
Computer Architecture & Organization

Chapter 9

Control Unit Operation

Functional requirements for a processor

• The following list are things needed to specify the function of a processor
1. Operations (opcodes)

2. Addressing modes

3. Registers

4. I/O module interface

5. Memory module interface

6. Interrupts

• Items 1 through 3 are defined by the instruction set.

• Items 4 and 5 are typically defined by specifying the system bus.

• Item 6 is defined partially by the system bus and partially by the type of support the
processor offers to the operating system

• In this chapter we see how the various elements of the processor are controlled to
provide these functions.

Micro-Operations

• A computer executes a program

• Program execution involve Instruction
cycles: Fetch, indirect, execute
interrupt … Sub cycles

• Each Sub cycle has a number of steps
(see pipelining) called micro-
operations

• micro-operations are atomic
operation of CPU

Fetch - 4 Registers

• Memory Address Register (MAR)
• Connected to address bus

• Specifies address for read or write op

• Memory Buffer Register (MBR)
• Connected to data bus

• Holds data to write or last data read

• Program Counter (PC)
• Holds address of next instruction to be fetched

• Instruction Register (IR)
• Holds last instruction fetched

Fetch Sequence

• Address of next instruction is in PC move it to MAR.
• Address (MAR) is placed on address bus automatically.

• Control unit issues READ command
• Result (data from memory) appears on data bus

• Data from data bus copied into MBR

• PC incremented by 1 (in parallel with data fetch from memory)

• Data (instruction) moved from MBR to IR
• MBR is now free for further data fetches

Fetch Sequence (Example)

OR

Fetch cycle actually consists of three
steps and four microoperations.

Rules for Clock Cycle Grouping

• Proper sequence must be followed
• MAR <- (PC) must precede MBR <- (memory)

• Conflicts must be avoided
• Must not read & write same register at same time

• MBR <- (memory) & IR <- (MBR) must not be in same cycle

• Also: PC <- (PC) +1 involves addition
• ALU can be used

• May need additional micro-operations

Indirect Cycle

MAR <- (IRaddress) - address field of IR

MBR <- (memory)

IRaddress <- (MBRaddress)

• MBR contains an address

• IR is now in same state as if direct addressing had been used

• (What does this say about IR size?)

Interrupt Cycle

t1:MBR <-(PC)
t2:MAR <- save-address

PC <- routine-address
t3:memory <- (MBR)

• This is a minimum
• May be additional micro-ops to get addresses

• N.B. saving context is done by interrupt handler routine, not micro-ops

Execute Cycle (ADD)

• Different for each instruction

• Example

ADD R1,X - add the contents of location X to Register R1 , result in R1

t1: MAR <- (IRaddress)

t2: MBR <- (memory)

t3: R1 <- R1 + (MBR)

• Note no overlap of micro-operations

Example Execute Cycle (ISZ)

• ISZ X - increment and skip if zero
t1: MAR <- (IRaddress)

t2: MBR <- (memory)

t3: MBR <- (MBR) + 1

t4: memory <- (MBR)

if (MBR) == 0 then PC <- (PC) + 1

• Notes:
• if is a single micro-operation

• The test and skip micro-operation is done during t4

Example Execute Cycle (BSA)

• BSA X - Branch and save address
• Address of instruction following BSA is saved in X

• Execution continues from X+1

t1: MAR <- (IRaddress)

MBR <- (PC)

t2: PC <- (IRaddress)

memory <- (MBR)

t3: PC <- (PC) + 1

Instruction Cycle

• Each phase decomposed into sequence of elementary micro-operations

E.g. fetch, indirect, and interrupt cycles

• Execute cycle
• One sequence of micro-operations for each opcode

• Need to tie sequences together

• Assume new 2-bit register
• Instruction cycle code (ICC) designates which part of cycle processor is in

• 00: Fetch

• 01: Indirect

• 10: Execute

• 11: Interrupt

Flowchart for Instruction Cycle

Three-step process to characterize the control unit
• Define basic elements of processor

ALU

Registers

Internal data paths

External data paths

Control unit

• Describe micro-operations processor
performs

• Transfer data between registers
• Transfer data from register to external
• Transfer data from external to register
• Perform arithmetic or logical ops

• Determine functions control unit must perform
Sequencing

Causing the CPU to step through a series of micro-
operations

Execution
Causing the performance of each micro-op

This is done using Control Signals

Control Signals

• Clock
• One micro-instruction (or set of parallel micro-instructions) per clock cycle

• Instruction register
• Op-code for current instruction

• Determines which micro-instructions are performed

• Flags
• State of CPU

• Results of previous operations

• From control bus
• Interrupts

• Acknowledgements

Model of Control Unit

Control Signals - output

• Within CPU
• Cause data movement

• Activate specific functions

• Via control bus
• To memory

• To I/O modules

Example Control Signal Sequence - Fetch

• MAR <- (PC)
• Control unit activates signal to open gates between PC and MAR

• MBR <- (memory)
• Open gates between MAR and address bus

• Memory read control signal

• Open gates between data bus and MBR

Data Paths and Control Signals

Control signals go to three
separate destinations:

Data paths
ALU
System bus

Internal Organization

• Usually a single internal bus

• Gates control movement of data onto and off the bus

• Control signals control data transfer to and from external systems bus

• Temporary registers needed for proper operation of ALU

Micro-operations and Control Signals

CPU with
Internal
Bus

• Two new registers, labeled Y and Z,
have been added to the organization.

• The ALU is a combinatorial circuit
• Output of the ALU cannot be directly

connected to the bus, because this
output would feed back to the input;
register Z provides temporary output
storage

• With this arrangement, an operation to
add a value from memory to the AC
would have the following steps:

Intel 8085 CPU Block Diagram

Intel 8085 Pin
Configuration

Intel 8085 OUT Instruction
Timing Diagram

Hardwired Implementation

Control unit inputs

• Flags and control bus
• Each bit means something

• Instruction register
• Op-code causes different control signals for each different instruction

• Unique logic for each op-code

• Decoder takes encoded input and produces single output

• n binary inputs and 2n outputs

The Control Unit can be implemented in two ways:
1. Hardwired control
2. Microprogrammed control (chapter 10)

Hardwired Implementation

• Clock
• Repetitive sequence of pulses

• Useful for measuring duration of micro-ops

• Must be long enough to allow signal propagation

• Different control signals at different times within instruction cycle

• Need a counter with different control signals for t1, t2 etc.

Control Unit with Decoded Inputs

Problems With Hard Wired Designs

• Complex sequencing & micro-operation logic

• Difficult to design and test

• Inflexible design

• Difficult to add new instructions

