Computer Architecture & Organization

Chapter 9

Control Unit Operation

Functional requirements for a processor

The following list are things needed to specify the function of a processor

6.

S

Operations (opcodes)
Addressing modes
Registers

|/O module interface
Memory module interface
Interrupts

ltems 1 through 3 are defined by the instruction set.

ltems 4 and 5 are typically defined by specifying the system bus.

ltem 6 is defined partially by the system bus and partially by the type of support the
processor offers to the operating system

In this chapter we see how the various elements of the processor are controlled to
provide these functions.

Micro-Operations

A computer executes a program

Program execution involve Instruction
cycles: Fetch, indirect, execute

Program Execution

/\

interrupt ... Sub cycles

Instruction Cycle

Instruction Cycle

Each Sub cycle has a number of steps
(see pipelining) called micro-
operations

T

Instruction Cycle

Fetch

Indirect

EKEL ute

Interru pt

micro-operations are atomic
operation of CPU

AN

AAIT

Fetch - 4 Registers

* Memory Address Register (MAR)

* Connected to address bus
» Specifies address for read or write op

 Memory Buffer Register (MBR)
e Connected to data bus
 Holds data to write or last data read

* Program Counter (PC)
 Holds address of next instruction to be fetched

* Instruction Register (IR)
* Holds last instruction fetched

AAIT

Fetch Sequence

e Address of next instruction is in PC move it to MAR.
* Address (MAR) is placed on address bus automatically.

e Control unit issues READ command
* Result (data from memory) appears on data bus
* Data from data bus copied into MBR

* PCincremented by 1 (in parallel with data fetch from memory)

e Data (instruction) moved from MBR to IR
* MBR is now free for further data fetches

MAR
MBR
PC
IR
AC

MAR
MBR
PC
IR
AC

0000000001100100

(a) Beginning (before t;)

0o000000001100100

0001000000100000

0000000001100101

(c) After second step

MAR
MBR
PC
IR
AC

MAR
MBR
PC
IR
AC

Fetch Sequence (Example)

0000000001100100

0000000001100100

(b) After first step

0000000001100100

0001000000100000

0000000001100101

0001000000100000

(d) After third step

ti: MAR <« (PC)
C,: MBR < Memory
PC <« (PC) + I
ty: IR ¢« (MBR)
OR
t;: MAR <« (PC)
C,: MBR < Memory
ty: PC « (PC) + I
IR < (MBR)

Fetch cycle actually consists of three
steps and four microoperations.

AAIT

Rules for Clock Cycle Grouping

* Proper sequence must be followed
* MAR <- (PC) must precede MBR <- (memory)

* Conflicts must be avoided
* Must not read & write same register at same time
* MBR <- (memory) & IR <- (MBR) must not be in same cycle

e Also: PC <- (PC) +1 involves addition
* ALU can be used
* May need additional micro-operations

AAIT

Indirect Cycle

MAR <- (IR 4qress) - address field of IR
MBR <- (memory)
IR <- (MBRaddress)

address

* MBR contains an address
* IR is now in same state as if direct addressing had been used
* (What does this say about IR size?)

Interrupt Cycle

t1:MBR <-(PC)

t2:MAR <- save-address
PC <- routine-address

t3:memory <- (MBR)

* This is a minimum
* May be additional micro-ops to get addresses
* N.B. saving context is done by interrupt handler routine, not micro-ops

Execute Cycle (ADD)

e Different for each instruction
* Example

ADD R1,X - add the contents of location X to Register R1, result in R1
t1: MAR <- (IR 44ress)
t2: MBR <- (memory)
t3: R1 <- R1 + (MBR)

* Note no overlap of micro-operations

Example Execute Cycle (ISZ)

* ISZ X - increment and skip if zero
tl: MAR<- (IR 4yee)
t2: MBR <- (memory)
t3: MBR<- (MBR) + 1
t4: memory <- (MBR)
if (MBR) == 0 then PC<- (PC) +1

* Notes:
* if is a single micro-operation
* The test and skip micro-operation is done during t4

Example Execute Cycle (BSA)

e BSA X - Branch and save address
* Address of instruction following BSA is saved in X
e Execution continues from X+1

tl: MAR<- (IR,

MBR <- (PC)
t2: PC <- (IRaddress)

memory <- (MBR)
t3: PC<-(PC)+1

AAIT

Instruction Cycle

* Each phase decomposed into sequence of elementary micro-operations
E.g. fetch, indirect, and interrupt cycles

* Execute cycle
* One sequence of micro-operations for each opcode

* Need to tie sequences together

* Assume new 2-bit register

* Instruction cycle code (ICC) designates which part of cycle processor is in
* 00: Fetch
* 01: Indirect
* 10: Execute
* 11: Interrupt

Flowchart for Instruction Cycle

11 (interrupt)

00 (fetch)

\ ICC? /
10 (execute) 01 indirect
Setup Read Fetch
interrupt Opcode address instruction
1 Execute l 1
ICC = 00 instruction ICC =10 Indirect
addressing?
Yes / Interrupt A\ . Y
for enabled ICC = 10 ICC = 01
interrupt?
 J
ICC =11 ICC =00
f 1 k ‘f Y

AAIT

o e

-~

CAAIT

Three-step process to characterize the control unit

* Define basic elements of processor
ALU
Registers
Internal data paths
External data paths
Control unit

* Describe micro-operations processor
performs

* Transfer data between registers

* Transfer data from register to external
* Transfer data from external to register
e Perform arithmetic or logical ops

* Determine functions control unit must perform
Sequencing
Causing the CPU to step through a series of micro-
operations
Execution
Causing the performance of each micro-op
This is done using Control Signals

Control Signals

* Clock

* One micro-instruction (or set of parallel micro-instructions) per clock cycle

* |Instruction register
* Op-code for current instruction
* Determines which micro-instructions are performed

* Flags
* State of CPU
* Results of previous operations

* From control bus
* Interrupts
* Acknowledgements

Model of Control Unit

Flags

Clock

Instruction register

Control
Unit

Control signals
within CPU

—

Control signals

< from control bus

Control signals

to control bus

Control bus

AAIT

Control Signals - output

* Within CPU

* Cause data movement
* Activate specific functions

e VVia control bus

* To memory
* To I/0O modules

Example Control Signal Sequence - Fetch

* MAR <- (PC)

e Control unit activates signal to open gates between PC and MAR
* MBR <- (memory)

* Open gates between MAR and address bus

* Memory read control signal
* Open gates between data bus and MBR

Data Paths and Control Signals

Cs

* Cio
Cia a Cs Ca
cgﬂ(c: —*-) AC
PC IR c—»% %4—0
T 2]
05—}'{}
-‘—
LU

C1

A o=

o€—C O€C - Control
Co : e A © signals
4-*— A
i—
R |«) Control
unit :
.‘_
Clock Control

signals

e

e i

AAIT

Control signals go to three
separate destinations:

Data paths
ALU
System bus

AAIT

Internal Organization

e Usually a single internal bus

* Gates control movement of data onto and off the bus

* Control signals control data transfer to and from external systems bus
* Temporary registers needed for proper operation of ALU

Micro-operations and Control Sighals

Active Control

Micro-operations Signals
t;: MAR < (PC) C,
Fetch: t: MBR < Memory Cs.Cp
PC<— (PC) + 1
t;: IR < (MBR) Cy
t;: MAR < (IR(Address)) Cq
Indirect: t;: MBR < Memory Cs. Cp
t;: IR(Address) < (MBR(Address)) Cy
t;: MBR < (PC) C,
Interrupt: t,: MAR <« Save-address
PC < Routine-address
t;: Memory < (MBR) Ci2. Cw

Cp = Read control signal to system bus.

Cyw = Write control signal to system bus.

AAIT

CPU with

ternal

US

Address
lines

Data
lines

Control
unit

i

IR

$

l

+— MAR

$

|

<> MBR

J

AC

!

i

|

Y

Control
unit

!

K

Internal CPU bus

Two new registers, labeled Y and Z,
have been added to the organization.
The ALU is a combinatorial circuit
Output of the ALU cannot be directly
connected to the bus, because this
output would feed back to the input;
register Z provides temporary output
storage

With this arrangement, an operation to
add a value from memory to the AC
would have the following steps:

t;: MAR ¢« (IR(address))
Cy: MBR < Memory

ty3: ¥ < (MBR)

th: 2 < (AC) + (Y)

ts: AC « (Z)

Intel 8085 CPU Block Diagram

INTA RST6.5 TRAP

INIR |R815.5 RS'i?.E Sf SOD
Interrupt control Serial /O
control

<

8-bit internal data bus

$ ¢ 3 1

®) ®) 8 R e [® |
nstruction
Accumulator temp. reg. - p-ﬂg - ! T Breg. | Creg.
l @) (8)
Dreg. | Ereg.
(@) (8)
instruction instruction Sl S O register
decoder decoder (16) array
and and i
machine machine stack pointer
cycle cycle (16)
encoding encoding program counter
incrementer/ (16
l decrementer
address latch J
Power _{ +5V =
Supply |GND —p Timing and control
X1
. | Ck ®))
2 Gen Control Status DMA Reset address buffer address buffer
ClkOut RDWR ALE S;3S4I0M T HLDA T Reset out l
Reselir Ays - Ag AD; - ADg
Ready Hold esetin address bus address/data bus

Inte

3085 Pin

Configuration

Xy —»{

Xy —P{
Reset out €—
SOD w—{
SID —pf
Trap t—
RST 7.5 —pf
RST 6.5 44—
RST 5.5 —pf
INTR —9»{]
INTA €—{
AD, = p{
AD; -
AD, =p{
AD; -
AD, =wp{
ADy; -
ADg =p{
AD; -

Vss —

00 N O O A WN =

N = = A A A A A A A A D
O W 00 1 OO O A W N = O

39[}¢—HOLD
38— HLDA
37[1—» CLK (out)
36[<¢— Reset in
3 Ready
3 IO/M

3 S

32 Vpp

31 RD

3 WR

2 Sy

28 Ass
27— A14
26[1—» Aq3

2 A1p

2 A1

2 A1o

22 Ag

Intel 8085 OUT Instruction
Timing Diagram

3 MHz CLE —\

WA AR

JoBpiSH
0
y

A=A, X PC,, PC,, X 10 PORT
AD,-AD, | X PG p-——(INSTR p=ofommmmma --I0PORTY, ACCUM
sE N\ 7N
ﬁ N \ /
e) | Y
10/M N\ _
I PCOut [PCo1oPC] Instr—IR| X PCOut [PC+ 1 PClbyte +Z, W] WZ Out A——"f—= Port :

Instruchom fetcku

Memory mad

it sEite _I-!

AAIT

Hardwired Implementation

The Control Unit can be implemented in two ways:
1. Hardwired control

2. Microprogrammed control (chapter 10)

Control unit inputs

* Flags and control bus
* Each bit means something

* |Instruction register
* Op-code causes different control signals for each different instruction
* Unique logic for each op-code

* Decoder takes encoded input and produces single output
* n binary inputs and 2" outputs

Hardwired Implementation

* Clock

* Repetitive sequence of pulses

Useful for measuring duration of micro-ops

Must be long enough to allow signal propagation

Different control signals at different times within instruction cycle
Need a counter with different control signals for t1, t2 etc.

Control Unit with Decoded Inputs

Instruction register

3
Lo

T =
-
Clock Timing Tf—’ > Control .
oc . generator ‘ Unit . Flags
T—> R
1 1
Co Cq . Cm

AAIT

Problems With Hard Wired Designs

* Complex sequencing & micro-operation logic
e Difficult to design and test

* Inflexible design

e Difficult to add new instructions

