

CHAPTER 20

MICROPROGRAMMED CONTROL

20.1 BASIC CONCEPTS ... 3	

Microinstructions... 3	

Microprogrammed Control Unit ... 8	

Wilkes Control .. 11	

Advantages and Disadvantages... 15	

20.2 MICROINSTRUCTION SEQUENCING ... 16	

Design Considerations ... 16	

Sequencing Techniques ... 17	

Address Generation... 22	

LSI-11 Microinstruction Sequencing... 25	

20.3 MICROINSTRUCTION EXECUTION ... 26	

A Taxonomy of Microinstructions... 28	

Microinstruction Encoding .. 32	

LSI-11 Microinstruction Execution ... 37	

LSI-11 Control Unit Organization 37	

LSI-11 Microinstruction Format....................................... 39	

IBM 3033 Microinstruction Execution 44	

20.4 TI 8800 ... 45	

Microinstruction Format ... 47	

Microsequencer .. 49	

Registers/Counters ... 51	

Stack .. 51	

Control of Microsequencer.. 52	

Registered ALU... 54	

20.6 RECOMMENDED READING.. 59	

Additional References .. 59	

20.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 60	

Key Terms ... 60	

Review Questions ... 60	

Problems ... 61	

KEY POINTS

♦ An alternative to a hardwired control unit is a microprogrammed control

unit, in which the logic of the control unit is specified by a microprogram.
A microprogram consists of a sequence of instructions in a
microprogramming language. These are very simple instructions that
specify micro-operations.

♦ A microprogrammed control unit is a relatively simple logic circuit that is
capable of (1) sequencing through microinstructions and (2) generating
control signals to execute each microinstruction.

♦ As in a hardwired control unit, the control signals generated by a
microinstruction are used to cause register transfers and ALU operations.

The term microprogram was first coined by M. V. Wilkes in the early 1950s

[WILK51]. Wilkes proposed an approach to control unit design that was

organized and systematic and avoided the complexities of a hardwired

implementation. The idea intrigued many researchers but appeared

unworkable because it would require a fast, relatively inexpensive control

memory.

 The state of the microprogramming art was reviewed by Datamation in

its February 1964 issue. No microprogrammed system was in wide use at

that time, and one of the papers [HILL64] summarized the then-popular

view that the future of microprogramming “is somewhat cloudy. None of the

major manufacturers has evidenced interest in the technique, although

presumably all have examined it.”

 This situation changed dramatically within a very few months. IBM’s

System/360 was announced in April, and all but the largest models were

microprogrammed. Although the 360 series predated the availability of

semiconductor ROM, the advantages of microprogramming were compelling

enough for IBM to make this move. Microprogramming became a popular

technique for implementing the control unit of CISC processors. In recent

years, microprogramming has become less used but remains a tool available

to computer designers. For example, as we have seen, on the Pentium 4,

machine instructions are converted into a RISC-like format most of which

are executed without the use of microprogramming. However, some of the

instructions are executed using microprogramming.

20.1 BASIC CONCEPTS

Microinstructions

The control unit seems a reasonably simple device. Nevertheless, to

implement a control unit as an interconnection of basic logic elements is no

easy task. The design must include logic for sequencing through micro-

operations, for executing micro-operations, for interpreting opcodes, and for

making decisions based on ALU flags. It is difficult to design and test such a

piece of hardware. Furthermore, the design is relatively inflexible. For

example, it is difficult to change the design if one wishes to add a new

machine instruction.

 An alternative, which has been used in many CISC processors, is to

implement a microprogrammed control unit.

 Consider Table 20.1. In addition to the use of control signals, each

micro-operation is described in symbolic notation. This notation looks

suspiciously like a programming language. In fact it is a language, known as

a microprogramming language. Each line describes a set of micro-

operations occurring at one time and is known as a microinstruction. A

sequence of instructions is known as a microprogram, or firmware. This

latter term reflects the fact that a microprogram is midway between

hardware and software. It is easier to design in firmware than hardware, but

it is more difficult to write a firmware program than a software program.

Table 20.1 Machine Instruction Set for Wilkes Example

Order Effect of Order
A n C(Acc) + C(n) to Acc1

S n C(Acc) – C(n) to Acc1

H n C(n) to Acc2

V n C(Acc2) × C(n) to Acc, where C(n) ≥ 0

T n C(Acc1) to n, 0 to Acc

U n C(Acc1) to n

R n C(Acc) × 2–(n+1) to Acc
L n C(Acc) × 2n+1 to Acc

G n IF C(Acc) < 0, transfer control to n; if C(Acc) ≥ 0, ignore (i.e., proceed serially)
I n Read next character on input mechanism into n
O n Send C(n) to output mechanism

 Notation: Acc = accumulator
 Acc1 = most significant half of accumulator
 Acc2 = least significant half of accumulator
 n = storage location n
 C(X) = contents of X (X = register or storage location)

 How can we use the concept of microprogramming to implement a

control unit? Consider that for each micro-operation, all that the control unit

is allowed to do is generate a set of control signals. Thus, for any micro-

operation, each control line emanating from the control unit is either on or

off. This condition can, of course, be represented by a binary digit for each

control line. So we could construct a control word in which each bit

represents one control line. Then each micro-operation would be represented

by a different pattern of 1s and 0s in the control word.

 Suppose we string together a sequence of control words to represent

the sequence of micro-operations performed by the control unit. Next, we

must recognize that the sequence of micro-operations is not fixed.

 Microinstruction address
 Jump condition
 —Unconditional
 —Zero
 —Overflow
 —Indirect bit
System bus control signals
Internal CPU control signals

Microinstruction address
Jump condition

Function codes

(a) Horizontal microinstruction

(b) Vertical microinstruction

Figure 20.1 Typical Microinstruction Formats

Sometimes we have an indirect cycle; sometimes we do not. So let us put

our control words in a memory, with each word having a unique address.

Now add an address field to each control word, indicating the location of the

next control word to be executed if a certain condition is true (e.g., the

indirect bit in a memory-reference instruction is 1). Also, add a few bits to

specify the condition.

 The result is known as a horizontal microinstruction, an example of

which is shown in Figure 20.1a. The format of the microinstruction or control

word is as follows. There is one bit for each internal processor control line

and one bit for each system bus control line. There is a condition field

indicating the condition under which there should be a branch, and there is a

field with the address of the microinstruction to be executed next when a

branch is taken. Such a microinstruction is interpreted as follows:

 1. To execute this microinstruction, turn on all the control lines indicated

by a 1 bit; leave off all control lines indicated by a 0 bit. The resulting

control signals will cause one or more micro-operations to be

performed.

 2. If the condition indicated by the condition bits is false, execute the

next microinstruction in sequence.

 3. If the condition indicated by the condition bits is true, the next

microinstruction to be executed is indicated in the address field.

 Figure 20.2 shows how these control words or microinstructions could

be arranged in a control memory. The microinstructions in each routine are

to be executed sequentially. Each routine ends with a branch or jump

instruction indicating where to go next. There is a special execute cycle

routine whose only purpose is to signify that one of the machine instruction

routines (AND, ADD, and so on) is to be executed next, depending on the

current opcode.

 The control memory of Figure 20.2 is a concise description of the

complete operation of the control unit. It defines the sequence of micro-

operations to be performed during each cycle (fetch, indirect, execute,

interrupt), and it specifies the sequencing of these cycles. If nothing else,

this notation would be a useful device for documenting the functioning of a

control unit for a particular computer. But it is more than that. It is also a

way of implementing the control unit.

Jump to indirect or execute

Fetch
cycle
routine

Indirect
cycle
routine

Interrupt
cycle
routine

AND routine

ADD routine

IOF routine

Figure 20.2 Organization of Control Memory

Execute cycle beginning

Jump to execute

Jump to fetch

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to opcode routine

Sequencing
Logic

Read

Control Address Register

Control Buffer Register

Figure 20.3 Control Unit Microarchitecture

Control
Memory

Microprogrammed Control Unit

The control memory of Figure 20.2 contains a program that describes the

behavior of the control unit. It follows that we could implement the control

unit by simply executing that program.

Figure 20.3 shows the key elements of such an implementation. The set of

microinstructions is stored in the control memory. The control address

register contains the address of the next microinstruction to be read. When a

microinstruction is read from the control memory, it is transferred to a

control buffer register. The left-hand portion of that register (see Figure

20.1a) connects to the control lines emanating from the control unit. Thus,

reading a microinstruction from the control memory is the same as

executing that microinstruction. The third element shown in the figure is a

sequencing unit that loads the control address register and issues a read

command.

Sequencing
Logic

Control
Unit Decoder

Decoder

Control Signals
to System Bus

Control Signals
Within CPU

ALU
Flags
Clock

Read

Next Address Control

Control Address Register

Instruction Register

Control Buffer Register

Figure 20.4 Functioning of Microprogrammed Control Unit

Control
Memory

 Let us examine this structure in greater detail, as depicted in Figure

20.4. Comparing this with Figure 20.3, we see that the control unit still has

the same inputs (IR, ALU flags, clock) and outputs (control signals). The

control unit functions as follows:

 1. To execute an instruction, the sequencing logic unit issues a READ

command to the control memory.

 2. The word whose address is specified in the control address register is

read into the control buffer register.

 3. The content of the control buffer register generates control signals and

next-address information for the sequencing logic unit.

 4. The sequencing logic unit loads a new address into the control address

register based on the next-address information from the control buffer

register and the ALU flags.

All this happens during one clock pulse.

 The last step just listed needs elaboration. At the conclusion of each

microinstruction, the sequencing logic unit loads a new address into the

control address register. Depending on the value of the ALU flags and the

control buffer register, one of three decisions is made:

• Get the next instruction: Add 1 to the control address register.

• Jump to a new routine based on a jump microinstruction: Load

the address field of the control buffer register into the control address

register.

• Jump to a machine instruction routine: Load the control address

register based on the opcode in the IR.

 Figure 20.4 shows two modules labeled decoder. The upper decoder

translates the opcode of the IR into a control memory address. The lower

decoder is not used for horizontal microinstructions but is used for vertical

microinstructions (Figure 20.1b). As was mentioned, in a horizontal

microinstruction every bit in the control field attaches to a control line. In a

vertical microinstruction, a code is used for each action to be performed

[e.g., MAR ← (PC)], and the decoder translates this code into individual

control signals. The advantage of vertical microinstructions is that they are

more compact (fewer bits) than horizontal microinstructions, at the expense

of a small additional amount of logic and time delay.

Wilkes Control

As was mentioned, Wilkes first proposed the use of a microprogrammed

control unit in 1951 [WILK51]. This proposal was subsequently elaborated

into a more detailed design [WILK53]. It is instructive to examine this

seminal proposal.

 The configuration proposed by Wilkes is depicted in Figure 20.5. The

heart of the system is a matrix partially filled with diodes. During a machine

cycle, one row of the matrix is activated with a pulse. This generates signals

at those points where a diode is present (indicated by a dot in the diagram).

The first part of the row generates the control signals that control the

operation of the processor. The second part generates the address of the

row to be pulsed in the next machine cycle. Thus, each row of the matrix is

one microinstruction, and the layout of the matrix is the control memory.

 At the beginning of the cycle, the address of the row to be pulsed is

contained in Register I. This address is the input to the decoder, which,

when activated by a clock pulse, activates one row of the matrix. Depending

on the control signals, either the opcode in the instruction register or the

second part of the pulsed row is passed into Register II during the cycle.

Register II is then gated to Register I by a clock pulse. Alternating clock

pulses are used to activate a row of the matrix and to transfer from Register

II to Register I. The two-register arrangement is needed because the

Register II

Register I

Address
decoder

Control signals

Figure 20.5 Wilkes's Microprogrammed Control Unit

Control
signals

Clock

from
instruction

register

Conditional
signal

decoder is simply a combinatorial circuit; with only one register, the output

would become the input during a cycle, causing an unstable condition.

 This scheme is very similar to the horizontal microprogramming

approach described earlier (Figure 20.1a). The main difference is this: In the

previous description, the control address register could be incremented by

one to get the next address. In the Wilkes scheme, the next address is

contained in the microinstruction. To permit branching, a row must contain

two address parts, controlled by a conditional signal (e.g., flag), as shown in

the figure.

 Having proposed this scheme, Wilkes provides an example of its use to

implement the control unit of a simple machine. This example, the first

known design of a microprogrammed processor, is worth repeating here

because it illustrates many of the contemporary principles of

microprogramming.

 The processor of the hypothetical machine (the example machine by

Wilkes) includes the following registers:

 A multiplicand

 B accumulator (least significant half)

 C accumulator (most significant half)

 D shift register

In addition, there are three registers and two 1-bit flags accessible only to

the control unit. The registers are as follows:

 E serves as both a memory address register (MAR) and temporary

storage

 F program counter

 G another temporary register; used for counting

Table 20.2 Microinstructions for Wilkes Example

Notation: A, B, C, . . . stand for the various registers in the arithmetical and control register units.
C to D indicates that the switching circuits connect the output of register C to the input register
D; (D + A) to C indicates that the output register of A is connected to the one input of the adding
unit (the output of D is permanently connected to the other input), and the output of the adder to
register C. A numerical symbol n in quotes (e.g., 'n') stands for the source whose output is the
number n in units of the least significant digit.

Arithmetical Unit

Control
Register Unit Conditional Flip-Flop

Next Micro-
instruction

 Set Use 0 1
 0 F to G and E 1
 1 (G to '1') to F 2
 2 Store to G 3
 3 G to E 4

 4 E to decoder —
A 5 C to D 16
S 6 C to D 17
H 7 Store to B 0
V 8 Store to A 27
T 9 C to Store 25
U 10 C to Store 0
R 11 B to D E to G 19
L 12 C to D E to G 22
G 13 E to G (1)C5 18
I 14 Input to Store 0
O 15 Store to Output 0
 16 (D + Store) to C 0
 17 (D – Store) to C 0
 18 1 0 1
 19 D to B (R)* (G – '1') to E 20
 20 C to D (1)E5 21
 21 D to C (R) 1 11 0
 22 D to C (L)† (G – ‘1’) to E 23
 23 B to D (1)E5 24
 24 D to B (L) 1 12 0
 25 ‘0’ to B 26
 26 B to C 0
 27 ‘0’ to C ‘18’ to E 28
 28 B to D E to G (1)B1 29
 29 D to B (R) (G – ‘1’) to E 30
 30 C to D (R) (2)E5 1 31 32
 31 D to C 2 28 33
 32 (D + A) to C 2 28 33
 33 B to D (1)B1 34
 34 D to B (R) 35
 35 C to D (R) 1 36 37
 36 D to C 0
 37 (D – A) to C 0

*Right shift. The switching circuits in the arithmetic unit are arranged so that the least significant
digit of the register C is placed in the most significant place of register B during right shift micro-
operations, and the most significant digit of register C (sign digit) is repeated (thus making the
correction for negative numbers).
†Left shift. The switching circuits are similarly arranged to pass the most significant digit of
register B to the least significant place of register C during left shift micro-operations.

 Table 20.1 lists the machine instruction set for this example. Table 20.2

is the complete set of microinstructions, expressed in symbolic form, that

implements the control unit. Thus, a total of 38 microinstructions is all that

is required to define the system completely.

 The first full column gives the address (row number) of each

microinstruction. Those addresses corresponding to opcodes are labeled.

Thus, when the opcode for the add instruction (A) is encountered, the

microinstruction at location 5 is executed. Columns 2 and 3 express the

actions to be taken by the ALU and control unit, respectively. Each symbolic

expression must be translated into a set of control signals (microinstruction

bits). Columns 4 and 5 have to do with the setting and use of the two flags

(flip-flops). Column 4 specifies the signal that sets the flag. For example,

(1)Cs means that flag number 1 is set by the sign bit of the number in

register C. If column 5 contains a flag identifier, then columns 6 and 7

contain the two alternative microinstruction addresses to be used.

Otherwise, column 6 specifies the address of the next microinstruction to be

fetched.

 Instructions 0 through 4 constitute the fetch cycle. Microinstruction 4

presents the opcode to a decoder, which generates the address of a

microinstruction corresponding to the machine instruction to be fetched. The

reader should be able to deduce the complete functioning of the control unit

from a careful study of Table 20.2.

Advantages and Disadvantages

The principal advantage of the use of microprogramming to implement a

control unit is that it simplifies the design of the control unit. Thus, it is both

cheaper and less error prone to implement. A hardwired control unit must

contain complex logic for sequencing through the many micro-operations of

the instruction cycle. On the other hand, the decoders and sequencing logic

unit of a microprogrammed control unit are very simple pieces of logic.

 The principal disadvantage of a microprogrammed unit is that it will be

somewhat slower than a hardwired unit of comparable technology. Despite

this, microprogramming is the dominant technique for implementing control

units in pure CISC architectures, due to its ease of implementation. RISC

processors, with their simpler instruction format, typically use hardwired

control units. We now examine the microprogrammed approach in greater

detail.

20.2 MICROINSTRUCTION SEQUENCING

The two basic tasks performed by a microprogrammed control unit are as

follows:

• Microinstruction sequencing: Get the next microinstruction from the

control memory.

• Microinstruction execution: Generate the control signals needed to

execute the microinstruction.

 In designing a control unit, these tasks must be considered together,

because both affect the format of the microinstruction and the timing of the

control unit. In this section, we will focus on sequencing and say as little as

possible about format and timing issues. These issues are examined in more

detail in the next section.

Design Considerations

Two concerns are involved in the design of a microinstruction sequencing

technique: the size of the microinstruction and the address-generation time.

The first concern is obvious; minimizing the size of the control memory

reduces the cost of that component. The second concern is simply a desire

to execute microinstructions as fast as possible.

 In executing a microprogram, the address of the next microinstruction

to be executed is in one of these categories:

• Determined by instruction register

• Next sequential address

• Branch

The first category occurs only once per instruction cycle, just after an

instruction is fetched. The second category is the most common in most

designs. However, the design cannot be optimized just for sequential access.

Branches, both conditional and unconditional, are a necessary part of a

microprogram. Furthermore, microinstruction sequences tend to be short;

one out of every three or four microinstructions could be a branch [SIEW82].

Thus, it is important to design compact, time-efficient techniques for

microinstruction branching.

Sequencing Techniques

Based on the current microinstruction, condition flags, and the contents of

the instruction register, a control memory address must be generated for the

next microinstruction. A wide variety of techniques have been used. We can

group them into three general categories, as illustrated in Figures 20.6 to

20.8. These categories are based on the format of the address information in

the microinstruction:

• Two address fields

• Single address field

• Variable format

 The simplest approach is to provide two address fields in each

microinstruction. Figure 20.6 suggests how this information is to be used. A

multiplexer is provided that serves as a destination for both address fields

plus the instruction register. Based on an address-selection input, the

multiplexer transmits either the opcode or one of the two addresses to the

control address register (CAR). The CAR is subsequently decoded to produce

the next microinstruction address. The address-selection signals are

provided by a branch logic module whose input consists of control unit flags

plus bits from the control portion of the microinstruction.

 Although the two-address approach is simple, it requires more bits in

the microinstruction than other approaches. With some additional logic,

savings can be achieved. A common approach is to have a single address

field (Figure 20.7). With this approach, the options for next address are as

follows:

• Address field

• Instruction register code

• Next sequential address

control address
register

address
decoder

address
selectionflags

control
buffer

register
address

1
address

2control

control
memory

branch
logic multiplexer

instruction
register

Figure 20.6 Branch Control Logic: Two Address Fields

address
decoder

address
selection

flags

control
buffer

register
addresscontrol

control
memory

branch
logic multiplexer

instruction
register

Figure 20.7 Branch Control Logic: Single Address Field

control address
register+1

address
decoder

address
selection

address
field

branch
control
field

entire
field

flags

control
buffer

register

control
memory

branch
logic

gate and
function

logic

multiplexer

instruction
register

Figure 20.8 Branch Control Logic: Variable Format

control address
register+1

The address-selection signals determine which option is selected. This

approach reduces the number of address fields to one. Note, however, that

the address field often will not be used. Thus, there is some inefficiency in

the microinstruction coding scheme.

 Another approach is to provide for two entirely different microinstruction

formats (Figure 20.8). One bit designates which format is being used. In one

format, the remaining bits are used to activate control signals. In the other

format, some bits drive the branch logic module, and the remaining bits

provide the address. With the first format, the next address is either the

next sequential address or an address derived from the instruction register.

With the second format, either a conditional or unconditional branch is being

specified. One disadvantage of this approach is that one entire cycle is

consumed with each branch microinstruction. With the other approaches,

address generation occurs as part of the same cycle as control signal

generation, minimizing control memory accesses.

 The approaches just described are general. Specific implementations will

often involve a variation or combination of these techniques.

Address Generation

We have looked at the sequencing problem from the point of view of format

considerations and general logic requirements. Another viewpoint is to

consider the various ways in which the next address can be derived or

computed.

Table 20.3 Microinstruction Address Generation Techniques

Explicit Implicit
Two-field Mapping
Unconditional branch Addition
Conditional branch Residual control

 Table 20.3 lists the various address generation techniques. These can

be divided into explicit techniques, in which the address is explicitly available

in the microinstruction, and implicit techniques, which require additional

logic to generate the address.

 We have essentially dealt with the explicit techniques. With a two-field

approach, two alternative addresses are available with each

microinstruction. Using either a single address field or a variable format,

various branch instructions can be implemented. A conditional branch

instruction depends on the following types of information:

• ALU flags

• Part of the opcode or address mode fields of the machine instruction

• Parts of a selected register, such as the sign bit

• Status bits within the control unit

 Several implicit techniques are also commonly used. One of these,

mapping, is required with virtually all designs. The opcode portion of a

machine instruction must be mapped into a microinstruction address. This

occurs only once per instruction cycle.

 A common implicit technique is one that involves combining or adding

two portions of an address to form the complete address. This approach was

taken for the IBM S/360 family [TUCK67] and used on many of the S/370

models. We will use the IBM 3033 as an example.

12111009080700

BA(8)

Figure 20.9 IBM 3033 Control Address Register

BB(4)
BC(4)

BD(4)
BE(4)

BF(7)

 The control address register on the IBM 3033 is 13 bits long and is

illustrated in Figure 20.9. Two parts of the address can be distinguished. The

highest-order 8 bits (00–07) normally do not change from one

microinstruction cycle to the next. During the execution of a

microinstruction, these 8 bits are copied directly from an 8-bit field of the

microinstruction (the BA field) into the highest-order 8 bits of the control

address register. This defines a block of 32 microinstructions in control

memory. The remaining 5 bits of the control address register are set to

specify the specific address of the microinstruction to be fetched next. Each

of these bits is determined by a 4-bit field (except one is a 7-bit field) in the

current microinstruction; the field specifies the condition for setting the

corresponding bit. For example, a bit in the control address register might be

set to 1 or 0 depending on whether a carry occurred on the last ALU

operation.

 The final approach listed in Table 20.3 is termed residual control. This

approach involves the use of a microinstruction address that has previously

been saved in temporary storage within the control unit. For example, some

microinstruction sets come equipped with a subroutine facility. An internal

register or stack of registers is used to hold return addresses. An example of

this approach is taken on the LSI-11, which we now examine.

LSI-11 Microinstruction Sequencing

The LSI-11 is a microcomputer version of a PDP-11, with the main

components of the system residing on a single board. The LSI-11 is

implemented using a microprogrammed control unit [SEBE76].

 The LSI-11 makes use of a 22-bit microinstruction and a control

memory of 2K 22-bit words. The next microinstruction address is determined

in one of five ways:

• Next sequential address: In the absence of other instructions, the

control unit’s control address register is incremented by 1.

• Opcode mapping: At the beginning of each instruction cycle, the next

microinstruction address is determined by the opcode.

• Subroutine facility: Explained presently.

• Interrupt testing: Certain microinstructions specify a test for

interrupts. If an interrupt has occurred, this determines the next

microinstruction address.

• Branch: Conditional and unconditional branch microinstructions are

used.

 A one-level subroutine facility is provided. One bit in every

microinstruction is dedicated to this task. When the bit is set, an 11-bit

return register is loaded with the updated contents of the control address

register. A subsequent microinstruction that specifies a return will cause the

control address register to be loaded from the return register.

 The return is one form of unconditional branch instruction. Another form

of unconditional branch causes the bits of the control address register to be

loaded from 11 bits of the microinstruction. The conditional branch

instruction makes use of a 4-bit test code within the microinstruction. This

code specifies testing of various ALU condition codes to determine the

branch decision. If the condition is not true, the next sequential address is

selected. If it is true, the 8 lowest-order bits of the control address register

are loaded from 8 bits of the microinstruction. This allows branching within a

256-word page of memory.

 As can be seen, the LSI-11 includes a powerful address sequencing

facility within the control unit. This allows the microprogrammer considerable

flexibility and can ease the microprogramming task. On the other hand, this

approach requires more control unit logic than do simpler capabilities.

20.3 MICROINSTRUCTION EXECUTION

The microinstruction cycle is the basic event on a microprogrammed

processor. Each cycle is made up of two parts: fetch and execute. The fetch

portion is determined by the generation of a microinstruction address, and

this was dealt with in the preceding section. This section deals with the

execution of a microinstruction.

 Recall that the effect of the execution of a microinstruction is to

generate control signals. Some of these signals control points internal to the

processor. The remaining signals go to the external control bus or other

external interface. As an incidental function, the address of the next

microinstruction is determined.

 The preceding description suggests the organization of a control unit

shown in Figure 20.10. This slightly revised version of Figure 20.4

emphasizes the focus of this section. The major modules in this diagram

should by now be clear. The sequencing logic module contains the logic to

perform the functions discussed in the preceding section. It generates the

address of the next microinstruction, using as inputs the instruction register,

ALU flags, the control address register (for incrementing), and the control

buffer register. The last may provide an actual address, control bits, or both.

Sequencing
Logic

Instruction
Register

ALU
Flags
Clock

Internal
Control
Signals

External
Control
Signals

Control
Logic

Control Address Register

Control Buffer Register

Figure 20.10 Control Unit Organization

Control
Memory

The module is driven by a clock that determines the timing of the

microinstruction cycle.

 The control logic module generates control signals as a function of some

of the bits in the microinstruction. It should be clear that the format and

content of the microinstruction will determine the complexity of the control

logic module.

A Taxonomy of Microinstructions

Microinstructions can be classified in a variety of ways. Distinctions that are

commonly made in the literature include the following:

• Vertical/horizontal

• Packed/unpacked

• Hard/soft microprogramming

• Direct/indirect encoding

All of these bear on the format of the microinstruction. None of these terms

has been used in a consistent, precise way in the literature. However, an

examination of these pairs of qualities serves to illuminate microinstruction

design alternatives. In the following paragraphs, we first look at the key

design issue underlying all of these pairs of characteristics, and then we look

at the concepts suggested by each pair.

 In the original proposal by Wilkes [WILK51], each bit of a

microinstruction either directly produced a control signal or directly produced

one bit of the next address. We have seen, in the preceding section, that

more complex address sequencing schemes, using fewer microinstruction

bits, are possible. These schemes require a more complex sequencing logic

module. A similar sort of trade-off exists for the portion of the

microinstruction concerned with control signals. By encoding control

information, and subsequently decoding it to produce control signals, control

word bits can be saved.

 How can this encoding be done? To answer that, consider that there are

a total of K different internal and external control signals to be driven by the

control unit. In Wilkes’s scheme, K bits of the microinstruction would be

dedicated to this purpose. This allows all of the 2K possible combinations of

control signals to be generated during any instruction cycle. But we can do

better than this if we observe that not all of the possible combinations will be

used. Examples include the following:

• Two sources cannot be gated to the same destination (e.g., C2 and C8 in

Figure 20.5).

• A register cannot be both source and destination (e.g., C5 and C12 in

Figure 20.5).

• Only one pattern of control signals can be presented to the ALU at a

time.

• Only one pattern of control signals can be presented to the external

control bus at a time.

 So, for a given processor, all possible allowable combinations of control

signals could be listed, giving some number Q < 2K possibilities. These could

be encoded with a minimum log2 Q bits, with (log2Q) < K. This would be the

tightest possible form of encoding that preserves all allowable combinations

of control signals. In practice, this form of encoding is not used, for two

reasons:

• It is as difficult to program as a pure decoded (Wilkes) scheme. This

point is discussed further presently.

• It requires a complex and therefore slow control logic module.

Instead, some compromises are made. These are of two kinds:

• More bits than are strictly necessary are used to encode the possible

combinations.

• Some combinations that are physically allowable are not possible to

encode.

 The latter kind of compromise has the effect of reducing the number of

bits. The net result, however, is to use more than log2 Q bits.

 In the next subsection, we will discuss specific encoding techniques. The

remainder of this subsection deals with the effects of encoding and the

various terms used to describe it.

 Based on the preceding, we can see that the control signal portion of

the microinstruction format falls on a spectrum. At one extreme, there is one

bit for each control signal; at the other extreme, a highly encoded format is

used. Table 20.4 shows that other characteristics of a microprogrammed

control unit also fall along a spectrum and that these spectra are, by and

Table 20.4 The Microinstruction Spectrum

Characteristics

Unencoded Highly encoded
Many bits Few bits
Detailed view of hardware Aggregated view of hardware
Difficult to program Easy to program
Concurrency fully exploited Concurrency not fully exploited
Little or no control logic Complex control logic
Fast execution Slow execution
Optimize performance Optimize programming

Terminology
Unpacked Packed
Horizontal Vertical
Hard Soft

large, determined by the degree-of-encoding spectrum.

 The second pair of items in the table is rather obvious. The pure Wilkes

scheme will require the most bits. It should also be apparent that this

extreme presents the most detailed view of the hardware. Every control

signal is individually controllable by the microprogrammer. Encoding is done

in such a way as to aggregate functions or resources, so that the

microprogrammer is viewing the processor at a higher, less detailed level.

Furthermore, the encoding is designed to ease the microprogramming

burden. Again, it should be clear that the task of understanding and

orchestrating the use of all the control signals is a difficult one. As was

mentioned, one of the consequences of encoding, typically, is to prevent the

use of certain otherwise allowable combinations.

 The preceding paragraph discusses microinstruction design from the

microprogrammer’s point of view. But the degree of encoding also can be

viewed from its hardware effects. With a pure unencoded format, little or no

decode logic is needed; each bit generates a particular control signal. As

more compact and more aggregated encoding schemes are used, more

complex decode logic is needed. This, in turn, may affect performance. More

time is needed to propagate signals through the gates of the more complex

control logic module. Thus, the execution of encoded microinstructions takes

longer than the execution of unencoded ones.

 Thus, all of the characteristics listed in Table 20.4 fall along a spectrum

of design strategies. In general, a design that falls toward the left end of the

spectrum is intended to optimize the performance of the control unit.

Designs toward the right end are more concerned with optimizing the

process of microprogramming. Indeed, microinstruction sets near the right

end of the spectrum look very much like machine instruction sets. A good

example of this is the LSI-11 design, described later in this section.

Typically, when the objective is simply to implement a control unit, the

design will be near the left end of the spectrum. The IBM 3033 design,

discussed presently, is in this category. As we shall discuss later, some

systems permit a variety of users to construct different microprograms using

the same microinstruction facility. In the latter cases, the design is likely to

fall near the right end of the spectrum.

 We can now deal with some of the terminology introduced earlier. Table

20.4 indicates how three of these pairs of terms relate to the

microinstruction spectrum. In essence, all of these pairs describe the same

thing but emphasize different design characteristics.

 The degree of packing relates to the degree of identification between a

given control task and specific microinstruction bits. As the bits become

more packed, a given number of bits contains more information. Thus,

packing connotes encoding. The terms horizontal and vertical relate to the

relative width of microinstructions. [SIEW82] suggests as a rule of thumb

that vertical microinstructions have lengths in the range of 16 to 40 bits and

that horizontal microinstructions have lengths in the range of 40 to 100 bits.

The terms hard and soft microprogramming are used to suggest the degree

of closeness to the underlying control signals and hardware layout. Hard

microprograms are generally fixed and committed to read-only memory.

Soft microprograms are more changeable and are suggestive of user

microprogramming.

 The other pair of terms mentioned at the beginning of this subsection

refers to direct versus indirect encoding, a subject to which we now turn.

Microinstruction Encoding

In practice, microprogrammed control units are not designed using a pure

unencoded or horizontal microinstruction format. At least some degree of

encoding is used to reduce control memory width and to simplify the task of

microprogramming.

Field Field

Control signals

(a) Direct encoding

(b) Indirect encoding

Figure 20.11 Microinstruction Encoding

Field

Decode
logic

Decode
logic

Decode
logic

Field Field Field

Decode
logic

Decode
logic

Decode
logic

Control signals

Decode
logic

 The basic technique for encoding is illustrated in Figure 20.11a. The

microinstruction is organized as a set of fields. Each field contains a code,

which, upon decoding, activates one or more control signals.

 Let us consider the implications of this layout. When the

microinstruction is executed, every field is decoded and generates control

signals. Thus, with N fields, N simultaneous actions are specified. Each

action results in the activation of one or more control signals. Generally, but

not always, we will want to design the format so that each control signal is

activated by no more than one field. Clearly, however, it must be possible

for each control signal to be activated by at least one field.

 Now consider the individual field. A field consisting of L bits can contain

one of 2L codes, each of which can be encoded to a different control signal

pattern. Because only one code can appear in a field at a time, the codes are

mutually exclusive, and, therefore, the actions they cause are mutually

exclusive.

 The design of an encoded microinstruction format can now be stated in

simple terms:

• Organize the format into independent fields. That is, each field depicts a

set of actions (pattern of control signals) such that actions from

different fields can occur simultaneously.

• Define each field such that the alternative actions that can be specified

by the field are mutually exclusive. That is, only one of the actions

specified for a given field could occur at a time.

 Two approaches can be taken to organizing the encoded

microinstruction into fields: functional and resource. The functional encoding

method identifies functions within the machine and designates fields by

function type. For example, if various sources can be used for transferring

data to the accumulator, one field can be designated for this purpose, with

each code specifying a different source. Resource encoding views the

machine as consisting of a set of independent resources and devotes one

field to each (e.g., I/O, memory, ALU).

 Another aspect of encoding is whether it is direct or indirect (Figure

20.11b). With indirect encoding, one field is used to determine the

interpretation of another field. For example, consider an ALU that is capable

of performing eight different arithmetic operations and eight different shift

operations. A 1-bit field could be used to indicate whether a shift or

arithmetic operation is to be used; a 3-bit field would indicate the operation.

This technique generally implies two levels of decoding, increasing

propagation delays.

 Figure 20.12 is a simple example of these concepts. Assume a processor

with a single accumulator and several internal registers, such as a program

counter and a temporary register for ALU input. Figure 20.12a shows a

highly vertical format. The first 3 bits indicate the type of operation, the next

3 encode the operation, and the final 2 select an internal register. Figure

20.12b is a more horizontal approach, although encoding is still used. In this

case, different functions appear in different fields.

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 0 0 ACC Register + 1

17 18

0 1 1 0 1 1 Register ACC

0 1 1 0 1 0 ACC Register

0 1 1 0 0 1 ACC ACC – Register

0 1 1 0 0 0 ACC ACC + Register

0 1 0 0 1 0 Skip

0 1 0 0 0 1 CSAR Constant (in next byte)

0 1 0 0 0 0 CSAR Decoded MDR

0 0 1 0 0 1 Write

0 0 1 0 0 0 Read

0 0 0 0 1 0
Register

select

MAR Register

Memory operations

Special sequencing operations

ALU operations

Simple register transfers

0 0 0 0 0 1 Register MDR

0 0 0 0 0 0 MDR Register

Register
select

Field

Field definition
 1 - register transfer 4 - ALU operation
 2 - memory operation 5 - register selection
 3 - sequencing operation 6 - Constant

(a) Vertical microinstruction format

(b) Horizontal microinstruction format

Figure 20 .12 Alternative Microinstruction Formats for a Simple Machine

1 2 3 4 5 6

LSI-11 Microinstruction Execution

The LSI-11 [SEBE76] is a good example of a vertical microinstruction

approach. We look first at the organization of the control unit, then at the

microinstruction format.

LSI-11 CONTROL UNIT ORGANIZATION

 The LSI-11 is the first member of the PDP-11 family that was offered as

a single-board processor. The board contains three LSI chips, an internal bus

known as the microinstruction bus (MIB), and some additional interfacing

logic.

 Figure 20.13 depicts, in simplified form, the organization of the LSI-11

processor. The three chips are the data, control, and control store chips. The

data chip contains an 8-bit ALU, twenty-six 8-bit registers, and storage for

several condition codes. Sixteen of the registers are used to implement the

eight 16-bit general-purpose registers of the PDP-11. Others include a

program status word, memory address register (MAR), and memory buffer

register. Because the ALU deals with only 8 bits at a time, two passes

through the ALU are required to implement a 16-bit PDP-11 arithmetic

operation. This is controlled by the microprogram.

 The control store chip or chips contain the 22-bit-wide control memory.

The control chip contains the logic for sequencing and executing

microinstructions. It contains the control address register, the control data

register, and a copy of the machine instruction register.

 The MIB ties all the components together. During microinstruction fetch,

the control chip generates an 11-bit address onto the MIB. Control store is

accessed, producing a 22-bit microinstruction, which is placed on the MIB.

The low-order 16 bits go to the data chip, while the low-order 18 bits go to

the control chip. The high-order 4 bits control special processor board

functions.

Control
store

Control
chip

Bus logic
Bus control
and other
procesor

board logic

Data
chip

Microinstruction
bus

Figure 20.13 Simplified Block Diagram of the LSI-11 Processor

LSI-11 system
bus

16

11

16
4

18

22
22

With no number indicated, a path
with multiple signals

 Figure 20.14 provides a still simplified but more detailed look at the LSI-

11 control unit: the figure ignores individual chip boundaries. The address

sequencing scheme described in Section 20.2 is implemented in two

modules. Overall sequence control is provided by the microprogram

sequence control module, which is capable of incrementing the

microinstruction address register and performing unconditional branches.

The other forms of address calculation are carried out by a separate

translation array. This is a combinatorial circuit that generates an address

based on the microinstruction, the machine instruction, the microinstruction

program counter, and an interrupt register.

 The translation array comes into play on the following occasions:

• The opcode is used to determine the start of a microroutine.

• At appropriate times, address mode bits of the microinstruction are

tested to perform appropriate addressing.

• Interrupt conditions are periodically tested.

• Conditional branch microinstructions are evaluated.

LSI-11 MICROINSTRUCTION FORMAT

 The LSI-11 uses an extremely vertical microinstruction format, which is

only 22 bits wide. The microinstruction set strongly resembles the PDP-11

machine instruction set that it implements. This design was intended to

optimize the performance of the control unit within the constraint of a

vertical, easily programmed design. Table 20.5 lists some of the LSI-11

microinstructions.

 Figure 20.15 shows the 22-bit LSI-11 microinstruction format. The high-

order 4 bits control special functions on the processor board. The translate

bit enables the translation array to check for pending interrupts. The load

return register bit is used at the end of a microroutine to cause the next

microinstruction address to be loaded from the return register.

Control data register

Control
store

Translation
array

Microprogram
sequence
control

Control address register

Return register

Instruction register

INT

Figure 20.14 Organization of the LSI-11 Control Unit

Special
functions

Translate
(a) Format of the full LSI-11 microinstruction

(b) Format of the encoded part of the LSI-11 microinstruction

Figure 20.15 LSI-11 Microinstruction Format

Load return register

4

5 11

Opcode Jump address

Unconditional jump microinstruction format

4 8

Opcode

4

Test code Jump address

Conditional jump microinstruction format

4 8

Opcode

4

A registerLiteral value

Literal microinstruction format

8 4

Opcode B register

4

A register

Register jump microinstruction format

1 1 16

Encoded micro-operations

Table 20.5 Some LSI-11 Microinstructions

Arithmetic Operations
Add word (byte, literal)
Test word (byte, literal)
Increment word (byte) by 1
Increment word (byte) by 2
Negate word (byte)
Conditionally increment (decrement) byte
Conditionally add word (byte)
Add word (byte) with carry
Conditionally add digits
Subtract word (byte)
Compare word (byte, literal)
Subtract word (byte) with carry
Decrement word (byte) by 1

Logical Operations
AND word (byte, literal)
Test word (byte)
OR word (byte)
Exclusive-OR word (byte)
Bit clear word (byte)
Shift word (byte) right (left) with (without)
carry
Complement word (byte)

General Operations
MOV word (byte)
Jump
Return
Conditional jump
Set (reset) flags
Load G low
Conditionally MOV word (byte)

Input/Output Operations
Input word (byte)
Input status word (byte)
Read
Write
Read (write) and increment word (byte) by 1
Read (write) and increment word (byte) by 2
Read (write) acknowledge
Output word (byte, status)

 The remaining 16 bits are used for highly encoded micro-operations.

The format is much like a machine instruction, with a variable-length opcode

and one or more operands.

Table 20.6 IBM 3033 Microinstruction Control Fields

ALU Control Fields
AA(3) Load A register from one of data registers
AB(3) Load B register from one of data registers
AC(3) Load C register from one of data registers
AD(3) Load D register from one of data registers
AE(4) Route specified A bits to ALU
AF(4) Route specified B bits to ALU
AG(5) Specifies ALU arithmetic operation on A input
AH(4) Specifies ALU arithmetic operation on B input
AJ(1) Specifies D or B input to ALU on B side
AK(4) Route arithmetic output to shifter
CA(3) Load F register
CB(1) Activate shifter
CC(5) Specifies logical and carry functions
CE(7) Specifies shift amount

Sequencing and Branching Fields
AL(1) End operation and perform branch
BA(8) Set high-order bits (00–07) of control address register
BB(4) Specifies condition for setting bit 8 of control address register
BC(4) Specifies condition for setting bit 9 of control address register
BD(4) Specifies condition for setting bit 10 of control address register
BE(4) Specifies condition for setting bit 11 of control address register
BF(7) Specifies condition for setting bit 12 of control address register

P AA AB AC AD AE AF AG AH AJ AK AL

A, B, C, D registers

0 35

Arithmetic Shift

P BA BCBB BD BE BF BH

Next address

36 71

Storage address

Storage address

P BH CA CB CC CD CE CF CG CH

Shift control Local storage Miscellaneous controls

72 107

P DA DB DC DD DE

Testing and condition code setting

Figure 20.16 IBM 3033 Microinstruction Format

108 125

IBM 3033 Microinstruction Execution

The standard IBM 3033 control memory consists of 4K words. The first half

of these (0000–07FF) contain 108-bit microinstructions, while the remainder

(0800–0FFF) are used to store 126-bit microinstructions. The format is

depicted in Figure 20.16. Although this is a rather horizontal format,

encoding is still extensively used. The key fields of that format are

summarized in Table 20.6.

 The ALU operates on inputs from four dedicated, non-user-visible

registers, A, B, C, and D. The microinstruction format contains fields for

loading these registers from user-visible registers, performing an ALU

function, and specifying a user-visible register for storing the result. There

are also fields for loading and storing data between registers and memory.

 The sequencing mechanism for the IBM 3033 was discussed in Section

20.2.

20.4 TI 8800

The Texas Instruments 8800 Software Development Board (SDB) is a

microprogrammable 32-bit computer card. The system has a writable control

store, implemented in RAM rather than ROM. Such a system does not

achieve the speed or density of a microprogrammed system with a ROM

control store. However, it is useful for developing prototypes and for

educational purposes.

 The 8800 SDB consists of the following components (Figure 20.17):

• Microcode memory

• Microsequencer

• 32-bit ALU

• Floating-point and integer processor

• Local data memory

 Two buses link the internal components of the system. The DA bus

provides data from the microinstruction data field to the ALU, the floating-

point processor, or the microsequencer. In the latter case, the data consists

of an address to be used for a branch instruction. The bus can also be used

for the ALU or microsequencer to provide data to other components. The

System Y bus connects the ALU and floating-point processor to local memory

and to external modules via the PC interface.

 The board fits into an IBM PC-compatible host computer. The host

computer provides a suitable platform for microcode assembly and debug.

Microcode memory
32K 128 bits

Microinstruction
pipeline register

Microinstruction

Next microcode address

Figure 20.17 TI 8800 Block Diagram

Control and
Microinstruction DA31-DA00

System Y bus

ACT8832
registered ALU

PC/AT
interface

ACT8847
floating-point and
integer processor

Local data
memory

32K 32 bits

ACT8818
microsequencer

16

32

32

15

128

96

Table 20.7 TI 8800 Microinstruction Format

Field
Number

Number
of Bits Description

Control of Board
1 5 Select condition code input
2 1 Enable/disable external I/O request signal
3 2 Enable/disable local data memory read/write operations
4 1 Load status/do no load status
5 2 Determine unit driving Y bus
6 2 Determine unit driving DA bus

8847 Floating Point and Integer Processing Chip
7 1 C register control: clock, do not clock
8 1 Select most significant or least significant bits for Y bus
9 1 C register data source: ALU, multiplexer
10 4 Select IEEE or FAST mode for ALU and MUL
11 8 Select sources for data operands: RA registers, RB registers, P register, 5 register, C

register
12 1 RB register control: clock, do not clock
13 1 RA register control: clock, do not clock
14 2 Data source confirmation
15 2 Enable/disable pipeline registers
16 11 8847 ALU function

8832 Registered ALU
17 2 Write enable/disable data output to selected register: most significant half, least

significant half
18 2 Select register file data source: DA bus, DB bus, ALU Y MUX output, system Y bus
19 3 Shift instruction modifier
20 1 Carry in: force, do not force
21 2 Set ALU configuration mode: 32, 16, or 8 bits
22 2 Select input to 5 multiplexer: register file, DB bus, MQ register
23 1 Select input to R multiplexer: register file, DA bus
24 6 Select register in file C for write
25 6 Select register in file B for read
26 6 Select register in file A for write
27 8 ALU function

8818 Microsequencer
28 12 Control input signals to the 8818

WCS Data Field
29 16 Most significant bits of writable control store data field
30 16 Least significant bits of writable control store data field

Microinstruction Format

The microinstruction format for the 8800 consists of 128 bits broken down

into 30 functional fields, as indicated in Table 20.7. Each field consists of one

or more bits, and the fields are grouped into five major categories:

• Control of board

• 8847 floating-point and integer processor chip

• 8832 registered ALU

• 8818 microsequencer

• WCS data field

As indicated in Figure 20.17, the 32 bits of the WCS data field are fed into

the DA bus to be provided as data to the ALU, floating-point processor, or

microsequencer. The other 96 bits (fields 1–27) of the microinstruction are

control signals that are fed directly to the appropriate module. For simplicity,

these other connections are not shown in Figure 20.17.

 The first six fields deal with operations that pertain to the control of the

board, rather than controlling an individual component. Control operations

include the following:

• Selecting condition codes for sequencer control. The first bit of field 1

indicates whether the condition flag is to be set to 1 or 0, and the

remaining 4 bits indicate which flag is to be set.

• Sending an I/O request to the PC/AT.

• Enabling local data memory read/write operations.

• Determining the unit driving the system Y bus. One of the four devices

attached to the bus (Figure 20.17) is selected.

 The last 32 bits are the data field, which contain information specific to

a particular microinstruction.

 The remaining fields of the microinstruction are best discussed in the

context of the device that they control. In the remainder of this section, we

discuss the microsequencer and the registered ALU. The floating-point unit

introduces no new concepts and is skipped.

Microsequencer

The principal function of the 8818 microsequencer is to generate the next

microinstruction address for the microprogram. This 15-bit address is

provided to the microcode memory (Figure 20.17).

 The next address can be selected from one of five sources:

 1. The microprogram counter (MPC) register, used for repeat (reuse

same address) and continue (increment address by 1) instructions.

 2. The stack, which supports microprogram subroutine calls as well as

iterative loops and returns from interrupts.

 3. The DRA and DRB ports, which provide two additional paths from

external hardware by which microprogram addresses can be

generated. These two ports are connected to the most significant and

least significant 16 bits of the DA bus, respectively. This allows the

microsequencer to obtain the next instruction address from the WCS

data field of the current microinstruction or from a result calculated by

the ALU.

 4. Register counters RCA and RCB, which can be used for additional

address storage.

 5. An external input onto the bidirectional Y port to support external

interrupts.

 Figure 20.18 is a logical block diagram of the 8818. The device consists

of the following principal functional groups:

• A 16-bit microprogram counter (MPC) consisting of a register and an

incrementer

• Two register counters, RCA and RCB, for counting loops and iterations,

storing branch addresses, or driving external devices

DA31-DA16
(DRA)

DA15-DA00
(DRA)

Dual
registers/counters

MUX

Stack

B3-B0

Microprogram
counter/

incrementer

Interrupt
return
register

Y output
multiplexer

Next microde
address

Figure 20.18 TI 8818 Microsequencer

• A 65-word by 16-bit stack, which allows microprogram subroutine calls

and interrupts

• An interrupt return register and Y output enable for interrupt processing

at the microinstruction level

• A Y output multiplexer by which the next address can be selected from

MPC, RCA, RCB, external buses DRA and DRB, or the stack

REGISTERS/COUNTERS

 The registers RCA and RCB may be loaded from the DA bus, either from

the current microinstruction or from the output of the ALU. The values may

be used as counters to control the flow of execution and may be

automatically decremented when accessed. The values may also be used as

microinstruction addresses to be supplied to the Y output multiplexer.

Independent control of both registers during a single microinstruction cycle

is supported with the exception of simultaneous decrement of both registers.

STACK

 The stack allows multiple levels of nested calls or interrupts, and it can

be used to support branching and looping. Keep in mind that these

operations refer to the control unit, not the overall processor, and that the

addresses involved are those of microinstructions in the control memory.

 Six stack operations are possible:

 1. Clear, which sets the stack pointer to zero, emptying the stack

 2. Pop, which decrements the stack pointer

 3. Push, which puts the contents of the MPC, interrupt return register, or

DRA bus onto the stack and increments the stack pointer

 4. Read, which makes the address indicated by the read pointer available

at the Y output multiplexer

 5. Hold, which causes the address of the stack pointer to remain

unchanged

 6. Load stack pointer, which inputs the seven least significant bits of DRA

to the stack pointer

CONTROL OF MICROSEQUENCER

 The microsequencer is controlled primarily by the 12-bit field of the

current microinstruction, field 28 (Table 20.7). This field consists of the

following subfields:

• OSEL (1 bit): Output select. Determines which value will be placed on

the output of the multiplexer that feeds into the DRA bus (upper-left-

hand corner of Figure 20.18). The output is selected to come from either

the stack or from register RCA. DRA then serves as input to either the Y

output multiplexer or to register RCA.

• SELDR (1 bit): Select DR bus. If set to 1, this bit selects the external

DA bus as input to the DRA/DRB buses. If set to 0, selects the output of

the DRA multiplexer to the DRA bus (controlled by OSEL) and the

contents of RCB to the DRB bus.

• ZEROIN (1 bit): Used to indicate a conditional branch. The behavior of

the microsequencer will then depend on the condition code selected in

field 1 (Table 20.7).

• RC2–RC0 (3 bits): Register controls. These bits determine the change

in the contents of registers RCA and RCB. Each register can either

remain the same, decrement, or load from the DRA/DRB buses.

• S2–S0 (3 bits): Stack controls. These bits determine which stack

operation is to be performed.

Table 20.8 TI 8818 Microsequencer Microinstruction Bits (Field 28)

Mnemonic Value Description
RST8818 000000000110 Reset Instruction
BRA88181 011000111000 Branch to DRA Instruction
BRA88180 010000111110 Branch to DRA Instruction
INC88181 000000111110 Continue Instruction
INC88180 001000001000 Continue Instruction
CAL88181 010000110000 Jump to Subroutine at Address Specified by DRA
CAL88180 010000101110 Jump to Subroutine at Address Specified by DRA
RET8818 000000011010 Return from Subroutine
PUSH8818 000000110111 Push Interrupt Return Address onto Stack
POP8818 100000010000 Return from Interrupt
LOADDRA 000010111110 Load DRA Counter from DA Bus
LOADDRB 000110111110 Load DRB Counter from DA Bus
LOADDRAB 000110111100 Load DRA/DRB
DECRDRA 010001111100 Decrement DRA Counter and Branch If Not Zero
DECRDRB 010101111100 Decrement DRB Counter and Branch If Not Zero

• MUX2–MUX0: Output controls. These bits, together with the condition

code if used, control the Y output multiplexer and therefore the next

microinstruction address. The multiplexer can select its output from the

stack, DRA, DRB, or MPC.

 These bits can be set individually by the programmer. However, this is

typically not done. Rather, the programmer uses mnemonics that equate to

the bit patterns that would normally be required. Table 20.8 lists the 15

mnemonics for field 28. A microcode assembler converts these into the

appropriate bit patterns.

 As an example, the instruction INC88181 is used to cause the next

microinstruction in sequence to be selected, if the currently selected

condition code is 1. From Table 20.8, we have

INC88181 = 000000111110

which decodes directly into

• OSEL = 0: Selects RCA as output from DRA output MUX; in this case

the selection is irrelevant.

• SELDR = 0: As defined previously; again, this is irrelevant for this

instruction.

• ZEROIN = 0: Combined with the value for MUX, indicates no branch

should be taken.

• R = 000: Retain current value of RA and RC.

• S = 111: Retain current state of stack.

• MUX = 110: Choose MPC when condition code = 1, DRA when condition

code = 0.

Registered ALU

The 8832 is a 32-bit ALU with 64 registers that can be configured to operate

as four 8-bit ALUs, two 16-bit ALUs, or a single 32-bit ALU.

 The 8832 is controlled by the 39 bits that make up fields 17 through 27

of the microinstruction (Table 20.7); these are supplied to the ALU as control

signals. In addition, as indicated in Figure 20.17, the 8832 has external

connections to the 32-bit DA bus and the 32-bit system Y bus. Inputs from

the DA can be provided simultaneously as input data to the 64-word register

file and to the ALU logic module. Input from the system Y bus is provided to

the ALU logic module. Results of the ALU and shift operations are output to

the DA bus or the system Y bus. Results can also be fed back to the internal

register file.

 Three 6-bit address ports allow a two-operand fetch and an operand

write to be performed within the register file simultaneously. An MQ shifter

and MQ register can also be configured to function independently to

implement double-precision 8-bit, 16-bit, and 32-bit shift operations.

 Fields 17 through 26 of each microinstruction control the way in which

data flows within the 8832 and between the 8832 and the external

environment. The fields are as follows:

 17. Write Enable. These two bits specify write 32 bits, or 16 most

significant bits, or 16 least significant bits, or do not write into

register file. The destination register is defined by field 24.

 18. Select Register File Data Source. If a write is to occur to the

register file, these two bits specify the source: DA bus, DB bus, ALU

output, or system Y bus.

 19. Shift Instruction Modifier. Specifies options concerning supplying

end fill bits and reading bits that are shifted during shift instructions.

 20. Carry In. This bit indicates whether a bit is carried into the ALU for

this operation.

 21. ALU Configuration Mode. The 8832 can be configured to operate as

a single 32-bit ALU, two 16-bit ALUs, or four 8-bit ALUs.

 22. S Input. The ALU logic module inputs are provided by two internal

multiplexers referred to as the S and R multiplexers. This field selects

the input to be provided by the S multiplexer: register file, DB bus, or

MQ register. The source register is defined by field 25.

 23. R Input. Selects input to be provided by the R multiplexer: register

file or DA bus.

 24. Destination Register. Address of register in register file to be used

for the destination operand.

 25. Source Register. Address of register in register file to be used for

the source operand, provided by the S multiplexer.

 26. Source Register. Address of register in register file to be used for

the source operand, provided by the R multiplexer.

 Finally, field 27 is an 8-bit opcode that specifies the arithmetic or logical

function to be performed by the ALU. Table 20.9 lists the different operations

that can be performed.

 As an example of the coding used to specify fields 17 through 27,

consider the instruction to add the contents of register 1 to register 2 and

place the result in register 3. The symbolic instruction is

CONT11 [17], WELH, SELRYFYMX, [24], R3, R2, R1, PASS+ADD

The assembler will translate this into the appropriate bit pattern. The

individual components of the instruction can be described as follows:

• CONT11 is the basic NOP instruction.

• Field [17] is changed to WELH (write enable, low and high), so that a

32-bit register is written into

• Field [18] is changed to SELRFYMX to select the feedback from the ALU

Y MUX output.

• Field [24] is changed to designate register R3 for the destination

register.

• Field [25] is changed to designate register R2 for one of the source

registers.

Table 20.9 TI 8832 Registered ALU Instruction Field (Field 27)

Group 1 Function
ADD H#01 R + S + Cn
SUBR H#02 (NOT R) + S + Cn
SUBS H#03 R = (NOT S) + Cn
INSC H#04 S + Cn
INCNS H#05 (NOT S) + Cn
INCR H#06 R + Cn
INCNR H#07 (NOT R) + Cn
XOR H#09 R XOR S
AND H#0A R AND S
OR H#0B R OR S
NAND H#0C R NAND S
NOR H#0D R NOR S
ANDNR H#0E (NOT R) AND S

Group 2 Function
SRA H#00 Arithmetic right single precision shift
SRAD H#10 Arithmetic right double precision shift
SRL H#20 Logical right single precision shift
SRLD H#30 Logical right double precision shift
SLA H#40 Arithmetic left single precision shift
SLAD H#50 Arithmetic left double precision shift
SLC H#60 Circular left single precision shift
SLCD H#70 Circular left double precision shift
SRC H#80 Circular right single precision shift
SRCD H#90 Circular right double precision shift
MQSRA H#A0 Arithmetic right shift MQ register
MQSRL H#B0 Logical right shift MQ register
MQSLL H#C0 Logical left shift MQ register
MQSLC H#D0 Circular left shift MQ register
LOADMQ H#E0 Load MQ register
PASS H#F0 Pass ALU to Y (no shift operation)

Group 3 Function
SET1 H#08 Set bit 1
Set0 H#18 Set bit 0
TB1 H#28 Test bit 1
TB0 H#38 Test bit 0
ABS H#48 Absolute value
SMTC H#58 Sign magnitude/twos-complement
ADDI H#68 Add immediate
SUBI H#78 Subtract immediate
BADD H#88 Byte add R to S
BSUBS H#98 Byte subtract S from R
BSUBR H#A8 Byte subtract R from S
BINCS H#B8 Byte increment S
BINCNS H#C8 Byte increment negative S
BXOR H#D8 Byte XOR R and S
BAND H#E8 Byte AND R and S
BOR H#F8 Byte OR R and S

Group 4 Function
CRC H#00 Cyclic redundancy character accum.
SEL H#10 Select S or R

SNORM H#20 Single length normalize
DNORM H#30 Double length normalize
DIVRF H#40 Divide remainder fix
SDIVQF H#50 Signed divide quotient fix
SMULI H#60 Signed multiply iterate
SMULT H#70 Signed multiply terminate
SDIVIN H#80 Signed divide initialize
SDIVIS H#90 Signed divide start
SDIVI H#A0 Signed divide iterate
UDIVIS H#B0 Unsigned divide start
UDIVI H#C0 Unsigned divide iterate
UMULI H#D0 Unsigned multiply iterate
SDIVIT H#E0 Signed divide terminate
UDIVIT H#F0 Unsigned divide terminate

Group 5 Function
LOADFF H#0F Load divide/BCD flip-flops
CLR H#1F Clear
DUMPFF H#5F Output divide/BCD flip-flops
BCDBIN H#7F BCD to binary
EX3BC H#8F Excess -3 byte correction
EX3C H#9F Excess -3 word correction
SDIVO H#AF Signed divide overflow test
BINEX3 H#DF Binary to excess –3
NOP32 H#FF No operation

• Field [26] is changed to designate register R1 for one of the source

registers.

• Field [27] is changed to specify an ALU operation of ADD. The ALU

shifter instruction is PASS; therefore, the ALU output is not shifted by

the shifter.

 Several points can be made about the symbolic notation. It is not

necessary to specify the field number for consecutive fields. That is,

CONT11 [17], WELH, [18], SELRFYMX

can be written as

CONT11 [17], WELH, SELRFYMX

because SELRFYMX is in field 18.

 ALU instructions from Group 1 of Table 20.9 must always be used in

conjunction with Group 2. ALU instructions from Groups 3–5 must not be

used with Group 2.

20.6 RECOMMENDED READING

There are a number of books devoted to microprogramming. Perhaps the

most comprehensive is [LYNC93]. [SEGE91] presents the fundamentals of

microcoding and the design of microcoded systems by means of a step-by-

step design of a simple 16-bit processor. [CART96] also presents the basic

concepts using a sample machine. [PARK89] and [TI90] provide a detailed

description of the TI 8800 Software Development Board.

 [VASS03] discuss the evolution of microcode use in computer design

and its current status.

CART96 Carter, J. Microprocesser Architecture and Microprogramming.

Upper Saddle River, NJ: Prentice Hall, 1996.

LYNC93 Lynch, M. Microprogrammed State Machine Design. Boca Raton,

FL: CRC Press, 1993.

PARK89 Parker, A., and Hamblen, J. An Introduction to Microprogramming

with Exercises Designed for the Texas Instruments SN74ACT8800
Software Development Board. Dallas, TX: Texas Instruments, 1989.

SEGE91 Segee, B., and Field, J. Microprogramming and Computer

Architecture. New York: Wiley, 1991.

TI90 Texas Instruments Inc. SN74ACT880 Family Data Manual.

SCSS006C, 1990.

VASS03 Vassiliadis, S.; Wong, S.; and Cotofana, S. "Microcode Processing:

Positioning and Directions." IEEE Micro, July-August 2003.

Additional References

HILL64 Hill, R. “Stored Logic Programming and Applications.” Datamation,

February 1964.

SEBE76 Sebern, M. “A Minicomputer-compatible Microcomputer System:

The DEC LSI-11.” Proceedings of the IEEE, June 1976.

SIEW82 Siewiorek, D.; Bell, C.; and Newell, A. Computer Structures:

Principles and Examples. New York: McGraw-Hill, 1982.

TUCK67 Tucker, S. “Microprogram Control for System/360.” IBM Systems

Journal, No. 4, 1967.

WILK51 Wilkes, M. “The Best Way to Design an Automatic Calculating

Machine.” Proceedings, Manchester University Computer Inaugural
Conference, July 1951.

WILK53 Wilkes, M., and Stringer, J. “Microprogramming and the Design of

the Control Circuits in an Electronic Digital Computer.” Proceedings of
the Cambridge Philosophical Society, April 1953. Reprinted in [SIEW82].

20.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

control memory
control word
firmware
hard microprogramming
horizontal
microinstruction

microinstruction
encoding
microinstruction
execution
microinstruction
sequencing
microinstructions
microprogram

microprogrammed
control unit
microprogramming
language
soft microprogramming
unpacked
microinstruction
vertical microinstruction

Review Questions

20.1 What is the difference between a hardwired implementation and a

microprogrammed implementation of a control unit?

20.2 How is a horizontal microinstruction interpreted?

20.3 What is the purpose of a control memory?

20.4 What is a typical sequence in the execution of a horizontal

microinstruction?

20.5 What is the difference between horizontal and vertical

microinstructions?

20.6 What are the basic tasks performed by a microprogrammed control

unit?

20.7 What is the difference between packed and unpacked

microinstructions?

20.8 What is the difference between hard and soft microprogramming?

20.9 What is the difference between functional and resource encoding?

20.10 List some common applications of microprogramming.

Problems

20.1 Describe the implementation of the multiply instruction in the

hypothetical machine designed by Wilkes. Use narrative and a
flowchart.

20.2 Assume a microinstruction set that includes a microinstruction with the

following symbolic form:

IF (AC0 = 1) THEN CAR ← (C0-6) ELSE CAR ← (CAR) + 1

 where AC0 is the sign bit of the accumulator and C0–6 are the first

seven bits of the microinstruction. Using this microinstruction, write a
microprogram that implements a Branch Register Minus (BRM) machine
instruction, which branches if the AC is negative. Assume that bits C1
through Cn of the microinstruction specify a parallel set of micro-
operations. Express the program symbolically.

20.3 A simple processor has four major phases to its instruction cycle: fetch,

indirect, execute, and interrupt. Two 1-bit flags designate the current
phase in a hardwired implementation.

 a. Why are these flags needed?
 b. Why are they not needed in a microprogrammed control unit?

20.4 Consider the control unit of Figure 20.7. Assume that the control

memory is 24 bits wide. The control portion of the microinstruction
format is divided into two fields. A micro-operation field of 13 bits
specifies the micro-operations to be performed. An address selection
field specifies a condition, based on the flags, that will cause a
microinstruction branch. There are eight flags.

 a. How many bits are in the address selection field?
 b. How many bits are in the address field?
 c. What is the size of the control memory?

20.5 How can unconditional branching be done under the circumstances of

the previous problem? How can branching be avoided; that is, describe
a microinstruction that does not specify any branch, conditional or
unconditional.

20.6 We wish to provide 8 control words for each machine instruction

routine. Machine instruction opcodes have 5 bits, and control memory
has 1024 words. Suggest a mapping from the instruction register to the
control address register.

20.7 An encoded microinstruction format is to be used. Show how a 9-bit

micro-operation field can be divided into subfields to specify 46
different actions.

20.8 A processor has 16 registers, an ALU with 16 logic and 16 arithmetic

functions, and a shifter with 8 operations, all connected by an internal
processor bus. Design a microinstruction format to specify the various
micro-operations for the processor.

