Computer Architecture & Organization

Chapter 5

Instruction Sets and Addressing Modes

AAIT

Machine Instruction Characteristics

* The operation of the processor is determined by the instructions it
executes, referred to as machine instructions or computer
instructions

* The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set

* Each instruction must contain the information required by the
processor for execution

Elements of a Machine Instruction

Operation code (opcode) Source operand reference

e Specifies the operation to be e The operation may involve one or
performed. The operation is specified more source operands, that is,
by a binary code, known as the operands that are inputs for the
operation code, or opcode operation

Result operand reference Next instruction reference

e The operation may produce a result e This tells the processor where to
fetch the next instruction after the
execution of this instruction is
complete

Source and result operands can be in one of four areas:

1) Main or virtual memory

* As with next instruction references, the
main or virtual memory address must be
supplied

2) 1/O device

* The instruction must specify the I/O
module and device for the operation. If
memory-mapped I/0 is used, this is just
another main or virtual memory
address

3) Processor register

* A processor contains one or more registers
that may be referenced by machine
instructions.

* If more than one register exists each register
is assigned a unique name or number and the
instruction must contain the number of the
desired register

4) Immediate

* The value of the operand is contained in a
field in the instruction being executed

Instruction Representation

* Within the computer each instruction is represented by a
sequence of bits

* The instruction is divided into fields, corresponding to the
constituent elements of the instruction

4 bits 6 bits 6 bits
Opcode Operand Reference Operand Reference
< 16 bits >

Figure 12.2 A Simple Instruction Format

Number of Addresses

» Figure 12.3 compares typical one, two, Instruction Comment
. . SUB Y. A.B Y~—A-B
and three address instructions that could e = R
be used to compute Y = (A-B)/[C+ (D * ADD T.T.C T=T+C
E)] DIV Y.¥.T Y«—Y=+T
» Three-address instruction formats are not
common because they require a relatively () Three-address instractions
long instruction format to hold the three LOAD D AC~D
dd _I: MPY E AC— ACxE
adaress references. Instruction __ Comment ADD C AC «— AC +C
* The two-address format reduces the space MOVE Y. A YA STOR Y Y < AC
; b | . d SUBE Y.B Y~—Y-B LOAD A AC «— A
requirement but also introduces some MOVE T.D e SUB B e AC B
awkwardness. TSE IE g - g x g DIV Y AC+— AC+Y
. . . . £ r — STOR Y Y «— AC
« Simpler yet is the one-address instruction. DIV YT ey
For this to work, a second address must
be Imp“CIt (AC) i(b) Two-address instructions i) One-address instructions

» Zero-address instructions are applicable
to a special memory organization called a

stack. Figure 12.3 Programs to Execute Y = A-B
C+(DxE)

Table 12.1
Utilization of Instruction Addresses (Nonbranching Instructions)

Mumber of Addresses Symbaolic Representation Interpretation
3 OF A B, C A+~ BOPC
AC = accumulator
2 OF A B A= AQOPEB T = top of stack
(T~ 1) = second element of stack
| OF A AC =— ACOFP A A.B,C = memory or register locations
0 CF T+ (T-1)OPT

« The number of addresses per instruction is a basic design decision.
» Fewer addresses per instruction result in instructions that are more primitive, requiring a
less complex processor. It also results in instructions of shorter length

* There is an important threshold between one-address and multiple-address instructions.

» The design trade-offs involved in choosing the number of addresses per instruction are
complicated by other factors. There is the issue of whether an address references a memory

location or a register. Because there are fewer registers, fewer bits are needed for a register
reference.

» The result is that most processor designs involve a variety of instruction formats.

Instruction Set Design

AAIT

Very complex because it affects so many aspects of the computer system

One of the most

Interesting, and most

y

analyzed, aspects of
computer design s

Defines many of the functions performed by the processor

Instruction set design

4

Programmer’s means of controlling the processor

\ 4

Operation Data types
fefpetntellic * The various types of
e How many and which data upon which
operations to provide operations are
and how complex performed

operations should be
|

Fundamental design issues:

Instruction format

e Instruction length in
bits, number of
addresses, size of
various fields, etc.

Registers

e Number of processor
registers that can be
referenced by
instructions and their
use

Addressing

* The mode or modes by
which the address of an
operand is specified

Types of Operands

* In many cases, some calculation must be performed on
the operand reference in an instruction to determine the
main or virtual memory address. In this context,
addresses can be considered to be unsigned integers.

* Other common data types are numbers,
characters, and logical data, and each of
these is briefly examined in this section,

 Beyond that, some machines define
specialized data types or data structures.
For example, there may be machine
operations that operate directly on a list or
a string of characters.

MO esse

Numbers

* All machine languages include numeric data types

* Numbers stored in a computer are limited:
* Limit to the magnitude of numbers representable on a machine
* In the case of floating-point numbers, a limit to their precision

Three types of numerical data are common in computers:
* Binary integer or binary fixed point
* Binary floating point
e Decimal

Packed decimal

e Each decimal digit is represented by a 4-bit code with two digits stored per byte
* To form numbers 4-bit codes are strung together, usually in multiples of 8 bits

AAIT

Characters

A common form of data is text or character strings

* Textual data in character form cannot be easily stored or transmitted by data
Brocessmg and communications systems because they are designed for

inary data

. z\/los;c commonly used character code is the International Reference Alphabet
IRA
» Referred to in the United States as the American Standard Code for Information
Interchange (ASCII)

* Note in Table F.1 (Appendix F) that for the IRA bit pattern 011 XXXX, the digits 0
through 9 are represented by their binary equivalents, 0000 through 1001.

Another code used to encode characters is the Extended Binary Coded
Decimal Interchange Code (EBCDIC)

e EBCDIC is used on IBM mainframes

« Aswith IRA, EBCDIC is com|8atible with packed decimal. In the case of EBCDIC, the
codes 11110000 through 11111001 represent the digits 0 through 9.

Logical Data

* Normally, each word or other addressable unit (byte, halfword, and so
on) Is treated as a single unit of data. It is sometimes useful, however,
to consider an n-bit unit as consisting of n 1-bit items of data, each
item having the value 0 or 1. When data are viewed this way, they are

considered to be logical data.

* Two advantages to bit-oriented view:

 Memory can be used most efficiently for storing an array of Boolean or binary
data items in which each item can take on only the values 1 (true) and O

(false)

* To manipulate the bits of a data item
* If floating-point operations are implemented in software, we need to be able to shift
significant bits in some operations
* To convert from IRA to packed decimal, we need to extract the rightmost 4 bits of each
byte

X386 Data Types

Table 12.2
x86 Data Types

The x86 can deal with data types of
« 8 (byte),
« 16 (word),
« 32 (doubleword),
* 64 (quad- word), and
« 128 (double quadword) bits in
length.
To allow maximum flexibility in data
structures and efficient memory
utilization, words need not be aligned at
even- numbered addresses.
« E.g. quadwords need not be aligned
at addresses evenly divisible by 8
The x86 uses the little-endian style

i "jv:
e

o ool

AAIT

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and
double quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using
twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded A representation of a BCD digit in the range 0 through 9, with one

decimal (BCD) digit in each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer

Far pointer

Bit field

Bit string
Byte string

Floating point

Packed SIMD (single
instruction, multiple data)

A 16-bit, 32-bit, or 64-bit effective address that represents the offset
within a segment. Used for all pointers in a nonsegmented memory and
for references within a segment in a segmented memory.

A logical address consisting of a 16-bit segment selector and an offset
of 16, 32, or 64 bits. Far pointers are used for memory references in a
segmented memory model where the identity of a segment being
accessed must be specified explicitly.

A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit
position of any byte and can contain up to 32 bits.

A contiguous sequence of bits, containing from zero to 2*> — 1 bits.

A contiguous sequence of bytes, words, or doublewords. containing from
zero to 2°2 — 1 bytes.

See Figure 12.4.
Packed 64-bit and 128-bit data types

3l 0

63

Figure 12.4 x86 Numeric Data Formats

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

twos comp

twos comp

15 0

twos complement

3l

twios complement

63 0

sirn hit

cxp sigmificand
3l 0
sizn hit
CXp significand
63 51 I
sign hit integer bit
exponent significand

™ 63

Byte signed integer

Word signed integer

Doubleword signed integer

Quadword signed Integer

Single precision
floating point

Diouble precision
floating point

Double extended precision
floating point

Single-Instruction-Multiple-Data (SIMD) Data
Types

* Introduced to the x86 architecture as part of the extensions of the
instruction set to optimize performance of multimedia applications

* These extensions include MMX (multimedia extensions) and SSE (streaming
SIMD extensions)

* Data types:

Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or 128-bit double quadword,
interpreted as a bit field or as an integer

Packed word and packed word integer: 16-bit words packed into a 64-bit quad- word or 128-bit double
quadword, interpreted as a bit field or as an integer

Packed doubleword and packed doubleword integer: 32-bit doublewords packed into a 64-bit quadword or
128-bit double quadword, interpreted as a bit field or as an integer

Packed quadword and packed gaudword integer: Two 64-bit quadwords packed into a 128-bit double
quadword, interpreted as a bit field or as an integer

Packed single-precision floating-point and packed double-precision floating- point: Four 32-bit floating-
point or two 64-bit floating-point values packed into a 128-bit double quadword

AAIT

ARM Data Types

CAAIT

ARM processors support data

types of:

e 8 (byte)
e 16 (halfword)
e 32 (word) bits in length

All three data types can also be
used for twos complement
signed integers

For all three data types an
unsigned interpretation is
supported in which the value
represents an unsigned,
nonnegative integer

Alignment checking

e When the appropriate control bit is
set, a data abort signal indicates an
alignment fault for attempting
unaligned access

Unaligned access

e When this option is enabled, the
processor uses one or more memory
accesses to generate the required
transfer of adjacent bytes
transparently to the programmer

Data bvtes

ARM Endian Support

(ascending address values
from byte 0 to byte 3)

»| Byte 3 L=

| Bytel =

»| Byte]l =

—— | Byte 0 fa—8—

il ¥ ¥ Y ¥y O il ¥ ¥ L y
Byvte 3 | Bvte2 | Bytel | Byte Byte) | Bytel | Bvtel | Byte 3
ARM register ARM register
program status register E-bit = () program status register E-hit = 1

« The ARM supports both little-endian and big-endian style

Figure 11.5 ARM Endian Support - Word Load/Store with E-bit

14

Danny Cohen introduced the terms
Little-Endian and Big-Endian
for byte ordering in an article from 1980.

In this technical and political examination of byte ordering issues, the "endian"
names were drawn from Jonathan Swift's 1726 satire, Gulliver's Travels, in
which civil war erupts over whether the big end or the little end of a boiled egg
is the proper end to crack open, which is analogous to counting from the end
that contains the

b

https://en.wikipedia.org/wiki/Danny_Cohen_(engineer)
https://en.wikipedia.org/wiki/Jonathan_Swift
https://en.wikipedia.org/wiki/Gulliver's_Travels#Part_I:_A_Voyage_to_Lilliput

Table 12.3
Common
Instruction Set
Operations

(page 1 of 2)

{peration Mame

IDhescription

Drata Transter

Muove (transter)

Transter word or block from source to destination

Store

Transter word from processor to memory

Load (tetch)

Transter word from memory o processor

Exchange

Swap contents of source and destination

Clear (reset)

Transter word of Us to destination

et Transter word of 15 to destination

Push Transter word from source to top of stack

Pop Transter word from top of stack o destination

Addd Compute sum of two operands

Subitract Compute difference of two operands

Mlultiply Compute product of two operands
Arithmetic Davide Compute gquotient of two operands

Absolute Replace operand by 1ts absolute value

Megate Change sizn of operand

Increment Add 1 o operand

Decrement Subtract 1 from operand

AN Pertorm logical AN

L4 Pertorm logical (R

NOT (complement) Pertorm logical MOYD

Exclusive-CR Pertorm logical XOE

Test Test specitied condition; set tlagis) based on outcome
Logical Compare Make logical or anthmetic companson of two or more

operands; set flagis)y based on outcome

Set Control

Class of mstructions to set controls for protection

Vanables purpnses, ntermupt handling, timer control, etc.
Shatt Left (right) shitt operand, introducing constants at end
Botate Left (right) shitt operand, with wraparound end

-~

CAAIT

Table 12.3
Common
Instruction Set
Operations

(page 2 of 2)

Type

Operation Name

Drescription

Transter of Control

Jump {hranch)

Unconditional transfer; load PC with specified address

Jump Conditional

Test specified condition; either load PC with specified
address or do nothing, based on condition

Jump to Subroutine

Place current program control information in known
location; jump to specified address

Keturn Replace contents of PC and other register from known
location

Execute Fetch operand from specified location and execute as
mstruction; do not modiby PC

skip Increment PC to skip next instruction

skip Conditicnal Test specified condition; either skip or do nothing based
on condition

Hali atop program cxccution

Wart {hold) Stop program execution; test specibied condition

repeatedly; resume execution when condition is satisfied

No operation

No operation 15 performed, but program execution 15
continucd

Input {read)

Transter data trom specified L0 port or device to
destination {e.g., main Memary OF Processor register)

Chutput (write)

Transter data from specified source to 1O port or device

Input/Cutput Start 10 Transter mmstructions to W0 processor (o intate 100
operation
Test LACH Transfer status information from IO system to specified
destination
Translate Translate values in a section of memory based on a table
. of comespondences
Conversion
Convert Convert the contents of & word from one form to another

{e.g., packed decimal to binary)

AAIT

Table 12.4

Processor Actions for Various Types of Operations

Transfer data from one location to another

If memory is involved:
Determine memory address

Data transfer) i
Perform virtual-to-actual-memory address transformation
Check cache
Initiate memory read/write
May involve data transfer, before and/or after
Arithmetic Perform function in ALU
Set condition codes and flags
Logical Same as arithmetic
Conversion Similar to arithmetic and logical. May involve special logic to perform

conversion

Transfer of control

Update program counter. For subroutine call/return, manage parameter
passing and linkage

/O

Issue command to I/O module

If memory-mapped 1/O, determine memory-mapped address

Shift and Rotate
Operations

(a) Logical right shift

CTTTTT =TT

(b) Logical left shift

(c) Arithmetic right shift

TTTTT —TT1

(d) Arithmetic left shift

(2} Fight rotate

R T

(f) Left rotate

Figure 12.6 Shift and Rotate Operations

Table 12.7

Examples of Shift and Rotate Operations

Input

Operation

Result

10100110

Logical right shift (3 bits)

00010100

10100110

Logical left shift (3 bits)

00110000

10100110

Arithmetic right shift (3 bits)

11110100

10100110

Arithmetic left shift (3 bits)

10110000

10100110

Right rotate (3 bits)

11010100

10100110

Left rotate (3 bits)

00110101

Conversion Instructions

* Instructions that change the format or operate on the format of data, An example is converting
from decimal to binary

* An example of a more complex editing instruction is the EAS/390 Translate (TR) instruction: TR R1

(L) R2 R R1 (4),

* For example,
Translate 1984 in EBCDIC to IRA
» Create a 256-byte table in storage locations, say, 1000-10FF.
» This table contains the IRA translation, locations 10F0 through 10F9 will contain the values 30 through 39
» Locations 2100-2103 contain F1 F9 F8 F4.

* R1 contains 2100. E .« .
 R2 contains 1000. xercise:

Then, if we execute TR R1 (4), R2 What will be content of the translation table if we
« locations 2100-2103 will contain 31 39 38 34. want to translate (R2) 1984 in IRA to EBCDIC

System Control Instructions

Instructions that can be executed only while the processor is in a certain
privileged state or is executing a program in a special privileged area of memory

Typically these instructions are reserved for the use of the operating system

Examples of system control operations:

A system control An instruction to read or Access to process control
instruction may read or modify a storage protection blocks in a
alter a control register key multiprogramming system

AAIT

Transfer of Control

* Reasons why transfer-of-control operations are required:
* |t is essential to be able to execute each instruction more than once
* Virtually all programs involve some decision making

* |t helps if there are mechanisms for breaking the task up into smaller
pieces that can be worked on one at a time

Most common transfer-of-control operations found in instruction sets:
* Branch
* Skip
* Procedure call

Branch Instruction

* A branch instruction, also called a jump
instruction, has as one of its operands the
address of the next instruction to be
executed.

* Most often, the instruction is a conditional
branch instruction. That is, the branch is
made (update program counter to equal
address specified in operand) only if a certain
condition is met. Otherwise, the next
instruction in sequence is executed
(increment program counter as usual).

* A branch instruction in which the branch is
always taken is an unconditional branch

» Figure 12.7 shows examples of these
operations

Unconditional
branch

Memory
address

200
201
— 202
203

CAAIT

Instruction
SUB XY
BRZ 211
. Conditional If X-Y=0
* branch
BR 202
-

BRE R1,R2, 235

-

. F 8 @

Conditional
branch

r 1

If R1=R2

Figure 12.7 Branch Instructions

Skip Instructions

Typically implies that one
instruction be skipped, thus
the implied address equals

the address of the next
instruction plus one
instruction length

Includes an implied address

Because the skip instruction
does not require a
destination address field it is
free to do other things

Example is the increment-
and-skip-if-zero (1SZ)
instruction

Procedure Call Instructions

 Self-contained computer program that is incorporated
into a larger program

e At any point in the program the procedure may be invoked, or
called

* Processor is instructed to go and execute the entire procedure
and then return to the point from which the call took place

* Two principal reasons for use of procedures:
* Economy
* A procedure allows the same piece of code to be used many times

* Modularity

* |Involves two basic instructions:

* A call instruction that branches from the present location to the
procedure

e Return instruction that returns from the procedure to the place
from which it was called

AAIT

Nested Procedures Addresses

4000

4100
4101

4500

4600
4601

4650
4651

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

(b) Execution sequence

Figure 12.8 Nested Procedures

AAIT

Use of Stack to Implement Nested Procedures

ik 4651
4101 1101 4101 4101 1101
- - - . - - .
{ab Dnbtial stack i) Alter () Diitial (b After (e} After iy After (g Alter
conlents CALL Procl CALL Proc? RETURMN CALL Proc? RETURM RETURMN

Figure 12.9 Use of Stack to Implement Nested Procedures of Figure 12.8

- Fibonacci(n)
Exercise: {

Show the state of the stack at every recursive call if (n<1)
while solving Fibonacci (6) return O;
else

return (Fibonacci (n- 1) + n);

Stack Frame Growth Using Sample Procedures P and Q

A more flexible approach to parameter
passing is the stack.

When the processor executes a call, it not
only stacks the return address, it stacks
parameters to be passed to the called
procedure

The called procedure can access the
parameters from the stack.

Upon return, return parameters can also
be placed on the stack.

The entire set of parameters, including
return address, that is stored for a
procedure invocation is referred to as a
stack frame.

Figure 12.10 example refers to procedure
P in which the local variables x1 and x2
are declared, and procedure Q, which P
can call and in which the local variables
y1l and y2 are declared.

P:

x2

xl

Old Frame Pointer

Return Point

{a) P is active

Stack
Pointer

Frame
Pointer

|

e

¥2

¥l

Old Frame Pointer

Return Point

x2

xl

(ld Frame Pointer

Return Point

(b} P has called ()

e i

AAIT

Stack
Pointer

Frame
Pointer

Figure 1.10 Stack Frame Growth Using Sample Procedures P and Q

Instruction Drescriptien
Drata Movement

MO Mowve operand. between registers or between register and memaory,

PLUSH Push operand onto stack.

FUSHA Push all registers on stack.

% L Move byte, word, dword, s1gn extended. Moves a byte to a word or a word to a
doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value
to the destination operand.

ALAT Tabkle lookup translation. Replaces a byte in AL with a byte from a user-coded
translation table. When XLAT 1= executed, AL should have an unsigned mdex to the
table. XLAT changes the contents of AL trom the table index to the table entry.

I, OUT Input. cutput cperand from L' space.

Arithmetic

Al Add operands.

sLTH Subiract operands.

MLUIL Unsigned integer multiplication. with byte, word. or double word operands. and
word, doubleword, or quadword result.

I R Signed divide.

Lagical

AMD AMD operands.

BlS Bit test and set. Operates on a bt field operand. The instruction copies the cumrent
value of a bit to flag CF and sets the origmal bt to 1.

B5F Bit scan forward. Scans o word or doubleword for a 1-bit and stores the number of
the tirst 1-bit into a register.

SHL/SHRE Shuft logical left or nght.

SALMSAR Shift anthmetic left or nght.

ROLRCE Rotate left or nght.

aETec Sets a byte to zero or one depending on any of the 16 conditions defined by status
flags.

Control Transfer

InE Unconditional jump.

CALL Transfer control to another location. Before transfer, the address of the mstruction
following the CALL is placed on the stack.

JEIL Jump if equal’zero.

LOCYPETOOEL Loops if equalfzers. This 15 a conditional jump using & value stored in register ECX.
The mstruction first decrements ECX before testing ECX for the branch condition.

INT/INTO Interrupt/Interrupt if overflow. Transfer control to an interrupt service routine

AAIT

String Operations

MOV S Move byte, word, dword stning. The instruction operates on one element of a string.
indexed by registers ESI and EDL. After each string operation, the registers are
automatically incremented or decremented to point to the next element of the string.

LS Load byte, word, dword of stnng.

High-Level Language Support

EMNTER Creates a stack frame that can be used to implement the rules of a block-structured
high-level language.

LEAVE Reverses the action of the previous ENTER.

BOUND Check array bounds. Vernfies that the value in operand 1 15 within lower and upper
limits. The limits are in two adjacent memory locations referenced by operand 2. An
interrupt occurs if the value is out of bounds. This instruction 15 used to check an
array Index.

Flag Control
S1C Set Carry flag,
LAHE Load AH register from tlags. Copies SE, Ak, AF PF, and CF bits into A register.
Segment RKegister

LIDS Load pomnter into DS and another register.
aystem Control

HLT Hali.

LK Asserts 4 hold on shared memory so that the Pentium has exclusive use of it durnng
the instruction that immediately follows the LOCK.

ESC Processor extension escape. An escape code that indicates the succeeding
instructions are to be executed by a numerc coprocessor that supports high-
precision integer and floating-point calculations.

WAIT Wait until BUSY# negated. Suspends Pentium program execution until the
processor detects that the BUSY pin 1s inactive, indicating that the numeric
coprocessor has fimshed execution.

Protection

HGDOT Store global desenptor table.

LsL Load segment hmit. Loads a user-specihied register with a segment limat.

VERBR/YVERW Venty segment for reading/writing.

Cache Management

INVD Flushes the internal cache memory.

WHIMYD Flushes the intermnal cache memory after writing dinty lines to memory.

1Y LPG Invalidates a translation lookaside buffer (TLB) entrv.

AAIT

AAIT

Call/Return Instructions

* The x86 provides four instructions to support procedure call/return:
 CALL
* ENTER
* LEAVE
* RETURN

« Common means of implementing the procedure is via the use of stack
frames

* The CALL instruction pushes the current instruction pointer value onto the
stack and causes a jump to the entry point of the procedure by placing the
address of the entry point in the instruction pointer

* The ENTER instruction was added to the instruction set to provide direct
support for the compiler

x86 Status Flags

Status Bit MName Description

CF Carry Indicates carrying or borrowing out of the left-most bit position
following an arithmetic operation. Also modified by some of
the shift and rotate operations.

PF Parity Parity of the least-significant byte of the result of an arithmetic
or logic operation. | indicates even parity; 0 indicates odd
perity.

AF Auxiliary Carry | Represents carrying or borrowing between half-bytes of an 8-bit
arithmetic or logic operation. Used in binary-coded decimal
arithmetic.

LF £ern Indicates that the result of an arithmetic or logic operation is 0.

5F Hign Indicates the sign of the result of an arithmetic or logic
operation.

OF Overflow Indicates an arithmetic overflow after an addition or subtraction

for twos complement arithmetic.

Svmbaol Condition Tested Comment
A, NBE CF=0 AND ZF= Above; Not below or equal (greater than,
unsigned)
AE,.NB. NC CF=0 Above or equal; Not below (greater than or
equal., unsigned): Not carry
B.NAE.C CF=1] Below: Mot above or equal (less than,
unsigned); Carry set
BE, NA CF=1 OR ZF=1 Below or equal; Not above (less than or
equal., unsigned)
E,Z LF=1 Equal: Zero (signed or unsigned)
G.NLE [(53F=1 AND OF=1) OR {5F=0 | Greater than; Not less than or equal (signed)
and OQF=0)] AND [ZF=0]
GE. NL (5F=1 AND OF=1) OR (5F=0 | Greater than or equal; Not less than (signed)
AND OF=)
L. NGE (3F=1 AND OF=) OR (5F=0 | Less than: Not greater than or equal (signed)
AND OF=1)
LE, NG (5F=1 AND OF=) OR (5F=0 | Less than or equal; Not greater than (signed)
AND OF=1) OR (ZF=1)
WE. N£ LF=0 Mot equal; Mot zero (signed or unsigned)
MO OF=0 No overflow
NS SF=l Not sign (not negative)
NF, MO FE= Not parity: Parity odd
0 OF=1 Overflow
F FF=1 Parity; Parity even
5 SF=1 Sign (negative)

Table 12.10

X86
Condition Codes
for Conditional
Jump and SETcc

Instructions

x86 Single-Instruction, Multiple-Data (SIMD) AAIT
Instructions

* 1996 Intel introduced MMX technology into its Pentium product line
* MMX is a set of highly optimized instructions for multimedia tasks

* Video and audio data are typically composed of large arrays of small
data types

* Three new data types are defined in MMX
e Packed byte
* Packed word
* Packed doubleword

e Each data type is 64 bits in length and consists of multiple smaller
data fields, each of which holds a fixed-point integer

ARM Qperation Types

Load and store
Instructions

Multiply

Instructions

Branch
Instructions

Parallel addition
and subtraction
Instructions

Status register
access
instructions

[Data-PrECESSING
INStrUCtIONS

Extend
Instructions

Code Svmbaol Condition Tested Comment
ILLLL EQ LZ=1 Equl
001 ME LZ=0 Mot equal
0010 C5/MHS C=1 Carrv setunsigned higher or same
0011 CCLO C=0 Carrv clear'unsigned lower
0100 il N=1 Minus/negative
0101 FL N=10 Flus/positive or zern
0110 V5 V=1 Overflow
0111 VC V=0 Mo overflow
| 000 HI C=1ANDZ=0 Unsigned higher
|01 LS C=00RZL=1 Unsigned lower or same
1010 GE N=V¥ Signed greater than or equal
[((N=1ANDV=1])
OR(N=0ANDV =0)
011 LT NzV Signed less than
[((N=1AND YV =0)
OR(N=0AND YV = 1)]
| 100 GT (Z=0) AND (N =YV) Signed greater than
| 101 LE (Z=110R{(N=V) Signed less than or equal
| 110 AL Always {unconditional

This instruction can only be executed

unconditionally

ARM
Conditions
for
Conditional
Instruction
Execution

AAIT

AAIT

Addressing Modes

* Immediate

* Direct

* Indirect

* Register

* Register indirect
* Displacement

e Stack

Addressing

Modes

Instruction

Instruction

| Operand | A
Memiory
Upeerand
(a) Immediate (b} Direct
Instruction Instrction
Memory
Chperund
] {Ipzrand
Registers
() Indlirect {d) Register
Instruction Instruction
LIr] A]
Memory Memiory
L L e
- LOoerand | -
Registers Registers

(e Register Indirect

{£) Displacement

Instruction

Imiplicit

L

Top of Stack
Register

120 Stack

Figure 13.1 Addressing Modes

A = contents of an address field in the
Instruction

R = contents of an address field in the
instruction that refers to a register
EA = actual (effective) address of the location
containing the referenced operand
(X) = contents of memory location X or
register X

AAIT

Immediate Addressing

* Simplest form of addressing

* Operand = A

* This mode can be used to define and use constants or set initial values
of variables

* Typically the number will be stored in twos complement form
* The leftmost bit of the operand field is used as a sign bit

* Advantage:

* no memory reference other than the instruction fetch is required to
obtain the operand, thus saving one memory or cache cycle in the
instruction cycle

Disadvantage:

* The size of the number is restricted to the size of the address field, which, in most instruction
sets, is small compared with the word length

AAIT

Displacement Addressing

 Combines the capabilities of direct addressing and register indirect
addressing

 EA=A+(R)
* Requires that the instruction have two address fields, at least one of which
is explicit
* The value contained in one address field (value = A) is used directly

 The other address field refers to a register whose contents are added to A to produce
the effective address

Most common uses:
* Relative addressing
e Base-register addressing
* Indexing

AAIT

Relative Addressing (also called PC-relative addressing)

* The implicitly referenced register is the program counter (PC)
* The next instruction address is added to the address field to produce the EA

* Typically the address field is treated as a twos complement number for this
operation

* Thus the effective address is a displacement relative to the address of the
instruction

* Exploits the concept of locality

e Saves address bits in the instruction if most memory references are
relatively near to the instruction being executed

x86 Addressing Mode Calculatior

Segment Registers

Descriptor Registers

EYV

Base Register

Index Register

A CCess Riﬂhtﬁl"ﬁ

Limit

Base Address

Seale
1.2.4,0r 8

(-

Displacement
{in instruction:
0, 8, or 32 bits)

Effective
Address

Figure 13.2 x86 Addressing Mode Calculation

Linear
Address

4 Limit —— =

Segment
Base
Address

able 13.2 x86 Addressing Modes

Mode

Iinmmediate

Register Operand

Displacement

Base

Base with Displacement

Scaled Index with Displacement

Base with Index and Displacement

Base with Scaled Index and Displacement

Algorithm
Operand = A
LA=R
LA =(S5R)+ A
LA =(5RK) + (B)

LA =(S5E) +(B)+ A
LA=(S5R)+(I) x5 + A

LA = (SE) +(B) + () + A
LA=(SR)+ (I} x5 +(B)+ A

Relative LA =(PC)+ A
LA = linear address

(X) = contents of X

SR = Segment register

PC = program counter

A = contents of an address field in the instruction

K = register

B = base register

I = index register

5 = scaling factor

ARM Indexing Methods

* In ARM, load and store instructions are the only
instructions that reference memory.

* This is always done indirectly through a base
register plus offset. There are three alternatives
with respect to indexing (Figure 13.3):

e Offset:
STRB rO, [r1, #12].

An offset value is added to or subtracted from the

value in the base register to form the memory address.

e Preindex:
STRB rO, [r1, #12]!
Same but the memory address is also written back to
the base register. The exclamation point signifies
preindexing.
e Postindex:
STRB rO, [r1], #12.

STRB r0, [rl, #12]

Offset
0xC Ox20C

rl
Original

base register 200 0x200

(a) Offset
STRB r0, [rl, #12]!
_ rl Offset
Updated
hase register | 0x20C |"_| 0xC }_" 0x20cC
rl
Original

base register 200 0x200

(b) Preindex

STRE r0, [rl], #12

) rl Offset
Updated ¢
hase]‘(.'ﬂi.‘\fl‘]" 0x20C |“_| 0=xC ‘ O=x20C
rl

Original -
hase register Ll 0x200

(c) Postindex

Figure 13.3 ARM Indexing Methods

0x5

0x5

0x5

AAIT

r .
Destination
0x5 register
for STR
ri .
Destination
0x5 register
for STR
rl .
Destination
0x5 register

for STR

ARM Data Processing Instruction Addressing
and Branch Instructions

» Data processing instructions (Direct Memory addressing is not allowed, uses load /Store instructions instead)
* Use either register addressing or a mixture of register and immediate addressing

* For register addressing the value in one of the register operands may be scaled using one of the five
shift operators

e Branch instructions
* The only form of addressing for branch instructions is immediate
* Instruction contains 24 bit value
» Shifted 2 bits left so that the address is on a word boundary
» Effective range +/-32MB from from the program counter

Instruction Formats

Define the layout of the bits of an instruction,
in terms of its constituent fields

Must include an opcode and, implicitly or
explicitly, indicate the addressing mode for
each operand

For most instruction sets more than one
instruction format is used

AAIT

Instruction Length

The most basic design issue to be faced is the instruction format length.

* Most basic design issue

* Affects, and is affected by:
* Memory size
* Memory organization
* Bus structure
* Processor complexity
* Processor speed

Should be equal to the memory-transfer length or one should be a
multiple of the other

Should be a multiple of the character length, which is usually 8 bits,
and of the length of fixed-point numbers

A,

s

e

AAIT

Allocation of Bits

We’ve looked at some of the factors that go into deciding the length of the instruction format. An
equally difficult issue is how to allocate the bits in that format. The trade-offs here are complex.

* More Number of opcodes obviously reduces the number of bits available for addressing
* Number of addressing modes: Some bits to explicitly indicate the addressing modes an opcode is using

* Number of operands: Typical instruction formats on today’s machines include two operands. Each operand address in the
instruction might require its own mode indicator.

* Register versus memory: With a single user-visible register (usually called the accumulator), one operand address is implicit
and consumes no instruction bits. However, single-register programming is awkward and requires many instructions. A number
of studies indicate that a total of 8 to 32 user-visible registers is desirable

* Number of register sets: Some architectures, including that of the x86, have a collection of two or more specialized sets
(such as data and displacement). One advantage of this latter approach is that, for a fixed number of registers, a functional split
requires fewer bits to be used in the instruction. For example, with two sets of eight registers, only 3 bits are required to
identify a register

* Address range: For addresses that reference memory, the range of addresses that can be referenced is related to the number
of address bits.

* Address granularity: For addresses that reference memory rather than registers, another factor is the granularity of
addressing. In a system with 16- or 32-bit words, an address can reference a word or a byte at the designer’s choice. Byte
addressing is convenient for character manipulation but requires, for a fixed-size memory, more address bits.

PDP-8 Instruction Format

The PDP-8 uses 12-bit instructions and
operates on 12-bit words. There is a single
general-purpose register, the accumulator.

Memory Reference Instructions

Opcode | D1 | ZIC |

Displacement

L

[]

3 - 3

Input/Output Instructions

I

1 0 | Device | Opcode

-
fd

Register Reference Instructions

Group | Microinstructions

B

1 1 0 |CLA | CLL | CMA | CML | RAR | RAL | BSW | 1AC |

0

1 P 3 4 5

Group 2 Microinstructions

L1 7 B 9 1o 11

I 1 1 1 | CLA |SMA | SZA | SNL | RSS | OSR | HLT | 0 |
o 1 2 3 4 3 & 7 b 9 10 11

Group 3 Microinstructions

Lo 1 1 1 |cAa [M@a| o [mMQL| o [0o | 0o | 1 |
0 1 2 3 4 3 G) & 9 [0 11

D1 = Direct/Indirect address IAC = Increment ACcumulator

£C = Fage 0 or Current page SMA = Skip on Minus Accumulator

CLA = Clear Accumulator SZA = Skip on Zero Accumulator

CLL = Clear Link SNL = Skip on Nonzero Link

CMA = CoMplement Accumulator K55 = Reverse 5kip Sense

CML = CoMplement Link 05K = Or with Switch Register

RAR = Rotate Accumultator Eight HLT = HalT

EAL = Rotate Accumulator Left MQA = Multiplier Quotient into Accumulator

BSW = Byte SWap MOQL = Multiplier Quotient Load

Figure 11.5 PDP-8 Instruction Formats

e

e i

AAIT

PDP-10 Instruction Format

The PDP-10 was designed to be a large-scale time-shared system, with an emphasis on making the system
easy to program, even if additional hardware expense was involved.

Base plus displacement addressing, which places a memory organization burden on the programmer, was
avoided in favor of direct addressing.

A 36-bit instruction length is true luxury. There is no need to do clever things to get more opcodes; a 9-bit
opcode field is more than adequate.

Addressing is also straightforward. An 18-bit address field makes direct addressing desirable. For memory
sizes greater than 218, indirection is provided.

Opcode Register | [nd.'?x) Memaory Address
S § Register ’

0 & 9 12 14 17 18 35

| = indirect bat

Figure 11.6 PDP-10 Instruction Format

Variable-Length Instructions

* Variations can be provided efficiently and compactly
* Increases the complexity of the processor

* Does not remove the desirability of making all of the instruction lengths integrally related to word
length

* Because the processor does not know the length of the next instruction to be fetched a typical strategy
is to fetch a number of bytes or words equal to at least the longest possible instruction

* Sometimes multiple instructions are fetched

PDP-11 Instruct

The PDP-11 was designed to
provide a powerful and
flexible instruction set within
the constraints of a 16-bit
minicomputer .

Figure 13.7 shows the PDP-
11 instruction formats.
Thirteen different formats are
used, encompassing zero-,
one-, and two-address
Instruction types

PDP-11 instructions are
usually one word (16 bits)
long. For some instructions,
one or two memory addresses
are appended, so that 32-bit
and 48-bit instructions are
part of the repertoire. This
provides for further flexibility
in addressing.

10

11

13

O

N Format

Opeode| Source | Destination| 2 Opeaede R Source i Opcode (ffet
4 fh fi 7 3 f 8 B
Oprode FF| Destination| = Opeode Drestination| 6 Oprode CC
] 2z L1 10 f 12 4
COipcode R .3 Opeade W | Opeode| Source Destination Memory Address
L3 3 L6 4 L1 f 16
Opeode R Source Memory Address
7 3 [16
Orpeode FF| Source Memory Address
] z 1] 16
Crpeode Destination Memory Address
1] [16
Opeode] Source Destination Memory Address 1 Memory Address 2
4 [1] I 16

MNumbers below fields indicate bit length

Source and Destination each contain a 3-bit addressing mode field and a 3-hit register number
FP indicates one of four floating-point registers
R indicates one of the general-purpose registers
CC is the condition code field

Figure 13.7 Instruction Formats for the PDP-11

VAX Instruction Examples

VAX is a highly variable instruction format developed, like
all PDPs, by DEC (Digital Equipment Corporation)

An instruction consists of a 1- or 2-byte opcode followed by
from zero to six operand specifiers, depending on the
opcode. The minimal instruction length is 1 byte, and
instructions up to 37 bytes can be constructed. Figure 13.8
gives a few examples.

Hexadecimal

Format

Explanation

Assembler Notation
and Description

0 bits

Opcode for RSB

RSB
Return from subroutine

DI 4 Opeode for CLEL CLRLRY
5 0 Register R9 Clear register B9
B 0 Opeode for MOVW MOVW 356(R4), 25(R11)
C|l 4 W'ﬂl'.d.d'lﬁplut{‘mtl'll modz, Move a word from address
6 4 Register R4 that is 356 plus contents
356 in hexadecimal of R4 to address that is
{} l 23 plus contents of K11
Byte displacement mode,
A B Register K11
1 9 25 in hexadecimal
veode for s X £ 3#3, R0, @A[R2
Opeode for ADDL3 ADDL3 #3, R0, @A[R2]
(] 5 Short literal 5 Add 5 to a 32-bit integer in
=) RO and store the result in
oig & RO
2 0 Register mode R location whose address is
4 2 Index prefix R2 sum of A and 4 times the
D F Indirect word relative contents of R2
{displacement from PC)
Amount of displacement from
PC relative to location A

Figure 13.8 Examples of VAX Instructions

X86 Instruction Format

e

e i

AAIT

borl dorl dort Borl bytes . Figure 13.9 illustrates the general x86 instruction format. Instructions
Instruction] Segment | OPrand | Address are made up of from zero to four optional instruction prefixes, a 1- or 2-
prefix | overvide | o vide | override byte opcode, an optional address specifier (which consists of the
E ModR/M byte and the Scale Index Base byte) an optional displacement,
i,-" and an optional immediate field. Refer here for Intel 64 and 1A-32 ISA.
E As can be seen, the encoding of the x86
v 0, 1,2, 3 ordbytes " 1,2,0r3 0 or 1 orl 0.1,2.0rd 0,1.2, 0rd instruction set is very complex. This has
. 1 . . to do partly with the need to be
Instruction prefixes Opcode ModR/m sk Displacement Immediate backward compatible with the 8086
- ,. machine and partly with a desire on the
e 3 part of the designers to provide every
__.—'*' | possible assistance to the compiler
_*-+"' Y writer in producing efficient code. It is a
R LT matter of some debate whether an
hiod Reg/Opcude R/M Scale Tdex Beoe instruction set as complex as this is
7 & 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 13.9 x86 Instruction Format

preferable to the opposite extreme of
the RISC (as in ARM) instruction sets.

Q: Ideally, what would the longest instruction size be in x867?

https://software.intel.com/en-us/articles/intel-sdm#nine-volume

ARM Instruction Formats Al

31302028 27 2625 24 23 22 191817 161514131291 10 9 B8 7 &6 5 4 3 2 1 0O

i:];,_p;'::t?:,:lﬁ cond [0 O O opcode |5 Rn Rd shift amount|shift| 0| Rm

* Allinstructions are 32 bits long, i | cond [0 0 0] opcode [s] #n Rd Rs |0[shift|1] Rm

unllke X86 WhICh IS Varlable' e f;::;;;';f cond 00 1| opcode |5 Rn Fd rotate immediate
* Most instructions execute in a oadatore PR P P ey e e — —

. . . . digte offset | €OM n immediate

single cycle (unlike x86 which is ’m'““j;"ud._‘: '

variable) e | cond |0 1 1|P|ulBlw|[L| @n Rd |shift amount|shift| 0] Rm
* Most instructions can be e | cond [1 0 ofp|ulsiw|L| &n register list

conditionally executed pranchbranclh 0T L o abit offeet

e Refer here for full instruction set

5 = For data processing instructions, signifies that the instruction
updates the condition codes

5 = For load/store multiple instructions, signifies whether instruction
execution is resmicted o supervisor mode

F, U1, W = hits that distinguish among
different types of addressing_maode

B = Distinguishes between an unsigned
bwvte (B==1) and a word (B==}} access

L = For load/store instructions, distinguishes
between a Load (L==1) and a Store {L==1)

L = For branch instructions, determines whether a
retumn address is stored in the link register

Figure 13.10 ARM Instruction Formats

http://vision.gel.ulaval.ca/~jflalonde/cours/1001/h16/docs/arm-instructionset.pdf

Thumb Instruction Set

The Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded into 16-bit instructions.

Thumb instructions are
unconditional, so the condition
code field is not used. Referee

151413121110 9% 8 7 6 5 4 3 2 1 0

TAAIT

add/subract/compare/move op : .

here for full instruction set immediate format [0 @ 1lende | RA/RN immediate
The ARM processor can execute app 3, #19 (DO 1|1 olo1 1looo1 0011
a program consisting of a
mixture of Thumb instructions
and 32-bit ARM instructions.

alwavs update

condition condition ZErg

code flags rotation

ABDDS r3, r3, #1311 1 1 00O 1 |(0OQCY OO0 Y YOO T1|0OO0DO0DOI0OO0O0T1TOO1T1T
data processing . .
mmediate forma cond 00 1| opcode |5 Rn Rd rotate immediate

3029725242322 2201918171615 14121211109 8 7 6 5 4 3 2

1 0

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent

https://ece.uwaterloo.ca/~ece222/ARM/ARM7-TDMI-manual-pt3.pdf

Assembler

A processor can understand and execute machine
instructions. Such instructions are simply binary
numbers stored in the computer.

The development of assembly language was a
major milestone in the evolution of computer
technology. It was the first step to the high-level
languages in use today. Although few
programmers use assembly language, virtually all
machines provide one.

Consider the simple BASIC statement
N=I+J+K

Suppose we wished to program this statement in
machine language and to initialize I, J, and K to 2,
3, and 4, respectively. This is shown in Figure
13.13a. The program starts in location 101
(hexadecimal). Memory is reserved for the four
variables starting at location 201. The program
consists of four instructions:

Address Contents
101 0010 0010 101
102 0001 0010 102
103 (MM] (010 103
104 (31 1 (010 10
201 0000 0000 201
202 R (0 202
203 0000 0000 203

204 CHOMCHD OO0

204

2201
12022
1203
3204

0002
0003
0004
0000

s

2>

AAIT

Address

101
102
103
104

201
202
203
204

{a) Binary program

Address Instruction
1001 LDA 201
102 ADD 202
103 ADD 203
10 5TA 204
201 DAT 2
202 DAT 3
203 DAT 4
204 DAT 0

(¢) Symbolie program

Contents
2201
1202
1203
3204

0002
0003
0004
0000

{b) Hexadecimal program

Label Operation Operand
FORMUL LDA

ADD
AL
STA

| DATA
J DATA
Kk DATA
N DATA

l

J
K
N

= e b

—
ot

(d) Assembly program

Figure 11.13 Computation of the Formula N=1+ J+ K

Summary

* Machine instruction
characteristics

 Elements of a machine
instruction

* |nstruction representation
* Instruction types
 Number of addresses
* Instruction set design
* Types of operands
* Numbers
* Characters
* Logical data

e

e i

AAIT

Instruction Sets:
Characteristics, Functions & Addressing mode

Intel x86 and ARM data types * Addressing modes

] * Immediate addressing
Types of operations

* Data transfer
* Arithmetic

* Logical

* Conversion

* Input/output
e System control

* Direct addressing

* Indirect addressing

* Register addressing

* Register indirect addressing
* Displacement addressing

e Stack addressing

* Transfer of control « x86 & ARM addressing modes
Intel x86 and ARM operation * Instruction formats
types * Instruction length

 Allocation of bits
e Variable-length instructions

e X86 & ARM instruction formats

William Stallings |
Computer Organization
and Architecture

oth Edition

