
Computer Architecture & Organization

Chapter 6 & 7

Processor Structure and Function

Pipelining

Processor Organization

• Fetch instruction
• The processor reads an instruction from memory (register, cache, main memory)

• Interpret instruction
• The instruction is decoded to determine what action is required

• Fetch data
• The execution of an instruction may require reading data from memory or an I/O module

• Process data
• The execution of an instruction may require performing some arithmetic or logical operation

on data

• Write data
• The results of an execution may require writing data to memory or an I/O module

• In order to do these things the processor needs to store some data temporarily
and therefore needs a small internal memory

Processor Requirements:

CPU With the System Bus

Figure 14.1 is a simplified view of a processor, indicating

its connection to the rest of the system via the system bus.

• Recall that the major components of the processor are

an arithmetic and logic unit (ALU) and a control unit

(CU).

• The ALU does the actual computation or processing of

data.

• The control unit controls the movement of data and

instructions into and out of the processor and controls

the operation of the ALU.

• In addition, the figure shows a minimal internal

memory, consisting of a set of storage locations, called

registers.

CPU Internal Structure

Figure 14.2 is a slightly more detailed view of

the processor.

• The data transfer and logic control paths are

indicated, including an element labeled

internal processor bus. This element is needed

to transfer data between the various registers

and the ALU because the

• ALU operates only on data in the internal

processor memory.

• Note the similarity between the internal

structure of the computer as a whole and the

internal structure of the processor. In both

cases, there is a small collection of major

elements (computer: processor, I/O, memory;

processor: control unit, ALU, registers)

connected by data paths.

Register Organization

• Enable the machine or
assembly language
programmer to minimize
main memory references by
optimizing use of registers

• Used by the control unit to
control the operation of the
processor and by privileged
operating system programs to
control the execution of programs

User-Visible Registers Control and Status Registers

 Within the processor there is a set of registers that function as a level of
memory above main memory and cache in the hierarchy

 The registers in the processor perform two roles:

User-Visible Registers

Referenced by means of
the machine language that

the processor executes

•General purpose

•Can be assigned to a variety of functions by the programmer

•Data

•May be used only to hold data and cannot be employed in
the calculation of an operand address

•Address

•May be somewhat general purpose or may be devoted to a
particular addressing mode

•Examples: segment pointers, index registers, stack pointer

•Condition codes

•Also referred to as flags

•Bits set by the processor hardware as the result of
operations

Categories:

Table 14.1 Condition Codes
• Many processors, including those based on the IA-64 architecture and the MIPS processors, do not use condition

codes at all. Rather, conditional branch instructions specify a comparison to be made and act on the result of the

comparison.

Control and Status Registers

• Program counter (PC)
• Contains the address of an instruction to be fetched

• Instruction register (IR)
• Contains the instruction most recently fetched

• Memory address register (MAR)
• Contains the address of a location in memory

• Memory buffer register (MBR)
• Contains a word of data to be written to memory or the word most recently read

Four registers are essential to instruction execution:

Program Status Word (PSW)

The program status word (PSW) is a register or set of registers that
contain status information

Common fields or flags include:

• Sign: Contains the sign bit of the result of the last arithmetic operation.

• Zero: Set when the result is 0.

• Carry: Set if an operation resulted in a carry (addition) into or borrow (sub-
traction) out of a high-order bit. Used for multiword arithmetic operations.

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to enable or disable interrupts.

• Supervisor: Indicates whether the processor is executing in supervisor or
user mode. Certain privileged instructions can be executed only in supervisor
mode, and certain areas of memory can be accessed only in supervisor mode.

Example Microprocessor
Register Organizations

• Register organization of two 16-bit

microprocessors that were designed at about the

same time: the Motorola MC68000 and the Intel

8086 (Figures 14.3a and b).

• The MC68000 partitions its 32-bit registers into

eight data registers and nine address registers

allowing 8-, 16-, and 32-bit data operations,

determined by opcode

• The MC68000 also includes a 32-bit program

counter and a 16-bit status register.

• The 8086 contains four 16-bit data registers that

are addressable on a byte or 16-bit basis, four 16-

bit pointer and index registers, four 16-bit

segment registers and also includes an instruction

pointer and a set of 1-bit status and control flags

• The 80386 uses 32-bit registers and provide

upward compatibility by retaining the original

register organization embedded in the new

organization

Q How could 80386 be compatible with 8086 w/o segment

registers? Why do you think 80386 doesn’t need CS, DS, SS & ES?

Instruction Cycle

• After an instruction is fetched, it

is examined to determine if any

indirect addressing is involved. If

so, the required operands are

fetched using indirect addressing.

• Following execution, an interrupt

may be processed before the next

instruction fetch.

Data Flow, Fetch Cycle

Data Flow, Indirect Cycle

• Once the fetch cycle is over, the

control unit examines the

contents of the IR to determine if

it contains an operand specifier

using indirect addressing.

• If so, an indirect cycle is

performed. This is a simple

cycle. The right- most N bits of

the MBR, which contain the

address reference, are transferred

to the MAR.

• Then the control unit requests a

memory read, to get the desired

address of the operand into the

MBR

Data Flow, Interrupt Cycle

Two-Stage Instruction Pipeline

• A conditional branch instruction

makes the address of the next

instruction to be fetched unknown

• Guessing can reduce the time loss.

A simple rule is the following:

• When a conditional branch

instruction is passed on from

the fetch to the execute stage,

the fetch stage fetches the

next instruction in memory

after the branch instruction.

• Then, if the branch is not

taken, no time is lost. If the

branch is taken, the fetched

instruction must be discarded

and a new instruction fetched.

Additional Stages
• Fetch instruction (FI)

• Read the next expected
instruction into a buffer

• Decode instruction (DI)
• Determine the opcode and

the operand specifiers

• Calculate operands (CO)
• Calculate the effective address

of each source operand

• This may involve
displacement, register
indirect, indirect, or other
forms of address calculation

• Fetch operands (FO)
• Fetch each operand from

memory

• Operands in registers need not
be fetched

• Execute instruction (EI)
• Perform the indicated

operation and store the result,
if any, in the specified
destination operand location

• Write operand (WO)
• Store the result in memory

Timing Diagram for Instruction Pipeline
Operation

The Effect of a Conditional Branch on Instruction Pipeline
Operation

• Several other factors serve to limit

the performance enhancement of

pipeline:

• stages are not of equal duration

• conditional branch instruction,

which can invalidate several

instruction fetches

• an interrupt.

• Figure 14.11 illustrates the effects of

the conditional branch, using the

same program as Figure 14.10.

• Assume that instruction 3 is a

conditional branch to instruction 15;

until the instruction is executed,

there is no way of knowing which

instruction will come next.

Six Stage
Instruction
Pipeline • The CO stage may depend

on the contents of a register

that could be altered by a

previous instruction that is

still in the pipeline. Other

such register and memory

conflicts could occur. The

system must contain logic

to account for this type of

conflict.

Alternative Pipeline Depiction

• Figure 14.13b, (which corresponds

to Figure 14.11), the pipeline is full

at times 6 and 7. At time 7,

instruction 3 is in the execute stage

and executes a branch to

instruction 15.

• At this point, instructions I4

through I7 are flushed from the

pipeline, so that at time 8, only two

instructions are in the pipeline, I3

and I15.

Speedup Factors with
Instruction Pipelining

Exercise

• Assuming a hypothetical processor with no branching, if:
• τ (cycle time) is the average total time required for each stage to execute an

instruction

• k is number of stages

1. Derive the formula to calculate the total time required to execute n
instructions.

Tk,n τ k + (n-1) τ

2. Calculate for T6, 10 15 τ

3. How long would it take for a similar processor without pipelining?

Tn τ k n

Pipeline Hazards

Occur when the pipeline,
or some portion of the

pipeline, must stall
because conditions do
not permit continued

execution

Also referred to as a
pipeline bubble

There are three types
of hazards:

• Resource

• Data

• Control

Resource Hazards

A resource hazard occurs when two
or more instructions that are already
in the pipeline need the same
resource

The result is that the instructions
must be executed in serial rather
than parallel for a portion of the
pipeline

A resource hazard is sometimes
referred to as a structural hazard

E.g. When main memory has a single
port and that FI and FO must be
performed one at a time from main
memory.

Data Hazards

A data hazard occurs when there is a conflict in the access of an operand location

Two instructions in a program are to be

executed in sequence and both access a

particular memory or register operand. If the

two instructions are executed in strict sequence,

no problem occurs. However, if the instructions

are executed in a pipeline, then it is possible for

the operand value to be updated in such a way

as to produce a different result than would

occur with strict sequential execution.

Types of Data Hazard
• Read after write (RAW), or true dependency

• An instruction modifies a register or memory location

• Succeeding instruction reads data in memory or register location

• Hazard occurs if the read takes place before write operation is complete

• Write after read (WAR), or antidependency
• An instruction reads a register or memory location

• Succeeding instruction writes to the location

• Hazard occurs if the write operation completes before the read operation takes place

• Write after write (WAW), or output dependency
• Two instructions both write to the same location

• Hazard occurs if the write operations take place in the reverse order of the intended
sequence

1. what type of data hazard could this code produce? Ans. RAW

2. How can you modify the code it produce WAR and WAW data hazards

Q:

Control Hazard

• Also known as a branch hazard

• Occurs when the pipeline makes the wrong decision on a branch
prediction

• Brings instructions into the pipeline that must subsequently be
discarded

• Dealing with Branches:
• Multiple streams
• Prefetch branch target
• Loop buffer
• Branch prediction
• Delayed branch

Multiple Streams

A simple pipeline suffers a penalty for a branch instruction because it must
choose one of two instructions to fetch next and may make the wrong choice

A brute-force approach is to replicate the initial portions of the pipeline and
allow the pipeline to fetch both instructions, making use of two streams. There
are two problems with this approach:

•With multiple pipelines there are contention delays for access to the registers and to memory

•Additional branch instructions may enter the pipeline before the original branch decision is
resolved

•Despite these drawbacks, this strategy can improve performance. Examples of machines with two
or more pipeline streams are the IBM 370/168 and the IBM 3033.

Prefetch Branch Target

When a conditional branch is recognized, the target of the branch is
prefetched, in addition to the instruction following the branch

 Target is then saved until the branch instruction is executed

 If the branch is taken, the target has already been prefetched

 IBM 360/91 uses this approach

Loop Buffer

• Small, very-high speed memory maintained by the instruction fetch
stage of the pipeline and containing the n most recently fetched
instructions, in sequence

• Benefits:
• Instructions fetched in sequence will be available without the usual memory

access time
• If a branch occurs to a target just a few locations ahead of the address of the

branch instruction, the target will already be in the buffer
• This strategy is particularly well suited to dealing with loops

• Similar in principle to a cache dedicated to instructions
• Differences:

• The loop buffer only retains instructions in sequence
• Is much smaller in size and hence lower in cost

Branch Prediction

• Various techniques can be used to predict whether a branch will be
taken:

1. Predict never taken

2. Predict always taken

3. Predict by opcode

1. Taken/not taken switch

2. Branch history table

 These approaches are static

 They do not depend on the execution
history up to the time of the conditional
branch instruction

 These approaches are dynamic

 They depend on the execution history

Branch Prediction
Flow Chart

Branch Prediction State Diagram

Intel 80486 Pipelining
• Fetch

• Objective is to fill the prefetch buffers with new data as soon as the old data have
been consumed by the instruction decoder

• Operates independently of the other stages to keep the prefetch
buffers full

• Decode stage 1
• All opcode and addressing-mode information is decoded in the D1 stage

• 3 bytes of instruction are passed to the D1 stage from the
prefetch buffers

• D1 decoder can then direct the D2 stage to capture the rest of the instruction

• Decode stage 2
• Expands each opcode into control signals for the ALU

• Also controls the computation of the more complex addressing
modes

• Execute
• Stage includes ALU operations, cache access, and register update

• Write back
• Updates registers and status flags modified during the preceding execute stage

80486
Instruction Pipeline Examples

• Figure 14.21a shows that there is no delay introduced
into the pipeline when a memory access is required.

• However, as Figure 14.21b shows, there can be a delay
for values used to compute memory addresses. That
is, if a value is loaded from memory into a register and
that register is then used as a base register in the next
instruction, the processor will stall for one cycle.

• Figure 14.21c illustrates the timing of a branch

instruction, assuming that the branch is taken. The

compare instruction updates condition codes in the WB

stage, and bypass paths make this available to the EX

stage of the jump instruction at the same time. In

parallel, the processor runs a speculative fetch cycle to

the target of the jump during the EX stage of the jump

instruction. If the processor determines a false branch

condition, it discards this prefetch and continues

execution with the next sequential instruction (already

fetched and decoded).

Table 14.2
x86 Processor Registers

Table 14.2 x86 Processor Registers

x86 EFLAGS Register
• The EFLAGS register indicates the condition of the processor and helps to control

its operation.

Control Registers
• The x86 employs four control registers (register CR1

is unused) to control various aspects of processor

operation

• All of the registers except CR0 are either 32 bits or

64 bits long, depending on whether the

implementation supports the x86 64-bit architecture.

• The CR0 register contains system control flags,

which control modes or indicate states that apply

generally to the processor rather than to the

execution of an individual task.

• When paging is enabled, the CR2 and CR3 registers

are valid

Interrupt Processing

• Interrupts
• Generated by a signal from hardware and it may occur at

random times during the execution of a program
• Maskable: Received on the processor’s INTR pin. The processor

does not recognize a maskable interrupt unless the interrupt
enable flag (IF) is set.

• Nonmaskable: Received on the processor’s NMI pin.
Recognition of such interrupts cannot be prevented.

• Exceptions
• Generated from software and is provoked by the execution of an

instruction
• Processor detected
• Programmed

• Interrupt vector table
• Every type of interrupt is assigned a number
• Number is used to index into the interrupt vector table

Interrupts and Exceptions

The ARM Processor

• Moderate array of uniform registers

• A load/store model of data processing in which operations only
perform on operands in registers and not directly in memory

• A uniform fixed-length instruction of 32 bits for the standard set and
16 bits for the Thumb instruction set

• Separate arithmetic logic unit (ALU) and shifter units

• A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

• Auto-increment and auto-decrement addressing modes are used to
improve the operation of program loops

• Conditional execution of instructions minimizes the need for
conditional branch instructions, thereby improving pipeline
efficiency, because pipeline flushing is reduced

ARM is primarily a RISC system with the following attributes:

Simplified ARM Organization

• The ARM processor organization varies
substantially from one implementation to the
next, particularly when based on different
versions of the ARM architecture.

• Figure 14.25 is a generic ARM organization,
arrows indicate the flow of data. Each box
represents a functional hardware unit or a
storage unit.

• ARM data processing instructions typically have

two source registers, Rn and Rm, and a single

result or destination register, Rd.

• The results of an operation are fed back to the

destination register. Load/store instructions may

also use the output of the arithmetic units to

generate the memory address for a load or store.

Processor Modes

ARM architecture supports
seven execution modes

Most application programs execute
in user mode

• While the processor is in user mode the
program being executed is unable to
access protected system resources or to
change mode, other than by causing an
exception to occur

Remaining six execution modes
are referred to as privileged
modes

• These modes are used to run system
software

Advantages to defining so many
different privileged modes

• The OS can tailor the use of system software to a
variety of circumstances

• Certain registers are dedicated for use for each
of the privileged modes, allows swifter changes
in context

Exception Modes

Have full access
to system

resources and can
change modes

freely.

Entered when
specific

exceptions occur

Exception modes:

• Supervisor mode

• Abort mode

• Undefined mode

• Fast interrupt mode

• Interrupt mode

System mode:

• Not entered by any
exception and uses the
same registers available in
User mode

• Is used for running certain
privileged operating
system tasks

• May be interrupted by
any of the five exception
categories

* Supervisor mode: Usually what the OS runs in. It

is entered when the processor encounters a software

interrupt instruction. Software interrupts are a

standard way to invoke operating system services on

ARM.

* Abort mode: Entered in response to memory

faults.

* Undefined mode: Entered when the processor

attempts to execute an instruction

that is supported neither by the main integer core nor

by one of the coprocessors.

* Fast interrupt mode: Entered whenever the

processor receives an interrupt signal from the

designated fast interrupt source. A fast interrupt

cannot be interrupted, but a fast interrupt may

interrupt a normal interrupt.

• Interrupt mode: Entered whenever the processor

receives an interrupt signal from any other interrupt

source (other than fast interrupt). An interrupt may

only be interrupted by a fast interrupt.

ARM
Register Organization

• Figure 14.26 depicts the user-visible registers

for the ARM. The ARM processor has a total of

37 32-bit registers (16 (shared General R0-

R15) + 1 shared CPSR + 20 specific to every

mode, shaded) , classified as follows:

• Thirty-one registers referred to in the

ARM manual as general-purpose registers.

In fact, some of these, such as the program

counters, have special purposes.

• Six program status registers.

Format of ARM CPSR and SPSR

• The CPSR is accessible in all

processor modes. Each exception

mode also has a dedicated SPSR

that is used to preserve the value

of the CPSR when the associated

exception occurs.

• Condition code flags: The N, Z, C, and V flags, which are

discussed in Chapter 12.

• Q flag: used to indicate whether overflow and/or saturation has

occurred in some SIMD-oriented instructions.

• J bit: indicates the use of special 8-bit instructions, known as

Jazelle instructions, which are beyond the scope of our discussion.

• GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or

Equal (GE) flags for individual bytes or halfwords of the result.

• Ebit: Controls load and store endianness for data; ignored

for instruction fetches.

• Interrupt disable bits: The A bit disables imprecise data

aborts when set; the I bit disables IRQ interrupts when set;

and the F bit disables FIQ interrupts when set.

• T bit: Indicates whether instructions should be interpreted

as normal ARM instructions or Thumb instructions.

• Mode bits: Indicates the processor mode.

Summary

• Processor organization

• Register organization

• User-visible registers

• Control and status registers

• Instruction cycle

• The indirect cycle

• Data flow

• The x86 processor family

• Register organization

• Interrupt processing

• Instruction pipelining

• Pipelining strategy

• Pipeline performance

• Pipeline hazards

• Dealing with branches

• Intel 80486 pipelining

• The Arm processor

• Processor organization

• Processor modes

• Register organization

• Interrupt processing

Processor Structure
and Function

+

William Stallings

Computer Organization

and Architecture

9th Edition

