
Computer Architecture & Organization

Chapter 5

Instruction Sets and Addressing Modes

Machine Instruction Characteristics

• The operation of the processor is determined by the instructions it
executes, referred to as machine instructions or computer
instructions

• The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set

• Each instruction must contain the information required by the
processor for execution

Elements of a Machine Instruction

Operation code (opcode)

• Specifies the operation to be
performed. The operation is specified
by a binary code, known as the
operation code, or opcode

Source operand reference

• The operation may involve one or
more source operands, that is,
operands that are inputs for the
operation

Result operand reference

• The operation may produce a result

Next instruction reference

• This tells the processor where to
fetch the next instruction after the
execution of this instruction is
complete

Source and result operands can be in one of four areas:

3) Processor register
• A processor contains one or more registers

that may be referenced by machine

instructions.

• If more than one register exists each register

is assigned a unique name or number and the

instruction must contain the number of the

desired register

2) I/O device
• The instruction must specify the I/O

module and device for the operation. If
memory-mapped I/O is used, this is just
another main or virtual memory
address

1) Main or virtual memory
• As with next instruction references, the

main or virtual memory address must be
supplied

4) Immediate
• The value of the operand is contained in a

field in the instruction being executed

Instruction Representation
• Within the computer each instruction is represented by a

sequence of bits

• The instruction is divided into fields, corresponding to the
constituent elements of the instruction

Number of Addresses

• Figure 12.3 compares typical one, two,

and three address instructions that could

be used to compute Y = (A – B)/[C + (D *

E)].

• Three-address instruction formats are not

common because they require a relatively

long instruction format to hold the three

address references.

• The two-address format reduces the space

requirement but also introduces some

awkwardness.

• Simpler yet is the one-address instruction.

For this to work, a second address must

be implicit (AC).

• Zero-address instructions are applicable

to a special memory organization called a

stack.

Table 12.1
Utilization of Instruction Addresses (Nonbranching Instructions)

• The number of addresses per instruction is a basic design decision.

• Fewer addresses per instruction result in instructions that are more primitive, requiring a

less complex processor. It also results in instructions of shorter length

• There is an important threshold between one-address and multiple-address instructions.

• The design trade-offs involved in choosing the number of addresses per instruction are

complicated by other factors. There is the issue of whether an address references a memory

location or a register. Because there are fewer registers, fewer bits are needed for a register

reference.

• The result is that most processor designs involve a variety of instruction formats.

Instruction Set Design

Fundamental design issues:

Operation
repertoire

• How many and which
operations to provide
and how complex
operations should be

Data types

• The various types of
data upon which
operations are
performed

Instruction format

• Instruction length in
bits, number of
addresses, size of
various fields, etc.

Registers

• Number of processor
registers that can be
referenced by
instructions and their
use

Addressing

• The mode or modes by
which the address of an
operand is specified

Programmer’s means of controlling the processor

Defines many of the functions performed by the processor

Very complex because it affects so many aspects of the computer system
• One of the most

interesting, and most

analyzed, aspects of

computer design is

instruction set design

Types of Operands
• In many cases, some calculation must be performed on

the operand reference in an instruction to determine the

main or virtual memory address. In this context,

addresses can be considered to be unsigned integers.

• Other common data types are numbers,

characters, and logical data, and each of

these is briefly examined in this section.

• Beyond that, some machines define

specialized data types or data structures.

For example, there may be machine

operations that operate directly on a list or

a string of characters.

Numbers

• All machine languages include numeric data types

• Numbers stored in a computer are limited:
• Limit to the magnitude of numbers representable on a machine
• In the case of floating-point numbers, a limit to their precision

• Three types of numerical data are common in computers:
• Binary integer or binary fixed point
• Binary floating point
• Decimal

• Packed decimal
• Each decimal digit is represented by a 4-bit code with two digits stored per byte
• To form numbers 4-bit codes are strung together, usually in multiples of 8 bits

Characters

• A common form of data is text or character strings
• Textual data in character form cannot be easily stored or transmitted by data

processing and communications systems because they are designed for
binary data

• Most commonly used character code is the International Reference Alphabet
(IRA)

• Referred to in the United States as the American Standard Code for Information
Interchange (ASCII)

• Note in Table F.1 (Appendix F) that for the IRA bit pattern 011XXXX, the digits 0
through 9 are represented by their binary equivalents, 0000 through 1001.

• Another code used to encode characters is the Extended Binary Coded
Decimal Interchange Code (EBCDIC)

• EBCDIC is used on IBM mainframes
• As with IRA, EBCDIC is compatible with packed decimal. In the case of EBCDIC, the

codes 11110000 through 11111001 represent the digits 0 through 9.

Logical Data
• Normally, each word or other addressable unit (byte, halfword, and so

on) is treated as a single unit of data. It is sometimes useful, however,
to consider an n-bit unit as consisting of n 1-bit items of data, each
item having the value 0 or 1. When data are viewed this way, they are
considered to be logical data.

• Two advantages to bit-oriented view:
• Memory can be used most efficiently for storing an array of Boolean or binary

data items in which each item can take on only the values 1 (true) and 0
(false)

• To manipulate the bits of a data item
• If floating-point operations are implemented in software, we need to be able to shift

significant bits in some operations

• To convert from IRA to packed decimal, we need to extract the rightmost 4 bits of each
byte

x86 Data Types
Table 12.2

x86 Data Types

• The x86 can deal with data types of

• 8 (byte),

• 16 (word),

• 32 (doubleword),

• 64 (quad- word), and

• 128 (double quadword) bits in

length.

• To allow maximum flexibility in data

structures and efficient memory

utilization, words need not be aligned at

even- numbered addresses.

• E.g. quadwords need not be aligned

at addresses evenly divisible by 8

• The x86 uses the little-endian style

signed

signed

Quadword signed

Single-Instruction-Multiple-Data (SIMD) Data
Types

• Introduced to the x86 architecture as part of the extensions of the
instruction set to optimize performance of multimedia applications

• These extensions include MMX (multimedia extensions) and SSE (streaming
SIMD extensions)

• Data types:
• Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or 128-bit double quadword,

interpreted as a bit field or as an integer

• Packed word and packed word integer: 16-bit words packed into a 64-bit quad- word or 128-bit double
quadword, interpreted as a bit field or as an integer

• Packed doubleword and packed doubleword integer: 32-bit doublewords packed into a 64-bit quadword or
128-bit double quadword, interpreted as a bit field or as an integer

• Packed quadword and packed qaudword integer: Two 64-bit quadwords packed into a 128-bit double
quadword, interpreted as a bit field or as an integer

• Packed single-precision floating-point and packed double-precision floating- point: Four 32-bit floating-
point or two 64-bit floating-point values packed into a 128-bit double quadword

ARM Data Types
ARM processors support data
types of:

• 8 (byte)

• 16 (halfword)

• 32 (word) bits in length

Alignment checking

• When the appropriate control bit is
set, a data abort signal indicates an
alignment fault for attempting
unaligned access

Unaligned access

• When this option is enabled, the
processor uses one or more memory
accesses to generate the required
transfer of adjacent bytes
transparently to the programmer

For all three data types an
unsigned interpretation is

supported in which the value
represents an unsigned,

nonnegative integer

All three data types can also be
used for twos complement

signed integers

ARM Endian Support

• The ARM supports both little-endian and big-endian style

“
Danny Cohen introduced the terms

Little-Endian and Big-Endian
for byte ordering in an article from 1980.

In this technical and political examination of byte ordering issues, the "endian"
names were drawn from Jonathan Swift's 1726 satire, Gulliver's Travels, in

which civil war erupts over whether the big end or the little end of a boiled egg
is the proper end to crack open, which is analogous to counting from the end

that contains the

”

https://en.wikipedia.org/wiki/Danny_Cohen_(engineer)
https://en.wikipedia.org/wiki/Jonathan_Swift
https://en.wikipedia.org/wiki/Gulliver's_Travels#Part_I:_A_Voyage_to_Lilliput

Table 12.3

Common
Instruction Set

Operations

(page 1 of 2)

Table 12.3

Common
Instruction Set

Operations

(page 2 of 2)

Table 12.4
Processor Actions for Various Types of Operations

Shift and Rotate
Operations

Table 12.7
Examples of Shift and Rotate Operations

Conversion instructions

• For example,

Translate 1984 in EBCDIC to IRA,

• Create a 256-byte table in storage locations, say, 1000-10FF.

• This table contains the IRA translation, locations 10F0 through 10F9 will contain the values 30 through 39

• Locations 2100–2103 contain F1 F9 F8 F4.

• R1 contains 2100.

• R2 contains 1000.

Then, if we execute TR R1 (4), R2

• locations 2100–2103 will contain 31 39 38 34.

• Instructions that change the format or operate on the format of data, An example is converting
from decimal to binary

• An example of a more complex editing instruction is the EAS/390 Translate (TR) instruction: TR R1

(L), R2

Exercise:
What will be content of the translation table if we
want to translate (R2) 1984 in IRA to EBCDIC

System Control Instructions

Instructions that can be executed only while the processor is in a certain
privileged state or is executing a program in a special privileged area of memory

Typically these instructions are reserved for the use of the operating system

Examples of system control operations:

A system control
instruction may read or
alter a control register

An instruction to read or
modify a storage protection

key

Access to process control
blocks in a

multiprogramming system

Transfer of Control

• Reasons why transfer-of-control operations are required:
• It is essential to be able to execute each instruction more than once

• Virtually all programs involve some decision making

• It helps if there are mechanisms for breaking the task up into smaller
pieces that can be worked on one at a time

• Most common transfer-of-control operations found in instruction sets:
• Branch

• Skip

• Procedure call

Branch Instruction

• A branch instruction, also called a jump
instruction, has as one of its operands the
address of the next instruction to be
executed.

• Most often, the instruction is a conditional
branch instruction. That is, the branch is
made (update program counter to equal
address specified in operand) only if a certain
condition is met. Otherwise, the next
instruction in sequence is executed
(increment program counter as usual).

• A branch instruction in which the branch is
always taken is an unconditional branch

• Figure 12.7 shows examples of these

operations

If X-Y=0

If R1=R2

Skip Instructions

Includes an implied address

Typically implies that one
instruction be skipped, thus
the implied address equals

the address of the next
instruction plus one
instruction length

Because the skip instruction
does not require a

destination address field it is
free to do other things

Example is the increment-
and-skip-if-zero (ISZ)

instruction

Procedure Call Instructions

• Self-contained computer program that is incorporated
into a larger program

• At any point in the program the procedure may be invoked, or
called

• Processor is instructed to go and execute the entire procedure
and then return to the point from which the call took place

• Two principal reasons for use of procedures:
• Economy

• A procedure allows the same piece of code to be used many times

• Modularity

• Involves two basic instructions:
• A call instruction that branches from the present location to the

procedure
• Return instruction that returns from the procedure to the place

from which it was called

Nested Procedures

Use of Stack to Implement Nested Procedures

Exercise:
Show the state of the stack at every recursive call
while solving Fibonacci (6)

Fibonacci(n)

{

if (n < 1)

return 0;

else

return (Fibonacci (n - 1) + n);

}

Stack Frame Growth Using Sample Procedures P and Q

• A more flexible approach to parameter
passing is the stack.

• When the processor executes a call, it not
only stacks the return address, it stacks
parameters to be passed to the called
procedure

• The called procedure can access the

parameters from the stack.

• Upon return, return parameters can also

be placed on the stack.

• The entire set of parameters, including

return address, that is stored for a

procedure invocation is referred to as a

stack frame.

• Figure 12.10 example refers to procedure

P in which the local variables x1 and x2

are declared, and procedure Q, which P

can call and in which the local variables

y1 and y2 are declared.

Table 12.8

x86
Operation Types

(With Examples of
Typical Operations)

(page 1 of 2)

Table 12.8

x86
Operation Types (With

Examples of Typical
Operations)

(page 2 of 2)

Call/Return Instructions

• The x86 provides four instructions to support procedure call/return:
• CALL
• ENTER
• LEAVE
• RETURN

• Common means of implementing the procedure is via the use of stack
frames

• The CALL instruction pushes the current instruction pointer value onto the
stack and causes a jump to the entry point of the procedure by placing the
address of the entry point in the instruction pointer

• The ENTER instruction was added to the instruction set to provide direct
support for the compiler

x86 Status Flags

Table 12.10

x86
Condition Codes
for Conditional
Jump and SETcc

Instructions

x86 Single-Instruction, Multiple-Data (SIMD)
Instructions
• 1996 Intel introduced MMX technology into its Pentium product line

• MMX is a set of highly optimized instructions for multimedia tasks

• Video and audio data are typically composed of large arrays of small
data types

• Three new data types are defined in MMX
• Packed byte

• Packed word

• Packed doubleword

• Each data type is 64 bits in length and consists of multiple smaller
data fields, each of which holds a fixed-point integer

ARM Operation Types

Load and store
instructions

Branch
instructions

Data-processing
instructions

Multiply
instructions

Parallel addition
and subtraction

instructions

Extend
instructions

Status register
access

instructions

ARM
Conditions

for
Conditional
Instruction
Execution

Addressing Modes

• Immediate

• Direct

• Indirect

• Register

• Register indirect

• Displacement

• Stack

Addressing
Modes

A = contents of an address field in the

instruction

R = contents of an address field in the

instruction that refers to a register

EA = actual (effective) address of the location

containing the referenced operand

(X) = contents of memory location X or

register X

Immediate Addressing

• Simplest form of addressing
• Operand = A
• This mode can be used to define and use constants or set initial values

of variables
• Typically the number will be stored in twos complement form
• The leftmost bit of the operand field is used as a sign bit

• Advantage:
• no memory reference other than the instruction fetch is required to

obtain the operand, thus saving one memory or cache cycle in the
instruction cycle

• Disadvantage:
• The size of the number is restricted to the size of the address field, which, in most instruction

sets, is small compared with the word length

Displacement Addressing

• Combines the capabilities of direct addressing and register indirect
addressing

• EA = A + (R)

• Requires that the instruction have two address fields, at least one of which
is explicit

• The value contained in one address field (value = A) is used directly
• The other address field refers to a register whose contents are added to A to produce

the effective address

• Most common uses:
• Relative addressing

• Base-register addressing

• Indexing

Relative Addressing (also called PC-relative addressing)

• The implicitly referenced register is the program counter (PC)
• The next instruction address is added to the address field to produce the EA

• Typically the address field is treated as a twos complement number for this
operation

• Thus the effective address is a displacement relative to the address of the
instruction

• Exploits the concept of locality

• Saves address bits in the instruction if most memory references are
relatively near to the instruction being executed

x86 Addressing Mode Calculation

Table 13.2 x86 Addressing Modes

ARM Indexing Methods

• In ARM, load and store instructions are the only
instructions that reference memory.

• This is always done indirectly through a base
register plus offset. There are three alternatives
with respect to indexing (Figure 13.3):

• Offset:
STRB r0, [r1, #12].

An offset value is added to or subtracted from the
value in the base register to form the memory address.

• Preindex:
STRB r0, [r1, #12]!

Same but the memory address is also written back to

the base register. The exclamation point signifies
preindexing.

• Postindex:
STRB r0, [r1], #12.

+
ARM Data Processing Instruction Addressing
and Branch Instructions

• Data processing instructions (Direct Memory addressing is not allowed, uses load /Store instructions instead)

• Use either register addressing or a mixture of register and immediate addressing

• For register addressing the value in one of the register operands may be scaled using one of the five
shift operators

• Branch instructions

• The only form of addressing for branch instructions is immediate

• Instruction contains 24 bit value

• Shifted 2 bits left so that the address is on a word boundary

• Effective range +/-32MB from from the program counter

Instruction Formats

Define the layout of the bits of an instruction,
in terms of its constituent fields

Must include an opcode and, implicitly or
explicitly, indicate the addressing mode for
each operand

For most instruction sets more than one
instruction format is used

Instruction Length

• Most basic design issue

• Affects, and is affected by:
• Memory size
• Memory organization
• Bus structure
• Processor complexity
• Processor speed

• Should be equal to the memory-transfer length or one should be a
multiple of the other

• Should be a multiple of the character length, which is usually 8 bits,
and of the length of fixed-point numbers

The most basic design issue to be faced is the instruction format length.

Allocation of Bits

• Number of addressing modes: Some bits to explicitly indicate the addressing modes an opcode is using

• Number of operands: Typical instruction formats on today’s machines include two operands. Each operand address in the
instruction might require its own mode indicator.

• Register versus memory: With a single user-visible register (usually called the accumulator), one operand address is implicit
and consumes no instruction bits. However, single-register programming is awkward and requires many instructions. A number
of studies indicate that a total of 8 to 32 user-visible registers is desirable

• Number of register sets: Some architectures, including that of the x86, have a collection of two or more specialized sets
(such as data and displacement). One advantage of this latter approach is that, for a fixed number of registers, a functional split
requires fewer bits to be used in the instruction. For example, with two sets of eight registers, only 3 bits are required to
identify a register

• Address range: For addresses that reference memory, the range of addresses that can be referenced is related to the number
of address bits.

• Address granularity: For addresses that reference memory rather than registers, another factor is the granularity of
addressing. In a system with 16- or 32-bit words, an address can reference a word or a byte at the designer’s choice. Byte
addressing is convenient for character manipulation but requires, for a fixed-size memory, more address bits.

We’ve looked at some of the factors that go into deciding the length of the instruction format. An
equally difficult issue is how to allocate the bits in that format. The trade-offs here are complex.

• More Number of opcodes obviously reduces the number of bits available for addressing

PDP-8 Instruction Format

• The PDP-8 uses 12-bit instructions and
operates on 12-bit words. There is a single
general-purpose register, the accumulator.

PDP-10 Instruction Format
• The PDP-10 was designed to be a large-scale time-shared system, with an emphasis on making the system

easy to program, even if additional hardware expense was involved.
• Base plus displacement addressing, which places a memory organization burden on the programmer, was

avoided in favor of direct addressing.

• A 36-bit instruction length is true luxury. There is no need to do clever things to get more opcodes; a 9-bit

opcode field is more than adequate.

• Addressing is also straightforward. An 18-bit address field makes direct addressing desirable. For memory

sizes greater than 218, indirection is provided.

Variable-Length Instructions

• Variations can be provided efficiently and compactly

• Increases the complexity of the processor

• Does not remove the desirability of making all of the instruction lengths integrally related to word
length

• Because the processor does not know the length of the next instruction to be fetched a typical strategy
is to fetch a number of bytes or words equal to at least the longest possible instruction

• Sometimes multiple instructions are fetched

PDP-11 Instruction Format
• The PDP-11 was designed to

provide a powerful and
flexible instruction set within
the constraints of a 16-bit
minicomputer .

• Figure 13.7 shows the PDP-

11 instruction formats.

Thirteen different formats are

used, encompassing zero-,

one-, and two-address

instruction types

• PDP-11 instructions are

usually one word (16 bits)

long. For some instructions,

one or two memory addresses

are appended, so that 32-bit

and 48-bit instructions are

part of the repertoire. This

provides for further flexibility

in addressing.

VAX Instruction Examples

• VAX is a highly variable instruction format developed, like

all PDPs, by DEC (Digital Equipment Corporation)

• An instruction consists of a 1- or 2-byte opcode followed by

from zero to six operand specifiers, depending on the

opcode. The minimal instruction length is 1 byte, and

instructions up to 37 bytes can be constructed. Figure 13.8

gives a few examples.

x86 Instruction Format
. Figure 13.9 illustrates the general x86 instruction format. Instructions
are made up of from zero to four optional instruction prefixes, a 1- or 2-
byte opcode, an optional address specifier (which consists of the
ModR/M byte and the Scale Index Base byte) an optional displacement,
and an optional immediate field. Refer here for Intel 64 and IA-32 ISA.

As can be seen, the encoding of the x86
instruction set is very complex. This has
to do partly with the need to be
backward compatible with the 8086
machine and partly with a desire on the
part of the designers to provide every
possible assistance to the compiler
writer in producing efficient code. It is a
matter of some debate whether an
instruction set as complex as this is
preferable to the opposite extreme of
the RISC (as in ARM) instruction sets.

Q: Ideally, what would the longest instruction size be in x86?

https://software.intel.com/en-us/articles/intel-sdm#nine-volume

ARM Instruction Formats

• All instructions are 32 bits long,
unlike x86 which is variable.

• Most instructions execute in a
single cycle (unlike x86 which is
variable).

• Most instructions can be
conditionally executed

• Refer here for full instruction set

http://vision.gel.ulaval.ca/~jflalonde/cours/1001/h16/docs/arm-instructionset.pdf

Thumb Instruction Set
• The Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded into 16-bit instructions.

• Thumb instructions are

unconditional, so the condition

code field is not used. Referee

here for full instruction set

• The ARM processor can execute
a program consisting of a
mixture of Thumb instructions
and 32-bit ARM instructions.

https://ece.uwaterloo.ca/~ece222/ARM/ARM7-TDMI-manual-pt3.pdf

Assembler

• A processor can understand and execute machine

instructions. Such instructions are simply binary

numbers stored in the computer.

• The development of assembly language was a

major milestone in the evolution of computer

technology. It was the first step to the high-level

languages in use today. Although few

programmers use assembly language, virtually all

machines provide one.

Consider the simple BASIC statement
N=I+J+K

• Suppose we wished to program this statement in

machine language and to initialize I, J, and K to 2,

3, and 4, respectively. This is shown in Figure

13.13a. The program starts in location 101

(hexadecimal). Memory is reserved for the four

variables starting at location 201. The program

consists of four instructions:

Summary

• Machine instruction
characteristics

• Elements of a machine
instruction

• Instruction representation

• Instruction types

• Number of addresses
• Instruction set design

• Types of operands
• Numbers

• Characters
• Logical data

• Intel x86 and ARM data types

• Types of operations
• Data transfer
• Arithmetic
• Logical
• Conversion
• Input/output
• System control
• Transfer of control

• Intel x86 and ARM operation
types

Instruction Sets:

Characteristics, Functions & Addressing mode

• Addressing modes

• Immediate addressing

• Direct addressing

• Indirect addressing

• Register addressing

• Register indirect addressing

• Displacement addressing

• Stack addressing

• x86 & ARM addressing modes

• Instruction formats

• Instruction length

• Allocation of bits

• Variable-length instructions

• X86 & ARM instruction formats

+

William Stallings

Computer Organization

and Architecture

9th Edition

