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Computer Arithmetic



Arithmetic & Logic Unit (ALU)

• Part of the computer that actually performs arithmetic and logical 
operations on data

• All of the other elements of the computer system are there mainly to 
bring data into the ALU for it to process and then to take the results 
back out

• ALU is based on the use of simple digital logic devices that can store 
binary digits and perform simple Boolean logic operations



ALU Inputs and Outputs

For example, an overflow flag is

set to 1 if the result of a

computation exceeds the length of

the register into which it is to be

stored.



Integer Representation

• In the binary number system arbitrary numbers can be 
represented with: 
• The digits zero and one

• The minus sign (for negative numbers)

• The period, or radix point (for numbers with a fractional component)

• For purposes of computer storage and processing we do not have the benefit of special 
symbols for the minus sign and radix point

• Only binary digits (0,1) may be used to represent numbers

• If we are limited to nonnegative integers, the representation is straightforward.



Sign-Magnitude Representation

There are several alternative conventions 
used to represent negative as well as positive 

integers

Sign-magnitude representation is the simplest 
form that employs a sign bit

Drawbacks:

Because of these drawbacks, sign-magnitude 
representation is rarely used in implementing 

the integer portion of the ALU

• All of these alternatives involve treating the most 
significant (leftmost) bit in the word as a sign bit

• If the sign bit is 0 the number is positive

• If the sign bit is 1 the number is negative

• Addition and subtraction require a consideration of both
the signs of the numbers and their relative magnitudes to
carry out the required operation

• There are two representations of 0



Twos Complement Representation
• Uses the most significant bit as a sign bit

• Differs from sign-magnitude representation in the 
way that the other bits are interpreted

Table 10.1  Characteristics of Twos Complement Representation and Arithmetic 



Table 10.2  
Alternative Representations for 4-Bit Integers



Range Extension

• Range of numbers that can be expressed is extended by increasing the bit length

• In sign-magnitude notation this is accomplished by moving the sign bit to the new 
leftmost position and fill in with zeros

• This procedure will not work for twos complement negative integers

• Rule is to move the sign bit to the new leftmost position and fill in 
with copies of the sign bit

• For positive numbers, fill in with zeros, and for negative numbers, fill 
in with ones

• This is called sign extension



Fixed-Point Representation

The radix point (binary 
point) is fixed and 

assumed to be to the 
right of the rightmost 

digit

Programmer can use the same 
representation for binary 

fractions by scaling the 
numbers so that the binary 

point is implicitly positioned at 
some other location



Negation

• Twos complement operation
• Take the Boolean complement of each bit of the integer (including the sign 

bit)

• Treating the result as an unsigned binary integer, add 1

• The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)
bitwise complement = 11101101

+              1
11101110 = -18

-18 =  11101110 (twos complement)
bitwise complement =  00010001

+               1
00010010 = +18



Negation Special Case 1

0    =                00000000    (twos complement)

Bitwise complement  =                 11111111

Add 1 to LSB             +                 1

Result          100000000

Overflow is ignored, so:

- 0 = 0



Negation Special Case 2

-128 =        10000000    (twos complement)

Bitwise complement   =         01111111

Add 1 to LSB           +                1

Result           10000000

So:

-(-128) = -128   X

Monitor MSB (sign bit)

It should change during negation



Addition



OVERFLOW RULE: 

If two numbers are added, and they are both positive 
or both negative, then overflow occurs if and only if 
the result has the opposite sign.



SUBTRACTION RULE: 

To subtract one number (subtrahend) from another 
(minuend), take the twos complement (negation) of 
the subtrahend and add it
to the minuend.



Subtraction



Geometric Depiction of Twos Complement 
Integers



Hardware for Addition and Subtraction



Multiplication
Most common techniques for multiplication, as might be carried out using 

paper and pencil



Hardware Implementation of Unsigned Binary Multiplication



Flowchart for Unsigned 
Binary Multiplication



Twos Complement Multiplication
• We multiplied 11 (1011) by 13 (1101) to get 143 (10001111). 
• If we interpret these as twos complement numbers, we have -5 (1011) times -3 (1101) equals -113 (10001111) 

which is wrong. 
• This example demonstrates that straightforward multiplication will not work if both the multiplicand and 

multiplier are negative. In fact, it will not work if either the multiplicand or the multiplier is negative.



Comparison
If 1001 is interpreted as the complement value -7, then each partial product must 
be a negative twos complement number of 2n (8) bits, as shown in Figure 10.11b. 
Note that this is accomplished by padding out each partial product to the left with 
binary 1s.



Exercise

• Represent -4 and -17 in twos complement. Re write the answer in 
hexadecimal. 

• Multiply 1100 by 1001:
a. If the numbers are unsigned integers

b. If the numbers are signed twos complement

• Multiply -8 by 3 in binary



Booth’s Algorithm 
Note that the shift is arithmetic shift: An-1, not only is 
shifted into An-2, but also remains in An-1



Examples Using Booth’s Algorithm

• Figure 10.14 gives other 
examples of the algorithm. 

• As can be seen, it  works 
with any combination of 
positive and negative 
numbers. 

• Note also the efficiency of 
the algorithm. Blocks of 1s 
or 0s are skipped over, with 
an average of only one 
addition or subtraction per 
block.



Division



Flowchart for 
Unsigned Binary 

Division



Example of Restoring Twos Complement 
Division



+ Floating-Point Representation

• With a fixed-point notation it is possible to represent a range of 
positive and negative integers centered on or near 0

• By assuming a fixed binary or radix point, this format allows the 
representation of numbers with a fractional component as well

• Limitations:
• Very large numbers cannot be represented nor can very small fractions

• The fractional part of the quotient in a division of two large numbers could be 
lost

Principles



Typical 32-Bit Floating-Point 
Format

Typically, the bias equals (2k-1 - 1), where k is the number of bits in the binary exponent. In this 
case, the 8-bit field yields the numbers 0 through 255. With a bias of 127 (27 - 1), the true 
exponent values are in the range -127 to +128. 



+ Floating-Point

• The final portion of the word

• Any floating-point number can be expressed in 
many ways

• Normal number
• The most significant digit of the significand is nonzero

Significand

The following are equivalent, where the significand is expressed 
in binary form:

0.110 * 25

110 * 22

0.0110 * 26



Expressible Numbers



Density of Floating-Point Numbers

• Also, note that the numbers represented in floating-point notation are not 
spaced evenly along the number line, as are fixed-point numbers. The possible 
values get closer together near the origin and farther apart as you move away, 
as shown in Figure 10.20. 



IEEE Standard 754

Most important floating-point 
representation is defined

Standard was developed to 
facilitate the portability of 

programs from one processor 
to another and to encourage 

the development of 
sophisticated, numerically 

oriented programs

Standard has been widely 
adopted and is used on 

virtually all contemporary 
processors and arithmetic 

coprocessors

IEEE 754-2008 covers both 
binary and decimal floating-

point representations



IEEE 754 
Formats

The three basic binary formats have bit 

lengths of 32, 64, and 128 bits, with 

exponents of 8, 11, and 15 bits, 

respectively 



Additional Formats

• Provide additional bits in the exponent (extended 

range) and in the significand (extended precision)

• Lessens the chance of a final result that has been 

contaminated by excessive roundoff error

• Lessens the chance of an intermediate overflow 

aborting a computation whose final result would 

have been representable in a basic format

• Affords some of the benefits of a larger basic 

format without incurring the time penalty usually 

associated with higher precision

• Precision and range are defined 
under user control

• May be used for intermediate 
calculations but the standard 
places no constraint or format or 
length

Extended Precision Formats Extendable Precision 
Format



Table 10.4 IEEE Formats

Table 10.4   IEEE Formats 



Table 10.5   Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3) 

Interpretation of IEEE 754 
Floating-Point Numbers (a) binary 32 format 



Table 10.5   Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3) 

Interpretation of IEEE 754 
Floating-Point Numbers

(b) binary 64 format 



Table 10.6 Floating-Point Numbers 
and Arithmetic Operations 



Floating-Point Addition and Subtraction



Floating-Point 
Multiplication



Floating-Point 
Division



Summary

• ALU
• Integer representation

• Sign-magnitude representation
• Twos complement 

representation
• Range extension
• Fixed-point representation

• Floating-point representation
• Principles
• IEEE standard for binary 

floating-point representation

• Integer arithmetic
• Negation
• Addition and subtraction
• Multiplication
• Division

• Floating-point arithmetic
• Addition and subtraction
• Multiplication and division
• Precision consideration
• IEEE standard for binary floating-point 

arithmetic

Chapter 10

Computer 

Arithmetic


