
Computer Architecture & Organization

Chapter 14

Input/Output

Generic
Model

of an I/O Module

External Devices

• Three categories:

• Human readable
• Suitable for communicating with

the computer user
• Video display terminals (VDTs),

printers

• Machine readable
• Suitable for communicating with

equipment
• Magnetic disk and tape systems,

sensors and actuators

• Communication
• Suitable for communicating with

remote devices such as a
terminal, a machine readable
device, or another computer

• Provide a means of
exchanging data between the
external environment and the
computer

• Attach to the computer by a
link to an I/O module
• The link is used to exchange

control, status, and data
between the I/O module and
the external device

• peripheral device
• An external device connected

to an I/O module

External Device
Block Diagram

Keyboard/Monitor

• Basic unit of exchange is the character

• Associated with each character
is a code

• Each character in this code is
represented by a unique 7-bit
binary code

• 128 different characters can be
represented

• Characters are of two types:

• Printable
• Alphabetic, numeric, and special

characters that can be printed on
paper or displayed on a screen

• Control

• Have to do with controlling the
printing or displaying of
characters

• Example is carriage return
• Other control characters are

concerned with communications
procedures

• When the user depresses a key it generates an
electronic signal that is interpreted by the
transducer in the keyboard and translated into
the bit pattern of the corresponding IRA code

• This bit pattern is transmitted to the I/O
module in the computer

• On output, IRA code characters are
transmitted to an external device from the I/O
module

• The transducer interprets the code and sends
the required electronic signals to the output
device either to display the indicated character
or perform the requested control function

International Reference
Alphabet (IRA)

Keyboard Codes

Most common means of
computer/user interaction

User provides input through the
keyboard

The monitor displays data provided by
the computer

I/O Modules

Module Function

The major
functions for

an I/O module
fall into the
following

categories:

Control and
timing

• Coordinates the
flow of traffic
between internal
resources and
external devices

Processor
communication

•Involves command
decoding, data,
status reporting,
address recognition

Device
communication

• Involves
commands,
status
information, and
data

Data buffering

• Performs the
needed buffering
operation to
balance device
and memory
speeds

Error
detection

• Detects and
reports
transmission
errors

I/O Module Structure

Programmed I/O
• Three techniques are possible for I/O operations:

• Programmed I/O

• Data are exchanged between the processor and the I/O module

• Processor executes a program that gives it direct control of the I/O operation

• When the processor issues a command it must wait until the I/O operation is complete

• If the processor is faster than the I/O module this is wasteful of processor time

• Interrupt-driven I/O

• Processor issues an I/O command, continues to execute other instructions, and is
interrupted by the I/O module when the latter has completed its work

• Direct memory access (DMA)

• The I/O module and main memory exchange data directly without processor involvement

I/O Commands
• There are four types of I/O commands that an I/O module may receive

when it is addressed by a processor:

1) Control
- used to activate a peripheral and tell it what to do

2) Test
- used to test various status conditions associated with an I/O module and its

peripherals

3) Read
- causes the I/O module to obtain an item of data from the peripheral and place

it in an internal buffer

4) Write
- causes the I/O module to take an item of data from the data bus and

subsequently transmit that data item to the peripheral

I/O Instructions
With programmed I/O there is a close correspondence between the I/O-related
instructions that the processor fetches from memory and the I/O commands that
the processor issues to an I/O module to execute the instructions

The form of
the instruction

depends on
the way in

which external
devices are
addressed

Each I/O device connected through I/O modules is given a
unique identifier or address

When the processor
issues an I/O

command, the
command contains
the address of the

desired device

Thus each I/O
module must

interpret the address
lines to determine if
the command is for

itself

Memory-mapped I/O

There is a single address
space for memory locations

and I/O devices

A single read line and a
single write line are needed

on the bus

I/O Mapping Summary

• Memory mapped I/O
• Devices and memory share an address space

• I/O looks just like memory read/write

• No special commands for I/O
• Large selection of memory access commands available

• Isolated I/O
• Separate address spaces

• Need I/O or memory select lines

• Special commands for I/O

• Limited set

Memory
Mapped

I/O

Isolated
I/O

• Figure 7.5a shows how the interface for a simple

input device such as a terminal keyboard might

appear to a programmer using memory-mapped

I/O.

• Assume a 10-bit address, with a 512-bit memory

(locations 0–511) and up to 512 I/O addresses

(locations 512–1023).

• Two addresses are dedicated to keyboard input

from a particular terminal. Address 516 refers to

the data register and address 517 refers to the

status register, which also functions as a control

register for receiving processor commands.

• With isolated I/O (Figure 7.5b), the I/O ports are

accessible only by special I/O commands, which

activate the I/O command lines on the bus.

• Advantage of memory-mapped I/O is that those

large repertoire of instructions can be used,

allowing more efficient programming. A

disadvantage is that valuable memory address

space is used up.

Interrupt-Driven I/O
The problem with programmed I/O is that the processor
has to wait a long time for the I/O module to be ready
for either reception or transmission of data

An alternative is for the processor to issue an I/O
command to a module and then go on to do some other
useful work

The I/O module will then interrupt the processor to
request service when it is ready to exchange data with
the processor

The processor executes the data transfer and resumes
its former processing

Changes in Memory
and Registers for an Interrupt

Two design
issues arise in
implementing
interrupt I/O:

• Because there will
be multiple I/O
modules how does
the processor
determine which
device issued the
interrupt?

• If multiple
interrupts have
occurred how does
the processor
decide which one to
process?

Design Issues

+ Device Identification

• Multiple interrupt lines
• Between the processor and the I/O modules
• Most straightforward approach to the problem
• Consequently even if multiple lines are used, it is likely that each line will have multiple I/O

modules attached to it

• Software poll borrowed
• When processor detects an interrupt it branches to an interrupt-service routine whose job is to

poll each I/O module to determine which module caused the interrupt
• Time consuming

• Daisy chain (hardware poll, vectored)
• The interrupt acknowledge line is daisy chained through the modules
• Vector – address of the I/O module or some other unique identifier
• Vectored interrupt – processor uses the vector as a pointer to the appropriate device-service

routine, avoiding the need to execute a general interrupt-service routine first

• Bus arbitration (vectored)
• An I/O module must first gain control of the bus before it can raise the interrupt request line
• When the processor detects the interrupt it responds on the interrupt acknowledge line
• Then the requesting module places its vector on the data lines

Four general categories of techniques are in common use:

Intel

82C59A

Interrupt

Controller

Intel 82C55A
Programmable Peripheral Interface

Keyboard/Display

Interfaces to 2C55A

• Because the 82C55A is programmable via the control

register, it can be used to control a variety of simple

peripheral devices.

• The keyboard provides 8 bits of input. Two of these

bits, SHIFT and CONTROL, have special meaning to

the keyboard-handling program executing in the

processor. However, this interpretation is transparent

to the 82C55A,

• Two handshaking control lines are provided for use

with the keyboard.

• The display is also linked by an 8-bit data port. Again,

two of the bits have special meanings that are

transparent to the 82C55A.

• In addition to two handshaking lines, two lines

provide additional control functions.

Drawbacks of Programmed and Interrupt-Driven I/O

Both forms of I/O suffer from two inherent drawbacks:

1) The I/O transfer rate is limited by the speed with which the processor can test
and service a device

2) The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer

 When large volumes of data are to be moved a more efficient technique is direct
memory access (DMA)

Typical DMA
Module Diagram

DMA Operation

DMA

DMA

Alternative
DMA

Configurations

8237 DMA Usage of System Bus

Fly-By DMA Controller

Data does not pass
through and is not
stored in DMA chip

• DMA only between
I/O port and memory

• Not between two
I/O ports or two
memory locations

Can do memory to
memory via register

8237 contains four
DMA channels

• Programmed
independently

• Any one active

• Numbered 0, 1, 2,
and 3

Table 7.2
Intel

8237A Registers

E/D = enable/disable
TC = terminal count

Evolution of the I/O Function

1. The CPU directly controls a
peripheral device.

2. A controller or I/O module is
added. The CPU uses
programmed I/O without
interrupts.

3. Same configuration as in step 2
is used, but now interrupts are
employed. The CPU need not
spend time waiting for an I/O
operation to be performed,
thus increasing efficiency.

4. The I/O module is given direct
access to memory via DMA. It can
now move a block of data to or from
memory without involving the CPU,
except at the beginning and end of
the transfer.

5. The I/O module is enhanced to
become a processor in its own right,
with a specialized instruction set
tailored for I/O

6. The I/O module has a local memory
of its own and is, in fact, a computer
in its own right. With this
architecture a large set of I/O
devices can be controlled with
minimal CPU involvement.

I/O
Channel

Architecture

Parallel
and

Serial
I/O

Point-to-Point and Multipoint
Configurations

Connection between an I/O
module in a computer system and

external devices can be either:

point-to-point

multiport

Point-to-point interface provides a
dedicated line between the I/O
module and the external device

On small systems (PCs,
workstations) typical point-
to-point links include those

to the keyboard, printer,
and external modem

Example is EIA-232
specification

Multipoint external interfaces are
used to support external mass
storage devices (disk and tape
drives) and multimedia devices

(CD-ROMs, video, audio)

Are in effect external buses

+
Thunderbolt

• Provides up to 10 Gbps throughput
in each direction and up to 10 Watts
of power to connected peripherals

• A Thunderbolt-compatible
peripheral interface is considerably
more complex than a simple USB
device

• Most recent and fastest peripheral
connection technology to become
available for general-purpose use

• Developed by Intel with
collaboration from Apple

• The technology combines data,
video, audio, and power into a
single high-speed connection for
peripherals such as hard drives,
RAID arrays, video-capture boxes,
and network interfaces

• First generation products are
primarily aimed at the professional-
consumer market such as
audiovisual editors who want to be
able to move large volumes of data
quickly between storage devices and
laptops

• Thunderbolt is a standard feature of
Apple’s MacBook Pro laptop and
iMac desktop computers

Computer Configuration with Thunderbolt

Thunderbolt
Protocol
Layers

InfiniBand

• Recent I/O specification aimed at the high-end server market

• First version was released in early 2001

• Standard describes an architecture and specifications for data flow
among processors and intelligent I/O devices

• Has become a popular interface for storage area networking and
other large storage configurations

• Enables servers, remote storage, and other network devices to be
attached in a central fabric of switches and links

• The switch-based architecture can connect up to 64,000 servers,
storage systems, and networking devices

InfiniBand Switch Fabric

+
InfiniBand Operation

• The InfiniBand switch maps traffic from an
incoming lane to an outgoing lane to route the
data between the desired end points

• Each physical link between a switch and an
attached interface can support up to 16 logical
channels, called virtual lanes

• One lane is reserved for fabric
management and the other lanes for data
transport

• A virtual lane is temporarily dedicated to the
transfer of data from one end node to another
over the InfiniBand fabric

• A layered protocol architecture is
used, consisting of four layers:

• Physical

• Link

• Network

• Transport

+
Table 7.3

InfiniBand Links and Data
Throughput Rates

InfiniBand Communication Protocol Stack

zEnterprise 196
• Introduced in 2010
• IBM’s latest mainframe computer offering
• System is based on the use of the z196 chip

• 5.2 GHz multi-core chip with four cores
• Can have a maximum of 24 processor chips (96 cores)

• Has a dedicated I/O subsystem that manages all I/O operations

• Of the 96 core processors, up to 4 of these can be dedicated for I/O use,
creating 4 channel subsystems (CSS)

• Each CSS is made up of the following elements:
• System assist processor (SAP)
• Hardware system area (HSA)
• Logical partitions
• Subchannels
• Channel path
• Channel

I/O System Organization

IBM z196 I/O System Structure

