Computer Architecture & Organization

Chapter 4

Computer Arithmetic

AAIT

Arithmetic & Logic Unit (ALU)

* Part of the computer that actually performs arithmetic and logical
operations on data

* All of the other elements of the computer system are there mainly to
bring data into the ALU for it to process and then to take the results
back out

* ALU is based on the use of simple digital logic devices that can store
binary digits and perform simple Boolean logic operations

ALU Inputs and Outputs

Control
Signals

Operand
Registers

Y

ALU

Figure 10.1 ALU Inputs and Outputs

For example, an overflow flag is
set to 1 if the result of a
computation exceeds the length of
the register into which it is to be
stored.

Flags

Result
Registers

AAIT

Integer Representation

* In the binary number system arbitrary numbers can be
represented with:
* The digits zero and one
* The minus sign (for negative numbers)
e The period, or radix point (for numbers with a fractional component)

For purposes of computer storage and processing we do not have the benefit of special
symbols for the minus sign and radix point

Only binary digits (0,1) may be used to represent numbers

* If we are limited to nonnegative integers, the representation is straightforward.

Sign-Magnitude Representation

e All of these alternatives involve treating the most
significant (leftmost) bit in the word as a sign bit

e |f the sign bit is 0 the number is positive
e |f the sign bit is 1 the number is negative

There are several alternative conventions
used to represent negative as well as positive
integers

Sign-magnitude representation is the simplest
form that employs a sign bit

¢ Addition and subtraction require a consideration of both
the signs of the numbers and their relative magnitudes to
carry out the required operation

* There are two representations of 0

Drawbacks:

Because of these drawbacks, sign-magnitude
representation is rarely used in implementing
the integer portion of the ALU

Twos Complement Representation

* Uses the most significant bit as a sign bit

* Differs from sign-magnitude representation in the
way that the other bits are interpreted

Range —2*~!through 27! — 1
MNumber of Representations
One
of Zero
) Take the Boolean complement of each bit of the corresponding

Negation positive number, then add 1 to the resulting bit pattern viewed
as an unsigned integer.

Expansion of Bit Length Add additonal bit positions to the left and [l in with the value
of the original sign biL
If two numbers with the same sign (both positive or both

Overflow Rule ncgative) are added, then overflow occurs if and only if the
result has the opposite sign.

Subiraction Bule T:J :aljihlraci B from A, take the twos complement of B and add
it to A

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Alternative Representations for 4-Bit Integers

Table 10.2

Decimal Sign-Magnitude Twos Complement Biased
Representation Representation Representation Representation

+8 — — 1111
+7 0111 0111 11140
+6 0110 0110 1101
+5 0101 0101 1100
+4 0100 0100 1011
+3 0011 0011 1010
+2 0010 0010 1001
+1 D001 0001 1000
+(D000 (LLEL 0111
) 1000 = —

—1 1001 1111 0110
-2 1010 1110 0101
-3 1011 1101 0100
4 1100 1100 0011
-5 11001 1011 0010
—ty 1110 1010 O]
Sy 1111 1001 (LELY
-5 — 1000 —

-~

S

AAIT

Range Extension

Range of numbers that can be expressed is extended by increasing the bit length

In sign-magnitude notation this is accomplished by moving the sign bit to the new
leftmost position and fill in with zeros

This procedure will not work for twos complement negative integers

* Rule is to move the sign bit to the new leftmost position and fill in
with copies of the sign bit

* For positive numbers, fill in with zeros, and for negative numbers, fill
in with ones

* This is called sign extension

AAIT

Fixed-Point Representation AAIT

The radix point (binary.
point) is fixed and

assumed to be to the
right of the rightmost
digit

AAIT

Negation

* Twos complement operation

* Take the Boolean complement of each bit of the integer (including the sign
bit)
* Treating the result as an unsigned binary integer, add 1

The negative of the negative of that number is itself:

Negation Special Case 1

0 = 00000000 (twos complement)
Bitwise complement = 11111111
Add 1 to LSB + 1
Result 100000000

Overflow is ignored, so:
-0=0

Negation Special Case 2

-128 = 10000000 (twos complement)
Bitwise complement = 01111111
Add 1 to LSB + 1
Result 10000000
So:
-(-128) =-128 X

Monitor MSB (sign bit)
It should change during negation

Addition
1001 = =7 1100 = =4
+0101 = 5§ +0100 = 4
1110 = =2 10000 = 0O
(a) (=Ty + (+5) (b)Y (—4) + (+4)
0011 = 3 1100 = =4
+0100 = 4 +1111 = =1
0111 = 7 11011 = =5
(c)(+3) + {+1) (d) (—4) + (1)
0101 = § 1001 = =7
+0100 = 4 +1010 = —6
1001 = Overflow 10011 = Overflow
(e} (+35) + {+d) (D=7 + (-6)

Figure 10.3 Addition of Numbers in Twos Complement Representation

om

©
AAIT

If two numbers are added, and they are both positive
or both negative, then overflow occurs if and only if
the result has the opposite sign.

om

©
AAIT

To subtract one number (subtrahend) from another
(minuend), take the twos complement (negation) of
the subtrahend and add it

to the minuend.

0010 = 2 0101 = 5§
+1001 = =7 +1110 = =2
1011 = =5 10011 = 3
fa) M = 2 = 0010 (b)y M = 5 = 0101
s =7 = 0111 s =2 = 0010
-5 = 1001 -5 = 1110
1011 = =5 0101 = §
+1110 = =2 +0010 = 2
11001 = =7 0111 = 7
fe) M ==5 = 1011 (dy M = 5§ = 0101
S =2 = 0010 S =2 = 1110
-5 = 1110 -5 = 0010
0111 = 7 1010 = —6
+0111 = 7 +1100 = —4
1110 = Overflow 10110 = Overflow
ey M = 7 = 0111 (fy M = —6 = 1010
S = =7 = 1001 S = 4 = 0100
-5 = 0111 -5 = 1100

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M - 5)

Geometric Depiction of Twos Complement

Integers

subiraction addition subtraction addition

ol positive of positive o positive
nuimbers numbers mumlsers

of positive
numbers

010...0

BT H-5.4-3:2.10 123456789

() 4-bit numbers (b} m-hit numbers

Figure 10.5 Geometric Depiction of Twos Complement Integers

Hardware for Addition and Subtraction AAT

Adder
OF = overflow bit

SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

Multiplication

Most common techniques for multiplication, as might be carried out using
paper and pencil

1011 Multiplicand (11)
»% 1101 Multiplier (13)
1011
0000
1011
1011
10001111 Product (143)

Partial products

Figure 10.7 Multiplication of Unsigned Binary Integers

Hardware Implementation of Unsigned Binary Multiplication

Multiplicand

Shift and Add
Control Logic

M, g - 8 & My
e e
Add
n=Bit Adder R —
‘ Shift Right
. Ay {0y

(a} Block Diagram

Multiplier

C A Q M
0 0000 1101 1011 Initial Values
0 1011 1101 1011 Add }_ First
0 0101 1110 1011 Shift Cycle
Second
0 0010 1111 1011 Shift } Cycle
0 1101 1111 1011 } Third
0 0110 1111 1011 sh:.ft Cycle
1 0001 1111 1011 }_ Fourth
0 1000 1111 1011 Ehlft Cycle

(b} Example from Figure 9.7 (product in A, ()

Figure 10.8 Hardware Implementation of
Unsigned Binary Multiplication

START

Flowchart for Unsigned

C,A—0

Binary Multiplication OVt

Count=—n

|C,A-—A+M.

| Shift right C, A, Q
"| Count-—Count — 1

Product
in A,Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication

e

e i

AAIT

Twos Complement Multiplication

* We multiplied 11 (1011) by 13 (1101) to get 143 (10001111).

* If we interpret these as twos complement numbers, we have -5 (1011) times -3 (1101) equals -113 (10001111)
which is wrong.

* This example demonstrates that straightforward multiplication will not work if both the multiplicand and
multiplier are negative. In fact, it will not work if either the multiplicand or the multiplier is negative.

1011

x1101
00001011 1011 = 1 = 2°
00000000 1011 = 0 = 2°
00101100 1011 = 1 = 2°
01011000 1011 = 1 x 2°

10001111

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit
Resull

|

AAIT

Comparison

If 1001 is interpreted as the complement value -7, then each partial product must
be a negative twos complement number of 2n (8) bits, as shown in Figure 10.11b.
Note that this is accomplished by padding out each partial product to the left with

binary 1s.
1001 (9) 1001 (=7
x0011 (3) <0011 (3)
00001001 1001 x 2° 11111001 (=7} = 2" = (=7)
00010010 1001 x 2 11110010 (=7) x 2' = [(=14)
00011011 (27) 11101011 {—=21)
(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos
Complement Integers

AAIT

Exercise

* Represent -4 and -17 in twos complement. Re write the answer in
hexadecimal.

» Multiply 1100 by 1001:

a. Ifthe numbers are unsigned integers
b. If the numbers are sighed twos complement

* Multiply -8 by 3 in binary

ikl Booth’s Algorithm

Note that the shift is arithmetic shift: A, ,,
shifted into A, ,, but also remainsin A_;

A—0,Q 0 not only is

M ~—Multiplicand
Q—Multiplier
Count+n

A Q Q_; M
0000 0011 0 A Initial Values

1001 0011 0 0111 A—A-M }_ First
1100 1001 1 0111 Shift Cycle

Second

1110 0100 1 0111 Shift Cycle

Arithmetic Shift

e
ount ount -
0010 1010 0 0111 Shift Cycle

Fourth
Cycle

= 0001 0101 O 0111 Shift

0101 0100 1 0111 A~—A + M }_ Third

Figure 10.13 Example of Booth's Algorithm (7X 3)
Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

Examples Using Booth's Algorithm

AAIT

0111 0111 : :
w0011 (0) <1101 Figure 10.14 gives oth-er
11111001 1—0 11111001 examples of the algorithm.
gucoang L 0000111 As can be seen, it works
290111 01 111081 with any combination of
00010101 (21) 11101011 1any _
- - positive and negative
() (7= (31=(21) (B (7 = (-
numbers.
1001 1001 Note alsq the efficiency of
x0011 (0} %1101 (0} the algorithm. Blocks of 1s
doooolll 1-0 00000111 1-0 or Os are skipped over, with
Q000000 1-1 1111001 0—1
111001 0-1 000111 1-0 an average of only one
11101011 (—21) 00010101 {21) addition or subtraction per
() (-T) = (3)=(-21) (d) (=7) % (=3) = (21 block.

Figure 10.14 Examples Using Booth's Algorithm

Division

00001101 <«—— Quotient
Divisor ——» 1011/10010011 <«—— Dividend

1011
001110
:-_-"" 1011
Partial n n 1 11 1
remainders
1011

100 «—— Remainder

Figure 10.15 Example of Division of Unsigned Binary Integers

A—1
M=—Divisor
Q-—Dividend
Count «—u

Flowchart for
Unsigned Binary
Division

Count=—Count - 1

Quotient in Q
Remainder in A

Figure 10.16 Flowchart for Unsigned Binary Division

Example of Restoring Twos Complement

Division

<
"H

A Q

0000 0111 Initial value

0000 1110 shift

1101 Use twos complement of 0011 for subtraction
1101 Subtract

Qoo 1110 Restore, set Q, = 0
o001 1100 shift

1101

1110 Subtract

0001 1100 Restore, set Q, = 0
0011 1000 shift

1101

0000 1001 Subtract, set Q, = 1
o001 0010 shift

1101

1110 Subtract

0001 0010 Restore, set Q, = 0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

AAIT

Floating-Point Representation e

* With a fixed-point notation it is possible to represent a range of
positive and negative integers centered on or near O

* By assuming a fixed binary or radix point, this format allows the
representation of numbers with a fractional component as well

* Limitations:
* Very large numbers cannot be represented nor can very small fractions

* The fractional part of the quotient in a division of two large numbers could be
lost

Typical 32-Bit F

Form

oating-Point
at

sign of
significand _ _
44— B hits S 23 bhats -
\ biased exponent significand

(a) Format

Typically, the bias equals (2¥1 - 1), where k is the number of bits in the binary exponent. In this

case, the 8-bit field yields the numbers 0 through 255. With a bias of 127 (27 - 1), the true
exponent values are in the range -127 to +128.

1.1010001 X 219100
-1.1010001 X 210100
1.1010001 ¥ 2-t0100
-1.1010001 X 20100 _

= 0 10010011
1 10010011
0 01101011
1 01101011

(b} Examples

10100010000000000000000 = 1.
10100010000000000000000 =
10100010000000000000000 = 1.
10100010000000000000000 =

6328125 X 2%¢
.6328125 X 2%0
6328125 ¥ 2720
.6328125 X 2720

Figure 10.18 Typical 32-Bit Floating-Point Format

. . "AAT
Floating-Point

* The final portion of the word

* Any floating-point number can be expressed in
many ways

The following are equivalent, where the significand is expressed
in binary form:
0.110 * 2°
110 * 2?2
0.0110 * 26

* Normal number
* The most significant digit of the significand is nonzero

Expressible Numbers

Expressible Integers

A

p ‘ ‘ ‘ > Hutﬁnhnr
oM 0 M _q Line
{a) Twos Complement Integers
Negative Positive
Underflow Underflow
Negative Expressible Negative Expressible Positive Positive
Overflow Numbers Numbers Overflow

r\-_k—fy\)_,—yxlj-'}f_}\fr\)_,—y-\-_k__ﬁ
,, 77/ 7/

_(2- 27y x 213 _3-127 N 5127 (2= 223 x 2128 Line

(b) Floating-Point Numbers

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

Density of Floating-Point Numbers

Figure 10.20 Density of Floating-Point Numbers

* Also, note that the numbers represented in floating-point notation are not
spaced evenly along the number line, as are fixed-point numbers. The possible

values get closer together near the origin and farther apart as you move away,
as shown in Figure 10.20.

|EEE Standard 754

Standard was developed to
facilitate the portability of
programs from one processor
to another and to encourage
the development of
sophisticated, numerically
oriented programs

Most important floating-point
representation is defined

Standard has been widely

adopted and is used on IEEE 754-2008 covers both
virtually all contemporary binary and decimal floating-
processors and arithmetic point representations

COpProcessors

sign blased E E E 7 54 AAiT
bit Jexponent

trailing
significand field

8bits 23 bits

(a) binary32 format

sign biased

bit ‘/ﬂ: xponent
|1(trailing significand field

11 bits 52 bits
(b} binary64 format

~ormats

The three basic binary formats have bit
lengths of 32, 64, and 128 bits, with

exponents of 8, 11, and 15 bits,
respectively

s1gn
bit
biased
|‘(i trailing significand field
exponent -
 15bits 112 bits ’

(¢) binary128 format

Figure 10.21 1EEE 754 Formats

AAIT

Additional Formats

Extended Precision Formats Extendable Precision

Format
* Provide additional bits in the exponent (extended

range) and in the significand (extended precision) * Precision and range are defined
under user control

* Lessens the chance of a final result that has been

contaminated by excessive roundoff error ¢ I\/Iay be used for intermediate
] . . calculations but the standard
* Lessens the chance of an intermediate overflow .
aborting a computation whose final result would places no constraint or format or

have been representable in a basic format Iength

» Affords some of the benefits of a larger basic
format without incurring the time penalty usually
associated with higher precision

Table 10.4 |IEEE Formats

Format Type

Format - - = :
Arithmetic Format Basic Format Interchange Format

binarvlt
binarv32
binarvod
binarvl2s

binarv{k}

k= nx 3A2lforn>4)
decimaltd
decimall18
decimal{k}

k= nx Al for n > 4)
extended precision
extendable precision

X
X
X

2|2 | | | | |

| 2 |) M| K[|
b

Table 10.4 |EEE Formats

Interpretation of IEEE 754
Floating-Point Numbers

(a) binary 32 format

Sign Biased Exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 —0
plus infinity 0 all 1s 0 00
minus infinity 1 all 1s 0 —00
quiet NaN Dorl all 1s = (), first bit = 1 qNaN
signaling NaN Dorl all 1s = (), first bit = 0 sNaN
positive normal nonzero 0 0<e < 255 f 2¢7127(1.f)
negative normal nonzero 1 0<e <255 f —2¢7127(1.f)
positive subnormal 0 0 f#0 271280,
negative subnormal 1 0 f+0 —2‘*"1‘5({].1?}

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

Interpretation of IEEE 754
Floating-Point Numbers

(b) binary 64 format

Sign Biased Exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 —0
plus infinity 0 all 1s 0 00
minus infinity 1 all 1s 0 —oo
quiet NaN Dorl all 1s #=(); first bit = gNaN
signaling NalN Dorl all 1s #=(); first bit = sNalN
positive normal nonzero 0 0 < e < 2047 f 210231 f)
negative normal nonzero 1 0 < e < 2047 f —2¢-1023(1 1)
positive subnormal 0 0 f =0 2¢- 1022y f)
negative subnormal 1 0 f =0 —2¢- 1922 f)

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

Table 10.6 Floating-Point Numbers
and Arithmetic Operations

Floating Point Numbers Arithmetic Operations
X = X, % BYE X+Y=(X, xB" f+F}xE
¥ .!ﬁ:l]'._' = FE
Y=Y, xB* X-¥ =X, x B -y | x BY
XxYm(X, xY,)xB e
.‘-'i' X
[—L x Bt
}" ¥,
Examples:

X=03x10"=30
¥Y=02x10" =200

X+V=(03x10""+02) = 10F=023x 10" =230
X-¥Y=(03x 107 -02)x 107 =(-0.17) = 1(F =170
Xx¥V=(03x02)= 10 =006 x 10° = 6000
X+¥V=(03+02)x 10" =15=x10"=0.15

Floating-Point Addition and Subtraction

t SUBTRACT ,

h 4
Change
sipn of Y

RETURN

Yes

Increment
smualler
exponent

l

Shift
significand

right

RETURMN

Put other

number in £

RETURN

EETURN

Report
overflow

Audd
sipgned
significands

Significand
overflow?

Shift
significand
right

I

Increment
expanent

Shift
sigmificand

'I RETUKEMN '

Figure 10.22 Floating-Point Addition and Subtraction (Z— X = Y)

RETURMN

Floating-Point
Multiplication

MULTIPLY

Add
Exponents

h 4

RETURN

Subtract Bias

Report
Overflow

Report
Undertlow

Multiply
Significands

Y

MNormalize

Round

Figure 10.23 Floating-Point Multiplication (Z— XX Y)

CAAIT

Floating-Point
Division

DIVIDE

Subtract
Exponents

Y

Add Bias

Exponent
nderflow?,

No

b4

Report
Overflow

Report
Undertlow

Divide
Significands

Y

MNormalize

Round

Figure 10.24 Floating-Point Division (Z+— X/Y)

Summary

Chapter 10

* ALU

* Integer representation

* Sign-magnitude representation

* Twos complement
representation

* Range extension

* Fixed-point representation
Floating-point representation

* Principles

* |EEE standard for binary
floating-point representation

Computer
Arithmetic

Integer arithmetic
* Negation
e Addition and subtraction
* Multiplication
* Division
Floating-point arithmetic
e Addition and subtraction
* Multiplication and division
* Precision consideration

* |EEE standard for binary floating-point
arithmetic

e ;
AAIT

