
Computer Architecture & Organization

Chapter 4

Computer Arithmetic

Arithmetic & Logic Unit (ALU)

• Part of the computer that actually performs arithmetic and logical
operations on data

• All of the other elements of the computer system are there mainly to
bring data into the ALU for it to process and then to take the results
back out

• ALU is based on the use of simple digital logic devices that can store
binary digits and perform simple Boolean logic operations

ALU Inputs and Outputs

For example, an overflow flag is

set to 1 if the result of a

computation exceeds the length of

the register into which it is to be

stored.

Integer Representation

• In the binary number system arbitrary numbers can be
represented with:
• The digits zero and one

• The minus sign (for negative numbers)

• The period, or radix point (for numbers with a fractional component)

• For purposes of computer storage and processing we do not have the benefit of special
symbols for the minus sign and radix point

• Only binary digits (0,1) may be used to represent numbers

• If we are limited to nonnegative integers, the representation is straightforward.

Sign-Magnitude Representation

There are several alternative conventions
used to represent negative as well as positive

integers

Sign-magnitude representation is the simplest
form that employs a sign bit

Drawbacks:

Because of these drawbacks, sign-magnitude
representation is rarely used in implementing

the integer portion of the ALU

• All of these alternatives involve treating the most
significant (leftmost) bit in the word as a sign bit

• If the sign bit is 0 the number is positive

• If the sign bit is 1 the number is negative

• Addition and subtraction require a consideration of both
the signs of the numbers and their relative magnitudes to
carry out the required operation

• There are two representations of 0

Twos Complement Representation
• Uses the most significant bit as a sign bit

• Differs from sign-magnitude representation in the
way that the other bits are interpreted

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Table 10.2
Alternative Representations for 4-Bit Integers

Range Extension

• Range of numbers that can be expressed is extended by increasing the bit length

• In sign-magnitude notation this is accomplished by moving the sign bit to the new
leftmost position and fill in with zeros

• This procedure will not work for twos complement negative integers

• Rule is to move the sign bit to the new leftmost position and fill in
with copies of the sign bit

• For positive numbers, fill in with zeros, and for negative numbers, fill
in with ones

• This is called sign extension

Fixed-Point Representation

The radix point (binary
point) is fixed and

assumed to be to the
right of the rightmost

digit

Programmer can use the same
representation for binary

fractions by scaling the
numbers so that the binary

point is implicitly positioned at
some other location

Negation

• Twos complement operation
• Take the Boolean complement of each bit of the integer (including the sign

bit)

• Treating the result as an unsigned binary integer, add 1

• The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)
bitwise complement = 11101101

+ 1
11101110 = -18

-18 = 11101110 (twos complement)
bitwise complement = 00010001

+ 1
00010010 = +18

Negation Special Case 1

0 = 00000000 (twos complement)

Bitwise complement = 11111111

Add 1 to LSB + 1

Result 100000000

Overflow is ignored, so:

- 0 = 0

Negation Special Case 2

-128 = 10000000 (twos complement)

Bitwise complement = 01111111

Add 1 to LSB + 1

Result 10000000

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

Addition

OVERFLOW RULE:

If two numbers are added, and they are both positive
or both negative, then overflow occurs if and only if
the result has the opposite sign.

SUBTRACTION RULE:

To subtract one number (subtrahend) from another
(minuend), take the twos complement (negation) of
the subtrahend and add it
to the minuend.

Subtraction

Geometric Depiction of Twos Complement
Integers

Hardware for Addition and Subtraction

Multiplication
Most common techniques for multiplication, as might be carried out using

paper and pencil

Hardware Implementation of Unsigned Binary Multiplication

Flowchart for Unsigned
Binary Multiplication

Twos Complement Multiplication
• We multiplied 11 (1011) by 13 (1101) to get 143 (10001111).
• If we interpret these as twos complement numbers, we have -5 (1011) times -3 (1101) equals -113 (10001111)

which is wrong.
• This example demonstrates that straightforward multiplication will not work if both the multiplicand and

multiplier are negative. In fact, it will not work if either the multiplicand or the multiplier is negative.

Comparison
If 1001 is interpreted as the complement value -7, then each partial product must
be a negative twos complement number of 2n (8) bits, as shown in Figure 10.11b.
Note that this is accomplished by padding out each partial product to the left with
binary 1s.

Exercise

• Represent -4 and -17 in twos complement. Re write the answer in
hexadecimal.

• Multiply 1100 by 1001:
a. If the numbers are unsigned integers

b. If the numbers are signed twos complement

• Multiply -8 by 3 in binary

Booth’s Algorithm
Note that the shift is arithmetic shift: An-1, not only is
shifted into An-2, but also remains in An-1

Examples Using Booth’s Algorithm

• Figure 10.14 gives other
examples of the algorithm.

• As can be seen, it works
with any combination of
positive and negative
numbers.

• Note also the efficiency of
the algorithm. Blocks of 1s
or 0s are skipped over, with
an average of only one
addition or subtraction per
block.

Division

Flowchart for
Unsigned Binary

Division

Example of Restoring Twos Complement
Division

+ Floating-Point Representation

• With a fixed-point notation it is possible to represent a range of
positive and negative integers centered on or near 0

• By assuming a fixed binary or radix point, this format allows the
representation of numbers with a fractional component as well

• Limitations:
• Very large numbers cannot be represented nor can very small fractions

• The fractional part of the quotient in a division of two large numbers could be
lost

Principles

Typical 32-Bit Floating-Point
Format

Typically, the bias equals (2k-1 - 1), where k is the number of bits in the binary exponent. In this
case, the 8-bit field yields the numbers 0 through 255. With a bias of 127 (27 - 1), the true
exponent values are in the range -127 to +128.

+ Floating-Point

• The final portion of the word

• Any floating-point number can be expressed in
many ways

• Normal number
• The most significant digit of the significand is nonzero

Significand

The following are equivalent, where the significand is expressed
in binary form:

0.110 * 25

110 * 22

0.0110 * 26

Expressible Numbers

Density of Floating-Point Numbers

• Also, note that the numbers represented in floating-point notation are not
spaced evenly along the number line, as are fixed-point numbers. The possible
values get closer together near the origin and farther apart as you move away,
as shown in Figure 10.20.

IEEE Standard 754

Most important floating-point
representation is defined

Standard was developed to
facilitate the portability of

programs from one processor
to another and to encourage

the development of
sophisticated, numerically

oriented programs

Standard has been widely
adopted and is used on

virtually all contemporary
processors and arithmetic

coprocessors

IEEE 754-2008 covers both
binary and decimal floating-

point representations

IEEE 754
Formats

The three basic binary formats have bit

lengths of 32, 64, and 128 bits, with

exponents of 8, 11, and 15 bits,

respectively

Additional Formats

• Provide additional bits in the exponent (extended

range) and in the significand (extended precision)

• Lessens the chance of a final result that has been

contaminated by excessive roundoff error

• Lessens the chance of an intermediate overflow

aborting a computation whose final result would

have been representable in a basic format

• Affords some of the benefits of a larger basic

format without incurring the time penalty usually

associated with higher precision

• Precision and range are defined
under user control

• May be used for intermediate
calculations but the standard
places no constraint or format or
length

Extended Precision Formats Extendable Precision
Format

Table 10.4 IEEE Formats

Table 10.4 IEEE Formats

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

Interpretation of IEEE 754
Floating-Point Numbers (a) binary 32 format

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

Interpretation of IEEE 754
Floating-Point Numbers

(b) binary 64 format

Table 10.6 Floating-Point Numbers
and Arithmetic Operations

Floating-Point Addition and Subtraction

Floating-Point
Multiplication

Floating-Point
Division

Summary

• ALU
• Integer representation

• Sign-magnitude representation
• Twos complement

representation
• Range extension
• Fixed-point representation

• Floating-point representation
• Principles
• IEEE standard for binary

floating-point representation

• Integer arithmetic
• Negation
• Addition and subtraction
• Multiplication
• Division

• Floating-point arithmetic
• Addition and subtraction
• Multiplication and division
• Precision consideration
• IEEE standard for binary floating-point

arithmetic

Chapter 10

Computer

Arithmetic

