real-time detection of cracks, inclusions, porosity, dis-
locations, or defects in metallurgical or electronic ma-
terials would be highly desirable during processing,
rather than after processing is completed and defective
products are shipped. Use of virtual sensor models to
predict quality control measures, such as the formation
and location of defects, can greatly reduce the stringent
requirements imposed on hardware-based sensors.

74 DEVELOPMENT OF DISCRETE-TIME
DYNAMIC MODELS

A digital computer by its very nature deals internally
with discrete-time data or numerical values of functions
at equally spaced intervals determined by the sampling
period. Thus, discrete-time models such as difference
equations are widely used in computer control applica-
tions. One way a continuous-time dynamic model can be
converted to discrete-time form is by employing a finite
difference approximation (Chapra and Canale, 2010).
Consider a nonlinear differential equation,

d
Y9~ fy,w

where y is the output variable and u is the input variable.
This equation can be numerically integrated (although
with some error) by introducing a finite difference
approximation for the derivative. For example, the
first-order, backward difference approximation to the
derivative at t = kAt is

(7-26)
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dy(t) _ yk) —yk — 1)
dt At

where At is the integration interval specified by the user
and y(k) denotes the value of y(f) at ¢ = kAt. Substituting
Eq. 7-26 into (7-27) and evaluating f(y, u) at the previous
values of y and u (i.e., y(k — 1) and u(k — 1)) gives

(7-:27)

MO =D o iy - ) utk - 1) (128)
or
Y0 = ylk — 1) + Aok — D,utk ~ 1) (129)

Equation 7-29 is a first-order difference equation
that can be used to predict y(k) based on information
at the previous time step (k — 1). This type of expres-
sion is called a recurrence relation. It can be used to nu-
merically integrate Eq. 7-26 by successively calculating
y(k) for k = 1, 2, 3,... starting from a known initial
condition y(0) and a specified input sequence, {u(k)}. In
general, the resulting numerical solution becomes more
accurate and approaches the correct solution y(f) as At
decreases. However, for extremely small values of At,
computer roundoff can be a significant source of error
(Chapra and Canale, 2010).

EXAMPLE 7.4
For the first-order differential equation,
dy(t
T% + y(§) = Ku(f) (7-30)

derive a recursive relation for y(k) using a first-order
backwards difference for dy(¢)/dt.

SOLUTION

The corresponding difference equation after approximat-
ing the first derivative is

(k) — y(k — 1))
At

+ y(k — 1) = Ku(k — 1) (7-31)

Rearranging gives

K At
T

0 ( — H)y(k ) e D

iy
The new value y(k) is a weighted sum of the previous
value y(k — 1) and the previous input u(k — 1). Equation
7-32 can also be derived directly from (7-29).

As shown in numerical analysis textbooks, the accu-
racy of Eq. 7-32 is influenced by the integration interval.
However, discrete-time models involving no approxi-
mation errors can be derived for any linear differential
equation under the assumption of a piecewise constant
input signal, that is, the input variable u is held con-
stant over At. Next, we develop discrete-time model-
ing methods that introduce no integration error for
piecewise constant inputs, regardless of the size of At
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Such models are important in analyzing computer-
controlled processes where the process inputs are
piecewise constant.

7.4.1 Exact Discrete-Time Models

For a process described by a linear differential equa-
tion, the corresponding discrete-time model can be
derived from the analytical solution for a piecewise
constant input. This analytical approach eliminates
the discretization error inherent in finite-difference
approximations. Consider a first-order model in
Eq. 7-30 with previous output y[(k — 1)Af] and a con-
stant input u(f) = u[(k — 1)Af] over the time interval,
(k — 1)At = t < kAt. The analytical solution to Eq. 7-30
att = kAtis

y(kAD) = (1 — e 2" Ku[(k — 1)A{]
+ e Ay[(k — 1)Aq] (7-33)

Equation 7-33 can be written more compactly as

y(k) = 2y — 1) + K1 — e Mu(k — 1) (7-34)

Equation 7-34 is the exact solution to Eq. 7-30 at the
sampling instants provided that u(f) is constant over
each sampling interval of length Atz. Note that the con-
tinuous output y(¢) is not necessarily constant between
sampling instants, but (7-33) and (7-34) provide an
exact solution for y(f) at the sampling instants, k = 1, 2,
3,....

In general, when a linear differential equation of
order p is converted to discrete time, a linear difference
equation of order p results. For example, consider the
second-order model:

Y(s) K(tgs + 1)

Gls) = U(s) (ms + 1)(mps + 1)

(7-35)

The analytical solution for a constant input provides
the corresponding difference equation, which is also re-
ferred to as an autogressive model with external (or ex-
ogenous) input, or ARX model (Ljung, 1999):

y(k) = ary(k — 1) + apy(k — 2) + biu(k — 1)

+ bou(k — 2) (7-36)
where
@ = e—At/’rl + e—At/'rz (7_37)
a=— e Aty AT (7-38)
b =K (1 4Tl g 2 Ta e‘A'/”) (7-39)
T T T2 T T T2
b,=K (e—At(1/11+1/1'2) n Ta— TN oA 2" Ta e—At/n)
T~ T T1T— T

(7-40)

In Eq. 7-36 the new value of y depends on the values of
y and u at the two previous sampling instants; hence, it
is a second-order difference equation. If 7, = 7, = 0 in
Egs. 7-36 through 7-40, the first-order difference equa-
tion in (7-33) results.

The steady-state gain of the second-order difference
equation model can be found by considering steady-
state conditions. Let # and y denote the new steady-
state values after a step change in u. Substituting these
values into Eq. 7-36 gives

Yy =ay + ay + biu + bu (7-41)

Because y and u are deviation variables, the steady-state
gain is simply y/u, the steady-state change in y divided by
the steady-state change in u. Rearranging Eq. 7-41 gives

b1 + by

Gain == = ——
1-—a—a

NI

(7-42)

Substitution of Egs. 7-37 through 7-40 into (7-42) gives
K, the steady-state gain for the transfer function model
in Eq. 7-35.

Higher-order linear differential equations can be
converted to a discrete-time, difference equation model
using a state-space analysis (Astrﬁm and Wittenmark,
1997).

7.5 IDENTIFYING DISCRETE-TIME
MODELS FROM EXPERIMENTAL
DATA

If a linear discrete-time model is desired, one approach
is to fit a continuous-time model to experimental data
(cf. Section 7.2) and then to convert it to discrete-time
form using the above approach. A more attractive ap-
proach is to estimate parameters in a discrete-time
model directly from input-output data based on linear
regression. This approach is an example of system iden-
tification (Ljung, 1999). As a specific example, consider
the second-order difference equation in (7-36). It can
be used to predict y(k) from data available at times,
(k—1)At and (k — 2)At. In developing a discrete-time
model, model parameters ay, a,, by, and b, are consid-
ered to be unknown. They are estimated by applying lin-
ear regression to minimize the error criterion in Eq. 7-8
after defining

BT =[a1ay b1 by], Xq1=y(k — 1),
X;=u(k—1), and X;=u(k —2)

XZ =y(k - 2)’

EXAMPLE 7.5

Consider the step response data y(k) in Table 7.2, which
were obtained from Example 7.3 and Fig. 7.8 for Ar = 1.
At t = 0 a unit step change in u occurs, but the first output
change is not observed until the next sampling instant.
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Estimate the model parameters in the second-order differ-
ence equation from the input-output data. Compare this
model with the models obtained in Example 7.3 using non-
linear regression.

Table 7.2 Step Response Data

k y(k)
| 0.058
2 0217
3 0.360
4 0.488
5 0.600
6 0.692
7 0772
8 0.833
9 0.888
10 0.925

*At = 1; for k < 0, y(k) = 0 and u(k) = 0.

Table 7.3 Data Regression for Example 7.6

0.058 T 0 10D
0.217 0058 0 11
0.360 0217 0058 1 1
0.488 0360 0217 1 1
oo | WEwD) o 0GR L
0.692 0.600 0488 1 1
0.722 0.692 0600 1 1
0.833 0772 0692 1 1
0.888 0833 0772 1 1
0.925 L0.888 0833 1 1]
SOLUTION

For linear regression, there are four independent variables,
y(k — 1), y(k — 2), u(k — 1), u(k — 2), one dependent vari-
able y(k), and four unknown parameters (ay, a, b1, by). We
structure the data for regression as shown in Table 7.3 and
solve Eq. 7-10.

Table 7.4 compares the estimated parameters obtained
by the two approaches. The linear regression results were
obtained from Eq. 7-10. The results labeled nonlinear re-
gression were obtained by fitting a continuous-time
model (overdamped second-order with time constants 7;

Table 7.4 Comparison of Estimated Model
Parameters for Example 7.5

Linear Regression  Nonlinear Regression

@ 0.975 0.984
ay —0.112 -0.122
by 0.058 0.058
b, 0.102 0.101
K 1.168 1159

Table 7.5 Comparison of
Simulated Responses for Various
Difference Equation Models”

n Y Jr v
1 0.058 0.058 0.058
2 0.217 0.217 0.216
3 0.360 0.365 0.366
4 0.488 0.487 0.487
5 0.600 0.595 0.596
6 0.692 0.690 0.690
7/ 0.772 0.768 0.767
8 0.833 0.835 0.835
9 0.888 0.886 0.885

10 0.925 0.933 0.932

2y, experimental data; y;, linear
regression; yy, nonlinear regression

and 1, and gain K) to the data using nonlinear regres-
sion. The continuous-time model was then converted to
the corresponding discrete-time model using Eqgs. 7-36
to 7-40.

The parameters obtained from linear regression in Table 7.4
are slightly different from those for nonlinear regression.
This result occurs because for linear regression, four para-
meters were estimated; with nonlinear regression, three
parameters were estimated. The estimated gain for linear
regression, K = 1.168, is about 1% higher than the value
obtained from nonlinear regression.

Table 7.5 compares the simulated responses for the two
empirical models. Linear regression gives slightly better
predictions, because it fits more parameters. However,
in this particular example, it is difficult to distinguish
graphically among the three model step responses.

Example 7.5 has shown how we can fit a second-
order difference equation model to data directly. The
linear regression approach can also be used for higher-
order models, provided that the parameters still appear
linearly in the model. It is important to note that the
estimated parameter values depend on the sampling
period At for the data collection.

An advantage of the regression approach is that it is
not necessary to make a step change in « in order to es-
timate model parameters. An arbitrary input variation
such as a PRBS signal (see Fig. 7.11) over a limited pe-
riod of time would suffice. In fact, a PRBS has certain
advantages in forming the X7X matrix in Eq. 7-10
(Rivera and Jun, 2000). In particular, it is not necessary
to force the system to a new steady state, a beneficial
feature for industrial applications. Other advantages of
PRBS are that the input is not correlated with other
process trends, and that the test can be run for a longer
time period than for a step change in the input.
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7.5.1 Impulse and Step Response Models

Another type of discrete-time model, the finite impulse
response (FIR) or convolution model, has become impor-
tant in computer control. This model can be written as

y(k + 1) = y(0) + ghiu(k —i+1) (7-43)

Integer N is selected so that NAt=t,, the settling time
of the process (see Chapter 5). Note that an equivalent
version of Eq. 7-43 can be written with y(k) instead of
y(k + 1) on the left-hand side (as in Section 7.4) by shift-
ing the index backward one sampling period. A related
discrete-time model can be derived from Eq. 7-43 and is
called the finite step response model, or just the step re-
sponse model. To illustrate this relationship, we consider
a simple (finite) impulse response model where N = 3.
Expanding the summation in Eq. 7-43 gives

y(k + 1) = y(0) + hqu(k) + hyu(k — 1)
+ h3u(k - 2)

The step response coefficients S; are related to the im-
pulse response coefficients 4; as shown in Fig. 7.14. By
definition, the step response coefficients are simply the
values of the response y at the sampling instants. Note
that the impulse response coefficients are equal to the
differences between successive step response coeffi-
cients, #; = S; — S;—1. If we substitute for 4; in terms of
S; in (7-44), then

yk + 1) = y(0) + (S1 — So)u(k)
+ (82— Spu(k — 1)
+ (83— Sulk —2)  (7-45)

Recognizing that Sy = 0 (see Fig. 7.14) and rearranging
gives

y(k + 1) = y(0) + $1[u(k) — u(k — 1))
+ Sy(u(k — 1) — u(k — 2)]

+ Ssu(k — 2) (7-46)
A

After defining Au(k) = w(k) — u(k — 1), Eq. 7-46
becomes

(7-44)

__________ ¥s=SN
¥4 =8y =T hs
y(3)=S3 7~ __y'4 }
hy | |
y ¥2)=8So /L __Y_ } {
| | |
y1)=8,/ h2 i i i
A I | |
hl | | | |
| | | 1
0 At 2At 3At  4At  BAt

Time

Figure 7.14 The relationship between the step response (S;)
and impulse response (/;) coefficients for the situation where

y(0) = 0.

y(k + 1) = y(0) + S1Au(k)
+ SAu(k — 1) + Ssu(k — 2) (7-47)

Similarly, the step response model that corresponds to
the full impulse response model in Eq. 7-43 is given by

y(k + 1) = y(0) + E SiAu(k — i + 1)
=

+ Syu(k — N + 1)

This derivation is left to the reader.

A generalized framework for using step response
models in model predictive control is presented in Chap-
ter 20. Note that Fig. 7.14 illustrates the case where there
is no time delay in the process model. When a time delay
is present, the initial step (or impulse) coefficients are
zero. For example, if there is a time delay of d sampling
periods, then Sy, Sy, . . . , S, are zero in Eq. 7-48. Similarly,
h;=0for0=i=dinEq.7-43.

A discrete-time impulse or step response model can be
developed from a transfer function model or a linear dif-
ferential (or difference) equation model. For example,
consider a first-order transfer function with 7 = 1 min
and K = 1, and a unit step input change. The first-order
difference equation corresponding to Eq. 7-34 with
y(0) = 0and At = 0.2 is

y(k) = 0.8187y(k — 1) + 0.1813u(k — 1),

(7-48)

or, equivalently,
y(k + 1) = 0.8187y(k) + 0.1813u(k).

For u(0) = u(1) =+--=u(k — 1) = 1.0 and At = 0.2,
the step response for ¢t = 0 to ¢ = 10, consists of the data
points in Table 7.6. The values of the step response are

Table 7.6 Selected Step Response
Coefficients for First-Order Model

Time Step, k Sk
0 0.0000
1 0.1813
2 0.3297
3 0.4513
4 0.5507
5 0.6322
6 0.6989
7 0.7535
8 0.7982
9 0.8348
10 0.8647
15 0.9502
20 0.9817
25 0.9933
30 0.9975
35 0.9991
40 0.9997
45 0.9999
49 1.0000
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shown for 0 = k£ = 10, and selected values are included
for 10 = £ = 49.

This modeling approach leads to a step response
model that is equivalent to the first-order difference
equation in Eq. 7-32 but that has many more parame-
ters. Given the two alternatives, it is clear that the
number of model parameters (model parsimony) is
an issue in selecting the appropriate model.

When should a step response or impulse response
model be selected? First, this type of model is useful
when the actual model order or time delay is unknown,
because this information is not required for step re-
sponse models. The model parameters can be calcu-
lated directly using linear regression. Second, step or
impulse response models are appropriate for processes
that exhibit unusual dynamic behavior that cannot be
described by standard low-order models. We consider
such an example next.

EXAMPLE 7.6

The industrial data shown in Fig. 7.15 were obtained for a
step test of a distillation column in a gas recovery unit.
The input is the column pressure, the output is in analyzer
composition, and the sampling period is At = 1 min (120
data points). Obtain the following models for the unit step
change in the input:

(1) Step response model with 50 coefficients
(2) Discrete-time ARX model (N = 50):
y(k) = ayy(k — 1) + apy(k — 2)

+ aszy(k — 3) + agy(k — 4) + bu(k — 1)
+ byu(k — 2) + bsu(k — 3)

(3) First-order-plus-time-delay model (cf. Eq. 7-16)

(4) Second-order-plus-time-delay model with inverse re-
sponse:

K@ — 1,8

S =5 o D)

SOLUTION

Figure 7.15 compares the four model responses with the
experimental data. Excel was used to fit Models 3 and 4,
while linear regression was used for Models 1 and 2. A step
response model with 50 coefficients (and At = 2 min) pro-
vides a predicted response that is indistinguishable from
the experimental data (solid line); it is shown as Model 1.
A step response model with 120 coefficients and At = 1
min would provide an exact fit of the 120 data points.
Models 2, 3, and 4 are as follows:

@) y(k) = 3317y(k — 1) — 4.033y(k — 2) + 2.108y(k — 3)
+ 0.392y(k — 4) — 0.00922u(k — 1)
+ 0.0322u(k — 2) — 0.0370u(k — 3)
+0.0141u(k — 4)

0.082¢ *38
LIEU = e
0.088(1 — 12.25)e >

4) G(s) =
@ G) 109.25* + 23.1s + 1

Model 2 gives an adequate fit except for the initial inverse
response (an artifact near ¢ = 0). Models 3 and 4 provide
poor approximations of the response for ¢ = 25. However,
Models 3 and 4 may be adequate for designing simple con-
trollers.

Figure 7.15 Comparison of model

0.1 ] T l ' '
sl
0.06
0.04
y
0.02
0] -SSR\ MR . Model 1 and experimental response |
| f — —— Model 2
-0.02 ’ —-—=- Model 3 1
........... Model 4
~0.04 L ' l I I
0 20 20 60 80 100
Time (min)

120 predictions for industrial column step

responses, Example 7.7.
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7.5.2 Process Identification of More
Complicated Models

In this section, we briefly consider three classes of more
complicated process models: MIMO models, stochastic,
models, and nonlinear discrete-time models.

MIMO (multiple input, multiple output) process
modeling is inherently more complicated than SISO
modeling. For linear systems, the Principle of Superpo-
sition holds, which allows MIMO models to be devel-
oped through a series of single step tests for each input,
while holding the other inputs constant. For a process
with three inputs (#) and three outputs (y), we can in-
troduce a step change in uq, and record the responses
for y, y», and ys. The three transfer functions involving
u1, namely

Y1 Y, Y;
U, - On g, = On g, = On

can be obtained using the techniques described in Sec-
tion 7.2. In a similar fashion, step changes in U, and U3
can be introduced in order to determine the other six
G;;. Alternatively, discrete-time models can be devel-
oped for each output, as discussed earlier in this sec-
tion, using linear regression techniques. See Chapter 20

SUMMARY

When theoretical models are not available or are very
complicated, empirical process models provide a viable
alternative. In these situations, a model that is suffi-
ciently accurate for control system design can often be
obtained from experimental input/output data. Step re-
sponse data can be analyzed graphically or by com-
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EXERCISES

7.1 An operator introduces a step change in the flow rate g;
— to a particular process at 3:05 A.M., changing the flow
from 500 to 540 gal/min. The first change in the process

— temperature T (initially at 120 °F) occurs at 3:09 A.M.
After that, the response in T is quite rapid, slowing down
gradually until it appears to reach a steady-state value of
124.7 °F. The operator notes in the logbook that there is no
change after 3:34 A.M. What approximate transfer function
might be used to relate temperature to flow rate for this
process in the absence of more accurate information? What
should the operator do next time to obtain a better estimate?

7.2 A single-tank process has been operating for a long pe-
~—— riod of time with the inlet flow rate g; equal to 30.4
ft3/min. After the operator increases the flow rate sud-

— denly at t = 0 by 10%, the liquid level in the tank
changes as shown in Table E7.2.

Table E7.2
t h t h

(min) (ft) (min) (ft)
0 5.50 1.4 6.37
0.2 5.75 1.6 6.40
0.4 5.93 1.8 6.43
0.6 6.07 2.0 6.45
0.8 6.18 3.0 6.50
1.0 6.26 4.0 6.51
1.2 6.32 5.0 6.52

Assuming that the process dynamics can be described by a
first-order model, calculate the steady-state gain and the time
constant using three methods:

(a) From the time required for the output to reach 63.2% of
the total change

(b) From the initial slope of the response curve

(¢) From the slope of the fraction incomplete response
curve

(d) Compare the data and the three models by simulating
their step responses.

7.3 A process consists of two stirred tanks with input g and
—— outputs 7 and T, (see Fig. E7.3). To test the hypothesis

that the dynamics in each tank are basically first-order,
—a step change in g is made from 82 to 85 L/min, with

output responses given in Table E7.3.

(a) Find the transfer functions T(s)/Q’(s) and T5(s)/T(s).

Assume that they are of the form K;/(t;s + 1).

T T
q Talnk 1 Ta2 nk 2
Figure E7.3
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Process Control, M. A. Henson and D. E. Seborg (Eds.), Prentice
Hall, Upper Saddle River, NJ, 1997.

Sundaresan, K. R., and R. R. Krishnaswamy, Estimation of Time
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Table E7.3

(min) T,(°C) T,(°C) | «min) Ty(°C) T5(°C)
0 10.00 20.00 11 17.80 25.77
1 12.27 20.65 12 17.85 25.84
2 13.89 21.79 13 17.89 25.88
3 15.06 22.83 14 17.92 25.92
4 15.89 23.68 15 17.95 25.94
5 16.49 24.32 16 17.96 25.96
6 16.91 24.79 17 17.97 25.97
7 17.22 25.13 18 17.98 25.98
8 17.44 25.38 19 17.99 25.98
9 17.60 25.55 20 17.99 25.99
10 17.71 25.68 50 18.00 26.00

(b) Calculate the model responses to the same step change
in g and plot with the experimental data.

7.4 For a multistage bioseparation process described by the
transfer function,

2
Gs + DBs + 1)(s + 1)

calculate the response to a step input change of magnitude, 1.5.

(a) Obtain an approximate first-order-plus-delay model
using the fraction incomplete response method.

G(s) =

(b) Find an approximate second-order model using a
method of Section 7.2.

(¢) Calculate the responses of both approximate models
using the same step input as for the third-order model. Plot
all three responses on the same graph. What can you con-
clude concerning the approximations?

7.5 Fit an integrator plus time-delay model to the unit step
= response in Figure E7.5 for ¢ = 15. The step response
= has been normalized by the steady-state gain. Compare

the experimental response with the response predicted
from the model.

7.6 For the unit step response shown in Fig. E7.5, estimate
the following models using graphical methods:

(a) First-order plus time-delay.

1.0~
0.8

0.6
Output
0.4

0.2

| | | |
0 5 10 15 20 25

Time (min)

Figure E7.5
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(b) Second-order using Smith’s method and nonlinear re-
gression.

Plot all three predicted model responses on the same graph.

7.7 A heat exchanger used to heat a glycol solution with a hot
oil is known to exhibit FOPTD behavior, Gy(s) = T'(s)/Q’(s),
where T is the outlet temperature deviation and Q' is the hot oil
flow rate deviation. A thermocouple is placed 3 m downstream
from the outlet of the heat exchanger. The average velocity of
the glycol in the outlet pipe is 0.5 m/s. The thermocouple also is
known to exhibit first-order behavior; however, its time constant
is expected to be considerably smaller than the heat exchanger
time constant.

(a) Data from a unit step test in Q' on the complete system
are shown in Fig. E7.7. Using a method of your choice, calcu-
late the time constants of this process from the step response.
(b) From your empirical model, find transfer functions for
the heat exchanger, pipe, and thermocouple. Think of the
model as the product of three transfer functions: process,
pipe flow, and sensor. What assumptions do you have to
make to obtain these individual transfer functions from the
overall transfer function?

10.0—
8.0
6.0
40—
20

0 | | | |
0 5 10 15 20 25

Time (min)

T' (°C)

Figure E7.7

7.8 The level in a tank responds as a first-order system to
(j changes in its inlet flow. The data shown below were
> gathered after the inlet flow was increased quickly
from 1.5 to 4.8 gal/min.

(a) Determine the transfer function by estimating the time
constant using one of the methods of Section 7.2. Be sure to
use deviation variables and include units for the model para-
meters.

(b) Repeat part (a) using nonlinear regression (e.g., Excel)
and the liquid level data.

(¢) Graphically compare the two model responses with the
data. Which model is superior? (Justify your answer)

Table E7.8

Time Level Time Level
(min) (ft) (min) (ft)

0.00 10.4 1.75 20.3

0.25 12.0 2.00 21.5

0.50 13.5 225 22.1

0.75 15.1 2.50 22.9

1.00 16.8 2.75 23.7

1.25 18.1

1.50 19.2 15.0 30.7 (steady state)

Table E7.9

t y t y
0 0 7 1.8
1 0 8 2.4
2 0 9 2.7
3 0.3 10 2.8
4 0.6 11 2.9
5 0.9 12 3.0
6 13. 13 3.0

7.9 The output response data y shown above were generated
from a step change in input u from 2 to 4 at time ¢ = 0.
Develop a transfer function model of the form

Y(s) _ Ke™
U(s) B (115 + D)(12s + 1)

7.10 Noisy data for the step response of a boiler temperature
T to a decrease in air flow rate g from 1000 to 950 cfm are
shown below. Develop a FOPTD model using a method from
Chapter 7. Be sure to use deviation variables and report units
for the model parameters.

Table E7.11
t (min) q (cfm) T (°C)
0 1000 849
1 1000 851
2 1000 850
3 950 851
4 950 849
5 950 860
6 950 867
7 950 873
8 950 878
9 950 882
10 950 886
11 950 888
12 950 890
13 950 890

7.11 Consider the first-order differential equation

—\

d
) ST 40 =6 0 =3
where u(t) is piecewise constant and has the following values:
u@ =0 uB) =3
ul)=1 u@) =0
u(2) =2 u(®) =0 fort >4

Derive a difference equation for this ordinary equation using
At=1and

(a) Exact discretization

(b) Finite difference approximation

Compare the integrated results for 0 = ¢ = 10. Examine
whether At = 0.1 improves the finite difference model.

7.12 The following data were collected from a cell concen-
Cj tration sensor measuring absorbance in a biochemi-
~ cal stream. The input x is the flow rate deviation (in



Table E7.12

Time (s) x y
0 0 3.000
1 3 2.456
2 2 5.274
3 1 6.493
4 0 6.404
5 0 5.243
6 0 4.293
7 0 3.514
8 0 2.877
9 0 2.356

10 0 1.929

dimensionless units) and the sensor output y is given in volts.
The flow rate (input) is piecewise constant between sampling
instants. The process is not at steady state initially, so y can
change even though x = 0.

Fit a first-order model, y(k) = a;y(k — 1) + bix(k — 1), to the
data using the least-squares approach. Plot the model
response and the actual data. Can you also find a first-order
continuous transfer function G(s) to fit the data?

7.13 Obtain a first-order discrete-time model from the
E] response data in Table E7.12. Compare your results with
<~ the first-order graphical method for step response data,

fitting the gain and time constant. Plot the two simulated
step responses for comparison with the observed data.

7.14 Data for a person with type 1 diabetes are available as
[—j both MATLAB and Excel data files on the book web
& site.! Glucose measurements (y) were recorded every

five minutes using a wearable sensor that measures sub-
cutaneous glucose concentration. The insulin infusion rate
from a wearable subcutaneous insulin pump was also
recorded every five minutes. The data files consist of experi-
mental data (1) for two step changes in the insulin infusion
rate. The data are reported as deviations from the initial val-
ues that are considered to be the nominal steady-state values.

It is proposed that the relationship between the glucose con-
centration y and the insulin infusion rate u can be described
by a discrete-time, dynamic model of the form:

y(k) = ary(k — 1) + apy(k — 2)
+ buu(k — 1) + byu(k — 2)

Do the following:

(a) Use the least squares approach to estimate the model
parameters from the basall dataset. This data will be referred
to as the calibration data. Graphically compare the model
response and this data.

(b) In order to assess the accuracy of the model from part
(a), calculate the model response y to the u step changes in
the validation data (basal2). Then graphically compare the
model response ) with the validation data y.

1Book web site: www.wiley.com/college/seborg
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(¢) Repeat Steps (a) and (b) using an alternative transfer
function model:

Ye) K

Us) +1
Estimate the model parameters using graphical techniques

and the basall dataset. Then compare the model and experi-
mental response data for both datasets.

(d) Which model is superior? Justify your answer by consid-
ering the least squares index for the one-step-ahead predic-
tion errors,

N
S =k§=)1[y(k) - 0P

where N is the number of data points.

7.15 Consider the PCM furnace module of Appendix E. As-
sume that hydrocarbon temperature Ty is the output
variable and that air flow rate F, is the input variable.

Do the following:

(a) Develop a FOPTD model from response data for a step
change in F4 at t = 10 min from 17.0 to 20.0 m>/min. Summa-
rize your calculated model parameters in a table and briefly
describe the method used to calculate them.

(b) Repeat (a) for a second-order plus time-delay (SOPTD)
model.

(¢) Plot the actual Tyc response and the two model
responses for the F4 step change of part (a).

(d) Are the two models reasonably accurate? Which model
is superior? Justify your answer by considering the least
squares index for the prediction errors,

N
$ = S0 - P

where N is the number of data points.

7.16 Consider the PCM distillation column module of

Appendix E. Assume that distillate MeOH composition

&= xp is the output variable and that reflux ratio R is the
input variable.

Do the following:

(a) Develop a first-order plus time-delay (FOPTD) transfer
function model from response data for a step change in R at
¢t = 10 min from 1.75 to 2.0. Summarize your calculated model
parameters in a table and briefly describe the method used to
calculate them.

(b) Repeat (a) for a second-order plus time-delay (SOPTD)
model.

(c) Plot the actual xp response and the two model responses
for the R step change of part (a).

(d) Are the two models reasonably accurate? Which model
is better? Justify your answer by considering the least squares
index for the prediction errors,

N
s = 2k - 0P

where N is the number of data points.
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Summary

In previous chapters, we considered the dynamic behav-
ior of representative processes and developed mathe-
matical tools required to analyze process dynamics. We
are now prepared to consider the important topic of
feedback control.

The standard feedback control algorithms (also called
control laws) are presented in this chapter, with emphasis
on control algorithms that are widely used in the process
industries. Proportional-integral-derivative (PID) control
and on-off control are the predominant types of feedback
control. Consequently, features and options for PID con-
trollers are discussed in detail. Finally, we introduce
digital PID control algorithms to emphasize the strong
parallels between digital and analog (continuous) ver-
sions of feedback control. The remaining elements in the
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feedback control loop—sensors, transmitters, and control
valves—will be considered in Chapter 9.

8.1 INTRODUCTION

We introduce feedback control systems by again con-
sidering the stirred-tank blending process of Chapters 2
and 4.

8.1.1 Illustrative Example: The Continuous
Blending Process

A schematic diagram of a stirred-tank blending process
is shown in Fig. 8.1. The control objective is to keep the
tank exit composition x at the desired value set point
by adjusting w,, the flow rate of species A, via the con-
trol valve. The composition analyzer-transmitter (AT)
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Figure 8.1 Schematic diagram for a stirred-tank blending
system.

measures the exit composition and transmits it as an
electronic signal to the feedback controller (AC). The
controller compares the measured value x, to the
desired value (set point) and calculates an appropriate
output signal p, an electronic signal that is sent to a
current-to-pressure transducer (I/P) where it is converted
to an equivalent pneumatic (air) signal that is compati-
ble with the control valve. The symbols of Fig. 8.1 are
examples of the standard instrumentation symbols
published by the Instrumentation, Systems and Automa-
tion (ISA) Society. In particular, an electronic signal is
denoted by a dashed line and a pneumatic signal by a
solid line with crosshatches. A compilation of common
instrumentation symbols appears in Appendix D.

This example illustrates that the basic components in
a feedback control loop are:

¢ Process being controlled (blending system)
¢ Sensor-transmitter combination (AT)

¢ Feedback controller (AC)

e Current-to-pressure transducer (I/P)

¢ Final control element (control valve)

e Transmission lines between the various instru-
ments (electrical cables and pneumatic tubing)

A current-to-pressure (or voltage-to-pressure) transducer
is required if the control loop contains both electronic in-
struments and a pneumatic control valve. The term final
control element refers to the device that is used to adjust
the manipulated variable. It is usually a control valve but
could be some other type of device, such as a variable
speed pump or an electrical heater. The operation of this
blending control system has been described in Section 1.2.

The blending system in Fig. 8.1 involves analog in-
strumentation. For an analog device, the input and
output signals are continuous (analog) rather than dis-
continuous (digital or discrete time). Analog devices
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can be either electronic or pneumatic. For electronic
devices such as sensors and controllers, the standard
ranges for input and output signals are 420 mA and
1-5V (DC). Pneumatic instruments continue to be
used, particularly in older plants or hazardous areas
where electronic instruments are not intrinsically safe.
For a pneumatic instrument, the input and output sig-
nals are air pressures in the range of 3 to 15 psig. Metal
or plastic tubing (usually 1/4 or 3/8 OD) is used to in-
terconnect the various pneumatic instruments. As indi-
cated in Fig. 8.1, both electronic and pneumatic devices
can be used in the same feedback control loop.

Most new control systems utilize digital technology
with the control algorithms implemented via digital
computers and with digital signal pathways (networks)
used (see Appendix A) for data transmission. Conse-
quently, we consider digital control algorithms. Instru-
mentation for process control, including computer
hardware and software, are considered in greater detail
in Chapter 9 and Appendix A.

Now we consider the heart of a feedback control
system, the controller itself.

8.1.2

We tend to regard automatic control devices as a mod-
ern development. However, ingenious feedback control
systems for water-level control were used by the Greeks
as early as 250 B.c. (Mayr, 1970), with their mode of op-
eration being very similar to that of the level regulator in
the modern flush toilet. The fly-ball governor, which was
first applied by James Watt to the steam engine in 1788,
played a key role in the development of steam power.

During the 1930s, three-mode controllers with propor-
tional, integral, and derivative (PID) feedback control
action became commercially available (Ziegler, 1975).
The first theoretical papers on process control were
published during this same period. Pneumatic PID con-
trollers gained widespread industrial acceptance during
the 1940s, and their electronic counterparts entered the
market in the 1950s. The first computer control applica-
tions in the process industries were reported in the late
1950s and early 1960s. Since the 1980s, digital hardware
has been used on a routine basis and has had a tremen-
dous impact on process control.

As a simple example of feedback control, consider
the flow control loop in Fig. 8.2 where the flow rate of a
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Figure 8.2 Flow control system.
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Set point Ysp
I

Input signal y,,
(from transmitter)

Controller
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Figure 8.3 Simple diagram of a feedback controller.

process stream is measured and transmitted electroni-
cally to a flow controller. The controller compares the
measured value to the set point and takes the appropri-
ate corrective action by calculating the controller out-
put and transmitting it as an electronic signal to the
control valve.

The block diagram for the feedback controller of
Fig. 8.2 is shown in Fig. 8.3. The set point is shown as a
dashed line. For digital control systems, the set point
would be entered by an operator using a computer ter-
minal. For an analog controller, the set point would be
specified via a dial setting on the equipment. In addi-
tion to this local set point, some controllers have a re-
mote set-point option that permits them to receive an
external set-point from another controller or a com-
puter. The input and output signals for analog con-
trollers are continuous signals that are either electrical
or pneumatic. For digital control systems, the input sig-
nals are first converted from analog to digital form
prior to the control calculations. Then, the calculated
value of the controller output is converted from a digi-
tal signal to an analog signal for transmission to the
control valve (or some other type of final control ele-
ment). These types of signal conversions are described
in Appendix A.

8.2 BASIC CONTROL MODES

Next we consider the three basic feedback control modes
starting with the simplest mode, proportional control.

8.2.1 Proportional Control

In feedback control, the objective is to reduce the error
signal to zero where

e(t) = YSp(t) — Ym(®) (8-1)

and
e(t) = error signal

ysp(f) = set point

ym(t) = measured value of the controlled variable
(or equivalent signal from the sensor/
transmitter)

Although Eq. 8-1 indicates that the set point can be
time-varying, in many process control problems it is
kept constant for long periods of time.

For proportional control, the controller output is
proportional to the error signal,

p() = p + Kee(t) (8-2)
where
p(t) = controller output

p
K,

bias (steady-state) value

Il

controller gain (usually dimensionless)

The key concepts behind proportional control are that
(1) the controller gain can be adjusted to make the
controller output changes as sensitive as desired to
deviations between set point and controlled variable,
and that (2) the sign of K, can be chosen to make the
controller output increase (or decrease) as the error
signal increases. For example, for the blending process in
Fig. 8.1, we want w, to decrease as x increases; hence,
K, should be a positive number.

For proportional controllers, bias p can be adjusted,
a procedure referred to as manual reset. Because the
controller output equals p when the error is zero, p is
adjusted so that the controller output, and conse-
quently the manipulated variable, are at their nominal
steady-state values when the error is zero. For exam-
ple, if the final control element is a control valve, p is
adjusted so that the flow rate through the control
valve is equal to the nominal, steady-state value when
e = 0. The controller gain K, is adjustable and is usu-
ally tuned (i.e., adjusted) after the controller has been
installed.

For general-purpose controllers, K, is dimensionless.
This situation occurs when p and e in Eq. 8-2 have the
same units. For example, the units could be associated
with electronic or pneumatic instruments (mA, volts,
psi, etc.). For digital implementation, p and e are often
expressed as numbers between 0 and 100%. The latter
representation is especially convenient for graphical
displays using computer control software.

On the other hand, in analyzing control systems it
can be more convenient to express the error signal in
engineering units such as °C or mol/L. For these situa-
tions, K, will not be dimensionless. As an example,
consider the stirred-tank blending system. Suppose that
e [=] mass fraction and p [=] mA,; then Eq. 8.2 implies
that K. [=] mA because mass fraction is a dimension-
less quantity. If a controller gain is not dimensionless, it
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Figure 8.4 Proportional control: ideal behavior (slope of
line = K,).

includes the steady-state gain for another component
of the control loop such as a transmitter or control
valve. This situation is discussed in Chapter 11.

Some controllers have a proportional band setting
instead of a controller gain. The proportional band PB
(in %) is defined as

A 100%
PB = K,

(8-3)
This definition applies only if K is dimensionless. Note
that a small (narrow) proportional band corresponds to
a large controller gain, whereas a large (wide) PB value
implies a small value of K.

The ideal proportional controller in Eq. 8-2 and
Fig. 8.4 does not include physical limits on the controller
output, p. A more realistic representation is shown in
Fig. 8.5, where the controller saturates when its output
reaches a physical limit, either p,,x O pmip- In order to
derive the transfer function for an ideal proportional
controller (without saturation limits), define a devia-
tion variable p’(¢) as

P@®=p@-p (8-4)
Then Eq. 8-2 can be written as
P = Kee()) (8-5)

Figure 8.5 Proportional control: actual behavior.
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It is unnecessary to define a deviation variable for the
error signal, because e is already in deviation form, and
its nominal steady-state value is e = 0. Taking Laplace
transforms and rearranging (8-5) gives the transfer
function for proportional-only control:

Ps)
Es) K

(8-6)

An inherent disadvantage of proportional-only
control is that a steady-state error (or offset) occurs
after a set-point change or a sustained disturbance. In
Chapter 11 we demonstrate that offset will occur for
proportional-only control regardless of the value of K,
that is employed. Fortunately, the addition of the integral
control mode facilitates offset elimination, as discussed
in the next section.

For control applications where offsets can be toler-
ated, proportional-only control is attractive because of
its simplicity. For example, in some level control prob-
lems, maintaining the liquid level close to the set point
is not as important as merely ensuring that the storage
tank does not overflow or run dry.

8.2.2 Integral Control

For integral control action, the controller output depends
on the integral of the error signal over time,

t
o =p+ L [amar @
I Jo

where 77, an adjustable parameter referred to as the
integral time or reset time, has units of time. In the
past, integral control action has been referred to as
reset or floating control, but these terms are seldom
used anymore.

Integral control action is widely used because it
provides an important practical advantage, the elimi-
nation of offset. To understand why offset is elimi-
nated, consider Eq. 8-7. In order for the controlled
process to be at steady state, the controller output p
must be constant so that the manipulated variable is
also constant. Equation 8-7 implies that p changes with
time unless e(t*) = 0. Thus, when integral action is
used, p automatically changes until it attains the value
required to make the steady-state error zero. This de-
sirable situation always occurs unless the controller
output or final control element saturates and thus is un-
able to bring the controlled variable back to the set
point. Controller saturation occurs whenever the distur-
bance or set-point change is so large that it is beyond
the range of the manipulated variable.

Although elimination of offset is usually an impor-
tant control objective, the integral controller in Eq. 8-7
is seldom used by itself, because little control action
takes place until the error signal has persisted for some
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KC
Slope = o

time. In contrast, proportional control action takes
immediate corrective action as soon as an error is de-
tected. Consequently, integral control action is normally
used in conjunction with proportional control as the
proportional-integral (PI) controller:

p(d) =P + K, (e(t) + Til A o) dt*) (8-8)

The corresponding transfer function for the PI con-
troller in Eq. 8-8 is given by

E(s)

The response of the PI controller to a unit step
change in e(t) is shown in Fig. 8.6. At time zero,
the controller output changes instantaneously due to
the proportional action. Integral action causes the
ramp increase in p(¢) for ¢ > 0. When ¢ = 7/, the integral
term has contributed the same amount to the controller
output as the proportional term. Thus, the integral ac-
tion has repeated the proportional action once. Some
commercial controllers are calibrated in terms of 1/,
(repeats per minute) rather than 7; (minutes, or min-
utes per repeat). For example, if 7; = 0.2 min, this cor-
responds to 1/7; having a value of 5 repeats/minute.

One disadvantage of using integral action is that it
tends to produce oscillatory responses of the controlled
variable and, as we will see in Chapter 11, it reduces

ysp ———————————————

Ym

Figure 8.6 Response of proportional-integral
controller to unit step change in e(f).

the stability of the feedback control system. A limited
amount of oscillation can usually be tolerated, because
it often is associated with a faster response. The unde-
sirable effects of too much integral action can be
avoided by proper tuning of the controller or by includ-
ing derivative control action (Section 8.2.3), which
tends to counteract the destabilizing effects.

Reset Windup

An inherent disadvantage of integral control action is
a phenomenon known as reset windup. Recall that the
integral mode causes the controller output to change
as long as e(*) # 0 in Eq. 8-8. When a sustained error
occurs, the integral term becomes quite large and the
controller output eventually saturates. Further buildup
of the integral term while the controller is saturated
is referred to as reset windup or integral windup. Fig-
ure 8.7 shows a typical response to a step change in set
point when a PI controller is used. Note that the indi-
cated areas under the curve provide either positive or
negative contributions to the integral term depending
on whether the measurement of the controlled vari-
able y,, is below or above the set point yg,. The large
overshoot in Fig. 8.7 occurs because the integral term
continues to increase until the error signal changes
sign at ¢ = t1. Only then does the integral term begin
to decrease. After the integral term becomes suffi-
ciently small, the controller output moves away from

Time

Figure 8.7 Reset windup during a set-point change.



the saturation limit and has the value determined by
Eq. 8-8.

Reset windup occurs when a PI or PID controller en-
counters a sustained error, for example, during the
start-up of a batch process or after a large set-point
change. It can also occur as a consequence of a large
sustained disturbance that is beyond the range of the
manipulated variable. In this situation, a physical limi-
tation (control valve fully open or completely shut)
prevents the controller from reducing the error signal
to zero. Clearly, it is undesirable to have the integral
term continue to build up after the controller output
saturates, because the controller is already doing all it
can to reduce the error. Fortunately, commercial con-
trollers provide anti-reset windup. In one approach,
reset windup is reduced by temporarily halting the inte-
gral control action whenever the controller output satu-
rates. The integral action resumes when the output is
no longer saturated. The anti-reset windup feature is
sometimes referred to as a batch unit, because it is re-
quired when batch processes are started up automati-
cally (see Chapter 22).

8.2.3 Derivative Control

The function of derivative control action is to antici-
pate the future behavior of the error signal by consider-
ing its rate of change. In the past, derivative action was
also referred to as rate action, pre-act, or anticipatory
control. For example, suppose that a reactor temperature
increases by 10 °C in a short period of time, say, 3 min.
This clearly is a more rapid increase in temperature
than a 10 °C rise in 30 min, and it could indicate a
potential runaway situation for an exothermic reaction.
If the reactor were under manual control, an experienced
plant operator would anticipate the consequences and
quickly take appropriate corrective action to reduce
the temperature. Such a response would not be obtain-
able from the proportional and integral control modes
discussed so far. Note that a proportional controller
reacts to a deviation in temperature only, making no
distinction as to the time period over which the devi-
ation develops. Integral control action is also ineffec-
tive for a sudden deviation in temperature, because
the corrective action depends on the duration of the
deviation.

The anticipatory strategy used by the experienced
operator can be incorporated in automatic controllers
by making the controller output proportional to the
rate of change of the error signal or the controlled vari-
able. Thus, for ideal derivative action,

d
PO =7 +

(8-10)

where 7p, the derivative time, has units of time. Note
that the controller output is equal to the nominal
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value p as long as the error is constant (that is, as
long as de/dt = 0). Consequently, derivative action is
never used alone; it is always used in conjunction
with proportional or proportional-integral control.
For example, an ideal PD controller has the transfer
function:

P'(s)
E(s)

= K1 + 7ps) (8-11)
By providing anticipatory control action, the derivative
mode tends to stabilize the controlled process. Thus, it
is often used to counteract the destabilizing tendency
of the integral mode (Chapters 11 and 14).

Derivative control action also tends to improve the
dynamic response of the controlled variable by the
settling time, the time it takes reducing to reach
steady state. But if the process measurement is noisy,
that is, if it contains high-frequency, random fluctua-
tions, then the derivative of the measured variable
will change wildly, and derivative action will amplify
the noise unless the measurement is filtered, as dis-
cussed in Chapter 17. Consequently, derivative action
is seldom used for flow control, because flow control
loops respond quickly and flow measurements tend to
be noisy.

Unfortunately, the ideal proportional-derivative
control algorithm in Eq. 8-11 is physically unrealizable
because it cannot be implemented exactly using either
analog or digital controllers. For analog controllers,
the transfer function in (8-11) can be approximated by

P _ Kc(l +—D5 )

E(s) atps + 1

(8-12)

where the constant a typically has a value between 0.05
and 0.2, with 0.1 being a common choice. In Eq. 8-12
the denominator term serves as a derivative mode filter
(or a derivative filter) that reduces the sensitivity of the
control calculations to noisy measurements. Derivative
filters are used in virtually all commercial PD and PID
controllers.

8.2.4 Proportional-Integral-Derivative Control

Now we consider the combination of the proportional,
integral, and derivative control modes as a PID con-
troller. PI and PID control have been the dominant con-
trol techniques for process control for many decades.
For example, a survey has indicated that large-scale con-
tinuous processes typically have between 500 and 5,000
feedback controllers for individual process variables
such as flow rate and liquid level (Desborough and
Miller, 2001). Of these controllers, 97% utilize some
form of PID control.

Many variations of PID control are used in practice;
next, we consider the three most common forms.
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E(s) 1 + K P'(s)
s o < [

DS

Figure 8.8 Block diagram of the parallel form of PID control
(without a derivative filter).

Parallel Form of PID Control

The parallel form of the PID control algorithm (with-
out a derivative filter) is given by

d d
p@®) =p + Kc[e(t) + Tl[ K e(t*) dt* + 7p Z(tt)] (8-13)

The corresponding transfer function is
P'(s) [ 1 ]
= + = 4
E (S) KC 1 o DS

Figure 8.8 illustrates that this controller can be viewed
as three separate elements operating in parallel on E(s).

(8-14)

Table 8.1 Common PID Controllers

1 P'(s)

E(s)
— DS + 1l ——>
TS + 1

K,

c

Figure 8.9 Block diagram of the series form of PID control
(without a derivative filter).

The parallel-form PID controller with and without a
derivative filter are shown in Table 8.1.

Series Form of PID Control

Historically, it was convenient to construct early ana-
log controllers (both electronic and pneumatic) so that
a PI element and a PD element operated in series. The
series form of PID control without a derivative filter is
shown in Fig. 8.9. In principle, it makes no difference
whether the PD element or the PI element comes first.
Commercial versions of the series-form controller
have a derivative filter that is applied to either the
derivative term, as in Eq. 8-12, or to the PD term, as in
Eq. 8-15:

P'(s) KC<TIS + 1)( ps + 1

E(s) - TS atps + 1

) (8-15)

The consequences of adding a derivative filter are ana-
lyzed in Exercise 14.16.

Controller | Other Names
Type Used Controller Equation Transfer Function
Parallel Ideal, additive, —= 1 ‘ N de(t) P'(s) =K (1 + L + )
1A form | PO =P Y K‘(e(t) o A ey dt + 1=y, Es) e\ s P
Parallel with | Ideal, P'(s) 1 DS
derivative realizable, See Exercise 8.10(a) EGs) K. (1 + s + atps + 1)
filter ISA standard
Series Multiplicative, See Exercise 8.11 P'(s) s + 1
interacting E(s) K. s (rps + 1)
Series with | Physically . P’ + +
derivative realizable See Exercise 8.10(b) ) = KC(TIS 1)( DS +11)
filter E(s) TS aTps
‘ de(t) P'(s) K;
_ = =K. +-1+K
Expanded Noninteracting | 7 () =P + Kee() + K; /) e(t*) dr* + Kp dt E(s) c s D
Parallel, with |Ideal B,y ~ 1 [ dep() 1
proportional | controller p(®) =p + Klep(t) + o b e(t*) dt* + 1p @t P'(s) = Kc(Ep(s) + ;E(s) + TDSED(S)>
and
deljivat.ive where ep(t) = Byg(t) — ym(?) where Ep(s) = BY,(s) — Yiu(s)
weighting e(?) = ysp(t) = ym(?) E(s) = Y(s) = Yu(s)
ep(f) = "/.)’sp(t) —= ym(®) Ep(s) = 'YYsp(s) = You(s)




Expanded Form of PID Control
The expanded form of PID control is:

p() =p + Ke(t) + K; fO’ e(t*) dr* + KDdZ—(tt) (8-16)
Note that the controller parameters for the expanded
form are three “gains,” K., Ky, and Kp, rather than the
standard parameters, K, 7;, and 7p. The expanded form
of PID control is used in MATLAB. This form might
appear to be well suited for controller tuning, because
each gain independently adjust the influences only one
control mode. But the well-established controller tuning
relations presented in Chapters 12 and 14 were devel-
oped for the series and parallel forms. Thus, there is little
advantage in using the expanded form in Eq. 8-16.

8.3 FEATURES OF PID CONTROLLERS

Next, we consider common extensions of the basic PID
controllers that greatly enhance their performance.

8.3.1 Elimination of Derivative and
Proportional Kick

One disadvantage of the previous PID controllers is
that a sudden change in set point (and hence the error, €)
will cause the derivative term momentarily to become
very large and thus provide a derivative kick to the final
control element. This sudden “spike” is undesirable and
can be avoided by basing the derivative action on the
measurement, y,,, rather than on the error signal, e. To
illustrate the elimination of derivative kick, consider
the parallel form of PID control in Eq. 8-13. Replacing
del/dt by —dy,,/dt gives

p@®=p+ Kc[e(t) + TLIA e(t*) dt* — 1p d)’%t(t)

(8-17)
This method of eliminating derivative kick is a stan-
dard feature in most commercial controllers. For a
series-form PID controller, it can be implemented
quite easily by placing the PD element in the feedback
path, as shown in Fig. 8.10. Note that the elimination of

® E(s)
+_

Ypls)

s+ 1 P'(s)
K”( IS )

’TDS+1

Y,,(s)

Figure 8.10 Block diagram of the series form of PID control
that eliminates derivative kick.
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derivative kick for set-point changes does not affect the
controller performance when the yj, is constant. Thus,
Eqgs. (8-13) and (8-17) provide identical responses to
process disturbances when the set point is constant.

A more flexible PID control algorithm can be obtained
by weighting the set point in both the proportional and
the derivative terms. This modification eliminates the
proportional kick that also occurs after a step change in
set point. For this modified PID algorithm, a different
error term is defined for each control mode:

b =7+ Keferd + 2 [eeyam + 1, 20)
(8-18)

with:
ep(t) £ BYsp(t) — Ym(2) (8-19)
e(t) = )’sp(t) - ym(t) (8'20)
ep() = VWsp(®) = ym(®) (8-21)

where B and +y are nonnegative constants. This control
algorithm is known as the parallel PID controller with
proportional and derivative mode weighting, or the beta-
gamma controller. The modified PID control algorithm
in Eq. 8-18 allows for independent set-point weighting in
the proportional and derivative terms. Thus, to eliminate
derivative kick, vy is set to zero; to eliminate proportional
kick, B is set to zero. The  weighting parameter can be
used to tune this PID controller performance for set-
point changes, as discussed in Chapter 12. Note that the
definition of the integral mode error in (8-20) is the same
as for the standard control law in (8-13); this error term
is essential in order to eliminate offset after a set-point
change or sustained disturbance.

Finally, it should be noted that, although digital
controller settings can be specified exactly, analog con-
troller settings represent only nominal values. Although
it would be desirable to be able to specify K, 77, and tp
accurately and independently for analog controllers, in
practice there are interactions among the control modes
owing to hardware limitations. Consequently, the actual
controller settings may differ from the dial settings by as
much as 30%.

Table 8.1 shows the most important forms of PID
controllers, controller equations, and transfer functions.
The derivation of several controller equation forms is
left as an exercise for the reader. The table is organized
by the descriptive names used in this book, but common
synonyms are also included. However, all these terms
should be used with caution as a result of the inconsistent
terminology that occurs in the literature. For example,
referring to the parallel form (the first line of Table 8.1) as
an “ideal controller” is misleading, because its derivative
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Controller Controller Typical
Feature Parameter Symbol Units Range*
Controller K, Dimensionless 0.1-100
Proportional gain [%/%, mA/mA]
mode Proportional PB % 1-1000%
band = 100%/K,
Integral time Ty Time 0.02-20 min
(or reset time) [min, s] 1-1000 s
Integral Reset rate 1/7y Repeats/time 0.001-1 repeats/s
mode [min~1,s71] 0.06-60 repeats/min
Integral mode K; Time 0.1-100
“gain” [min~1,s71]
Derivative time ™ Time 0.1-10 min.
[min, s] 5-500's
Derivative Derivative mode Kp Time 0.1-100
mode “gain” [min, s]
Derivative filter a Dimensionless 0.05-0.2
parameter
Control interval At Time 0.1 s-10 min
(Digital controllers) [s, min]

*Based on McMillan (2006).

mode amplifies noise, an undesirable characteristic. In
addition, the terms interacting and noninteracting can be
quite confusing, because a controller’s modes can be
noninteracting in the time domain (controller equation)
but interacting in the Laplace domain (transfer function)
and vice versa. Some of these idiosyncrasies are evident
from the exercises and from the frequency response
analysis of Chapter 14.

Table 8.2 summarizes important characteristics of rep-
resentative commercial PID controllers. The operating
interval (sampling period/sampling frequency) informa-
tion applies to the digital controllers of Section 8.6.

8.3.2 Reverse or Direct Action

The controller gain can be either negative or positive.1

For proportional control, when K, > 0, the controller
output p(¢) increases as its input signal y,,(f) decreases,
as is apparent after combining Egs. 8-2 and 8-1:

p) —p = Kc[)’sp(t) — Ym(®] (8-22)

Thus if K, > 0, the controller is called a reverse-acting
controller. When K. < 0, the controller is said to be
direct acting, because p increases as y,, increases. Note
that these definitions are based on the measurement,

IFor some computer control software, K, must be positive. The user
enters the designation of reverse or direct action as a separate binary
parameter.

Ym(t), rather than the error, e(f). Direct-acting and
reverse-acting proportional controllers are compared

in Fig. 8.11.
Pmax f

(b)

Figure 8.11 Reverse and direct-acting proportional controllers:
(a) reverse acting (K, > 0), (b) direct acting (K, < 0).



To illustrate why both direct-acting and reverse-acting
controllers are needed, again consider the flow control
loop in Fig. 8.2. Suppose that the flow transmitter is
designed to be direct-acting so that its output signal in-
creases as the flow rate increases. Most transmitters are
designed to be direct-acting. Also assume that the con-
trol valve is designed so that the flow rate through the
valve increases as the signal to the valve, p(¢), increases.
In this case the valve is designated as air-to-open (or fail
close). The question is: should the flow controller have
direct or reverse action? Clearly, when the measured
flow rate is higher than the set point, we want to reduce
the flow by closing the control valve. For an air-to-open
valve, the controller output signal should be decreased.
Thus, the controller should be reverse-acting.

But what if the control valve is air-to-close (or fail
open) rather than air-to-open? Now when the flow rate
is too high, the controller output should increase to fur-
ther close the valve. Here, a direct-acting controller is
required.

It is extremely important that the controller action
be specified correctly, because an incorrect choice
usually results in loss of control. For the flow control
example, having the wrong controller action would
force the control valve to stay fully open or fully closed
(why?). Thus, the controller action must be carefully
specified when a controller is installed or when a trou-
blesome control loop is being analyzed. The following
guideline is very useful and can be justified by the sta-
bility analysis techniques of Chapter 11.

General Guideline for Specifying the Controller
Action (Direct or Reverse): The overall product of
the gains for all of the components in the feedback
control loop must be positive.

For example, the blending control system in Fig. 8.1 has
five components in the feedback control loop: the
process, the sensor, the controller, the I/P transducer,
and the control valve.

8.3.3 Automatic/Manual Control Modes

Equations 8-2 to 8-16 describe how controllers perform
during the automatic mode of operation. However, in
certain situations, the plant operator may decide to
override the automatic mode and adjust the controller
output manually.

This manual mode of controller operation is very
useful during a plant start-up, shutdown, or emergency
situation. A manual/automatic switch, or the software
equivalent, is used to transfer the controller from the
automatic mode to the manual mode, and vice versa.
During these transfers, it is important that the con-
troller output not change abruptly and “bump” the
process. Consequently, most controllers facilitate
bumpless transfers.
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A controller may be left in manual for long periods
of time (or indefinitely) if the operator is not satisfied
with its performance in the automatic mode. Conse-
quently, if a significant percentage of the controllers in
a plant is in manual, it is an indication that the control
systems are not performing well or that the plant oper-
ators do not have much confidence in them. The topic
of troubleshooting poorly performing control loops is
considered in Chapter 12.

8.4 ON-OFF CONTROLLERS

On-off controllers are simple, inexpensive feedback
controllers that are commonly used as thermostats in
home heating systems and domestic refrigerators.
They are also used in noncritical industrial applica-
tions such as some level control loops and heating sys-
tems. However, on-off controllers are less widely used
than PID controllers, because they are not as versatile
or as effective.

For ideal on-off control, the controller output has
only two possible values:

ife=0
ife<0

pmax

p() = { (8-23)

Pmin
where ppax and ppin denote the on and off values,
respectively (for example, for a typical digital computer
implementation, py.x = 100% and pp;, = 0%; for a
current-based electronic controller, ppaxy = 20 mA and
Pmin = 4 mA). On-off controllers can be modified to
include a dead band for the error signal to reduce sensi-
tivity to measurement noise (Shinskey, 1996). Equation
8-23 also indicates why on-off control is sometimes
referred to as two-position or bang-bang control. Note
that on-off control can be considered a special case of
proportional control with a very high controller gain
(see Fig. 8.5).

The disadvantages of on-off control are that it results
in continual cycling of the controlled variable and pro-
duces excessive wear on the control valve (or other
final control element). The latter disadvantage is signif-
icant if a control valve is used, but less of a factor for
solenoid valves or solenoid switches that are normally
employed with on-off controllers.

8.5 TYPICAL RESPONSES OF FEEDBACK
CONTROL SYSTEMS

The responses shown in Fig. 8.12 illustrate the typical
behavior of a controlled process after a step change in a
disturbance variable occurs. The controlled variable y
represents the deviation from the initial steady-state
value. If feedback control is not used, the process
slowly reaches a new steady state. Proportional control
speeds up the process response and reduces the offset.
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No control

Proportional control

Figure 8.12 Typical process responses with feedback control.

The addition of integral control action eliminates off-
set but tends to make the response more oscillatory.
Adding derivative action reduces both the degree of
oscillation and the response time. The use of P, PI,
and PID controllers does not always result in oscilla-
tory process responses; the nature of the response
depends on the choice of the controller settings (K,
71, and Tp) and the process dynamics. However, the
responses in Fig. 8.12 are representative of what occurs
in practice.

The qualitative effects of changing individual con-
troller settings are shown in Figs. 8.13 to 8.15. In gen-
eral, increasing the controller gain tends to make the
process response less sluggish; however, if too large a
value of K, is used, the response may exhibit an unde-
sirable degree of oscillation or even become unstable.
Thus, an intermediate value of K, usually results in the
best control. These guidelines are also applicable to PI
and PID control, as well as to the proportional con-
troller shown in Fig. 8.13.

Increasing the integral time, 7;, usually makes PI and
PID control more conservative (sluggish) as shown in
Fig. 8.14. Theoretically, offset will be eliminated for all
positive values of 7;. But for very large values of 7;, the
controlled variable will return to the set point very
slowly after a disturbance or set-point change occurs.

No control

Increasing K, (K, =0)

41

Time

Figure 8.13 Proportional control: effect of controller gain.

Increasing 77
y
O \/
Time
(a)
Increasing K,
y
0

Time
(d)

Figure 8.14 Proportional-integral control: (a) effect of
integral time, () effect of controller gain.

It is more difficult to generalize about the effect of the
derivative time Tp. For small values, increasing 7y tends
to improve the response by reducing the maximum devia-
tion, response time, and degree of oscillation, as shown in
Fig. 8.15. However, if 7p is too large, measurement noise
is amplified and the response may become oscillatory.
Thus, an intermediate value of T is desirable. More
detailed discussions of how PID controller settings should
be specified are presented in Chapters 11, 12, and 14.

Increasing 7p)

Time

Figure 8.15 PID control: effect of derivative time.



8.6 DIGITAL VERSIONS OF PID
CONTROLLERS

So far we have assumed that the input and output signals
of the controller are continuous functions of time. How-
ever, there has also been widespread application of digi-
tal control systems due to their flexibility, computational
power, and cost effectiveness. In this section we briefly
introduce digital control techniques by considering digi-
tal versions of PID control. A more complete discussion
of digital computer control is presented in Chapter 17
and Appendix A.

When a feedback control strategy is implemented
digitally, the controller input and output are digital (or
discrete-time) signals rather than continuous (or analog)
signals. Thus, the continuous signal from the measure-
ment device (sensor/transmitter) is sampled and con-
verted to a digital signal by an analog-to-digital converter
(ADC). A digital control algorithm is then used to calcu-
late the controller output, a digital signal. Because most
final control elements are analog devices, the digital out-
put signal is usually converted to a corresponding analog
signal by a digital-to-analog converter (DAC). However,
some electronic final control elements can receive digital
signals directly, as discussed in Chapter 9.

8.6.1 Position and Velocity Algorithms for
Digital PID Control

There are two alternative forms of the digital PID con-
trol equation, the position form and the velocity form.
A straightforward way of deriving a digital version of
the parallel form of the PID controller (Eq. 8-13) is to
replace the integral and derivative terms by finite dif-
ference approximations,

t k
/ e(r*) dr* = ) ejAt (8-24)
0 j=1
de €x — €1
== -25
dt At (8-25)

where

At = the sampling period (the time between successive
measurements of the controlled variable)
e, = error at the kth sampling instant for k = 1,2, ...

Substituting Eqs. 8-24 and 8-25 into (8-13) gives the
position form,

— At & T
Pe =D + Kelew + e + KD(ek - ek_1)] (8-26)
Ij=1 t

where py is the controller output at the kth sampling in-
stant. The other symbols in Eq. 8-26 have the same
meaning as in Eq. 8-13. Equation 8-26 is referred to as
the position form, because the actual value of the con-
troller output is calculated.
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In the velocity form, the change in controller output
is calculated. The velocity form can be derived by writing
Eq. 8-26 for the (k — 1) sampling instant:

_ Ar ™D
Pr-1 =D + Kelep-1 + - De+ I(ek—l — €x-2)
1 j=1 t

(8-27)

Note that the summation still begins at j = 1, because it
is assumed that the process is at the desired steady state
for j = 0, and thus ¢; = 0 for j = 0. Subtracting Eq. 8-27
from (8-26) gives the velocity form of the digital PID
algorithm:

At
Apx=pr—Pr1= Kc|(ex — ex-1) + oy G

+ 70 ek — 261 + ek2) (8-28)
The velocity form has three advantages over the posi-
tion form:

1. It inherently contains antireset windup, because
the summation of errors is not explicitly calculated.

2. This output is expressed in a form, Apy, that can
be utilized directly by some final control elements,
such as a control valve driven by a pulsed stepping
motor.

3. For the velocity algorithm, transferring the con-
troller from manual to automatic model does
not require any initialization of the output (p in
Eq. 8-26). However, the control valve (or other
final control element) should be placed in the
appropriate position prior to the transfer.

Certain types of advanced control strategies, such as
cascade control and feedforward control, require that
the actual controller output p; be calculated explicitly.
These strategies are discussed in Chapters 15 and 16.
However, p; can easily be calculated by rearranging
Eq. 8-28:

At
Pk = P17+ K¢ {(ek —ex-1) + oy Gk

+ % (ex — 241 + ek—z)] (8-29)
A minor disadvantage of the velocity form is that the
integral mode must be included. When the set point is
constant, it cancels out in both the proportional and de-
rivative error terms. Consequently, if the integral mode
were omitted, the process response to a disturbance
would tend to drift away from the set point.

The position form of the PID algorithm (Eq. 8-26)
requires a value of p, while the velocity form in Eq. 8-28
does not. Initialization of either algorithm is straight-
forward, because manual operation of the control sys-
tem usually precedes the transfer to automatic control.
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Hence, p (or py—_1 for the velocity algorithm) is simply
set equal to the signal to the final control element at
the time of transfer. As noted previously, the velocity
form is less prone to reset windup problems.

8.6.2 Modifications of the Basic PID Control
Algorithms

We now consider several modifications of the basic PID
control algorithms that are widely used in industry.

1. Elimination of Reset Windup. For controllers
that contain integral control action, reset windup
can occur when the error summation grows to a
very large value. Suppose the controller output
saturates at an upper or lower limit, as the result
of a large sustained error signal. Even though the
measured variable eventually reaches its set point
(where e; = 0), the controller may be wound up
because of the summation term. Until the error
changes sign for a period of time, thereby reduc-
ing the value of the summation, the controller will
remain at its saturation limit.

For the position algorithm, several modifica-
tions can be made to reduce reset windup:

a. Place an upper limit on the value of the summa-
tion. When the controller saturates, suspend the
summation until the controller output moves
away from the limit.

b. Back-calculate the value of ej that just causes
the controller to saturate. When saturation oc-
curs, use this value as the error term, e;_1, in
the next controller calculation.

Experience has indicated that approach (b) is su-

perior to (a), although it is somewhat more com-

plicated.

For the velocity form in Eqgs. 8-28 or 8-29, no
summation appears, and thus the reset windup
problem is avoided. However, the control algo-
rithm must be implemented so that Apy is disre-
garded if p; is at a saturation limit, implying that p
should be monitored at all times. In general, the
velocity form is preferred over the position form.

2. Elimination of Derivative Kick. When a sudden
set-point change is made, the PID control algo-
rithms in Eq. 8-26 or Eq. 8-28 will produce a large
immediate change in the output due to the deriva-
tive control action. For digital control algorithms,

SUMMARY

In this chapter we have considered the most common
types of feedback controllers. Although there are poten-
tially many forms of feedback control, the process indus-
tries rely largely on variations of PID control and on-off
control. The remaining important elements within the

several methods are available for eliminating de-

rivative kick:

a. In analogy with Eq. 8-17, derivative action can
be applied to the measurement, y,,, rather
than the error signal. Thus, for the position
form in Eq. 8-26, e is replaced by —y, x in the
derivative term:

— At ¥ ™D

Pk=P+K|ext -2 €~ Ay Omk = Ymi-1)| (8-30)

1 j=1 t
The velocity form in Eq. 8-28 can be modified
in an analogous fashion.

b. Change the set point gradually by ramping it
to the new value. This strategy limits the rate
of change of the set point and thus reduces the
derivative kick.

If measurement noise combined with a large ratio

of derivative time to sampling period (tp/Af)

causes an overactive derivative mode, then the
error signal must be filtered before calculating the

derivative action (see Chapter 17).

3. Effect of Saturation on Controller Performance.
Another difficulty that can occur for a digital con-
troller equation such as Eq. 8-30 is that a small
change in the error can cause the controller output
to saturate for certain values of the controller set-
tings. Suppose that K. tp/At = 100 due to a small
sampling period, and that e; and p;, are both scaled
from 0 to 100%. A 1% change in Ae; = e — €x—1
will cause a 100% change in py, thus exceeding its
upper limit. Therefore, the values of the controller
settings and A¢ should be checked to ensure that
they do not cause such overrange problems. For
the velocity algorithm, the change in the con-
troller output can be constrained by using rate lim-
its or clamps, that is, lower and upper bounds on
the change, Apy.

4. Other Optional features. For some control appli-
cations, it is desirable that the controller output
signal not be changed when the error is small,
within a specified tolerance. This optional feature
is referred to as gap action. Finally, in gain sched-
uling, the numerical value of K. depends on the
value of the error signal. These controller options
are discussed in more detail in Chapter 16.

For a more detailed discussion of digital control algo-
rithms, see Chapter 17.

control loop—sensors, transmitters, and final control
elements—are discussed in detail in the next chapter.
Once the steady-state and dynamic characteristics of these
elements are understood, we can investigate the dynamic
characteristics of the controlled process (Chapter 11).
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EXERCISES

8.1 An electronic PI temperature controller has an output p
of 12 mA when the set point equals the nominal process tem-
perature. The controller response to step change in the tem-
perature set point of 3 mA (equivalent to a change of 5°F) is
shown below:

t,s p, mA
0— 12
0+ 10
20 9

60 7

80 6

Determine the controller gain K. (mA/mA) and the integral
time, 7. Is the controller reverse-acting or direct-acting?

8.2 The physically realizable form of the PD transfer func-
tion is given in the first equation of Exercise 8.1.

(a) Show how to obtain this transfer function with a parallel
arrangement of two much simpler functions in Fig. E8.2:

K,
s+ 1
E(s) P'(s)

Figure E8.2

(b) Find expressions for Kj, K,, and 7; that can be used to
obtain desired values of K., 7p, and a.

(¢) Verify the relations for K. = 3,7p =2, = 0.1.

8.3 The parallel form of the PID controller has the transfer
function given by Eq. 8-14. Many commercial analog con-
trollers can be described by the series form given by Eq. 8-15.
(a) For the simplest case, a — 0, find the relations between
the settings for the parallel form (K, T;, 7},) and the settings
for the series form (K., 77, 7p).

(b) Does the series form make each controller setting (K., 7,
or Tp) larger or smaller than would be expected for the paral-
lel form?

(¢) What are the magnitudes of these interaction effects for
K. =4,7;=10 min, 1p = 2 min?
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Instrumentation Symbols and Identification, Standard ISA-5.1-1984
(R1992), International Society of Automation (ISA), Research
Triangle Park, NC (1992).

Mayr, O., The Origins of Feedback Control, MIT Press, Cambridge,
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McMillan, G. M., Good Tuning: A Pocket Guide, 2nd ed., ISA,
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(d) What can you say about the effect of nonzero a on these
relations? (Discuss only first-order effects.)

8.4 Exercise 1.7 shows two possible ways to design a feedback
control loop to obtain a desired rate of liquid flow. Assume that
in both Systems I and II, the flow transmitter is direct-acting
(i.e., the output increases as the actual flow rate increases). How-
ever, the control valve in System I is “air-to-open,” meaning that
an increasing pressure signal from the controller will open the
valve more, thus increasing the flow rate (See Chapter 9). On
the other hand, the control valve in System II is “air-to-close.”
The dynamics for both of the valves are negligible.

(a) For each of these valves, what is the sign of its gain, K,,?

(b) Which controller must be direct-acting? reverse-acting?
Use physical arguments to support your answers.

(c¢) What sign should the controller gain have for each case?

8.5 A liquid-level control system can be configured in either
of two ways: with a control valve manipulating flow of liquid
into the holding tank (Fig. E8.5a), or with a control valve

LL

(@)

—

(®)
Figure E8.5
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manipulating the flow of liquid from the tank (Fig. E8.5b).
Assuming that the liquid-level transmitter always is direct-
acting,

(a) For each configuration, what control action should a pro-
portional pneumatic controller have if the control valve is air-
to-open?

(b) If the control valve is air-to-close?

8.6 If the input Y, to a PI controller changes stepwise
(Yu(s) = 2/s) and the controller output changes initially as in
Fig. E8.6, what are the values of the controller gain and inte-
gral time?

p'® Slope = 1.2 min~!

Is

t—>

Figure E8.6

8.7 An electronic PID temperature controller is at steady
state with an output of 12 mA. The set point equals the
nominal process temperature initially. At ¢ = 0, the set
point is increased at the rate of 0.5 mA/min (equivalent to a
rate of 2°F/min). If the current settings are

K. = 2 (dimensionless)
77 = 1.5 min
7p = 0.5 min

(a) Derive an expression for the controller output p(¢).
(b) Repeat (a) for a PI controller.

(¢) Plot the two controller outputs and qualitatively discuss
their differences.

8.8 Find an expression for the amount of derivative kick
that will be applied to the process when using the position
form of the PID digital algorithm (Eq. 8-26) if a set-point
change of magnitude Ayy, is made between the k — 1 and k
sampling instants.

(a) Repeat for the proportional kick, that is, the sudden
change caused by the proportional mode.

(b) Plot the sequence of controller outputs at the £ — 1,
k, ... sampling times for the case of a set-point change of
Ay, magnitude made just after the k — 1 sampling time if

q1 @ (3

q3 qs
«—<

the controller receives a constant measurement y,, and the
initial set point is Yy, = y,,. Assume that the controller output
initially is p.

(c) How can Eq. 8-26 be modified to eliminate derivative
kick?

8.9 (a) For the case of the digital velocity P and PD algo-
rithms, show how the set point enters into calculation of
Apy on the assumption that it is not changing, that is, y, is
a constant.

(b) What do the results indicate about use of the velocity
form of P and PD digital control algorithms?

(¢) Are similar problems encountered if the integral mode is
present, that is, with PI and PID forms of the velocity algo-
rithm? Explain.

8.10 What differential equation model represents the paral-

—— lel PID controller with a derivative filter? (Hint: Find

a common denominator for the transfer function
first.)

(a) Repeat for the series PID controller with a derivative filter.

(b) Simulate the time response of each controller for a step
change in e(?).

8.11 What is the corresponding control law for the series PID
controller? Qualitatively describe its response to a step
change in e(?).

8.12 Consider a standard feedback control system where
each component is functioning properly. Briefly indicate
whether you agree or disagree with the following state-
ments:

(a) For proportional-only control, the controller output is
always proportional to the error signal.

(b) A PI controller always eliminates offset after a sustained,
unmeasured disturbance.

8.13 Consider the liquid storage system in Fig. E8.13. Sup-
pose that g, must be kept constant, and, consequently, 4, is
to be controlled by adjusting g;. Suppose that the g; control
valve is fail-open. Should the level controller for 4, be re-
verse acting or direct-acting? Justify your answer.

8.14 A steam-heated evaporator used to concentrate a
feed stream by evaporating water is shown in Fig. E8.14.
The mass fraction of solute in the exit stream x is mea-
sured and controlled by adjusting the steam flow rate, S.
The control valve is fail-close. Should the composition
controller be direct-acting? Justify your answer.

Lo

a5

Figure E8.13
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8.15 A very hot stream is cooled by cold water in a counter-
current heat exchanger: shown in Fig. E8.15:

We, TCZ @i_

Figure E8.15

Heat exchanger
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Temperature T}, is to be controlled by adjusting flow rate, w,,
The temperature sensor/transmitter (TT) is direct-acting.
Should the feedback controller be direct-acting or reverse-
acting?

8.16 Consider the schematic diagram of a controlled blend-
ing process shown in Fig. 8.1. The control objective is to con-
trol the mass fraction of the exit stream, x, by adjusting inlet
flow rate, w,, using a feedback controller. The mass fractions
of a key chemical component in the inlet streams, x; and x,,
are constant, and mass flow rate wy is a disturbance variable.
The liquid volume V is constant. The composition sensor/trans-
mitter (AT) and the current-to-pressure transducer (I/P) are
both direct-acting devices.

What is the minimum amount of information you would
need in order to decide whether the feedback controller, AC,
should be reverse-acting or direct-acting?

e——w,, Ty

i whrThZ
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Control System Instrumentation

CHAPTER CONTENTS

9.1 Sensors, Transmitters, and Transducers
9.1.1 Standard Instrumentation Signal Levels
9.1.2 Sensors
9.1.3 Static and Dynamic Characteristics
9.2 Final Control Elements
9.2.1 Control Valves
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9.2.3 Specifying and Sizing Control Valves
9.3 Signal Transmission and Digital Communication
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9.4.1 Terms Used to Describe Instrumentation Accuracy

9.4.2 Calibration of Instruments
9.4.3 Dynamic Measurement Errors

Summary

Having considered PID controllers in Chapter 8, we now
consider the other components of the feedback control
loop. As an illustrative example, consider the stirred-tank
heating system in Fig. 9.1. A thermocouple measures the
liquid temperature and converts it to a millivolt-level
electrical signal. This signal is then amplified to a voltage
level and transmitted to the electronic controller. The
feedback controller performs the control calculations and
sends the calculated value as an output signal to the final
control element, an electrical heater that adjusts the rate
of heat transfer to the liquid. This example illustrates the
three important functions of a feedback control loop: (1)
measurement of the controlled variable (CV), (2) adjust-
ment of the manipulated variable (MV), and (3) signal
transmission between components.

The interconnection between the process and the con-
troller in Fig. 9.1 can be considered to be an interface
(analog or digital). The interconnection is required for a
single controller Fig. 9.2 or for a number of controllers in
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a computer control system Fig. 9.3. In each case, the inter-
face consists of all measurement, manipulation, and trans-
mission instruments. The interface elements in Fig. 9.3 all
contain a common feature. Each involves the conversion
of a variable, for example, temperature to a voltage-level
signal. Final control elements, or actuators, are used to
manipulate process variables (usually flow rates).

This chapter introduces key instrumentation concepts
and emphasizs how the choice of measurement and ma-
nipulation hardware affects the characteristics of the
control system. Many of the assumptions that are com-
monly used to simplify the design of control systems—
linear behavior of instruments and actuators, negligible
instrumentation and signal transmission dynamics—
depend on the proper design and specifica<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>