Computer Architecture & Organization

Chapter 6 & 7

=Processor Structure and Function
«Pipelining

L AAIT
Processor Organization

Fetch instruction
* The processor reads an instruction from memory (register, cache, main memory)

Interpret instruction
* The instruction is decoded to determine what action is required

Fetch data
* The execution of an instruction may require reading data from memory or an I/0 module

Process data

. Thedexecution of an instruction may require performing some arithmetic or logical operation
on data

Write data
* The results of an execution may require writing data to memory or an I/0 module

In order to do these things the processor needs to store some data temporarily
and therefore needs a small internal memory

CPU With the System Bus

Figure 14.1 is a simplified view of a processor, indicating
its connection to the rest of the system via the system bus.

Registers

Recall that the major components of the processor are
an arithmetic and logic unit (ALU) and a control unit ALU
(CU).

CAAIT

The ALU does the actual computation or processing of
data.

The control unit controls the movement of data and

Control
Uit

instructions into and out of the processor and controls
the operation of the ALU.

In addition, the figure shows a minimal internal
memory, consisting of a set of storage locations, called
registers.

Control Data Address
Bus Bus Bus

___-——-—Y——-__J

System
Bus

Figure 14.1 The CPU with the System Bus

CPU Internal Structure

Figure 14.2 is a slightly more detailed view of
the processor.

The data transfer and logic control paths are
indicated, including an element labeled
internal processor bus. This element is needed
to transfer data between the various registers
and the ALU because the

ALU operates only on data in the internal
processor memory.

Note the similarity between the internal
structure of the computer as a whole and the
internal structure of the processor. In both
cases, there is a small collection of major
elements (computer: processor, 1/0, memory;
processor: control unit, ALU, registers)
connected by data paths.

Arithmetic and Logic Unit

Status Flags

+— >

Shifter

I

Complementer

Arithmetic

Boolean

Logic

and ‘ ’

< 4

Internal CPL Bus

Registers

Control
Unit

Control
Paths

Figure 14.2 Internal Structure of the CPU

Register Organization

Within the processor there is a set of registers that function as a level of
memory above main memory and cache in the hierarchy

The registers in the processor perform two roles:

User-Visible Registers Control and Status Registers

* Enable the machine or e Used by the control unit to
assembly language control the operation of the
programmer to minimize processor and by privileged
main memory references by operating system programs to

optimizing use of registers control the execution of programs

CAAIT

User-Visible Registers

-~ ™~ Categories:

e General purpose
e Can be assigned to a variety of functions by the programmer

Referenced by means of

the machine language that « Data
the processor executes e May be used only to hold data and cannot be employed in
the calculation of an operand address
e Address

* May be somewhat general purpose or may be devoted to a
particular addressing mode

e Examples: segment pointers, index registers, stack pointer
e Condition codes
e Also referred to as flags

* Bits set by the processor hardware as the result of
operations

o /

comparison.

able 14.1 Condition Codes

Many processors, including those based on the |A-64 architecture and the MIPS processors, do not use condition
codes at all. Rather, conditional branch instructions specify a comparison to be made and act on the result of the

Advantages

Disadvantages

Because condition codes are set by normal
arithmetic and data movement instructions,
they should reduce the number of

COMPARE and TEST instructions needed.

. Conditional instmactions, such as BEANCH

are simplified relative to composite
instructions. such as TEST AND
BRANCH.

. Condition codes facilitate multiway

branches. For example. a TEST instruction
cian be followed by two branches, one on
less than or equal to zero and one on
greater than zero.

. Condition codes can be saved on the stack

during subroutine calls along with other
register information.

Condition codes add complexity, both to
the hardware and software. Condition code
bits are often modified in different wavs
by different instructions, making life more
difficult for both the microprogrammer
and compiler writer.

Condition codes are irmmegular; they are
typically not part of the main data path. so
they require extra hardwire connections.
Often condition code machings must add
special non-condition-code instructions for
special sitnations anvway, such as bit
checking, loop control, and atomic
semaphore operations.

In a pipelined implementation, condition
codes require special synchronization o
avoid conflicts.

. AAIT
Control and Status Registers |

* Program counter (PC)
* Contains the address of an instruction to be fetched

* Instruction register (IR)
* Contains the instruction most recently fetched

* Memory address register (MAR)
e Contains the address of a location in memory

 Memory buffer register (MBR)

* Contains a word of data to be written to memory or the word most recently read

AT
Program Status Word (PSW)

The program status word (PSW) Is a register or set of registers that
contain status information

Common fields or flags include:

« Sign: Contains the sign bit of the result of the last arithmetic operation.
« Zero: Set when the result is 0.

« Carry: Set if an operation resulted in a carry (addition) into or borrow (sub-
traction) out of a high-order bit. Used for multiword arithmetic operations.

« Equal: Set if a logical compare result is equality.
» Overflow: Used to indicate arithmetic overflow.
* Interrupt Enable/Disable: Used to enable or disable interrupts.

 Supervisor: Indicates whether the processor is executing in supervisor or
user mode. Certain privileged instructions can be executed only in supervisor
mode, and certain areas of memory can be accessed only in supervisor mode.

Register organization of two 16-bit
microprocessors that were designed at about the
same time: the Motorola MC68000 and the Intel
8086 (Figures 14.3a and b).

The MC68000 partitions its 32-bit registers into
eight data registers and nine address registers
allowing 8-, 16-, and 32-bit data operations,
determined by opcode

The MC68000 also includes a 32-bit program
counter and a 16-bit status register.

The 8086 contains four 16-bit data registers that
are addressable on a byte or 16-bit basis, four 16-
bit pointer and index registers, four 16-bit
segment registers and also includes an instruction
pointer and a set of 1-bit status and control flags
The 80386 uses 32-bit registers and provide
upward compatibility by retaining the original
register organization embedded in the new
organization

s

e, i

AAIT

Data registers General registers General Registers

D0 AX |Accumulator EAX AX
D1 BX Base EBX BX
D2 CX Count ECX CX
D3 DX Data EDX DX
D4
D5 Pointers & index ESP 5P
D& SP | Stack ptr EBP BP
D7 BP | Base pir ESI 51

81 |Source index EDI DI

Address registers DI | Dest index
Al Program Status
Al Segment FLAGS Register
A2 Cs Code Instruction Pointer
Al DS Data
Ad S8 | Stack (c) 80386 - Pentium 4
AS ES Extrat
Ab
AT Program status
Flags
Instr ptr
Program status
Program counter (h) 8086
| Status register

(a) MC68000

Figure 14.3 Example Microprocessor Register Organizations

Q How could 80386 be compatible with 8086 w/o segment
registers? Why do you think 80386 doesn’t need CS, DS, SS & ES?

Interrupt

Instruction Cycle

Fetch

v

Execute

Figure 14.4 The Instruction Cycle

After an instruction is fetched, it
Is examined to determine if any
indirect addressing is involved. If
so, the required operands are
fetched using indirect addressing.

Following execution, an interrupt
may be processed before the next
instruction fetch.

Data Flow, Fetch Cycle

CPU

PC ——>MAR L
TT K= Memory

Control ::>,

Unit

EI(:: MBR

Address Data Control

Bus Bus Bus

MBR = Memory buffer register
MAR = Memory address register
[R = Instruction register

PC = Program counter

Figure 14.6 Data Flow, Fetch Cycle

Data Flow, Indirect Cycle

CPU

| * Once the fetch cycle is over, the

~S{MAR

control unit examines the

Memory contents of the IR to determine if

’ it contains an operand specifier
using indirect addressing.

) If so, an indirect cycle is

Unit performed. This is a simple

cycle. The right- most N bits of

the MBR, which contain the

=
Control :D’

MER address reference, are transferred

to the MAR.
« Then the control unit requests a

. memory read, to get the desired
Address Data Control address of the operand into the

Bus Bus Bus MBR

Figure 14.7 Data Flow, Indirect Cycle

Data Flow, Interrupt Cycle

CPU

PC

MAR

ih

Control
Unit

" MBR

—]

Address Data
Bus Bus

3: 3Mcmnr}‘

Control
Bus

Figure 14.8 Data Flow, Interrupt Cycle

Instruction Instruction Result
Fetch Execute

>
(a) Simplified view
Wait New address Wait
Instruction Instruction Result
» Feich Execute ;
Discard
(b) Expanded view

Figure 14.9 Two-Stage Instruction Pipeline

wo-Stage Instruction Pipeline

A conditional branch instruction
makes the address of the next
instruction to be fetched unknown
Guessing can reduce the time loss.
A simple rule is the following:

When a conditional branch
Instruction is passed on from
the fetch to the execute stage,
the fetch stage fetches the
next instruction in memory
after the branch instruction.
Then, if the branch is not
taken, no time is lost. If the
branch is taken, the fetched
Instruction must be discarded
and a new instruction fetched.

Additional Stages

e Fetch instruction (FI)

* Read the next expected
instruction into a buffer

* Decode instruction (DlI)

e Determine the opcode and
the operand specifiers

 Calculate operands (CO)

* Calculate the effective address
of each source operand

* This may involve
displacement, register
indirect, indirect, or other
forms of address calculation

* Fetch operands (FO)

* Fetch each operand from
memory

* Operands in registers need not
be fetched
e Execute instruction (El)

* Perform the indicated
operation and store the result,
if any, in the specified
destination operand location

* Write operand (WO)

e Store the result in memory

Timing Diagram for Instruction Pipeline
Operation

Time

L

11213 |4 |56 |7 |8 |9]|10]11]12|13]|14
Instruction 1 | g1 | p1 | co | Fo | EI | WO
Instruction 2 FI | DI | CO| FO | EI {WO
Instruction 3 FI | DI | CO| FO | EI |WoO
Instruction 4 FI | DI | CO | FO | EI | WO
Instruction 5 F1 | p1 | co|Fo | EI |wo
Instruction 6 FI | DI | CO | FO | EI | WO
Instruction 7 FI | DI | CO | FO | EI | WO
Instruction 8§ FI | p1 | co| Fo | EI |woO
Instruction 9 FI | DI | CO| FO | EI | WO

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

The Effect of a Conditional Branch on Instruction Pipeline

Operation
Time . Branch Penalty
1|2 |3 |4 |5|6 |7 |89 (|10)11|12|13 |14

Instruction 1 | g1 | p1 | co | Fo | EI | WO

Instruction 2 FI | DI | CO | FO | EI | WO

Instruction 3 FI | DI | CO| FO | EI | WO

Instruction 4 i | o1 | col Fo

Instruction 5 Fil o1l co

Instruction 6 FI | DI

Instruction 7 FI
Instruction 15 FI | DI | CO| FO | EI | WO
Instruction 16 FI | DI | CO| FO | EI | WO

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

Several other factors serve to limit
the performance enhancement of
pipeline:
 stages are not of equal duration
« conditional branch instruction,
which can invalidate several
instruction fetches
e an interrupt.
Figure 14.11 illustrates the effects of
the conditional branch, using the
same program as Figure 14.10.
Assume that instruction 3 is a
conditional branch to instruction 15;
until the instruction is executed,
there is no way of knowing which
instruction will come next.

Six Stage
Instruction
Pipeline

. Fetch
Flr Instruction
Decode
DI Instruction
“ Calculate
CO Operands

Uncon-
ditional
Branch?

Yes

Fetch

FO Operands

Execute
Instruction

Write
Operands

Figure 14.12 Six-Stage Instruction Pipeline

« The CO stage may depend
on the contents of a register
that could be altered by a
previous instruction that is
still in the pipeline. Other
such register and memory
conflicts could occur. The
system must contain logic
to account for this type of
conflict.

Alternative Pipeline Depiction

Figure 14.13b, (which corresponds
to Figure 14.11), the pipeline is full
at times 6 and 7. At time 7,
instruction 3 is in the execute stage
and executes a branch to
instruction 15.

At this point, instructions 14
through 17 are flushed from the
pipeline, so that at time 8, only two
instructions are in the pipeline, 13
and 115.

Time

=TS - L I~ P R

10
11
12
13
14

FI

DI

coO

FO

El

Wi

Il

2

I

I3

n

I

14

I3

n

Il

I4

I3

12

Il

I6

Is

I4

I3

2

Il

7

I

Is

I4

I3

2

I8

I7

I

Is

14

I3

19

I8

I7

I6

Is

14

19

I8

17

I6

19

I8

17

I6

19

7

19

I8

9

ia) Mo branches

Figure 14.13

FI |DI |CO{FO| EI |WO
1 |11
2 121
3 1B |n
4 1|3 |R2|1N
S I3 |I3|1211
6 |In (IS |4 [I3]12]|11
7107|1615 |14 | 13| 12
8 |115 I3
9 116|115
10 Il6 | 115
11 Il6 | 115
12 Il6 | 115
13 Il6 | 115
14 116

i(b) With conditional branch

An Alternative Pipeline Depiction

Speedup Factors with 12 e AAIT
Instruction Pipelining

Speedup factor

| | | | | | |
1 2 4 8 16 32 64 128

MNumber of instructions (log scale)
a)

i = 2 instructions

———
i = 10 instructions

Speedup factor
=
|

|
0 5 10 15 20

MNumber of stages
(b}

Figure 14.14 Speedup Factors with Instruction Pipelining

Exercise

* Assuming a hypothetical processor with no branching, if:

* T (cycle time) is the average total time required for each stage to execute an
instruction

* kis number of stages

1. Derive the formula to calculate the total time required to execute n
instructions.

Ten=Tk +(n-1) T

2. Calculate for Tg ;4= 15T

3. How long would it take for a similar processor without pipelining?
T.=tkn

Pipeline Hazards

Occur when the pipeline,
or some portion of the
pipeline, must stall
because conditions do
not permit continued
execution

Also referred to as a
pipeline bubble

There are three types
of hazards:

e Resource
e Data
e Control

-~

S

AAIT

Resource Hazards

A resource hazard occurs when two
or more instructions that are already
in the pipeline need the same
resource

The result is that the instructions
must be executed in serial rather
than parallel for a portion of the
pipeline

A resource hazard is sometimes
referred to as a structural hazard

E.g. When main memory has a single
port and that FI and FO must be
performed one at a time from main
memory.

Instrutcion

Instrutcion

I1
I2
I3
14

I1
I2

I3
14

Clock cycle

9 AAIT

1 2 3 4 5 6 7 8
FI | DI | FO | EI | WO
FI | DI | FO | EI | WO
FI | DI | FO | EI | WO
FI | DI | FO | EI | WO
ia) Five-stage pipeline, ideal case
Clock cycle
1 2 3 4 5 6 7 8 9
FI | DI | FO | EI | WO
FI | DI | FO | EI | WO
Idle| FI | DI | FO | EI | WO
FI | DI | FO | EI | WO

(b) I1 source operand in memory

Figure 14.15 Example of Resource Hazard

Data Hazards

A data hazard occurs when there is a conflict in the access of an operand location

Two Instructions in a program are to be
executed iIn sequence and both access a
particular memory or register operand. If the
two Instructions are executed in strict sequence,
no problem occurs. However, if the instructions
are executed in a pipeline, then it is possible for
the operand value to be updated in such a way
as to produce a different result than would
occur with strict sequential execution.

ADD EAX, EBX
SUB ECX, EAX
I3

14

Clock cycle
1 2 3 4 5 6 7 8 9 10
FI | DI | FO | EI | WO
FI | DI Idle FO | EI | WO
F1 DI | FO | EI | WO
FI | DI | FO | EI | WO

Figure 14.16 Example of Data Hazard

Types of Data Hazard

* Read after write (RAW), or true dependency
* Aninstruction modifies a register or memory location
e Succeeding instruction reads data in memory or register location
* Hazard occurs if the read takes place before write operation is complete

* Write after read (WAR), or antidependency
* Aninstruction reads a register or memory location
e Succeeding instruction writes to the location
* Hazard occurs if the write operation completes before the read operation takes place

* Write after write (WAW), or output dependency
 Two instructions both write to the same location

* Hazard occurs if the write operations take place in the reverse order of the intended

sequence
ADD EAX, EBX
Q' 1. what type of data hazard could this code produce? Ans. RAW

SUB ECX, EAX
2. How can you modify the code it produce WAR and WAW data hazards

CAAIT

AAIT

Control Hazard

e Also known as a branch hazard

* Occurs when the pipeline makes the wrong decision on a branch
prediction

* Brings instructions into the pipeline that must subsequently be
discarded

* Dealing with Branches:
* Multiple streams

Prefetch branch target

Loop buffer

Branch prediction

Delayed branch

Multiple Streams

A simple pipeline suffers a penalty for a branch instruction because it must
choose one of two instructions to fetch next and may make the wrong choice

A brute-force approach is to replicate the initial portions of the pipeline and
allow the pipeline to fetch both instructions, making use of two streams. There

are two problems with this approach:

*\With multiple pipelines there are contention delays for access to the registers and to memory
e Additional branch instructions may enter the pipeline before the original branch decision is

resolved
eDespite these drawbacks, this strategy can improve performance. Examples of machines with two
or more pipeline streams are the IBM 370/168 and the IBM 3033.

AAIT

Prefetch Branch Target

B When a conditional branch is recognized, the target of the branch is
prefetched, in addition to the instruction following the branch

M Target is then saved until the branch instruction is executed
M |f the branch is taken, the target has already been prefetched

B IBM 360/91 uses this approach

AAIT

Loop Buffer

* Small, very-high speed memory maintained by the instruction fetch
stage of the pipeline and containing the n most recently fetched

instructions, in sequence

* Benefits:
* Instructions fetched in sequence will be available without the usual memory

access time
 If a branch occurs to a target just a few locations ahead of the address of the

branch instruction, the target will already be in the buffer
* This strategy is particularly well suited to dealing with loops

Similar in principle to a cache dedicated to instructions

* Differences:
* The loop buffer only retains instructions in sequence

* |s much smaller in size and hence lower in cost

Branch Prediction

 Various techniques can be used to predict whether a branch will be

taken:

1. Predict never taken B
2. Predict always taken
3. Predict by opcode

1. Taken/not taken switch
2. Branch history table

These approaches are static

They do not depend on the execution
history up to the time of the conditional
branch instruction

These approaches are dynamic

They depend on the execution history

Branch Prediction
Flow Chart

Read next
conditional
branch instr

Read next
p| conditional

¥

Predict taken

Read next
conditional
branch instr

Y

Predict taken

branch instr

k4

Predict not taken

Read next
conditional
branch instr

Y

Predict not taken

Figure 14.18 Branch Prediction Flow Chart

CAAIT

Branch Predlctlon State Dlagram

. Not Taken
Predict » Predict
Taken Taken
_ Taken .

o
2
= =
o -
= Z
Not Taken . |
Predict > Predict
ot Taken < ot Taken
Taken _

Figure 14.19 Branch Prediction State Diagram

Not Taken

Intel 80486 Pipelining

* Fetch

* Objective is to fill the prefetch buffers with new data as soon as the old data have
been consumed by the instruction decoder

* Operates independently of the other stages to keep the prefetch
buffers full

Decode stage 1
* All opcode and addressing-mode information is decoded in the D1 stage
* 3 bytes of instruction are passed to the D1 stage from the
prefetch buffers

* D1 decoder can then direct the D2 stage to capture the rest of the instruction

Decode stage 2
* Expands each opcode into control signals for the ALU
. Als% controls the computation of the more complex addressing
maoaes

Execute
* Stage includes ALU operations, cache access, and register update

Write back
* Updates registers and status flags modified during the preceding execute stage

80486
Instruction Pipeline Examples

Figure 14.21a shows that there is no delay introduced
into the pipeline when a memory access is required.
However, as Figure 14.21b shows, there can be a delay
for values used to compute memory addresses. That
is, if a value is loaded from memory into a register and
that register is then used as a base register in the next
instruction, the processor will stall for one cycle.
Figure 14.21c illustrates the timing of a branch
instruction, assuming that the branch is taken. The
compare instruction updates condition codes in the WB
stage, and bypass paths make this available to the EX
stage of the jump instruction at the same time. In
parallel, the processor runs a speculative fetch cycle to
the target of the jump during the EX stage of the jump
Instruction. If the processor determines a false branch
condition, it discards this prefetch and continues
execution with the next sequential instruction (already
fetched and decoded).

€

e i

AAIT

%
Fetch 1] D2 EX WB MOV Regl, Meml

Fetch | DI D2 EX WB MOV Regl, Reg2
Fetch D1 D2 EX WB MOV Mem2, Regl

(a) No Data Load Delay in the Pipeline

Fetch | D1 D2 EX WB MOV Regl, Mem1

Fetch | DI D2 EX MOV Regl, (Regl)

(b) Pointer Load Delay

Fetch | D1 D2 EX WB CMP Regl, Imm

Feich | D1 D2 EX Jec Target
Fetch | D1 D2 EX Target

(c) Branch Instruction Timing

Figure 14.21 80486 Instruction Pipeline Examples

Table 14.2
X386 Processor Registers

Tvpe Number Length (hits) Purpose
General B 32 General-purpose user registers
Segment i) 16 Contaln segment selectors
EFLAGS | 32 Status and control bits
Instruction Pointer | 32 [nstruction pointer

(a) Integer Unit in 32-hit Mode

Tvpe Number Length (hits) Purpose
General 16 32 General-purpose user registers
Segment i) 16 Contaln segment selectors
RFLAGS | 64 Status and control bits
Instruction Pointer | 04 [nstruction pointer

(b) Integer Unit in 64-bit Mode

Table 14.2 x86 Processor Registers

Tvpe Number Length (hits) Purpose

Numeric 8 Wl Hold floating-point numbers

Control] G Control bits

Status] G Status bits

Tag Word] G Specifies contents of numeric
registers

Instruction Pointer] 48 Points to Instruction interrupted
by exception

Data Pointer] 48 Points to operand intermapted by

exception

(¢} Floating-Point Unit

X386 EFLAGS Register

 The EFLAGS register indicates the condition of the processor and helps to control
its operation.

,.T'«.
|

i 21 16 /15 0
I‘;"{ﬂ\"lt N 1O |OD|L|T|(S|Z A C
D pl|lp|CM|F T| PL |F|F|F|F|F|F F F

I = Identification flag DF = Direction flag

VIP = WVirtual interrupt pending IF = Interrupt enable flag

VIF = Virtual interrupt flag TF = Trap flag

AC = Alignment check SF = Sign flag

VM = Virtual 8086 mode £F = Zero flag

RF = Resume tlag AF = Awahary carry flag

NT = Nested task flag PF = Parity flag

IOPL = T/O privilege level CF = Carry flag

OF = Owvertlow flag

Figure 14.22 x86 EFLAGS Register

AAIT

O5X5AVE O5XMMEXCPT (SFXSR
53]
31 30029 28 27 26 25 24 23 22 2&:&;&'?'&15 14131E-'\U %J‘ & 54 3 210

Sl

: rilng FIE|MIE P 0T |=f_ vl .
Control Registers L1 | R
PFI|F
Page-Directory Base (W CR3
DT {FDER)
 The x86 employs four control registers (register CR1 g bt L Ao .

IS unused) to control various aspects of processor
operation cRI
« All of the registers except CRO are either 32 bits or

N0 25242322 MI19IEITI615141312911109 B 7T &6 5 4 3 21 0

64 bits long, depending on whether the
- - . . PlC|m A W NIE|TIEMIF] o~
implementation supports the x86 64-bit architecture. G|o|w Ml e BT s pafrfef S
« The CRO register contains system control flags,
which control modes or indicate states that apply shaded area indicates reserved bl
OSXSAVE = XSAVE enable bit MCD = Fage-level Cache Disable
genera_“y to the Pro_ce_ssor rather than tO the SMXE = Enable Safer mode extensions FWT = FPage-level Writes Transparent
execu“on Of an |nd|V|dua| taSk. YMXE = Enable virmual machine extensions FG = TPaging
. . . OSXMMEXCFT = § asked SIMD FF exceptions CD0 = Cache Disabl
. en paging IS enaple e an registers OSFXSR = SEFFEE :—IU”'.’I.E:'&V[;E_FKST{JR e NW = 'u:; R'-"rjtlc"fl'hfmlgh
When paging bled, the CR2 and CR3 regist PP g
- FCE = Performance Counter Enable AM = Alignment Mask
are valid PGE = Page Global Enable WP = Write Protect
MCE = Maching Check Enable NE = MNumeric Emmor
FAE = Physical Address Extension ET = Extension Type
F5E = Page Sire Extensions T5 = Task Switched
DE = Debug Extensions EM = Emuolation
TsD = Time Stamp Disable MFP = Monitor Coprocessor
FvI = Protected Mode Virtual Interrupt FE = Protection Enable
VYME = Virtual 8086 Mode Extensions

Figure 14.23 x86 Control Registers

. AAIT
Interrupt Processing

* Interrupts

* Generated by a signal from hardware and it may occur at
random times during the execution of a program

* Maskable: Received on the processor’s INTR pin. The processor
does not recognize a maskable interrupt unless the interrupt
enable flag (IF) is set.

* Nonmaskable: Received on the processor’s NMI pin.
Recognition of such interrupts cannot be prevented.
* Exceptions

* Generated from software and is provoked by the execution of an
instruction

* Processor detected
* Programmed

* Interrupt vector table
* Every type of interrupt is assighed a number
* Number is used to index into the interrupt vector table

AAIT
The ARM Processor

* Moderate array of uniform registers

* A load/store model of data processing in which operations only
perform on operands in registers and not directly in memory

* A uniform fixed-length instruction of 32 bits for the standard set and
16 bits for the Thumb instruction set

e Separate arithmetic logic unit (ALU) and shifter units

* A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

* Auto-increment and auto-decrement addressing modes are used to
improve the operation of program loops

* Conditional execution of instructions minimizes the need for
conditional branch instructions, thereby improving pipeline
efficiency, because pipeline flushing is reduced

CAAIT

Simplified ARM Organization

X
« The ARM processor organization varies [Memory address register ==y [Memory buffer regbicr |
substantially from one implementation to the l
next, particularly when based on different RIS (P | incrementer Slen.
versions of the ARM architecture.
* Figure 14.25 is a generic ARM organization, e l
arrows indicate the flow of data. Each box — User Register File (R0 - R15)
represents a functional hardware unit or a n £ Ao
storage unit. VL_
 ARM data processing instructions typically have [ruction regiver |
two source registers, Rn and Rm, and a single l
result or destination register, Rd. inatruction
« The results of an operation are fed back to the l
destination register. Load/store instructions may Multiply!
also use the output of the arithmetic units to Contwol
generate the memory address for a load or store. I
1}

Figure 14.25 Simplified ARM Organization

Processor Modes

ARWM architecture supports
seven execution modes

Remaining six execution modes
are referred to as privileged
modes

» These modes are used to run system
software

AAIT

IViost application programs execute
in user mode

e \While the processor is in user mode the
program being executed is unable to
access protected system resources or to
change mode, other than by causing an
exception to occur

Advantages to defining so many.
different privileged modes

® The OS can tailor the use of system software to a
variety of circumstances

e Certain registers are dedicated for use for each
of the privileged modes, allows swifter changes
in context

[ey

50,

Exception Modes AAIT

Have full access

to system
resources and can
change modes
freely.

A

Entered when
specific
exceptions occur

Exception modes:

e Supervisor mode
Abort mode
Undefined mode
Fast interrupt mode
Interrupt mode

v

System mode:

» Not entered by any.
exception and uses the
same registers available in
User mode

e |s used for running certain
privileged operating
system tasks

» May be interrupted by
any of the five exception

‘;.f((1rye
categories

* Supervisor mode: Usually what the OS runs in. It
Is entered when the processor encounters a software
interrupt instruction. Software interrupts are a
standard way to invoke operating system services on
ARM.

* Abort mode: Entered in response to memory
faults.

* Undefined mode: Entered when the processor
attempts to execute an instruction

that is supported neither by the main integer core nor
by one of the coprocessors.

* Fast interrupt mode: Entered whenever the
processor receives an interrupt signal from the
designated fast interrupt source. A fast interrupt
cannot be interrupted, but a fast interrupt may
interrupt a normal interrupt.

* Interrupt mode: Entered whenever the processor
receives an interrupt signal from any other interrupt
source (other than fast interrupt). An interrupt may
only be interrupted by a fast interrupt.

ARM
Register Organization

Figure 14.26 depicts the user-visible registers
for the ARM. The ARM processor has a total of
37 32-bit registers (16 (shared General RO-
R15) + 1 shared CPSR + 20 specific to every
mode, shaded) , classified as follows:
« Thirty-one registers referred to in the
ARM manual as general-purpose registers.
In fact, some of these, such as the program
counters, have special purposes.
* SiX program status registers.

Modes

Privileged modes

Exception modes
User System Supervisor - Abort Undefined | Interrupt - Fast
Interrupt
RO R RO R R0 RO RO
Rl Rl Kl Rl K1l Rl Rl
R2 B2 R2 | R2 F.2 R2 B2
R3 B3 B3 R3 K3 R3 B3
R4 R4 R4 R4 F4 R4 R4
R5 RS RS E3 E3 R3 B3
R R K6 R F.6 R Re
R7 R R7 | R7 F7 R7 R
R& R [E& F8 RE R&_fig
RS B9 [R4 i) RS RS _fig
R10 RI0 R10 | R0 K10 R10 F.10_fig
Rll Rl R11 RIl K11 K1l R11_fig
R12 Rz F12 RI12 R12 R12 R.12_fig
E13 (5F) | R13(3F) F13_sve | F13_aht K13 _und RI3_irg R.13_fig
K14 (LK) K14 (LE}) F14_sve F14_ah K14 _und R4 _irg F.14_fig
RIS(PC) | RI5(FC) RIS (PC) RI13(PC) K15 (PFC) RIS(PC) | RI5(FC)
CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSE_sve | SPSR_abt | SPSRK_und | SPSE_irg | SPSE_fig

Shading indicates that the normal register used by User or System mode has been replaced by an
alternative register specific to the exception mode.

5P = stack pointer
LE = link register
PC = program counter

CPSE. = current program status register

SPSR = saved program status register

Format of ARM CPSR and SPSR

N 302922726 252423 220 201918171615 1413 1211109 B 7 6 5 4 3 2 1 0
 The CPSR is accessible in all N[Z|C|V|Q|Res | J| Reserved | GE[3:0] Reserved |E|A|TI[F|T] M4:0]
processor modes. Each exception " AL W,
mode also has a dedicated SPSR Y Y
that is used to preserve the value User flags System control flags

of the CPSR when the associated

exception occurs. Figure 14.27 Format of ARM CPSR AND SPSR

« Condition code flags: The N, Z, C, and V flags, which are « Ebit: Controls load and store endianness for data; ignored
discussed in Chapter 12. for instruction fetches.
« Q flag: used to indicate whether overflow and/or saturation has » Interrupt disable bits: The A bit disables imprecise data
occurred in some SIMD-oriented instructions. aborts when set; the | bit disables IRQ interrupts when set;
« Jbit: indicates the use of special 8-bit instructions, known as and the F bit disables FIQ interrupts when set.
Jazelle instructions, which are beyond the scope of our discussion. » T bit: Indicates whether instructions should be interpreted
» GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or as normal ARM instructions or Thumb instructions.

Equal (GE) flags for individual bytes or halfwords of the result. Mode bits: Indicates the processor mode.

Summary

Processor organization

Register organization
e User-visible registers
e Control and status registers

Instruction cycle
* Theindirect cycle
e Data flow

The x86 processor family
* Register organization
* Interrupt processing

Processor Structure
and Function

* Instruction pipelining

Pipelining strategy
Pipeline performance
Pipeline hazards
Dealing with branches
Intel 80486 pipelining

 The Arm processor

Processor organization
Processor modes
Register organization
Interrupt processing

CAAIT

William Stallings |
Computer Organization
and Architecture

oth Edition

