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xii

MOTIVATION
I wrote the first edition because I love the mathematical beauty of signal and sys-
tem analysis. That has not changed. The motivation for the second edition is to 
improve the book based on my own experience using the book in classes and also 
by responding to constructive criticisms from students and colleagues.

AUDIENCE
This book is intended to cover a two-semester course sequence in the basics of 
signal and system analysis during the junior or senior year. It can also be used (as 
I have used it) as a book for a quick one-semester master’s-level review of trans-
form methods as applied to linear systems.

CHANGES FROM THE FIRST EDITION
Since writing the fi rst edition I have used it, and my second book, Fundamentals of 
Signals and Systems, in my classes. Also, in preparation for this second edition I have 
used drafts of it in my classes, both to test the effects of various approaches to introduc-
ing new material and to detect and (I hope) correct most or all of the errors in the text 
and exercise solutions. I have also had feedback from reviewers at various stages in the 
process of preparing the second edition. Based on my experiences and the suggestions 
of reviewers and students I have made the following changes from the fi rst edition. 

In looking at other well-received books in the signals and systems area, one fi nds 
that the notation is far from standardized. Each author has his/her preference and 
each preference is convenient for some types of analysis but not for others. I have 
tried to streamline the notation as much as possible, eliminating, where possible, 
complicated and distracting subscripts. These were intended to make the material 
precise and unambiguous, but in some cases, instead contributed to students’ 
fatigue and confusion in reading and studying the material in the book. Also, I 
have changed the symbols for continuous-time harmonic functions so they will 
not so easily be confused with discrete-time harmonic functions.
Chapter 8 of the fi rst edition on correlation functions and energy and power 
spectral density has been omitted. Most junior-level signals and systems 
courses do not cover this type of material, leaving it to be covered in courses on 
probability and stochastic processes.
Several appendices from the printed fi rst edition have been moved to the book’s 
website, www.mhhe.com/roberts. This, and the omission of Chapter 8 from the 
fi rst edition, signifi cantly reduce the size of the book, which, in the fi rst edition, 
was rather thick and heavy.
I have tried to “modularize” the book as much as possible, consistent with the 
need for consecutive coverage of some topics. As a result the second edition 
has 16 chapters instead of 12. The coverages of frequency response, fi lters, 
communication systems and state-space analysis are now in separate chapters.

■

■

■

■
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® MATLAB is a registered trademark of The MathWorks, Inc.

The fi rst ten chapters are mostly presentation of new analysis techniques, theory 
and mathematical basics. The last six chapters deal mostly with the application 
of these techniques to some common types of practical signals and systems.
The second edition has more examples using MATLAB® than the fi rst edition 
and MATLAB examples are introduced earlier than before.
Instead of introducing all new signal functions in the chapters on signal 
description I introduced some there, but held some derived functions until the 
need for them arose naturally in later chapters.
In Chapter 4 on system properties and system description, the discussion of 
mathematical models of systems has been lengthened.
In response to reviewers’ comments, I have presented continuous-time 
convolution fi rst, followed by discrete-time convolution. Even though 
continuous-time convolution involves limit concepts and the continuous-time 
impulse, and discrete-time convolution does not, the reviewers felt that the 
students’ greater familiarity with continuous-time concepts would make this 
order preferable.
More emphasis has been placed on the importance of the principle of 
orthogonality in understanding the theoretical basis for the Fourier series, both in 
continuous and discrete time.
The coverage of the bilateral Laplace and z transforms has been increased.
There is increased emphasis on the use of the discrete Fourier transform to 
approximate other types of transforms and some common signal-processing 
techniques using numerical methods.
Material on continuous-time angle modulation has been added.
The “comb” function used in the fi rst edition, defi ned by 

comb (   and  combt t n n n mN
n

N0
) ( ) [ ] [= − = −

=−∞

∞

∑ � � 00 ]
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∑

in which a single impulse is represented by δ (t) in continuous time and by 
δ [n] in discrete time, has been replaced by a “periodic impulse” function. The 
periodic impulse is represented by δ T (t) in continuous time and by δ N [n] in 
discrete time where T and N are their respective fundamental periods. They 
are defined by 
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The continuous-time comb function is very elegant mathematically, but I have 
found from my experience in my own classes that its simultaneous time-scaling 
and impulse-strength scaling under the change of variable t → at confuses the 
students. The periodic impulse function is characterized by having the spacing 
between impulses (the fundamental period) be a subscript parameter instead of 
being determined by a time-scaling. When the fundamental period is changed the 
impulse strengths do not change at the same time, as they do in the comb function. 
This effectively separates the time and impulse-strength scaling in continuous time 
and should relieve some confusion among students who are already challenged by 

■

■

■

■

■

■

■

■

■

■
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the abstractions of various other concepts like convolution, sampling and inte-
gral transforms. Although simultaneous time and impulse-strength scaling do not 
occur in the discrete-time form, I have also changed its notation to be analogous to 
the new continuous-time periodic impulse.

OVERVIEW
The book begins with mathematical methods for describing signals and systems, in both 
continuous and discrete time. I introduce the idea of a transform with the continuous-
time Fourier series, and from that base move to the Fourier transform as an extension 
of the Fourier series to aperiodic signals. Then I do the same for discrete-time signals. 
I introduce the Laplace transform both as a generalization of the continuous-time Fou-
rier transform for unbounded signals and unstable systems and as a powerful tool in 
system analysis because of its very close association with the eigenvalues and eigen-
functions of continuous-time linear systems. I take a similar path for discrete-time sys-
tems using the z transform. Then I address sampling, the relation between continuous 
and discrete time. The rest of the book is devoted to applications in frequency-response 
analysis, communication systems, feedback systems, analog and digital fi lters and 
state-space analysis. Throughout the book I present examples and introduce MATLAB 
functions and operations to implement the methods presented. A chapter-by-chapter 
summary follows.

CHAPTER SUMMARIES

CHAPTER 1

Chapter 1 is an introduction to the general concepts involved in signal and system 
analysis without any mathematical rigor. It is intended to motivate the student by 
demonstrating the ubiquity of signals and systems in everyday life and the impor-
tance of understanding them.

CHAPTER 2

Chapter 2 is an exploration of methods of mathematically describing continuous-time 
signals of various kinds. It begins with familiar functions, sinusoids and exponentials 
and then extends the range of signal-describing functions to include continuous-time 
singularity functions (switching functions). Like most, if not all, signals and systems 
textbooks, I defi ne the unit step, the signum, the unit impulse and the unit ramp func-
tions. In addition to these I defi ne a unit rectangle and a unit periodic impulse function. 
The unit periodic impulse, along with convolution, provides an especially compact 
way of mathematically describing arbitrary periodic signals. 

After introducing the new continuous-time signal functions, I cover the common 
types of signal tranformations, amplitude scaling, time shifting, time scaling, differen-
tiation and integration and apply them to the signal functions. Then I cover some char-
acteristics of signals that make them invariant to certain transformations, evenness, 
oddness and periodicity, and some of the implications of these signal characteristics in 
signal analysis. The last section is on signal energy and power.

CHAPTER 3

Chapter 3 follows a path similar to Chapter 2 except applied to discrete-time sig-
nals instead of continuous-time signals. I introduce the discrete-time sinusoid and 
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exponential and comment on the problems of determining the period of a discrete-
time sinsuoid. This is the student’s first exposure to some of the implications of 
sampling. I define some discrete-time signal functions analogous to continuous-
time singularity functions. Then I explore amplitude scaling, time-shifting, time 
scaling, differencing and accumulation for discrete-time signal functions, point-
ing out the unique implications and problems that occur, especially when time 
scaling discrete-time functions. The chapter ends with definitions and discussion 
of signal energy and power for discrete-time signals.

CHAPTER 4

This chapter addresses the mathematical decription of systems. First I cover the 
most common forms of classifi cation of systems, homogeneity, additivity, linearity, 
time-invariance, causality, memory, static nonlinearity and invertibility. By exam-
ple I present various types of systems that have, or do not have, these properties and 
how to prove various properties from the mathematical description of the system.

CHAPTER 5

This chapter introduces the concepts of impulse response and convolution as com-
ponents in the systematic analysis of the response of linear, time-invariant systems. 
I present the mathematical properties of continuous-time convolution and a graphi-
cal method of understanding what the convolution integral says. I also show how 
the properties of convolution can be used to combine subsystems that are connected 
in cascade or parallel into one system and what the impulse response of the overall 
system must be. Then I introduce the idea of a transfer function by fi nding the re-
sponse of an LTI system to complex sinusoidal excitation. This section is followed 
by an analogous coverage of discrete-time impulse response and convolution. 

CHAPTER 6

This is the beginning of the student’s exposure to transform methods. I begin by graph-
ically introducing the concept that any continuous-time periodic signal with engineer-
ing usefulness can be expressed by a linear combination of continuous-time sinusoids, 
real or complex. Then I formally derive the Fourier series using the concept of or-
thogonality to show where the signal description as a function of discrete harmonic 
number (the harmonic function) comes from. I mention the Dirichlet conditions to let 
the student know that the continuous-time Fourier series applies to all practical con-
tinuous-time signals, but not to all imaginable continuous-time signals.

Then I explore the properties of the Fourier series. I have tried to make the 
Fourier series notation and properties as similar as possible and analogous to the 
Fourier transform, which comes later. The harmonic function forms a “Fourier se-
ries pair” with the time function. In the first edition I used a notation for harmonic 
function in which lowercase letters were used for time-domain quantities and up-
percase letters for their harmonic functions. This unfortunately caused some con-
fusion because continuous and discrete-time harmonic functions looked the same. 
In this edition I have changed the harmonic function notation for continuous-time 
signals to make it easily distinguishable. I also have a section on the convergence 
of the Fourier series illustrating the Gibb’s phenomenon at function discontinui-
ties. I encourage students to use tables and properties to find harmonic functions 
and this practice prepares them for a similar process in finding Fourier transforms 
and later Laplace and z transforms. 
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The next major section of Chapter 6 extends the Fourier series to the Fourier 
transform. I introduce the concept by examining what happens to a continuous-time 
Fourier series as the period of the signal approaches infi nity and then defi ne and de-
rive the continuous-time Fourier transform as a generalization of the continuous-time 
Fourier series. Following that I cover all the important properties of the continuous-
time Fourier transform. I have taken an “ecumenical” approach to two different nota-
tional conventions that are commonly seen in books on signals and systems, control 
systems, digital signal processing, communication systems and other applications of 
Fourier methods such as image processing and Fourier optics: the use of either cyclic 
frequency, f or radian frequency, ω. I use both and emphasize that the two are simply 
related through a change of variable. I think this better prepares students for seeing 
both forms in other books in their college and professional careers.

CHAPTER 7

This chapter introduces the discrete-time Fourier series (DTFS), the discrete Fou-
rier transform (DFT) and the discrete-time Fourier transform (DTFT), deriving 
and defi ning them in a manner analogous to Chapter 6. The DTFS and the DFT are 
almost identical. I concentrate on the DFT because of its very wide use in digital 
signal processing. I emphasize the important differences caused by the differences 
between continuous and discrete time signals, especially the fi nite summation 
range of the DFT as opposed to the (generally) infi nite summation range in the 
CTFS. I also point out the importance of the fact that the DFT relates a fi nite set 
of numbers to another fi nite set of numbers, making it amenable to direct numeri-
cal machine computation. I discuss the fast Fourier transform as a very effi cient 
algorithm for computing the DFT. As in Chapter 6, I use both cyclic and radian 
frequency forms, emphasizing the relationships between them. I use F and Ω for 
discrete-time frequencies to distinguish them from f and ω, which were used in 
continuous time. Unfortunately, some authors reverse these symbols. My usage is 
more consistent with the majority of signals and systems texts. This is another ex-
ample of the lack of standardization of notation in this area. The last major section 
is a comparison of the four Fourier methods. I emphasize particularly the duality 
between sampling in one domain and periodic repetition in the other domain.

CHAPTER 8

This chapter introduces the Laplace transform. I approach the Laplace transform 
from two points of view, as a generalization of the Fourier transform to a larger 
class of signals and as result that naturally follows from the excitation of a linear, 
time-invariant system by a complex exponential signal. I begin by defining the 
bilateral Laplace transform and discussing significance of the region of conver-
gence. Then I define the unilateral Laplace transform. I derive all the important 
properties of the Laplace transform. I fully explore the method of partial-fraction 
expansion for finding inverse transforms and then show examples of solving dif-
ferential equations with initial conditions using the unilateral form. 

CHAPTER 9

This chapter introduces the z transform. The development parallels the develop-
ment of the Laplace transform except applied to discrete-time signals and sys-
tems. I initially define a bilateral transform and discuss the region of convergence. 
Then I define a unilateral transform. I derive all the important properties and 
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demonstrate the inverse transform using partial-fraction expansion and the solu-
tion of difference equations with initial conditions. I also show the relationship 
between the Laplace and z transforms, an important idea in the approximation of 
continuous-time systems by discrete-time systems in Chapter 15.

CHAPTER 10

This is the first exploration of the correspondence between a continuous-time 
signal and a discrete-time signal formed by sampling it. The first section covers 
how sampling is usually done in real systems using a sample-and-hold and an A/D 
converter. The second section starts by asking the question of how many samples 
are enough to describe a continuous-time signal. Then the question is answered 
by deriving the sampling theorem. Then I discuss interpolation methods, theoreti-
cal and practical, the special properties of bandlimited periodic signals. I do a 
complete development of the relationship between the CTFT of a continuous-time 
signal and DFT of a finite-length set of samples taken from it. Then I show how 
the DFT can be used to approximate the CTFT of an energy signal or a periodic 
signal. The next major section explores the use of the DFT in numerically ap-
proximating various common signal processing operations.

CHAPTER 11

This chapter covers various aspects of the use of the CTFT and DTFT in fre-
quency response analysis. The major topics are ideal filters, Bode diagrams, prac-
tical passive and active continuous-time filters and basic discrete-time filters.

CHAPTER 12

This chapter covers the basic principles of continuous-time communication sys-
tems, including frequency multiplexing, single- and double-sideband amplitude 
modulation and demodulation, and angle modulation. There is also a short section 
on amplitude modulation and demodulation in discrete-time systems.

CHAPTER 13

This chapter is on the application of the Laplace transform including block dia-
gram representation of systems in the complex frequency domain, system sta-
bility, system interconnections, feedback systems including root-locus, system 
responses to standard signals, and lastly standard realizations of continuous-time 
systems.

CHAPTER 14

This chapter is on the application of the z transform including block diagram 
representation of systems in the complex frequency domain, system stability, sys-
tem interconnections, feedback systems including root-locus, system responses to 
standard signals, sampled-data systems and standard realizations of discrete-time 
systems.

CHAPTER 15

This chapter covers the analysis and design of some of the most common types 
of practical analog and digital filters. The analog filter types are Butterworth, 
Chebyshev Types I and II and Elliptic (Cauer) filters. The section on digital filters 
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covers the most common types of techniques for simulation of analog filters, 
including impulse- and step-invariant, finite difference, matched z transform, 
direct substitution, bilinear z transform, truncated impulse response and Parks-
McClellan numerical design.

CHAPTER 16

This chapter covers state-space analysis in both continuous-time and discrete-
time systems. The topics are system and output equations, transfer functions, 
transformations of state variables and diagonalization.

APPENDICES

There are seven appendices on useful mathematical formulas, tables of the four 
Fourier transforms, Laplace transform tables and z transform tables.

CONTINUITY
The book is structured so as to facilitate skipping some topics without loss of 
continuity. Continuous-time and discrete-time topics are covered alternately and 
continuous-time analysis could be covered without reference to discrete time. 
Also, any or all of the last six chapters could be omitted in a shorter course.

REVIEWS AND EDITING
This book owes a lot to the reviewers, especially those who really took time and 
criticized and suggested improvements. I am indebted to them. I am also indebted 
to the many students who have endured my classes over the years. I believe that 
our relationship is more symbiotic than they realize. That is, they learn signal and 
system analysis from me and I learn how to teach signal and system analysis from 
them. I cannot count the number of times I have been asked a very perceptive 
question by a student that revealed not only that the students were not understand-
ing a concept but that I did not understand it as well as I had previously thought.

WRITING STYLE
Every author thinks he has found a better way to present material so that students 
can grasp it and I am no different. I have taught this material for many years and 
through the experience of grading tests have found what students generally do and 
do not grasp. I have spent countless hours in my office one-on-one with students 
explaining these concepts to them and, through that experience, I have found 
out what needs to be said. In my writing I have tried to simply speak directly to 
the reader in a straightforward conversational way, trying to avoid off-putting 
formality and, to the extent possible, anticipating the usual misconceptions and 
revealing the fallacies in them. Transform methods are not an obvious idea and, 
at first exposure, students can easily get bogged down in a bewildering morass of 
abstractions and lose sight of the goal, which is to analyze a system’s response 
to signals. I have tried (as every author does) to find the magic combination of 
accessibility and mathematical rigor because both are important. I think my writ-
ing is clear and direct but you, the reader, will be the final judge of whether that 
is true.
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EXERCISES
Each chapter has a group of exercises along with answers and a second group 
of exercises without answers. The first group is intended more or less as a set of 
“drill” exercises and the second group as a set of more challenging exercises.

CONCLUDING REMARKS
As I indicated in the preface to the first edition, I welcome any and all criticism, 
corrections and suggestions. All comments, including ones I disagree with and 
ones that disagree with others, will have a constructive impact on the next edi-
tion because they point out a problem. If something does not seem right to you, 
it probably will bother others also and it is my task, as an author, to find a way to 
solve that problem. So I encourage you to be direct and clear in any remarks about 
what you believe should be changed and not to hesitate to mention any errors you 
may find, from the most trivial to the most significant.

I wish to thank the following reviewers for their invaluable help in making the 
second edition better.

Scott Acton, University of Virginia
Alan A. Desrochers, Rensselaer Polytechnic Institute
Bruce E. Dunne, Grand Valley State University
Hyun Kwon, Andrews University
Erchin Serpedin, Texas A&M University
Jiann-Shiou Yang, University of Minnesota

Michael J. Roberts, Professor
Electrical and Computer Engineering

University of Tennessee at Knoxville
mjr@utk.edu

rob80687_fm_i-xx.indd   xixrob80687_fm_i-xx.indd   xix 1/3/11   4:12:49 PM1/3/11   4:12:49 PM



xx Preface

MCGRAW-HILL DIGITAL OFFERINGS INCLUDE:
For instructors, the website contains an image library, password-protected solutions 
manual, and PowerPoint lecture outlines. Several appendices from the printed fi rst 
edition are posted to the website. You can access the site at www.mhhe.com/roberts.

Professors can benefi t from McGraw-Hill’s COSMOS electronic solutions man-
ual. COSMOS enables instructors to generate a limitless supply of problem material 
for assignment, as well as transfer and integrate their own problems into the soft-
ware. Contact your McGraw-Hill sales representative for additional information.

This text is available as an eBook at www.CourseSmart.com. At CourseSmart 
your students can take advantage of signifi cant savings off the cost of a print textbook, 
reduce their impact on the environment, and gain access to powerful Web tools for 
learning. CourseSmart eBooks can be viewed online or downloaded to a computer. 
The eBooks allow students to do full text searches, add highlighting and notes, and 
share notes with classmates. CourseSmart has the largest selection of eBooks available 
anywhere. Visit www.CourseSmart.com to learn more and to try a sample chapter.

MCGRAW-HILL CREATE™
Craft your teaching resources to match the way you teach! With McGraw-Hill 
Create, www.mcgrawhillcreate.com, you can easily rearrange chapters, combine 
material from other content sources, and quickly upload content you have written 
like your course syllabus or teaching notes. Find the content you need in Create 
by searching through thousands of leading McGraw-Hill textbooks. Arrange your 
book to fit your teaching style. Create even allows you to personalize your book’s 
appearance by selecting the cover and adding your name, school, and course 
information. Order a Create book and you’ll receive a complimentary print review 
copy in 3–5 business days or a complimentary electronic review copy (eComp) via 
email in minutes. Go to www.mcgrawhillcreate.com today and register to experi-
ence how McGraw-Hill Create empowers you to teach your students your way.

MCGRAW-HILL HIGHER EDUCATION AND 
BLACKBOARD® HAVE TEAMED UP
Blackboard, the web-based course management system, has partnered with McGraw-
Hill to better allow students and faculty to use online materials and activities to 
complement face-to-face teaching. Blackboard features exciting social learning and 
teaching tools that foster more logical, visually impactful and active learning oppor-
tunities for students. You’ll transform your closed-door classrooms into communities 
where students remain connected to their educational experience 24 hours a day.

This partnership allows you and your students access to McGraw-Hill’s 
Create™ right from within your Blackboard course—all with one single sign-on. 
McGraw-Hill and Blackboard can now offer you easy access to industry leading 
technology and content, whether your campus hosts it, or we do. Be sure to ask 
your local McGraw-Hill representative for details.
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1

 C H A P T E R  1
Introduction

1.1  SIGNALS AND  SYSTEMS DEFINED
Any time-varying physical phenomenon that is intended to convey information is a 
signal. Examples of signals are the human voice, sign language, Morse code, traffi c 
signals, voltages on telephone wires, electric fi elds emanating from radio or television 
 transmitters and variations of light intensity in an optical fi ber on a telephone or com-
puter network. Noise is like a signal in that it is a time-varying physical phenomenon, 
but it usually does not carry useful information and is considered undesirable.

Signals are operated on by systems. When one or more  excitations or  input 
signals are applied at one or more system  inputs, the system produces one or more 
 responses or  output signals at its  outputs. Figure 1.1 is a block diagram of a  single-
input, single-output system.

SystemInput Output
Excitation

or Input Signal
Response
or Output Signal

Figure 1.1
Block diagram of a single-input, single-output system

Transmitter Channel Receiver
Information

Signal
Noisy

Information
Signal

Noise NoiseNoise

Figure 1.2
A communication system

In a  communication system a transmitter produces a signal and a  receiver acquires 
it. A  channel is the path a signal takes from a transmitter to a receiver. Noise is 
inevitably introduced into the transmitter, channel and receiver, often at multiple points 
(Figure 1.2). The transmitter, channel and receiver are all components or subsystems of 
the overall system. Scientifi c instruments are systems that measure a physical phenom-
enon (temperature, pressure, speed, etc.) and convert it to a voltage or current, a sig-
nal. Commercial building control systems (Figure 1.3), industrial plant control systems 
(Figure 1.4), modern farm machinery (Figure 1.5), avionics in airplanes, ignition and 
fuel pumping controls in automobiles and so on are all systems that operate on signals.
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2 Chapter  1  Introduction

Figure 1.3
Modern offi ce buildings
© Vol. 43 PhotoDisc/Getty

Figure 1.4
Typical industrial plant control room
© Royalty-Free/Punchstock
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The term system even encompasses things such as the stock market, government, 
weather, the human body and the like. They all respond when excited. Some systems 
are readily analyzed in detail, some can be analyzed approximately, but some are so 
complicated or diffi cult to measure that we hardly know enough to understand them.

1.2  TYPES OF SIGNALS
There are several broad classifi cations of signals: continuous-time, discrete-time, 
continuous-value, discrete-value, random and nonrandom. A continuous-time sig-
nal is defi ned at every instant of time over some time interval. Another common name 
for some  continuous-time signals is  analog signal, in which the variation of the signal 
with time is analogous (proportional) to some physical phenomenon. All analog sig-
nals are continuous-time signals but not all continuous-time signals are analog signals 
(Figure 1.6 through Figure 1.8). 

Sampling  a signal is acquiring values from a continuous-time signal at discrete 
points in time. The set of samples forms a  discrete-time signal. A discrete-time signal 

Figure 1.5
Modern farm tractor with enclosed cab
© Royalty-Free/Corbis

Figure 1.6
Examples of continuous-time and discrete-time signals

n

x[n]
Discrete-Time

Continuous-Value
Signal

t

x(t)
Continuous-Time
Continuous-Value

Signal
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4 Chapter  1  Introduction

can also be created by an inherently discrete-time system that produces signal values 
only at discrete times (Figure 1.6).

A  continuous-value signal is one that may have any value within a fi nite or infi nite 
 continuum of allowed values. In a continuum any two values can be arbitrarily close 
together. The real numbers form a continuum with infi nite extent. The real numbers 
between zero and one form a continuum with fi nite extent. Each is a set with infi nitely 
many members (Figure 1.6 through Figure 1.8).

A discrete-value signal can only have values taken from a discrete set. In a discrete 
set of values the magnitude of the difference between any two values is greater than 
some positive number. The set of integers is an example. Discrete-time signals are 
usually transmitted as  digital signals, a sequence of values of a discrete-time signal 
in the form of digits in some encoded form. The term digital is also sometimes used 
loosely to refer to a discrete-value signal that has only two possible values. The digits 
in this type of digital signal are transmitted by signals that are continuous-time. In this 
case, the terms  continuous-time and analog are not synonymous. A digital signal of 
this type is a continuous-time signal but not an analog signal because its variation of 
value with time is not directly analogous to a physical phenomenon (Figure 1.6 through 
Figure 1.8). A  random signal cannot be predicted exactly and cannot be described by 
any mathematical function. A  deterministic signal can be mathematically described. 
A common name for a random signal is noise (Figure 1.6 through Figure 1.8).

In practical signal processing it is very common to acquire a signal for processing 
by a computer by  sampling,  quantizing and  encoding it (Figure 1.9). The original 
signal is a continuous-value, continuous-time signal. Sampling acquires its values at 
discrete times and those values constitute a continuous-value, discrete-time signal. 
Quantization approximates each sample as the nearest member of a fi nite set of dis-
crete values, producing a discrete-value, discrete-time signal. Each signal value in the 
set of discrete values at discrete times is converted to a sequence of rectangular pulses 
that encode it into a binary number, creating a discrete-value, continuous-time signal, 
commonly called a digital signal. The steps illustrated in Figure 1.9 are usually carried 
out by a single device called an  analog-to-digital converter (ADC).

Figure 1.8
Examples of noise and a noisy digital signal

Noisy Digital Signal

Continuous-Time
Continuous-Value

Random Signal

t

x(t)

Noise

t 

x(t)

Figure 1.7
Examples of continuous-time,  discrete-value signals
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Discrete-Value

Signal

Continuous-Time
Discrete-Value

Signal

t
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x(t)

Digital Signal
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Figure 1.9
Sampling, quantization, and encoding of a signal to illustrate various signal types
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Figure 1.10
Asynchronous serial binary ASCII-encoded  voltage signal for the 
word SIGNAL
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Serial Binary Voltage Signal for the ASCII Message “SIGNAL”

S I G N A L

One common use of binary digital signals is to send text messages using the 
 American Standard Code for Information Interchange (ASCII). The letters of the al-
phabet, the digits 0–9, some punctuation characters and several nonprinting control 
characters, for a total of 128 characters, are all encoded into a sequence of 7 binary 
bits. The 7 bits are sent sequentially, preceded by a start bit and followed by one or two 
 stop bits for synchronization purposes. Typically, in direct-wired connections between 
digital equipment, the bits are represented by a higher voltage (2V to 5V) for a 1 and 
a lower voltage level (around 0V) for a 0. In an  asynchronous transmission using one 
start and one stop bit, sending the message SIGNAL, the voltage versus time would 
look as illustrated in Figure 1.10.

 1.2 Types of Signals 5
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6 Chapter  1  Introduction

Digital signals are important in signal analysis because of the spread of digital 
systems. Digital signals generally have better immunity to noise than analog signals. In 
binary signal communication the bits can be detected very cleanly until the noise gets 
very large. The detection of bit values in a stream of bits is usually done by comparing 
the signal value at a predetermined bit time with a threshold. If it is above the threshold 
it is declared a 1 and if it is below the threshold it is declared a 0. In Figure 1.11, the 
x’s mark the signal value at the detection time, and when this technique is applied to 
the noisy digital signal, one of the bits is incorrectly detected. But when the signal is 
processed by a  fi lter, all the bits are correctly detected. The fi ltered digital signal does 
not look very clean in comparison with the noiseless digital signal, but the bits can still 
be detected with a very low probability of error. This is the basic reason that digital 
signals have better noise immunity than analog signals. An introduction to the analysis 
and design of fi lters is presented in Chapters 11 and 15.

We will consider both continuous-time and  discrete-time signals, but we will 
(mostly) ignore the effects of signal quantization and consider all signals to be 
continuous-value. Also, we will not directly consider the analysis of  random signals, 
although random signals will sometimes be used in illustrations.

The fi rst signals we will study are  continuous-time signals. Some continuous-
time signals can be described by continuous functions of time. A signal x( )t  might 
be described by a function x( ) sin( )t t= 50 200�  of continuous time t. This is an exact 
description of the signal at every instant of time. The signal can also be described 
graphically (Figure 1.12).

Many continuous-time signals are not as easy to describe mathematically. Con-
sider the signal in Figure 1.13.

Waveforms like the one in Figure 1.13 occur in various types of instrumentation 
and communication systems. With the defi nition of some signal functions and an 
operation called  convolution this signal can be compactly described, analyzed and 
manipulated mathematically. Continuous-time signals that can be described by math-
ematical functions can be transformed into another domain called the  frequency 
domain through the continuous-time Fourier transform. In this context,  transfor-
mation means transformation of a signal to the frequency domain. This is an impor-
tant tool in signal analysis, which allows certain characteristics of the signal to be 
more clearly observed and more easily manipulated than in the time domain. (In the 

Figure 1.11
Use of a fi lter to reduce bit error rate in a digital signal
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frequency domain, signals are described in terms of the frequencies they contain.) 
Without frequency-domain analysis, design and analysis of many systems would be 
considerably more diffi cult.

Discrete-time signals are only defi ned at discrete points in time. Figure 1.14 
illustrates some discrete-time signals.

Figure 1.12
A continuous-time signal described by a 
mathematical function
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Figure 1.13
A second continuous-time signal
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Figure 1.14
Some discrete-time signals
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So far all the signals we have considered have been described by functions of time. 
An important class of “signals” is functions of  space instead of time:  images. Most 
of the theories of signals, the information they convey and how they are processed by 
systems in this text will be based on signals that are a variation of a physical phenom-
enon with time. But the theories and methods so developed also apply, with only minor 
modifi cations, to the processing of images.  Time signals are described by the varia-
tion of a physical phenomenon as a function of a single independent variable, time. 
Spatial signals, or images, are described by the variation of a physical phenomenon as 

 1.2 Types of Signals 7
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8 Chapter  1  Introduction

a function of two orthogonal, independent,  spatial variables, conventionally referred 
to as x and y. The physical phenomenon is most commonly light or something that 
affects the transmission or refl ection of light, but the techniques of image processing 
are also applicable to anything that can be mathematically described by a function of 
two independent variables.

Historically the practical application of image-processing techniques has lagged 
behind the application of signal-processing techniques because the amount of infor-
mation that has to be processed to gather the information from an image is typically 
much larger than the amount of information required to get the information from a time 
signal. But now image processing is increasingly a practical technique in many situ-
ations. Most image processing is done by computers. Some simple image-processing 
operations can be done directly with optics and those can, of course, be done at very 
high speeds (at the speed of light!). But direct optical image-processing is very limited 
in its fl exibility compared with  digital image processing on computers. 

Figure 1.15 shows two  images. On the left is an unprocessed X-ray image of a 
carry-on bag at an airport checkpoint. On the right is the same image after being pro-
cessed by some image-fi ltering operations to reveal the presence of a weapon. This text 
will not go into image processing in any depth but will use some examples of image 
processing to illustrate concepts in signal processing.

An understanding of how signals carry information and how systems process sig-
nals is fundamental to multiple areas of engineering. Techniques for the analysis of 
signals processed by systems are the subject of this text. This material can be consid-
ered as an applied mathematics text more than a text covering the building of useful de-
vices, but an understanding of this material is very important for the successful design 
of useful devices. The material that follows builds from some fundamental defi nitions 
and concepts to a full range of analysis techniques for continuous-time and discrete-
time signals in systems.

1.3 EXAMPLES OF SYSTEMS
There are many different types of signals and systems. A few examples of systems 
are discussed next. The discussion is limited to the qualitative aspects of the system 
with some illustrations of the behavior of the system under certain conditions. These 
systems will be revisited in Chapter 4 and discussed in a more detailed and quantitative 
way in the material on system modeling.

Figure 1.15
An example of image processing to reveal information
(Original X-ray image and processed version provided by the Imaging, Robotics and Intelligent Systems (IRIS) Laboratory 
of the Department of Electrical and Computer Engineering at the University of Tennessee, Knoxville).
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A  MECHANICAL SYSTEM

A man bungee jumps off a bridge over a river. Will he get wet? The answer depends 
on several factors:

 1. The man’s height and weight
 2. The height of the bridge above the water
 3. The length and springiness of the bungee cord

When the man jumps off the bridge he goes into free fall until the bungee cord 
extends to its full unstretched length. Then the system dynamics change because there 
is now another force on the man, the bungee cord’s resistance to stretching, and he is 
no longer in free fall. We can write and solve a differential  equation of motion and 
determine how far down the man falls before the bungee cord pulls him back up. The 
differential equation of motion is a  mathematical model of this mechanical system. If 
the man weighs 80 kg and is 1.8 m tall, and if the bridge is 200 m above the water level 
and the bungee cord is 30 m long (unstretched) with a spring constant of 11 N/m, the 
bungee cord is fully extended before stretching at t = 2 47. s. The equation of motion, 
after the cord starts stretching, is 

 x( ) . sin( . ) . cos( . ) .t t t= − − +16 85 0 3708 95 25 0 3708 101 3,, t > 2 47. . (1.1)

Figure 1.16 shows his position versus time for the fi rst 15 seconds. From the graph it 
seems that the man just missed getting wet.

Figure 1.16
Man’s vertical position versus time (bridge level is zero)
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A  FLUID SYSTEM

A fl uid system can also be modeled by a differential equation. Consider a cylindrical 
water tank being fed by an input fl ow of water, with an orifi ce at the bottom through 
which fl ows the output (Figure 1.17). 

The fl ow out of the orifi ce depends on the height of the water in the tank. The 
variation of the height of the water depends on the input fl ow and the output fl ow. The 

 1.3 Examples of Systems 9
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10 Chapter  1  Introduction

rate of change of water volume in the tank is the difference between the input volumet-
ric fl ow and the output volumetric fl ow and the volume of water is the cross-sectional 
area of the tank times the height of the water. All these factors can be combined into 
one differential equation for the water level h ( )1 t .

 A
d

dt
t A g t h t1 1 2 1 2 12(h ( )) [h ( ) ] f ( )+ − =  (1.2)

The water level in the tank is graphed in Figure 1.18 versus time for four  volumetric 
infl ows under the assumption that the tank is initially empty.

Figure 1.17
Tank with orifi ce being fi lled from above
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Figure 1.18
Water level versus time for four different volumetric infl ows with the 
tank initially empty
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As the water fl ows in, the water level increases, and that increases the water out-
fl ow. The water level rises until the outfl ow equals the infl ow. After that time the water 
level stays constant. Notice that when the infl ow is increased by a factor of two, the 
fi nal water level is increased by a factor of four. The fi nal water level is proportional 
to the square of the volumetric infl ow. That relationship is a result of the fact that the 
differential equation is nonlinear.

rob80687_ch01_001-018.indd   10rob80687_ch01_001-018.indd   10 1/3/11   11:26:29 AM1/3/11   11:26:29 AM



A DISCRETE-TIME SYSTEM

 Discrete-time systems can be designed in multiple ways. The most common practical 
example of a discrete-time system is a computer. A computer is controlled by a clock 
that determines the timing of all operations. Many things happen in a computer at the 
integrated circuit level between clock pulses, but a computer user is only interested in 
what happens at the times of occurrence of clock pulses. From the user’s point of view, 
the computer is a discrete-time system. 

We can simulate the action of a discrete-time system with a computer program. 
For example,

yn � 1 ; yn1 � 0 ;
while 1,
   yn2 � yn1 ; yn1 � yn ; yn � 1.97*yn1 � yn2 ;
end

This computer program (written in MATLAB) simulates a discrete-time system 
with an output signal y that is described by the difference equation

 y[ ] . y[ ] y[ ]n n n= − − −1 97 1 2  (1.3) 

along with initial conditions y[ ]0 1=  and y[ ]− =1 0. The value of y at any time index 
n is the sum of the previous value of y at time index n � 1 multiplied by 1.97, minus 
the value of y previous to that at time index n � 2. The operation of this system can be 
diagrammed as in Figure 1.19.

In Figure 1.19, the two squares containing the letter D are delays of one in discrete 
time, and the arrowhead next to the number 1.97 is an amplifi er that multiplies the 
signal entering it by 1.97 to produce the signal leaving it. The circle with the plus sign 
in it is a  summing junction. It adds the two signals entering it (one of which is negated 
fi rst) to produce the signal leaving it. The fi rst 50 values of the signal produced by this 
system are illustrated in Figure 1.20.

The system in Figure 1.19 could be built with dedicated hardware.  Discrete-time 
delay can be implemented with a shift register. Multiplication by a constant can be 
done with an amplifi er or with a digital hardware multiplier. Summation can also be 
done with an operational amplifi er or with a digital hardware adder.

Figure 1.20
Signal produced by the discrete-time system in Figure 1.19
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Figure 1.19
Discrete-time system example
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12 Chapter  1  Introduction

 FEEDBACK  SYSTEMS

Another important aspect of systems is the use of   feedback to improve system perfor-
mance. In a feedback system, something in the system observes its response and may 
modify the input signal to the system to improve the response. A familiar example is 
a  thermostat in a house that controls when the air conditioner turns on and off. The 
thermostat has a temperature sensor. When the temperature inside the thermostat ex-
ceeds the level set by the homeowner, a switch inside the thermostat closes and turns 
on the home air conditioner. When the temperature inside the thermostat drops a small 
amount below the level set by the homeowner, the switch opens, turning off the air 
conditioner. Part of the system (a temperature sensor) is sensing the thing the system is 
trying to control (the air temperature) and feeds back a signal to the device that actu-
ally does the controlling (the air conditioner). In this example, the feedback signal is 
simply the closing or opening of a switch.

Feedback is a very useful and important concept and feedback systems are every-
where. Take something everyone is familiar with, the fl oat valve in an ordinary fl ush 
toilet. It senses the water level in the tank and, when the desired water level is reached, 
it stops the fl ow of water into the tank. The fl oating ball is the sensor and the valve to 
which it is connected is the feedback mechanism that controls the water level.

If all the water valves in all fl ush toilets were exactly the same and did not change 
with time, and if the water pressure upstream of the valve were known and constant, 
and if the valve were always used in exactly the same kind of water tank, it should be 
possible to replace the fl oat valve with a timer that shuts off the water fl ow when the 
water reaches the desired level, because the water would always reach the desired level 
at exactly the same elapsed time. But water valves do change with time and water pres-
sure does fl uctuate and different toilets have different tank sizes and shapes. Therefore, 
to operate properly under these varying conditions the tank-fi lling system must adapt 
by sensing the water level and shutting off the valve when the water reaches the desired 
level. The ability to adapt to changing conditions is the great advantage of feedback 
methods.

There are countless examples of the use of feedback.

 1. Pouring a glass of lemonade involves feedback. The person pouring watches 
the lemonade level in the glass and stops pouring when the desired level is 
reached.

 2. Professors give tests to students to report to the students their performance levels. 
This is feedback to let the student know how well she is doing in the class so she 
can adjust her study habits to achieve her desired grade. It is also feedback to the 
professor to let him know how well his students are learning.

 3. Driving a car involves feedback. The driver senses the speed and direction of the 
car, the proximity of other cars and the lane markings on the road and constantly 
applies corrective actions with the accelerator, brake and steering wheel to 
maintain a safe speed and position. 

 4. Without feedback, the  F-117 stealth fi ghter would crash because it is 
aerodynamically unstable. Redundant computers sense the velocity, altitude, 
roll, pitch and yaw of the aircraft and constantly adjust the control surfaces to 
maintain the desired fl ight path (Figure 1.21).

Feedback is used in both  continuous-time systems and discrete-time systems. The 
system in Figure 1.22 is a discrete-time feedback system.  The response of the system 
y[ ]n  is “fed back” to the upper summing junction after being delayed twice and multi-
plied by some constants. 

rob80687_ch01_001-018.indd   12rob80687_ch01_001-018.indd   12 1/3/11   11:26:30 AM1/3/11   11:26:30 AM



Let this system be initially at rest, meaning that all signals throughout the system 
are zero before time index n = 0 . To illustrate the effects of feedback let b = −1 5. , let 
c = 0 8.  and let the input signal x[ ]n  change from 0 to 1 at n = 0 and stay at 1 for all time, 
n ≥ 0. We can see the response y[ ]n  in Figure 1.23.

Now let c = 0 6.  and leave b the same. Then we get the response in Figure 1.24.
Now let c = 0 5.  and leave b the same. Then we get the response in Figure 1.25.
The response in Figure 1.25 increases forever. This last system is unstable because 

a bounded input signal produces an unbounded response. So feedback can make a 
system unstable.

Figure 1.21
The F-117A Nighthawk stealth fi ghter
© Vol. 87/Corbis

Figure 1.22
A discrete-time feedback system
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Figure 1.23
Discrete-time system response with 
b = −1 5.  and c = 0 8.  
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Figure 1.25
Discrete-time system response with 
b = −1 5.  and c = 0 5.

n
60

y[n]
140 a =  1, b =  -1.5, c = 0.5

Figure 1.24
Discrete-time system response with 
b = −1 5.  and c = 0 6.  
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The system illustrated in Figure 1.26 is an example of a continuous-time feedback 
system. It is described by the differential equation ′′ + =y ( ) ( ) x( )t a t ty . The homoge-
neous solution can be written in the form

 y ( ) sin cosh h ht K at K at= ( ) + ( )1 2 . (1.4)

If the excitation x( )t  is zero and the initial value y( )t0  is nonzero or the initial derivative 
of y( )t  is nonzero and the system is allowed to operate in this form after t t= 0, y( )t  will 

Figure 1.26
Continuous-time feedback system
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14 Chapter  1  Introduction

oscillate sinusoidally forever. This system is an oscillator with a stable amplitude. So 
feedback can cause a system to oscillate. 

1.4 A FAMILIAR SIGNAL AND SYSTEM EXAMPLE
As an example of signals and systems, let’s look at a signal and system that everyone 
is familiar with,  sound, and a system that produces and/or measures sound. Sound is 
what the ear senses. The human ear is sensitive to acoustic pressure waves typically 
between about 15 Hz and about 20 kHz with some sensitivity variation in that range. 
Below are some graphs of  air pressure variations that produce some common sounds. 
These sounds were recorded by a system consisting of a microphone that converts 
air pressure variation into a continuous-time voltage signal, electronic circuitry that 
processes the continuous-time voltage signal and an analog-to-digital converter (ADC) 
that changes the continuous-time voltage signal to a digital signal in the form of a 
sequence of binary numbers that are then stored in computer memory (Figure 1.27). 

Figure 1.27
A sound recording system
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Figure 1.28
The word “signal” spoken by an adult male voice
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Consider the pressure variation graphed in Figure 1.28. It is the  continuous-time 
pressure signal that produces the sound of the word “signal” spoken by an adult male 
(the author).
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Analysis of sounds is a large subject, but some things about the relationship 
between this graph of air-pressure variation and what a human hears as the word 
“signal” can be seen by looking at the graph. There are three identifi able “bursts” of 
signal, #1 from 0 to about 0.12 seconds, #2 from about 0.12 to about 0.19 seconds, and 
#3 from about 0.22 to about 0.4 seconds. Burst #1 is the s in the word “signal.” Burst 
#2 is the i sound. The region between bursts #2 and #3 is the double consonant gn of 
the word “signal.” Burst #3 is the a sound terminated by the l consonant stop. An l is 
not quite as abrupt a stop as some other consonants, so the sound tends to “trail off ” 
rather than stopping quickly. The variation of air pressure is generally faster for the s 
than for the i or the a. In signal analysis we would say that it has more “high-frequency 
content.” In the blowup of the s sound the air pressure variation looks almost random. 
The i and a sounds are different in that they vary more slowly and are more “regular” or 
“predictable” (although not exactly predictable). The i and a are formed by vibrations 
of the vocal cords and therefore exhibit an approximately oscillatory behavior. This is 
described by saying that the i and a are  tonal or  voiced and the s is not. Tonal means 
having the basic quality of a single  tone or  pitch or  frequency. This description is not 
mathematically precise but is useful qualitatively.

Another way of looking at a signal is in the frequency domain, mentioned above, 
by examining the frequencies, or pitches, that are present in the signal. A common 
way of illustrating the variation of signal power with frequency is its  power spectral 
density, a graph of the power density in the signal versus frequency. Figure 1.29 shows 
the three bursts (s, i and a) from the word “signal” and their associated power spectral 
densities (the G( )f  functions).

Figure 1.29
Three sounds in the word “signal” and their associated power spectral densities
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Power spectral density is just another mathematical tool for analyzing a signal. It 
does not contain any new  information, but sometimes it can reveal things that are dif-
fi cult to see otherwise. In this case, the power spectral density of the s sound is widely 
distributed in frequency, whereas the power spectral densities of the i and a sounds are 
narrowly distributed in the lowest frequencies. There is more power in the s sound at 
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16 Chapter  1  Introduction

higher frequencies than in the i and a sounds. The s sound has an “edge” or “hissing” 
quality caused by the high frequencies in the s sound.

The signal in Figure 1.28 carries information. Consider what happens in conver-
sation when one person says the word “signal” and another hears it (Figure 1.30). The 
speaker thinks fi rst of the concept of a signal. His brain quickly converts the concept 
to the word “signal.” Then his brain sends nerve impulses to his vocal cords and dia-
phragm to create the air movement and vibration and tongue and lip movements to 
produce the sound of the word “signal.” This sound then propagates through the air 
between the speaker and the listener. The sound strikes the listener’s eardrum and the 
vibrations are converted to nerve impulses, which the listener’s brain converts fi rst to 
the sound, then the word, then the concept signal. Conversation is accomplished by a 
system of considerable sophistication. 

How does the listener’s brain know that the complicated pattern in Figure 1.28 is 
the word “signal”? The listener is not aware of the detailed air pressure variations but 
instead “hears sounds” that are caused by the air pressure variation. The eardrum and 
brain convert the complicated air pressure pattern into a few simple features. That 
conversion is similar to what we will do when we convert signals into the frequency 
domain. The process of recognizing a sound by reducing it to a small set of fea-
tures reduces the amount of information the brain has to process. Signal processing 
and analysis in the technical sense do the same thing but in a more mathematically 
precise way.

Two very common problems in signal and system analysis are noise and  interfer-
ence. Noise is an undesirable random signal. Interference is an undesirable nonran-
dom signal. Noise and interference both tend to obscure the information in a signal. 
Figure 1.31 shows examples of the signal from Figure 1.28 with different levels of 
noise added. 

As the noise power increases there is a gradual degradation in the intelligibility 
of the signal, and at some level of noise the signal becomes unintelligible. A measure 
of the quality of a received signal corrupted by noise is the ratio of the signal power to 
the noise power, commonly called  signal-to-noise ratio and often abbreviated SNR. 
In each of the examples of Figure 1.31 the SNR is specifi ed.

Sounds are not the only signals, of course. Any physical phenomenon that is mea-
sured or observed is a signal. Also, although the majority of signals we will consider in 
this text will be functions of time, a signal can be a function of some other independent 

Figure 1.30
 Communication between two people involving signals and signal processing by systems

"signal" "signal"
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Signal-to-Noise Ratio = 23.7082Original Signal Without Noise

Signal-to-Noise Ratio = 3.7512 Signal-to-Noise Ratio = 0.95621

Figure 1.31
Sound of the word “signal” with different levels of noise added

variable, like frequency, wavelength, distance and so on. Figure 1.32 and Figure 1.33 
illustrate some other kinds of signals.

Just as sounds are not the only signals, conversation between two people is not the 
only system. Examples of other systems include the following:

 1. An automobile suspension for which the road surface excites the automobile and 
the position of the chassis relative to the road is the response.

 2. A chemical mixing vat for which streams of chemicals are the input signals and 
the mixture of chemicals is the output signal.

 3. A building environmental control system for which the exterior temperature is 
the input signal and the interior temperature is the response.
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Figure 1.32
Examples of signals that are functions of one or more  continuous independent variables
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18 Chapter  1  Introduction

 4. A chemical spectroscopy system in which white light excites the specimen and 
the spectrum of transmitted light is the response.

 5. A telephone network for which voices and data are the input signals and 
reproductions of those voices and data at a distant location are the output signals.

 6. Earth’s atmosphere, which is excited by energy from the sun and for which the 
responses are ocean temperature, wind, clouds, humidity and so on. In other 
words, the weather is the response.

 7. A thermocouple excited by the temperature gradient along its length for which 
the voltage developed at one end is the response.

 8. A trumpet excited by the vibration of the player’s lips and the positions of the 
valves for which the response is the tone emanating from the bell.

The list is endless. Any physical entity can be thought of as a system, because if 
we excite it with physical energy, it has a physical response.

1.5  USE OF MATLAB®

Throughout the text, examples will be presented showing how signal and system anal-
ysis can be done using MATLAB. MATLAB is a high-level mathematical tool avail-
able on many types of computers. It is very useful for signal processing and system 
analysis. There is an introduction to MATLAB in Web Appendix A.
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Figure 1.33
Examples of signals that are functions of a  discrete independent variable
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2.1 INTRODUCTION AND GOALS 
Over the years, signal and system analysts have observed many signals and have real-
ized that signals can be classifi ed into groups with similar behavior. Figure 2.1 shows 
some  examples of signals. 

t
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t
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Manchester Encoded
Baseband Binary Bit Stream

Figure 2.1
Examples of signals

In signal and system analysis, signals are described by  mathematical functions. Some 
of the functions that describe real signals should already be familiar, exponentials and 
sinusoids. These occur frequently in signal and system analysis. One set of functions has 
been defi ned to describe the effects on signals of switching operations that often occur in 
systems. Some other functions arise in the development of certain system analysis tech-
niques, which will be introduced in later chapters. These functions are all carefully chosen 
to be simply related to each other and to be easily changed by a well-chosen set of shifting 
and/or scaling operations. They are prototype functions, which have simple defi nitions 
and are easily remembered. The types of symmetries and patterns that most frequently 
occur in real signals will be defi ned and their effects on signal analysis explored.

 C H A P T E R  2
 Mathematical Description 
of Continuous-Time Signals
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20 Chapter  2  Mathematical Description of Continuous-Time Signals

C H A P T E R  G OA L S

 1. To defi ne some mathematical functions that can be used to describe signals

 2. To develop methods of shifting, scaling and combining those functions to 
represent real signals

 3. To recognize certain symmetries and patterns to simplify signal and system analysis

2.2 FUNCTIONAL NOTATION
A function is a correspondence between the argument of the function, which lies in 
its domain, and the  value returned by the function, which lies in its  range. The most 
familiar functions are of the form g( )x  where the argument x is a real number and the 
value returned g is also a real number. But the domain and/or range of a function can 
be complex numbers or integers or a variety of other choices of allowed values. 

In this text fi ve  types  of functions will appear,

 1. Domain—Real numbers, Range—Real numbers
 2. Domain—Integers, Range—Real numbers
 3. Domain—Integers, Range—Complex numbers
 4. Domain—Real numbers, Range—Complex numbers
 5. Domain—Complex numbers, Range—Complex numbers

For functions whose domain is either real numbers or complex numbers the argument 
will be enclosed in parentheses ( )⋅ . For functions whose domain is integers the argu-
ment will be enclosed in brackets [ ]⋅ . These types of functions will be discussed in more 
detail as they are introduced.

2.3 CONTINUOUS-TIME SIGNAL FUNCTIONS
If the independent variable of a function is time t and the  domain of the function is the real 
numbers, and if the function g( )t  has a defi ned value at every value of t, the function is 
called a continuous-time function. Figure 2.2 illustrates some  continuous-time functions.

Figure 2.2
Examples of continuous-time functions
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Figure 2.2 (d) illustrates a  discontinuous function for which the limit of the func-
tion value as we approach the discontinuity from above is not the same as when we 
approach it from below. If t t= 0 is a point of discontinuity of a function g( )t  then

 lim g( ) lim g( )
� �

�
→ →

+ ≠ −
0

0
0

0t t � .

All four functions, (a)–(d), are continuous-time functions because their values are de-
fi ned for all real values of t. Therefore the terms continuous and continuous-time mean 
different things. All continuous functions of time are continuous-time functions, but 
not all continuous-time functions are continuous functions of time.

COMPLEX  EXPONENTIALS AND SINUSOIDS

Real-valued sinusoids and  exponential functions should already be familiar. In

 g( ) cos( ) cos( ) cos( )t A t T A f t A t= + = + = +2 20 0 0� � � � � �/

and

 g( ) [cos( ) sin( )]( )t Ae Ae t j tj t t= = ++� � � � �0 0 0
0 0

A is the amplitude, T0 is the fundamental period, f0 is the fundamental cyclic frequency 
and �0 is the fundamental radian frequency of the sinusoid, t is time and �0 is the decay 
rate of the exponential (which is the reciprocal of its time constant, �) (Figure 2.3 and 
Figure 2.4). All these parameters can be any real number. 

Figure 2.3
A real sinusoid and a real exponential with 
parameters indicated graphically

t

A

t

A

τ

g(t) = A cos(2πf0t + θ)

g(t) = Ae-t/τ

-θ/2πf0
T0

4

-4
... ...

t = 10 ms

t

-4sin(200πt) μA

10

-10

...
...

t = 2 μs

t

10cos(106πt) nC

2
t = 0.1 s

t

2e-10tm

5

-5 t = 1 s

t 

5e-tsin(2πt) m
s2

Figure 2.4
Examples of signals described by real sines, cosines 
and exponentials

In Figure 2.4 the units indicate what kind of physical signal is being described. 
Very often in system analysis, when only one kind of signal is being followed through 
a system, the units are omitted for the sake of brevity.

 Exponentials (exp) and sinusoids (sin and cos) are   intrinsic functions in 
MATLAB. The arguments of the sin and cos functions are interpreted by MATLAB as 
radians, not degrees. 

>> [exp(1),sin(pi/2),cos(pi)]
ans =
  2.7183 1.0000 -1.0000 (pi is the MATLAB symbol for �.)

 2.3 Continuous-Time Signal Functions 21
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22 Chapter  2  Mathematical Description of Continuous-Time Signals

 Sinusoids and exponentials are very common in signal and system analysis because 
most continuous-time systems can be described, at least approximately, by linear, 
constant-coeffi cient, ordinary differential equations whose  eigenfunctions are  complex 
exponentials, complex powers of e, the base of the natural logarithms. Eigenfunction 
means “characteristic function” and the eigenfunctions have a particularly important 
relation to the differential equation. If the exponent of e is real, complex exponentials 
are the same as real exponentials. Through  Euler’s identity e x j xjx = +cos( ) sin( )  and 
the relations cos( ) ( )( ) sin( ) ( )(x e e x j ejx jx jx= + = −−1 2 1 2/ and / ee jx− ), complex expo-
nentials and real-valued sinusoids are closely related. If, in a function of the form e jx, 
x is a real-valued independent variable, this special form of the complex exponential is 
called a complex sinusoid (Figure 2.5).

t2
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1

-1
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1
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-2

t
2

Re
1

Im
2

-2
-1

Figure 2.5
The relation between real and  complex sinusoids

In signal and system analysis, sinusoids are expressed in either the cyclic fre-
quency f form A f tcos( )2 0� �+  or the radian frequency � form A tcos( )� �0 + . The 
advantages of the f form are the following:

 1. The fundamental period T0 and the fundamental cyclic frequency f0 are simply 
reciprocals of each other.

 2. In communication system analysis, a spectrum analyzer is often used and its display 
scale is usually calibrated in Hz. Therefore f is the directly observed variable.

 3. The defi nition of the Fourier transform (Chapter 6) and some transforms and 
transform relationships are simpler in the f form than in the � form. 

The advantages of the � form are the following:

 1. Resonant frequencies of real systems, expressed directly in terms of physical 
parameters, are more simply expressed in the � form than in the f form. The 
resonant frequency of an LC oscillator is � �0

2
0

21 2= =/LC f( )  and the half-power 
corner frequency of an RC lowpass fi lter is � �c cRC f= =1 2/ .

 2. The Laplace transform (Chapter 8) is defi ned in a form that is more simply 
related to the � form than to the f form.
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 3. Some Fourier transforms are simpler in the � form.
 4. Use of � in some expressions makes them more compact. For example, 

A tcos( )� �0 +  is more compact than A f tcos( )2 0� �+ .

Sinusoids and exponentials are important in signal and systems analysis because 
they arise naturally in the solutions of the differential equations that often describe sys-
tem dynamics. As we will see in the study of the Fourier series and Fourier transform, 
even if signals are not sinusoids, most of them can be expressed as linear combinations 
of sinusoids.

FUNCTIONS  WITH  DISCONTINUITIES

Continuous-time sines, cosines and exponentials are all continuous and differentiable 
at every point in time. But many other types of important signals that occur in practi-
cal systems are not continuous or differentiable everywhere. A common operation in 
systems is to  switch a signal on or off at some time (Figure 2.6).

Figure 2.6
Examples of signals that are switched on or off at some time
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The functional descriptions of the signals in Figure 2.6 are complete and ac-
curate but are in a cumbersome form. Signals of this type can be better described 
mathematically by multiplying a function that is continuous and differentiable for 
all time by another function that switches from zero to one or one to zero at some 
fi nite time.

In signal and system analysis  singularity functions, which are related to each 
other through integrals and derivatives, can be used to mathematically describe signals 
that have discontinuities or discontinuous derivatives. These functions, and functions 
that are closely related to them through some common system operations, are the sub-
ject of this section. In the consideration of singularity functions we will extend, modify 
and/or generalize some basic mathematical concepts and operations to allow us to ef-
fi ciently analyze real signals and systems. We will extend the concept of what a deriva-
tive is, and we will also learn how to use an important mathematical entity, the impulse, 
which is a lot like a function but is not a function in the usual sense.

 2.3 Continuous-Time Signal Functions 23
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t

sgn(t)

1

−1
t

sgn(t)

1

−1

Figure 2.7
The signum function

The  Signum Function
For nonzero arguments, the value of the signum function has a magnitude of one and a 
sign that is the same as the sign of its argument:

 sgn( )

,

,

,

t

t

t

t

=
>
=

− <

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1 0

0 0

1 0

 (2.1)

(See Figure 2.7).

The graph on the left in Figure 2.7 is of the exact mathematical defi nition. The 
graph on the right is a more common way of representing the function for engineer-
ing purposes. No practical signal can change discontinuously, so if an approximation 
of the signum function were generated by a signal generator and viewed on an oscil-
loscope it would look like the graph on the right. The signum function is intrinsic in 
MATLAB (and called the  sign function).

The  Unit-Step Function
The unit-step function is defi ned by 

 u( )

,

,

t

t

t

t

=
>
=
<

⎧
⎨
⎪

⎩⎪

1 0

1 2 0

0 0

/ ,  (2.2)

(See Figure 2.8). It is called the unit step because the step is one unit high in the system 
of units used to describe the signal.1

1 Some authors defi ne the unit step by

u( )
,

,
t

t

t
=

≥
<

⎧
⎨
⎩

1 0

0 0
 or u( )

,

,
t

t

t
=

>
<

⎧
⎨
⎩

1 0

0 0
 or u( )

,

,
t

t

t
=

>
≤

⎧
⎨
⎩

1 0

0 0

In the middle defi nition the value at t = 0 is undefi ned but fi nite. The unit steps defi ned by these defi nitions have 
an identical effect on any real physical system.
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t

u(t)

1
1
2

Figure 2.8
The unit-step function
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The unit step can mathematically represent a common action in real physical sys-
tems, fast switching from one state to another. In the circuit of Figure 2.9 the switch 
moves from one position to the other at time t = 0. The voltage applied to the RC net-
work is v ( ) u( )RC bt V t= . The current through the resistor and capacitor is

 i( ) ( ) u( )t V R e tb
t RC= −/ /

and the voltage across the capacitor is v( ) ( ) u( )t V e tb
t RC= − −1 / .

There is an intrinsic function in MATLAB, called   heaviside2 which returns a 
one for positive arguments, a zero for negative arguments and a NaN for zero arguments. 
The  MATLAB constant  NaN is “not a number” and indicates an undefi ned value. There 
are practical problems using this function in numerical computations because the re-
turn of an undefi ned value can cause some programs to prematurely terminate or return 
useless results. 

We can  create our own functions  in  MATLAB, which become functions we can 
call upon just like the intrinsic functions cos, sin, exp, etc. MATLAB functions are de-
fi ned by creating an m fi le, a fi le whose  name has the extension “.m”. We could create 
a fi le that fi nds the length of the hypotenuse of a right triangle given the lengths of the 
other two sides.

% Function to compute the length of the hypotenuse of a 
% right triangle given the lengths of the other two sides
%
% a - The length of one side
% b - The length of the other side
% c - The length of the hypotenuse
%
% function c = hyp(a,b)
%
function c = hyp(a,b)
 c = sqrt(a^2 + b^2) ;

The fi rst 9 lines in this example, which are preceded by %, are   comment lines that 
are not executed but serve to document how the function is used. The fi rst executable 
line must begin with the keyword function. The rest of the fi rst line is in the form

result = name(arg1, arg2,...)

2 Oliver Heaviside was a self-taught English electrical engineer who adapted complex numbers to the study of 
electrical circuits, invented mathematical techniques for the solution of differential equations and reformulated 
and simplifi ed Maxwell’s fi eld equations. Although at odds with the scientifi c establishment for most of his life, 
Heaviside changed the face of mathematics and science for years to come. It has been reported that a man once 
complained to Heaviside that his writings were very diffi cult to read. Heaviside’s response was that they were 
even more diffi cult to write!

Vb

R

C 

t = 0

vRC(t)

+

-

Figure 2.9
Circuit with a switch whose effect can be 
represented by a unit step
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26 Chapter  2  Mathematical Description of Continuous-Time Signals

where result will contain the returned value, which can be a scalar, a vector or a matrix 
(or even a cell array or a structure, which are beyond the scope of this text), name is 
the function name and arg1, arg2, . . . are the parameters or  arguments passed to the 
function. The arguments can also be scalars, vectors or matrices (or cell arrays or struc-
tures). The name of the fi le containing the function defi nition must be name.m.

Below is a listing of a MATLAB function to implement the unit-step function in 
numerical computations.

% Unit-step function defi ned as 0 for input argument values 
% less than zero, 1/2 for input argument values equal to zero,
%  and 1 for input argument values greater than zero. This
%  function uses the sign function to implement the unit-step 
%  function. Therefore value at t = 0 is defi ned. This avoids 
% having undefi ned values during the execution of a program
% that uses it.
%
% function y = us(x)
%
function y = us(x)
 y = (sign(x) + 1)/2 ;

This function should be saved in a fi le named “us.m”. 

The Unit- Ramp Function
Another type of signal that occurs in systems is one that is switched on at some time and 
changes linearly after that time or changes linearly before some time and is switched 
off at that time (Figure 2.10). Signals of this kind can be described with the use of the 
ramp function. The  unit ramp function (Figure 2.11) is the integral of the unit-step 
function. It is called the unit ramp function because, for positive t, its slope is one 
amplitude unit per time unit.

 ramp( )
,

,
u( ) u( )t

t t

t
d t t

t

=
>
≤

⎧
⎨
⎩

⎫
⎬
⎭

= =
−∞
∫

0

0 0
� �  (2.3)

20 

t = 100 ms

t

1V

t = 6 s
t

t = 10 s

t = 20 μs

t 

x(t) x(t)

x(t)

t

x(t)

4 mA

−12 Ν

cm
s

Figure 2.10
Functions that change linearly before or after some 
time, or are multiplied by functions that change 
linearly before or after some time

t

ramp(t)

1

1

Figure 2.11
The unit-ramp function
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The ramp is defi ned by ramp( ) u( )t d
t

=
−∞∫ � �. In this equation, the symbol � is the 

independent variable of the  unit-step function and the variable of integration. But 

t is the independent variable of the ramp function. The equation says, “to fi nd the 
value of the ramp function at any value of t, start with � at negative infi nity and move 
in � up to � = t, while accumulating the area under the unit-step function.” The total 
area accumulated from � = −∞ to � = t is the value of the ramp function at time t 
(Figure 2.12). For t less than zero, no area is accumulated. For t greater than zero, 
the area accumulated equals t because it is the area of a rectangle with width t and 
height one.

τ

u(τ)

1

t

ramp(t)

1 2 3 4 5-5 -4 -3 -2 -1

1 2 3 4 5-5 -4 -3 -2 -1
τ

u(τ)

1

1 2 3 4 5-5 -4 -3 -2 -1
τ

u(τ)

1

1 2 3 4 5-5 -4 -3 -2 -1
τ

u(τ)

1

1 2 3 4 5-5 -4 -3 -2 -1

1
2
3
4
5

t = -1 t = 1 t = 3 t = 5

Figure 2.12
Integral relationship between the unit step and the unit ramp

Some authors prefer to use the expression t tu( ) instead of ramp( )t . Since they are 
equal, the use of either one is correct and just as legitimate as the other one. Below is 
a MATLAB  m fi le for the ramp function.

% Function to compute the ramp function defi ned as 0 for 
% values of the argument less than or equal to zero and 
% the value of the argument for arguments greater than zero.
% Uses the unit-step function us(x).
%
% function y = ramp(x)
%
function y = ramp(x)
 y = x.*us(x) ;

The Unit Impulse
Before we defi ne the unit impulse we will fi rst explore an important idea. Consider a 
unit-area, rectangular pulse defi ned by

 	( )
,

,
t

a t a

t a
=

≤
>

⎧
⎨
⎩

1 2

0 2

/ /

/

(See Figure 2.13). Let this function multiply a function g( )t  that is fi nite 
and continuous at t = 0 and fi nd the area A under the product of the two functions 
A t t dt=

−∞

∞
∫ 	( ) g( )  (Figure 2.14).
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28 Chapter  2  Mathematical Description of Continuous-Time Signals

Using the defi nition of 	( )t  we can rewrite the integral as

 A
a

t dt
a

a

=
−
∫

1

2

2

g( )
/

/

.

The function g( )t  is continuous at t = 0. Therefore it can be expressed as a  McLaurin 
series of the form

 g( )
g ( )

!
g( ) g ( )

g ( )

!

( )

t
m

t t t
m

m

m

= = + ′ + ′′

=

∞

∑ 0
0 0

0

20

2 ++ + +� �
g ( )

!

( )m
m

m
t

0

Then the integral becomes

 A
a

t t
m

t
m

m= + ′ + ′′ + + +
⎡
⎣
⎢

1
0 0

0

2

02g( ) g ( )
g ( )

!

g ( )

!

( )

� �
⎤⎤
⎦
⎥

−
∫ dt
a

a

/

/

2

2

All the odd powers of t contribute nothing to the integral because it is taken over sym-
metrical limits about t = 0. Carrying out the integral,

 A
a

a
a a= + ⎛

⎝⎜
⎞
⎠⎟

′′ + ⎛
⎝⎜

⎞
⎠⎟

1
0

12

0

2 80

0

4

3 5 4

g( )
g ( )

!

g ( )( )

!!
+

⎡

⎣
⎢

⎤

⎦
⎥�

Take the limit of this integral as a approaches zero. 

 lim g( )
a

A
→

=
0

0 .

In the limit as a approaches zero, the function 	( )t  extracts the value of any continuous 
fi nite function g( )t  at time t = 0, when the product of 	( )t  and g( )t  is integrated over 
any range of time that includes time t = 0.

Now try a different defi nition of the function 	( )t . Defi ne it now as

 	( )
( )( ),

,
t

a t a t a

t a
=

− ≤
>

⎧
⎨
⎩

1 1

0

/ /

(See Figure 2.15).
If we make the same argument as before we get the area

 A t t dt
a

t

a
t dt

a

a

= = −⎛
⎝⎜

⎞
⎠⎟

−∞

∞

−
∫ ∫	( ) g( ) g( )

1
1 .

Δ(t)

t 

1
a

2
a

2
a

Figure 2.13
A  unit-area rectangular pulse of 
width a

t

Δ(t)
Δ(t)g(t)

1
a

2
a

2
a

g(t)

Figure 2.14
Product of a unit-area rectangular 
pulse centered at t = 0 and a func-
tion g( )t  that is continuous and 
fi nite at t = 0
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Taking the limit as a approaches zero, we again get g( )0 , exactly the same result we got 
with the previous defi nition of 	( )t . The two defi nitions of 	( )t  have the same effect in 
the limit as a approaches zero (but not before). The shape of the function is not what is 
important in the limit, but its area is important. In either case 	( )t  is a function with an area 
of one, independent of the value of a. (As a approaches zero these functions do not have a 
“shape” in the ordinary sense because there is no time in which to develop one.) There are 
many other defi nitions of 	( )t  that could be used with exactly the same effect in the limit.

The  unit impulse 
( )t  can now be implicitly defi ned by the property that when it is 
multiplied by any function g( )t  that is fi nite and continuous at t = 0 and the product is 
integrated over a time range that includes t = 0, the result is g( )0 :

 g( ) ( ) g( )0 0= < <∫ 
 � �
�

�

t t dt, .

In other words,

 
( ) g( ) lim ( ) g( )t t dt t t dt
a

−∞

∞

→
−∞

∞

∫ ∫=
0

	  (2.4)

where 	( )t  is any of many functions that have the characteristics described above. The 
notation 
( )t  is a convenient shorthand notation that avoids having to constantly take a 
limit when using impulses.

The Impulse, the Unit Step and  Generalized Derivatives One way of introducing 
the unit impulse is to defi ne it as the derivative of the  unit-step function. Strictly speak-
ing, the derivative of the unit step u( )t  is undefi ned at t = 0. But consider a function g( )t  
of time and its time derivative ′g ( )t  in Figure 2.16.

t

g(t)

1

a
2

a
2

1
2

t 

g'(t)

a
2

1
a

a
2

Figure 2.16
Functions that approach the unit step and unit impulse

Δ(t)

t 

1
a

aa

Figure 2.15
A  unit-area triangular pulse of 
base half-width a
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30 Chapter  2  Mathematical Description of Continuous-Time Signals

The derivative of g( )t  exists for all t except at t a= − /2 and at t a= + /2. As a ap-
proaches zero, the function g( )t  approaches the unit step. In that same limit the nonzero 
width of the function ′g ( )t  approaches zero while its area remains the same, one. So 

′g ( )t  is a short-duration pulse whose area is always one, the same as the initial defi ni-
tion of 	( )t  above, with the same implications. The limit as a approaches zero of ′g ( )t  is 
called the generalized derivative of u( )t . Therefore the unit impulse is the generalized 
derivative of the unit step.

The generalized derivative of any function g( )t  with a discontinuity at t t= 0 is

 
d

dt
t

d

dt
t t tt t(g( )) (g( )) lim[g( ) g( )]= + + − −≠

→0
0�

� �

Sizze of the discontinuity
� ����� �����


 �( ) ,t t− >0 0.

The unit step is the integral of the unit impulse

 u( ) ( )t d
t

=
−∞
∫ 
 � �.

The derivative of the unit step u( )t  is zero everywhere except at t = 0, so the unit im-
pulse is zero everywhere except at t = 0. Since the unit step is the integral of the unit 
impulse, a defi nite integral of the unit impulse whose integration range includes t = 0 
must have the value, one. These two facts are often used to defi ne the unit impulse.

 
 
( ) , ( )
,

,
t t t dt

t t

t

t

= ≠ =
< <

∫0 0
1 0

0
1

2
1 2

and
otherwisse

⎧
⎨
⎩

 (2.5)

The area under an impulse is called its  strength or sometimes its  weight. An impulse with 
a strength of one is called a unit impulse. The exact defi nition and characteristics of the 
impulse require a plunge into generalized function theory. It will suffi ce here to consider a 
unit impulse simply to be a pulse of unit area whose duration is so small that making it any 
smaller would not signifi cantly change any signals in the system to which it is applied. 

The impulse cannot be graphed in the same way as other functions because its 
value is undefi ned when its argument is zero. The usual convention for graphing an im-
pulse is to use a vertical arrow. Sometimes the strength of the impulse is written beside 
it in parentheses, and sometimes the height of the arrow indicates the strength of the 
impulse. Figure 2.17 illustrates some ways of representing impulses graphically.

t

δ(t)

(1)
t

δ(t)

1

t

9δ(t-1)

9

t 

−3δ(t+2)

−3

1
-2

Figure 2.17
Graphical  representations of impulses

The  Equivalence Property of the Impulse A common mathematical operation in signal 
and system analysis is the product of an impulse with another function, g( ) ( )t A t t
 − 0 .
Consider that the impulse A t t
( )− 0  is the limit of a pulse with area A centered at t t= 0, 
with width a, as a approaches zero (Figure 2.18). The product is a pulse whose height 
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at the mid-point is A t ag( )0 /  and whose width is a. As a approaches zero, the pulse 
becomes an impulse and the strength of that impulse is A tg( )0 . Therefore

 g( ) ( ) g( ) ( )t A t t t A t t
 
− = −0 0 0 . (2.6)

This is sometimes called the equivalence property of the impulse.

The  Sampling Property of the Impulse Another important property of the unit im-
pulse that follows from the equivalence property is its sampling property.

 g( ) ( ) g( )t t t dt t
 − =
−∞

∞

∫ 0 0  (2.7)

According to the equivalence property, the product g( ) ( )t t t
 − 0  is equal to g( ) ( )t t t0 0
 − . 
Since t0 is one particular value of t, it is a constant and g( )t0  is also a constant and

 g( ) ( ) g( ) ( ) gt t t dt t t t dt
 
− = − =
−∞

∞

−∞

∞

=

∫ ∫0 0 0

1
� ��� ���

(( )t0 .

Equation (2.7) is called the sampling property of the impulse because in an integral of 
this type it samples the value of the function g( )t  at time t t= 0. (An older name is sift-
ing property. The impulse “sifts out” the value of g( )t , at time t t= 0.)

The  Scaling  Property of the Impulse Another important property of the impulse is 
its scaling property

 
 
( ( )) ( )a t t
a

t t− = −0 0
1

  (2.8)

which can be proven through a change of variable in the integral defi nition and sepa-
rate consideration of positive and negative values for a (see Exercise 29). Figure 2.19 
illustrates some effects of the sealing property of the impulse.

There is a function in MATLAB called  dirac that implements the unit impulse in 
a limited sense. It returns zero for nonzero arguments and it returns inf for zero argu-
ments. This is not often useful for numerical computations but it is useful for symbolic 
analysis. The continuous-time impulse is not an ordinary function. It is sometimes 

t

A
a

a
2

t0 a
2

t0
t0 t0

Aδ(t-t0)

t 
a
2

t0
a
2

t0

g(t)Aδ(t-t0)

Ag(t0)
a

g(t0)

g(t)

Figure 2.18
Product of a function g( )t  and a rectangular function that becomes an impulse as its width 
approaches zero
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32 Chapter  2  Mathematical Description of Continuous-Time Signals

possible to write a MATLAB function that can, in certain types of computations, be 
used to simulate the impulse and obtain useful numerical results. But this must be 
done with great care, based on a complete understanding of impulse properties. No 
MATLAB function will be presented here for the continuous-time impulse because of 
these complications.

The Unit  Periodic Impulse or  Impulse Train
Another useful generalized function is the periodic impulse or impulse train 
(Figure 2.20), a uniformly spaced infi nite sequence of unit impulses.

 
 
T
n

t t nT( ) ( )= −
=−∞

∞

∑  (2.9)

t

δ(3t)

(  )
t

2

1

1
3

δ(   )t-1
2

t 

2

2

δ(     )-1 t
2

Figure 2.19
Examples of the effect of the scaling 
property of impulses

t

δT(t) δT(t)

......
(1)(1)(1) (1) (1)

T-T-2T 2T
t 

......
1

T-T-2T 2T
Figure 2.20
The periodic impulse

We can derive a scaling property for the periodic impulse. From the defi nition

 
 
T
k

a t t a t t kT( ( )) ( ( ) )− = − −
=−∞

∞

∑0 0 .

Using the scaling property of the impulse 

 
 
T
k

a t t a t t kT a( ( )) ( ) ( )− = − −
= −∞

∞

∑0 01/ /

and the summation can be recognized as a periodic impulse of period T a/

 
 
T T aa t t a t t( ( )) ( ) ( )/− = −0 01/ .

The impulse and periodic impulse may seem very abstract and unrealistic. The impulse will 
appear later in a fundamental operation of linear system analysis, the  convolution integral. 
Although, as a practical matter, a true impulse is impossible to generate, the mathematical 
impulse and the periodic impulse are very useful in signal and system analysis. Using them 
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and the convolution operation we can mathematically represent, in a compact notation, 
many useful signals that would be more cumbersome to represent in another way.3

A  Coordinated Notation for  Singularity Functions
The unit step, unit impulse and unit ramp are the most important members of the sin-
gularity functions. In some signal and system literature these functions are indicated by 
the coordinated notation u ( )k t  in which the value of k determines the function. For ex-
ample, u ( ) ( )0 t t= 
  and u ( ) u( )− =1 t t  and u ( ) ramp( )− =2 t t . In this notation, the subscript 
indicates how many times an impulse is differentiated to obtain the function in question 
and a negative subscript indicates that integration is done instead of differentiation. The 
 unit doublet u ( )1 t  is defi ned as the generalized derivative of the unit impulse, the  unit 
triplet u ( )2 t  is defi ned as the generalized derivative of the unit doublet and so on. Even 
though the unit doublet and triplet and higher generalized derivatives are even less prac-
tical than the unit impulse, they are sometimes useful in signal and system theory.

The Unit-Rectangle Function
A very common type of signal occurring in systems is one that is switched on at some 
time and then off at a later time. It is convenient to defi ne the   unit rectangle function 
(Figure 2.21) for use in describing this type of signal. 

 rect( )

,

,

u(t

t

t

t

t=
<
=
>

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

= +
1 1 2

1 2 1 2

0 1 2

1

/

/ , /

/

// /2 1 2) u( )− −t  (2.10)

It is a unit rectangle function because its width, height and area are all one. Use of 
the rectangle function shortens the notation when describing some signals. The unit 
rectangle function can be thought of as a “gate” function. When it multiplies another 
function, the product is zero outside its nonzero range and is equal to the other func-
tion inside its nonzero range. The rectangle “opens a gate,” allowing the other function 
through and then “closes the gate” again. Table 2.1 summarizes the functions and the 
impulse and periodic impulse described above.

% Unit rectangle function. Uses the unit-step function us(x).
%
% function y = rect(x)
%
function y = rect(x)
 y = us(x+0.5) - us(x-0.5) ;

3 Some authors prefer to always refer to the periodic impulse as a summation of impulses 
( )t nT
n

−= −∞
∞∑ . 

This notation is less compact than 
T t( ) but may be considered easier than remembering how to use the new 
function name. Other authors may use different names.

t 

rect(t)

1

t

rect(t)

1

1
2

1
2

1
2

1
2

1
2

Figure 2.21
The unit-rectangle function
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34 Chapter  2  Mathematical Description of Continuous-Time Signals

Table 2.1 Summary of  continuous-time signal functions, the impulse and the periodic impulse

Sine

Cosine

Exponential

Unit Step

Signum

UUnit Ramp

Unit Impulse

Periodic Impulse

Unit Rectangle

 

sin( ) sin( )

cos( ) cos( )

2 0 0

2 0 0

� �

� �

f t t

f t t

est

or

or

uu( )

sgn( )

ramp( ) u( )

( )

( ) ( )

t

t

t t t

t

T t t nT
n

=

= −
=−∞

∞
∑

�

� �

rrect( ) u( ) u( )t t t= + − −1 2 1 2/ /

2.4  COMBINATIONS  OF FUNCTIONS
Standard functional notation for a continuous-time function is g( )t  in which g is the 
function name and everything inside the parentheses ( )⋅  is called the argument of the 
function. The argument is written in terms of the independent variable. In the case of 
g( )t , t is the  independent variable and the expression is the simplest possible expression 
in terms of t, t itself. A function g( )t  returns a value g for every value of t it accepts. In 
the function g( )t t= +2 4 2, for any value of t there is a corresponding value of g. If t 
is 1, then g is 6 and that is indicated by the notation g( )1 6= .

The argument of a function need not be simply the independent variable. If 
g( )t e t= −5 2 , what is g( )t + 3 ? We replace t by t + 3 everywhere on both sides of 
g( )t e t= −5 2  to get g( ) ( )t e t+ = − +3 5 2 3 . Observe that we do not get 5 2 3e t− + . Since t was 
multiplied by minus two in the exponent of e, the entire expression t + 3 must also be 
multiplied by minus two in the new exponent of e. Whatever was done with t in the 
function g( )t  must be done with the entire expression involving t in any other func-
tion g( )expression . If g( )t t t= + −3 22 3 then g( ) ( ) ( )2 3 2 2 2 3 4 162 3 2 3t t t t t= + − = + −  
and g( ) ( ) ( )1 3 1 2 1 2 4 5 22 3 2 3− = + − − − = + − +t t t t t t . If g( ) cos( )t t= 10 20�  then 
g( ) cos( ) cos( )t t t/ /4 10 20 4 10 5= =� �  and g( ) cos( )e et t= 10 20� . If g( )t e t= −5 10 , then 
g( )2 5 20x x= −e  and g( )z e e z− = −1 5 10 10 . 

In MATLAB, when a function is  invoked by passing an argument to it, MATLAB 
evaluates the argument, then computes the function value. For most functions, if the ar-
gument is a vector or matrix, a value is returned for each element of the vector or matrix. 
Therefore MATLAB functions do exactly what is described here for arguments that are 
functions of the independent variable: They accept numbers and return other numbers.

>> exp(1:5)
ans =
  2.7183 7.3891 20.0855 54.5982 148.4132
>> us(-1:0.5:1)
ans =
 0 0 0.5000 1.0000 1.0000
>> rect([-0.8:0.4:0.8]’)
ans =
  0
  1
  1
  1
  0
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In some cases a single  mathematical function may completely describe a signal. 
But often one function is not enough for an accurate description. An operation that 
allows versatility in the mathematical representation of arbitrary signals is combining 
two or more functions. The combinations can be sums, differences, products and/or 
quotients of functions. Figure 2.22 shows some examples of  sums, products and quo-
tients of functions. (The sinc function will be defi ned in Chapter 6.)

-1 1

-3

3

-1 1

-10

10

-1 1

1

-1 1

-2

2

t

t

t 

t

[sin(4πt)+2] cos(40πt) e-2tcos(10πt)

cos(20πt) + cos(22πt)sin(4πt)
4πtsinc(4t) = 

Figure 2.22
Examples of sums, products and quotients of functions

EXAMPLE 2.1

 Graphing function  combinations with MATLAB

Using MATLAB, graph the function combinations,

 x ( ) sin( ) sin( )1
220 19t e t e tt t= +− −� �/

 x ( ) rect( )cos( )2 20t t t= � .

% Program to graph some demonstrations of continuous-time

% function combinations

t = 0:1/240:6 ; % Vector of time points for graphing x1

% Generate values of x1 for graphing

x1 = exp(-t).*sin(20*pi*t) + exp(-t/2).*sin(19*pi*t) ;

subplot(2,1,1) ; % Graph in the top half of the fi gure window

p = plot(t,x1,’k’) ; % Display the graph with black lines

set(p,’LineWidth’,2) ; % Set the line width to 2

% Label the abscissa and ordinate

xlabel(‘\itt’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘x_1({\itt})’,’FontName’,’Times’,’FontSize’,24) ;
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set(gca,’FontName’,’Times’,’FontSize’,18) ; grid on ;

t = -2:1/240:2 ; % Vector of time points for graphing x2

% Generate values of x2 for graphing

x2 = rect(t).*cos(20*pi*t) ;

subplot(2,1,2); % Graph in the bottom half of the fi gure window

p = plot(t,x2,’k’); % Display the graph with black lines

set(p,’LineWidth’,2); % Set the line width to 2

% Label the abscissa and ordinate

xlabel(‘\itt’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘x_2({\itt})’,’FontName’,’Times’,’FontSize’,24) ;

set(gca,’FontName’,’Times’,’FontSize’,18) ; grid on ;

The graphs that result are shown in Figure 2.23.
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Figure 2.23
MATLAB graphical result

2.5 SHIFTING AND  SCALING
It is important to be able to describe signals both analytically and graphically and to be 
able to relate the two different kinds of descriptions to each other. Let g( )t  be defi ned 
by Figure 2.24 with some selected values in the table to the right of the fi gure. To com-
plete the function description let g( ) ,t t= >0 5. 

 AMPLITUDE SCALING

Consider multiplying a function by a constant. This can be indicated by the notation 
g( ) g( )t A t→ . Thus g( ) g( )t A t→  multiplies g( )t  at every value of t by A. This is called 
amplitude scaling. Figure 2.25 shows two examples of amplitude scaling the function 
g( )t  defi ned in Figure 2.24.
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A  negative amplitude-scaling factor fl ips the function vertically. If the scaling fac-
tor is −1 as in this example, fl ipping is the only action. If the scaling factor is some 
other factor A and A is negative, amplitude scaling can be thought of as two successive 
operations g( ) g( ) ( g( ))t t A t→ − → − , a fl ip followed by a positive amplitude scaling. 
Amplitude scaling directly affects the dependent variable g. The following two sec-
tions introduce the effects of changing the independent variable t.

 TIME  SHIFTING

If the graph in Figure 2.24 defi nes g( )t , what does g( )t − 1  look like? We can under-
stand the effect by graphing the value of g( )t − 1  at multiple points as in Figure 2.26. It 
should be apparent after examining the graphs and tables that replacing t by t − 1 shifts 
the function one unit to the right (Figure 2.26). The change t t→ − 1 can be described 
by saying “for every value of t, look back one unit in time, get the value of g at that 
time, and use it as the value for g( )t − 1  at time t.” This is called time shifting or  time 
translation.

We can summarize time shifting by saying that the change of independent variable 
t t t→ − 0 where t0 is any constant, has the effect of shifting g( )t  to the right by t0 units. 
(Consistent with the accepted interpretation of negative numbers, if t0 is negative, the 
shift is to the left by t0  units.)

Figure 2.27 shows some time-shifted and amplitude-scaled unit-step functions. 
The rectangle function is the difference between two unit-step functions time-shifted 
in opposite directions rect( ) u( ) u( )t t t= + − −1 2 1 2/ / .
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Figure 2.24
Graphical defi nition of a function g( )t
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Figure 2.25
Two examples of  amplitude scaling
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38 Chapter  2  Mathematical Description of Continuous-Time Signals

Time shifting is accomplished by a change of the independent variable. This type 
of change can be done on any independent variable; it need not be time. Our examples 
here are using time, but the independent variable could be a  spatial dimension. In 
that case we could call it  space shifting. Later, in the chapters on transforms, we will 
have functions of an independent variable frequency, and this change will be called 
 frequency shifting. The mathematical signifi cance is the same regardless of the name 
used for the independent variable.

Amplitude scaling and time shifting occur in many practical physical systems. In 
ordinary conversation there is a  propagation delay, the time required for a sound wave 
to propagate from one person’s mouth to the other person’s ear. If that distance is 2 m 
and sound travels at about 330 meters per second, the propagation delay is about 6 ms, 
a delay that is not noticeable. But consider an observer watching a pile driver drive a 
pile from 100 m away. First the observer senses the image of the driver striking the 
pile. There is a slight delay due to the speed of light from the pile driver to the eye but 
it is less than a microsecond. The sound of the driver striking the pile arrives about 
0.3 seconds later, a noticeable delay. This is an example of a time shift. The sound of 
the driver striking the pile is much louder near the driver than at a distance of 100 m, an 
example of amplitude scaling. Another familiar example is the delay between seeing a 
lightning strike and hearing the thunder it produces.

As a more technological example, consider a  satellite communication system 
(Figure 2.28). A ground station sends a strong electromagnetic signal to a satellite. When 
the signal reaches the satellite the electromagnetic fi eld is much weaker than when it left 
the ground station, and it arrives later because of the propagation delay. If the satellite 
is geosynchronous it is about 36,000 km above the earth, so if the ground station is di-
rectly below the satellite the propagation delay on the uplink is about 120 ms. For ground 
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Figure 2.26
Graph of g( )t −1  in relation to g( )t  illustrating 
time shifting 

Figure 2.27
Amplitude-scaled and  time-shifted unit-step functions
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stations not directly below the satellite the delay is a little more. If the transmitted signal 
is A tx( ), the received signal is B t tpx( )−  where B is typically much smaller than A and 
tp is the propagation time. In communication links between locations on earth that are 
very far apart, more than one up and down link may be required to communicate. If that 
communication is voice communication between a television anchor in New York and a 
reporter in Calcutta, the total delay can easily be one second, a noticeable delay that can 
cause signifi cant awkwardness in conversation. Imagine the problem of communicating 
with the fi rst astronauts on Mars. The minimum one-way delay when Earth and Mars are 
in their closest proximity is more than four minutes!

In the case of long-range, two-way communication,  time delay is a problem. In 
other situations it can be quite useful, as in radar and sonar. In this case the time delay 
between when a pulse is sent out and when a refl ection returns indicates the distance to 
the object from which the pulse refl ected, for example, an airplane or a submarine.

 TIME SCALING

Consider next the change of independent variable indicated by t t a→ / . This expands 
the function g( )t  horizontally by the factor a in g( )t a/ . This is called time scaling. As 
an example, let’s compute and graph selected values of g( )t /2  (Figure 2.29). 

Consider next the change t t→ − /2. This is identical to the last example except the 
scaling factor is now −2 instead of 2 (Figure 2.30). Time scaling t t a→ /  expands the 
function horizontally by a factor of a  and, if a < 0, the function is also  time reversed. 
Time reversal means fl ipping the curve horizontally. The case of a negative a can be 
conceived as t t→ −  followed by t t a→ / . The fi rst step t t→ −  time-reverses the func-
tion without changing its horizontal scale. The second step t t a→ /  time-scales the 
already-time-reversed function by the scaling factor a .

Time scaling can also be indicated by t bt→ . This is not really new because it is 
the same as t t a→ /  with b a= 1/ . So all the rules for time scaling still apply with that 
relation between the two scaling constants a and b.

Figure 2.28
Communication satellite in orbit
© Vol. 4 PhotoDisc / Getty
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Figure 2.29
Graph of g( )t /2  in relation to g( )t  illustrating time scaling 
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Figure 2.30
Graph of g( )−t /2  in relation to g( )t  illustrating time scaling for a negative 
scaling factor
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A common experience that illustrates time scaling is the Doppler effect. If we stand 
by the side of a road and a fi re truck approaches while sounding its horn, as the fi re 
truck passes, both the volume and the pitch of the horn seem to change (Figure 2.31). 
The volume changes because of the proximity of the horn; the closer it is to us, the 
louder it is. But why does the pitch change? The horn is doing exactly the same thing 
all the time, so it is not the pitch of the sound produced by the horn that changes, but 
rather the pitch of the sound that arrives at our ears. As the fi re truck approaches, 
each successive compression of air caused by the horn occurs a little closer to us than 
the last one, so it arrives at our ears in a shorter time than the previous compression 
and that makes the frequency of the sound wave at our ear higher than the frequency 
emitted by the horn. As the fi re truck passes, the opposite effect occurs, and the sound 
of the horn arriving at our ears shifts to a lower frequency. While we are hearing a pitch 
change, the fi refi ghters on the truck hear a constant horn pitch. 

Let the sound heard by the fi refi ghters be described by g( )t . As the fi re truck ap-
proaches, the sound we hear is A( ) g( )t at  where A( )t  is an increasing function of time, 
which accounts for the volume change, and a is a number slightly greater than one. The 
change in amplitude as a function of time is called  amplitude modulation in com-
munication systems. After the fi re truck passes, the sound we hear shifts to B( ) g( )t bt  
where B( )t  is a decreasing function of time and b is slightly less than one (Figure 2.32). 
(In Figure 2.32 modulated sinusoids are used to represent the horn sound. This is not 
precise but it serves to illustrate the important points.)

The Doppler shift also occurs with  light waves. The  red shift of optical spectra 
from distant stars is what fi rst indicated that the universe was expanding. When a star 
is receding from the earth, the light we receive on earth experiences a Doppler shift 
that reduces the frequency of all the light waves emitted by the star (Figure 2.33). 
Since the color red has the lowest frequency detectable by the human eye, a reduction 
in frequency is called a red shift because the visible spectral characteristics all seem to 

Figure 2.31
Firefi ghters on a fi re truck
© Vol. 94 Corbis
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move toward the red end of the spectrum. The light from a star has many characteristic 
variations with frequency because of the composition of the star and the path from the 
star to the observer. The amount of shift can be determined by comparing the spectral 
patterns of the light from the star with known spectral patterns measured on Earth in 
a laboratory.

Time scaling is a change of the independent variable. As was true of  time shifting, 
this type of change can be done on any independent variable; it need not be time. In 
later chapters we will do some frequency scaling.

Figure 2.33
The Lagoon nebula
© Vol. 34 PhotoDisc / Getty

Figure 2.32
Illustration of the Doppler effect
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 SIMULTANEOUS SHIFTING AND SCALING

All three function changes,  amplitude scaling, time scaling and time shifting, can be 
applied simultaneously:

 g( ) gt A
t t

a
→ −⎛

⎝
⎞
⎠

0 . (2.11)

To understand the overall effect, it is usually best to break down a multiple change like 
(2.11) into successive simple changes:

 g( ) g( ) g(t A t A tA t t a
amplitude
scaling, / /⎯ →⎯⎯⎯ ⎯ →⎯⎯→ aa A

t t

a
t t t) g→ −⎯ →⎯⎯⎯ −⎛

⎝
⎞
⎠

0 0 . (2.12)

Observe here that the order of the changes is important. If we exchange the order of the 
time-scaling and time-shifting operations in (2.12) we get

 g( ) g( ) g(t A t AA t t t
amplitude
scaling,⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯→ − 0 tt t A t a t A

t t

a
t t a− ⎯ →⎯⎯ − ≠ −⎛

⎝
⎞
⎠

→
0 0

0) g( ) g/ / .

This result is different from the preceding result (unless a = 1 or t0 0= ). For a different 
kind of multiple change, a different sequence may be better, for example, A bt tg( )− 0 . 
In this case the sequence of amplitude scaling, time shifting and then time scaling is 
the simplest path to a correct result.

 g( ) g( ) g(t A t AA t t t
amplitude
scaling,⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯→ − 0 tt t A bt tt bt− ⎯ →⎯⎯ −→

0 0) g( ).

Figure 2.34 and Figure 2.35 illustrate some steps graphically for two functions. In 
these fi gures certain points are labeled with letters, beginning with “a” and proceeding 
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Figure 2.34
A sequence of amplitude scaling, time scaling and time shifting a function
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44 Chapter  2  Mathematical Description of Continuous-Time Signals

alphabetically. As each functional change is made, corresponding points have the same 
letter designation.

The functions previously introduced, along with function scaling and shifting, 
allow us to describe a wide variety of  signals. A signal that has a  decaying exponential 
shape after some time t t= 0 and is zero before that can be represented in the compact 
mathematical form x( ) u( )t Ae t tt= −− /�

0  (Figure 2.36).
A signal that has the shape of a  negative sine function before time t = 0 and a 

positive sine function after time t = 0 can be represented by x( ) sin( )sgn( )t A f t t= 2 0�  
(Figure 2.37).

Figure 2.35
A sequence of amplitude scaling, time shifting 
and time scaling a function
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Figure 2.37
Product of a sine and a signum function
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A signal that is a burst of a sinusoid between times t = 1 and t = 5 and zero else-
where can be represented by x( ) cos( ) rect(( ) )t A f t t= + −2 3 40� � /  (Figure 2.38).

EXAMPLE 2.2

 Graphing  function scaling and shifting with MATLAB

Using MATLAB, graph the function defi ned by

 g( )

,

,

,

,

,

t

t

t t

t t

t t

=

< −
− − − < <
− − < <

− < <

0 2

4 2 2 0

4 3 0 4

16 2 4 8

0 tt >

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ 8

.

Then graph the functions 3 1 1 2 3 2 1 2g( ), ( )g( ), g(( ) )t t t+ − −/ / .
We must fi rst choose a range of t over which to graph the function and the space between 

points in t to yield a curve that closely approximates the actual function. Let’s choose a range of 
− < <5 20t  and a space between points of 0.1. Also, let’s use the function feature of MATLAB 
that allows us to defi ne the function g( )t  as a separate MATLAB program, an m fi le. Then we can 
refer to it when graphing the transformed functions and not have to retype the function descrip-
tion. The g.m fi le contains the following code.

function y = g(t)

 % Calculate the functional variation for each range of time, t

 y1 = -4 - 2*t ; y2 = -4 + 3*t ; y3 = 16 - 2*t ;

 % Splice together the different functional variations in

 % their respective ranges of validity

 y = y1.*(-2<t & t<=0) + y2.*(0<t & t<=4) + y3.*(4<t & t<=8) ;

The MATLAB program contains the following code.

% Program to graph the function, g(t) = t^2 + 2*t - 1 and then to 

% graph 3*g(t+1), g(3*t)/2 and -2*g((t-1)/2).

tmin = -4 ; tmax = 20 ; % Set the time range for the graph

dt = 0.1 ; % Set the time between points

t = tmin:dt:tmax ; % Set the vector of times for the graph

g0 = g(t) ; % Compute the original “g(t)”

Figure 2.38
A sinusoidal “burst”
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g1 = 3*g(t+1) ; % Compute the fi rst change

g2 = g(3*t)/2 ; % Compute the second change

g3 = -2*g((t-1)/2) ; % Compute the third change

% Find the maximum and minimum g values in all the scaled or shifted

% functions and use them to scale all graphs the same

gmax = max([max(g0), max(g1), max(g2), max(g3)]) ;

gmin = min([min(g0), min(g1), min(g2), min(g3)]) ;

% Graph all four functions in a 2 by 2 arrangement

% Graph them all on equal scales using the axis command

% Draw grid lines, using the grid command, to aid in reading values

subplot(2,2,1) ; p = plot(t,g0,’k’) ; set(p,’LineWidth’,2) ;

xlabel(‘t’) ; ylabel(‘g(t)’) ; title(‘Original Function, g(t)’) ;

axis([tmin,tmax,gmin,gmax]) ; grid ;

subplot(2,2,2) ; p = plot(t,g1,’k’) ; set(p,’LineWidth’,2) ;

xlabel(‘t’) ; ylabel(‘3g(t+1)’) ; title(‘First Change) ;

axis([tmin,tmax,gmin,gmax]) ; grid ;

subplot(2,2,3) ; p = plot(t,g2,’k’) ; set(p,’LineWidth’,2) ;

xlabel(‘t’) ; ylabel(‘g(3t)/2’) ; title(‘Second Change) ;

axis([tmin,tmax,gmin,gmax]) ; grid ;

subplot(2,2,4) ; p = plot(t,g3,’k’) ; set(p,’LineWidth’,2) ;

xlabel(‘t’) ; ylabel(‘-2g((t-1)/2)’) ; title(‘Third Change) ;

axis([tmin,tmax,gmin,gmax]) ; grid ;

The graphical results are displayed in Figure 2.39.

Figure 2.39
MATLAB graphs of scaled and/or shifted functions
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Figure 2.40 shows more examples of amplitude-scaled, time-shifted and time-scaled 
versions of the functions just introduced.

2.6  DIFFERENTIATION AND  INTEGRATION
Integration and differentiation are common signal processing operations in practical 
systems. The derivative of a function at any time t is its slope at that time and the in-
tegral of a function at any time t is the accumulated area under the function up to that 
time. Figure 2.41 illustrates some functions and their derivatives. The zero crossings 
of all the derivatives have been indicated by light vertical lines that lead to the maxima 
and minima of the corresponding function.

There is a function  diff in MATLAB that does symbolic differentiation. 

>> x = sym(‘x’) ;
>> diff(sin(x^2))
ans =
2*cos(x^2)*x

This function can also be used numerically to fi nd the differences between adjacent 
values in a vector. These fi nite differences can then be divided by the increment of the 
independent variable to approximate some derivatives of the function that produced 
the vector.
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Figure 2.40
More examples of amplitude-scaled, time-shifted and time-scaled 
functions
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Some functions and their derivatives

 2.6 Differentiation and Integration 47

rob80687_ch02_019-076.indd   47rob80687_ch02_019-076.indd   47 12/21/10   6:41:16 PM12/21/10   6:41:16 PM



48 Chapter  2  Mathematical Description of Continuous-Time Signals

>> dx = 0.1 ; x = 0.3:dx:0.8 ; exp(x)
ans =
  1.3499 1.4918 1.6487 1.8221 2.0138 2.2255
>> diff(exp(x))/dx
ans =
  1.4197 1.5690 1.7340 1.9163 2.1179

Integration is a little more complicated than differentiation. Given a function, its 
derivative is unambiguously determinable (if it exists). However, its integral is not 
unambiguously determinable without some more information. This is inherent in one 
of the fi rst principles learned in integral calculus. If a function g( )x  has a derivative 

′g ( )x , then the function g( )x K+  (K a constant) has the same derivative ′g ( )x  regardless 
of the value of the constant K. Since integration is the opposite of differentiation, what 
is the integral of ′g ( )x ? It could be g( )x  but it could also be g( )x + K . 

The term integral has different meanings in different contexts. Generally speaking, 
integration and differentiation are inverse operations. An  antiderivative of a function 
of time g( )t  is any function of time that, when differentiated with respect to time, yields 
g( )t . An antiderivative is indicated by an integral sign without limits. For example, 

 
sin( )

cos( )
2

2
2

�

�
�

t
t dt= ∫ .

In words, sin( )2 2� �t /  is an antiderivative of cos( )2�t . An  indefi nite integral is an anti-

derivative plus a constant. For example, h( ) g( )t t dt C= +∫ . A  defi nite integral is an in-

tegral taken between two limits. For example, A t dt= ∫ g( )
�

�
. If � and � are constants, then 

A is also a constant, the area under g( )t  between � and �. In signal and system analysis, 

a particular form of defi nite integral h( ) g( )t d
t

=
−∞∫ � � is often used. The variable of inte-

gration is �, so during the integration process, the upper integration limit t is treated like 
a constant. But after the integration is fi nished t is the independent variable in h( )t . This 
type of integral is sometimes called a  running integral or a  cumulative  integral. It is the 
accumulated area under a function for all time before t and that depends on what t is. 

Often, in practice, we know that a function of time is zero before t t= 0. Then we 

know that g( )t dt
t

−∞∫
0

 is zero. Then the integral of that function from any time t t1 0<  to 

any time t t> 0 is unambiguous. It can only be the area under the function from time 
t t= 0 to time t:

 g( ) g( ) g( ) g( )� � � � � � � �d d d d
t

t

t

t

t

t

1 1

0

0

0

∫ ∫ ∫= + =

=
� �� �� tt

t

0

∫ .

Figure 2.42 illustrates some  functions and their integrals.
In Figure 2.42 the two functions on the right are zero before time t = 0 and the in-

tegrals illustrated assume a lower limit on the integral less than zero, thereby producing 
a single, unambiguous result. The two on the left are illustrated with multiple possible 
integrals, differing from each other only by constants. They all have the same derivative 
and are all equally valid candidates for the integral in the absence of extra information.

There is a function  int in MATLAB that can do  symbolic integration.

>> sym(‘x’) ;
>> int(1/(1+x^2))
ans =
atan(x)
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This function cannot be used to do  numerical integration. Another  function 
 cumsum can be used to do numerical integration.

>> cumsum(1:5)
ans =
  1  3  6  10  15
>> dx = pi/16 ; x = 0:dx:pi/4 ; y = sin(x)
y =
  0 0.1951 0.3827 0.5556 0.7071
>> cumsum(y)*dx
ans =
  0 0.0383 0.1134 0.2225 0.3614

There are also other more sophisticated  numerical integration functions in  MATLAB, 
for example, trapz, which uses a trapezoidal approximation, and quad, which uses 
adaptive Simpson quadrature.

2.7 EVEN AND ODD SIGNALS
Some functions have the property that, when they undergo certain types of shifting and/
or scaling, the function values do not change. They are  invariant under that shifting 
and/or scaling. An  even function of t is invariant under time reversal t t→ −  and an odd 
function of t is invariant under the amplitude scaling and time reversal g( ) g( )t t→ − − .

An even function g( )t  is one for which g( ) g( )t t= −  and an odd function is one 
for which g( ) g( )t t= − − .

    

A simple way of visualizing even and  odd functions is to imagine that the ordi-
nate axis (the g( )t  axis) is a mirror. For even functions, the part of g( )t  for t > 0 and 
the part of g( )t  for t < 0 are mirror images of each other. For an odd function, the same 
two parts of the function are negative mirror images of each other (Figure 2.43 and 
Figure 2.44).
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Figure 2.42
Some functions and their integrals
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50 Chapter  2  Mathematical Description of Continuous-Time Signals

Some functions are even, some are odd and some are neither even nor odd. But 
any function g( )t  is the sum of its  even and odd parts, g( ) g ( ) g ( )t t te o= + . The even and 
odd parts of a function g( )t  are

 g ( )
g( ) g( )

g ( )
g( ) g( )

e ot
t t

t
t t= + − = − −

2 2
, . (2.13)

If the odd part of a function is zero, the function is even, and if the even part of a func-
tion is zero, the function is odd.

EXAMPLE 2.3

Even and odd parts of a function

What are the even and odd parts of the function g( ) ( )t t t= +2 3 ? 
They are

 g ( )
g( ) g( ) ( ) [( ) ]

e t
t t t t t t= + − = + + −( ) − + =

2

3 3

2
0

2 2

 g ( )
( ) ( )[( ) ]

( )o t
t t t t

t t= + − − − + = +
2 2

23 3

2
3

Therefore g( )t  is an odd function.

% Program to graph the even and odd parts of a function

function GraphEvenAndOdd

 t = -5:0.1:5 ;  % Set up a time vector for the graph

 ge = (g(t) + g(-t))/2 ; % Compute the even-part values

 go = (g(t) - g(-t))/2 ; % Compute the odd-part values

 % Graph the even and odd parts

 subplot(2,1,1) ; 

 ptr = plot(t,ge,’k’) ; set(ptr,’LineWidth’,2) ; grid on ;

 xlabel(‘\itt’,’FontName’,’Times’,’FontSize’,24) ;

 ylabel(‘g_e({\itt})’,’FontName’,’Times’,’FontSize’,24) ;

 subplot(2,1,2) ;

 ptr = plot(t,go,’k’) ; set(ptr,’LineWidth’,2) ; grid on ;

 xlabel(‘\itt’,’FontName’,’Times’,’FontSize’,24) ;

 ylabel(‘g_o({\itt})’,’FontName’,’Times’,’FontSize’,24) ;

function y = g(x) % Function defi nition for g(x)

 y = x.*(x.^2+3) ;

Figure 2.45 illustrates the graphical output of the MATLAB program.

t

g(t)

t 

g(t)
Even Function Odd Function

Figure 2.44
Two very common and useful functions, one even and 
one odd

t

g(t)
Even Function

t 

g(t)
Odd Function

Figure 2.43
Examples of even and odd functions
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This MATLAB code example begins with the keyword function. A MATLAB program fi le that 
does not begin with function is called a  script fi le. One that does begin with function defi nes a 
function. This code example contains two function defi nitions. The second function is called a 
subfunction. It is used only by the main function (in this case GraphEvenAndOdd) and is not 
accessible by any functions or scripts exterior to this function defi nition. A function may have 
any number of  subfunctions. A script fi le cannot use subfunctions.

COMBINATIONS OF EVEN AND ODD SIGNALS

Let g ( )1 t  and g ( )2 t  both be even functions. Then g ( ) g ( )1 1t t= −  and g ( ) g ( )2 2t t= − . Let 
g( ) g ( ) g ( )t t t= +1 2 . Then g( ) g ( ) g ( )− = − + −t t t1 2  and, using the evenness of g ( )1 t  and 
g ( )2 t , g( ) g ( ) g ( ) g( )− = + =t t t t1 2 , proving that the sum of two even functions is also 
even. Now let g( ) g ( ) g ( )t t t= 1 2 . Then g( ) g ( ) g ( ) g ( ) g ( ) g( )− = − − = =t t t t t t1 2 1 2 , proving 
that the product of two even functions is also even. 

Now let g ( )1 t  and g ( )2 t  both be odd. Then g( ) g ( ) g ( ) g ( ) g ( )− = − + − = − − =t t t t t1 2 1 2

− g( )t , proving that the sum of two odd functions is odd. Then let g( ) g ( ) g ( )− = − − =t t t1 2

[ g ( )][ g ( )] g ( ) g ( ) g( )− − = =1 2 1 2t t t t t , proving that the product of two odd functions 
is even.

By similar reasoning we can show that if two functions are even, their sum, dif-
ference, product and quotient are even too. If two functions are odd, their sum and 
difference are odd but their product and quotient are even. If one function is even and 
the other is odd, their product and quotient are odd (Figure 2.46).

Figure 2.45
Graphical output of the MATLAB program
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Figure 2.46
Combinations of even and odd functions
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52 Chapter  2  Mathematical Description of Continuous-Time Signals

Figure 2.47
Product of even and odd functions
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Figure 2.48
Product of two even functions

The most important  even and odd functions in signal and system analysis are   co-
sines and sines. Cosines are even and sines are odd. Figure 2.47 through Figure 2.49 
give some examples of products of even and odd functions.

g2(t)

g1(t)

g2(t)g1(t)t

t

t 

Figure 2.49
Product of two odd functions
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DERIVATIVES AND INTEGRALS OF EVEN AND ODD SIGNALS

The defi nite integrals   of even and  odd functions can be simplifi ed in certain common 
cases. If g( )t  is an even function and a is a real constant,

 g( ) g( ) g( ) g( ) g(t dt t dt t dt t dt t
a

a

a

a a

− −

−

∫ ∫ ∫ ∫= + = − +
0

0 0

)) dt
a

0
∫ .

Making the change of variable � = −t in the fi rst integral on the right and using g( ) g( )� �= − , 

g( ) g( )t dt t dt
a

a a

−∫ ∫= 2
0

, which should be geometrically obvious by looking at the graph 

of the function (Figure 2.51 (a)). By similar reasoning, if g( )t  is an odd function, then 

g( )t dt
a

a

−∫ = 0, which should also be geometrically obvious (Figure 2.51 (b)).

Function Type

Even
Odd

Derivative

Odd
Even

Integral

Odd+Constant
Even

Figure 2.50
Function types and the types of their derivatives and integrals

Let g( )t  be an even function. Then g( ) g( )t t= − . Using the chain rule of differentia-
tion, the derivative of g( )t  is ′ = − ′ −g ( ) g ( )t t , an odd function. So the derivative of any 
even function is an odd function. Similarly, the derivative of any odd function is an 
even function. We can turn the arguments around to say that the integral of any even 
function is an odd function plus a constant of integration, and the integral of any odd 
function is an even function plus a constant of integration (and therefore still even be-
cause a constant is an even function) (Figure 2.50).
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at t 

g(t) g(t)

Area #1

Area #1 = Area #2

Area #2

Area #1

Area #1 = - Area #2

Area #2

Even Function Odd Function

Figure 2.51
Integrals of (a) even functions and (b) odd functions over symmetrical limits

2.8  PERIODIC SIGNALS
A periodic signal is one that has been repeating a pattern for a semi-infi nite time and 
will continue to repeat that pattern for a semi-infi nite time. 

A periodic function g( )t  is one for which g( ) g( )t t nT= +  for any integer value 
of n, where T  is a period of the function. 

    
Another way of saying that a  function of t is periodic is to say that it is invariant 

under the time shift t t nT→ + . The function repeats every T  seconds. Of course it also 
repeats every 2T , 3T  or nT  seconds (n is an integer). Therefore 2T  or 3T  or nT  are all 
periods of the function. The minimum positive interval over which a function repeats 
is called its  fundamental period T0. The  fundamental cyclic frequency f0 is the re-
ciprocal of the fundamental period f T0 01= /  and the  fundamental radian frequency 
is � � �0 0 02 2= =f T/ .

 2.8 Periodic Signals 53

rob80687_ch02_019-076.indd   53rob80687_ch02_019-076.indd   53 12/21/10   6:41:18 PM12/21/10   6:41:18 PM



54 Chapter  2  Mathematical Description of Continuous-Time Signals

Some common examples of  periodic functions are real or complex sinusoids and com-
binations of real and/or complex sinusoids. We will see later that other, more complicated 
types of periodic functions with different periodically repeating shapes can be generated 
and mathematically described. Figure 2.52 gives some examples of periodic functions. A 
function that is not periodic is called an  aperiodic function. (Because of the similarity of 
the phrase “aperiodic function” and the phrase “a periodic function,” it is probably better 
when speaking to use the term “nonperiodic” or “not periodic” to avoid confusion.)

t

x(t)

T0

t

x(t)

T0

t 

x(t)

T0

... ... ... ......
...

Figure 2.52
Examples of periodic functions with fundamental period T0

In practical systems, a signal is never actually periodic because it did not exist 
until it was created at some fi nite time in the past, and it will stop at some fi nite time 
in the future. However, often a signal has been repeating for a very long time before 
the time we want to analyze the signal and will repeat for a very long time after that. 
In many cases, approximating the signal by a periodic function introduces negligible 
error. Examples of signals that would be properly  approximated by periodic functions 
would be rectifi ed sinusoids in an AC to DC converter, horizontal sync signals in a 
television, the angular shaft position of a generator in a power plant, the fi ring pattern 
of spark plugs in an automobile traveling at constant speed, the vibration of a quartz 
crystal in a wristwatch, the angular position of a pendulum on a grandfather clock and 
so on. Many natural phenomena are, for all practical purposes, periodic; most planet, 
satellite and comet orbital positions, the phases of the moon, the electric fi eld emitted 
by a Cesium atom at resonance, the migration patterns of birds, the caribou mating 
season and so forth. Periodic phenomena play a large part both in the natural world and 
in the realm of artifi cial systems.

A common situation in signal and system analysis is to have a signal that is the sum 
of two periodic signals. Let x ( )1 t  be a periodic signal with fundamental period T01, and 
let x ( )2 t  be a periodic signal with fundamental period T02, and let x( ) x ( ) x ( )t t t= +1 2 . 
Whether or not x( )t  is periodic depends on the relationship between the two periods T01 
and T02. If a time T can be found that is an integer multiple of T01 and also an integer 
multiple of T02, then T is a period of both x ( )1 t  and x ( )2 t  and 

 x ( ) x ( )1 1t t T= +  and x ( ) x ( )2 2t t T= + . (2.14)

Time shifting x( ) x ( ) x ( )t t t= +1 2  with t t T→ + ,

 x( ) x ( ) x ( )t T t T t T+ = + + +1 2 . (2.15)

Then, combining (2.15) with (2.14),

 x( ) x ( ) x ( ) x( )t T t t t+ = + =1 2

proving that x( )t  is periodic with period T. The smallest positive value of T that is an 
integer multiple of both T01 and T02 is the fundamental period T0 of x( )t . This smallest 
value of T is called the  least common multiple (LCM) of T01 and T02. If T T01 02/  is a 

rob80687_ch02_019-076.indd   54rob80687_ch02_019-076.indd   54 12/21/10   6:41:18 PM12/21/10   6:41:18 PM



rational number (a ratio of integers), the LCM is fi nite and x( )t  is periodic. If T T01 02/  is 
an irrational number, x( )t  is aperiodic. 

Sometimes an alternate method for fi nding the period of the sum of two periodic func-
tions is easier than fi nding the LCM of the two periods. If the fundamental period of the 
sum is the LCM of the two fundamental periods of the two functions, then the fundamen-
tal frequency of the sum is the  greatest common divisor (GCD) of the two fundamental 
frequencies and is therefore the reciprocal of the LCM of the two fundamental periods.

EXAMPLE 2.4

Fundamental period  of a signal

Which of these functions are periodic and, if one is, what is its fundamental period?

(a) g( ) sin( )t t= 7 400�  
 The sine function repeats when its total argument in increased or decreased by any integer 

multiple of 2� radians. Therefore

 sin( ) sin[ ( )]400 2 400 0� � �t n t nT± = ±

 Setting the arguments equal,

 400 2 400 0� � �t n t nT± = ±( )

 or

 ± = ±2 400 0n nT� �

 or

 T0 1 200= / .

 An alternate way of fi nding the fundamental period is to realize that 7 400sin( )�t  is in 
the form A f tsin( )2 0�  or A tsin( )�0 , where f0 is the fundamental cyclic frequency and 
�0 is the fundamental radian frequency. In this case, f0 200=  and � �0 400= . Since the 
fundamental period is the reciprocal of the fundamental cyclic frequency, T0 1 200= / . 

(b) g( )t t= +3 2 
 This is a second-degree polynomial. As t increases or decreases from zero, the function 

value increases monotonically (always in the same direction). No function that increases 
monotonically can be periodic because if a fi xed amount is added to the argument t, the 
function must be larger or smaller than for the current t. This function is not periodic.

(c) g( )t e j t= − 60�

 This is a  complex sinusoid. That is easily seen by expressing it as the sum of a cosine and 
a sine through Euler’s identity,

 g( ) cos( ) sin( )t t j t= −60 60� � .

 The function g( )t  is a linear combination of two periodic signals that have the same 
fundamental cyclic frequency 60 2 30� �/ = . Therefore the fundamental frequency of g( )t  
is 30 Hz and the fundamental period is 1/30 s.

(d) g( ) sin( ) cos( )t t t= +10 12 4 18� �

 This is the sum of two functions that are both periodic. Their fundamental periods 
are 1/6 second and 1/9 second. The  LCM is 1/3 second. (See Web Appendix B for a 
systematic method for fi nding least common multiples.) There are two fundamental 
periods of the fi rst function and three fundamental periods of the second function in that 
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56 Chapter  2  Mathematical Description of Continuous-Time Signals

time. Therefore the fundamental period of the overall function is 1/3 second (Figure 2.53). 
The two fundamental frequencies are 6 Hz and 9 Hz. Their  GCD is 3 Hz, which is the 
reciprocal of 1/3 second, the LCM of the two fundamental periods.

Figure 2.53
Signals with frequencies of 6 Hz and 9 Hz and their sum
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(e) g( ) sin( ) cos( )t t t= +10 12 4 18�

 This function is exactly like the function in (d) except that a � is missing in the second 
argument. The fundamental periods are now 1/6 second and �/9 seconds, and the ratio 
of the two fundamental periods is either 2 3�/  or 3 2/ �, both of which are irrational. 
Therefore g( )t is  aperiodic. This function, although made up of the sum of two periodic 
functions, is not periodic because it does not repeat exactly in a fi nite time. (It is 
sometimes referred to as “almost periodic” because, in looking at a graph of the function, 
it seems to repeat in a fi nite time. But, strictly speaking, it is aperiodic.)

There is a  function lcm  in MATLAB for fi nding least common multiples. It is 
somewhat limited because it accepts only two arguments, which can be scalar integers 
or arrays of integers. There is also a function gcd, which fi nds the greatest common 
divisor of two integers or two arrays of integers.

>> lcm(32,47)
ans =
    1504
>> gcd([93,77],[15,22])
ans =
  3 11

2.9  SIGNAL ENERGY AND POWER

SIGNAL ENERGY

All physical activity is mediated by a transfer of energy. Real physical systems respond 
to the energy of an excitation. It is important at this point to establish some terminol-
ogy describing the energy and power of signals. In the study of signals in systems, the 
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signals are often treated as mathematical abstractions. Often the physical signifi cance 
of the signal is ignored for the sake of simplicity of analysis. Typical signals in electri-
cal systems are voltages or currents, but they could be charge or electric fi eld or some 
other physical quantity. In other types of systems a signal could be a force, a tempera-
ture, a chemical concentration, a neutron fl ux and so on. Because of the many different 
kinds of physical signals that can be operated on by systems, the term signal energy 
has been defi ned. Signal energy (as opposed to just energy) of a signal is defi ned as 
the area under the square of the magnitude of the signal. The signal energy of a signal 
x( )t  is

 E t dtx x( )=
−∞

∞

∫ 2 . (2.16)

The units of signal energy depend on the units of the signal. If the signal unit is the volt 
(V), the signal energy is expressed in V s2 ⋅ . Signal energy is proportional to the actual 
physical energy delivered by a signal but not necessarily equal to that physical energy. 
In the case of a current signal i( )t  through a resistor R the actual energy delivered to 
the resistor would be

 Energy = = =
−∞

∞

−∞

∞

∫ ∫i( ) i( ) it R dt R t dt RE2 2 .

Signal energy is proportional to actual energy and the proportionality constant, in this 
case, is R. For a different kind of signal, the proportionality constant would be differ-
ent. In many kinds of system analysis the use of signal energy is more convenient than 
the use of actual physical energy.

EXAMPLE 2.5

Signal energy of a signal

Find the signal energy of x( )
( )

t
t t

=
− <⎧

⎨
⎩

3 1 4 4

0

/ ,

, otherwise
. 

From the defi nition of signal energy

 E t dt t dtx x( ) ( )= = −
−∞

∞

−
∫ ∫2 2

4

4

3 1 4/

Taking advantage of the fact that x( )t  is an even function

 E t dt
t t

dt tx ( )= × − = − +
⎛
⎝⎜

⎞
⎠⎟

=∫ ∫2 3 1 4 18 1
2 16

182 2

0

4 2

0

4

/ −− +
⎡

⎣
⎢

⎤

⎦
⎥ =t t2 3

0

4

4 48
24

SIGNAL  POWER

For many signals, the integral E t dtx =
−∞

∞
∫ x( ) 2  does not converge because the signal 

energy is infi nite. This usually occurs because the signal is not  time limited. (The term 
time limited means that the signal is nonzero over only a fi nite time.) An example of 
a signal with  infi nite energy is the sinusoidal signal x( ) cos( )t A f t A= ≠2 00� , . Over 
an infi nite time interval, the area under the square of this signal is infi nite. For signals 

 2.9 Signal Energy and Power 57

rob80687_ch02_019-076.indd   57rob80687_ch02_019-076.indd   57 12/21/10   6:41:19 PM12/21/10   6:41:19 PM



58 Chapter  2  Mathematical Description of Continuous-Time Signals

of this type, it is more convenient to deal with the average signal power instead of the 
signal energy. Average signal power of a signal x( )t  is defi ned by

 P
T

t dt
T

T

T

x lim x( )=
→∞

−
∫

1 2

2

2

/

/

. (2.17)

The integral is the signal energy of the signal over a time T and it is then divided by T, 
yielding the average signal power over time T. Then, as T approaches infi nity, this aver-
age signal power becomes the average signal power over all time. 

For periodic signals, the  average signal power calculation may be simpler. The 
average value of any periodic function is the average over any period. Therefore, since 
the square of a periodic function is also periodic, for periodic signals,

 P
T

t dt
T

t dt
t

t T

T
x x( ) x( )= =

+

∫ ∫
1 12 2

0

0

where the notation 
T∫  means the same thing as 

t

t T

0

0 +
∫  for any arbitrary choice of t0, 

where T can be any period of x( )t 2. 

EXAMPLE 2.6

Signal power of a  sinusoidal signal

Find the average signal power of x( ) cos( )t A f t= +2 0� � . 
From the defi nition of average signal power for a periodic signal,

 P
T

A f t dt
A

T
t T dt

T
T

x cos( ) cos ( )= + = +∫
−

1
2 20

2
2

0

2
0

0

� � � �/
//

/

2

20T

∫ .

Using the trigonometric identity

 cos( )cos( ) ( )[cos( ) cos( )]x y x y x y= − + +1 2/

we get

 
P

A

T
t T dt

A

T
dt

T

T

x [ cos( )]= + + =
− −
∫

2

0
0

2

2 2

02
1 4 2

2
0

0

� �/
/

/

TT

T

T

T
A

T
t T dt

0

0

0

0

2

2 2

0
0

2

2

0

2
4 2

/

/

/

/

/∫ ∫+ +
−

=

cos( )� �

� ������ �����

= A2

2

The second integral on the right is zero because it is the integral of a sinusoid over two funda-
mental periods. The signal power is P Ax = 2 2/ . This result is independent of the phase � and the 
frequency f0. It depends only on the amplitude A.

Signals that have fi nite signal energy are referred to as  energy signals and signals 
that have infi nite signal energy but fi nite average signal power are referred to  as power 
signals. No real physical signal can actually have  infi nite energy or infi nite average 
power because there is not enough energy or power in the universe available. But we 
often analyze signals that, according to their strict mathematical defi nition, have infi -
nite energy, a sinusoid, for example. How relevant can an analysis be if it is done with 
signals that cannot physically exist? Very relevant! The reason mathematical sinusoids 
have infi nite signal energy is that they have always existed and will always exist. Of 
course practical signals never have that quality. They all had to begin at some fi nite 
time and they will all end at some later fi nite time. They are actually time limited and 
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have fi nite signal energy. But in much system analysis the analysis is steady-state anal-
ysis of a system in which all signals are treated as periodic. The analysis is still relevant 
and useful because it is a good approximation to reality, it is often much simpler than 
an exact analysis, and it yields useful results. All periodic signals are power signals 
(except for the trivial signal x( )t = 0) because they all endure for an infi nite time.

EXAMPLE 2.7

Finding signal energy and power of  signals using  MATLAB

Using MATLAB, fi nd the signal energy or power of the signals

(a) x( ) rectt e
tt= −⎛

⎝⎜
⎞
⎠⎟

−4
4

3
10/ ,

(b) A periodic signal of fundamental period 10 described over one period by 
x( ) ,t t t= − − < <3 5 5.

Then compare the results with analytical  calculations.

%  Program to compute the signal energy or power of some example 

signals

% (a)

dt = 0.1 ; t = -7:dt:13 ;  % Set up a vector of times at which to

  % compute the function. Time interval 

  % is 0.1

% Compute the function values and their squares

x = 4*exp(-t/10).*rect((t-4)/3) ; 

xsq = x.^2 ;

Ex = trapz(t,xsq) ;  % Use trapezoidal-rule numerical 

  % integration to fi nd the area under 

  % the function squared and display the 

  % result

disp([‘(a) Ex = ‘,num2str(Ex)]) ;

% (b)

T0 = 10 ; % The fundamental period is 10.

dt = 0.1 ; t = -5:dt:5 ;  % Set up a vector of times at which to 

  % compute the function. Time interval 

  % is 0.1.

x = -3*t ; xsq = x.^2 ; % Compute the function values and 

  % their squares over one fundamental 

  % period

Px = trapz(t,xsq)/T0 ;  % Use trapezoidal-rule numerical 

  % integration to fi nd the area under 
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60 Chapter  2  Mathematical Description of Continuous-Time Signals

  % the function squared, divide the 

  % period and display the result

disp([‘(b) Px = ‘,num2str(Px)]) ;

The output of this program is

(a) Ex = 21.5177

(b) Px = 75.015

Analytical computations:

(a) E t dt e dt e dx
t t= = =

−∞

∞
− −∫ ∫x( ) /

.

.

.

.
2 10 2

2 5

5 5
5

2 5

5

4 16 / �
55

5
2 5

5 5
5 16 21 888∫ = − × ⎡⎣ ⎤⎦ =−e t /

.

.
.

 (The small difference in results is probably due to the error inherent in trapezoidal-rule 
integration. It could be reduced by using time points spaced more closely together.

(b) P t dt t dt tx = − = = = =
−
∫ ∫

1

10
3

1

5
9

1

5
3

375

5
752

5

5
2

0

5
3

0
5( ) ( )  Check.

2.10 SUMMARY OF IMPORTANT POINTS
 1. The term continuous and the term continuous-time mean different things.
 2. A continuous-time impulse, although very useful in signal and system analysis, 

is not a function in the ordinary sense.
 3. Many practical signals can be described by combinations of shifted and/or 

scaled standard functions, and the order in which scaling and shifting are done is 
signifi cant.

 4.  Signal energy is, in general, not the same thing as the actual physical energy 
delivered by a signal.

 5. A signal with fi nite signal energy is called an energy signal and a signal with 
infi nite signal energy and fi nite average  power is called a power signal.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Signal Functions

  1. If g( )t e t= − −7 2 3 write out and simplify

(a) g( )3  (b) g( )2 − t  (c) g(( ) )t /10 4+

(d) g( )jt  (e) g( ) g( )jt jt+ −
2

(f ) g(( ) ) g(( ) )jt jt− + − −3 2 3 2

2

/ /

Answers: 7 cos( )t , 7 7 2e t− + , 7 2 3e j t− − , 7 5 11e t− −( )/ , 7 23e t− cos( ), 7 9e−
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  2. If g( )x x x= − +2 4 4 write out and simplify

(a) g( )z  (b) g(u )+ v  (c) g( )e jt

(d) g(g( ))t  (e) g( )2

Answers:  ( )e jt − 2 2, z z2 4 4− + , 0, u u u2 2 2 4 4 4+ + − − +v v v , 

t t t t4 3 28 20 16 4− + − +

  3. What would be the value of g in each of the following MATLAB 
instructions?

 t = 3 ; g = sin(t) ;
 x = 1:5 ; g = cos(pi*x) ;
 f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w’) ;

Answers: 0.1411, [ , , , , ]− − −1 1 1 1 1 , 

0 0247 0 155

0 0920 0 289

1
0 0920 0 289

0 0247

. .

. .

. .

.

+
+

−
−

j

j

j

jj0 155.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  4. Let two functions be defi ned by 

x ( )
, sin

, sin
1

1 20 0

1 20 0
t

t

t
=

( ) ≥
− ( ) <

⎧
⎨
⎩

�

�
  and x ( )

, sin( )

, sin( )
2

2 0

2 0
t

t t

t t
=

≥
− <

⎧
⎨
⎩

�

�
.

Graph the product of these two functions versus time over the time range, − < <2 2t .

Answer:

t -2 2

x(t)

-2

2

 Scaling and  Shifting

  5. For each function g( )t  graph g( )−t , − g( )t , g( )t − 1 , and g( )2t .

t 

g(t)

2

4

t 

g(t)

1
-1

3

-3

(a) (b)

 Exercises with Answers 61
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62 Chapter  2  Mathematical Description of Continuous-Time Signals

Answers:

t 

g(-t)

-2

4

, 

t 

g(-t)

1
-1

3

-3 , 

t 

-g(t)

2

-4 , 

t 

-g(t)

1
-1

3

-3 ,

t 

g(t-1)

31

4

, 

t 

g(t-1)

1 2

3

-3 , 

t 

g(2t)

1

4

, 

t 

g(2t)

3

-3

1
2

1
2

-

  6. Find the values of the following signals at the indicated times.

(a) x( ) rect( ), x( )t t= −2 4 1/
(b) x( ) ( )sgn( ), x( . )t t t= 5 2 2 0 5rect /
(c) x( ) rect( )sgn( ( )) x( )t t t= −9 10 3 2 1/ ,

Answers: −9, 2, 5 

  7. For each pair of functions in Figure E.7 provide the values of the constants A,
t0 and w in the shifting and/or scaling to g ( ) g (( ) )2 1 0t A t t w= − / .

-4 -2 0 2 4
-2
-1
0
1
2

t

g 1
(t

)

(a)

-4 -2 0 2 4
-2
-1
0
1
2

t

g 2
(t

)

(a)

-4 -2 0 2 4
-2
-1
0
1
2

t

g 1
(t

)

(b)

-4 -2 0 2 4
-2
-1
0
1
2

t

g 2
(t

)

(b)

-4 -2 0 2 4
-2
-1
0
1
2

t

g 1
(t

)

(c)

-4 -2 0 2 4
-2
-1
0
1
2

t

g 2
(t

)

(c)

Figure E.7

Answers:  A t w= = =2 1 10, , ;  A t w= − = − =1 2 1 20/ , , ;  A t w= − = =2 0 1 20, , /
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  8. For each pair of functions in Figure E.8 provide the values of the constants A,
t0 and a in the functional shifting and/or scaling to g ( ) g ( ( ))2 1 0t A w t t= − .

(a) 

-10 -5 0 5 10
-8

-4

0

4

8

t

g 1
(t

)

-10 -5 0 5 10
-8

-4

0

4

8

t

g 2
(t

)

(b) g 1
(t

)

g 2
(t

)

-10 -5 0 5 10
-8

-4

0

4

8

t
-10 -5 0 5 10

-8

-4

0

4

8

t

(c) g 1
(t

)

g 2
(t

)

-10 -5 0 5 10
-8

-4

0

4

8

t
-10 -5 0 5 10

-8

-4

0

4

8

t

(d) g 1
(t

)

g 2
(t

)

-10 -5 0 5 10
-8

-4

0

4

8

t
-10 -5 0 5 10

-8

-4

0

4

8

t

(e) g 1
(t

)

g 2
(t

)

-10 -5 0 5 10
-8

-4

0

4

8

t
-10 -5 0 5 10

-8

-4

0

4

8

t

 Figure E.8
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64 Chapter  2  Mathematical Description of Continuous-Time Signals

Answers:  A t w= = =3 2 20, ,
A t w A t w= − = − = = − = = −3 6 1 3 3 3 1 30 0, , , ,/ or / , 
A t w= − = − =2 2 1 30, , / ,
A t w= = − =3 2 1 20, , / ,
A t w= = = −2 2 20, ,

  9. Figure E.9 shows a graphed function g ( )1 t , which is zero for all time outside the 
range graphed. Let some other functions be defi ned by

g ( ) g ( )2 13 2t t= − , g ( ) g ( )3 12 4t t= − / , g ( ) g4 1
3

2
t

t= −⎛
⎝

⎞
⎠

Find these values.

(a) g ( )2 1  (b) g ( )3 1−  (c) [g ( ) g ( )]4 3 2t t t=

(d) g ( )4

3

1

t dt
−

−

∫

Figure E.9

t 

g1(t)

-1-2-3-4

1
2
3
4

-4
-3
-2
-1

1 42 3

Answers: −7/2, −3/2, −2, −3

10. A function G( )f  is defi ned by

G( ) rect( )f e fj f= − 2 2� / .

 Graph the magnitude and phase of G( ) G( )f f− + +10 10  over the range, 
− < <20 20f .

f
-20 20

|G( f )|

1

f 
-20 20

-π

π

G( f )
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Answer: 

G( ) G( ) rect( ) (f f e
f

ej f j− + + = −⎛
⎝

⎞
⎠ +− − −10 10

10

2
2 10 2� � ff f+ +⎛

⎝
⎞
⎠

10 10

2
) rect

11. Write an expression consisting of a summation of unit-step functions to represent 
a signal that consists of rectangular pulses of width 6 ms and height 3, which 
occur at a uniform rate of 100 pulses per second with the leading edge of the fi rst 
pulse occurring at time t = 0.

Answer: x( ) [u( . ) u( . . )]t t n t n
n

= − − − −
=

∞

∑3 0 01 0 01 0 006
0

 Derivatives and  Integrals

12. Graph the derivative of x( ) ( ) u( )t e tt= − −1 .
Answer:

t
-1 4

x(t)

-1

1

t-1 4

dx/dt

-1

1

13. Find the numerical value of each integral.

(a) [ ( ) ( )]
 
t t dt+ −
−
∫ 3 2 4
1

8

 (b) 
2

1 2

5 2

3( )t dt
/

/

∫

Answers: −1/2, 1

14. Graph the integral from negative infi nity to time t of the functions in Figure E.14, 
which are zero for all time t < 0. 

g(t)

t 

1
1 2 3

1
2

g(t)

t 

1

1 2 3

Figure E.14

Answers: 

∫ g(t) dt

t

1

1 2 3

1
2

, 

∫ g(t) dt

t

1

1 2 3
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66 Chapter  2  Mathematical Description of Continuous-Time Signals

 Even and Odd Signals

15. An even function g( )t  is described over the time range 0 10< <t  by 

g( )

,

,

,

t

t t

t t

t

=
< <

− < <
− < <

⎧
⎨
⎪

⎩⎪

2 0 3

15 3 3 7

2 7 10

.

(a) What is the value of g( )t  at time t = −5?
(b) What is the value of the fi rst derivative of g( )t  at time t = −6?

Answers: 3, 0

16. Find the even and odd parts of these functions.

(a) g( )t t t= − +2 3 62  (b) g( ) cos( )t t= −20 40 4� �/

(c) g( )t
t t

t
= − +

+
2 3 6

1

2

 (d) g( ) ( )( )t t t t= − +2 1 42 2

(e) g( ) ( )( )t t t t= − +2 1 4

Answers: t t( )2 4 2− , ( ) cos( )20 2 40/ �t , 0, − +
−

t
t

t

2 9

1

2

2 , 7 2t ,

( ) sin( )20 2 40/ �t , 2 62t +  t t t( )( )2 1 42 2− + , 6 5

1

2

2

+
−

t

t
, −3t

17. Graph the even and odd parts of the functions in Figure E.17.

t

g(t)

1

1

t

g(t)

21

1

-1

(a) (b)

Figure E.17

Answers:

t

ge(t)

1

1

t

go(t)

1

1

, 

t

ge(t)

21

1

-1

t

go(t)

21

1

-1
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18. Graph the indicated product or quotient g( )t  of the functions in Figure E.18.

(a)

t
1

-1
1

-1

t
1-1

1 g(t)

Multiplication

(b)

1
-1

1

-1

1
-1

-1

1

t

t

g(t)

Multiplication

(c)

1
1

-1
1 t

t

g(t)

Multiplication

(d)

1
1

1
1 t

t

g(t)

Multiplication

(e)

1-1

1

-1

1-1

1

......
t

t

g(t)

Multiplication

(f)

1

1

-1

1
-1

1

t

t

g(t)

Multiplication

(g)

1
1

-1
1 t

t

g(t)

Division

(h)

-1 -1 1
1

1

π

t

t

g(t)

Division

 Figure E.18
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68 Chapter  2  Mathematical Description of Continuous-Time Signals

Answers:

g(t)

-1 1

1

t 
, 

g(t)

t 
1-1

1

-1 , 

g(t)

t 1-1

1

-1

......

g(t)

t 
-1 1

1

, 

g(t)

t 
-1 , 

g(t)

t 
1

1

-1

g(t)

t 1
-1

1

-1 , 

g(t)

t 
-1

-1 1

19. Use the properties of integrals of even and odd functions to evaluate these 
integrals in the quickest way.

(a) ( )2
1

1

+
−
∫ t dt  (b) [ cos( ) sin( )]4 10 8 5

1 20

1 20

� �t t dt+
−
∫
/

/

(c) 4 10
1 20

1 20

t t dtcos( )�
−
∫
/

/

 (d) t t dtsin( )10
1 10

1 10

�
−
∫
/

/

(e) e dtt−

−
∫
1

1

 (f ) te dtt−

−
∫
1

1

Answers: 0, 
8

10�
, 

1

50�
, 0, 1.264, 4

 Periodic Signals

20. Find the fundamental period and fundamental frequency of each of these 
functions.

(a) g( ) cos( )t t= 10 50�  (b) g( ) cos( )t t= +10 50 4� �/

(c) g( ) cos( ) sin( )t t t= +50 15� �  

(d) g( ) cos( ) sin( ) cos( )t t t t= + + −2 3 5 3 4� � � �/

Answers: 2 s, 1 25/ s, 2 5. Hz, 1 25/ s, 1 2/ Hz, 0 4. s, 25 Hz, 25 Hz
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21. One period of a periodic signal x( )t  with fundamental period T0 is graphed in 
Figure E.21. What is the value of x( )t  at time t = 220ms?

5ms 10ms15ms
t 

x(t)

4
3
2
1

-1
-2
-3
-4

T0

20ms

Figure E.21

Answer: 2

22. In Figure E.22 fi nd the fundamental period and fundamental frequency of g( )t .

......
1

......
1

......
1

(a) (b)

......
1

......
1

(c)
t

t

t

g(t)

g(t)
t

t

g(t)

Figure E.22

Answers: 1 Hz, 2 Hz, 1 2/ s, 1 s, 1 3/ s, 3 Hz

Signal Energy and Power

23. Find the signal energy of these signals.

(a) x( ) rect( )t t= 2  (b) x( ) (u( ) u( ))t A t t= − − 10
(c) x( ) u( ) u( )t t t= − −10  (d) x( ) rect( ) cos( )t t t= 2�

(e) x( ) rect( ) cos( )t t t= 4�  (f) x( ) rect( )sin( )t t t= 2�

Answers: 1 2/ , ∞ , 10 2A , 1 2/ , 4, 1 2/

24. A signal is described by x( ) rect( ) rect( . )t A t B t= + − 0 5 . What is its signal 
energy?

Answer: A B AB2 2+ +
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70 Chapter  2  Mathematical Description of Continuous-Time Signals

25. Find the average signal power of the periodic signal x( )t  in Figure E.25.

1-1-2-3-4 2 3 4

1

-1
-2
-3

2
3

t 

x(t)

Figure E.25

Answer: 8/9

26. Find the average signal power of these signals.

(a) x( )t A=  (b) x( ) u( )t t=
(c) x( ) cos( )t A f t= +2 0� �  
Answers: A2, A2 2/ , 1 2/

EXERCISES  WITHOUT ANSWERS

Signal Functions

27. Given the function defi nitions on the left, fi nd the function values on the right.

(a) g( ) sin( )t t= +100 200 4� �/  g(0.001)
(b) g( )t t t= − +13 4 6 2  g(2)
(c) g( )t e et j t= − − −5 2 2�  g( )1 4/

28. Let the continuous-time unit impulse function be represented by the limit


(x) lim( ) rect(x ),= >
→a

a a a
0

1 0/ / .

 The function ( ) rect( )1/ /a x a  has an area of one regardless of the value of a. 

(a) What is the area of the function 
( ) lim( ) rect( )4 1 4
0

x a x a
a

=
→

/ / ?

(b) What is the area of the function 
( ) lim( ) rect( )− = −
→

6 1 6
0

x a x a
a

/ / ?

(c) What is the area of the function 
( ) lim( ) rect( )bx a bx a
a

=
→0

1/ /  for b positive and 
for b negative?

29. Using a change of variable and the defi nition of the unit impulse, prove that


 
( ( )) ( ) ( )a t t a t t− = −0 01/ .

30. Using the results of Exercise 29, show that

(a) 
 
1
1

( ) ( )ax
a

x n a
n

= −
= −∞

∞

∑ /

(b) The average value of 
1( )ax  is one, independent of the value of a.
(c) Even though 
 
( ) ( ) ( )at a t= 1/ , 
 
1 11( ) ( ) ( )ax a x≠ /
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Scaling and Shifting

31. Graph these singularity and related functions.

(a) g( ) u( )t t= −2 4  (b) g( ) u( )t t= 2

(c) g( ) sgn( )t t= −5 4  (d) g( ) sgn( )t t= + −1 4

(e) g( ) ramp( )t t= +5 1  (f ) g( ) ramp( )t t= −3 2

(g) g( ) ( )t t= +2 3
  (h) g( ) ( )t t= +6 3 9


(i) g( ) ( ( ))t t= − −4 2 1
  ( j) g( ) ( )t t= −2 1 21
 /

(k) g( ) ( )t t= 8 41
  (l) g( ) ( )t t= − +6 12


(m) g( ) rect( )t t= 2 3/  (n) g( ) rect(( ) )t t= +4 1 2/

(o) g( ) rect( )t t= − −3 2  ( p) g( ) . rect(( ) )t t= −0 1 3 4/

32. Graph these functions.

(a) g( ) u( ) u( )t t t= − − 1  (b) g( ) rect( )t t= − 1 2/

(c) g( ) ramp( ) u( )t t t= − −4 2  (d) g( ) sgn( )sin( )t t t= 2�

(e) g( ) u( )t e tt= −5 4/  (f ) g( ) rect( ) cos( )t t t= 2�

(g) g( ) rect( ) cos( )t t t= −6 3�  (h) g( ) u( ) ramp( )t t t= + −1 2 1 2/ /

(i) g( ) rect( ) rect( )t t t= + − −1 2 1 2/ /

( j) g( ) [ ( ) ( ) ( )]t d
t

= + − + −
−∞
∫ 
 � 
 � 
 � �1 2 1

(k) g( ) ramp( ) rect(( ) )t t t= −2 1 2/  

(l) g( ) rect( ) rect( )t t t= −3 4 6 2/ /

33. Graph these functions.

(a) g( ) ( ) ( ( ))t t t= + −3 3 6 4 2
 
  (b) g( ) ( )t t= −2 51
 /

(c) g( ) ( ) rect( )t t t= 
1 11/  (d) g( ) [ ( ) ( )]t d
t

= − −
−∞
∫ 
 � 
 � �2 2 1

34. A function g( )t  has the following description. It is zero for t < −5. It has a slope 
of –2 in the range − < < −5 2t . It has the shape of a sine wave of unit amplitude 
and with a frequency of 1 4/  Hz plus a constant in the range − < <2 2t . For t > 2 
it decays exponentially toward zero with a time constant of 2 seconds. It is 
continuous everywhere.

(a) Write an exact mathematical description of this function.

(b) Graph g( )t  in the range − < <10 10t .

(c) Graph g( )2t  in the range − < <10 10t .

(d) Graph 2 3g( )− t  in the range − < <10 10t .

(e) Graph − +2 1 2g(( ) )t /  in the range − < <10 10t .
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72 Chapter  2  Mathematical Description of Continuous-Time Signals

35. Using MATLAB, for each function below graph the original function and the 
shifted and/or scaled function.

(a) g( )

,

,

,

,

t

t

t t

t t

t

=

− < −
− < <

− < <
− >

⎧

⎨
⎪⎪

⎩
⎪
⎪

2 1

2 1 1

3 1 3

6 3

2
 − −3 4g( )t  vs. t

(b) g( ) Re( ).t e ej t j t= +� �1 1  g( )t /4  vs. t

(c) G( )f
f j

=
− +

5

2 32  G( ( )) G( ( ))10 10 10 10f f− + +  vs. f

36. A signal occurring in a television set is illustrated in Figure E.36. Write a 
mathematical description of it.

Figure E.36 Signal occurring in a television set

Signal in Television

t (µs)
-10 60

x(t)

-10

5

37. The signal illustrated in Figure E.37 is part of a binary-phase-shift-keyed (BPSK) 
binary data transmission. Write a mathematical description of it.

t (ms)
4

x(t)

-1

1

BPSK Signal

Figure E.37 BPSK signal

38. The signal illustrated in Figure E.38 is the response of an RC lowpass fi lter to a 
sudden change in its input signal. Write a mathematical description of it.

t (ns)
20

x(t)

-6

-4

RC Filter Signal

-1.3333

4

Figure E.38 Transient response of an RC fi lter
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39. Describe the signal in Figure E.39 as a ramp function minus a summation of step 
functions.

...

4

15

x(t)

t

Figure E.39

40. Mathematically describe the signal in Figure E.40.

......
9

9

x(t)

t

Semicircle

Figure E.40

41. Let two signals be defi ned by

x ( )
, cos( )

, cos( )
1

1 2 0

0 2 0
t

t

t
=

≥
<

⎧
⎨
⎩

�

�
 and x ( ) sin( )2 2 10t t= � / .

Graph these products over the time range − < <5 5t .

(a) x ( ) x ( )1 22t t−  (b) x ( ) x ( )1 25 20t t/  

(c) x ( ) x ( ( ))1 25 20 1t t/ +  (d) x (( ) ) x ( )1 22 5 20t t− /

42. Given the graphical defi nition of a function in Figure E.42, graph the indicated 
shifted and/or scaled versions.

(a) 

-2 2 3 4 5 6

1
1

2

-2

t

g(t)

 
t t

t t

→
→ − −
2

3g( ) g( )

 g( ) ,t t t= < − >0 2 6or

(b) 

-2 21 4 6

1

2

-2

t 

g(t)

3 5

 
t t

t t

→ +
→ − −

4

2 1 2g( ) g(( ) )/

 g( )t  is periodic with fundamental period, 4

 Figure E.42
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74 Chapter  2  Mathematical Description of Continuous-Time Signals

43. For each pair of functions graphed in Figure E.43 determine what shifting and/or 
scaling has been done and write a correct functional expression for the shifted 
and/or scaled function.

(a) 

-2 21 3 4 5 6

2

-1
t

g(t)

-1 1 2 3 4-2-3-4

2

-1
t 

(b) 

-2 21 3 4 5 6

2

t

g(t)

-2 21 3 4 5 6-1
t 

 Figure E.43

  In (b), assuming g( )t  is periodic with fundamental period 2, fi nd two different 
shifting and/or scaling changes that yield the same result.

44. Write a function of continuous time t for which the two successive changes 
t t→ −  and t t→ − 1 leave the function unchanged. 

45. Graph the magnitude and phase of each function versus f.

(a) G( )f
j f

j f
=

+1 10/

(b) G( ) rect rectf
f f

e= −⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

1000

100

1000

100
−− j f� /500

(c) G( )f
f j f

=
− +

1

250 32

46. Graph versus f, in the range − < <4 4f  the magnitudes and phases of

(a) X( ) rect( )f f e j f= +5 2 2�  (b) X( ) ( ) ( )f j f j f= + − −5 2 5 2
 


(c) X( ) ( ) ( )f f e j f= −1 2 1 4/ /
 �

Generalized Derivative

47. Graph the generalized derivative of g( ) sin( ) rect( )t t t= 3 2� / .

Derivatives and Integrals

48. What is the numerical value of each of the following integrals?

(a) 
 �( ) cos( )t t dt48
−∞

∞

∫  (b) 
 �( ) cos( )t t dt−
−∞

∞

∫ 5

(c) 
( ) rect( )t t dt−∫ 8 16
0

20

/
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49. What is the numerical value of each of the following integrals?

(a) 
 �1 48( ) cos( )t t dt
−∞

∞

∫  (b) 
 �1 2( )sin( )t t dt
−∞

∞

∫

(c) 4 24

0

20


 ( ) rect( )t t dt−∫

50. Graph the time derivatives of these functions.

(a) g( ) sin( )sgn( )t t t= 2�  (b) g( ) cos( )t t= 2�

Even and Odd Signals

51. Graph the even and odd parts of these signals.

(a) x( ) rect( )t t= − 1  (b) x( ) sin( ) rect( )t t t= −2 4 4� �/

52. Find the even and odd parts of each of these functions.

(a) g( ) sin( )t t= 10 20�  (b) g( )t t= 20 3 (c) g( )t t= +8 7 2

(d) g( )t t= +1  (e) g( )t t= 6  (f ) g( ) cos( )t t t= 4 10�

(g) g( ) cos( )t t t= � �/  (h) g( ) sin( )t t t= +12 4 4� �/

(i) g( ) ( ) cos( )t t t= +8 7 32�  ( j) g( ) ( )sin( )t t t= +8 7 322 �

53. Is there a function that is both even and odd simultaneously? Discuss.

54. Find and graph the even and odd parts of the function x(t) in Figure E.54.

t

x(t)

1

-1-1

1
2

-2-3-4-5

2 3 4 5

Figure E.54

Periodic Signals

55. For each of the following signals, decide whether it is periodic and, if it is, fi nd 
the period.

(a) g( ) sin( )t t= 28 400�  (b) g( ) cos( )t t= +14 40 60�

(c) g( ) cos( )t t t= −5 2 5000�  (d) g( ) sin( ) cos( )t t t= +28 400 12 500� �

(e) g( ) sin( ) cos( )t t t= −10 5 4 7  (f ) g( ) sin( ) sin( )t t t= +4 3 3 3

56. Is a constant a periodic signal? Explain why it is or is not periodic and, if it is 
periodic, what is its fundamental period?
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76 Chapter  2  Mathematical Description of Continuous-Time Signals

Signal Energy and Power

57. Find the signal energy of each of these signals.

(a) x( ) rect( )t t= −2  (b) x( ) rect( )t t= 8
(c) x( ) rect( )t t= 3 4/  (d) x( ) sin( )t t= 2 200�

(e) x( ) ( )t t= 


  (Hint: First fi nd the signal energy of a signal that approaches an impulse in some 
limit, then take the limit.)

(f ) x( ) (rect( ))t
d

dt
t=  (g) x( ) rect( )t d

t

=
−∞
∫ � �

(h) x( ) u( )( )t e tj t= − −1 8�

58. Find the average signal power of each of these signals.

(a) x( ) sin( )t t= 2 200�  (b) x( ) ( )t t= 
1

(c) x( )t e j t= 100�

59. A signal x is periodic with fundamental period T0 6= . This signal is described 
over the time period 0 6< <t  by 

rect(( ) ) rect(( ) )t t− − −2 3 4 4 2/ / .

What is the average signal power of this signal?
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77

Figure 3.1
Examples of discrete-time signals

n

x[n]

Daily Closing NASDAQ
Composite Index

Weekly Average Temperature

n

x[n]

Samples from an 
Exponentially Damped Sinusoid

n

x[n]

Most of the functions and methods developed for describing continuous-time signals 
have very similar counterparts in the description of discrete-time signals. But some operations 
on discrete-time signals are fundamentally different, causing phenomena that do not occur 
in continuous-time signal analysis. The fundamental difference between continuous-time 
and discrete-time signals is that the signal values occurring as time passes in a discrete-time 
signal are countable and in a continuous-time signal they are uncountable.

C H A P T E R  G OA L S

 1. To defi ne mathematical functions that can be used to describe discrete-time signals

 2. To develop methods of shifting, scaling and combining those functions to 
represent practical signals and to appreciate why these operations are different in 
discrete-time than in continuous-time

 C H A P T E R  3

3.1 INTRODUCTION AND GOALS
In the 20th century digital computing machinery developed from its infancy to its position 
today as a ubiquitous and indispensable part of our society and economy. The effect 
of digital computation on signals and systems is equally broad. Every day operations 
that were once done by continuous-time systems are being replaced by discrete-time 
systems. There are systems that  are inherently discrete time but most of the application 
of discrete-time signal processing is on signals that are created by   sampling continuous-
time signals. Figure 3.1 shows some examples of discrete-time signals. 

Discrete-Time Signal Description
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78 Chapter  3  Discrete-Time Signal Description

 3. To recognize certain symmetries and patterns to simplify analysis of discrete-time 
signals

3.2 SAMPLING AND  DISCRETE TIME
Of increasing importance in signal and system analysis are  discrete-time functions that 
describe discrete-time signals. The most common  examples of discrete-time signals are 
those obtained by sampling continuous-time signals. Sampling means acquiring the 
values of a signal at discrete points in time. One way to visualize sampling is through 
the example of a voltage signal and a switch used as an ideal sampler (Figure 3.2 (a)). 

The switch closes for an infi nitesimal time at discrete points in time. Only the values of 
the continuous-time signal x( )t  at those discrete times are assigned to the discrete-time 
signal x[ ]n . If there is a fi xed time Ts between samples, the sampling is called  uniform 
sampling in which the sampling times are integer multiples of a  sampling period or 
sampling interval Ts. The time of a sample nTs can be replaced by the integer n, which 
indexes the sample (Figure 3.3).

This type of operation can be envisioned by imagining that the switch simply 
rotates at a constant cyclic velocity fs cycles per second as in Figure 3.2(b) with the 
time between samples being T fs s s= =1 2/ /� � . We will use a simplifi ed notation for a 

Figure 3.3
Creating a discrete-time signal by sampling 
a continuous-time signal

g(t)

t

g[n]

n

Ts

Figure 3.2
(a) An ideal sampler, (b) an ideal sampler sampling uniformly

x(t) x[n] x(t) x[n]

ωs fs
(b)(a)
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discrete- time function g[ ]n  formed by sampling which, at every point of continuity of 
g( )t , is the same as g( )nTs , and in which n is an integer. The square brackets [.] enclosing 
the argument  indicate a discrete-time function, as contrasted with the  parentheses (.) 
that indicate a continuous-time function. The independent variable n is called discrete 
time because it indexes discrete points in time, even though it is dimensionless, not 
having units of seconds as t and Ts do. Since discrete-time functions are only defi ned 
for integer values of n, the values of expressions like g[ . ]2 7  or g[ ]3 4/  are undefi ned.

Functions that are defi ned for continuous arguments can also be given discrete 
time as an argument, for example, sin( )2 0�f nTs . We can form a discrete-time func-
tion from a continuous-time function by sampling, for example, g[ ] sin( )n f nTs= 2 0� . 
Then, although the sine is defi ned for any real argument value, the function g[ ]n  is only 
defi ned for integer values of n. That is, g[ . ]7 8  is undefi ned even though sin( ( . ) )2 7 80�f Ts  
is defi ned.1 

In engineering practice the most important  examples of discrete-time systems are 
 sequential-state machines, the most common example being a computer.  Computers 
are driven by a  clock, a fi xed-frequency oscillator. The clock generates pulses at regular 
intervals in time, and at the end of each clock cycle the computer has executed an 
instruction and changed from one logical state to the next. The computer has become 
a very important tool in all phases of the modern economy, so understanding how 
discrete-time signals are processed by sequential-state machines is very important, 
especially to engineers. Figure 3.4 illustrates some discrete-time functions that could 
describe discrete-time signals.

The type of graph used in Figure 3.4 is called a stem plot in which a dot indicates 
the functional value and the stems always connect the dot to the discrete time n axis. 
This is a widely used method of  graphing discrete-time functions.  MATLAB has a 
command  stem that generates stem plots.

The use of MATLAB to draw graphs is an example of sampling. MATLAB can only 
deal with fi nite-length vectors, so to draw a graph of a continuous-time function we must 
decide how many points to put in the time vector so that when MATLAB draws straight 
lines between the function values at those times, the graph looks like a continuous-time 
function. Sampling will be considered in much more depth in Chapter 10.

1 If we were to defi ne a function as g(n) = 5sin(2�f0nTs), the parentheses in g(n) would indicate that any real 
value of n would be acceptable, integer or otherwise. Although this is mathematically legal, it is not a good idea 
because we are using the symbol t for continuous time and the symbol n for discrete time, and the notation g(n), 
although mathematically defi ned, would be confusing.

Figure 3.4
Examples of discrete-time functions

n

g[n]

n

g[n]

... ...
n

g[n]

n

g[n]

 3.2 Sampling and Discrete Time 79
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80 Chapter  3  Discrete-Time Signal Description

3.3 SINUSOIDS AND  EXPONENTIALS
Exponentials and sinusoids are as important  in discrete-time signal and system analysis 
as in continuous-time signal and system analysis. Most discrete-time systems can be 
described, at least approximately, by difference equations. The eigenfunction of linear, 
constant-coeffi cient, ordinary difference equations is the complex exponential, and the 
real exponential is a special case of the complex exponential. Any sinusoid is a linear 
combination of complex exponentials. 

Discrete-time exponentials and sinusoids can be defi ned in a manner analogous to 
their continuous-time counterparts as

g[ ]n Ae n= �  or g[ ]n Azn= , where z e= �,

and

 g[ ] cos( ) g[ ] cos( )n A F n n A n= + = +2 0 0� � �or �

where z and � are complex constants, A is a real constant, � is a real phase shift in 
radians, F0 is a real number, �0 02= �F , and n is discrete time.

 SINUSOIDS

There are some important differences between continuous-time and discrete-time 
 sinusoids. One difference is that if we create a discrete-time sinusoid by sampling a 
continuous-time sinusoid, the period of the discrete-time sinusoid may not be readily 
apparent and, in fact, the  discrete-time sinusoid may not even be periodic. Let a 
discrete-time sinusoid g[ ] cos( )n A F n= +2 0� �  be related to a continuous-time sinusoid 
g( ) cos( )t A f t= +2 0� �  through g[ ] g( )n nTs= . Then F f T f fs s0 0 0= = /  where f Ts s= 1/  is 
the sampling rate. The requirement on a discrete-time sinusoid that it be periodic is that, 
for some discrete time n and some integer m, 2 20� �F n m= . Solving for F0, F m n0 = /  
indicating that F0 must be a rational number (a ratio of integers). Since sampling forces 
the relationship F f fs0 0= / , this also means that, for a discrete-time sinusoid to be 
periodic, the ratio of the fundamental frequency of the continuous-time sinusoid to the 
sampling rate must be rational. What is the fundamental period of the sinusoid

g[ ] cos cos( ( ) )n
n

n= ⎛
⎝

⎞
⎠ =4

72

19
4 2 36 19

�
� / ?

F0 is 36/19 and the smallest positive discrete time n that solves F n m0 = , m an integer, 
is n = 19. So the fundamental period is 19. If F0 is a rational number and is expressed as 
a ratio of integers F q N0 0= / , and if the fraction has been reduced to its simplest form 
by canceling common factors in the numerator and denominator, then the funda mental 
period of the sinusoid is N0, not ( )1 0 0/ /F N q=  unless q = 1 . Compare this result with the 
fundamental period of the continuous-time sinusoid g( ) cos( )t t= 4 72 19� / , whose fun-
damental period T0 is 19/36, not 19. Figure 3.5 illustrates some discrete-time sinusoids. 

When F0 is not the reciprocal of an integer, a discrete-time sinusoid may not be 
immediately recognizable from its graph as a sinusoid. This is the case for Figure 3.5 (c) 
and (d). The sinusoid in Figure 3.5 (d) is aperiodic. 

A source of confusion for students when fi rst encountering a discrete-time sinusoid 
of the form A F n A ncos( ) cos( )2 0 0� or �  is the question, “What are F0 and �0?” In the 
continuous-time sinusoids A f t A tcos( ) cos( )2 0 0� �and  f0 is the cyclic frequency in 
Hz or cycles/second and �0 is the radian frequency in radians/second. The argument 
of the cosine must be dimensionless and the products 2 0 0� �f t tand  are dimensionless, 
because the cycle and radian are ratios of lengths and the second in t and the second( )−1 
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in f0 or �0 cancel. Likewise, the arguments 2 0 0�F n nand �  must also be dimensionless. 
Remember n does not have units of seconds. Even though we call it discrete time, it is 
really a  time index, not time itself. If we think of n as indexing the samples then, for 
example, n = 3 indicates the third sample taken after the initial discrete time n = 0. So 
we can think of n as having units of samples. Therefore F0 should have units of cycles/
sample to make 2 0�F n dimensionless and �0 should have units of radians/sample to 
make �0n dimensionless. If we sample a continuous-time sinusoid A f tcos( )2 0�  with 
fundamental frequency f0 cycles/second at a rate of fs samples/second, we form the 
discrete-time sinusoid

A f nT A nf f A F ns scos( ) cos( ) cos( )2 2 20 0 0� � �= =/ ,

F f fs0 0= /  and the units are consistent.

F
f

fs
0

0in cycles/sample
in cycles/second

in sa
=

mmples/second

So F0 is a cyclic frequency normalized to the sampling rate. Similarly �0 0= � /fs is a 
normalized radian frequency in radians/sample

�0
0in radians/sample

in radians/second

in
= �

fs ssamples/second
.

One other aspect of discrete-time sinusoids that will be very important in Chapter 10 in the 
consideration of sampling is that two discrete-time sinusoids g [ ] cos( )1 12n A F n= +� �  
and g [ ] cos( )2 22n A F n= +� �  can be identical, even if F1 and F2 are different. For 

Figure 3.5 
Four discrete-time sinusoids
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82 Chapter  3  Discrete-Time Signal Description

example, the two sinusoids, g [ ] cos( )1 2 5n n= � /  and g [ ] cos( )2 12 5n n= � /  are described 
by different-looking expressions, but when we graph them versus discrete time n we 
see that they are identical (Figure 3.6).

The dashed lines in Figure 3.6 are the continuous-time functions g cos( )1 2 5t t( ) = � /  
and g ( ) cos( )2 12 5t t= � / , where n and t are related by t nTs= . The continuous-time func-
tions are obviously different, but the discrete-time functions are not. The reason the 
two discrete-time functions are identical can be seen by rewriting g [ ]2 n  in the form

g [ ] cos cos2
2

5

10

5

2

5
2n n n n n= +⎛

⎝
⎞
⎠ = +⎛

⎝
⎞
⎠

� � �
� .

Then, using the principle that if any integer multiple of 2� is added to the angle of a 
sinusoid the value is not changed,

g [ ] cos cos g [ ]2 1
2

5
2

2

5
n n n n n= +⎛

⎝
⎞
⎠ = ⎛

⎝
⎞
⎠ =�

�
�

because discrete-time n is an integer. Since the two discrete-time cyclic frequencies 
in this example are F F1 21 5 6 5= =/ and / , that must mean that they are equivalent as 
frequencies in a discrete-time sinusoid. That can be seen by realizing that at a frequency 
of 1/5 cycles/sample the angular change per sample is 2 5�/ , and at a frequency of 6/5 
cycles/sample the angular change per sample is 12 5�/ . As shown above, those two 
angles yield exactly the same values as arguments of a sinusoid. So, in a discrete-
time sinusoid of the form cos( )2 0� �F n + , if we change F0 by adding any integer, the 
sinusoid is unchanged. Similarly, in a discrete-time sinusoid of the form cos( )�0n + � , 
if we change �0 by adding any integer multiple of 2�, the sinusoid is unchanged. 
One can then imagine an experiment in which we generate a sinusoid sin( )2�Fn  and 
let F be a variable. As F changes in steps of 0.25 from 0 to 1.75, we get a sequence of 

Figure 3.6
Two cosines with different F’s but the same functional behavior
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Figure 3.7
Illustration that a discrete-time sinusoid with frequency F repeats 
every time F changes by one
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Figure 3.8
Behavior of g[ ]n Azn=  for different real z’s
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Figure 3.9
Behavior of g[ ]n Azn=  for some complex z’s
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discrete-time sinusoids (Figure 3.7). Any two discrete-time sinusoids whose F values 
differ by an integer are identical.

 EXPONENTIALS

The most common way of writing a discrete-time exponential is in the form g[ ]n Azn= . This 
does not look like a  continuous-time exponential, which has the form g( )t Ae t= � , because 
there is no “e”, but it is still an exponential, because g[ ]n Azn=  could have been written 
as g[ ]n Ae n= �  where z e= �. The form Azn is a little simpler and is generally preferred. 

 Discrete-time exponentials can have a variety of functional behaviors depending 
on the value of z in g[ ]n Azn= . Figure 3.8 and Figure 3.9 summarize the functional 
form of an exponential for different values of z.

 3.3 Sinusoids and Exponentials 83
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84 Chapter  3  Discrete-Time Signal Description

3.4  SINGULARITY FUNCTIONS
There is a set of discrete-time functions that are analogous to  continuous-time singu-
larity functions and have similar uses.

THE  UNIT-IMPULSE FUNCTION

The unit-impulse function (sometimes called the unit-sample function) (Figure 3.10) 
is defi ned by

 �[ ]
,

,
n

n

n
=

=
≠

⎧
⎨
⎩

1 0

0 0
. (3.1)

n

δ[n]

1

Figure 3.10
The unit-impulse function

The discrete-time unit-impulse function suffers from none of the mathematical 
peculiarities that the continuous-time unit impulse has. The discrete-time unit impulse 
does not have a property corresponding to the scaling property of the continuous-time 
unit impulse. Therefore � �[ ] [ ]n an=  for any nonzero, fi nite, integer value of a. But the 
discrete-time impulse does have a sampling property. It is 

 A n n n A n
n

�[ ]x[ ] x[ ]− =
=−∞

∞

∑ 0 0 . (3.2)

Since the impulse is only nonzero where its argument is zero, the summation over all 
n is a summation of terms that are all zero except at n n= 0. When n n= 0, x[ ] x[ ]n n= 0  
and that result is simply multiplied by the scale factor A. A common alternate name for 
this function is the  Kronecker delta function.

We did not have a MATLAB function for continuous-time impulses, but we can 
make one for   discrete-time impulses.

%  Function to generate the discrete-time impulse 
% function defi ned as one for input integer arguments 
% equal to zero and zero otherwise.Returns “NaN” for 
% non-integer arguments. 
%
% function y = impD(n)
% 
function y = impD(n)
  y = double(n == 0); % Impulse is one where argument 
  % is zero and zero otherwise
 I = fi nd(round(n) ~= n); % Index non-integer values of n
 y(I) = NaN; % Set those return values to NaN

This MATLAB function implements the functional behavior of �[ ]n  including returning 
undefi ned values (NaN) for arguments that are not integers. The “D” at the end of the 
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function name indicates that it is a discrete-time function. We cannot use the convention 
of square brackets [·] enclosing the argument  in MATLAB to indicate a discrete-time 
function. Square brackets in MATLAB have a different meaning.

THE  UNIT-SEQUENCE FUNCTION

The discrete-time function that corresponds to the continuous-time unit step is the 
unit-sequence function (Figure 3.11).

 u[ ]
,

,
n

n

n
=

≥
<

⎧
⎨
⎩

1 0

0 0
 (3.3)

n

u[n]

1
......

Figure 3.11
The unit-sequence function

For this function there is no disagreement or ambiguity about its value at n = 0. It is 
one, and every author agrees.

%  Unit sequence function defi ned as 0 for input integer 
% argument values less than zero, and 1 for input integer
% argument values equal to or greater than zero. Returns 
% “NaN” for non-integer arguments.
%
% function y = usD(n)
%
function y = usD(n)
 y = double(n >= 0); %  Set output to one for non-
  % negative arguments
 I = fi nd(round(n) ~= n); %  Index non-integer values of n
 y(I) = NaN ; %  Set those return values to NaN

THE  SIGNUM FUNCTION

The discrete-time function corresponding to the continuous-time signum function is 
defi ned in Figure 3.12.

 sgn[ ]n

n

n

n

=
>
=

− <

⎧
⎨
⎪

⎩⎪

1 0

0 0

1 0

,

,

,

 (3.4)

%  Signum function defi ned as -1 for input integer argument 
% values less than zero, +1 for input integer argument 
% values greater than zero and zero for input argument values 
% equal to zero. Returns “NaN” for non-integer arguments.
%
% function y = signD(n)

 3.4 Singularity Functions 85
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86 Chapter  3  Discrete-Time Signal Description

function y = signD(n)
 y = sign(n); %  Use the MATLAB sign function
 I = fi nd(round(n) ~= n); %  Index non-integer values of n
 y(I) = NaN; %  Set those return values to NaN

THE  UNIT-RAMP FUNCTION

The discrete-time function corresponding to the continuous-time unit ramp is defi ned 
in Figure 3.13.

 ramp[ ]
,

,
u[ ]n

n n

n
n n=

≥
<

⎧
⎨
⎩

⎫
⎬
⎭

=
0

0 0
 (3.5)

%  Unit discrete-time ramp function defi ned as 0 for input 
% integer argument values equal to or less than zero, and 
% “n” for input integer argument values greater than zero. 
% Returns “NaN” for non-integer arguments.
%
% function y = rampD(n)

function y = rampD(n)
 y = ramp(n); %  Use the continuous-time ramp
 I = fi nd(round(n) ~= n); %  Index non-integer values of n
 y(I) = NaN; %  Set those return values to NaN

THE UNIT PERIODIC IMPULSE FUNCTION OR IMPULSE TRAIN

The  unit discrete-time periodic impulse or impulse train (Figure 3.14) is defi ned by

 � �N
m

n n mN[ ] [ ]= −
= −∞

∞

∑ . (3.6)

n

δN[n]

1

N-N 2N

......

Figure 3.14
The unit periodic impulse function

Figure 3.12
The signum function

n

sgn[n]

1

-1

...

...
n

ramp[n]

4

4

......

8

8

Figure 3.13
The unit-ramp function
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%  Discrete-time periodic impulse function defi ned as 1 for
% input integer argument values equal to integer multiples
% of “N” and 0 otherwise. “N” must be a positive integer. 
% Returns “NaN” for non-positive integer values. 
%
%  function y = impND(N,n)
function y = impND(N,n)
 if N == round(N) & N > 0,
 y = double(n/N == round(n/N)); % Set return values to one
    % at all values of n that are
    % integer multiples of N
 I = fi nd(round(n) ~= n);  % Index non-integer values of n
 y(I) = NaN;  % Set those return values to NaN
 else

y = NaN*n; %  Return a vector of NaN’s
 disp(‘In impND, the period parameter N is not a positive integer’);

 end

The new  discrete-time signal functions are summarized in Table 3.1.

Table 3.1 Summary of discrete-time signal functions 

Sine sin(2πF0n) Sampled Continuous-Time
Cosine cos(2πF0n) Sampled Continuous-Time
Exponential zn Sampled Continuous-Time
Unit Sequence u[n] Inherently Discrete-Time
Signum sgn[n] Inherently Discrete-Time
Ramp ramp[n] Inherently Discrete-Time
Impulse �[n] Inherently Discrete-Time
Periodic Impulse �N[n] Inherently Discrete-Time

3.5  SHIFTING AND  SCALING
The general principles that govern scaling and shifting of continuous-time functions 
also apply to discrete-time functions, but with some interesting differences caused 
by the fundamental differences between continuous time and discrete time. Just as a 
continuous-time function does, a discrete-time function accepts a number and returns 
another number. The general principle that the expression in g[expression] is treated in 
exactly the same way that n is treated in the defi nition  g[n] still holds. 

 AMPLITUDE SCALING

Amplitude scaling for discrete-time functions is exactly the same as it is for continuous-
time functions.

 TIME SHIFTING

Let a function g[ ]n  be defi ned by the graph and table in Figure 3.15. Now let n n→ + 3. 
Time shifting is essentially the same for discrete-time and for continuous-time func-
tions, except that the shift must be an integer, otherwise the shifted function would 
have undefi ned values (Figure 3.16).

 TIME SCALING

Amplitude scaling and time shifting for discrete-time and continuous-time functions 
are very similar. That is not so true when we examine time scaling for discrete-time 
functions. There are two cases to examine, time compression and time expansion. 

 3.5 Shifting and Scaling 87
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88 Chapter  3  Discrete-Time Signal Description

Time Compression
Time compression is accomplished by a scaling of the form n Kn→ , where K > 1 
and K is an integer.  Time compression for discrete-time functions is similar to time 
compression for continuous-time functions in that the function seems to occur faster in 
time. But in the case of discrete-time functions there is another effect called  decimation. 
Consider the time scaling n n→ 2  illustrated in Figure 3.17.

For each integer n in g[ ]2n , the value 2n must be an even integer. Therefore, 
for this scaling by a factor of two, the odd-integer-indexed values of g[ ]n  are 
never needed to find values for g[ ]2n . The function has been decimated by a 
factor of two because the graph of g[ ]2n  only uses every other value of g[ ]n . For 
larger scaling constants, the decimation factor is obviously higher. Decimation 
does not happen in scaling continuous-time functions because, in using a scaling 
t Kt→ , all real t values map into real Kt values without any missing values. The 
fundamental difference between continuous-time and discrete-time functions is 
that the domain of a continuous-time function is all real numbers, an uncountable 
infinity of times, and the  domain of discrete-time functions is all integers, a 
countable infinity of discrete times.

 Time Expansion
The other time-scaling case, time expansion, is even stranger than time compression. 
If we want to graph, for example, g[ ]n/2 , for each integer value of n we must assign a 
value to g[ ]n/2  by fi nding the corresponding value in the original function defi nition. 
But when n is one, n/2 is one-half and g[ ]1 2/  is not defi ned. The value of the time-scaled 
function g[ ]n K/  is undefi ned unless n K/  is an integer. We could simply leave those 
values undefi ned or we could interpolate between them using the values of g[ ]n K/  at 
the next higher and next lower values of n at which n K/  is an integer. ( Interpolation is a 
process of computing functional values between two known values according to some 
formula.) Since interpolation begs the question of what interpolation formula to use, 
we will simply leave g[ ]n K/  undefi ned if n K/  is not an integer.

Even though time expansion, as described above, seems to be totally useless, there 
is a type of time expansion that is actually often useful. Suppose we have an original 
function x[ ]n  and we form a new function

 y[ ]
x

n
n K n K

=
[ / ], / an integer

0, otherwise
⎧
⎨
⎩

 

as in Figure 3.18 where K = 2.

Figure 3.15
Graphical defi nition of a function 
g[ ]n , g[ ] ,n n= ≥0 15
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Figure 3.16
Graph of g[ ]n + 3  illustrating time shifting
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Figure 3.17
Time compression for a discrete-time function
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Alternate form of time expansion
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90 Chapter  3  Discrete-Time Signal Description

All the values of the expanded function are defi ned, and all the values of x that 
occur at discrete time n occur in y at discrete time Kn. All that has really been done 
is to replace all the undefi ned values from the former time expansion with zeros. If 
we were to time-compress y by a factor K we would get all the x values back in their 
original positions, and all the values that would be removed by decimating y would 
be zeros.

EXAMPLE 3.1

 Graphing shifting and scaling of discrete-time functions

Using MATLAB, graph the function g[ ] . sin( )u[ ]n n nn= ( )10 0 8 3 16� / . Then graph the functions 
g[ ]2n  and g[ ]n/3 .

Discrete-time functions are easier to program in MATLAB than continuous-time functions 
because MATLAB is inherently oriented toward calculation of functional values at discrete 
values of the independent variable. For discrete-time functions there is no need to decide how 
close together to make the time points to make the graph look continuous, because the function 
is not continuous. A good way to handle graphing the function and the time-scaled functions 
is to defi ne the original function as an m fi le. But we need to ensure that the function defi nition 
includes its discrete-time behavior; for noninteger values of discrete time the function is 
undefi ned. MATLAB handles undefi ned results by assigning to them the special value NaN. The 
only other programming problem is how to handle the two different functional descriptions in the 
two different ranges of n. We can do that with logical and relational operators as demonstrated 
below in g.m.

function y = g(n),

 % Compute the function

 y = 10*(0.8).^n.*sin(3*pi*n/16).*usD(n);

 I = fi nd(round(n) ~= n); %  Find all non-integer “n’s”

 y(I) = NaN; %  Set those return values to “NaN”

We still must decide over what range of discrete times to graph the function. Since it is zero 
for negative times, we should represent that time range with at least a few points to show that 
it suddenly turns on at time zero. Then, for positive times it has the shape of an exponentially 
decaying sinusoid. If we graph a few time constants of the exponential decay, the function will 
be practically zero after that time. So the time range should be something like − < <5 16n  to 
draw a reasonable representation of the original function. But the time-expanded function g[ ]n/3  
will be wider in discrete time and require more discrete time to see the functional behavior. 
Therefore, to really see all of the functions on the same scale for comparison, let’s set the range 
of discrete times to − < <5 48n .

% Graphing a discrete-time function and compressed and expanded

% transformations of it

% Compute values of the original function and the time-scaled 

% versions in this section
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n = -5:48 ; % Set the discrete times for 

  % function computation

g0 = g(n) ; % Compute the original function

  % values

g1 = g(2*n) ; % Compute the compressed function 

  % values

g2 = g(n/3) ; % Compute the expanded function

   % values

% Display the original and time-scaled functions graphically 

% in this section

%

% Graph the original function

%

subplot(3,1,1) ;  % Graph fi rst of three graphs 

  % stacked vertically

p = stem(n,g0,’k’,’fi lled’); %  “Stem plot” the original function

set(p,’LineWidth’,2’,’MarkerSize’,4); % Set the line weight and dot

  % size

ylabel(‘g[n]’); %  Label the original function axis

%

% Graph the time-compressed function

%

subplot(3,1,2);  % Graph second of three plots 

  % stacked vertically

p = stem(n,g1,’k’,’fi lled’); % “Stem plot” the compressed 

  % function

set(p,’LineWidth’,2’,’MarkerSize’,4); % Set the line weight and dot

    % size

ylabel(‘g[2n]’); % Label the compressed function

  % axis 

%

% Graph the time-expanded function

%

subplot(3,1,3); % Graph third of three graphs

  % stacked vertically

p = stem(n,g2,’k’,’fi lled’) ; % “Stem plot” the expanded

  % function

set(p,’LineWidth’,2’,’MarkerSize’,4); % Set the line weight and dot

  % size

xlabel(‘Discrete time, n’); %  Label the expanded function axis

ylabel(‘g[n/3]’); % Label the discrete-time axis

 3.5 Shifting and Scaling 91
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92 Chapter  3  Discrete-Time Signal Description

Figure 3.19 illustrates the output of the MATLAB program.

3.6  DIFFERENCING AND ACCUMULATION
Just as differentiation and integration are important for continuous-time functions, the 
analogous operations, differencing and accumulation, are important for discrete-time 
functions. The fi rst derivative of a continuous-time function g( )t  is usually defi ned by

 
d

dt
t

t t t

tt
(g( )) lim

g( ) g( )= + −
→�

�

�0
.

But it can also be defi ned by

 
d

dt
t

t t t

tt
(g( )) lim

g( ) g( )= − −
→�

�

�0

or

 d

dt
t

t t t t

tt
(g( )) lim

g( ) g( )= + − −
→�

� �

�0 2
.

In the limit, all these defi nitions yield the same derivative (if it exists). But if �t remains 
fi nite, these expressions are not identical. The operation on a discrete-time signal that is 
analogous to the derivative is the  difference. The fi rst  forward difference  of a discrete-
time function g[ ]n  is g[ ] g[ ]n n+ −1 . (See Web Appendix D for more on differencing 
and difference equations.) The fi rst backward difference of a discrete-time function 
is g[ ] g[ ]n n− − 1 , which is the fi rst forward difference of g[ ]n − 1 . Figure 3.20 illustrates 
some discrete-time functions and their fi rst forward or backward differences.

The differencing operation applied to samples from a continuous-time function 
yields a result that looks a lot like (but not exactly like) samples of the derivative of that 
continuous-time function (to within a scale factor). 

The discrete-time counterpart of integration is  accumulation (or summation). 
The accumulation of g[ ]n  is defined by g[ ]m

m

n

=−∞∑ . The  ambiguity problem that 

Figure 3.19
Graphs of g[ ]n , g[ ]2n  and g[ ]n/3
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Backward Differences Forward Differences

Figure 3.20
Some functions and their backward or  forward differences

occurs in the integration of a continuous-time function exists for accumula-
tion of discrete-time functions. The accumulation of a function is not unique. 
Multiple functions can have the same first forward or backward difference but, 
just as in integration, these functions only differ from each other by an additive 
constant. 

Let h[ ] g[ ] g[ ]n n n= − − 1 , the fi rst backward difference of g[ ]n . Then accumulate 
both sides,

 h[ ] (g[ ] g[ ])m m m
m

n

m

n

=−∞ =−∞
∑ ∑= − − 1  

or

 h g[ ] g[ ] g[ ] g[ ] gm
m

n

[ ] = + − − −( ) + − −( ) + +
=−∞
∑ � �1 2 0 1 [[ ] g[ ]n n− −( )1 . 

Gathering values of g[ ]n  occurring at the same time,

 h[ ] (g[ ] g[ ]) (g[ ] gm
m

n

=−∞ =
∑ = + − − − + −� � ��� ���1 1 0

0

[[ ]) (g[ ] g[ ]) g0 1 1
0 0= =

+ + − − − +� �� �� � � ���� ����n n [[ ]n  
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94 Chapter  3  Discrete-Time Signal Description

and

 h[ ] g[ ]m n
m

n

=−∞
∑ = .

This result proves that accumulation and fi rst- backward-difference are inverse 
operations. The fi rst backward difference of the accumulation of any function g[ ]n  is 
g[ ]n . Figure 3.21 illustrates two functions h[ ]n  and their accumulations g[ ]n . In each of 
the graphs of Figure 3.21 the accumulation was done based on the assumption that all 
function values of h[ ]n  before the time range graphed are zero.

In a manner analogous to the integral-derivative relationship between the continuous-
time unit step and the continuous-time unit impulse, the unit sequence is the accumula-
tion of the unit impulse u[ ] [ ]n m

m

n=
= −∞∑ � , and the unit impulse is the fi rst backward 

difference of the  unit sequence �[ ] u[ ] u[ ]n n n= − − 1 . Also, the  discrete-time unit ramp is 
defi ned as the accumulation of a unit sequence function delayed by one in discrete time,

 ramp[ ] u[ ]n m
m

n

= −
=−∞
∑ 1  

and the unit sequence is the fi rst forward difference of the unit ramp 
u[ ] ramp[ ] ramp[ ]n n n= + −1  and the fi rst backward difference of ramp [n 	 1].

MATLAB can compute differences of discrete-time functions using the   diff 
function. The diff function accepts a vector of length N as its argument and returns 
a vector of forward differences of length N − 1. MATLAB can also compute the 
accumulation of a function using the cumsum (cumulative summation) function. The 
  cumsum function accepts a vector as its argument and returns a vector of equal length 
that is the accumulation of the elements in the argument vector. For example,

»a = 1:10

a =

   1   2   3   4   5   6   7   8   9   10

»diff(a)
ans =

   1   1   1   1   1   1   1   1   1

»cumsum(a)
ans =

   1   3   6  10  15  21  28  36  45  55

»b = randn(1,5)

n
-5 20

h[n]

-2

2

n
-10 10

h[n]
2

n
-5 20

g[n]

-2

2

n
-10 10

g[n]
8

Figure 3.21
Two functions h[ ]n  and their accumulations g[ ]n
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b =

  1.1909  1.1892  -0.0376  0.3273  0.1746

»diff(b)
ans =

  -0.0018  -1.2268  0.3649  -0.1527
»cumsum(b)
ans =

  1.1909  2.3801  2.3424  2.6697  2.8444

It is apparent from these examples that cumsum assumes that the value of the accumu-
lation is zero before the fi rst element in the vector.

EXAMPLE 3.2

 Graphing the accumulation of a function using MATLAB

Using MATLAB, graph the accumulation of the function x[ ] cos( )n n= 2 36� /  from n = 0 to 
n = 36 under the assumption that the accumulation before time n = 0 is zero.

% Program to demonstrate accumulation of a function over a fi nite

% time using the cumsum function.

n = 0:36 ; % Discrete-time vector

x = cos(2*pi*n/36); % Values of x[n]

%  Graph the accumulation of the function x[n]

p = stem(n,cumsum(x),’k’,’fi lled’); 

set(p,’LineWidth’,2,’MarkerSize’,4);

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,24);

ylabel(‘x[{\itn}]’,’FontName’,’Times’,’FontSize’,24);

Figure 3.22 illustrates the output of the MATLAB program.

Figure 3.22
Accumulation of a cosine

-6

-4

-2

0

2

4

6

8

x[
n]

0 5 10 15 20 25 30 35 40
n

Accumulation of a Cosine
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96 Chapter  3  Discrete-Time Signal Description

Notice that this  cosine accumulation looks a lot like (but not exactly like) a sine function. 
That occurs because the accumulation process is analogous to the integration process for 
continuous-time functions and the integral of a cosine is a sine.

3.7   EVEN AND ODD SIGNALS
Like continuous-time functions, discrete-time functions can also be classifi ed by the prop-
erties of evenness and oddness. The defi ning relationships are completely analogous to 
those for continuous-time functions. If g[ ] g[ ]n n= − , then g[ ]n  is even, and if g[ ] g[ ],n n= − −  
g[ ]n  is odd. Figure 3.23 shows some examples of even and odd functions.

Figure 3.23
Examples of even and odd functions

......
n

......
n

g[n]
Even Function

g[n]
Odd Function

The even and odd parts of a function g[ ]n  are found exactly the same way as for 
continuous-time functions.

 g [ ]
g[ ] g[ ]

g [ ]
g[ ] g[ ]

e on
n n

n
n n= + − = − −

2 2
and  (3.7)

An even function has an odd part that is zero and an odd function has an even part that 
is zero.

EXAMPLE 3.3

 Even and odd parts of a function

Find the even and odd parts of the function, g[ ] sin( )( )n n n= +2 7 1 2� / .

 g [ ]
sin( )( ) sin( )( ( ) )

e n
n n n n= + + − + −2 7 1 2 7 12 2� �/ /

22
 

 g [ ]
sin( )( ) sin( )( )

e n
n n n n= + − + =2 7 1 2 7 1

2
0

2 2� �/ /
 

 g [ ]
sin( )( ) sin( )( )

sio n
n n n n= + − − + −( )

=2 7 1 2 7 1

2

2 2� �/ /
nn ( )

2

7
1 2�n

n⎛
⎝

⎞
⎠ +  

The function g[ ]n  is odd.
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Figure 3.25
Product of two odd functions

n

g1[n]

n

g2[n] n

g1[n]g2[n]

Figure 3.26
Product of an even and an odd function

n

g1[n]

n

g2[n] n

g1[n]g2[n]

 COMBINATIONS OF EVEN AND ODD SIGNALS

All the properties of combinations of functions that apply to continuous-time functions 
also apply to discrete-time functions. If two functions are even, their sum, difference, 
product and quotient are even too. If two functions are odd, their sum and difference 
are odd but their product and quotient are even. If one function is even and the other is 
odd, their product and quotient are odd. 

In Figure 3.24 through Figure 3.26 are some examples of products of even and 
odd functions.

Figure 3.24
Product of two even functions

n

g1[n]

n

g2[n]
n

g1[n]g2[n]

 3.7 Even and Odd Signals 97

SYMMETRICAL FINITE SUMMATION OF EVEN AND ODD SIGNALS

The defi nite integral of continuous-time functions over symmetrical limits is analogous 
to summation of discrete-time functions over symmetrical limits. Properties hold for 
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98 Chapter  3  Discrete-Time Signal Description

 summations of discrete-time functions that are similar to (but not identical to) those for inte-
grals of continuous-time functions. If g[ ]n  is an even function and N is a positive integer,

 g[ ] g[ ] g[ ]n n
n N

N

n

N

=− =
∑ ∑= +0 2

1

 

and, if g[ ]n  is an odd function,

g[ ]n
n N

N

=−
∑ = 0

(See Figure 3.27).

Figure 3.27
Summations of even and odd discrete-time functions

......
n

g[n]

......
n

g[n]
Even Function Odd Function

-N N

-N

N

Sum #1

Sum #1 = Sum #2

Sum #2
Sum #1

Sum #1 = - Sum #2
Sum #2

Figure 3.28
Examples of periodic functions with fundamental period N0 

n

g[n]

n

g[n]

n

g[n]

N0

N0
N0

... ... ... ... ......

3.8  PERIODIC SIGNALS
A periodic function is one that is invariant under the time shift n n mN→ + , where 
N is a period of the function and m is any integer. The fundamental period N0 is the 
minimum positive discrete time in which the function repeats. Figure 3.28 shows some 
examples of  periodic functions.

The fundamental frequency is F N0 01= /  in cycles/sample or �0 02= �/N  in 
radians/sample. Remember that the units of discrete-time frequency are not Hz or 
radians/second because the unit of discrete-time is not the second. 

EXAMPLE 3.4

 Fundamental period  of a function

Graph the function g[ ] cos( ) sin( )n n n= −2 9 4 3 6 5� �/ /  over the range − ≤ ≤50 50n . From the 
graph determine the fundamental period.
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Figure 3.29 show the function g[n]. 

n
-50 50

g[n]

-5

5

N0 = 40

Figure 3.29
The function, g[ ] cos( ) sin( )n n n= −2 9 4 3 6 5� �/ /

As a check on this graphically-determined answer, the function can also be written in 
the form g[ ] cos( ( ) ) sin( ( ) )n n n= −2 2 9 8 3 2 3 5� �/ / . The two fundamental periods of the two 
individual sinusoids are then 8 and 5 and their LCM is 40, which is the fundamental period 
of g[ ]n .

3.9 SIGNAL ENERGY AND POWER

SIGNAL ENERGY

Signal energy is defi ned by

 E nx
n

=
=−∞

∞

∑ x[ ] 2 , (3.8)

and its units are simply the square of the units  of the signal itself.

EXAMPLE 3.5

Signal energy of a signal

Find the signal energy of x[ ] ( ) u[ ]n nn= 1 2/ . From the defi nition of signal energy,

 E n nx
n

n

n

n

n

= = ⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠

= −∞

∞

= −∞

∞

∑ ∑x[ ] u[ ]2
2 2

1

2

1

2==

∞

=

∞

∑ ∑= ⎛
⎝

⎞
⎠ = + + +

0

2

0
2 4

1

2
1

1

2

1

2

n

n

�.

This infi nite series can be rewritten as

 Ex = + + +1
1

4

1

42 �.

We can use the formula for the summation of an infi nite geometric series

 r
r

rn

n=

∞

∑ =
−

<
0

1

1
1,

to get

 Ex =
−

=1

1 1 4

4

3/
.
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100 Chapter  3  Discrete-Time Signal Description

 SIGNAL POWER

For many signals encountered in signal and system analysis, the summation

 E nx
n

=
=−∞

∞

∑ x[ ] 2  

does not converge because the signal energy is infi nite, and this usually occurs because 
the signal is not time limited. The unit sequence is an example of a signal with 
infi nite energy. For signals of this type, it is more convenient to deal with the average 
signal power of the signal instead of the signal energy. The defi nition of average signal 
power is

 P
N

n
N n N

N

x lim x[ ]=
→∞ =−

−

∑1

2
2

1

, (3.9)

and this is the average signal power over all time. (Why is the upper summation limit 
N − 1 instead of N?)

For periodic signals, the average signal power calculation may be simpler. The 
average value of any periodic function is the average over any period and

 P
N

n
N

n nx
n n

n N

n N

= =
=

+ −

=
∑ ∑1 12

1
2

0

0

0

x[ ] x[ ] , any iinteger (3.10)

where the notation n N=∑  means the summation over any range of consecutive n’s 
that is N in length, where N can be any period of x[ ]n 2.

EXAMPLE 3.6

 Finding signal energy and power of signals using MATLAB

Using MATLAB fi nd the signal energy or power of the signals,

(a) x[ ] ( . ) sin( )n nn= 0 9 2 4� /  and (b) x[ ] [ ] [ ].n n n= −4 75 7� �

Then compare the results with analytical calculations.

%  Program to compute the signal energy or power of some example signals

% (a)

n = -100:100 ; %  Set up a vector of discrete times at 

    % which to compute the value of the 

    % function

% Compute the value of the function and its square

x = (0.9).^abs(n).*sin(2*pi*n/4) ; xsq = x.^2 ;

Ex = sum(xsq) ;  %  Use the sum function in MATLAB to 

  % fi nd the total energy and display 

  % the result.

disp([‘(b) Ex = ‘,num2str(Ex)]);

% (b)
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N0 = 35; % The fundamental period is 35

n = 0:N0-1;  %  Set up a vector of discrete times 

  % over one period at which to compute

  % the value of the function 

% Compute the value of the function and its square

x = 4*impND(5,n) - 7*impND(7,n) ; xsq = x.^2 ;

Px = sum(xsq)/N0;  % Use the sum function in MATLAB to 

  % fi nd the average power and display 

  % the result.

disp([‘(d) Px = ‘,num2str(Px)]);

The output of this program is

(a) Ex = 4.7107

(b) Px = 8.6

Analytical computations:

(a) E n nx
n

n

n

= =
= −∞

∞

= −∞

∞

∑ ∑x[ ] ( . ) sin( )2 2
0 9 2 4� /

 
E n nx

n

n

n= +
=

∞
−∑ ( . ) sin( ) ( . ) sin( )0 9 2 4 0 9 2 4

2

0

� �/ /
220

2

0

0
n= −∞ =
∑ − x[ ]���  

 
E n nn

n

n

n
x ( . ) sin ( ) ( . ) sin ( )= +

=

∞
−∑ 0 9 2 4 0 9 2 42 2

0

2 2� �/ /
==−∞
∑
0

 

 E nn

n

n
x ( . ) ( cos( )) . ( cos(= − + ( ) −

=

∞
−∑1

2
0 9 1

1

2
0 9 12

0

2� �nn
n

))
=−∞
∑
0

 

Using the even symmetry of the cosine function, and letting n n→ −  in the second summation,

 E nn

n
x ( . ) ( cos( ))= −

=

∞

∑ 0 9 12

0

�  

E
e en n

j n j n

n
x . . ( . )= ( ) − ( ) +⎛

⎝⎜
⎞
⎠⎟

=
−

=

∞

∑ 0 9 0 9
2

0 812 2

0

� �
nn

n

j n

n

j n

n

e e
=

∞

=

∞
−

=

∞

∑ ∑ ∑− +
⎡

⎣
⎢
⎢

⎤

0 0 0

1

2
0 81 0 81( . ) ( . )� �

⎦⎦
⎥
⎥

Using the formula for the sum of an infi nite geometric series,

 r
r

rn

n=

∞

∑ =
−

<
0

1

1
1,

 E
e ej jx

. . .
=

−
−

−
+

−
⎡
⎣⎢

⎤
⎦⎥−

1

1 0 81

1

2

1

1 0 81

1

1 0 81� �  

 Ex
. . . .

=
−

−
+

+
+

⎡
⎣⎢

⎤
⎦⎥

=
−

−
+

1

1 0 81

1

2

1

1 0 81

1

1 0 81

1

1 0 81

1

1 0..
.

81
4 7107=  Check.

(b) P
N

n
N

n nx
n N n

N

= = = −
= =

−

∑ ∑1 1 1

35
4 7

0

2

0

2

0

1

5 7

0

0

x[ ] x[ ] [ ]� � [[ ]n
n

2

0

34

=
∑
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102 Chapter  3  Discrete-Time Signal Description

The impulses in the two impulse train functions only coincide at integer multiples of 35. 
Therefore in this summation range they coincide only at n = 0 . The net impulse strength at n = 0 
is therefore −3. All the other impulses occur alone and the sum of the squares is the same as the 
square of the sum. Therefore

 

P
n n n n

x ( ) ( ) (= − + + − + + −
= = = =

1

35
3 4 7 42

0

2

5

2

7

2

10
� � � � 77 4 4 7 42

14

2

15

2

20

2

21

2

25
) ( )

n n n n n= = = = =
+ + + − +� � � � �� � �+ − +

⎛

⎝
⎜

⎞

⎠
⎟

= =
( )7 42

28

2

30n n
 

 Px
( )

.= + × + × − = + + =9 6 4 4 7

35

9 96 196

35
8 6

2 2
 Check.

3.10 SUMMARY OF IMPORTANT POINTS
 1. A discrete-time signal can be formed from a continuous-time signal by sampling.
 2. A discrete-time signal is not defi ned at noninteger values of discrete time.
 3. Discrete-time signals formed by sampling periodic continuous-time signals may 

be aperiodic.
 4. Two different-looking analytical descriptions can produce identical discrete-time 

functions.
 5. A time-shifted version of a discrete-time function is only defi ned for integer 

shifts in discrete time.
 6. Time scaling a discrete-time function can produce decimation or undefi ned values, 

phenomena that do not occur when time scaling continuous-time functions.

 EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

Signal Functions

  1. Figure E.1 shows a circuit in which a voltage x( ) sin( )t A f t= 2 0�  is connected 
periodically to a resistor by a switch. The switch rotates at a frequency fs of 
500 rpm. The switch is closed at time t = 0 and each time the switch closes it 
stays closed for 10 ms. 

xi(t) fs

+

-

xo(t)

Figure E.1

(a) If A = 5 and f0 1= , graph the response voltage x ( )o t  for 0 2< <t .
(b) If A = 5 and f0 10= , graph the response voltage x ( )o t  for 0 1< <t .
(c) This is an approximation of an ideal sampler. If the sampling process were 

ideal, what signals x[ ]n  would be produced in parts (a) and (b)? Graph them 
versus discrete time n.
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Answers: 

  2. Graph these functions.
(a) x[ ] cos( ) sin( ( ) )n n n= − −4 2 12 3 2 2 8� �/ / , − ≤ <24 24n
(b) x[ ] /n ne n= −3 5,  − ≤ <20 20n  (c) x[ ] ( )n n n= +21 2 142 3/ , − ≤ <5 5n

Answers: 
n-5

5

x[n]

-2000

2000

,

n-24 24

x[n]

-7

7
, n-20

20

x[n]

-6

6

  3. Let x [ ] cos( )1 5 2 8n n= � /  and x [ ] ( / )
2

68
2

n e n= − − . Graph the following 
combinations of those two signals over the range − ≤ <20 20n . If a signal has 
some defi ned and some undefi ned values, omit the undefi ned values.
(a) x[ ] x [ ]x [ ]n n n= 1 2  (b) x[ ] x [ ] x [ ]n n n= +4 21 2

(c) x[ ] x [ ]x [ ]n n n= 1 22 3  (d) x[ ]
x [ ]

x [ ]
n

n

n
=

−
1

2

2

(e) x[ ] x [ ] x [ ]n n n= +2 2 4 31 2/ /

n-20 20

x[n]

-50000

10000
n

-20 20

x[n]

-40

5

n-20 20

x[n]

-8

5

Answers: 

n
-20 20

x[n]

-40

40

n-20 20

x[n]

-8

5

n
8

x[n]

-6

6

t 2

xi(t)

-6

6

t2

xo(t)

-6

6

t 1

xi(t)

-6

6

t1

xo(t)

-6

6

n
20

x[n]

-6

6
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104 Chapter  3  Discrete-Time Signal Description

Scaling and   Shifting

 4. For each pair of functions in Figure E.4 provide the values of the constants in 
g [ ] g [ ( )]2 1 0n A a n n= − .

 

-10 -5 0 5 10
-2
-1
0
1
2

n

(a) (a)

-10 -5 0 5 10
-2
-1
0
1
2

n

-10 -5 0 5 10
-2
-1
0
1
2

n
-10 -5 0 5 10

-2
-1
0
1
2

n

(b)(b)
g 1

[n
]

g 1
[n

]

g 2
[n

]
g 2

[n
]

 Figure E.4

Answers: A n a= − = = −1 2 0 2 20/ or, , ; A n a= − = = −1 1 2 20, , or

  5. A function g[ ]n  is defi ned by

 g[ ]

,

,

,

n

n

n n

n n

=
− < −

− ≤ <
≤

⎧
⎨
⎪

⎩⎪

2 4

4 1

4 1/

  Graph g[ ]−n , g[ ]2 − n , g[ ]2n  and g[ ]n/2 .

  Answers: 

n-10
10

g[2-n]

-4

4

n-10
10

g[n/2]

-4

4

n-10
10

g[n]

-4

4

n
-10

10

g[2n]

-4

4

n-10
10

g[-n]

-4

4
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 Differencing and Accumulation

 6. Graph the backward differences of the functions in Figure E.6.

n-4 20

g[n] = (n/10)2

4

(c)

n
-4 20

g[n]
1

(a)

n
-4 20

g[n]
1

(b)

Figure E.6

  Answers:

n-4 20
-0.25

0.5

g[n] - g[n-1]

n
-4 20

-1

1

g[n] - g[n-1]

n
-4 20

-1

1

g[n] - g[n-1]

 7. The signal x[ ]n  is defi ned in Figure E.7.  Let y[ ]n  be the fi rst backward difference 
of x[ ]n  and let z[ ]n  be the accumulation of x[ ]n . (Assume that x[ ]n  is zero for all 
n < 0.)

(a) What is the value of y[ ]4  ? 
(b) What is the value of z[ ]6  ? 

n
20

x[n]

-6

4

 Figure E.7

Answers: −8, −3

 8. Let g[ ] u[ ] u[ ]n n n= + − −3 5 .
(a) What is the sum of all the values of g[ ]n  ?
(b) If h[ ] g[ ]n n= 3 , what is the sum of all the values of h[ ]n  ?
Answers: 8, 3

 9. Graph the accumulation g[ ]n  of each of these functions h[ ]n  that are zero for all 
times n < −16.
(a) h[ ] [ ]n n= �  (b) h[ ] u[ ]n n=
(c) h[ ] cos( ) u[ ]n n n= 2 16� /  (d) h[ ] cos( ) u[ ]n n n= 2 8� /
(e) h[ ] cos( ) u[ ]n n n= +2 16 8� /
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106 Chapter  3  Discrete-Time Signal Description

Answers:

n
-16 16

h[n]

-1

1

n
-16 16

g[n]

-3

3

n
-16 16

h[n]
1

n
-16 16

g[n]
1

n
-16 16

h[n]
1

n
-16 16

g[n]
16

n
-16 16

h[n]

-1

1

n
-16 16

g[n]

-3

3

n
-16 16

h[n]

-1

1

n
-16 16

g[n]

-3

3

 Even and Odd Signals

10. Find and graph the even and odd parts of these functions.
(a) g u un n n[ ] = [ ] − −[ ]4  (b) g[ ] u[ ]/n e nn= − 4

(c) g[ ] cos( )n n= 2 4� /  (d) g[ ] sin( ) u[ ]n n n= 2 4� /

Answers: 

n
-10 10

ge[n] 

-1

1

n
-10 10

go[n] 

-1

1

n
-10 10

ge[n]

-1

1

n
-10

10

go[n]

-1

1

n
-10 10

ge[n]

-1

1

n
-10 10

go[n]

-1

1

n
-10 10

ge[n]

-1

1

n
-10 10

go[n]

-1

1

11. Graph g[ ]n  for the signals in Figure E.11.

g1[n]

g2[n]
-10 10

-1

1

-10
10

-1

1

n

n

g[n]

Multiplication

(a)

g1[n]

g2[n]

-4
20

-1

1

-4 20
-1

1

n

n

g[n]

Multiplication

(b)
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Figure E.11

Answers:

n-10

10

g[n]

-1

1

n
-4 20

g[n]

-1

1

n
-10 10

g[n]

-1

1

n
-4 20

g[n]

-1

1

 Periodic Signals

12. Find the fundamental period of each of these functions.
(a) g[ ] cos( )n n= 2 10� /  (b) g[ ] cos( )n n= � /10
(c) g[ ] cos( ) cos( )n n n= +2 5 2 7� �/ /  (d) g[ ] / /n e ej n j n= + −2 20 2 20� �

(e) g[ ] / /n e ej n j n= +− −2 3 2 4� �  (f) g[ ] sin( ) cos( )n n n= −13 8 9 6� �/ /
(g) g[ ] cos( ) sin( )/n e n nj n= + −− 6 21 22 36 11 33� � �/ /
Answers: 10, 20, 12, 20, 252, 16, 35

13. Graph the following functions and determine from the graphs the fundamental 
period of each one (if it is periodic).
(a) g[ ] sin( ) cos( )n n n= +5 2 4 8 2 6/ /�  (b) g[ ] sin( ) cos( )n n n= +5 7 12 8 14 8/ /
(c) g[ ] Re( )/n e ej n jn= + −� 3  (d) g[ ] Re( )/n e ejn jn= + − 3

Answers: 

n
-24 24

g[n]

-12

12

N0 = 12

n-24 24

g[n]

-2

2

N0 = 6

g1[n]

-10 10
-1

1

-10 10
-1

1

n

n

g[n]g2[n]

Multiplication

(d)

g1[n]

g2[n]
-4 20

-1

1

-4 20
-1

1

n

n

g[n]

Multiplication

(c)
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108 Chapter  3  Discrete-Time Signal Description

n-24 24

g[n]

-2

2

Not Periodic

n-24 24

g[n]

-12

12

N0 = 24

14. If g[ ] cos( )n n= −15 2 12� /  and h[ ] cos( )n Kn= 15 2� , what are the two smallest 
positive values of K for which g[ ] h[ ]n n=  for all n?
Answers: 1 12/ , 11 12/

 Signal Energy and Power

15. Find the signal energy of these signals.
(a) x[ ] [ ]n A n= �  (b) x[ ] [ ]n nN= � 0

(c) x[ ] ramp[ ]n n=  (d) x[ ] ramp[ ] ramp[ ] ramp[ ]n n n n= − − + −2 4 8
Answers: ∞, 44, ∞, A2 

16. A signal consists of the periodic alternating sequence � �4 2 4 2 4 2, , , , , ,− − − . 
What is the average signal power of this signal?

  Answer: 10

17. A signal x[ ]n  is periodic with period N0 6= . Some selected values of x[ ]n  are 
x[ ]0 3= , x[ ]− =1 1, x[ ]− = −4 2, x[ ]− = −8 2, x[ ]3 5= , x[ ]7 1= − , x[ ]10 2= −  and 
x[ ]− =3 5. What is its average signal power?

  Answer: 7.333

18. Find the average signal power of a periodic signal described over one period by
x[ ]n n n= − ≤ <2 2 2, .

  Answer: 6

19. Find the average signal power of x[ ] sin( )n n= − +5 3 2 4� / .

  Answer: 29.5

20. Find the average signal power of these signals.
(a) x[ ]n A=  (b) x[ ] u[ ]n n=
(c) x[ ] [ ]n nN= � 0

 (d) x[ ] ramp[ ]n n=

EXERCISES WITHOUT ANSWERS
Signal Functions

21. Graph these exponential and trigonometric functions.
(a) g[ ] cos( )n n= −4 2 10� /
(b) g[ ] cos( . )n n= −4 2 2�

(c) g[ ] cos( . )n n= −4 1 8�

(d) g[ ] cos( ) sin( )n n n= −2 2 6 3 2 6� �/ /
(e) g[ ] ( )n n= 3 4/
(f ) g[ ] ( . ) sin( )n nn= 2 0 9 2 4� /
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22. Given the function defi nitions on the left, fi nd the function values on the right.

(a) g[ ]n
n

e n= + −3 6

10
2  g[ ]3

(b) g[ ] Ren
j n

= +⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
1

2
 g[ ]5

(c) g[ ] ( )n j n j n= + −2 10 42� �  g[ ]4

Shifting and Scaling

23. Graph these functions.

(a) g[ ] u[ ]n n= +2 2

(b) g[ ] u[ ]n n= 5

(c) g[ ] ramp[ ]n n= − −2

(d) g[ ] ramp[ ]n n= 10 2/

(e) g[ ] [ ]n n= −7 1�

(f ) g[ ] [ ( )]n n= −7 2 1�

(g) g[ ] [ ]n n= −4 2 3� /

(h) g[ ] [ ]n n= − −4 2 3 1� /

(i) g[ ] [ ]n n= 8 4�

( j) g[ ] [ ]n n= 8 24�

24. Graph these functions.
(a) g[ ] u[ ] u[ ]n n n= + −
(b) g[ ] u[ ] u[ ]n n n= − −
(c) g[ ] cos( ) [ ]n n n= 2 12 3� �/

(d) g[ ] cos( ) [ ]n n n= 2 12 23� �/ /

(e) g[ ] cos u[ ] cos u[ ]n
n

n
n

n= +( )⎛
⎝⎜

⎞
⎠⎟ + − ⎛

⎝
⎞
⎠

2 1

12
1

2

12

� �

(f ) g[ ] cos u[ ]n
m

m
m

n

= ⎛
⎝

⎞
⎠

=
∑ 2

120

�

(g) g[ ] ( [ ] [ ])n m m
m

n

= − −
=

∑ � �4 4
0

2

(h) g[ ] ( [ ] [ ])(u[ ] u[ ])n m m m m
m

n

= + + − −
= −∞
∑ � �4 3 4 5

(i) g[ ] [ ] [ ]n n n= + −� �2 21

( j) g[ ] [ ]n m m
m

n

m

n

= [ ] −
= −∞

+

= −∞
∑ ∑� �

1
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110 Chapter  3  Discrete-Time Signal Description

25. Graph the magnitude and phase of each function versus k.
(a) G[ ] sin( ) /k k e j k= −20 2 8 4� �/

(b) G[ ] ( [ ] [ ] [ ] [ ] [ ]) /k k k k k k e j k= + − + + − − + −� � � � � �8 2 4 2 4 8 8

26. Using MATLAB, for each function below graph the original function and the 
shifted and/or scaled function.

(a) g[ ]

,

,

,

,

n

n

n n

n n

n

=

≤
− < ≤

− + < ≤
>

⎧

⎨
⎪⎪

⎩

5 0

5 3 0 4

23 4 8

41 8

2
⎪⎪
⎪

 g[ ]3n  vs. n

(b) g[ ] cos( ) cos( )n n n= 10 2 20 2 4� �/ /  4 2 1g[ ( )]n +  vs. n

(c) g[ ] u[ ]/n e nj n= 8 2 16�  g[ ]n/2  vs. n

27. Given the graphical defi nition of a function g[n] in Figure E.27, graph the 
indicated function(s) h[n]. 

(a) 

n

g[n]

2 4 6 8-8 -6 -4 -2

2
4
6

-6
-4

-2

 h[ ] g[ ]n n= −2 4

 g[ ] ,n n= >0 8

(b) 

n

g[n]

2 4 6 8-8 -6 -4 -2

2
4
6

-6
-4
-2

 h[ ] g[ ]n n= /2

 g[ ] ,n n= >0 8

(c) 

n

g[n]

2 4 6 8-8 -6 -4 -2

2
4
6

-6
-4
-2

 h[ ] g[ ]n n= /2

 g[ ]n  is periodic

 Figure E.27
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28. Graph the following functions.
(a) g[ ] [ ] [ ]n n n= − + +5 2 3 1� �

(b) g[ ] [ ] [ ( )]n n n= + −5 2 3 4 2� �

(c) g[ ] u[ ] u[ ]n n n= − − −( )5 1 4

(d) g[ ] cos( )n n= 8 2 7� /

(e) g[ ] u[ ]/n e nn= −10 4

(f ) g[ ] ( . ) u[ ]n nn= −10 1 284

(g) g[ ] ( ) u[ ]n j nn= /4

(h) g[ ] ramp[ ] ramp[ ] ramp[ ]n n n n= + − + −2 2 2

(i) g[ ] cos( ) u[ ]n n n= 5 2 8 2� / /

29. Graph versus k, in the range − < <10 10k  the magnitude and phase of

(a) X[ ]k
jk

=
+

1

1 2/

(b) X[ ]k
jk

jk
=

+1 2/

(c) X[ ] [ ] /k k e j k= −� �
2

2 4

Differencing and Accumulation

30. Graph the accumulation of each of these functions.

(a) g[ ] cos( ) u[ ]n n n= 2�  

(b) g[ ] cos( ) u[ ]n n n= 4�

31. In the equation u[ ] g[( ) ]m n n N
m

n

w
=−∞
∑ = − 0 /  

(a) What is the name of the function g?
(b) Find the values of n0 and Nw. 

32. What is the numerical value of each of the following accumulations?

(a) ramp[ ]n
n=
∑

0

10

 (b) 1 2
0

6

/ n

n=
∑

(c) u[ ]n n

n

/2
=−∞

∞

∑  (d) �3
10

10

[ ]n
n= −
∑

(e) �3
10

10

2[ ]n
n= −
∑

Even and Odd Signals

33. Find and graph the magnitude and phase of the even and odd parts of this 
“discrete-k” function. 

 G[ ]k
j k

=
−
10

1 4
 

 Exercises without Answers 111

rob80687_ch03_077-112.indd   111rob80687_ch03_077-112.indd   111 12/29/10   2:19:29 PM12/29/10   2:19:29 PM



112 Chapter  3  Discrete-Time Signal Description

34. Find and graph the even and odd parts of the function in Figure E.34.

n

g[n]

2 6-8 -6 -4 -2

2
4
6

-6
-4
-2 4 8

Figure E.34

35. Graph the even and odd parts of these signals.

(a) x[ ] [ ]n n= −�3 1

(b) x[ ] cos( )n n= +15 2 9 4� �/ /

Periodic Signals

36. Using MATLAB, graph each of these functions. If a function is periodic, fi nd the 
period analytically and verify the period from the graph.

(a) g[ ] sin( )n n= 3 2� /

(b) g[ ] sin( ) cos( )n n n= +2 3 10 3� �/ /

(c) g[ ] cos( ) sin( )n n n= +5 2 8 3 2 5� �/ /

(d) g[ ] cos( )n n= 10 4/

(e) g[ ] cos( )sin( )n n n= −3 2 7 2 6� �/ /  

 (A trigonometric identity will be useful here.)

Signal Energy and Power

37. Find the signal energy of each of these signals.
(a) x[ ] [ ] [ ]n n n= + −2 5 3� �

(b) x[ ] u[ ]n n n= /
(c) x[ ] ( ) u[ ]n nn= −1 3/
(d) x[ ] cos( )(u[ ] u[ ])n n n n= − −� /3 6

38. Find the average signal power of each of these signals.
(a) x[ ] ( )n n= −1  
(b) x[ ] cos( )n A F n= +2 0� �

(c) x[ ]
, , , , , , , , , , , , , ,

n
A n

=
= � �0 1 2 3 8 9 10 11 16 17 18 19

0 ,, , , , , , , , , , , , , ,n =
⎧
⎨
⎩ � �4 5 6 7 12 13 14 15 20 21 22 23

(d) x[ ] /n e j n= − � 2

39. If x[ ]n
n n

=
− ≤ <⎧

⎨
⎩

⎫
⎬
⎭

6 2 2

0

,

, otherwise
 and y[ ] x[ ]n n= 2 , fi nd the signal energy of y[n].
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4.1 INTRODUCTION AND GOALS
The words signal and system were defi ned very generally in Chapter 1. Analysis of 
systems is a discipline that has been developed by engineers. Engineers use math-
ematical theories and tools and apply them to knowledge of the physical world to 
design things that do something useful for society. The things an engineer designs 
are systems, but, as indicated in Chapter 1, the defi nition of a system is broader than 
that. The term system is so broad it is diffi cult to  defi ne. A system can be almost 
anything.

One way to defi ne a system is as anything that performs a function. Another way 
to defi ne a system is as anything that responds when stimulated or excited. A system 
can be an electrical system, a mechanical system, a biological system, a computer 
system, an economic system, a political system and so on. Systems designed by engi-
neers are  artifi cial systems; systems that have developed organically over a period of 
time through evolution and the rise of civilization are  natural systems. Some systems 
can be analyzed completely with mathematics. Some systems are so complicated that 
mathematical analysis is extremely diffi cult. Some systems are just not well under-
stood because of the diffi culty in measuring their characteristics. In engineering the 
term system usually refers to an artifi cial system that is excited by certain signals and 
responds with other signals.

Many systems were developed in earlier times by artisans who designed and im-
proved their systems based on their experiences and observations, apparently with the 
use of only the simplest mathematics. One of the most important distinctions between 
engineers and artisans is in the engineer’s use of higher mathematics, especially calcu-
lus, to describe and analyze systems.

C H A P T E R  G OA L S

 1. To introduce nomenclature that describes important system properties

 2.  To illustrate the modeling of systems with differential and difference equations 
and block diagrams

 3. To develop techniques for classifying systems according to their properties

 C H A P T E R  4
Description of Systems
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114 Chapter  4  Description of Systems

4.2  CONTINUOUS-TIME SYSTEMS

 SYSTEM MODELING

One of the most important processes in signal and system analysis is the modeling of 
systems: describing them mathematically or logically or graphically. A good model is 
one that includes all the signifi cant effects of a system without being so complicated 
that it is diffi cult to use. 

Common terminology in system analysis is that if a system is excited by  input 
signals applied at one or more inputs, responses or output signals appear at one or 
more outputs. To excite a system means to apply energy that causes it to respond. One 
example of a system would be a boat propelled by a motor and steered by a rudder. 
The thrust developed by the propeller, the rudder position and the current of the water 
excite the system, and the heading and speed of the boat are responses (Figure 4.1). 

Notice the statement above says that the heading and speed of the boat are re-
sponses, but it does not say that they are the responses, which might imply that there 
are not any others. Practically every system has multiple responses, some signifi cant 
and some insignifi cant. In the case of the boat, the heading and speed of the boat are 
signifi cant, but the vibration of the boat structure, the sounds created by the water 
splashing on the sides, the wake created behind the boat, the rocking and/or tipping 
of the boat, and a myriad of other physical phenomena are not signifi cant, and would 
probably be ignored in a practical analysis of this system.

An automobile suspension is excited by the surface of the road as the car travels over 
it, and the position of the chassis relative to the road is a signifi cant response (Figure 4.2). 
When we set a  thermostat in a room, the setting and the room temperature are input signals 
to the heating and cooling system, and a response of the system is the introduction of warm 
or cool air to move the temperature inside the room closer to the thermostat setting.

Figure 4.1
A simplifi ed diagram of a boat

θ

Thrust

Current

Rudder

Figure 4.2 
Simplifi ed model of an  automobile suspension system

Automobile Chassis

y(t)

x(t)

Spring
Shock
Absorber
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A whole class of systems,  measurement instruments, are single-input, single-
output systems. They are excited by the physical phenomenon being measured, and 
the response is the instrument’s indication of the value of that physical phenomenon. A 
good example is a  cup anemometer. The wind excites the anemometer and the angular 
velocity of the anemometer is the signifi cant response (Figure 4.3).

Something that is not ordinarily thought of as a system is a  highway bridge. There is 
no obvious or deliberate input signal that produces a desired response. The ideal bridge 
would not respond at all when excited. A bridge is excited by the traffi c that rolls across it, 
the wind that blows onto it and the water currents that push on its support structure, and it 
does move. A very dramatic example showing that bridges respond when excited was the 
failure of the Tacoma Narrows suspension bridge in Washington state. On one very windy 
day the bridge responded to the wind by oscillating wildly and was eventually torn apart 
by the forces on it. This is a very dramatic example of why good analysis is important. The 
conditions under which the bridge would respond so strongly should have been discovered 
in the design process so that the design could have been changed to avoid this disaster.

A single  biological cell in a plant or animal is a system of astonishing complexity, 
especially considering its size. The  human body is a system comprising a huge number 
of cells and is, therefore, an almost unimaginably complicated system. But it can be 
modeled as a much simpler system in some cases to calculate an isolated effect. In 
pharmacokinetics the human body is often modeled as a single compartment, a volume 
containing liquid. Taking a drug is an excitation and the concentration of drug in the 
body is the signifi cant response. Rates of infusion and excretion of the drug determine 
the variation of the drug concentration with time.

Differential Equations
Below are some examples of the thinking involved in  modeling systems using differ-
ential equations. These examples were fi rst presented in Chapter 1.

EXAMPLE 4.1

 Modeling a mechanical system

A man 1.8 m tall and weighing 80 kg bungee jumps off a bridge over a river. The bridge is 200 m 
above the water surface and the unstretched bungee cord is 30 m long. The spring constant of the 
bungee cord is Ks = 11 N/m, meaning that, when the cord is stretched, it resists the stretching 
with a force of 11 newtons per meter of stretch. Make a mathematical model of the dynamic 

Wind

Rotation

Figure 4.3
Cup anemometer

 4.2 Continuous-Time Systems 115
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116 Chapter  4  Description of Systems

position of the man as a function of time and graph the man’s position versus time for the fi rst 
15 seconds.

When the man jumps off the bridge he goes into free fall until the bungee cord is extended 
to its full unstretched length. This occurs when the man’s feet are at 30 m below the bridge. 
His initial velocity and position are zero (using the bridge as the position reference). His ac-
celeration is 9 8. m/s2 until he reaches 30 m below the bridge. His position is the integral of his 
velocity and his velocity is the integral of his acceleration. So, during the initial free-fall time, 
his velocity is 9 8. t m/s, where t is time in seconds and his position is 4 9 2. t m below the bridge. 
Solving for the time of full unstretched bungee-cord extension we get 2.47 s. At that time his 
velocity is 24.25 meters per second, straight down. At this point the analysis changes because 
the bungee cord starts having an effect. There are two forces on the man:

1. The downward pull of gravity mg where m is the man’s mass and g is the acceleration 
caused by the earth’s gravity

2. The upward pull of the bungee cord K ts (y( ) )− 30  where y( )t  is the vertical position of the 
man below the bridge as a function of time

Then, using the principle that force equals mass times acceleration and the fact that acceleration 
is the second derivative of position, we can write

 mg K t m ts− − = ′′(y( ) ) y ( )30
or
 m t K t mg Ks s′′ + = +y ( ) y( ) .30

This is a second-order, linear, constant-coeffi cient, inhomogeneous, ordinary differential 
equation. Its total solution is the sum of its homogeneous solution and its particular solution. 

The homogeneous solution is a linear combination of the equation’s  eigenfunctions. The 
eigenfunctions are the functional forms that can satisfy this form of equation. There is one 
eigenfunction for each eigenvalue. The eigenvalues are the parameters in the eigenfunctions that 
make them satisfy this particular equation. The eigenvalues are the solutions of the character-
istic equation, which is m Ks�2 0+ = . The solutions are � = ± j K ms / . (See Web Appendix D 
for more on the  solution of differential equations.) Since the eigenvalues are complex numbers, 
it is somewhat more convenient to express the solution as a linear combination of a real sine 
and a real cosine instead of two complex exponentials. So the  homogeneous solution can be 
expressed in the form

 y ( ) sin cosh h s h st K K m t K K m t= ( ) + ( )1 2/ / .

The particular solution is in the form of a linear combination of the  forcing function and 
all its unique derivatives. In this case the forcing function is a constant and all its derivatives are 
zero. Therefore the particular solution is of the form y ( )p pt K= , a constant. Substituting in the 
form of the particular solution and solving, y ( )p st mg K= +/ 30. The total solution is the sum of 
the homogeneous and particular solutions

 y( ) y ( ) y ( ) sin cost t t K K m t K K m th p h s h s= + = ( ) + ( ) +1 2/ / mmg Ks

K p

/ + 30� �� �� .

The boundary conditions are y( . )2 47 30=  and ′( ) ==y t
t 2 47

24 25
.

. . Putting in numerical values 
for parameters, applying boundary conditions and solving, we get

 y( ) . sin( . ) . cos( . ) .t t t= − − +16 85 0 3708 95 25 0 3708 101 3,, t > 2 47. .

The initial variation of the man’s vertical position versus time is parabolic. Then at 2.47 s 
the solution becomes a sinusoid chosen to make the two solutions and the derivatives of the two 
solutions continuous at 2.47 s, as is apparent in Figure 4.4.
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In Example 4.1 the differential equation

 m t K t mg Ks s′′ + = +y ( ) y( ) 30

describes the system. This is a linear, constant-coeffi cient, inhomogeneous ordinary dif-
ferential equation. The right side of the equation is called its forcing function. If the 
forcing function is zero, we have a homogeneous differential equation and the solution 
of that equation is the homogeneous solution. In signal and system analysis this solution 
is called the  zero-input response. It is nonzero only if the initial conditions of the system 
are nonzero, meaning the system has stored energy. If the system has no stored energy 
and the forcing function is not zero, the response is called the  zero-state response.

Many physical processes were ignored in the mathematical model used in 
Example 4.1, for example,

 1. Air resistance
 2. Energy dissipation in the bungee cord
 3. Horizontal components of the man’s velocity
 4. Rotation of the man during the fall
 5. Variation of the acceleration due to gravity as a function of position
 6. Variation of the water level in the river

Omitting these factors kept the model mathematically simpler than it would oth-
erwise be.  System modeling is always a compromise between the accuracy and the 
simplicity of the model.

EXAMPLE 4.2

Modeling a  fl uid-mechanical system

A cylindrical water tank has cross-sectional area A1 and water level h ( )1 t  and is fed by an input 
volumetric fl ow of water f ( )1 t  with an orifi ce at height h2 whose effective cross-sectional area is 

Figure 4.4 
Man’s vertical position versus time (bridge level is zero)
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118 Chapter  4  Description of Systems

A2, through which fl ows the output volumetric fl ow f ( )2 t  (Figure 4.5). Write a  differential equa-
tion for the water level as a function of time and graph the water level versus time for a tank that 
is initially empty, under different assumptions of infl ow.

Under certain simplifying assumptions, the velocity of the water fl owing out of the orifi ce 
is given by  Toricelli’s equation,

 v ( ) [h ( ) ]2 1 22t g t h= −

where g is the acceleration due to earth’s gravity ( . )9 8 m/s2 . The rate of change of the volume 
A t1 1h ( ) of water in the tank is the volumetric infl ow rate minus the volumetric outfl ow rate

 d

dt
A t t t( h ( )) f ( ) f ( )1 1 1 2= −

and the volumetric outfl ow rate is the product of the effective area A2 of the orifi ce and the out-
put fl ow velocity f ( ) v ( )2 2 2t A t= . Combining equations we can write one differential equation 
for the water level

 A
d

dt
t A g t h t1 1 2 1 2 12(h ( )) [h ( ) ] f ( )+ − = . (4.1)

The water level in the tank is graphed in Figure 4.6 versus time for four constant volumetric in-
fl ows under the assumption that the tank is initially empty. As the water fl ows in, the water level 
increases and the increase of water level increases the water outfl ow. The water level rises until 
the outfl ow equals the infl ow and after that time the water level stays constant. As fi rst stated in 
Chapter 1, when the infl ow is increased by a factor of two, the fi nal water level is increased by 
a factor of four, a result of the fact that the differential equation (4.1) is nonlinear. A method of 
fi nding the solution to this differential equation will be presented later in this chapter.

Figure 4.6 
Water level versus time for four different volumetric infl ows with the tank 
initially empty
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Figure 4.5 
Tank with orifi ce being fi lled from above
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Block Diagrams
In system analysis it is very useful to  represent systems by block diagrams. A system 
with one input and one output would be represented as in Figure 4.7. The signal at the 
input x( )t  is operated on by the operator H to produce the signal at the output y( )t .The 
operator H could perform just about any operation imaginable. 

Figure 4.7
A  single-input, single-output system

x(t) y(t)

Figure 4.8 
A two-input, two-output system composed of four 
interconnected components

1

2

3

4

x2(t)

x1(t)

y2(t)

y1(t)

In block diagrams each input signal may go to any number of blocks, and each 
output signal from a block may go to any number of other blocks. These signals are 
not affected by being connected to any number of blocks. There is no loading effect as 
there is in circuit analysis. In an electrical analogy, it would be as though the blocks all 
have infi nite input impedance and zero output impedance. 

In drawing block diagrams of systems, some types of operations appear so often 
they have been assigned their own block-diagram graphical symbols. They are the 
amplifi er, the  summing junction, and the  integrator.

The amplifi er multiplies its input signal by a constant (its gain) to produce its re-
sponse. Different symbols for amplifi cation are used in different applications of system 

A system is often described and analyzed as an assembly of  components. A com-
ponent is a smaller, simpler system, usually one that is standard in some sense and 
whose properties are already known. Just what is considered a component as opposed 
to a system depends on the situation. To a circuit designer, components are resistors, 
capacitors, inductors, operational amplifi ers and so on, and systems are power amplifi ers, 
A/D converters, modulators, fi lters and so forth. To a communication system designer 
components are  amplifi ers, modulators, fi lters, antennas and systems are microwave 
links, fi ber-optic trunk lines, telephone central offi ces. To an automobile designer com-
ponents are wheels, engines, bumpers, lights, seats and the system is the automobile. In 
large, complicated systems like commercial airliners, telephone networks, supertankers 
or power plants there are many levels of hierarchy of components and systems.

By knowing how to mathematically describe and characterize all the components 
in a system and how the components interact with each other, an engineer can predict, 
using mathematics, how a system will work, without actually building it and testing it. 
A system made up of components is diagrammed in Figure 4.8.

 4.2 Continuous-Time Systems 119
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120 Chapter  4  Description of Systems

analysis and by different authors. The most common forms are shown in Figure 4.9. 
We will use Figure 4.9(c) in this text to represent an amplifi er.

A summing junction accepts multiple input signals and responds with the sum of 
those signals. Some of the signals may be negated before being summed, so this com-
ponent can also produce the difference between two signals. Typical graphical symbols 
used to represent a summing junction are illustrated in Figure 4.10.

Figure 4.11
The graphical block-diagram symbol for 
an integrator

x(t) ∫ ∫ x(τ)dτ
-∞

t

There are also symbols for other types of components that do special signal-
processing operations. Each engineering discipline has its own preferred set of symbols 
for operations that are common in that discipline. A hydraulic system diagram might 
have dedicated symbols for a valve, a venturi, a pump and a nozzle. An optical system 
diagram might have symbols for a laser, a beamsplitter, a polarizer, a lens and a mirror.

In signals and systems there are common references to two general types of sys-
tems, open-loop and  closed-loop. An  open-loop system is one that simply responds 
directly to an input signal. A closed-loop system is one that responds to an input signal 
but also senses the output signal and “feeds it back” to add to or subtract from the input 
signal to better satisfy system requirements. Any measuring instrument is an open-loop 
system. The response simply indicates what the excitation is without altering it. A 
human driving a car is a good example of a closed-loop feedback system. The driver 
signals the car to move at a certain speed and in a certain direction by pressing the 
accelerator or brake and by turning the steering wheel. As the car moves down a road, 

Figure 4.9 
Three different graphical representations of an amplifi er in a system block diagram

Kx Kx Kx Kx
K

x Kx

   (a)             (b)          (c)

 (a) (b) (c)

x

y

x-yx

y

x-yΣ x

y

x-y

Figure 4.10 
Three different graphical representations of a summing junction in a system block diagram

We will use Figure 4.10 (c) in this text to represent a summing junction. If there is 
no plus or minus sign next to a summing junction input, a plus sign is assumed.

An  integrator, when excited by any signal, responds with the integral of that signal 
(Figure 4.11).
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Figure 4.12 
Continuous-time feedback system
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∫

∫

the driver is constantly sensing the speed and position of the car relative to the road and 
the other cars. Based on what the driver senses she modifi es the input signals (steering 
wheel, accelerator, and/or brakes) to maintain the desired direction of the car and to 
keep it at a safe speed and position on the road.

EXAMPLE 4.3

Modeling a  continuous-time feedback system

For the system illustrated in Figure 4.12,

(a) Find its zero-input response, the response with x( )t = 0, if the initial value of y( )t  is 
y( )0 1= , the initial rate of change of y( )t  is ′ ==y ( )t t 0 0, a = 1 , b = 0 and c = 4. 

(b) Let b = 5  and fi nd the zero-input response for the same initial conditions as in part (a).
(c) Let the system be initially at rest and let the input signal x( )t  be a unit step. Find the 

zero-state response for a = 1, c = 4 and b = −1 1 5, , .

(a) From the diagram we can write the differential equation for this system by realizing that the 
output signal from the summing junction is ′′y ( )t  and it must equal the sum of its input signals

′′ = − ′ +y ( ) x( ) [ y ( ) y( )]t t b t c t

  With b = 0 and c = 4, the response is described by the differential equation 
′′ + =y ( ) y( ) x( )t t t4 . The eigenfunction is the complex exponential est and the eigenvalues 

are the solutions of the characteristic equation s s j2
1 24 0 2+ = ⇒ = ±, . The homogeneous 

solution is y( )t K e K eh
j t

h
j t= + −

1
2

2
2 . Since there is no excitation, this is also the total solution. 

Applying the initial conditions, y( ) y ( )0 2 2 01 2 0 1 2= + = ′ = − ==K K t j K j Kh h t h h1 and  and 

solving, K Kh h1 2 0 5= = . . The total solution is y( ) . cos( ) .t e e t tj t j t= +( ) = ≥−0 5 2 02 2 ,  
So, with b = 0, the zero-input response is a sinusoid.

(b) Now b = 5. The differential equation is ′′ + ′ + =y ( ) y ( ) y( ) x( )t t t t5 4 , the eigenvalues are 
s1 2 1 4, ,= − −  and the solution is y( )t K e K eh

t
h

t= +− −
1 2

4  Applying initial conditions, 
y( ) y ( ) .0 1 4 01 2 0 1 2= + = ′ = − − ==K K t K Kh h t h hand  Solving for the constants, 

K Kh h1 24 3 1 3= = −/ , /  and y( ) ( ) ( ) .t e e tt t= − ≥− −4 3 1 3 04/ / ,  This zero-input response 
approaches zero for times, t > 0.

(c) In this case x( )t  is not zero and the total solution of the differential equation includes the 
particular solution. After t = 0 the input signal is a constant, so the particular solution 
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122 Chapter  4  Description of Systems

is also a constant K p. The differential equation is y″(t) � by′(t) � 4y(t) � x(t). Solving 
for K p we get K p = 0 25.  and the total solution is y( ) .t K e K eh

s t
h

s t= + +1 21 2 0 25 where 

s b b1 2
2 16 2, .= − ± −( ) /  The response and its fi rst derivative are both zero at t = 0. 

Applying initial conditions and solving for the remaining two constants,

b s s K K

j j j
h h1 2 1 2

1 0 5 1 9365 0 5 1 9365 0 125 0 03− + − − −. . . . . . 223 0 125 0 0323

1 0 5 1 9365 0 5 1 9365 0 12

− +
− + − − −

. .

. . . . .

j

j j 55 0 0323 0 125 0 0323

5 4 1 0 0833 0 3333

+ − −
− − −

j j. . .

. .

The solutions are

 

b t

e tt

y( )

. [ . cos( . ) . sin( ..− − −1 0 25 0 25 1 9365 0 0646 10 5 99365

1 0 25 0 25 1 9365 0 06460 5

t

e tt

)]

. [ . cos( . ) . sin.− +− (( . )]

. . .

1 9365

5 0 08333 0 3333 0 254

t

e et t− −− +  

These zero-state responses are graphed in Figure 4.13.

Figure 4.13 
System responses for b = �1, 1 and 5 
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Obviously, when b = −1 the zero-state response grows without bound and this feedback 
system is unstable. System dynamics are strongly infl uenced by feedback.

 SYSTEM PROPERTIES

Introductory Example
To build an understanding of large, generalized systems, let us begin with examples 
of some simple systems that will illustrate some important system properties.  Circuits 
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Figure 4.14 
An RC lowpass fi lter, a single-input, single-output system

Figure 4.15 
Mathematical voltage-current relationships 
for a resistor and a capacitor
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are familiar to electrical engineers. Circuits are electrical systems. A very common 
circuit is the RC  lowpass fi lter, a single-input, single-output system, illustrated in 
Figure 4.14.

This circuit is called a lowpass fi lter because if the excitation is a constant-
amplitude sinusoid, the response will be larger at low frequencies than at high fre-
quencies. So the system tends to “pass” low frequencies through while “stopping” 
or “blocking” high frequencies. Other common fi lter names are highpass, bandpass, 
and bandstop.  Highpass fi lters pass high-frequency sinusoids and stop or block low-
frequency sinusoids.  Bandpass fi lters pass mid-range frequencies and block both low 
and high frequencies.  Bandstop fi lters pass low and high frequencies while blocking 
mid-range frequencies. Filters will be explored in much more detail in Chapters 11 
and 15.

The voltage at the input of the RC lowpass fi lter v ( )in t  excites the system and the 
voltage at the output v ( )out t  is the response of the system. The input voltage signal is 
applied to the left-hand pair of terminals, and the output voltage signal appears at the 
right-hand pair of terminals. This system consists of two components familiar to elec-
trical engineers, a resistor and a capacitor. The  mathematical voltage-current relations 
for  resistors and  capacitors are well known and are illustrated in Figure 4.15.

Using  Kirchhoff’s voltage law, we can write the differential equation

 
RC t t tout

t

out in′ + =
=

v ( ) v ( ) v ( ).
i( )

��� ��  
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124 Chapter  4  Description of Systems

The solution of this differential equation is the sum of the homogeneous and par-
ticular solutions. (See Web Appendix D for more on the solution of differential 
equations.) The homogeneous solution is v ( ),

/
out h h

t RCt K e= −  where Kh is, as yet, 
unknown. The particular solution depends on the functional form of v ( )in t . Let the 
input voltage signal v ( )in t  be a constant A volts. Then, since the input voltage signal 
is constant, the particular solution is v ( ),out p pt K= , also a constant. Substituting that 
into the differential equation and solving, we get K Ap =  and the total solution is 
v ( ) v ( ) v ( ), ,

/
out out h out p h

t RCt t t K e A= + = +− . The constant Kh can be found by knowing 
the output voltage at any particular time. Suppose we know the voltage across the 
capacitor at t = 0, which is v ( )out 0 . Then

 v ( ) v ( )out h h outK A K A0 0= + ⇒ = −  

and the output voltage signal can be written as

 v ( ) v ( ) ( )/ /
out out

t RC t RCt e A e= + −− −0 1 , (4.2)

and it is illustrated in Figure 4.16.
This solution is written and illustrated as though it applies for all time t. In prac-

tice that is impossible because, if the solution were to apply for all time, it would be 
unbounded as time approaches negative infi nity, and unbounded signals do not occur 
in real physical systems. It is more likely in practice that the circuit’s initial voltage 
was placed on the capacitor by some means and held there until t = 0. Then at t = 0 the 
A-volt excitation was applied to the circuit and the system analysis is concerned with 
what happens after t = 0. This solution would then apply only for that range of time and 
is bounded in that range of time. That is v ( ) v ( ) ( )/ /

out out
t RC t RCt e A e t= + − ≥− −0 1 0,  

as illustrated in Figure 4.17.

t 

vout(t)

A

RC

vout(0+)

Figure 4.16 
RC lowpass fi lter response to a constant 
excitation

t 

vout(t)

A

RC

vout(0)

Figure 4.17 
RC circuit response to an initial volt-
age and a constant excitation applied 
at time t = 0

There are four determinants of the  voltage response of this circuit for times t ≥ 0,  
the resistance R, the capacitance C, the initial capacitor voltage v ( )out 0  and the applied 
voltage v ( )in t . The resistance and capacitance values determine the interrelationships 
among the voltages and currents in the system. From (4.2) we see that if the applied 
voltage A is zero, the response is

 v ( ) v ( )out out
t RCt e t= >−0 0/ ,  (4.3)

and if the initial capacitor voltage v ( )out 0  is zero, the response is

 v ( ) ( )out
t RCt A e t= − >−1 0/ ,  (4.4)

rob80687_ch04_113-158.indd   124rob80687_ch04_113-158.indd   124 12/17/10   6:09:12 PM12/17/10   6:09:12 PM



So the response (4.3) is the zero-input response and the response (4.4) is the  zero-state 
response. Zero-state means no stored energy in the system and in the case of the RC 
lowpass fi lter, zero state would mean the capacitor voltage is zero. For this system the 
total response is the sum of the zero-input and zero-state responses.

If the excitation is zero for all negative time, then we can express it as a step of 
voltage v ( ) u( )in t A t= . If we assume that the circuit has been connected with this excita-
tion between the input terminals for an infi nite time (since t = −∞), the initial capacitor 
voltage at time t = 0 would have to be zero (Figure 4.18 (a)). The system would initially 
be in its zero state and the response would be the zero-state response. Sometimes an ex-
pression like v ( ) u( )in t A t=  for the input signal is intended to represent the situation il-
lustrated in Figure 4.18 (b). In this case we are not just applying a voltage to the system, 
we are actually changing the system by closing a switch. If the initial capacitor voltage 
is zero in both circuits of Figure 4.18, the responses for times, t ≥ 0, are the same.

R

C Au(t) vout (t)

-

+
R

CA vout (t)

-

+
t = 0

(a) (b)

Figure 4.18 
Two ways of applying A volts to the RC lowpass fi lter at time t = 0
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Cvin(t) vout(t)

-

+

-

+
i(t)

iin(t)

Figure 4.19 
RC lowpass fi lter with a current impulse to inject charge onto 
the capacitor and establish the initial capacitor voltage

It is possible to include the effects of initial energy storage in a system by inject-
ing signal energy into the system when it is in its zero state at time t = 0 with a second 
system excitation, an impulse. For example, in the RC lowpass fi lter we could put the 
initial voltage on the capacitor with an impulse of current from a current source in 
parallel with the capacitor (Figure 4.19).

When the impulse of current occurs, all of its charge fl ows into the capacitor dur-
ing the time of application of the impulse (which has zero duration). If the strength of 
the impulse is Q, then the change in capacitor voltage due to the charge injected into it 
by the current impulse is 

�v i ( ) ( )out in
C

t dt
C

Q t dt
Q

C
= = =

−

+

−

+

∫ ∫
1 1

0

0

0

0

� .

So choosing Q C out= v ( )0  establishes the initial capacitor voltage as v ( )out 0 . Then 
the analysis of the circuit continues as though we were fi nding the zero-state response 
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126 Chapter  4  Description of Systems

to v ( )in t  and i ( )in t  instead of the zero-state response to v ( )in t  and the zero-input re-
sponse to v ( )out 0 . The total response for times t > 0 is the same either way.

Most continuous-time systems in practice can be modeled (at least approximately) by 
differential equations in much the same way as the RC lowpass fi lter above was modeled. 
This is true of electrical, mechanical, chemical, optical and many other kinds of systems. 
So the study of signals and systems is important in a very broad array of disciplines.

 Homogeneity
If we were to double the input voltage signal of the RC lowpass fi lter to v ( ) u( )in t A t= 2 , 
the factor 2A would carry through the analysis and the zero-state response would double 
to v ( ) ( ) u( )out

t RCt A e t= − −2 1 / . Also, if we were to double the initial capacitor voltage, the 
zero-input response would double. In fact, if we multiply the input voltage signal by any 
constant, the zero-state response is also multiplied by the same constant. The quality of 
this system that makes these statements true is called homogeneity. 

In a  homogeneous system, multiplying the input signal by any constant (including 
complex constants) multiplies the zero-state response by the same constant.

Figure 4.20 illustrates, in a block-diagram sense, what homogeneity means.
A very simple example of a system that is not homogeneous is a system character-

ized by the relationship y( ) x( )t t− =1 . If x is 1, y is 2, and if x is 2, y is 3. The input 
signal was doubled, but the output signal was not doubled. What makes this system 
 inhomogeneous is the presence of the constant −1 on the left side of the equation. This 
system has a nonzero, zero-input response. Notice that if we were to add +1 to both 
sides of the equation and redefi ne the input signal to be x ( ) x( )new t t= + 1 instead of 
just x( )t , we would have y( ) x ( )t tnew= , and doubling x ( )new t  would double y( )t . The 
system would then be homogeneous under this new defi nition of the input signal.

Figure 4.20 
Block diagram illustrating the concept of 
homogeneity for a system initially in its 
zero state (K is any complex constant)

x(t) y(t)

Homogeneous System

x(t) Ky(t)
Kx(t)

K

Multiplier

EXAMPLE 4.4

Determining whether a system is homogeneous

Test, for homogeneity, the system whose input-output relationship is

y( ) exp(x( ))t t=

Let x ( ) g( ).1 t t=  Then y ( ) exp(g( )).1 t t=  Let x ( ) g( ).2 t K t=  Then y ( ) exp( g( ))2 t K t= =
[exp(g( ))] y ( ).1t K tK ≠  Therefore this system is not homogeneous.
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The analysis in Example 4.4 may seem like an unnecessarily formal proof for such 
a simple function. But it is very easy to get confused in evaluating some systems, even 
simple-looking ones, unless one uses this kind of structured proof.

 Time Invariance
Suppose the system of Figure 4.14 were initially in its zero-state and the excitation 
were delayed by t0 changing the input signal to x( ) u( )t A t t= − 0 . What would hap-
pen to the response? Going through the solution process again we would fi nd that the 

zero-state response is v ( ) u( )out
t t RCt A e t t= −( ) −− −( )1 0

0
/ , which is exactly the original 

zero-state response except with t replaced by t t− 0. Delaying the excitation delayed 
the zero-state response by the same amount without changing its functional form. The 
quality that makes this happen is called time invariance. 

If a system is initially in its zero state and an arbitrary input signal x( )t  causes 
a response y( )t  and an input signal x( )t t− 0  causes a response y( )t t− 0  for any 
arbitrary t0, the system is said to be time invariant. 

Figure 4.21 illustrates the concept of time invariance.

Figure 4.21 
Block diagram illustrating the concept of time invariance 
for a system initially in its zero state

y(t)x(t)

Time Invariant System

x(t) y(t - t0)Delay, t0
x(t - t0)

EXAMPLE 4.6

Determining whether a system is time invariant

Test for time invariance the system whose input-output relationship is y( ) x( ).t t= /2
Let x ( ) g( ).1 t t=  Then y ( ) g( ).1 2t t= /  Let x ( ) g( ).2 0t t t= −  Then y ( ) g( )2 02t t t= − ≠/  

y ( ) g .1 0
0

2
t t

t t− = −⎛
⎝⎜

⎞
⎠⎟  Therefore this system is not time invariant; it is time  variant.

EXAMPLE 4.5

Determining whether a system is  time invariant

Test for time invariance the system whose input-output relationship is y( ) exp(x( )).t t=
Let x ( ) g( ).1 t t=  Then y ( ) exp(g( )).1 t t=  Let x ( ) g( )2 0t t t= − . Then y ( ) exp(g( ))2 0t t t= − = 

y ( ).1 0t t−  Therefore this system is time invariant.
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128 Chapter  4  Description of Systems

Additivity
Let the input voltage signal to the RC lowpass fi lter be the sum of two voltages 
v ( ) v ( ) v ( )in in int t t= +1 2 . For a moment let v ( )in t2 0=  and let the zero-state response for 
v ( )in t1  acting alone be v ( )out t1 . The differential equation for that situation is

 RC t t tout out in′ + =v ( ) v ( ) v ( )1 1 1  (4.5)

where, since we are fi nding the zero-state response, v ( )out1 0 0= . Equation (4.5) and 
the initial condition v ( )out1 0 0=  uniquely determine the solution v ( )out t1 . Similarly, if 
v ( )in t2  acts alone, its zero-state response obeys

 RC t t tout out in
′ + =v ( ) v ( ) v ( ).2 2 2  (4.6)

and v ( )out t2  is similarly uniquely determined. Adding (4.5) and (4.6),

 RC t t t tout out out out in[v ( ) v ( )] v ( ) v ( ) v (′ + ′ + + =1 2 1 2 1 tt tin) v ( )+ 2  (4.7)

The sum v ( ) v ( )in int t1 2+  occupies the same position in (4.7) as v ( )in t1  does in (4.5) and 
v ( ) v ( )out outt t1 2+  and ′ + ′v ( ) v ( )out outt t1 2  occupy the same positions in (4.7) that v ( )out t1  
and ′v ( )out t1  do in (4.5). Also, for the zero-state response, v ( ) v ( )in in1 20 0 0+ = . There-
fore, if v ( )in t1  produces v ( )out t1 , then v ( ) v ( )in int t1 2+  must produce v ( ) v ( )out outt t1 2+  
because both responses are uniquely determined by the same differential equation and 
the same initial condition. This result depends on the fact that the derivative of a sum 
of two functions equals the sum of the derivatives of those two functions. If the exci-
tation is the sum of two excitations, the solution of this differential equation, but not 
necessarily other differential equations, is the sum of the responses to those excitations 
acting alone. A system in which added excitations produce added zero-state responses 
is called additive (Figure 4.22).

If a system when excited by an arbitrary x1 produces a zero-state response y1 
and when excited by an arbitrary x2 produces a zero-state response y2 and 
x x1 2+  always produces the zero-state response y y1 2+ , the system is  additive.

A very common example of a  nonadditive system is a simple diode circuit 
(Figure 4.23). Let the input voltage signal of the circuit V be the series connection of 
two constant-voltage sources V1 and V2, making the overall input voltage signal the sum 
of the two individual input voltage signals. Let the overall response be the current I and 

Figure 4.22 
Block diagram illustrating the concept of additivity for a 
system initially in its zero state

Additive System

x1(t)

x1(t) y1(t)

x2(t) y2(t)

x2(t)

x1(t) + x2(t)
y1(t) + y2(t)

Summing Junction

I
R

V1

V2

Figure 4.23 
A DC diode circuit
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let the individual current responses to the individual voltage sources acting alone be I1 
and I2. To make the result obvious, let V1 0>  and let V V2 1= − . The response to V1 act-
ing alone is a positive current I1. The response to V2 acting alone is an extremely small 
(ideally zero) negative current I2. The response I to the combined input signal V V1 2+  
is zero, but the sum of the individual responses I I1 2+  is approximately I1, not zero. So 
this is not an additive system.

 Linearity and Superposition
Any system that is both homogeneous and additive is called a  linear system. 

If a linear system when excited by x ( )1 t  produces a zero-state re-
sponse y ( )1 t , and when excited by x ( )2 t  produces a zero-state response 
y ( )2 t , then x( ) x ( ) x ( )t t t= +	 
1 2  will produce the zero-state response 
y( ) y ( ) y ( )t t t= +	 
1 2 .

This property of linear systems leads to an important concept called superposi-
tion. The term superposition comes from the verb superpose. The “pose” part of su-
perpose means to put something into a certain position and the “super” part means “on 
top of.” Together, superpose means to place something on top of something else. That 
is what is done when we add one input signal to another and, in a linear system, the 
overall response is one of the responses “on top of” (added to) the other. 

The fact that superposition applies to  linear systems may seem trivial and obvious, but 
it has far-reaching implications in system analysis. It means that the zero-state response 
to any arbitrary input signal can be found by breaking the input signal down into simple 
pieces that add up to the original input signal, fi nding the response to each simple piece, 
and then adding all those responses to fi nd the overall response to the overall input signal. It 
also means that we can fi nd the zero-state response and then, in an independent calculation, 
fi nd the zero-input response, and then add them to fi nd the total response.  This is a “divide-
and-conquer” approach to solving linear-system problems and its importance cannot be 
overstated. Instead of solving one large, complicated problem, we solve multiple small, 
simple problems. And, after we have solved one of the small, simple problems, the others 
are usually very easy to solve because the process is similar. Linearity and superposition are 
the basis for a large and powerful set of techniques for system analysis. Analysis of nonlin-
ear systems is much more diffi cult than analysis of linear systems because the divide-and-
conquer strategy usually does not work on nonlinear systems. Often the only practical way 
to analyze a nonlinear system is with numerical, as opposed to analytical, methods.

Superposition and linearity also apply to multiple-input, multiple-output linear 
systems. If a linear system has two inputs and we apply x ( )1 t  at the fi rst input and x ( )2 t  
at the second input and get a response y( )t , we would get the same y( )t  if we added the 
response to the fi rst input signal acting alone y ( )1 t  and the response to the second input 
signal acting alone y ( )2 t . 

 LTI Systems
By far the most common type of system analyzed in practical system design and analy-
sis is the  linear, time-invariant system. If a system is both linear and time-invariant, 
it is called an LTI system. Analysis of LTI systems forms the overwhelming majority 
of the material in this text.

One implication of linearity that will be important later can now be proven. Let an 
LTI system be excited by a signal x ( )1 t  and produce a zero-state response y ( )1 t . Also, 
let x ( )2 t  produce a zero-state response y ( )2 t . Then, invoking linearity, 	 
x ( ) x ( )1 2t t+  
will produce the zero-state response 	 
y ( ) y ( )1 2t t+ . The constants 	 and 
 can be 

 4.2 Continuous-Time Systems 129

rob80687_ch04_113-158.indd   129rob80687_ch04_113-158.indd   129 12/17/10   6:09:14 PM12/17/10   6:09:14 PM



130 Chapter  4  Description of Systems

any numbers, including complex numbers. Let � = 1 and � = j. Then x ( ) x ( )1 2t j t+  
produces the response y ( ) y ( )1 2t j t+ . We already know that x ( )1 t  produces y ( )1 t  and 
that x ( )2 t  produces y ( )2 t . So we can now state the general principle.

When a complex excitation produces a response in an LTI system, the real part 
of the excitation produces the real part of the response and the imaginary part 
of the excitation produces the imaginary part of the response.

This means that instead of applying a real excitation to a system to fi nd its real re-
sponse, we can apply a complex excitation whose real part is the actual physical ex-
citation, fi nd the complex response, and then take its real part as the actual physical 
response to the actual physical excitation. This is a roundabout way of solving system 
problems but, because the eigenfunctions of  real systems are complex exponentials 
and because of the compact notation that results when applying them in system analy-
sis, this is often a more effi cient method of analysis than the direct approach. This basic 
idea is one of the principles underlying transform methods and their applications to be 
presented in Chapters 6 through 9. 

EXAMPLE 4.7

Response of an  RC lowpass fi lter to a  square wave using superposition

Use the principle of superposition to fi nd the response of an RC lowpass fi lter to a  square wave that 
is turned on at time t = 0 . Let the RC time constant be 1 ms, let the time from one rising edge of the 
square wave to the next be 2 ms, and let the amplitude of the square wave be 1 V (Figure 4.24).

...1

2

x(t)

t (ms)

Figure 4.24 
Square wave that excites an RC lowpass 
fi lter

We have no formula for the response of the RC lowpass fi lter to a square wave, but we do 
know how it responds to a unit step. A square wave can be represented by the sum of some posi-
tive and negative time-shifted unit steps. So x( )t  can be expressed analytically as 

 x( ) x ( ) x ( ) x ( ) x ( )t t t t t= + + + +0 1 2 3 �

 x( ) u( ) u( . ) u( . ) u( . )t t t t t= − − + − − − +0 001 0 002 0 003 �

The RC lowpass fi lter is a linear, time-invariant system. Therefore, the response of the fi lter 
is the sum of the responses to the individual unit steps. The response to one unshifted positive 
unit step is y0

10001( ) ( )u( )t e tt= − − . Invoking time invariance,
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Then, invoking linearity and superposition,

 y( ) y ( ) y ( ) y ( ) y ( )t t t t t= + + + +0 1 2 3 �

 

y( ) u( ) u( .( . )t e t e tt t= −( ) − −( ) −− − −1 1 0 01000 1000 0 001 001

1 0 002 11000 0 002

)

u( . )( . )+ −( ) − −− −e tt −−( ) −− −e tt1000 0 003 0 003( . ) u( . )�

(see Figure 4.26).

Superposition is the basis of a powerful technique for fi nding the response of a 
 linear system. The salient characteristic of equations that describe linear systems is 
that the dependent variable and its integrals and derivatives appear only to the fi rst 
power. To illustrate this rule, consider a system in which the excitation and response 
are related by the differential equation a t b t t′′ + =y ( ) y ( ) x( )2 , where x( )t  is the excita-
tion and y( )t  is the response. If x( )t  were changed to x ( ) x ( ) x ( )new t t t= +1 2 , the differ-
ential equation would be a t b t tnew new new′′ + =y ( ) y ( ) x ( )2 . The differential equations for 
x ( ) x ( )1 2t tand  acting alone would be

 a t b t t a t b t t′′ + = ′′ + =y ( ) y ( ) x ( ) y ( ) y ( ) x ( )1 1
2

1 2 2
2

2and ..

Figure 4.25 
Unit steps that can be added to form a 
square wave

1

2

x0(t)

t (ms)

-1
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x1(t)

x2(t)

x3(t)

t (ms)

1

2
t (ms)

-1

2
t (ms)

.

.

.

.

.

.

t (ms)
8

y(t)

1

-1

y0(t)

y1(t) y3(t) y5(t) y7(t)

y2(t) y4(t) y6(t)

Figure 4.26 
Response to the square wave
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132 Chapter  4  Description of Systems

The sum of these two equations is

 a t t b t t t′′ + ′′⎡⎣ ⎤⎦ + +⎡⎣ ⎤⎦ = +y ( ) y ( ) y ( ) y ( ) x ( ) x1 2 1
2

2
2

1 22( ) x ( )t tnew= ,

which is (in general) not equal to

 a t t b t t t ty ( ) y ( ) y ( ) y ( ) x ( ) x (1 2 1 2
2

1 2+⎡⎣ ⎤⎦′′ + +⎡⎣ ⎤⎦ = + )) x ( )= new t .

The difference is caused by the y ( )2 t  term that is not consistent with a differential 
equation that describes a linear system. Therefore, in this system, superposition does 
not apply.

A very common analysis technique in signal and system analysis is to use the 
methods of linear systems to analyze  nonlinear systems. This process is called  lin-
earizing the system. Of course, the analysis is not exact because the system is not 
actually linear and the linearization process does not make it linear. Rather, linear-
ization replaces the exact nonlinear equations of the system by approximate lin-
ear equations. Many nonlinear systems can be usefully analyzed by linear-system 
methods if the input and output signals are small enough. As an example consider 
a  pendulum (Figure 4.27). Assume that the mass is supported by a massless rigid 
rod of length L. If a force x( )t  is applied to the mass m, it responds by moving. The 
vector sum of the forces acting on the mass tangential to the direction of motion is 
equal to the product of the mass and the acceleration in that same direction. That is, 
x( ) sin( ( )) ( )t mg t mL t− = ′′� �  or

 mL t mg t t′′ + =� �( ) sin( ( )) x( ) (4.8)

where m is the mass at the end of the pendulum, x( )t  is a force applied to the mass tan-
gential to the direction of motion, L is the length of the pendulum, g is the acceleration 
due to gravity and �( )t  is the angular position of the pendulum. This system is excited 
by x( )t  and responds with �( )t . Equation (4.8) is nonlinear. But if �( )t  is small enough, 
sin( ( ))� t  can be closely approximated by �( )t . In that approximation,

 mL t m t t′′ + ≅� �( ) g ( ) x( ) (4.9)

and this is a linear equation. So, for small perturbations from the rest position, this 
system can be usefully analyzed by using (4.9).

x(t)

θ(t)

mgsin(θ(t))

L

Mass

Figure 4.27 
A pendulum
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 Stability
In the RC-lowpass-fi lter example, the input signal, a step of voltage, was bounded, 
meaning its absolute value is less than some fi nite upper bound B for all time, 
x( ) ,t B t< for all . The response of the RC lowpass fi lter to this bounded input signal 
was a bounded output signal.

Any system for which the zero-state response to any arbitrary bounded 
excitation is also bounded is called a  bounded-input–bounded-output 
(BIBO)  stable system.1

The most common type of system studied in signals and systems is a system whose 
input-output relationship is determined by a linear, constant-coeffi cient, ordinary differ-
ential equation. The eigenfunction for differential equations of this type is the complex 
exponential. So the homogeneous solution is in the form of a linear combination of com-
plex exponentials. The behavior of each of those complex exponentials is determined by 
its associated eigenvalue. The form of each complex exponential is e e est t j t= � 
  where 
s j= +� 
 is the eigenvalue, � is its real part and 
 is its imaginary part. The factor 
e j t
  has a magnitude of one for all t. The factor e t�  has a magnitude that gets smaller as 
time proceeds in the positive direction if � is negative and gets larger if � is positive. 
If � is zero, the factor e t�  is simply the constant one. If the exponential is growing as 
time passes, the system is unstable because a fi nite upper bound cannot be placed on 
the response. If � = 0, it is possible to fi nd a bounded input signal that makes the output 
signal increase without bound. An input signal that is of the same functional form as the 
homogeneous solution of the differential equation (which is bounded if the real part of 
the eigenvalue is zero) will produce an unbounded response (see Example 4.8). 

For a  continuous-time LTI system described by a differential equation, if 
the real part of any of the eigenvalues is greater than or equal to zero (non-
negative), the system is BIBO unstable.

EXAMPLE 4.8

Finding a bounded excitation that produces an  unbounded response

Consider an integrator for which y( ) x( )t d
t

=
−∞∫ � �. Find the eigenvalues of the solution of this 

equation and fi nd a bounded excitation that will produce an unbounded response.
By applying  Leibniz’s formula for the derivative of an integral of this type, we can 

differentiate both sides and form the differential equation ′ =y ( ) x( )t t . This is a very simple 
differential equation with one eigenvalue and the homogeneous solution is a constant because 
the eigenvalue is zero. Therefore this system should be BIBO unstable. A bounded excitation 
that has the same functional form as the homogeneous solution produces an unbounded re-
sponse. In this case, a constant excitation produces an unbounded response. Since the response 

1 The discussion of BIBO stability brings up an interesting point. Is any practical system ever actually unstable 
by the BIBO criterion? Since no practical system can ever produce an unbounded response, strictly speaking, 
all practical systems are stable. The ordinary operational meaning of BIBO instability is a system described 
approximately by linear equations that would develop an unbounded response to a bounded excitation if the 
system remained linear. Any practical system will become nonlinear when its response reaches some large 
magnitude and can never produce a truly unbounded response. So a nuclear weapon is a BIBO-unstable system 
in the ordinary sense but a BIBO-stable system in the strict sense. Its energy release is not unbounded even 
though it is extremely large compared to most other artifi cial systems on earth.
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134 Chapter  4  Description of Systems

is the integral of the excitation, it should be clear that as time t passes, the magnitude of the 
response to a constant excitation grows linearly without a fi nite upper bound.

 Causality
In the analysis of the systems we have considered so far, we observe that each system 
responds only during or after the time it is excited. This should seem obvious and natu-
ral. How could a system respond before it is excited? It seems obvious because we live 
in a physical world in which real physical systems always respond while or after they 
are excited. But, as we shall later discover in considering ideal fi lters (in Chapter 11), 
some system design approaches may lead to a system that responds before it is excited. 
Such a system cannot actually be built.

The fact that a real system response occurs only while, or after, it is excited is a re-
sult of the commonsense idea of cause and effect. An effect has a cause, and the effect 
occurs during or after the application of the cause. 

Any system for which the zero-state response occurs only during or after the 
time in which it is excited is called a causal system. 

All physical systems are causal because they are unable to look into the future and 
respond before being excited. 

The term causal is also commonly (albeit somewhat inappropriately) applied to 
signals. A  causal signal is one that is zero before time t = 0. This terminology comes 
from the fact that if an input signal that is zero before time t = 0 is applied to a  causal 
system, the response is also zero before time t = 0. By this defi nition, the response 
would be a causal signal because it is the response of a causal system to a causal ex-
citation. The term  anticausal is sometimes used to describe signals that are zero after 
time t = 0.

In signal and system analysis we often fi nd what is commonly referred to as the 
 forced response of a system. A very common case is one in which the input signal is 
periodic. A  periodic signal has no identifi able starting point because, if a signal x( )t  
is periodic, that means that x( ) x( )t t nT= + , where T is a period and n is any integer. 
No matter how far back in time we look, the signal repeats periodically. So the re-
lationship between a periodic input signal and the forced response of an LTI system 
(which is also periodic, with the same period), cannot be used to determine whether 
a system is causal. Therefore, in analyzing a system for  causality, the system should 
be excited by a test signal that has an identifi able time before which it has always 
been zero. A simple signal to test an LTI system for causality would be the unit im-
pulse �( )t . It is zero before t = 0 and is zero after t = 0. If the zero-state response of 
the system to a unit impulse occurring at t = 0 is not zero before t = 0, the system is 
not causal. Chapter 5 introduces methods of determining how LTI systems respond 
to impulses.

 Memory
The responses of the systems we have considered so far depend on the present and 
past excitations. In the RC lowpass fi lter, the charge on the capacitor is determined 
by the current that has fl owed through it in the past. By this mechanism it, in a sense, 
remembers something about its past. The present response of this system depends on 
its past excitations, and that memory, along with its present excitation, determines its 
present response. 
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If any system’s zero-state response at any arbitrary time depends on its excita-
tion at any other time, the system has memory and is a  dynamic system. 

There are systems for which the present value of the response depends only on 
the present value of the excitation. A  resistive voltage divider is a good example 
(Figure 4.28).

If any system’s response at an arbitrary time depends only on the excitation at 
that same time, the system has no memory and is a  static system. 

The concepts of  causality and memory are related. All static systems are causal. Also, 
the testing for memory can be done with the same kind of test signal used to test for 
causality, the unit impulse. If the response of an LTI system to the unit impulse �( )t  is 
nonzero at any time other than t = 0, the system has memory.

 Static Nonlinearity
We have already seen one example of a nonlinear system, one with a nonzero, zero-
input response. It is nonlinear because it is not homogeneous. The nonlinearity is not 
an intrinsic result of nonlinearity of the components themselves, but rather a result of 
the fact that the zero-input response of the system is not zero.

The more common meaning of the term  nonlinear system in practice is a system 
in which, even with a zero-input response of zero, the output signal is still a nonlinear 
function of the input signal. This is often the result of components in the system that 
have static nonlinearities. A statically nonlinear system is one without memory and 
for which the input-output relationship is a nonlinear function. Examples of  statically 
nonlinear components include  diodes, transistors and square-law detectors. These 
components are nonlinear because if the input signal is changed by some factor, the 
output signal can change by a different factor. 

The difference between linear and nonlinear components of this type can be illus-
trated by graphing the relationship between the input and output signals. For a linear 
resistor, which is a static system, the relation is determined by  Ohm’s law,

 v( ) i( )t R t= .

A graph of voltage versus current is linear (Figure 4.29). 

Figure 4.28 
A resistive voltage divider
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136 Chapter  4  Description of Systems

A diode is a good example of a statically nonlinear component. Its voltage-current 
relationship is i( ) ( )v /t I es

q t kT= −( ) 1 , where Is is the reverse saturation current, q is the 
charge on an electron, k is Boltzmann’s constant and T is the absolute temperature, as 
illustrated in Figure 4.30.

Another example of a statically nonlinear component is an  analog multiplier used 
as a squarer. An analog multiplier has two inputs and one output, and the output signal is 
the product of the signals applied at the two inputs. It is memoryless, or static, because 
the present output signal depends only on the present input signals (Figure 4.31). 

v(t)

v(t)

i(t) i(t)

Slope = 1
R

Resistor, R

R

+

-

Figure 4.29
Voltage-current relationship for a resistor

Diode

v(t)

i(t)

v(t)

i(t)
+

-

Figure 4.30 
Voltage-current relationship for a  diode at a fi xed temperature

Analog
Multiplier

x1(t) y(t) = x1(t)x2(t)

x2(t)

Squarer

x(t) y(t) = x2(t)

Figure 4.31 
An analog multiplier and a squarer

The output signal y( )t  is the product of the input signals x ( )1 t  and x ( )2 t . If x ( )1 t  
and x ( )2 t  are the same signal x( )t , then y( ) x ( )t t= 2 . This is a statically nonlinear 
relationship because if the excitation is multiplied by some factor A, the response is 
multiplied by the factor A2, making the system inhomogeneous.

A very common example of a static nonlinearity is the phenomenon of  saturation 
in real, as opposed to ideal, operational amplifi ers. An operational amplifi er has two 
inputs, the inverting input and the noninverting input, and one output. When input 
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voltage signals are applied to the inputs, the output voltage signal of the operational 
amplifi er is a fi xed multiple of the difference between the two input voltage signals, 
up to a point. For small differences, the relationship is v ( ) [v ( ) v ( )].out in int A t t= −+ −
But the output voltage signal is constrained by the power supply voltages and can 
only approach those voltages, not exceed them. Therefore, if the difference between 
the input voltage signals is large enough that the output voltage signal calculated from 
v ( ) [v ( ) v ( )]out in int A t t= −+ −  would cause it to be outside the range −Vps to +Vps (where 
ps means power supply), the operational amplifi er will saturate. The output voltage 
signal will go that far and no farther. When the operational amplifi er is saturated, the 
relationship between the input and output signals becomes statically nonlinear. That is 
illustrated in Figure 4.32.

Even if a system is statically nonlinear, linear system analysis techniques may still 
be useful in analyzing it. See Web Appendix C for an example of using linear system 
analysis to approximately analyze a nonlinear system.

 Invertibility
In the analysis of systems we usually fi nd the zero-state response of the system, given 
an excitation. But we can often fi nd the excitation, given the zero-state response, if the 
system is invertible. 

A system is said to be invertible if unique excitations produce unique zero-state 
responses.

If unique excitations produce unique zero-state responses then it is possible, in prin-
ciple at least, given the zero-state response, to associate it with the excitation that 
produced it. Many practical systems are invertible.

Another way of describing an  invertible system is to say that if a system is invert-
ible there exists an inverse system which, when excited by the response of the fi rst 
system, responds with the excitation of the fi rst system (Figure 4.33).

An example of an invertible system is any system described by a linear, 
time-invariant, constant-coeffi cient, differential equation of the form

 a t a t a t a t tk
k

k
ky ( ) y ( ) y ( ) y( ) x( )( ) ( )+ + + ′ + =−

−
1

1
1 0� . 

[vin+(t) - vin-(t)]

vout(t)

+Vps

-Vps

Slope = A

Figure 4.32 
Input-output signal relationship for a saturating operational amplifi er
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138 Chapter  4  Description of Systems

If the response y( )t  is known, then so are all its derivatives. The equation indicates exactly 
how to calculate the excitation as a linear combination of y( )t  and its derivatives.

An example of a system that is not invertible is a static system whose input-output 
functional relationship is

 y( ) sin(x( ))t t= . (4.10)

For any x( )t  it is possible to determine the zero-state response y( )t . Knowledge of the 
excitation uniquely determines the zero-state response. However, if we attempt to fi nd 
the excitation, given the response, by rearranging the functional relationship (4.10) into 
x( ) sin (y( ))t t= −1 , we encounter a problem. The inverse sine function is multiple-valued. 
Therefore, knowledge of the zero-state response does not uniquely determine the excita-
tion. This system violates the principle of invertibility because different excitations can 
produce the same zero-state response. If, at t t= 0, x( )t0 4= �/ , then y( )t0 2 2= / . But if, 
at t t= 0, x( )t0 3 4= �/ , then y( )t0  would have the same value 2 2/ . Therefore, by observ-
ing only the zero-state response we would have no idea which excitation value caused it.

Another example of a system that is not invertible is one that is very familiar 
to electronic circuit designers, the  full-wave rectifi er (Figure 4.34). Assume that the 
transformer is an ideal, 1:2-turns-ratio transformer and that the diodes are ideal, so 
that there is no voltage drop across them in forward bias and no current through them 
in reverse bias. Then the output voltage signal v ( )o t  and input voltage signal v ( )i t  are 
related by v ( ) v ( )o it t=  Suppose that at some particular time the output voltage signal 
is +1 V. The input voltage signal at that time could be +1 V or –1V. There is no way of 
knowing which of these two input voltage signals is the excitation just by observing the 
output voltage signal. Therefore we could not be assured of correctly reconstructing the 
excitation from the response. This system is not invertible. 

-1x y x

Figure 4.33 
A system followed by its inverse

Figure 4.34 
A full-wave rectifi er

vi(t)

+

-
vo(t)

+

-

R

DYNAMICS OF  SECOND-ORDER SYSTEMS

First-order and second-order systems are the most common types of systems encoun-
tered in system design and analysis.  First-order systems are described by fi rst-order 
differential equations and second-order systems are described by second-order dif-
ferential equations. We have seen examples of fi rst-order systems. As an example of a 
second-order system consider the  RLC circuit excited by a step in Figure 4.35.
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The sum of voltages around the loop yields

 LC t RC t t A tout out out′′ + ′ + =v ( ) v ( ) v ( ) u( ) (4.11)

and the solution for the output voltage signal is

 v ( )
( ) (

out
R L R L LC t R L R L

t K e K e= +− + −( ) − −
1

2 2 1
2

2 22/ / / / / ))2 1−( ) +/LC t
A 

and K K1 2and  are arbitrary constants. 
This solution is more complicated than the solution for the RC lowpass fi lter was. 

There are two exponential terms, each of which has a much more complicated expo-
nent. The exponent involves a square root of a quantity that could be negative. There-
fore, the exponent could be complex-valued. For this reason, the eigenfunction est  is 
called a complex exponential. The solutions of ordinary linear differential equations 
with constant coeffi cients are always linear combinations of  complex exponentials. 

In the RLC circuit, if the exponents are real, the response is simply the sum of two 
real exponentials. The more interesting case is complex exponents. The exponents are 
complex if

 ( )R L LC/ /2 1 02 − < . (4.12)

In this case the solution can be written in terms of two standard parameters of second-
order systems, the  natural radian frequency 
n and the  damping factor 	 as

 v ( )out
t t

t K e K e An n= + +− + −( ) − − −( )
1 2

2 2 2 2	 	 
 	 	 

 (4.13)

where

 
n LC2 1= /  and 	 = R L/2 . 

There are two other widely used parameters of second-order systems, which are re-
lated to 
n  and 	, the  critical radian frequency 
c and the  damping ratio �. They 

are defi ned by � 	 
= / n and 
 
 �c n= −1 2 . Then we can write as

v ( )out
t t

t K e K e An n= + +− + −( ) − − −( )
1

1
2

12 2	 
 � 	 
 �

When condition (4.12) is satisfi ed, the system is said to be  underdamped and the re-
sponse can be written as

v ( ) ( ) ( )
out

j t j tt K e K e Ac c= + +− + − −
1 2

	 
 	 
 .

The exponents are complex conjugates of each other as they must be for v ( )out t  to be 
a real-valued function.

Assuming the circuit is initially in its zero state and applying initial conditions, the 
output voltage signal is

 v ( )out
c

j t

c
t A j e jc= − +⎛

⎝⎜
⎞
⎠⎟

+ − −⎛
⎝⎜

− +( )1

2
1

1

2
1

	




	



	 
 ⎞⎞

⎠⎟
+

⎡

⎣
⎢

⎤

⎦
⎥

− −( )e j tc	 
 1 .

R L

Cvin(t) vout(t)

-

+

-

+

Figure 4.35 
An RLC circuit
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140 Chapter  4  Description of Systems

This response appears to be a complex response of a real system with real excitation. 
But, even though the coeffi cients and exponents are complex, the overall solution is real 
because, using trigonometric identities, the output voltage signal can be reduced to

 v ( ) { [( )sin( ) cos( )]}.out
t

c c ct A e t t= − +−1 	 	 
 
 
/

This solution is in the form of a  damped sinusoid, a sinusoid multiplied by a decaying 
exponential. The natural frequency fn n= 
 �/2  is the frequency at which the response 
voltage would oscillate if the damping factor were zero. The rate at which the sinusoid 
is damped is determined by the damping factor 	. Any system described by a second-
order linear differential equation could be analyzed by an analogous procedure.

COMPLEX SINUSOID EXCITATION

An important special case of linear system analysis is an LTI system excited by a 
complex sinusoid. Let the input voltage signal of the RLC circuit be v ( )in

j f tt Ae= 2 0� . It 
is important to realize that v ( )in t  is described exactly for all time. Not only is it going 
to be a complex sinusoid from now on, it has always been a complex sinusoid. Since 
it began an infi nite time in the past, any transients that may have occurred have long 
since died away (if the system is stable, as this RLC circuit is). Thus the only solution 
that is left at this time is the  forced response. The forced response is the particular so-
lution of the describing differential equation. Since all the derivatives of the complex 
sinusoid are also  complex sinusoids, the particular solution of v ( )in

j f tt Ae= 2 0�  is sim-
ply v ( ),out p

j f tt Be= 2 0�  where B is yet to be determined. So if this LTI system is excited 
by a complex sinusoid, the response is also a complex sinusoid, at the same frequency, 
but with a different multiplying constant (in general). Any LTI system excited by a 
complex exponential responds with a complex exponential of the same functional form 
except multiplied by a complex constant.

The forced solution can be found by the method of undetermined coeffi cients. 
Substituting the form of the solution into the differential equation (4.11),

( )j f LCBe j f RCBe Be Aej f t j f t j f t j2 20
2 2

0
2 20 0 0� �� � �+ + = 22 0�f t

and solving,

B
A

j f LC j f RC
=

+ +( )
.

2 2 10
2

0� �

Using the principle of superposition for  LTI systems, if the input signal is an ar-
bitrary function that is a linear combination of complex sinusoids of various frequen-
cies, then the output signal is also a linear combination of complex sinusoids at those 
same frequencies. This idea is the basis for the methods of Fourier series and Fourier 
transform analysis that will be introduced in Chapters 6 and 7, which express arbitrary 
signals as linear combinations of complex sinusoids.

4.3  DISCRETE-TIME SYSTEMS

 SYSTEM MODELING

 Block Diagrams
Just as in continuous-time systems, in drawing block diagrams of discrete-time sys-
tems there are some operations that appear so often they have been assigned their own 
block-diagram graphical symbols. The three essential components in a discrete-time 
system are the  amplifi er, the  summing junction, and the  delay. The amplifi er and 
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summing junction serve the same purposes in discrete-time systems as in continuous-
time systems. A delay is excited by a discrete-time signal and responds with that same 
signal, except delayed by one unit in discrete time, see Figure (4.36). This is the most 
commonly used symbol but sometimes the D is replaced by an S (for shift).

x[n] x[n − 1]D

Figure 4.36 
The graphical block-diagram 
symbol for a discrete-time delay

h1(t)

h2
v2(t)

f2(t)

f1(t)
A1

A2

Figure 4.37
Tank with orifi ce being fi lled from above

Difference Equations
Below are some examples of the thinking involved in  modeling discrete-time systems. 
Three of these examples were fi rst presented in Chapter 1.

EXAMPLE 4.9

 Approximate modeling of a continuous-time system using a discrete-time system

One use of discrete-time systems is in the approximate modeling of nonlinear continuous-time 
systems like the fl uid-mechanical system in Figure 4.37. The fact that its differential equation 

 
A

d

dt
t A g t h t1 1 2 1 2 12(h ( )) [h ( ) ] f ( )+ − =

( Toricelli’s equation) is nonlinear makes it harder to solve than linear differential equations. 
One approach to fi nding a solution is to use a numerical method. We can approximate the 

derivative by a fi nite difference

 
d

dt
t

n T nT

T
s s

s
(h ( ))

h (( ) ) h ( )
1

1 11≅ + −

where Ts  is a fi nite time duration between values of h1 at uniformly separated points in time and 
n indexes those points. Then Toricelli’s equation can be approximated at those points in time by

 A
n T nT

T
A g nT h nTs s

s
s s1

1 1
2 1 2 1

1
2

h (( ) ) h ( )
[h ( ) ] f (

+ − + − ≅ )),
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142 Chapter  4  Description of Systems

which can be rearranged into

 h (( ) ) f ( ) h ( ) [h (1
1

1 1 1 2 11
1

2n T
A

T nT A nT A T g nTs s s s s+ ≅ + − ss h) ]−{ }2  (4.14)

which expresses the value of h1 at the next time index n + 1  in terms of the values of f1 at the 
present time index n and h1, also at the present time index. We could write (4.14) in the simpli-
fi ed discrete-time notation as

 h [ ] f [ ] h [ ] (h [ ] )1
1

1 1 1 2 1 21
1

2n
A

T n A n A T g n hs s+ ≅ + − −{ }
or, replacing n by n − 1,

 h [ ] f [ ] h [ ] (h [ ] )1
1

1 1 1 2 1 2
1

1 1 2 1n
A

T n A n A T g n hs s≅ − + − − − −{{ } (4.15)

In (4.15), knowing the value of h1 at any n we can (approximately) fi nd its value at any other n. 
The approximation is made better by making Ts smaller. This is an example of solving a  con-
tinuous-time problem using discrete-time methods. Because (4.15) is a difference equation it 
defi nes a discrete-time system (Figure 4.38).

f1[n] h1[n]
Ts
A1

2g

h2

A1

A2Ts

D

D

Figure 4.38 
A system that approximately solves numerically the differential equation of fl uid fl ow

Figure 4.39 shows examples of the numerical solution of  Toricelli’s equation using the 
discrete-time system of Figure 4.38 for three different sampling times 100 s, 500 s and 1000 s. 
The result for Ts = 100 is quite accurate. The result for Ts = 500 has the right general behav-
ior and approaches the right fi nal value, but arrives at the fi nal value too early. The result for 
Ts = 1000 has a completely wrong shape, although it does approach the correct fi nal value. The 
choice of a sampling time that is too large makes the solution inaccurate and, in some cases, can 
actually make a numerical algorithm unstable.

Below is the MATLAB code that simulates the system in Figure 4.38 used to solve the dif-
ferential equation describing the tank with orifi ce.

g = 9.8 ; % Acceleration due to gravity m/s^2

A1 = 1 ; % Area of free surface of water in tank, m^2

A2 = 0.0005 ; % Effective area of orifi ce, m^2

h1 = 0 ; % Height of free surface of water in tank, m^2
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h2 = 0 ; % Height of orifi ce, m^2

f1 = 0.004 ; % Water volumetric infl ow, m^3/s

Ts = [100,500,1000] ; % Vector of time increments, s

N = round(8000./Ts) ; % Vector of numbers of time steps

for m = 1:length(Ts), % Go through the time increments

  h1 = 0 ; % Initialize h1 to zero

  h = h1 ; % First entry in water-height vector

% Go through the number of time increments computing the 

% water height using the discrete-time system approximation to the 

% actual continuous-time system

 for n = 1:N(m),

%  Compute next free-surface water height

    h1 = (Ts(m)*f1 + A1*h1 - A2*Ts(m)*sqrt(2*g*h1-h2))/A1 ;

    h = [h ; h1] ; % Append to water-height vector

 end

% Graph the free-surface water height versus time and

% annotate graph

 subplot(length(Ts),1,m) ;

 p = stem(Ts(m)*[0:N(m)]’,h,’k’,’fi lled’) ;

 set(p,’LineWidth’,2,’MarkerSize’,4) ; grid on ;

 if m == length(Ts),
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Figure 4.39 
Numerical solution of  Toricelli’s equation using the discrete-time system of Figure 4.38  for 
a volumetric infl ow rate of 0.004 m /s3
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144 Chapter  4  Description of Systems

p = xlabel(‘Time, t or {\itnT_s} (s)’,...

 ‘FontName’,’Times’,’FontSize’,18) ;

 end

 p = ylabel(‘h_1(t) (m)’,’FontName’,’Times’,’FontSize’,18) ;

 p = title([‘{\itT_s} = ‘,num2str(Ts(m)),...

‘ s’],’FontName’,’Times’,’FontSize’,18) ;

end

EXAMPLE 4.10

Modeling a  feedback system without excitation

Find the output signal generated by the system illustrated in Figure 4.40 for times n ≥ 0. Assume 
the initial conditions are y[ ]0 1= and y[ ]− =1 0.

Figure 4.40 
A discrete-time system

y[n]

y[n−2]

y[n−1]
1.97+

−

D

D

The system in Figure 4.40 is described by the difference equation

 y[ ] . y[ ] y[ ]n n n= − − −1 97 1 2  (4.16) 

This equation, along with initial conditions y[ ]0 1=  and y[ ]− =1 0, completely determines the 
response y[ ]n , which is the zero-input response. The  zero-input response can be found by iterat-
ing on (4.16). This yields a correct solution, but it is in the form of an infi nite sequence of values 
of the response. The zero-input response can be found in closed form by solving the difference 
equation (see Web Appendix D). Since there is no input signal exciting the system, the equation 
is homogeneous. The functional form of the homogeneous solution is the complex exponential 
Kzn . Substituting that into the difference equation we get Kz Kz Kzn n n= −− −1 97 1 2. . Dividing 
through by Kzn−2  we get the characteristic equation and solving it for z, we get

 z j e j= ± − = ± = ±1 97 1 97 4

2
0 985 0 1726

2
0 1734. .

. . .

The fact that there are two eigenvalues means that the homogeneous solution is in the form

 y[ ]n K z K zh
n

h
n= +1 1 2 2 . (4.17)
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We have initial conditions y[ ]0 1=  and y[ ]− =1 0 and we know from (4.17) that 
y[ ] y[ ] .0 11 2 1 1

1
2 2

1= + − = +− −K K K z K zh h h hand  Therefore

 
1 1 1

00 1734 0 1734

1

2e e

K

Kj j

h

h− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣. . ⎢⎢
⎢

⎤

⎦
⎥
⎥

Solving for the two constants, K j K jh h1 20 5 2 853 0 5 2 853= − = +. . . .and . So the complete 
solution is 

 y[ ] ( . . )( . . ) ( . . )(n j j jn= − + + +0 5 2 853 0 985 0 1726 0 5 2 853 00 985 0 1726. . )− j n

This is a correct solution but it is not in a very convenient form. We can rewrite it in the form 

 y[ ] ( . . ) ( . . ). .n j e j ej n j= − + + −0 5 2 853 0 5 2 8530 1734 0 17344n

or

 y[ ] . ( ). .

cos .

n e ej n j n

n

= + −

= ( )
0 5 0 1734 0 1734

2 0 1734
� ������ ����� − − −

=

j e ej n j n

j

2 853 0 1734 0 1734

2 0 1

. ( ). .

sin . 7734n( )
� ����� �����

or

 y[ ] cos( . ) . sin( . )n n n= +0 1734 5 706 0 1734 .

The fi rst 50 values of the signal produced by this system are illustrated in  Figure 4.41.

EXAMPLE 4.11

Modeling a simple feedback system with excitation

Find the response of the system in Figure 4.42 if a = 1, b = −1 5. , x[ ] [ ]n n= �  and the system is 
initially at rest.

The difference equation for this system is 

 y[ ] x[ ] y[ ] x[ ] . y[ ]n a n b n n n= − −( ) = + −1 1 5 1 .

Figure 4.41 
Signal produced by the discrete-time system in Figure 4.40

n
50

y[n]

-6

6
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146 Chapter  4  Description of Systems

The solution for times n ≥ 0 is the homogeneous solution of the form K zh
n . Substituting and 

solving for z, we get z = 1 5. . Therefore y[ ] ( . ) .n K nh
n= ≥1 5 0,  The constant can be found 

by knowing the initial value of the response, which, from the system diagram, must be 1. 
Therefore

y[ ] ( . )0 1 1 5 10= = ⇒ =K Kh h

and

y[ ] ( . ) .n nn= ≥1 5 0,

This solution obviously grows without bound so the system is unstable. If we chose b with 
a magnitude less than one, the system would be stable because the solution is of the form 
y[ ] .n b nn= ≥, 0

EXAMPLE 4.12

Modeling a more complicated feedback system with excitation

Find the zero-state response of the system in Figure 4.43, for times n ≥ 0 to x[ ]n = 1 applied 
at time n = 0, by assuming all the signals in the system are zero before time n = 0 for a = 1, 
b = −1 5.  and three different values of c, 0.8, 0.6 and 0.5.

The difference equation for this system is 

 y[ ] (x[ ] y[ ] y[ ]) x[ ] . y[ ] y[n a n b n c n n n c= − − − − = + − −1 2 1 5 1 nn − 2] (4.18)

Figure 4.42 
A simple  discrete-time feedback system with a 
nonzero excitation

x[n] y[n]

b

a

D

x[n] y[n]

b

a

c

D

D

Figure 4.43 
A system with more complicated feedback

The response is the total solution of the difference equation with initial conditions. We can fi nd a 
closed-form solution by fi nding the total solution of the difference equation. The homogeneous 

solution is y [ ]h h
n

h
nn K z K z= +1 1 2 2  where  z c1 2 0 75 0 5625, . .= ± − . The particular solution is 
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in the form of a linear combination of the input signal and all its unique differences. The input 
signal is a constant. So all its differences are zero. Therefore the particular solution is simply a 
constant K p . Substituting into the difference equation,

 K K cK K
c

p p p p− + = ⇒ =
−

1 5 1
1

0 5
.

.
.

Using (4.18) we can fi nd the initial two values of y[ ]n  needed to solve for the remaining 
two unknown constants K Kh h1 2and . They are y[ ] y[ ] .0 1 1 2 5= =and .

In Chapter 1 three responses were illustrated for a = 1, b = −1 5.  and  c = 0 8 0 6 0 5. , . .and . 
Those responses are replicated in Figure 4.44.

n
60

y[n]

6 a =  1, b =  -1.5, c = 0.8

n
60

y[n]

12 a =  1, b =  -1.5, c = 0.6

n
60

y[n]

140 a =  1, b =  -1.5, c = 0.5

Figure 4.44 
System zero-state responses for three different feedback confi gurations

The results of Example 4.12 demonstrate the importance of feedback in determin-
ing the response of a system. In the fi rst two cases the output signal is bounded. But in 
the third case the output signal is unbounded, even though the input signal is bounded. 
Just as for continuous-time systems, any time a discrete-time system can exhibit an 
 unbounded zero-state response to a bounded excitation of any kind, it is classifi ed as a 
 BIBO unstable system. So the stability of feedback systems depends on the nature of 
the feedback.

 SYSTEM PROPERTIES

The  properties of discrete-time systems are almost identical, qualitatively, to the prop-
erties of continuous-time systems. In this section we explore examples illustrating 
some of the properties in discrete-time systems.

Consider the system in Figure 4.45. The input and output signals of this system 
are related by the difference equation y[ ] x[ ] ( )y[ ]n n n= + −4 5 1/ . The homogeneous 
solution is y [ ] ( )h h

nn K= 4 5/ . Let x[ ]n  be the unit sequence. Then the particular solu-
tion is y [ ]p n = 5 and the total solution is y[ ] ( )n Kh

n= +4 5 5/ . (See Web Appendix D 
for methods of solving difference equations.) If the system is in its zero state before 
time n = 0 the total solution is 

y[ ]
( ) ,

,
n

n

n

n

=
− ≥

<
⎧
⎨
⎩

5 4 4 5 0

0 0

/

or

 y[ ] [ ]u[ ]n nn= − ( )5 4 4 5/

(see Figure 4.46).
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148 Chapter  4  Description of Systems

The similarity between the shape of the RC lowpass fi lter’s response to a unit-step 
excitation and the envelope of this system’s response to a unit-sequence is not an accident. 
This system is a digital lowpass fi lter (more on digital fi lters in Chapters 11 and 15).

If we multiply the excitation of this system by any constant, the response is multi-
plied by the same constant, so this system is homogeneous. If we delay the excitation of 
this system by any time n0, we delay the response by that same time. Therefore, this sys-
tem is also time invariant. If we add any two signals to form the excitation of the system, 
the response is the sum of the responses that would have occurred by applying the two 
signals separately. Therefore, this system is an  LTI discrete-time system. This system 
also has a bounded response for any bounded excitation. Therefore it is also stable.

A simple example of a system that is not time-invariant would be one described 
by y[ ] x[ ]n n= 2 . Let x [ ] g[ ]1 n n=  and let x [ ] g[ ]2 1n n= − , where g[ ]n , is the signal il-
lustrated in Figure 4.47, and let the response to x [ ]1 n  be y [ ]1 n , and let the response to 
x [ ]2 n  be y [ ]2 n . These signals are illustrated in Figure 4.48.

Since x [ ]2 n  is the same as x [ ]1 n  except delayed by one discrete time unit, for the 
system to be time-invariant y [ ]2 n  must be the same as y [ ]1 n  except delayed by one 
discrete-time unit, but it is not. Therefore this system is  time variant.

x[n] y[n]

4/5

D

Figure 4.45
A system

-5 5 10 15 20

5

n

y[n]

Figure 4.46 
System zero-state response  to a unit-sequence excitation

Figure 4.48 
Responses of the system described by y[ ] x[ ]n n= 2  to two different 
excitations

n
2 4 6 8-8 -6 -4 -2

2

4

n
2 4 6 8-8 -6 -4 -2

2

4

n
2 4 6 8-8 -6 -4 -2

2

4

n
2 4 6 8-8 -6 -4 -2

2

4

x1[n] = g[n]

y1[n] = x1[2n]

x2 [n] = g[n-1]

y2[n] = x2[2n] = y1[n-1]

Figure 4.47 
An excitation signal

n

g[n]

2 4 6 8-8 -6 -4 -2

2

4
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A good example of a system that is not BIBO stable is the fi nancial system of 
accruing  compound interest. If a principle amount P of money is deposited in a 
fi xed-income investment at an interest rate r per annum compounded annually, the 
amount A[ ]n , which is the value of the investment n years later, is A[ ] ( )n P r n= +1 . 
The amount A[ ]n  grows without bound as discrete-time n passes. Does that mean our 
banking system is unstable? The amount does grow without bound and, in an infi nite 
time, would approach infi nity. But, since no one who is alive today (or at any time in 
the future) will live long enough to see this happen, the fact that the system is unstable 
according to our defi nition is really of no great concern. When we also consider the 
effects of the inevitable withdrawals from the account and monetary infl ation, we see 
that this theoretical instability is not signifi cant.

The most common type of discrete-time system studied in signals and systems 
is a system whose input-output relationship is determined by a linear, constant-
coeffi cient, ordinary difference equation. The eigenfunction is the complex exponen-
tial and the homogeneous solution is in the form of a linear combination of complex 
exponentials. The form of each complex exponential is z z en n j z n= ( )�  where z is the 
eigenvalue. If the magnitude of z is less than one, the solution form zn  gets smaller in 
magnitude as discrete time passes, and if the magnitude of z is greater than one the 
solution form gets larger in magnitude. If the magnitude of z is exactly one, it is pos-
sible to fi nd a  bounded excitation that will produce an unbounded response. As was 
true for continuous-time systems, an excitation that is of the same functional form 
as the homogeneous solution of the differential equation will produce an unbounded 
response. 

For a discrete-time system, if the magnitude of any of the eigenvalues is greater 
than or equal to one, the system is  BIBO unstable.

EXAMPLE 4.13

Finding a bounded excitation that produces an unbounded response

Consider an accumulator for which y[ ] x[ ]n m
m

n= =−∞∑ . Find the eigenvalues of the solution of 
this equation and fi nd a bounded excitation that will produce an unbounded response.

We can take the fi rst backward difference of both sides of the difference equation yield-
ing y[ ] y[ ] x[ ]n n n− − =1 . This is a very simple difference equation with one eigenvalue, and 
the homogeneous solution is a constant because the eigenvalue is one. Therefore this system 
should be BIBO unstable. The bounded excitation that produces an unbounded response has the 
same functional form as the homogeneous solution. In this case a constant excitation produces 
an unbounded response. Since the response is the accumulation of the excitation, it should be 
clear that as discrete time n passes, the magnitude of the response to a constant excitation grows 
linearly without an upper bound.

The concepts of memory, causality, static nonlinearity, and invertibility are the 
same for discrete-time systems as for continuous-time systems. Figure 4.49 is an ex-
ample of a static system.

One example of a  statically nonlinear system would be a  two-input OR gate in 
a digital logic system. Suppose the logic levels are 0V for a logical 0 and 5V for a 
logical 1. If we apply 5V to either of the two inputs, with 0V on the other, the response 
is 5V. If we then apply 5V to both inputs simultaneously, the response is still 5V. If the 

Figure 4.49 
A static system

x1[n]

x2[n]

x3[n]

y[n]
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150 Chapter  4  Description of Systems

system were linear, the response to 5V on both inputs simultaneously would be 10V. 
This is also a noninvertible system. If the output signal is 5V, we do not know which 
of three possible input-signal combinations caused it, and therefore knowledge of the 
output signal is insuffi cient to determine the input signals.

Even though all real physical systems must be causal in the strict sense that they 
cannot respond before being excited, there are real signal-processing systems that are 
sometimes described, in a superfi cial sense, as  noncausal. These are data-processing 
systems in which signals are recorded and then processed “off-line” at a later time to 
produce a computed response. Since the whole history of the input signals has been re-
corded, the computed response at some designated time in the data stream can be based 
on values of the already-recorded input signals that occurred later in time (Figure 4.50). 
But, since the whole data processing operation occurs after the input signals have been 
recorded, this kind of system is still causal in the strict sense.

n
20

x[n]

-2

2

n20

y[n]

-2

2

y[n] = x[n-1] + x[n] + x[n+1]

Figure 4.50 
A so-called  noncausal fi lter calculating responses from a 
prerecorded record of excitations

4.4 SUMMARY OF IMPORTANT POINTS

  1. A system that is both homogeneous and additive is linear.
  2. A system that is both linear and time invariant is called an LTI system.
  3. The total response of any LTI system is the sum of its zero-input and zero-state 

responses.
  4. Often nonlinear systems can be analyzed with linear system techniques through 

an approximation called linearization.
  5. A system is said to be BIBO stable if arbitrary bounded input signals always 

produce bounded output signals.
  6. A continuous-time LTI system is stable if all its eigenvalues have negative real parts.
  7. All real physical systems are causal, although some may be conveniently and 

superfi cially described as noncausal.
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  8. Continuous-time systems are usually modeled by differential equations and 
discrete-time systems are usually modeled by difference equations.

  9. The solution methods for difference equations are very similar to the solution 
methods for differential equations.

 10. One common use for difference equations is to approximate differential 
equations.

 11. A discrete-time LTI system is stable if all its eigenvalues are less than one in 
magnitude.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 System Models

  1. Write the differential equation for the voltage v ( )C t  in the circuit in Figure E.1 
for time t > 0. Then fi nd an expression for the current i( )t  for time t > 0.

R1 = 2 Ω C = 3 F

Vs = 10 V R2 = 6 Ωt = 0

i(t)

is(t)

vC(t)
+-

iC(t)

Figure E.1

Answer: i( ) ( )t e t= + −5 5 3 18/ /

  2. The water tank in Figure E.2 is fi lled by an infl ow x( )t  and is emptied by an 
outfl ow y( )t . The outfl ow is controlled by a valve that offers resistance R to the 
fl ow of water out of the tank. The water depth in the tank is d( )t  and the surface 
area of the water is A, independent of depth (cylindrical tank). The outfl ow is 
related to the water depth (head) by

y( )
d( )

t
t

R
=  .

  The tank is 1.5 m high with a 1m diameter and the valve resistance is 10
s

m2 .

(a) Write the differential equation for the water depth in terms of the tank 
dimensions and valve resistance. 

(b) If the infl ow is 0 05. m /s3 , at what water depth will the infl ow and outfl ow 
rates be equal, making the water depth constant?

(c) Find an expression for the depth of water versus time after 1 3m  of water is 
dumped into an empty tank.

(d) If the tank is initially empty at time t = 0 and the infl ow is a constant 
0 2. m /s3  after time t = 0, at what time will the tank start to overfl ow?
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152 Chapter  4  Description of Systems

Outflow y(t)

R

Surface area A
Inflow x(t)

Valve

d(t)

Figure E.2 
Water tank with infl ow and outfl ow

Answers: d( ) ( ) , ( )
( )

( )t e A t
t

R
tt= + =−4 4 10/ d

d
x/� � � , 10.886 s, 0.5 m

  3. As derived in the text, a simple pendulum is approximately described for small 
angles � by the differential equation

mL t m t t′′ + ≅� �( ) g ( ) x( )

  where m is the mass of the pendulum, L is the length of the massless rigid rod 
supporting the mass and � is the angular deviation of the pendulum from vertical. 
If the mass is 2 kg and the rod length is 0.5 m, at what cyclic frequency will the 
pendulum oscillate?
Answer: 0.704 Hz

  4. A block of aluminum is heated to a temperature of 100 °C. It is then dropped 
into a fl owing stream of water, which is held at a constant temperature of 10°C. 
After 10 seconds the temperature of the block is 60°C. (Aluminum is such a 
good heat conductor that its temperature is essentially uniform throughout its 
volume during the cooling process.) The rate of cooling is proportional to the 
temperature difference between the block and the water. 

(a) Write a differential equation for this system with the temperature of the 
water as the excitation and the temperature of the block as the response.

(b) Compute the time constant of the system.
(c) If the same block is cooled to 0 °C and dropped into a fl owing stream of 

water at 80 °C, at time t = 0, at what time will the temperature of the block 
reach 75°C?

Answers: 17 s, 47.153 s, 
1

�

d

dt
t ta a wT T T( ) ( )+ =

  5. Bernoulli’s method can be used to numerically fi nd the dominant root of a 
polynomial equation (if it exists). It is an example of a discrete-time system. 
If the equation is of the form a q a q a q aN

n
N

n+ + + + =−
−

1
1

1 0 0� , the method 
consists of solving the difference equation

a q n a q n a q n N a q n NN N[ ] [ ] [ ] [ ]+ − + + − + + − =−1 1 01 1 0�

rob80687_ch04_113-158.indd   152rob80687_ch04_113-158.indd   152 12/17/10   6:09:22 PM12/17/10   6:09:22 PM



  with the initial values q q q N[ ] [ ] [ ]− = − = = − + =1 2 1 0�  and q[ ]0 1= . The 

dominant root is the limit approached by q n q n[ ] [ ]+ 1 / . Draw a discrete-time 

system to fi nd the dominant root of a fourth-degree polynomial equation. Find 

the dominant root of 2 3 8 3 04 3 2q q q q+ − + − = .
Answer: −2.964

 System Properties

 6. Show that a system with excitation x( )t  and response y( )t  described by

y( ) u(x( ))t t=
is nonlinear, time invariant, stable and noninvertible.

 7. Show that a system with excitation x( )t  and response y( )t  described by

y( ) x( ) x( )t t t= − − −5 3

is linear, noncausal and noninvertible.

 8. Show that a system with excitation x( )t  and response y( )t  described by

y( ) x( )t t= /2

is linear, time variant and noncausal.

 9. Show that a system with excitation x( )t  and response y( )t  described by

y( ) cos( )x( )t t t= 2�

is time variant, BIBO stable, static and noninvertible.

10. Show that a system whose response is the magnitude of its excitation is 
nonlinear, BIBO stable, causal and noninvertible.

11. Show that the system in Figure E.11 is linear, time invariant, BIBO unstable and 
dynamic.

Figure E.11
A continuous-time system

x(t)

∫

∫

∫

y(t) 

+

+
-

+

+

+

-7

14

25

0.1
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154 Chapter  4  Description of Systems

12. Show that the system of Figure E.12 is nonlinear, BIBO stable, static and 
noninvertible. (The output signal of an analog multiplier is the product of its two 
input signals.)

y[n]x[n]

Analog
Multiplier

2

Figure E.12 
A system

13. Show that a system with excitation x[ ]n  and response y[ ]n  described by

y[ ] x[ ]n n n= ,

is linear, time variant and static.

 14. Show that the system of Figure E.14 is linear, time-invariant, BIBO unstable and 
dynamic.

x[n] + +
y[n]

D

Figure E.14 
A system

 15. Show that a system with excitation x[ ]n  and response y[ ]n  described by

y[ ] rect x[ ]n n= ( ),
is nonlinear, time invariant and noninvertible.

 16. Show that the system of Figure E.16 is nonlinear, time-invariant, static and 
invertible.

5

10
y[n]x[n]

+ -

Figure E.16 
A system

 17. Show that the system described by 

  

y( )

x( )

x( ) x( )

x( )

t

t

t t

t

=
>

− < ≤
− ≤ −

⎧10 2

5 2 2

10 2

,

,

,
⎨⎨
⎪

⎩⎪

is nonlinear, static, stable, noninvertible and time invariant.
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18. Show that the system of Figure E.18 is time-invariant, BIBO stable and causal.

x[n]

+

+ -

+

y[n]

D

D
-1

2

0.25

Figure E.18
A system

EXERCISES WITHOUT ANSWERS
System Models

 19. In a chemical molecule the atoms are mechanically coupled by interatomic 
binding forces. A salt molecule consists of one sodium atom bound to one 
chlorine atom. The atomic mass of sodium is 22.99, the atomic mass of chlorine 
is 35.45 and one atomic mass unit is 1 6604 10 27. × −  kg. Model the molecule as 
two masses coupled by a spring whose spring constant is Ks = ×1 2 1059. N/m. 
In a system of this type the two atoms can accelerate relative to each other 
but (in the absence of external forces) the center of mass of the system does 
not accelerate. It is convenient to let the center of mass be the origin of the 
coordinate system describing the atom’s positions. Let the unstretched length of 
the spring be 	0, let the position of the sodium atom be y ( )s t , let the position of 
the chlorine atom be y ( )c t . Write two coupled differential equations of motion 
for this mechanical system, combine them into one differential equation in 
terms of the amount of spring stretch y( ) y ( ) y ( )t t ts c= − − 	0, and show that the 

resonant radian frequency is K
m m

m m
s

s c

s c

+
, where ms  is the mass of the sodium 

atom and mc is the mass of the chlorine atom. Find the resonant frequency for a 
salt molecule. (This model is unrealistic because salt molecules rarely form in 
isolation. Salt occurs in crystals and the other molecules in the crystal also exert 
forces on the molecule, making the realistic analysis much more complicated.)

20. Pharmacokinetics is the study of how drugs are absorbed into, distributed 
through, metabolized by and excreted from the human body. Some drug processes 
can be approximately modeled by a “one compartment” model of the body in 
which V is the volume of the compartment, C( )t  is the drug concentration in that 
compartment, ke is a rate constant for excretion of the drug from the compartment 
and k0 is the infusion rate at which the drug enters the compartment. 

(a) Write a differential equation in which the infusion rate is the input signal and 
the drug concentration is the output signal.

(b) Let the parameter values be ke = −0 4 1. hr , V = 20 l and k0 200= mg/hr 
(where “l” is the symbol for “liter”). If the initial drug concentration is 
C( )0 10= mg/l , graph the drug concentration as a function of time (in hours) 
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156 Chapter  4  Description of Systems

for the fi rst 10 hours of infusion. Find the solution as the sum of the zero-
input response and the zero-state response.

21. A well-stirred vat has been fed for a long time by two streams of liquid, fresh 
water at 0.2 cubic meters per second and concentrated blue dye at 0.1 cubic 
meters per second. The vat contains 10 cubic meters of this mixture and the 
mixture is being drawn from the vat at a rate of 0.3 cubic meters per second to 
maintain a constant volume. The blue dye is suddenly changed to red dye at the 
same fl ow rate. At what time after the switch does the mixture drawn from the 
vat contain a ratio of red to blue dye of 99:1?

22. A car rolling on a hill can be modeled as shown in Figure E.22. The excitation 
is the force f( )t  for which a positive value represents accelerating the car 
forward with the motor and a negative value represents slowing the car by 
braking action. As it rolls, the car experiences drag due to various frictional 
phenomena that can be approximately modeled by a coeffi cient k f  that 
multiplies the car’s velocity to produce a force, which tends to slow the car 
when it moves in either direction. The mass of the car is m and gravity acts 
on it at all times, tending to make it roll down the hill in the absence of other 
forces. Let the mass m of the car be 1000 kg, let the friction coeffi cient k f  be 
5 N s/m⋅  and let the angle � be �/12.

(a) Write a differential equation for this system with the force f( )t  as the 
excitation and the position of the car y( )t  as the response.

(b) If the nose of the car is initially at position y( )0 0=  with an initial velocity 
[y ]′( ) ==t t 0 10 m/s and no applied acceleration or braking force, graph the 
velocity of the car ′y ( )t  for positive time.

�

mg sin
(�)

f(t)

y(t)

Figure E.22 
Car on an inclined plane

23. At the beginning of the year 2000, the country Freedonia had a population p 
of 100 million people. The birth rate is 4% per annum and the death rate is 2% 
per annum, compounded daily. That is, the births and deaths occur every day 
at a uniform fraction of the current population, and the next day the number of 
births and deaths changes because the population changed the previous day. For 
example, every day the number of people who die is the fraction 0 02 365. /  of the 
total population at the end of the previous day (neglect leap-year effects). Every 
day 275 immigrants enter Freedonia.
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(a) Write a difference equation for the population at the beginning of the nth day 
after January 1, 2000 with the immigration rate as the input signal of the system.

(b) By fi nding the zero-input and zero-state responses of the system, determine 
the population of Freedonia at the beginning of the year 2050.

24. Figure E.24 shows a MATLAB program simulating a system.

(a) Without actually running the program, fi nd the value of x when n = 10 by 
solving the difference equation for the system in closed form.

(b) Run the program and check the answer in part (a).

x = 1 ; y = 3 ; z = 0 ; n = 0 ;
 while n <= 10,
  z = y ; 
  y = x ; 
  x = 2*n + 0.9*y - 0.6*z ;
  n = n + 1 ;
 end

Figure E.24

System Properties

25. A system is described by the block diagram in Figure E.25.

x(t)

∫

∫
y(t) 

+

+
-

+

1

3

0.25

Figure E.25 
A system

Classify the system as to homogeneity, additivity, linearity, time-invariance, stability, 
causality, memory and invertibility.

26. A system has an output signal that is the cube of its input signal. Classify 
the system as to linearity, time-invariance, stability, causality, memory and 
invertibility.

27. A system is described by the differential equation t t t t′ − =y ( ) y( ) x( )8 . Classify 
the system as to linearity, time-invariance and stability.

28. A system is described by the equation y( ) x
/

t d
t

= ( )
−∞∫ � �

3
. Classify the system as 

to time-invariance, stability and invertibility.

29. A system is described by the equation y( ) x( )t d
t

=
−∞

+
∫ � �

3
. Classify the system as 

to linearity, causality and invertibility.
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158 Chapter  4  Description of Systems

30. Show that the system described by y( ) Re(x( ))t t=  is additive but not 
homogeneous. (Remember, if the excitation is multiplied by any complex 
constant and the system is homogeneous, the response must be multiplied by that 
same complex constant.)

31. A system is described by y[ ] x[ ]n m
m

n=
=−∞
+∑ 1

. Classify this system as to time 

invariance, BIBO stability and invertibility.

32. A system is described by n n n ny[ ] y[ ] x[ ]− − =8 1 . Classify this system as to time 
invariance, BIBO stability and invertibility.

33. A system is described by y[ ] x[ ]n n= . Classify this system as to linearity, BIBO 
stability, memory and invertibility.

rob80687_ch04_113-158.indd   158rob80687_ch04_113-158.indd   158 12/17/10   6:09:23 PM12/17/10   6:09:23 PM



159

5.1 INTRODUCTIO N AND GOALS
The essential goal in designing systems is that they respond in the right way. There-
fore, we must be able to calculate the response of a system to any arbitrary input sig-
nal. As we will see throughout this text, there are multiple approaches to doing that. 
We have already seen how to fi nd the response of a system described by differential 
or difference equations by fi nding the total solution of the equations with boundary 
conditions. In this chapter we will develop another technique called  convolution. We 
will show that, for an LTI system, if we know its response to a unit impulse occurring 
at t � 0 or n � 0, that response completely characterizes the system and allows us to 
fi nd the response to any input signal.

C H A P T E R  G OA L S

 1. To develop techniques for fi nding the response of an LTI system to a unit 
impulse occurring at t � 0 or n � 0

 2. To understand and apply convolution, a technique for fi nding the response of 
LTI systems to arbitrary input signals for both continuous-time and discrete-time 
systems

5.2  CONTINUOUS TIME

 IMPULSE RESPONSE

We have seen techniques for fi nding the solutions to differential equations that describe 
systems. The total solution is the sum of the  homogeneous and particular solutions. 
The homogeneous solution is a linear combination of eigenfunctions. The particular 
solution depends on the form of the forcing function. Although these methods work, 
there is a more systematic way of fi nding how systems respond to input signals and it 
lends insight into important system properties. It is called convolution.

The convolution technique for fi nding the response of a continuous-time LTI sys-
tem is based on a simple idea. If we can fi nd a way of expressing a signal as a linear 
combination of simple functions, we can, using the principles of linearity and time 
invariance, fi nd the response to that signal as a linear combination of the responses to 
those simple functions. If we can fi nd the response of an LTI system to a unit-impulse 
occurring at t � 0 and if we can express the input signal as a linear combination of 

 C H A P T E R  5
 Time-Domain System Analysis
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160 Chapter  5  Time-Domain System Analysis

impulses, we can fi nd the response to it. Therefore, use of the convolution technique 
begins with the assumption that the response to a unit impulse occurring at t � 0 has 
already been found. We will call that response h(t) the impulse response. So the fi rst 
requirement in using the convolution technique to fi nd a system response is to fi nd 
the impulse response by applying a unit impulse �(t) occurring at t � 0. The impulse 
injects signal energy into the system and then goes away. After the energy is injected 
into the system, it responds with a signal determined by its dynamic character.

We could, in principle, fi nd the impulse response experimentally by actually applying 
an impulse at the system input. But, since a true impulse cannot actually be generated, 
this would only be an approximation. Also, in practice an approximation to an impulse 
would be a very tall pulse lasting for a very short time. In reality, for a real physical 
system a very tall pulse might actually drive it into a nonlinear mode of response and the 
experimentally measured impulse response would not be accurate. There are other less 
direct but more practical ways of experimentally determining an impulse response.

If we have a mathematical description of the system we may be able to fi nd the 
impulse response analytically. The following example illustrates some methods for 
fi nding the impulse response of a system described by a differential equation.

EXAMPLE 5.1

Impulse response  of continuous-time system 1

Find the impulse response h(t) of a continuous-time system characterized by the differential 
equation

 y�(t) + ay(t) � x(t) (5.1)

where x(t) excites the system and y(t) is the response.
We can rewrite (5.1) for the special case of an impulse exciting the system as

 h�(t) + ah(t) � �(t) (5.2)

METHOD #1:
Since the only excitation is the unit impulse at t � 0 and the system is causal, we know that 
the impulse response before t � 0 is zero. That is, h(t) � 0, t � 0. The homogeneous solution 
for t � 0 is of the form Ke�at. This is the form of the impulse response for t � 0 because in 
that time range the system is not being excited. We now know the form of the impulse re-
sponse before t � 0 and after t � 0. All that is left is to fi nd out what happens at t � 0. The 
differential equation (5.1) must be satisfi ed at all times. That is, h�(t) + ah(t) must be a unit 
impulse occuring at time t � 0. We can determine what happens at t � 0 by integrating both 
sides of (5.2) from t � 0� to t � 0+, infi nitesimal times just before and just after zero.

The integral of h�(t) is simply h(t). We know that at time t � 0� it is zero and at time t � 0� 
it is K.

 h h( ) ( ) ( ) ( )0 0 1
0 0

0

0

0
+

=

−

=
− + = =

−

+

−

+

∫ ∫
K

a h t dt t dt� � �  (5.3)

The homogeneous solution applies for all t � 0 but at t � 0 we must also consider the particu-
lar solution because the impulse is driving the system at that time. The general rule for the form 
of the particular solution of a differential equation is a linear combination of the  forcing func-
tion and all its unique derivatives. The forcing function is an impulse and an impulse has infi -
nitely many unique derivatives, the doublet, the triplet and so on, and all of them occur exactly 
at t � 0. Therefore, until we can show a reason why an impulse and/or all its derivatives cannot 
be in the solution, we have to consider them as possibilities. If h(t) does not have an impulse or 

rob80687_ch05_159-214.indd   160rob80687_ch05_159-214.indd   160 1/3/11   2:24:48 PM1/3/11   2:24:48 PM



higher-order singularity at t � 0, then h /( ) ( )( )t dt K e dt K a e eat
0

0

0

0 0 0

0
−

+ +
+

∫ ∫= = − −− − −

=
� �� �� == 0. If 

h(t) does have an impulse or higher-order singularity at t � 0, then the integral may not be zero.
If h(t) has an impulse or higher-order singularity at t � 0, then h�(t), which appears on the 

left side of (5.2), must contain a doublet or higher-order singularity. Since there is no doublet or 
higher-order singularity on the right side of (5.2), the equation cannot be satisfi ed. Therefore, 
in this example, we know that there is no impulse or higher-order singularity in h(t) at t � 0 

and, therefore, h( ) ,t dt
0

0
0

−

+

∫ =  the form of the impulse response is Ke�at u(t), and from (5.3), 

h (0 )+ = = =− +
Ke Ka( ) .0 1  This is the needed initial condition to fi nd a numerical form of the 

homogeneous solution that applies after t � 0. The total solution is then h(t) � e�at u(t). Let’s 
verify this solution by substituting it into the differential equation.

 ′ + = − + =− − −h h u( ) ( ) ( ) ( ) u( ) ( )t a t e t ae t ae t tat at at� �

or, using the equivalence property of the impulse,

 e t e t tat− = =� � �( ) ( ) ( )0    Check.

METHOD #2:
Another way to fi nd the impulse response is to fi nd the response of the system to a rectangular 
pulse of width w and height 1/w beginning at t � 0 and, after fi nding the solution, to let w 
approach zero. As w approaches zero, the rectangular pulse approaches a unit impulse at t � 0 
and the response approaches the impulse response.

Using the principle of linearity, the response to the pulse is the sum of the responses to a 
step of height 1/w at t � 0, and the response to a step of height −1/w, at t � w. The equation for 
x(t) � u(t) is

 ′ + =− −h h u11( ) ( ) ( ).t a t t  (5.4)

The notation h�1 (t) for step response follows the same logic as the coordinated notation for 
singularity functions. The subscript indicates the number of differentiations of the impulse 
response. In this case there is −1 differentiation or one integration in going from the unit-impulse 
response to the unit-step response. The total response for t � 0 to a unit-step is h�1(t) � Ke�at + 
1/a. If h�1(t) has a discontinuity at t � 0, then h��1(t) must contain an impulse at t � 0. Therefore, 
since x(t) is the unit step, which does not contain an impulse, h�1(t) must be continuous at t � 0, 
otherwise (5.4) could not be correct. Also, since h�1(t) has been zero for all negative time and it 
is continuous at t � 0, it must also be zero at t � 0�. Then

 h / /−
+ = = + ⇒ = −1

00 0 1 1( ) Ke a K a

and h�1 (t) � (1/a) (1 − e�at), t � 0. Combining this with the fact that h�1 (t) � 0 for t � 0, we 
get the solution for all time

 h u−
−

= −
1

1
( ) ( ).t

e

a
t

at

Using linearity and time invariance, the response to a unit step occurring at t � w would be

 h u−
− −

− = − −1
1

( ) ( ).
( )

t w
e

a
t w

a t w

Therefore the response to the rectangular pulse described above is

 h
u u

p

at a t w
t

e t e t w

aw
( )

( ) ( ) ( ) ( )( )
= − − − −− − −1 1

 5.2 Continuous Time 161
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162 Chapter  5  Time-Domain System Analysis

Then, letting w approach zero,

 h h
u

( ) lim ( ) lim
( ) ( ) ( ( )

t t
e t e

w
p

w

at a t w
= = − − −

→ →

− − −

0 0

1 1 ))
.

u( )t w

aw

−

This is an indeterminate form, so we must use  L’Hôpital’s rule to evaluate it.

 
lim ( ) lim

(( ) ( )( )

w
p

w

d
dw

at a t w

t
e t e

→ →

− − −
=

− − −
0 0

1 1
h

u( ) uu( ))

h

t w

aw

t
e

d
dw

w
p

w

d
dw

a t

−

=
− −

→ →

− −

( )

lim ( ) lim
(( (

0 0

1 ww t w

a

) )u( ))−

 
lim ( ) lim

( )( ( ))( ) (

w
p

w

a t w a t
t

e t w ae

→ →

− − −
= − − − − −

0 0

1
h

� −− −w t w

a

)u( )

 →

− −
= − − − −

w
p

at at
t

e t ae
lim ( )

( ) ( ))
h

( u(

0

1 � tt

a

ae t

a
e t

at
at) u

u= − − =
−

−( )
( )

 

The impulse response is h(t) � e�at u(t) as before.

The principles used in Example 5.1 can be generalized to apply to fi nding 
the impulse response of a system described by a differential equation of the form

 a t a t a t a t

b

N
N

N
N

M
M

y y y ( ) y

x( )

( ) ( )( ) ( ) ( )+ + + ′ +

=
−

−
1

1
1 0�

(( ) ( ) ( )t b t b t b tM
M+ + + ′ +−

−
1

1
1 0x x ( ) x( ) �

 (5.5)

or

 a t b tk
k

k

N

k
k

k

M

y x( ) ( )

= =
∑ ∑=

0 0

( ) ( )

The response h(t) to a unit impulse must have a functional form such that

 1. When it is differentiated multiple times, up to the Nth derivative, all those 
derivatives must match a corresponding derivative of the impulse up to the Mth 
derivative at t � 0, and

 2. The linear combination of all the derivatives of h(t) must add to zero for any 
t 	 0.

Requirement 2 is met by a solution of the form yh (t) u(t) where yh(t) is the homoge-
neous solution of (5.5). To meet requirement 1 we may need to add another function or 
functions to yh(t) u(t). Consider three cases.

Case 1 M � N

The derivatives of yh(t)u(t) provide all the singularity functions necessary to match 
the impulse and derivatives of the impulse on the right side and no other terms 
need to be added.

Case 2 M � N

We only need to add an impulse term K� �(t).

Case 3 M � N
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The Nth derivative of the function we add to yh(t) u(t) must have a term that 
matches the Mth derivative of the unit impulse. So the function we add must be 
of the form K t K t K tM N M N M N M N

t

− − − − − −
=

+ + +u u u( ) ( ) ( )
( )

1 1 0 0� �
�

.. All the other de-

rivatives of the impulse will be accounted for by differentiating the solution form 
yh(t) u(t) multiple times.

Case 1 is the most common case in practice and Case 3 is rare in practice.

EXAMPLE 5.2

Impulse response of continuous-time system 2

Find the impulse response of a system described by y�(t) + ay(t) � x�(t).
The impulse response must satisfy

 ′ + = ′h ( ) ht a t t( ) ( )�  (5.6)

The highest derivative is the same for the excitation and response. The form of the impulse 
response is h(t) � Ke�at u(t) + K��(t) and its fi rst derivative is

 ′ = − + ′− −h u( ) ( ) ( ) ( ).t Ke t aKe t K tat at� ��

Using the equivalence property of the impulse,

 ′ = − + ′−h u( ) ( ) ( ) ( )t K t aKe t K tat� ��

Integrating (5.6) from t � 0� to t � 0�

 

h h u( ) ( ) [ ( ) ( )] ( )0 0 0
0 0

+

=

−

=

− +

=
− + + =

K

ata Ke t K t dt� � �� ��� �
0

0

0

0

0

0

0

0

0

−

+

+

−

+

∫

∫ ∫

−
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−
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−
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+
−
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⎤

⎦
⎥ + = − −

+

+

1

0

0
0 0

0

� ��� ���

K aK
e

a
aK K K e e

at

� [ ]�� �� �� + =aK� 0

or K + aK� � 0. Integrating (5.6) from −
 to t and then from t � 0� to t � 0� we get

 
dt K aKe K d
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a
t
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164 Chapter  5  Time-Domain System Analysis

 [ ( ) ( )] ( )

) ( )

Ke t K t dt t dtat−
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+ =
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u(0 u+

�� �

0

0
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0
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∫  
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0

0 1 0

− + −
⎡

⎣
⎢
⎢

⎤

⎦
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=

+

=
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=

+

� �� �� � �� u u
⎥⎥

= ⇒ = ⇒ = −1 1K K a� .  

Therefore the impulse response is h(t) � �(t) − ae�at u(t). Checking the solution, by substituting 
it into (5.6),

 ′ − + +−

= =

−� � �

� �

( ) ( )
( ) ( )

t a e t a e t aat

e t t

at

0

2
��� �� u( ) [ (( ) u ] ( )t ae t tat− = ′− ( ) �

or �′(t) � �′(t). Check.

 CONTINUOUS-TIME CONVOLUTION

 Derivation
Once the impulse response of a system is known, we can develop a method for fi nding 
its response to a general input signal. Let a system be excited by an arbitrary input sig-
nal x(t) (Figure 5.1). How could we fi nd the response? We could fi nd an approximate 
response by approximating this signal as a sequence of contiguous rectangular pulses, 
all of the same width Tp (Figure 5.2).

Figure 5.1
An arbitrary signal

t 

x(t)

Figure 5.2
 Contiguous-pulse approximation to an arbitrary signal

t 

x(t)

Tp

Now we can (approximately) fi nd the response to the original signal as the sum of 
the responses to all those pulses, acting individually. Since all the pulses are rectangular 
and the same width, the only differences between pulses are when they occur and how 
tall they are. So the pulse responses all have the same form except delayed by some 
amount, to account for time of occurrence, and multiplied by a weighting constant, to 
account for the height. We can make the approximation as good as necessary by using 
more pulses, each of shorter duration. In summary, the problem of fi nding the response 
of an LTI system to an arbitrary signal becomes the problem of adding responses of a 
known functional form, but weighted and delayed appropriately.

Using the rectangle function, the description of the approximation to the arbitrary 
signal can now be written analytically. The height of a pulse is the value of the signal 
at the time the center of the pulse occurs. Then the approximation can be written as 

 x x rect x rect( ) ( ) ( )t T
t T

T

t

Tp
p

p p

≅ + −
+⎛

⎝⎜
⎞

⎠⎟
+

⎛

⎝
� 0 ⎜⎜

⎞

⎠⎟
+

−⎛

⎝⎜
⎞

⎠⎟
+x rect( )T

t T

Tp
p

p

�
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Figure 5.3
 Unit pulse response of an RC lowpass fi lter

t 
Tp

Tp

1

hp(t)

Unit Pulse

Figure 5.4
Exact and approximate x(t)

t
-1 3

x(t)

-0.1

0.2 Exact
Approximate

or

 x x rect( ) ( ) .t nT
t nT

Tp
n

p

p

≅
−⎛

⎝⎜
⎞

⎠⎟=−∞

∞

∑  (5.7)

Let the response to a single pulse of width Tp and unit area centered at t � 0 be a 
function hp(t) called the  unit-pulse response. The unit pulse is (1/Tp) rect (1/Tp). There-
fore (5.7) could be written in terms of shifted unit pulses as

 
x x

1
rect

shif

( ) ( )t T nT
T

t nT

Tp p
n p

p

p

≅
−⎛

⎝⎜
⎞

⎠⎟=−∞

∞

∑
tted unit pulse

� ��� ���
.
 (5.8)

Invoking linearity and time invariance, the response to each of these pulses must be the 
unit pulse response hp(t), amplitude scaled by the factor Tpx(nTp) and time shifted from 
the time origin the same amount as the pulse. Then the approximation to the response is

 y x h( ) ( ) ( ).t T nT t nTp p p p
n

≅ −
=−∞

∞

∑  (5.9)

As an illustration, let the unit pulse response hp(t) be that of the  RC lowpass fi lter 
introduced above (Figure 5.3). Let the input signal x(t) be the smooth waveform in 
Figure 5.4, which is approximated by a sequence of pulses as illustrated.

In Figure 5.5 the pulses are separated and then added to form the approximation 
to x(t).

Figure 5.5
Approximation of x(t) as a sum of individual pulses

x(t)

.

.

.

.

.

.
Tp
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166 Chapter  5  Time-Domain System Analysis

Figure 5.6
Application of  linearity and superposition  to fi nd the approximate system response
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.

.
Tp

Tp Tp

Since the sum of the individual pulses is the approximation of x(t), the approxi-
mate response can be found by applying the approximation of x(t) to the system. But, 
because the system is LTI, we can alternately use the principle of superposition and 
apply the pulses one at a time to the system. Then those responses can be added to form 
the approximate system response (Figure 5.6).

The system exact and approximate input signals, the unit-impulse response, the 
unit-pulse response and the exact and approximate system responses are illustrated in 
Figure 5.7, based on a pulse width of 0.2 seconds. As the pulse duration is reduced, the 
approximation becomes better (Figure 5.8). With a pulse width of 0.1, the exact and 
approximate responses are indistinguishable as graphed on this scale.

Recall from the concept of  rectangular-rule integration in basic calculus that a real 
integral of a real variable can be defi ned as the limit of a summation

 g( ) lim g( ) .x dx n x x
a

b

x n a x

b x

∫ ∑=
→ =�

�

�

� �
0 /

/

 (5.10)

We will apply (5.10) to the summations of pulses and pulse responses (5.8) and (5.9) in the 
limit as the pulse width approaches zero. As the pulse width Tp becomes smaller, the exci-
tation and response approximations become better. In the limit as Tp approaches zero, the 
summation becomes an integral and the approximations become exact. In that same limit, 
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Figure 5.7
Exact and approximate excitation, unit-impulse response, 
unit-pulse response and exact and approximate system response 
with Tp � 0.2

Figure 5.8
Exact and approximate excitation, unit-impulse response, 
unit-pulse response and exact and approximate system response 
with Tp � 0.1
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 5.2 Continuous Time 167

the unit pulse (1/Tp) rect (1/Tp) approaches a unit impulse. As Tp approaches zero, the points 
in time nTp become closer and closer together. In the limit, the discrete time shifts nTp 
merge into a continuum of time-shifts. It is convenient (and conventional) to call that new 
continuous time shift 
. Changing the name of the time shift amount nTp to 
, and taking the 
limit as Tp approaches zero, the width of the pulse Tp approaches a differential d
 and

 
x x rect( ) ( )

( )

t T nT
T

t nT

Tn
p

d

p
p

p

p

=
−⎛

⎝= −∞

∞

↓
∫

↓ ↓

∑
�

� �


 


1
⎜⎜

⎞

⎠⎟

↓
−� 
( )t

� ���� ����

and

 
y x h( ) ( ) ( )

( ) ( )

t T nT t nT
n

p

d

p p p

h t

= −
= −∞

∞

↓
∫

↓ ↓ ↓
−

∑
�

� �
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Therefore, in the limit, these summations become integrals of the forms

 x x( ) ( ) ( )t t d= −
−∞

∞

∫ 
 � 
 
  (5.11)
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168 Chapter  5  Time-Domain System Analysis

and

 y x h( ) ( ) ( )t t d= −
−∞

∞

∫ 
 
 
  (5.12)

where the unit-pulse response hp(t) approaches the unit-impulse response h(t) (more 
commonly called just the  impulse response) of the system. The integral in (5.11) is 
easily verifi ed by application of the sampling property of the impulse. The integral in 
(5.12) is called the  convolution integral. The convolution of two functions is conven-
tionally indicated by the  operator *,1

 y( ) x ( )*h( ) x ht t t t d= = −
−∞

∞

∫ ( ) ( )
 
 
 . (5.13)

Another way of developing the convolution integral is to start with (5.11), 
which follows directly from the sampling property of the impulse. The integrand 
of (5.11) is an impulse at t � 
 of strength x(
). Since, by defi nition, h(t) is the 
response to an impulse �(t), and the system is homogeneous and time invariant, 

the response to x(
)�(t − 
) must be x(
)h(t − 
). Then, invoking additivity, if 

x x( ) ( ) ( ) ,t t d= −
−∞

∞
∫ 
 � 
 
  an integral (the limit of a summation) of x values, then 

y x h( ) ( ) ( ) ,t t d= −
−∞

∞
∫ 
 
 
  an integral of the y’s that respond to those x’s. This deriva-

tion is more abstract and sophisticated and much shorter than the derivation above 
and is an elegant application of the properties  of LTI systems and the sampling 
property of the impulse.

The impulse response of an LTI system is a very important descriptor of the 
way it responds because, once it is determined, the response to any arbitrary input 
signal can be found. The effect  of convolution can be depicted by a block diagram 
(Figure 5.9).

 Graphical and Analytical Examples of Convolution
The general mathematical form of the convolution integral is

 x( ) * ( ) ( )t t t dh x h( ) .= −
−∞

∞

∫ 
 
 


A graphical example of the operations implied by the convolution integral is very 
helpful in a conceptual understanding of convolution. Let h(t) and x(t) be the functions 
in Figure 5.10.

1 Do not confuse the convolution operator * with the indicator for the complex conjugate of a complex number 
or function *. For example, x[n] * h[n] is x[n] convolved with h[n], but x[n]* h[n], is the product of the complex 
conjugate of x[n] and h[n]. Usually the difference is clear in context.

Figure 5.9
Block diagram depiction of convolution

h(t)x(t) y(t) = x(t)*h(t)
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This impulse response h(t) is not typical of a practical linear system but will serve 
to demonstrate the process of convolution. The integrand in the convolution integral 
is x(
)h(t − 
). What is h(t − 
)? It is a function of the two variables t and 
. Since the 
variable of integration in the convolution integral is 
, we should consider h(t − 
) to 
be a function of 
 in order to see how to do the integral. We can start by graphing h(
) 
and then h(−
) versus 
 (Figure 5.11).

Figure 5.10
Two functions to be convolved

t 

x(t)

2

1−1t

h(t)

2

1

The addition of the t in h(t − 
) shifts the function t units to the right (Figure 5.12).
The transformation from h(
) to h(t − 
) can be described as two successive shifting/

scaling operations

 h h h( ) h( ) ( ) ( ) ( ).
 
 
 


 
 
 
→− → −⎯ →⎯⎯ − ⎯ →⎯⎯⎯ − − = −t t t

If we substitute t for 
 in h(t − 
 ), we have h(0). From the fi rst defi nition of the function 
h(t) we see that that is the point of discontinuity where h(t) goes from 0 to 1. That is the 
same point on h(t − 
). Do the same for 
 � t − 1 and see if it works.

One common confusion is to look at the integral and not understand what the 
process of integrating from 
 � − 
 to 
 � + 
 means. Since t is not the variable of 
integration, it is like a constant during the integration process. But it is the variable in 
the fi nal function that results from the convolution. Think of convolution  as two gen-
eral procedures. First pick a value for t, do the integration and get a result. Then pick 
another value of t and repeat the process. Each integration yields one point on the curve 
describing the fi nal function. Each point on the y(t) curve will be found by fi nding the 
total area under the product x(
)h(t − 
).

Visualize the product x(
)h(t − 
). The product depends on what t is. For most 
values of t, the nonzero portions of the two functions do not overlap and the product 
is zero. (This is not typical of real impulse responses because they usually are not 
time limited. Real impulse responses of stable systems usually begin at some time and 
approach zero as t approaches infi nity.) But for some times t their nonzero portions do 
overlap and there is nonzero area under their product curve. Consider t � 5 and t � 0. 

Figure 5.11
h(
) and h(−
) graphed versus 


τ

h(τ)

2

1
τ

h(-τ)

2

−1

Figure 5.12
h(t − 
) graphed versus 


τ

h(t-τ)

2

t−1 t

 5.2 Continuous Time 169

rob80687_ch05_159-214.indd   169rob80687_ch05_159-214.indd   169 12/17/10   6:08:23 PM12/17/10   6:08:23 PM



170 Chapter  5  Time-Domain System Analysis

When t � 5, the nonzero portions of x(
) and h(5 − 
) do not overlap and the product 
is zero everywhere (Figure 5.13).

Figure 5.13
Impulse response, input signal, and their product when t � 5

τ

2

1 4 5−1

x(τ) h(5-τ)

τ
1 4 5−1

x(τ)h(5-τ)

Figure 5.14
Impulse response, input signal, and their product when t � 0

τ

2

1−1

x(τ)h(-τ)

τ

4

1−1

x(τ)h(-τ)

⎧
⎭x(τ)h(-τ)dτ

−∞

∞

Figure 5.15
Product of h(t − 
) and x(
) for −1 � t � 0

τ

2

1t-1 1t-1-1+t-1+t

x(τ)h(t-τ)
-1 < t < 0

τ

4

h(t-τ)x(τ)

4|t|

For −1 � t � 0 the convolution of the two functions is twice the area of the h 
function (which is 1) minus the area of a triangle of width |t| and height 4|t| (Figure 5.15). 

Therefore the convolution function value over this range of t is

 y /( ) ( )( )( ) ( ), .t t t t t= − − − = − − < <2 1 2 4 2 1 1 02

For 0 � t � 1 the convolution of the two functions is the constant 2. For 1 � t � 2, the 
convolution of the two functions is the area of a triangle whose base width is (2 − t) and 
whose height is (8 − 4t) or y(t ) � (1/2)(2 − t)(8 − 4t) � 2(2 − t)2. The fi nal function 
y(t) is illustrated in Figure 5.16.

When t � 0, the nonzero portions of x(
) and h(5 − 
) do overlap and the product 
is not zero everywhere (Figure 5.14).
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Figure 5.16
Convolution of x(t) with h(t)

t = -1 t = -0.5 t = 0 t = 0.5 t = 1 t = 1.5 t = 2

-4 -3 -2 -1 1 2 3 4

2

Time, t

y(t)

Figure 5.17
The impulse response and  excitation of the RC lowpass fi lter

τ

1

τ

h(τ) x(τ)

1
RC

RC

As a more practical exercise let us now fi nd the unit-step response  of  an RC low-
pass fi lter using convolution. We already know from prior analysis that the answer is 
vout (t) � (1 − e�t/RC ) u(t). First we need to fi nd the impulse response. The differential 
equation is

 RC t t t RC t t tout out in′ + = ⇒ ′ + =v v v h ( ) h( ) ( ) ( ) ( ) ( )�

The form of the impulse response is h(t) � Ke �t/RC u(t). Integrating once from 0� to 0�

 RC t dth h h u( ) ( ) ( ) (0 0 0
0 0

0

0

+ −

=
=

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ =
−

+

∫�
��� ��

++

=

−

=

+− ⇒ =) ( ) ( )
1 0

0 0 1� �u h /RC

Then 1/RC � K and h(t) � (1/RC)e�t/RC u(t) (Figure 5.17).

Then the response vout (t) to a unit step vin (t) is vout (t) � vin (t) ∗ h(t) or

 v v h u
/

out in

t RC

t t d
e

RC
( ) ( ) ( ) ( )

( )

= − =
−∞

∞

−∞

∞ − −

∫ ∫
 
 
 




uu( ) .t d− 
 


We can immediately simplify the integral some by observing that the fi rst unit step u(
) 
makes the integrand zero for all negative 
. Therefore

 v uout

t RC

t
e

RC
t d( ) ( ) .

( )/

= −
− −∞

∫




 

0

Consider the effect of the other unit step u(t − 
). Since we are integrating over a range 
of 
 from zero to infi nity, if t is negative, for any 
 in that range this unit step has a value 
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172 Chapter  5  Time-Domain System Analysis

Figure 5.18
The relation between the two functions that form the product in the 
convolution integrand for t negative and t positive

τ

h(t-τ) x(τ)
1

t < 0

t t τ

h(t-τ)

x(τ)1

t > 0

1
RC

1
RC

of zero (Figure 5.18). Therefore for negative t, vout (t) � 0. For positive t, the unit step 
u( )t − 
  will be one for 
 < t  and zero for 
 > t. Therefore for positive t,

 v
/

/
out

t RCt
t RC t

t
e

RC
d e e( )

( )
( )= = ⎡⎣ ⎤⎦ = −

− −
− −∫







0
0

1 −− >t RC t/ , .0

Combining the results for negative and positive ranges of t, v u/
out

t RCt e t( ) ( ) ( ).= − −1
Figure 5.19 and Figure 5.20 illustrate two more examples of convolution. In 

each case the top row presents two functions x1( )t  and x2( )t  to be convolved and the 
“fl ipped” version of the second function x2( )−
 , which is x( )t − 
  with t � 0, the fl ipped 
but not-yet-shifted version. On the second row are the two functions in the convolution 
integral x1( )
  and x2( )t − 
  graphed versus 
 for fi ve choices of t, illustrating the shifting 
of the second function x2( )t − 
  as t is changed. On the third row are the products of 

Figure 5.19
 Convolution of two rectangular pulses

t
-4 4

x1(t)

3

t
-4 4

x2(t)

3

τ
-4 4

x2(-τ)

3

τ
-4 4

x1(τ) and x2(-0.5 - τ)

3

τ
-4 4

x1(τ)x2(-0.5 - τ)

6

τ
-4 4

x1(τ) and x2(0 - τ)

3

τ
-4 4

x1(τ)x2(0 - τ)

6

τ
-4 4

x1(τ) and x2(1 - τ)

3

τ
-4 4

x1(τ)x2(1 - τ)

6

τ
-4 4

x1(τ) and x2(2 - τ)

3

τ
-4 4

x1(τ)x2(2 - τ)

6

τ
-4 4

x1(τ) and x2(2.5 - τ)

3

τ
-4 4

x1(τ)x2(2.5 - τ)

6

τ
-4 4

x1(t)*x2(t)

6
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Figure 5.20
Convolution of two  triangular pulses

t
-6 6

x1(t)

3

t
-6 6

x2(t)

3

τ
-6 6

x2(-τ)

3

τ
-6 6

x1(τ)x2(-3 - τ)

6

τ
-6 6

x1(τ)x2(-2 - τ)

6

τ
-6 6

x1(τ)x2(-1 - τ)

6

τ
-6 6

x1(τ)x2(0 - τ)

6

τ
-6 6

x1(τ) and x2(-3 - τ)

3

τ
-6 6

x1(τ) and x2(-2 - τ)

3

τ
-6 6

x1(τ) and x2(-1 - τ)

3

τ
-6 6

x1(τ) and x2(0 - τ)

3

τ
-6 6

x1(τ) and x2(1 - τ)

3

τ
-6 6

x1(τ)x2(1 - τ)

6

τ
-6 6

x1(t)*x2(t)

6

the two functions x x1 2( ) ( )
 
t −  in the convolution integral at those same times. And at 
the bottom is a graph of the convolution of the two original functions with small dots 

indicating the convolution values at the fi ve times t, which are the same as the areas 

x x1 2−∞

∞
∫ −( ) ( )
 
 
t d  under the products at those times.

 Convolution Properties
An operation that appears frequently in signal and system analysis is the convolution 
of a signal with an impulse

 x x( ) ( ) ( ) ( )t A t t A t t d∗ − = − −
−∞

∞

∫� 
 � 
 
0 0 .

We can use the sampling property of the impulse to evaluate the integral. The variable of 
integration is 
. The impulse occurs in 
 where t t− − =
 0 0 or 
 = −t t0 . Therefore

 x x( ) ( ) ( )t A t t A t t∗ − = −� 0 0 . (5.14)

This is a very important result and will show up many times in the exercises and later 
material (Figure 5.21).

If we defi ne a function g g( ) ( ) ( )t t t= ∗0 � , then a time-shifted version g( )t t− 0  can 
be expressed in either of the two alternate forms

 g( ) g ( ) ( ) g g ( ) ( )t t t t t t t t t t− = − ∗ − = ∗ −0 0 0 0 0 0� �or ( )
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174 Chapter  5  Time-Domain System Analysis

but not in the form g0 0 0( ) ( ).t t t t− ∗ −�  Instead, g g0 0 0 02( ) ( ) ( ).t t t t t t− ∗ − = −�  This 
property is true not only when convolving with impulses, but with any functions. A 
shift of either of the functions being convolved (but not both) shifts the convolution by 
the same amount.

The  commutativity,  associativity, distributivity, differentiation,  area, and  scaling prop-
erties  of the  convolution integral are proven in Web Appendix E and are summarized here.

Commutativity x y y x( ) ( ) ( ) ( )t t t t∗ = ∗

Associativity ( ( ) ( ) z( ) ( ) ( ( ) z( ))x y ) x yt t t t t t∗ ∗ = ∗ ∗

Distributivity ( ( ) ( )) z( ) ( ) z( ) ( ) z( )x y x yt t t t t t t+ ∗ = ∗ + ∗

If y(t) � x(t) * h(t), then

Differentiation Property ′ = ′ ∗ = ∗ ′y x h x h( ) ( ) ( ) ( ) ( )t t t t t

Area Property Area of y � (Area of x) × (Area of h)

Scaling Property y x ( ) h( ) ( )at a at at= ∗

Let the convolution of x(t) with h(t) be y h( ) x( ) ( ) .t t d= −
−∞

∞

∫ 
 
 
  Let x(t) be bounded. 

Then x( ) ,t B− <
  for all 
 where B is a fi nite upper bound. The magnitude of the 
convolution integral is

 |y | x h( ) ( ) ( ) .t t d= −
−∞

∞

∫ 
 
 


Using the principles that the magnitude of an integral of a function is less than or equal 
to the integral of the magnitude of the function

 g g( ) ( )x dx x dx
�

�

�

�

∫ ∫≤

and that the magnitude of a product of two functions is equal to the product of their 
magnitudes, g h(x) h ,( ) g( ) ( )x x x=  we can conclude that

 y x h( )( ) ( ) .t t d≤ −
−∞

∞

∫ 
 
 


Figure 5.21
Examples of convolution with impulses

t

rect(t)∗δ(t)

1
2-

1

t

cos(πt)∗δ(t - 1)

1
2

t 

rect(t)∗δ(t - 1)

1
2

3
2

1

......
t

2sin(πt)∗4δ(t +   )

2 ......
8

1
2
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Since x(t − 
) is less than B in magnitude for any 


 y( ) x ht t d B d≤ − <
−∞

∞

−∞

∞

∫ ∫( ) ( ) h( )
 
 
 
 


or

 y( ) h( ) .t B d<
−∞

∞

∫ 
 


Therefore, the convolution integral converges if h( )t dt
−∞

∞
∫  is bounded or, in other 

words, if h(t) is absolutely integrable. Since convolution is commutative, we can also 
say that, if h(t) is bounded, the condition for convergence is that x(t) be absolutely 
integrable.

For a convolution integral to converge, the signals being convolved must 
both be bounded and at least one of them must be absolutely integrable.

EXAMPLE 5.3

 Convolution of two unit rectangles

Find the convolution y(t)  of two unit rectangles x(t) � rect (t) and h(t) � rect (t).
This convolution can be done in a direct way using the convolution integral, analytically 

or graphically. But we can exploit the differentiation property to avoid explicit integration 
altogether.

 y x h y x ( ) h

y /

( ) ( ) ( ) ( ) ( )

( ) [ (

t t t t t t

t t

= ∗ ⇒ ′′ = ′ ∗ ′
′′ = +� 1 22 1 2 1 2 1 2) ( )] [ ( ) ( )]− − ∗ + − −� � �t t t/ / /

 
′′ = + − + −
′ = + − +

y ( )

y u u u

t t t t

t t t

� � �( ) ( ) ( )

( ) ( ) ( ) (

1 2 1

1 2 tt − 1)

 y t t t t( ) = + − + −ramp ( 1) ramp ( ) ramp ( 1)2

(See Figure 5.22).

Figure 5.22
Convolution of two unit rectangles

t

y(t)

1

-1 1

The result of convolving two unit rectangles (Example 5.3) is important enough 
to be given a name for future reference. It is called the  unit triangle function 
(see Figure 5.23).

 tri ( )
| | , | |

otherwise
t

t t
=

− <⎧
⎨
⎪

⎩⎪

1 1

0 ,

It is called a unit triangle because its peak height and its area are both one.
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176 Chapter  5  Time-Domain System Analysis

 System Connections
Two very common connections of systems are the cascade connection and the parallel 
connection (Figure 5.24 and Figure 5.25).

Using the  associativity property of convolution we can show that the cascade 
connection  of two systems can be considered as one system whose impulse response 
is the convolution of the impulse responses of the two systems. Using the  distributivity 
property of convolution we can show that the parallel connection  of two systems can be 
considered as one system whose impulse response is the sum of the impulse responses 
of the two systems.

 Step Response and  Impulse Response
In actual system testing, a system is often tested using some standard signals that are easy 
to generate and do not drive the system into a nonlinearity. One of the most common 
signals of this type is the step function. The response of an LTI system to a unit step is

 h h u h u h−
−∞

∞

−∞

= ∗ = − =∫ ∫1( ) ( ) ( ) ( ) ( ) ( )t t t t d d
t


 
 
 
 

.

This proves that the response of an LTI system excited by a unit step is the integral 
of the impulse response. Therefore we can say that just as the unit step is the integral of 
the impulse, the unit-step response is the integral of the unit-impulse response. In fact, 
this relationship holds not just for impulse and step excitations, but for any excitation. 
If any excitation is changed to its integral, the response also changes to its integral. 
We can also turn these relationships around and say that since the fi rst derivative is the 
inverse of integration, if the excitation is changed to its fi rst derivative, the response is 
also changed to its fi rst derivative (Figure 5.26).

Stability and Impulse Response
 Stability was generally defi ned in Chapter 4 by saying that a stable system has a bounded 
output signal in response to any bounded input signal. We can now fi nd a way to deter-
mine whether a system is stable by examining its impulse response. We proved above 

Figure 5.25
Parallel connection of two systems

x(t)

h1(t)

h2(t)

x(t)*h1(t)

y(t)=x(t)h1*(t)+x(t)*h2(t)=x(t)*[h1(t)+h2(t)]

x(t)*h2(t)

+

+

x(t) y(t)h1(t)+h2(t)

Figure 5.24
Cascade connection of two systems

x(t) h1(t) x(t)*h1(t) h2(t) y(t)=[x(t)*h1(t)]*h2(t)

x(t) h1(t)*h2(t) y(t)

Figure 5.23
The unit triangle function

t

tri(t)
1

−1 1
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that the convolution of two signals converges if both of them are bounded and at least 
one is absolutely integrable. The response y(t) of a system to x(t) is y x( ) ( ) ( ).t t h t= ∗  
Then, if x(t) is bounded we can say that y(t) is bounded if h(t) is absolutely integrable. 

That is, if h( )t dt
−∞

∞
∫  is bounded.

A continuous-time system is  BIBO stable if its impulse response is 
absolutely integrable.

 Complex Exponential Excitation and the  Transfer Function
Let a stable LTI system be described by a differential equation of the form

 a t b tk
k

N
k

k
k

M
k

= =
∑ ∑=

0 0

y x( ) ( )( ) ( ). (5.15)

where

 1. The a’s and b’s are constants, and
 2. The notation x(k)(t) means the kth derivative of x(t) with respect to time and, if k 

is negative, that indicates integration instead of differentiation.

Figure 5.26
Relations between integrals and derivatives of excitations and   responses for an 
LTI system

t
-1 6

δ(t)

1

Impulse Excitation

t-1 6

h(t)
1

Impulse Response

t
-1 6

u(t)
1

Step Excitation

t -1 6

h-1(t) = ∫h(t)

1

Step Response

t
-1 6

ramp(t)
6

Ramp Excitation

t
-1 6

h-2(t) = ∫∫h(t)

6

Ramp Response

h(t)

h(t)

h(t)

∫
d
dt ∫ d

dt

∫ d
dt ∫ d

dt
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178 Chapter  5  Time-Domain System Analysis

Then let the excitation be in the form of a complex exponential x(t) � Xest where X and 
s are, in general, complex-valued. This description of the excitation is valid for all time. 
Therefore, not only is the excitation a complex exponential now and in the future but it 
always has been a complex exponential. The solution of the differential equation is the 
sum of the homogeneous and particular solutions. The system is stable, so the eigenvalues 
have negative real parts and the homogeneous solution approaches zero as time passes. 
The system has been operating with this excitation for a semi-infi nite time, so the homo-
geneous solution has decayed to zero and the total solution now is the particular solution.

The functional form of the particular solution consists of a linear combination of the 
excitation’s functional form and all its unique derivatives. Since the derivative of an expo-
nential is another exponential of the same form, the response y(t) must have the form y(t) � Yest 
where Y is a complex constant. Then, in the differential equation, the kth derivatives take 
the forms x( ) ( )k k stt s Xe=  and y( ) ( )k k stt s Ye= , and (5.15) can be written in the form

 a s Ye b s Xek
k

N
k st

k
k

M
k st

= =
∑ ∑

0 0

.

The equation is no longer a differential equation with real coeffi cients. It is now an 
algebraic equation with complex coeffi cients. The factors Xest and Yest can be factored 
out, leading to

 Ye a s Xe b sst
k

k

N
k st

k
k

M
k

= =
∑ ∑=

0 0

.

The ratio of the response to the excitation is then

 
Ye

Xe

Y

X

b s

a s

st

st
k

k
k

M

k
k

K

N= = =

=

∑
∑

0

0

a ratio of two polyomials in s called a  rational function. This is the system’s transfer 
function

 H( )s
b s

a s

b s b s b s bk
k

k

M

k
k

k

N
M

M
M

M

= =
+ + + +=

=

−
−∑

∑
0

0

1
1

2
2

1� ss b

a s a s a s a s aN
N

N
N

+
+ + + + +−

−
0

1
1

2
2

1 0�
 (5.16)

and the response is therefore Ye s Xest st= H( )  or y x( ) H( ) ( ).t s t=
For systems of this type, the transfer function can be written directly from the 

differential equation. If the differential equation describes the system, so does the 
transfer function. The transfer function is a fundamental concept in signals and systems 
and we will be using it many times in the material to follow. We can also fi nd the 
response to a complex exponential excitation using convolution. The response y(t) of 
an LTI system with impulse response h(t) to x(t) � Xest is

 y( ) h( ) * h( ) h( )( )

( )

t t Xe X e d Xest s t st

x t

= = =
−∞

∞
−∫ 
 
 

 ee dst−

−∞

∞

∫ 


Equating the two forms of y(t) we get

 H h h( ) ( ) H( ) ( )s Xe Xe e d s e dst st st st= ⇒ =
−∞

∞
− −

−∞

∞

∫ ∫
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which shows how the transfer function and the impulse response are related. Since 
both the impulse response and the transfer function completely characterize an LTI 

system, they had to be uniquely related. The integral h( )
 

−∞

∞
−∫ e dst  will be revisited in 

Chapter 8 and will be identifi ed as the  Laplace transform of h(t).

 Frequency Response
The variable s in the complex exponential est is, in general, complex valued. Let it be 
of the form s j= +� � where � is the real part and � is the imaginary part. For the 
special case � �= =0, ,s j  the complex exponential est becomes the  complex sinusoid 
ej�t and the transfer function of the system H(s) becomes the frequency response of 
the system H( ).j�  The function ej�t is called a complex sinusoid because, by  Euler’s 
identity, e t j tj t� � �= +cos( ) sin( ), the sum of a real cosine and an imaginary sine, both 
of radian frequency �. From Ye s Xest st= H( ) , letting s j= �

 Ye Y e e j Xe j e X e ej t i Y j t j t j j j X j� � � �� �= = H� � �= H( ) H( ) ( ) ��t

or, dividing through by e j t� ,

 Y e j X ej j j X� � �Y H( )= +H( ) .( )� �  

Equating magnitudes we get Y j X= H( )�  and equating phases we get 
� � �Y j X= +H( ) .�  The function H( )j�  is called the frequency response of the 
system because, at any radian frequency �, if we know the magnitude and phase of 
the excitation and the magnitude and phase of the frequency response, we can fi nd the 
magnitude and phase of the response.

In Chapter 4 we showed, using principles of linearity and superposition, that if a 
complex excitation x(t) is applied to a system and causes a response y(t), that the real 
part of x(t) causes the real part of y(t) and the imaginary part of x(t) causes the imaginary 
part of y(t) . Therefore, if the actual excitation of a system is x x x( ) cos( ),t A t= +� �  we 
can fi nd the response of the system to an excitation

 x x x x x x
x

C
j tt A t jA t A e( ) cos( ) sin( ) (= + + + = +� � � � � � ))

in the form

 y y y y y y
y

C
j tt A t jA t A e( ) cos( ) sin( ) (= + + + = +

� � � �
� � ))

and we can take the real part y y y( ) cos( )t A t= +� �  as the response to the real excita-
tion x x x( ) cos( ).t A t= +� �  Using Y j X= H ( �)  and � � �Y j X= +H( )�  we get

 A j A jy x y xH and H= = +( ) ( ) .� � � ��

EXAMPLE 5.4

Transfer Function  and Frequency Response

An LTI system is described by the differential equation

 ′′ + ′ + × = ×y ( ) 3000y ( ) 2 10 y x6t t t t( ) ( ).2 106

 5.2 Continuous Time 179
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180 Chapter  5  Time-Domain System Analysis

(a) Find its transfer function.

 For this differential equation of the form a y t b tk
k

N
k

k
k

M
k

= =
∑ ∑=

0 0

( ) ( )( ) ( ),x  

N M a a a= = = × = =2 0 2 10 3000 10
6

1 2, , , ,  and b0
62 10= × .  Therefore the transfer 

function is

 H( )s
s s

= ×
+ + ×

2 10

3000 2 10

6

2 6

(b) If x( )t Xe j t= 400�  and y( )t Ye j t= 400�  and X e j= 3 2�/ , fi nd the magnitude and phase of Y.
 The frequency response is

 H( )
( ) ( )

j
j j j

�
� � �

= ×
+ + ×

= ×
× − +

2 10

3000 2 10

2 10

2 10

6

2 6

6

6 2 33000�

 The radian frequency is � �= 400 . Therefore,

 H( )
( )

.j
j

e400
2 10

2 10 400 3000 400
0 5272

6

6 2�
� �

= ×
× − + ×

= − jj1 46. .

 Y j

Y j

= × = × =
= +
H( ) . .

H( )

400 3 0 5272 3 1 582

400 2

�

� �� � / == 0 1112. radians

(c) If x( ) cos( )t t= 8 200�  and y (200 ),y( ) cos yt A t= +� �  fi nd Ay and �y

 Using

 A j Ay = H x( )200�  and � � �y xH ( )= +� j200 ,

 Ay = × =0 8078 8 6 4625. .  and �y radians.= − + = −0 8654 0 0 8654. .

EXAMPLE 5.5

Frequency response of a continuous-time system

A continuous-time system is described by the differential equation

 ′′ + ′ + = ′′y y ( ) 2y( ) x ( ).( )t t t t5 3

Find and graph the magnitude and phase of its frequency response.
The differential equation is in the general form

 a t b tk
k

N
k

k
k

M
k

= =
∑ ∑=

0 0

y x( ) ( )( ) ( )

where N M a a a b b= = = = = = =2 1 5 2 3 02 1 0 2 1, , , , ,  and b0 0= . The transfer function is

 
H( )s

b s b s b

a s a s a

s

s s
= + +

+ +
=

+ +
2

2
1 0

2
2

1 0

2

2
3

5 2

The frequency response is (replacing s by j�)

 H( )
( )

( )
j

j

j j
�

�

� �
=

+ +
3

5 2

2

2
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(See Figure 5.27).
These graphs were generated by the following MATLAB code.

wmax � 20; %  Maximum radian frequency magnitude for graph

dw � 0.1 ; %  Spacing between frequencies in graph

w � [–wmax:dw:wmax]’; % Vector of radian frequencies for graph

% Compute the frequency response

H � 3*(j*w).^2./((j*w).^2 + j*5*w + 2);

% Graph and annotate the frequency response

subplot(2,1,1); p � plot(w, abs(H),‘k’); set(p,‘LineWidth’,2);

grid on ;

xlabel(‘Radian frequency, {\omega}’,‘FontSize’,18,‘FontName’,’Times’);

ylabel(‘|H({\itj}{\omega})|’,‘FontSize’,18,‘FontName’,‘Times’);

subplot(2,1,2); p � plot(w,angle(H),‘k’); set(p,’LineWidth’,2);

grid on;

xlabel(‘Radian frequency, {\omega}’,‘FontSize’,18,‘FontName’,‘Times’);

ylabel(‘Phase of H({\itj}{\omega})’,‘FontSize’,18,‘FontName’,‘Times’);

5.3  DISCRETE TIME

 IMPULSE RESPONSE

Just as was true for continuous-time systems, there is a  convolution method for discrete-
time systems and it works in an analogous way. It is based on knowing the impulse 
response of the system, treating the input signal as a linear combination of impulses 
and then adding the responses to all the individual impulses.

Figure 5.27
Magnitude and phase of frequency response
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182 Chapter  5  Time-Domain System Analysis

No matter how complicated a discrete-time signal is, it is a sequence of impulses. 
If we can fi nd the response of an LTI system to a unit impulse occurring at n � 0, we 
can fi nd the response to any other signal. Therefore, use of the convolution technique 
begins with the assumption that the response to a unit impulse occurring at n � 0 has 
already been found. We will call the impulse response h[n].

In fi nding the impulse response of a system, we apply a unit impulse �[ ]n  occur-
ring at n � 0, and that is the only excitation of the system. The impulse puts signal 
energy into the system and then goes away. After the impulse energy is injected into 
the system, it responds with a signal determined by its dynamic character.

In the case of continuous-time systems the actual application of an impulse to 
determine impulse response experimentally is problematical for practical reasons. But 
in the case of discrete-time systems this technique is much more reasonable because 
the discrete-time impulse is a true discrete-time function, and a simple one at that.

If we have a mathematical description of the system, we may be able to fi nd the 
impulse response analytically. Consider fi rst a system described by a difference equa-
tion of the form

 a n a n a n N nN0 1 1y y y[ x[[ ] [ ] ] ].+ − + + − =�  (5.17)

This is not the most general form of difference equation describing a discrete-time LTI 
system but it is a good place to start because, from the analysis of this system, we can 
extend to fi nding the impulse responses of more general systems. This system is causal 
and LTI. To fi nd the impulse response, we let the excitation x[ ]n  be a unit impulse at 
n � 0. Then we can rewrite (5.17) for this special case as

 a n a n a n N nN0 1 1h h h[ ] [ ] [ ] [ ].+ − + + − =� �

The system has never been excited by anything before n � 0, the response h[ ]n  has 
been zero for all negative time h[ ] ,n n= <0 0 and the system is in its zero state before 
n � 0. For all times after n n= 0 x[ ] is also zero and the solution of the difference 
equation is the homogeneous solution. All we need to fi nd the homogeneous solution 
after n �0 are N initial conditions we can use to evaluate the N arbitrary constants in 
the homogeneous solution. We need an initial condition for each order of the difference 
equation. We can always fi nd these initial conditions by recursion. The difference 
equation of a causal system can always be put into a recursion form in which the present 
response is a linear combination of the present excitation and previous responses

 h
h h

[ ]
[ ] [ ] [ ]

.n
n a n a n N

a
N=

− − − − −� 1

0

1 �

Then we can fi nd an exact homogeneous solution that is valid for n � 0. That solution, 
together with the fact that h[ ] , ,n n= <0 0  forms the total solution, the impulse response. 
The application of an impulse to a system simply establishes some initial conditions 
and the system relaxes back to its former equilibrium after that (if it is stable).

Now consider a more general system described by a difference equation of the form

 a n a n a n N b n b nN0 1 0 11 1y y y x x[ ] [ ] [ ] [ ] [ ]+ − + + − = + − +� ��+ −b n MM x[ ].

or

 a n k b n kk
k

N

k
k

M

y x
= =
∑ ∑− = −

0 0

[ ] [ ].
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Since the system is LTI we can fi nd the impulse response by fi rst fi nding the impulse 
responses to systems described by the difference equations,

 

a n a n a n N b n

a n a
N0 1 0

0 1

1y y y[ x

y[ y

[ ] [ ] ] [ ]

]

+ − + + − =
+

�

[[ ] [ ] ]

[ ] [ ]

n a n N b n

a n a n
N− + + − = −

+ − +
1 1

1
1

0 1

�

�

y x[

y y ++ − =
+ − + + − =

a n N

a n a n a n N b
N

N M

y

y y y x

[ ]

[ ] [ ] [ ] [

	

�0 1 1 nn M− ]

 (5.18)

and then adding all those impulse responses. Since all the equations are the same except 
for the strength and time of occurrence of the impulse, the overall impulse response is 
simply the sum of a set of impulse responses of the systems in (5.18), weighted and 
delayed appropriately. The impulse response of the general system must be

 h h h h[ ] [ ] [ ] [ ]n b n b n b n MM= + − + + −0 1 1 1 11 �

where h1[ ]n  is the impulse response found earlier.

EXAMPLE 5.6

Impulse response  of a system

Find the impulse response h[ ]n  of the system described by the difference equation

 8 6 1y y x[ ] [ ] [ ].n n n+ − =  (5.19)

If the excitation is an impulse

 8 6 1h h[ ] [ ] [ ].n n n+ − = �

This equation describes a causal system so h[ ] , .n n= <0 0  We can fi nd the fi rst response to a 
unit impulse at n �0 from (5.19)

 
n n n nx h h

0 1 0 1/8

[ ] [ ] [ ]− 1
.

For n � 0 the solution is the homogeneous solution of the form Kh
n( ) .−3 4/  Therefore  

h / u[ ] ( ) [ ].n K nh
n= −3 4  Applying initial conditions, h /[ ] .0 1 8= = Kh  Then the impulse 

response of the system is h / / u[ ] ( )( ) [ ].n nn= −1 8 3 4

EXAMPLE 5.7

Impulse response of a system

Find the impulse response h[ ]n  of the system described by the difference equation

 5 2 1 3 2y y y x[ ] [ ] [ ] [ ].n n n n+ − − − =  (5.20)

This equation describes a causal system so h[ ] , .n n= <0 0  We can fi nd the fi rst two responses 
to a unit impulse at n � 0 from (5.20)

 
n n n nx h h

/
1 0 1/5 /

[ ] [ ] [ ]−

−

1

0 1 0 1 5
2 25

. 
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184 Chapter  5  Time-Domain System Analysis

The eigenvalues are −1 and 0.6. So the impulse response is h[ ] ( ( )n K n= − +1 1  
K nn

2 0 6( . ) ) [ ].u  Evaluating the constants

 h /

h[1] /

[ ]

.
.

0 1 5

0 6 2 25
0 1

1 2

1 2
1

= + =
= − + = −

⎧
⎨
⎩

⎫
⎬
⎭

⇒ =
K K

K K
K 225 0 0752, .K =

and the impulse response is

 h u[ ] ( . ( ) . ( . ) ) [ ]n nn n= − +0 125 1 0 075 0 6

 DISCRETE-TIME CONVOLUTION

 Derivation
To demonstrate discrete-time convolution, suppose that an LTI system is excited by 
a signal x[ ] [ ] [ ]n n n= + −� � 1  and that its impulse response is h u[ ] ( . ) [ ]n nn= 0 7788  
(Figure 5.28).

The excitation for any discrete-time system is made up of a sequence of impulses 
with different strengths, occurring at different times. Therefore, invoking linearity and 
time invariance, the response of a LTI system will be the sum of all the individual 
responses to the individual impulses. Since we know the response of the system to 
a single unit impulse occurring at n � 0, we can fi nd the responses to the individual 
impulses by shifting and scaling the unit-impulse response appropriately.

In the example, the fi rst nonzero impulse in the excitation occurs at n � 0 and 
its strength is one. Therefore the system will respond to this with exactly its impulse 
response. The second nonzero impulse occurs at n � 1 and its strength is also one. The 
response of the system to this single impulse is the impulse response, except delayed 
by one in discrete time. So, by the additivity and time-invariance properties of LTI 
systems, the overall system response to x[ ] [ ] [ ]n n n= + −� � 1  is

 y u u[ ] ( . ) [ ] ( . ) [ ]n n nn n= + −−0 7788 0 7788 11

Figure 5.28
System excitation x[ ]n , system impulse response h[ ]n  and 
system response y[ ]n

n
-10 30

x[n]
2

n
-10 30

h[n]
2

n
-10 30

y[n]
2

System Excitation

System Impulse Response

System Response
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(see Figure 5.28).
Let the excitation now be x[ ] [ ].n n= 2�  Then, since the system is LTI and the 

excitation is an impulse of strength two occurring at n = 0 by the homogeneity 
property of LTI systems the system response is twice the impulse response or 
y u[ ] ( . ) [ ].n nn= 2 0 7788

Now let the excitation be the one illustrated in Figure 5.29 while the impulse 
response remains the same. The responses to the four impulses beginning at n � −5 
are graphed in Figure 5.30.

-10 -5 5 10 15 20

-1

1

x[n]

n

-10 -5 5 10 15 20

1

h[n]

n

Figure 5.29
A sinusoid applied at time n � −5 and the system impulse response

Figure 5.30
System responses to the impulses x x x and x 2[ ], [ ], [ ] [ ]− − − −5 4 3  
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n
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186 Chapter  5  Time-Domain System Analysis

Figure 5.31 illustrates the next four impulse responses.
When we add all the responses to all the impulses, we get the total  system response 

to the total  system excitation (Figure 5.32).

Figure 5.31
System responses to the impulses x x x and x 2[ ], [ ], [ ] [ ]−1 0 1

-1
-10 -5 5 10 15 20

1

y-1[n]

y0[n]

y1[n]

y2[n]

n

-1
-10 -5 5 10 15 20

1

n

-1
-10 -5 5 10 15 20

1

n

-1
-10 -5 5 10 15 20

1

n

Figure 5.32
The total system response

-10 -5 5 10 15 20

1

-1

y[n]

n

Notice that there is an initial transient response, but the response settles down to a 
sinusoid after a few discrete-time units. The forced response of any stable LTI system 
excited by a sinusoid is another sinusoid of the same frequency but generally with a 
different amplitude and phase.

We have seen graphically what happens. Now it is time to see analytically what 
happens. The total system response can be written as

 y x h x h x h[ ] [ ] [ ] [ ] [ ] [ ] [ ]n n n n= − + + + − +� �1 1 0 1 1
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or

 y x h[ ] [ ] [ ]n m n m
m

= −
= −∞

∞

∑ . (5.21)

The result (5.21) is called the convolution sum expression for the system response. 
In words, it says that the value of the response y at any discrete time n can be found 
by summing all the products of the excitation x at discrete times m with the impulse 
response h at discrete times n − m for m ranging from negative to positive infi nity. 
To fi nd a system response we only need to know the system’s impulse response and 
we can fi nd its response to any arbitrary excitation. For an LTI system, the impulse 
response of the system is a complete description of how it responds to any signal. So 
we can imagine fi rst testing a system by applying an impulse to it and recording the 
response. Once we have it, we can compute the response to any signal. This is a power-
ful technique. In system analysis we only have to solve the difference equation for the 
system once for the simplest possible nonzero input signal, a unit impulse, and then, 
for any general signal, we can fi nd the response by convolution.

Compare the convolution integral for continuous-time signals with the convolu-
tion sum for discrete-time signals,

 y x h and y x h( ) ( ) ( ) [ ] [ ] [ ].t t d n m n m
m

= − = −
−∞

∞

= −∞

∞

∫ ∑
 
 


In each case one of the two signals is time-reversed and shifted and then multiplied by 
the other. Then, for continuous-time signals, the product is integrated to fi nd the total 
area under the product. For discrete-time signals the product is summed to fi nd the 
total value of the product.

 Graphical and Analytical Examples of Convolution
Although the convolution operation is completely defi ned by (5.21), it is helpful to 
explore some graphical concepts that aid in actually performing convolution. The two 
functions that are multiplied and then summed over −∞ < < ∞m  are x[ ]m  and h[ ].n m−  
To illustrate the idea of graphical convolution let the two functions x[ ]n  and h[ ]n  be the 
simple functions illustrated in Figure 5.33.

Figure 5.33
Two functions

x[n]

n

h[n]

n
1

22

1-1-2-3-4 2 3 41-1-2-3-4 2 3 4

Since the summation index in (5.21) is m, the function h[ ]n m−  should be con-
sidered a function of m for purposes of performing the summation in (5.21). With 
that point of view, we can imagine that h[ ]n m−  is created by two transformations, 
m → −m, which changes h[ ]m  to h[ ]−m  and then m → m − n, which changes h[ ]−m  
to h h[ ( )] [ ].− − = −m n n m  The fi rst transformation m → −m forms the discrete-time 
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188 Chapter  5  Time-Domain System Analysis

Figure 5.34
h[ ]−m  and h[ ]n m−  versus m

m

h[-m]

1

2

1-1-2-3-4 2 3 4
m

h[n - m]

1

2

n-2-1-2-3-4 n-1 n n+1

reverse of h[ ]m , and the second transformation m → m − n shifts the already-time-
reversed function n units to the right (Figure 5.34).

Now, realizing that the convolution result is y[ x hn m n m
m

] [ ] [ ],= −
=−∞

∞∑  the pro-

cess of  graphing the convolution result y[ ]n  versus n is to pick a value of n and do the 

operation x h[ ] [ ]m n m
m

−
=−∞

∞∑  for that n, plot that single numerical result for y[ ]n  at 

that n, and then repeat the whole process for each n. Every time a new n is chosen, the 
function h[ ]n m−  shifts to a new position, x[ ]m  stays right where it is because there is 

no n in x[ ]m  and the summation x h[ ] [ ]m n m
m

−
=−∞

∞∑  is simply the sum of the products 

of the values of x[ ]m  and h[ ]n m−  for that choice of n. Figure 5.35 is an illustration of 
this process.

For all values of n not represented in Figure 5.35, y[ ] ,n = 0  so we can now graph 
y[ ]n  as illustrated in Figure 5.36.

It is very common in engineering practice for both signals being convolved to be 
zero before some fi nite time. Let x be zero before n nx=  and let h be zero before n nh= . 
The convolution sum is

 x h x h[ ]* [ ] [ ] [ ].n n m n m
m

= −
= −∞

∞

∑
Since x is zero before n nx=  all the terms in the summation for m nx<  are zero and

 x h x h[ ]* [ ] [ ] [ ].n n m n m
m nx

= −
=

∞

∑

Also, when n m nh− < , the h terms are zero. That puts an upper limit on m of n nh−  
and

 x h x h[ ]* [ ] [ ] [ ].n n m n m
m n

n n

x

h

= −
=

−

∑

For those n’s for which n n nh x− < , the lower summation limit is greater than the upper 
summation limit and the convolution result is zero. So it would be more complete and 
accurate to say that the convolution result is

 x h
x h

[ ]* [ ]
[ ] [ ],

,

n n
m n m n n n

n n n

h x
m n

n n

h x

x

h

=
− − ≥

− <

⎧

=

−

∑
0

⎨⎨
⎪

⎩
⎪
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EXAMPLE 5.8

Response of a  moving-average digital fi lter

A moving-average digital fi lter has an impulse response of the form

 h u u /[ ] ( [ ] [ ]) .n n n N N= − −

Find the response of a moving-average fi lter with N � 8 to x /[ ] cos( ).n n= 2 16�  Then change the 
excitation to x[ ] cos( )n n= 2 8� /  and fi nd the new response.

n

6
4

2

1-1-2-3-4 2 3 4

y[n]

Figure 5.36
Graph of y[ ]n

Figure 5.35
y[ ]n  for n � −1, 0, 1, and 2
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190 Chapter  5  Time-Domain System Analysis

Using convolution, the response is

 y x h / u u /[ ] [ ]* [ ] cos( ) * ( [ ] [ ]) .n n n n n n= = − −2 16 8 8�

Applying the defi nition of the convolution sum,

 y / u u[ ] cos( )( [ ] [ ])n m n m n m
m

= − − − −
= −∞

∞

∑1

8
2 16 8�

The effect of the two unit sequence functions is to limit the summation range.

 y /[ ] cos( )n m
m n

n

=
= −
∑1

8
2 16

7

�

Using the trigonometric identity cos( )x
e ejx jx

= + −

2

 y / /[ ]n e ej m j m

m n

n

= +( )−

= −
∑1

16
2 16 2 16

7

� �

Let q m n= − + 7. Then

 

y

y

/[ ]

[

( ) ( ) /n e ej q n j q n

q

= +( )+ − − + −

=
∑1

16
2 7 16 2 7 16

0

7
� �

nn e e e ej n j q

q

j n] ( ) ( )= +−

=

− −∑1

16
2 7 16 2 16

0

7
2 7 16� � �/ / / −−

=
∑

⎛

⎝
⎜

⎞

⎠
⎟j q

q

2 16

0

7
� /

The summation of a geometric series with N terms is

 r

N r

r

r
r

n

n

N
N

=

−

∑ =
=

−
−

≠

⎧
⎨
⎪

⎩⎪0

1 1

1

1
1

,

,

This formula works for any complex value of r. Therefore, summing these geometric series 
each of length 8,

 y /
/

/[ ] ( ) ( )n e
e

e
ej n

j

j
j n= −

−
+−

=

− −1

16

1

1
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⎝
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⎜
⎜

⎞

⎠

⎟
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⎟

−
=

−
e

e

j

j

�

�


�� ��

/

Finding a common denominator and simplifying,

 y
/

/ /[ ]
( ) ( ) /

n
e

e

e

e

j n

j

j n

j=
−

+
−

⎛
⎝⎜

− − −

−
1

8 1 1

7 8

8

7 8

8

�

�

�

�

⎞⎞
⎠⎟

= − − −
−

1

8

7 8 8 8

1 8

cos( ( ) ) cos( ( ) )

cos( )

� �

�

n n/ /

/

Then, using the periodicity of the cosine, cos( ( ) ) cos( )� �n n− =8 8 8/ /  and

 y / /[ ] . [cos( ( ) ) cos( )]n n n= − +1 6421 7 8 8� �

Now letting x /[ ] cos( ),n n= 2 8�  the process is essentially the same except for the period of 
the cosine. The results are

 

y x h / u u /

y

[ ] [ ]* [ ] cos( ) * ( [ ] [ ]) .

[ ]

n n n n n n

n

= = − −

=

2 8 8 8�

11

16
2 8 2 8

7

e ej m j m

m n

n
� �/ /+( )−

= −
∑
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If the averaging time of the  moving-average fi lter is exactly an integer number of periods of the 
sinusoid, the response is zero because the average value of any sinusoid over any integer number 
of periods is zero. Otherwise, the response is nonzero.

 Convolution Properties
Convolution  in discrete time, just as in continuous time, is indicated by the operator *.

 y x h x h[ ] [ ]* [ ] [ ] [ ].n n n m n m
m

= = −
= −∞

∞

∑  (5.22)

The properties of convolution in discrete time are similar to the properties in continu-
ous time.

 x x[ ]* [ ] [ ]n A n n A n n� − = −0 0  (5.23)

 y x[ ] h h[ ] * [ ] [ ]* [ ].n n n n n x n n n− = − = −0 0 0  (5.24)

The  commutativity,  associativity, distributivity,  differencing and  sum properties of the 
convolution sum are proven in Web Appendix E and are summarized below.

 Commutativity Property x y y x[ ]* [ ] [ ]* [ ]n n n n=

Associativity Property        ( [ ]* [ ]) * [ ] [ ]* ( [ ]* [ ])x y z x y zn n n n n n=

Distributivity Property        ( [ ] [ ]) * [ ] [ ]* [ ] [ ]* [ ]x y z x z y zn n n n n n n+ = +

If y x h[ ] [ ]* [ ],n n n=  then

Differencing Property         y y x h h[ ] [ ] [ ]* ( [ ] [ ])n n n n n− − = − −1 1

Sum Property                      Sum of y Sum of x) (Sum of h)= ×(

For a convolution sum to converge, both signals being convolved must be 
bounded and at least one of them must be absolutely summable.

 Numerical Convolution
 Discrete-Time Numerical Convolution  MATLAB has a command conv that com-
putes a convolution sum. The syntax is y � conv(x,h) where x and h are vectors 
of values of discrete-time signals and y is the vector containing the values of the con-
volution of x with h. Of course, MATLAB cannot actually compute an infi nite sum as 
indicated by (5.22). MATLAB can only convolve time-limited signals, and the vectors 
x and h should contain all the nonzero values of the signals they represent. (They can 
also contain extra zero values if desired.) If the time of the fi rst element in x is nx0 and 
the time of the fi rst element of h is nh0, the time of the fi rst element of y is n nx h0 0+ . 
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192 Chapter  5  Time-Domain System Analysis

If the time of the last element in x is nx1 and the time of the last element in h is nh1, 
the time of the last element in y is n nx h1 1+ . The length of x is n nx x1 0 1− +  and the 
length of h is n nh h1 0 1− + . So the extent of y is in the range n n n n nx h x h0 0 1 1+ ≤ < +  
and its length is

 
n n n n n nx h x h x x1 1 0 0 1 01 1+ − + + = − +( )

length of x
� �� ��� � �� ��+ − + −n nh h1 0 1 1

length of h

.

So the length of y is one less than the sum of the lengths of x and h.

EXAMPLE 5.9

  Computing a convolution sum with MATLAB

Let x u u[ ] [ ] [ ]n n n= − − −1 6  and h tri(( /[ ] ) ).n n= − 6 4  Find the convolution sum x h[ ]* [ ]n n  
using the MATLAB conv function.

x[ ]n  is time limited to the range 1 � n � 5 and h[ ]n  is time limited to the range 3 � n � 9. 
Therefore any vector describing x[ ]n  should be at least 5 elements long and any vector describ-
ing h[ ]n  should be at least 7 elements long. Let’s put in some extra zeros, compute the convolu-
tion and graph the two signals and their convolutions using the following MATLAB code whose 
output is illustrated in Figure 5.37.

Figure 5.37
Excitation, impulse response and response of a system found using 
the MATLAB  conv command
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y

nx � -2:8 ; nh � 0:12; % Set time vectors for x and h

x � usD(n-1) - usD(n-6); % Compute values of x

h � tri((nh-6)/4); % Compute values of h

y � conv(x,h); % Compute the convolution of x with h

%

% Generate a discrete-time vector for y

%

ny � (nx(1) + nh(1)) + (0:(length(nx) + length(nh) - 2)) ;
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%

% Graph the results

%

subplot(3,1,1) ; stem(nx,x,‘k’,‘fi lled’);

xlabel(‘n’) ; ylabel(‘x’); axis([-2,20,0,4]);

subplot(3,1,2) ; stem(nh,h,‘k’,‘fi lled’) ;

xlabel(‘n’) ; ylabel(‘h’); axis([-2,20,0,4]);

subplot(3,1,3) ; stem(ny,y,‘k’,‘fi lled’);

xlabel(‘n’) ; ylabel(‘y’); axis([-2,20,0,4]);

 Continuous-Time Numerical Convolution At this point a natural question arises. 
Since there is no built-in MATLAB function for doing a convolution integral, can we 
do a convolution integral using the  conv function? The short answer is no. But if we 
can accept a reasonable approximation (and engineers usually can), the longer answer 
is yes, approximately. We can start with the convolution integral

 y x h x h( ) ( ) * ( ) ( ) ( ) .t t t t d= = −
−∞

∞

∫ 
 
 


Approximate x( )t  and h( )t  each as a sequence of rectangles of width Ts.

 x x rect
/

and h( ) ( )t nT
t nT T

Ts
s s

sn

≅
− −⎛

⎝⎜
⎞
⎠⎟= −∞

∞

∑ 2
(( ) rect

/
t h nT

t nT T

Ts
s s

sn

≅
− −⎛

⎝⎜
⎞
⎠⎟= −∞

∞

∑ ( )
2

The integral can be approximated at discrete points in time as

 y x h( ) ( ) (( ) ) .nT mT n m T Ts
m

s s s≅ −
=−∞

∞

∑

This can be expressed in terms of a convolution sum as

 y x h[ x( ) [ ] ] [ ]* [ ]nT T m n m T n h ns s s
m

≅ − =
= −∞

∞

∑  (5.25)

where x x[ ] ( )n nTs=  and h h[ ] ( )n nTs= , and the convolution integral can be approxi-
mated as a convolution sum under the same criteria as in the use of the conv function 
to do convolution sums. For the convolution integral to converge, x( )t  or h( )t  (or both) 
must be an energy signal. Let x( )t  be nonzero only in the time interval n T t n Tx s x s0 1≤ <  
and let h( )t  be nonzero only in the time interval n T t n Th s h s0 1≤ < . Then y( )t  is non-zero 
only in the time interval ( ) ( )n n T n n n Tx h s x h s0 0 1 1+ ≤ < +  and the values of T n nsx h[ ]* [ ] 
found using the conv function cover that range. To get a reasonably good approximate 
convolution result, Ts should be chosen such that the functions x( )t  and h( )t  don’t 
change much during that time interval.

EXAMPLE 5.10

 Graphing the convolution of two continuous-time signals using the  MATLAB 
 conv function

Graph the convolution y tri( tri(( ) ) * )t t t= .
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194 Chapter  5  Time-Domain System Analysis

Although this convolution can be done analytically, it is rather tedious, so this is a good candidate 
for an approximate convolution using numerical methods, namely the conv function in MATLAB. 
The slopes of these two functions are both either plus or minus one. To make a reasonably accurate 
approximation, choose the time between samples to be 0.01 seconds, which means that the functions 
change value by no more than 0.01 between any two adjacent samples. Then, from (5.25)

 y tri tri( . ) . ( . ) ( . ( )).0 01 0 01 0 01 0 01n m n m
m

≅ −
= −∞

∞

∑

The limits on the nonzero parts of the functions are −1 � t � 1, which translate into limits on 
the corresponding discrete-time signals of −100 � n � 100. A MATLAB program that accom-
plishes this approximation is below.

% Program to do a discrete-time approximation of the 

%  convolution of two unit triangles 

% Convolution computations

Ts � 0.01; % Time between samples

nx � [-100:99]’ ; nh � nx ; %  Discrete time vectors for 

  % x and h

x � tri(nx*Ts) ; h � tri(nh*Ts) ; % Generate x and h

ny � [nx(1)+nh(1):nx(end)+nh(end)]’; %  Discrete time vector for y
y � Ts*conv(x,h) ; % Form y by convolving x and h

% Graphing and annotation

p � plot(ny*Ts,y,’k’) ; set(p,’LineWidth’,2); grid on ;

xlabel(‘Time, {\itt} (s)’,’FontName’,’Times’,’FontSize’,18) ;

ylabel(‘y({\itt})’,’FontName’,’Times’,’FontSize’,18) ;

title(‘Convolution of Two Unshifted Unit Triangle Functions’,...

 ‘FontName’,’Times’,’FontSize’,18);

set(gca,’FontName’,’Times’,’FontSize’,14);

The graph produced is Figure 5.38.

Figure 5.38
Continuous-time convolution approximation using numerical methods
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This graphical result agrees very closely with the analytical solution

 y /
u u u

( ) ( )
( ) ( ) ( ) ( ) ( )

(
t

t t t t t t
=

+ + − + + +

−
1 6

2 2 4 1 1 6

4

3 3 3

tt t t t− − + − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1 1 2 23 3) ( ) ( ) ( )u u

.

Stability  and  Impulse Response
Stability was generally defi ned in Chapter 4 by saying that a stable system has a 
bounded output signal when excited by any bounded input signal. We can now fi nd a 
way to determine whether a system is stable by examining its impulse response. The 
convolution of two signals converges if both of them are bounded and at least one of 
them is absolutely summable. The response y[ ]n  of a system x[ ]n  is y x h[ ] [ ]* [ ].n n n=  
If x[ ]n  is bounded y[ ]n  is bounded if h[ ]n  is absolutely summable (and therefore also 

bounded). That is, if |h |[ ]n
n= −∞
∞∑  is bounded.

A system is  BIBO stable if its impulse response is absolutely summable.

 System Connections
Two very common interconnections of systems are the cascade connection and the 
parallel connection (Figure 5.39 and Figure 5.40).

Figure 5.40
Parallel connection of two systems

x[n]

h1[n]

h2[n]

h1[n]+h2[n]

x[n]*h1[n]

y[n]=x[n]*h1[n]+x[n]*h2[n]=x[n]*{h1[n]+h2[n]}

x[n]*h2[n]

x[n] y[n]

Figure 5.39
Cascade connection of two systems

x[n] h1[n] x[n]*h1[n] h2[n] y[n]={x[n]*h1[n]}*h2[n] 

x[n] h1[n]*h2[n] y[n]

Using the  associativity property of convolution we can show that the cascade con-
nection  of two systems can be considered as one system whose impulse response is 
the convolution of the two individual impulse responses of the two systems. Using the 
 distributivity property of convolution we can show that the parallel connection  of two 
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196 Chapter  5  Time-Domain System Analysis

systems can be considered as one system whose impulse response is the sum of the two 
individual impulse responses of the two systems.

Unit-Sequence Response and Impulse Response
The response of any LTI system is the convolution of the excitation with the impulse 
response

 y x h x h[ ] [ ]* [ ] [ ] [ ].n n n m n m
m

= = −
= −∞

∞

∑
Let the excitation be a unit sequence and let the response to a unit sequence be desig-
nated h−1[ ].n  Then

 h u h u h h−
=

∞

= −∞

∞
= = − = −∑∑1

0

[ ] [ ]* [ ] [ ] [ ] [ ]n n n m n m n m
mm

Let q � n − m. Then

 h h h−
=−∞=

−∞
= = ∑∑1[ ] [ ] [ ].n q q

q

n

q n

So the response of a discrete-time LTI system excited by a unit sequence is the 
accumulation of the impulse response. Just as the unit sequence is the accumulation 
of the impulse response, the unit-sequence response is  the accumulation of the unit-
impulse response. The subscript on h−1[ ]n  indicates the number of differences. In this 
case there is −1 difference or one accumulation in going from the impulse response to 
the unit-sequence response. This relationship holds for any excitation. If any excitation 
is changed to its accumulation, the response also changes to its accumulation, and if 
the excitation is changed to its fi rst backward difference, the response is also changed 
to its fi rst backward difference.

EXAMPLE 5.11

 Finding the response  of a system using convolution

Find the response of the system in Figure 5.41 to the excitation in Figure 5.42.

Figure 5.41
A system

x[n] y[n]

4/5

D

Figure 5.42
Excitation of the system

n

g[n]

2 4 6 8-4 -2

1

First we need the impulse response of the system. We could fi nd it directly using the meth-
ods presented earlier but, in this case, since we have already found its unit-sequence response 
h / u− = −1 5 4 4 5[ ] [ ( ) ] [ ]n nn  (see Chapter 4, section on discrete-time system properties, page 132), 

rob80687_ch05_159-214.indd   196rob80687_ch05_159-214.indd   196 1/3/11   2:27:31 PM1/3/11   2:27:31 PM



we can fi nd the impulse response as the fi rst backward difference of the unit-sequence response 
h h h[ ] [ ] [ ].n n n= − −− −1 1 1  Combining equations,

 h / u / u[ ] [ ( ) ] [ ] [ ( ) ] [ ].n n nn n= − − − −−5 4 4 5 5 4 4 5 11

 h u u /[ ] ( [ ] [ ]) ( ) [(
[ ]

n n n
n

n= − − −
=

−5 1 4 4 5 1

�
� ��� ��� 44 5 1/ u u) [ ] [ ]]n n− −

 h / /[ ] [ ] ( ) [ ] ( )
[ ]

n n nn

n

n= − +
=

5 4 4 5 4 5� �

�
� ���� ���� uu[ ]n − 1

 h / u[ ] ( ) [ ]n nn= 4 5

All that remains is to perform the convolution. We can do that using the MATLAB program below.

% Program to demonstrate discrete-time convolution

nx � -5:15 ; % Set a discrete-time vector for the excitation

x � tri((n-3)/3; % Generate the excitation vector

nh � 0:20 ; % Set a discrete-time vector for the impulse

 % response

% Generate the impulse response vector

h � ((4/5).^nh).*usD(nh);

% Compute the beginning and ending discrete times for the system

%  response vector from the discrete-time vectors for the 

excitation and the impulse response

nymin � nx(1) + nh(1); nymax � nx(length(nx)) + length(nh);
ny � nymin:nymax-1;

%  Generate the system response vector by convolving the 

excitation with the impulse response

y � conv(x,h);

% Graph the excitation, impulse response and system response, all

% on the same time scale for comparison

% Graph the excitation

subplot(3,1,1); p � stem(nx,x,‘k’,’fi lled’);

set(p,’LineWidth’,2,‘MarkerSize’,4);

axis([nymin,nymax,0,3]);

xlabel(‘n’); ylabel(‘x[n]’);

% Graph the impulse response

subplot(3,1,2); p � stem(nh,h,‘k’,‘fi lled’);

set(p,’LineWidth’,2,‘MarkerSize’,4);

axis([nymin,nymax,0,3]);

xlabel(‘n’); ylabel(‘h[n]’);

% Graph the system response

subplot(3,1,3); p � stem(ny,y,‘k’,‘fi lled’);

set(p,‘LineWidth’,2,‘MarkerSize’,4);

axis([nymin,nymax,0,3]);

xlabel(‘n’); ylabel(‘y[n]’);
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198 Chapter  5  Time-Domain System Analysis

The three signals as graphed by MATLAB are illustrated in Figure 5.43.

Complex Exponential Excitation and the Transfer Function
In engineering practice the most common form of description of a discrete-time system 
is a difference equation or a system of difference equations. Consider the general form 
of a  difference equation for a discrete-time system

 a n k b n kk
k

N

k
k

M

y x
= =
∑ ∑− = −

0 0

[ ] [ ]. (5.26)

A  complex exponential excitation causes a complex exponential response in 
continuous-time systems and the same is true  for discrete-time systems. Therefore, if 
x[ ] ,n Xzn=  y[ ]n  has the form y[ ]n Yzn=  where X and Y are complex constants. Then, 
in the difference equation,

 x and y[[ ] ]n k Xz z Xz n k z Yzn k k n k n− = = − =− − −

and (5.26) can be written in the form

 a z Yz b z Xzk
k n

k
k n

k

M

k

N
− −

==
= ∑∑ .

00

The Xzn and Yzn can be factored out, leading to

 Yz a z Xz b z
Yz

Xz

Y

X

b z
n

k
k n

k
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k
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k

M n

n
k

k
−

=

−

=

−
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=

∑
∑
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Figure 5.43
Excitation, impulse response and system response
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This ratio Y/X is a ratio of polynomials in z. This is the transfer function for discrete-
time systems symbolized by H(z). That is,

 H( )z
b z

a z

b b z b zk
k

k

M

k
k

k

N= =
+ + + +

−
=

−
=

− −∑
∑

0

0

0 1
1

2
2 � bb z

a a z a z a z
M

M

N
N

−

− − −+ + + +0 1
1

2
2 �

 (5.27)

and y H H x[ ] ( ) ( ) [ ].n Yz z Xz z nn n= = =  The transfer function can then be written directly 
from the difference equation and, if the difference equation describes the system, so 
does the transfer function. By multiplying numerator and denominator of (5.27) by zN 
we can express it in the alternate form

 H( )z
b z

a z
z

b z b zk
k

k

M

k
k

k

N
N M

M M

= =
+ +

−
=

−
=

−
−∑

∑
0

0

0 1
1 �++ +

+ + + +
−

−
−

b z b

a z a z a z a
M M

N N
N N

1

0 1
1

1�
 (5.28)

The two forms are equivalent but either form may be more convenient in certain 
situations.

We can also fi nd the system response using convolution. The response y[ ]n  of an 
LTI system with impulse response h[ ]n  to a complex exponential excitation x[ ]n Xzn=  is

 y h h h
x

[ ] [ ]* [ ] [ ] .
[ ]

n n Xz X m z Xz m zn n m

m

n

n

m= = =−

= −∞

∞

=

−∑ �
mm= −∞

∞

∑
Equating the two forms of the response

 H h H h( ) [ ] ( ) [ ]z Xz Xz m z z m zn n m m

mm

= ⇒ =− −

=−∞

∞

=−∞

∞

∑∑
which shows the relationship between the transfer function and the impulse response of 

discrete-time LTI systems. The summation h[ ]m z m

m

−

=−∞

∞

∑  will be identifi ed in Chapter 9 
as the z transform of h[ ].n

 Frequency Response
The variable z in the complex exponential zn is, in general, complex valued. Consider 
the special case in which z is confi ned to the unit circle in the complex plane such that 
| | .z = 1  Then z can be expressed as z e j= � where � is the real variable representing 
radian frequency in discrete time, zn becomes e j n� , a discrete-time complex sinusoid 
e jj� � �= +cos( ) sin( ), and the transfer function of the system H(z) becomes the fre-
quency response of the system H( ).e j�  From Yz z Xzn n= H( ) , letting z e j= � 

 Ye Y e e e Xe e ej n j Y j n j j n j j� � � � �= = =| | ) | ( )| (� �H( H H ee j n j X j nj

e X e e
� � �) | | �

or, dividing through by e j n� ,

 | | | ) || | ( ) )Y e e X ej Y j j e Xj� � �= +H( H(� �

Equating magnitudes we get | | | ) || |Y e Xj= H( �  and equating phases we get 
� � �Y e Xj= +H( � ) . The function H (e j� )  is called the frequency response of the 
system because, at any radian frequency Ω, if we know the magnitude and phase of 
the excitation and the magnitude and phase of the frequency response, we can fi nd the 
magnitude and phase of the response.

 5.3 Discrete Time 199
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200 Chapter  5  Time-Domain System Analysis

As was true for continuous-time systems, if a complex excitation x[ ]n  is applied 
to a system and causes a response y[ ],n  then the real part of x[ ]n  causes the real part of 
y[ ]n  and the imaginary part of x[ ]n  causes the imaginary part of y[ ].n  Therefore, if the 
actual excitation of a system is x x[ ] cos( ),n A nx= +� �  we can fi nd the response of the 
system to an excitation

 x x x x x x
x

C
j nn A n jA n A e[ ] cos( ) sin( ) (= + + + = +� � �� � � ))

in the form

 y y y y y y
y

C
j nn A n jA n A e[ ] cos( ) sin( ) (= + + + = +

� �
�

� �
� ))

and we can take the real part y y y[ ] cos( )n A n= +� �  as the response to the real excita-
tion x x x[ ] cos( ).n A n= +� � Using | | | ) || |Y j X= H( �  and � � �Y j X= +H( �)  we get

 A e A ej j
y x y xH( | and H(= = +| ) ) .� �� ��

EXAMPLE 5.12

Transfer Function  and Frequency Response

An LTI system is described by the difference equation

 y y[ 1] 0.25 y[ 2] x[ ].[ ] .n n n n− − + − =0 75

(a) Find its transfer function.

 For this difference equation of the form a n k b n kk
k

N

k
k

M

y x
= =
∑ ∑− = −

0 0

[ ] [ ], N = 2, M = 0, 

a0 0 25= . , a1 0 75= − . , a2 1=  and b0 1= .

 Therefore the transfer function is

 H( )
. .

z
z z

=
− +

1

0 75 0 252

(b) If x[ ] .n Xe j n= 0 5 , y( ) .t Ye j n= 0 5  and X e j= −12 4�/ , fi nd the magnitude and phase of Y.
 The frequency response is

 H e
e e e e

j

j j j j
�

� � � �( ) =
( ) − ( ) +

=
− +

1

0 75 0 25

1

0 75 0 22 2
. . . . 55

The radian frequency is � = 0 5. . Therefore,

 
H

H

/e
e e

e

Y e

j
j j

j

j

�( ) =
− +

=

=

−1

0 75 0 25
2 0012

1 303

0

. .
.

| | |

.

.. | . .5 12 2 001 12 24 012( ) × = × =

 � �Y e j= ( ) − = − − = −H / / radians0 5 4 1 3032 4 2 0886. . .� �

(c) If x /[ ] cos( )n n= 25 2 5�  and y /y y[ ] cos( ),n A n= +2 5 �  fi nd Ay and �y .

 
A e Aj

y
/

xH= ( ) = × =| | . .� 9 1 2489 25 31 2225
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 and

 � ��
y

/
xH radians= ( ) + = + =� e j2 5 2 9842 0 2 9842. .

5.4 SUMMARY OF IMPORTANT POINTS
 1. Every LTI system is completely characterized by its impulse response.
 2. The response of any LTI system to an arbitrary input signal can be found by 

convolving the input signal with its impulse response.
 3. The impulse response of a cascade connection of LTI systems is the convolution 

of the individual impulse responses.
 4. The impulse response of a parallel connection of LTI systems is the sum of the 

individual impulse responses.
 5. A continuous-time LTI system is BIBO stable if its impulse response is 

absolutely integrable.
 6. A discrete-time LTI system is BIBO stable if its impulse response is absolutely 

summable.

  EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Continuous Time

Impulse Response

 1. Find the impulse responses of the systems described by these equations.
(a) ′ + =y y x( ) ( ) ( )t t t5
(b) ′′ + ′ + =y ( ) y ( ) 4y xt t t t6 ( ) ( )
(c) 2 3′ + = ′y y x( ) ( ) ( )t t t
(d) 4 9′ + ′y y = 2x( ) + x( ) ( ) ( )t t t t

  Answers: h / u /( ) ( ) ( ) ( ) ( ),/t e t tt= − +−1 16 1 49 4 �  e tt−5 u( ) − +−( ) ( ) ( ) ( ),3 4 1 23 2/ u //e t tt �  

0 2237 0 76 5 23. ( ) ( ). .e e tt t− −− u

Convolution

 2. If x tri( /4) (( ) * )t t t= −2 2�  fi nd the values of
(a) x( )1
(b) x( 1)−

  Answers: 3/2, 1/2

 3. If x( ) 5 rect /2) ( 1)t t t t= − + +( * ( ( ))� �  fi nd the values of
(a) x(1/2)
(b) x(−1/2)
(c) x(−5/2)

  Answers: −10, 0, −5

 Exercises with Answers 201
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202 Chapter  5  Time-Domain System Analysis

 4. Find the values of these functions.
(a) If g /( ) sin( ) * ( )t t t= −4 8 4� �  fi nd g(−1).

(b) If g rect
4

( ) * ( )t
t

t= − +⎛
⎝

⎞
⎠5

2
3�  fi nd g(1) − g(−4).

  Answers: −3.696, 5/3

 5. Graph g(t).
(a) g rect( ) rect /( ) * ( )t t t= 2
(b) g rect rect /( ) ( ) * ( )t t t= − 1 2
(c) g rect rect rect( rect( ) [ ( ) ( )]*[ ) ( )t t t t t= − + + − + +5 5 4 4 ]]

  Answers:

  

1
t

g(t)

-9 -11 9

   

t

g(t)

1

1
2

5
2

3
2

1
2

   

t

g(t)

1

1
2

3
2

1
2

3
2

 6. Graph these functions.
(a) g rect(4 )( )t t=  (b) g rect(4( ) ) * ( )t t t= 4�

(c) g rect( ) ( ) * ( )t t t= −4 4 2�  (d) g rect(4( ) ) * ( )t t t= 4 2�

(e) g rect 1( ) ( ) * ( )t t t= 4 �  (f ) g = rect(4( ) ) * ( )t t t�1 1−
(g) g rect 1/2( ) ( / ) ( ) * ( )t t t= 1 2 4 �  (h) g / rect /( ) ( ) ( ) * ( )t t t= 1 2 1 2�

  Answers:

  

t

g(t)

1-1-2

...... 1

 

t
1

g(t)

1-1-2

......

1
8

1
8

 

t
4

g(t)

2 2+ 1
8

1
82

  
t

1

g(t)

1
8

1
8  

t

g(t)

1-1-2

......

1
2

1
8

1
8  

t
2

g(t)

1
8

1
8  

t
1

g(t)

1-1-2

......

1
8

1
8

  
t

4

g(t)

1
8

1
8

 7. Graph these functions
(a) g rect /( ) ( ) *[ ( ) ( )]t t t t= + − +2 2 1� �

(b) g rect tri( ) ( ) * ( )t t t=
(c) g u u( ) ( ) * ( )t e t e tt t= − −

(d) g tri(2 1/2)) tri /( ) [ ( ( ( ))]* ( )t t t t= + − −2 1 2 2�

(e) g tri / tri( 1/2))] 1( ) [ ( ( )) ( * ( )t t t t= + − −2 1 2 2 �
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  Answers:

t
-3 3

g(t)

-1

1

 

t
-1 5

g(t)
0.5

 

t
-4 1

g(t)

-1

1

t-2 2

g(t)
1

 

t
-3 3

g(t)

-1

1

 8. A system has an impulse response h u( ) ( ).t e tt= −4 4  Find and graph the response 
of the system to x rect(2( /4)).( )t t= − 1

  Answer:
  

t1.5

y(t)

-1

1

 9. Change the system impulse response in Exercise 8 to h u( ) ( ) ( )t t e tt= − −� 4 4  and 
fi nd and graph the response to x rect(2( /( ) )).t t= − 1 4  

Answer:

  

t
1.5

y(t)

-1

1

10. In the circuit of Figure E.10 the input signal voltage is vi(t) and the output signal 
voltage is v0 ( ).t
(a) Find the impulse response in terms of R and L.
(b) If R � 10 k� and L � 100 μH graph the unit step response.

L

R

vi(t) vo(t)

+

-

+

-

Figure E.10
An RL circuit

 Exercises with Answers 203
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204 Chapter  5  Time-Domain System Analysis

  Answers: �( ) ( ) ( ),t R L e tRt L− −/ u/

  

0.04-0.01
t(μs)

v0(t)

11. Two systems have impulse responses h u u1 4( ) ( ) ( )t t t= − −  and h rect(( /2 2 4( ) ) ).t t= −  
If these two systems are connected in cascade, graph the response y( )t  of the overall 
system to x( ) ( ).t t= �

  Answer:
  

t 
-4 12

h(t)

4

12. Graph the responses of the systems of Exercise 1 to a unit step.

  Answers:
  

t
5

h-1(t)
0.25

 

t
1

h-1(t)
0.2

  
t

5

h-1(t)
0.25

 
t

5

h-1(t)
0.5

 Stability

13. Find the impulse responses of the two systems in Figure E.13. Are these systems 
BIBO stable?

x(t)

y(t)

∫

(a)

x(t)

∫

y(t) 

+ -

(b)

Figure E.13
Two single-integrator systems

  Answers: One BIBO stable, one BIBO unstable.
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14. Find the impulse response of the system in Figure E.14. Is this system BIBO stable?

x(t)

∫

+ -

∫

y(t) 

Figure E.14
A double-integrator system

  Answer: BIBO unstable.

15. Find the impulse response of the system in Figure E.15 and evaluate its BIBO 
stability.

x(t)

∫

∫
y(t)

-

+ -

+

0.1

0.05

Figure E.15
A two-integrator system

  Answers: 4.589e0.05t sin(0.2179t)u(t), Not BIBO stable.

 Discrete Time

Impulse Response

16. Find the impulse responses of the systems described by these equations.
(a) y x x[ ] [ ] [ ]n n n= − − 1  (b) 25 6 1 2y[ y[ y xn n n n] ] [ ] [ ]+ − + − =
(c) 4 5 1 2y y y x[ ] [ ] [ ] [ ]n n n n− − + − =  (d) 2 6 2 2y[ y x xn n n n] [ ] [ ] [ ]+ − = − −

  Answers: [ ( ) ] [ ], [ ] [ ],1 3 1 12 1/ / (1/4) u− − −n n n n� �

( ) cos( )( [ ]),3 2 2 2/ / u[ ] u�n n n+ −   h /[ ] cos( . . ) [ ( ) ]n n n= +2 214 0 644 20 5

 Convolution

17. Find the numerical values of these functions.
(a) If g / find g .[ ] cos( ) * [ ] [ ]n n n= +10 2 12 8 4� �

(b) If g u u find g[2][ ] ( [ ] [ ]) * ( [ ] [ ])n n n n n= + − − − − −2 3 1 2 2� � ..

  Answers: −1, 10

18. Graph the convolution y x h[ ] [ ]* [ ]n n n=  where x u u[ ] [ ] [ ]n n n= − − 4  and 
h[ ] [ ] [ ].n n n= − −� � 2  

 Exercises with Answers 205
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206 Chapter  5  Time-Domain System Analysis

  Answer: 

n
-5 10

y[n]

-1

1

19. Graph g[ ].n  Find an analytical solution. Compare analytical solutions with the 
results of using the MATLAB command conv to do the convolution.
(a) g u u[ ] [ ]* [ ]n n n=  (b) g / u[ ] [ ]* ( ) [ ]n n nn= −3 4 3 4�

(c) g u u u u[ ] ( [ ] [ ]) * ( [ ] [ ])n n n n n= − − − −7 4

  Answers:
  

2 4 6 8 10 12 14 16 18

3

n

g[n]   

n

g[n]

4 ......
8

  
n

-5 15

g[n]

4

20. Given the excitation x /[ ] sin( )n n= 2 32�  and the impulse response h u[ ] ( . ) [ ]n nn= 0 95 , 
fi nd a closed-form expression for and graph the system response y[ ].n

  Answer: 

n
-5 40

x[n]

-1

1
Excitation

-1
n

-5 40

h[n]
1

Impulse Response

n
-5 40

y[n]

-5

5

Response
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21. Given the excitations x[ ]n  and the impulse responses h[ ]n , use MATLAB to 
graph the system responses y[ ].n  
(a) x u u h sin(2 /[ ] [ ] [ ], [ ] )( [ ] [ ])n n n n n u n u n= − − = − −8 8 8�

(b) x / u u h sin(2 / u[ ] sin( )( [ ] [ ]), [ ] )(n n n n n n= − − = −2 8 8 8� � [[ ] [ ])n u n− − 8

  Answers:
  

n
-5 30

x[n]
1

Excitation

n
-5 30

h[n]

-1

1
Impulse Response

n
-5 30

y[n]

-3

3

Response

  

n
-5 30

x[n]

-1

1
Excitation

n
-5 30

h[n]

-1

1

Impulse Response

n
-5 30

y[n]

-3

3
Response

22. Find and graph the unit-sequence responses of the systems in Figure E.22.

(a) 

x[n] y[n]

0.7 0.5

++ + -

D D

(b) 

Figure E.22

0.8

-0.6

+ -

x[n]
+

+

+

-

y[n]

D

D

D

  Answers:

  

n
-5 20

h-1[n]
3

Unit-Sequence Response  

n
-5 20

h-1[n]
3

Unit-Sequence Response
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208 Chapter  5  Time-Domain System Analysis

 Stability

23. Which of the systems in Figure E.23 are BIBO stable?

(a) 

0.9

x[n] + -
y[n]

D

(b) 

-1.1

x[n] + -
y[n]

D

(c) 

x[n]

+

+ -

+

y[n]

D

D

0.5

0.5

(d) 

x[n]

+

+ -

+

y[n]

D

D

1.5

0.4

 Figure E.23

  Answers: Two stable and two unstable.

EXERCISES WITHOUT ANSWERS

Continuous Time

Impulse Response

24. Find the impulse responses of the systems described by these equations.
(a) 4 2′′ = − ′y x x ( )( ) ( )t t t
(b) ′′ + = − ′y y x( ) ( ) ( )t t t9 6
(c) − ′′ + ′ = + ′′y y x x( ) ( ) ( ) ( )t t t t3 3 5
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25. A rectangular voltage pulse that begins at t � 0, is 2 seconds wide, and has a height 
of 0.5 V excites an RC lowpass fi lter in which R � 10 k� and C � 100 μF.
(a) Graph the voltage across the capacitor versus time.
(b) Change the pulse duration to 0.2 s and the pulse height to 5 V and repeat.
(c) Change the pulse duration to 2 ms and the pulse height to 500 V and repeat.
(d) Change the pulse duration to 2 μs and the pulse height to 500 kV and repeat.

  Based on these results, what do you think would happen if you let the input 
voltage be a unit impulse?

Convolution

26. A continuous-time function is nonzero over a range of its argument from 0 to 4. 
It is convolved with a function that is nonzero over a range of its argument from 
−3 to −1. What is the nonzero range of the convolution of the two?

27. What function convolved with −2 cos(t) would produce 6 sin(t)? (There is more 
than one correct answer.)

28. Graph these functions.

(a) g /( ) cos( ) * ( )t t t= +3 10 4 1 10� �  (b) g tri(2( ) ) * ( )t t t= �1

(c) g tri rect( ) [ ( ) ( )]* ( )t t t t= − −2 2 1 2�  (d) g tri /( ) [ ( ) ( )]* ( )t t t t= 8 4 1 8� �

(e) g u( ) ( ) *[ ( ) ( )]t e t t tt= − −−2
4 4 2� �

29. For each graph in Figure E.29 select the corresponding signal or signals from the 
group x x1 8( ) ( ).t t�  (The corresponding signal may not be one of the choices A 
through E.)

 

x rect( / x rect( /21 2 22 4 2( ) ( ) * ), ( ) ( ) * ),t t t t t t= =� � xx / rect( /2)

x rect
3 /

4 /

( ) ( ) ( ) *
( ) ( ) *

t t t

t t

=
=

1 4 1 2

1 2

�

� (( / x rect , x rect5 6t t t t t t2 2 42 2), ( ) ( ) * ( ) ( ) ( ) *= =� � ((2 )

x / rect(2 ), x7 / 8 /

t

t t t t t( ) ( ) ( ) * ( ) ( )= =1 4 1 2 1 2� � ** rect(2 )t

4
3
2
1

1 2 3 4-1-1-2-3-4

-2
-3
-4

t

4
3
2
1

1 2 3 4-1-1-2-3-4

-2
-3
-4

t

4
3
2
1

1 2 3 4-1-1-2-3-4

-2
-3
-4

t

4
3
2
1

1 2 3 4-1-1-2-3-4

-2
-3
-4

t

4
3
2
1

1 2 3 4-1-1-2-3-4

-2
-3
-4

t

A B C

D E

Figure E.29
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210 Chapter  5  Time-Domain System Analysis

30. Find the average signal power of these signals.
(a) x rect( ) ( ) * ( )t t t= 4 4�  (b) x tri( ) ( ) * ( )t t t= 4 4�

31. Show that the area property and the scaling property of the convolution integral 
are in agreement by fi nding the area of x h( ) * ( )at at  and comparing it with the 
area of x h( ) * ( ).t t

32. The convolution of a function g( )t  with a doublet can be written as

 g u u( )* ( ) ( ) ( ) .t t g t d1 1= −
−∞

∞

∫ 
 
 


  Integrate by parts to show that g u g( )* ( ) ( ).t t t1 = ′  

Stability

33. Write the differential equation for the systems in Figure E.33, fi nd their impulse 
responses and determine whether they are stable. For each system a � 0.5 and 
b � – 0.1. Then comment on the effect on system stability of redefi ning the response.

(a) 

x(t)

y(t)

+

+ -

+

a

b

∫

∫

(b) 

x(t) y(t)

+

+ -

+

a

b

∫

∫

 Figure E.33

34. Find the impulse response of the system in Figure E.34 and evaluate its BIBO 
stability.

x(t)

y(t)

+

+ -

+

∫

∫

2/3

1/8

Figure E.34
A two-integrator system
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35. These four rectangle functions are convolved in pairs (including a rectangle 
function being convolved with itself). The convolutions are illustrated below. 
For each convolution, determine which rectangle functions were convolved to 
produce each graph.
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212 Chapter  5  Time-Domain System Analysis

Discrete Time

Impulse Response

36. Find the impulse response h[ ]n  of the system in Figure E.36.

2
x[n] + -

y[n]

D
-0.45

Figure E.36 System block diagram

37. Find the impulse responses of the systems described by these equations.
(a) 3 4 1 2 1y y y x x[ ] [ ] [ ] [ ] [ ]n n n n n+ − + − = + −
(b) ( ) [ ] [ ] [ ] [ ]5 2 6 1 10 2/ y y y xn n n n+ − + − =

Convolution

38. Graph g[ ].n  Verify with the MATLAB conv function.
(a) g u u /[ ] ( [ ] [ ]) * sin( )n n n n= + − −1 2 2 9�

(b) g u u /[ ] ( [ ] [ ]) * sin( )n n n n= + − −2 3 2 9�

(c) g u u /[ ] ( [ ] [ ]) * sin( )n n n n= + − −4 5 2 9�

(d) g u u u u[ ] ( [ ] [ ]) * ( [ ] [ ]) * [ ]n n n n n n= + − − + − −3 4 3 4 14�

(e) g u u u u[ ] ( [ ] [ ]) * ( [ ] [ ]) * [ ]n n n n n n= + − − + − −3 4 3 4 7�

(f ) g / / u[ ] cos( ) * ( ) [ ]n n nn= 2 2 7 7 8�

39. Given the function graphs 1 through 4 in Figure E.39.1, match each convolution 
expression a through j to one of the functions a through h in Figure E.39.2 (if a 
match exists).

n
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g2[n]
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g3[n]
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g4[n]

-2

2

Figure E.39.1

(a) g g1 1[ ]* [ ]n n  (b) g g2 2[ ]* [ ]n n  (c) g g3 3[ ]* [ ]n n  (d) g g4 4[ ]* [ ]n n
(e) g g1 2[ ]* [ ]n n  (f ) g g1 3[ ]* [ ]n n  (g) g g1 4[ ]* [ ]n n  (h) g g2 3[ ]* [ ]n n
(i) g g2 4[ ]* [ ]n n  ( j) g g3 4[ ]* [ ]n n
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Figure E.39.2

40. The fi rst 6 graphs are of 6 discrete-time signals to convolve. (Each signal is zero 
outside the range graphed.) Below are 12 results of convolving pairs of signals 
(including a signal with itself). For each convolution result, determine which pair 
of signals was convolved to produce it (1 pt each).
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214 Chapter  5  Time-Domain System Analysis

41. Find the impulse responses of the subsystems in Figure E.41 and then convolve 
them to fi nd the impulse response of the cascade connection of the two subsystems.

+ -
x[n] + -

y1[n]

D D

y2[n]

0.8

Figure E.41
Two cascaded subsystems

42. Given the excitations x[ ]n  and the impulse responses h[ ]n , fi nd closed-form 
expressions for and graph the system responses y[ ].n  
(a) x u h / u[ ] [ ], [ ] ( ) [ ]n n n n nn= = 7 8

 (Hint: Differentiate r
r

r
r r

N r

n

n

N
N

=

−

∑ =
−
−

≠

=0

1 1

1
1, with respect to .)

, 11

⎧
⎨
⎪

⎩⎪
 

(b) x u[ ] [ ]n n= , h / / u[ ] ( ) [ ] ( ) [ ]n n nn= − −4 7 3 4�

Stability

43. A system is excited by a discrete-time unit-ramp function and the response is 
unbounded. From these facts alone, it is impossible to determine whether the 
system is BIBO stable or not. Why?

44. A system is excited by the unit sequence function and the response is K n( ).1 − �  
(a) If K is –2 and � is 1.1, is the system BIBO stable?
(b) If K is 2 and � is –1.1, is the system BIBO stable?

45. The impulse response of a system is zero for all negative time and, for n � 0, 
it is the alternating sequence 1,−1,1,−1,1, −1,…  which continues forever. Is it 
stable?
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6.1 INTRODUCTION AND GOALS
In Chapter 5 we learned how to fi nd the response of an LTI system by expressing the 
excitation as a linear combination of impulses and expressing the response as a linear 
combination of impulse responses. We called that technique  convolution. This type of 
analysis takes advantage of linearity and superposition and breaks one complicated 
analysis problem into multiple simpler analysis problems.

In this chapter we will also express an excitation as a linear combination of simple 
signals but now the signals will be sinusoids. The response will be a linear combina-
tion of the  responses to those sinusoids. As we showed in Chapter 5, the response of an 
LTI system to a sinusoid is another sinusoid of the same frequency but with a generally 
different amplitude and phase. Expressing signals in this way leads to the  frequency 
domain concept, thinking of signals as functions of frequency instead of time.

Analyzing signals as linear combinations of sinusoids is not as strange as it may 
 sound. The human ear does something similar. When we hear a sound, what is the 
actual response of the brain? As indicated in Chapter 1, the ear senses a time variation 
of air pressure. Suppose this variation is a single-frequency tone like the sound of a 
person whistling. When we hear a whistled tone we are not aware of the (very fast) 
oscillation of air pressure with time. Rather, we are aware of three important charac-
teristics of the sound, its pitch (a synonym for frequency), its intensity or amplitude 
and its duration. The  ear-brain system effectively parameterizes the signal into three 
simple descriptive parameters, pitch, intensity and duration, and does not attempt to 
follow the rapidly changing (and very repetitive) air pressure in detail. In doing so, the 
ear-brain system has distilled the information in the signal down to its essence. The 
mathematical analysis of signals as linear combinations of sinusoids does something 
similar but in a more mathematically precise way. Looking at signals this way also 
lends new insight into the nature of systems and, for certain types of systems, greatly 
simplifi es designing and analyzing them.

C H A P T E R  G OA L S

 1. To defi ne the Fourier series as a way of representing periodic signals as linear 
combinations of sinusoids

 C H A P T E R  6
 Continuous-Time Fourier 
Methods
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216 Chapter  6  Continuous-Time Fourier Methods

 2. To derive, using the concept of orthogonality, the methods for transforming 
signals back and forth between time and frequency descriptions

 3. To determine the types of signals that can be represented by the Fourier series

 4. To develop, and learn to use, the properties of the Fourier series

 5. To generalize the Fourier series to the Fourier transform, which can represent 
aperiodic signals

 6. To generalize the Fourier transform so it can apply to some very common useful 
signals

 7. To develop, and learn to use, the properties of the Fourier transform

 8. To see, through examples, some of the uses of the Fourier series and the Fourier 
transform

6.2 THE  CONTINUOUS-TIME  FOURIER SERIES

CONCEPTUAL BASIS

A common situation in signal and system analysis is an LTI system excited by a peri-
odic signal. A very important result from Chapter 5 is that if an LTI system is  excited 
by a sinusoid, the response is also a sinusoid, with the same frequency but generally 
a different amplitude and phase. This occurs because the complex exponential is the 
eigenfunction of the differential equations describing LTI systems and a sinusoid is a 
linear combination of complex exponentials. 

An important result from Chapter 4 is that if an LTI system is excited by a sum 
of signals, the overall response is the sum of the responses to each of the signals in-
dividually. If we could fi nd a way to express arbitrary signals as linear combinations 
of sinusoids we could use superposition to fi nd the response of any LTI system to any 
arbitrary signal by summing the responses to the individual sinusoids. The represen-
tation of a periodic signal by a linear combination of sinusoids is called a Fourier1 
series. The sinusoids can be real sinusoids of the form A t Tcos( )2 0� �/ +  or they can 
be  complex sinusoids of the form Ae j t T2 0� / . 

When fi rst introduced to the idea of expressing real signals as linear combinations 
of complex sinusoids, students are often puzzled as to why we would want to introduce 
the extra (and seemingly unnecessary) dimension of imaginary numbers and functions. 
 Euler’s identity e x j xjx = +cos( ) sin( ) illustrates the very close relationship between  real 
and complex sinusoids. It will turn out that, because of the compact notation that results, and 
because of certain mathematical simplifi cations that occur when using complex sinusoids, 
they are actually more convenient and powerful in analysis than real sinusoids. So the reader 
is encouraged to suspend disbelief for a while until the power of this method is revealed.

1  Jean Baptiste Joseph Fourier was a French mathematician of the late 18th and early 19th centuries. (The name 
Fourier is commonly pronounced fore-yay, because of its similarity to the English word four, but the proper 
French pronunciation is foor-yay, where foor rhymes with tour.) Fourier lived in a time of great turmoil in 
France: the French Revolution and the reign of Napoleon Bonaparte. Fourier served as secretary of the Paris 
Academy of Science. In studying the propagation of heat in solids, Fourier developed the Fourier series and 
the Fourier integral. When he fi rst presented his work to the great French mathematicians of the time, Laplace, 
LaGrange and LaCroix, they were intrigued by his theories but they (especially LaGrange) thought his theories 
lacked mathematical rigor. The publication of his paper at that time was denied. Some years later Dirichlet put the 
theories on a fi rmer foundation, explaining exactly what functions could and could not be expressed by a Fourier 
series. Then Fourier published his theories in what is now a classic text, Theorie analytique de la chaleur. 
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-4
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Figure 6.3
Signal approximated by a constant plus a single sinusoid

x(t) = A1ej2πt/T
1
 + A2ej2π t/T

2 + A3ej2πt/T
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Figure 6.1
The equivalence of the response of an LTI system to an 
excitation signal and the sum of the system’s responses to 
complex sinusoids whose sum is equivalent to the excitation
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0.6

t
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x(t)
1.6

Exact x(t)

1

Approximation of x(t) by a constant

t0 + Tt0

Figure 6.2
Signal  approximated by a constant

If we are able to express an excitation signal as a linear combination of sinusoids, we 
can take advantage of linearity and superposition and apply each sinusoid to the system, one 
at a time, and then add the individual responses to obtain the overall response (Figure 6.1).

Consider an arbitrary original signal x( )t  that we would like to represent as a linear 
combination of sinusoids over a range of time from an initial time t0 to a fi nal time 
t T0 +  as illustrated by the dashed line in Figure 6.2. In this illustration we will use real-
valued sinusoids to make the visualization as simple as possible.

In Figure 6.2 the signal is approximated by a constant 0.5, which is the average 
value of the signal in the interval t t t T0 0≤ < + . A  constant is a special case of a sinu-
soid, a cosine of zero frequency. This is the best possible approximation of x( )t  by a 
constant. “Best” in this case means having the minimum mean-squared error between 
x( )t  and the approximation. Of course a constant, even the best one, is not a very good 
approximation to this signal. We can make the approximation better by  adding to the 
constant a sinusoid whose fundamental period is the same as the fundamental period 
of x( )t  (Figure 6.3). This approximation is a big improvement on the previous one and 
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Approximation of x(t) through 2 sinusoids
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Figure 6.4
Signal approximated by a constant plus two sinusoids

Figure 6.5
Signal approximated by a constant plus three sinusoids
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Approximation of x(t) through 3 sinusoids

t0 + Tt0

is the best approximation that can be made using a constant and a single sinusoid of the 
same fundamental frequency as x( )t . We can improve the approximation further by add-
ing a sinusoid at a frequency of twice the fundamental frequency of x( )t  (Figure 6.4).

If we keep adding properly chosen sinusoids at higher integer multiples of the 
fundamental frequency of x( )t , we can make the approximation better and better and, 
in the limit as the number of sinusoids approaches infi nity, the approximation becomes 
exact (Figure 6.5 and Figure 6.6). 

The sinusoid added at three times the fundamental frequency of x( )t  has an ampli-
tude of zero, indicating that a sinusoid at that frequency does not improve the approxi-
mation. After the fourth sinusoid is added, the approximation is quite good, being hard 
to distinguish in Figure 6.6 from the exact x( )t .

In this example the representation approaches the original signal in the represen-
tation time t t t T0 0≤ < + , and also for all time because the fundamental period of 
the approximation is the same as the fundamental period of x( )t . The most general 
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Figure 6.6
Signal approximated by a constant plus four sinusoids
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application of Fourier series theory represents a signal in the interval t t t T0 0≤ < +  but 
not necessarily outside that interval. But in signal and system analysis the representa-
tion is almost always of a periodic signal and the fundamental period of the representa-
tion is almost always chosen to also be a period of the signal so that the representation 
is valid for all time, not just in the interval t t t T0 0≤ < + . In this example the signal 
and the representation have the same fundamental period but more generally the fun-
damental period of the representation can be chosen to be any period, fundamental or 
not, of the signal and the representation will still be valid everywhere.

Each of the sinusoids used in the approximations in the example above is of the 
form A kt Tcos( )2� �/ + . Using the trigonometric identity

 cos( ) cos( ) cos( ) sin( )sin( )a b a b a b+ = −

we can express the sinusoid in the form

 A kt T A kt T Acos( ) cos( ) cos( ) sin( )sin(2 2 2� � � � � �/ /+ = − kkt T/ ).

This demonstrates that each phase-shifted cosine can be expressed also as the sum of 
an unshifted cosine and an unshifted sine of the same fundamental period, if the am-
plitudes are correctly chosen. The linear combination of all those sinusoids expressed 
as cosines and sines is called the continuous-time Fourier series (CTFS) and can be 
written in the form

 x( ) a [ ] a [ ]cos( ) b [ ]sin( )x x xt k kt T k kt T
k

= + +
=

0 2 2
1

� �/ /
∞∞

∑
where a [ ]x 0  is the average value of the signal in the representation time, k is the  harmonic 
number and a [ ] b [ ]x xk kand  are functions of k called  harmonic functions. Here we use 
the [ ]⋅  notation to enclose the argument k because harmonic number is always an integer. 
The harmonic functions set the amplitudes of the sines and cosines and k determines the 
frequency. So the higher-frequency sines and cosines have frequencies that are integer 
multiples of the fundamental frequency and the multiple is k. The function cos( )2�kt T/  
is the kth-harmonic cosine. Its fundamental period is T k/  and its fundamental cyclic 
frequency is k T/ . Representing a signal this way as a linear combination of real-valued 
cosines and sines is called the  trigonometric form of the CTFS. 
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220 Chapter  6  Continuous-Time Fourier Methods

For our purposes, it is important as a prelude to later work to see the equivalence 
of the complex form of the CTFS. Every  real-valued sine and cosine can be replaced 
by a linear combination of complex sinusoids of the forms

 cos( )2
2

2 2

�
� �

kt T
e ej kt T j kt T

/
/ /

= + −
 and sin( )2

2

2 2

�
� �

kt T
e e

j

j kt T j kt T

/
/ /

= − −
.

If we add the cosine and sine with amplitudes a [ ] [ ]x xk kand b , respectively, at any 
particular harmonic number k we get

 a [ ]cos( ) b [ ]sin( )

a [ ]

x x

x

k kt T k kt T

k
e j kt T

2 2

2

� �

�

/ /

/

+ =

++

+ −

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬

−

−

e

k
e e

j

j kt T

j kt T j kt T

2

2 2

2

2

�

� �

/

/ /

b [ ]x

⎪⎪⎪

⎭
⎪
⎪

.

We can combine like complex-sinusoid terms on the right-hand side to form

 a [ ]cos( ) b [ ]sin( )
(a [ ] b [

x x
x x

k kt T k kt T
k j

2 2
1

2
� �/ /+ =

− kk e

k j k e

j kt T

j kt T

])

(a [ ] b [ ])x x

2

2

�

�

/

/+ +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪−
.

Now if we defi ne

 c [ ] a [ ] c [ ]
a [ ] b [ ]

, c [x x x
x x

x0 0
2

0= = − > −, andk
k j k

k k]] c [ ]x
*= k

we can write

 a [ ]cos( ) b [ ]sin( ) c [ ]x xk kt T k kt T k e j kt T2 2 2� � �/ / x
/+ = ++ − >−( )c [ ]x k e kj k t T2 0� / ,

and we have the amplitudes c [ ]x k  of the complex sinusoids e j kt T2� /  at positive, and also 
negative, integer multiples of the fundamental cyclic frequency 1/T . The sum of all these 
complex sinusoids and the constant c [ ]x 0  is equivalent to the original function, just as 
the sum of the sines and cosines and the constant was in the previous representation.

To include the constant term c [ ]x 0  in the general formulation of complex sinusoids 
we can let it be the zeroth (k = 0) harmonic of the fundamental. Letting k be zero, the 
complex sinusoid e j kt T2� /  is just the number 1 and if we multiply it by a correctly chosen 
weighting factor c [ ]x 0  we can complete the  complex CTFS representation. It will turn 
out in the material to follow that the same general formula for fi nding c [ ]x k  for any non-
zero k can also be used, without modifi cation, to fi nd c [ ]x 0 , and that c [ ]x 0  is simply the 
average value in the representation time t t t T0 0≤ < +  of the function to be represented. 
c [ ]x k  is the complex harmonic function of x( )t . The complex CTFS is more effi cient than 
the trigonometric CTFS because there is only one harmonic function instead of two. The 
CTFS representation of the function can be written more compactly in the form

 x( ) c [ ]xt k e j kt T

k

=
= −∞

∞

∑ 2� /  (6.1)

So far we have asserted that the harmonic function exists but have not indicated how it 
can be found. That is the subject of the next section.

ORTHOGONALITY AND THE  HARMONIC FUNCTION

In the Fourier series, the values of c [ ]x k  determine the magnitudes and phases of com-
plex sinusoids that are mutually  orthogonal. Orthogonal means that the inner product 
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of the two functions of time on some time interval is zero. An inner product is the 
integral of the product of one function and the complex conjugate of the other function 
over an interval, in this case the time interval T. For two functions x x1 2and  that are 
orthogonal on the interval t t t T0 0≤ < +

 (x ( ), x ( )) x ( ) x ( )*
1 2 1 2

0

t t t t dt
tinner product

� �� �� =
tt T0

0
+

∫ = .

We can show that the  inner product of one complex sinusoid e j kt T2� /  and another 
complex sinusoid e j qt T2� /  on the interval t t t T0 0≤ < +  is zero if k and q are integers 
and k q≠ . The inner product is 

 ( )e e e e dtj kt T j qt T j kt T j qt T

t

t T
2 2 2 2

0

0

� � � �/ / / /, = −
+

∫ == −
+

∫ e dtj k q t T

t

t T
2

0

0

�( ) / .

Using Euler’s identity

 ( ) cos sine e
k q

T
t j

k q

T
tj kt T j qt T2 2 2 2� � � �/ /, = −⎛

⎝
⎞
⎠ + −⎛

⎝⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

+

∫ dt
t

t T

0

0

. (6.2)

Since k and q are both integers, if k q≠ , the cosine and the sine in this integral are 
both being integrated over a period (an integer number of fundamental periods). The 
defi nite integral of any sinusoid (of nonzero frequency) over any period is zero. If 
k q= , the integrand is cos( ) sin( )0 0 1+ =  and the inner product is T. If k q≠ , the inner 
product (6.2) is zero. So any two complex sinusoids with an integer number of fun-
damental periods on the interval t t t T0 0≤ < +  are orthogonal, unless they have the 
same number of fundamental periods. Then we can conclude that functions of the form 
e kj kt T2� / , − ∞ < < ∞ constitute a countably infi nite set of functions, all of which are 
mutually orthogonal on the interval t t t T0 0≤ < +  where t0 is arbitrary.

We can now take advantage of orthogonality by multiplying the expression for the 
Fourier series x( ) c [ ]xt k e j kt T

k
=

= −∞
∞∑ 2� /  through by e j qt T− 2� /  (q an integer) yielding

 x( ) c [ ] c [x xt e k e e kj qt T j kt T j qt T

k

− −

= −∞

∞
= =∑2 2 2� � �/ / / ]] ( )e j k q t T

k

2� −

= −∞

∞

∑ / .

If we now integrate both sides over the interval t t t T0 0≤ < +  we get

 x( ) c [ ]x
( )t e dt k ej qt T

t

t T
j k q t T

k

−
+

−

= −∞

∞

∫ ∑=
⎡

2 2

0

0

� �/ /

⎣⎣
⎢

⎤

⎦
⎥

+

∫ dt
t

t T

0

0

.

Since k and t are independent variables, the integral of the sum on the right side is 
equivalent to a sum of integrals. The equation can be written as

 x( ) c [ ]x
( ) /t e dt k ej qt T

t

t T
j k q t T

t

t T
−

+
−

+

∫ ∫=2 2

0

0

0

0

� �/ ddt
k = −∞

∞

∑

and, using the fact that the integral is zero unless k q= , the summation

 c [ ]x
( ) /k e dtj k q t T

t

t T

k

2

0

0

� −
+

= −∞

∞

∫∑
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222 Chapter  6  Continuous-Time Fourier Methods

reduces to c [ ]x q T  and

 x( ) c [ ]xt e dt q Tj qt T

t

t T
−

+

∫ =2

0

0

� / .

Solving for c [ ]x q ,

 c [ ] x( )x q
T

t e dtj qt T

t

t T

= −
+

∫
1 2

0

0

� / .

If this is a correct expression for c [ ]x q , then c [ ]x k  in the original Fourier series expres-
sion (6.1) must be 

 c [ ] x( )x k
T

t e dtj kt T

t

t T

= −
+

∫
1 2

0

0

� / . (6.3)

From this derivation we conclude that, if the integral in (6.3) converges, a periodic 
signal x( )t  can be expressed as

 x( ) c [ ]xt k e j kt T

k

=
= −∞

∞

∑ 2� /  (6.4)

where

 c [ ] x( )x k
T

t e dtj kt T
T

= −∫
1 2� /  (6.5)

and the notation ∫T
 means the same thing as 

+

∫
t

t T

0

0

 with t0 arbitrarily chosen. Then x( )t  

and c [ ]x k  form a  CTFS pair, which can be indicated by the notation

 x( ) c [ ]xt k
T
FS← →⎯

where the FS means “Fourier series” and the T means that c [ ]x k  is computed with T as 
the fundamental period  of the CTFS representation of x( )t .

This derivation was done on the basis of using a period T of the signal as the in-
terval of orthogonality and also as the fundamental period of the CTFS representation. 
T could be any period of the signal, including its fundamental period T0. In practice 
the most commonly used fundamental period of the representation is the fundamental 
period of the signal T0. In that special case the CTFS relations become

 x( ) c [ ]xt k e j kt T

k

=
= −∞

∞

∑ 2 0� /

and

 c [ ] x( ) x( )x k
T

t e dt f t e dtj kt T
T

j kf t
T

= =− −∫
1

0

2
0

20

0

0� �/

00
∫  

where f T0 01= /  is the fundamental cyclic frequency of x( )t .
If the integral of a signal x( )t  over the time interval, t t t T0 0< < + , diverges, a 

CTFS cannot be found for the signal. There are two other conditions on the applicability 
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of the CTFS, which, together with the condition on the convergence of the integral, are 
called the  Dirichlet conditions. The Dirichlet conditions are the following:

 1. The signal must be absolutely integrable over the time, t t t T0 0< < + . That is,

 x( )t dt
t

t T

0

0 +

∫ < ∞

 2. The signal must have a fi nite number of maxima and minima in the time, 
t t t T0 0< < + .

 3. The signal must have a fi nite number of discontinuities, all of fi nite size, in the  
time, t t t T0 0< < + .

There are hypothetical signals for which the Dirichlet conditions are not met, but they 
have no known engineering use.

THE  COMPACT TRIGONOMETRIC FOURIER SERIES

Consider the  trigonometric Fourier series. 

 x( ) a [ ] a [ ]cos( ) b [ ]sin( )x x xt k kt T k kt T
k

= + +
=

0 2 2
1

� �/ /
∞∞

∑

Now, using 

 A x B x A B x B Acos( ) sin( ) cos( tan ( ))+ = + − −2 2 1 /

we have

 x( ) a [ ] a [ ] b [ ] cos tan
b [ ]

a
x x x

x

x
t k k kt T

k= + + + −−0 22 2 1� /
[[ ]kk

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

∞

∑
1

or

 x( ) d [ ] d [ ]cos( [ ])x x xt k kt T k
k

= + +
=

∞

∑0 2
1

� �/

where

 d [ ] a [ ] d [ ] a [ ] b [ ]x x x x x0 0 02 2= = + >, ,k k k k

and

 �x
x

x
[ ] tan

b [ ]

a [ ]
k

k

k
k= −⎛

⎝⎜
⎞
⎠⎟

>−1 0,

This is the so-called compact trigonometric Fourier series. It is also expressed in 
purely real-valued functions and coeffi cients and is a little more compact than the 
trigonometric form but it is still not as compact or effi cient as the complex form 

x( ) c [ ]xt k e j kt T

k

=
= −∞

∞

∑ 2� / . The trigonometric form is the one actually used by Jean 

Baptiste Joseph Fourier.
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224 Chapter  6  Continuous-Time Fourier Methods

t 

sinc(t)

1−1−2−3−4−5 2 3 4 5

1

Figure 6.7
The unit sinc function

EXAMPLE 6.1

 CTFS harmonic function  of a rectangular wave

Find the complex CTFS harmonic function of x( ) rect( ) ( )t A t w t w TT= ∗ </ ,�
0 0 using its 

fundamental period as the representation time.
The fundamental period is T0 so the CTFS harmonic function is

 c [ ] ( ) rect( ) ( )x k T A t w t e dtT
j kt T

T
= ∗ −∫1 0

2
0

0

0

/ / /� �

The integration interval can be anywhere in time as long as its length is T0. For convenience, 
choose to integrate over the interval − ≤ <T t T0 02 2/ / . Then

 c [ ] ( ) rect( ) ( )x k A T t w t e dtT
j kt T

T

T

= ∗ −

−

/ / /

/

0
2

2
0

0

0

0

� �
//2

∫

Using w T< 0 and the fact that the interval contains only one rectangle function

 

c [ ] ( ) rect( ) (x k A T t w e dt Aj kt T

T

T

= =−

−
∫/ / //

/

/

0
2

2

2
0

0

0

� TT e dt

k A T
e

j kt T

w

w

j kt T

0
2

2

2

0

2

0

0

)

c [ ] ( )

/

/

x

−

−

−

∫

=
−

�

�

/

/
/

jj k T
A

e e

j k
w

w j kw T j kw T

2 20 2

2
0 0

� �

� �

/
/

/ / /⎡

⎣
⎢

⎤

⎦
⎥ = −

−
⎡

−

−

⎣⎣
⎢

⎤

⎦
⎥ = A

kw T

k

sin( )�

�

/ 0

and fi nally

 x( ) rect( ) ( ) c [ ]
sin( )

xt A t w t k A
kw T

T T
= ∗ ← →⎯ =/

/
�

�
0

0

0FS

��k
.

(Even though in this example we restricted w to be less than T0 to simplify the analysis, the 
result is also correct for w greater than T0.)

In Example 6.1 the harmonic function turned out to be c [ ]
sin( )

x k A
kw T

k
= �

�

/ 0 . 

This mathematical form of the sine of a quantity divided by the quantity itself occurs 
often enough in Fourier analysis to deserve its own name. We now defi ne the  unit-sinc 
function (Figure 6.7) as

 sinc( )
sin( )

t
t

t
= �

�
 (6.6)
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We can now express the harmonic function from Example 6.1 as 

 c [ ] ( )sinc( )x k Aw T kw T= / /0 0  

and the CTFS pair as

 x( ) rect( ) ( ) c [ ] ( )sinc(xt A t w t k Aw TT T
= ∗ ← →⎯ =/ /� 0

0
0

FS wwk T/ 0 ).

The unit-sinc function is called a  unit function because its height and area are both one.2 
One common question when fi rst encountering the sinc function is how to 

determine the value of sinc( )0 . When the independent variable t in sin( )� �t t/  is zero, 
both the numerator sin( )�t  and the denominator �t evaluate to zero, leaving us with an 
indeterminate form. The solution to this problem is to use  L’Hôpital’s rule. Then

 lim sinc( ) lim
sin( )

lim
cos( )

t t t
t

t

t

t
→ → →

= = =
0 0 0

�

�

� �

�
11.

So sinc( )t  is continuous at t = 0 and sinc( )0 1= .

 CONVERGENCE

 Continuous Signals
In this section we will examine how the CTFS summation approaches the signal it 
represents as the number of terms used in the sum approaches infi nity. We do this by 
examining the partial sum

 x ( ) c [ ]xN
j kt T

k N

N

t k e=
= −
∑ 2� /

for successively higher values of N. As a fi rst example consider the  CTFS representation 
of the continuous periodic signal in Figure 6.8. The CTFS pair is (using the signal’s 
fundamental period as the fundamental period of the CTFS representation)

 x( ) tri( ) ( )t A t T tT= ∗2 0 0/ �

 A t T t A kT T
tri( ) ( ) ( )sinc ( )2 2 20

2
0

0
/ / /∗ ← →⎯�

FS

and the partial-sum approximations x ( )N t  for N = 1, 3, 5, and 59 are illustrated in 
Figure 6.9.

2 The  defi nition of the sinc function is generally, but not universally, accepted as sinc(t) = sin(�t)/�t. In some books 
the sinc function is defi ned as sinc(t) = sin(t)/t. In other books this second form is called the  Sa function Sa(t) = sin(t)/t. 
How the sinc function is defi ned is not really critical. As long as one defi nition is accepted and the sinc function is 
used in a manner consistent with that defi nition, signal and system analysis can be done with useful results. 

Figure 6.8
A continuous signal to be represented by 
a CTFS

t 

x(t)

A

T0

... ...
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226 Chapter  6  Continuous-Time Fourier Methods

Figure 6.9
Successively closer approximations to a triangle wave

-T0

-T0

-T0

-T0

A
2

A

T0

T0

A
2

A

A
2

A

A
2

A

t 

t

N = 3

N = 1

N = 5

N = 59

x3(t)

T0

T0

t

t

x5(t)

x59(t)

x1(t)

At N = 59 (and probably at lower values of N ) it is impossible to distinguish the CTFS 
partial-sum approximation from the original signal by observing a graph on this scale.

 Discontinuous Signals
Now consider a periodic signal  with discontinuities

 x( ) rect ( )t A
t T

T
tT= −⎛

⎝⎜
⎞
⎠⎟

∗2
40

0
0

/
�

(Figure 6.10). The CTFS pair is

 A
t T

T
t A jT T

krect ( ) ( )( ) sin2
4

20

0
0

0

−⎛
⎝⎜

⎞
⎠⎟

∗ ← →⎯ −/
/�

FS cc( )k/ 2

and the approximations x ( )N t  for N = 1, 3, 5, and 59 are illustrated in Figure 6.11.
Although the mathematical derivation indicates that the original signal and its 

CTFS representation are equal everywhere, it is natural to wonder whether that is true 
after looking at Figure 6.11. There is an obvious overshoot and ripple near the discon-
tinuities that does not appear to become smaller as N increases. In fact, the maximum 
vertical overshoot near a discontinuity does not decrease with N, even as N approaches 
infi nity. This overshoot is called the  Gibbs phenomenon in honor of Josiah Gibbs3 

3  Josiah Willard Gibbs, an American physicist, chemist, and mathematician, developed much of the theory 
for chemical thermodynamics and physical chemistry. He invented vector analysis (independently of Oliver 
Heaviside). He earned the fi rst American Ph.D. in engineering from Yale in 1863 and he spent his entire career 
at Yale. In 1901, Gibbs was awarded the Copley Medal of the Royal Society of London for being “the fi rst 
to apply the second law of thermodynamics to the exhaustive discussion of the relation between chemical, 
electrical, and thermal energy and capacity for external work.” 
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t

t

t

A
2

A

A
2

A

A
2

A

A
2

A

t 

2
T0- 2

T0

2
T0- 2

T0

2
T0- 2

T0

2
T0- 2

T0

x1(t)

x3(t)

x5(t)

x59(t)

N = 1

N = 3

N = 5

N = 59

Figure 6.11
Successively closer approximations to a square wave

Figure 6.10
A discontinuous signal to be represented by a CTFS

t 

x(t)

... ...

T0-T0

A

who fi rst mathematically described it. But notice also that the ripple is also confi ned 
ever more closely in the vicinity of the discontinuity as N increases. In the limit as N 
approaches infi nity the height of the overshoot is constant but its width approaches 
zero. The error in the partial-sum approximation is the difference between it and the 
original signal. In the limit as N approaches infi nity the signal power of the error ap-
proaches zero because the zero-width difference at a point of discontinuity contains 
no signal energy. Also, at any particular value of t (except exactly at a discontinuity) 
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228 Chapter  6  Continuous-Time Fourier Methods

the value of the CTFS representation approaches the value of the original signal as N 
approaches infi nity. 

At a discontinuity the functional value of the CTFS representation is always the 
average of the two limits of the original function approached from above and from 
below, for any N. Figure 6.12 is a magnifi ed view of the CTFS representation at a 
discontinuity for three different values of N. Since the signal energy of the difference 
between the two signals is zero in any fi nite time interval, their effect on any real physi-
cal system is the same and they can be considered equal for any practical purpose.

 MINIMUM ERROR OF FOURIER-SERIES PARTIAL SUMS

The CTFS is an infi nite summation of sinusoids. In general, for exact equality between 
an arbitrary original signal and its CTFS representation, infi nitely many terms must 
be used. (Signals for which the equality is achieved with a fi nite number of terms are 
called  bandlimited signals.) If a partial-sum approximation

 x ( ) c [ ]xN
j kt T

k N

N

t k e=
= −
∑ 2� /  (6.7)

is made to a signal x( )t  by using only the fi rst N harmonics of the CTFS, the differ-
ence between x ( )N t  and x( )t  is the approximation error e ( ) x ( ) x( )N Nt t t= − . We know 
that in (6.7) when N goes to infi nity the equality is valid at every point of continuity of 
x( )t . But when N is fi nite does the harmonic function c [ ]x k  for − ≤ ≤N k N  yield the 
 best possible approximation to x( )t ? In other words, could we have chosen a different 
harmonic function c [ ]x,N k  that, if used in place of c [ ]x k  in (6.7), would have been a 
better approximation to x( )t ? 

The fi rst task in answering this question is to defi ne what is meant by “best pos-
sible approximation.” It is usually taken to mean that the signal energy of the error 
e ( )N t  over one period T is a minimum. Let’s fi nd the harmonic function c [ ]x,N k  that 

Figure 6.12
Illustration of the Gibbs phenomenon for increasing values of N

0

A

t 

N = 19
N = 59

N = 199

A
2
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minimizes the signal energy of the error.

 e ( ) c [ ] c [ ]x,

x ( )

xN N
j kt T

k N

N

t

t k e k

N

= −
= −
∑ 2� /

� ���� ����
ee j kt T

k

t

2� /

= −∞

∞

∑
x( )

� ��� ���

Let 

 c [ ]
c [ ] c [ ]

c [ ]
y

x, x

x
k

k k k N

k

N
=

− ≤
−

,

, kk N>
⎧
⎨
⎩

.

Then

 e ( ) c [ ]yN
j kt T

k

t k e=
= −∞

∞

∑ 2� / .

The signal energy of the error over one period is

 

E
T

t dt
T

k e dt

E

N
T

j kt T

k
T

e
/

e

= =

=

∫ ∑∫
= −∞

∞1 1

1

2 2

2

e ( ) c [ ] .y
�

TT
k e q ej kt T

k

j kt T

q

c [ ] c [ ]y y
*2 2� �/ /

= −∞

∞
−

= −∞

∞

∑⎛
⎝⎜

⎞
⎠⎟

∑∑∫

∑

⎛

⎝
⎜

⎞

⎠
⎟

= +
= −∞

∞

dt

E
T

k k k q e

T

k
e

1
c [ ]c [ ] c [ ]c [ ]y y

*
y y

* jj k q t T

q
q k

k
T

dt2�( )−

= −∞
≠

∞

= −∞

∞

∑∑∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

/

The integral of the double summation is zero for every combination of k and q for 
which k q≠  because the integral over any period of e j k q t T2�( )− /  is zero. Therefore

 E
T

k k dt
T

k dt
k

T
k

T
e = =

= −∞

∞

= −∞

∞

∑∫ ∑∫
1 1 2

c [ ]c [ ] c [ ] .y y
*

y

Substituting the defi nition of c [ ]y k  we get

 

E
T

k k k dtN
k N

N

k N
T

e = − + −
⎛

⎝
⎜

⎞

⎠
⎟

= − >
∑ ∑∫

1 2 2c [ ] c [ ] c [ ]x, x x

EE k k kN
k N

N

k N
e = − +

= − >
∑ ∑c [ ] c [ ] c [ ]x, x x

2 2

All the quantities being summed are non-negative and, since the second summation is 
fi xed, we want the fi rst summation to be as small as possible. It is zero if c [ ] c [ ]x, xN k k= , 
proving that the harmonic function c [ ]x k  gives the smallest possible mean-squared 
error in a partial sum approximation. 

THE FOURIER SERIES  OF EVEN AND ODD PERIODIC FUNCTIONS

Consider the case of representing a  periodic even signal x( )t  with fundamental period 
T0 with a complex CTFS. The CTFS harmonic function is

 c [ ] x( )x k
T

t e dtj kt T
T

= −∫
1 2� / .
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230 Chapter  6  Continuous-Time Fourier Methods

For periodic signals this integral over a period is independent of the starting point. 
Therefore we can rewrite the integral as

c [ ] x( ) x( ) cos(x k
T

t e dt
T

tj kt T

T

T

= =−

−
∫

1 12

2

2
� /

/

/

even
� 22

2

2

�kt T dt j t
T

T

/
even

even

/

/

eve

) x( )� �� ��
� ��� ���−

∫ −
nn odd

odd

/

/

/�� �� ��
� ��� ���

sin( )2
2

2

�kt T dt
T

T

−
∫

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥

Using the fact that an odd function integrated over symmetrical limits about zero is 
zero, c [ ]x k  must be real. By a similar argument, for a  periodic odd function, c [ ]x k  must 
be imaginary.

For x( )t  even and real-valued, c [ ]x k  is even and real-valued.
For x( )t  odd and real-valued, c [ ]x k  is odd and purely imaginary.

 FOURIER-SERIES TABLES AND PROPERTIES

The  properties of the CTFS are listed in Table 6.1. They can all be proven using the 
defi nition of the CTFS and the harmonic function

 x( ) c [ ] c [ ] ( ) x( )x xt k e k T t ej kt T

k
T

= ← →⎯ =
= −∞

∞
−∑ 2 1� / /FS jj kt T

T
dt2� /∫ .

In the  Multiplication–Convolution Duality property the integral

 x( ) y( ) x( ) y( )t t t d
T

� = −∫ � � �

appears. It looks a lot like the convolution integral we have seen earlier except that 
the integration range is over the fundamental period T of the CTFS representation 
instead of from −∞ to +∞. This operation is called  periodic convolution. Periodic 
convolution is always done with two periodic signals over a period T that is common to 
both of them. The convolution that was introduced in Chapter 5 is  aperiodic convolu-
tion. Periodic convolution is equivalent to aperiodic convolution in the following way. 
Any periodic signal x ( )p t  with period T can be expressed as a sum of equally spaced 
aperiodic signals x ( )ap t  as

 x ( ) x ( )p ap
k

t t kT= −
= −∞

∞

∑

It can be shown that the periodic convolution of x ( )p t  with y ( )p t  is then

 x ( ) y ( ) x ( ) y ( )p p ap pt t t t� = ∗ .

The function x ( )ap t  is not unique. It can be any function that satisfi es xp(t) =

x ( )ap
k

t kT−
= −∞

∞

∑ .

Table 6.2 shows some common  CTFS pairs. All but one are based on the funda-
mental period T of the CTFS representation being mT0, with m being a positive integer 
and T0 being the fundamental period of the signal.

 
x( ) c [ ] c [ ] x(x xt k e k

mT
j kt mT

k
mT

= ← →⎯⎯ =
= −∞

∞

∑ 2

0

0

0

1� / FS tt e dtj kt mT
mT

) −∫ 2 0

0

� /
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Table 6.1 CTFS             properties

Linearity � �x( ) y( )t t
T

+ ←FS→→⎯ +� �c [ ] c [ ]x yk k

Time Shifting /x( ) c [ ]xt t e k
T

j kt T− ← →⎯ −
0

2 0
FS �

Frequency Shiifting

Conj

/e t k kj k t T
T

2
00� x( ) c [ ]x

FS← →⎯ −

uugation x*( )t
T
FS←← →⎯ −c [ ]x

* k

d

d
Time Differentiation

tt
t j k T k

T
(x( )) ( )c [ ]x

FS← →⎯ 2� /

Time Reversal x( ) c [ ]x− ← →⎯ −t k
T
FS

Time Integrration x( )
c [ ]x

� �
�

d
k

j

t

T
−∞
∫ ← →⎯FS

2 kk T
k

/
, if≠ =0 0 0c [ ]x

Parseval s Theorem’
1 2 2

T
t dt k

T
k

x( ) c [ ]x∫ ∑=
= −∞

∞

Multiplication Con– vvolution Duality

x( )y( ) c [ ]c [ ]y xt t m k m
T

m

FS← →⎯ −
== −∞

∞
∑ = ∗

= −

c [ ] c [ ]

x( ) y( ) x( )y( )

x yk k

t t t� � � dd T k k
T T

�∫ ← →⎯FS c [ ]c [ ]x y

Change of Period
If

and

x( ) c [ ]

x( ) c [ ]

x

x

t k

t k

T

mT m

FS

FS

← →⎯

← →⎯⎯
,, [ ]

c [ ]
x

x
c

/ , / an integer

0,
m k

k m k m
=

otherwise
⎧
⎨
⎩

Time Scaling
If

and z

x( ) c [ ]

( ) x( )

xt k

t mt

T
FS

FS

← →⎯

=
TT

k
k

k m k m

← →⎯
=

c [ ]
[ ]

c [ ]x

z

zc
/ , / an integer

0, otherwise
⎧
⎨
⎩

Table 6.2 Some CTFS pairs

e k mj t T
mT

2 0

0

� �/ [FS← →⎯⎯ − ]]

cos( ) ( )( [/ /2 1 20
0

� �k T
mT
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k T
mT

− + +] [ ])

sin( )

�

� /2 0
0

FS←← →⎯⎯ + − −( )( [ ] [ ])j k m k m/2 � �

, is arbitrary1 FS
T

k T← →⎯ �[ ]

/�T mT
t T

0
0

1 0( ) ( )FS← →⎯⎯ ��

�
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T mT
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t w t w T

[ ]

rect( ) ( ) ( )/ /∗ ← →⎯⎯
0

0
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0

�

�∗ FFS
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232 Chapter  6  Continuous-Time Fourier Methods

EXAMPLE 6.2

  Periodic excitation and response of a continuous-time system

A continuous-time system is described by the differential equation

 ′′ + ′ + =y ( ) . y ( ) . y( ) x( )t t t t0 04 1 58 .

If the excitation is x( ) tri( ) ( )t t t= ∗ �5 , fi nd the response y( )t .
The excitation can be expressed by a CTFS as 

 x( ) c [ ]x
/t k e j kt T

k

=
= −∞

∞

∑ 2 0�

where, from Table 6.2,

 c [ ] ( )sinc ( ) [ ]x k w T wk mT km= / /0
2

0 �

with w = 1, T0 5=  and m = 1. Then

 x( ) ( )sinc ( ) [ ] ( ) sit k k e j kt

k

= =
= −∞

∞

∑ 1 5 5 1 52
1

2 5/ / //� � nnc ( )2 2 55k e j kt

k

/ /�

= −∞

∞

∑

We know that the CTFS expression for the excitation is a sum of complex sinusoids and the 
response to each of those sinusoids will be another sinusoid of the same frequency. Therefore, 
the response can be expressed in the form

 
y( ) c [ ]yt k e j kt

k

=
= −∞

∞

∑ 2 5� /

and each complex sinusoid in y( )t  with fundamental cyclic frequency k /5 is caused by the com-
plex sinusoid in x( )t  of the same frequency. Subsitituting this form into the differential equation

 

( ) c [ ] . ( )c [ ]y yj k k e j k k ej kt

k

2 5 0 04 2 52 2 5� ��/ //

=−∞

∞

∑ + jj kt

k

j kt

k

j

k e

k e

2 5 2 5

2

1 58� �/
y

x

. c [ ]

c [ ]

=−∞

∞

=−∞

∞

∑ ∑+

=

/

��kt

k

/5

=−∞

∞

∑

Gathering terms and simplifying

 [( ) . ( ) . ]c [ ]yj k j k k e j kt

k

2 5 0 04 2 5 1 582 2 5� � �/ / /+ +
= −∞

∞

∑∑ ∑=
= −∞

∞
c [ ]x k e j kt

k

2 5� / .

Therefore, for any particular value of k the excitation and response are related by

 [( ) . ( ) . ]c [ ] c [ ]y xj k j k k k2 5 0 04 2 5 1 582� �/ /+ + =

and

 
c [ ]

c [ ] ( ) . ( ) .
y

x

k

k j k j k
=

+ +
1

2 5 0 04 2 5 1 582� �/ /

The quantity H[ ]
c [ ]

c [ ]
y

x
k

k

k
=  is analogous to frequency response and can logically be called 

 harmonic response. The system response is

 y( ) ( )
sinc ( )

( ) . ( ) .
t

k

j k j k
=

+ +
1 5

5

2 5 0 04 2 5 1 58

2

2/
/

/ /� �
ee j kt

k

2 5� /

= −∞

∞

∑ .
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This rather intimidating-looking expression can be easily programmed on a computer. The signals, 
their harmonic functions and the harmonic response are illustrated in Figure 6.13 and Figure 6.14.

We can see from the harmonic response that the system responds strongly at harmonic 
number one, the fundamental. The  fundamental period of x( )t  is T0 5=  s. So y( )t  should have a 
signifi cant response at a frequency of 0.2 Hz. Looking at the response graph, we see a signal that 
looks like a sinusoid and its fundamental period is 5 s, so its fundamental frequency is 0.2 Hz. 
The magnitudes of all the other harmonics, including k = 0, are almost zero. That is why the 
average value of the response is practically zero and it looks like a sinusoid, a single-frequency 

Figure 6.13
 Excitation harmonic function, system harmonic response and  response harmonic function
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Figure 6.14
Excitation and response
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234 Chapter  6  Continuous-Time Fourier Methods

signal. Also, notice the phase of the harmonic response at the fundamental. It is 1.5536 radians 
at k = 1, or almost �/2. That phase shift would convert a cosine into a sine. The excitation is 
an even function with only cosine components and the response is practically an odd function 
because of this phase shift.

 NUMERICAL COMPUTATION  OF THE FOURIER SERIES

Let’s consider an example of a different kind of signal for which we might want to fi nd 
the CTFS (Figure 6.15). This signal presents some problems. It is not at all obvious 
how to describe it, other than graphically. It is not sinusoidal, or any other obvious 
mathematical functional form. Up to this time in our study of the CTFS, in order to fi nd 
a CTFS harmonic function of a signal, we needed a mathematical description of it. But 
just because we cannot describe a signal mathematically does not mean it does not have 
a CTFS description. Most real signals that we might want to analyze in practice do not 
have a known exact mathematical description. If we have a set of samples of the signal 
taken from one period, we can  estimate the CTFS harmonic function numerically. The 
more samples we have, the better the estimate (Figure 6.16).

Figure 6.16
Sampling the arbitrary periodic signal to estimate its 
CTFS harmonic function
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Figure 6.15
An arbitrary periodic signal 

The harmonic function is

 c [ ] x( )x
/k

T
t e dtj kft T

T
= −∫

1 2� .

Since the starting point of the integral is arbitrary, for convenience set it to t = 0

 c [ ] x( )x
/k

T
t e dtj kt T

T

= −∫
1 2

0

� .

We don’t know the function x( )t  but if we have a set of N  samples over one period 
starting at t = 0, the time between samples is T T Ns = /  and we can approximate the 
integral by the sum of several integrals, each covering a time of length Ts

 c [ ] x( )x
/

( )

k
T

nT e dts
j knT T

nT

n T

n

s

s

s

≅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
+

∫
1 2

1
�

==

−

∑
0

1N

 (6.8)
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(In Figure 6.16, the samples extend over one fundamental period but they could extend 
over any period and the analysis would still be correct.) If the samples are close enough 
together x( )t  does not change much between samples and the integral (6.8) becomes 
a good approximation. The details of the integration process are in Web Appendix F 
where it is shown that, for harmonic numbers k N<< , we can approximate the harmonic 
function as

 c [ ] x( )x
/k

N
nT es

j nk N

n

N

≅ −

=

−

∑1 2

0

1
� . (6.9)

The summation on the right side of (6.9)

 x( ) /nT es
j nk N

n

N
−

=

−

∑ 2

0

1
�

is a very important operation in signal processing called the  discrete Fourier transform 
(DFT). So (6.9) can be written as

 c [ ] ( ) (x( ))x k N nT k Ns≅ <<1/ ,DFT . (6.10)

where 

 DFT (x( )) x( ) /nT nT es s
j nk N

n

N

= −

=

−

∑ 2

0

1
� .

The DFT takes a set of samples representing a periodic function over one period 
and returns another set of numbers representing an approximation to its CTFS har-
monic function, multiplied by the number of samples N . It is a built-in function in 
modern high-level programming languages like MATLAB. In MATLAB the name of 
the function is  fft, which stands for  fast Fourier transform. The fast Fourier trans-
form is an effi cient algorithm for computing the DFT. (The DFT and FFT are covered 
in more detail in Chapter 7.)

The simplest syntax of fft is X = fft(x) where x is a vector of N  samples of 
a function indexed by n in the range 0 ≤ <n N  and X is a vector of N  returned numbers 
indexed by k in the range 0 ≤ <k N. 

The DFT 

 x( ) /nT es
j nk N

n

N
−

=

−

∑ 2

0

1
�

is periodic in k with period N . This can be shown by fi nding X[ ]k N+ .

 X[ ] x( ) ( )/k N
N

nT e
e

s
j n k N N

n

N j n

+ = =− +

=

− −
=

∑1 2

0

1 2

1

�
�

��	

NN
nT e ks

j nk N

n

N

x( ) X[ ]/−

=

−

∑ =2

0

1
� .

The approximation (6.9) is for k N<< . This includes some negative values of k. But 
the  fft function returns values of the DFT in the range 0 ≤ <k N . The values of the 
DFT for negative k are the same as the values of k in a positive range that are separated 
by one period. So, for example, to fi nd X[ ]−1 , fi nd its periodic repetition X[ ]N −1 , 
which is included in the range 0 ≤ <k N .
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236 Chapter  6  Continuous-Time Fourier Methods

This numerical technique to fi nd the CTFS harmonic function can also be useful in 
cases in which the functional form of x( )t  is known but the integral

 c [ ] x( )x
/k

T
t e dtj kt T

T
= −∫

1 2�

cannot be done analytically.

EXAMPLE 6.3

Using the  DFT to approximate the CTFS

Find the  approximate CTFS harmonic function of a periodic signal x( )t , one period of which 
is described by

 x( )t t t= − − ≤ <1 1 12 , .

The fundamental period of this signal is 2. So we can choose any integer multiple of 2 as 
the time over which samples are taken (the representation time T ). Choose 128 samples over 
one fundamental period. The following MATLAB program fi nds and graphs the CTFS har-
monic function using the DFT.

% Program to approximate, using the DFT, the CTFS of a 

% periodic signal described over one period by 

% x(t) = sqrt(1-t^2), -1 < t < 1

N = 128 ; % Number of samples

T0 = 2 ; % Fundamental period

T = T0 ; % Representation time

Ts = T/N ; % Time between samples

fs = 1/Ts ; % Sampling rate

n = [0:N-1]’ ; % Time index for sampling

t = n*Ts ; % Sampling times

% Compute values of x(t) at the sampling times

x = sqrt(1-t.^2).*rect(t/2) +...

 sqrt(1-(t-2).^2).*rect((t-2)/2) +...

 sqrt(1-(t-4).^2).*rect((t-4)/2) ;

cx = fft(x)/N ; % DFT of samples

k = [0:N/2-1]’ ; % Vector of harmonic numbers

% Graph the results

subplot(3,1,1) ;

p = plot(t,x,’k’); set(p,’LineWidth’,2); grid on ; axis(‘equal’);

axis([0,4,0,1.5]) ;

xlabel(‘Time, t (s)’) ; ylabel(‘x(t)’) ; 

subplot(3,1,2) ;

p = stem(k,abs(cx(1:N/2)),’k’) ; set(p,’LineWidth’,2,’MarkerSize’,4) ; 

grid on ;

xlabel(‘Harmonic Number, k’) ; ylabel(‘|c_x[k]|’) ;
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subplot(3,1,3) ;

p = stem(k,angle(cx(1:N/2)),’k’) ; set(p,’LineWidth’,2,’MarkerSize’,

4) ; grid on ;

xlabel(‘Harmonic Number, k’) ; ylabel(‘Phase of c_x[k]’) ;

Figure 6.17 is the graphical output of the program.

Figure 6.17
x( )t  and c [ ]x k
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Only three distinct values of phase occur in the phase graph, 0, �  and −�. The phases 
�  and −� are equivalent so they could all have been graphed as either �  or −�. MATLAB 
computed the phase and, because of round-off errors in its computations, it sometimes chose a 
number very close to �  and other times chose a number very close to −�.

The graphs of the magnitude and phase of c [ ]x k  in Figure 6.17 are graphed only 
for k in the range 0 2≤ <k N / . Since c [ ] c [ ]x x

*k k= −  this is suffi cient to defi ne c [ ]x k  in the 
range − ≤ <N k N/ /2 2. It is often desirable to graph the harmonic function over the range 
− ≤ <N k N/ /2 2. That can be done by realizing that the numbers returned by the DFT are 
exactly one period of a periodic function. That being the case, the second half of these num-
bers covering the range N k N/2 ≤ <  is exactly the same as the set of numbers that occur in 
the range − ≤ <N k/2 0. There is a  function  fftshift in MATLAB that swaps the second 
half of the set of numbers with the fi rst half. Then the full set of N  numbers covers the range 
− ≤ <N k N/ /2 2 instead of the range 0 ≤ <k N .

We can change the MATLAB program to analyze the signal over two fundamental periods 
instead of one by changing the line

T = T0 ;  % Representation time

to 

T = 2*T0 ;  % Representation time

The results are illustrated in Figure 6.18.
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238 Chapter  6  Continuous-Time Fourier Methods

Notice that now the CTFS harmonic function is zero for all odd values of k. That occurred 
because we used two fundamental periods of x( )t  as the representation time T . The fundamen-
tal frequency of the CTFS representation is half the fundamental frequency of x( )t . The signal 
power is at the fundamental frequency of x( )t  and its harmonics, which are the even-numbered 
harmonics of this CTFS harmonic function. So only the even-numbered harmonics are nonzero. 
The kth harmonic in the previous analysis using one fundamental period as the representation 
time is the same as the (2k)th harmonic in this analysis.

EXAMPLE 6.4

Total harmonic distortion computation

A fi gure of merit for some systems is  total harmonic distortion (THD). If the excitation signal 
of the system is a sinusoid, the THD of the response signal is the total signal power in the 
response signal of all the harmonics other than the fundamental (k ≠ ±1) divided by the total 
signal power in the response signal at the fundamental (k ≠ ±1).

An  audio amplifi er with a nominal gain of 100 at 4 kHz is driven by a 4 kHz sine wave with 
a peak amplitude of 100 mV. The ideal response of the amplifi er would be x ( ) sin( )i t t= 10 8000�  
volts but the actual amplifi er output signal x( )t  is limited to a range of ±7 volts. So the actual response 
signal is correct for all voltages of magnitude less than 7 volts but for all ideal voltages greater than 7 
in magnitude the response is “clipped” at ±7 volts. Compute the THD of the response signal.

The CTFS harmonic function of x( )t  can be found analytically but it is a rather long, te-
dious, error-prone process. If we are only interested in a numerical THD we can fi nd it numeri-
cally, using the DFT and a computer. That is done in the following MATLAB program and the 
results are illustrated in Figure 6.19.

Figure 6.18
x( )t  and X[ ]k  using two fundamental periods as the representation time 
instead of one
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f0 = 4000 ; % Fundamental frequency of signal

T0 = 1/f0 ; % Fundamental period of signal

N = 256 ; % Number of samples to use in one period

Ts = T0/N ; % Time between samples

fs = 1/Ts ; % Sampling rate in samples/second

t = Ts*[0:N-1]’ ; % Time vector for graphing signals

A = 10 ; % Ideal signal amplitude

xi = A*sin(2*pi*f0*t) ; % Ideal signal

Pxi = A^2/2 ; % Signal power of ideal signal

x = min(xi,0.7*A) ;  % Clip ideal signal at 7 volts

x = max(x,-0.7*A) ; % Clip ideal signal at -7 volts

Px = mean(x.^2) ; % Signal power of actual signal

cx = fftshift(fft(x)/N); % Compute harmonic function values up to k

  % = +/- 128

k = [-N/2:N/2-1]’ ; % Vector of harmonic numbers

I0 = fi nd(abs(k) == 1); % Find harmonic function values at 

  % fundamental

P0 = sum(abs(cx(I0)).^2); % Compute signal power of fundamental

Ik = fi nd(abs(k) ~= 1) ; % Find harmonic function values not at 

  % fundamental

Figure 6.19
Results of THD computation
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240 Chapter  6  Continuous-Time Fourier Methods

Pk = sum(abs(cx(Ik)).^2); % Compute signal power in harmonics

THD = Pk*100/P0 ; % Compute total harmonic distortion

% Compute values of fundamental component of actual signal

x0 = 0*t ; for kk = 1:length(I0), x0 = x0 + cx(I0(kk))*exp(j*2*pi*

k(I0(kk))*f0*t) ; end

% Compute values of sum of signal components not at fundamental in 

% actual signal

xk = 0*t ; for kk = 1:length(Ik), xk = xk + cx(Ik(kk))*exp(j*2*pi*

k(Ik(kk))*f0*t) ; end

x0 = real(x0); % Remove any residual imaginary parts due to round-off

xk = real(xk); % Remove any residual imaginary parts due to round-off

% Graph the results and report signal powers and THD

ttl = [‘Signal Power of Ideal Signal = ‘,num2str(Pxi)] ;

ttl = str2mat(ttl,[‘Signal Power of Actual Signal = ‘, num2str(Px)]);

subplot(2,1,1) ;

ptr = plot(1000*t,xi,’k:’,1000*t,x,’k’,1000*t,x-xi,’k--’) ; grid on ; 

set(ptr,’LineWidth’,2) ;

xlabel(‘Time, {\itt} (ms)’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘x_i({\itt}), x({\itt}) and e({\itt})’,’FontName’,’Times’,’

FontSize’,24) ;

title(ttl,’FontName’,’Times’,’FontSize’,24) ;

ptr = legend(‘Ideal Signal, x_i({\itt})’,’Actual Signal, x({\itt})’,

’Error, e({\itt})’) ; 

set(ptr,’FontName’,’Times’,’FontSize’,18) ;

set(gca,’FontSize’,18) ;

subplot(2,1,2) ;

ttl = [‘Signal Power of Fundamental = ‘,num2str(P0)] ;

ttl = str2mat(ttl,[‘Total Signal Power of All Other Harmonics = ‘,

num2str(Pk)]) ;

ttl = str2mat(ttl,[‘Total Harmonic Distortion: ‘,num2str(THD),’ %’]) ;

ptr = plot(1000*t,x0,’k’,1000*t,xk,’k:’) ; grid on ; 

set(ptr,’LineWidth’,2) ;

xlabel(‘Time, {\itt} (ms)’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘x_0({\itt}) and \Sigma x_{\itk}({\itt})’,’FontName’,’Times’,

’FontSize’,24) ;

title(ttl,’FontName’,’Times’,’FontSize’,24) ;

ptr = legend(‘Fundamental, x_0({\itt})’,’Sum of Other Harmonics, 

x_{\itk}({\itt})’) ; 

set(ptr,’FontName’,’Times’,’FontSize’,18) ;

set(gca,’FontSize’,18) ;

The THD is 1.8923% even with this severe 30% clipping at each positive and negative peak. 
Therefore for good signal fi delity THD should generally be much smaller than 1%.
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6.3 THE  CONTINUOUS-TIME  FOURIER TRANSFORM
The CTFS can represent any  periodic signal with engineering usefulness over all time. 
Of course, some important signals are not periodic. So it would be useful to somehow 
extend the CTFS to also be able to represent  aperiodic signals over all time. This can 
be done and the result is called the Fourier transform. 

 EXTENDING THE FOURIER SERIES TO APERIODIC SIGNALS

The salient difference between a periodic signal and an aperiodic signal is that a peri-
odic signal repeats in a fi nite time T called the period. It has been repeating with that 
period forever and will continue to repeat with that period forever. An aperiodic signal 
does not have a fi nite period. An aperiodic signal may repeat a pattern many times 
within some fi nite time, but not over all time. The transition between the Fourier series 
and the Fourier transform is accomplished by fi nding the form of the Fourier series for 
a periodic signal and then letting the period approach infi nity. Mathematically, saying 
that a function is aperiodic and saying that a function has an infi nite period are saying 
the same thing. 

Consider a time-domain signal x( )t  consisting of rectangular pulses of height A 
and width w with fundamental period T0 (Figure 6.20). This signal will illustrate the 
phenomena that occur in letting the fundamental period approach infi nity for a general 
signal. Representing this pulse train with a complex CTFS, the harmonic function is 
found to be c [ ] ( )sinc( )x k Aw T kw T= / /0 0  (with T T= 0).

Suppose w T= 0 2/  (meaning the waveform is at A half the time and at zero the 
other half, a 50% duty cycle). Then c [ ] ( )sinc( )x k A k= / /2 2  (Figure 6.21).

t 

x(t)

A

w T0

Figure 6.20
Rectangular-wave signal

k 
-50 50

0.5A

|cx[k]|

Figure 6.21
The magnitude of the CTFS harmonic function of a 50% 
duty-cycle rectangular-wave signal

Now let the fundamental period T0 increase from 1 to 5 while w is unchanged. 
Then c [ ]x 0  becomes 1 10/  and the CTFS harmonic function is c [ ] ( )sinc( )x k k= 1 10 10/ /  
(Figure 6.22).

The maximum harmonic amplitude magnitude is 5 times smaller than before 
because the average value of the function is 5 times smaller than before. As the fun-
damental period T0 gets larger, the harmonic amplitudes lie on a wider sinc function 
whose amplitude goes down as T0 increases. In the limit as T0 approaches infi nity, the 
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242 Chapter  6  Continuous-Time Fourier Methods

original time-domain waveform x( )t  approaches a single rectangular pulse at the 
origin and the harmonic function approaches samples from an infi nitely wide sinc 
function with zero amplitude. If we were to multiply c [ ]x k  by T0 before graphing it, 
the amplitude would not go to zero as T0 approached infi nity but would stay where it is 
and simply trace points on a widening sinc function. Also, graphing against k T kf/ 0 0=  
instead of k would make the horizontal scale be frequency instead of harmonic number 
and the sinc function would remain the same width on that scale as T0 increases (and f0  
decreases). Making those changes, the last two graphs would look like Figure 6.23.

k 
-50 50

0.5A

|cx[k]|

Figure 6.22
The magnitude of the CTFS harmonic function for a 
rectangular-wave signal with reduced duty cycle

kf0
-10 10

0.5A

|T0 cx[k]|

kf0-10 10

0.5A

|T0 cx[k]|

Figure 6.23
Magnitudes of the modifi ed CTFS harmonic functions for rectangular-wave signals of 50% and 10% 
duty cycles

Call this a “modifi ed” harmonic function. For this  modifi ed harmonic function, 
T k Aw wkf0 0c [ ] sinc( )x = . As T0 increases without bound (making the pulse train a sin-
gle pulse), f0  approaches zero and the discrete variable kf0 approaches a continuous 
variable (which we will call f ). The modifi ed CTFS harmonic function approaches the 
function illustrated in Figure 6.24. This modifi ed harmonic function (with some nota-
tion changes) becomes the CTFT of that single pulse.
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The frequency difference between adjacent CTFS harmonic amplitudes is the same 
as the fundamental frequency of the CTFS representation, f T0 01= / . To emphasize its 
relationship to a frequency differential (which it will become in the limit as the funda-
mental period goes to infi nity) let this spacing be called �f . That is, let �f f T= =0 01/ . 
Then the complex CTFS representation of x( )t  can be written as

 x( ) c [ ]xt k e j k ft

k

=
=−∞

∞

∑ 2� � .

Substituting the integral expression for c [ ]x k ,

 x( ) x( )t
T

e d ej k f

t

t T
j k ft=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
+

∫
1

0

2 2

0

0 0

� �� � �� �

kk=−∞

∞

∑ .

(The variable of integration is � to distinguish it from the t in the function e j k ft2� � , 
which is outside the integral.) Since the starting point t0 for the integral is arbitrary, let 
it be t T0 0 2= − / . Then

 x( ) x( )
/

/

t e d ej k f

T

T
j k ft=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−
∫ � �� � �2

2

2
2

0

0

� � �ff
k=−∞

∞

∑

where �f  has replaced 1 0/T . In the limit as T0 approaches infi nity, �f  approaches the 
differential df, k f�  becomes a continuous variable f, the integration limits approach 
plus and minus infi nity and the summation becomes an integral

 

x( ) lim x( )t e d e
T

j k f

T

T
j=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥→∞

−

−
∫

0
0

0

2

2

2

� �� ��

/

/
22

2

�

� �� �

k ft

k

j f

f

e d

� �
=−∞

∞

−

−∞

∞

∑

∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
⎡

⎣
⎢
⎢

x( )
⎤⎤

⎦
⎥
⎥−∞

∞

∫ e dfj ft2� .  (6.11)

kf0
-10 10

0.5A

T0|cx[k]|

Figure 6.24
Limiting form of modifi ed CTFS harmonic function  for 
rectangular-wave signal
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244 Chapter  6  Continuous-Time Fourier Methods

The bracketed quantity on the right side of (6.11) is the CTFT of x( )t

 X( ) x( )f t e dtj ft= −

−∞

∞

∫ 2�  (6.12)

and it follows that

 x( ) X( )t f e dfj ft=
−∞

∞

∫ 2�  . (6.13)

Here we have adopted the convention that the Fourier transform of a signal is indicated 
by the same letter of the alphabet but uppercase instead of lowercase. Notice that the 
Fourier transform is a function of cyclic frequency f and that the time dependence of 
the signal has been “integrated out” so the the Fourier transform  is not a function of 
time. The time-domain function (x) and its CTFT (X) form a “ Fourier transform pair” 
that is often indicated by the notation x( ) X( )t fF← →⎯ . Also conventional notation is 
X( ) (x( ))f t= F  and x( ) (X( ))t f= −F 1  where F ( )⋅  is read “Fourier transform of ” and 
F − ⋅1( ) is read “inverse Fourier transform of ”.

Another common form of the Fourier transform is defi ned by making the change 
of variable f = 	 �/2  where 	 is radian frequency.

 X( ) x( )	 � 	/2 = −

−∞

∞

∫ t e dtj t  and x( ) X( )t e dj t=
−∞

∞

∫
1

2
2

�
	 � 		/ . (6.14)

This is the result we obtain by simply substituting 	 �/2  for f and d	 �/2  for df. It is 
much more common in engineering literature to see this form written as

 X( ) x( )	 	= −

−∞

∞

∫ t e dtj t  and x( ) X( )t e dj t=
−∞

∞

∫
1

2�
	 		 . (6.15)

In this second form, the strict mathematical meaning of the function “X” has changed 
and that could be a source of confusion if conversion between the two forms is necessary. 
To compound the confusion, it is also quite common to see the 	 form written as

 X( ) x( )j t e dtj t	 	= −

−∞

∞

∫  and x( ) X( )t j e dj t=
−∞

∞

∫
1

2�
	 		  (6.16)

again changing the meaning of the function “X”. The reason for including a j in the 
functional argument is to  make the Fourier transform more directly compatible with 
the Laplace transform (Chapter 8).

Suppose we have used 

 X( ) x( )f t e dtj ft= −

−∞

∞

∫ 2�

to form the Fourier pair

 x( ) u( ) X( )t e t f
j f

t= ← →⎯ =
+

−�

� �

F 1

2
.
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Ordinarily, in mathematical functional notation, if we were to then refer to a function 
X( )j	  we would mean 

 X( ) X( )
( )

f j
j j

f j→⎯ →⎯⎯ =
+

=
− +

	
	

� 	 � �	 �

1

2

1

2
.

But in Fourier transform literature it is very common to say that if the cyclic-frequency 
form of a Fourier transform is

 X( )f
j f

=
+

1

2� �

then the radian-frequency form is

 X( )
( )

j
j j

	
� 	 � � 	 �

=
+

=
+

1

2 2

1

/
.

In going from X( )f  to X( )j	  what we have really done is to go from X( )f  to x( )t  

using x( ) X( )t f e dfj ft=
−∞

∞

∫ 2�  and then, using X( ) x( )j t e dtj t	 	= −

−∞

∞

∫ , fi nd X( )j	 . In 

other words, X( ) x( ) X( )f t jF F−

⎯ →⎯⎯ ⎯ →⎯
1

	 . This amounts to making the transition 

X( ) X( )f jf →⎯ →⎯⎯⎯	 �
	

/2  instead of X( ) X( )f jf j→⎯ →⎯⎯	 	 . In this text we will follow 
this traditional interpretation.

In any analysis it is important to choose a defi nition and then use it consistently. 
In this text the forms

 

x( ) X( ) X( ) x( )t f e df f t e dtj ft j ft= ← →⎯ =
−∞

∞
−

−∞

∞

∫ ∫2 2� �F

xx( ) X( ) X( ) x( )t j e d j t e dtj t j t= ← →⎯ =
−∞

∞
−

−∞
∫

1

2�
	 	 		 	F

∞∞

∫

will be used for the f and 	 forms because those are the two most often encountered 
in engineering literature. The Fourier transform, as introduced here, applies to 
continuous-time signals. Therefore it is often referred to as the continuous-time Fourier 
transform or CTFT. The CTFT is widely used in the analysis of communication 
systems, fi lters and Fourier optics.

The 	 form and the f form of the CTFT are both widely used in engineering. 
Which one is used in any particular book or article depends on multiple factors includ-
ing the traditional notation conventions in a particular fi eld and the personal preference 
of the author. Since both forms are in common usage, in this text we will use whichever 
form seems to be the most convenient in any individual analysis. If, at any time, we 
need to change to the other form, that is usually easily done by simply replacing f by 
	 �/2  or 	 by 2�f . (In addition to the defi nitions presented here there are also several 
other alternate defi nitions of the Fourier transform that can be found in engineering, 
mathematics and physics books.)

Table 6.3 lists some  CTFT pairs in the 	 form derived directly from the defi nitions 
presented above. The 	 form was used here because, for these functions, it is a little 
more compact.
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246 Chapter  6  Continuous-Time Fourier Methods

Table 6.3 Some CTFT pairs 

� t( )← →⎯F 1

/e t jt− ← →⎯ + >� 	 � �u( ) ( ),F 1 0 /− − ← →⎯ +−e t jt� 	 � �u( ) ( ),F 1 <<

← →⎯ + >−

0

1 0/ ,2te t jt� 	 � �u( ) ( )F /− − ← →⎯ +−te t jt� 	 �u( ) (F 1 )) ,

u( )
!

( )
,

2

1

0�

	 �
�

<

← →⎯
+

−
+t e t

n

j
n t

n
F

��
	

�> − − ← →⎯−0 t e t
n

j
n t u( )

!

(
F

++
<

← →⎯
+ +

+

−

�
�

	
	

	 � 	
�

)
,

sin( )u( )
( )

n

te t t
j

1

0
0
2

0

0

F
22 0

0
2

0
20, sin( )u( )

( )
� 	

	

	 � 	
�> − − ← →⎯

+ +
−e t t

j
t F ,,

cos( ) u( )
( )

,

�

	
	 �

	 � 	
��

<

← →⎯ +
+ +

>−

0

00 2
0
2e t t

j

j
t F − − ← →⎯ +

+ +
<−e t t

j

j
t� 	

	 �

	 � 	
�cos( ) u( )

( )
,0 2

0
2

F 00

e t− ← →⎯
+

>� �

	 �
�

F 2
02 2 ,

THE   GENERALIZED FOURIER TRANSFORM

There are some important practical signals that do not have Fourier transforms in the 
strict sense. Because these signals are so important, the Fourier transform has been 
“generalized” to include them. As an example of the generalized Fourier transform, let’s 
fi nd the CTFT of a very simple function x( )t A= , a constant. Using the CTFT defi nition 

 x( ) X( ) X( ) x( )t f e df f t e dtj ft j ft= ← →⎯ =+

−∞

∞
−

−∞

∞

∫ 2 2� �F ∫∫ .

we obtain

 X( )f Ae dt A e dtj ft j ft= =−

−∞

∞
−

−∞

∞

∫ ∫2 2� � .

The integral does not converge. Therefore, strictly speaking, the Fourier transform 
does not exist. But we can avoid this problem by generalizing the Fourier transform 
with the following procedure. First we will fi nd the CTFT of x ( ) ,



 
t Ae t= >− 0, 
a function that approaches the constant A as 
 approaches zero. Then we will let 
 
approach zero after fi nding the transform. The factor e t−
  is a  convergence factor that 
allows us to evaluate the integral (Figure 6.25).

The transform is

 

X ( )


 � 
 � 
f Ae e dt Ae e dt Aet j ft t j ft= = +− −

−∞

∞
−

−∞

−∫ ∫2 2
0

tt j ft

j f t j f

e dt

f A e dt e

−
∞

−

−∞

− −

∫

∫= +

2

0

2
0

2

�




 � 
 �X ( ) ( ) ( ))

( )
t dt A

f
0

2 2

2

2

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+





 �

Now take the limit, as 
 approaches zero, of X ( )
 f . For f ≠ 0,

 lim
( )






 �→ +
=

0 2 2

2

2
0A

f
.

Next fi nd the area under the function X ( )
 f  as 
 approaches zero.

 Area =
+−∞

∞

∫A
f

df
2

22 2





 �( )
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Using

 dx

a bx ab

bx

a2 2
11

+
= ⎛

⎝⎜
⎞
⎠⎟

−∫ ( )
tan

we get

 Area = ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= +⎛
⎝⎜

⎞−

−∞

∞

A
f A2

2

2

2 2
1


�


�


 �

� �
tan ⎠⎠⎟ = A.

The area under the function is A and is independent of the value of 
. Therefore in the 
limit 
 → 0, the Fourier transform of the constant A is a function that is zero for f ≠ 0 
and has an area of A. This exactly describes an impulse of strength A occurring at f = 0. 
Therefore we can form the  generalized Fourier-transform pair

 A A fF← →⎯ �( ).

The generalization of the CTFT extends it to other useful functions, including periodic 
functions. By similar reasoning the CTFT transform pairs

 cos( ) ( ) ( ) ( )2 1 20 0 0� � �f t f f f fF← →⎯ − + +[ ]/

and

 sin( ) ( )[ ( ) ( )]2 20 0 0� � �f t j f f f fF← →⎯ + − −/ , 

can be found. By making the substitution f = 	 �/2  and using the scaling property of 
the impulse, the equivalent radian-frequency forms of these transforms are found to be

 A AF← →⎯ 2� � 	( )

 cos( ) [ ( ) ( )]	 � � 	 	 � 	 	0 0 0t F← →⎯ − + +

 sin( ) [ ( ) ( )]	 � � 	 	 � 	 	0 0 0t jF← →⎯ + − − .

The problem that caused the need for a generalized form of the Fourier transform 
is that these functions, constants and sinusoids, are not absolutely integrable, even 

Figure 6.25
Effect of the convergence factor e t−


t
-4 4

xσ(t)

1

f 
-1 1

|Xσ( f )|

4

σ decreasing

σ decreasing
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248 Chapter  6  Continuous-Time Fourier Methods

though they are bounded. The generalized Fourier transform can also be applied to 
other signals that are not absolutely integrable but are bounded, for example, the unit 
step and the signum.

Another way of fi nding the CTFT of a constant is to approach the problem from 
the other side by fi nding the inverse CTFT of an impulse X( ) ( )f A f= �  using the 
sampling property of the impulse.

 x( ) X( ) ( )t f e df A f e df Ae Aj ft j ft= = = =+

−∞

∞
+

−∞

∞

∫ ∫2 2 0� ��

This is obviously a much quicker route to fi nding the forward transform of a constant 
than the preceding development. But the problem with this approach is that if we are 
trying to fi nd the forward transform of a function we must fi rst guess at the transform 
and then evaluate whether it is correct by fi nding the inverse transform.

EXAMPLE 6.5

CTFT  of the signum and unit-step functions

Find the CTFT of x( ) sgn( )t t=  and then use that result to fi nd the CTFT of x( ) u( )t t= .
Applying the integral formula directly we get

 X( ) sgn( )f t e dt e dt ej ft j ft j ft= = − +−

−∞

∞
−

−∞

−∫ ∫2 2
0

2� � � ddt
0

∞

∫
and these integrals do not converge. We can use a convergence factor to fi nd the generalized 
CTFT. Let x ( ) sgn( )



t t e t= −  with 
 > 0. Then

 

X ( ) sgn( ) ( )




 � 
 �f t e e dt e dtt j ft j f t= = −− −

−∞

∞
−

−∞
∫ ∫2 2

0

++

= −
−

−

− +
∞

−

−∞

∫ e dt

f
e

j f

e

j f t

j f t

( )

( )

,

X ( )


 �





 �


 �

2

0

2 0

2

−− + ∞

+
= −

−
+

+

( )
 �


 � 
 � 
 �

j f t

j f j f j f

2

0
2

1

2

1

2

and 

 X( ) lim X ( )f f j f= =
→



 �
0

1/

or in the radian-frequency form

 X( )j j	 	= 2/ .

To fi nd the CTFT of x( ) u( )t t= , we observe that 

 u( ) ( )[sgn( ) ]t t= +1 2 1/

So the CTFT is 

 

U( ) ( )[sgn( ) ] ( ) sgn( )f t e dt t ej ft= + =−

−∞

∞
−∫ 1 2 1 1 22/ /� jj ft

t j f

j ftdt e dt2

1

2�

�

�

−∞

∞

= =

−∫ +

F (sgn( )) /
� ���� ���� −−∞

∞

= =

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +
F ( ) ( )

U( ) ( )[

1

1 2 1

�

�

f

f j f

� �� ��

/ / �� � �( )] ( ) ( )f j f f= +1 2 1 2/ /

or in the radian-frequency form

 U( ) ( )j j	 	 �� 	= +1/ .
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EXAMPLE 6.6

Verify that the  inverse CTFT of U( ) ( ) ( )f j f f== ++1 2 1 2/ /� �  is indeed the unit-step 
function

If we apply the  inverse Fourier transform integral to U( ) ( ) ( )f j f f= +1 2 1 2/ /� �  we get

 

u / /( ) [ ( ) ( )]t j f f e df
e

j f
dj ft

j ft
= + =

−∞

∞

∫ 1 2 1 2
2

2
2

� �
�

�
�

ff f e dfj ft

−∞

∞

−∞

∞

=

∫ ∫+ ( ) ( )1 2 2

1

/

by the sampling

� �

pproperty of the impulse

u /

� ��� ���

( )
cos(

t
f= +1 2

2� tt

j f
df

ft) sin(

2

2

0

�

�

−∞

∞

=

∫ +

(odd integrand)
� ��� ���

)) sin( )

2
1 2 2

2

2�

�

�f
df

ft

even integrand

/
� �� ��−∞

∞

∫ = +
ff

df
0

∞

∫

Case 1. t = 0. 

 u / /( ) ( )t d= + =
∞

∫1 2 2 0 1 2
0

	

Case 2. t > 0
Let � � � �= ⇒ =2 2ft d tdf .

 u /
/

( )
sin( ) sin( )

t
t

d

t
d= + = +

∞ ∞

∫ ∫1 2 2
2

1

2

1

0 0

�

�

�

� �

�

�
�

Case 3. t < 0

 u /
/

( )
sin( ) sin( )

t
t

d

t
d= + = +

−∞ −∞

∫ ∫1 2 2
2

1

2

1

0 0

�

�

�

� �

�

�
�

The integrals in Case 2 and Case 3 are sine integrals defi ned by

 Si( )
sin( )

z d
z

= ∫
�

�
�

0

and we can fi nd in standard mathematical tables that 

 lim Si( )
z

z
→∞

= �/2,  Si( )0 0=  and Si( ) Si( )− = −z z

(Abramowitz and Stegun, p. 231). Therefore

 
2

2

2

1 2 0

0 0

1 20

sin( )�

�

ft

f
df

t

t
∞

∫ =
>
=

−

/ ,

,

/ ,, t <

⎧
⎨
⎪

⎩⎪ 0

and

 u

,

/ ,

,

( ) .t

t

t

t

=
>
=
<

⎧
⎨
⎪

⎩⎪

1 0

1 2 0

0 0
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250 Chapter  6  Continuous-Time Fourier Methods

This inverse CTFT shows that, for complete compatibility with Fourier transform theory, the 
value of u( )0  should be defi ned as 1/2 as it was in Chapter 2. Defi ning the unit step this way 
is mathematically consistent and can occasionally have some engineering signifi cance (see 
Chapter 15—digital fi lter design using the impulse invariant technique).

EXAMPLE 6.7

CTFT  of the  unit-rectangle function

Find the CTFT of the unit-rectangle function.
The CTFT of the unit-rectangle function is

 

F (rect( )) rect( ) [cos( ) sint t e dt ft jj ft= = +−

−∞

∞

∫ 2 2� � (( )]

(rect( )) cos( )

2

2 2

1 2

1 2

0

1 2

�

�

ft dt

t ft dt

−
∫

∫= =

/

/

/

F
ssin( )

sinc( )
�

�

f

f
f=

We now have the CTFT pair rect( ) sinc( )t fF← →⎯ . (In the 	 form the pair is 
rect( ) sinc( )t F← →⎯ 	 �/2 . In this case the f form is simpler and more symmetrical than 
the 	 form.)  Recall the result of Example 6.1

 A t w t Aw T wk TT T
rect( ) ( ) ( )sinc( )/ / /∗ ← →⎯� 0

0
0 0

FS .

The CTFT of a rectangle function is a sinc function and the CTFS harmonic function 
of a periodically repeated rectangle function is a “ sampled” sinc function. It is sampled 
because k only takes on integer values. This relationship between periodic repetition in 
time and sampling in frequency (harmonic number) will be important in the explora-
tion of sampling in Chapter 10.

We can now extend the Fourier transform table to include several other functions 
that often occur in Fourier analysis. In Table 6.4 we used the cyclic frequency form of 
the CTFT because, for these functions, it is somewhat simpler and more symmetrical.

Table 6.4 More  Fourier transform pairs

�( )t F← →⎯ 1 1 F← →⎯ �( )f

/sgn( )t j fF← →⎯ 1 � /u( ) ( ) ( )t fF← →⎯ +1 2 � 11 2/j f

t f

�

rect( ) sinc( )F← →⎯ sinc( ) rect(t F← →⎯ ff

t f

)

tri( ) sinc ( )F← →⎯ 2 sinc ( ) tri( )2 t fF← →⎯

, /� �T ft f f f T
0 00 0 01( ) ( )F← →⎯ = , /T t f T f

f t

T f0 0 0

0

0 0
1

2

� �

�

( ) ( )

cos( )

F← →⎯ =
FF F← →⎯ − + + ← →( )[ ( ) ( )] sin( )1 2 20 0 0/ � � �f f f f f t ⎯⎯ + − −( )[ ( ) ( )]j f f f f/2 0 0� �

 FOURIER TRANSFORM PROPERTIES

Table 6.5 and Table 6.6 illustrate some properties of the CTFT derived directly from 
the two defi nitions.
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Table 6.5 Fourier  transform       properties, f form

Linearity �g( )t ++ ← →⎯ +� � �h( ) G( ) H( )t f f
F

Time-Shifting g( ) G( )t t f e j ft− ← →⎯ −
0

2 0
F �

FFrequency Shifting e j f2� 00 0
t t f fg( ) G( )F← →⎯ −

Time Scaling g / /

Fr

( ) ( )G( )at a f a
F← →⎯ 1

eequency Scaling / g /( ) (1 a t aa af) G( )F← →⎯

Time Differentiation g

Time Integrati

d

dt
t j f f( ) G( )F← →⎯ 2�

oon g( )
G(

� �d
t

−∞
∫ ← →⎯F ff

j f
f

)
( )G( ) ( )

Frequency Differentiation

2
1 2 0

�
�+ /

Multip

t t
j d

df
fg( ) G( )F← →⎯ −

2�

llication– g( ) ht ∗ (( ) G( ) ( )t f f
F← →⎯ H

Convolution Duality g H

Parseval’s T

( )h( ) G( ) ( )t t f f
F← →⎯ ∗

hheorem

T

g( ) G( )t dt f df2 2

−∞

∞

−∞

∞

∫ ∫=

ootal Area orX( ) x( )0 =
−∞

∞

∫ t dt xx( ) X( )0 =
−∞

∞

∫ f df

Table 6.6 Fourier transform     properties, � form

Linearity � � �g( ) h( ) Gt t+ ← →⎯F (( ) H( )

g(

j j	 � 	+

Time-Shifting tt t j e j t− ← →⎯ −
0 0) G( )F

	 	

Frequency Shifting

Time Scaling

e t jj t	 	 	0 0g( ) G( ( ))F← →⎯ −

g / /

Frequen

( ) ( )G( )at a j a
F← →⎯ 1 	

ccy Scaling / g /

Time Di

( ) ( ) G( )1 a t a ja
F← →⎯ 	

ffferentiation g
d

dt
t j j( ) G( )F← →⎯ 	 	

TTime Integration g( )
G

� �d
t

−∞
∫ ← →⎯F (( )

G( ) ( )

Frequency Differentiation

j

j

	

	
� � 	+ 0

Multiplication–

t t j
d

d
jg( ) G( )F← →⎯

	
	

g H

Convolution Dualit

( ) h( ) G( ) ( )t t j j∗ ← →⎯F 	 	

yy g H

Parseval

( )h( ) G( ) ( )t t j j
F← →⎯ ∗1

2�
	 	

’’s Theorem

Total

g( ) G( )t dt j d2 21

2
−∞

∞

−∞

∞

∫ ∫=
�

	 	

Area orX x( ) x( ) X( )0 0
1

2
( ) = =

−∞

∞

−
∫ t dt j dw

�
	

∞∞

∞

∫
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252 Chapter  6  Continuous-Time Fourier Methods

Any periodic signal can be expressed as a Fourier series of the form

 x( ) c [ ]x
/t k e j kt T

k

=
= −∞

∞

∑ 2� .

Using the  frequency shifting property, we can fi nd the CTFT as

 X( ) c [ ] ( )xf k f k T
k

= −
= −∞

∞

∑ � / .

So the CTFT of any periodic signal consists entirely of impulses. The strengths of 
those impulses at frequencies k T/  are the same as the values of the CTFS harmonic 
function at harmonic number k.

EXAMPLE 6.8

CTFS harmonic function  of a periodic signal using the CTFT

Use 

 X( ) c [ ] ( )xf k f k T
k

= −
= −∞

∞

∑ � /

to fi nd the CTFS harmonic function of x( ) rect( ) ( )t t t= ∗2 1� . 
This is a convolution of two functions. Therefore, from the multiplication–convolution 

duality property, the CTFT of x( )t  is the product of the CTFTs of the individual functions,

 X( ) ( )sinc( ) ( ) ( ) sinc( ) (f f f k
k

= =
=−∞

∞

∑1 2 2 1 2 21/ / / /� � ff k− )

and the CTFS harmonic function must therefore be

 c [ ] ( )sinc( )x k k= 1 2 2/ /

based on T T= =0 1.

EXAMPLE 6.9

CTFT  of a modulated sinusoid

Find the CTFT of x( ) cos( )sin( , )t t t= 24 100 10 000� � .
This is the product of two functions. Therefore, using the  multiplication–convolution 

duality property, the CTFT will be the convolution of their individual CTFTs. Using 

 cos( ) ( )[ ( ) ( )]2 1 20 0 0� � �f t f f f fF← →⎯ − + +/

and

 sin( ) ( )[ ( ) ( )]2 20 0 0� � �f t j f f f fF← →⎯ + − −/

we get

 24 100 12 50 50cos( ) [ ( ) ( )]� � �t f fF← →⎯ − + +
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and

 sin( , ) ( )[ ( ) ( )]10 000 2 5000 5000� � �t j f fF← →⎯ + − −/

Then the overall CTFT is

24 100 10 000 12 50 50cos( )sin( , ) [ ( ) ( )� � � �t t f fF← →⎯ − + + ]] ( )[ [ ] ( )]∗ + − −j f f/2 5000 5000� �

The  time-shifting property says that a shift in time corresponds to a phase shift in 
frequency. As an example of why the time-shifting property makes sense, let the time 
signal be the complex sinusoid x( )t e j t= 2� . Then x( ) ( )t t e e ej t t j t j t− = =− −

0
2 2 20 0� � �  

(Figure 6.26). 

Figure 6.26
A complex exponential x( )t e j f t= 2 0�  and a delayed 
version x( ) ( / )t e j f t− = −1 8 2 1 80/ �

t2

Re(x(t))

1

Im(x(t))

1

-1
-1

t2

Re(x(t - 1/8))
1

Im(x(t - 1/8))

1

-1
-1

x(t) = ej2πt

Shifting this signal in time corresponds to multiplying it by the complex number
e j t− 2 0� . The CTFT expression

 x( ) X( )t f e dfj ft= +

−∞

∞

∫ 2�

says that any signal that is Fourier transformable can be expressed as a linear com-
bination of complex sinusoids over a continuum of frequencies f and, if x( )t  is 
shifted by t0, each of those complex sinusoids is multiplied by the complex number 
e j ft− 2 0� . What happens to any complex number when it is multiplied by a com-
plex exponential of the form e jx where x is real? The magnitude of e jx is one for 
any real x. Therefore multiplication by e jx changes the  phase, but not the magni-
tude, of the complex number. Changing the phase means changing its angle in the 
complex plane, which is a simple rotation of the vector representing the number. 
So multiplying a complex exponential function of time e j t2�  by a complex con-
stant e j t− 2 0�  rotates the complex exponential e j t2�  with the time axis as the axis of 
rotation. Looking at Figure 6.26 it is apparent that, because of its unique helical 
shape, a rotation of a complex exponential function of time and a shift along the 
time axis have the same net effect.

The frequency-shifting property can be proven by starting with a frequency-shifted 
version of X( )f , X( )f f− 0  and using the inverse CTFT integral. The result is

 x( ) X( )t e f fj f t+ ← →⎯ −2
0

0� F .
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254 Chapter  6  Continuous-Time Fourier Methods

Notice the similarity between the time-shifting and frequency-shifting properties. They 
both result in multiplying by a complex sinusoid in the other domain. However the sign 
of the exponent in the complex sinusoid is different. That occurs because of the signs 
in the forward and inverse CTFTs

 X( ) x( ) , x( ) X( )f t e dt t f e dfj ft j ft= =−

−∞

∞
+

−∞

∞

∫ ∫2 2� � .

The  frequency-shifting property is fundamental to understanding the effects of modu-
lation in communication systems.

One consequence of the  time-scaling and  frequency-scaling properties is that a 
compression in one domain corresponds to an expansion in the other domain. One 
interesting way of illustrating that is through the function x( )t e t= −� 2

 whose CTFT 
is of the same functional form e et f− −← →⎯� �2 2F . We can assign a characteristic width 
parameter w to these functions, the distance between infl ection points (the time, or fre-
quency between the points of maximum slope magnitude). Those points occur on e t−� 2

 
at t = ±1 2/ � , so w = 2/� . If we now time-scale through the transformation t t→ /2, 
for example, the transform pair becomes e et f− −← →⎯� �( ) ( )/2 22 2

2F (Figure 6.27) and the 
width parameter of the time function becomes 2 2/�  while the width parameter of the 
frequency function becomes 2 2� / . 

Figure 6.27
Time expansion and the corresponding frequency 
compression

t
-3 3

x(t)
2

f 
-3 3

|X( f )|
2

t
-3 3

x(t/2)
2

f
-3 3

|2X(2f )|
2

w

w
w

w

The change of variable t t→ /2 causes a  time expansion and the corresponding 
effect in the frequency domain is a  frequency compression (accompanied by an ampli-
tude scale factor). As the time-domain signal is expanded, it falls from its maximum of 
one at t = 0 more and more slowly as time departs from zero in either direction and, in 
the limit as the time expansion factor approaches infi nity, it does not change at all and 
approaches the constant 1 (w → ∞). As the time-domain signal is expanded by some 
factor, its CTFT is frequency-compressed and its height is multiplied by the same fac-
tor. In the limit as the time-domain expansion factor approaches infi nity, the CTFT 
approaches an impulse

 lim lim / ( )( )

a

t a

a

afe a e f
→∞

−
→∞

− ( )= ← →⎯ ( ) =� � �/ 2 2

1 1F  (6.17)
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(Figure 6.28) and w → 0.

Figure 6.28
Constant and impulse as limits of time and frequency 
scaling x( )t e t= −� 2

 and its CTFT

t

x(t)

1

f 

|X( f )|

1

The relation between compression in one domain and expansion in the other is 
the basis for an idea called the  uncertainty principle of Fourier analysis. As a → ∞ 
in (6.17), the signal energy of the time-domain function becomes less localized and the 
signal energy of the corresponding frequency-domain function becomes more local-
ized. In that limit, the signal energy of the signal in the frequency domain is “infi nitely 
localized” to a single frequency f = 0, while the time function’s width becomes infi nite, 
and therefore its signal energy is “infi nitely unlocalized” in time. If we compress the 
time function instead, it becomes an impulse at time t = 0 and its signal energy occurs 
at one point while its CTFT becomes spread uniformly over the range −∞ < < ∞f  and 
its signal energy has no “locality” at all. As we know the location of the signal energy 
of one signal better, and better, we lose knowledge of the location of the signal energy 
of its transform counterpart. The name uncertainty principle comes from the principle 
in quantum mechanics of the same name.

If x( )t  is real valued, then x( ) x ( )*t t= . The CTFT of x( )t  is X( )f  and the CTFT 
of x ( )* t is 

 F (x ( )) x ( ) x( )* *t t e dt t e dtj ft j ft= =
⎡

⎣
−

−∞

∞
+

−∞

∞

∫ ∫2 2� �⎢⎢
⎢

⎤

⎦
⎥
⎥

= −
*

*X ( )f

Therefore, if x( ) x ( )*t t= , X( ) X ( )*f f= − . In words, if the time-domain signal is real 
valued, its CTFT has the property that the behavior for negative frequencies is the 
complex conjugate of the behavior for positive frequencies. 

Let x( )t  be a real-valued signal. The square of the magnitude of X( )f  is 
X( ) X( ) X ( )*f f f2 = . Then using X( ) X ( )*f f= −  we can show that the square of the 
magnitude of X( )− f  is

  X( ) X( ) X ( ) X( ) X ( ) X
X

*

X

*

*

− = − − = =
( ) ( )

f f f f f
f f

2

��� ��� �� (( )f 2

proving that the magnitude  of the CTFT of a real-valued signal is an even function of 
frequency. Using X( ) X ( )*f f= − , we can also show that the  phase of the CTFT of a 
real-valued signal can always be expressed as an odd function of frequency. (Since the 
phase of any complex function is multiple-valued, there are many equally correct ways 
of expressing phase. So we cannot say that the phase is an odd function, only that it can 
always be expressed as an odd function.) Often, in practical signal and system analysis 
the CTFT of a real-valued signal is only displayed for positive frequencies because, 
since X( ) X ( )*f f= − , if we know the functional behavior for positive frequencies we 
also know it for negative frequencies.
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256 Chapter  6  Continuous-Time Fourier Methods

Suppose a signal x( )t  excites an LTI system with impulse response h( )t  producing a 
response y( )t . Then y( ) x( ) h( )t t t= ∗ . Using the multiplication–convolution duality prop-
erty Y( ) X( ) H( )j j j	 	 	= . In words, the CTFT of x( )t , X( )j	 , is a function of frequency 
and, when multiplied by H( )j	 , the CTFT of h( )t , the result is Y( ) X( ) H( )j j j	 	 	= , 
the CTFT of y( )t . X( )j	  describes the variation of the signal x( )t  with radian frequency 
and Y( )j	  performs the same function for y( )t . So multiplication by H( )j	  changes 
the frequency description of the excitation to the frequency description of the response. 
H( )j	  is called the frequency response  of the system. (This is the same frequency 
response fi rst developed in Chapter 5.) When two LTI systems are cascaded the impulse 
response of the combined system is the convolution of the impulse responses of the two 
individual systems. Therefore, again using the multiplication-convolution duality prop-
erty, the  frequency response of the cascade of two LTI systems is the product of their 
individual frequency responses (Figure 6.29). 

Figure 6.29
Frequency response of a cascade of two LTI systems

X( jω) Y( jω)H1( jω)H2( jω)

X( jω) H1( jω) H2( jω)X( jω)H1(jω) Y( jω)=X( jω)H1(jω)H2( jω)

Figure 6.30
x( )t  and its integral

t

t 
-2 2

-2
2

1

2

-1

x(t)

x(λ)dλ∫−∞
t

EXAMPLE 6.10

CTFT  using the differentiation property

Find the CTFT of x( ) rect(( ) ) rect(( ) )t t t= + − −1 2 1 2/ /  using the differentiation property of the 
CTFT and the table entry for the CTFT of the triangle function (Figure 6.30).

The function x( )t  is the derivative of a triangle function centered at zero with a base half-
width of 2 and an amplitude of 2

 x( ) ( tri( ))t
d

dt
t= 2 2/ .

In the table of CTFT pairs we fi nd tri( ) sinc ( )t fF← →⎯ 2 . Using the scaling and linearity properties, 
2 2 4 22tri( ) sinc ( )t f/ F← →⎯ . Then, using the differentiation property, x( ) sinc ( )t j f fF← →⎯ 8 22� . 
If we fi nd the CTFT of x( )t  by using the table entry for the CTFT of a rectangle rect( )t F← →⎯  
sinc( )f  and the time scaling and time shifting properties we get x( ) sinc( )sin( )t j f fF← →⎯ 4 2 2� , 
which, using the defi nition of the sinc function, can be shown to be equivalent.

 x sinc ( ) sinc( )
sin( )

t j f f j f f
f

f
j( )← →⎯ = =F 8 2 8 2

2

2
2� �

�

�
44 2 2sinc( )sin( )f f�

 Parseval’s theorem says that we can fi nd the energy of a signal either in the time 
or frequency domain.

 x( ) X( )t dt f df2 2

−∞

∞

−∞

∞

∫ ∫= . (6.18)

( Marc-Antoine Parseval des Chênes, a French mathematician contemporary of Fourier 
of the late 18th and early 19th centuries, was born April 27, 1755, and died August 16, 
1836.) The integrand X( )f 2 on the right-hand side of (6.18) is called  energy spectral 
density. The name comes from the fact that its integral over all frequencies (the whole 
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spectrum of frequencies) is the total signal energy of the signal. Therefore, to be 
consistent with the normal meaning of integration, X( )f 2 must be signal energy  per 
unit cyclic frequency, a signal energy density. For example, suppose x( )t  represents a 
current in amperes (A). Then, from the defi nition of signal energy, the units of signal 
energy for this signal are A s2 ⋅ . The CTFT of x( )t  is X( )f  and its units are A s⋅  or 
A/Hz. When we square this quantity we get the units

 A /Hz
A s

Hz

signal energy

cyclic frequenc
2 2

2

= ⋅ ←
← yy

which confi rm that the quantity X( )f 2 is signal energy per unit cyclic frequency.

EXAMPLE 6.11

 Total area under a function using the CTFT

Find the total area under the function x( ) sinc(( ) )t t= +10 4 7/ .
Ordinarily we would try to directly integrate the function over all t.

 Area t dt
t

dt= = +⎛
⎝⎜

⎞
⎠⎟ =

−∞

∞

−∞

∞

∫ ∫x( ) sinc
sin( (

10
4

7
10

� tt

t
dt

+
+

−∞

∞

∫
4 7

4 7

) )

( )

/

/�

This integral is a sine integral (fi rst mentioned in Example 6.6) defi ned by

 Si( )
sin( )

z
t

t
dt

z

= ∫
0

.

The sine integral can be found tabulated in mathematical tables books. However, evaluation of 
the sine integral is not necessary to solve this problem. We can use

 X( ) x( )0 =
−∞

∞

∫ t dt .

First we fi nd the CTFT of x( )t , which is X( ) rect( )f f e j f= 70 7 8� . Then Area = =X( )0 70.

EXAMPLE 6.12

CTFT  of some time-scaled and time-shifted sines

If x( ) sin( )t t= 10 , then fi nd (a) the CTFT of x( )t , (b) the CTFT of x( ( ))2 1t − , and (c) the CTFT 
of x( )2 1t − .

(a) In this example the cyclic frequency of the sinusoid is 1 2/ �  and the radian frequency is 1. 
Therefore the numbers will be simpler if we use the radian-frequency form of the CTFT. 
Using the  linearity property and looking up the transform of the general sine form,

     sin( ) [ ( ) ( )]	 � � 	 	 � 	 	0 0t jF← →⎯ + − − 0

 sin( ) [ ( ) ( )]t jF← →⎯ + − −� � 	 � 	1 1

 10 10 1 1sin( ) [ ( ) ( )]t jF← →⎯ + − −� � 	 � 	
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258 Chapter  6  Continuous-Time Fourier Methods

(b) From part (a), 10 10 1 1sin( ) [ ( ) ( )]t jF← →⎯ + − −� � 	 � 	 . Using the time  scaling property,

 10 2 5 2 1 2 1sin( ) [ ( ) ( )]t jF← →⎯ + − −� � 	 � 	/ / .

Then, using the  time-shifting property,

 10 2 1 5 2 1 2 1sin( ( )) ( ) ( )t j e j− ← →⎯ + − −[ ] −F
� � 	 � 	 	/ / .

Then, using the scaling property of the impulse,

 10 2 1 10 2 2sin( ( )) [ ( ) ( )]t j e j− ← →⎯ + − − −F
� � 	 � 	 	

or

 10 2 1 10 2 22 2sin( ( )) [ ( ) ( ) ]t j e ej j− ← →⎯ + − − −F
� � 	 � 	

(c) From part (a), 10 10 1 1sin( ) [ ( ) ( )]t jF← →⎯ + − −� � 	 � 	 . 
Applying the time-shifting property fi rst

 10 1 10 1 1sin( ) ( ) ( )t j e j− ← →⎯ + − −[ ] −F
� � 	 � 	 	.

Then, applying the  time-scaling property,

 10 2 1 5 2 1 2 1 2sin( ) [ ( ) ( )] /t j e j− ← →⎯ + − − −F
� � 	 � 	 	/ /

Then, using the scaling property of the impulse,

 10 2 1 10 2 2 2sin( ) [ ( ) ( )] /t j e j− ← →⎯ + − − −F
� � 	 � 	 	

or

 10 2 1 10 2 2sin( ) [ ( ) ( ) ]t j e ej j− ← →⎯ + − − −F
� � 	 � 	

EXAMPLE 6.13

CTFT of a  scaled and shifted rectangle

Find the CTFT of x( ) rect(( ) )t t= −25 4 10/ .
We can fi nd the CTFT of the  unit rectangle function in the table of Fourier transforms 

rect( ) sinc( )t fF← →⎯ . First apply the linearity property 25 25rect( ) sinc( )t fF← →⎯ . Then apply the 
time-scaling property 25 10 250 10rect( ) sinc( )t f/ F← →⎯ . Then apply the time-shifting property

 25 4 10 250 10 8rect(( ) ) sinc( )t f e j f− ← →⎯ −/ F � .

EXAMPLE 6.14

CTFT  of the convolution of some signals

Find the CTFT of the convolution of 10sin( )t with 2 4�( )t + .
Method 1: Do the convolution fi rst and fi nd the CTFT of the result.

 10 2 4 20 4sin( ) ( ) sin( )t t t∗ + = +�
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Apply the  time-shifting property.

 20 4 20 1 1 4sin( ) ( ) ( )t j e j+ ← →⎯ + − −[ ]F
� � 	 � 	 	

or

 20 4 10 1 2 1 2 8sin( ) ( ) ( )t j f f e j f+ ← →⎯ + − −[ ]F
� � � � �/ /

Method 2: Do the CTFT fi rst to avoid the convolution.

 10 2 4 10 2 4 2 10sin( ) ( ) ( sin( )) ( ( )) (t t t t∗ + ← →⎯ + =� �
F F F F ssin( )) ( ( ))t t e jF � 	4

 10 2 4 20 1 1 4sin( ) ( ) [ ( ) ( )]t t j e j∗ + ← →⎯ + − −� � � 	 � 	 	F

or

 10 2 4 10 2 4 2 10sin( ) ( ) ( sin( )) ( ( )) (t t t t∗ + ← →⎯ + =� �
F F F F ssin( )) ( ( ))t t e j fF � �8

 10 2 4 10 1 2 1 2 8sin( ) ( ) [ ( ) ( )]t t j f f e j∗ + ← →⎯ + − −� � � � �
F / / ��f .

 NUMERICAL COMPUTATION  OF THE FOURIER TRANSFORM

In cases in which the signal to be transformed is not readily describable by a mathematical 
function or the Fourier-transform integral cannot be done analytically, we can some-
times fi nd an approximation to the CTFT numerically using the discrete Fourier trans-
form (DFT), which was used to  approximate the CTFS harmonic function. If the signal 
to be transformed is a causal energy signal, it can be shown (Web Appendix G) that we 
can approximate its CTFT (  f form) at discrete frequencies by

 X( ) x( ) (x( )kf N T nT e T nTs s s
j kn N

n

N

s s/ /≅ ≅ ×−

=

−

∑ 2

0

1
� DFT )), k N<<  (6.19)

where T fs s= 1/  is chosen such that the signal x does not change much in that amount of 
time and N  is chosen such that the time range 0 to NTs covers all or practically all of 
the signal energy of the signal x (Figure 6.31).

t 

x(t)

n=Nn=0

Ts

Figure 6.31
A causal energy signal sampled with Ts  
seconds between samples over a time NTs

So if the signal to be transformed is a causal energy signal and we sample it over 
a time containing practically all of its energy and if the samples are close enough 
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260 Chapter  6  Continuous-Time Fourier Methods

together that the signal does not change appreciably between samples, the approxima-
tion in (6.19) becomes accurate for k N<< .

EXAMPLE 6.15

Using the  DFT to  approximate the CTFT

Using the DFT, fi nd the approximate CTFT of 

 x( )
( )

t
t t t

=
− < <⎧

⎨
⎩

⎫
⎬
⎭

1 0 1

0

,

, otherwise
== − −t t t( )rect( )1 1 2/

numerically by sampling it 32 times over the time interval 0 2≤ <t .
The following MATLAB program can be used to make this approximation.

% Program to demonstrate approximating the CTFT of t(1-t)*rect(t-1/2) 

% by sampling it 32 times in the time interval 0 <= t < 2 seconds 

% and using the DFT.

N = 32 ; % Sample 32 times

Ts = 2/N ; % Sample for two seconds

  % and set sampling interval

fs = 1/Ts ; % Set sampling rate

df = fs/N ; % Set frequency-domain resolution

n = [0:N-1]’ ; % Vector of 32 time indices

t = Ts*n ; % Vector of times

x = t.*(1-t).*rect((t-1/2)); % Vector of 32 x(t) function values

X = Ts*fft(x) ; % Vector of 32 approx X(f) CTFT 

  % values

k = [0:N/2-1]’ ; % Vector of 16 frequency indices

% Graph the results

subplot(3,1,1) ;

p = plot(t,x,‘k’) ; set(p,‘LineWidth’,2) ; grid on ;

xlabel(‘Time, t (s)’) ; ylabel(‘x(t)’) ; 

subplot(3,1,2) ;

p = plot(k*df,abs(X(1:N/2)),‘k’) ; set(p,‘LineWidth’,2) ; grid on;

xlabel(‘Frequency, f (Hz)’) ; ylabel(‘|X(f)|’) ;

subplot(3,1,3) ;

p = plot(k*df,angle(X(1:N/2)),‘k’) ; set(p,‘LineWidth’,2) ; grid on ;

xlabel(‘Frequency, f (Hz)’) ; ylabel(‘Phase of X(f)’) ;

This MATLAB program produces the graphs in Figure 6.32.
Notice that 32 samples are taken from the time-domain signal and the DFT returns a vector 

of 32 numbers. We only used the fi rst 16 in these graphs. The DFT is periodic and the 32 points 
returned represent one period. Therefore the second 16 points are the same as the second 16 points 
occurring in the previous period and can be used to graph the DFT for negative frequencies. The 
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MATLAB  command  fftshift is provided for just that purpose. Below is an example of using 
fftshift and graphing the approximate CTFT over equal negative and positive frequencies.

% Program to demonstrate approximating the CTFT of t(1-t)*rect(t-1/2)

% by sampling it 32 times in the time interval 0 < t < 2 seconds and 

% using the DFT. The frequency domain graph covers equal negative 

% and positive frequencies.

N = 32 ; % Sample 32 times

Ts = 2/N ; % Sample for two second

  % and set sampling interval

fs = 1/Ts ; % Set sampling rate

df = fs/N ; % Set frequency-domain resolution

n = [0:N-1]’ ; % Vector of 32 time indices

t = Ts*n ; % Vector of times

x = t.*(1-t).*rect((t-1/2)) ; % Vector of 32 x(t) function values

X = fftshift(Ts*fft(x)) ; % Vector of 32 X(f) approx CTFT values

k = [-N/2:N/2-1]’ ; % Vector of 32 frequency indices

% Graph the results

subplot(3,1,1) ;

p = plot(t,x,‘k’) ; set(p,‘LineWidth’,2) ; grid on ;

xlabel(‘Time, t (s)’) ; ylabel(‘x(t)’) ; 

subplot(3,1,2) ;

p = plot(k*df,abs(X),’k’) ; set(p,‘LineWidth’,2) ; grid on ;

xlabel(‘Frequency, f (Hz)’) ; ylabel(‘|X(f)|’) ;

subplot(3,1,3) ;

Figure 6.32
A signal and its approximate CTFT, found by using the DFT
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262 Chapter  6  Continuous-Time Fourier Methods

p = plot(k*dF,angle(X),‘k’) ; set(p,‘LineWidth’,2) ; grid on ;

xlabel(‘Frequency, f (Hz)’) ; ylabel(‘Phase of X(f)’) ;

Figures 6.33 and 6.34 show the results of this MATLAB program with 32 points and 512 points.
This result is a rough approximation to the CTFT because only 32 points were used. If we 

use 512 points over a time period of 16 seconds we get an approximation with higher frequency-
domain resolution and over a wider frequency range.

Figure 6.34
Approximate CTFT found by using the DFT with higher resolution
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Figure 6.33
Approximate CTFT found by using the DFT graphed over equal 
negative and positive frequencies
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EXAMPLE 6.16

  System analysis using the CTFT

A system described by the differential equation ′ + =y ( ) y( ) x( )t t t1000 1000  is excited by 
x( ) rect( )t t= 4 200 . Find and graph the response y( )t .

If we Fourier transform the differential equation we get

 j f f f f2 1000 1000� Y( ) Y( ) X( )+ =
which can be rearranged into

 Y( )
X( )

f
f

j f
=

+
1000

2 1000�
.

The CTFT of the excitation is X( ) . sinc( )f f= 0 02 200/ . Therefore the CTFT of the response is

 Y( )
sinc( )

f
f

j f
=

+
20 200

2 1000

/

�

or, using the defi nition of the sinc function and the exponential defi nition of the sine function,

 Y( )
sin( )

( ) ( )
f

f

f j f

e j f
=

+
=20

200

200 2 1000
4000

2�

� �

�/

/

// /400 2 400

2 2 1000

−
+

−e

j f j f

j f�

� �( )
.

To fi nd the inverse CTFT, start with the CTFT pair e t j ft− ← →⎯ + >� � � �u( ) ( ),F 1 2 0/ ,

 e t
j f

t− ← →⎯
+

1000 1

2 1000
u( ) F

�
.

Next use the  integration property,

 g /( )
G( )

( )G( ) ( )� �
�

�d
f

j f
f

t

−∞
∫ ← →⎯ +F

2
1 2 0 .

  e d
j f j f

f
t

−

−∞
∫ ← →⎯

+
+1000 1

2

1

2 1000

1

2000
� � �

� �
�u( ) ( )F

Then apply the  time-shifting property,

 g( ) G( )t t f e j ft− ← →⎯ −
0

2 0
F � .

 e d
j f

e

j f

e
t j f

−
+

∫ ← →⎯
+

+1000

0

1 400 2 4001

2 2 1000
�

�

�
� �

/ /
F

jj f

f

f
2 400

2000

2000

�

�

�
/

/

( )

( )=
� ��� ���

 e d
j f

e

j f

t j f
−

− −

∫ ← →⎯
+

+1000

0

1 400 2 4001

2 2 1000
�

�

�
� �

/ /
F ee

f
j f

f

−

=

2 400

2000

2000

�

�

�
/

/

( )

( )
� ��� ���

Subtracting the second result from the fi rst and multiplying through by 4000

 

4000 40001000
1 400

1000e d e d
t

−

−∞

+
−

−∞

( ) −∫ � �� � � �u u( )
/ tt

j f j f

j f

e e

j f

−

−

∫

← →⎯ −
+

1 400

2 400 2 4004000

2 2 1

/

F

� �

� �/ /

0000
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4000 1000
1 400

1000
1

e d e d
t t

−

−∞

+
−

−∞

−

∫ −� �� � � �u( ) u( )
/ /4400

2 400 2 4004000

2 2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

← →⎯ − −
F

j f

e e

j

j f j f

�

� �/ /

��f + 1000

The two integral expressions can be simplifi ed as follows.

 

e d
e

t t
−

−∞

+ − +

∫ = −1000
1 400 1000 1 41 1000 1� � �u( )

( )(
/ (/ / 000 1 400

0

)), /
,

t ≥ −
/t < −

⎧
⎨
⎩

⎫
⎬
⎭

= −

1 400

1

1000
1( ee tt− + +1000 1 400 1 400( ))u( )/ /

 

e d
e

t t
−

−∞

− − −

∫ = −1000
1 400 1000 1 41 1000 1� � �u( )

( )(
/ (/ / 000 1 400

0

)), /
,

t ≥
/t <

⎧
⎨
⎩

⎫
⎬
⎭

= −

1 400

1

1000
1( ee tt− − −1000 1 400 1 400( ))u( )/ /

Then

 

4 1 1 400 11000 1 400 1000 1 40( )u( ) (( ) (− + − −− + − −e t et t/ // 00

2 400 2

1 400

4000

2

))u( )t

j f

e ej f j f

−⎡⎣ ⎤⎦

← →⎯ − −

/

/ /
F

�

� � 4400

2 1000j f� +

Therefore the response is 

 y( ) [( )u( ) (( ) (t e t et= − + − −− + −4 1 1 400 11000 1 400 1000/ / tt t− −1 400 1 400/ /) )u( )]

(Figure 6.35 and Figure 6.36).

Figure 6.35
Magnitudes and phases of CTFTs of excitation and response, and of system frequency response
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EXAMPLE 6.17

System analysis using the CTFT

A system described by the differential equation ′ + =y ( ) y( ) x( )t t t1000 1000  is excited by 
x( ) rect( ) ( ).t t t= ∗4 200 0 01� . Find and graph the response y( )t .

From Example 6.16,

 Y( ) Y( )
X( )/f j

j

j
f =⎯ →⎯⎯⎯ =

+
	 �

	
	

	

2 1000

1000
.

The CTFT (  f form) of the excitation is X( ) . sinc( ) ( )f f f= 0 02 200 100/ �  implying that 
X( ) . sinc( ) ( )j	 	 � � 	 �= 0 02 400 2100/ / . Using the scaling property of the periodic impulse,

 X( ) . sinc( ) ( ) . sinc(j	 	 � �� 	 � 	�= × =0 02 400 2 0 04 4200/ / 000 200� � 	�) ( )

Therefore the CTFT of the response is

 Y( )
sinc( ) ( )

j
j

	
� 	 � � 	

	

�=
+

4000 400

1000
200/

or, using the defi nition of the periodic impulse,

 Y( )
sinc( ) ( )

j
k

jk

	 �
	 � � 	 �

	
= −

+= −∞

∞

∑4000
400 200

1000

/
.

Now, using the  equivalence property of the impulse,

 Y( )
sinc( ) ( )

j
k k

j kk

	 �
� 	 �

�
= −

+= −∞

∞

∑4000
2 200

200 1000

/

Figure 6.36
Rectangular pulse excitation and system response
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266 Chapter  6  Continuous-Time Fourier Methods

and the inverse CTFT yields the response

 y( )
sinc( )

t
k

j k
e j kt

k

=
+=−∞

∞

∑2000
2

200 1000
200/

�
� .

If we separate the k = 0  term and pair each k and −k this result can be written as

 y( )
sinc( ) sinc( )

t
k

j k
e

kj kt= +
+

+ −
−

2
2

200 1000

2200/ /

�
�

jj k
e j kt

k 200 1000
200

1 �
�

+
−

=

∞

∑ .

Using the fact that the sinc function is even and combining the terms over one common 
denominator,

 y( ) sinc( )
( ) (

t k
j k e j kj kt

= + − + + +
2 2

200 1000 200200
/

� �� 11000

200 1000

200

2 2
1

)e

k

j kt

k

−

=

∞

( ) + ( )∑
�

�

 y( ) sinc
cos( ) sin(

t k
kt k kt= + ( ) +

2 2
2000 200 400 200

/
� � � ))

( ) ( )200 10002 2
1 �kk +=

∞

∑

 y( ) sinc( )
cos( ) sin( )

(
t k

kt k kt= + +
+

2 2
5 200 200

25
/

� � �

�kkk )2
1=

∞

∑

The response is a constant plus a linear combination of real cosines and sines at integer mul-
tiples of 100 Hz (Figure 6.37 and Figure 6.38).

Figure 6.37
Magnitudes and phases of CTFTs of excitation and response, and of system frequency response
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6.4 SUMMARY OF IMPORTANT POINTS
 1. The Fourier series is a method of representing any arbitrary signal with engineering 

usefulness as a linear combination of sinusoids, real-valued or complex.
 2. The complex sinusoids used by the complex form of the Fourier series form a set 

of mutually orthogonal functions that can be combined in linear combinations to 
form any arbitrary periodic function with engineering usefulness.

 3. The formula for fi nding the harmonic function of the Fourier series can be 
derived using the principle of orthogonality.

 4. The Fourier series can be used to fi nd the response of an LTI system to a periodic 
excitation.

 5. The Fourier series can be extended to allow the representation of aperiodic 
signals and the extension is called the Fourier transform.

 6. With a table of Fourier transform pairs and their properties the forward and 
inverse transforms of almost any signal of engineering signfi cance, periodic or 
aperiodic, can be found.

 7. The frequency response of a stable system is the Fourier transform of its impulse 
response.

 8. The Fourier transform can be used to fi nd the response of an LTI system to 
energy signals as well as to periodic signals.

   EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

Fourier Series

 1. Using MATLAB graph each sum of complex sinusoids over the time period 
indicated.

Figure 6.38
Excitation and response
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(b) x( ) sinc sinct
j k k

e j kt

k

= +⎛
⎝

⎞
⎠ − −⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥=4

2

2

2

2
10�

−−
∑

9

9

,  − < <200 200ms mst

Answers:

    

t -0.2 0.2

x(t)

-1

1

, 
t (ms)-15 15

x(t)
1

Orthogonality

  2. Show by direct analytical integration that the integral of the function

g( ) sin( ) sin( )t A t B t= 2 4� �

is zero over the interval − < <1 2 1 2/ /t .

CTFS Harmonic Functions

  3. For each signal, fi nd a complex CTFS based on one fundamental period, graph 
the magnitude and phase of the harmonic function versus harmonic number k, 
then convert the answers to the trigonometric form of the harmonic function.

(a) x( ) rect( ) ( )t t t= ∗4 4 1�

(b) x( ) rect( ) ( )t t t= ∗4 4 4�

(c) A periodic signal that is described over one fundamental period by

x( )
sgn ,

,
t

t t

t
=

( ) <
< <

⎧
⎨
⎩

1

0 1 2

Answers:

k -20 20

|cx[k]|
0.5

k-20 20
-π

π
cx[k]

,  

k -50 50

0.25

k-50 50
-π

π

|cx[k]|

cx[k]

,    

k -18 18

1

k-18 18
-π

π
cx[k]

|cx[k]|
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  4. A periodic signal x(t) with a period of 4 seconds is described over one 
fundamental period by x( ) ,t t t= − < <3 0 4. Graph the signal and fi nd its 
CTFS harmonic function. Then graph on the same scale approximations to 
the signal xN t( ) given by

x /
N

j kt T

k N

N

t k e( ) c [ ]x=
= −
∑ 2 0�

  for N = 1 2 3, and . (In each case the time scale of the graph should cover at least 
two fundamental periods of the original signal.)

Answer: c [ ]
( )

( )
x k

e j k j k

k

j k

= − − − +−1

4

2 2 6 42

2

� � �

�

t
8-1

3

t
8-1

3

t
8-1

3

x1(t)

x2(t)

x3(t)

 5. Using the CTFS table of transforms and the CTFS properties, fi nd the CTFS 
harmonic function of each of these periodic signals using the representation 
time T indicated.

(a) x( ) sin( )t t= 10 20� ,  T = 1 10/

(b) x( ) cos( ( . ))t t= −2 100 0 005� ,  T = 1 50/

(c) x( ) cos( )t t= −4 500� ,  T = 1 50/

(d) x( ) ( )t
d

dt
e j t= − 10� ,  T = 1 5/

(e) x( ) rect( ) ( )t t t= ∗ 4 4� ,  T = 4

(f ) x( ) rect( ) ( )t t t= ∗�1 ,  T = 1

(g) x( ) tri( ) ( )t t t= ∗�1 ,  T = 1

Answers: − − + +2 5 5( [ ] [ ])� �k k , �[ ]k , �[ ]k , j k k5 1 1( [ ] [ ])� �+ − − , 
j k k( [ ] [ ])� �+ − −1 1 , − +j k10 1��[ ], sinc( )k /4

 Exercises with Answers 269

rob80687_ch06_215-289.indd   269rob80687_ch06_215-289.indd   269 12/30/10   5:20:03 PM12/30/10   5:20:03 PM



270 Chapter  6  Continuous-Time Fourier Methods

 6. The CTFS harmonic function of x( )t  based on one fundamental period is found to be

c [ ]
cos( )

( )
x k

k

k
= −1

2

�

�

(a) Is the signal even, odd or neither?
(b) What is the average value of the signal?

Answers: Even, 1 2/

 7. Find the harmonic function for a sine wave of the general form A f tsin( )2 0� . 
Then, using Parseval’s theorem, fi nd its signal power and verify that it is the 
same as the signal power found directly from the function itself.

Answer: A2 2/

 8. Given x( ) c [ ]xt k
j k kFS

8

4 4

0
← →⎯ =

<,

, otherwise

⎧⎧
⎨
⎩

⎫
⎬
⎭

 if y( ) x( )t d
t

=
−∞
∫ � � and 

y( ) c [ ]yt kFS
8

← →⎯ ,

(a) What is the average value of x( )t ?
(b) What is the numerical value of c [ ]y 1 ?
(c) Is x( )t  even, odd or neither?

Answers: 0, 16/�, odd

 9. Find and graph the magnitude and phase of the CTFS harmonic function of 
x( ) rect( ) ( )/t t t= ∗20 1 5�  using a representation time T = 1 5/ ,

(a) Using the CTFS tables
(b) Numerically with the time between points being Ts = 1 2000/

Answers: c [ ] ( )sinc( )x k k= 1 4 4/ /  

k

0.05

0.1

0.15

0.2

0.25

k

0.05

0.1

0.15

0.2

0.25

Analytical
|cx[k]|

Numerical
|cx[k]|

-20 -10 10 20 -20 -10 10 20

k

-2

2

k

-2

2

-20 -10 10 20 -20 -10 10 20

|cx[k] |cx[k]
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10. A quantizer accepts a continuous-time input signal and responds with a 
continuous-time output signal that only has a fi nite number of equally spaced 
values. If x ( )in t  is the input signal and x ( )out t  is the output signal and q is the 
difference between adjacent output levels, the value of x ( )out t  at any point in 
time can be computed by forming the ratio x ( )in t q/ , rounding it off to the nearest 
integer and then multiplying the result by q. Let the range of the signal levels 
accepted by the quantizer be from −10 to +10 and let the number of quantization 
levels be 16. Find the numerical total harmonic distortion (see Example 6.4) of 
the quantizer output signal if the input signal is x ( ) sin( )in t t= 10 2000� .
Answer: 0.2342%

 System Response to Periodic Excitation
11. A continuous-time system is described by the differential equation

′′ + ′ + =y ( ) y ( ) y( ) x( )t t t t200 10 105 5 .

If the excitation is x( ) rect( ) ( )/t t t= ∗32 1 16� , graph the response y( )t .

Answer: 

t
0.2-0.2

0.2
0.4
0.6
0.8

y(t)

0.05  0.1 0.15 

Forward and Inverse Fourier Transforms
12. Let a signal be defi ned by 

x( ) cos( ) cos( )t t t= +2 4 5 15� � .

Find the CTFT’s of x( )t − 1 40/  and x( )t + 1 20/  and identify the resultant phase 
shift of each sinusoid in each case. Graph the phase of the CTFT and draw a 
straight line through the 4 phase points that result in each case. What is the general 
relationship between the slope of that line and the time delay?

Answer: 

f
1 2 3 4 5 6 7 8-6-7-8 -5-4-3-2-1

3π
4

π
10

Slope =

π
20Slope =

X( f )

The slope of the line is −2�f  times the delay.

13. Using the frequency-shifting property, fi nd and graph versus time the inverse CTFT of

X( ) rect rectf
f f= −⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

20

2

20

2
.
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272 Chapter  6  Continuous-Time Fourier Methods

Answer: 

t 
-2 2

x(t)

-4

4

14. Find the CTFT of x( ) sinc( )t t= . Then make the change of scale t t→ 2  in x( )t  
and fi nd the CTFT of the time-scaled signal.

Answers: rect( )f , ( ) rect( )1 2 2/ /f

15. Using the multiplication–convolution duality of the CTFT, fi nd an expression for 
y( )t  that does not use the convolution operator ∗ and graph y( )t .

(a) y( ) rect( ) cos( )t t t= ∗ �  (b) y( ) rect( ) cos( )t t t= ∗ 2�

(c) y sinc( ) sinc( )t t t( ) = ∗ /2  (d) y( ) sinc( ) sinc ( )t t t= ∗ 2 2/

(e) y( ) u( ) sin( )t e t tt= ∗− 2�

Answers: 
cos( )

( )

2

1 2 2

�

�

t +
+

2.984
, 2/� �cos( )t , 0, sinc( )t /2 , sinc ( )2 2t /

16. Using the CTF T of the rectangle function and the differentiation property of the 
CTF T fi nd the Fourier transform of 

x( ) ( ) ( )t t t= − − +� �1 1 .

Check your answer against the CTF T found using the table and the time-shifting 
property.

Answer: − j f2 2sin( )�

17. Find the following numerical values.

(a) x( ) rect( )t t= 20 4  X( )f f =2

(b) x( ) sinc( ) sinc( )t t t= ∗2 8 4/ /  x( )4

(c) x( ) tri( ) ( )t t t= ∗ −2 4 2/ �   x( )1  and x( )−1

(d) x( ) rect( ) ( ( ) ( ))t t t t= − ∗ + +5 2 1/ � �  x( )1 2/ , x( )−1 2/  and x( )−5 2/

(e) x( ) rect( )t t= −3 1  X( )f f =1 4/

(f ) x( ) sinc ( )t t= 4 32  X( )j	
	 �=4

(g) x( ) rect( ) rect( )t t t= ∗ 2  X( )f f =1 2/  

(h) X( ) [ ( ) ( )]f f f= − + +10 1 2 1 2� �/ /  x( )1

(i) X( ) sinc( ) sinc( )j	 	 � 	 �= − ∗2 2 3/ /   x( )0

Answers: −5, 1/2, 3/2, 4/9, 0, −3, 3.1831, −10, −20, − j2 7. , 0.287, 5.093
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18. Find the following forward or inverse Fourier transforms. No fi nal result should 
contain the convolution operator ∗.

(a) F ( rect(( ) ))15 2 7t + /  

(b) F − −1 62 2( tri( ) )f e j f/ �

(c) F (sin( ) cos( ))20 200� �t t

Answers: ( )[ ( ) ( ) ( ) ( )]j f f f f/4 90 110 110 90� � � �− + + − − − + , 

105 7 4sinc( )f e j f� , 4 2 32sinc ( ( ))t −

19. Using Parseval’s theorem, fi nd the signal energy of these signals.

(a) x( ) sinc( )t t= 4 5/

(b) x( ) sinc ( )t t= 2 32

Answers: 80, 8 9/

20. Find the numerical values of the constants.

(a) 6 2rect( ) sinc( )t A bfF← →⎯  Find A and b

(b) 10 1 8 2tri(( ) ) sinc ( )t A bf e jB f− ← →⎯ −/ F �  Find A, B and b

(c) A f t f fcos( ) [ ( ) ( )]2 10 4 40� � �
F← →⎯ − + +  Find A and f0

(d) ( ) ( ) ( ) ( )A b t e fb
jB t/ / // /� ��

1 1 101 5 1 5F← →⎯ −  Find A, B and b

Answers: 1/10, 1/5, 80, 20, 3, 2, 8, 2/5, 4, 1/2

21. What is the total area under the function g( ) sinc(( ) )t t= −100 8 30/ ?
Answer: 3000

22. Using the integration property, fi nd the CTF T of each of these functions and 
compare with the CTFT found using other properties.

(a) g( )

,

,

,

t

t

t t=
<

− < <
⎧

⎨
⎪

⎩
⎪

1 1

2 1 2

0 elsewhere

 (b) g( ) rect( )t t= 8 3/

Answers: 24 3sinc( )f , 3 3sinc( )sinc( )f f

23. Graph the magnitudes and phases of the CTFTs of these signals in the f form.

(a) x( ) (t )t = −� 2

(b) x( ) u( ) u( )t t t= − − 1

(c) x( ) rect(( ) )t t= +5 2 4/

(d) x( ) sinc( ( ))t t= −25 10 2

(e) x( ) sin( )t t= 6 200�

(f ) x( ) u( )t e tt= −2 33

(g) x( )t e t= −4 3 2
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274 Chapter  6  Continuous-Time Fourier Methods

Answers:

 

f
-3 3

|X( f )| 

5

f
-3 3

-π

π

X( f ) 

, 

f
-5 5

|X( f )|

1

f
-5 5

X( f )

-π

π

, 

f
-100 100

|X( f )|
3

f
-100 100

-π

π

X( f )

, 

f
-1 1

|X( f )|

20

f
-1 1

-π

π

X( f )

,

f
-2 2

|X( f )|

1

f
-2 2

π

π
2

2

X( f )

, 

f
-10 10

|X( f )|

3

f
-10 10

-π

π
X( f )

, 

f
-1 1

|X( f )|
1

f
-1 1

X( f )

-π

π

24. Graph the magnitudes and phases of the CTFT’s of these signals in the 	 form.

(a) x( ) ( )t t= �2  (b) x( ) s gn( )t t= 2

(c) x( ) tri(( ) )t t= −10 4 20/  (d) x( ) ( )sinc (( ) )t t= +1 10 1 32/ /

(e) x( )
cos( )

t
t= −200 4

4

� �/
 (f ) x( ) u( )t e tt= −2 3

(g) x( )t e t= −7 5

Answers:

  

ω
4π-4π

4π-4π

|X( jω)|

π

ω

-π

π
X( jω)

, 

ω
-10 10

|X( jω)|

1

ω
-10 10

-1.5708

1.5708

X( jω)

, 

ω
-4 4

|X( jω)|

0.3

ω
-4 4

-π

π

X( jω)

, 

ω
-700 700

|X( jω)|

1

ω
-700 700

-π

π

X( jω)

, 

ω
-10 10

|X( jω)|

3

ω
-10 10

-π

π

X( jω)

, 

ω
-2 2

|X( jω)|

200

ω
-2 2

-π

π

X( jω)

, 

4π-4π

4π-4π

ω

|X(jω)|

6

ω

X( jω)

-π

π
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25. Graph the inverse CTFTs of these functions.

(a) X( ) rect( )f f= −15 4/

(b) X( )
sinc( )

f
f= −10

30

(c) X( )f
f

=
+
18

9 2

(d) X( )f
j f

=
+
1

10

(e) X( )
( ) ( )

f
f f= − + +� �3 3

6

(f  ) X( ) ( )f f= 8 5�

(g) X( )f
j f

= − 3

�

Answers:

 t -10 10

x(t)
0.005

, t
-0.016667 0.066667

x(t)

8

,

t 
-1 1

x(t)

-3

3

, t -1 1

x(t)
2

, t 
-0.25 0.25

x(t)

20

, 

t 
-1 1

x(t)

-0.5

0.5

, 

t -1 1

x(t)

-60

20

 

26. Graph the inverse CTFTs of these functions.

(a) X( )j e	 	= −4 2

(b) X( ) sincj	 	 �= ( )7 2 /

(c) X( ) ( ) ( )j j	 � � 	 � � 	 �= + − −[ ]10 10

(d) X( ) ( ) ( )j	 � � 	�= / /20 4

(e) X( ) ( )j j	 � 	 �� 	= +5 10/

(f ) X( )j
j

	
	

=
+
6

3
(g) X( ) tri( )j	 	= 20 8
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276 Chapter  6  Continuous-Time Fourier Methods

Answers:

 

t -0.4 0.4

x(t)

-1

1

, t -0.2 1.5

x(t)
6

,

t -8 8

x(t)

0.2

, t -4 4

x(t)

4

, t 
-40 40

x(t)
0.2

, 

t 
-1 1

x(t)

-4

18

, t -200 200

x(t)
0.5

27. Find the CTFTs of these signals in either the f or 	 form, whichever is more 
convenient.

(a) x( ) cos( ) sin( )t t t= +3 10 4 10  (b) x( ) ( ) ( )t t t= − −2 2 12 2� �

(c) x( ) sinc( ) sinc( ( )) sinc( ( ))t t t t= − − − +4 4 2 4 1 4 2 4 1 4/ /

(d) x( ) [ ]u( )( ) ( )t e e tj t j t= +− + − −2 21 2 1 2� �  (e) x( ) /t e t= −4 16

Answers: ( ) ( ) ( ) ( ). .5 10 5 100 927 0 927� � 	 � � 	e ej j− − + + , 4
2 1

2 1 22 2

j f

j f

�

� �

+
+ +( ) ( )

, 

rect( ) rect( ) cos( )	 � 	 � 	/ / /8 8 4− , 128

1 256 2+ 	
, j e j4 22� � 	 		

�
− / ( ) sin( )/

28. Graph the magnitudes and phases of these functions. Graph the inverse CTFTs of 
the functions too.

(a) X( )j
j j

	
	 	

=
+

−
+

10

3

4

5

(b) X( ) sinc sincf
f f= −⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

4
1

2

1

2

(c) X( ) tri trif
j f f= +⎛

⎝
⎞
⎠ − −⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥10

2

8

2

8

(d) X( ) ( ) ( ) ( ) ( )f f f f f= + + + + − + −� � � �1050 950 950 1050

(e) X( )
( ) ( ) ( )

( ) (
f

f f f

f
=

+ + + + +
+ − +
� � �

� �

1050 2 1000 950

950 2 ff f− + −
⎡
⎣⎢

⎤
⎦⎥1000 1050) ( )�
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Answers:

t
-1 1

x(t)

-16

16
f 

-10 10

|X( f )|
5

f
-10 10π

π
X(jω)

, 
t

-1 2

x(t)

6

ω
-20 20

|X(jω)|
4

ω
-20 20

-π

π
X(jω)

,

 

t
-0.5 0.5

x(t)

-0.5

0.5
f 

-15 15

|X( f )|
0.1

f 
-15 15-π

π
X( f )

, 

t
-0.04 0.04

x(t)

-8

8

f 
-1000 1000

|X( f )|
2

f 
-1000 1000-π

π
X( f )

, 

t

-0.04 0.04

x(t)

-4

4
f

-1200 1200

|X( f )|
1

f
-1200 1200-π

π
X( f )

 29. Graph these signals versus time. Graph the magnitudes and phase of their CTFTs 
in either the f or 	 form, whichever is more convenient.

(a) x( ) rect( ) ( ) rect( ) ( )t t t t t= ∗ − ∗ −2 2 1 21 1� � /

(b) x( ) rect( ) ( )t t t= − + ∗1 2 2 1�  (c) x( ) u( ) sin( )t e t tt= ∗− /4 2�

(d) x( ) [rect( ) ( )]t e t tt= ∗ ∗−� �
2

2 1  (e)  x( ) rect( ) [tri( ) ( )]t t t t= ∗ ∗2 1�

(f ) x( ) sinc( . ) ( )t t t= ∗2 01 1�  (g) x( ) sinc( . ) ( )t t t= ∗1 99 1�

(h) x( )t e et t= ∗− −2 2

Answers:

t
-4 4

x(t)
2

f
-1 1

|X( f )|
4

f
-1 1-π

π
X( f )

, 
t

-2 2

x(t)

1

f
-8 8

|X( f )|
0.5

f
-8 8-π

π
X( f )

, 

t
-2 2

x(t)

-0.2

0.2
ω

-8 8

|X(jω)|

1

ω
-8 8-π

π
X( jω)

, 
t

-2 2

x(t)
1

f
-2 2

|X( f )|
1

f
-2 2

-π

π
X( f )

, 

t
-2 2

x(t)

1

f
-8 8

|X( f ) |
1

f
-8 8

-π

π
X( f )

, 

t
-3 3

x(t)

-1

1
f

-8 8

|X( f )|
1

f
-8 8-π

π
X( f )

, 
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278 Chapter  6  Continuous-Time Fourier Methods

t
-2 2

x(t)

-1

2
f

-1 1

|X( f )|
1

f
-1 1-π

π
X( f )

, 

t
-3 3

x(t)

-1

1
f

-8 8

|X( f )| 
1

f
-8 8-π

π
X( f )

 30. Graph the magnitudes and phases of these functions. Graph the inverse CTFTs of 
the functions too. 

(a) X( ) sinc [ ( ) ( )]f
f

f f= ⎛
⎝

⎞
⎠ ∗ − + +

100
1000 1000� �

(b) X( ) sinc( ) ( )f f f= ∗10 1�

Answers:

 

f
-1000 1000

|X( f )| 
1

f
-1000 1000-π

π
t 

-0.01 0.01

x(t)

-200

200

X( f )

, 

f 
-2 2

|X( f )| 
1

f 
-2 2-π

π

t 
-10 10

x(t)
0.1

X( f )

 31. Graph these signals versus time. Graph the magnitudes and phases of the CTFTs 
of these signals in either the f or 	 form, whichever is more convenient. In some 
cases the time graph may be conveniently done fi rst. In other cases it may be 
more convenient to do the time graph after the CTFT has been found, by fi nding 
the inverse CTFT.

(a) x( ) sin( )t e tt= −� �
2

20

(b) x( ) ( ) cos( ) ( )/t t t= 1 100 400 1 100/ � �

(c) x( ) [ cos( )]cos( )t t t= +1 400 4000� �  

(d) x( ) [ rect( ) ( )]cos( )t t t t= + ∗1 100 5001 50� �/

(e) x( ) rect( ) ( )t t t= /7 1�

Answers:

 t
-0.1 0.1

x(t)
0.01

f
-1000 1000

|X( f )| 
1

f
-1000 1000-π

π
X( f )

, 
t

-6 6

x(t)
1

f
-4 4

|X( f )| 
7

f-4
4-π

π
X( f )

, 

t

-0.01 0.01

x(t)

-2

2

f
-2500 2500

|X( f )|
0.5

f
-2500 2500-π

π
X( f )

, 

t

-0.04 0.04

x(t)

-0.08

0.08
f 

-500 500

|X( f )| 
1

f 
-500 500-π

π
X( f )

, 

t
-2 2

x(t)

-1

1

f
-12 12

|X( f )| 
0.5

f
-12 12-π

π
X( f )
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32. Graph the magnitudes and phases of these functions. Graph the inverse CTFTs of 
the functions too.

(a) X( ) sinc( ) ( )f f f= /4 1�

(b) X( ) sinc sinc ( )f
f f

f= −⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

1

4

1

4
1�

(c) X( ) sinc( )sinc( )f f f= 2

Answers:

 
t 

-2 2

x(t)
4

f
-16 16

|X( f )|
1

f
-16 16

-π

π
X( f )

, 
t 

-2 2

x(t)
1

f
-8 8

|X( f )| 
2

f
-8 8

-π

π
X( f )

, 

t 
-2 2

x(t)
0.5

f 
-2 2

|X( f )| 
1

f 
-2 2

-π

π
X( f )

 33. Graph these signals versus time and the magnitudes and phases of their CTFTs.

(a) x( ) [sinc( )]t
d

dt
t=

(b) x( ) [ rect( )]t
d

dt
t= 4 6/

(c) x( ) (tri( ) ( ))t
d

dt
t t= ∗2 1�

Answers:

 

t
-2 2

x(t)

-2

2

f
-8 8

|X( f )|
2

f
-8 8-π

π
X( f )

, 

t
-8 8

x(t)

-2

2

(a)

f
-1 1

|X( f )|
π

f
-1 1-π

π
X( f )

, 

t
-3

3

x(t)

-4

4
f

-0.5 0.5

|X( f )|
8

f
-0.5 0.5-π

π
X( f )

34. Graph these signals versus time and the magnitudes and phases of their CTF Ts.

(a) x( ) sin( )t d
t

=
−∞
∫ 2�� �  (b) x( ) rect( )t d

t

=
−∞
∫ � �

(c) x( ) sinc( )t d
t

=
−∞
∫ 3 2� �
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280 Chapter  6  Continuous-Time Fourier Methods

Answers:

 

t
-2 2

x(t)

-0.2

0.2

f
-1 1

|X( f ) |
0.1

f-1
1

-π

π
X( f )

, 

t
-4 4

x(t)

-1

2

f
-2 2

|X( f ) |
1

f
-2 2-π

π
X( f )

, 

t
-1 1

x(t)
1

f 
-2 2

|X( f ) |
1

f-2
2-π

π
X( f )

 Relation of CTFS to CTFT

35. The transition from the CTFS to the CTF T is illustrated by the signal

x( ) rect( ) ( )t t w tT= ∗/ � 0

or

x( ) rectt
t nT

wn

= −⎛
⎝

⎞
⎠

= −∞

∞

∑ 0
.

The complex CTFS harmonic function for this signal is given by

c [ ] ( )sinc( )x k Aw T kw T= / /0 0 .

Graph the “modifi ed” CTFS harmonic function

T k Aw w k f0 0c [ ] sinc( ( ))x =  

for w = 1 and f0 0 5 0 1 0 02= . , . .and  versus k f0  for the range − < <8 80k f .

Answers:

 

kf0

kf0

-8 8

cx[k]

-8
8

Aw

π

−π

T0|cx[k]|

, 

-8 8

kf0

kf0

-8
8

Aw

π

−π

cx[k]

T0|cx[k]|

, 
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kf0

kf0

-8 8

Aw

-8 8
−π

π
cx[k]

T0|cx[k]|

 36. Find the CTFS harmonic function and CTFT of these periodic functions and 
compare answers. 

(a) x( ) rect( ) ( )t t t= ∗�2

(b) x( ) tri( ) ( )t t t= ∗10 1 4� /

Answers: 
5

4

4 5 1
42

cos( )

( )
( )

�

�
�

k

k
f k

k

/ − −
= −∞

∞

∑ , ( ) sinc( ) ( )1 2 2/ /f f k
k

� −
= −∞

∞

∑ , 

( ) sinc( )1 2 2/ /k , 
5

4

4 5 1
2

cos( )

( )

�

�

k

k

/ −

 Numerical CTFT

 37. Find and graph the approximate magnitude and phase of the CTFT of 

x( ) [ ( ) ]rect(( ) )t t t= − − −4 2 2 42 /

  using the DFT to approximate the CTFT. Let the time between samples of x( )t   
be 1/16 and sample over the time range 0 16≤ <t .

Answers:

f 
5

 5

10

15

f 

-2

2

|X( f )|

X( f )

-10 -5 10 

5-10 -5 10 
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282 Chapter  6  Continuous-Time Fourier Methods

 System Response 

38. A system is described by the differential equation

′ + = ′y ( ) y( ) x ( )t t t500 500 .

  If the excitation is x( ) rect( ) ( )t t t= ∗200 10� ms , graph the response y( )t .

Answer:

 -1.5

-1

-0.5

0.5

1

1.5

y(t)

t (ms)
5 10 15 20

EXERCISES WITHOUT ANSWERS

Fourier Series

39. A periodic signal x(t) with a fundamental period of 2 seconds is described over 
one fundamental period by

x( )
sin( ),

,
t

t t

t
=

<
< <

⎧
⎨
⎩

2 1 2

0 1 2 1

� /

/
.

  Graph the signal and fi nd its CTFS description. Then graph on the same scale 
approximations to the signal x ( )N t  given by

x ( ) c [ ]xN
j kt T

k N

N

t k e=
= −
∑ 2 0� /

for N = 1 2 3, and . (In each case the time scale of the graph should cover at least 
two fundamental periods of the original signal.)

40. Using MATLAB, graph the following signals over the time range − < <3 3t .

(a) x ( )0 1t =
(b) x ( ) x ( ) cos( )1 0 2 2t t t= + �

(c) x ( ) x ( ) cos( )2 1 2 4t t t= + �

(d) x ( ) x ( ) cos( )20 19 2 40t t t= + �

For each part, (a) through (d), numerically evaluate the area of the signal over the 
time range − < <1 2 1 2/ /t .
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41. Each signal in Figure E.41 is graphed over a range of exactly one fundamental 
period. Which of the signals have harmonic functions c [ ]x k  that have a purely real 
value for every value of k? Which have a purely imaginary value for every value of k?

0 0.5 1
-2

-1

0

1

2

t
-1 0 10

0.5

1

1.5

t

x(
t)

x(
t)

 (a) (b)
Figure E.41

42. In some types of communication systems, binary data are transmitted using a 
technique called binary phase-shift keying (BPSK) in which a 1 is represented by 
a burst of a sine wave and a 0 is represented by a burst that is the exact negative 
of the burst that represents a 1. Let the sine frequency be 1 MHz and let the 
burst width be 10 periods of the sine wave. Find and graph the CTFS harmonic 
function for a periodic binary signal consisting of alternating 1s and 0s, based on 
its fundamental period.

Orthogonality

43. In the defi nite integral

cos( ) cos( )2 21 2

0

1

� �f t f t dt
qT

∫
 

  f1 0≠ , f mf2 1= , where m is an integer, T f1 11= /  and q is also an integer. Find all 
the pairs of m and q over the whole range of integers −∞ < < ∞m q,  for which 
the integral’s numerical value is not zero.

44. A continuous-time system is described by the differential equation

a t a t a t b t b t b2 1 0 2 1 0′′ + ′ + = ′′ + ′ +y ( ) y ( ) y( ) x ( ) x ( )  

and the system is excited by x( ) rect( ) ( )t t w tT= ∗/ � 0 .

(a) Let a a a b b b2 1 0 2 1 01 20 250 100 1 0 25= = = = = =, , , , and, 00 000, . Also 

let T
b

0
0

3
2= × �

 and let w T= 0 2/ . Graph the response y( )t  over the time 

range 0 2 0≤ <t T . At what harmonic number is the magnitude of the harmonic 
response a minimum? What cyclic frequency does that correspond to? Can 
you see in y( )t  the effect of this minimum magnitude response?

(b) Change T0 to 
2

0

�

b
 and repeat part (a).

Forward and Inverse Fourier Transforms

45. A system is excited by a signal, x( ) rect( )t t= 4 2/  and its response is

y( ) [( ) u( ) ( ) u( )]( ) ( )t e t e tt t= − + − − −− + − −10 1 1 1 11 1 .

What is its impulse response?
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284 Chapter  6  Continuous-Time Fourier Methods

46. Graph the magnitudes and phases of the CTFTs of the following functions.

(a) g( ) ( )t t= 5 4�

(b) g( ) [ ( ) ( )]t t t= + − −4 1 34 4� �

(c) g( ) u( ) u( )t t t= + −2 1

(d) g( ) sgn( ) sgn( )t t t= − −

(e) g( ) rect rectt
t t= +⎛

⎝
⎞
⎠ + −⎛

⎝
⎞
⎠

1

2

1

2

(f ) g( ) rect( )t t= /4

(g) g( ) tri( ) tri( )t t t= −5 5 2 2/ /

(h) g( ) ( ) rect( ) rect( )t t t= ∗3 2 8 2/ / /

47. Graph the magnitudes and phases of the CTFTs of the following functions.

(a) rect( )4t

(b) rect( ) ( )4 4t t∗ �

(c) rect( ) ( )4 4 2t t∗ −�

(d) rect( ) ( )4 4 2t t∗ �

(e) rect( ) ( )4 1t t∗�

(f ) rect( ) ( )4 11t t∗ −�

(g) ( ) rect( ) ( )1 2 4 1 2/ /t t∗�

(h) ( ) rect( ) ( )1 2 1 2/ /t t∗�

48. A periodic signal has a fundamental period of four seconds. 

(a) What is the lowest positive frequency at which its CTFT could be nonzero? 
(b) What is the next-lowest positive frequency at which its CTFT could be 

nonzero?

49. A signal x( )t  has a CTFT, X( )f
j f

j f
=

+
2

3 10

�

/
.

(a) What is the total net area under the signal x( )t ?

(b) Let y( )t  be the integral of x( )t , y( ) x( )t d
t

=
−∞∫ � �. What is the total net area 

under y( )t ?
(c) What is the numerical value of X( )f  in the limit as f → +∞?

50. Answer the following questions.

(a) A signal x ( )1 t  has a CTFT X ( )1 f . If x ( ) x ( )2 1 4t t= + , what is the 
relationship between X ( )1 f  and X ( )2 f ?

(b) A signal x ( )1 t  has a CTFT, X ( )1 f . If x ( ) x ( )2 1 5t t= / , what is the relationship 
between the maximum value of X ( )1 f  and the maximum value of X ( )2 f ?

(c) A CTFT has the value e j− �/4  at a frequency f = 20. What is the value of that 
same CTFT at a frequency of f = −20?
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51. If y( ) Y( )t fF← →⎯  and 
d

dt
t e j f(y( )) F← →⎯ − −1 2� / , fi nd and graph y( )t .

52. Let a signal x( )t  have a CTFT, X( )f
f f

f
=

<

≥

⎧
⎨
⎪

⎩⎪

,

,

2

0 2
. Let y( ) x( ( ))t t= −4 2 . Find 

the numerical values of the magnitude and phase of Y( )3  where y( ) Y( )t fF← →⎯ .

53. Graph the magnitude and phase of the CTFT of each of the signals in 
Figure E.53 (	 form).

(a) 
t 

x(t)
0.1

20−20  (b) 
t 

x(t)
3

−10

(c) 
t 

x(t)

7
... ...

5−5 10−10  (d) 
t 

x(t)

7
... ...

2−3 7−8−13

Figure E.53

54. Graph the inverse CTFTs of the functions in Figure E.54.

(a) 

20

-4 4

-4 4

f

|X( f ) |

f

X( f )

 (b) 

f

|X( f ) |

20

4−4

f
4−4

π
2

π
2

X( f )

(c) 

f

|X( f ) |

5−5

f
5−5

2

π

-π

X( f )

 (d) 

f

|X( f ) |

5−5

f
5−5

5
8

X( f )

Figure E.54
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286 Chapter  6  Continuous-Time Fourier Methods

55. Below are two lists, one of time-domain functions and one of frequency-domain 
functions. Match the frequency-domain functions to their inverse CTFTs in the 
list of time-domain functions. (A match may not exist.)

(a)
Time Domain Frequency Domain
 1. −( ) ( )1 2 1 8/ /� t  A 5 200 200[ ( ) ( )]� �f f− + +

 2. 5 2 2sinc( ( ))t +   B ( ) rect( )5 2 2 4/ /f e j f− �

 3. 3 3 9�( )t −   C 180 20 8sinc( )f e j f− �

 4. −7 122sinc ( )t /  D −84 12tri( )f

 5. 5 2 2sinc( ( ))t −  E −96 4 2sinc( )f e j f�

 6. 5 200cos( )�t  F − −4 8� ( )f

 7. 2 5 10tri(( ) )t + /  G e j f− 6�

 8. 3 3�( )t −  H 10 52 10sinc ( )f e j f�

 9. − + − −24 1 3[u( ) u( )]t t  

10. − −2 1 4� / ( )t   

11. 9 4 20rect(( ) )t − /   

12. 2 10 5tri(( ) )t + /  

13. − + − −24 3 1[u( ) u( )]t t  

14. 10 400cos( )�t

(b)
Time Domain Frequency Domain
 1. 3 3�( )t −  A − −4 8� ( )f

 2. 3 8 7sinc( )t +   B 0 375 16 7. rect( )	 � 	/ e j

 3. − +rect(( ) )t 3 6/   C e j3	

 4. 12 3 5[u( ) u( )]t t− − +  D 12 3 2tri( )f e j f− �

 5. 4 1 32sinc (( ) )t + /  E 0 375 8 7 4. rect( )f e j f/ /�

 6. 10 5sin( )�t  F j10 10 10� � 	 � � 	 �[ ( ) ( )]+ − −

 7. −( ) ( )1 2 1 8/ /� t  G − −1 25 42 4. sinc ( )f e j f/ �

 8. 3 8 7sinc( ( ))t +  H 3 3e j− 	

 9. 3 3 9�( )t −  I 96 4sinc( )	 � 	/ e j−

10. 12 3 5[u( ) u( )]t t+ − −   J 6 6 6sinc( )f e j f�

11. 18 6 5tri( ( ))t +   K 3 32 5sinc ( )	 � 	/ e j

12. − −5 4 2tri( ( ))t  

13. − −2 4� ( )t  

14. 5 10sin( )�t
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 56. Match the signals in the left list to the CTFTs in the right list. (A match may 
not exist.)

(a)
A 5 2 1rect( )t −   1. 10 2 4sinc( )f e j f− �

B 5 2 1rect(( ) )t / −   2. j e j5 3 3� � 	 � 	 	[ ( ) ( )]+ − − +

C 5 2 1rect( ( ))t −   3. 2 5 2 2. rect( )f e j f− �

D 5 1 2rect(( ) )t − /   4. 2 5 2. sinc( )f e j f/ − �

E 5 2 1sinc( )t −   5. 2 5 2. rect( )f e j f/ − �

F 5 2 1sinc(( ) )t / −   6. 2 5 2 2. rect( )f e j f/ − �

G 5 2 1sinc( ( ))t −   7. 10 2 2rect( )f e j f− �

H 5 1 2sinc(( ) )t − /   8. 10 2rect( )f e j f/ − �

I 5 3 4sin( ( ))t − �/   9. j e j5 1 3 1 3 3 4� � 	 � 	 �	[ ( ( )) ( ( ))]+ − − +/ / /

J 5 3 1sin( ( ))t +  10. 10 2 4rect( )f e j f− �

K 5 3 4sin(( ) ( ))t / /− �  11. 2 5 2 2. sinc( )f e j f/ − �

L 5 1 3sin(( ) )t + /  12. j e j2 5 3 2 3 2 12. [ ( ( )) ( ( ))]� 	 � � 	 � �	+ − − −/ / /

   13. 2 5 2 2. sinc( )f e j f− �

   14. j e j2 5 1 6 1 6. [ ( ( )) ( ( ))]� 	 � � 	 � 	+ − − +/ /

   15. 10 2 4sinc( )f e j f/ − �

   16. 2 5 2. sinc( )f e j f− �

   17. j e j5 3 3� � 	 � 	 	[ ( ) ( )]+ − − −

   18. 10 2 2sinc( )f e j f/ − �

   19. j e j5 3 3 12� � 	 � 	 �	[ ( ) ( )]+ − − − /

   20. 10 2 2rect( )f e j f/ − �

   21. j e j5 1 3 1 3 3 4� � 	 � 	 �	[ ( ( )) ( ( ))]+ − − −/ / /

   22. 10 2 2sinc( )f e j f− �

   23. 2 5 2 4. rect( )f e j f− �

   24. j e j5 1 3 1 3� � 	 � 	 	( ( )) ( ( ))+ − −[ ] +/ /

(b)

A ( ) rect( ) ( )5 2 2 1/ /t t∗�   1. 8 3
2 3� �( )f e j f− /

B 8 3 1 8 3 1� �( ( )) ( ( ))t t+ − −   2. − j f48 6sin( )�

C ( ) ( )8 3 1 31 3/ //� t −   3. 48 2cos( )�f

D ( ) ( )8 3 11 3/ /� t −   4. 72 3
2 3� �( )f e j f− /

E 8 3 1 8 3 1� �( ) ( )t t− + +   5. ( ) sinc( ) ( )5 2 1 2/ /f f�

F 8 1 3 8 1 3� �(( ) ) (( ) )t t+ + −/ /   6. ( ) cos( )16 3 2 3/ /�f

G 5 12rect( ) ( )t t∗ −�   7. 8 32 3e f kj k
k

−
= −∞

∞ −∑ � �/ ( )/
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288 Chapter  6  Continuous-Time Fourier Methods

H 24 33� ( )t −   8. − j f( )sin( )16 3 2/ �

I ( ) rect(( ) ) ( )5 2 1 2 1/ /t t− ∗�   9. ( ) ( )8 9 1 3
6/ /� �f e j f

J 8 3 1 8 3 1� �(( ) ) (( ) )t t/ /− − +  10. ( ) sinc( ) ( )5 8 1 2
2/ /f f e j f� �−

K 24 13� ( )t −  11. 8 32 3e f kj k
k

−
= −∞

∞ −∑ � �/ ( )

L 5 2rect( ) ( )t t∗�  12. 5 2 2sinc( ) ( )k e f kj k
k

−
= −∞

∞ −∑ � �

   13. 5 sinc( ) ( )k f k
k

� −
= −∞

∞∑
   14. ( ) ( )8 9 1 3

6/ /� �f e j f−

   15. j f( )sin( )16 3 2/ �

   16. ( ) cos( )16 3 2/ �f

   17. ( ) sinc( ) ( )5 4 1 2/ /f f�

   18. 8 1 3
6� �

/ ( )f e j f−

   19. ( ) cos( )16 3 6/ �f

   20. 5 2sinc( ) ( )k f k
k

� −
= −∞

∞∑
   21. 5 2 4sinc( ) ( )k e f kj k

k
−

= −∞
∞ −∑ � �

   22. ( ) sinc( ) ( )5 2 1 2
2/ /f f e j f� �−

   23. 48 6cos( )�f

   24. 8 36e f kj k
k

−
= −∞

∞ −∑ � �( )

57. Find the inverse CTFT of the real, frequency-domain function in Figure E.57 and 
graph it. (Let A = 1, f k z1 95= H  and f k z2 105= H .)

Α

f1- f1 f2- f2

X( f )

f

Figure E.57 
A real frequency-domain function

58. Find the CTFT (either form) of the signal in Figure E.58 and graph its magnitude and 
phase versus frequency on separate graphs. (Let A B= − = 1 and let t1 1=  and t2 2= .) 
Hint: Express this signal as the sum of two functions and use the linearity property.

t 

x(t)

A

B

t1- t1- t2 t2

Figure E.58 
A function
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59. In many communication systems a device called a mixer is used. In its simplest 
form a mixer is simply an analog multiplier. That is, its output signal y( )t  is the 
product of its two input signals. If the two input signals are 

x ( ) sinc( )1 10 20t t=  and x ( ) cos( )2 5 2000t t= �

  Graph the magnitude of the CTFT of y(t), which is Y( )f , and compare it to the 
magnitude of the CTFT of x ( )1 t . In simple terms what does a mixer do?

60. One major problem in real instrumentation systems is electromagnetic interference 
caused by the 60 Hz power lines. A system with an impulse response of the 
form h( ) (u( ) u( ))t A t t t= − − 0  can reject 60 Hz and all its harmonics. Find the 
numerical value of t0 that makes this happen.

61. Graph the convolution of the two functions in each case.

(a) rect( ) rect( )t t∗  (b) rect( ) rect( )t t− ∗ +1 2 1 2/ /
(c) tri( ) tri( )t t∗ − 1  (d) 3 10�( ) cos( )t t∗
(e) 10 1� ( ) rect( )t t∗  (f ) 5 1� ( ) tri( )t t∗

62. In electronics, one of the fi rst circuits studied is the rectifi er. There are two 
forms, the half-wave rectifi er and the full-wave rectifi er. The half-wave rectifi er 
cuts off half of an input voltage sinusoidal signal and leaves the other half intact. 
The full-wave rectifi er reverses the polarity of half of the input voltage sinusoidal 
signal and leaves the other half intact. Let the input voltage sinusoid be a typical 
household voltage, 120 Vrms at 60 Hz, and let both types of rectifi ers alter the 
negative half of the sinusoid while leaving the positive half unchanged. Find and 
graph the magnitudes of the CTFTs of the output voltage signals of both types of 
rectifi ers (either form).

 Exercises without Answers 289
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290

7.1 INTRODUCTION AND GOALS
In Chapter 6 we developed the continuous-time Fourier series as a method of repre-
senting periodic continuous-time signals and fi nding the response of a continuous-time 
LTI system to a periodic excitation. Then we extended the Fourier series to the Fourier 
transform by letting the period of the periodic signal approach infi nity. In this chapter 
we take a similar path applied to discrete-time systems. Most of the basic concepts are 
the same but there are a few important differences.

C H A P T E R  G OA L S

 1. To develop methods of expressing discrete-time signals as linear combinations of 
sinusoids, real or complex

 2. To explore the general properties of these ways of expressing discrete-time signals

 3. To generalize the discrete-time Fourier series to include aperiodic signals by 
defi ning the discrete-time Fourier transform

 4. To establish the types of signals that can or cannot be described by a discrete-time 
Fourier transform

 5. To derive and demonstrate the properties of the discrete-time Fourier transform

 6. To illustrate the interrelationships among the Fourier methods

7.2 THE  DISCRETE-TIME FOURIER SERIES AND 
THE DISCRETE FOURIER TRANSFORM

LINEARITY AND COMPLEX-EXPONENTIAL EXCITATION

As was true in continuous-time, if a discrete-time LTI system is excited by a sinusoid, the 
response is also a sinusoid, with the same frequency but generally a different magnitude 
and phase. If an LTI system is excited by a sum of signals, the overall response is the sum 
of the responses to each of the signals individually. The discrete-time Fourier series 
(DTFS) expresses arbitrary periodic signals as linear combinations of sinusoids, real-
valued or complex, so we can use superposition to fi nd the response of any LTI system to 
any arbitrary signal by summing the responses to the individual sinusoids (Figure 7.1).

 7 C H A P T E R

 Discrete-Time Fourier Methods
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The sinusoids can be real-valued or complex. Real-valued sinusoids and complex 
sinusoids are related by

 cos( )x
e ejx jx

= + −

2
 and sin( )x

e e

j

jx jx

= − −

2

and this relationship is illustrated in Figure 7.2.
Consider an arbitrary periodic signal x[n] that we would like to represent as a 

linear combination of sinusoids as illustrated by the center graph in Figure 7.3. (Here 
we use real-valued sinusoids to simplify the visualization.)

Figure 7.1
The equivalence of the response of an LTI system to a signal and the sum of 
its responses to complex sinusoids whose sum is equivalent to the signal

x[n] = A1ej2πn/N1+A2ej2πn/N2+A3ej2πn/N3

A1ej2πn/N1

y[n]

y[n]

h[n]

h[n]

A2ej2πn/N2 h[n]

A3ej2πn/N3

B1ej2πn/N1

B2ej2πn/N2

B3ej2πn/N3

h[n]

+

++

Figure 7.2
Addition and subtraction of e j n2 16� /  and e j n− 2 16� /  to form 2 2 16cos( )�n/  and j n2 2 16sin( )� /

Re(ej2πn/16)

Im(ej2πn/16)

n

Re(e-j2πn/16)

Im(e-j2πn/16)

n

Re(ej2πn/16+e-j2πn/16)

Im(ej2πn/16+e-j2πn/16)

Im(ej2πn/16-e-j2πn/16)

n

n

Re(ej2πn/16-e-j2πn/16)
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292 Chapter  7  Discrete-Time Fourier Methods

In Figure 7.3 the signal is approximated by a constant 0.2197, which is the 
average value of the signal. A  constant is a special case of a sinusoid, in this case
0 2197 2. ( )cos /�kn N  with k = 0. This is the best possible approximation of x[n] by 
a constant because the mean squared error between x[n] and the approximation is a 
minimum. We can make this poor approximation better by adding to the constant a 
sinusoid whose fundamental period N is the fundamental period of x[n] (Figure 7.4).

This is the best approximation that can be made using a constant and a single 
sinusoid of the same fundamental period as x[n]. We can improve the approximation 
further by adding a sinusoid at a frequency of twice the fundamental frequency of x[n] 
(Figure 7.5).

Figure 7.3
Signal approximated by a constant

n-10 30

Constant

-0.6

0.6

n
-10 30

x[n]
1

Approximation by a Constant

n-10 30

Exact x[n]
1

n0+Nn0

Figure 7.4
Signal approximated by a constant plus a single sinusoid

n
-10 30

Sinusoid 1

-0.6

0.6

n
-10 30

Exact x[n]
1

n-10 30

x[n]
1 Approximation through 1 Sinusoid

n0+Nn0

n
-10 30

Sinusoid 2

-0.6

0.6

n-10 30

Exact x[n]
1

n
-10 30

x[n]
1 Approximation through 2 Sinusoids

n0+Nn0

Figure 7.5
Signal approximated by a constant plus two sinusoids
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If we keep adding properly chosen sinusoids at higher integer multiples of the fun-
damental frequency of x[n], we can make the approximation better and better. Unlike 
the general case in continuous time, with a fi nite number of sinusoids the representation 
becomes exact (Figure 7.6).

This illustrates one signifi cant difference between continuous-time and discrete-
time Fourier series representations. In discrete time exact representation of a periodic 
signal is always achieved with a fi nite number of sinusoids.

Just as in the CTFS, k is called the  harmonic number and all the sinusoids have 
frequencies that are k times the fundamental cyclic frequency, which, for the DTFS, is 
1/N. The DTFS represents a discrete-time periodic signal of fundamental period N0 as 
a linear combination of complex sinusoids of the form

 x[ ] c [ ]xn k e j kn N

k N

=
=
∑ 2� /

  

where N mN= 0 (m an integer) and cx[k] is the  DTFS harmonic function. The notation 

k N=∑  is equivalent to 
k n

n N

=
+ −∑

0

0 1
 where n0 is arbitrary; in other words, a summation 

over any set of N consecutive values of k. Although the most commonly used value for 
N is the fundamental period of the signal N0 (m � 1), N does not have to be N0. N can 
be any period of the signal.

In discrete-time signal and system analysis there is a very similar form of represen-
tation of discrete-time periodic signals using the  discrete Fourier transform (DFT) 
fi rst mentioned in Chapter 6. It also represents periodic discrete-time signals as a linear 
combination of complex sinusoids. The  inverse DFT is usually written in the form

 x[ ] X[ ]n
N

k e j kn N

k

N

=
=

−

∑1 2

0

1
� /   

where X[k] is the  DFT harmonic function of x[n] and X[k] = N cx[k]. The name ends 
with “transform” instead of “series” but, since it is a linear combination of sinusoids 

Figure 7.6
Signal represented by a constant plus six sinusoids

n
-10 30

Sinusoid 6

-0.6

0.6

n-10 30

Exact x[n]
1

n
-10 30

x[n]
1 Exact Representation by 6 Sinusoids

n0+Nn0
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294 Chapter  7  Discrete-Time Fourier Methods

at a discrete set of frequencies, for terminological consistency it probably should have 
been called a series. The name “transform” probably came out of its use in digital 
signal processing in which it is often used to fi nd a numerical approximation to the 
CTF T. The DF T is so widely used and so similar to the DTFS that in this text we will 
concentrate on the DF T knowing that conversion to the DTFS is very simple.

The formula x[ ] X[ ]n
N

k e j kn N

k

N

=
=

−

∑1 2

0

1
� /  is the inverse DF T. It forms the time-

domain function as a linear combination of complex sinusoids. The  forward DF T is

 X[ ] x[ ]k n e j kn N

n

N

= −

=

−

∑ 2

0

1
� /  

where N is any period of x[n]. It forms the harmonic function from the time-domain 
function. 

As shown in Chapter 6, one important property of the DF T is that X[k] is periodic

 X[ ] X[ ]k k N k= + , any integer.  

So now it should be clear why the summation in the inverse DF T is over a fi nite range 
of k values. The harmonic function X[k] is periodic with period N, and therefore has 
only N unique values. The summation needs only N terms to utilize all the unique 
values of X[k]. The formula for the inverse DF T is most commonly written as

 x[ ] X[ ]n
N

k e j kn N

k

N

=
=

−

∑1 2

0

1
� /   

but, since X[k] is periodic with period N, it can be written more generally as

  x[ ] X[ ]n
N

k e j kn N

k N

=
=
∑1 2� / .  

ORTHOGONALITY AND THE HARMONIC FUNCTION

We can fi nd the  forward DFT X[k] of x[n] by a process analogous to the one used for 
the CTFS. To streamline the notation in the equations to follow let 

  W eN
j N= 2�/   (7.1)

Since the beginning point of the summation X[ ]k e j kn N
k N

2� /
=∑  is arbitrary let it be 

k = 0. Then, if we write e j kn N2� /  for each n in n n n N0 0≤ < + , using (7.1) we can write 

the matrix equation

x[ ]

x[ ]

x[ ]

n

n

n N

0

0

0

1

1

+

+ −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
�

� ���� ����
x

11

0 1

0 1 1 1

0 0

0 0

N

W W W

W W W

N N
n

N
n N

N N
n

N
n N

�

�

� � � �

−( )

+ +( ) −( )

WW W WN N
n N

N
n N N0 1 1 10 0+ − + −( ) −( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥�

� �
W

�������� ��������

�

�

X[ ]

X[ ]

X[ ]

0

1

1N −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

X
���� ���

 (7.2)

or in the compact form Nx WX= . If W is nonsingular, we can directly fi nd X as 
X W x= −1N . Equation (7.2) can also be written in the form
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N

n

n

n N

x[ ]

x[ ]

x[ ]

0

0

0

1

1

1
1

1

+

+ −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢� �
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

=

+

+ −

k

N
n

N
n

N
n N

W

W

W
0

1

1

0

0

0

0	

�
X[ ]

⎥⎥
⎥
⎥
⎥
⎥

+ +

=

−( )

+( ) −( )

k

N
n N

N
n N

W

W

W

1

1

1 1

1

0

0

� ��� ���

�
�

X[ ]

NN
n N N

k N

0 1 1

1

+ −( ) −( )

= −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

� ���� ����

X[NN − 1]

 

 (7.3)

or 

  N NNx w w w= + + + −−0 1 10 1 1X[ ] X[ ] X[ ]�   (7.4)

where W w w w= −[ ].0 1 1� N  The elements of the fi rst column vector w0 are all the con-
stant one and can be thought of as the function values in a complex sinusoid of zero 
frequency. The second column vector w1 consists of the function values from one cycle 
of a complex sinusoid over the time period n n n N0 0≤ < + . Each succeeding column 
vector consists of the function values from k cycles of a complex sinusoid at the next 
higher harmonic number over the time period n n n N0 0≤ < + . 

Figure 7.7 illustrates these complex sinusoids for the case of N = 8 and n0 = 0.
Notice that the sequence of complex sinusoid values versus n for k = 7 looks 

just like the sequence for k = 1, except rotating in the opposite direction. In fact, the 
sequence for k = 7 is the same as the sequence for k = –1. This had to happen because 
of the periodicity of the DFT.

Figure 7.7 
Illustration of a complete set of orthogonal basis vectors for N = 8 and n0 = 0 

k = 0

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 1

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 2

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 3

n

Im(ej2πkn/8)

Re(ej2πkn/8)

k = 4

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 5

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 6

n

Im(ej2πkn/8)

Re(ej2πkn/8)
k = 7

n

Im(ej2πkn/8)

Re(ej2πkn/8)

These vectors form a family of  orthogonal basis vectors. Recall from basic linear 
algebra or vector analysis that the projection p of a real vector x in the direction of 
another real vector y is 

  p
x y
y y

y=
T

T
  (7.5)

and when that projection is zero, x and y are said to be orthogonal. That happens when 
the dot product (or scalar product or inner product) of x and y, x yT , is zero. If the vec-
tors are complex-valued, the theory is practically the same except the dot product is 
x yH  and the projection is

  p
x y
y y

y=
H

H
  (7.6)
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296 Chapter  7  Discrete-Time Fourier Methods

where the notation xH means the complex-conjugate of the transpose of x. (This 
is such a common operation on complex-valued matrices that the transpose of a 
complex-valued matrix is often defi ned as including the complex-conjugation opera-
tion. This is true for transposing matrices in MATLAB.) A set of correctly chosen 
orthogonal vectors can form a  basis. An orthogonal vector basis is a set of vectors 
that can be combined in linear combinations to form any arbitrary vector of the same 
dimension.

The dot product of the fi rst two basis vectors in (7.4) is

  w w0 1

1

1

1 1 1

0

0

0

H

N
n

N
n

N
n N

W

W

W

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

+ −

[ ]�
�

== + + +( )−W W WN
n

N N
N0 1 1�   (7.7)

The sum of a fi nite-length geometric series is

 r

N r

r

r
r

n

n

N
N

=

−

∑ =
=

−
−

≠

⎧
⎨
⎪

⎩⎪0

1 1

1

1
1

,

,
.

Summing the geometric series in (7.7),

 w w0 1

2

2
0 0

1

1

1

1
0H n N

N

N
N
n

j

j NW
W

W
W

e

e
= −

−
= −

−
=

�

�/  

proving that they are indeed orthogonal (if N ≠ 1). In general, the dot product of the 
k1-harmonic vector and the k2 -harmonic vector is

 w wk
H

k N
n k

N
n k

N
n N kW W W

W

1 2
0 1 0 1 0 11 1= ⎡

⎣⎢
⎤
⎦⎥

− − + − + −( ) ( )�

NN
n k

N
n k

N
n N k

W

W

0 2

0 2

0 2

1

1

( )

( )

+

+ −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

�
 

 w wk
H

k N
n k k

N
k k

N
N k kW W W

1 2
0 2 1 2 1 2 11 1= + + +− − − −( ) ( ) ( )( )�⎡⎡⎣ ⎤⎦

 

 
w wk

H
k N

n k k N
k k N

N
k kW

W

W1 2
0 2 1

2 1

2 1

1

1
=

− ⎡⎣ ⎤⎦
−

=−
−

−
( )

( )

( ) WW
e

eN
n k k

j k k

j k k N
0 2 1

2 1

2 1

1

1

2

2
( )

( )

( )
−

−

−
−

−

�

� /

 

 w wk
H

k
k k

N k k
N k k

1 2

0 1 2

1 2
1 2=

≠
=

⎧
⎨
⎩

⎫
⎬
⎭

= −
,

,
�[ ]  

This result is zero for k k1 2≠ because the numerator is zero and the denominator is not. 
The numerator is zero because both k1 and k2 are integers and therefore e j k k2 2 1� −( ) is 
one. The denominator is not zero because both k1 and k2 are in the range 0 1 2≤ <k k N,  
and the ratio ( )k k N2 1− /  cannot be an integer (if k k1 2≠  and N ≠ 1). So all the vectors 
in (7.4) are mutually orthogonal.
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The fact that the columns of W are orthogonal leads to an interesting interpretation 
of how X can be calculated. If we premultiply all the terms in (7.4) by w0

H we get

 w x w w w w w w0 0 0 0 1

0

0 1

0

0 1H H

N

H H
NN = + + +

= =

−

=
��� ���X[ ] X[ ] � �� �� �� X[ ] X[ ]N N− =1 0  

Then we can solve for X[0] as

 X[ ] .0 0

0 0
0= =

=

w x
w w

w x
H

H

N

HN

���
 

The vector X[0]w0 is the projection of the vector Nx in the direction of the basis vec-
tor w0. Similarly, each X[k]wk is the projection of the vector Nx  in the direction of 
the basis vector wk. The value of the harmonic function X[k] can be found at each 
harmonic number as

 X[ ]k k
H= w x 

and we can summarize the entire process of fi nding the harmonic function as

 X

w

w

w

x W x=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−

0

1

1

H

H

N
H

H

�
. (7.8)

Because of the orthogonality of the vectors wk1  and wk2  ( )k k1 2≠  the product of W and 
its complex-conjugate transpose WH is

 WW w w w

w

w

w

H
N

H

H

N
H

N

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤
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⎥
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⎥
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⎥
⎥

=−

−

[ ]0 1 1
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1
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� 00
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� � � �
�

⎡
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= I 

Dividing both sides by N, 

 
WW

I
H

N
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1 0 0
0 1 0

0 0 1

�
�

� � � �
�

. 

Therefore the inverse of W is 

 W
W− =1

H

N  

and, from X W x= −1N  we can solve for X as

  X W x= H   (7.9)
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298 Chapter  7  Discrete-Time Fourier Methods

which is the same as (7.8). Equations (7.8) and (7.9) can be written in a summation form

 X[ ] x[ ] .k n e j kn N

n n

n N

= −

=

+ −

∑ 2
1

0

0
� /

Now we have the forward and inverse DF T formulas as

 X[ ] x[ ] x[ ] X[ ]k n e n
N

k ej kn N

n n

n N
j= =−

=

+ −

∑ 2
1

0

0 1� / , 22

0

�kn N

k N

/

=
∑   (7.10)

If the time-domain function x[n] is bounded on the time n n n N0 0≤ < + , the harmonic 
function can always be found and is itself bounded because it is a fi nite summation of 
bounded terms.

In most of the literature concerning the  DF T the transform pair is written in this form.

 X[ ] x[ ] x[ ] X[ ]k n e n
N

k ej kn N

n

N
j kn= =−

=

−

∑ 2

0

1
21� �/ , //N

k

N

=

−

∑
0

1

 (7.11)

Here the beginning point for x[n] is taken as n0 = 0 and the beginning point for X[k] 
is taken as k = 0. This is the form of the DFT that is implemented in practically all 
computer languages. So in using the DFT on a computer the user should be aware that 
the result returned by the computer is based on the assumption that the fi rst element in 
the vector of N values of x sent to the DFT for processing is x[0]. If the fi rst element 

is x[ ]n n0 0 0, ≠ , then the DFT result will have an extra linear phase shift of e j kn N2 0� / . 

This can be compensated for by multiplying the DFT result by e j kn N− 2 0� / . Similarly, 
if the fi rst value of X[k] is not at k = 0, the inverse DFT result will be multiplied by a 
complex sinusoid.

DISCRETE FOURIER TRANSFORM  PROPERTIES

In all the properties listed in Table 7.1 x[ ] X[ ]n k
N

DFT← →⎯⎯  and y[ ] Y[ ].n k
N

DFT← →⎯⎯
 If a signal x[ ]n  is even and periodic with period N, then its harmonic function is

 X[ ] x[ ]k n e j kn N

n

N

= −

=

−

∑ 2

0

1
� / .

If N is an even number,

 X[ ] x[ ] x[ ] x[ ] x[k n e N ej kn N

n

N
j k= + + +−

=

−
−∑0 22

1

2 1
� �/

/

/ nn e j kn N

n N

N

]
/

−

= +

−

∑ 2

2 1

1
� /  

 X[ ] x[ ] x[ ] x[ ]k n e n ej kn N

n

N
j kn N

n

= + +−

=

−
−∑0 2

1

2 1
2� �/

/
/

== −

+

∑ + −
N

N
k N

1

2 1

1 2
/

/( ) x[ ]  

Knowing that x is periodic with period N, we can subtract N from n in the second sum-
mation yielding

 X[ ] x[ ] x[ ] x[ ]k n e n ej kn N

n

N
j k n N= + +−

=

−
− −(∑0 2

1

2 1
2� �/

/
))

=−

− −

∑ + −/
/

/N

n

N
k N

1

2 1

1 2
( )

( ) x[ ]  

 X[ ] x[ ] x[ ] x[ ]k n e e n ej kn N

n

N
j k= + +−

=

−

=

−∑0 2

1

2 1
2

1

� �/
/

	
jj kn N

n

N
k N2

1

2 1

1 2� /
/

/
=−

− −

∑ + −
( )

( ) x[ ]  
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Table 7.1  DFT         properties

Linearity

Time Shif

� � � �x[ ] y[ ] X[ ] Y[ ]n n k k
N

+ ← →⎯⎯ +DFT

tting

Frequency Shif

/x[ ] X[ ]n n k e
N

j kn N− ← →⎯⎯ −
0

2 0
DFT �

tting /x[ ]n e j k n N2 0� DFT
N

k k← →⎯⎯ −X[ ]0

Time Reversal

C

x[ ] x[ ] X[ ] X[ ]− = − ← →⎯⎯ − = −n N n k N k
N

DFT

oonjugation x [ ] X [ ] X [ ]* * *n k N k
N

DFT← →⎯⎯ − = −

� xx [ ] x [ ] X [ ]* * *− = − ← →⎯⎯n N n k
N

DFT

Time Scaling z[n]]
x[ ],

= ⎧
⎨
⎩

n m n m/ / an integer

0, otherwise

� ,

Change of Period

N mN k k→ =Z[ ] X[ ]

N qN→ ,, a positive integerq

� X [ ]q k
q

=
XX[ ],k q k q/ / an integer

0, otherwise
⎧
⎨
⎩⎩

Multiplication-Convolution Duality x[n]]y[ ] ( )Y[ ] X[ ]n N k k
N

DFT← →⎯⎯ 1/ �

� x[n]] y[ ] Y[ ]X[ ]� n k k
N

DFT← →⎯⎯

� where x[nn n m n m
m N

] y[ ] x[ ]y[ ]� = −
=
∑

Parseval s Theorem’
1 12

2N
n

Nn N

x[ ]
=
∑ = XX[ ]k

k N

2

=
∑

 X x (x[ ] x[ ] )k n e n ej kn N j kn N

n

N

[ ] = [ ] + + −−

=

−
0 2 2

1

2 1
� �/ /

/

∑∑ + −( ) x[ ]1 2k N/  

Now, since x[ ] x[ ]n n= − ,

 X[ ] x[ ] x[ ]cos( ) ( ) x[ ].k n k N N
n

N
k= + + −

=

−

∑0 2 2 1 2
1

2 1

� / /
/

 

All these terms are real-valued, therefore X[k] is also. A similar analysis shows that if 
N is an odd number, the result is the same; X[k] has all real values. Also, if x[n] is an 
odd periodic function with period N, all the values of X[k] are purely imaginary.

EXAMPLE 7.1  
DFT  of a periodically repeated rectangular pulse 1

Find the DFT of x[ ] u[ ] u[ ] [ ]n n n n n n Nx N x= − −( ) ∗ ≤ ≤�
0

0 0, , using N0  as the representation 
time.

 u[ ] u[ ] [ ]n n n n ex N N
j kn N

n

nx

− −( ) ∗ ← →⎯⎯ −

=
� �

0
0

02

0

DFT /
−−

∑
1
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300 Chapter  7  Discrete-Time Fourier Methods

Summing the fi nite-length geometric series,

 u[ ] u[ ] [ ]n n n n
e

x N N

j kn Nx

− −( ) ∗ ← →⎯⎯ −
−

−
�

�

0
0

01

1

2
DFT

/

ee

e

e

e e
j kn N

j kn N

j k N

j kn N j knx x x

2 0

0

0

0

�

�

�

� �

/

/

/

/ /
= −−

−

− NN

j k N j k Ne e

0

0 0− −−� �/ /

 u[ ] u[ ] [ ]
s

n n n n ex N N
j k n Nx− −( ) ∗ ← →⎯⎯ − −( )� �

0
0

01DFT / iin( )

sin( )

�

�

kn N

k N
n Nx

x
/

/
,0

0
00 ≤ ≤

EXAMPLE 7.2

DFT of a periodically repeated rectangular pulse 2

Find the DFT of x[ ] (u[ ] u[ ]) [ ]n n n n n n n n NN= − − − ∗ ≤ − ≤0 1 1 0 00
0� , .

 From Example 7.1 we already know the DFT pair

 (u[ ] u[ ]) [ ]
s

n n n n ex N N
j k n Nx− − ∗ ← →⎯⎯ − −( )� �

0
0

01DFT / iin( )

sin( )

�

�

kn N

k N
n Nx

x
/

/
,0

0
00 ≤ ≤

 If we apply the  time-shifting property 

 x[ ] X[ ]n n k ey N
j kn Ny− ← →⎯⎯ −DFT 2� /

to this result we have

(u[ ] u[ ]) [ ] (n n n n n n ey y x N N
j k nx− − − − ∗ ← →⎯⎯ −� �

0
0

DFT −− −1 2 0

0

0 0) / y
sin( )

sin( )
N j kn N xe

kn N

k N
� �

�
/ /

/
,

0 0≤ ≤n Nx

(u[ ] u[ ( )]) [ ] (n n n n n n ey y x N N
j k n− − − + ∗ ← →⎯⎯ −� �

0
0

DFT
xx yn N xkn N

k N
+ −2 1 0

0

0) sin( )

sin( )
/ /

/
,

�

�

0 0≤ ≤n Nx

Now, let n0 = ny and let n n ny x1 = + .

u[ ] u[ ] [ ]n n n n n eN N
j k n n− − −( ) ∗ ← →⎯⎯ − + −

0 1
1

0
0

0 1� �DFT (( ) −/ /

/
,N k n n N

k N

sin( ( ) )

sin( )

�

�

1 0 0

0

0 1 0 0≤ − ≤n n N

 Consider the special case in which n n0 1 1+ = . Then

 u[ ] u[ ] [ ]
sin( ( )

n n n n n
k n n

N N
− − − ∗ ← →⎯⎯ −

0 1
1 0

0
0

�
�DFT /NN

k N
n n0

0
0 1

)

sin( )
,

� /
+ =

This is the case of a rectangular pulse of width n n n1 0 12 1− = − , centered at n = 0. This is 
analogous to a continuous-time, periodically repeated pulse of the form

T t w tT0 0
rect( ) ( )./ ∗�

Compare their harmonic functions.

 T t w t w wk T
wk T

T T0 00
0

rect( ) ( ) sinc( )
sin(

/ /
/∗ ← →⎯ =�

�FS 00

0

)

�k T/

 u[ ] u[ ] [ ]
sin( ( )

n n n n n
k n n

N N
− − − ∗ ← →⎯⎯ −

0 1
1 0

0
0

�
�DFT /NN

k N
n n0

0
0 1 1

)

sin( )� /
, + =
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Figure 7.8 
The Dirichlet function for N = 4 5 7 13, , and

t-2 2

drcl(t,4)

-1

1

t -2 2

drcl(t,5)

-1

1

t-2 2

drcl(t,7)

-1

1

t-2 2

drcl(t,13)

-1

1

The harmonic function of T t w tT0 0
rect( ) ( )/ ∗ �  is a sinc function. Although it may not yet be 

obvious, the harmonic function of u[ ] u[ ]n n n n− − −0 1  is a  periodically repeated sinc function.

The functional form sin( )

sin( )

�

�

Nx

N x
 (see Example 7.2) appears commonly enough in the 

analysis of signals and systems to be given the name   Dirichlet function (Figure 7.8). 

 drcl ,
sin( )

sin( )
t N

Nt

N t
( ) = �

�
.  (7.12)

For N odd, the similarity to a sinc function is obvious; the Dirichlet function is an 
infi nite sum of uniformly spaced sinc functions. The numerator sin( )N t�  is zero when 
t is any integer multiple of 1/N. Therefore the Dirichlet function is zero at those points, 
unless the denominator is also zero. The denominator N tsin( )�  is zero for every 
integer value of t. Therefore we must use  L’Hôpital’s rule to evaluate the Dirichlet 
function at integer values of t.

 lim drcl( , ) lim
sin( )

sin( )
lim

t m t m t m
t N

N t

N t

N
→ → →

= =�

�

�� �

� �

cos( )

cos( )
,

N t

N t
m= ±1 an integer

If N is even, the extrema of the Dirichlet function alternate between +1 and –1. If 
N is odd, the extrema are all +1. A version of the Dirichlet function is a part of the 
MATLAB signal toolbox with the  function name  diric. It is defi ned as

 diric( , )
sin( )

sin( )
.x N

Nx

N x
= /

/

2

2

Therefore

 drcl( , ) diric( , ).t N t N= 2�

% Function to compute values of the Dirichlet function.
% Works for vectors or scalars equally well. 
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302 Chapter  7  Discrete-Time Fourier Methods

%
% x = sin(N*pi*t)/(N*sin(pi*t))
%
function x = drcl(t,N)
   x = diric(2*pi*t,N) ;

%  Function to implement the Dirichlet function without 
% using the 
% MATLAB diric function. Works for vectors or scalars 
% equally well. 
%
% x = sin(N*pi*t)/(N*sin(pi*t))
%
function x = drcl(t,N),
   num = sin(N*pi*t) ; den = N*sin(pi*t) ;
   I = fi nd(abs(den) < 10*eps) ;
   num(I) = cos(N*pi*t(I)) ; den(I) = cos(pi*t(I)) ;
   x = num./den ;

Using the defi nition of the dirichlet function, the  DFT pair from Example 7.2 can be 
written as

 (u[ ] u[ ]) [ ]
( )

n n n n n
e

e
N N

j k n n N

− − − ∗ ← →⎯⎯
− +

−0 1

1 0

�
�

DFT
/

jj k N n n k N n n
� / /( ) drcl( , )1 0 1 0− −

Table 7.2 shows several common DF T pairs.

THE  FAST FOURIER TRANSFORM

The  forward DFT is defi ned by

 X[ ] x[ ] .k n e j nk N

n

N

= −

=

−

∑ 2

0

1
� /

Table 7.2 DFT pairs

(For each pair, m is a positive integer.)

/e j n N
m

2� DFT
NN mNmN k m← →⎯⎯ −� [ ]

cos(2�� � �qn N mN k mq k mq
mN mN mN/ /) ( ) ( [ ] [ ] )DFT← →⎯⎯ − + +2

/sin( ) (2�qn N jm
mN

DFT← →⎯⎯ NN k mq k mqmN mN/2) ( [ ] [ ] )� �+ − −

� �N mN mNn m k[ ] [ ]DFT← →⎯⎯

1 DFT
N

← →→⎯⎯

− − −( )∗

N k

n n n n n

N

N N

�

�

[ ]

u[ ] u[ ] [ ]0 1
DFT←← →⎯⎯ − −

− +( )
−

e

e
n n k N n n

j k n n N

j k N

�

�

1 0

1 0 1 0

/

/ /( )drcl( , ))

tri( ) [ ]/n N n Nw N N w∗ ← →⎯⎯�
DFT ddrcl ( , )2 k N N Nw w/ , an integer

/ rect /sinc( ) [ ] ( ) [ ]n w n w wk N kN N N∗ ← →⎯⎯ ∗� �
DFT
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A straightforward way of computing the DF T would be by the following algorithm 
(written in MATLAB), which directly implements the operations indicated above.

.

.

.
% (Acquire the input data in an array x with N elements.)
.
.
.
%
% Initialize the DFT array to a column vector of zeros.
%
X = zeros(N,1) ;
%
% Compute the X[k]’s in a nested, double for loop.
%
for k = 0:N-1
   for n = 0:N-1
     X(k+1) = X(k+1) + x(n+1)*exp(-j*2*pi*n*k/N) ;
   end
end
.
.
.

(One should never actually write this program in MATLAB because the DFT is already 
built in to MATLAB as an intrinsic function called   fft.)

The computation of a DFT using this algorithm requires N 2 complex multiply-add 
operations. Therefore the number of computations increases as the square of the num-
ber of elements in the input vector that is being transformed. In 1965  James Cooley1 
and John Tukey2 popularized an algorithm that is much more effi cient in computing 
time for large input arrays whose length is an integer power of 2. This algorithm for 
computing the DFT is the so-called fast Fourier transform or just FFT. 

The reduction in calculation time for the fast Fourier transform algorithm versus 
the double-for-loop approach presented above is illustrated in Table 7.3 in which A is 
the number of complex-number additions required and M is the number of complex-
number multiplications required, the subscript DFT indicates using the straightforward 
double-for-loop approach and FFT indicates the FFT algorithm.

As the number of points N in the transformation process is increased, the speed 
advantage of the FFT grows very quickly. But these speed improvement factors do not 

1 James Cooley received his Ph.D. in applied mathematics from Columbia University in 1961. Cooley was a 
pioneer in the digital signal processing fi eld, having developed, with John Tukey, the fast Fourier transform. He 
developed the FFT through mathematical theory and applications, and has helped make it more widely available 
by devising algorithms for scientifi c and engineering applications.

2  John Tukey received his Ph.D. from Princeton in mathematics in 1939. He worked at Bell Labs from 1945 
to 1970. He developed new techniques in data analysis, and graphing and plotting methods that now appear in 
standard statistics texts. He wrote many publications on time series analysis and other aspects of digital signal 
processing that are now very important in engineering and science. He developed, along with James Cooley, the 
fast Fourier transform algorithm. He is credited with having coined, as a contraction of “binary digit,” the word 
“bit,” the smallest unit of information used by a computer.
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304 Chapter  7  Discrete-Time Fourier Methods

apply if N is not an integer power of two. For this reason, practically all actual DFT 
analysis is done with the FFT using a data vector length that is an integer power of 2. 
(In MATLAB if the input vector is an integer power of 2 in length, the algorithm used 
in the MATLAB function, fft, is the FFT algorithm just discussed. If it is not an integer 
power of 2 in length, the DFT is still computed but the speed suffers because a less 
effi cient algorithm must be used.)

7.3 THE  DISCRETE-TIME FOURIER TRANSFORM

EXTENDING THE DISCRETE FOURIER TRANSFORM TO 
 APERIODIC SIGNALS

Consider a rectangular-wave signal (Figure 7.9).

Table 7.3 Numbers of additions and multiplications and ratios for several N’s

� �N A M A M A A M MDFT DFT FFT FFT DFT FFT DFT FFT= 2

1 2 2 4 2 1 1 4

/ /

22 4 12 16 8 4 1 5 4
3 8 56 64 24 12 2 33 5 33
4 16 240 256 64 32 3 7

.
. .
. 55 8

5 32 992 1024 160 80 6 2 12 8
6 64 4032 4096 384 192 10 5 2

. .
. 11 3

7 128 16256 16384 896 448 18 1 36 6
8 256 65280 65536 2

.
. .

0048 1024 31 9 64
9 512 261632 262144 4608 2304 56 8 113 8

.

. .
110 1024 1047552 1048576 10240 5120 102 3 204 8. .

Figure 7.9
A general rectangular-wave signal

x[n]

n
...... ......

N0-N0

... ...... ...

Nw-Nw

1

The DFT harmonic function  based on one fundamental period (N N= 0) is 

 X[ ] ( ) drcl( , ),k N k N Nw w= + +2 1 2 10/

a sampled Dirichlet function with maxima of 2 1Nw +  and a  period of N0.
To illustrate the effects of different fundamental periods N0 let Nw = 5 and graph 

the magnitude of X[k] versus k for N0 = 22, 44 and 88 (Figure 7.10) . 
The effect on the DFT harmonic function of increasing the fundamental period 

of x[ ]n  is to spread it out as a function of harmonic number k. So in the limit as N0 
approaches infi nity the period of the DFT harmonic function also approaches infi nity. 
If the period of a function is infi nite, it is no longer periodic. We can normalize by 
graphing the DFT harmonic function versus cyclic frequency k N/ 0 instead of harmonic 
number k. Then the fundamental period of the DFT harmonic function (as graphed) is 
always one, rather than N0 (Figure 7.11)
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Figure 7.12
Limiting DFT harmonic function of a rectangular-wave signal

-1 1

|X[k]|
11

k
N0

......

As N0 approaches infi nity, the separation between points of X[ ]k  approaches zero 
and the discrete frequency graph becomes a continuous frequency graph (Figure 7.12).

Figure 7.11
Magnitude of the DF T harmonic function of a rectangular-wave 
signal graphed versus k/N0 instead of k

1 1

|X[k]|
12

Nw = 5, N0 = 22

......

1 1

12
......

1 1

12
...... k

N0

k
N0

k
N0

|X[k]|
Nw = 5, N0 = 44

|X[k]|
Nw = 5, N0 = 88

Figure 7.10
Effect of the fundamental period N0 on the magnitude of the 
DFT harmonic function of a rectangular-wave signal

k 
-88 88

|X[k]|
11

Nw = 5, N0 = 22

|X[k]|
Nw = 5, N0 = 44

......

k
-88 88

11
......

k
-88 88

11

|X[k]|
Nw = 5, N0 = 88

......
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 DERIVATION AND DEFINITION

To analytically extend the DFT to aperiodic signals, let �F N= 1 0/ , a fi nite increment in 
discrete-time cyclic frequency F. Then x[n] can be written as the inverse DFT of X[k],

 x[ ] X[ ] X[ ] .n
N

k e F k ej kn N

k N

j k Fn

k N

= =
= =
∑ ∑1

0

2 20

0 0

� �/ � �  

Substituting the summation expression for X[k] in the DFT defi nition

 x[ ] x[ ]n F m e ej k Fm

m

N
j k Fn

k N

=
⎛

⎝⎜
⎞
⎠⎟

−

=

−

=
∑∑� � �2

0

1
2

0

0

� �  

(The index of summation n in the expression for X[k] has been changed to m to avoid 
confusion with the n in the expression for x[n] since they are independent variables.) 
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306 Chapter  7  Discrete-Time Fourier Methods

Since x[n] is periodic with fundamental period N0, the inner summation can be over 
any period and the previous equation can be written as

 x[ ] x[ ] .n m e e Fj k Fm

m N

j k Fn

k N

=
⎛

⎝
⎜

⎞

⎠
⎟−

==
∑∑ 2 2

00

� �� � �

Let the range of the inner summation be − ≤ <N m N0 02 2/ /  for N0 even or 
− − ≤ < +( ) ( )N m N0 01 2 1 2/ /  for N0 odd. The outer summation is over any arbitrary 
range of k of width N0 so let its range be k k k N0 0 0≤ < + . Then

 x[ ] x[ ]
/

n m e ej k Fm

m N

N
j k Fn=

⎛

⎝
⎜

⎞

⎠
⎟−

=−

−

∑ 2

2

2 1
2

0

0

� �� � �
/

FF N
k k

k N

=

+ −

∑
0

0 0 1

0, even    (7.13)

or

 x[ ] x[ ]n m e ej k Fm

m N

N
j=

⎛

⎝
⎜

⎞

⎠
⎟−

=− −( )

−( )

∑ 2

1 2

1 2
2

0

0

� �

/

/
��k Fn

k k

k N

F N� �
=

+ −

∑
0

0 0 1

0, odd.   (7.14)

Now let the fundamental period N0 of the DFT approach infi nity. In that limit the 
following things happen.

 1. ΔF approaches the differential discrete-time frequency dF.
 2. kΔF becomes discrete-time frequency F, a continuous independent variable, 

because ΔF is approaching dF.
 3. The outer summation approaches an integral in F = kΔF. The summation covers 

a range of k k k N0 0 0≤ < + . The equivalent range of (limits on) the integral it 
approaches can be found using the relationships F kdF k N= = / 0 . Dividing the 
harmonic-number range k k k N0 0 0≤ < +  by N0 translates it to the discrete-time 
frequency range F F F0 0 1< < +  where F0 is arbitrary because k0 is arbitrary. The 
inner summation covers an infi nite range because N0 is approaching infi nity.

Then, in the limit, (7.13) and (7.14) both become

 x[ ] x[ ]

x[ ]

n m e ej Fm

m

m

j=
⎛

⎝⎜
⎞
⎠⎟

−

=−∞

∞

= ( )

∑ 2�

F
� ���� ����

22
1

�Fn dF∫ .

The equivalent radian-frequency form is

 x[ ] x[ ]n m e e dj m

m

j n=
⎛

⎝⎜
⎞
⎠⎟

−

=−∞

∞

∑∫
1

2 2� �

	 	 	

in which 	 = 2�F  and dF d= 	/2�. These results defi ne the DTFT as

 x[ ] X( ) X( ) x[ ]n F e dF F n ej Fn j Fn

n

= ← →⎯ =∫ ∑ −

=−∞

∞
2

1
2� �F

or

 x[ ] ( ) X( ) X( ) x[ ]n e e d e n ej j n j j n

n

= ← →⎯ =∫ −1 2
2

/ �
�

	 	 	 		
F

==−∞

∞

∑ .
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Table 7.4 has some  DTFT pairs for some typical simple signals.
Here we are faced with the same notational decision we encountered in deriving 

the CTFT in Chapter 6. X( )F  is defi ned by X( ) x[ ]F n e j Fn

n

= −

=−∞

∞

∑ 2�  and X( )e j	  is de-

fi ned by X( ) x[ ] ,e n ej j n

n

	 	= −

=−∞

∞

∑  but the two X’s are actually mathematically different 

functions because X( ) X( )e Fj
F e j

	
	≠ → . The decision here will be similar to the one 

reached in Chapter 6. We will use the forms X( )F  and X( )e j	  for the same reasons. 

The use of X( )e j	  instead of the simpler form X( )	  is motivated by the desire to 

maintain consistency of functional defi nition between the DTFT and the z transform to 
be presented in Chapter 9.

THE   GENERALIZED DTFT

Just as we saw in continuous time, in discrete time there are some important practical 
signals that do not have a DTFT in the strict sense. Because these signals are so impor-
tant, the DTFT has been generalized to include them. Consider the DTFT of x[n] = A, a 
constant.

 X( )F Ae A ej Fn

n

j Fn

n

= =−

=−∞

∞
−

=−∞

∞

∑ ∑2 2� �

The series does not converge. Therefore, strictly speaking, the DTFT does not exist. 
We faced a similar situation with the CTFT and found that the  generalized CTFT of a 
constant is an impulse at f = 0 or ω = 0. Because of the close relationship between the 
CTFT and DTFT we might expect a similar result for the DTFT of a constant. But all 
DTFTs must be periodic. So a periodic impulse is the logical choice. Let a signal x[n] 
have a DTFT of the form A F�1( ). Then x[n] can be found by fi nding the inverse DTFT 
of A F�1( ).

 x[ ] ( ) ( )n A F e dF A F e dF Aj Fn j Fn= = =∫ ∫
−

� �� �
1

2
1

2

1 2

1 2

/

/

.

Table 7.4 Some DTFT pairs derived directly from the defi nition

�

�

n

n
e

e
n

j

j

[ ]← →⎯

← →⎯
−

F

F

1

u[ ]
	

	 �� �
�=

−
<−

1

1
1

e j	
, , − − − ← →⎯

−
=

−
>−�

� �
�n

j

j j
n

e

e e
u[ ] ,1

1

1
1F 	

	 	

n n
e

e

e

e
n

j

j

j

j
�

�

�

�

�
u[ ]

( ) ( )
,F← →⎯

−
=

−

−

−

	

	

	

	2 21
�� �

�< − − − ← →⎯1 1, n n
en

j
u[ ] F 	

(( ) ( )
,

sin u[ ]

e

e

e

n n

j

j

j

n

	

	

	

	

−
=

−
>

( ) ← →⎯

−

−�

�

�
�

�

2 2

0

1
1

F ee

e e

j

j j
n

	

	 	

	

	

�

� �
� �

sin( )

cos( )
, si0

2
0

22
1

− +
< −, nn u[ ]

sin( )

cos( )
	

	

	

	

	 	0
0

2
0

1
2

n n
e

e e

j

j j( ) − − ← →⎯
− +

F �

� ��
�

�
�

2

0
0

2

1,

cos u[ ]
[ cos( )]

>

( ) ← →⎯ −
−

n
j j

j
n n

e e

e
	

		 	

	

F

22
1 1

0
2 0

� �
� �

e
n n

j
n

	 	
	

cos( )
, cos u[ ]

+
< − ( ) − − ← →, F⎯⎯ −

− +
>e e

e e

j j

j j

	 	

	 	

	

	

[ cos( )]

cos( )
,

�

� �
�

0
2

0
22

1

�
�

n
j

j

j

j
e

e

e

e

F← →⎯
−

−
	

	

	

		 −
<

1
1

/�
�,
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308 Chapter  7  Discrete-Time Fourier Methods

This establishes the DTFT pairs

 A A FF← →⎯ �1( ) or A AF← →⎯ 2 2� � �( )� .

If we now generalize to the form A F F F�1 0 01 2 1 2( )− − < <, / /  we get

 x[ ] ( ) ( )n A F F e dF A F F e dFj Fn j Fn= − = −∫
−

� �� �
1 0

2
1

0
2

1 2

1

/

/22
2 0∫ = Ae j F n� .

Then, if x[ ] cos( ) ( )( )n A F n A e ej F n j F n= = + −2 20
2 20 0� � �/  we get the DTFT pairs

 A F n A F F F Fcos( ) ( )[ ( ) ( )]2 20 1 0 1 0� � �
F← →⎯ − + +/

or

 A n Acos( ) [ ( ) ( )]� � � � �0 1 0 1 0
F← →⎯ − + +� � � .

By a similar process we can also derive the DTFT pairs

 A F n jA F F F Fsin( ) ( )[ ( ) ( )]2 20 1 0 1 0� � �
F← →⎯ + − −/

or

 A n j Asin( ) [ ( ) ( )]� � � � �0 1 0 1 0
F← →⎯ + − −� � � .

Now we can extend the table of  DTFT pairs to include more useful functions (Table 7.5).

Table 7.5 More DTFT pairs

� n[ ]← →⎯F 1

u[ ] ( ) ( )n
e

Fj F
F← →⎯

−
+−

1

1
1 22 1�

�/ , u[ ] ( )

si

n
e j

F← →⎯
−

+−
1

1
1�

���

nnc( ) rect( ) ( )n w w wF F/ ,
F← →⎯ ∗�1 / /sinc( ) rect( ) ( )

tri

n w w w
F← →⎯ ∗� �2 2� � �

(( ) drcl ( , )n w w F w/ ,
F← →⎯ 2 / /tri( ) drcl ( , )n w w w

F← →⎯ 2 2� �

,1 1
F← →⎯ � ( )F 1 2 2

F← →⎯ �� �(�))

[ ] ( ) ( )/ ,/� �N Nn N F
0 0

1 0 1
F← →⎯ / /� � � �N Nn N

0 0
2 0 2[ ] ( )

F← →⎯ (( )

cos( ) ( ) ( ) ( )

�

2 1 20 1 0 1 0� � �F n F F F F
F← →⎯ − + +[ ]/ , cos( ) ( ) ( )

sin(

� � � � �0 2 0 2 0

02

n

F n

F← →⎯ − + +[ ]� � �

�

� �

)) ( ) ( ) ( ) sin( )
F F← →⎯ + − −[ ] ←j F F F F n/ ,2 1 0 1 0 0� � � →→⎯ + − −[ ]

− − − ← →

j

n n n n

� � �� �2 0 2 0

0 1

( ) ( )

u[ ] u[ ]

� � � �

Z⎯⎯
−

− =− −
− +( )e

e
e e

e

e

j F

j F
j n F j n F

j F n n2

2
2 2

1
0 1

0 1�

�
� �

�
( ) −− − −

− − − ← →⎯

j F n n F n n

n n n n

�
( )drcl( , )

u[ ] u[ ]

1 0 1 0

0 1
Z ee

e
e e

e

e
n

j

j
jn jn

j n n

j

�

�
� �

�

�−
− =− −

− +( )
−1

0 1

0 1 2

2 1( ) (
/

/ −− −n n n0 1 02)drcl( , )�/ �

CONVERGENCE OF THE DISCRETE-TIME FOURIER TRANSFORM

The condition for   convergence of the DTFT is simply that the summation in

 X( ) x[ ]F n e j Fn

n

= −

=−∞

∞

∑ 2�  or X( ) x[ ]e n ej j n

n

� �= −

=−∞

∞

∑  (7.15)
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actually converges. It will converge if

 x[ ] .n
n=−∞

∞

∑ < ∞  (7.16)

If the DTFT function is bounded, the inverse transform,

 x[ ] X( ) x[ ] X( ) ,n F e dF n e e dj Fn j j n= =∫ ∫2
1 2

1

2
�

��
or 	 	 	  (7.17)

will always converge because the integration interval is fi nite.

DTFT  PROPERTIES

Let x[n] and y[n] be two signals whose DTFTs are X(F ) and Y(F ) or X( )e j	  and

Y( )e j	 . Then the properties in Table 7.6 apply.

Table 7.6 DTFT Properties

x[ ] y[ ] X ( ) Y ( ) x[ ] y[,� � � � � �n n F F n+ ← →⎯ + +F
nn e e

n n e

j j

j

] X( ) Y( )

x[ ]

F

F

← →⎯ +

− ← →⎯ −

� �

�

	 	

0
2 FFn F n n0 0X( ) x[ ], − F←← →⎯

← →⎯ −

−e e

e n F F

j n j

j F n

	 	0

02
0

X( )

x[ ] X( ),� F
e nj n	0 x[ ] X

F← →⎯ (( )

z[ ]
x

( )e

n
n m n m

j 	 	−

=
[ ]

0

If
/ , / an integer

0, otherwise
then

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
← →⎯z[ ] X(n m

F
FF n e

n

jm) z[ ] X( )

x [ ]*

or
F

F

← →⎯ 	

←← →⎯ −X ( )* F , x [ ] X ( )

x[ ] x[ ] (

* *n e

n n

jF

F

← →⎯

− − ← →⎯ −

− 	

1 1 ee F n nj F− − − ← →⎯2 1 1� ) X( ) x[ ] x[ ] (,
F −−

← →⎯
−

+

−

=−∞
−∑

e e

m
F

e

j j

m

n

j F

	 	) X( )

x[ ]
X( )F

1 2�

11

2
0

1
1X( ) ( ) x[ ]

X( )
� F m

e

m

n j
,

=−∞
∑ ← →⎯

−
F 	

ee
e

n

j
j

−
=

+
⎛

⎝⎜
⎞

⎠⎟

−

	
	� � �X ( )

x[ ]

0

1
2	

F←← →⎯ −X( )F , x[ ] X( )

x[ ] y[ ]

− ← →⎯

∗ ← →

−n e

n n

jF

F

	

⎯⎯ X( )Y( ) x[F F , nn n e e

n n

j j] y[ ] X( ) Y( )

x[ ]y[ ] X

∗ ← →⎯

← →⎯

F

F

	 	

(( ) Y( ) x[F F n� , ]]y[ ] ( ) X( ) Y( )n e e

e

j j

j

F← →⎯ 1 2

2

/ �

�

	 	�

FFn

n

F
=−∞

∞
∑ = �1( ), e j n

n

	 	
=−∞

∞
∑ = 2 2�� �( )

,x[ ] X( )n F dF
n

2 2
1

=−∞

∞
∑ ∫= /x[ ] ( ) X( )n e

n

j2 1 2
=−∞

∞
∑ = � 	 22

2
d	

�∫

In the property

 x[ ]y[ ] ( ) X( ) Y( )n n e ej jF← →⎯ 1 2/ � 	 	�  

the �  operator indicates periodic convolution, which was fi rst introduced in Chapter 6. 
In this case

 X( ) Y( ) X( ) Y( )( )e e e e dj j j j	 	 
 	 
 
� = −∫2�
.
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310 Chapter  7  Discrete-Time Fourier Methods

EXAMPLE 7.3

Inverse DTFT  of two periodic shifted rectangles

Find and graph the inverse DTFT of

 X( ) [rect( ( )) rect( ( ))] ( )F F F F= − + + ∗50 1 4 50 1 4 1/ / �

(Figure 7.13).

Figure 7.13
Magnitude of X( )F

|X(F)|

F 
1-1

1

We can start with the table entry sinc( ) ( ) ( )n w w wF F/ rectF← →⎯ ∗ �1  or, in this case,

( ) ( ) ( ) ( )1 50 50 50 1/ sinc / rectn F FF← →⎯ ∗ � . Now apply the  frequency-shifting property 

e nj F n2 0� x[ ] F← →⎯  X( )F F− 0 ,

 e n F Fj n� �/ ( )sinc( ) ( ( )) ( )2
11 50 50 50 1 4/ / rect /F← →⎯ − ∗  (7.18)

and

 e n F Fj n− ← →⎯ + ∗� �/ ( )sinc( ) ( ( )) (2
11 50 50 50 1 4/ / rect /F ))  (7.19)

(Remember, when two functions are convolved, a shift of either one of them, but not both, shifts 
the convolution by the same amount.) Finally, combining (7.18) and (7.19) and simplifying,

 ( )sinc( )cos( ) [rect( ( ))1 25 50 2 50 1 4/ / / /n n F�
F← →⎯ − + rrect( ( ))] ( ).50 1 4 1F F+ ∗/ �

 Time scaling in the DTFT is quite different from time scaling in the CTFT because of 
the differences between  discrete time and  continuous time. Let z[n] = x[an]. If a is not an 
integer, some values of z[n] are undefi ned and a DTFT cannot be found for it. If a is an inte-
ger greater than one, some values of x[n] will not appear in z[n] because of decimation, and 
there cannot be a unique relationship between the DTFT’s of x[n] and z[n] (Figure 7.14). 

In Figure 7.14 the two signals x [ ]1 n  and x [ ]2 n  are different signals but have the 
same values at even values of n. Each of them, when decimated by a factor of 2, yields 
the same decimated signal z[n]. Therefore the DTFT of a signal and the DTFT of a 
decimated version of that signal are not uniquely related and no time scaling property 
can be found for that kind of time scaling. However, if z[n] is a time-expanded version 
of x[n], formed by inserting zeros between values of x[n], there is a unique relationship 
between the DTFT’s of x[n] and z[n]. Let

 z[ ]
x[ ]

n
n m n m

=
/ , / an integer

0, otherwiise
⎧
⎨
⎩

where m is an integer. Then Z( ) X( )e ej jm� �=  and the time-scaling property of the DTFT is

 If
/ , / an integer

0, ot
z[ ]

x[ ]
n

n m n m
=

hherwise
then

⎧
⎨
⎩

⎫
⎬
⎭

← →⎯

← →⎯

⎧z[ ] X( )

z[ ] X( )

n mF

n e jm

F

F �
⎨⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (7.20)
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These results can also be interpreted as a  frequency scaling property. Given a DTFT 
X( ),e j	  if we scale 	 to m	 where m ≥ 1, the effect in the time domain is to insert m –1 
zeros between the points in x[n]. The only scaling that can be done in the frequency 
domain is compression and only by a factor that is an integer. This is necessary because 
all DTFT’s must have a period (not necessarily a fundamental period) of 2� in 	.

EXAMPLE 7.4

General expression for the DTFT  of a periodic impulse

Given the DTFT pair 1 2 2
F← →⎯ �� � ( )	 , use the  time-scaling property to fi nd a general expres-

sion for the DTFT of �N n
0
[ ].

 The constant 1 can be expressed as �1[ ]n . The periodic impulse �N n
0
[ ]  is a time-scaled 

version of �1[ ]n  scaled by the integer N0 . That is

 �
�

N n
n N n N

0

1 0 0
[ ]

[ ]
=

/ , / an integer

0, otherwise
⎧
⎨
⎩

Therefore, from (7.20)

 � �� � �� �N Nn N N
0 0

2 22 0 0 2[ ] ( ) ( ) ( )F← →⎯ =	 	/ / .

The implications of  multiplication-convolution duality for signal and system 
analysis are the same for discrete-time signals and systems as for continuous-time 
signals and systems. The response of a system is the convolution of the excitation with 
the impulse response. The equivalent statement in the frequency domain is that the 
DTFT of the response of a system is the product of the DTFT of the excitation and the 
frequency response, which is the DTFT of the impulse response (Figure 7.15).

The implications for cascade connections  of systems are also the same (Figure 7.16).
If the excitation is a sinusoid of the form x[ ] cos( )n A n N= +2 0� �/ , then 

 X( ) [ ( ) ( )]e A ej j	 	 		 	 	 	= − + +� � �� �
�

2 0 2 0
0/

n
40-1

1

n
40

x1[n]

-1
1

n
40-1

1

..............

x2[n]

z[n]

Figure 7.14
Two different signals which, when decimated by a factor of 2, yield the same signal
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312 Chapter  7  Discrete-Time Fourier Methods

where �0 02= �/N . Then

 Y( ) X( ) H( ) H( ) [ ( ) (e e e e Aj j j j� � � � � � � �= = × − + +� � �� �2 0 2 00
0)]e j�� �/

Using the  equivalence property of the impulse, the  periodicity of the DTFT and the 
 conjugation property of the CTFT,

 Y( ) H( ) ( ) H( )
H ( )*

e A e ej j j

e j

� � �� �
�

= − + −

=

� � �
0 0

0

2 0 � �� ��� � �
�

2 0
0( )� � � �+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
e j /  

 Y( )
Re(H( ))[ ( ) ( )]

Im(H
e A

e

j
j

j
�

� � � � �
=

− + +

+
�

� �� �
0

2 0 2 0

(( ))[ ( ) ( )]
/

e
e

j
j

�

� �

� � � �0

0

2 0 2 0� �� �

�

− − +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 y[ ] [Re(H( )) cos( ) Im(H( ))sin(n A e n N ej j= + −� �0 02 0� �/ 22 0� �n N/ + )]  

 y[ ] H( ) cos( H( ))/ /n A e n N ej N j N= + +2
0

20 02� �� �/ �  

EXAMPLE 7.5

Frequency response  of a system

Graph the magnitude and phase of the frequency response of the system in Figure 7.17. If the 
system is excited by a signal x[ ] sin( )n n= �0 , fi nd and graph the response y[n] for Ω0 = �/4, 
�/2, 3�/4.
 The difference equation describing the system is y[ ] . y[ ] x[ ]n n n+ − =0 7 1  and the impulse 
response is h[ ] ( . ) u[ ]n nn= −0 7 . The frequency response is the Fourier transform of the impulse 
response. We can use the DTFT pair

 �
�

n
jn

e
u[ ] F← →⎯

− −
1

1 �

Figure 7.17 
A  discrete-time system

x[n] y[n]

0.7

D

Figure 7.16
Cascade connection of systems

X(ejΩ) X(ejΩ)H1(ejΩ) Y(ejΩ) = X(ejΩ)H1(ejΩ)H2(ejΩ)H1(ejΩ) H2(ejΩ)

X(ejΩ) Y(ejΩ)H1(ejΩ)H2(ejΩ)Figure 7.15
Equivalence of convolution in the 
time domain and multiplication in the 
frequency domain

x[n] x[n]*h[n]h[n]

X(ejΩ) X(ejΩ)H(ejΩ)H(ejΩ)
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to get

 h[ ] ( . ) u[ ] H( )
.

.n n e
e

n j
j= − ← →⎯ =

+ −0 7
1

1 0 7
F 	

	

Since the frequency response is periodic in 	 with period 2�, a range − ≤ <� �	  will show 
all the frequency-response behavior. At 	 = 0 the frequency response is H( ) .e j0 0 5882= . At 
	 = ±�  the frequency response is H( ) .e j± =� 3 333. The response at 	 = 	0 is

 y[ ] H( ) sin( H( ))n e n ej j= +	 		0 00 
 ,

(Figure 7.18).

Figure 7.18
Frequency response and three sinusoidal signals and responses to them

3 2 1 0 1 2 3
0

1

2
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|H
(e

jΩ
)|

3 2 1 0 1 2 3
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1
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2
n
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n

0 10 20 30 40 50 60
n
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n
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n
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n

x[
n]

y[
n]

x[
n]

y[
n]

x[
n]

y[
n]

 -1

1

 -1

1

-2

2

 -2

2

Ω0 = π/4

H
(e

jΩ
)

Ω0 = π/2 Ω0 = 3π/4

EXAMPLE 7.6

 Signal energy  of a sinc signal

Find the signal energy of x[n] = (1/5)sinc(n/100).
 The signal energy of a signal is defi ned as

 E nx
n

=
=−∞

∞

∑ x[ ] .2
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314 Chapter  7  Discrete-Time Fourier Methods

But we can avoid doing a complicated infi nite summation by using  Parseval’s theorem. The 
DTFT of x[n] can be found by starting with the Fourier pair

 sinc( ) ( ) ( )n w w wF F/ rectF← →⎯ ∗ �1

and applying the  linearity property to form

 ( )sinc( ) ( ) ( )1 5 100 100 1/ / 20rectn F FF← →⎯ ∗ � .

 Parseval’s theorem is

 x[ ] X( ) .n F dF
n

2 2

1
=−∞

∞

∑ ∫=

So the signal energy is

 E F F dF F dFx = ∗ =∫ ∫
−∞

∞
20rect 20rect( ) ( ) ( )100 1001

2

1

2�

or

 E dFx = =
−

∫400 4
1 200

1 200

/

/

.

EXAMPLE 7.7

Inverse DTFT  of a periodically repeated rectangle

Find the inverse DTFT of X( ) rect( ) ( ),F wF F w= ∗ >�1 1 using the defi nition of the DTFT.

 x[ ] X( ) rect( ) ( )n F e dF wF F e dFj Fn j Fn= = ∗∫ ∫2
1

1
2

1
� ��

Since we can choose to integrate over any interval in F of width one, let’s choose the simplest one

 x[ ] rect( ) ( )n wF F e dFj Fn= ∗
−
∫ � �

1
2

1 2

1 2

/

/

In this integration interval, there is exactly one rectangle function of width 1/w (because w > 1) and

 x[ ] cos( )
sin(

n e dF Fn dFj Fn

w

w w

= = =
−

∫ ∫2

1 2

1 2

0

1 2

2 2� �

/

/ /
��

�

n w

n w

n

w

/ )
sinc= ⎛

⎝⎜
⎞
⎠⎟

1
. (7.21)

From this result we can also establish the handy DTFT pair (which appears in the table of DTFT 
pairs),

 sinc( ) rect( ) ( ),n w w wF F w/ F← →⎯ ∗ >�1 1

or

 sinc( ) rect( ( )),n w w w F k w
k

/ F← →⎯ − >
=−∞

∞

∑ 1

or, in radian frequency form, using the  convolution property,

 y( ) x( ) h( ) y( ) x( ) h( ),t t t at a at at= ∗ ⇒ = ∗
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we get

 sinc( ) rect( ) ( ),n w w w w/ /F← →⎯ ∗ >	 	2 12� � �

or

 sinc( ) rect( ( ) ), .n w w w k w
k

/ /F← →⎯ − >
=−∞

∞

∑ 	 2 2 1� �  

(Although these Fourier pairs we derived under the condition w  > 1 to make the inversion 

integral (7.21) simpler, they are actually also correct for w ≤ 1.)

 NUMERICAL COMPUTATION  OF THE DISCRETE-TIME 
FOURIER TRANSFORM

The DTFT is   defi ned by X( ) x[ ]F n e j Fn

n

= −

=−∞

∞

∑ 2�  and the DFT is defi ned by 

X[ ] x[ ] .k n e j kn N

n

N

= −

=

−

∑ 2

0

1
� /  If the signal x[n] is causal and time limited, the summation 

in the DTFT is over a fi nite range of n values beginning with n = 0. We can set the value 
of N by letting N – 1 be the last value of n needed to cover that fi nite range. Then

 X( ) x[ ] .F n e j Fn

n

N

= −

=

−

∑ 2

0

1
�

If we now make the change of variable F k N→ /  we get

 X( ) X( ) x[ ] X[ ]F k N n e kF k N
j kn N

n

N

→
−

=

−
= = =∑/

// 2

0

1
�

or in the radian-frequency form

 X( ) X( ) x[ ] X[ ]e e n e kj
k N

j k N j kn N

n

N
	

	→
−

=
= = =2

2 2

0
�

� �
/

/ /
−−

∑
1

So the DTFT of x[n] can be found from the DFT of x[n] at a discrete set of frequen-
cies F = k/N or equivalently Ω = 2�k/N, k being any integer. If it is desired to increase 
the resolution of this set of discrete frequencies, we can just make N larger. The extra 
values of x[n] corresponding to the larger value of N will all be zero. This technique for 
increasing the  frequency-domain resolution is called  zero padding.

The inverse DTFT is  defi ned by

 x[ ] X( )n F e dFj Fn= ∫ 2
1

�

and the inverse DFT is defi ned by

 x[ ] X[ ]n
N

k e j kn N

k

N

=
=

−

∑1 2

0

1
� / .
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316 Chapter  7  Discrete-Time Fourier Methods

We can approximate the inverse DTFT by the sum of N integrals that together approxi-
mate the inverse DTFT integral.

x[ ] X( ) X( )
( )

n k N e dF k N ej Fn

k N

k N

k

N
j≅ =

+

=

−

∫∑ / /
/

/
2

1

0

1
2� ��Fn

k N

k N

k

N

dF
/

/( )+

=

−

∫∑
1

0

1

x[ ] X( )
( )

n k N
e e

j n

ej k n N j k N

k

N j

≅ − =
+

=

−

∑ /
/ /2 1 2

0

1 2

2

� � �

�

nn N
j kn N

k

N

j n
k N e

/
//

−

=

−

∑1

2
2

0

1

�
�X( )

x[ ]
sin( )

X( )n e
j n N

j n
k N ej n N j kn N

k

N

≅
=

−

∑� ��

�
/ //

/
2

2
2

0

1

==
=

−

∑e n N
N

k N ej n N j kn N

k

N
� �/ // /sinc( ) X( )

1 2

0

1

For n << N,

 x[ ] X( )n
N

k N e j kn N

k

N

≅
=

−

∑1 2

0

1

/ /�

or in the radian-frequency form

 x[ ] X( )n
N

e ej k N j kn N

k

N

≅
=

−

∑1 2 2

0

1
� �/ /

This is the  inverse DFT with 

 X[ ] X( ) X( )k F k NF k N= =→ / /  or X[ ] X( ) X( )k e ej
k N

j k N= =→
�

� 2
2

�
�

/
/ .

EXAMPLE 7.8

Inverse DTFT  using the DFT

Find the approximate inverse DTFT of

 X( ) [rect ( ) rect ( ) ] ( )F F F F= −( ) + +( ) ∗50 1 4 50 1 4 1/ / �

using the DFT.

N = 512 ;   % Number of pts to approximate X(F)

k = [0:N-1]’ ;  % Harmonic numbers

% Compute samples from X(F) between 0 and 1 assuming

% periodic repetition with period 1

X = rect(50*(k/N - 1/4)) + rect(50*(k/N - 3/4)) ;

% Compute the approximate inverse DTFT and 

% center the function on n = 0

xa = real(fftshift(ifft(X))) ;

 

n = [-N/2:N/2-1]’ ; % Vector of discrete times for plotting
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% Compute exact x[n] from exact inverse DTFT

xe = sinc(n/50).*cos(pi*n/2)/25 ;

% Graph the exact inverse DTFT

subplot(2,1,1) ; p = stem(n,xe,’k’,’fi lled’) ; set(p,’LineWidth’,1,

’MarkerSize’,2) ;

axis([-N/2,N/2,-0.05,0.05]) ; grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,18) ;

ylabel(‘x[{\itn}]’,’FontName’,’Times’,’FontSize’,18) ;

title(‘Exact’,’FontName’,’Times’,’FontSize’,24) ;

% Graph the approximate inverse DTFT 

subplot(2,1,2) ; p = stem(n,xa,’k’,’fi lled’) ; set(p,’LineWidth’,1,

’MarkerSize’,2) ;

axis([-N/2,N/2,-0.05,0.05]) ; grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,18) ;

ylabel(‘x[{\itn}]’,’FontName’,’Times’,’FontSize’,18) ;

title(‘Approximation Using the DFT’,’FontName’,’Times’,’FontSize’,

24) ;

The  exact and  approximate inverse DTFT results are illustrated in Figure 7.19. Notice 
that the exact and approximate x[n] are practically the same near n = 0 but are noticeably 

Figure 7.19
Exact and approximate inverse DTFT of X(F)
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318 Chapter  7  Discrete-Time Fourier Methods

different near n = ±256. This occurs because the approximate result is periodic and the 
overlap of the periodically repeated sinc functions causes these errors near plus or 
minus half a period. 

Example 7.9 illustrates a common analysis problem and a different kind of solution.

EXAMPLE 7.9

System response  using the DTFT and the DFT

A system with frequency response H( )
.

e
e

e
j

j

j
�

�

�
=

− 0 7
 is excited by x[n] = tri((n – 8)/8). Find 

the system response.
 The DTFT of the excitation is X( ) drcl ( , )e ej j� ��= −8 2 82 8/ � . So the DTFT of the 
response is 

 Y( )
.

drcl ( , ) .e
e

e
ej

j

j
j�

�

�
��=

−
× −

0 7
8 2 82 8/ �

Here we have a problem. How do we fi nd the inverse DTFT of Y( )e j� ? For an analytical solu-
tion it would probably be easier in this case to do the convolution in the time domain than to use 
transforms. But there is another way. We could use the inverse DFT to approximate the inverse 
DTFT and fi nd Y( )e j�

 
numerically. 

 When we compute the inverse DFT, the number of values of y[n] will be the same as the 
number of values of Y( )e j k N2� /  we use, N. To make this a good approximation we need a value 
of N large enough to cover the time range over which we expect y[n] to have values signifi cantly 
different from zero. The triangle signal has a full base width of 16 and the impulse response of 
the system is ( . ) u[ ]0 7 n n . This is a decaying exponential, which approaches, but never reaches, 
zero. If we use the width at which its value goes below 1% of its initial value, we get a width 
of about 13. Since the convolution will be the sum of those two widths minus one, we need an 
N of at least 28. Also, remember that the approximation relies on the inequality n << N for a 
good approximation. So let’s use N = 128 in doing the computations and then use only the fi rst 
30 values. Below is a  MATLAB program to  fi nd this inverse DTFT. Following that are the three 
graphs produced by the program (Figure 7.20) .

% Program to fi nd an inverse DTFT using the inverse DFT

N = 128 ;         % Number of points to use

k = [0:N-1]’ ;      % Vector of harmonic numbers

n = k ;             % Vector of discrete times

x = tri((n-8)/8) ;     % Vector of excitation signal values

% Compute the DTFT of the excitation

X = 8*drcl(k/N,8).^2.*exp(-j*16*pi*k/N) ;

% Compute the frequency response of the system

H = exp(j*2*pi*k/N)./(exp(j*2*pi*k/N) - 0.7) ;

h = 0.7.^n.*uD(n) ; % Vector of impulse response values
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Y = H.*X ;     % Compute the DTFT of the response

y = real(ifft(Y)) ; n = k ; % Vector of system response 

values

% Graph the excitation, impulse response and response

n = n(1:30) ; x = x(1:30) ; h = h(1:30) ; y = y(1:30) ;

subplot(3,1,1) ; 

ptr = stem(n,x,’k’,’fi lled’) ; grid on ;

set(ptr,’LineWidth’,2,’MarkerSize’,4) ;

% xlabel(‘\itn’,’FontSize’,24,’FontName’,’Times’) ;

ylabel(‘x[{\itn}]’,’FontSize’,24,’FontName’,’Times’) ;

title(‘Excitation’,’FontSize’,24,’FontName’,’Times’) ;

set(gca,’FontSize’,18,’FontName’,’Times’) ;

subplot(3,1,2) ; 

ptr = stem(n,h,’k’,’fi lled’) ; grid on ;

set(ptr,’LineWidth’,2,’MarkerSize’,4) ;

% xlabel(‘\itn’,’FontSize’,24,’FontName’,’Times’) ;

ylabel(‘h[{\itn}]’,’FontSize’,24,’FontName’,’Times’) ;

title(‘Impulse Response’,’FontSize’,24,’FontName’,’Times’) ;

set(gca,’FontSize’,18,’FontName’,’Times’) ;

subplot(3,1,3) ;

ptr = stem(n,y,’k’,’fi lled’) ; grid on ;

set(ptr,’LineWidth’,2,’MarkerSize’,4) ;

Figure 7.20 
Excitation, impulse response and system response

0 5 10 15 20 25 30
0

0.5

1
Excitation

x[
n]

0 5 10 15 20 25 30
0

0.5

1
Impulse Response

h[
n]

0 5 10 15 20 25 30
-5

0

5

n

n

n

System Response

y[
n]

 7.3 The Discrete-Time Fourier Transform 319

rob80687_ch07_290-330.indd   319rob80687_ch07_290-330.indd   319 12/21/10   7:01:18 PM12/21/10   7:01:18 PM



320 Chapter  7  Discrete-Time Fourier Methods

xlabel(‘\itn’,’FontSize’,24,’FontName’,’Times’) ;

ylabel(‘y[{\itn}]’,’FontSize’,24,’FontName’,’Times’) ;

title(‘System Response’,’FontSize’,24,’FontName’,’Times’) ;

set(gca,’FontSize’,18,’FontName’,’Times’) ;

EXAMPLE 7.10

 Using the DFT to fi nd a system response

A set of samples 

 
n

n

0 1 2 3 4 5 6 7 8 9 10

9 8 6 4 4 9 9 1 2 5 6x[ ] − − − − − −
 

is taken from an experiment and processed by a smoothing fi lter whose impulse response is 
h[ ] ( . ) u[ ]n n nn= 0 7 . Find the fi lter response y[n].
 We can fi nd a DTFT of h[n] in the table. But x[n] is not an identifi able functional form. We 
could fi nd the transform of x[n] by using the direct formula

 X( ) x[ ] .e n ej j n

z

� �= −

=
∑

0

10

But this is pretty tedious and time-consuming. If the nonzero portion of x[n] were much longer, 
this would become quite impractical. Instead, we can fi nd the solution numerically using the 
relation derived above for approximating a DTFT with the DFT

 X( ) x[ ] .e n ej k N j kn N

n

N
2 2

0

1
� �/ /= −

=

−

∑

 This problem could also be solved in the time domain using numerical convolution. But 
there are two reasons why using the DFT might be preferable. First, if the number of points used 
is an integer power of two, the  fft algorithm that is used to implement the DFT on computers 
is very effi cient and may have a signifi cant advantage in a shorter computing time than time-
domain convolution. Second, using the DFT method, the time scale for the excitation, impulse 
response and system response are all the same. That is not true when using numerical time-
domain convolution.
 The following MATLAB program solves this problem numerically using the DFT. 
Figure 7.21 shows the graphs of the excitation, impulse response and system response.

% Program to fi nd a discrete-time system response using the DFT

N = 32 ;   % Use 32 points

n = [0:N-1]’ ;   % Time vector

% Set excitation values

x = [[-9,-8,6,4,-4,9,-9,-1,-2,5,6],zeros(1,21)]’ ;

h = n.*(0.7).^n.*uD(n) ; % Compute impulse response

X = fft(x) ;   % DFT of excitation

H = fft(h) ;   % DFT of impulse response

Y = X.*H ;   % DFT of system response

y = real(ifft(Y)) ; % System response
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% Graph the excitation, impulse response and system response

subplot(3,1,1) ;

ptr = stem(n,x,’k’,’fi lled’) ; set(ptr,’LineWidth’,2,’MarkerSize’,4) ; 

grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘x[{\itn}]’,’FontName’,’Times’,’FontSize’,24) ;

set(gca,’FontName’,’Times’,’FontSize’,18) ;

subplot(3,1,2) ;

ptr = stem(n,h,’k’,’fi lled’) ; set(ptr,’LineWidth’,2,’MarkerSize’,4) ; 

grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘h[{\itn}]’,’FontName’,’Times’,’FontSize’,24) ;

set(gca,’FontName’,’Times’,’FontSize’,18) ;

subplot(3,1,3) ;

ptr = stem(n,y,’k’,’fi lled’) ; set(ptr,’LineWidth’,2,’MarkerSize’,4) ; 

grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,24) ;

ylabel(‘y[{\itn}]’,’FontName’,’Times’,’FontSize’,24) ;

set(gca,’FontName’,’Times’,’FontSize’,18) ;

7.4   FOURIER METHOD COMPARISONS
The DTFT completes the four Fourier analysis methods. These four methods form a 
“ matrix” of methods for the four combinations of continuous and discrete time and 
continuous and discrete frequency (expressed as harmonic number) (Figure 7.22).

Figure 7.21
Excitation, impulse response and system response
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322 Chapter  7  Discrete-Time Fourier Methods

In Figure 7.23 are four rectangles or periodically repeated rectangles in both 
continuous and  discrete time along with their Fourier transforms or harmonic 
functions. The CTFT  of a single continuous-time rectangle is a single continuous-
frequency sinc function. If that continuous-time rectangle is sampled to produce a 
single discrete-time rectangle, its DTFT is similar to the CTFT except that it is now 
periodically repeated. If the continuous-time rectangle is periodically repeated, its 
 CTFS harmonic function is similar to the CTFT except that it has been sampled 
in frequency (harmonic number). If the original continuous-time rectangle is both 
periodically repeated and sampled, its DFT is also both periodically repeated and 
sampled. So, in general, periodic repetition in one domain, time or frequency, 
corresponds to sampling in the other domain, frequency or time, and sampling 
in one domain, time or frequency, corresponds to periodic repetition in the other 
domain, frequency or time. These relationships will be important in Chapter 10 on 
sampling.

Figure 7.22
Fourier methods matrix
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Fourier transform comparison for four related signals

t

x(t)

......

T0 w

w
1

n

x[n]
1

N0Nw

......
k

|X[k]|

k
-π

π

......

......

N0-N0

k

|cx[k]|
1

k
-π

π

w
T0

t
-1 111

22

x(t)
1 f

-4 4

|X( f )| 
1

f-4
4

-π

π

n

x[n]
1

Ω

Ω
-4π 4π

2Nw+1

2π

π

-π

|X (ejΩ )|

CTFS

DFT

CTFT

DTFT

Nw-Nw

2Nw+1

X(ejΩ )

X( f )

X[k]

2Nw+1

cx[k]

-4π 4π

rob80687_ch07_290-330.indd   322rob80687_ch07_290-330.indd   322 12/21/10   7:01:18 PM12/21/10   7:01:18 PM



7.5 SUMMARY OF IMPORTANT POINTS
 1. Any discrete-time signal of engineering signifi cance can be represented by a 

discrete-time Fourier series or inverse discrete Fourier transform (DFT), and the 
number of harmonics needed in the representation is the same as the fundamental 
period of the representation.

 2. The complex sinusoids used in the DFT constitute a set of orthgonal basis 
functions.

 3. The fast Fourier transform (FFT) is an effi cient computer algorithm for computing 
the DFT if the representation time is an integer power of two.

 4. The DFT can be extended to a discrete-time Fourier transform (DTFT) for 
aperiodic signals by letting the representation time approach infi nity.

 5. By allowing impulses in the transforms, the DTFT can be generalized to apply to 
some important signals.

 6. The DFT and inverse DFT can be used to numerically approximate the DTFT 
and inverse DTFT under certain conditions.

 7. With a table of discrete-time Fourier transform pairs and their properties the 
forward and inverse transforms of almost any signal of engineering signfi cance 
can be found.

 8. The CTFS, CTFT, DFT and DTFT are closely related analysis methods for periodic 
or aperiodic, continuous-time or discrete-time signals.

 EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

Orthogonality

 1. Without using a calculator or computer, fi nd the dot products of (a) w1 and w–1, 
(b) w1 and w–2, (c) w11 and w37, where

wk

k

k

k

W

W

W

W

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

4
0

4

4
2

4
3

 and W eN
j N= 2�/

to show that they are orthogonal.
Answers: All dot products are zero.

 2. Find the projection p of the vector x =
⎡

⎣
⎢

⎤

⎦
⎥

11
4

 in the direction of the vector 

y = −⎡

⎣
⎢

⎤

⎦
⎥

2
1

.

  Answer: 18
2 5
1 5
/
/−

⎡

⎣
⎢

⎤

⎦
⎥
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324 Chapter  7  Discrete-Time Fourier Methods

 3. Find the projection p of the vector x = −
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2
3

1
5

 in the direction of the vector 

y =
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

1

j

j

. Then fi nd the DFT of x and compare this result with X[ ]3 4y/ .

Answers: 

1 4 2

2 4

1 4 2

2 4

/

/

/

/

−
+

− +
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

j

j

j

j

, They are the same.

 Discrete Fourier Transform

 4. Using the direct summation formula fi nd the DFT harmonic function of �10[ ]n  
with N = 10 and compare it with the DFT given in the table.

 5. Without using a computer, fi nd the forward DFT of the following sequence of 
data. Then fi nd the inverse DFT of that sequence and verify that you get back the 
original sequence.

 x[ ] { , , , }n n= → = −0 3 3 4 1 2  

Answer: X[ ] { , , , }k j jk = → = − +0 3 6 2 6 2 2 6

 6. Find the DFT harmonic function of a signal x[n] with period 4 for which x[0] = 3, 
x[1] = 1, x[2] = –5 and x[3] = 0 using the matrix multiplication X W x= H .

Answer: X =

−
−
−
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
8

3
8

j

j

 7. For each of these signals fi nd the DFT harmonic function over one fundamental 
period and show that X[N0 /2] is real.

(a) x[ ] (u[ ] u[ ]) [ ]n n n n= + − − ∗2 3 12�  (b) x[ ] (u[ ] u[ ]) [ ]n n n n= + − − ∗3 2 12�

(c) x[ ] cos( ) cos( )n n n= 14 16 2 16� �/ /  (d) x[ ] cos( ) cos ( ( ) )n n n= −12 14 2 3 14� �/ /
Answers: 2 2 4 3 3 5 12 58 8 8( [ ] [ ] [ ]), drcl( , )� � � �k k k k e j k− + − + + / //6 ,  
( )( [ ] [ ] [ ] [ ])49 14 7 5 5 714 14 14 14

3/ � � � �k k k k e j− + − + + + + ��k k/ /7 5 12 5, drcl( , )

 Discrete-Time Fourier Transform Defi nition

 8. From the summation defi nition, fi nd the DTFT of

 x[ ] (u[ ] u[ ])n n n= + − −10 4 5

and compare with the DTFT table.
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 9. From the defi nition, derive a general expression for the Ω form of the DTFT of 
functions of the form

 x[ ] sin( )u[ ] .n n nn= <� �	0 1,

Compare with the DTFT table.

 Forward and Inverse Discrete-Time Fourier Transforms

10. A signal is defi ned by

 x[ ] sinc( ).n n= /8

Graph the magnitude and phase of the DTFT of x[ ]n − 2 .

Answer:

 

x[n]

|X(ejΩ)|

X(ejΩ)

Ω

8

Ω
π-2π 2π

-π

-2π 2π

n
-32 32

1

 or 

n
-32 32

x[n]

1 F
-1 1

|X(F )|
8

F 
-1 1-π

π
X(F)|

  

11. A signal is defi ned by

 x[ ] sin( ).n n= � /6

Graph the magnitude and phase of the DTFT of x[n – 3] and x[n + 12].

Answers: 

-2π 2π

-2π 2π-π

π

π
|X(ejΩ)|

X(ejΩ)

Ω

Ω1

n-12 12

-1

x[n] 

   or   

-2π 2π

-2π 2π

|X(ejΩ)|
π

π

-π

X(ejΩ)

Ω

Ω

n
-12 12

-1

1

x[n] 

 ,

-2π 2π

-2π 2π

|X(ejΩ)|
π

π

-π

X(ejΩ)

Ω

Ω

n
-12 12

-1

1

x[n] 

 or 

n
-12 12

x[n]

-1

1 F 
-1 1

|X(F)|
0.5

F-1 1-π

π
X(F)|

12. The DTFT of a signal is defi ned by

 X( ) [rect(( )( )) rect(( )( ))]e j	 	 	= − + +4 2 2 2 2/ / / /� � � � ∗∗� �2 ( ).	

Graph x[n].
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326 Chapter  7  Discrete-Time Fourier Methods

Answer: 

n
-16 16

x[n]

-2

2

13. Graph the magnitude and phase of the DTFT of

 x[ ] (u[ ] u[ ]) cos( ).n n n n= + − − ∗4 5 2 6� /  

Then graph x[n].
Answer:

n-12 12

x[n]

-2

2

2π

-2π

-π-2π

2π

2π
π

 or 

x[n]

-2

2
12-12

F -1 1

|X(F)|
1

F
-1 1-π

π
X(F)|n

14. Graph the inverse DTFT of X( ) ( )[rect( ) ( )] ( ).F F F F= ∗1 2 4 1 1 2/ /� ��

Answer: x[n]

n

0.25

-0.1-16 16

15. Find the numerical values of the constants.

(a) A n W n W e
FjB n(u[ ] u[ ])

sin( ( ))

sin( (
+ − − − ← →⎯ +

1 10
5 1� �

�

F

FF + 1))
 A, W and B.

(b) 2 3 3 415� [ ](u[ ] u[ ])n n n Ae jB− + − − ← →⎯F 	  A and B.

(c) ( ) u[ ]2 3 2
1

/ n
jB

jn
Ae

e
+ ← →⎯

− −
F

	

	�
 A, B and α.

(d) 4 10 1sinc( ) ( ) ( )n A BF F/ rectF← →⎯ ∗�  A and B.

Answers: 2, –2, –3, 10, 2/3, 2, 4, 40, 10, 9/4

16. Find the numerical values of these functions.

(a) x[ ] ( ) u[ ]n nn= 4 2 3/  X( ) .e j	
	=�
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(b) x[ ] (u[ ] u[ ])n n n= + − −2 1 6  X( ) .e j	
	=�/4

(c) X( ) [ ( ) ( )] ( )[ ( ) (F F F F F= ∗ − + +rect / / /10 1 2 1 4 1 41 1 1� � �� ))]  x[ ].2

Answers: –0.09355, 2.4, –j2

17. Using the differencing property of the DTFT and the transform pair

 tri( ) cos( )n F/2 1 2F← →⎯ + �  

  fi nd the DTFT of ( )( [ ] [ ] [ ] [ ])1 2 1 1 2/ � � � �n n n n+ + − − − − . Compare it with the 
Fourier transform found using the table.

18. Using Parseval’s theorem, fi nd the signal energy of

 x[ ] sinc( )sin( )n n n= / /10 2 4� .

Answer: 5

19. A signal is described by

 x[ ]

ln( )

ln( )n

n n

n n=
+ ≤ <

− − + − < <
1 0 10

1 10 0

0

,

,

, otherwise

⎧
⎨
⎪

⎩⎪

Graph the magnitude and phase of its DTFT over the range − ≤ <� �	 .

Answer: 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-4

-2

0

2

4

n

x[
n]

-4 -3 -2 -1 0 1 2 3 4
0

10

20

30

|X
(e

j
)|

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

Ph
as

e 
of

X
(e

j
)
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328 Chapter  7  Discrete-Time Fourier Methods

EXERCISES WITHOUT ANSWERS

Discrete Fourier Transform

20. Given the DFT pair (u[ ] u[ ]) [ ] drcl( ,n n n e kj k− − ∗ ← →⎯⎯ −5 5 8 58 8
2� �DFT / / )) fi nd the 

DFT harmonic function of the same signal but using 16 points instead of 8. Then 
write the inverse DFT in summation form and, using MATLAB, actually perform 
the summation and graph the result to demonstrate that the change-of-period 
property is correct.

21. A discrete-time signal x[n] is periodic with period 8. One period of its DFT 
harmonic function is

 X[ ], , X[ ] { , , , , , , ,0 7 3 4 5 4 3 1 5 4 1 5 4 3�{ } = + − − + − − − +j j j j j 44 5− j }.

(a) What is the average value of x[n]?
(b) What is the signal power of x[n]?
(c) Is x[n] even, odd or neither?

22. If x [ ] cos X [ ]1 8 110 2 8n n k= ( )← →⎯⎯� / DFT  and x [ ] X [ ]2 32 1n kDFT← →⎯⎯ , fi nd the 

numerical values of x [ ], x [ ], x [ ] x [ ]2 2 2 22 4 8 204and .

23. A signal x( )t  is sampled 4 times and the samples are x[ ], x[ ], x[ ], x[ ]0 1 2 3{ }. 
Its DFT harmonic function is X[ ], X[ ], X[ ], X[ ]0 1 2 3{ }. X[ ]3  can be written as 
X[ ] x[ ] x[ ] x[ ] x[ ]3 0 1 2 3= + + +a b c d . What are the values of a,b,c and d?

Forward and Inverse Discrete-Time Fourier Transforms

24. Find the DTFT of each of these signals.

(a) x[ ] ( ) u[ ]n nn= −1 3 1/
(b) x[ ] sin( )( ) u[ ]n n nn= −� / /4 1 4 2
(c) x[ ] sinc( ) sinc( ( ) )n n n= ∗ −2 8 2 4 8� �/ /
(d) x[ ] sinc ( )n n= 2 2 8� /

25. Graph the inverse DTFT’s of these functions.

(a) X( ) ( ) ( )F F F= − −� �1 1 1 2/
(b) X( ) [ ( ) ( )]e jj	 	 	= + − −2 4 42 2� � � � �� �/ /
(c) X( ) ( ) ( ) ( ) ( )e j	 	 	 	 	= − + − + −[ ]∗2 2 3 8 5 8 22� � � � � � � � �/ / /

26. A signal x[n] has a DTFT X( ) sinc( ) ( )F F F= ∗10 5 1� . What is its signal energy?

27. A signal x[n] has a DTFT, 
X( ) [ ( ) ( ) ( )e j jj	 	 	 	= − + + + + −2 2 2 2 32 2 2� � � � � � � �� � �/ / / 22 2 3� �( )]	 − / .
What is the fundamental period N0 of x[n]?

28. The DTFT of x[ ] [ ] [ ]n n n= + − −2 3 3 3� �  can be expressed in the form, 
X( ) sin( )F A bF CedF= + . Find the numerical values of A, b, C and d.

29. Let x[n] be a signal and let y[ ] x[ ]n m
m

n=
=−∞∑ . If Y( ) cos( )e j	 	= 2 , x[n] consists 

of exactly four impulses. What are their numerical strengths and locations?
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30. A signal x[ ] cos( ) cos( )n n n= +4 2 15 2 2 9� �/ /  excites a system whose impulse 
response is h[ ] u[ ] u[ ]n n N n Nw w= + − − − 1 . When Nw = 22 the response y[ ]n  of 
the system is zero. The response of the system is also zero for some larger values 
of Nw. Find the next smallest positive numerical integer value of Nw greater than 
22 that makes the response zero. (Hint: The zeros of drcl( , )F N  occur where F is 
an integer multiple of 1/N, except when F itself is an integer.)

31. In Figure E.31 are some signals, numbered 1–14. Below them are some DTFT 
magnitude graphs. For each DTFT magnitude graph, identify the corresponding 
signal.

 1. 3sinc( )n   2. 5 4 2 4sinc( ) sinc( )n n/ /∗   3. 7 2 8cos( )�n/

 4. � �[ ] [ ]n n+ − −1 1   5. 3 4sinc( )n/   6. 4 2 8sin( )�n/

 7. ( ) u[ ]2 3/ n n   8. 2 1 6(u[ ] u[ ])n n− − −   9. 4 4� [ ]n

10. −4 2� [ ]n  11. −3 4sinc ( )2 n/  12. � �[ ] [ ]n n+ + −1 1

13. 2 7(u[ ] u[ ])n n− −  14. ( ) u[ ]−1 3/ n n

4π 4π 2π 10 7π 3

12 2 1.5 3 2 160

14 12

|X(ejΩ)| |X(ejΩ)| |X(ejΩ)| |X(ejΩ)| |X(ejΩ)| |X(ejΩ)|

|X(ejΩ)| |X(ejΩ)| |X(ejΩ)| |X(ejΩ)|

|X(ejΩ)| |X(ejΩ)|

|X(ejΩ)| |X(ejΩ)|

-2π 2π -2π
-4π

2π -2π 2π -2π 2π -2π 2π -2π 2π

-2π 2π -2π 2π -2π 2π

-2π 2π -2π 2π

-2π 2π -2π 2π -2π 2π

Ω Ω Ω Ω Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω Ω

Figure E.31

32. In Figure E.32a are some discrete-time signals. In Figure E.32b are some DTFT 
magnitude graphs. For each DTFT magnitude graph, identify the corresponding 
signal.

 Exercises without Answers 329
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330 Chapter  7  Discrete-Time Fourier Methods

n
40

-2

5

n
40

-4

12

n
40

-3

3

n
40

-4

4

n
40

-8

8

n
40

6

n
40

-2

1

n
40

2

x[n]

x[n] x[n] x[n] x[n]

x[n] x[n] x[n]

Figure E.32a

16100 50

12

-π

3 10

4π

π -π π -π π -π π

-π π -π π -π π -π π

|X(e jΩ)| |X(e jΩ)| |X(e jΩ)| |X(e jΩ)|

|X(e jΩ)| |X(e jΩ)| |X(e jΩ)| |X(e jΩ)|

3.2π

Ω Ω Ω Ω

Ω Ω Ω Ω

Figure E.32b

33. Find the inverse DTFT of a function, one period of which is described by 
X( )e j	 	 	= − − < <� � �2 2 , , numerically using the DFT. Graph it versus 
discrete time n.
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331

8.1 INTRODUCTION AND GOALS
The continuous-time Fourier transform (CTFT) is a powerful tool for signal and 
system analysis but it has its  limitations. There are some useful signals that do not 
have a CTFT, even in the generalized sense, which allows for impulses in the CTFT 
of a signal. The CTFT expresses signals as linear combinations of complex sinusoids. 
In this chapter we extend the CTFT to the Laplace transform, which expresses signals 
as linear combinations of complex exponentials, the eigenfunctions of the differential 
equations that describe continuous-time LTI systems. Complex sinusoids are a special 
case of complex exponentials. Some signals that do not have a CTFT do have a Laplace 
transform. 

The  impulse responses of LTI systems completely characterize them. Because the 
Laplace transform describes the impulse responses of LTI systems as linear combina-
tions of the eigenfunctions of LTI systems, it directly encapsulates the characteristics 
of a system in a very useful way. Many system analysis and design techniques are 
based on the Laplace transform.

C H A P T E R  G OA L S

 1. To develop the Laplace transform, which is applicable to some signals that do 
not have a CTFT

 2. To defi ne the range of signals to which the Laplace transform applies

 3. To develop a technique for realizing a system directly from its transfer function

 4. To learn how to fi nd forward and inverse Laplace transforms

 5. To derive and illustrate the properties of the Laplace transform, especially those 
that do not have a direct counterpart in the Fourier transform

 6. To defi ne the unilateral Laplace transform and explore its unique features

 7. To learn how to solve differential equations with initial conditions using the 
unilateral Laplace transform

 8. To relate the pole and zero locations of a transfer function of a system directly to 
the frequency response of the system

 9. To learn how MATLAB represents the transfer functions of systems

 C H A P T E R  8
The Laplace Transform
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332 Chapter  8  The Laplace Transform

8.2  DEVELOPMENT OF THE LAPLACE TRANSFORM
When we extended the Fourier series to the Fourier transform we let the fundamental 
period of a periodic signal increase to infi nity, making the discrete frequencies kf0 in 
the CTFS merge into the continuum of frequencies f in the CTFT. This led to the two 
 alternate defi nitions of the Fourier transform,

 X( ) x( )j t e dtj t� �= −

−∞

∞

∫ , x( ) ( ) X( )t j e dj t= +

−∞

∞

∫1 2/ � � ��  

and

 X( ) x( )f t e dtj ft= −

−∞

∞

∫ 2� , x( ) X( )t f e dfj ft= +

−∞

∞

∫ 2�  

There are two common approaches to introducing the  Laplace transform. One 
approach is to conceive the Laplace transform as a generalization of the Fourier trans-
form by expressing functions as linear combinations of complex exponentials instead 
of as linear combinations of the more restricted class of functions, complex sinusoids, 
used in the Fourier transform. The other approach is to exploit the unique nature of the 
complex exponential as the eigenfunction of the differential equations that describe 
linear systems and to realize that an LTI system excited by a complex exponential 
responds with another complex exponential. The relation between the excitation and 
response complex exponentials of an LTI system is the Laplace transform. We will 
consider both approaches.

 GENERALIZING THE FOURIER TRANSFORM

If we simply generalize the  forward Fourier transform by replacing complex sinusoids 
of the form e j t� , � a real variable, with complex exponentials est, s a complex variable, 
we get

 L( )x( ) X( ) x( )t s t e dtst= = −

−∞

∞

∫  

which defi nes a  forward Laplace1 transform, where the notation L( )⋅  means “Laplace 
transform of.”

Being a complex variable, s can have values anywhere in the complex plane. It has 
a real part called � and an imaginary part called �, so s j= +� �. Then, for the special 
case in which � is zero and the Fourier transform of the function x( )t  exists in the strict 
sense, the forward Laplace transform is equivalent to a forward Fourier transform. 

 X( ) X( )j s s j� �= → . 

This relationship between the Fourier and Laplace transforms is the reason for choos-
ing in Chapter 6 the functional notation for the CTFT as X( )j�  instead of X( )� . This 
choice preserves the strict mathematical meaning of the function “X”.

1 Pierre Simon Laplace attended a Benedictine priory school until the age of 16 when he entered Caen 
University intending to study theology. But he soon realized that his real talent and love were in mathematics. 
He quit the university and went to Paris, where he was befriended by d’Alambert, who secured for him a 
teaching position in a military school. He produced in the next few years a sequence of many papers on various 
topics, all of high quality. He was elected to the Paris Academy in 1773 at the age of 23. He spent most of his 
career working in the areas of probability and celestial mechanics.
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 8.2 Development of the Laplace Transform 333

Using s j= +� � in the forward Laplace transform we get

 X( ) x( ) x( )( )s t e dt t e e dtj t t j t= = ⎡⎣ ⎤⎦
− +

−∞

∞
− −

−∞

∞

∫ � � � �∫∫ = ⎡⎣ ⎤⎦
−F x( )t e t� . 

So one way of conceptualizing the Laplace transform is that it is equivalent to a Fourier 
transform of the product of the function x( )t  and a real exponential  convergence factor 
of the form e t−�  as illustrated in Figure 8.1.

e-σt

x(t)

t

x(t)e-σt

t

Figure 8.1
The effect of the decaying-exponential convergence factor 
on the original function

The convergence factor allows us, in some cases, to fi nd transforms for which the 
Fourier transform cannot be found. As mentioned in an earlier chapter, the Fourier 
transforms of some functions do not (strictly speaking) exist. For example, the func-
tion g( ) u( )t A t=  would have the Fourier transform

 G( ) u( )j A t e dt A e dtj t j t� � �= =−

−∞

∞
−

∞

∫ ∫
0

. 

This integral does not converge. The technique used in Chapter 6 to make the 
Fourier transform converge was to multiply the signal by a convergence factor e t−�  
where � is positive real. Then the Fourier transform of the modifi ed signal can be 
found and the limit taken as � approaches zero. The Fourier transform found by 
this technique was called a  generalized Fourier transform in which the impulse 
was allowed as a part of the transform. Notice that, for time t > 0 this convergence 
factor is the same in the Laplace transform and the generalized Fourier transform, 
but in the Laplace transform the limit as � approaches zero is not taken. As we 
will soon see there are other useful functions that do not have even a generalized 
Fourier transform.

Now, to formally derive the forward and inverse Laplace transforms from the 
Fourier transform, we take the Fourier transform of g ( ) g( )�

�t t e t= −  instead of the 
original function g( )t . That integral would then be

 F ( )g ( ) G ( ) g ( ) g( ) ( )
� � �

� � ��t j t e dt t e dj t j t= = =−

−∞

∞
− +∫ tt

−∞

∞

∫ . 
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334 Chapter  8  The Laplace Transform

This integral may or may not converge, depending on the nature of the function g( )t  
and the choice of the value of �. We will soon explore the conditions under which the 
integral converges. Using the notation s j= +� �

 F L L( ) ( )g ( ) g( ) G ( ) g( )� t t s t e dtst= = = −

−∞

∞

∫ . 

This is the Laplace transform of g( )t , if the integral converges.
 The  inverse Fourier transform would be

 F L
−

−∞

∞
+

−∞

∞

= = =∫1 1

2

1

2
( ( )) ( ) ( )G g G G� � �

��
�

� �
�

j t j e dj t ∫∫ +( )s e dj t� � 

Using s j ds jd= + =� � �and  we get

 g ( ) G ( ) G ( )( )
�

�

�

� �

� �
t

j
s e ds

e

j
ss t

j

j t

= =+ −

− ∞

+ ∞ −

∫
1

2 2
L L ee dsst

j

j
+

− ∞

+ ∞

∫
�

�

 

or, dividing both sides by e t−� ,

 g( ) G ( )t
j

s e dsst

j

j

= +

− ∞

+ ∞

∫
1

2�
�

�

L . 

This defi nes an inverse Laplace transform. When we are dealing only with Laplace 
transforms the L subscript will not be needed to avoid confusion with Fourier trans-
forms, and the forward and inverse transforms can be written as

 X( ) x( ) x( ) X( )s t e dt t
j

s e dsst st

j

= =−

−∞

∞
+

− ∞

+

∫ and
1

2�
�

� jj∞

∫ . (8.1)

This result shows that a function can be expressed as a linear combination of 
complex exponentials, a generalization of the Fourier transform in which a function 
is expressed as a linear combination of complex sinusoids. A common notational 
convention is

  x( ) X( )t sL← →⎯  

indicating that h( )t  and H( )s  form a  Laplace transform pair.

 COMPLEX EXPONENTIAL EXCITATION AND RESPONSE

Another approach to the Laplace transform is to consider the response of an LTI sys-
tem to a complex exponential excitation of the form x( )t Kest=  where s j= +� � and 
�, � and K are all real-valued. Using convolution, the response y( )t  of an LTI system 
with impulse response h( )t  to x( )t  is

 y( ) h( ) h( ) h( )( )

x

t t Ke K e d Kest s t st

t

= ∗ = =−

−∞

∞

( )
∫ � � ��

� ee ds−

−∞

∞

∫ � �  

The response of an LTI system to a  complex-exponential excitation is that same excitation 
multiplied by the quantity h( )� ��e ds−

−∞

∞
∫  if this integral converges. This is the integral of 
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the product of the impulse response h( )�  and a complex exponential e s− � over all � and the 
result of this operation is a function of s only. This result is usually written as

 H( ) h( )s t e dtst= −

−∞

∞

∫  (8.2)

and H( )s  is called the Laplace transform of h( )t . (The name of the variable of integra-
tion was changed from � to t but that does not change the result H( )s .) 

For an LTI system, knowledge of h( )t  is enough to completely characterize the 
system. H( )s  also contains enough information to completely characterize the system, 
but the information is in a different form. The fact that this form is different can lend 
insight into the system’s operation that is more diffi cult to see by examining h( )t  alone. 
In the chapters to follow we will see many examples of the advantage of viewing 
system properties and performance through H( )s  in addition to h( )t .

8.3 THE  TRANSFER FUNCTION
Now let’s fi nd the Laplace transform Y( )s  of the response y( )t  of an LTI system with 
impulse response h( )t  to an excitation x( )t . 

 Y( ) y( ) [h( ) x( )] h( ) xs t e dt t t e dtst st= = ∗ =−

−∞

∞
−

−∞

∞

∫ ∫ � (( )t d e dtst−
⎛

⎝
⎜

⎞

⎠
⎟∫∫ −

−∞

∞

� �  

Separating the two integrals,

 Y( ) h( ) x( )s d t e dtst= −
−∞

∞
−

−∞

∞

∫ ∫� � �  

Let � � �= − ⇒ =t d dt.  Then 

 Y( ) h( ) x( ) h( )s d e d e ds s= =
−∞

∞
− +( )

−∞

∞
−

−∞

∞

∫ ∫� � � � � �� � �∫∫ ∫
=

−

−∞

∞

=H( ) X( )

x( )

s

s

s

e d

� ��� ��� � ��� ���
� �� . 

The Laplace transform Y( )s  of the response y( )t  is 

 Y( ) H( ) X( )s s s= ,  (8.3)

the product of the Laplace transforms of the excitation and impulse response (if all 
the transforms exist). H( )s  is called the transfer function of the system because it de-
scribes in the s domain how the system “transfers” the excitation to the response. This 
is a fundamental result in system analysis. In this new “s domain,” time-convolution 
becomes s-domain multiplication just as it did using the Fourier transform.

 y( ) x( ) h( ) Y( ) X( ) H( )t t t s s s= ∗ ← →⎯ =LL  

8.4 CASCADE-CONNECTED  SYSTEMS
If the response of one system is the excitation of another system, they are said to be 
cascade connected (Figure 8.2). The Laplace transform of the overall system response 
is then 

 Y( ) H ( ) H ( ) X( ) H ( ) H ( ) X( )s s s s s s s= [ ] = [ ]2 1 1 2  

 8.4 Cascade-Connected Systems 335
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336 Chapter  8  The Laplace Transform

and the cascade-connected systems are equivalent to a single system whose transfer 
function is H( ) H ( ) H ( )s s s= 1 2 .

8.5 DIRECT FORM II REALIZATION
 System  realization is the process of putting together system components to form an 
overall system with a desired transfer function. In Chapter 5 we found that if a system 
is described by a linear differential equation of the form 

 a t b tk
k

k

N

k
k

k

N

y ( ) x ( )( ) ( )

= =
∑ ∑=

0 0

 

its transfer function is a ratio of polynomials in s and the coeffi cients of the powers of s 
are the same as the coeffi cients of derivatives of x and y in the differential equation. 

 H( )
Y( )

X( )
s

s

s

b s

a s

b s b sk
k

k

N

k
k

k

N
N

N
N

N

= = = + +=

=

−
−∑

∑
0

0

1
1 ��

�
+ +

+ + + +−
−

b s b

a s a s a s aN
N

N
N

1 0

1
1

1 0
 (8.4)

(Here the nominal orders of the numerator and denominator are both assumed to 
be N. If the numerator order is actually less than N, then some of the higher-order b 
coeffi cients will be zero). The denominator order must be N and aN cannot be zero if 
this is an Nth-order system. 

One standard form of system realization is called  Direct Form II. The transfer 
function can be thought of as the product of two transfer functions

 H ( )
Y ( )

X( )
1

1

1
1

1 0

1
s

s

s a s a s a s aN
N

N
N= =

+ + + +−
− �

 (8.5)

and

 H ( )
Y( )

Y ( )
2

1
1

1
1 0s

s

s
b s b s b s bN

N
N

N= = + + + +−
− �  

(Figure 8.3) where the output signal of the fi rst system Y ( )1 s  is the input signal of the 
second system. 

Figure 8.3
A system conceived as two cascaded systems

X(s) Y1(s)H1(s)� H2(s) � bNsN � bN	1s
N	1�...�b1s�b0

aNsN � aN	1sN	1 �...�a1s�a0

1
Y(s)

Figure 8.2
Cascade connection of systems

H1(s) H2(s)X(s)H1(s)X(s)

X(s)

Y(s)=X(s)H1(s)H2(s)

Y(s)H1(s)H2(s)

We can draw a block diagram of H ( )1 s  by rewriting (8.5) as

 X( ) [ ]Y ( )s a s a s a s a sN
N

N
N= + + + +−
−

1
1

1 0 1�  
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or

 X( ) Y ( ) Y ( ) Y ( ) Y ( )s a s s a s s a s s a sN
N

N
N= + + + +−
−

1 1
1

1 1 1 0 1�  
or

 s s
a

s a s s a s s aN

N
N

NY ( ) X( ) [ Y ( ) Y ( ) Y (1 1
1

1 1 1 0 1
1= − + + +−

− � ss)]{ } 

(Figure 8.4).

X(s) sNY1(s)

sN-1Y1(s)

sN-2Y1(s)

sY1(s)

Y1(s)

...

+

+ -

+

+

+

+

+

...

aN-1

aN-2

a1

a0

1/aN

S-1

S-1

S-1

Figure 8.4 
Realization of H ( )1 s

Figure 8.5
Overall Direct Form II system realization

+

+

+

+

+

+

+

+

... ...

aN-1

aN-2 bN-2

bN-1

a1

a0 b0

b1

+

+ -

+

+

+

+

+

...

bN
X(s) Y(s)

1/aN

S-1

S-1

S-1

Now we can immediately synthesize the overall response Y( )s  as a linear combination 
of the various powers of s multiplying Y ( )1 s  (Figure 8.5) .

8.6 THE  INVERSE LAPLACE TRANSFORM
In the practical application of the Laplace transform we need a way to convert Y( )s  to 
y( )t , an inverse Laplace transform. It was shown in (8.1) that 

 y( ) Y( )t
j

s e dsst

j

j

=
− ∞

+ ∞

∫
1

2�
�

�

 

where � is the real part of s. This is a contour integral in the complex s plane and is 
beyond the scope of this text. The inversion integral is rarely used in practical problem 
solving because the Laplace transforms of most useful signals have already been found 
and tabulated.

8.7  EXISTENCE OF THE LAPLACE TRANSFORM
We should now explore under what conditions the Laplace transform X( ) x( )s t e dtst= −

−∞

∞

∫  

actually exists. It exists if the integral converges, and whether or not the integral con-
verges depends on x( )t  and s. 
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338 Chapter  8  The Laplace Transform

 TIME-LIMITED SIGNALS

If x( )t t t t t= < >0 for and0 1 (with t t0 1and  fi nite) it is called a time-limited signal. 
If x( )t  is also fi nite for all t, the Laplace transform integral converges for any value of 
s and the Laplace transform of x( )t  exists (Figure 8.6).

RIGHT- AND LEFT-SIDED SIGNALS

If x( )t t t= <0 0for  it is called a  right-sided signal and the Laplace transform 
becomes

 X( ) x( )s t e dtst

t

= −
∞

∫
0

 

(Figure 8.7 (a)).
Consider the Laplace transform X( )s  of the right-sided signal x( ) u( )t e t tt= −


0 , 
∈
 �

 X( ) ( )s e e dt e e dtt st

t

t j t

t

= =−
∞

− −
∞

∫ ∫
 
 � �

0 0

 

(Figure 8.8 (a)).

tt0

x(t)

t

x(t)

t0

(a) (b)

Figure 8.7
(a) A right-sided signal, (b) A left-sided signal

(a) (b)

x(t)

t
t0

x(t)

t
t0

Figure 8.8
(a) x( ) u( )t e t tt= − ∈
 
0 , �, (b) x( ) u( )t e t tt= − ∈� �0 , �

If � 
>  the integral converges. The inequality � 
>  defi nes a region in the s plane 
called the   region of convergence (ROC) (Figure 8.9 (a)).

Figure 8.9
Regions of convergence for (a) the right-sided signal x( ) u( )t e t tt= − ∈
 
0 , � 
and (b) the left-sided signal x( ) u( )t e t tt= − ∈� �0 , �

(a) (b)

σ

ω [s]

α

ROC

σ

ω
[s]

β

Figure 8.6
A fi nite, time-limited signal

t
t0

x(t)

t1
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If x( )t t t= >0 0for  it is called a  left-sided signal (Figure 8.7(b)). The Laplace 

transform becomes X( ) x( )s t e dtst
t

= −

−∞
∫
0

. If x( ) u( )t e t tt= − ∈� �0 , �, 

 X( ) ( )s e e dt e e dtt st
t

t j t
t

= =−

−∞

− −

−∞
∫ ∫� � � �
0 0

 

and the integral converges for any � �<  (Figure 8.8 (b) and Figure 8.9 (b)). 
Any signal can be expressed as the sum of a right-sided signal and a left-sided 

signal (Figure 8.10). 

If x( ) x ( ) x ( )t t tr l= +  where x ( )r t  is the right-sided part and x ( )l t  is the left-sided 
part, and if x ( )r r

tt K e< 
  and x ( )l l
tt K e< � , (where K Kr land  are constants), then the 

Laplace-transform integral converges and the Laplace transform exists for 
 � �< < . 
This implies that if 
 �<  a Laplace transform can be found and the   ROC in the s plane 
is the region 
 � �< < . If 
 �>  the Laplace transform does not exist. For right-sided 
signals the ROC is always the region of the s plane to the right of 
. For left-sided 
signals the ROC is always the region of the s plane to the left of �.

8.8  LAPLACE TRANSFORM PAIRS
We can build a table of Laplace transform pairs, starting with signals described by �( )t  
and e t tt−
 �cos( ) u( )0 . Using the defi nition,

 � �( ) ( ) ,t t e dt sstLL← →⎯ =−

−∞

∞

∫ 1 All  

e t t e t t e dtt t st− − −

−∞

∞

← →⎯ =∫
 
� �cos( ) u( ) cos( ) u( )0 0
LL ee e

e dt
j t j t

s t
� �


 � 

0 0

2
0

+ > −
−

− +
∞

∫ ( ) ,

 e t t e et s j t s j− − − + − +← →⎯ +
 � 
 ��cos( ) u( ) ( ) ( ( ) (
0 1 2 0 0LL / ++

∞

∫ > −
 � 
) ) ,t dt
0

 

Figure 8.10
A signal divided into a left-sided part (a) and a 
right-sided part (b)

(a) (b)

xl(t)

t0 t0

xr(t)

t

x(t)

t t
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340 Chapter  8  The Laplace Transform

 e t t
s j s j

t− ← →⎯
− +

+
+ +

⎡
 �
� 
 � 


cos( ) u( ) ( )
( ) ( )

0
0 0

1 2
1 1LL /

⎣⎣⎢
⎤
⎦⎥

> −, � 
  

 e t t
s

s
t− ← →⎯ +

+ +
> −
 �





 �
� 
cos( ) u( )

( )
,0 2

0
2

LL
 

If 
 = 0, 

 cos( ) u( ) ,�
�

�0 2
0
2 0t t

s

s
LL← →⎯

+
>  

If �0 0= ,

 e t
s

t− ← →⎯
+

> −




� 
u( ) ,LL 1

 

If 
 �= =0 0,

 u( ) ,t sLL← →⎯ >1 0/ � . 

Using similar methods we can build a table of the most often used Laplace transform 
pairs (Table 8.1).

To illustrate the importance of specifying not only the algebraic form of the 
Laplace transform but also its ROC, consider the Laplace transforms of e tt−
 u( ) and 
− −( )−e tt
 u

 e t
s

t− ← →⎯
+

> −




� 
u( ) ,L 1

 
and − − ← →⎯

+
< −−e t

s
t




� 
u( ) ,L 1

.

All� �( ) ,t
L← →⎯ 1

/u( ) ,t s
L← →⎯ >1 0� − − ← →u( )t L⎯⎯ <

= ← →⎯ >

1 0

1 02

/

/

s

t t t s

,

ramp( ) u( ) ,

�

�
L /ramp( ) u( )− = − − ← →⎯t t t s

L 1 2 ,,

u( ) ,

�


 � 



<

← →⎯ + > −−

0

1/( )e t st L − − ← →⎯−e tt
 u( ) L 1//( )

/

s

t t n sn

+ < −

← →⎯


 � 
,

u( ) !L nn+ > −1 0, � tt t n s

te t

n n

t

u( ) ! ,

u(

− ← →⎯ <+

−

L / 1 0�


 )) ,L← →⎯ + > −1 2/( )s 
 � 
 /( )− − ← →⎯ + < −−te t s

t e

t

n


 
 � 
u( ) ,L 1 2

−−
+← →⎯

+
> −




� 
t

nt
n

s
u( )

!

( )
,L

1 − − ← →⎯
+

< −−
+t e t

n

s
n t

n





� 
u( )

!

( )
,L

1

ssin( )u( ) ,�
�

�
�0

0
2

0
2 0t t

s
L← →⎯

+
> − − ← →⎯

+
<sin( )u( ) ,�

�

�
�0

0
2

0
2 0t t

s
L

cos( ) u( ) ,�
�

�0 2
0
2 0t t

s

s
L← →⎯

+
> − − ← →⎯

+
<cos( ) u( ) ,�

�
�0 2

0
2 0t t

s

s
L

ee t t
s

t− ← →⎯
+ +

> −
 �
�


 �
� 
sin( ) u( )

( )
,0

0
2

0
2

L −− − ← →⎯
+ +

< −−

−

e t t
s

e

t

t







�
�


 �
� 
sin( )u( )

( )
,0

0
2

0
2

L

ccos( ) u( )
( )

,�




 �
� 
 


0 2
0
2t t

s

s
e

L← →⎯ +
+ +

> − − − tt t t
s

s
cos( ) u( )

( )
,�





 �
� 
0 2

0
2− ← →⎯ +

+ +
< −L

e t− ← →⎯
 L 1

ss s s+
−

−
= −

−
− < <


 








 � 


1 2
2 2 ,

Table 8.1 Some common Laplace-transform pairs
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The algebraic expression for the Laplace transform is the same in each case but the 
ROC’s are totally different, in fact mutually exclusive. That means that the Laplace 
transform of a linear combination of these two functions cannot be found because we 
cannot fi nd a region in the s plane that is common to the ROCs of both e tt−
 u( ) and 
− −−e tt
 u( ).

An observant reader may have noticed that some very common signal functions do 
not appear in Table 8.1, for example, a constant. The function x( ) u( )t t=  appears but 
x( )t = 1 does not. The Laplace transform of x( )t = 1 would be

 
X( )s e dt e e dtst t j t= = +−

−∞

∞
− −

−∞
<

∫ ∫ � �

�

0

0ROC:
� ��� ���

ee e dtt j t− −
∞

>

∫ � �

�

0

0ROC:
� ��� ���

 

There is no   ROC common to both of these integrals, therefore the Laplace transform 
does not exist. For the same reason cos( ) ( )� � �0 0 0t t t tT, sin( ), sgn( ) and  do not appear 
in the table although cos( ) u( ) u( )� �0 0t t t tand sin( )  do appear. 

The Laplace transform 1/( )s + 
 is fi nite at every point in the s plane except the 
point s = −
. This unique point is called a pole of 1/( )s + 
 . In general, a  pole of a 
Laplace transform is a value of s at which the transform tends to infi nity. The opposite 
concept is a  zero of a Laplace transform, a value of s at which the transform is zero. 
For 1/( )s + 
  there is a single zero at infi nity. The Laplace transform 

 cos( ) u( )�
�

0 2
0
2t t

s

s
L← →⎯

+
 

has poles at s j= ± �0, a zero at s = 0 and a zero at infi nity. 
A useful tool in signal and system analysis is the  pole-zero diagram in which an 

“x” marks a pole and an “o” marks a zero in the s plane (Figure 8.11).

-2

2
2

-2
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-8

-10

4

6

8
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-4-6-8-10
σ

ω

-2

2

-2

-4

-6

-8

-10

4

6

8

10

-4-6-8-10
σ

ω

s2 + 4s + 20

s2 + 8s + 32

-2

2

-2

-4

-6

-8

-10

4

6

8

10

-4-6-8-10
σ

ω

s2(s + 2)(s + 6)
(s + 8)(s + 4) (s + 10)(s + 6)(s + 4)

Figure 8.11
Example pole-zero diagrams

(The small “2” next to the zero in the rightmost pole-zero diagram in Figure 8.11 indi-
cates that there is a double zero at s = 0.) As we will see in later material, the poles and 
zeros of the Laplace transform of a function contain much valuable information about 
the nature of the function.
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342 Chapter  8  The Laplace Transform

EXAMPLE 8.2

 Inverse Laplace transforms

Find the inverse Laplace transforms of 

(a) X( )s
s s

=
+

−
−

− < <4

3

10

6
3 6, �

EXAMPLE 8.1

Laplace transform of a  noncausal exponential signal

Find the Laplace transform of x( ) u( ) u( )t e t e tt t= + −− 2 .
The Laplace transform of this sum is the sum of the Laplace transforms of the individual 

terms e tt− u( ) and e tt2 u( )− . The ROC of the sum is the region in the s plane that is common 
to the two ROCs. From Table 8.1

 e t
s

t− ← →⎯
+

> −u( ) ,L 1

1
1�  

and

 e t
s

t2 1

2
2u( )− ← →⎯ −

−
<L , � . 

In this case, the region in the s plane that is common to both ROCs is − < <1 2�  and

 e t e t
s s

t t− + − ← →⎯
+

−
−

− < <u( ) u( )2 1

1

1

2
1 2L , �  

(Figure 8.12). This Laplace transform has poles at s s= − = +1 2and  and two zeros at infi nity.

σ

ω

s = 2s = -1

ROC

[s]

Figure 8.12
ROC for the Laplace transform of 
x( ) u( ) u( )t e t e tt t= + −− 2
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(b) In this case the ROC is to the right of both poles and both time-domain signals must be 

right-sided and, using e t
s

t− ← →⎯
+

> −




� 
u( ) ,L 1

 x( ) u( ) u( )t e t e tt t= −−4 103 6  

 (Figure 8.13 b).
(c) In this case the ROC is to the left of both poles and both time-domain signals must be left-

sided and, using − − ← →⎯
+

< −−e t
s

t




� 
u( ) ,L 1

x( ) u( ) u( )t e t e tt t= − − + −−4 103 6

 (Figure 8.13 c).

(b) X( )s
s s

=
+

−
−

>4

3

10

6
6, �

(c) X( )s
s s

=
+

−
−

< −4

3

10

6
3, � .

(a) X( )s  is the sum of two s-domain functions and the inverse Laplace transform must be the 
sum of two time-domain functions. X( )s  has two poles, one at s = −3 and one at s = 6. We 

know that for right-sided signals the ROC is always to the right of the pole and for left-sided 

signals the ROC is always to the left of the pole. Therefore 
4

3s +
 must inverse transform into 

a right-sided signal and 
10

6s −
 must inverse transform into a left-sided signal. Then using

 e t
s

t− ← →⎯
+

> −




� 
u( ) ,L 1

 and − − ← →⎯
+

< −−e t
s

t




� 
u( ) ,L 1

 

we get

 x( ) u( ) u( )t e t e tt t= + −−4 103 6  

(Figure 8.13 a).

Figure 8.13
Three inverse Laplace transforms

t
3.03.0-

x(t)
10

t
3.03.0-

x(t)

-60

t
3.03.0-

x(t)

-10

6

(a)

(b)

(c)
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344 Chapter  8  The Laplace Transform

8.9  PARTIAL-FRACTION EXPANSION
In Example 8.2 each s-domain expression was in the form of two terms, each of which 
can be found directly in Table 8.1. But what do we do when the Laplace transform 
expression is in a more complicated form? For example, how do we fi nd the inverse 
Laplace transform of

 X( )
( )( )

?s
s

s s

s

s s
=

+ +
=

+ +
> −2 4 3 3 1

1, �  

This form does not appear in Table 8.1. In a case like this a technique called partial-
fraction expansion becomes very useful. Using that technique it is possible to write 
X( )s  as

 X( ) .s
s s s s

=
+

−
+

=
+

−
+

⎛
⎝

⎞
⎠ > −3 2

3

1 2

1

1

2

3

3

1

1
1

/ /
, �  

Then the inverse transform can be found as

 x( ) ( )( ) u( )t e e tt t= −− −1 2 3 3/ . 

The most common type of problem in signal and system analysis using Laplace 
methods is to fi nd the inverse transform of a rational function in s of the form

 G( )s
b s b s b s b

s a s a s a
M

M
M

M

N
N

N= + + + +
+ + +

−
−

−
−

1
1

1 0

1
1

1 0

�
�

 

where the numerator and denominator coeffi cients a and b are constants. Since the 
orders of the numerator and denominator are arbitrary, this function does not appear 
in standard tables of Laplace transforms. But,  using partial-fraction expansion, it 
can be expressed as a sum of functions that do appear in standard tables of Laplace 
transforms.

It is always possible (numerically, if not analytically) to factor the denominator 
polynomial and to express the function in the form

 G( )
( )( ) ( )

s
b s b s b s b

s p s p s p
M

M
M

M

N
= + + + +

− − −
−

−
1

1
1 0

1 2

�
�

 

where the p’s are the fi nite poles of G( )s . Let’s consider, for now, the simplest case, 
that there are no repeated fi nite poles and that N M> , making the fraction proper in s. 
Once the poles have been identifi ed we should be able to write the function in the 
partial-fraction form

 G( )s
K

s p

K

s p

K

s p
N

N
=

−
+

−
+ +

−
1

1

2

2
� , 

if we can fi nd the correct values of the K’s. For this form of the function to be correct, 
the identity

 
b s b s b s b

s p s p s p

K

s p
M

M
M

M

N

+ + +
− − − −

−
−

1
1

1 0

1 2

1

1

�
�( )( ) ( )

� ++
−

+ +
−

K

s p

K

s p
N

N

2

2
�  (8.6)

must be satisfi ed for any arbitrary value of s. The K’s can be found by putting the right 
side into the form of a single fraction with a common denominator that is the same as 
the left-side denominator, and then setting the coeffi cients of each power of s in the 
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numerators equal and solving those equations for the K’s. But there is another way that 
is often easier. Multiply both sides of (8.6) by s p− 1.

 ( )
( )( ) ( )

s p
b s b s b s b

s p s p s p
M

M
M

M

N
− + + + +

− − −
−

−

1
1

1
1 0

1 2

�
�

==
−

−
+ −

−
+

+ −
−

⎡

⎣

⎢
⎢
⎢

( ) ( )

( )

s p
K

s p
s p

K

s p

s p
K

s p
N

N

1
1

1
1

2

2

1

�

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

or

 b s b s b s b

s p s p
K s p

KM
M

M
M

N

+ + + +
− −

= + −−
−

1
1

1 0

2
1 1

2�
�( ) ( )

( )
ss p

s p
K

s p
N

N−
+ + −

−2
1� ( )  (8.7)

Since (8.6) must be satisfi ed for any arbitrary value of s, let s p= 1. All the factors 
( )s p− 1  on the right side become zero, (8.7) becomes

 K
b p b p b p b

p p p p
M

M
M

M

N
1

1 1 1
1

1 1 0

1 2 1
= + + + +

− −
−

− �
�( ) ( )

 

and we immediately have the value of K1. We can use the same technique to fi nd all the 
other K’s. Then, using the Laplace transform pairs

 e t
s

t− ← →⎯
+

> −




� 
u( ) ,L 1

 and − − ← →⎯
+

< −−e t
s

t




� 
u( ) ,L 1

 
, 

we can fi nd the inverse Laplace transform.

EXAMPLE 8.3

Inverse Laplace transform using partial-fraction expansion

Find the inverse Laplace transform of G( )
( )( )

s
s

s s
=

+ +
> −10

3 1
1, � .

We can expand this expression in partial fractions yielding

 
G( )s

s

s

s

s

s

s
s s=

+
⎡
⎣⎢

⎤
⎦⎥

+
+

+
⎡
⎣⎢

⎤
⎦⎥

+
=− =−

10

1

3

10

3

1
3 1 , �� > −1

 

 G( )s
s s

=
+

−
+

> −15

3

5

1
1, �  

Then, using 

 e t
s a

at− ← →⎯
+

> −u( ) L 1
, � 
 , 

we get

 g( ) ( )u( )t e e tt t= −− −5 3 3 . 

The most common situation in practice is that there are no repeated poles, but let’s 
see what happens if we have two poles that are identical,

 G( )
( ) ( ) ( )

s
b s b s b s b

s p s p s p
M

M
M

M

N
= + + + +

− − −
−

−
1

1
1 0

1
2

3

�
�

. 
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346 Chapter  8  The Laplace Transform

If we try the same technique to fi nd the partial-fraction form we get

 G( )s
K

s p

K

s p

K

s p

K

s p
N

N
=

−
+

−
+

−
+ +

−
11

1

12

1

3

3
� . 

But this can be written as

 G( )s
K K

s p

K

s p

K

s p

K

s p

K

s p
N

N
= +

−
+

−
+ +

−
=

−
+

−
+11 12

1

3

3

1

1

3

3
� ��+

−
K

s p
N

N

 

and we see that the sum of two arbitrary constants K K11 12+  is really only a single 
arbitrary constant. There are really only N −1 K’s instead of N K’s and when we form the 
common denominator of the partial-fraction sum, it is not the same as the denominator 
of the original function. We could change the form of the partial-fraction expansion to

 G( )
( )

s
K

s p

K

s p

K

s p
N

N
=

−
+

−
+ +

−
1

1
2

3

3
� . 

Then, if we tried to solve the equation by fi nding a common denominator and equat-
ing equal powers of s, we would fi nd that we have N equations in N −1 unknowns and 
there is no unique solution. The solution to this problem is to fi nd a partial-fraction 
expansion in the form

 G( )
( )

s
K

s p

K

s p

K

s p

K

s p
N

N
=

−
+

−
+

−
+ +

−
12

1
2

11

1

3

3
� . 

We can fi nd K12 by multiplying both sides of

 
b s b s b s b

s p s p s p

KM
M

M
M

N

+ + + +
− − −

=−
−

1
1

1 0

1
2

3

12�
�( ) ( ) ( ) (ss p

K

s p

K

s p

K

s p
N

N−
+

−
+

−
+ +

−1
2

11

1

3

3)
�  (8.8)

by ( )s p− 1
2, yielding

 
b s b s b s b

s p s p

K s p K
M

M
M

M

N

+ + + +
− −

=
+ −

−
−

1
1

1 0

3

12 1
�

�( ) ( )

( ) 111 1
2 3

3

1
2

+ −
−

+

+ −
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

( )

s p
K

s p

s p
K

s p
N

N

�

 

and then letting s p= 1, yielding

 K
b p b p b p b

p p p p
M

M
M

M

N
12

1 1 1
1

1 1 0

1 3 1
= + + + +

− −
−

− �
�( ) ( )

. 

But when we try to fi nd K11 by the usual technique we encounter another problem.

 ( )
( ) ( ) ( )

s p
b s b s b s b

s p s p s p
M

M
M

M

N
− + + +

− − −
−

−

1
1

1
1 0

1
2

3

�
�

==
−

−
+ −

−

+ −
−

+

( )
( )

( )

( )

s p
K

s p
s p

K

s p

s p
K

s p

1
12

1
2 1

11

1

1
3

3
�++ −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥( )s p

K

s p
N

N
1

 

or

 b s b s b s b

s p s p s p

K

s
M

M
M

M

N

+ + + +
− − −

=
−

−
−

1
1

1 0

1 3

12�
�( )( ) ( ) pp

K
1

11+  
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Now if we set s p= 1 we get division by zero on both sides of the equation and we 
cannot directly solve it for K11. But we can avoid this problem by multiplying (8.8)  
through by ( )s p− 1

2, yielding

 b s b s b s b

s p s p

K s p K
M

M
M

M

N

+ + + +
− −

=
+ −

−
−

1
1

1 0

3

12 1
�

�( ) ( )

( ) 111

1
2 3

3
1

2

+

−
−

+ + −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( ) ( )s p
K

s p
s p

K

s p
N

N
�

, 

differentiating with respect to s, yielding

 
d

ds

b s b s b s b

s p s p

K
M

M
M

M

N

+ + + +
− −

⎡
⎣
⎢

⎤
⎦
⎥ =

−
−

1
1

1 0

3

1
�

�( ) ( )

11
3 1 1

2

3
2 3

2

2

+ − − − −
−

+

+
− −

( ) ( ) ( )

( )

( ) (

s p s p s p

s p
K

s p s pq

�

11 1
2

2

) ( )

( )

− −
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

s p

s p
K

N
N

and then setting s p= 1 and solving for K11,

 K
d

ds

b s b s b s b

s p s p
M

M
M

M

N
11

1
1

1 0

3
= + + + +

− −
⎡
⎣
⎢

⎤
⎦

−
− �

�( ) ( ) ⎥⎥ = −⎡⎣ ⎤⎦
→

→
s p

s p

d

ds
s p s

1

1
1

2( ) G( ) . 

If there were a higher-order repeated pole such as a triple, quadruple, and soon (very 
unusual in practice), we could fi nd the coeffi cients by extending this differentiation 
idea to multiple derivatives. In general, if H( )s  is of the form

 H( )
( )( ) (

s
b s b s b s b

s p s p s p
M

M
M

M

N
= + + + +

− − −
−

−

−

1
1

1 0

1 2 1

�
� ))( )s pN

m−
 

with N −1 distinct fi nite poles and a repeated Nth pole of order m, it can be written as

 H( )
( )

, ,s
K

s p

K

s p

K

s p

K

s p

KN

N

N m

N
m

N=
−

+
−

+ +
−

+
−

+−

−

1

1

2

2

1

1
� mm

N
m

N

Ns p

K

s p
−

−−
+ +

−
1

1
1

( )
,�  

where the K’s for the distinct poles are found as before and where the K for a repeated 
pole pq of order m for the denominator of the form ( )s pq

m k− −  is

 K
m k

d

ds
s p s kq k

m k

m k q
m

s pq,
( )!

[( ) H( )]=
−

− =
−

− →
1

1, ,, , ,2 � m  (8.9)

and it is understood that 0 1! = .

EXAMPLE 8.4

Inverse Laplace transform  using partial-fraction expansion

Find the inverse Laplace transform of 

 G( )
( )

s
s

s s
= +

+
>5

2
02 , � . 

This function has a repeated pole at s = 0. Therefore the form of the partial fraction expan-
sion must be

 G( )s
K

s

K

s

K

s
= + +

+
>12

2
11 3

2
0, � . 
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348 Chapter  8  The Laplace Transform

We fi nd K12 by multiplying G( )s  by s2, and setting s to zero in the remaining expression, yielding

 K s s s12
2

0 5 2= =→[ G( )] / . 

We fi nd K11 by multiplying G( )s  by s2, differentiating with respect to s and setting s to zero in 
the remaining expression, yielding

 K
d

ds
s s

d

ds

s

s

s s
s

s
11

2
0

0

5

2

2= = +
+

⎡
⎣⎢

⎤
⎦⎥

= + − +
→

→
[ G( )]

( ) ( 55

2

3

42
0

)

( )s s+
⎡
⎣⎢

⎤
⎦⎥

= −
→

. 

We fi nd K3 by the usual method to be 3 4/ . So 

 G( )
( )

s
s s s

= − +
+

>5

2

3

4

3

4 2
02 , �  

and the inverse transform is

 g( ) u( )
( )

u( )t t e t
t e

tt
t

= − +⎛
⎝⎜

⎞
⎠⎟ = − −−

−5

2

3

4

3

4

10 3 1

4
2

2
. 

Let’s now examine the effect of a violation of one of the assumptions in the origi-
nal explanation of the partial-fraction expansion method, the assumption that 

 G( )
( )( ) ( )

s
b s b s b s b

s p s p s p
M

M
M

M

N
= + + + +

− − −
−

−
1

1
1 0

1 2

�
�

 

is a proper fraction in s. If M N≥  we cannot expand in partial fractions because the 
partial-fraction expression is in the form

 G( )s
K

s p

K

s p

K

s p
N

N
=

−
+

−
+ +

−
1

1

2

2
� . 

Combining these terms over a common denominator.

 
G( )

( ) ( )

s

K s p K s p Kk
k
k

k N

k
k
k

k N

=

− + − + +
=
≠

=

=
≠

=

∏ ∏1
1
1

2
1
2

2� (( )

( )( ) ( )

s p

s p s p s p

k
k
k N

k N

N

−

− − −

=
≠

=

∏
1

1 2 �

 

The highest power of s in the numerator is N − 1. Therefore any ratio of polynomials in 
s that is to be expanded in partial fractions must have a numerator degree in s no greater 
than N − 1 making it proper in s. This is not really much of a restriction because, if the 
fraction is improper in s, we can always synthetically divide the numerator by the de-
nominator until we have a remainder that is of lower order than the denominator. Then 
we will have an expression consisting of the sum of terms with non-negative integer 
powers of s plus a proper fraction in s. The terms with non-negative powers of s have 
inverse Laplace transforms that are impulses and higher order singularities.

EXAMPLE 8.5

Inverse Laplace transform  using partial-fraction expansion

Find the inverse Laplace transform of G( )
( )( )

s
s

s s
=

+ +
>10

1 3
0

2
, � .
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This rational function is an improper fraction in s. Synthetically dividing the numerator by 
the denominator we get

 )s s s

s s

s

s

s
2 2

2

2
4 3 10

10 40 30

40 30

10
10+ +

+ +
− −

⇒
+( 11 3

10
40 30

4 32)( )s

s

s s+
= − +

+ +
. 

Therefore

 G( )
( )( )

s
s

s s
= − +

+ +
>10

40 30

1 3
0, � . 

Expanding the (proper) fraction in s in partial fractions,

 G( )s
s s

= −
+

−
+

⎛
⎝⎜

⎞
⎠⎟ >10 5

9

3

1

1
0, � . 

Then, using

 e t
s a

at− ← →⎯
+

u( ) L 1
 and �( )t L← →⎯ 1  

we get

 g( ) ( ) ( )u( )t t e e tt t= − −− −10 5 9 3�  

(Figure 8.14).

Figure 8.14
Inverse Laplace transform of G( )

( )( )
s

s

s s
=

+ +
10

1 3

2

1

10

-40

2 3 4 5
t

g(t)

EXAMPLE 8.6

Inverse Laplace transform using partial-fraction expansion

Find the inverse Laplace transform of G( )
( )( )

s
s

s s s
=

− − +
<

3 4 5
22 , � .

If we take the usual route of fi nding a partial fraction expansion we must fi rst factor the 
denominator,

 G( )
( )( )( )

s
s

s s j s j
=

− − + − −
<

3 2 2
2, �  
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350 Chapter  8  The Laplace Transform

and fi nd that we have a pair of complex-conjugate poles. The partial-fraction method still works 
with complex poles. Expanding in partial fractions,

 G( )
( ) ( )

s
s

j

s j

j

s j
=

−
− +

− +
− −

− −
<3 2

3

3 4

2

3 4

2
2

/ / /
, � . 

With complex poles like this we have a choice. We can either

1. Continue as though they were real poles, fi nd a time-domain expression and then simplify it, or

2. Combine the last two fractions into one fraction with all real coeffi cients and fi nd its 
inverse Laplace transform by looking up that form in a table.

Method 1:

 g( ) u( )( ) ( )s e
j
e

j
e tt j t j t= − + + + −⎛

⎝⎜
⎞
⎠⎟ −− +3

2

3

4

3

4
3 2 2 . 

This is a correct expression for g( )t  but it is not in the most convenient form. We can manipulate 
it into an expression containing only real-valued functions. Finding a common denominator and 
recognizing trigonometric functions,

 g( )
( ) ( ) ( ) ( )

t e
e e je jet

j t j t j t j t
= − + + + −− + − +3

2

3 33
2 2 2 2

44

⎛
⎝⎜

⎞
⎠⎟

−u( )t  

 g( )
( ) ( )

u(t e e
e e j e et t

jt jt jt jt
= − + + + −⎛
⎝⎜

⎞
⎠⎟

− −3

2

3

4
3 2 −−t) 

 g( ) ( ) [cos( ) ( )sin( )] u( )t e t t e tt t= + −{ } −3 2 1 32 3/ / . 

Method 2:

 G( )
( )( ) ( )( )

s
s

j s j j s j

s s
=

−
− + − − + − − +

− +
3 2

3

1

4

3 2 3 2

4 52
/

, � < 2 

When we simplify the numerator we have a fi rst-degree polynomial in s divided by a second-
degree polynomial in s. 

 G( )
( )

s
s

s

s s s

s

s
=

−
− −

− +
=

−
− −

− +
3 2

3

1

4

6 10

4 5

3 2

3

6

4

5 3

2 2
/ / /

11
2, � <  

In the table of transforms we fi nd

 − − ← →⎯ +
+ +

< −−e t t
s

s
t
 �





 �
� 
cos( )u( )

( )
,0 2

0
2

L
 

and

 − − ← →⎯
+ +

< −−e t t
s

t
 �
�


 �
� 
sin( )u( )

( )
,0

0
2

0
2

L
 

Our denominator form matches these denominators but the numerator form does not. But we 
can add and subtract numerator forms to form two rational functions whose numerator forms 
do appear in the table.

 G( )
( )

( )
( )

s
s

s

s s
=

−
− −

− +
+

− +
⎡
⎣⎢

⎤
⎦⎥

3 2

3

3

2

2

2 1
1 3

1

2 12 2
/

/ , � < 2 (8.10)

Now we can directly fi nd the inverse transform

 g( ) ( ){ [cos( ) ( )sin( )] }u( )t e t t e tt t= + − −3 2 1 32 3/ / . 
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Realizing that there are two complex conjugate roots, we could have combined the two 
terms with the complex roots into one with a common denominator of the form

 G( )
( )

s
A

s

K

s p

K

s p

A

s

s K K K p K p=
−

+
−

+
−

=
−

+ + − −
3 3

2

2

3

3

2 3 3 2 2 3

ss s2 4 5− +  

or, since K K2 3and  are arbitrary constants,

 G( )s
A

s

Bs C

s s
=

−
+ +

− +3 4 52

(Both B and C will be real numbers because K K2 3and  are complex conjugates and so are p2 

and p3.) Then we can fi nd the partial fraction expansion in this form. A is found exactly as before to 
be 3/2. Since G( )s  and its partial fraction expansion must be equal for any arbitrary value of s and

 G( )
( )( )

s
s

s s s
=

− − +3 4 52  

we can write

 
s

s s s s

Bs C

s ss( )( )− − +
⎡
⎣⎢

⎤
⎦⎥

=
−

+ +
− +

⎡
⎣⎢

⎤

=3 4 5

3 2

3 4 52
0

2
/

⎦⎦⎥ =s 0
 

or

 0 1 2 5 5 2= − + ⇒ =/ / /C C  

Then

 
s

s s s s

Bs

s s( )( )− − +
=

−
+ +

− +3 4 5

3 2

3

5 2

4 52 2
/ /

 

and we can fi nd B by letting s be any convenient number, for example, one. Then

 − = − + + ⇒ = −1

4

3

4

5 2

2

3

2

B
B

/
 

and

 G( )s
s

s

s s
=

−
− −

− +
3 2

3

3

2

5 3

4 52
/ /

. 

This result is identical to (8.10) and the rest of the solution is therefore the same.

MATLAB has a  function  residue that can be used in fi nding partial-fraction 
expansions. The syntax is 

 [r,p,k] = residue(b,a) 

where b is a  vector of coeffi cients of descending powers of s in the numerator of 
the expression and a is a vector of coeffi cients of descending powers of s in the 
denominator of the expression, r is a vector of residues, p is a vector of fi nite pole 
locations and k is a vector of so-called  direct terms, which result when the degree of 
the numerator is equal to or greater than the degree of the denominator. The vectors 
a and b must always include all powers of s down through zero. The term residue 
comes from theories of closed-contour integration in the complex plane, a topic that is 
beyond the scope of this text. For our purposes, residues are simply the numerators in 
the partial-fraction expansion.
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352 Chapter  8  The Laplace Transform

EXAMPLE 8.7

Partial fraction expansion using MATLAB’s residue function

Expand the expression

 H( )s
s s

s s s s
= + +

+ + + +

2

4 3 2
3 1

5 2 7 3
 

in partial fractions. 

In MATLAB,

»b = [1 3 1] ; a = [1 5 2 7 3] ;

»[r,p,k] = residue(b,a) ;

»r

r =

 -0.0856 

 0.0496 - 0.2369i

 0.0496 + 0.2369i

 -0.0135 

»p

p =

 -4.8587 

 0.1441 + 1.1902i

 0.1441 - 1.1902i

 -0.4295 

»k

k =

 []

»

There are 4 poles at − + − −4 8587 0 1441 1 1902 0 1441 1 1902 0 429. , . . , . . , .j j and 55 and the resi-
dues at those poles are −0.0856, 0.0496 −j0.2369, 0.0496 + j0.2369 and −0.0135, respectively. 
There are no direct terms because H( )s  is a proper fraction in s. Now we can write H( )s  as

 H( )
. .

. .

. .
s

j

s j

j= −
− −

+ +0 0496 0 2369

0 1441 1 1902

0 0496 0 23369

0 1441 1 1902

0 0856

4 8587

0 0135

0 4s j s s− +
−

+
−

+. .

.

.

.

. 2295
 

or, combining the two terms with complex poles and residues into one term with all real 
coeffi cients,

 H( )
. .

. .

.

.
s

s

s s s
= +

− +
−

+
0 0991 0 5495

0 2883 1 437

0 0856

0 42 88587

0 0135

0 4295
−

+
.

.s
. 

EXAMPLE 8.8

 Response of an LTI system

Find the response y( )t  of an LTI system

(a) With impulse response h( ) u( )t e tt= −5 4  if excited by x( ) u( )t t=
(b) With impulse response h( ) u( )t e tt= −5 4  if excited by x( ) u( )t t= −
(c) With impulse response h( ) u( )t e tt= −5 4  if excited by x( ) u( )t t=
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(d) With impulse response h( ) u( )t e tt= −5 4  if excited by x( ) u( )t t= −

(a) h( ) u( ) H( )t e t s
s

t= ← →⎯ =
+

> −−5
5

4
44 L , �

 x( ) u( ) X( )t t s s= ← →⎯ = >L 1 0/ , �  

 Therefore 

 Y( ) H( ) X( )
( )

s s s
s s

= =
+

>5

4
0, �  

 Y( )s  can be expressed in the partial-fraction form

 Y( )s
s s

= −
+

>5 4 5 4

4
0

/ /
, �  

 y( ) ( )( )u( ) Y( )t e t s
s s

t= − ← →⎯ = −
+

>−5 4 1
5 4 5 4

4
4/

/ /
,L

� 00  

 (Figure 8.15)

Figure 8.15
The four system responses

t
-1.5 1.5

y(t)

-1.5

1.5

t
-1.5 1.5

y(t)

-1.5

1.5

t
-1.5 1.5

y(t)

-1.5

1.5

t
-1.5 1.5

y(t)

-1.5

1.5

h(t) = 5e−4t u(t), x(t) = u(t) h(t) = 5e−4t u(t), x(t) = u(−t)

h(t) = 5e4t u(−t), x(t) = u(t) h(t) = 5e4t u(−t), x(t) = u(−t)
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(b) x( ) u( ) X( )t t s s= − ← →⎯ = − <L 1 0/ , �

 Y( ) H( )X( )
( )

s s s
s s

= = −
+

− < <5

4
4 0, �  

 Y( )s
s s

= − +
+

− < <5 4 5 4

4
4 0

/ /
, �  

 y( ) ( )[ u( ) u( )] Y( )t e t t s
s s

t= + − ← →⎯ = − +
+

−5 4
5 4 5 4

4
4/

/ /L ,, − < <4 0�  

 (Figure 8.15)
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354 Chapter  8  The Laplace Transform

 Table 8.2 Laplace transform   properties

Linearity 
 � 
g( ) h( ) G(t t t s+ − ← →⎯0
L )) H( ) ROCH+ ⊇ ∩� s , ROC ROC

Time-Shifting

G

, ROC ROCg( ) G( )t t s e st− ← →⎯ =−
0 0

L
GG

-Domain Shifts e ts t0 g( ) L←← →⎯ − =G( )s s s0 0, ROC ROC shifted byG

is in ROC if(s ss s− 0 is in ROC

Time Scaling

G )

g( ) / / , ROC ROCGat a s a
L← →⎯ =( )G( )1 sscaled by a

is in ROC if / is in ROC

Tim

G( )s s a

ee Differentiation g( )
d

dt
t s

L← →⎯ G(( )s

s

, ROC ROC

-Domain Differentiation

G⊇

, ROC ROC

Time Integratio

G− ← →⎯ =t
d

ds
sg( ) G( )�

L

nn / , ROCg( ) G( )� �d s s
t

−∞
∫ ← →⎯ ⊇L ROC

Convolution in Time g

G ∩ >

∗

( )

( ) h(

� 0

t tt s s

t t

) G( ) ( ) ROC

g( )
H

L← →⎯ ⊇ ∩
=

H , ROC ROC

If ,
G

0 << 0 and there are no impulses or higher-order siingularities at then

Initial V

t = 0

aalue Theorem: g(0 )+ =
→∞

lim G( )
s

s s

Final Value Theorem: g(lim
t→∞

tt s s t
s t

) if g( ) exists=
→ →∞
lim G( ) lim

0

(c) h( ) u( ) H( )t e t s
s

t= − ← →⎯ = −
−

<5
5

4
44 L , �

 Y( ) H( )X( )
( )

s s s
s s

= = −
−

< <5

4
0 4, �  

 Y( )s
s s

= −
−

< <5 4 5 4

4
0 4

/ /
, �  

 y [u( ) u( )] Y( )t t e t s
s s

t( ) = ( ) + − ← →⎯ = −
+

5 4
5 4 5 4

4
04/

/ /
,L << <� 4  

 (Figure 8.15)

(d) Y( ) H( )X( )
( )

s s s
s s

= =
−

<5

4
0, �

 Y( )s
s s

= − +
−

<5 4 5 4

4
0

/ /
, �  

 y( ) ( )[u( ) u( )] Y( )t t e t s
s s

t= − − − ← →⎯ = − +
−

5 4
5 4 5 4

4
4/

/ /L ,, � < 4  

 (Figure 8.15)

8.10 LAPLACE TRANSFORM  PROPERTIES
Let g( ) h( )t tand  have Laplace transforms G( ) H( )s sand  with regions of convergence 
ROC and ROCG H respectively. Then it can be shown that the following    properties 
apply (Table 8.2).
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EXAMPLE 8.9

Use of the  s-domain  shifting property

If X ( )1
1

5
5s

s
=

+
> −, �  and X ( ) X ( ) X ( )2 1 14 4 5s s j s j= − + + > −, �  fi nd x ( )2 t .

 e t
s

t− ← →⎯
+

> −5 1

5
5u( ) L , �  

Using the s-domain shifting property

 e t
s j

ej t− − − +← →⎯
− +

> −( ) (u( )5 4 51

4 5
5L , and� jj t t

s j
4 1

4 5
5) u( ) L← →⎯

+ +
> −, � . 

Therefore

 x ( ) u( ) u( ) (( ) ( )
2

5 4 5 4 5 4t e t e t e e ej t j t t j t j= + = +− − − + − − 44 52 4t tt e t t)u( ) cos( )u( ).= −

The effect of shifting equal amounts in opposite directions parallel to the � axis in the s domain 
and adding corresponds to multiplication by a causal cosine in the time domain. The overall 
effect is  double-sideband suppressed carrier modulation, which will be discussed in Chapter 12.

EXAMPLE 8.10

Laplace transforms  of two time-scaled rectangular pulses

Find the Laplace transforms of x( ) u( ) u( )t t t a= − −  and x( ) u( ) u( ).2 2 2t t t a= − −
We have already found the Laplace transform of u( )t , which is 1 0/ ,s � > . Using the linear-

ity and time-shifting properties,

 u( ) u( )t t a
e

s

as
− − ← →⎯ − −

L 1
, all �. 

Now, using the time scaling property,

 u( ) u( )
/ /

2 2
1

2

1

2

12 2
t t a

e

s

e

s

as as
− − ← →⎯ − = −− −

L

/
, all ��. 

This result is sensible when we consider that u( ) u( )2t t=  and u( ) u( ( ))2 2 2t a t a− = − =/  
u( )2t a− / . 

EXAMPLE 8.11

Using  s-domain differentiation to derive a transform pair

Using s-domain differentiation and the basic Laplace transform u( )t sL← →⎯ >1 0/ , � , fi nd the 
inverse Laplace transform of 1 02/ ,s � > .

u( )t sL← →⎯ >1 0/ , �

Using − ← →⎯t t
d

ds
sg( ) (G( ))L

 − ← →⎯ − >t t su( ) L 1 02/ , � . 

 8.10 Laplace Transform Properties 355
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356 Chapter  8  The Laplace Transform

Therefore 

 ramp( ) u( )t t t s= ← →⎯ >L 1 02/ , � . 

By induction we can extend this to the general case.

 
d

ds s s

d

ds s s

d

ds s

1 1 1 2 1
2

2

2 3

3

3
⎛
⎝⎜

⎞
⎠⎟ = − ⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜, , ⎞⎞
⎠⎟ = − ⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

6 1 24 1
4

4

4 5s

d

ds s s

d

ds s

n

n, , ,� == −( ) +1 1
n

n
n

s

!

The corresponding transform pairs are

 
t t

s

t
t

s

t
t

u( ) u( )

u( )

L L

L

← →⎯ > ← →⎯ >

← →⎯

1
0

2

1
0

6

2

2

3

3

, , ,� �

11
0

1
04 1s

t

n
t

s

n

n, , , ,� �> ← →⎯ >+�
!

u( ) L

.

EXAMPLE 8.12

Using the  time integration property to derive a transform pair

In Example 8.11 we used complex-frequency differentiation to derive the Laplace-transform pair

 t t su( ) L← →⎯ >1 02/ , � . 

Derive the same pair from u( )t sL← →⎯ >1 0/ , �  using the time integration property instead.

 u( )� �
�

d
d t t

t

t
t

−∞
∫ ∫=

= ≥

<

⎧

⎨
⎪

⎩

−0

0

0 0

,

,
⎪⎪

⎫

⎬
⎪

⎭
⎪
= t tu( ). 

Therefore 

 t t
s s s

u( ) L← →⎯ × = >1 1 1
02 , � . 

Successive integrations of u( )t  yield 

 t t
t

t
t

tu( ) u( ) u( ), ,
2 3

2 6
 

and these can be used to derive the general form

 
t

n
t

s

n

n!
u( ) L← →⎯ >+

1
01 , � . 

8.11 THE  UNILATERAL LAPLACE TRANSFORM

DEFINITION

In the introduction to the Laplace transform it was apparent that if we consider the 
full range of possible signals to transform, sometimes a region of convergence can be 
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found and sometimes it cannot be found. If we leave out some pathological functions 
like t t or et2

, which grow faster than an exponential (and have no known engineer-
ing usefulness) and restrict ourselves to functions that are zero before or after time 
t = 0, the Laplace transform and its ROC become considerably simpler. The quality 
that made the functions g ( ) u( ),1 0t Ae tt= >
 
  and g ( ) u( ),2 0t Ae tt= − >−
 
  Laplace 
transformable was that each of them was restricted by the unit-step function to be zero 
over a semi-infi nite range of time. 

Even a function as benign as g( )t A= , which is bounded for all t, causes problems 
because a single convergence factor that makes the Laplace transform converge for 
all time cannot be found. But the function g( ) u( )t A t=  is Laplace transformable. The 
presence of the unit step allows the choice of a convergence factor for positive time 
that makes the Laplace transform integral converge. For this reason (and other rea-
sons), a modifi cation of the Laplace transform that avoids many convergence issues is 
usually used in practical analysis. 

Let us now redefi ne the Laplace transform as G( ) g( )s t e dtst= −∞
−∫0

. Only the lower 

limit of integration has changed. The Laplace transform defi ned by G( ) g( )s t e dtst= −
−∞

∞
∫  

is conventionally called the  two-sided or  bilateral Laplace transform. The Laplace 

transform defi ned by G( ) g( )s t e dtst= −∞
−∫0

 is conventionally called the  one-sided or 

unilateral Laplace transform. The unilateral Laplace transform is restrictive in the 
sense that it excludes the negative-time behavior of functions. But since, in the analysis 
of any real system, a time origin can be chosen to make all signals zero before that 
time, this is not really a practical problem and actually has some advantages. Since the 
lower limit of integration is t = −0 , any functional behavior of g( )t  before time t = 0 
is irrelevant to the transform. This means that any other function that has the same 
behavior at or after time t = 0 will have the same transform. Therefore, for the trans-
form to be unique to one time-domain function, it should only be applied to functions 
that are zero before time t = 0.2

The  inverse unilateral Laplace transform is exactly the same as derived above for 
the bilateral Laplace transform

 g( ) G( )t
j

s e dsst

j

j

= +

− ∞

+ ∞

∫
1

2�
�

�

. 

It is common to see the Laplace-transform pair defi ned by

 L L( )g( ) G( ) g( ) (G( )) g( )t s t e dt s t
j

st= = = =−
∞

−

−
∫
0

1 1

2
,

�
GG( )s e dsst

j

j
+

− ∞

+ ∞

∫
�

�

. (8.11)

The unilateral Laplace transform has a simple   ROC. It is always the region of the s 
plane to the right of all the fi nite poles of the transform (Figure 8.16).

2Even for times t > 0 the transform is not actually unique to a single time-domain function. As mentioned in 
Chapter 2 in the discussion of the defi nition of the unit-step function, all the defi nitions have exactly the signal 
energy over any fi nite time range and yet their values are different at the discontinuity time t > 0. This is a 
mathematical point without any real engineering signifi cance. Their effects on any real system will be identical 
because there is no signal energy in a signal at a point (unless there is an impulse at the point) and real systems 
respond to the energy of input signals. Also, if two functions differ in value at a fi nite number of points, the Laplace-
transform integral will yield the same transform for the two functions because the area under a point is zero.

 8.11 The Unilateral Laplace Transform 357
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358 Chapter  8  The Laplace Transform

PROPERTIES UNIQUE TO THE UNILATERAL LAPLACE TRANSFORM

Most of the  properties of the unilateral Laplace transform are the same as the  properties 
of the bilateral Laplace transform, but there are a few differences. If g( ) fort t= <0 0 
and h( ) fort t= <0 0 and

 
 L L( ) ( )g( ) G( ) and h( ) H( )t s t s= =   

then the properties in Table 8.3 that are different for the unilateral Laplace transform 
can be shown to apply.

Time-Shifting

Time Scaling

First Time Deerivative

Ntth Time Derivative

Time Inteegration

Table 8.3  Unilateral Laplace transform properties that differ from bilateral Laplace 
transform properties

g( )t t− ← →⎯0
L GG( )s e tst− >0 0 0,

g( ) / / ,at a s a a
L← →⎯ >( )G( )1 0

g( )
d

dt
t s s

L← →⎯ − −G( ) g( )0

d

dt
t s

N

N
N(g( )) GL← →⎯ (( ) (g( ))s s

d

dt
tN n

n

n
tn

N
−

⎡

⎣
⎢

⎤

⎦
⎥−

−

−
== −

∑
1

1
01

/g( ) G( )� �d s s
t

0−
∫ ← →⎯L

The  time-shifting  property is now only valid for time shifts to the right ( time de-
lays) because only for delayed signals is the entire nonzero part of the signal still guar-
anteed to be included in the integral from 0− to infi nity. If a signal were shifted to the 
left (advanced in time), some of it might occur before time t = 0 and not be included 
within the limits of the Laplace transform integral. That would destroy the unique 
relation between the transform of the signal and the transform of its shifted version, 
making it impossible to relate them in any general way (Figure 8.17). 

σ

ω

ROC

[s]

Figure 8.16 
ROC for a unilateral Laplace transform
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Similarly, in the  time scaling and  frequency scaling properties, the constant a can-
not be negative because that would turn a causal signal into a noncausal signal, and the 
 unilateral Laplace transform is only valid for causal signals. 

The time derivative properties are important properties of the unilateral Laplace 
transform. These are the properties that make the solution of differential equations 
with initial conditions systematic. When using the differentiation properties in solving 
differential equations, the initial conditions are automatically called for in the proper 
form as an inherent part of the transform process. Table 8.4 has several commonly-
used, unilateral Laplace transforms.

Figure 8.17
Shifts of a causal function

t

g(t)

t

g(t - t0)

t

g(t - t0)

t0 > 0 t0 < 0

Table 8.4 Common unilateral laplace-transform pairs

All�( ) ,t s
L← →⎯ 1

/u( ) ,

u ( )

t s

tn

L← →⎯ >

=−

1 0�

uu( ) u( ) ,t t s

n

n∗ ← →⎯ >
−( )

�� �� ��
1

1 0

convolutions

/L
�

/ramp( ) u( ) ,t t t s= ← →⎯ >L 1 02 �

e t
s

t− ← →⎯
+

> −




� 
u( ) ,L 1

t t nn u( ) !/L← →⎯ ss

te

n+

−

>1 0, �







� 
t t

s
u( )

( )
,L← →⎯

+
> −1

2

t e t
n

s
n t

n
−

+← →⎯
+

> −




� 
u( )

!

( )
,L

1

sin( )u( )�
�

�
0

0
2

0
t t

s
L← →⎯

+ 22

0

0,

cos( ) u( )

�

�

>

← →t t
L⎯⎯

+
>

−

s

s

e t

2
0
2 0

�
�




,

siin( )u( )
( )

,�
�


 �
� 
0

0
2

0
2t t

s
L← →⎯

+ +
> −

e t t
s

s
t− ← →⎯ +

+ +

 �





 �
cos( ) u( )

( )
0 2

0

L
22 , � 
> −
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360 Chapter  8  The Laplace Transform

SOLUTION OF DIFFERENTIAL EQUATIONS  WITH 
INITIAL CONDITIONS

The power of the Laplace transform lies in its use in the analysis of  linear system 
dynamics. This comes about because linear continuous-time systems are described 
by linear differential equations and, after Laplace transformation, differentiation is 
represented by multiplication by s. Therefore the solution of the differential equation 
is transformed into the solution of an algebraic equation. The unilateral Laplace trans-
form is especially convenient for transient analysis of systems whose excitation begins 
at an initial time, which can be identifi ed as t = 0 and of unstable systems or systems 
driven by forcing functions that are unbounded as time increases.

EXAMPLE 8.13

Solution of a differential equation with initial conditions using the unilateral 
Laplace transform

Solve the differential equation

 ′′ + ′ + =x ( ) x ( ) x( )t t t7 12 0 

for times t > 0 subject to the initial conditions

 x( ) and (x( ))0 2 40
−

== = −−
d

dt
t t . 

First, Laplace transform both sides of the equation.

 s s s
d

dt
t s st

2
00 7 0 12X( ) x( ) (x( )) [ X( ) x( )] X(− − + − +−

=
−− ss) = 0 

Then solve for X(s).

 X( )
x( ) x( ) (x( ))

s
s

d

dt
t

s s

t
=

+ +

+ +

− −
= −0 7 0

7 12

0

2
 

or

 X( )s
s

s s
= +

+ +
2 10

7 122 . 

Expanding X( )s  in partial fractions,

 X( )s
s s

=
+

−
+

4

3

2

4
. 

From the Laplace transform table,

 e t
s

t− ← →⎯
+






u( ) L 1

. 

Inverse Laplace transforming, x( ) ( )u( )t e e tt t= −− −4 23 4 . Substituting this result into the origi-
nal differential equation, for times t ≥ 0

 d

dt
e e

d

dt
e e et t t t t

2

2
3 4 3 4 34 2 7 4 2 12 4 2[ ] [ ] [− − − − −− + − + − ee t− =4 0]  

 36 32 84 56 48 24 03 4 3 4 3 4e e e e e et t t t t t− − − − − −− − + + − =  

 0 0=  
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proving that the x( )t  found actually solves the differential equation. Also

 x( ) (x( ))0 4 2 2 12 8 40
−

== − = = − + = −−and
d

dt
t t  

which verifi es that the solution also satisfi es the stated initial conditions.

EXAMPLE 8.14

Response of a  bridged-T network

In Figure 8.18 the excitation voltage is v u( )i t t( ) = 10  volts. Find the zero-state response v ( )RL t .

Figure 8.18
Bridged-T network

+

-

+

-

R1 = 10 kΩ RL = 1 kΩ

R2 = 10 kΩ

C1 = 1 μF C2 = 1 μF

vx (t)

vi (t) vRL (t)

We can write nodal equations.

 

C
d

dt
t t C

d

dt
t t G tx i x RL x1 2 1v ( ) v ( ) v ( ) v ( ) v ( )−[ ] + −[ ] + = 00

2 2C
d

dt
t t G t G t tRL x L RL RL i[v ( ) v ( )] v ( ) [v ( ) v ( )]− + + − == 0

 

where G R G R GL1 1
4

2 2
4 31 10 1 10 10= = = = =− − −/ S, / S and S. Laplace transforming the 

equations

 

C s s s s C s sx x i i x x1 20 0{ V ( ) v ( ) [ V ( ) v ( )]} { V ( ) v (− − − + −− − 00 0

01

2

− −− −
+ =

−

) [ V ( ) v ( )]}

V ( )

{ V ( ) v

s s

G s

C s s

RL RL

x

RL RL (( ) [ V ( ) v ( )]} V ( ) [V ( ) V ( )0 0 2
− −− − + + −s s G s G s sx x L RL RL i ]] = 0

Since we seek the zero-state response, all the initial conditions are zero and the equations 
simplify to

 
sC s s sC s s G s

sC

x i x RL x1 2 1

2

0V ( ) V ( ) [V ( ) V ( )] V ( )−[ ] + − + =
VV ( ) V ( ) V ( ) [V ( ) V ( )]RL x L RL RL is s G s G s s−[ ] + + − =2 0

. 

The Laplace transform of the excitation is V ( )i s s= 10/ . Then

 s C C G sC

sC sC G G

s

L

x

RL

( )

( )

V ( )

V (
1 2 1 2

2 2 2

+ + −
− + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ss

C

G s)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

10

10
1

2 /
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362 Chapter  8  The Laplace Transform

The determinant of the 2 by 2 matrix is

 

 = + + + + −

= +

[ ( ) ][ ( )]

[

s C C G sC G G s C

s C C s G

L1 2 1 2 2
2

2
2

2
1 2 11 2 2 1 2 1 2C G G C C G G GL L+ + + + +( )( )] ( )

 

and, by  Cramer’s rule, the solution for the Laplace transform of the response is

 
V ( )

( )

RL
L

s

s C C G C

sC G s

s C C s G C G
=

+ +
−

+ +

1 2 1 1

2 2

2
1 2 1 2

10

10 /

++( ) +( )[ ] + +( )G C C G G GL2 1 2 1 2

 

 V ( )
(

RL s
s C C sG C C G G

s s C C s G C G
= + +( ) +

+ +
10

2
1 2 2 1 2 1 2

2
1 2 1 2 LL LG C C G G G+ +[ ] + +( ){ }2 1 2 1 2)( )

 

or

 V ( )
( )

{ [
RL s

s sG C C C C G G C C

s s s G
= + + +

+
10

2
2 1 2 1 2 1 2 1 2

2
1

/ /

/CC G G C C C C G G G C CL L1 2 1 2 1 2 1 2 1 2+ + + + +( )( ) ] ( ) }/ /

Using the component numerical values,

 V ( )
,

( , )
RL s

s s

s s s
= + +

+ +
10

200 10 000

2300 110 000

2

2 . 

Expanding in partial fractions,

 V s
s s s

RL ( )
. .

.

.= −
+

+
+

0 9091 0 243

48 86

9 334

2251
. 

Inverse Laplace transforming,

 v ( ) [ . . . ]u( ).
RL

t tt e e t= − +− −0 9091 0 243 9 33448 86 2251 . 

As a partial check on the correctness of this solution the response approaches 0.9091 as t →∞. 
This is exactly the voltage found using voltage division between the two resistors, considering the 
capacitors to be open circuits. So the fi nal value looks right. The initial response at time t = +0  is 
10 V. The capacitors are initially uncharged so, at time t = +0 , their voltages are both zero and the 
excitation and response voltages must be the same. So the initial value also looks right. These two 
checks on the solution do not guarantee that it is correct for all time, but they are very good checks 
on the reasonableness of the solution and will often detect an error.

8.12 POLE-ZERO DIAGRAMS AND  FREQUENCY 
RESPONSE
In practice, the most  common kind of transfer function is one that can be expressed as 
a ratio of polynomials in s

 H( )
N( )

D( )
s

s

s
= . 

This type of transfer function can be factored into the form

 H( )
( )( ) ( )

( )( ) ( )
s A

s z s z s z

s p s p s p
M

N
= − − −

− − −
1 2

1 2

�
�

. 
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Then the frequency response of the system is

 H( )
( )( ) ( )

( )( ) (
j A

j z j z j z

j p j p j
M�

� � �

� � �
= − − −

− −
1 2

1 2

�
� −− pN )

. 

To illustrate a graphical interpretation of this result with an example, let the transfer 
function be

 H( )s
s

s
=

+
3

3
. 

This transfer function has a zero at s = 0 and a pole at s = −3 (Figure 8.19).
Converting the transfer function to a frequency response,

 H( )j
j

j
�

�

�
=

+
3

3
. 

The frequency response is three times the ratio of j� to j� + 3. The numerator and 
denominator can be conceived as vectors in the s plane as illustrated in (Figure 8.20) 
for an arbitrary choice of �.

σ

ω

s = -3

s = 0

[s]

Figure 8.19
Pole-zero plot for H( )s s s= +3 3/( )

Figure 8.20
Diagram showing the vectors, j� and j� + 3

σ

ω

s = -3 s = 0

[s]

ω

jωjω + 3

As the frequency ω is changed, the vectors change also. The magnitude of the 
frequency response at any particular frequency is three times the magnitude of the 
numerator vector divided by the magnitude of the denominator vector.

 H( )j
j

j
�

�

�
=

+
3

3
 

The  phase of the frequency response at any particular frequency is the phase of the 
constant +3 (which is zero), plus the phase of the numerator j� (a constant �/2 radians 
for positive frequencies and a constant −�/2 radians for negative frequencies), minus 
the phase of the denominator j� + 3. 

 	 	� 	 	H( ) ( )j j j� � �= + − +
=

3 3
0

. 

At frequencies approaching zero from the positive side the numerator vector length 
approaches zero and the denominator vector length approaches a minimum value of 3, 
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364 Chapter  8  The Laplace Transform

making the overall frequency response magnitude approach zero. In that same limit, 
the phase of j� is �/2 radians and the phase of j� + 3 approaches zero so that the over-
all frequency response phase approaches �/2 radians,

 lim H( ) lim
� �

�
�

�→ →+ +
=

+
=

0 0
3

3
0j

j

j
 

and 

 lim H( ) lim lim ( )
� � �

� � � � �
→ → →+ + +

= − + = − =
0 0 0

3 2 0	 	 	j j j / //2. 

At frequencies approaching zero from the negative side the numerator vector 
length approaches zero and the denominator vector length approaches a minimum 
value of 3, making the overall frequency response magnitude approach zero, as before. 
In that same limit, the phase of j� is −�/2 radians and the phase of j� + 3 approaches 
zero so that the overall frequency response phase approaches −�/2 radians,

 lim H( ) lim
� �

�
�

�→ →− −
=

+
=

0 0
3

3
0j

j

j
 

and 

 lim H( ) lim lim ( )
� � �

� � � �
→ → →− − −

= − + = − − =
0 0 0

3 2 0	 	 	j j j / −−�/2. 

At frequencies approaching positive infi nity the two vector lengths approach the 
same value and the overall frequency response magnitude approaches 3. In that same 
limit, the phase of j� is �/2 radians and the phase of j� + 3 approaches �/2 radians so 
that the overall frequency-response phase approaches zero,

 lim H( ) lim
� �

�
�

�→+∞ →+∞
=

+
=j

j

j
3

3
3 

and 

 lim H( ) lim lim ( )
� � �

� � � � �
→+∞ →+∞ →+∞

= − + = −	 	 	j j j 3 2 2/ / == 0. 

At frequencies approaching negative infi nity the two vector lengths approach the 
same value and the overall frequency response magnitude approaches 3, as before. In 
that same limit, the phase of j� is −�/2 radians and the phase of j� + 3 approaches 
−�/2 radians so that the overall frequency-response phase approaches zero,

 lim H( ) lim
� �

�
�

�→−∞ →−∞
=

+
=j

j

j
3

3
3 

and 

 lim H( ) lim lim ( ) (
� � �

� � � �
→−∞ →−∞ →−∞

= − + = − − −	 	 	j j j 3 2/ ��/2 0) = . 

These attributes of the frequency response inferred  from the pole-zero plot are borne 
out by a graph of the magnitude and phase frequency response (Figure 8.21). This 
system attenuates low frequencies relative to higher frequencies. A system with this 
type of frequency response is often called a  highpass fi lter because it generally lets 
high frequencies pass through and generally blocks low frequencies. 
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EXAMPLE 8.15

Frequency response of a system from its pole-zero diagram

Find the magnitude and phase frequency response of a system whose transfer function is

 H( )s
s s

s s
= + +

+ +

2

2
2 17

4 104
. 

This can be factored into

 H( )
( )( )

( )( )
s

s j s j

s j s j
= + − + +

+ − + +
1 4 1 4

2 10 2 10
. 

So the poles and zeros of this transfer function are z j z j1 21 4 1 4= − + = − −,  and 
p j p j1 22 10 2 10= − + = − −,  as illustrated in Figure 8.22.

Converting the transfer function to a frequency response,

 H( )
( )( )

( )( )
j

j j j j

j j j j
�

� �

� �
= + − + +

+ − + +
1 4 1 4

2 10 2 10
. 

The magnitude of the frequency response at any particular frequency is the product of the 
numerator vector-magnitudes divided by the product of the denominator vector-magnitudes

 H( )j
j j j j

j j j j
�

� �

� �
=

+ − + +
+ − + +

1 4 1 4

2 10 2 10
. 

The phase of the frequency response at any particular frequency is the sum of the numerator 
vector-angles minus the sum of the denominator vector-angles

 	 	 	 	 	H( ) ( ) ( ) [ ( ) (j j j j j j j j� � � � �= + − + + + − + − + +1 4 1 4 2 10 22 10+ j )].

This transfer function has no poles or zeros on the � axis. Therefore its frequency response is 
neither zero nor infi nite at any real frequency. But the  fi nite poles and fi nite zeros are near the 
real axis and, because of that proximity, will strongly infl uence the frequency response for real 
frequencies near those poles and zeros. For a real frequency � near the pole p1 the denominator 
factor j j� + −2 10 becomes very small and that makes the overall frequency response magni-
tude become very large. Conversely, for a real frequency � near the zero z1 the numerator factor 

Figure 8.21
Magnitude and phase frequency response of a system whose transfer function is H( ) ( )s s s= +3 3/

ω
-20 20

|H(jω)|

3

ω
-20 20

π
2
π
4

π
2

σ

ω

s = -3

s = 0

[s]

ω = 3

ω = 3

3

2

π
4

3
2

H(jω)∠

Figure 8.22
Pole-zero plot 

of H( )s
s s

s s
= + +

+ +

2

2
2 17

4 104

σ

ω

-2 2

2

-2

-4

-6

-8

-10

4

6

8

10

-4-6-8-10

z1

z2

p1

p1
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366 Chapter  8  The Laplace Transform

j j� + −1 4 becomes very small and that makes the overall frequency response magnitude be-
come very small. So, not only does the frequency response magnitude go to zero at zeros and to 
infi nity at poles, it becomes small near zeros and it becomes large near poles.

The frequency response magnitude and phase are illustrated in Figure 8.23.

Figure 8.23
Magnitude and phase frequency response of a system whose 

transfer function is H( )s
s s

s s
= + +

+ +

2

2
2 17

4 104

ω
-40 40-10 104

104

-4

-10 -4

|H(jω)|

2.2536

ω
-40 40

π

-π

H(jω)∠

Figure 8.24 
One-fi nite-pole lowpass fi lter

σ

ω
[s]

-5

f
-10 10

|H(f )|

0.2

t
-0.2 1.2

h-1(t)

0.2

Frequency response can be graphed using the MATLAB control toolbox  command  bode, 
and pole-zero diagrams can be plotted using the MATLAB control toolbox command   pzmap.

By using graphical concepts to interpret pole-zero plots one can, with practice, perceive 
approximately how the frequency response looks. There is one aspect of the transfer function 
that is not evident in the pole-zero plot. The  frequency-independent gain A has no effect on 
the pole-zero plot and therefore cannot be determined by observing it. But all the dynamic 
behavior of the system is determinable from the pole-zero plot, to within a gain constant.

Below is a sequence of illustrations of how frequency response and step response 
change as the number and locations of the fi nite poles and zeros of a system are changed. 
In Figure 8.24 is a pole-zero diagram of a system with one fi nite pole and no fi nite 
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zeros. Its frequency response emphasizes low frequencies relative to high frequencies, 
making it a  lowpass fi lter, and its step response refl ects that fact by not jumping discon-
tinuously at time t = 0 and approaching a nonzero fi nal value. The continuity of the step 
response at time t = 0 is a consequence of the fact that the high-frequency content of the 
unit step has been attenuated so that the response cannot change discontinuously.

In Figure 8.25 a zero at zero has been added to the system in Figure 8.24. This 
changes the  frequency response to that of a highpass fi lter. This is refl ected in the 
step response in the fact that it jumps discontinuously at time t = 0 and approaches a 
fi nal value of zero. The fi nal value of the step response must be zero because the fi lter 
completely blocks the zero-frequency content of the input signal. The jump at t = 0 is 
discontinuous because the high-frequency content of the unit step has been retained.

In Figure 8.26 is a lowpass fi lter with  two real fi nite poles and no fi nite zeros. The 
step response does not jump discontinuously at time t = 0 and approaches a nonzero 
fi nal value. The response is similar to that in Figure 8.24 but the attenuation of high fre-
quency content is stronger, as can be seen in the fact that the frequency response falls 
faster with increasing frequency than the response in Figure 8.24. The step response 
is also slightly different, starting at time t = 0 with a zero slope instead of the nonzero 
slope in Figure 8.24.

Figure 8.25
 One-fi nite-pole, one-fi nite-zero highpass fi lter

σ

ω
[s]

-5

f
-10 10

|H(f )|

1

t
-0.2 1.2

h-1(t)

1

Figure 8.26
Two-fi nite pole system

σ

ω
[s]

-5 -2

f
-10 10

|H(f )|

0.1

t
-0.5 3

h-1(t)

0.1

In Figure 8.27 a zero at zero has been added to the system of Figure 8.26. The 
step response does not jump discontinuously at time t = 0 and approaches a fi nal value 
of zero because the system attenuates both the high frequency content and the low 
frequency content relative to the mid-range frequencies. A system with this general 
form of frequency response is called a  bandpass fi lter. Attenuating the high frequency 
content makes the step response continuous and attenuating the low frequency content 
makes the fi nal value of the step response zero.
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368 Chapter  8  The Laplace Transform

In Figure 8.28 another zero at zero has been added to the fi lter of Figure 8.27 mak-
ing it a highpass fi lter. The step response jumps discontinuously at time t = 0 and the 
response approaches a fi nal value of zero. The low-frequency attenuation is stronger 
than the system of Figure 8.25 and that also affects the step response, making it under-
shoot zero before settling to zero.

Figure 8.27
Two-fi nite-pole, one-fi nite-zero bandpass fi lter
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ω
[s]

-5 -2

f
-10 10

|H(f )|
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0.12

Figure 8.28
Two-fi nite-pole, two-fi nite-zero highpass fi lter
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1

In Figure 8.29 is another  two-fi nite-pole lowpass fi lter but with a frequency re-
sponse that is noticeably different from the system in Figure 8.26 because the poles are 
now complex conjugates instead of real. The frequency response increases and reaches 
a peak at frequencies near the two poles before it falls at high frequencies. A system 
with this general form of frequency response is said to be underdamped. In an under-
damped system, the step response overshoots its fi nal value and “rings” before settling. 

Figure 8.29
Two-fi nite-pole   underdamped lowpass fi lter
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ω
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The step response is still continuous everywhere and still approaches a nonzero fi nal 
value but in a different way than in Figure 8.26. 

In Figure 8.30 a zero at zero has been added to the  system of Figure 8.29. This 
changes it from lowpass to  bandpass but now, because of the complex-conjugate pole lo-
cations, the response is underdamped as is seen in the peaking in the frequency response 
and the ringing in the step response as compared with the system in Figure 8.27.

Figure 8.30
Two-fi nite-pole, one-fi nite-zero  underdamped bandpass fi lter
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Figure 8.31
Two-fi nite-pole, two-fi nite-zero underdamped highpass fi lter
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We see in these examples that moving the poles nearer to the � axis decreases the 
damping, makes the step response “ring” for a longer time and makes the frequency 
response peak to a higher value. What would happen if we put the poles on the � 
axis? Having two fi nite poles on the � axis (and no fi nite zeros) means that there are 

poles at s j= ± �0, the  transfer function is of the form H( )s
K

s
=

+
�

�

0
2

0
2  and the impulse 

response is of the form h( ) sin( ) u( )t K t t= �0 . The response to an impulse is equal 
to a sinusoid after t = 0 and oscillates with stable amplitude forever thereafter. The 

frequency response is H( )
( )

j
K

j
�

�

� �
=

−
0

2
0
2 . So if the system is excited by a sinusoid 

x( ) sin( )t A t= �0 , the response is infi nite, an unbounded response to a bounded excita-
tion. If the system were excited by a sinusoid applied at t = 0, x(t) = Asin (ω 0 t) u(t) the 
response would be

 y( )
sin( )

cos( ) u( )t
KA t

t t t= −⎡
⎣⎢

⎤
⎦⎥2

0

0
0

�

�
� . 
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In Figure 8.31 another zero at zero has been added to the system of Figure 8.30 
making it a  highpass fi lter. It is still  underdamped as is evident in the peaking of the 
frequency response and the ringing in the step response.
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370 Chapter  8  The Laplace Transform

This contains a sinusoid starting at time t = 0 and growing in amplitude linearly for-
ever in positive time. Again this is an unbounded response to a bounded excitation 
indicating an unstable system. Undamped resonance is never achieved in a real passive 
system, but it can be achieved in a system with active components that can compensate 
for energy losses and drive the damping ratio to zero.

8.13 MATLAB  SYSTEM OBJECTS
The MATLAB   control toolbox contains many helpful commands for the analysis 
of systems. They are based on the idea of a system object, a special type of variable 
in MATLAB for the description of systems. One way of creating a system description 
in MATLAB is through the use of the  tf (transfer function) command. The syntax for 
creating a system object with tf is 

sys = tf(num,den).

This command creates a system object sys from two vectors num and den. The two vec-
tors are all the coeffi cients of s (including any zeros), in descending order, in the numerator 
and denominator of a transfer function. For example, let the transfer function be

 H ( )1

2

5 4 3 2

4

4 7 15 31 75
s

s

s s s s s
= +

+ + + + +
 . 

In MATLAB we can form H ( )1 s  with

»num = [1 0 4] ;
»den = [1 4 7 15 31 75] ;
»H1 = tf(num,den) ;
»H1

Transfer function:
  s^2 + 4
----------------------------------------
s^5 + 4 s^4 + 7 s^3 + 15 s^2 + 31 s + 75

Alternately we can form a system description by specifying the fi nite zeros, fi nite 
poles and a gain constant of a system using the   zpk command. The syntax is 

sys = zpk(z,p,k), 

where z is a vector of fi nite zeros of the system, p is a vector of fi nite poles of the 
system and k is the gain constant. For example, suppose we know that a system has a 
transfer function

 H ( )
( )( )

2 20
4

3 10
s

s

s s
= +

+ +
. 

We can form the system description with

»z = [-4] ;
»p = [-3 -10] ;
»k = 20 ;
»H2 = zpk(z,p,k) ;
»H2
Zero/pole/gain:
 20 (s+4)
------------
(s+3) (s+10)
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Another way of forming a system object in MATLAB is to fi rst defi ne s as the 
independent variable of the Laplace transform with the command

»s = tf(‘s’) ;

Then we can simply write a transfer function like H ( )
( )

3 2

3

2 8
s

s s

s s
= +

+ +
 in the same way 

we would on paper.

»H3 = s*(s+3)/(s^2+2*s+8)

Transfer function:
  s^2 + 3 s
-------------
s^2 + 2 s + 8

We can convert one type of system description to the other type.

»tf(H2)
Transfer function:
  20 s + 80
---------------

s^2 + 13 s + 30

»zpk(H1)
Zero/pole/gain:
 (s^2 + 4)
------------------------------------------------------
(s+3.081) (s^2 + 2.901s + 5.45) (s^2 - 1.982s + 4.467)

We can get information about systems from their descriptions using the two com-
mands,   tfdata and   zpkdata. For example,

»[num,den] = tfdata(H2,’v’) ;
»num
num =
 0 20 80
»den
den =
 1 13 30
»[z,p,k] = zpkdata(H1,’v’) ;
»z
z =
  0 + 2.0000i
  0 - 2.0000i
»p
p =
 -3.0807 
 -1.4505 + 1.8291i
 -1.4505 - 1.8291i
 0.9909 + 1.8669i
 0.9909 - 1.8669i
»k
k =
  1

 8.13 MATLAB System Objects 371
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372 Chapter  8  The Laplace Transform

(The ‘v’ argument in these commands indicates that the answers should be returned 
in vector form.) This last result indicates that the transfer function H ( )1 s  has zeros at 
± j2 and poles at − − ± ±3 0807 1 4505 1 829 0 9909 1 8669. , . . . .j jand .

MATLAB has some handy functions for doing frequency-response analysis in the 
control toolbox. The command

H = freqs(num,den,w);

accepts the two vectors num and den and interprets them as the coeffi cients of the 
powers of s in the numerator and denominator of the transfer function H( )s , starting 
with the highest power and going all the way to the zero power, not skipping any. It 
returns in H the complex frequency response at the radian frequencies in the vector w.

8.14 SUMMARY OF IMPORTANT POINTS
 1. The Laplace transform can be used to determine the transfer function of an 

LTI system and the transfer function can be used to fi nd the response of an LTI 
system to an arbitrary excitation.

 2. The Laplace transform exists for signals whose magnitudes do not grow any 
faster than an exponential in either positive or negative time.

 3. The region of convergence of the Laplace transform of a signal depends on 
whether the signal is right- or left-sided.

 4. Systems described by ordinary, linear, constant-coeffi cient differential equations 
have transfer functions in the form of a ratio of polynomials in s.

 5. Pole-zero diagrams of a system’s transfer function encapsulate most of its properties 
and can be used to determine its frequency response to within a gain constant.

 6. MATLAB has an object defi ned to represent a system transfer function and many 
functions to operate on objects of this type.

 7. With a table of Laplace transform pairs and properties the forward and inverse 
transforms of almost any signal of engineering signfi cance can be found.

 8. The unilateral Laplace transform is commonly used in practical problem   
solving because it does not require any involved consideration of the region  
of convergence and is, therefore, simpler than the bilateral form.

 EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

Laplace Transform Defi nition

  1. Starting with the defi nition of the Laplace transform 

 L( )g( ) G( ) g( )t s t e dtst= = −

−∞

∞

∫   

and without using the tables, fi nd the Laplace transforms of these signals.

(a) x( ) u( )t e tt=

(b) x( ) cos( ) u( )t e t tt= −2 200�

(c) x( ) ramp( )t t=

(d) x( ) u( )t te tt=

rob80687_ch08_331-381.indd   372rob80687_ch08_331-381.indd   372 12/21/10   7:02:04 PM12/21/10   7:02:04 PM



Answers: 
1

1
1

s −
>, � , 

1
02s

, � > , X( )
( ) ( )

,s
s

s
= − −

− +
<2

2 200
22 2�

� , 

1

1
12( )

,
s −

>�

Existence of the Laplace Transform

  2. Graph the pole-zero plot and region of convergence (if it exists) for these signals.

(a) x( ) u( )t e tt= −8   (b) x( ) cos( ) u( )t e t tt= −3 20�

(c) x( ) u( ) u( )t e t e tt t= − − −2 5

Answers:

σ

ω

s = −8
ROC

[s]

, 

σ 

ω
s = 3+j20π

s = 3-j20π

ROC

[s]

, 

σ

ω

s = −5 s = 2

ROC

[s]

Direct Form II  System Realization

  3. Draw Direct Form II system diagrams of the systems with these transfer 
functions.

(a) H( )s
s

=
+
1

1
 (b) H( )s

s

s
= +

+
4

3

10

Answers: 
+

+
+ -

X(s) Y(s)
4

1210 S-1

, + -
X(s)

Y(s)
S-1

 Forward and Inverse Laplace Transforms

  4. Using the time-shifting property, fi nd the Laplace transform of these signals.

(a) x( ) u( ) u( )t t t= − −1  (b) x( ) u( )( )t e tt= +− +3 23 2

(c) x( ) u( )t e tt= −−3 23  (d) x( ) sin( ( )) u( )t t t= − −5 1 1�

Answers: 3

3

2 6e

s

s− −

+
, 1−

−e

s

s
, 5

2 2

�

�

e

s

s−

+
, 3

3

2e

s

s

+
  5. Using the complex-frequency-shifting property, fi nd and graph the inverse 

Laplace transform of

 X( )
( ) ( )

s
s j s j

=
+ +

+
− +

> −1

4 3

1

4 3
3, � . 
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374 Chapter  8  The Laplace Transform

Answer: 

t
-0.1 2

x(t)

-2

2

  6. Using the time-scaling property, fi nd the Laplace transforms of these signals.

(a) x( ) ( )t t= � 4    (b) x( ) u( )t t= 4

Answers: 1 0/s ,� > , 1 4/ All, s

  7. Using the time-differentiation property, fi nd the Laplace transforms of these 
signals.

(a) x( ) (u( ))t
d

dt
t=   

(b) x( ) ( u( ))t
d

dt
e tt= −10

(c) x( ) ( sin( ) u( ))t
d

dt
t t= 4 10�  

(d) x( ) ( cos( ) u( ))t
d

dt
t t= 10 15�

Answers: 
40

10
02 2

�

�

s

s
s

+
>

( )
, Re( ) , 

10

15
0

2

2 2

s

s
s

+
>

( )
, Re( )

�
, 1, All s, 

s

s
s

+
> −

10
10, Re( )

  8. Using the convolution in time property, fi nd the Laplace transforms of these 
signals and graph the signals versus time.

(a) x( ) u( ) u( )t e t tt= ∗−

(b) x( ) sin( ) u( ) u( )t e t t tt= ∗ −− 20�

(c) x( ) cos( ) u( ) [u( ) u( )]t t t t t= ∗ − −8 2 1� /

(d) x( ) cos( ) u( ) [u( ) u( )]t t t t t= ∗ − −8 2 1�

Answers:

 

t 
-1 4

x(t)

-2

2

t 
-1 5

x(t)

0.025

t 
-1 5

x(t)
1

t 
-1 8

x(t)

-10

10
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 9. Using the initial and fi nal value theorems, fi nd the initial and fi nal values (if 
possible) of the signals whose Laplace transforms are these functions.

(a) X( )s
s

=
+

> −10

8
8, �  (b) X( )

( )
s

s

s
= +

+ +
> −3

3 4
32 , �

(c) X( )s
s

s
=

+
>2 4

0, �  (d) X( )s
s

s s
=

+ +
< −10

10 300
52 , �

(e) X( )
( )

s
s s

=
+

>8

20
0, �  (f) X( )

( )
s

s s
=

+
>8

20
02 , �

Answers: 10, Does not apply, 0, 1, 0, 0, Does not apply, 2 5/ , 1, Does not apply, 
0, Does not apply

10. Find the inverse Laplace transforms of these functions.

(a) X( )
( )

s
s s

=
+

>24

8
0, �  (b) X( )s

s s
=

+ +
< −20

4 3
32 , �

(c) X( )s
s s

=
+ +

> −5

6 73
32 , �  (d) X( )

( )
s

s s s
=

+ +
>10

6 73
02 , �

(e) X( )
( )

s
s s s

=
+ +

>4

6 73
02 2 , �  (f ) X( )s

s

s s
=

+ +
< −2

2 13
12 , �

(g) X( )s
s

s
=

+
> −

3
3, �  (h) X( )s

s

s s
=

+ +
> −2 4 4

2, �

(i) X( )s
s

s s
=

− +
<

2

2 4 4
2, �  ( j) X( )s

s

s s
=

+ +
> −10

4 4
24 2 , �

Answers: 2 1 12 12 12e t t tt− − −[( )sin( ) cos( )]u( )/ , 10 3( ) u( )e e tt t− −− − , 

e t tt− −2 1 2( ) u( ), 
10

73
1 73 64 8 0 35883[ cos( . )]u( )− −−/ e t tt , �( ) ( ) u( ),t e t tt− + −4 12  

1

73
292 24 24 8 55 48 82

3

( )
[ (cos( ) ( )sin( ))]ut e t tt− + −− / (( )t , ( ) sin( ) u( )5 8 83/ e t tt− , 

�( ) u( )t e tt− −3 3 , 3 1 8( ) u( )− −e tt , ( ) sin( ) u( )5 2 2/ t t t

11. Let the function x( )t  be defi ned by x( )
( )

t
s s

s
L← →⎯ +

+
>5

16
02 , � . x( )t  can be written 

as the sum of three functions, two of which are causal sinusoids.

(a) What is the third function?

(b) What is the cyclic frequency of the causal sinusoids?

Answers: An impulse, 0.637 Hz.

 Unilateral Laplace Transform Integral

12. Starting with the defi nition of the unilateral Laplace transform

L( )g( ) G( ) g( )t s t e dtst= = −
∞

−
∫
0

 

and without using any tables, fi nd the unilateral Laplace transforms of these signals.

 Exercises with Answers 375

rob80687_ch08_331-381.indd   375rob80687_ch08_331-381.indd   375 12/21/10   7:02:05 PM12/21/10   7:02:05 PM



376 Chapter  8  The Laplace Transform

(a) x( ) u( )t e tt= −

(b) x( ) cos( ) u( )t e t tt= 2 200�

(c) x( ) u( )t t= + 4  

(d) x( ) u( )t t= − 4

Answers: 
1

1
1

s +
>,� , 

1
0

s
, � > , 

s

s

−
− +

>2

2 200
22 2( ) ( )

,
�

� , 
e

s

s−
>

4

0,�

 Solving Differential Equations

13. Using the unilateral Laplace transform, solve these differential equations for t ≥ 0.

(a) ′ + =x ( ) x( ) u( )t t t10 , x( )0 1− =

(b) ′′ − ′ + =x ( ) x ( ) x( ) u( )t t t t2 4 , x( ) , x( )0 0 4
0

−

=
= ⎡

⎣⎢
⎤
⎦⎥

=
−

d

dt
t

t

(c) ′ + =x ( ) x( ) sin( ) u( )t t t t2 2� , x( )0 4− = −

Answers: ( )( cos( ) ( ) sin( )) u( )1 4 1 3 17 3 3/ /− +e t e t tt t , 
1 9

10

10+ −e
t

t

u( ), 

x( )
cos( ) sin( )

( )
t

e t t
e

t
t= − +

+
−

⎡
⎣

−
−2 2 2 2 2

4 2
4

2

2
2� � � �

�⎢⎢
⎤
⎦
⎥ u( )t

14. Write the differential equations describing the systems in Figure E.14 and fi nd 
and graph the indicated responses.

(a) x( ) u( )t t= , y( )t  is the response, y( )0 0− =

∫x(t) y(t)

4

(b) v( )0 10− = , v( )t  is the response

R = 1 kΩ C = 1 μF v(t)

+

-

Figure E.14

Answers:

t
1

y(t)
0.25

, t
0.004

v(t)
10
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 Pole-Zero Diagrams and Frequency Response

15. For each pole-zero diagram in Figure E.15 sketch the approximate frequency 
response magnitude.

(a) 

σ

[s]

-5

ω

 (b) 

σ

ω [s]

-2

 (c) 

σ

ω [s]

-3

4

-4

(d) 

σ

ω [s]
2

-2

-4

 (e) 

σ

ω [s]

-1

10

-10

Figure E.15

Answers:

f  
-2 2

|H( f )|
10

f 
-10 10

|H( f )|
0.2

f 
-2 2

|H( f )|
1

f  
-20 20

|H( f )|
0.5

f -2 2

|H( f )|
0.05
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378 Chapter  8  The Laplace Transform

EXERCISES WITHOUT ANSWERS

Laplace Transform Defi nition

16. Using the integral defi nition fi nd the Laplace transform of these time functions.

(a) g( ) u( )t e tat= −   (b) g( ) u( )( )t e ta t= −− −� �

(c) g( ) sin( ) u( )t t t= −�0  (d) g( ) rect( )t t=  

(e) g( ) rect( )t t= −1 2/

Existence of the Laplace Transform

17. Graph the pole-zero plot and region of convergence (if it exists) for these signals.

(a) x( ) u( ) u( )t e t e tt t= − −− −4  (b) x( ) u( ) u( )t e t e tt t= − −−2

Direct Form II System Realization

18. Draw Direct Form II system diagrams of the systems with these transfer 
functions.

(a) H( )s
s

s s s
= +

+ + +
10

8

3 7 22

2

3 2

(b) H( )
( )( )( )

s
s

s s s
= +

+ + +
10

20

4 8 14

Forward and Inverse Laplace Transforms

19. Using a table of Laplace transforms and the properties fi nd the Laplace 
transforms of the following functions.

(a) g( ) sin( ( )) u( )t t t= − −5 2 1 1�  (b) g( ) sin( ) u( )t t t= −5 2 1�

(c) g( ) cos( ) cos( ) u( )t t t t= 2 10 100� �  (d) g( ) (u( ))t
d

dt
t= − 2

(e) g( ) u( )t d
t

=
+
∫ � �
0

  (f ) g( ) ( u( )),( ) /t
d

dt
e tt= − >− −5 02� � �

(g) g( ) cos( ) u( )t e t tt= −2 105 �  (h) x( ) sin( ) u( )t t t= − −5 8� �/

20. Given 

g( )
( )

t
s

s s
L← →⎯ +

+
>1

4
0, �

fi nd the Laplace transforms of

(a) g( )2t  (b) 
d

dt
t(g( ))

(c) g( )t − 4  (d) g( ) g( )t t∗
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21. Find the time-domain functions that are the inverse Laplace transforms of these 
functions. Then, using the initial and fi nal value theorems, verify that they agree 
with the time-domain functions.

(a) G( )
( )( )

s
s

s s
=

+ +
> −4

3 8
3, �  (b) G( )

( )( )
s

s s
=

+ +
> −4

3 8
3, �

(c) G( )s
s

s s
=

+ +
> −2 2 2

1, �  (d) G( )s
e

s s

s

=
+ +

> −
−2

2 2 2
1, �

22. Given

 e t st4 u( ) G( )− ← →⎯L  

fi nd the inverse Laplace transforms of

(a) G( )s / ,3 4� <   (b) G( ) G( )s s− + + <2 2 4, �  

(c) G( )s s/ , � < 4

23. Find the numerical values of the constants K0, K1, K2, p1 and p2.

s

s s
K

K

s p

K

s p

2

2 0
1

1

2

2

3

3 9

+
+ +

= +
−

+
−

24. A system has a transfer function H( )
( )

( )( )
s

s s

s s a
= −

+ +
1

2
, which can be expanded in 

partial fractions in the form H( )s A
B

s

C

s a
= +

+
+

+2
. If a ≠ 2 and B = 3 2/ , fi nd 

the numerical values of a, A and C.

Solution of Differential Equations

25. Write the differential equations describing the systems in Figure E.25 and fi nd 
and graph the indicated responses.

(a) x( ) u( )t t= , y( )t  is the response, y( )0 5− = − , 
d

dt
t

t

(y( ))⎡
⎣⎢

⎤
⎦⎥

=
= −0

10

 

x(t)

∫

∫
y(t) 

+

+ -

+

2

10
 

(b) i ( ) u( )s t t= , v( )t  is the response, No initial energy storage

 

v(t)

+

-

i(t)

R2 = 1 kΩ

R1 = 2 kΩ

C2 = 1 μFC1 = 3 μFis(t)
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380 Chapter  8  The Laplace Transform

(c) i ( ) cos( ) u( )s t t t= 2000� , v( )t  is the response, No initial energy storage

 

R2 = 1 kΩ

R1 = 2 kΩ

C2 = 1 μFC1 = 3 μF v(t)

+

-

i(t)

is(t)

 
 Figure E.25

Pole-Zero Diagrams and Frequency Response

26. Draw pole-zero diagrams of these transfer functions.

(a) H( )
( )( )

( )( )
s

s s

s s s
= + −

+ +
3 1

2 6
 (b) H( )s

s

s s
=

+ +2 1

(c) H( )
( )

s
s s

s s
= +

+ +
10

11 102  (d) H( )
( )( . )( . )

s
s s s s s

=
+ + + + +

1

1 1 618 1 0 618 12 2

Answers:

σ
-2

ω

-1

1

σ
-10

ω

-1

1

σ
-6 1

ω

-1

1

σ
-1

ω

-1

1

27. In Figure E.27 are some pole-zero plots of transfer functions of systems of the 
general form,

H( )
( ) ( )

( ) ( )
s A

s z s z

s p s p
N

D
= − −

− −
1

1

�
�

 in which A = 1, the z’s are the zeros and the p’s are 

the poles. Answer the following questions.

(a) Which one(s) have a magnitude frequency response that is nonzero at � = 0? 

(b) Which one(s) have a magnitude frequency response that is nonzero as � →∞? 

(c) There are two that have a bandpass frequency response (zero at zero and 
zero at infi nity). Which one is more underdamped? 

(d) Which one has a magnitude frequency response whose shape is closest to 
being a bandstop fi lter?

(e) Which one(s) have a magnitude frequency response that approaches K /�6 at 
very high frequencies (K is a constant)? 

(f ) Which one has a magnitude frequency response that is constant? 

(g) Which one(s) have a magnitude frequency response whose shape is closest 
to lowpass fi lter? 
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Figure E.27

28. For each of the pole-zero plots in Figure E.28 determine whether the frequency 
response is that of a practical lowpass, bandpass, highpass or bandstop fi lter.

ω

σ

[s]

(a)

ω

σ

[s]

(b)

ω

σ

[s]

(c)

ω

σ

[s]

(d) 3

Figure E.28

−6 −4 −2 0 2 4 6
−6
−4
−2

0
2
4
6

σ

ω [s]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

σ

ω [s]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

σ

ω [s]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

σ

ω [s]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4
6

σ

ω [s]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

σ

ω [s]

(a) (b) (c)

(d) (e) (f)

(h) Which one(s) have a phase frequency response that is discontinuous at � = 0? 
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382

 9 C H A P T E R

9.1 INTRODUCTION AND GOALS
Every analysis method used in continuous time has a corresponding method in discrete 
time. The  counterpart to the Laplace transform is the z transform, which expresses 
signals as linear combinations of discrete-time complex exponentials. Although the 
transform methods in discrete time are very similar to those used in continuous time, 
there are a few important differences.

This material is important because in modern system designs digital signal processing 
is being used more and more. An understanding of discrete-time concepts is needed to grasp 
the analysis and design of systems that process both continuous-time and discrete-time 
signals and convert back and forth between them with sampling and interpolation.

C H A P T E R  G OA L S

The chapter goals in this chapter parallel those of Chapter 8 but as applied to discrete-
time signals and systems.

 1. To develop the z transform as a more general analysis technique for systems than 
the DTFT and as a natural result of the convolution process when a discrete-time 
system is excited by its eigenfunction

 2. To defi ne the z transform and its inverse and to determine for what signals it exists

 3. To defi ne the transfer function of discrete-time systems and learn a way of 
realizing a discrete-time system directly from a transfer function

 4. To build tables of z transform pairs and properties and learn how to use them 
with partial-fraction expansion to fi nd inverse z transforms

 5. To defi ne a unilateral z transform

 6. To solve difference equations with initial conditions using the unilateral z transform

 7. To relate the pole and zero locations of a transfer function of a system directly to 
the frequency response of the system

 8. To learn how MATLAB represents the transfer functions of systems

 9. To compare the usefulness and effi ciency of different transform methods in some 
typical problems

The  z Transform
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9.2  GENERALIZING THE DISCRETE-TIME 
FOURIER TRANSFORM
The Laplace transform is a generalization of the CTFT, which allows consideration of 
signals and impulse responses that do not have a CTFT. In Chapter 8 we saw how this 
generalization allowed analysis of signals and systems that could not be analyzed with 
the Fourier transform and also how it gives insight into system performance through 
analysis of the locations of the poles and zeros of the transfer function in the s-plane. 
The z transform  is a generalization of the DTFT with similar advantages. The z trans-
form is to discrete-time signal and system analysis what the Laplace transform is to 
continuous-time signal and system analysis.

There are two approaches to deriving the z transform that are analogous to the two 
approaches taken to the derivation of the Laplace transform, generalizing the DTFT 
and exploiting the unique properties of complex exponentials as the eigenfunctions of 
LTI systems.

The DTFT is defi ned by

 x[ ] X( ) X( ) x[ ]n e e d e n ej j n j j n

n

= ← →⎯ =∫ −

=−∞

1

2 2� �

� � � ��
F

∞∞

∑

or

 x[ ] X( ) X( ) x[ ]n F e dF F n ej Fn j Fn

n

= ← →⎯ =∫ ∑ −

=−∞

∞
2

1
2� �F

The Laplace transform  generalizes the CTFT by changing complex sinusoids of the 
form e j t�  where ω is a real variable, to complex exponentials of the form est  where 
s is a complex variable. The independent variable in the DTFT is discrete-time 
radian frequency Ω. The exponential function e j n�  appears in both the forward and 
inverse transforms (as e ej n j n− =� �1/  in the forward transform). For real Ω, e j n�  is a 
discrete- time complex sinusoid and has a magnitude of one for any value of discrete 
time n, which is real. By analogy with the Laplace transform, we could generalize 
the DTFT by replacing the real variable Ω with a complex variable S and thereby 
replace e j n�  with eSn, a complex exponential. For complex S, eS  can lie anywhere 
in the complex plane. We can simplify the notation by letting z eS=  and expressing 
discrete-time signals as linear combinations of zn instead of eSn. Replacing e j n�  with 
zn in the DTFT leads directly to the conventional defi nition of a  forward z transform

 X( ) x[ ]z n z n

n

= −

=−∞

∞

∑  (9.1)

and x[ ]n  and X( )z  are said to form a  z-transform pair

 x[ ] X( ).n zZ← →⎯

The fact that z can range anywhere in the complex plane means that we can use 
discrete-time complex exponentials instead of just discrete-time complex sinusoids 
in representing a discrete-time signal. Some signals cannot be represented by linear 
combinations of complex sinusoids but can be represented by a linear combination of 
complex exponentials.

 9.2 Generalizing the Discrete-Time Fourier Transform 383
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384 Chapter  9  The z Transform

9.3  COMPLEX EXPONENTIAL EXCITATION 
AND RESPONSE
Let the excitation of a discrete-time LTI system be a complex exponential of the form Kzn 
where z is, in general, complex and K is any constant. Using convolution, the response y[ ]n  of 
an LTI system with impulse response h[ ]n  to a complex exponential excitation x[ ]n Kzn=  is

 y[ ] h[ ] h[ ] h[ ]
x[ ]

n n Kz K m z Kz m zn n m

m

n

n

m= ∗ = =−

=−∞

∞

=

−∑ �
mm=−∞

∞

∑ .

So the response to a complex exponential is that same complex exponential, multiplied 
by h[ ]m z m

m
−

=−∞
∞∑  if the series converges. This is identical to (9.1). 

9.4 THE TRANSFER FUNCTION
If an LTI system with impulse response h[ ]n  is excited by a signal x[ ]n , the z transform 
Y( )z  of the response y[ ]n  is 

 Y( ) y[ ] (h[ ] x[ ]) h[ ]x[z n z n n z m nn

n

n

n

= = ∗ =−

=−∞

∞
−

=−∞

∞

∑ ∑ −−
=−∞

∞
−

=−∞

∞

∑∑ m z
m

n

n

]

Separating the two summations,

 Y( ) h[ ] x[ ] .z m n m z
m

n

n

= −
=−∞

∞
−

=−∞

∞

∑ ∑  

Let q n m= − . Then 

 Y( ) h[ ] x[ ] h[ ]( )z m q z m z
m

q m

q

m

m

= =
=−∞

∞
− +

=−∞

∞
−

=−∞

∞

=

∑ ∑ ∑
HH( ) X( )

x[ ] .

z

q

q

z

q z

� ��� ��� � �� ��

−

=−∞

∞

=

∑

So, in a manner similar to the Laplace transform, Y( ) H( ) X( )z z z=  and H( )z  is called the 
transfer function of the  discrete-time system, just as fi rst introduced in Chapter 5.

9.5 CASCADE-CONNECTED SYSTEMS
The transfer functions of components in the cascade connection of discrete-time sys-
tems combine in the same way they do in continuous-time systems (Figure 9.1).

The overall transfer function of two systems in cascade connection is the product 
of their individual transfer functions.

Figure 9.1
Cascade connection of systems

H1(z) H2(z)X(z)H1(z)X(z)

X(z)

Y(z)=X(z)H1(z)H2(z)

Y(z)H1(z)H2(z)
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9.6 DIRECT FORM II  SYSTEM REALIZATION
In engineering practice the most common form of description of a discrete-time  system 
is a difference equation or a system of difference equations. We showed in Chapter 5 
that for a discrete-time system described by a difference equation of the form

 a n k b n kk
k

N

k
k

M

y[ ] x[ ].− = −
= =
∑ ∑

0 0

 (9.2)

the transfer function is

 H( )z
b z

a z

b b z b z b zk
k

k

M

k
k

k

N
M= = + + + +−

=
−

=

− − −∑
∑

0

0

0 1
1

2
2 � MM

N
Na a z a z a z0 1

1
2

2+ + + +− − −�
. (9.3)

or, alternately,

 H( )z
b z

a z
z

b z b z bk
k

k

M

k
k

k

N
N M

M M
M= = + + +−

=
−

=

−
−

−∑
∑

0

0

0 1
1 � 11

0 1
1

1

z b

a z a z a z a
M

N N
N N

+
+ + + +−

−�
. (9.4)

The Direct Form II, canonical realization of discrete-time systems, is directly 
analogous to Direct Form II in continuous time. The transfer function 

 H( )
Y( )

X( )
z

z

z

b b z b z

a a z a z
N

N

N
N= = + + +

+ + +
=

− −

− −
0 1

1

0 1
1

�
�

bb z b z b

a z a z a

N N
N

N N
N

0 1
1

0 1
1

+ + +
+ + +

−

−
�
�  

can be separated into the cascade of two subsystem transfer functions

 H ( )
Y ( )

X( )
1

1

0 1
1

1
z

z

z a z a z aN N
N

= =
+ + +− �

 (9.5)

and

 H ( )
Y( )

Y ( )
.2

1
0 1

1z
z

z
b z b z bN N

N= = + + +− �

(Here the order of the numerator and denominator are both indicated as N. If the order 
of the numerator is actually less than N, some of the b’s will be zero. But a0 must not 
be zero.) From (9.5),

 z z a z a z z a zN N
NY ( ) ( ){X( ) [ Y ( ) Y ( )]}1 0 1

1
1 11= − + +−/ �

(Figure 9.2).
All the terms of the form z zk Y ( )1  that are needed to form H ( )2 z  are available in 

the realization of H ( )1 z . Combining them in a linear combination using the b coeffi -
cients, we get the Direct Form II realization of the overall system (Figure 9.3).

 9.6 Direct Form II System Realization 385
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386 Chapter  9  The z Transform

Figure 9.3
Overall Direct Form II canonical  system realization

+

+

+

+

+

+

+

+

... ...

b1

b0

b2

bN-1

bN

+

+ -

+

+

+

+

+

...

a1

a2

aN-1

aN

X(z) Y(z)
1/a0

z-1

z-1

z-1

Figure 9.4
A time-limited discrete-time signal

n

x[n]

9.7 THE  INVERSE z TRANSFORM
The conversion from H( )z  to h[ ]n  is the inverse z transform and can be done by the 
direct formula

 h[ ] H( ) .n
j

z z dzn= −∫
1

2
1

�
C
�

This is a contour integral around a circle in the complex z plane and is beyond the 
scope of this text. Most practical inverse z transforms are done using a table of 
z-transform pairs and the properties of the z transform.

9.8 EXISTENCE OF THE z TRANSFORM

 TIME-LIMITED SIGNALS

The conditions for  existence of the z transform are analogous to the conditions for ex-
istence of the Laplace transform. If a discrete-time signal is time limited and bounded, 
the z-transform summation is fi nite and its z transform exists for any fi nite, nonzero 
value of z (Figure 9.4).

Figure 9.2
Direct Form II, canonical realization of H ( )1 z

X(z) zNY1(z)

...

+

+ -

+

+

+

+

+

...

a1

1/a0

a2

aN-1

aN

zN-1Y1(z)

z-1

z-1

z-1

zN-2Y1(z)

zY1(z)

Y1(z)
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An impulse �[ ]n  is a very simple, bounded, time-limited signal and its z transform is

 �[ ] .n z n

n

−

=−∞

∞

∑ = 1

This z transform has no zeros or poles. For any nonzero value of z, the transform of 
this impulse exists. If we shift the impulse in time in either direction, we get a slightly 
different result.

 
�

�

[ ]

[ ]

n z

n z

− ← →⎯ ⇒

+ ← →⎯ ⇒

−1

1

1Z

Z

pole at zero

pole at innfinity

So the z transform of �[ ]n − 1  exists for every nonzero value of z and the z transform of 
�[ ]n + 1  exists for every fi nite value of z.

 RIGHT- AND  LEFT-SIDED SIGNALS

A right-sided signal x [ ]r n  is one for which x [ ]r n = 0 for any n n< 0 and a left-sided 
signal x [ ]l n  is one for which x [ ]l n = 0 for any n n> 0 (Figure 9.5). 

Figure 9.6
(a) x[ ] u[ ]n n nn= − ∈� �0 , 	, (b) x[ ] u[ ]n n nn= − ∈� �0 , 	

n0 n0
n n

x[n] x[n]

(a) (b)

Figure 9.5
(a) Right-sided discrete-time signal, (b) left-sided discrete-time signal

n

xr[n]

n

xl[n]

(a) (b)

Consider the right-sided signal x[ ] u[ ]n n nn= − ∈� �0 , 	 (Figure 9.6 (a)).
Its z transform is 

 X( ) u[ ] ( )z n n z zn n

n

n

n n

= − =−

=−∞

∞
−

=

∞

∑ ∑� �0
1

0

 9.8 Existence of the z Transform 387
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388 Chapter  9  The z Transform

Figure 9.8
Some noncausal signals and their ROCs (if they exist)

n
12-12

10

x[n] = (1.2)n u[n] + (3)n u[-n-1]

x[n] = (0.85)ncos(2πn/6)u[n] + (0.9)ncos(2πn/6)u[-n-1] x[n] = (1.1)ncos(2πn/6)u[n] + (1.05)ncos(2πn/6)u[-n-1]

x[n] = (0.95)nu[n] + (0.9)nu[-n-1]

n
12-12

4

n
12-12

-4

4

n
12-12

-4

4

ROC is 1.2 < z < 3 No ROC

No ROCROC is 0.85 < z < 0.9

if the series converges, and the series converges if �/z < 1 or z > � . This region of the 
z plane is called the   region of convergence (ROC) (Figure 9.7 (a)).
 If x[ ]n n n= >0 0for  it is called a  left-sided signal (Figure 9.6 (b)). If 
x[ ] u[ ] ,n n nn= − ∈� �0 , 	

 X( ) ( ) ( )z z z zn n

n

n
n

n

n
n

n n

= = =−

=−∞

−

=−∞

−

=−

∞

∑ ∑ ∑� � �
0 0

0

1 1

and the summation converges for �− <1 1z  or z < �  (Figure 9.7 (b)). 

Figure 9.7
Region of convergence for (a) the right-sided signal x[ ] u[ ]n n nn= − ∈� �0 , 	, 
and (b) the left-sided signal x[ ] u[ ]n n nn= − ∈� �0 , 	

[z]

ROC
ROC

[z]

|β|
|α|

(a) (b)
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Figure 9.9 
(a) x[ ]n K n= >� �, 1 (b) x[ ]n K n= <� �, 1

x[n] x[n]

n n

Just as in continuous time, any discrete-time signal can be expressed as a sum of 
a right-sided signal and a left-sided signal. If x[ ] x [ ] x [ ]n n nr l= +  and if x [ ]r r

nn K< �  
and x [ ]l l

nn K< �  (where K Kr land  are constants), then the summation converges 
and the z transform exists for � �< <z . This implies that if � �<  a z transform can 
be found and the ROC in the z plane is the region � �< <z . If � �>  the z transform 
does not exist (Figure 9.8).

EXAMPLE 9.1

z transform  of a noncausal signal

Find the z transform of x[ ]n K n= ∈� �, 

Its variation with n depends on the value of α (Figure 9.9). It can be written as

x[ ] ( u[ ] u[ ] )n K n nn n= + − −−� � 1

 If � ≥ 1 then � �≥ −1 , no ROC can be found and it does not have a z transform. If � < 1 

then � �< −1 , the ROC is � �< < −z 1  and the z transform is

 K K z K z zn n

n

n n

n

n

n

� � � �
Z← →⎯ = +

=−∞

∞
− −

=

∞
− −

=−∞
∑ ∑ ( ) ( )1

0

1 1
00

11∑ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

< < −, � �z

 K K z z zn n

n

n

n

� � � �
Z← →⎯ + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

<−

=

∞

=

∞

∑ ∑( ) ( )1

0 0

1 , << −� 1

This consists of two summations plus a constant. Each summation is a geometric series of the 
form rn

n=
∞∑ 0

 and the series converges to 1 1/( )− r  if r < 1.

K K
z z

K
z

z

z

z
n�

� � � �

Z← →⎯
−

+
−

−⎛
⎝⎜

⎞
⎠⎟ =

−
−

−
⎛
⎝⎜

⎞
⎠− −

1

1

1

1
11 1 ⎟⎟ < < −, � �z 1

9.9  z-TRANSFORM PAIRS
We can start a useful table of z transforms with the impulse �[ ]n  and the damped cosine 
�n n ncos( ) u[ ]�0 . As we have already seen, �[ ]n Z← →⎯ 1. The z transform of the damped 
cosine is

 
� �n n n

n

n n n n zcos( ) u[ ] cos( ) u[ ]� �0 0
Z← →⎯ −

= −∞

∞

∑
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390 Chapter  9  The z Transform

 
� �n n

j n j n
n

n

n n
e e

zcos( ) u[ ]�
� �

0
Z← →⎯ + −

−

=

∞

∑
0 0

20

 
� � �n j n j n

n n e z e zcos( ) u[ ] ( )� � �
0 /Z← →⎯ ( ) + ( )− − −1 2 0 01 1⎡⎡

⎣⎢
⎤
⎦⎥

=

∞

∑
n 0

For convergence of this z transform z > �  and

 �
� �

n
j jn n

e z e z
cos( ) u[ ] ( )�

� �0 /Z← →⎯
−

+
−− − −1 2

1

1

1

10 01 1
⎡⎡
⎣⎢

⎤
⎦⎥

>, z � .

This can be simplifi ed to either of the two alternate forms

 
�

�

� �
n n n

z

z
cos( ) u[ ]

cos( )

cos( )
�

�

�
0

Z← →⎯ −
− +

−

−
1

1 2
0

1

0
1 22 2z

z− >, �

or

 �
�

� �
n n n

z z

z z
cos( ) u[ ]

[ cos( )]

cos( )
�

�

�
0

Z← →⎯ −
− +

0
2

0
22

,, z > � .

If � = 1, then 

 
cos( ) u[ ]

[ cos( )]

cos( )

co
�

�

�
0 =n n

z z

z z
Z← →⎯ −

− +
−0

2
02 1

1 ss( )

cos( )

�

�

0
1

0
1 21 2

1
z

z z
z

−

− −− +
>,

If �0 0= , then

 �
� �

�n n
z

z z
zu[ ] Z← →⎯

−
=

−
>−

1

1 1 ,

If � = 1 and �0 0= , then

 u[ ]n
z

z z
zZ← →⎯

−
=

−
>−1

1

1
11 ,
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Table 9.1 shows the z-transform pairs for several commonly-used functions.

Table 9.1 Some z-transform pairs

All�[ ] ,n z
Z← →⎯ 1

,u[ ] ,n
z

z z
z

Z← →⎯
−

=
−

>−1

1

1
11 − − − ← →⎯

−
<u[ ] ,n

z

z
z1

1
Z 11

1

1 1 ,�
� �

�n n
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z z
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−
>− − − − ← →⎯

−
�
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u[ ]1 Z ==
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−
1

1

1

1

2

�
�

z
z

n n
z

z

,

u[ ]
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1 1
12

1

1 2
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cos( )
,�

�

�
0

0
2

02 1
1n n

z

z z
z( ) ← →⎯

− +
>Z , − − − ← →⎯sin( )u[ ]

sin( )
�

�
0

0
21n n

z

z
Z

−− +
<

( ) ← →⎯ −
2 1

1
0

0
0

z
z

n n
z z

cos( )
,

cos u[ ]
[ cos( )

�

�
�Z ]]

cos( )
, cos(

z z
z n2

0
0

2 1
1

− +
> −

�
�, )) u[ ]

[ cos( )]

cos( )
− − ← →⎯ = −

− +
<n

z z

z z
z1

2 1
10

2
0

Z �

�
,

�nn n n
z

z z
zsin u[ ]

sin( )

cos( )
,�

�

�
0

0
2

0
22

( ) ← →⎯
− +

>Z �

� �
� ,, − − − ← →⎯

−
�

�

�
n n n

z

z z
sin( )u[ ]

sin( )

cos(
�

�
0

0
21

2
Z

��

�
�

0
2

0
0

2 2

)
,

cos u[ ]
[ cos( )]

+
<

( ) ← →⎯ −
−

�
�

�
�

�

z

n n
z z

z
n Z

zz
z n n

z zn

cos( )
, cos( )u[ ]

�
�

0
2 0 1

+
> − − − ← →⎯ −

�
� �

�
, Z ccos( )

cos( )
,

�

�

0
2

0
22

[ ]
− +

<
z z

z
� �

�

�
�

n z

z

z

z
Z← →⎯

−
−

−−
< <

−

−
−

�
� �1

1,

u[

z

n nn n n
z

z
z z

z zn n
n n n n

0 1

1

1
0 1

1 0 1 0

] u[ ]− − ← →⎯
−

−( ) = +− −
− − −Z −−

−
+ + + >

2

1
1

0
1

� z

z
zn ,

EXAMPLE 9.2

 Inverse z transforms

Find the inverse z transforms of

(a) X( )
.

.z
z

z

z

z
z=

−
−

+
< <

0 5 2
0 5 2,

(b) X( )
.

z
z

z

z

z
z=

−
−

+
>

0 5 2
2,

(c) X( )
.

.z
z

z

z

z
z=

−
−

+
<

0 5 2
0 5,

(a)  Right-sided signals have ROCs that are outside a circle and left-sided signals have ROCs 
that are inside a circle. Therefore, using

 
�

� �
�n n

z

z z
zu[ ] ,Z← →⎯

−
=

−
>−

1

1 1
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392 Chapter  9  The z Transform

 and 

 − − − ← →⎯
−

=
−

<−�
� �

�n n
z

z z
zu[ ] ,1

1

1 1
Z

 we get

 ( . ) u[ ] ( ( ) u[ ]) X( )
.

0 5 2 1
0 5 2

n nn n z
z

z

z

z
− − − − − ← →⎯ =

−
−

+
Z , 0 5 2. < <z

 or

 0 5 2 1
0 5 2

0. u[ ] ( ) u[ ] X( )
.

( ) + − − − ← →⎯ =
−

−
+

n nn n z
z

z

z

z
Z , ..5 2< <z

(b) In this case both signals are right sided.

 [( . ) ( ) ]u[ ] X( )
.

0 5 2
0 5 2

2n n n z
z

z

z

z
z− − ← →⎯ =

−
−

+
>Z ,

(c) In this case both signals are left sided.

 − − − − −[ ]← →⎯ =
−

−
+

<[( . ) ( ) ]u X( )
.

0 5 2 1
0 5 2

n n n z
z

z

z

z
zZ , 00 5.

9.10  z-TRANSFORM PROPERTIES
Given the z- transform pairs g[ ] G( ) and h[ ] H( )n z n zZ Z← →⎯ ← →⎯  with ROCs of ROCG 
and ROCH, respectively, the  properties of the z transform are listed in Table 9.2. 

  Table 9.2 z- transform        properties

Linearity �g[n]] h[ ] G( ) H( )+ ← →⎯ + = ∩� � �n z z
Z , ROC ROC ROC

Time Shi

G H

ffting g[ ]n n− 0
ZZ← →⎯ = = →−z z z zn0 0G( ), ROC ROC except perhaps orG ∞∞

Change of Scale in z / , ROC ROC

Time Reversal

G� � �n n zg[ ] G( )Z← →⎯ =

g[ ] G(− ← →⎯n z
Z −− =1 1)

g[ ]

, ROC /ROC

Time Expansion
/ , / a

G

n k n k nn integer

0, otherwise
, ROC R

⎧
⎨
⎩

⎫
⎬
⎭

← →⎯ =Z G( ) (zk OOC

Conjugation

G
/)1 k

, ROC ROC

-Doma

Gg [ ] G ( )* * *n z

z

Z← →⎯ =

iin Differentiation − ← →⎯n ng[ ] Z
zz

d

dz
zG( ), ROC ROC

Convolution

G=

First Ba

g[ ] h[ ] H( )G( )n n z z∗ ← →⎯Z

cckward Difference g[ ] g[ ] ( )n n z− − ← →⎯ − −1 1 1Z GG( )z z, ROC ROC

Accumulation

G⊇ ∩ > 0

, ROC Rg[ ] G( )m
z

z
z

m

n

= −∞
∑ ← →⎯

−
⊇Z

1
OOC

Initial Value Theorem If ,

G ∩ >

=

z

n

1

0g[ ] then

Final Value Theorem

n z
z

< =
→∞

0 0g[ ] lim G( )

If , ,g[ ] lim g[ ] lim (n n n z
n z

= < = −
→∞ →

0 0 1
1

))G( ) lim g[ ]z n
n

if exists.
→∞
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9.11  INVERSE z-TRANSFORM METHODS

 SYNTHETIC DIVISION

For rational functions of z of the form

 H( )z
b z b z b z b

a z a z a z
M

M
M

M

N
N

N
N= + + + +

+ + + +
−

−

−
−

1
1

1 0

1
1

1

�
� aa0

we can always synthetically divide the numerator by the denominator and get a sequence 
of powers of z. For example, if the function is

 H( )
( . )( . )( . )

( . )( . )( . )
z

z z z

z z z
= − + +

− − +
1 2 0 7 0 4

0 2 0 8 0 5
,, z > 0 8.

or

 H( )
. . .

. . .
z

z z z

z z z
= − − −

− − +

3 2

3 2

0 1 1 04 0 336

0 5 0 34 0 08
, zz > 0 8.

the synthetic division process produces

 

z z z z z z

z z

3 2 3 2

3 2

0 5 0 34 0 08 0 1 1 04 0 336

0 5

− − + − − −

−

. . . . . .

. −− +

− −

0 34 0 08

0 4 0 7 0 2562

. .

. . .

z

z z

0.4zz z z2 10 2 0 136 0 032− − − −. . .

00 5 0 12 0 032 1. . .z z− + −

�

)

� �

�1 0 4 0 51 2+ +− −. .z z

Then the inverse z transform is

 h[ ] [ ] . [ ] . [ ]n n n n= + − + −� � �0 4 1 0 5 2 �

There is an alternate form of synthetic division.

 

0 08 0 34 0 5 0 336 1 04 0 1

0 336

2 3 2 3. . . . . .

.

− − + − − − +

− +

z z z z z z

11 428 4 2

2 468 2 2

2 3. .

. .

z z z

z z

+ 2.1 −

− − 22 3

2 3

5 2

2 468 10 489 15 425

+

− + + −

.

. . .

z

z z z 330 85

12 689 10

4

2

.

. .

z

z− − 2225 30 853 4z z+ .

� � �

− − −4 2 30 85 158. . z

)
..613 2z �

From this result, we might conclude that the inverse z transform would be

 − − + − +4 2 30 85 1 158 613 2. [ ] . [ ] . [ ]� � �n n n �

It is natural at this point to wonder why these two results are different and which one 
is correct. The key to knowing which one is correct is the ROC, z > 0 8. . This implies a 
right-sided inverse transform and the fi rst synthetic division result is of that form. That 
series converges for z > 0 8. . The second series converges for z < 0 2.  and would be the 
correct answer if the ROC were z < 0 2. .
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394 Chapter  9  The z Transform

Synthetic division always works for a rational function but the answer is usu-
ally in the form of an infi nite series. In most practical analyses a closed form is 
more useful.

 PARTIAL-FRACTION EXPANSION

The technique of partial-fraction expansion to fi nd the inverse z transform is alge-
braically identical to the method used to fi nd inverse Laplace transforms with the 
variable s replaced by the variable z. But there is a situation in inverse z transforms 
that deserves mention. It is very common to have z-domain functions in which the 
number of fi nite zeros equals the number of fi nite poles (making the expression 
improper in z), with at least one zero at z = 0.

 H( )
( )( ) ( )

( )( ) ( )
z

z z z z z z z

z p z p z p

N M
M

N
= − − −

− − −

−
1 2

1 2

�
�

,, N M>

We cannot immediately expand H(z) in partial fractions because it is an improper 
rational function of z. In a case like this it is convenient to divide both sides of the 
equation by z.

 
H( ) ( )( ) ( )

( )( ) (

z

z

z z z z z z z

z p z p z

N M
M= − − −

− − −

− −1
1 2

1 2

�
� ppN )

H( )z z/  is a proper fraction in z and can be expanded in partial fractions. 

 
H( )z

z

K

z p

K

z p

K

z p
N

N
=

−
+

−
+ +

−
1

1

2

2
�

Then both sides can be multiplied by z and the inverse transform can be found.

 H( )z
zK

z p

zK

z p

zK

z p
N

N
=

−
+

−
+ +

−
1

1

2

2
�

 h[ ] u[ ] u[ ] u[ ]n K p n K p n K p nn n
N N

n= + + +1 1 2 2 �

Just as we did in fi nding inverse Laplace transforms, we could have solved this 
problem using synthetic division to obtain a proper remainder. But this new technique 
is often simpler.

 EXAMPLES OF FORWARD AND INVERSE z TRANSFORMS

The  time-shifting property is very important in converting z-domain transfer-function 
expressions into actual systems and, other than the  linearity property, is probably the 
most often-used property of the z transform.

EXAMPLE 9.3

System block diagram from a transfer function  using the time-shifting property

A system has a transfer function

 H( ) =
Y

X
=

/

/
/z

( )

( )
, .

z

z

z

z z
z

−
− +

>1 2

2 9
2 32

Draw a system block diagram using delays, amplifi ers and summing junctions.
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 We can rearrange the transfer-function equation into

 Y( )( ) X( )( )z z z z z2 2 9 1 2− + = −/ /

or

 z z z z z z z z2 1 2 2 9Y( ) X( ) ( )X( ) Y( ) ( )Y( )= − + −/ / .

Multiplying this equation through by z−2 we get

 Y( ) X( ) ( ) X( ) Y( ) ( ) Y( ).z z z z z z z z z= − + +− − − −1 2 1 21 2 2 9/ /

Now, using the  time-shifting property, if x[ ] X( )n zZ← →⎯  and y[ ] Y( )n zZ← →⎯ , then the inverse 
z transform is
 y[ ] x[ ] ( )x[ ] y[ ] ( )y[ ].n n n n n= − − − + − − −1 1 2 2 1 2 9 2/ /

This is called a  recursion relationship between x[ ]n  and y[ ]n  expressing the value of y[ ]n  at discrete 
time n as a linear combination of the values of both x[ ]n  and y[ ]n  at discrete times n n n, , ,− −1 2 �. 
From it we can directly synthesize a block diagram of the system (Figure 9.10).

This system  realization uses four delays, two amplifi ers and two summing junctions. This 
block diagram was drawn in a “natural” way by directly implementing the recursion relation in the 
diagram. Realized in Direct Form II, the realization uses two delays, three amplifi ers and three sum-
ming junctions (Figure 9.11). There are multiple other ways of realizing the system (see Chapter 14).

A special case of the  change-of-scale-in-z property

 � �n n zg[ ] G( )Z← →⎯ /

is of particular interest. Let the constant � be e j�0  with �0 real. Then

 e n zej n j� �0 0g[ ] G( )Z← →⎯ − .

Every value of z is changed to ze j− �0. This accomplishes a counterclockwise rotation 
of the transform G( )z  in the z plane by the angle �0 because e j− �0 has a magnitude of 
one and a phase of −�0. This effect is a little hard to see in the abstract. An example 
will illustrate it better. Let 

 G( )
( . )( . )

z
z

z e z ej j= −
− −− +

1

0 8 0 84 4� �/ /

Figure 9.10
Time-domain system block diagram for the 

transfer function H( )z
z

z z
= −

− +
1 2

2 92
/

/

x[n] y[n]

D

D

D

D
1/2 2/9

(2/9)y[n − 2](1/2)x[n − 2]

+
+x[n − 1] y[n − 1]

y[n − 2]x[n − 2]

Figure 9.11
Direct Form II realization of H( )z

z

z z
= −

− +
1 2

2 92
/

/

x[n] 

D

D

y[n]

–0.5

+
–

–1

0.22222
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396 Chapter  9  The z Transform

and let �0 8= �/ . Then

 G( ) G( )
( .

ze ze
ze

ze e
j j

j

j j
− −

−

− −= = −
−

�0 8
8

8

1

0 8
�

�

� �
/

/

/ /44 8 40 8)( . )ze ej j− +−� �/ /

or

 
G( )

( )

( . )
ze

e z e

e z e e
j

j j

j j
−

−

− − −= −
−

�
� �

� �
/

/ /

/ /
8

8 8

8 80 8 jj j

j
j

j

z e

e
z e

z e z

� �

�
�

�

/ /

/
/

8 3 8

8
8

8

0 8

0 8

( . )

( . )(

/

−

= −
−

+

− −− +0 8 3 8. )e j �/

The original function has fi nite poles at z e j= ±0 8 4. �/  and a zero at z = 1. The trans-
formed function G( )ze j− �/8  has fi nite poles at z e ej j= − +0 8 8 3 8. / /� �and 0.8  and a zero 
at z e j= � /8 . So the fi nite pole and zero locations have been rotated counterclockwise 
by �/8 radians (Figure 9.12). 

Figure 9.12
Illustration of the  frequency-scaling property of the z transform for 
the special case of a scaling by e j�0

[z]

Pole-zero Plot of G(z)

[z]

Ω0

Pole-zero Plot of G(ze–jΩ0)

A multiplication by a complex sinusoid of the form e j n�0  in the time domain 
corresponds to a rotation of its z transform.

EXAMPLE 9.4

 z transforms of a causal exponential and a  causal exponentially damped sinusoid

Find the z transforms of x[ ] u[ ]/n e nn= − 40  and x [ ] sin( )u[ ]/
m

nn e n n= − 40 2 8� /  and draw pole-
zero diagrams for X( )z  and X ( )m z .
 Using 

 �
� �

�n n
z

z z
zu[ ] Z← →⎯

−
=

−
>−

1

1 1 ,

we get

 e n
z

z e
z en−

−
−← →⎯

−
>/

/
/u[ ] .40

1 40
1 40Z ,

Therefore 

 X( ) /z
z

z e
z e=

−
>−

−
1 40

1 40, / .
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 We can rewrite x [ ]m n  as

 x [ ] u[ ]m
n

j n j n
n e

e e

j
n= −−

−
/

/ /
40

2 8 2 8

2

� �

or

 x [ ] [ ]u[ ]m
n j n n j nn

j
e e e e n= − −− − −

2
40 2 8 40 2 8/ / / /� � .

Then, starting with

 e n
z

z e
z en−

−
−← →⎯

−
>/ /,40

1 40
1 40u[ ] /

Z

and, using the  change-of-scale property � �n n zg[ ] G( )Z← →⎯ / , we get

 e e n
ze

ze e
j n n

j

j
2 8 40

2 8

2 8 1 40
�

�

�
/ /

/

/ / ,−
−

− −← →⎯
−

u[ ] Z zz e> −1 40/

and

 e e n
ze

ze e
zj n n

j

j
− −

−← →⎯
−

2 8 40
2 8

2 8 1 40
�

�

�
/ /

/

/ ,u[ ] /
Z >> −e 1 40/

and

 

− −⎡⎣ ⎤⎦ ← →⎯

−

− − −j
e e e e n

j z

n j n n j n

2

2

40 2 8 40 2 8/ / / /� � u[ ] Z

ee

ze e

ze

ze e

j

j

j

j

−

− − −−
−

−
⎡

⎣

2 8

2 8 1 40

2 8

2 8 1 40

�

�

�

�

/

/ / / /

/

⎢⎢
⎤

⎦
⎥ > −, /z e 1 40

or

 

X ( )m

j

j

j

jz
j ze

ze e

ze

ze
= −

−
−

−

− −2

2 8

2 8 1 40

2 8

2 8

�

�

�

�

/

/ /

/

/ −−
⎡

⎣
⎢

⎤

⎦
⎥

= ( )
−

−

−

−

e

ze

z ze

1 40

1 40

2 1 40
2 8

2 2

/

/

/
/sin

cos

�

�//
,/

/

8 1 20
1 40

( ) +
>−

−
e

z e

or

 
X ( )

.

. .
.

.

m z
z

z z
z

z

=
− +

=
− −

0 6896

1 3793 0 9512
0 6896

0 6896

2

jj z j
z e

0 6896 0 6896 0 6896
1 40

. . .
/

( ) − +( ) > −,

(Figure 9.13).

[z]

Pole-zero Plot of X(z) Pole-zero Plot of Xm(z)

0.97530.9753

Unit Circle

[z]

Unit Circle

π
4

Figure 9.13
 Pole-zero plots of X( )z  and X ( )m z

 9.11 Inverse z-Transform Methods 397

rob80687_ch09_382-419.indd   397rob80687_ch09_382-419.indd   397 12/21/10   7:02:46 PM12/21/10   7:02:46 PM



398 Chapter  9  The z Transform

EXAMPLE 9.5

 z transform using the differentiation property

Using the z-domain differentiation property, show that the z transform of n nu[ ] is 
z

z
z

( )−
>

1
12 , .

Start with 

 u[ ] .n
z

z
zZ← →⎯

−
>

1
1,

Then, using the z-domain differentiation property,

 − ← →⎯
−

⎛
⎝⎜

⎞
⎠⎟ = −

−
>n n z

d

dz

z

z

z

z
zu[ ]

( )
Z

1 1
12 ,

or

 n n
z

z
zu[ ]

( )
Z← →⎯

−
>

1
12 , .

EXAMPLE 9.6

z transform using the  accumulation property

Using the accumulation property, show that the z transform of n nu[ ] is 
z

z
z

( )−
>

1
12 , .

 First express n nu[ ] as an accumulation

 n n m
m

n

u[ ] u[ ].= −
=

∑ 1
0

Then, using the  time-shifting property, fi nd the z transform of u[ ],n −1

 u[ ] .n z
z

z z
z− ← →⎯

−
=

−
>−1

1

1

1
11Z ,

Then, applying the accumulation property,

 n n m
z

z z

z

z
z

m

n

u[ ] u[ ]
( )

= − ← →⎯
−

⎛
⎝⎜

⎞
⎠⎟ −

=
−=

∑ 1
1

1

1 10
2

Z , >> 1.

As was true for the Laplace transform, the fi nal value theorem applies if the limit 
lim g[ ]n n→∞  exists. The limit limz z z→ −1 1( )G( ) may exist even if the limit lim g[ ]n n→∞  
does not. For example, if

 X( )z
z

z
z=

−
>

2
2,

then

 lim( )X( ) lim( ) .
z z

z z z
z

z→ →
− = −

−
=

1 1
1 1

2
0

But x[ ] u[ ]n nn= 2  and the limit limn n→∞ x[ ] does not exist. Therefore the conclusion 
that the fi nal value is zero is wrong.
 In a manner similar to the analogous proof for Laplace transforms, the following 
can be shown.

For the fi nal value theorem to apply to a function G( )z , all the fi nite poles of the 
function ( )G( )z z− 1  must lie in the open interior of the unit circle of the z plane.
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EXAMPLE 9.7

z transform of an  anti causal signal

Find the z transform of x[ ] ( . ) u[ ]n nn= − −−4 0 3 .

  Using − − − ← →⎯
−

=
−

<−�
� �

�n n
z

z z
zu[ ] ,1

1

1 1
Z

Identify � as − −0 3 1. . Then

 − − − − ← →⎯
+

< −−
−

−( . ) u[ ]
.

, .0 3 1
0 3

0 31
1

1n n
z

z
zZ

 − −( ) − −[ ]← →⎯
+

<10 3 1
10 3

10 3/
/

/n n
z

z
zu ,Z

Use the time shifting property.

 − − − − − ← →⎯
+

=
+

<− −( ) u[ ( ) ] ,10 3 1 1
10 3

1

10 3
1 1/

/ /
n n z

z

z z
zZ 110 3/

 − − − − ← →⎯
+

<( )( ) u[ ] ,3 10 10 3
1

10 3
10 3/ /

/
/n n

z
zZ

 ( )( ) u[ ] ,3 10 10 3
1

10 3
10 3/ /

/
/− − ← →⎯

+
<n n

z
zZ

Using the  linearity property, multiply both sides by 4/(3/10) or 40/3.

 4 0 3
40 3

10 3

40

3 10
10 3( . ) u[ ] ,− − ← →⎯

+
=

+
<−n n

z z
zZ /

/
/

9.12 THE  UNILATERAL z TRANSFORM
The unilateral Laplace transform proved convenient for continuous-time functions and 
the unilateral z transform is convenient for discrete-time functions for the same rea-
sons. We can defi ne a unilateral z transform, which is only valid for functions that are 
zero before discrete time n = 0 and avoid, in most practical problems, any complicated 
consideration of the region of convergence.

The unilateral z transform is defi ned by

 X( ) x[ ]z n z n

n

= −

=

∞

∑
0

. (9.6)

The region of convergence of the unilateral z transform is always the open exterior of a cir-
cle, centered at the origin of the z plane whose radius is the largest fi nite pole magnitude. 

PROPERTIES UNIQUE TO THE UNILATERAL z TRANSFORM

The properties of the unilateral z transform are very similar to the properties of the 
bilateral z transform. The time-shifting property is a little different. Let g[ ] , .n n= <0 0  
Then, for the unilateral z transform,

 g[ ]

G( )

G( ) g[ ]
(n n

z z n

z z m z

n

n m

m

− ← →⎯

≥

−

−

− −

=

−
0

0

0

0

0

0
Z

,
nn

n
0 1

0 0
+

∑⎧
⎨
⎩⎪

⎫
⎬
⎪

⎭
<

⎧

⎨
⎪

⎩
⎪

)

,
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400 Chapter  9  The z Transform

This property must be different for shifts to the left because when a causal function is 
shifted to the left, some nonzero values may no longer lie in the summation range of 
the unilateral z transform, which begins at n = 0. The extra terms

 − −

=

− +

∑ g[ ]
( )

m z m

m

n

0

10

account for any function values that are shifted into the n < 0 range.
The  accumulation property for the unilateral z transform is

 g[ ] G( )m
z

z
z

m

n

=
∑ ← →⎯

−0 1
Z .

Only the lower summation limit has changed. Actually the bilateral form 

 g[ ] G( )m
z

z
z

m

n

=−∞
∑ ← →⎯

−
Z

1

would still work because, for a causal signal g[ ]n ,

 g[ ] g[ ]m m
m

n

m

n

=−∞ =
∑ ∑=

0

.

 The unilateral z transform of any causal signal is exactly the same as the bilateral 
z transform of that signal. So the table of bilateral z transforms can be used as a table 
of unilateral z transforms.

 SOLUTION OF DIFFERENCE EQUATIONS

One way of looking at the z transform is that it bears a relationship to difference equa-
tions analogous to the relationship of the Laplace transform to differential equations. 
A linear difference equation with initial conditions can be converted by the z transform 
into an algebraic equation. Then it is solved and the solution in the time domain is 
found by an inverse z transform.

EXAMPLE 9.8

Solution of a difference equation  with initial conditions using the z transform

Solve the difference equation

 y[ ] ( )y[ ] ( )y[ ] ( ) , forn n n nn+ − + + = ≥2 3 2 1 1 2 1 4 0/ / /

with initial conditions y[ ] y[ ]0 10 1 4= =and .
 Initial conditions for a second-order differential equation usually consist of a specifi cation 
of the initial value of the function and its fi rst derivative. Initial conditions for a second-order 
difference equation usually consist of the specifi cation of the initial two values of the function 
(in this case y[0] and y[1]).
 Taking the z transform of both sides of the difference equation (using the time-shifting 
property of the z transform),

 z z z z z2 10 1 3 2 0 1 2(Y( ) y[ ] y[ ]) ( ) (Y( ) y[ ]) ( )Y(− − − − +− / / zz
z

z
) =

− 1 4/
Solving for Y(z),

 Y( )
y[ ] y[ ] ( ) y[ ]

( )
z

z

z
z z z

z z
= −

+ + −

− +
1 4

0 1 3 2 0

3 2 1

2

2
/

/

/ /22
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 Y( )
y[ ] ( y[ ] y[ ]) y[ ] y[ ]

(
z z

z z

z
= − − − + +2 0 7 0 4 1 1 4 3 0 8 1/ / /

−− − +1 4 3 2 1 22/ / /)( ( ) )z z

Substituting in the numerical values of the initial conditions,

 Y( )
( )

( )( )( )
z z

z z

z z z
= − +

− − −
10 27 2 15 4

1 4 1 2 1

2 / /

/ /

Dividing both sides by z,

 Y( ) ( )

( )( )( )

z

z

z z

z z z
= − +

− − −
10 27 2 15 4

1 4 1 2 1

2 / /

/ /
.

This is a proper fraction in z and can therefore be expanded in partial fractions as

 Y( )
Y( )

z

z z z z
z

z

z
=

−
+

−
+

−
⇒ =

−
+16 3

1 4

4

1 2

2 3

1

16 3

1 4

4/

/ /

/ /

/

zz

z

z

z−
+

−1 2

2 3

1/

/ .

Then using

 �
�

n n
z

z
u[ ] Z← →⎯

−
and taking the inverse z transform, y [ . ( . ) ( . ) . ]u[ ]n nn n[ ] = + +5 333 0 25 4 0 5 0 667 . Evaluating this 
expression for n = 0 and n = 1 yields

 
y[ ] . ( . ) ( . ) .

y[ ] . ( .

0 5 333 0 25 4 0 5 0 667 10

1 5 333 0

0 0= + + =

= 225 4 0 5 0 667 1 333 2 0 667 41 1) ( . ) . . .+ + = + + =

which agree with the initial conditions. Substituting the solution into the difference equation,

 

5 333 0 25 4 0 5 0 667

1 5 5 333 0 25

2 2. ( . ) ( . ) .

. [ . ( . )

n n

n

+ ++ +

− ++ ++ +

+ + +

1 14 0 5 0 667

0 5 5 333 0 25 4 0 5 0

( . ) . ]

. [ . ( . ) ( . )

n

n n .. ]

( . ) , for

667

0 25 0

⎧

⎨
⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪

= ≥n n

or

 
0 333 0 25 0 5 0 667 2 0 25 3 0 5 1 2. ( . ) ( . ) . ( . ) ( . ) .n n n n+ + − − − + 6667 0 25

2 0 5

( . )

( . )

n

n+ ++ = ≥0 333 0 25 0. ( . ) , forn n

or

 ( . ) ( . ) , for0 25 0 25 0n n n= ≥

which proves that the solution does indeed solve the difference equation.

9.13 POLE-ZERO DIAGRAMS AND  FREQUENCY RESPONSE
To examine the  frequency response  of discrete-time systems we can specialize 
the z transform to the DTFT through the transformation z e j→ � with Ω being 
a real variable representing  discrete-time radian frequency. The fact that Ω is 
real means that in determining frequency response the only values of z that we 
are now considering are those on the unit circle in the z plane because e j� = 1 
for any real Ω. This is directly analogous to determining the frequency response 
of a continuous-time system by examining the behavior of its s-domain transfer 
function as s moves along the � axis in the s-plane, and a similar graphical 
technique can be used.

Suppose the transfer function of a system is

 H( )
( )( )

z
z

z z

z

z p z p
=

− +
=

− −2
1 22 5 16/ /
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402 Chapter  9  The z Transform

where

 p
j

1
1 2

4
= +

 and p
j

2
1 2

4
= −

.

The transfer function has a zero at zero and two complex-conjugate fi nite poles 
(Figure 9.14).

The frequency response of the system at any particular radian frequency �0 is 
determined (to within a multiplicative constant) by the vectors from the fi nite poles and 
fi nite zeros of the transfer function to the z-plane point z e j

0
0= � . The magnitude of the 

frequency response is the product of the magnitudes of the zero vectors divided by the 
product of the magnitudes of the pole vectors. In this case,

 H( )e
e

e p e p
j

j

j j
�

�

� �
=

− −1 2
 (9.7)

It is apparent that as e j� approaches a pole, p1 for example, the magnitude of the 
difference e pj� − 1 becomes small, making the magnitude of the denominator small 
and tending to make the magnitude of the transfer function larger. The opposite effect 
occurs when e j� approaches a zero. 

The phase of the frequency response is the sum of the angles of the 
zero vectors minus the sum of the angles of the pole vectors. In this case, 

� � � �H( ) ( ) ( )e e e p e pj j j j� � � �= − − − −1 2  (Figure 9.15).
The maximum magnitude frequency response occurs at approximately z e j= ± 1 11. , 

which are the points on the unit circle at the same angle as the fi nite poles of the transfer 
function and, therefore, the points on the unit circle at which the denominator factors 
e pj�0

1−  and e pj�0
2−  in (9.7) reach their minimum magnitudes.

An important difference between the frequency response of continuous-time and 
discrete-time systems is that, for discrete-time systems, the frequency response is 
always  periodic, with period 2� in �. That difference can be seen directly in this 
graphical technique because as � moves from zero in a positive direction, it traverses 
the entire unit circle in a counterclockwise direction and then, on its second traversal of 
the unit circle, retraces its previous positions, repeating the same frequency responses 
found on the fi rst traversal.

[z]

z0=ejΩ0
z0-p1

z 0

z 0-
p 2

Figure 9.14
z-domain pole-zero diagram  of a system transfer function
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EXAMPLE 9.9

 Pole-zero plot and frequency response  from a transfer function 1

Draw the pole-zero plot and graph the frequency response for the system whose transfer function is

 H( )
. .

. .
z

z z

z z
= − +

− +

2

2
0 96 0 9028

1 56 0 8109
.

 The transfer function can be factored into

 H( )
( . . )( . . )

( . . )
z

z j z j

z j
= − + − −

− +
0 48 0 82 0 48 0 82

0 78 0 45 (( . . )z j− −0 78 0 45
.

The pole-zero diagram is in Figure 9.16.
 The magnitude and phase frequency responses of the system are illustrated in Figure 9.17.

Figure 9.16
Pole-zero diagram of the transfer function,

H( )
. .

. .
z

z z

z z
= − +

− +

2

2
0 96 0 9028

1 56 0 8109

Re(z)

Im(z)
[z]

Figure 9.17
Magnitude and phase frequency response of the system whose transfer 

function is H( )
. .

. .
z

z z

z z
= − +

− +

2

2
0 96 0 9028

1 56 0 8109

Ω
2π-2π

2π-2π

|H(ejΩ)|
10

Ω

-π

π
  H(ejΩ)

Figure 9.15
Magnitude and phase frequency response of the system whose transfer 

function is H( )z
z

z z
=

− +2 2 5 16/ /

Ω

|H(ejΩ)|
2

Ω
2π-2π

2π-2π

π

-π

Closest Approach to a PoleClosest Approach to a Pole

  H(ejΩ)
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EXAMPLE 9.10

Pole-zero plot and frequency response from a transfer function 2

Draw the pole-zero plot and graph the frequency response for the system whose transfer function is

 H( )
.

( . . )( . . )
z

z z z z
=

− + − +
0 0686

1 087 0 3132 1 315 0 61822 2
.

 This transfer function can be factored into

H( )
.

( . . )( . . )
z

z j z j
=

− + − −
0 0686

0 5435 0 1333 0 5435 0 1333 (( . . )( . . )z j z j− + − −0 6575 0 4312 0 6575 0 4312

The pole-zero diagram is illustrated in Figure 9.18. The magnitude and phase frequency 
responses of the system are illustrated in Figure 9.19.

9.14 MATLAB  SYSTEM OBJECTS
 Discrete-time  system objects can be created and used in much the same way as 
continuous-time system objects. The syntax for creating a system object with tf is 
almost the same

sys = tf(num,den,Ts)

but with the extra argument Ts, the time between samples, on the assumption that the 
discrete-time signals were created by sampling continuous-time signals. For example, 
let the transfer function be

 H ( )
( . )

( . )( . . )

.
1

2

2

30 8

0 3 1 4 0 2

0 8
z

z z

z z z

z z= −
+ − +

= − 22

3 21 1 0 22 0 06z z z− − +. . .
.

Figure 9.18
Pole-zero diagram for the transfer function, 

H( )
.

( . . )( . . )
z

z z z z
=

− + − +
0 0686

1 087 0 3132 1 315 0 61822 2

Re(z)

Im(z)
[z]

Ω

|H(ejΩ)|
1

Ω

2π-2π

2π
-2π

-π

π

H(ejΩ)

Figure 9.19
Magnitude and phase frequency response of the system whose transfer 

function is H( )
.

( . . )( . . )
z

z z z z
=

− + − +
0 0686

1 087 0 3132 1 315 0 61822 2
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IN MATLAB

»num = [1 -0.8 0 0] ;
»den = [1 -1.1 -0.22 0.06] ;
»Ts = 0.008 ;
»H1 = tf(num,den,Ts) ;
»H1
Transfer function:
 z^3 - 0.8 z^2
-----------------------------

z^3 - 1.1 z^2 - 0.22 z + 0.06
Sampling time: 0.008

 We can also use zpk.

»z = [0.4] ;
»p = [0.7 -0.6] ;
»k = 3 ;
»H2 = zpk(z,p,k,Ts) ;
»H2
Zero/pole/gain:
 3 (z-0.4)
---------------
(z-0.7) (z+0.6)
Sampling time: 0.008

We can also defi ne z as the independent variable of the z transform with the 
command.

»z = tf(‘z’,Ts) ;
»H3 = 7*z/(z^2+0.2*z+0.8) ;
»H3

Transfer function:
 7 z
-----------------
z^2 + 0.2 z + 0.8
Sampling time: 0.008

We are not required to specify the sampling time.

>> z = tf(‘z’);
>> H3 = 7*z/(z^2+0.2*z+0.8);
>> H3
Transfer function:

 7 z
-----------------
z^2 + 0.2 z + 0.8

Sampling time: unspecifi ed

The command

H = freqz(num,den,W) ;

 9.14 MATLAB System Objects 405
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406 Chapter  9  The z Transform

accepts the two vectors num and den and interprets them as the coeffi cients of the powers 
of z in the numerator and denominator of the transfer function H( )z . It returns in H the 
complex frequency response at the discrete-time radian frequencies in the vector W.

9.15  TRANSFORM METHOD COMPARISONS
Each type of transform has a niche in signal and system analysis where it is particularly 
convenient. If we want to fi nd the total response of a discrete-time system to a causal 
or anticausal excitation, we would probably use the z transform. If we are interested 
in the frequency  response of a system, the DTFT is convenient. If we want to fi nd the 
forced response of a system to a periodic excitation, we might use the DTFT or the 
DFT, depending on the type of analysis needed and the form in which the excitation is 
known (analytically or numerically).

EXAMPLE 9.11

 Total system response using the z transform and the DTFT

A system with transfer function H( )
( . )( . )

.z
z

z z
z=

− +
>

0 3 0 8
0 8,  is excited by a unit sequence. 

Find the total response.
 The z transform of the response is

 Y( ) H( )X( )
( . )( . )

z z z
z

z z

z

z
z= =

− +
×

−
>

0 3 0 8 1
1, .

Expanding in partial fractions,

 Y( )
( . )( . )( )

.

.

.
z

z

z z z z z
=

− + −
= −

−
+

2

0 3 0 8 1

0 1169

0 3

0 3232

++
+

−
>

0 8

0 7937

1
1

.

.

z
z,

Therefore the total response is 

 y[ ] [ . ( . ) . ( . ) . ]u[n n n= − + − +− −0 1169 0 3 0 3232 0 8 0 79371 1 nn −1].

 This problem can also be analyzed using the DTFT but the notation is signifi cantly clumsier, 
mainly because the DTFT of a unit sequence is

 1

1
2−

+−e j� ��� �( ).

The system frequency response is

 H( )
( . )( . )

e
e

e e
j

j

j j
�

�

� �
=

− +0 3 0 8

The DTFT of the system response is

 Y( ) H( )X( )
( . )( . )

e e e
e

e e e
j j j

j

j j
� � �

�

� �
= =

− +
×

− −0 3 0 8

1

1 jj� �+⎛
⎝⎜

⎞
⎠⎟�� �2 ( )

or

 Y( )
( . )( . )( ) (

e
e

e e e

e

e
j

j

j j j

j

j
�

�

� � �

�

�
=

− + −
+

−

2

0 3 0 8 1 0
�

.. )( . )
( )

3 0 8
2

e j� �
+

� �

Expanding in partial fractions

 Y( )
.

.

.

.

.
e

e e e
j

j j j
�

� � �
= −

−
+

+
+

−
0 1169

0 3

0 3232

0 8

0 7937

1
++

− +
�

� �
( . )( . )

( )
1 0 3 1 0 8

2 �
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Using the equivalence property of the impulse and the periodicity of both � �2 ( )� �and e j

 Y( )
.

.

.

.
e

e

e

e

e
j

j

j

j

j
�

�

�

�

�
= −

−
+

+

−

−

−

−
0 1169

1 0 3

0 3232

1 0 8
++

−
+

−

−
0 7937

1
2 4933 2

.
. ( )

e

e

j

j

�

�
�� �

Then, manipulating this expression into a form for which the inverse DTFT is direct

 
Y( )

.

.

.

.
e

e

e

e

e
j

j

j

j

j
�

�

�

�

�
= −

−
+

+

−

−

−

−
0 1169

1 0 3

0 3232

1 0 8
++

−
+

⎛
⎝⎜

⎞
⎠⎟

−

−

−0 7937
1

2. ( )
e

e

j

j

�

�
��� �

00 7937 2 49332 2

0

. ( ) . ( )�� �� �� �+
=

� ������� �������

 Y( )
.

.

.

.
e

e

e

e

e
j

j

j

j

j
�

�

�

�

�
= −

−
+

+

−

−

−

−
0 1169

1 0 3

0 3232

1 0 8
++

−
+

⎛
⎝⎜

⎞
⎠⎟

−

−0 7937
1

2. ( )
e

e

j

j

�

�
��� �

And, fi nally, taking the inverse DTFT

 y[ ] [ . ( . ) . ( . ) . ]u[n n n= − + − +− −0 1169 0 3 0 3232 0 8 0 79371 1 nn −1]

The result is the same but the effort and the probability of error are considerably greater.

EXAMPLE 9.12

 System response to a sinusoid

A system with transfer function H( )
.

.z
z

z
z=

−
>

0 9
0 9,  is excited by the sinusoid 

x[ ] cos( )n n= 2 12� / . Find the response.
 The excitation is the  pure sinusoid x[ ] cos( )n n= 2 12� / , not the  causal sinusoid 
x[ ] cos( )u[ ]n n n= 2 12� / . Pure sinusoids do not appear in the table of z transforms. Since 
the excitation is a pure sinusoid, we are fi nding the forced response of the system and 
we can use the DTFT pairs

 cos( ) [ ( ) ( )]� � � � �0 2 0 2 0n F← →⎯ − + +� � �� �

and

 � � � �N Nn N
0 0

2 0 2[ ] ( ) ( )F← →⎯ / / �

and the duality of multiplication and convolution

 x[ ] y[ ] X( )Y( )n n e ej j∗ ← →⎯F � �

The DTFT of the response of the system is

 Y( )
.

( ) ( )e
e

e
j

j

j
�

�

�
� �=

−
× − + +[ ]

0 9
6 62 2� � � � �� �/ /

    Y( )
.

e e
e

e
e

j j
j

j
j

� �
�

�
�

� �
=

−( )
−

+
+( )

−
�

� � � �� �2 26

0 9

6

0

/ /

..
.

9

⎡
⎣⎢

⎤
⎦⎥

Using the equivalence property of the impulse and the fact that both e j� and � �2 ( )�  have a 
fundamental period of 2� 

 Y( )
( )

.

(/
/

/e e
e

ej j
j

j� � �= −
−

+ +−�
� � � �� �

�
� �6 2

6
6 26

0 9

/ /66

0 96
)

./e j− −
⎡
⎣⎢

⎤
⎦⎥�
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408 Chapter  9  The z Transform

Finding a common denominator and simplifying,

 

Y( )
( )( . ) ( )( .

e
ej

j
� � �= − − + + −

�
� � � ��

�
�2

6
26 1 0 9 6 1 0 9/ // ee

e

j

j

−

−

= −

�

�

�

�
� �

/

/

/

6

2

1 81 1 8 6

0 2206

)

. . cos( )

Y( )
. [ (� � 66 6 0 45 6 6

0 2
2 2 2) ( )] . [ ( ) ( )]

.

+ + + + − −� � � � � �� � �� � �/ / /j

5512

2 7589 6 6 5 6272 2Y( ) . [ ( ) ( )] .e jj� � �= − + + +� � � �� �/ / 88 6 62 2[ ( ) ( )]� � � �� �� �+ − −/ /

Recognizing the DTFTs of a cosine and a sine,

 y[ ] . cos( ) . sin( )n n n= +0 8782 2 12 1 7914 2 12� �/ /

Using A x B x A B x B Acos( ) sin( ) cos( tan ( ))+ = + − −2 2 1 /

 y[ ] . cos( . )n n= −1 995 2 12 1 115� /

 We did not use the z transform because there is no entry in the table of z transform pairs for 
a sinusoid. But there is an entry for a sinusoid  multiplied by a unit sequence.

 cos( )u[ ]
[ cos( )]

cos( )
,�

�

�
0

0
2

02 1
1n n

z z

z z
zZ← →⎯ −

− +
>

It is instructive to fi nd the response of the system to this different, but similar, excitation. The 
transfer function is 

 H( )
.

.z
z

z
z=

−
>

0 9
0 9,

The z transform of the response is

 Y( )
.

[ cos( )]

cos( )
,z

z

z

z z

z z
z=

−
× −

− +
>

0 9

6

2 6 1
12

�

�

/

/

Expanding in partial fractions,

 Y( )
.

.

. .

.
,z

z

z

z z

z z
z=

−
+ +

− +
0 1217

0 9

0 8783 0 1353

1 732 1

2

2 >> 1

To fi nd the  inverse z transform we need to manipulate the expressions into forms similar to 
the table entries. The fi rst fraction form appears directly in the table. The second fraction has 
a denominator of the same form as the z transforms of cos( )u[ ]�0n n  and sin( )u[ ]�0n n  but the 
numerator is not in exactly the right form. But by adding and subtracting the right amounts in 
the numerator we can express Y( )z  in the form

 Y( )
.

.
.

( . )

.
.z

z

z z

z z
=

−
+ −

− +
+0 1217

0 9
0 8783

0 866

1 732 1
22 004

0 5

1 732 1
12

.

.
,

z

z z
z

− +
⎡
⎣⎢

⎤
⎦⎥

>

 y[ ] . ( . ) u[ ] . [cos( ) . sin n nn= + +0 1217 0 9 0 8783 2 12 2 04� / nn( )]u[ ]2 12�n n/

 y[ ] . ( . ) u[ ] . cos( . )u[n n n nn= + −0 1217 0 9 1 995 2 12 1 115� / ]]

Notice that the response consists of two parts, a transient response 0 1217 0 9. ( . ) u[ ]n n  and a 
 forced response 1 995 2 12 1 115. cos( . )u[ ]�n n/ −  that, except for the unit sequence factor, is 
exactly the same as the forced response we found using the DTFT. So, even though we do 
not have a z transform of a sinusoid in the z transform table we can use the z transforms of 
cos( )u[ ]�0n n  and sin( )u[ ]�0n n  to fi nd the forced response to a sinusoid.
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The analysis in Example 9.12, a system excited by a sinusoid, is very common 
in some types of signal and system analysis. It is important enough to generalize the 
process. If the transfer function of the system is 

 H( )
N( )

D( )
z

z

z
= ,

the response of the system to cos( ) u[ ]�0n n  is

 Y( )
N( )

D( )

[ cos( )]

cos( )
.z

z

z

z z

z z
= −

− +
�

�

0
2

02 1

The poles of this response are the poles of the transfer function plus the roots of 
z z2

02 1 0− + =cos( )� , which are the complex conjugate pair p e p ej j
1 2

0 0= = −� �and . 
Therefore p p p p p p j p p1 2 1 2 0 1 2 0 1 22 2 1= + = − = =*, cos( ), sin( )� � and . Then if 
�0 ≠ m�, m an integer and, if there is no pole-zero cancellation, these poles are dis-
tinct. The response can be written in partial-fraction form as

 Y( )
N ( )

D( )

H( )( cos( ))
z z

z

z p p

p p

z p p
= +

−
−
−

+1

1 2

1 1 0

1 2

1 1�

−−
−

−
⎡
⎣⎢

⎤
⎦⎥p

p p

z p1

2 2 0

2

H( )( cos( ))�

or, after simplifi cation,

 Y( )
N ( )

D( )

H ( )( ) H ( )
z z

z

z

p z p p p

z z
r r i i= + − −

−
1 1 1 1 1

2 (( )2 11p r +
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

where p p jpr i1 1 1= +  and H( ) H ( ) H ( ).p p j pr i1 1 1= +  This can be written in terms of the 
original parameters as 

 Y( )
N ( )

D( )

Re(H(cos( ) sin( )))
cos(

z z
z

z

j
z z

= +
+ −

1
0 0

2

� �
��

�

� �

0
2

0

0 0

2 1

)

( cos( ))

Im(H(cos( ) sin( )))
si

z z

j
z

− +

− + nn( )

( cos( ))

�

�

0
2

02 1z z− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪⎪

.

The  inverse z transform is

 y[ ]
N ( )

D( )

Re(H(cos( ) sin( ))
n z

z

z

j
= ⎛

⎝⎜
⎞
⎠⎟

+
+−Z 1 1 0 0� � )) cos( )

Im(H(cos( ) sin( )))sin( )

�

� � �

0

0 0 0

n

j n− +
⎡
⎣⎢

⎤
⎦⎥⎥

u[ ]n

or, using 

 Re( )cos( ) Im( )sin( ) cos( )A n A n A n A� � �0 0 0− = + � ,

 y[ ]
N

D
H(cos( ) sin( )) cosn z

z

z
j= ( )

( )
⎛
⎝⎜

⎞
⎠⎟

+ +−Z 1 1
0 0� � ((

H(cos( ) sin( ))) u[ ]

�

� �

0

0 0

n

j n

+

+�

or fi nally

 y[ ]
N ( )

D( )
H( ) cos( H( )) u[n z

z

z
p n p= ⎛

⎝⎜
⎞
⎠⎟

+ +−Z 1 1
1 0 1� � nn] . (9.8)

 9.15 Transform Method Comparisons 409
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410 Chapter  9  The z Transform

If the system is stable, the term 

 Z − ⎛
⎝⎜

⎞
⎠⎟

1 1z
z

z

N ( )

D( )

(the natural or transient response) decays to zero with discrete time and the term 
H( ) cos( H( )) u[ ]p n p n1 0 1� + �  is equal to a sinusoid after discrete time n = 0 and 
persists forever.

Using this result we could now solve the problem in Example 9.12 much more 
quickly. The response to x[ ] cos( ) u[ ]n n n= 2 12� /  is

 y[ ]
N ( )

D( )
H( ) cos( H( ))u[n z

z

z
p n p= ⎛

⎝⎜
⎞
⎠⎟

+ +−Z 1 1
1 0 1� � nn]

and the response to x[ ] cos( )n n= 2 12� /  is

 y [ ] H( ) cos( H( ))f n p n p= +1 0 1� �

where H( )
.

z
z

z
=

− 0 9
 and p e j

1
6= �/ . Therefore

 H( )
.

. . ./e
e

e
jj

j

j
�

�

�
6

6

6 0 9
0 8783 1 7917 1 995 1=

−
= − = ∠ −

/

/ ..115

and

 y [ ] . cos( . )f n n= −1 995 0 1150� .

9.16 SUMMARY OF IMPORTANT POINTS
 1. The z transform can be used to determine the transfer function of a discrete-

time LTI system and the transfer function can be used to fi nd the response of a 
discrete-time LTI system to an arbitrary excitation.

 2. The z transform exists for discrete-time signals whose magnitudes do not grow 
any faster than an exponential in either positive or negative time.

 3. The region of convergence of the z transform of a signal depends on whether the 
signal is right- or left-sided.

 4. Systems described by ordinary, linear, constant-coeffi cient difference equations 
have transfer functions in the form of a ratio of polynomials in z and the systems 
can be realized directly from the transfer function.

 5. With a table of z transform pairs and z-transform properties the forward and 
inverse transforms of almost any signal of engineering signfi cance can be found.

 6. The unilateral z transform is commonly used in practical problem solving 
because it does not require any involved consideration of the region of 
convergence and is, therefore, simpler than the bilateral form.

 7. Pole-zero diagrams of a system’s transfer function encapsulate most of its 
properties and can be used to determine its frequency response.

 8. MATLAB has an object defi ned to represent a discrete-time system transfer 
function and many functions to operate on objects of this type.
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EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Direct Form II System Realization

  1. Draw a Direct Form II block diagram for each of these system transfer functions.

(a) H( )
( )

. .
z

z z

z z
= −

+ +
1

1 5 0 82  (b) H( )
( )( )

z
z z

z z z
= − +

− + +

2

2

2 4

1 2 2 1/

Answers: 

 

+
+

+ -X(z) Y(z)

z-1

z-1

z-1

+
+

+
+

1/4

-1/4 2

-1

1/2

, 

+
+

+

+
+

+

+
-

+

X(z) Y(z)

1.5

0.8

-1
z-1

z-1

 Existence of the z Transform

 2. Find the region of convergence in the z plane (if it exists) of the z transform of 
these signals.

(a) x[ ] u[ ] u[ ]n n n= + −  (b) x[ ] u[ ] u[ ]n n n= − − 10

Answers: Does not exist, z > 0

 Forward and Inverse z Transforms

 3. Using the time-shifting property, fi nd the bilateral z transforms of these signals.

(a) x[ ] u[ ]n n= − 5  (b) x[ ] u[ ]n n= + 2

(c) x[ ] ( ) u[ ]n nn= +2 3 2/

Answers: 
z

z
z

−

−
>

4

1
1,  ; z

z
z

3

1
1

−
>,  ; 

z

z
z

−
>

2 3
2 3

/
/,

 4. Draw system diagrams for these transfer functions using the time-shifting property.

(a) H( )z
z

z
=

+

2

1 2/
 (b) H( )z

z

z z
=

+ +2 1

Answers:

1/2

X(z) +

–
Y(z)z

z-1

, 

X(z) +

+

–

+

Y(z)z-1

z-1

z-1

 Exercises with Answers 411
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412 Chapter  9  The z Transform

 5. Using the change-of-scale property, fi nd the z transform of

x[ ] sin( ) cos( ) u[ ]n n n n= 2 32 2 8� �/ /

Answer: z
z z

z z z

0 1379 0 3827 0 1379

2 7741 3 8478

2

4 3

. . .

. .

− +
− + 22 2 7741 1− +. z

 6. Using the z-domain-differentiation property, fi nd the z transform of

x[ ] ( ) u[ ]n n nn= 5 8/

Answer: 
5 8

5 8
5 82

z

z
z

/

/
, /

( )−
>

 7. Using the convolution property, fi nd the z transforms of these signals.

(a) x[ ] ( . ) u[ ] u[ ]n n nn= ∗0 9  (b) x[ ] ( . ) u[ ] ( . ) u[ ]n n nn n= ∗0 9 0 6

Answer: 
z

z z
z

2

2 1 9 0 9
1

− +
>

. .
, , 

z

z z
z

2

2 1 5 0 54
0 9

− +
>

. .
.,

 8. Using the differencing property and the z transform of the unit sequence, fi nd the z 
transform of the unit impulse and verify your result by checking the z-transform table.

 9. Find the z transform of 

 x[ ] u[ ] u[ ]n n n= − − 10

  and, using that result and the differencing property, fi nd the z transform of

 x[ ] [ ] [ ].n n n= − −� � 10

  Compare this result with the z transform found directly by applying the time-
shifting property to an impulse.

10. Using the accumulation property, fi nd the z transforms of these signals.

(a) x[ ] ramp[ ]n n=

(b) x[ ] (u[ ] u[ ])n m m
m

n

= + −
=−∞
∑ 5

Answers: 
z

z
z

( )−
>

1
12 , , 

z z

z
z

2 5

2

1

1
1

( )

( )

−
−

>,

11. Using the fi nal-value theorem, fi nd the fi nal value of functions that are the 
inverse z transforms of these functions (if the theorem applies).

(a) X( )z
z

z
z=

−
>

1
1,  (b) X( )z z

z

z z
z= −

− +
>2 7 4

7 4 3 4
12

/

/ /
,

Answers: 1, 1

12. Find the inverse z transforms of these functions in series form by synthetic 
division.

(a) X( )z
z

z
z=

−
>

1 2
1 2

/
, /  (b) X( )z

z

z z
z= −

− +
>1

2 1
12 ,
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(c) X( )z
z

z
z=

−
<

1 2
1 2

/
, /  (d) X( )z

z

z z
z= +

− +
<2

4 2 3
3 22 , /

Answers: � � �[ ] [ ] [ ] ,n n n k− + − + + − +1 2 � �

− + − + − + − − + −2 1 4 2 8 3 2� � � �[ ] [ ] [ ] [ ] ,n n n n kk� �  

0 667 0 778 1 0 3704 2. [ ] . [ ] . [ ] ,� � �n n n+ + − + +�

� � �[ ] ( ) [ ] ( ) [ ]n n n kk+ − + + − +1 2 1 1 2/ /� �

13. Find the inverse z transforms of these functions in closed form using partial-fraction 
expansions, a z transform table and the properties of the z transform.

(a) X( )
( )

z
z z

z=
−

>1

1 2
1 2

/
, /

(b) X( )
( )( )

z
z

z z
z=

− −
<

2

1 2 3 4
1 2

/ /
, /

(c) X( )
. .

.z
z

z z
z=

+ +
>

2

2 1 8 0 82
0 9055,

(d) X( ) .z
z

z z
z= −

− +
<1

3 2 2
0 81652 ,

Answers: ( ) u[ ],1 2 22/ n n− −

( . ) [cos( . ) . sin( . )]u[ ],0 9055 3 031 9 03 3 031n n n n−  

[ ( ) ( ) ]u[ ],2 1 2 3 3 4 1/ /n n n− − −  

0 4472 0 8165 1 2247 1 1503 1 2. . [ . sin( . ( )) u[ ] s( ) − − − −n n n iin( . ) u[ ]]1 1503 1n n− −

14. If H( )
( )( )

z
z

z z
z=

− +
>

2

1 2 1 3
1 2

/ /
, / , then, by fi nding the partial-fraction

expansion of this improper fraction in z two different ways, its inverse z transform 
h[ ]n  can be written in two different forms, h[ ] [ ( ) ( ) ]u[ ]n A B nn n= + −1 2 1 3/ /  and 
h[ ] [ ] [ ( ) ( ) ]u[ ].n n C D nn n= + + − −− −� 1 2 1 3 11 1/ /

Find A, B, C, and D.
Answers: –0.1333…, 0.6, 0.4, 0.3 

 Unilateral z-Transform Properties

15. Using the time-shifting property, fi nd the unilateral z transforms of these signals.

(a) x[ ] u[ ]n n= − 5

(b) x[ ] u[ ]n n= + 2

(c) x[ ] ( ) u[ ]n nn= +2 3 2/

Answers: 
z

z
z

−

−
>

4

1
1, ; 

z

z
z

−
>

1
1, ; 

z

z
z

−
>

2 3
2 3

/
/,
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414 Chapter  9  The z Transform

16. If the unilateral z transform of x[ ]n  is X( )z
z

z
=

− 1
, what are the unilateral z 

transforms of x[ ]n − 1  and x[ ]n + 1 ?

Answers: 
1

1 1z

z

z− −
,

Solution of Difference Equations

17. Using the z transform, fi nd the total  solutions to these difference equations with 
initial conditions, for discrete time n ≥ 0.

(a) 2 1 2 16y[ ] y[ ] sin( ) u[ ]n n n n+ − = � / , y[ ]0 1=

(b) 5 2 3 1 0 8y[ ] y[ ] y[ ] ( . ) u[ ]n n n nn+ − + + = , y[ ] , y[ ]0 1 1 10= − =

Answers: 

0 2934
1

2
1

1

2

0 2934

1

. u[ ] u[ ]

. cos

⎛
⎝

⎞
⎠ − + ⎛

⎝
⎞
⎠

−

−n n

n n

�

88
1 2 812

8
1 1( ) . sin u[ ],n n n−⎛

⎝
⎞
⎠ − −( )⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

−�

 

y[ ] . . u[ ]

[ ] . ( . )

n n

n

n

n

= ( )

− − −

0 4444 0 8

9 5556 0 4472 1�
ccos( . ( ))

. sin( . ( ))
u

0 8355 1

0 9325 0 8355 1

n

n

−
+ −

⎡
⎣⎢

⎤
⎦⎥

[[ ]n −
⎧
⎨
⎩

⎫
⎬
⎭

1

18. For each block diagram in Figure E.18, write the difference equation and fi nd 
and graph the response y[ ]n  of the system for discrete time n ≥ 0, assuming no 
initial energy storage in the system and impulse excitation x[ ] [ ]n n= � .

(a) 

D

x[n] y[n]

(b) 

D

x[n] y[n]

0.8

(c) 

D

Dx[n]

y[n]

0.9

-0.5

Figure E.18
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Answers: 

n
-5 20

y[n]

-1

1
,
 

 
n

-5 20

y[n]

-1

1
,

 
n

-5 20

y[n]

-1

1

Pole-Zero Diagrams and Frequency Response

19. Sketch the magnitude frequency response of the systems in Figure E.19 from 
their pole-zero diagrams.

(a) 

Re(z)

Im(z)
[z]

0.5

 

(b) 

Re(z)

Im(z)
[z]

10.5

(c) 

Re(z)

Im(z) [z]

0.5

0.5

-0.5

Figure E.19
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416 Chapter  9  The z Transform

 EXERCISES WITHOUT ANSWERS
Direct Form II System Realization

20. Draw a Direct Form II block diagram for each of these system transfer functions.

(a) H( )
. . . .

z
z

z z z z
=

+ − + −

2

4 3 22 1 2 1 06 0 08 0 02

(b) H( )
( . . )

( )( . . )
z

z z z

z z z z
= + +

+ + + +

2 2

2 2

0 8 0 2

2 2 1 1 2 0 5

Existence of the z Transform

21. Find the region of convergence in the z plane (if it exists) of the z transform of 
these signals.

(a) x[ ] ( ) u[ ]n nn= 1 2/  

(b) x[ ] ( ) u[ ] ( ) u[ ]n n nn n= + −5 4 10 7/ /

Forward and Inverse z Transforms

22. Using the time-shifting property, fi nd the z transforms of these signals.

(a) x[ ] ( ) u[ ]n nn= −−2 3 11/  

(b) x[ ] ( ) u[ ]n nn= −2 3 1/

(c) x[ ] sin
( )

u[ ]n
n

n= −⎛
⎝

⎞
⎠ −2 1

4
1

�

23. If the z transform of x[ ]n  is X( )z
z

z=
−

>1

3 4
3 4

/
, / , and 

Y( ) [X( ) X( )]z j e z e zj j= − −� �/ /6 6  

  what is y[ ]n ?

24. Using the convolution property, fi nd the z transforms of these signals.

(a) x[ ] sin( )u[ ] u[ ]n n n n= ∗2 8� /

(b) x[ ] sin( )u[ ] (u[ ] u[ ])n n n n n= ∗ − −2 8 8� /

25. A digital fi lter has an impulse response h[ ]
[ ] [ ] [ ]

n
n n n= + − + −� � �1 2

10
.

(a) How many fi nite poles and fi nite zeros are there in its transfer function and 
what are their numerical locations? 

(b) If the excitation x[ ]n  of this system is a unit sequence, what is the fi nal 
numerical value of the response lim y[ ]

n
n

→∞
?

26. The forward z transform h[ ] ( ) u[ ] u[ ]n n nn= ∗4 5/  can be expressed in 

the general form H( )z
b z b z b

a z a z a
= + +

+ +
0

2
1 2

0
2

1 2
. Find the numerical values of 

b b b a a a0 1 2 0 1 2, , , , and .
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27. Find the inverse z transforms of these functions in closed form using partial-
fraction expansion, a z-transform table and the properties of the z transform.

(a) X( )
. .

.z
z

z z
z= −

+ +
>1

1 8 0 82
0 90552 ,

(b) X( )
( . . )

.z
z

z z z
z= −

+ +
>1

1 8 0 82
0 90552 ,

(c) X( ) .z
z

z z
z=

− +
<

2

2 1 4
0 5

/
,

(d) X( )
.

. .
.z

z

z z
z= +

+ +
>0 3

0 8 0 16
0 42 ,

(e) X( )
. .

z
z z

z
z= − + >

2

3

0 8 0 3
0,

28. A signal y[ ]n  is related to another signal x[ ]n  by 

y[ ] x[ ].n m
m

n

=
=−∞
∑

If y[ ]
( )

n
z

zZ← →⎯
−

>1

1
12 , , what are the numerical values of x[–1], x[0], x[1] and x[2]?

29. The z transform of a signal x[ ]n  is X( )z
z

z z
z=

+ +
<

−4

4 2 1
1, . What are the 

numerical values of x[ ] x[ ] x[ ] x[ ] x[ ] x[ ] x[ ]− −2 1 0 1 2 3 4, , , , , and ?

Pole-Zero Diagrams and Frequency Response

30. A fi lter has an impulse response h[ ]
[ ] [ ]

n
n n= + −� � 1

2
. A sinusoid x[ ]n  is created 

by sampling, at fs = 10Hz, a continuous-time sinusoid with cyclic frequency f0 .
What is the minimum positive numerical value of f0  for which the forced fi lter 
response is zero?

31. Find the magnitude of the transfer function of the systems with the pole-zero 
plots in Figure E.31 at the specifi ed frequencies. (In each case assume the 

transfer function is of the general form H( )
( )( ) ( )

( )( ) ( )
,z K

z z z z z z

z p z p z p
N

D
= − − −

− − −
1 2

1 2

�
�

where the z’s are the zeros and the p’s are the poles, and let K = 1.)

  (a) @� = 0   (b) @� = �

-1 0 1
-1

-0.5
0

0.5
1

Re(z)

Im
(z

)

[z]

0.8 -1 0 1
-1

-0.5
0

0.5
1

Re(z)

Im
(z

)

[z]

0.4

-0.7

0.7

Figure E.31

 Exercises without Answers 417

rob80687_ch09_382-419.indd   417rob80687_ch09_382-419.indd   417 12/21/10   7:02:52 PM12/21/10   7:02:52 PM



418 Chapter  9  The z Transform

32. For each of the systems with these pole-zero plots fi nd the discrete-time radian 
frequencies, �max and �min, in the range, − ≤ ≤� ��  for which the transfer 
function magnitude is a maximum and a minimum. If there is more than one 
value of �max or �min, fi nd all such values.

 (a) (b)

-1 0 1
-1

-0.5
0

0.5
1

Re(z) Re(z)

Im
(z

)

[z]

0.5
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33. Sketch the magnitude frequency response of the systems in Figure E.33 from 
their pole-zero diagrams.
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Figure E.33

34. Match the pole-zero plots in Figure E.34 to the corresponding magnitude 
frequency responses.
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Figure E.34

35. Using the following defi nitions of lowpass, highpass, bandpass and bandstop, classify 
the systems whose transfer functions have the pole-zero diagrams in Figure E.35. 
(Some may not be classifi able.) In each case the transfer function is H( )z .
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LP: H( )1 0≠  and H( )− =1 0 HP: H( )1 0=  and H( )− ≠1 0
BP: H( )1 0=  and H( )− =1 0 and H( )z ≠ 0 for some range of z = 1
BS: H( )1 0≠  and H( )− ≠1 0 and H( )z = 0 for at least one z = 1
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Figure E.35

36. For each magnitude frequency response and each unit sequence response in Figure E.36 fi nd the corresponding 
pole-zero diagram.
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10.1 INTRODUCTION AND GOALS
In the application of signal processing to real signals in real systems, we often do not have 
a mathematical description of the signals. We must measure and analyze them to discover 
their characteristics. If the signal is unknown, the process of analysis begins with the  acqui-
sition of the signals, measuring and recording the signals over a period of time. This could 
be done with a tape recorder or other  analog recording device but the most common tech-
nique of acquiring signals today is by sampling. (The term analog refers to continuous-
time signals and systems.) Sampling converts a continuous-time signal into a discrete-time 
signal. In previous chapters we have explored ways of analyzing continuous-time signals 
and discrete-time signals. In this chapter we investigate the relationships between them. 

Much signal processing and analysis today is done using  digital signal process-
ing (DSP). A DSP system can acquire, store and perform mathematical calculations 
on numbers. A computer can be used as a DSP system. Since the memory and mass 
storage capacity of any DSP system are fi nite, it can only handle a fi nite number of 
numbers. Therefore, if a DSP system is to be used to analyze a signal, it can only be 
sampled for a fi nite time. The salient question addressed in this chapter is, “To what 
extent do the samples accurately describe the signal from which they are taken?” We 
will see that whether, and how much, information is lost by sampling depends on the 
way the samples are taken. We will fi nd that under certain circumstances practically all 
of the signal information can be stored in a fi nite number of numerical samples.

Many fi ltering operations that were once done with analog fi lters now use  digital fi l-
ters, which operate on samples from a signal, instead of the original continuous-time signal. 
Modern cellular telephone systems use DSP to improve voice quality, separate channels 
and switch users between cells. Long-distance telephone communication systems use DSP 
to effi ciently use long trunk lines and microwave links. Television sets use DSP to improve 
picture quality. Robotic vision is based on signals from cameras that digitize (sample) an 
image and then analyze it with computation techniques to recognize features. Modern con-
trol systems in automobiles, manufacturing plants and scientifi c instrumentation usually 
have embedded processors that analyze signals and make decisions using DSP.

C H A P T E R  G OA L S

 1. To determine how a continuous-time signal must be sampled to retain most or all 
of its information

 10 C H A P T E R

 Sampling and Signal Processing
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 2. To learn how to reconstruct a continuous-time signal from its samples

 3.  To apply sampling techniques to discrete-time signals and to see the similarities 
with continuous-time sampling

10.2  CONTINUOUS-TIME SAMPLING

 SAMPLING METHODS

Sampling of electrical signals, occasionally currents but usually voltages, is most com-
monly done with two devices, the  sample-and-hold (S/H) and the  analog-to-digital 
converter (ADC). The excitation of the S/H is the analog voltage at its input. When the 
S/H is clocked, it responds with that voltage at its output and holds that voltage until it 
is clocked to acquire another voltage (Figure 10.1).

t

vin(t)

t

vout(t)

t

c(t)

Aperture time

Figure 10.1 
Operation of a sample-and-hold

In Figure 10.1 the signal c( )t  is the clock signal. The acquisition of the input volt-
age signal of the S/H occurs during the  aperture time, which is the width of a clock 
pulse. During the clock pulse the output voltage signal very quickly moves from its 
previous value to track the excitation. At the end of the clock pulse the output voltage 
signal is held at a fi xed value until the next clock pulse occurs.

An ADC accepts an analog voltage at its input and responds with a set of binary 
bits (often called a  code). The  ADC response, can be serial or a parallel. If the ADC 
has a  serial response, it produces on one output pin a single output voltage signal that 
is a timed sequence of high and low voltages representing the 1’s and 0’s of the set of 
binary bits. If the ADC has a  parallel response, there is a response voltage for each bit 
and each bit appears simultaneously on a dedicated output pin of the ADC as a high or 
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422 Chapter  10  Sampling and Signal Processing

low voltage representing a 1 or a 0 in the set of binary bits (Figure 10.2). An ADC may 
be preceded by a S/H to keep its excitation constant during the conversion time.

The excitation of the ADC is a continuous-time signal and the response is a 
discrete-time signal. Not only is the response of the ADC discrete-time but it is also 
 quantized and  encoded. The number of binary bits produced by the ADC is fi nite. 
Therefore, the number of unique bit patterns it can produce is also fi nite. If the number 
of bits the ADC produces is n, the number of unique bit patterns it, can produce is 2n. 
 Quantization is the effect of converting a continuum of (infi nitely many) excitation 
values into a fi nite number of response values. Since the response has an error due to 
quantization, it is as though the signal has noise on it, and this noise is called quan-
tization noise. If the number of bits used to represent the response is large enough, 
quantization noise is often negligible in comparison with other noise sources. After 
quantization the ADC encodes the signal also.  Encoding is the conversion from an 
 analog voltage to a binary bit pattern. The relation between the excitation and response 
of an ADC whose input voltage range is − < < +V t Vin0 0v ( )  is illustrated in Figure 10.3 
for a 3-bit ADC. (A 3-bit ADC is rarely, if ever, actually used, but it does illustrate the 
quantization effect nicely because the number of unique bit patterns is small and the 
quantization noise is large.) 

Figure 10.3
ADC excitation-response relationship

Excitation
voltage

Response code

100

101

110

111

000

001

010

011

�V0 �V0

Serial
ADC

Parallel
ADC

Figure 10.2 
Serial and parallel ADC operation

The effects of quantization are easy to see in a sinusoid quantized by a 3-bit ADC 
(Figure 10.4). When the signal is quantized to 8 bits the quantization error is much 
smaller (Figure 10.5).

The opposite of analog-to-digital conversion is obviously digital-to-analog conver-
sion done by a  digital-to-analog converter (DAC). A DAC accepts binary bit patterns 
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Figure 10.4
Sinusoid quantized to 3 bits
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Figure 10.5
Sinusoid quantized to 8 bits

Figure 10.6
DAC excitation-response relationship
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as its excitation and produces an analog voltage as its response. Since the number of 
unique bit patterns it can accept is fi nite, the DAC response signal is an analog volt-
age that is quantized. The relation between excitation and response for a 3-bit DAC is 
shown in Figure 10.6.

In the material to follow, the effects of quantization will not be considered. The 
model for analyzing the effects of sampling will be that the sampler is ideal in the sense 
that the response signal’s quantization noise is zero.

THE  SAMPLING THEOREM

 Qualitative Concepts
If we are to use samples from a continuous-time signal, instead of the signal itself, the 
most important question to answer is how to sample the signal so as to retain the in-
formation it carries. If the signal can be exactly reconstructed from the samples, then 
the samples contain all the information in the signal. We must decide how fast to sample 
the signal and how long to sample it. Consider the signal x( )t  (Figure 10.7 (a)). Suppose 
this signal is sampled at the  sampling rate illustrated in Figure 10.7 (b). Most people 
would probably intuitively say that there are enough samples here to describe the signal 
adequately by drawing a smooth curve through the points. How about the sampling rate 
in Figure 10.7 (c)? Is this sampling rate adequate? How about the rate in Figure 10.7 (d)? 
Most people would probably agree that the sampling rate in Figure 10.7 (d) is inadequate. 
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424 Chapter  10  Sampling and Signal Processing

A naturally drawn smooth curve through the last sample set would not look very much 
like the original curve. Although the last sampling rate was inadequate for this signal, 
it might be just fi ne for another signal (Figure 10.8). It seems adequate for the signal of 
(Figure 10.8) because it is much smoother and more slowly varying.

The minimum rate at which samples can be taken while retaining the information 
in the signal depends on how fast the signal varies with time, the frequency content of 
the signal. The question of how fast samples have to be taken to describe a signal was 
answered defi nitively by the sampling theorem.  Claude Shannon1 of Bell Labs was a 
major contributor to theories of sampling.

1 Claude Shannon arrived as a graduate student at the Massachusetts Institute of Technology in 1936. In 1937 
he wrote a thesis on the use of electrical circuits to make decisions based on Boolean logic. In 1948, while 
working at Bell Labs, he wrote “A Mathematical Theory of Communication,” which outlined what we now call 
information theory. This work has been called the “Magna Carta” of the information age. He was appointed 
a professor of communication sciences and mathematics at MIT in 1957 but remained a consultant to Bell Labs. 
He was often seen in the corridors of MIT on a unicycle, sometimes juggling at the same time. He also devised 
one of the fi rst chess-playing programs.

t

n

n

n

x(t)

x[n]

x[n]

x[n]

(a)

(b)

(c)

(d)

Figure 10.7 
(a) A continuous-time signal, (b)–(d) discrete-time signals formed 
by sampling the continuous-time signal at different rates

Figure 10.8
A discrete-time signal formed by 
sampling a slowly varying signal

n

x[n]
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Figure 10.9
Pulse train
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 Sampling Theorem Derivation
Let the process of sampling a continuous-time signal x( )t  be to multiply it by a peri-
odic pulse train p( )t . Let the amplitude of each pulse be one, let the width of each pulse 
be w and let the fundamental period of the pulse train be Ts (Figure 10.9).

The pulse train can be mathematically described by p( ) rect( ) ( )t t w tTs
= ∗/ � . The 

output signal is

 y( ) x( ) p( ) x( )[rect( ) ( )]t t t t t w tTs
= = ∗/ � .

The average of the signal y( )t  over the width of the pulse centered at t kTs=  can 
be considered an approximate sample of x( )t  at time t kTs= . The CTFT of y( )t  is 
Y( ) X( ) sinc( ) ( )f f w wf f fs fs

= ∗ �  where f Ts s= 1/  is the pulse repetition rate (pulse 
train fundamental frequency) and

 Y( ) X( ) sinc( ) ( )f f wf wkf f kfs s s
k

= ∗ −
⎡

⎣
⎢

⎤

⎦
⎥

=−∞

∞

∑ �

 Y( ) sinc( ) X( )f wf wkf f kfs s s
k

= −
=−∞

∞

∑ .

The CTFT Y( )f  of the response is a set of replicas of the CTFT of the input signal x( )t  
repeated periodically at integer multiples of the pulse repetition rate fs  and also mul-
tiplied by the value of a sinc function whose width is determined by the pulse width w 
(Figure 10.10). Replicas of the spectrum of the input signal occur multiple times in the 
spectrum of the output signal, each centered at an integer multiple of the pulse repeti-
tion rate and multiplied by a different constant. 

As we make each pulse shorter, its average value approaches the exact value of 
the signal at its center. The approximation of ideal sampling improves as w approaches 
zero. In the limit as w approaches zero,

 y( ) lim x( ) rect(( ) )t t t nT w
w

s
n

= −
→ =−∞

∞

∑
0

/ .

In that limit, the signal power of y( )t  approaches zero. But if we now modify the sam-
pling process to compensate for that effect by making the area of each sampling pulse 
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one instead of the height, we get the new pulse train

 p( ) ( ) rect( ) ( )t w t w tTs
= ∗1/ / �

and now y( )t  is

 y( ) x( )( ) rect(( ) )t t w t nT ws
n

= −
=−∞

∞

∑ 1/ / .

Let the response in this limit as w approaches zero be designated x ( )� t . In that limit, 
the rectangular pulses ( ) rect(( ) )1/ /w t nT ws−  approach unit impulses and

 x ( ) lim y( ) x( ) ( ) x( ) ( )� � �t t t t nT t t
w

s
n

Ts
= = − =

→ =−∞

∞

∑
0

.

This operation is called  impulse sampling or sometimes  impulse modulation. 
Of course, as a practical matter this kind of sampling is impossible because we cannot 
generate impulses. But the analysis of this hypothetical type of sampling is still useful 
because it leads to relationships between the values of a signal at discrete points and 
the values of the signal at all other times. Notice that in this model of sampling, the 
response of the sampler is still a continuous-time signal, but one whose value is zero 
except at the sampling instants. 

It is revealing to examine the CTFT of the newly defi ned response x ( )� t . It is

 X ( ) X( ) ( ) ( ) X( ) ( )/� � �f f T f f f fs T s fs s
= ∗ = ∗1 1/

This is the sum of equal-size replicas of the CTFT X( )f  of the original signal x( )t , each 
shifted by a different integer multiple of the sampling frequency fs , and multiplied by 
fs  (Figure 10.11). These replicas are called  aliases. In Figure 10.11 the dashed lines 
represent the aliases of the original signal’s CTFT magnitude and the solid line rep-
resents the magnitude of the sum of those aliases. Obviously the shape of the original 
signal’s CTFT magnitude is lost in the overlapping process. But if X( )f  is zero for all 
f fm>  and if f fs m> 2 , then the aliases do not overlap (Figure 10.12). 

Figure 10.10 
Magnitude CTFT of input and output signals

�X( f )�

fm�fm

f 

�Xp( f )�

fsfm�fm�fs

f 

Sinc function

rob80687_ch10_420-480.indd   426rob80687_ch10_420-480.indd   426 12/21/10   7:03:24 PM12/21/10   7:03:24 PM



Figure 10.11
CTFT of an impulse-sampled signal
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Figure 10.12
CTFT of a bandlimited signal impulse-sampled above twice 
its bandlimit
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Signals for which X( )f  is zero for all f fm>  are called  strictly bandlimited or, 
more often, just  bandlimited signals. If the aliases do not overlap, then, at least in 
principle, the original signal could be recovered from the impulse-sampled signal by 
fi ltering out the aliases centered at f ± ± ±f f fs s s, , ,2 3 … with a lowpass fi lter whose 
frequency response is

 H
otherwise

rect( )
,

,
f

T f f
T

f

f

s c
s

c
=

<⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ⎛

⎝⎜0 2

⎞⎞
⎠⎟

an “ideal” lowpass fi lter. This fact forms the basis for what is commonly known as the 
sampling theorem.

If a continuous-time signal is sampled for all time at a rate fs  that is more than 
twice the bandlimit fm of the signal, the original continuous-time signal can 
be recovered exactly from the samples.

If the highest  frequency present in a signal is fm, the sampling  rate must be above 2 fm  
and the frequency 2 fm  is called the  Nyquist2 rate. The words rate and frequency both 
describe something that happens periodically. In this text, the word frequency will refer 
to the frequencies present in a signal and the word rate will refer to the way a signal is 
sampled. A signal sampled at greater than its Nyquist rate is said to be  oversampled and 
a signal sampled at less than its Nyquist rate is said to be  undersampled. When a signal 

2  Harry Nyquist received his Ph.D. from Yale in 1917. From 1917 to 1934 he was employed by Bell Labs 
where he worked on transmitting pictures using telegraphy and on voice transmission. He was the fi rst to 
quantitatively explain thermal noise. He invented the vestigial sideband transmission technique still widely 
used in the transmission of television signals. He invented the Nyquist diagram for determining the stability 
of feedback systems.
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428 Chapter  10  Sampling and Signal Processing

is sampled at a rate fs the frequency fs /2 is called the  Nyquist frequency. Therefore, if a 
signal has any signal power at or above the Nyquist frequency the aliases will overlap.

Another sampling model that we have used in previous chapters is the creation of 
a discrete-time signal x[ ]n   from a continuous-time signal x( )t  through x[ ] x( )n nTs=  
where Ts is the time between consecutive samples. This may look like a more realistic 
model of practical sampling, and in some ways it is, but instantaneous sampling at a 
point in time is also not possible practically. We will refer to this sampling model as 
simply “sampling” instead of “impulse sampling.”

Recall that the DTFT  of any discrete-time signal is always periodic. The CTFT 
 of an impulse-sampled signal is also periodic. The CTFT of an impulse-sampled 
continuous-time signal x ( )� t  and the DTFT of a discrete-time signal x [ ]s n  formed by 
sampling that same continuous-time signal are similar (Figure 10.13). (The s subscript 
on x [ ]s n  is there to help avoid confusion between the different transforms that follow.) 
The waveshapes are the same. The only difference is that the DTFT is based on normal-
ized frequency F or � and the CTFT on actual frequency f or �. The sampling theorem 
can be derived using the DTFT instead of the CTFT and the result is the same.

Figure 10.13 
Comparison between the CTFT of an impulse-sampled signal and the DTFT of a sampled signal
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 ALIASING

The phenomenon of aliasing (overlapping of aliases) is not an exotic mathematical 
concept that is outside the experience of ordinary people. Almost everyone has observed 
aliasing, but probably without knowing what to call it. A very common experience 
that illustrates aliasing sometimes occurs while watching television. Suppose you are 
watching a Western movie on television and there is a picture of a horse-drawn wagon 
with spoked wheels. If the wheels on the wagon gradually rotate faster and faster, a 
point is reached at which the wheels appear to stop rotating forward and begin to ap-
pear to rotate backward even though the wagon is obviously moving forward. If the 
speed of rotation were increased further, the wheels would eventually appear to stop 
and then rotate forward again. This is an example of the phenomenon of aliasing. 
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Figure 10.14 
Wagon wheel angular positions at four 
sampling times

t = 0 t = Ts t = 2Ts t = 3Ts

Slow

Fast

Although it is not apparent to the human eye, the image on a television screen is 
fl ashed upon the screen 30 times per second (under the NTSC video standard). That is, 
the image is effectively sampled at a rate of 30 Hz. Figure 10.14 shows the positions of 
a spoked wheel at 4 sampling instants for several different rotational velocities, starting 
with a lower rotational velocity at the top and progressing toward a higher rotational 
velocity at the bottom. (A small index dot has been added to the wheel to help in seeing 
the actual rotation of the wheel, as opposed to the apparent rotation.)

This wheel has eight spokes, so upon rotation by one-eighth of a complete 
revolution the wheel looks exactly the same as in its initial position. Therefore the 
image of the wheel has an angular period of �/4 radians or 45°, the angular spacing 
between spokes. If the rotational velocity of the wheel is f0 revolutions/second (Hz) 
the image fundamental frequency is 8 0f  Hz. The image repeats exactly eight times in 
one complete wheel rotation. 

Let the image be sampled at 30 Hz (Ts = 1 30/ s). On the top row the wheel is rotat-
ing clockwise at −5�/Ts  (−150�/s or −0.416 rev/s) so that in the top row the spokes have 
rotated by 0°, 5°, 10° and 15° clockwise. The eye and brain of the observer interpret 
the succession of images to mean that the wheel is rotating clockwise because of the 
progression of angles at the sampling instants. In this case the wheel appears to be 
(and is) rotating at an image rotational frequency of −150�/s. 

In the second row, the rotational speed is four times faster than in the top row and 
the angles of rotation at the sampling instants are 0°, 20°, 40° and 60° clockwise. The 
wheel still (correctly) appears to be rotating clockwise at its actual rotational frequency 
of −600�/s. In the third row, the rotational speed is −675�/s. Now the ambiguity caused 
by sampling begins. If the index dot were not there it would be impossible to deter-
mine whether the wheel is rotating −22.5° per sample or +22.5° per sample because the 
image samples are identical for those two cases. It is impossible, by simply looking at the 
sample images, to determine whether the rotation is clockwise or counterclockwise. In 
the fourth row the wheel is rotating at −1200�/s. Now (ignoring the index dot) the wheel 
defi nitely appears to be rotating at +5° per sample instead of the actual rotational fre-
quency of −40° per sample. The perception of the human brain would be that the wheel 
is rotating 5° counterclockwise per sample instead of 40° clockwise. In the bottom row 
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430 Chapter  10  Sampling and Signal Processing

the wheel rotation is −1350�/s or clockwise 45° per sample. Now the wheel appears to be 
standing still even though it is rotating clockwise. Its angular velocity seems to be zero 
because it is being sampled at a rate exactly equal to the image fundamental frequency.

EXAMPLE 10.1

 Finding Nyquist rates  of signals

Find the Nyquist rate for each of the following signals.

(a) x( ) cos( )t t= 25 500�

 X( ) . [ ( ) ( )]f f f= − + +12 5 250 250� �

 The highest frequency (and the only frequency) present in this signal is fm = 250 Hz. The 
Nyquist rate is 500 Hz.

(b) x( ) rect( )t t= 15 2/

 X( ) sinc( )f f= 30 2

 Since the sinc function never goes to zero and stays there, at a fi nite frequency, the highest 
frequency in the signal is infi nite and the Nyquist rate is also infi nite. The rectangle 
function is not bandlimited.

(c) x( ) sinc( )t t= 10 5

 X( ) rect( )f f= 2 5/

 The highest frequency present in x( )t  is the value of f at which the rect function has its 
discontinuous transition from one to zero fm = 2 5. Hz. Therefore the Nyquist rate 
is 5 Hz.

(d) x( ) sinc( )sin( , )t t t= 2 5000 500 000�

 X( ) rect [ ( , ) (f
f j

f f= ⎛
⎝⎜

⎞
⎠⎟ ∗ + − −1

2500 5000 2
250 000 2� � 550 000, )]

 X( ) rect
,

rect
,

f
j f f= +⎛

⎝⎜
⎞
⎠⎟ −

−
5000

250 000

5000

250 000

55000
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 The highest frequency in x( )t  is fm = 252 5. kHz. Therefore the Nyquist rate is 505 kHz.

EXAMPLE 10.2

Analysis of an  RC fi lter as an  anti-aliasing fi lter

Suppose a signal that is to be acquired by a data acquisition system is known to have an ampli-
tude spectrum that is fl at out to 100 kHz and drops suddenly there to zero. Suppose further that 
the fastest rate at which our data acquisition system can sample the signal is 60 kHz. Design an 
RC, lowpass, anti-aliasing fi lter that will reduce the signal’s amplitude spectrum at 30 kHz to 
less than 1% of its value at very low frequencies so that aliasing will be minimized.

The frequency response of a unity-gain RC lowpass fi lter is

 H( )f
j f RC

=
+

1

2 1�
.
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The squared magnitude of the frequency response is

 H( )
( )

f
fRC

2
2

1

2 1
=

+�

and its value at very low frequencies approaches one. Set the RC time constant so that at 30 kHz, 
the squared magnitude of H( )f  is ( . )0 01 2.

 H( , )
( , )

( . )30 000
1

2 30 000 1
0 012

2
2=

× × +
=

� RC

Figure 10.15
(a) Magnitude frequency response of the anti-aliasing RC lowpass fi lter, 
(b) Magnitude frequency response of a 6th-order Butterworth anti-aliasing 
lowpass Filter
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Solving for RC, RC = 0 5305. ms. The corner frequency (−3dB frequency) of this RC lowpass fi lter 
is 300 Hz, which is 100 times lower than the Nyquist frequency of 30 kHz (Figure 10.15). It must 
be set this low to meet the specifi cation using a single-pole fi lter because its frequency response 
rolls off so slowly. For this reason most practical anti-aliasing fi lters are designed as higher-order 
fi lters with much faster transitions from the pass band to the stop band. Figure 10.15 (b) shows 
the frequency response of a 6th-order  Butterworth lowpass fi lter.(Butterworth fi lters are covered 
in chapter 15.) The higher order fi lter preserves much more of the signal than the RC fi lter.

TIME-LIMITED AND  BANDLIMITED SIGNALS

Recall that the original mathematical statement of the way a signal is sampled is 
x [ ] x( )s sn nT= . This equation holds true for any integer value of n and that implies that 
the signal x( )t  is sampled for all time. Therefore infi nitely many samples are needed to 
describe x( )t  exactly from the information in x [ ]s n . The sampling theorem is predicated 
on sampling this way. So, even though the Nyquist rate has been found, and may be 
fi nite, one must (in general) still take infi nitely many samples to exactly reconstruct the 
original signal from its samples, even if it is bandlimited and we oversample. 

It is tempting to think that if a signal is  time limited (having nonzero values only 
over a fi nite time), one could then sample only over that time, knowing all the other 
samples are zero, and have all the information in the signal. The problem with that idea 
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432 Chapter  10  Sampling and Signal Processing

is that no time-limited signal can also be bandlimited, and therefore no fi nite sampling 
rate is adequate. 

The fact that a signal cannot be simultaneously time limited and bandlimited is a 
fundamental law of Fourier analysis. The validity of this law can be demonstrated by 
the following argument. Let a signal x( )t  have no nonzero values outside the time range 
t t t1 2< < . Let its CTFT be X( )f . If x( )t  is time limited to the time range t t t1 2< < , then 
it can be multiplied by a rectangle function whose nonzero portion covers this same 
time range, without changing the signal. That is,

 x( ) x( ) rectt t
t t

t
= −⎛

⎝
⎞
⎠

0

�
 (10.1)

where t t t0 1 2 2= +( )/  and �t t t= −2 1 (Figure 10.16). 

Finding  the CTFT of both sides of (10.1) we obtain X( ) X( ) sinc( )f f t tf e j ft= ∗ −� � 2 0� . 
This last equation says that X( )f  is unaffected by being convolved with a sinc function. 
Since sinc( )�tf  has an infi nite nonzero extent in f, if it is convolved with an X( )f  that has 
a fi nite nonzero extent in f, the convolution of the two will have an infi nite nonzero extent 
in f. Therefore the last equation cannot be satisfi ed by any X( )f  that has a fi nite nonzero 
extent in f, proving that if a signal is time limited it cannot be bandlimited. The converse, 
that a bandlimited signal cannot be time limited, can be proven by a similar argument.

A signal can be simultaneously unlimited in both time and frequency but it 
cannot be simultaneously limited in both time and frequency.

 INTERPOLATION

 Ideal  Interpolation
The description given above on how to recover the original signal indicated that we 
could fi lter the impulse-sampled signal to remove all the aliases except the one cen-
tered at zero frequency. If that fi lter were an ideal lowpass fi lter with a constant gain of 
T fs s= 1/  in its passband and bandwidth fc where f f f fm c s m< < −  that operation in the 
frequency domain would be described by

 X( ) rect( ) X ( ) rect( ) X( )f T f f f T f f f fs c s c s= × = × ∗/ /2 2� � ffs
f( ).

If we inverse transform this expression we get

 
x( ) sinc( ) x( )( ) ( )

(

t T f f f t t f ts s c c s T

f

s
= ∗

=
=

1
1

2 2 1� /

/

�

ss s s
n

nT t nT) x( ) ( )� −
=−∞

∞

∑
� ��� ���

Figure 10.16 
A time-limited function and a rectangle 
time-limited to the same time

t1 t2
t

x(t)

1
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or

 x( ) ( )sinc( ) x( ) ( )t f f f t nT t nTc s c s s
n

= ∗ −
=−∞

∞

∑2 2/ �

 x( ) ( ) x( )sinc( ( ))t f f nT f t nTc s s c s
n

= −
=−∞

∞

∑2 2/  (10.2)

By pursuing an admittedly impractical idea, impulse sampling, we have arrived 
at a result that allows us to fi ll in the values of a signal for all time, given its values at 
equally spaced points in time. There are no impulses in (10.2), only the sample values, 
which are the strengths of the impulses that would have been created by impulse sam-
pling. The process of fi lling in the missing values between the samples is called inter-
polation. 

Consider the special case f fc s= /2. In this case the interpolation process is de-
scribed by the simpler expression

 x( ) x( )sinc(( ) )t nT t nT Ts s s
n

= −
=−∞

∞

∑ / .

Now interpolation consists simply of multiplying each sinc function by its correspond-
ing sample value and then adding all the scaled and shifted sinc functions as illustrated  
in Figure 10.17.

Referring to Figure 10.17, notice that each sinc function peaks at its sample time 
and is zero at every other sample time. So the interpolation is obviously correct at 
the sample times. The derivation above shows that it is also correct at all the points 
between sample times.

 Practical Interpolation
The interpolation method in the previous section reconstructs the signal exactly but 
it is based on an assumption that is never justifi ed in practice, the availability of  infi -
nitely many samples. The interpolated value at any point is the sum of contributions 
from infi nitely many weighted sinc functions, each of infi nite time extent. But since, 
as a practical matter, we cannot acquire infi nitely many samples, much less process 
them, we must approximately reconstruct the signal using a fi nite number of samples. 
Many techniques can be used. The selection of the one to be used in any given situa-
tion depends on what accuracy of reconstruction is required and how oversampled the 
signal is.

Figure 10.17
Interpolation process for an ideal lowpass fi lter corner frequency set to 
half the sampling rate

t 

x(t)

Ts
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434 Chapter  10  Sampling and Signal Processing

  Zero-Order Hold Probably the simplest approximate reconstruction idea is to simply 
let the reconstruction always be the value of the most recent sample (Figure 10.18). This 
is a simple technique because the samples, in the form of numerical codes, can be the 
input signal to a DAC that is clocked to produce a new output signal with every clock 
pulse. The signal produced by this technique has a “stair-step” shape that follows the 
original signal. This type of  signal reconstruction can be modeled by impulse sampling 
the signal and letting the impulse-sampled signal excite a system called a zero-order 
hold whose impulse response is

 h( )
,

,
rectt

t T t T

T
s s

s
=

< <⎧
⎨
⎩

⎫
⎬
⎭
= −⎛

⎝⎜
⎞1 0

0
2

otherwise
/
⎠⎠⎟

(Figure 10.19).
One popular way of further reducing the effects of the aliases is to follow the zero-

order hold with a practical lowpass fi lter that smooths out the steps caused by the zero-
order hold. The zero-order hold inevitably causes a delay relative to the original signal 
because it is causal and any practical lowpass smoothing fi lter will add still more delay.

 First-Order Hold Another natural idea is to interpolate between samples with straight 
lines (Figure 10.20). This is obviously a better approximation to the original signal but 
it is a little harder to implement. As drawn in Figure 10.20, the value of the interpolated 
signal at any time depends on the value of the previous sample and the value of the 
next sample. This cannot be done in real time because the value of the next sample is 
not known in real time. But if we are willing to delay the reconstructed signal by one 
sample time Ts we can make the reconstruction process occur in real time. The recon-
structed signal would appear as shown in Figure 10.21.

Figure 10.18
Zero-order-hold signal reconstruction

x(t)

t 

Figure 10.19
Impulse response of a zero-order hold

h(t)

t 
Ts

1

Figure 10.20 
Signal reconstruction by straight-line interpolation

x(t)

t 

Figure 10.21
 Straight-line signal reconstruction delayed by one sample time

x(t)

t 
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This interpolation can be accomplished by following the zero-order hold by an 
identical zero-order hold. This means that the impulse response of such an interpola-
tion system would be the convolution of the zero-order hold impulse response with 
itself

 h( ) rect rect trit
t T

T

t T

T

ts

s

s

s
= −⎛

⎝⎜
⎞
⎠⎟
∗ −⎛

⎝⎜
⎞
⎠⎟
=/ /2 2 −−⎛

⎝⎜
⎞
⎠⎟

T

T
s

s

(Figure 10.22). This type of interpolation system is called a fi rst-order hold. 

Figure 10.22
Impulse response of a fi rst-order hold

h(t)

t 
2Ts

1

One very familiar example of the use of sampling and  signal reconstruction is the 
playback of an  audio compact disk (CD). A CD stores samples of a musical signal that 
have been taken at a rate of 44.1 kHz. Half of that sampling rate is 22.05 kHz. The 
frequency response of a young, healthy human ear is conventionally taken to span from 
about 20 Hz to about 20 kHz with some variability in that range. So the  sampling rate 
is a little more than twice the highest frequency the human ear can detect.

 SAMPLING BANDPASS SIGNALS

The sampling theorem, as stated above, was based on a simple idea. If we sample fast 
enough, the aliases do not overlap and the original signal can be recovered by an ideal 
lowpass fi lter. We found that if we sample faster than twice the highest frequency in 
the signal, we can recover the signal from the samples. That is true for all signals, but 
for some signals, the  minimum sampling rate can be reduced.

In making the argument that we must sample at a rate greater than twice the 
highest frequency in the signal, we were implicitly assuming that if we sampled at 
any lower rate the aliases would overlap. In the spectra used above to illustrate the 
ideas, the aliases would overlap. But that is not true of all signals. For example, let 
a continuous-time signal have a narrow bandpass spectrum that is nonzero only for 
15 20kHz kHz< <f . Then the bandwidth of this signal is 5 kHz (Figure 10.23).

Figure 10.23 
A  narrow-bandpass-signal spectrum

-20 -15
f (kHz)

15 20

x(f )
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436 Chapter  10  Sampling and Signal Processing

If we impulse sample this signal at 20 kHz we would get the aliases illustrated in 
Figure 10.24. These aliases do not overlap. Therefore it must be possible, with knowl-
edge of the original signal’s spectrum and the right kind of fi ltering, to recover the sig-
nal from the samples. We could even sample at 10 kHz, half the highest frequency, get 
the aliases in Figure 10.25 and still recover the original signal (theoretically) with that 
same fi lter. But if we sampled at any lower rate the aliases would defi nitely overlap and 
we could not recover the original signal. Notice that this minimum sampling rate is not 
twice the highest frequency in the signal but rather twice the bandwidth of the signal.

Figure 10.24 
The spectrum of a bandpass signal impulse-sampled at 20 kHz

|Xδ( f )|

-20 -10 10 20
f (kHz)

... ...

Figure 10.26
 Magnitude spectrum of a general bandpass signal

-fH fH-fL fL
f 

|X(f )|

Figure 10.25 
The spectrum of a bandpass signal impulse-sampled at 10 kHz

|Xδ ( f )|

-40 -30 -20 -10 10 20 30 40
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... ...

The aliases occur at shifts of integer multiples of the sampling rate. Let the integer 
k index the aliases. Then the (k −1)th alias must lie wholly below fL and the kth alias 
must lie wholly above fH . That is

 ( ) ( ) ( )k f f f k f fs L L s L− + − < ⇒ − <1 1 2

and
 kf f f kf fs H H s H+ − > ⇒ >( ) 2 .

Rearranging these two inequalities we get

 ( ) ( )k f f Bs H− < −1 2

In this example the ratio of the highest frequency to the bandwidth of the signal 
was an integer. When that ratio is not an integer it becomes more diffi cult to fi nd the 
minimum sampling rate that avoids  aliasing (Figure 10.26).
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where B is the bandwidth f fH L−  and

 
1

2f

k

fs H
< .

Now set the product of the left sides of these inequalities less than the product of the 
right sides of these inequalities

 k f B
k

f
k

f

B
H

H

H− < − ⇒ <1 ( )

Since k must be an integer, that means that the real limit on k is

 k
f

B
H

max = ⎢
⎣⎢

⎥
⎦⎥

the greatest integer in f BH / . So the two conditions, 

 k
f

B
H

max = ⎢
⎣⎢

⎥
⎦⎥
 and k

f

f
H

s
max

,min
> 2

or the single condition

 f
f

f B
s

H

H
,min >

⎢⎣ ⎥⎦
2

/

determine the minimum sampling rate for which aliasing does not occur.

EXAMPLE 10.3

Minimum  sampling rate to avoid aliasing

Let a signal have no nonzero spectral components outside the range 34 47kHz kHz< <f . What 
is the minimum sampling rate that avoids aliasing?

 f
f

f B
s

H

H
,min .>

⎢⎣ ⎥⎦
=
⎢⎣ ⎥⎦

=2 94

47 13
31 3

/

kHz

kHz/ kHz
333 kHz

EXAMPLE 10.4

Minimum sampling rate to avoid aliasing

Let a signal have no nonzero spectral components outside the range 0 580< <f kHz. What is 
the minimum sampling rate that avoids aliasing?

 f
f

f B
s

H

H
,min >

⎢⎣ ⎥⎦
=
⎢⎣ ⎥⎦

=2 1160

580 580/

kHz

kHz / kHz
11160 kHz

This is a lowpass signal and the minimum sampling rate is twice the highest frequency as origi-
nally determined in the sampling theorem.

In most real engineering design situations, choosing the sampling rate to be more 
than twice the highest frequency in the signal is the practical solution. As we will soon 
see, that rate is usually considerably above the Nyquist rate in order to simplify some 
of the other signal processing operations.
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438 Chapter  10  Sampling and Signal Processing

 SAMPLING A SINUSOID

The whole point of Fourier analysis is that any signal can be decomposed into sinusoids 
(real or complex). Therefore, let’s explore sampling by looking at some real  sinusoids 
 sampled above, below and at the Nyquist rate. In each example a sample occurs at time 
t = 0. This sets a defi nite phase relationship between an exactly described mathematical 
signal and the way it is sampled. (This is arbitrary, but there must always be a sampling-
time reference and, when we get to sampling for fi nite times, the fi rst sample will al-
ways be at time t = 0 unless otherwise stated. Also, in the usual use of the DFT in digital 
signal processing, the fi rst sample is normally assumed to occur at time t = 0.) 

Case 1.   A cosine sampled at a rate that is four times its frequency or at twice 
its Nyquist rate (Figure 10.27).

Figure 10.28 
Cosine sampled at its Nyquist rate

n

x(t)x[n]

Figure 10.29 
Sinusoid with same samples as a cosine 
sampled at its Nyquist rate

n

x[n]

Figure 10.27
Cosine sampled at twice its Nyquist rate

n

x(t)x[n]

It is clear here that the sample values and the knowledge that the signal is sampled fast 
enough are adequate to uniquely describe this sinusoid. No other sinusoid of this, or any 
other frequency, below the Nyquist frequency could pass exactly through all the samples 
in the full time range −∞ < < +∞n . In fact no other signal of any kind that is bandlim-
ited to below the Nyquist frequency could pass exactly through all the samples.

Case 2.  A cosine sampled at twice its frequency or at its Nyquist rate 
(Figure 10.28)

Is this sampling adequate to uniquely determine the signal? No. Consider the sinusoidal 
signal in Figure 10.29, which is of the same frequency and passes exactly through the 
same samples.

This is a special case that illustrates the subtlety mentioned earlier in the sampling 
theorem. To be sure of exactly reconstructing any general signal from its samples, the 
sampling rate must be more than the Nyquist rate instead of at least the Nyquist rate. 
In earlier examples, it did not matter because the signal power at exactly the Nyquist 
frequency was zero (no impulse in the amplitude spectrum there). If there is a sinusoid 
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in a signal, exactly at its bandlimit, the sampling must exceed the Nyquist rate for exact 
reconstruction, in general. Notice that there is no ambiguity about the frequency of the 
signal. But there is ambiguity about the amplitude and phase as illustrated above. If the 
sinc-function-interpolation procedure derived earlier were applied to the samples in 
Figure 10.29, the cosine in Figure 10.28 that was sampled at its peaks would result.

Any sinusoid at some frequency can be expressed as the sum of an unshifted cosine 
of some amplitude at the same frequency and an unshifted sine of some amplitude at 
the same frequency. The amplitudes of the unshifted  sine and cosine depend on the 
phase of the original sinusoid. Using a trigonometric identity,

 A f t A f t A f tcos( ) cos( ) cos( ) sin( )sin(2 2 20 0 0� � � � �+ = − ��).

 A f t A f t A
Ac

cos( ) cos( ) cos( ) [ sin(2 20 0� � � � �+ = + −��� �� ))]sin( )
As

f t� �� �� 2 0�

 A f t A f t A f tc scos( ) cos( ) sin( )2 2 20 0 0� � � �+ = +

When a sinusoid is sampled at exactly the Nyquist rate the sinc-function interpolation 
always yields the cosine part and drops the sine part, an effect of aliasing. The cosine 
part of a general sinusoid is often called the  in-phase part and the sine part is often 
called the  quadrature part. The dropping of the quadrature part of a sinusoid can eas-
ily be seen in the time domain by sampling an unshifted sine function at exactly the 
Nyquist rate. All the samples are zero (Figure 10.30).

Figure 10.30 
Sine sampled at its Nyquist rate

n

x(t)x[n]

If we were to add a sine function of any amplitude at exactly this frequency to any 
signal and then sample the new signal, the samples would be the same as if the sine 
function were not there because its value is zero at each sample time (Figure 10.31). 
Therefore, the quadrature or sine part of a signal that is at exactly the Nyquist frequency 
is lost when the signal is sampled.

Case 3.  A sinusoid sampled at slightly above the Nyquist rate 
(Figure 10.32).

Now, because the sampling rate is higher than the Nyquist rate, the samples do not all 
occur at zero crossings and there is enough information in the samples to reconstruct 
the signal. There is only one sinusoid whose frequency is less than the Nyquist fre-
quency, of a unique amplitude, phase and frequency that passes exactly through all 
these samples.

Case 4. Two sinusoids of different frequencies sampled at the same rate with 
the same sample values (Figure 10.33).

In this case, the lower-frequency sinusoid is oversampled and the higher-frequency 
sinusoid is undersampled. This illustrates the ambiguity caused by  undersampling. If 
we only had access to the samples from the higher-frequency sinusoid and we believed 
that the signal had been properly sampled according to the sampling theorem, we 
would interpret them as having come from the lower-frequency sinusoid.
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440 Chapter  10  Sampling and Signal Processing

Figure 10.32 
Sine sampled at slightly above its 
Nyquist rate

n

x(t)x[n]

Figure 10.31 
Effect on samples of adding a sine at the Nyquist frequency
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Figure 10.33 
Two sinusoids of different frequencies that have the same 
sample values

n

x[n]

If a sinusoid x ( ) cos( )1 02t A f t= +� �  is sampled at a rate fs, the samples will be 
the same as the samples from another sinusoid x ( ) cos( ( ) )2 02t A f k f ts= + +� � , where 
k is any integer (including negative integers). This can be shown by expanding the 
argument of x ( )2 t  x ( ) cos( ( ) )2 02 2t A f t kf ts= + +� � � . The samples occur at times nTs 
where n is an integer. Therefore the nth sample values of the two sinusoids are

 x ( ) cos( )1 02nT A f nTs s= +� �  and x ( ) cos( ( ) )2 02 2nT A f nT kf nTs s s s= + +� � �
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and, since f Ts s = 1, the second equation simplifi es to x ( ) cos( )2 02 2nT A f nT k ns s= + +� � � . 
Since kn is the product of integers and therefore also an integer, and since adding an integer 
multiple of 2π to the argument of a sinusoid does not change its value,

 x ( ) cos( ) cos( ) x2 0 0 12 2 2nT A f nT k n A f nTs s s= + + = + =� � � � � (( )nTs .

 BAND-LIMITED PERIODIC SIGNALS

In a previous section we saw what the requirements were for adequately sampling a 
signal. We also learned that, in general, for perfect reconstruction of the signal, infi -
nitely many samples are required. Since any DSP system has a fi nite storage capability, 
it is important to explore methods of signal analysis using a fi nite number of samples. 

There is one type of signal that can be completely described by a fi nite number of 
samples, a bandlimited, periodic signal. Knowledge of what happens in one period is 
suffi cient to describe all periods and one period is fi nite in duration (Figure 10.34).

Figure 10.34 
A bandlimited, periodic, 
continuous-time signal and a 
discrete-time signal formed 
by sampling it 8 times per 
fundamental period

n

x[n]

n = N0

t

x(t)

t = T0

Therefore, a fi nite number of samples over one period of a bandlimited, periodic 
signal taken at a rate that is above the Nyquist rate and is also an  integer multiple of the 
fundamental frequency is a complete description of the signal. Making the sampling 
rate an integer multiple of the fundamental frequency ensures that the samples from any 
fundamental period are exactly the same as the samples from any other fundamental 
period.

Let the signal formed by sampling a bandlimited, periodic signal x( )t  above its 
Nyquist rate be the periodic signal x [ ]s n  and let an impulse-sampled version of x( )t , 
sampled at the same rate, be x ( )� t  (Figure 10.35).

Only one fundamental period of samples is shown in Figure 10.35 to emphasize 
that one fundamental period of samples is enough to completely describe the bandlim-
ited periodic signal. We can fi nd the appropriate Fourier transforms of these signals 
(Figure 10.36).

The CTFT of x( )t  consists only of impulses because it is periodic and it consists of 
a fi nite number of impulses because it is bandlimited. So a fi nite number of numbers 
completely characterizes the signal in both the time and frequency domains. If we mul-
tiply the impulse strengths in X( )f  by the sampling rate fs  we get the impulse strengths 
in the same frequency range of X ( )� f .

 10.2 Continuous-Time Sampling 441
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442 Chapter  10  Sampling and Signal Processing

EXAMPLE 10.5

Finding a CTFS harmonic function  from a DFT harmonic function

Find the CTFS harmonic function for the signal x( ) cos( ) sin( )t t t= + −4 2 20 3 40� �  by sam-
pling above the Nyquist rate at an integer multiple of the fundamental frequency over one fun-
damental period and fi nding the DFT harmonic function of the samples.

There are exactly three frequencies present in the signal, 0 Hz, 10 Hz and 20 Hz. Therefore, 
the highest frequency present in the signal is fm = 20 Hz  and the Nyquist rate is 40 Hz. The 
fundamental frequency is the greatest common divisor of 10 Hz, and 20 Hz, which is 10 Hz. So 
we must sample for 1 10/  second. If we were to sample at the Nyquist rate for exactly one funda-
mental period, we would get 4 samples. If we are to sample above the Nyquist rate at an integer 
multiple of the fundamental frequency, we must take 5 or more samples in one fundamental 
period. To keep the calculations simple we will sample 8 times in one fundamental period, a 
sampling rate of 80 Hz. Then, beginning the sampling at time t = 0, the samples are

 {x[ ],x[ ], x[ ]} {0 1 7… = + − −6, 1 2, 4, 7 2, 2, 1 2, 4, 7 ++ 2}.

Using the formula for fi nding the DFT harmonic function  of a discrete-time function,

 X[ ] x[ ] /k n e j kn N

n N

= −

=
∑ 2 0

0

�

Figure 10.35 
A bandlimited periodic continuous-time signal, a 
discrete-time signal a continuous-time impulse signal 
created by sampling it above its Nyquist rate

t 
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-0.5

0.5

T0

n
26

-0.5

0.5

N0

t
0.2

-0.5

0.5

T0

x(t)

xδ(t)

xδ[n]

Figure 10.36 
Magnitudes of the Fourier transforms of the three 
time-domain signals of Figure 10.35
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we get

 {X[ ],X[ ], ,X[ ]} {0 1 7… = −32, 8, 12, 0, 0, 0, 12, 8j j }}.

The right-hand side of this equation is one fundamental period of the DFT harmonic function 
X[ ]k  of the function x[ ]n . Finding the CTFS harmonic function of x( ) cos( )t t= +4 2 20�

sin( )t− 3 40�  directly using 

 c [ ] ( ) x( )x
/k T t e dtj kt T

T
= −∫1 0

2 0

0

/ �

we get 

 {c [ ],c [ ], ,c [ ]} { , , , , , ,x x x− − … = −4 3 4 0 0 3 2 1 4 1/j j33 2 0 0/ , , }.

From the two results, 1/N times the values {X[ ],X[ ],X[ ],X[ ],X[ ]}0 1 2 3 4  in the DFT harmonic 
function and the CTFS harmonic values {c [ ],c [ ],c [ ],c [ ],c [ ]}x x x x x0 1 2 3 4  are the same and, using 
the fact that X[ ]k  is periodic with fundamental period 8, ( ){X[ ],X[ ],X[ ],X[ ]}1 8 4 3 2 1/ − − − −  and 
{c [ ],c [ ],c [ ],c [ ]}x x x x− − − −4 3 2 1  are the same also.

Now let’s violate the sampling theorem by sampling at the Nyquist rate. In this case there 
are 4 samples in one fundamental period

 {x[ ],x[ ],x[ ]x[ ]}0 1 2 3 = {6, 4, 2, 4}

and one period of the DFT harmonic function is

 {X[ ],X[ ],X[ ],X[ ]} { }0 1 2 3 16 0= , 4, , 4 .

The nonzero values of the CTFS harmonic function are the set

 {c [ ],c [ ], ,c [ ]} { , , , , }x x x− − … = −2 1 2 3 2 1 4 1 3 2j j/ / .

The j3 2/ for c [ ]x 2  is missing from the DFT harmonic function because X[ ]2 0= . This is the 
amplitude of the sine function at 40 Hz. This is a demonstration that when we sample a sine 
function at exactly the Nyquist rate, we don’t see it in the samples because we sample it exactly 
at its zero crossings.

A thoughtful reader may have noticed that the description of a signal based on 
samples in the time domain from one fundamental period consists of a fi nite set of 
numbers x [ ],s n n n n N0 0≤ < + , which contains N independent real numbers, and the 
corresponding DFT harmonic-function description of the signal in the frequency do-
main consists of the fi nite set of numbers X [ ],s k k k k N0 0≤ < + , which contains N  
complex numbers and therefore 2N real numbers (two real numbers for each complex 
number, the real and imaginary parts). So it might seem that the description in the time 
domain is more effi cient than in the frequency domain since it is accomplished with 
fewer real numbers. But how can this be when the set X [ ],s k k k k N0 0≤ < +  is calcu-
lated directly from the set x [ ],s n n n n N0 0≤ < +  with no extra information? A closer 
examination of the relationship between the two sets of numbers will reveal that this 
apparent difference is an illusion.

As fi rst discussed in Chapter 7, X [ ]s 0  is always real. It can be computed by the 
DFT formula as

 X [ ] x [ ]s s
n N

n0 =
=
∑ .

 10.2 Continuous-Time Sampling 443
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444 Chapter  10  Sampling and Signal Processing

Since all the x [ ]s n ’s are real, X [ ]s 0  must also be real because it is simply the sum of all 
the x [ ]s n ’s. So this number never has a nonzero imaginary part. There are two cases to 
consider next, N even and N odd. 

Case 1. N  even 

For simplicity, and without loss of generality, in 

 X [ ] x [ ] x [ ]s s
j kn N

n N
s

j kn N

n k

k N

k n e n e= =−

=

−

=

+ −

∑ � �/ /

0

0 1

∑∑

let k N0 2= − / . Then

 X [ ] X [ ] x [ ] x [ ]( )s s s
j n

n N
s

n

n N

k N n e n0 2 1= − = = −
= =
∑ ∑/ �

and X [ ]s N− / 2  is guaranteed to be real. All the DFT harmonic function values in one 
period, other than X [ ]s 0  and X [ ]s N− /2 , occur in pairs X [ ]s k  and X [ ]s k− . Next recall 
that for any real x [ ]s n , X [ ] X [ ]*

s sk k= −  . That is, once we know X [ ]s k  we also know 
X [ ]s k− . So, even though each X [ ]s k  contains two real numbers, and each X [ ]s k−  does 
also, X [ ]s k−  does not add any information since we already know that X [ ] X [ ]*

s sk k= − . 
X [ ]s k−  is not independent of X [ ]s k . So now we have, as independent numbers, X [ ]s 0 , 
X [ ]s N/2  and X [ ]s k  for 1 2≤ <k N/ . All the X [ ]s k ’s from k = 1 to k N= −/2 1 yield a 
total of 2 2 1 2( )N N/ − = −  independent real numbers. Add the two guaranteed-real 
values X [ ]s 0  and X [ ]s N/2  and we fi nally have a total of N  independent real numbers in 
the frequency-domain description of this signal. 

Case 2: N  odd

For simplicity, and without loss of generality, let k N0 1 2= − −( )/ . In this case, we 
simply have X [ ]s 0  plus ( )N −1 2/  complex conjugate pairs X [ ]s k  and X [ ]s k− . We have 
already seen that X [ ] X [ ]*

s sk k= − . So we have the real number X [ ]s 0  and two indepen-
dent real numbers per complex conjugate pair or N −1 independent real numbers for a 
total of N independent real numbers.

The information content in the form of independent real numbers is conserved in 
the process of converting from the time to the frequency domain.

  SIGNAL PROCESSING USING THE DFT

 CTFT-DFT Relationship
In the following development of the relationship between the CTFT and the DFT, all 
the processing steps from the CTFT of the original function to the DFT will be illus-
trated by an example signal. Then several uses of the DFT are developed for signal 
processing operations. We will use the F form of the DTFT because the transform 
relationships are a little more symmetrical than in the � form.

Let a signal x( )t  be sampled and let the total number of samples taken be N where
N Tfs= , T is the total sampling time and fs  is the sampling frequency. Then the time 
between samples is T fs s= 1/ . Below is an example of an original signal in both the time 
and frequency domains (Figure 10.37).

The fi rst processing step in converting from the CTFT to the DFT is to sample 
the signal x( )t  to form a signal x [ ] x( )s sn nT= . The frequency-domain counterpart of 
the discrete-time function is its DTFT. In the next section we will look at the relation 
between these two transforms.
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 CTFT-DTFT Relationship The CTFT is the Fourier transform of a continuous-time 
function and the DTFT is the Fourier transform of a discrete-time function. If we mul-
tiply a continuous-time function x( )t  by a periodic impulse of period Ts , we create the 
 continuous-time impulse function

 x ( ) x( ) ( ) x( ) ( )� � �t t t nT t nTT s s
n

s
= = −

=−∞

∞

∑ . (10.3)

If we now form a function x [ ]s n  whose values are the values of the original continuous-
time function x( )t  at integer multiples of Ts (and are therefore also the strengths of 
the impulses in the continuous-time impulse function x ( )� t ), we get the relationship 
x [ ] x( )s sn nT= . The two functions x [ ]s n  and x ( )� t  are described by the same set of 
numbers (the impulse strengths) and contain the same information. If we now fi nd the 
CTFT of (10.3) we get

 X ( ) X( ) ( ) x( )�
��f f f f nT es f s

j fnT

n
s

s= ∗ = −

=−∞

∞

∑ 2

where f Ts s= 1/  and x( ) X( )t fF← →⎯  or

 X ( ) X( ) x [ ]�
�f f f k f n es s

k
s

j fn f

n

s= − =
=−∞

∞
−

=−∞

∞

∑ ∑ 2 / .

If we make the change of variable f f Fs→  we get

 
X ( ) X( ( )) x [ ]

X

�
�f F f f F k n es s s

k
s

j nF

n

= − =
=−∞

∞
−

=−∞

∞

=

∑ ∑ 2

ss F( )
� ���� ����

The last expression is exactly the defi nition of the DTFT of x [ ]s n , which is X ( )s F . 
Summarizing, if x [ ] x( )s sn nT=  and x ( ) x [ ] ( )� �t n t nTs sn

= −
=−∞

∞∑  then

 X ( ) X ( )s sF f F= �  (10.4)

Figure 10.37 
An original signal and its CTFT
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446 Chapter  10  Sampling and Signal Processing

or

 X ( ) X ( )� f f fs s= / . (10.5)

Also

 X ( ) X( ( ))s s s
k

F f f F k= −
=−∞

∞

∑  (10.6)

(Figure 10.38).

Now we can write the DTFT of x [ ]s n  which is X ( )s F  in terms of the CTFT of x( ),t  
which is X( )f . It is

 X ( ) X( ) ( ) X( ( ))s s s s s
k

F f f F F f f F k= ∗ = −
=−∞

∞

∑�1

a frequency-scaled and periodically repeated version of X( f ) (Figure 10.39).
Next, we must limit the number of samples to those occurring in the total 

discrete-time sampling time N. Let the time of the fi rst sample be n = 0. (This is the 
default assumption in the DFT. Other time references could be used but the effect of 
a different time reference is simply a phase shift that varies linearly with frequency.) 
This can be accomplished by multiplying x [ ]s n  by a  window function

 w[ ]
,

,
n

n N
=

≤ <⎧
⎨
⎩

1 0

0 otherwise

Figure 10.38
Fourier spectra of original signal, impulse sampled signal and sampled 
signal
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as illustrated in Figure 10.40. This window function has exactly N nonzero values, the 
fi rst one being at discrete time n = 0. Call the sampled-and-windowed signal x [ ]sw n . 
Then

 x [ ] w[ ]x [ ]
x [ ],

,
sw s

s
n n n

n n N
= =

≤ <⎧
⎨
⎩

0

0 otherwise
.

The process of limiting a signal to the fi nite range N in discrete time is called 
 windowing, because we are considering only that part of the sampled signal that can be 
seen through a “window” of fi nite length. The  window function need not be a rectangle. 
Other window shapes are often used in practice to  minimize an effect called leakage 
(described below) in the frequency domain. The DTFT of x [ ]sw n  is the periodic con-
volution of the DTFT of the signal x [ ]s n  and the DTFT of the window function w[ ]n , 
which is X ( ) W( ) X ( )sw sF F F= � . The DTFT of the window function is

 W( ) drcl( , )( )F e N F Nj F N= − −� 1 .

Then

 X ( ) drcl( , ) X( ( ))( )
sw

j F N
s s

k

F e N F N f f F k= −− −

=−∞

∞

∑� 1 �

or, using the fact that periodic convolution with a periodic signal is equivalent to ape-
riodic convolution with any aperiodic signal that can be periodically repeated to form 
the periodic signal,

 X ( ) [ drcl( , )] X( )( )
sw s

j F N
sF f e N F N f F= ∗− −� 1 . (10.7)

So the effect in the frequency domain of windowing in discrete-time is that the Fourier 
transform of the time-sampled signal has been periodically convolved with 

 W( ) drcl( , )( )F e N F Nj F N= − −� 1

(Figure 10.41).

Figure 10.40 

Original signal, time-sampled and windowed to form a 

discrete-time signal, and the DTFT of that discrete-time signal
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Figure 10.39 
Original signal, time sampled to form a discrete-time signal, 
and the DTFT of the discrete-time signal
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448 Chapter  10  Sampling and Signal Processing

The convolution process will tend to spread X ( )s F  in the frequency domain, which 
causes the power of X ( )s F  at any frequency to “leak” over into nearby frequencies in 
X ( )sw F . This is where the term leakage comes from. The use of a different window function 
whose DTFT is more confi ned in the frequency domain reduces (but can never completely 
eliminate) leakage. As can be seen in Figure 10.41, as the number of samples N increases, 
the width of the main lobe of each fundamental period of this function decreases,  reducing 
leakage. So another way to reduce leakage is to use a larger set of samples.

At this point in the process we have a fi nite sequence of numbers from the sampled-
and-windowed signal, but the DTFT of the windowed signal is a  periodic function in 
continuous frequency F and therefore not appropriate for computer storage and ma-
nipulation. The fact that the time-domain function has become time limited by the 
windowing process and the fact that the frequency-domain function is periodic allow 
us to sample now in the frequency domain over one fundamental period to completely 
describe the frequency-domain function. It is natural at this point to wonder how a 
frequency-domain function must be sampled to be able to reconstruct it from its sam-
ples. The answer is almost identical to the answer for sampling time-domain signals 
except that time and frequency have exchanged roles. The relations between the time 
and frequency domains are almost identical because of the duality of the forward and 
inverse Fourier transforms.

 Sampling and Periodic-Repetition Relationship The inverse DFT of a periodic 
function x[ ]n  with fundamental period N  is defi ned by

 x[ ] X[ ]n
N

k e j kn N

k N

=
=
∑1 2� / . (10.8)

Taking the DTFT of both sides, using the DTFT pair e F Fj F n2
1 0

0� �
F← →⎯ −( ), we can 

fi nd the DTFT of x[ ]n , yielding

 X( ) X[ ] ( )F
N

k F k N
k N

= −
=
∑1

1 /�  (10.9)

|W(F)|
32

N = 8
F 

|W(F)|
32

N = 16
F 

32

N = 32
F 

1

1

1

|W(F)|

Figure 10.41 
Magnitude of the DTFT of the rectangular window function 
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n N
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Then

 X( ) X[ ] ( ) X[ ] ( )F
N

k F k N q
N

k F k N
k N q k

= − − = −
= =−∞

∞

∑ ∑1 1
� �/ /

==−∞

∞

∑ . (10.10)

This shows that, for periodic functions, the DFT is simply a scaled special case of the 
DTFT. If a function x[ ]n  is periodic, its DTFT consists only of impulses occurring at 
k N/  with strengths X[ ]k N/  (Figure 10.42).

Figure 10.42 
Harmonic function and DTFT of x[ ] ( )[ cos( )]n A n= +/ /2 1 2 4�
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Summarizing, for a periodic function x[ ]n  with fundamental period N

 X( ) X[ ] ( )F
N

k F k N
k

= −
=−∞

∞

∑1
� /  (10.11)

Let x[ ]n  be an aperiodic function with DTFT X( )F . Let x [ ]p n  be a periodic exten-
sion of x[ ]n  with fundamental period N p such that

 x [ ] x[ ] x[ ] [ ]p p
m

Nn n mN n n
p

= − = ∗
=−∞

∞

∑ �  (10.12)

(Figure 10.43).
Using the  multiplication-convolution duality of the DTFT, and fi nding the DTFT 

of (10.12)

 X ( ) X( )( ) ( ) ( ) X( ) ( )p p N p p pF F N F N k N F k N
p

= = −1 11/ / / //� �
kk=−∞

∞

∑ . (10.13)

Using (10.11) and (10.13),

 X [ ] X( )p pk k N= / . (10.14)
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450 Chapter  10  Sampling and Signal Processing

where X [ ]p k  is the DFT of x [ ]p n . If an aperiodic signal x[ ]n  is periodically repeated 
with fundamental period N p to form a periodic signal x [ ]p n  the values of its DFT har-
monic function X [ ]p k  can be found from X( )F , which is the DTFT of x[ ]n , evaluated 
at the discrete frequencies k N p/ . This forms a correspondence between sampling in the 
frequency domain and periodic repetition in the time domain. 

If we now form a periodic repetition of x [ ]sw n

 x [ ] x [ ]swp sw
m

n n mN= −
=−∞

∞

∑ ,

with fundamental period N, its DFT is

 X [ ] X ( ),swp swk k N k= / an integer

or, from (10.7),

 X [ ] [ drcl( , ) X( )]( )
swp s

j F N
s F k Nk f e N F N f F= ∗− −

→
� 1

/ .

The effect of the last operation, sampling in the frequency domain, is sometimes called 
 picket fencing (Figure 10.44).

Since the nonzero length of x [ ]sw n  is exactly N, x [ ]swp n  is a periodic repetition 
of x [ ]sw n  with a fundamental period equal to its length so the multiple replicas of 
x [ ]sw n  do not overlap but instead just touch. Therefore, x [ ]sw n  can be recovered from 
x [ ]swp n  by simply isolating one fundamental period of x [ ]swp n  in the discrete-time 
range 0 ≤ <n N . 

Figure 10.43 
A signal and its DTFT and the periodic repetition of the signal and 
its DFT harmonic function
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The result

 X [ ] [ drcl( , ) X( )]( )
swp s

j F N
s F k Nk f e N F N f F= ∗− −

→
� 1

/

is the DFT of a periodic extension of the discrete-time signal formed by sampling the 
original signal over a fi nite time.

In summary, in moving from the CTFT of a continuous-time signal to the DFT of 
samples of the continuous-time signal taken over a fi nite time, we do the following. In 
the time domain:

 1. Sample the continuous time signal.
 2. Window the samples by multiplying them by a window function.
 3. Periodically repeat the nonzero samples from step 2.

In the frequency domain:

 1. Find the DTFT of the sampled signal, which is a scaled and periodically repeated 
version of the CTFT of the original signal.

 2. Periodically convolve the DTFT of the sampled signal with the DTFT of the 
window function.

 3. Sample in frequency the result of step 2.

The DFT and inverse DFT, being strictly numerical operations, form an exact 
correspondence between a set of N real numbers and a set of N complex numbers. If 
the set of real numbers is a set of N signal values over exactly one period of a periodic 
discrete-time signal x[ ]n , then the set of N complex numbers is a set of complex ampli-
tudes over one period of the DFT X[ ]k  of that discrete-time signal. These are the com-
plex amplitudes of complex discrete-time sinusoids which, when added, will produce 
the periodic discrete-time signal N nx[ ].

Figure 10.44 
Original signal, time-sampled, windowed, and periodically 
repeated, to form a periodic discrete-time signal and the DFT 
of that signal
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n
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452 Chapter  10  Sampling and Signal Processing

If the set of N real numbers is a set of samples from one period of a bandlimited 
periodic continuous-time signal sampled above its Nyquist rate and at a rate that is an 
integer multiple of its fundamental frequency, the numbers returned by the DFT can be 
scaled and interpreted as complex amplitudes of continuous-time complex sinusoids 
which, when added, will recreate the periodic continuous-time signal.

So when using the DFT in the analysis of periodic discrete-time signals or band-
limited periodic continuous-time signals we can obtain results that can be used to 
exactly compute the DTFS or DTFT or CTFS or CTFT of the periodic signal. When 
we use the DFT in the analysis of aperiodic signals, we are inherently making an ap-
proximation because the DFT and inverse DFT are only exact for periodic signals. 

If the set of N real numbers represents all, or practically all, the nonzero values of 
an aperiodic discrete-time energy signal, we can fi nd an approximation to the DTFT of 
that signal at a set of discrete frequencies using the results returned by the DFT. If the 
set of N real numbers represents samples from all, or practically all, the nonzero range 
of an aperiodic continuous-time signal, we can fi nd an approximation to the CTFT of 
that continuous-time signal at a set of discrete frequencies using the results returned 
by the DFT.

 Computing the CTFS Harmonic Function with the DFT
It can be shown that if a signal x( )t  is periodic with fundamental frequency f0 , and if 
it is sampled at a rate fs  that is above the Nyquist rate, and if the ratio of the sampling 
rate to the fundamental frequency f fs / 0 is an integer, that the DFT of the samples X[ ]k  
is related to the CTFS harmonic function of the signal c [ ]x k  by

 X[ ] c [ ] [ ]xk N k kN= ∗� .

In this special case the relationship is exact.

  Approximating the CTFT with the DFT

 Forward CTFT In cases in which the signal to be transformed is not readily describ-
able by a mathematical function or the Fourier-transform integral cannot be done ana-
lytically, we can sometimes fi nd an approximation to the CTFT numerically using the 
DFT. If the signal to be transformed is a  causal energy signal, it can be shown that we 
can approximate its CTFT at discrete frequencies kf Ns /  by

 X( ) x( ) (x( )kf N T nT e T nTs s s
j kn N

n

N

s s/ /≅ ≅ ×−

=

−

∑ 2

0

1
� DFT )), k N<<   (10.15)

where T fs s= 1/  and N is chosen such that the time range 0 to NTs covers all or prac-
tically all of the signal energy of the signal x (Figure 10.45). So if the signal to be 

Figure 10.45 
A causal energy signal sampled with Ts  
seconds between samples over a time NTs

t

x(t)

n � Nn � 0

Ts
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transformed is a causal energy signal and we sample it over a time containing practi-
cally all of its energy, the approximation in (10.15) becomes accurate for k N<< .

 Inverse CTFT The inverse CTFT is defi ned by x( ) X( )t f e dfj ft=
−∞

∞

∫ 2� . If we know 

X( )kf Ns /  in the range − << − ≤ ≤ <<N k k k Nmax max  and if the magnitude of X( )k f Ns /  
is negligible outside that range, then it can be shown that for n N<< , 

 x( ) (X ( ))nT f k f Ns s ext s≅ × −DFT 1 /  

where 

 X ( )
X max max

ext k f N
k f N k k k

s
s

/
/ ,

,
=

( ) − ≤ ≤

0 /k k Nmax < ≤
⎧
⎨
⎪

⎩⎪ 2
 and 

 X ( ) X (( ) ).ext extk f N k mN f Ns s/ /= +

Approximating the DTFT with the DFT
The numerical approximation of the DTFT using the DFT was derived in Chapter 7. 
The DTFT of x[ ]n  computed at frequencies F k N= /  or � = 2�k N/  is 

 X( ) (x[ ])k N n/ ≅ DFT . (10.16)

Approximating  Continuous-Time Convolution with the DFT

 Aperiodic Convolution Another common use of the DFT is to approximate the con-
volution of two continuous-time signals using samples from them. Suppose we want 
to convolve two aperiodic energy signals x( )t  and h( )t  to form y( )t . It can be shown 
that for n N<< ,

 y( ) ( (x( )) (h( )))nT T nT nTs s s s≅ × ×−DFT DFT DFT1 . (10.17)

 Periodic Convolution Let x( )t  and h( )t  be two periodic continuous-time signals with 
a common period T  and sample them over exactly that time at a rate fs  above the 
Nyquist rate, taking N samples of each signal. Let y( )t  be the periodic convolution of 
x( )t  with h( )t . Then it can be shown that

 y( ) ( (x( )) (h( )))nT T nT nTs s s s≅ × ×−DFT DFT DFT1 . (10.18)

 Discrete-Time Convolution with the DFT

Aperiodic Convolution If x[ ]n  and h[ ]n  are energy signals and most or all of their 
energy occurs in the time range 0 ≤ <n N, then it can be shown that for n N<< ,

 y[ ] ( (x[ ]) (h[ ]))n n n≅ ×−DFT DFT DFT1 . (10.19)

Periodic Convolution Let x[ ]n  and h[ ]n  be two periodic signals with a common period 
N. Let y[ ]n  be the periodic convolution of x[ ]n  with h[ ]n . Then it can be shown that

 y[ ] ( (x[ ]) (h[ ]))n n n= ×−DFT DFT DFT1 . (10.20)

 10.2 Continuous-Time Sampling 453
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454 Chapter  10  Sampling and Signal Processing

Summary of Signal Processing Using the DFT

CTFS
/

,/c [ ]
sinc( )

X[ ]x k e
k N

N
k k Nj k N≅ <<− �

CCTFS if andX[ ] c [ ] [ ]xk N k k f fN s Nyq= ∗ >� / is an integer

CTFT /

f f

kf N T

s

s s

0

X( ) ≅ ×DFFT

DFT

(x( ))

X( ) (x[ ])

nT

k N n

S

DTFT /

Continu

≅
oous-Time

Aperiodic Convolution
x( ) h(t ∗ tt T nT nTt nT s s s

s
) ( (x( )) (h( )))[ ] ≅ × ×→

−DFT DFT DFT1

Disccrete-Time

Aperiodic Convolution
x[ ]n ∗hh[ ] ( (x[ ]) (h[ ]))n n n≅ ×−DFT DFT DFT1

Continuous-Time

Periodic Convolution
[x( ) h( )]t t t nTs

� → ≅≅ × ×−T nT nTs s sDFT DFT DFT1( (x( )) (h( )))

Discrete-Timee

Periodic Convolution
x[ ] h[ ]n n� = −DFT 1(( (x[ ]) (h[ ]))DFT DFTn n×

A typical use of the DFT is to  estimate the CTFT of a continuous-time signal using 
only a fi nite set of samples taken from it. Suppose we sample a continuous-time signal 
x( )t  16 times at a 1 kHz rate and acquire the samples x[ ]n  illustrated in Figure 10.46.

Figure 10.46
16 samples taken from a continuous-time signal

x[n]

�1.496

1.3356

n
15

What do we know so far? We know the value of x( )t  at 16 points in time, over a 
time span of 16 ms. We don’t know what signal values preceded or followed x( )t . We 
also don’t know what values occurred between the samples we acquired. So, to draw 
any reasonable conclusions about x( )t  and its CTFT we will need more information. 

Suppose we know that x( )t  is bandlimited to less than 500 Hz. If it is bandlimited it 
cannot be time limited, so we know that outside the time over which we acquired the data 
the signal, values were not all zero. In fact, they cannot be any constant because, if they 
were, we could subtract that constant from the signal, creating a time-limited signal, which 
cannot be bandlimited. The signal values outside the 16 ms time range could vary in many 
different ways or could repeat in a periodic pattern. If they repeat in a periodic pattern, with 
this set of 16 values as the fundamental period, then x( )t  is a bandlimited, periodic signal 
and is unique. It is the only bandlimited signal with that fundamental period that could 
have produced the samples. The samples and the DFT of the samples form a DFT pair

 x[ ] X[ ]n kDFT
16

← →⎯⎯ .

The CTFS harmonic function c [ ]x k  can be found from the DFT through 

 X[ ] c [ ] [ ]xk N k k f f f fN s Nyq s= ∗ >� if and / is an i0 nnteger
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and x( )t  can therefore be recovered exactly. Also, the CTFT is a set of impulses spaced 
apart by the signal’s fundamental frequency whose strengths are the same as the values 
of the CTFS harmonic function.

Now let’s make a different assumption about what happened outside the 16 ms 
time of the sample set. Suppose we know that x( )t  is zero outside the 16 ms range 
over which we sampled. Then it is time limited and cannot be bandlimited so we can-
not exactly satisfy the sampling theorem. But if the signal is smooth enough and we 
sample fast enough it is possible that the amount of signal energy in the CTFT above 
the Nyquist frequency is negligible and we can compute good approximations of the 
CTFT of x( )t  at a discrete set of frequencies using

 X( ) (x( ))kf N T nTs s S/ ≅ ×DFT .

10.3  DISCRETE-TIME  SAMPLING

 PERIODIC-IMPULSE SAMPLING

In the previous sections all the signals that were sampled were continuous-time sig-
nals.  Discrete-time signals can also be sampled. Just as in sampling continuous-time 
signals, the main concern in sampling discrete-time signals is whether the information 
in the signal is preserved by the sampling process. There are two complementary pro-
cesses used in discrete-time signal processing to change the sampling rate of a signal, 
 decimation and  interpolation. Decimation is a process of reducing the number of 
samples and interpolation is a process of increasing the number of samples. We will 
consider decimation fi rst.

We impulse-sampled a continuous-time signal by multiplying it by a continuous-time 
periodic impulse. Analogously, we can sample a discrete-time signal by multiplying it 
by a discrete-time periodic impulse. Let the discrete-time signal to be sampled be x[ ]n . 
Then the sampled signal would be 

 x [ ] x[ ] [ ]s Nn n n
s

= �

where Ns is the discrete time between samples (Figure 10.47).
The DTFT of the sampled signal is 

 X ( ) X( ) ( )s s F s sF F F F F N
s

= =� � , /1

(Figure 10.48).
The similarity of discrete-time sampling to continuous-time sampling is obvious. 

In both cases, if the aliases do not overlap, the original signal can be recovered from 
the samples and there is a minimum sampling rate for recovery of the signals. The 
sampling rate must satisfy the inequality F Fs m> 2  where Fm is the discrete-time cyclic 
frequency above which the DTFT of the original  discrete-time signal is zero (in the 
base fundamental period, F < 1 2/ ) . That is, for F F Fm m< < −1  the DTFT of the 
original signal is zero. A discrete-time signal that satisfi es this requirement is bandlim-
ited in the discrete-time sense.

Just as with continuous-time sampling, if a signal is properly sampled we can recon-
struct it from the samples using interpolation. The process of recovering the original signal 
is described in the discrete-time-frequency domain as a lowpass fi ltering operation,

 X( ) X ( )[( ) ( ) ( )]F F F F F Fs s c= ∗1 2 1/ rect / �
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456 Chapter  10  Sampling and Signal Processing

where Fc is the cutoff discrete-time frequency of the ideal lowpass discrete-time fi lter. 
The equivalent operation in the discrete-time domain is a discrete-time convolution,

 x[ ] x [ ] ( )sinc( )n n F F F ns c s c= ∗ 2 2/ .

In the practical application of sampling discrete-time signals, it does not make 
much sense to retain all those zero values between the sampling points because we al-
ready know they are zero. Therefore, it is common to create a new signal x [ ]d n , which 
has only the values of the discrete-time signal x [ ]s n  at integer multiples of the sampling 
interval Ns. The process of forming this new signal is called  decimation. Decimation 
was briefl y discussed in Chapter 3. The relations between the signals are given by

 x [ ] x [ ] x[ ]d s s sn N n N n= = .

This operation is  discrete-time time scaling which, for Ns > 1, causes discrete-time 
time compression and the corresponding effect in the discrete-time-frequency domain 
is discrete-time frequency expansion. The DTFT of x [ ]d n  is

 X ( ) x [ ] x [ ]d d
j Fn

n
s s

j Fn

n

F n e N n e= =−

=−∞

∞
−

=−∞

∞

∑ ∑2 2� �

We can make a change of variable m N ns=  yielding

 
X ( ) x [ ]d s

j Fm N

m
m

N

F m e s= −

=−∞
=

2� /

integer
multiple of ss

∞

∑

Now, taking advantage of the fact that all the values of x [ ]s n  between the allowed values, 
m Ns= integer multiple of , are zero, we can include the zeros in the summation, yielding

 X ( ) x [ ] X ( )( )
d s

j F N m

m
s sF m e F Ns= =−

=−∞

∞

∑ 2� / /

Figure 10.47 
An example of discrete-time sampling
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Figure 10.48 
DTFT of discrete-time signal and a sampled 
version of it
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So the DTFT  of the decimated signal is a discrete-time-frequency-scaled version of the 
DTFT of the sampled signal (Figure 10.49).

Observe carefully that the DTFT of the decimated signal is not a discrete-
time-frequency scaled version of the DTFT of the original signal, but rather a discrete-time-
frequency scaled version of the DTFT of the discrete-time-sampled original signal,

 X ( ) X ( ) X( )d s s sF F N F N= ≠/ / .

The term  downsampling is sometimes used instead of decimation. This term comes from 
the idea that the discrete-time signal was produced by sampling a continuous-time signal. 
If the continuous-time signal was oversampled by some factor then the discrete-time 
signal can be decimated by the same factor without losing information about the original 
continuous-time signal, thus reducing the effective sampling rate or downsampling.

 INTERPOLATION

The opposite of decimation is interpolation or  upsampling. The process is simply the 
reverse of decimation. First extra zeros are placed between samples, then the signal so cre-
ated is fi ltered by an ideal discrete-time lowpass fi lter. Let the original discrete-time signal 
be x[ ]n  and let the signal created by adding Ns −1 zeros between samples be x [ ]s n . Then

 x [ ]
x[ ],

s
s s

n
n N n N

= ⎧⎨
⎩

/ / an integer

0, otherwise
.

This discrete-time expansion of x[ ]n  to form x [ ]s n  is the exact opposite of the discrete-time 
compression of x [ ]s n  to form x [ ]d n  in decimation, so we should expect the effect in the 
discrete-time-frequency domain to be the opposite also. A discrete-time expansion by a 
factor of Ns creates a discrete-time-frequency compression by the same factor,

 X ( ) X( )s sF N F=

Figure 10.49 
Comparison of the discrete-time-domain and discrete-time-frequency domain effects of sampling 
and decimation
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458 Chapter  10  Sampling and Signal Processing

(Figure 10.50).
The signal x [ ]s n  can be lowpass fi ltered to interpolate between the nonzero values. 

If we use an ideal unity-gain lowpass fi lter with a transfer function

 H( ) rect( ) ( )F N F Fs= ∗�1 ,

we get an interpolated signal
 X ( ) X ( )[rect( ) ( )]i s sF F N F F= ∗�1

and the equivalent in the discrete-time domain is
 x [ ] x [ ] ( )sinc( )i s s sn n N n N= ∗ 1/ / .

(Figure 10.51).

Figure 10.50 
Effects, in both the discrete-time and discrete-time-frequency domains, of inserting Ns −1 zeros 
between samples
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Figure 10.51
Comparison of the discrete-time-domain and discrete-time-frequency domain effects of expansion 
and interpolation
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Notice that the interpolation using the unity-gain ideal lowpass fi lter introduced a 
gain factor of 1/Ns, reducing the amplitude of the interpolated signal x [ ]i n  relative to 
the original signal x[ ]n . This can be compensated for by using an ideal lowpass fi lter 
with a gain of Ns

 H( ) rect( ) ( )F N N F Fs s= ∗�1

instead of unity gain.

EXAMPLE 10.6

 Sample the signal

 x( ) sin( )cos( , )t t t= 5 2000 20 000� �

at 80 kHz over one fundamental period to form a discrete-time signal x[ ]n . Take every fourth 
sample of x[ ]n  to form x [ ]s n , and decimate x [ ]s n  to form x [ ]d n . Then upsample x [ ]d n  by a 
factor of eight to form x [ ]i n  (Figure 10.52 and Figure 10.53).

Figure 10.52 
Original, sampled and decimated discrete-time signals and their DTFT’s
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460 Chapter  10  Sampling and Signal Processing

10.4 SUMMARY OF IMPORTANT POINTS
 1. A sampled or impulse sampled signal has a Fourier spectrum that is a 

periodically repeated version of the spectrum of the signal sampled. Each 
repetition is called an alias.

 2. If the aliases in the spectrum of the sampled signal do not overlap, the original 
signal can be recovered from the samples.

 3. If the signal is sampled at a rate more than twice its highest frequency, the aliases 
will not overlap.

 4. A signal cannot be simultaneously time limited and bandlimited.
 5. The ideal interpolating function is the sinc function but since it is noncausal, 

other methods must be used in practice.
 6. A bandlimited periodic signal can be completely described by a fi nite set of 

numbers.
 7. The CTFT of a signal and the DFT of samples from it are related through the 

operations sampling in time, windowing and sampling in frequency.
 8. The DFT can be used to approximate the CTFT, the CTFS and other common 

signal-processing operations and as the sampling rate and/or number of samples 
are increased, the approximation gets better.

 9. The techniques used in sampling a continuous-time signal can be used in almost 
the same way in sampling discrete-time signals. There are analogous concepts of 
bandwidth, minimum sampling rate, aliasing, and so on.

Figure 10.53 
Original, upsampled and discrete-time-lowpass-fi ltered discrete-time signals
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EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Pulse Amplitude Modulation

  1. Sample the signal

 x( ) sinc( )t t= 10 500

  by multiplying it by the pulse train

p( ) rect( ) ( ).t t t= ∗104
0 001�

  to form the signal x ( )p t . Graph the magnitude of the CTFT X ( )p f  of x ( )p t .

Answer: 

f 
�20,000 20,000

�X( f )�

0.002

  2. Let 

x( ) sinc( )t t= 10 500

  as in Exercise 1 and form a signal

x ( ) [ x( ) . ( )] rect( ).p t t t t= × ∗1000 0 001 100 001
4�

  Graph the magnitude of the CTFT X ( )p f  of x ( )p t  and compare it to the result of 
Exercise 1.

Answer: 

f 
�20000 20000

�X( f )�

0.002

 Sampling

  3. A signal x( ) sin( )t t= 25 200�  is sampled at 300 Hz with the 1st sample being 
taken at time t = 0. What is the value of the 5th sample?
Answer: 21.651

  4. A signal x( ) cos( )t t= 4 20�  is impulse sampled at 40 Hz to form x ( )s t .

(a) What is the fi rst positive frequency above 10 Hz at which X ( )s f  is not zero?
(b) If x ( )s t  is fi ltered by an ideal lowpass fi lter, what is the maximum corner 

frequency of the fi lter that would produce a purely sinusoidal response?
(c) If x ( )s t  is fi ltered by an ideal lowpass fi lter, what is the maximum corner 

frequency of the fi lter that would produce no response?
(d) Change the sampling rate to 12 Hz and repeat parts (a), (b) and (c).
Answers: 14, 10, 30, 10, 2, 30

 Exercises with Answers 461
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462 Chapter  10  Sampling and Signal Processing

  5. Given a signal x( ) tri( )t t= 100 , form a signal x[ ]n  by sampling x( )t  at a rate 
fs = 800 and form an information-equivalent impulse signal x ( )� t  by multiplying 
x( )t  by a periodic sequence of unit impulses whose fundamental frequency is the 
same f fs0 800= = . Graph the magnitude of the DTFT of x[ ]n  and the CTFT of 
x ( )� t . Change the sampling rate to fs = 5000 and repeat.

Answers: 

f 
�1600 1600

�X�( f )�

8

fs � 800

�X�( f )�

fs � 5000

�2 2 �2 2
F 

�10,000 10,000

�X(F)� �X(F)�

8

f 

50

50

F , 

  6. Given a bandlimited signal x( ) sinc( ) cos( )t t t= /4 2� , form a signal x[ ]n  by 
sampling x( )t  at a rate fs = 4 and form an information-equivalent impulse 
signal x ( )� t  by multiplying x( )t  by a periodic sequence of unit impulses whose 
fundamental frequency is the same f fs0 4= = . Graph the magnitude of the DTFT 
of x[ ]n  and the CTFT of x ( )� t . Change the sampling rate to fs = 2 and repeat.

Answers: 

f 
�8 8

�X�( f )�

8

fs � 4

F
�2 2

�X(F )�

8

f 
�4 4

�X�( f )�

8

fs � 2

F
�2 2

�X(F )�

8

,

 Impulse Sampling

  7. For each signal x( )t , impulse sample it at the rate specifi ed by multiplying it by 
a periodic impulse �Ts

t( ) ( T fs s= 1/ ) and graph the impulse-sampled signal x ( )� t  
over the time range specifi ed and the magnitude and phase of its CTFT X ( )� f  
over the frequency range specifi ed.

(a) x( ) rect( )t t= 100 , fs = 1100

 − < <20 20ms mst , − < <3 3kHz kHzf

(b) x( ) rect( )t t= 100 , fs = 110

 − < <20 20ms mst , − < <3 3kHz kHzf

(c) x( ) tri( )t t= 45 , fs = 180

 − < <100 100ms mst , − < <400 400f
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Answers: 

t 
-0.05 0.05

0.2

0.15

0.1

0.05

-40 -20 20 40

X�(t)

xf (t)

t 
f 

1

0.8

0.6

0.4

0.2

0.25
-0.05-0.06 0.05 0.06

0.5

�Xf( f )�

  8. Given a signal x( ) tri( ) ( ).t t t= ∗200 0 05� , impulse sample it at the ratef fs  specifi ed 
by multiplying it by a periodic impulse of the form �Ts

t( ) (T fs s= 1/ ). Then fi lter 
the impulse-sampled signal x ( )� t  with an ideal lowpass fi lter whose gain is Ts 
in its passband and whose corner frequency is the Nyquist frequency. Graph 
the signal x( )t  and the response of the lowpass fi lter x ( )f t  over the time range 
− < <60 60ms mst .

(a) fs = 1000 (b) fs = 200 (c) fs = 100

Answers: 

t 
-0.1 0.1

f  
-400 400

X�(t)
X�(t)

1
t 

-0.02 0.02

f  
-3000

-3000

3000

f  
3000

1

12
�X�( f )�

�X�( f )�

f  
-400 400

4

1

-1

X�( f ) X�( f )�
�

-�

1

-1

X�( f )

t  
-0.02 0.02

x�( t)

1
f

-3000 3000

2

f  
-3000 3000

�X�( f )�
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464 Chapter  10  Sampling and Signal Processing

  9. Given a signal x( ) cos( ) cos( )t t t= −8 24 6 104� � , impulse sample it at the rate 
specifi ed by multiplying it by a periodic impulse of the form �Ts

t( ) (T fs s= 1/ ). 
Then fi lter the impulse-sampled signal with an ideal lowpass fi lter whose gain is 
Ts in its passband and whose corner frequency is the Nyquist frequency. Graph 
the signal x( )t  and the response of the lowpass fi lter x ( )i t  over two fundamental 
periods of x ( )i t .

(a) fs = 100

(b) fs = 50

(c) fs = 40

Answers: 
15

�15

0.2
t

x(t)

15

�15

0.2
t

xi(t)

t 

x�(t)

x�(t)

t 
f 

xf (t)

xf (t)

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

-0.05 0.05

0.05

0.1

0.08

0.06

0.04

0.02

0.1

0.08

0.06

0.04

0.02

-0.05

t 

f 

0.05

t 
0.05 0.06-0.05-0.06 -600 -400 -200 200 400 600

-0.05

-100 -50 50 100
0.25

0.5

0.99

�Xf ( f )�

�Xf ( f )�
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15

�15

1
t

x(t)

15

�15

1
t

xi(t)

 

15

�15

0.2
t

15

�15

0.2
t

x(t)

xi(t)

 Nyquist Rates

 10. Find the Nyquist rates for these signals.

(a) x( ) sinc( )t t= 20
(b) x( ) sinc ( )t t= 4 1002

(c) x( ) sin( )t t= 8 50�

(d) x( ) sin( ) cos( )t t t= +4 30 3 70� �

(e) x( ) rect( )t t= 300
(f  ) x( ) sin( ) cos( )t t t= −10 40 300� �

(g) x( ) sinc( ) ( )t t t= ∗/2 10�

(h) x( ) sinc( ) ( ).t t t= /2 0 1�

Answers: 200, 340, 70, Infi nite, 50, 0.4, Infi nite, 20

 Time-Limited and  Bandlimited Signals

 11. Graph these time-limited signals. Find and graph the magnitude of their CTFTs 
and confi rm that they are not bandlimited.

(a) x( ) rect( )t t= 5 100/  (b) x( ) tri( )t t= 10 5
(c) x( ) rect( )[ cos( )]t t t= +1 2�  (d) x( ) rect( )[ cos( )]cos( )t t t t= +1 2 16� �

Answers: 

t
�0.4 0.4

10

x(t)

f
�20 20

2

�X( f )�

t
�1 1

2

x(t)

�2

f
�12 12

1

�X( f )�

t
�1 1

2

x(t)

f
�5 5

1

�X( f )�

t
�200 200

5

x(t)

f 
�0.04 0.04

500

�X( f )�

, , ,

t
�0.4 0.4

10

x(t)

f
�20 20

2

�X( f )�

t
�1 1

2

x(t)

�2

f
�12 12

1

�X( f )�

t
�1 1

2

x(t)

f
�5 5

1

�X( f )�

t
�200 200

5

x(t)

f 
�0.04 0.04

500

�X( f )�

, , ,
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466 Chapter  10  Sampling and Signal Processing

  12. Graph the magnitude of these bandlimited-signal CTFTs and fi nd and graph their 
inverse CTFTs. Confi rm that they are not time limited.

(a) X( ) rect( )f f e j f= − 4�

(b) X( ) tri( )f f e j f= 100 �

(c) X( ) ( ) ( )f f f= − + +� �4 4
(d) X( ) [ ( ) ( )] rect( )f j f f f= + − − ∗� �4 4 8

Answers: 

f
�6 6

1

�X( f )�

t
�16 16

0.25

x(t)

�0.25

f
�0.02 0.02

1

�X( f )�

t
�400 400

0.01

x(t)   

�0.005

f
�4 4

1

�X( f )�

t
�1 1

2

x(t)

�2

f 
�1 1

1

�X( f )�

t
�6 6

1

x(t)

�0.5, , ,

 Interpolation

 13. Sample the signal x( ) sin( )t t= 2�  at a sampling rate fs . Then, using MATLAB, 
graph the interpolation between samples in the time range − < <1 1t  using the 
approximation

x( ) ( ) x( )sinc( ( ))t f f nT f t nTc s s c s
n N

N

≅ −
=−
∑2 2/

 

  with these combinations of fs , fc, and N.

(a) f f Ns c= = =4 2 1, ,  (b) f f Ns c= = =4 2 2, ,
(c) f f Ns c= = =8 4 4, ,  (d) f f Ns c= = =8 2 4, ,
(e) f f Ns c= = =16 8 8, ,  (f  ) f f Ns c= = =16 8 16, ,

Answers: 

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1,

, ,

,

,

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1

t
1

1

x(t)

�1

�1,

, ,

,

,
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 14. For each signal and specifi ed sampling rate, graph the original signal and an 
interpolation between samples of the signal using a zero-order hold, over the 
time range − < <1 1t . (The MATLAB function stairs could be useful here.)

(a) x( ) sin( ),t t fs= =2 8�  (b) x( ) sin( ),t t fs= =2 32�

(c) x( ) rect( ),t t fs= = 8  (d) x( ) tri( ),t t fs= = 8
Answers: 

t
�1

1

x(t)

�1

1

t
�1 1

x(t)

�1

1

t
�1

1

x(t)

1

t
�1 1

x(t)

�1

1

�1, , ,

t
�1

1

x(t)

�1

1

t
�1 1

x(t)

�1

1

t
�1

1

x(t)

1

t
�1 1

x(t)

�1

1

�1, , ,

 15. For each signal in Exercise 14, lowpass fi lter the zero-order-hold-interpolated 
signal with a single-pole lowpass fi lter whose −3 dB frequency is one-fourth of 
the sampling rate.
Answers: 

t
�1 1

x(t)

�1

1

t
�1 1

x(t)

�1

1

t
�1

1

x(t)

�1

1

t
�1

1

x(t)

�1

1

,,,

t
�1 1

x(t)

�1

1

t
�1 1

x(t)

�1

1

t
�1

1

x(t)

�1

1

t
�1

1

x(t)

�1

1

,,,

 16. Repeat Exercise 14 except use a fi rst-order hold instead of a zero-order hold.
Answers: 

t
�1 1.5

x(t)

�1

1

t
�1 1.5

t
�1 1.5

x(t)

�1

1

t
�1 1.5

x(t)

�1

1

, , ,

x(t)

�1

1

t
�1 1.5

x(t)

�1

1

t
�1 1.5

t
�1 1.5

x(t)

�1

1

t
�1 1.5

x(t)

�1

1

, , ,

x(t)

�1

1

 Aliasing

 17. Sample the two signals x ( )1
2

t e t= − and x ( ) sin( )2
2

8t e tt= +− �  in the time interval 
− < <3 3t  at 8 Hz and demonstrate that the sample values are the same.

 18. For each pair of signals below, sample at the specifi ed rate and fi nd the DTFT of 
the sampled signals. In each case, explain, by examining the DTFTs of the two 
signals, why the samples are the same.

(a) x( ) cos( )t t= 4 16�  and x( ) cos( )t t= 4 76� , fs = 30
(b) x( ) sinc( )t t= 6 8  and x( ) sinc( ) cos( )t t t= 6 8 400� , fs = 100
(c) x( ) cos( )t t= 9 14�  and x( ) cos( )t t= 9 98� , fs = 56

Answers: 75 25 2 1rect( ) ( )F F/ ∗� , 2 8 30 8 301 1[ ( ) ( )]� �F F− + +/ / , 

( )[ ( ) ( )]9 2 1 8 1 81 1/ / /� �F F− + +
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468 Chapter  10  Sampling and Signal Processing

 19. For each sinusoid, fi nd the two other sinusoids whose frequencies are nearest the 
frequency of the given sinusoid and which, when sampled at the specifi ed rate, 
have exactly the same samples.

(a) x( ) cos( ),t t fs= =4 8 20�  (b) x( ) sin( ),t t fs= =4 8 20�

(c) x( ) sin( ),t t fs= − =2 20 50�  (d) x( ) cos( ),t t fs= − =2 20 50�

(e) x( ) cos( ),t t fs= + =5 30 4 50� �/
Answers: − − −2 80 2 120sin( ) sin( )� �t tand , 

5 130 4 5 70 4cos( ) cos( )� � � �t t+ − +/ and / , 4 48 4 32sin( ) sin( )� �t tand − ,

2 80 2 120cos( ) cos( ),� �t tand −  4 48 4 32cos( ) cos( )� �t tand

 Bandlimited Periodic Signals

 20. Sample the following signals x( )t  to form signals x[ ]n . Sample at the Nyquist 
rate and then at the next higher rate for which which f fs / 0 is an integer (which 
implies that the total sampling time divided by the time between samples is 
also an integer). Graph the signals and the magnitudes of the CTFTs of the 
continuous-time signals and the DTFTs of the discrete-time signals.

(a) x( ) sin( ) cos( )t t t= +2 30 5 18� �  (b) x( ) sin( ) cos( )t t t= 6 6 24� �

Answers: 

t
-0.25 0.25

x(t)

-8

8

n-8 8

xNyq[n]

-8

8

n
-8 8

x11[n]

-8

8

f 
-15 15

|X( f )|
3

F 
-1 1

|XNyq(F )|
1.5

F -1 1

|X11(F )|
1.5

 

t-0.25 0.25

x(t)

-8

8

n
-8 8

xNyq[n]

-5

5

n-8 8

x11[n]

-5

5

f 
-15 15

|X( f )|
3

F 
-1 1

|XNyq(F )|
3

F 
-1 1

|X11(F )|
3

 CTFT-CTFS-DFT Relationships

 21. Start with a signal x( ) cos( )t t= 8 30�  and sample, window and periodically repeat 
it using a sampling rate of fs = 60 and a window width of N = 32. For each 
signal in the process, graph the signal and its transform, either CTFT or DTFT.
Answers: 

t
-0.3 0.8

x(t)

-8

8 f 
-15 15

|X( f )|
4

f 
-15 15-π

π
X( f )

 

n-16 48

xsw[n]

-8

8 F 
-1 1

|Xsw(F )|
128

F -1 1-π

π
Xsw(F )

n
-16 48

xs[n]

-8

8 F 
-1 1

|Xs(F )|
4

F 
-1 1-π

π
Xs(F )

 

n
-16 48

xsws[n]

-8

8 F -1 1

|Xsws(F )|
4

F 
-1 1-π

π
Xsws(F )
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 22. Sample each signal x( )t  N times at the rate fs  creating the signal x[ ]n . Graph x( )t  
vs. t and x[ ]n  vs. nTs over the time range 0 < <t NTs. Find the DFT X[ ]k  of the N 
samples. Then graph the magnitude and phase of X( )f  vs. f and T ks X[ ] vs. k f�
over the frequency range − < <f f fs s/ /2 2 where �f f Ns= / . Graph T ksX[ ] as a 
continuous function of k f�  using the MATLAB plot command.

(a) x( ) rect( ( ))t t= −5 2 2 , fs = 16, N = 64

(b) x( ) sinc(( ) )t t= −3 20 5/ , fs = 1, N = 40

(c) x( ) rect( )sin( )t t t= −2 2 8� , fs = 32, N = 128

(d) x( ) tri trit
t t= −⎛

⎝
⎞
⎠ −

−⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

10
2

2

6

2
, fs = 8, N = 64

(e) x( ) cos( ) cos( )t t t= 5 2 16� � , fs = 64 , N = 128

Answers: 

t
2

x(t)

-5

5

f 
-32 32

|X( f )|
1.25

f 
-32 32

X( f )

-π

π

| |
 

t
4

x(t)
5 f 

-8 8

|X( f )|
2.5

f 
-8 8-π

π
X( f )

nTs2

x[n]

-5

5 kfs/NF 
-32 32

2.5

kfs/NF 
-32 32-π

π

|TsX[k]|

TsX[k]

  
nTs

4

x[n]
5 kfs/NF 

-8 8

|TsX[k]|
2.5

kfs/NF 
-8 8-π

π
TsX[k]

t40

x(t)

-1

3

nTs40

x[n]

-1

3

f -0.5 0.5

|X( f )|
15

f 
-0.5 0.5-π

π

kfs/NF 
-0.5 0.5

|TsX[k]|
15

kfs/NF 
-0.5 0.5-π

π

X( f )

TsX[k]

 

t
4

x(t)

-2

2

nTs4

x[n]

-2

2

f -16 16

|X( f )|
1

f -16 16-π

π

kfs/NF-16 16

|TsX[k]|
1

kfs/NF-16 16-π

π

X( f )

TsX[k]

t
8

x(t)

-10

10

nTs8

x[n]

-10

10

f 
-4 4

|X( f )|
40

f 
-4 4-π

π

kfs/NF-4 4

|TsX[k]|
40

kfs/NF-4 4-π

π

X( f )

TsX[k]

 Exercises with Answers 469

rob80687_ch10_420-480.indd   469rob80687_ch10_420-480.indd   469 12/21/10   7:03:40 PM12/21/10   7:03:40 PM



470 Chapter  10  Sampling and Signal Processing

 23. Sample each signal x( )t  N times at the rate fs  creating the signal x[ ]n . Graph x( )t  
vs. t and x[ ]n  vs. nTs over the time range 0 < <t NTs. Find the DFT X[ ]k  of the N 
samples. Then graph the magnitude and phase of X( )f  vs. f and X[ ]k N/  vs. k f�
over the frequency range − < <f f fs s/ /2 2 where �f f Ns= / . Graph X k N[ ] /  as 
an impulse function of k f�  using the MATLAB stem command to represent the 
impulses.

(a) x( ) cos( )t t= 4 200� , fs = 800, N = 32
(b) x( ) rect( t) ( )t t= ∗6 2 1� , fs = 16, N = 128
(c) x( ) sinc( t) ( )t t= ∗6 4 1� , fs = 16, N = 128
(d) x( ) cos( ) cos( )t t t= 5 2 16� � , fs = 64, N = 128

Answers: 

t
8

x(t)

-2

6

nTs8

x[n]

-2

6

f 
-8 8

|X( f )|
1.5

f 
-8 8-π

π

kfs/NF-8 8

|X[k]/NF|
1.5

kfs/NF-8 8-π

π

X( f )|

X[k]/NF

 

t
0.04

x(t)

-4

4

nTs0.04

x[n]

-4

4

f -400 400

|X( f )|
2

f -400 400-π

π

kfs/NF-400 400

|X[k]/NF|
2

kfs/NF-400 400-π

π

X( f )|

X[k]/NF

t8

x(t)
6

nTs8

x[n]
6

f -8 8

|X( f )|
3

f -8 8-π

π

kfs/NF-8 8

|X[k]/NF|
3

kfs/NF-8 8-π

π

X( f )|

X[k]/NF

 

t
2

x(t)

-5

5

nTs2

x[n]

-5

5

f 
-32 32

|X( f )|
1.25

f -32 32-π

π

kfs/NF -32 32

|X[k]/NF|
1.25

kfs/NF -32 32-π

π

X( f )|

X[k]/NF

 Windows

 24. Sometimes window shapes other than a rectangle are used. Using MATLAB, fi nd 
and graph the magnitudes of the DFTs of these window functions with N = 32.

(a) von Hann or Hanning

  w[ ] cos ,n
n

N
n N= −

−
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤ <1

2
1

2

1
0

�
   

(b) Bartlett

  w[ ]
,

,
n

n

N
n

N

n

N

N
n N

= −
≤ ≤ −

−
−

− ≤ <

⎧

⎨
⎪⎪

⎩
⎪
⎪

2

1
0

1

2

2
2

1

1

2
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(c) Hamming

  w[ ] . . cos ,n
n

N
n N= −

−
⎛
⎝

⎞
⎠ ≤ <0 54 0 46

2

1
0

�    

(d) Blackman

 w[ ] . . cos . cos ,n
n

N

n

N
= −

−
⎛
⎝

⎞
⎠ + −

⎛
⎝

⎞
⎠ ≤0 42 0 5

2

1
0 08

4

1
0

� �
nn N<  

Answers: 

n
31

w[n]
1

k 
-32 32

|W[k]|
16

 

n
31

w[n]
1

k 
-32 32

|W[k]|
16

n31

w[n]
1

k 
-32 32

|W[k]|
16

 

n
31

w[n]
1

k
-32 32

|W[k]|
16

DFT

 25. Sample the following signals at the specifi ed rates for the specifi ed times 
and graph the magnitudes of the  DFTs versus harmonic number in the range 
− < < −N k N/ / .2 2 1( )  

(a) x( ) cos( )t t= 2� , fs = 2 , N = 16 (b) x( ) cos( )t t= 2� , fs = 8, N = 16
(c) x( ) cos( )t t= 2� , fs = 16, N = 256 (d) x( ) cos( )t t= 3� , fs = 2, N = 16
(e) x( ) cos( )t t= 3� , fs = 8, N = 16 (f  ) x( ) cos( )t t= 3� , fs = 16, N = 256
Answers: 

n
15

x[n]

-1

1

k
-8 7

|X[k]|
16

 

n
15

x[n]

-1

1

k-8 7

|X[k]|
16

n255

x[n]

-1

1

k-128 127

|X[k]|
256

 

n
255

x[n]

-1

1

k
-128 127

|X[k]|
256

n15

x[n]

-1

1

k
-8 7

|X[k]|
16

 

n
15

x[n]

-1

1

k
-8 7

|X[k]|
16
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472 Chapter  10  Sampling and Signal Processing

 26. Sample the following signals at the specifi ed rates for the specifi ed times and 
graph the magnitudes and phases of the DFTs versus harmonic number in the 
range − < < ( ) −N k N/ /2 2 1.

(a) x( ) tri( )t t= −1 , fs = 2, N = 16

(b) x( ) tri( )t t= −1 , fs = 8, N = 16

(c) x( ) tri( )t t= −1 , fs = 16, N = 256

(d) x( ) tri( ) tri( )t t t= + − 4 , fs = 2, N = 8

(e) x( ) tri( ) tri( )t t t= + − 4 , fs = 8, N = 32

(f) x( ) tri( ) tri( )t t t= + − 4 , fs = 64, N = 256

Answers: 

k 
-8 7

|X[k]|
2

fs = 2, N = 16

k 
-8 7

-π

π
X[k]

 

k 
-8 7

|X[k]|
8

fs = 8, N = 16

k 
-8 7

-π

π
X[k]

k 
-128 127

|X[k]|
16
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 27. For each signal, plot the original signal and the sampled signal for the specifi ed 
sampling interval.

(a) x[ ] sin( )n n= 2 24� / , Ns = 4 

(b) x[ ] (u[ ] u[ ])n n n= + − −9 10 , Ns = 2

(c) x[ ] cos( ) cos( )n n n= 2 48 2 8� �/ / , Ns = 2 

(d) x[ ] ( ) u[ ]n nn= 9 10/ , Ns = 6
Answers: 

n
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n
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n
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1
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1
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n
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1
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1

n
�5 40
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1
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1

�24
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24

xs[n]

�1

1

n
�24

�24

24

x[n]

�1

1

n
24

xs[n]

�1

1

, , ,

 28. For each signal in Exercise 27, graph the magnitude of the DTFT of the original 
signal and the sampled signal.
Answers: 
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F
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�
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 29. For each signal, plot the original signal and the decimated signal for the specifi ed 
sampling interval. Also plot the magnitudes of the DTFTs of both signals.

(a) x[ ] tri( )n n= /10 , Ns = 2
(b) x[ ] ( . ) sin( ) u[ ]n n nn= 0 95 2 10� / , Ns = 2
(c) x[ ] cos( )n n= 2 8� / , Ns = 7
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474 Chapter  10  Sampling and Signal Processing

Answers:  
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 30. For each signal in Exercise 29, insert the specifi ed number of zeros between 
samples, lowpass DT fi lter the signals with the specifi ed cutoff frequency and 
plot the resulting signal and the magnitude of its DTFT.

(a) Insert 1 zero between points. Cutoff frequency is Fc = 0 1. .
(b) Insert 4 zeros between points. Cutoff frequency is Fc = 0 2. .
(c) Insert 4 zeros between points. Cutoff frequency is Fc = 0 02. .
Answers: Zero,

n
�20 20
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F
�1 1
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EXERCISES WITHOUT ANSWERS

Sampling

 31. Using MATLAB (or an equivalent mathematical computer tool) graph the signal

x( ) cos( ) sin( )t t t= −3 20 2 30� �

  over a time range of 0 400< <t ms. Also graph the signal formed by 
sampling this function at the following sampling intervals: (a) Ts = 1 120/ s, 
(b) Ts = 1 60/ s, (c) Ts = 1 30/ s and (d) Ts = 1 15/ s. Based on what you observe, 
what can you say about how fast this signal should be sampled so that it could 
be reconstructed from the samples?

 32. A signal x( ) cos( )t t= 20 1000�  is impulse sampled at a sampling rate of 2 kHz. 
Graph two fundamental periods of the impulse-sampled signal x ( )� t . (Let the 
one sample be at time t = 0.) Then graph four fundamental periods, centered at 
zero Hz, of the CTFT X (f)�  of the impulse-sampled signal x ( )� t . Change the 
sampling rate to 500 Hz and repeat.

 33. A signal x( ) rect( )t t= 10 4/  is impulse sampled at a sampling rate of 2 Hz. 
Graph the impulse-sampled signal x ( )� t  on the interval − < <4 4t . Then 
graph three fundamental periods, centered at f = 0, of the CTFT X ( )� f  of the 
impulse-sampled signal x ( )� t . Change the sampling rate to 1/2 Hz and repeat.

 34. A signal x( ) sinc( )t t= 4 10  is impulse sampled at a sampling rate of 20 Hz. Graph 
the impulse-sampled signal x ( )� t  on the interval − < <0 5 0 5. .t . Then graph three 
fundamental periods, centered at f = 0, of the CTFT X ( )� f  of the impulse-
sampled signal x ( )� t . Change the sampling rate to 4 Hz and repeat.

 35. A signal x[ ]n  is formed by sampling a signal x( ) cos( )t t= 20 8�  at a sampling rate 
of 20 Hz. Graph x[ ]n  over 10 fundamental periods versus discrete time. Then do 
the same for sampling frequencies of 8 Hz and 6 Hz.

 36. A signal x[ ]n  is formed by sampling a signal x( ) sin( )t t= −4 200�  at a sampling 
rate of 400 Hz. Graph x[ ]n  over 10 fundamental periods versus discrete time. 
Then do the same for sampling frequencies of 200 Hz and 60 Hz.

 37. A signal x( )t  is sampled above its Nyquist rate to form a signal x[ ]n  and is also 
impulse sampled at the same rate to form an impulse signal x ( )� t . The DTFT 
of x[ ]n  is 

X( ) rect( ) ( )F F F= ∗10 5 1�  or X( ) rect( ) ( )e j� � �= ∗10 5 2 2/ � � � .

(a) If the sampling rate is 100 Hz, what is the highest frequency at which the 
CTFT of x( )t  is nonzero?

(b) What is the lowest positive frequency greater than the highest frequency in 
x( )t  at which the CTFT of x ( )� t  is nonzero?

(c) If the original signal x( )t  is to be recovered from the impulse-sampled 
signal x ( )� t  by using an ideal lowpass fi lter with impulse response 
h( ) sinc( )t A wt= , what is the maximum possible value of w? 
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476 Chapter  10  Sampling and Signal Processing

Impulse Sampling

 38. For each signal x( )t , impulse sample it at the rate specifi ed by multiplying it by a 
periodic impulse �Ts

t( ) (T fs s= 1/ ). Graph the impulse-sampled signal x ( )� t  over 
the time range specifi ed and the magnitude and phase of its CTFT X ( )� f  over 
the frequency range specifi ed.

(a) x( ) ( cos( )) rect( )t t t= +5 1 200 100� , fs = 1600
(b) x( )t e t= − 2 2/ , fs = 5
(c) x( ) u( )t e tt= −10 20/ , fs = 1

39. Given a signal x( ) rect( ) ( ).t t t= ∗20 0 1�  and an ideal lowpass fi lter whose 
frequency response is T f fs srect( )/ , process x( )t  two different ways.

  Process 1:  Filter the signal and multiply it by fs .

  Process 2:  Impulse sample the signal at the rate specifi ed, then fi lter the 
impulse-sampled signal.

  For each sampling rate, graph the original signal x( )t  and the processed signal 
y( )t  over the time range − < <0 5 0 5. .t . In each case, by examining the CTFTs of 
the signals, explain why the two signals do, or do not, look the same.

(a) fs = 1000 (b) fs = 200
(c) fs = 50 (d) fs = 20
(e) fs = 10 (f  ) fs = 4
(g) fs = 2

 40. Sample the signal 

x( )
sin( ) . .

t
t t

=
− < <4 20 0 2 0 2� ,

0, otherwise
/

⎧
⎨
⎩

⎫
⎬
⎭
= 4 20 0 4sin( ) rect( . )�t t

  over the time range − < <0 5 0 5. .t  at the specifi ed sampling rates and 
approximately reconstruct the signal by using the sinc-function technique 

x( ) ( ) x( )sinc( ( ))t f f nT f t nTc s s c s
n

= −
=−∞

∞

∑2 2/

  except with a fi nite set of samples and with the specifi ed fi lter cutoff frequency. 
That is, use 

x( ) ( ) x( )sinc( ( ))t f f nT f t nTc s s c s
n N

N

= −
=−
∑2 2/

  where N Ts= 0 5. / . Graph the reconstructed signal in each case.

(a) fs = 20, fc = 10 (b) fs = 40, fc = 10
(c) fs = 40, fc = 20 (d) fs = 100, fc = 10
(e) fs = 100, fc = 20 (f  ) fs = 100, fc = 50
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Nyquist Rates

 41. Find the Nyquist rates for these signals.

(a) x( ) rect( ) cos( )t t t= 15 300 104 �
(b) x( ) sinc( ) cos( )t t t= 7 40 150�

(c) x( ) [rect( ) ( )]cos( )t t t t= ∗15 500 101 100
4� �/

(d) x( ) [sinc( ) ( )]t t t= ∗4 500 1 200� /

(e) x( ) [sinc( ) ( )]cos( )t t t t= − ∗2 500 101 200
4� �/

(f  )  x( )
,

,
t

t t

t
=

<
≥

⎧
⎨
⎩

10

0 10

(g) x( ) sinc( ) cos( )t t t= − +8 101 4 200�

(h) x( ) sinc( ) cos( )t t t= −32 101 200�  
(i) x( ) sinc( ) ( )t t t= ∗7 99 1�  

Aliasing

 42. On one graph, graph the discrete-time signal formed by sampling the following 
three functions at a sampling rate of 30 Hz.

(a) x ( ) sin( )1 4 20t t= �

(b) x ( ) sin( )2 4 80t t= �

(c) x ( ) sin( )2 4 40t t= − �

 43. Graph the signal x[ ]n  formed by sampling the signal x( ) sin( )t t= 10 8�  at twice 
the Nyquist rate and x( )t  itself. Then on the same axes graph at least two other 
continuous-time sinusoids that would yield exactly the same samples if sampled 
at the same times.

 44. A cosine x( )t  and a sine y( )t  of the same frequency are added to form a 
composite signal z( )t . The signal z( )t  is then sampled at exactly its Nyquist rate 
with the usual assumption that a sample occurs at time t = 0. Which of the two 
signals x( )t  or y( )t  would, if sampled by itself, produce exactly the same set of 
samples?

 45. Each signal x below is sampled to form xs by being multiplied by a periodic 
impulse function of the form �Ts

t( ) and f Ts s= 1/ .

(a) x( ) cos( )t t= 4 20� , fs = 40 What is the fi rst positive frequency above 10 Hz 
at which X ( )s f  is not zero?

(b)  x( ) tri( )t t= 10 , fs = 4 If the sampled signal is interpolated by simply always 
holding the last sample value, what would be the value of the interpolated 
signal at time t = 0 9. ?

Practical Sampling

 46. Graph the magnitude of the CTFT of x( ) sinc ( )t t= 25 62 / . What is the minimum 
sampling rate required to exactly reconstruct x(t) from its samples? Infi nitely 
many samples would be required to exactly reconstruct x(t) from its samples. 
If one were to make a practical compromise in which one sampled over the 
minimum possible time that could contain 99% of the energy of this waveform, 
how many samples would be required?
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478 Chapter  10  Sampling and Signal Processing

 47. Graph the magnitude of the CTFT of x( ) rect( )t t= 8 3 . This signal is not 
bandlimited so it cannot be sampled adequately to exactly reconstruct the 
signal from the samples. As a practical compromise, assume that a bandwidth 
that contains 99% of the energy of x(t) is great enough to practically 
reconstruct x(t) from its samples. What is the minimum required sampling rate 
in this case?

Bandlimited Periodic Signals

 48. How many sample values are required to yield enough information to exactly 
describe these bandlimited periodic signals?

(a) x( ) cos( ) sin( )t t t= + +8 3 8 9 4� �

(b) x( ) cos( ) sin( )t t t= + +8 3 7 9 4� �

 49. Sample the signal x( ) [sinc( ) ( )]sin( )t t t t= ∗15 5 322� �  to form the signal, x[ ]n . 
Sample at the Nyquist rate and then at the next higher rate for which the 
number of samples per cycle is an integer. Graph the signals and the magnitude 
of the CTFT of the continuous-time signal and the DTFT of the discrete-time 
signal.

50. A signal x( )t  is periodic and one fundamental period of the signal is described by

x( )
, .

, .
t

t t

t
=

< <
< <

⎧
⎨
⎩

3 0 5 5

0 5 5 8

  Find the samples of this signal over one fundamental period sampled at a 
rate of 1 Hz (beginning at time t = 0). Then graph, on the same scale, two 
fundamental periods of the original signal and two fundamental periods of a 
periodic signal, which is bandlimited to 0.5 Hz or less, that would have these 
same samples.

DFT

 51. A signal x( )t  is sampled 4 times and the samples are {x[ ], x[ ], x[ ], x[ ]}0 1 2 3 . 
Its DFT is {X[ ], X[ ], X[ ], X[ ]}0 1 2 3 . X[ ]3  can be written as X[ ] x[ ] x[ ]3 0 1= +a b

x[ ] x[ ]2 3+ +c d . What are the values of a, b, c and d?

 52. Sample the bandlimited periodic signal x( ) cos( ) sin( )t t t= +15 300 40 200� �  
at exactly its Nyquist rate over exactly one fundamental period of x( )t . Find 
the DFT of those samples. From the DFT fi nd the CTFS harmonic function. Graph 
the CTFS representation of the signal that results and compare it with x(t). Explain 
any differences. Repeat for a sampling rate of twice the Nyquist rate.

 53. Sample the bandlimited periodic signal x( ) cos( ) sin( )t t t= −8 50 12 80� �  at 
exactly its Nyquist rate over exactly one fundamental period of x(t). Find the 
DFT of those samples. From the DFT fi nd the CTFS harmonic function. Graph 
the CTFS representation of the signal that results and compare it with x(t). 
Explain any differences. Repeat for a sampling rate of twice the Nyquist rate.
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 54. A bandlimited periodic signal x( )t  whose highest frequency is 25 Hz is sampled 
at 100 Hz over exactly one fundamental period to form the signal x[ ]n . The 
samples are

{x[ ], x[ ], x[ ], x[ ]} { , , , }0 1 2 3 = a b c d .

  Let one period of the DFT of those samples be {X[ ], X[ ], X[ ], X[ ]}0 1 2 3 .
(a) What is the value of X[ ]1  in terms of a, b, c and d?
(b) What is the average value of x( )t  in terms of a, b, c and d?
(c) One of the numbers {X[ ], X[ ], X[ ], X[ ]}0 1 2 3  must be zero. Which one 

and why? 
(d) Two of the numbers {X[ ], X[ ], X[ ], X[ ]}0 1 2 3  must be real numbers. 

Which ones and why?
(e) If X[ ]1 2 3= + j , what is the numerical value of X[ ]3  and why?

 55. Using MATLAB,

(a) Generate a pseudo-random sequence of 256 data points in a vector x using 
the randn function, which is built into MATLAB.

(b) Find the DFT of that sequence of data and put it in a vector X. 
(c) Set a vector Xlpf equal to X.
(d) Change all the values in Xlpf to zero except the fi rst 8 points and the last 

8 points.
(e) Take the real part of the inverse DFT of Xlpf and put it in a vector xlpf. 
(f  ) Generate a set of 256 sample times t that begin with 0 and are uniformly 

separated by 1.
(g) Graph x and xlpf versus t on the same scale and compare.

  What kind of effect does this operation have on a set of data? Why is the output 
array called xlpf?

 56. In Figure E.56 match functions to their DFT magnitudes.

Figure E.56
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480 Chapter  10  Sampling and Signal Processing

 57. For each x[ ]n  a–h in Figure E.57, fi nd the DFT magnitude X[ ]k  corresponding 
to it.

Figure E.57
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481

11.1 INTRODUCTION AND GOALS
Up to this point in this text the material has been highly mathematical and abstract. 
We have seen some occasional examples of the use of these signal and system analysis 
techniques but no really in-depth exploration of their use. We are now at the point at 
which we have enough analytical tools to attack some important types of signals and 
systems and demonstrate why frequency-domain methods are so popular and powerful 
in analysis of many systems. Once we have developed a real facility and familiarity 
with frequency-domain methods we will understand why many professional engineers 
spend practically their whole careers “in the frequency domain,” creating, designing 
and analyzing systems with transform methods.

Every LTI system has an impulse response and, through the Fourier transform, a 
frequency response, and through the Laplace transform a transfer function. We will 
analyze systems called  fi lters that are designed to have a certain frequency response. 
We will defi ne the term ideal fi lter and we will see ways of approximating the ideal 
fi lter. Since frequency response is so important in the analysis of systems, we will de-
velop effi cient methods of fi nding the frequency responses of complicated systems.

C H A P T E R  G OA L S

 1. To demonstrate the use of transform methods in the analysis of some systems 
with practical engineering applications

 2. To develop an appreciation of the power of signal and system analysis done 
directly in the frequency domain

11.2 FREQUENCY RESPONSE
Probably the most familiar example of frequency response  in everyday life is the re-
sponse of the  human ear to sounds. Figure 11.1 illustrates the variation of the percep-
tion by the average healthy human ear of the loudness of a single sinusoidal frequency 
of a constant mid-level intensity as a function of frequency from 20 Hz to 20 kHz. This 
range of frequencies is commonly called the  audio range.

This frequency response is a result of the structure of the human ear. A system de-
signed with the ear’s response in mind is a  home-entertainment audio system. This is an 

 C H A P T E R  11
Frequency Response Analysis
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482 Chapter  11  Frequency Response Analysis

example of a system that is designed without knowing exactly what signals it will pro-
cess or exactly how they should be processed. But it is known that the signals will lie in 
the audio frequency range. Since different people have different tastes in music and how 
it should sound, such a system should have some fl exibility. An audio system typically 
has an amplifi er that is capable of adjusting the relative loudness of one frequency versus 
another through tone controls like bass adjustment, treble adjustment, loudness compen-
sation or a graphic equalizer. These controls allow any individual user of the system to 
adjust its frequency response for the most pleasing sound with any kind of music.

 Audio-amplifi er controls are good examples of systems designed in the frequency 
domain. Their purpose is to shape the frequency response of the amplifi er. The term 
 fi lter is commonly used for systems whose main purpose is to  shape a frequency re-
sponse. We have already seen a few examples of fi lters characterized as lowpass, high-
pass, bandpass or bandstop. What does the word fi lter mean in general? It is a device 
for separating something desirable from something undesirable. A coffee fi lter sepa-
rates the desirable coffee from the undesirable coffee grounds. An oil fi lter removes 
undesirable particulates. In signal and system analysis, a fi lter separates the desirable 
part of a signal from the undesirable part. A fi lter is conventionally defi ned in signal 
and system analysis as a device that emphasizes the power of a signal in one frequency 
range while deemphasizing the power in another frequency range.

11.3   CONTINUOUS-TIME FILTERS

EXAMPLES OF FILTERS

Filters have  passbands and  stopbands. A passband is a frequency range in which the 
fi lter allows the signal power to pass through relatively unaffected. A stopband is a 
frequency range in which the fi lter signifi cantly attenuates the signal power, allowing 

Figure 11.1
Average human ear’s perception of the loudness of a constant-amplitude 
audio tone as a function of frequency
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 11.3 Continuous-Time Filters 483

very little to pass through. The four basic types of fi lters are  lowpass,  highpass,  band-
pass and  bandstop fi lters. In a lowpass fi lter the passband is a region of low frequency 
and the stopband is a region of high frequency. In a highpass fi lter those bands are 
reversed. Low frequencies are attenuated and high frequencies are not. A bandpass 
fi lter has a passband in a mid-range of frequencies and stopbands at both low and high 
frequencies. A bandstop fi lter reverses the pass and stop bands of the bandpass fi lter.

Simple adjustments of the bass and treble (low and high frequencies) volume in 
an  audio amplifi er could be accomplished by using lowpass and highpass fi lters with 
adjustable corner frequencies. We have seen a circuit realization of a lowpass fi lter. We 
can also make a lowpass fi lter using standard continuous-time system building blocks, 
integrators, amplifi ers and summing junctions (Figure 11.2(a)).

Figure 11.2
Simple fi lters, (a)  Lowpass, (b) Highpass
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The system in Figure 11.2(a) is a lowpass fi lter with a corner frequency of �c 
(in radians/sec) and a frequency response magnitude that approaches one at low fre-
quencies. This is a very simple  Direct Form II system. The transfer function is 
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where � �c cf= 2 . The system in Figure 11.2(b) is a highpass fi lter with a corner fre-
quency of �c. Its transfer function and frequency response are
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In either fi lter, if �c can be varied, the relative power of the signals at low and high 
frequencies can be adjusted. These two systems can be cascade connected to form 
a bandpass fi lter (Figure 11.3). The transfer function and frequency response of the 
bandpass fi lter are
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484 Chapter  11  Frequency Response Analysis

As an example, let �ca = 100 and let �cb = 50 000, . Then the frequency responses of 
the lowpass,  highpass and bandpass fi lters are as illustrated in Figure 11.4.

A  bandstop fi lter can be made by parallel connecting a lowpass and highpass  fi lter 
if the corner frequency of the lowpass fi lter is lower than the corner frequency of the 
highpass fi lter (Figure 11.5).

Figure 11.4
High, low and bandpass fi lter frequency responses
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Figure 11.5
A bandstop fi lter formed by parallel connecting a lowpass fi lter and a 
highpass fi lter
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Figure 11.3
A  bandpass fi lter formed by cascading a highpass fi lter and a lowpass fi lter
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The transfer function and frequency response of the bandstop fi lter are
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Figure 11.6
Bandstop fi lter frequency response
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Figure 11.7
A biquadratic system
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If, for example, �ca = 50 000,  and �cb = 100, the frequency response would look like 
Figure 11.6.

A  graphic equalizer is a little more complicated than a simple lowpass, highpass or 
bandpass fi lter. It has several cascaded fi lters, each of which can increase or decrease 
the frequency response of the amplifi er in a narrow range of frequencies. Consider the 
system in Figure 11.7. Its transfer function and frequency response are
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This transfer function is  biquadratic in s, a ratio of two quadratic polynomials. If we 
graph the frequency response magnitude with �0 1=  for several values of the param-
eter �, we can see how this system could be used as one fi lter in a graphic equalizer 
(Figure 11.8).

It is apparent that, with proper selection of the parameter �, this fi lter can either 
emphasize or deemphasize signals near its center frequency �0 and has a frequency 
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486 Chapter  11  Frequency Response Analysis

response approaching one for frequencies far from its center frequency. A set of cas-
caded fi lters of this type, each with a different center frequency, can be used to empha-
size or deemphasize multiple bands of frequencies and thereby to tailor the frequency 
response to almost any shape a listener might desire (Figure 11.9).

Figure 11.9
Conceptual block diagram of a graphic equalizer
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With all the fi lters set to emphasize their frequency range the magnitude frequency 
responses of the subsystems could look like Figure 11.10. The center frequencies of 
these fi lters are 20 Hz, 40 Hz, 80 Hz, . . . , 20480 Hz. The fi lters are spaced at  octave 
intervals in frequency. An octave is a factor-of-two change in frequency. That makes 
the individual-fi lter center frequencies be uniformly spaced on a logarithmic scale, and 
the bandwidths of the fi lters are also uniform on a  logarithmic scale. 

Another example of a system designed to handle unknown signals would be an 
 instrumentation system measuring pressure, temperature, fl ow, and so on in an indus-
trial process. We do not know exactly how these process parameters vary. But they 
normally lie within some known range and can vary no faster than some maximum rate 
because of the physical limitations of the process. Again, this knowledge allows us to 
design a signal processing system appropriate for these types of signals.

Even though a signal’s exact characteristics may be unknown, we usually know 
something about it. We often know its approximate  power spectrum. That is, we have 
an approximate description of the signal power of the signal in the frequency domain. 
If we could not mathematically calculate the power spectrum, we could estimate it 
based on knowledge of the physics of the system that created it or we could measure 
it. One way to measure it would be through the use of fi lters. 

rob80687_ch11_481-557.indd   486rob80687_ch11_481-557.indd   486 1/3/11   11:35:39 AM1/3/11   11:35:39 AM



 11.3 Continuous-Time Filters 487

 IDEAL FILTERS

 Distortion
An  ideal lowpass fi lter would pass all signal power at frequencies below some maxi-
mum, without distorting the signal at all in that frequency range, and completely stop or 
block all signal power at frequencies above that maximum. It is important here to defi ne 
precisely what is meant by distortion. Distortion is commonly construed in signal and 
system analysis to mean changing the shape of a signal. This does not mean that if we 
change the signal we necessarily distort it. Multiplication of the signal by a constant, or a 
time shift of the signal, are changes that are not considered to be distortion. 

Suppose a signal x( )t  has the shape illustrated at the top of Figure 11.11(a). Then 
the signal at the bottom of Figure 11.11(a) is an undistorted version of that signal. 
Figure 11.11(b) illustrates one type of distortion.

Figure 11.10
Frequency response magnitudes for 11 fi lters spanning the audio range
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(a) An original  signal and a changed, but undistorted, version 
of it, (b) An original signal and a  distorted version of it

t
1

x(t)

-1

1

Original Signal

t
-0.2 0.8

x(t)

-1
(a)

1

Time-Shifted Signal

t
1

x(t)

-1

1

Original Signal

t
1

x(t)

-1
(b)

1

"Clipped" Signal

rob80687_ch11_481-557.indd   487rob80687_ch11_481-557.indd   487 1/3/11   11:35:39 AM1/3/11   11:35:39 AM



488 Chapter  11  Frequency Response Analysis

The response of any LTI system is the convolution of its excitation with its im-
pulse response. Any signal convolved with a unit impulse at the origin is unchanged, 
x( ) ( ) x( )t t t∗ =� . If the impulse has a strength other than one, the signal is multiplied 
by that strength but the shape is still unchanged, x( ) ( ) x( )t A t A t∗ =� . If the impulse 
is time shifted, the convolution is time shifted also, but without changing the shape, 
x( ) ( ) x( )t A t t A t t∗ − = −� 0 0 . Therefore, the impulse response of a fi lter that does not 
distort would be an impulse, possibly with strength other than one and possibly shifted 
in time. The most general form of impulse response  of a distortionless system would 
be h( ) ( )t A t t= −� 0 . The corresponding frequency response would be the CTFT of the 
impulse response H( )f Ae j ft= − 2 0� . The frequency response can be characterized by 
its magnitude and phase H( )f A=  and �H( )f ft= −2 0� . Therefore a  distortionless 
system has a frequency response magnitude that is constant with frequency and a phase 
that is linear with frequency (Figure 11.12).

It should be noted here that a distortionless impulse response or frequency re-
sponse is a concept that cannot actually be realized in any real physical system. No 
real system can have a frequency response that is constant all the way to an infi nite fre-
quency. Therefore the frequency responses of all real physical systems must approach 
zero as frequency approaches infi nity.

 Filter Classifi cations
Since the purpose of a fi lter is to remove the undesirable part of a signal and leave 
the rest, no fi lter, not even an ideal one, is distortionless because its magnitude is 
not constant with frequency. But an ideal  fi lter is distortionless within its passband. 
Its frequency-response magnitude is constant within the passband and its frequency-
response phase is linear within the passband.

We can now defi ne the four basic types of ideal fi lter. In the following descriptions, 
fm, fL and fH  are all positive and fi nite.

An  ideal lowpass fi lter passes signal power for frequencies 0 < <f fm without 
distortion and stops signal power at other frequencies.

    

An  ideal highpass fi lter stops signal power for frequencies 0 < <f fm and 
passes signal power at other frequencies without distortion.

    

An  ideal bandpass fi lter passes signal power for frequencies f f fL H< <  with-
out distortion and stops signal power at other frequencies.

    

An  ideal bandstop fi lter stops signal power for frequencies f f fL H< <  and 
passes signal power at other frequencies without distortion.

    

Ideal Filter  Frequency Responses
Figure 11.13 and Figure 11.14 illustrate typical magnitude and phase frequency 
responses of the four basic types of ideal fi lters.

It is appropriate here to defi ne a word that is very commonly used in signal and sys-
tem analysis, bandwidth. The term bandwidth is applied to both signals and systems. 
It generally means “a range of frequencies.” This could be the range of frequencies 
present in a signal or the range of frequencies a system passes or stops. For historical 
reasons, it is usually construed to mean a range of frequencies in positive frequency 
space. For example, an ideal lowpass fi lter with corner frequencies of ± fm as illustrated 
in Figure 11.13 is said to have a bandwidth of fm, even though the width of the fi lter’s 
nonzero magnitude frequency response is obviously 2 fm . The ideal bandpass fi lter has a 
bandwidth of f fH L− , which is the width of the passband in positive frequency space. 

Figure 11.12
Magnitude and phase 
of a distortionless 
system
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Figure 11.15
Examples of bandwidth defi nitions
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Figure 11.13
Magnitude and phase frequency responses of ideal lowpass 
and highpass fi lters

Figure 11.14
Magnitude and phase frequency responses of ideal 
bandpass and bandstop fi lters

f

f
fL fH-fL-fH

f

f
fL fH-fL-fH

Ideal Bandpass Filter
|H( f )|

Ideal Bandstop Filter
|H( f )|

H( f )H( f )

f

f

Ideal Lowpass Filter
|H( f )|

f

f
fm fm-fm-fm

Ideal Highpass Filter
|H( f )|

H( f ) H( f )

There are many different kinds of defi nitions of  bandwidth,  absolute bandwidth, 
 half-power bandwidth,  null bandwidth, and so on (Figure 11.15). Each of them is a 
range of frequencies but defi ned in different ways. For example, if a signal has no 
signal power at all below some minimum positive frequency and above some maxi-
mum positive frequency, its absolute bandwidth is the difference between those two 
frequencies. If a signal has a fi nite absolute bandwidth it is said to be  strictly band-
limited or, more commonly, just  bandlimited. Most real signals are not known to be 
bandlimited so other defi nitions of bandwidth are needed.

Impulse Responses and Causality
The impulse responses   of ideal fi lters are the inverse transforms of their frequency 
responses. The impulse and frequency responses of the four basic types of ideal fi lter 
are summarized in Figure 11.16.

These descriptions are general in the sense that they involve an arbitrary gain 
constant A and an arbitrary time delay t0. Notice that the ideal highpass fi lter and the 
ideal bandstop fi lter have frequency responses extending all the way to infi nity. This is 
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490 Chapter  11  Frequency Response Analysis

impossible in any real physical system. Therefore, practical approximations to the ideal 
highpass and bandstop fi lter allow higher-frequency signals to pass but only up to some 
high, not infi nite, frequency. “High” is a relative term and, as a practical matter, usually 
means beyond the frequencies of any signals actually expected to occur in the system.

In Figure 11.17 are some typical shapes of impulse responses for the four basic 
types of ideal fi lter.

Figure 11.16
Frequency responses and impulse responses of the four basic types of ideal fi lter
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Figure 11.17
Typical impulse responses  of ideal lowpass, highpass, bandpass 
and bandstop fi lters
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As mentioned above, one reason ideal fi lters are called ideal is that they cannot 
physically exist. The reason is not simply that perfect system components with ideal 
characteristics do not exist (although that would be suffi cient). It is more fundamen-
tal than that. Consider the impulse responses depicted in Figure 11.17. They are the 
responses of the fi lters to a unit impulse applied at time t = 0. Notice that all of the 
impulse responses of these ideal fi lters have a nonzero response before the impulse 
is applied at time t = 0. In fact, all of these particular impulse responses begin at an 
infi nite time before time t = 0. It should be intuitively obvious that a real system cannot 
look into the future and anticipate the application of the excitation and start responding 
before it occurs. All  ideal fi lters are  noncausal.
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 11.3 Continuous-Time Filters 491

Although ideal fi lters cannot be built, useful approximations to them can be 
built. In Figure 11.18 and Figure 11.19 are some examples of the impulse responses, 
frequency responses, and responses to square waves of some nonideal, causal fi lters 
that approximate the four common types of ideal fi lters.

Figure 11.18
Impulse responses, frequency responses and responses to square waves of   causal lowpass and bandpass fi lters
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Figure 11.19
Impulse responses, frequency responses and responses to square waves of   causal  highpass and  bandstop fi lters
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The  lowpass fi lter smooths the square wave by removing high-frequency signal 
power from it but leaves the low-frequency signal power (including zero frequency), 
making the average values of the input and output signals the same (because the fre-
quency response at zero frequency is one). The  bandpass fi lter removes high-frequency 
signal power, smoothing the signal, and removes low-frequency power (including zero 
frequency), making the average value of the response zero.

The highpass fi lter removes low-frequency signal power from the square wave, 
making the average value of the response zero. But the high-frequency signal power 
that defi nes the sharp discontinuities in the square wave is preserved. The bandstop 
fi lter removes signal power in a small range of frequencies and leaves the very low-
frequency and very high-frequency signal power. So the discontinuities and the aver-
age value of the square wave are both preserved but some of the mid-frequency signal 
power is removed.
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492 Chapter  11  Frequency Response Analysis

Figure 11.20
A system to measure the  power spectrum of a signal
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The  Power Spectrum
One purpose of launching into fi lter analysis was to explain one way of determining 
the power spectrum of a signal by measuring it. That could be accomplished by the 
system illustrated in Figure 11.20. The signal is routed to multiple bandpass fi lters, 
each with the same bandwidth but a unique center frequency. Each fi lter’s response is 
that part of the signal lying in the frequency range of the fi lter. Then the output signal 
from each fi lter is the input signal of a squarer and its output signal is the input signal 
of a time averager. A squarer simply takes the square of the signal. This is not a linear 
operation, so this is not a linear system. The output signal from any squarer is that 
part of the instantaneous signal power of the original x( )t  that lies in the passband of 
the bandpass fi lter. Then the time averager forms the time-average signal power. Each 
output response P ( )x fn  is a measure of the signal power of the original x( )t  in a nar-
row band of frequencies centered at fn . Taken together, the P’s are an indication of the 
variation of the signal power with frequency, the power spectrum.

It is unlikely that an engineer today would actually build a system like this to mea-
sure the power spectrum of a signal. A better way to measure it is to use an instrument 
called a  spectrum analyzer. But this illustration is useful because it reinforces the 
concept of what a fi lter does and what the term power spectrum means. 

 Noise Removal
Every useful signal always has another undesirable signal called  noise added to it. One 
very important use of fi lters is in removing noise from a signal. The sources of noise 
are many and varied. By careful design, noise can often be greatly reduced but can 
never be completely eliminated. As an example of fi ltering, suppose the signal power 
is confi ned to a range of low frequencies and the noise power is spread over a much 
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wider range of frequencies (a very common situation). We can fi lter the signal plus 
noise with a lowpass fi lter and reduce the noise power without having much effect on 
the signal power (Figure 11.21).

The ratio of the signal power of the desired signal to the signal power of the noise 
is called the  signal-to-noise ratio, often abbreviated SNR. Probably the most funda-
mental consideration in communication system design is to maximize the SNR, and 
fi ltering is a very important technique in maximizing SNR.

 BODE DIAGRAMS

The  Decibel
In graphing frequency response, the magnitude of the frequency response is often con-
verted to a logarithmic scale using a unit called the decibel (dB). If the frequency 
response magnitude is

 H( )
Y( )

X( )
j

j

j
�

�

�
= ,

then that magnitude, expressed in decibels, is

 H( ) log H( ) log
Y( )

X( )
Y( )j j

j

j
j� �

�

�
�dB dB= = = −20 2010 10 XX( )j� dB . (11.1)

The name decibel comes from the original unit defi ned by Bell Telephone engineers, 
the  bel (B), named in honor of  Alexander Graham Bell,1 the inventor of the 
telephone. The bel is defi ned as the common logarithm (base 10) of a power ratio. 
For example, if the response signal power of a system is 100 and the input signal 

1 Alexander Graham Bell was born in Scotland in a family specializing in elocution. In 1864 he became a 
resident master in Elgin’s Weston House Academy in Scotland where he studied sound and fi rst thought of 
transmitting speech with electricity. He moved to Canada in 1870 to recuperate from tuberculosis and later 
settled in Boston. There he continued working on transmitting sound over wires and on March 7, 1876, he was 
granted a patent for the telephone, arguably the most valuable patent ever issued. He became independently 
wealthy as a result of the income derived from this patent. In 1898 he became president of the National 
Geographic Society.

Figure 11.21
Partial removal of noise by a lowpass fi lter

|X( f )|

f

|X( f ) + N( f )|

f

|N( f )|

f

|Y( f )|

f 

|H( f )|

f

x(t) y(t)

n(t)

h(t)

LPF

rob80687_ch11_481-557.indd   493rob80687_ch11_481-557.indd   493 1/3/11   11:35:42 AM1/3/11   11:35:42 AM



494 Chapter  11  Frequency Response Analysis

power (expressed in the same units) is 20, the signal-power gain of the system, 
expressed in bels would be

 log ( ) log ( ) .10 10 100 20 0 699P PY X/ / B= ≅ .

Since the prefi x  deci is the international standard for one-tenth, a decibel is one-tenth 
of a bel and that same power ratio expressed in dB would be 6.99 dB. So the power 
gain, expressed in dB, would be 10 10log ( )P PY X/ . Since signal power is proportional to 
the square of the signal itself, the ratio of powers, expressed directly in terms of the 
signals, would be

 10 10 10 210 10
2 2

10
2log ( ) log ( ) log [( ) ]P P Y X Y XY X/ / /= = = 00 10log ( ).Y X/

In a system in which multiple subsystems are cascaded, the overall frequency response 
is the product of the individual frequency responses, but the overall frequency response 
expressed in dB is the sum of the individual frequency responses expressed in dB 
because of the logarithmic defi nition of the dB. Also, use of decibels may reveal fre-
quency response behavior that is diffi cult to see on a linear graph.

Before considering the frequency responses of practical fi lters it is useful to be-
come familiar with a very helpful and common way of displaying frequency response. 
Often linear graphs of frequency response, although accurate, do not reveal important 
system behavior. As an example, consider the graphs of the two quite different-looking 
frequency responses,

 H ( ) H ( )1 2 2

1

1

30

30 31
j

j
j

j
�

�
�

� �
=

+
=

− +
and ,

(Figure 11.22).

Figure 11.23
Log-magnitude graphs of the two frequency responses

ω
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Figure 11.22
Comparison of the magnitudes of two apparently different 
frequency responses
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Graphed this way, the two magnitude-frequency-response graphs look identical, 
yet we know the frequency responses are different. One way of seeing small differ-
ences between frequency responses is to graph them in dB. The decibel is defi ned 
logarithmically. A logarithmic graph deemphasizes large values and emphasizes small 
values. Then small differences between frequency responses can be more easily seen 
(Figure 11.23).
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In the linear graphs, the behavior of the magnitude frequency response looked 
identical because at very small values, the two graphs look the same. In a dB graph, 
the difference between the two magnitude frequency responses at very small values 
can be seen.

Although this type of graph is used sometimes, a more common way of displaying 
frequency response is the  Bode2 diagram or  Bode plot. Like the  log-magnitude graph, 
the Bode diagram reveals small differences between frequency responses but it is also 
a systematic way of quickly sketching or estimating the overall frequency response of 
a system that may contain multiple cascaded frequency responses. A log-magnitude 
graph is logarithmic in one dimension. A  magnitude Bode diagram is logarithmic in 
both dimensions. A  magnitude-frequency-response Bode diagram is a graph of the 
frequency response magnitude in dB against a logarithmic frequency scale. Since the 
frequency scale is now logarithmic, only positive frequencies can be used in a graph. 
That is not a loss of information since, for frequency responses of real systems, the 
value of the frequency response at any negative frequency is the complex conjugate of 
the value at the corresponding positive frequency.

Returning now to the two different system frequency responses 

 H ( ) H ( )1 2 2

1

1

30

30 31
j

j
j

j
�

�
�

� �
=

+
=

− +
and ,

if we make a Bode diagram of each of them, their difference becomes more evident 
(Figure 11.24). The dB scale makes the behavior of the two magnitude frequency 
responses at the higher frequencies distinguishable. 

2 Hendrik  Bode received a B.A. in 1924 and an M.A. in 1926 from Ohio State University. In 1926 he started 
work at Bell Telephone Laboratories and worked with electronic fi lters and equalizers. While employed at 
Bell Labs, he went to Columbia University Graduate School and received his Ph.D. in 1935. In 1938 Bode 
used the magnitude and phase frequency response plots of a complex function. He investigated closed-
loop stability using the notions of gain and phase margin. These Bode plots are used extensively with many 
electronic systems. He published Network Analysis and Feedback Amplifi er Design, considered to be a very 
important book in this fi eld. Bode retired in October 1967 and was elected Gordon Mckay Professor of Systems 
Engineering at Harvard University. 

Figure 11.24
Bode diagrams of the two example frequency responses
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496 Chapter  11  Frequency Response Analysis

Although the fact that differences between low levels of magnitude frequency 
response can be better seen with a Bode diagram is a good reason to use it, it is by 
no means the only reason. It is not even the main reason. The fact that system gains 
in dB add instead of multiplying when systems are cascaded makes the quick graphi-
cal estimation of overall system gain characteristics easier using Bode diagrams than 
using linear graphs.

Most LTI systems are described by linear differential equations with constant 
coeffi cients. The most general form of such an equation is

 a
d

dt
t b

d

dt
tk

k

k
k

N

k

k

k
k

M

y( ) x( )
= =
∑ ∑=

0 0

 (11.2)

where x( )t  is the excitation and y( )t  is the response. From Chapter 5 we know that the 
transfer function is 

 H( )s
b s b s b s b

a s a s a s
M

M
M

M

N
N

N
N= + + + +

+ + + +
−

−

−
−

1
1

1 0

1
1

1

�
� bb0

The numerator and denominator polynomials can be factored, putting the transfer 
function into the form

 H( )
( )( ) ( )

( )( )
s A

s z s z s z

s p s p
M= − − −

− −
1 1 1

1 1
1 2

1 2

/ / /

/ /

�
��( )1 − s pN/

where the z’s and p’s are the zeros and poles.
For real systems the coeffi cients a and b in (11.2) are all real and all the fi nite p’s 

and z’s in the factored forms must either be real or must occur in complex conjugate 
pairs, so that when the factored numerator and denominator are multiplied out to ob-
tain the ratio-of-polynomials form all the coeffi cients of the powers of s are real.

From the factored form, the system transfer function can be considered as being 
the cascade of a frequency-independent gain A and multiple subsystems, each having a 
transfer function with one fi nite pole or one fi nite zero. If we now convert the transfer 
function to a frequency response through s j→ �, we can think of the overall frequency 
response as resulting from the cascade of multiple components, each with a simple 
frequency response (Figure 11.25).

Figure 11.25
A system represented as a cascade of simpler systems
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Each component system will have a Bode diagram and, because the magnitude 
Bode diagrams are graphed in dB, the overall magnitude Bode diagram is the sum of 
the individual magnitude Bode diagrams. Phase is graphed linearly as before (against 
a logarithmic frequency scale) and the overall  phase Bode diagram is the sum of all the 
phases contributed by the components.
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The  One-Real-Pole System Consider the frequency response of a subsystem with a 
single real pole at s pk=  and no fi nite zeros, 

 H( ) H( )s
s p

j
j pk k

=
−

⇒ =
−

1

1

1

1/ /
�

�
. (11.3)

Before proceeding, fi rst consider the inverse CTFT of H( )j� . We can use the CTFT pair

 e t
a j

aat− ← →⎯
+

>u( ) ( )F 1
0

�
, Re ,

and rewrite (11.3) as

 H( )j
p

j p
k

k
�

�
= −

−
.

Then it follows that

 − ← →⎯ −
−

<p e t
p

j p
pk

p t k

k
k

k u( ) F

�
, 0. (11.4)

This shows that the pole must have a negative real value for the frequency response to 
have meaning. If it is positive, we cannot do the inverse CTFT to fi nd the correspond-
ing time function. If pk  is negative, the exponential in (11.4) decays to zero in positive 
time. If it were positive that would indicate a growing exponential in positive time and 
the system would be unstable. The Fourier transform of a growing exponential does 
not exist. Also, frequency response has no practical meaning for an unstable system 
because it could never actually be tested.

The magnitudes and phases of H( ) ( )j j pk� �= −1 1/ /  versus frequency are graphed 
in Figure 11.26. For frequencies � << pk  the frequency response approaches H( )j� = 1, 
the magnitude response is approximately zero dB and the phase response is approxi-
mately zero radians. For frequencies � >> pk  the frequency response is approximately 
H( )j p jk� �= − / , the magnitude frequency response approaches a linear slope of −6 dB 
per octave or −20 dB per decade and the phase response approaches a constant −�/2 
radians. (An octave is a factor-of-2 change in frequency and a decade is a factor-of-10 
change in frequency.) These limiting behaviors for extreme frequencies defi ne magni-
tude and phase  asymptotes. The intersection of the two magnitude asymptotes occurs 
at � = pk , which is called the  corner frequency. At the corner frequency � = pk  the 
frequency response is

 H( )j
j p p j

p
k k

k� =
−

=
+

<1

1

1

1
0

/
,

and its magnitude is 1 2 0 707/ ≅ . . We can convert this to decibels.

 ( . ) log ( . )0 707 20 0 707 310dB dB= = −

At that point the actual Bode diagram is 3 dB below the corner formed by the asymp-
totes. This is the point of largest deviation of this magnitude Bode diagram from its as-
ymptotes. The phase Bode diagram goes through −�/4 radians at the corner frequency 
and approaches zero radians below and −�/2 radians above the corner frequency.
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498 Chapter  11  Frequency Response Analysis

EXAMPLE 11.1

Bode diagram of frequency response of an  RC lowpass fi lter

Draw  magnitude and  phase Bode diagrams for an RC lowpass fi lter frequency response with a 
time constant of 50 �s. 

The form of the RC lowpass fi lter frequency response is 

 H( )j
j RC

�
�

=
+

1

1
.

The time constant is RC. Therefore

 H( )j
j

�
�

=
× +−

1

50 10 16
.

Setting the denominator equal to zero and solving for the pole location we get a pole at 
j� = −20 000, . Then we can write the frequency response in the standard one-negative-real-pole 
form,

 H( )
( , )

.j
j

�
�

=
− −

1

1 20 000/

The corresponding corner frequency on the Bode diagram is at � = 20 000,  (Figure 11.27).

The  One-Real-Zero System An analysis similar to the one-real-pole system analysis 
yields the magnitude and phase Bode diagrams for a subsystem with a  single negative-
real zero and no fi nite poles.

 H( ) H( )s s z j j z zk k k= − ⇒ = − <1 1 0/ / ,� �

Figure 11.26
The magnitude and phase frequency 
response of a single-negative-real-pole 
subsystem
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Figure 11.27
Magnitude and phase Bode 
diagram for the RC lowpass 
fi lter frequency response
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The diagrams are very similar to those for the single negative-real pole except that 
the magnitude asymptote above the corner frequency has a slope of +6 dB per octave 
or +20 dB per decade and the phase approaches +�/2 radians instead of −�/2  radi-
ans. They are basically the single-negative-real-pole Bode diagrams “turned upside 
down.”

For a subsystem with a single positive-real zero and no fi nite poles, of the form

 H( )j j z zk k� �= − >1 0/ ,

the magnitude graph is the same as in Figure 11.28 but the phase approaches −�/2 
instead of +�/2 at frequencies above the corner frequency.

 Integrators and  Differentiators We must also consider a pole or a zero at zero 
frequency (Figure 11.29 and Figure 11.30). A system component with a single pole at 
s = 0 is called an integrator because its transfer function is H( )s s= 1/  and division by 
s corresponds to integration in the time domain.

A system component with a single zero at s = 0 is called a differentiator because 
its transfer function is H( )s s=  and multiplication by s corresponds to differentiation 
in the time domain.

 Frequency-Independent Gain The only remaining type of simple system compo-
nent is a frequency-independent gain (Figure 11.31). In Figure 11.31, the gain constant 
A is assumed to be positive. That is why the phase is zero. If A is negative the phase is 
±� radians.

The asymptotes are helpful in drawing the actual Bode diagram and they are espe-
cially helpful in sketching the overall Bode diagram for a more complicated system. The 
asymptotes can be quickly sketched from knowledge of a few simple rules and added 
together. Then the magnitude Bode diagram can be sketched approximately by drawing 
a smooth curve that approaches the asymptotes and deviates at the corners by ±3 dB. 

Figure 11.29
The magnitude and phase frequency 
response of a single pole at s = 0
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Figure 11.28
The magnitude and phase frequency 
response of a single-negative-real-
zero subsystem
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(Figure 11.28).
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500 Chapter  11  Frequency Response Analysis

EXAMPLE 11.2

Bode diagram of the frequency response of an  RC circuit

Graph the Bode diagram for the voltage frequency response of the circuit in Figure 11.32, where 
C C R R Rs1 2 1 21 2 4 2 3= = = = =F F, , , ,� � �.

Figure 11.30
The magnitude and phase frequency 
response of a single zero at s = 0
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Figure 11.31
The magnitude and phase frequency 
response of a frequency-independent 
gain A
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Figure 11.32
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Substituting s j→ � and using numerical values for the components, the frequency response is
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j j
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The following MATLAB program demonstrates some techniques for drawing Bode diagrams.

% Set up a logarithmic vector of radian frequencies

% for graphing the Bode diagram from 0.01 to 10 rad/sec

w = logspace(-2,1,200) ;

% Set the gain, zero and pole values

A = 0.3333 ; z1 = -0.5 ; p1 = -0.2316 ; p2 = -0.8104

% Compute the complex frequency response

H = A*(1-j*w/z1)./((1-j*w/p1).*(1-j*w/p2)) ;

% Graph the magnitude Bode diagram

subplot(2,1,1) ; p = semilogx(w,20*log10(abs(H)),’k’) ; 

set(p,’LineWidth’,2) ; grid on ;

xlabel(‘\omega’,’FontSize’,18,’FontName’,’Times’) ;

Figure 11.33
Individual asymptotic and overall asymptotic and exact Bode magnitude and 
phase diagrams for the circuit voltage frequency response
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where A z p p= = − = − = −0 333 0 5 0 2316 0 81041 1 2. , . , . , . .
So this frequency response has two fi nite poles, one fi nite zero and one frequency-

independent gain. We can quickly construct an overall asymptotic Bode diagram by adding the 
asymptotic Bode diagrams for the four individual components of the overall frequency response 
(Figure 11.33).
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502 Chapter  11  Frequency Response Analysis

ylabel(‘|H({\itj}\omega)|_d_B’,’FontSize’,18,’FontName’,’Times’) ;

title(‘Magnitude’,’FontSize’,24,’FontName’,’Times’) ;

set(gca,’FontSize’,14,’FontName’,’Times’) ;

% Graph the phase Bode diagram

subplot(2,1,2) ; p = semilogx(w,angle(H),’k’) ; 

set(p,’LineWidth’,2) ; grid on ;

xlabel(‘\omega’,’FontSize’,18,’FontName’,’Times’) ; 

ylabel(‘Phase of H({\itj}\omega)’,’FontSize’,18,’FontName’,’Times’) ;

title(‘Phase’,’FontSize’,24,’FontName’,’Times’) ;

set(gca,’FontSize’,14,’FontName’,’Times’) ;

The resulting magnitude and phase Bode diagrams are illustrated in Figure 11.34.

Complex Pole and Zero Pairs Now consider the more complicated case of complex 
poles and zeros. For real system functions, they always occur in  complex conjugate 
pairs. So a complex conjugate pair of poles with no fi nite zeros would form a subsys-
tem transfer function

 H( )
( )( ) ( )*s

s p s p p p s s p p
=

− −
=

− + +
1

1 1

1

1 1 11 2 1 1
2

1 1/ / / / / **

and frequency response
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( )( ) ( ) (*j

j p j p j p p j
�

� � � �
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− −
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1
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1 1 11 2 1 1/ / / / )) *2
1 1/p p

.

Figure 11.34
 Magnitude and  phase Bode diagrams of the frequency response of the fi lter
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or
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From the table of Fourier pairs, we fi nd the pair
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in the � domain, which can be expressed in the form
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whose right side is of the same functional form as 
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This is a standard form of a second-order underdamped system response where the 
natural radian frequency is �n and the damping ratio is 	. Therefore, for this type of 
subsystem,

 � 	
�

n
n

p p p
p p p

p p
2

1
2

1 2
1 1 2

1 22
= = = − = − +

and
Re( )

.

The Bode diagram for this subsystem is illustrated in Figure 11.35.

Figure 11.35
Magnitude and phase Bode diagram for a  second-order complex pole pair
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504 Chapter  11  Frequency Response Analysis

A complex pair of zeros would form a subsystem frequency response of the form,

 H( ) *j
j

z

j

z
j

z z
�

� �
�= −⎛

⎝⎜
⎞
⎠⎟
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⎝⎜
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= − +⎛
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1 1 1

1 1

1 2 1 1 ⎠⎠⎟
+ = − +( ) Re( ) ( )

*

j

z z
j

z

z
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1

1
2

2
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21

2

In this type of subsystem we can identify the natural radian frequency and the damping 
ratio as

 � 	
�

n
n

z z z
z z z

z z
2

1
2

1 2
1 1 2

1 22
= = = − = − +

and
Re( )

.

The Bode diagram for this subsystem is illustrated in Figure 11.36.

Figure 11.36
Magnitude and phase Bode diagram for a  second-order complex zero pair
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 PRACTICAL FILTERS

 Passive Filters

The  Lowpass Filter Approximations to the ideal lowpass and bandpass fi lters can be 
made with certain types of circuits. The simplest approximation to the ideal lowpass 
fi lter is the one we have already analyzed more than once, the so-called  RC lowpass 
fi lter (Figure 11.37). We have found its response to a step and to a sinusoid. Let us now 
analyze it directly in the frequency domain.

The differential equation describing this circuit is RCv t v t v tout out in′ + =( ) ( ) ( ).
Laplace transforming both sides (assuming no initial charge on the capacitor), 
sRC s s sout out inV ( ) V ( ) V ( )+ = . We can now solve directly for the transfer function,

 H( )
V ( )

V ( )
.s

s

s sRC
out

in
= =

+
1

1
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 11.3 Continuous-Time Filters 505

The method commonly used in elementary circuit analysis to solve for the 
frequency response is based on the phasor and impedance concepts.  Impedance is a 
generalization of the idea of resistance to apply to  inductors and capacitors. Recall the 
 voltage-current relationships for  resistors,  capacitors and inductors (Figure 11.38).

If we Laplace transform these relationships we get

 V( ) I( ), V( ) I( ) I( ) V( )s R s s sL s s sC s= = =and .

The impedance concept comes from the similarity of the inductor and capacitor equa-
tions to Ohm’s law for resistors. If we form the ratios of voltage to current we get

 V( )

I( )
,

V( )

I( )

V( )

I( )

s

s
R

s

s
sL

s

s sC
= = =and

1

For resistors this ratio is called resistance. In the generalization this ratio is called 
impedance. Impedance is conventionally symbolized by Z. Using that symbol,

 Z ( ) , Z ( ) Z ( )R L Cs R s sL s sC= = =and /1 .

This allows us to apply many of the techniques of resistive circuit analysis to circuits 
that contain inductors and capacitors and are analyzed in the frequency domain. In the 
case  of the RC lowpass fi lter we can view it as a  voltage divider (Figure 11.39).

Figure 11.37
Practical RC lowpass fi lter
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Figure 11.38
Defi ning equations for resistors, capacitors and inductors
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Figure 11.39
Impedance voltage divider representation of 
the RC lowpass fi lter
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Then we can directly write the transfer function in the frequency domain

 H( )
V ( )

V ( )

Z ( )

Z ( ) Z ( )
s

s

s

s

s s

sC

sC R
out

in

c

c f
= =

+
=

+
=1

1

/

/

11

1sRC +

and the frequency response as

 H( ) H( )j
j RC

f
j f RC

�
� �

=
+

=
+

1

1

1

2 1
or ,
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506 Chapter  11  Frequency Response Analysis

arriving at the same result as before without a direct reference to the time domain. 
The magnitude and phase of the RC lowpass fi lter frequency response are illustrated 
in Figure 11.40.

The impulse response of the RC lowpass fi lter is the inverse CTFT of its frequency 
response

 h( ) u( )
/

t
e

RC
t

t RC

=
−

as illustrated in Figure 11.41. For this physically realizable fi lter the impulse response 
is zero before time t = 0. The fi lter is causal.

At very low frequencies (approaching zero) the capacitor’s impedance is much 
greater in magnitude than the resistor’s impedance, the voltage division ratio ap-
proaches one and the output voltage signal and input voltage signal are about the same. 
At very high frequencies the capacitor’s impedance becomes much smaller in magni-
tude than the resistor’s impedance and the voltage division ratio approaches zero. Thus 
we can say approximately that low frequencies “pass through” and high frequencies 
“get stopped.” This qualitative analysis of the circuit agrees with the mathematical 
form of the frequency response,

 H( )j
j RC

�
�

=
+

1

1

At low frequencies,

 lim H( )
�

�
→

=
0

1j

and at high frequencies

 lim H( )
�

�
→∞

=j 0.

The RC lowpass fi lter is lowpass only because the excitation is defi ned as the volt-
age at the input and the response is defi ned as the voltage at the output. If the response 

Figure 11.40
Magnitude and phase frequency 
responses of an RC lowpass fi lter
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Figure 11.41
Impulse response of an RC lowpass fi lter
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 11.3 Continuous-Time Filters 507

The  Bandpass Filter One of the simplest forms of a practical bandpass fi lter is 
illustrated Figure 11.43.

 H( )
V ( )

V ( )
H( )s

s

s

s RC

s s RC LC
j

j RCout

in
= =

+ +
⇒ =/

/ /

/
2 1

�
�

(( )j j RC LC� �2 1+ +/ /

At very low frequencies, the capacitor is an open circuit and the inductor is a perfect 
conductor. Therefore at very low frequencies, the output voltage signal is practically 
zero. At very high frequencies, the inductor is an open circuit and the capacitor is a 
perfect conductor, again making the output voltage signal zero. The impedance of the 
parallel inductor-capacitor combination is

 Z s
sL sC

sL sC

sL

s LC
LC ( ) =

+
=

+
/

/1 12 .

For s LC s j LC LC2 1 0 1 1+ = ⇒ = ± ⇒ = ±/ /� , the impedance is infi nite. This fre-
quency is called the  resonant frequency. So at the resonant frequency of the parallel-LC 
circuit, the impedance of that parallel combination of inductor and capacitor goes to 
infi nity and the output voltage signal is the same as the input voltage signal. The over-
all behavior of the circuit is to approximately pass frequencies near the resonant fre-
quency and block other frequencies, hence it is a practical bandpass fi lter. A graph of 

Figure 11.43
An RLC practical bandpass fi lter
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-
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+

Figure 11.42
Alternate form of a practical lowpass fi lter
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had been defi ned as the current, the nature of the fi ltering process would change com-
pletely. In that case the frequency response would become 

 H( )
I( )

V ( ) Z ( ) Z ( )
j

j

j j j j C R

j C

jin R c
�

�

� � � �

�= =
+

=
+

=1 1

1/ ��RC + 1
.

With this defi nition, at low frequencies the capacitor impedance is very large, blocking 
current fl ow so the response approaches zero. At  high frequencies the capacitor imped-
ance approaches zero so the circuit responds as though the capacitor were a perfect 
conductor and the current fl ow is determined by the resistance R. Mathematically the 
response approaches zero at low frequencies and approaches the constant 1/R  at high 
frequencies. This defi nes a highpass fi lter.

 lim H( ) lim H( )
� �

� �
→ →∞

= =
0

0 1j j Rand /

Another (much less common) form of lowpass fi lter is illustrated in Figure 11.42.

 H( )
V ( )

V ( )
H( )s

s

s

R

sL R
j

R

j L R
out

in
= =

+
⇒ =

+
�

�
.

Using the impedance and voltage divider ideas, can you explain in words why this 
circuit is a lowpass fi lter?
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508 Chapter  11  Frequency Response Analysis

the magnitude and phase of the frequency response (Figure 11.44) (for a particular 
choice of component values) reveals its bandpass nature.

The impulse response  of the RLC bandpass fi lter is

 h( ) cos( ) sin( ) u(t e t tn
t

c c
n= −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2
1 2

	� �
	

	
�	� tt)

where

 2 1 1 12 2	� � � � 	n n c nRC LC= = = −/ / and,

(Figure 11.45). Notice that the impulse response of this physically realizable fi lter is 
causal.

All  physical systems are fi lters in the sense that each of them has a response that 
has a characteristic variation with frequency. This is what gives a musical instrument 
and each human voice its characteristic sound. To see how important this is, try playing 
just the mouthpiece of any wind instrument. The sound is very unpleasant until the in-
strument is attached, then it becomes very pleasant (when played by a good musician). 
The sun periodically heats the earth as it rotates and the earth acts like a lowpass fi lter, 
smoothing out the daily variations and responding with a lagging seasonal variation 
of temperature. In prehistoric times people tended to live in caves because the thermal 
mass of the rock around them smoothed out the seasonal variation of temperature and 
allowed them to be cooler in the summer and warmer in the winter, another exam-
ple of lowpass fi ltering. Industrial foam-rubber ear plugs are designed to allow lower 
frequencies through so that people wearing them can converse but to block intense 
high-frequency sounds that may damage the ear. The list of examples of systems that 
we are familiar with in daily life that perform fi ltering operations is endless.

 Active Filters
All the practical fi lters we have examined so far have been passive fi lters. The term 
passive means they contained no devices with the capability of producing an output 
signal with more actual power (not signal power) than the input signal. Many modern 
fi lters are active fi lters. They contain active devices like transistors and/or operational 
amplifi ers and require an external source of power to operate properly. With the use of 
active devices the actual output signal power can be greater than the actual input signal 

Figure 11.44
Magnitude and phase frequency 
responses of a practical RLC bandpass 
fi lter
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Impulse response of a practical RLC 
bandpass fi lter
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 11.3 Continuous-Time Filters 509

power. The subject of active fi lters is a large one and only the simplest forms of active 
fi lters will be introduced here.3

 Operational Amplifi ers There are two commonly used forms of operational am-
plifi er circuits, the  inverting amplifi er form and the non inverting amplifi er form 
(Figure 11.46). The analysis here will use the simplest possible model for the opera-
tional amplifi er, the  ideal operational amplifi er. An ideal operational amplifi er has 
infi nite input impedance, zero output impedance, infi nite gain and infi nite bandwidth.

For each type of amplifi er there are two impedances Z ( )i s  and Z ( )f s  that control 
the transfer function. The transfer function of the inverting amplifi er can be derived by 
observing that, since the operational amplifi er input impedance is infi nite, the current 
fl owing into either input terminal is zero and therefore

 I ( ) I ( )f is s= . (11.5)

Also, since the output voltage is fi nite and the operational amplifi er gain is infi nite, the 
voltage difference between the two input terminals must be zero. Therefore

 I ( )
V ( )

Z ( )
i

i

i
s

s

s
=  (11.6)

and 

 I ( )
V ( )

Z ( )
f

f

f
s

s

s
= − . (11.7)

Equating (11.6) and (11.7) according to (11.5), and solving for the transfer function,

 H( )
V ( )

V ( )

Z ( )

Z ( )
s

s

s

s

s
o

i

f

i
= = −  . (11.8)

Similarly it can be shown that the  noninverting amplifi er transfer function is

 H( )
V ( )

V ( )

Z ( ) Z ( )

Z ( )

( )

( )
s

s

s

s s

s

Z s

Z s
o

i

f i

i

f

i
= =

+
= +1  . (11.9)

3 In some passive circuits, there is voltage gain at some frequencies. The output voltage signal can be larger 
than the input voltage signal. Therefore the output signal power, as defi ned previously, would be greater than the 
input signal power. But this is not actual power gain because that higher output voltage signal is across a higher 
impedance.

Figure 11.46
Two common forms of amplifi ers utilizing operational  amplifi ers
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510 Chapter  11  Frequency Response Analysis

The Integrator Probably the most common and simplest form of active fi lter is the 
 active  integrator (Figure 11.47). Using the inverting amplifi er gain formula (11.8) for 
the transfer function,

 H( )
Z ( )

Z ( )
H( )s

s

s

sC

R sRC
f

j f RC
f

i
= − = − = − ⇒ = −1 1 1

2

/

�
,

The action of the integrator is easier to see if the frequency response is rearranged to 
the form

 V ( )
V ( )

V ( )
V ( )

o
i

o
if

RC

f

j f
j

RC

j

j
= − = −1

2

1

�
�

�

�
or .

The integrator integrates the signal but, at the same time, multiplies it by −1/RC . 
Notice that we did not introduce a practical passive integrator. The passive RC lowpass 
fi lter acts much like an integrator for frequencies well above its corner frequency but 
at a low enough frequency its response is not like an integrator. So the active device 
(the operational amplifi er in this case) has given the fi lter designer another degree of 
freedom in design.

Figure 11.48
An active RC lowpass fi lter
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Figure 11.47
An active integrator
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The  Lowpass Filter The integrator is easily changed to a lowpass fi lter by the addi-
tion of a single resistor (Figure 11.48). For this circuit,

 H( )
V ( )

V ( )
H( )

V ( )

V ( )
s

s

s

R

R sCR
j

j

ji

f

s f i
= = −

+
⇒ =0 01

1
�

�

�
== −

+
R

R j CR
f

s f

1

1�
.

This frequency response has the same functional form as the passive RC lowpass fi lter 
except for the factor −R Rf s/ . So this is a fi lter with gain. It fi lters and amplifi es the 
signal simultaneously. In this case the voltage gain is negative.

EXAMPLE 11.3

Bode diagram of the frequency response of a  two-stage active fi lter

Graph the Bode magnitude and phase diagrams for the two-stage active fi lter in Figure 11.49.
The transfer function of the fi rst stage is 

 H ( )
( )

( )
1

1

1

1

1 1 1

1

1
s

Z s

Z s

R

R sC R
f

i

f

i f f
= − = −

+
.
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The transfer function of the second stage is

 H ( )
( )

( )
2

1

1

2 2

2 21
s

Z s

Z s

sR C

sR C
f

i

f i

f f
= − = −

+
.

Since the output impedance of an ideal operational amplifi er is zero, the second stage does not 
load the fi rst stage and the overall transfer function is simply the product of the two transfer 
functions,

 H( )
( )( )

s
R

R

sR C

sC R sR C
f

i

f i

f f f f
=

+ +
1

1

2 2

1 1 2 21 1

Substituting in parameter values and letting s j f→ 2� , we get the frequency response

 H( )
( )( )

f
j f

jf jf
=

+ +
1000

1000 10 1000/

(Figure 11.50). This is a practical bandpass fi lter.

Figure 11.49
A two-stage active fi lter
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Figure 11.50
Bode diagram of the frequency response of the two-stage active fi lter
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512 Chapter  11  Frequency Response Analysis

EXAMPLE 11.4

  Design of an active highpass fi lter

Design an active fi lter that attenuates signals at 60 Hz and below by more than 40 dB and 
amplifi es signals at 10 kHz and above with a positive gain that deviates from 20 dB by no more 
than 2 dB.

This specifi es a highpass fi lter. The gain must be positive. A positive gain and some high-
pass fi ltering can be accomplished by one noninverting amplifi er. However, looking at the trans-
fer function and frequency response for the noninverting amplifi er

 H( )
V ( )

V ( )

Z ( ) Z ( )

Z ( )
H( )

Z ( ) Z
s

s

s

s s

s
j

jo

i

f i

i

f= =
+

⇒ =
+

�
� ii

i

j

j

( )

Z ( )

�

�

we see that if the two impedances consist of only resistors and capacitors its gain is never less 
than one and we need  attenuation (a gain less than one) at low frequencies. (If we were to use 
both inductors and capacitors, we could make the magnitude of the sum Z ( ) Z ( )f ij j� �+  be 
less than the magnitude of Z ( )i j�  at some frequencies and achieve a gain less than one. But we 
could not make that occur for all frequencies below 60 Hz, and the use of inductors is generally 
avoided in practical design unless absolutely necessary. There are other practical diffi culties 
with this idea also using real, as opposed to ideal, operational amplifi ers.)

If we use one inverting amplifi er we have a negative gain. But we could follow it with an-
other inverting amplifi er making the overall gain positive. ( Gain is the opposite of attenuation. 
If the attenuation is 60 dB the gain is −60dB.) If the gain at 60 Hz is −40 dB and the response 
is that of a single-pole highpass fi lter, the Bode diagram asymptote on the magnitude frequency 
response would pass through −20 dB of gain at 600 Hz, 0 dB of gain at 6 kHz and 20 dB of 
gain at 60 kHz. But we need 20 dB of gain at 10 kHz so a single-pole fi lter is inadequate to 
meet the specifi cations. We need a  two-pole highpass fi lter. We can achieve that with a cascade 
of two single-pole highpass fi lters, meeting the requirements for attenuation and positive gain 
simultaneously.

Now we must choose Z ( )f j�  and Z ( )i j�  to make the inverting amplifi er a highpass 
fi lter. Figure 11.48 illustrates an active lowpass fi lter. That fi lter is lowpass because the gain 
is −Z j Z jf i( ) ( )� �/ , Z ( )i j�  is constant, and Z ( )f j�  has a larger magnitude at low frequencies 
than at high frequencies. There is more than one way to make a highpass fi lter using the same 
inverting amplifi er confi guration. We could make the magnitude of Z ( )f j�  be small at low 
frequencies and larger at high frequencies. That requires the use of an inductor but, again for 
practical reasons, inductors should be avoided unless really needed. We could make Z ( )f j�  
constant and make the magnitude of Z ( )i j�  large at low frequencies and small at high frequen-
cies. That general goal can be accomplished by either a parallel or series combination of a  resis-
tor and a  capacitor (Figure 11.51).

Figure 11.51
Two ideas for a highpass fi lter using only capacitors and resistors
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 11.3 Continuous-Time Filters 513

If we just think about the limiting behavior of these two design ideas at very low and very 
high frequencies, we immediately see that only one of them meets the specifi cations of this de-
sign. Design (a) has a fi nite gain at very low frequencies and a gain that rises with frequency at 
higher frequencies, never approaching a constant. Design (b) has a gain that falls with frequency 
at low frequencies, approaching zero at zero frequency and approaching a constant gain at high 
frequencies. Design (b) can be used to meet our specifi cation. So now the design is a cascade of 
two inverting amplifi ers (Figure 11.52).

Figure 11.52
 Cascade of two inverting highpass active fi lters

Rf2

Ri2 Ci2

Rf1

Ri1 Ci1

At this point we must select the resistor and capacitor values to meet the attenuation and 
gain requirements. There are many ways of doing that. The design is not unique. We can begin 
by selecting the resistors to meet the high-frequency gain requirement of 20 dB. That is an 
overall high-frequency gain of 10, which we can apportion any way we want between the two 
amplifi ers. Let’s let the two stage gains be approximately the same. Then the resistor ratios in 
each stage should be about 3.16. We should choose resistors large enough not to load the outputs 
of the operational amplifi ers but small enough that stray capacitances don’t cause problems. 
Resistors in the range of 500 � to 50 k � are usually good choices. But unless we are willing 
to pay a lot, we cannot arbitrarily choose a resistor value. Resistors come in standard values, 
typically in a sequence of 

 1, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 10× n

where n sets the decade of the resistance value. Some ratios that are very near 3.16 are
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3 03= .

To set the overall gain very near 10 we can choose the fi rst stage ratio to be 3 9 1 2 3 25. . ./ =  
and the second stage ratio to be 6 8 2 2 3 09. . ./ =  and achieve an overall high-frequency gain of 
10.043. So we set

 R R R Rf i f i1 1 2 23 9 1 2 6 8 2 2= = = =. . . .k , k , k , k� � � �.

Now we must choose the  capacitor values to achieve the attenuation at 60 Hz and below and 
the gain at 10 kHz and above. To simplify the design let’s set the two corner frequencies of the 
two stages at the same (or very nearly the same) value. With a two-pole low-frequency rolloff 
of 40 dB per decade and a high-frequency gain of approximately 20 dB we get a 60 dB differ-
ence between the frequency response magnitude at 60 Hz and 10 kHz. If we were to set the gain 
at 60 Hz to be exactly −40 dB, then at 600 Hz we would have approximately 0 dB gain and at 
6 kHz we would have a gain of 40 dB, and it would be higher at 10 kHz. This does not meet the 
specifi cation. 

We can start at the high-frequency end and set the gain at 10 kHz to be approximately 10, 
meaning that the corner for the low-frequency rolloff should be well below 10 kHz. If we put it 
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514 Chapter  11  Frequency Response Analysis

at 1 kHz, the approximate gain at 100 Hz based on asymptotic approximations will be −20 dB 
and at 10 Hz it will be −60 dB. We need −40 dB at 60 Hz. But we only get about −29 dB at 
60 Hz. So we need to put the corner frequency a little higher, say 3 kHz. If we put the corner 
frequency at 3 kHz, the calculated capacitor values will be Ci1 46= nF  and Ci2 24= nF. Again, 
we cannot arbitrarily choose a capacitor value. Standard capacitor values are typically arrayed 
at the same intervals as standard resistor values

 1, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 10× n.

There is some leeway in the location of the corner frequency so we probably don’t need a really 
precise value of capacitance. We can choose Ci1 0 47= . nF  and Ci2 22= nF , making one a little 
high and one a little low. This will separate the poles slightly but will still create the desired 
40 dB per decade low-frequency rolloff. This looks like a good design but we need to verify its 
performance by drawing a Bode diagram (Figure 11.53).

Figure 11.53
Bode diagram for two-stage active highpass fi lter design
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-80
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20
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-π
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It is apparent from the diagram that the attenuation at 60 Hz is adequate. Calculation of the 
gain at 10 kHz yields about 19.2 dB, which also meets specifi cations. 

These results are based on exact values of resistors and capacitors. In reality all resistors 
and capacitors are typically chosen based on their nominal values but their actual values may 
differ from the nominal by a few percent. So any good design should have some tolerance in the 
specifi cations to allow for small deviations of component values from the design values.

EXAMPLE 11.5

 Sallen-Key  bandpass fi lter

A popular fi lter design that can be found in many books on electronics or fi lters is the two-pole, 
single-stage, Sallen-Key or constant-K bandpass fi lter (Figure 11.54).

The triangle symbol with the K inside represents an ideal noninverting amplifi er with 
a fi nite voltage gain K, an infi nite input impedance, a zero output impedance and infi nite 
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Figure 11.54
Sallen-Key or constant-K bandpass fi lter
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bandwidth (not an operational amplifi er). The overall bandpass-fi lter transfer function and 
frequency response are
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The frequency response is of the form
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The recommended design procedure is to choose the Q, and the resonant frequency f0 0 2= � �/ , 
choose C C C1 2= =  as some convenient value and then calculate

 R R
f C

K
Q

Q
H Q1 2

0
0

1

2

3 1

2 1
3 1= = = −

−
= −

�
and and .
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516 Chapter  11  Frequency Response Analysis

Also, it is recommended that Q should be less than 10 for this design. Design a fi lter of this type 
with a Q of 5 and a center frequency of 50 kHz.

We can pick convenient values of capacitance, so let C C C1 2 10= = = nF. Then 
R R K H1 2 0318 1 556 14= = = =� and . and . That makes the frequency response

 H( )
( . )

( ) ( . ) .
j

j

j j
�

�

� �
= − ×

+ × + ×
8 792 10

6 4 10 9 86 10

5

2 4 10

or, written as a function of cyclic frequency

 H( )
( . )

( ) ( . ) .
f

j f

j f j f
= − ×

+ × +
2 8 792 10

2 6 4 10 2 9 86

5

2 4
�

� � ×× 1010

(Figure 11.55). 

Figure 11.55
Bode diagram of the Sallen-Key bandpass fi lter frequency response
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As in the previous example, we cannot choose the component values to be exactly those 
calculated, but we can come close. We would probably have to use nominal 330 � resistors and 
that would alter the frequency response slightly, depending on their actual values and the actual 
values of the capacitors.

EXAMPLE 11.6

 Biquadratic RLC active fi lter

The biquadratic fi lter introduced in Section 11.2 can be realized as an active fi lter (Figure 11.56). 
Under the assumption of an ideal operational amplifi er, the transfer function can be found using 
standard circuit analysis techniques. It is
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 11.3 Continuous-Time Filters 517

Consider the two cases, R R1 2 0≠ =0,  and R R1 20 0= ≠, . If R R1 2 0≠ =0, , then the frequency 
response is

 H( )
( ) ( )

( )
j

j j R R L LC

j j R L LC
f

�
� �
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=

+ + +
+ +

2

2

1

1
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The natural radian frequency is �n LC= 1/ . There are poles at 

 j R L R L LC� = − ± −( ) ( )/ / /2 2 12
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and, at low and high frequencies and at resonance, 

 lim H( ) lim H( ) H( )
� �
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→ →∞

= = =
+

>
0

1 1 1j j j
R R

R
n

f
, , .

If R L C< 2 /  and R R L Cf+ >> 2 / , the poles are complex and the zeros are real and the 
dominant effect near �n is an increase in the frequency response magnitude. Notice that in this 
case the frequency response does not depend on R1. This condition is just like having the RLC 
resonant circuit in the feedback with the potentiometer removed. 

If R R1 20 0= ≠, , then
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Figure 11.56
 Active RLC realization of a biquadratic fi lter
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518 Chapter  11  Frequency Response Analysis

and, at low and high frequencies and at resonance, 

 lim H( ) lim H( ) H( )
� �

� � �
→ →∞

= = =
+

<
0

1 1 1j j j
R

R R
n

s
, , .

If R L C< 2 /  and R R L Cs+ >> 2 / , the zeros are complex and the poles are real and the 
dominant effect near �n is a decrease in the frequency response magnitude. Notice that in this 
case the frequency response does not depend on R2. This condition is just like having the RLC 
resonant circuit on the input of the amplifi er with the potentiometer removed. If R R1 2=  and 
R Rf s= , the frequency response is H( )j� = 1 and the output signal is the same as the input 
signal.

So one potentiometer can determine whether the frequency response magnitude is in-
creased or decreased near a resonant frequency. The graphic equalizer of Section 11.2 could 
be realized with a cascade connection of 9 to 11 such biquadratic fi lters with their resonant 
frequencies spaced apart by octaves. But it can also be realized with only one operational ampli-
fi er as illustrated in Figure 11.57. Because of the interaction of the passive RLC networks, the 
operation of this circuit is not identical to that of multiple cascade-connected biquadratic fi lters, 
but it accomplishes the same goal with fewer parts.

Figure 11.57
A circuit realization of a  graphic equalizer with only one operational amplifi er
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11.4  DISCRETE-TIME FILTERS

NOTATION

The DTFT was  derived from the z transform by making the change of variable 
z e z ej F j→ →2� or �  where F and � are both real variables representing frequency, 
cyclic and radian. In the literature on discrete-time (digital) systems the most 
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commonly used variable for frequency is  radian frequency �. So in the following sec-
tions on discrete-time fi lters we will also use � predominantly.4

IDEAL FILTERS

The analysis and design of discrete-time fi lters has many parallels with the analysis 
and design of continuous-time fi lters. In this and the next section we will explore the 
characteristics of discrete-time fi lters using many of the techniques and much of the 
terminology developed for continuous-time fi lters.

 Distortion
The term distortion means the same thing for  discrete-time fi lters as it does for 
continuous-time fi lters, changing the shape of a signal. Suppose a signal x[ ]n  has the shape 
illustrated at the top of Figure 11.58(a). Then the signal at the bottom of Figure 11.58(a) is 
an undistorted version of that signal. Figure 11.58(b) illustrates one type of distortion.

Just as was true for continuous-time fi lters, the impulse response  of a fi lter that 
does not distort is an impulse, possibly with a strength other than one and possibly 
shifted in time. The most general form of an impulse response of a   distortionless sys-
tem is h[ ] [ ]n A n n= −� 0 . The corresponding frequency response is the DTFT of the 
impulse response H( )e Aej j n� �= − 0. The frequency response can be characterized by 

4 The reader should be aware that notation varies widely among books and papers in this area. The DTFT  of a 
discrete-time function x[n] might be written in any of the forms

 X( ), X( ), X( ), X( ), X( ).e e ej f j j2� � �Ω Ω

Some authors use the same symbol � for radian frequency in both continuous and discrete time. Some authors 
use � and f in discrete time and � and F in continuous time. Some authors preserve the meaning of “X” as the z 
transform of “x” by replacing z by e j� or e j�. Other authors redefi ne the function “X” and the DTFT by using � 
or � as the independent variable. All notation forms have advantages and disadvantages.

Figure 11.58
(a) An original signal and a  changed, but undistorted, version 
of it, (b) An original signal and a  distorted version of it
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520 Chapter  11  Frequency Response Analysis

its magnitude and phase H( )e Aj� =  and �H( )e nj� �= − 0. Therefore a distortionless 
system has a frequency response magnitude that is constant with frequency and a phase 
that is linear with frequency (Figure 11.59).

The magnitude frequency response of a distortionless system is constant and the 
phase frequency response is linear over the range − < <� ��  and repeats periodically 
outside that range. Since n0 is an integer, the magnitude and phase of a distortionless 
fi lter are guaranteed to repeat every time � changes by 2�.

 Filter Classifi cations
The terms passband and stopband have the same signifi cance for discrete-time fi lters 
as they do for continuous-time fi lters. The descriptions of ideal discrete-time fi lters 
are similar in concept but have to be modifi ed slightly because of the fact that all 
discrete-time systems have  periodic frequency responses. They are periodic because, 
in the signal A ncos( )�0 , if �0 is changed by adding 2�m, m an integer, the signal 
becomes A m ncos(( ) )�0 2+ �  and the signal is unchanged because

 A n A m n A n mn mcos( ) cos(( ) ) cos( )� � �0 0 02 2= + = +� � , an integer.

Therefore, a discrete-time fi lter is classifi ed by its frequency response over the base 
period − < <� �� .

An  ideal lowpass fi lter passes signal power for frequencies 0 < < <� �m � 
without distortion and stops signal power at other frequencies in the range 
− < <� �� .

    

An  ideal highpass fi lter stops signal power for frequencies 0 < < <� �m � 
and passes signal power at other frequencies in the range − < <� ��  without 
distortion.

    

An  ideal bandpass fi lter passes signal power for frequencies 0 < < < <� � �L H � 
without distortion and stops signal power at other frequencies in the range 
− < <� �� .

    

An  ideal bandstop fi lter stops signal power for frequencies 0 < < < <� � �L H � 
and passes signal power at other frequencies in the range − < <� ��  without 
distortion.

    

Frequency Responses
In Figure 11.60 and Figure 11.61 are the magnitude and phase frequency responses of 
the four basic types  of ideal fi lters.

Impulse Responses and  Causality
The impulse responses of ideal fi lters are the inverse transforms of their frequency 
responses. The impulse and frequency responses of the four basic types of ideal fi lter 
are summarized in Figure 11.62. These descriptions are general in the sense that they 
involve an arbitrary gain constant A and an arbitrary time delay n0.

In Figure 11.63 are some typical shapes of impulse responses for the four basic 
types of ideal fi lter.

The consideration of causality is the same for  discrete-time fi lters as for continuous-
time fi lters. Like ideal continuous-time fi lters, ideal discrete-time fi lters have noncausal 
 impulse responses and are therefore physically impossible to build.

Figure 11.59
Magnitude and phase of a 
distortionless system
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Figure 11.62
Frequency responses and impulse responses of the four basic types of  ideal fi lter
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Figure 11.60
Magnitude and phase frequency responses of ideal lowpass and 
highpass fi lters

Ideal Lowpass Filter Ideal Highpass Filter

Ω 

|H(ejΩ)|

Ω  
Ωm-Ωm

H(ejΩ)

Ω

|H(ejΩ)|

Ω
Ωm-Ωm

H(ejΩ)

......

......

......

......

2π-2π

2π-2π

2π-2π

2π-2π

Figure 11.61
Magnitude and phase frequency responses of ideal bandpass and 
bandstop fi lters

Ω

|H(ejΩ)|

Ω
ΩL
ΩH

-ΩL
-ΩH

Ideal Bandstop Filter

Ω 

|H(ejΩ)|

Ω 

Ideal Bandpass Filter

......
ΩL

ΩH

-ΩL
-ΩH

......

............

2π-2π 2π-2π

2π-2π
2π-2π

H(ejΩ)H(ejΩ)

In Figure 11.64 and Figure 11.65 are some examples of the impulse responses, 
frequency responses and responses to rectangular waves of some nonideal, causal fi l-
ters that approximate the four common types of ideal fi lters. In each case the frequency 
response is graphed only over the base period − < <� �� .

The effects of these practical fi lters on the rectangular waves are similar to those 
shown for the corresponding continuous-time fi lters.

 Filtering  Images
One interesting way to demonstrate what fi lters do is to fi lter an image. An image is 
a “ two-dimensional signal.” Images can be acquired in various ways. A fi lm camera 
exposes light-sensitive fi lm to a scene through a lens system, which puts an optical 
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522 Chapter  11  Frequency Response Analysis

Figure 11.64
Impulse responses, frequency responses and responses to rectangular waves of   causal lowpass and bandpass 
fi lters
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Figure 11.65
Impulse responses, frequency responses and responses to rectangular waves of   causal highpass and bandstop 
fi lters

n
 5 25

h[n]

 0.6

0.4

Causal Highpass h[n]

 5 25

x[n]
1 Excitation

n
 5 25

y[n]

 0.3

0.3 Response

Ω 
-π π

|H(ejΩ)|
1

Ω
-π π

 4

4
H(ejΩ)

n

n
 5 25

h[n]

 0.6

0.8

Causal Bandstop h[n]

n
 5 25

x[n]
1 Excitation

n
 5 25

y[n]

 0.2

1.2 Response

-π π

1

-π π

 4

4

|H(e jΩ)| 

Ω

Ω

H(e jΩ)

Figure 11.63
Typical impulse responses of ideal lowpass, highpass, 
bandpass and bandstop fi lters
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Figure 11.66
A white cross on a black background

Figure 11.67
Brightness of the top row of pixels in the white-cross image
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image of the scene on the fi lm. The photograph could be a color photograph or a 
black-and-white (monochrome)  photograph. This discussion will be confi ned to mono-
chrome images. A digital camera acquires an image by imaging the scene on a (usu-
ally) rectangular array of detectors, which convert light energy to electrical charge. 
Each detector, in effect, sees a very tiny part of the image called a  pixel (short for 
picture element). The image acquired by the digital camera then consists of an array of 
numbers, one for each pixel, indicating the light intensity at that point (again assuming 
a monochrome image).

A photograph is a  continuous-space function of two spatial coordinates conven-
tionally called x and y. An acquired digital image is a  discrete-space function of two 
discrete-space coordinates nx and ny. In principle a photograph could be directly fi l-
tered. In fact, there are optical techniques that do just that. But by far the most com-
mon type of image fi ltering is done digitally, meaning that an acquired digital image is 
fi ltered by a computer using numerical methods.

The techniques used to fi lter images are very similar to the techniques used to fi lter 
time signals, except that they are done in two dimensions. Consider the very simple 
example image in Figure 11.66. 

One technique for fi ltering an image is to treat one row of pixels as a one-dimensional 
signal and fi lter it just like a discrete-time signal. Figure 11.67 is a graph of the brightness 
of the pixels in the top row of the image versus horizontal discrete-space nx.

Figure 11.68
  Brightness of the top row of pixels after being lowpass fi ltered 
by a causal lowpass fi lter

99

1

Causally-Filtered Brightness

nx

b[nx]

If the signal were actually a function of discrete-time and we were fi ltering in real 
time (meaning we would not have future values available during the fi ltering process), 
the lowpass-fi ltered signal might look like Figure 11.68.
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524 Chapter  11  Frequency Response Analysis

After lowpass fi ltering all the rows in the image would look smeared or smoothed 
in the horizontal direction and unaltered in the vertical direction (Figure 11.69). If we 
had fi ltered the columns instead of the rows, the effect would have been as illustrated 
in Figure 11.70.

One nice thing about image fi ltering is that usually causality is not relevant to the 
fi ltering process. Usually the entire image is acquired and then processed. Following 
the analogy between time and space, during horizontal fi ltering “past” signal values 
would lie to the left and “future” values to the right. In  real-time fi ltering of time signals 
we cannot use future values because we don’t yet know what they are. In image fi lter-
ing we have the entire image before we begin fi ltering and therefore “future” values 
are available. If we horizontally fi ltered the top row of the image with a “noncausal” 
lowpass fi lter, the effect might look as illustrated in Figure 11.71.

Figure 11.71
Brightness of top row of pixels after being lowpass fi ltered by 
a “noncausal” lowpass fi lter
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Non-Causally Filtered Brightness
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Figure 11.69
White cross image after all rows have been 
lowpass fi ltered by a causal lowpass fi lter

Figure 11.70
White cross image after all columns have 
been lowpass fi ltered by a causal lowpass 
fi lter

If we horizontally lowpass fi ltered the entire image with a “noncausal” lowpass 
fi lter, the result would look like Figure 11.72. The overall effect of this type of fi ltering 
can be seen in Figure 11.73 where both the rows and columns of the image have been 
fi ltered by a lowpass fi lter.

Of course, the fi lter referred to above as “noncausal” is actually causal because 
all the image data are acquired before the fi ltering process begins. Knowledge of the 
future is never required. It is only called noncausal because if a space coordinate were 
instead time, and we were doing real-time fi ltering, the fi ltering would be noncausal. 
Figure 11.74 illustrates some other images and other fi ltering operations.
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In each image in Figure 11.74 the pixel values range from black to white with gray lev-
els in between. To grasp the fi ltering effects think of a black pixel as having a value of 0 and 
a white pixel as having a value of +1. Then medium gray would have a pixel value of 0.5. 

Image (a) is a  checkerboard pattern fi ltered by a highpass fi lter in both dimensions. 
The effect of the highpass fi lter is to emphasize the edges and to deemphasize the constant 
values between the edges. The edges contain the “ high-spatial-frequency” information 
in the image. So the highpass-fi ltered image has an average value of 0.5 (medium gray) 
and the black and white squares, which were very different in the original image, look 
about the same in the fi ltered image. The checkerboard in (b) is fi ltered by a bandpass 
fi lter. This type of fi lter smooths edges because it has little response at high frequencies. 

Figure 11.73
White-cross image fi ltered by a lowpass fi lter, (a) Causal, (b) “Noncausal”

(a) (b)Figure 11.72
White cross image after all rows have 
been lowpass fi ltered by a “ noncausal” 
lowpass fi lter

Figure 11.74
Examples of different types of image fi ltering

"Non-Causal" Highpass "Non-Causal" Bandpass Causal Lowpass "Non-Causal" Highpass

(a) (b) (c) (d)
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526 Chapter  11  Frequency Response Analysis

It also attenuates the average values because it also has little response at very low fre-
quencies including zero. Image (c) is a random dot pattern fi ltered by a causal lowpass 
fi lter. We can see that it is a causal  fi lter because the smoothing of the dots always occurs 
to the right and below the dots, which would be “later” times if the signals were time 
signals. The response of a fi lter to a very small point of light in an image is called its 
 point spread function. The point spread function is analogous to the impulse response 
in time-domain systems. A small dot of light approximates a two-dimensional impulse 
and the point spread function is the approximate two-dimensional impulse response. 
The last image (d) is of the face of a dog. It is highpass fi ltered. The effect is to form an 
image that looks like an “outline” of the original image because it emphasizes sudden 
changes (edges) and deemphasizes the slowly varying parts of the image.

 PRACTICAL FILTERS

Comparison with  Continuous-Time Filters
Figure 11.75 is an example of an LTI  lowpass fi lter. Its unit-sequence response is 
[ ( . ) ]u[ ]5 4 0 8− n n  (Figure 11.76).

Figure 11.75
A lowpass fi lter

x[n] y[n]

4
5

D

Figure 11.76
Unit-sequence response of the lowpass 
fi lter

-5 5 10 15 20

5

n

y[n]

Figure 11.77
Impulse response of the lowpass fi lter

n
-5 20

h[n]
1

The  impulse response of any discrete-time system is the fi rst backward difference 
of its unit-sequence response. In this case that is

 h[ ] [ ]u[ ] [ ( ) ]u[ ]n n nn n= − ( ) − − −−5 4 4 5 5 4 4 5 11/ /

which reduces to h[ ] ( . ) u[ ]n nn= 0 8  (Figure 11.77). The transfer function and frequency 
response are

 H( )
.

H( )
.

z
z

z
e

e

e
j

j

j=
−

⇒ =
−0 8 0 8

�
�

�
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(Figure 11.78).

Figure 11.78
Frequency response of the lowpass fi lter
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Figure 11.79
A comparison of the impulse responses of a discrete-time and an RC lowpass fi lter
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Figure 11.80
Frequency responses of   discrete-time and continuous-time lowpass fi lters
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It is instructive to compare the impulse and frequency responses of this lowpass 
fi lter and the impulse and frequency responses of the RC lowpass fi lter. The impulse 
response  of the discrete-time lowpass fi lter looks like a sampled version of the impulse 
response of the RC lowpass fi lter (Figure 11.79). Their frequency responses also have 
some similarities (Figure 11.80).
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528 Chapter  11  Frequency Response Analysis

Figure 11.81
A highpass fi lter
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Figure 11.82
A bandpass fi lter
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Figure 11.83
A  bandstop fi lter
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If we compare the shapes of the magnitudes and phases of these frequency re-
sponses over the frequency range − < <� �� , they look very much alike (magnitudes 
more than phases). But a discrete-time frequency response is always periodic and can 
never be lowpass in the same sense as the frequency response of the RC lowpass fi lter. 
The name lowpass applies accurately to the behavior of the frequency response in the 
range − < <� ��  and that is the only sense in which the designation lowpass is cor-
rectly used for discrete-time systems.

Highpass, Bandpass and Bandstop Filters
Of course, we can have  highpass and  bandpass discrete-time fi lters also (Figure 11.81 
through Figure 11.83). The transfer functions and frequency responses of these fi lters are

 H( ) H( )z
z

z
e
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j
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1 1
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for the highpass fi lter,
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for the bandstop fi lter. 

EXAMPLE 11.7

 Response of a highpass fi lter to a sinusoid

A sinusoidal signal x[ ] sin( )n n= 5 2 18� /  excites a highpass fi lter with transfer function
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Graph the response y[ ]n .
The fi lter’s frequency response is H( )

.
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0 7
. The DTFT of the excitation is 

X( ) [ ( ) ( )]e jj� � �= + − −5 9 92 2� � � � �� �/ / . The DTFT of the response is the product of 
these two
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Using the equivalence property of the impulse and the fact that both are periodic with period 2�,
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Inverse transforming,
 y[ ] . . ( cos( ))sin( ) . .n n= × − + ×28 67 1 7 1 9 2 18 28 67 0 3� �/ / ssin( )cos( )� �/ /9 2 18n
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530 Chapter  11  Frequency Response Analysis

Figure 11.84
Excitation and response of a highpass fi lter
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Figure 11.84 shows the excitation and response of the fi lter.

EXAMPLE 11.8

Effects of  Filters on Example Signals

Test the fi lter in Figure 11.85 with a unit impulse, a unit sequence, and a random signal to show 
the fi ltering effects  at all three outputs.
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Figure 11.85
Filter with lowpass, highpass and bandpass outputs
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Notice in Figure 11.86 that sums of the highpass and bandpass impulse responses are zero 
because the frequency response is zero at � = 0.

Figure 11.87
Unit-sequence responses  at the three outputs
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Figure 11.86
Impulse responses at the three outputs 
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532 Chapter  11  Frequency Response Analysis

The lowpass fi lter’s response to a unit sequence (Figure 11.87) approaches a nonzero fi nal value 
because the fi lter passes the average value of the unit sequence. The unit-sequence responses of the 
highpass and bandpass fi lters both approach zero. Also, the unit-sequence response of the highpass 
fi lter jumps suddenly at the application of the unit sequence but the lowpass and bandpass fi lters both 
respond much more slowly, indicating that they do not allow high-frequency signals to pass through.

The lowpass-fi lter output signal (Figure 11.88) is a smoothed version of the input signal. 
The rapidly changing (high-frequency) content has been removed by the fi lter. The highpass-fi lter 
response has an average value of zero and all the rapid changes in the input signal appear as rapid 
changes in the output signal. The bandpass fi lter removes the average value of the signal and also 
smooths it to some extent because it removes both the very low and very high frequencies.

The  Moving Average Filter
A very common type of lowpass fi lter that will illustrate some principles of discrete-
time fi lter design and analysis is the moving-average fi lter (Figure 11.89). The differ-
ence equation describing this fi lter is

 y[ ]
x[ ] x[ ] x[ ] x[ ( )]

n
n n n n N

N
= + − + − + + − −1 2 1�

and its impulse response is

 h[ ] (u[ ] u[ ])n n n N N= − − /

Figure 11.88
Responses at the three outputs to a  random signal
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(Figure 11.90).
Its frequency response is
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(Figure 11.91).

Figure 11.89
A moving-average fi lter

Figure 11.90
Impulse response of a moving-average fi lter
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This fi lter is usually described as a smoothing fi lter because it generally attenu-
ates higher frequencies. That designation would be consistent with being a lowpass fi l-
ter. However, observing the nulls in the frequency response magnitude, one might be 
tempted to call it a “ multiple bandstop” fi lter. This illustrates that classifi cation of a fi lter 
as lowpass, highpass, bandpass or bandstop is not always clear. However, because of the 
traditional use of this fi lter to smooth a set of data, it is usually classifi ed as lowpass. 

Figure 11.91
Frequency response of a moving-average fi lter for two different 
averaging times
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534 Chapter  11  Frequency Response Analysis

EXAMPLE 11.9

Filtering a pulse with a moving-average fi lter

Filter the signal x[ ] u[ ] u[ ]n n n= − − 9

(a) with a moving-average fi lter with N = 6
(b) with the bandpass fi lter in Figure 11.82 with � = 0 8.  and � = 0 5. .

Using MATLAB, graph the  zero-state response y[ ]n  from each fi lter.
The zero-state response is the convolution of the impulse response with the excitation. The 

impulse response  for the moving-average fi lter is 

 h[ ] ( )(u[ ] u[ ])n n n= − −1 6 6/ .

The frequency response  of the bandpass fi lter is 
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therefore its impulse response is

 h[ ] ( . ) u[ ] {( . ) u[ ] ( . ) u[ ]}n n n nn n n= ∗ − −−0 8 0 5 0 5 11 .

The MATLAB program has a main script fi le. It calls a function   convD to do the discrete-time 
convolutions.

% Program to graph the response of a moving average fi lter 

% and a discrete-time bandpass fi lter to a rectangular pulse

close all ; % Close all open fi gure windows

fi gure(‘Position’,[20,20,800,600]) ; % Open a new fi gure window

n = [-5:30]’ ;  % Set up a time vector for the 

% responses

x = uD(n) - uD(n-9) ; % Excitation vector

% Moving average fi lter response

h = uD(n) - uD(n-6) ;  % Moving average fi lter impulse 

% response

[y,n] = convDT(x,n,h,n,n) ;  % Response of moving average 

% fi lter

% Graph the response

subplot(2,1,1) ; p = stem(n,y,’k’,’fi lled’) ;

set(p,’LineWidth’,2,’MarkerSize’,4) ; grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,18) ;

ylabel(‘y[{\itn}]’,’FontName’,’Times’,’FontSize’,18) ;

title(‘Moving-Average Filter’,’FontName’,’Times’,’FontSize’,24) ;

% Bandpass fi lter response

% Find bandpass fi lter impulse response
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h1 = 0.8.^n.*uD(n) ; h2 = 0.5.^n.*uD(n) - 0.5.^(n-1).*uD(n-1) ;

[h,n] = convD(h1,n,h2,n,n) ;

[y,n] = convD(x,n,h,n,n) ; % Response of bandpass fi lter

% Graph the response

subplot(2,1,2) ; p = stem(n,y,’k’,’fi lled’) ; set(p,’LineWidth’,2,’

MarkerSize’,4) ; grid on ;

xlabel(‘\itn’,’FontName’,’Times’,’FontSize’,18) ;

ylabel(‘y[{\itn}]’,’FontName’,’Times’,’FontSize’,18) ;

title(‘Bandpass Filter’,’FontName’,’Times’,’FontSize’,24) ;

% Function to perform a discrete-time convolution on two signals 

% and return their convolution at specifi ed discrete times. The two

% signals are in column vectors, x1 and x2, and their times 

% are in column vectors, n1 and n2. The discrete times at which 

% the convolution is desired are in the column, n12. The 

% returned convolution is in column vector, x12, and its 

% time is in column vector, n12. If n12 is not included 

% in the function call it is generated in the function as the 

% total time determined by the individual time vectors

%

% [x12,n12] = convD(x1,n1,x2,n2,n12)

function [x12,n12] = convD(x1,n1,x2,n2,n12)

% Convolve the two vectors using the MATLAB conv command

 xtmp = conv(x1,x2) ;

% Set a temporary vector of times for the convolution 

% based on the input time vectors

 ntmp = n1(1) + n2(1) + [0:length(n1)+length(n2)-2]’ ;

% Set the fi rst and last times in temporary vector

 nmin = ntmp(1) ; nmax = ntmp(length(ntmp)) ;

 if nargin < 5, % If no input time vector is specifi ed use ntmp

   x12 = xtmp ; n12 = ntmp ;

 else 

% If an input time vector is specifi ed, compute the 

% convolution at those times

 x12 = 0*n12 ; % Initialize output convolution to zero

% Find the indices of the desired times which are between 

% the minimum and maximum of the temporary time vector

 I12intmp = fi nd(n12 >= nmin & n12 <= nmax) ; 
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536 Chapter  11  Frequency Response Analysis

% Translate them to the indices in the temporary time vector

 Itmp = (n12(I12intmp) - nmin) + 1 ;

% Replace the convolution values for those times 

% in the desired time vector

 x12(I12intmp) = xtmp(Itmp) ;

 end

The graphs created are in Figure 11.92.

Figure 11.93
 Ideal discrete-time lowpass fi lter impulse response

n

h[n]

The Almost Ideal Lowpass Filter
If we want to approach the frequency-domain performance of the ideal lowpass fi lter, we 
must design a discrete-time fi lter with an impulse response that closely approaches the 
inverse DTFT of the ideal frequency response. We have previously shown that the ideal 
lowpass fi lter is noncausal and cannot be physically realized. However, we can closely 
approach it. The ideal-lowpass-fi lter impulse response is illustrated in Figure 11.93.

Figure 11.92
Two fi lter responses
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Figure 11.94
 Almost-ideal discrete-time lowpass fi lter impulse response

n
64

h[n]

0.25

The problem in realizing this fi lter physically is the part of the impulse response 
that occurs before time n = 0. If we arrange to delay the impulse response by a large 
amount, then the signal energy of the impulse response that occurs before time 
n = 0 will become very small and we can chop it off and closely approach the ideal 
frequency response (Figure 11.94 and Figure 11.95).

Figure 11.95
Almost-ideal discrete-time lowpass fi lter frequency response

Ω
�2π 2π

�H(ejΩ)�

1

Ω
�2π 2π

��

�

H(ejΩ)

Figure 11.96
 Almost-ideal discrete-time lowpass fi lter frequency response 
plotted on a dB scale

Ω
�2π 2π

�H(ejΩ)�dB

�100

The magnitude response in the stopband is so small that we cannot see its shape 
when it is plotted on a linear scale as in Figure 11.95. In cases like this a log-magnitude 
plot helps see what the real attenuation is in the stopband (Figure 11.96). 
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538 Chapter  11  Frequency Response Analysis

This fi lter has a very nice lowpass-fi lter magnitude response but it comes at a 
price. We must wait for it to respond. The closer a fi lter approaches the ideal, the 
greater time delay there is in the impulse response. This is apparent in the time delay of 
the impulse response and the phase shift of the frequency response. The fact that a long 
delay is required for fi lters that approach the ideal is also true of highpass, bandpass 
and bandstop fi lters and it is true for both continuous-time and discrete-time fi lters. It 
is a general principle of fi lter design that any fi lter designed to be able to discriminate 
between two closely spaced frequencies and pass one while stopping the other must, 
in a sense, “observe” them for a long time to be able to distinguish one from the other. 
The closer they are in frequency, the longer the fi lter must observe them to be able to 
make the distinction. That is the basic reason for the requirement for a long  time delay 
in the response of a fi lter that approaches an ideal fi lter.

Advantages Compared to  Continuous-Time Filters
One might wonder why we would want to use a discrete-time fi lter instead of a 
continuous-time fi lter. There are several reasons. Discrete-time fi lters are built with 
three basic elements: a delay device, a multiplier and an adder. These can be imple-
mented with digital devices. As long as we stay within their intended ranges of opera-
tion, these devices always do exactly the same thing. That cannot be said of devices 
such as resistors, capacitors and operational amplifi ers, which make up continuous-
time fi lters. A resistor of a certain nominal resistance is never exactly that value, even 
under ideal conditions. And even if it were at some time, temperature effects or other 
environmental effects would change it. The same thing can be said of capacitors, in-
ductors, transistors, and so on. So discrete-time fi lters are more stable and reproducible 
than continuous-time fi lters.

It is often diffi cult to implement a continuous-time fi lter at very low frequencies 
because the component sizes become unwieldy, for example, very large capacitor val-
ues may be needed. Also, at very low frequencies thermal drift effects on components 
become a big problem because they are indistinguishable from signal changes in the 
same frequency range. Discrete-time fi lters do not have these problems.

Discrete-time fi lters are often implemented with programmable digital hardware. 
That means that this type of discrete-time fi lter can be reprogrammed to perform a dif-
ferent function without changing the hardware. Continuous-time fi lters do not have this 
fl exibility. Also, some types of discrete-time fi lters are so computationally sophisticated 
that they would be practically impossible to implement as continuous-time fi lters.

Discrete-time signals can be reliably stored for very long times without any sig-
nifi cant degradation on magnetic disk or tape or CD-ROM. Continuous-time signals 
can be stored on analog magnetic tape but over time the values can degrade.

By time-multiplexing discrete-time signals, one fi lter can accommodate multiple 
signals in a way that seems to be, and effectively is, simultaneous. Continuous-time 
fi lters cannot do that because to operate correctly they require that the input signal 
always be present.

11.5 SUMMARY OF IMPORTANT POINTS
 1. Frequency response and impulse response of LTI systems are related through the 

Fourier transform.
 2. Characterization of systems in the frequency domain allows generalized design 

procedures for systems that process certain types of signals.
 3. An ideal fi lter is distortionless within its passband.
 4. All ideal fi lters are noncausal and therefore cannot be built.
 5. Filtering techniques can be applied to images as well as signals.
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 6. Practical discrete-time fi lters can be implemented as discrete-time systems using 
only amplifi ers, summing junctions and delays.

 7. All the ideas that apply to continuous-time fi lters apply in a similar way to 
discrete-time fi lters.

 8. Discrete-time fi lters have several advantages over continuous-time fi lters.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Continuous-Time Frequency Response

  1. A system has an impulse response,

 h ( ) u( )1
103t e tt= −  

 and another system has an impulse response

 h ( ) ( ) u( )2
103t t e tt= − −� .

(a) Graph the magnitude and phase of the frequency response of these two 
systems in a parallel connection.

(b) Graph the magnitude and phase of the frequency response of these two 
systems in a cascade connection.

Answers: 

ω
-40 40

|HC( jω)|
0.25

ω
-40 40

-π

π
HC( jω)

, 

ω
-40 40

|HP( jω)|
1

ω
-40 40

HP( jω)

-π

π

 Continuous-Time Ideal Filters

  2. Classify the frequency responses in Figure E.2 as being lowpass, highpass, 
bandpass or bandstop.

(a) 

f -10 10

|H( f )|
1

 (b) 

ω-100 100

|H( jω)|
1

(c) H( ) rectf
f

= −
−⎛

⎝⎜
⎞
⎠⎟

1
100

10

 Figure E.2

Answers: One lowpass, one bandpass, one bandstop
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540 Chapter  11  Frequency Response Analysis

  3. A system has an impulse response h( ) rect
.

.
t

t= −⎛
⎝

⎞
⎠10

0 01

0 02
. What is its null 

bandwidth?
Answer: 50

  4. In Figure E.4 are pairs of input signals x and output signals y. For each pair, identify 
the type of fi ltering that was done: lowpass, highpass, bandpass or bandstop.

t (ms)0.3

x(t)

-1

1

t (ms)
0.3

y(t)

-1

1

Figure E.4

t (ms)
0.3

x(t)

-1

1

t (ms)
0.3

y(t)

-1

1

Answer:  One highpass and one bandstop.

 Continuous-Time Causality

  5. Determine whether the systems with these frequency responses are causal.

(a) H( ) sinc( )f f=  (b) H( ) sinc( )f f e j f= − �

(c) H( ) rect( )j� �=  (d) H( ) rect( )j e j� � �= −

(e) H( )f A=  (f ) H( )f Ae j f= 2�

Answer: Two causal, four noncausal

 Logarithmic Graphs and  Bode Diagrams

  6. Graph the magnitude frequency responses, both on a linear-magnitude and on 
a log-magnitude scale, of the systems with these frequency responses, over the 
frequency range specifi ed. 

(a) H( )f
f j f

=
− +

20

20 4 422 2� �
, − < <100 100f

(b) H( )
( )( )

j
j j

�
� � �

= ×
+ − +

2 10

100 1700 20

5

2 , − < <500 500�

Answers: 

f 
-100 100

|H( f )|
1

f 
-100 100

ln(|H( f )|)

-10 , 

ω
-500 500

|H( jω)|
2

ω
-500 500

ln(|H( jω)|)

-10
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  7. Draw asymptotic and exact magnitude and phase Bode diagrams for the 
frequency responses of the following circuits and systems.

(a) An RC lowpass fi lter with R = 1 M� and C = 0 1. �F.
(b) 

R = 10 Ω C = 1 μF 

L = 1 mH vi(t)

+

-

vL(t)

+

-

Answers:

-100
-80
-60
-40
-20

0
20

ω

ω

|H
(j

ω
)| d

B

102 103 104 105 106 107

102 103 104 105 106 107

0
0.5

1
1.5

2
2.5

3
3.5

H
( j

ω
)

, 

10-1 100 101 102 103
-50
-40
-30
-20
-10

0

ω

10-1 100 101 102 103

ω

-2

-1.5

-1

-0.5

0

|H
(j

ω
)| d

B
H

( j
ω

)

 Continuous-Time Practical Passive Filters

  8. Find and graph the frequency response of each of the circuits in Figure E.8 given 
the indicated excitation and response.

(a) Excitation,v ( )i t  - Response v ( )L t

 

R = 10 Ω C = 1 μF 

L = 1 mH vi(t)

+

-

vL(t)

+

-

(b) Excitation v ( )i t  - Response i ( )C t

 

R = 1 kΩ 

C = 1 μF vi(t)

+

-

iC(t)

 Exercises with Answers 541
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542 Chapter  11  Frequency Response Analysis

(c) Excitation v ( )i t  - Response v ( )R t

 

R = 1 kΩ 

C = 1 μF L = 1 mH vi(t)

+

-

vR(t)
+ -

(d) Excitation i ( )i t  - Response v ( )R t

 

R = 100 Ω 

C = 1 μF 

L = 1 mH 

ii(t)

vR(t)

+

-

 Figure E.8

Answers: 

ω
-1000000 1000000

|H( jω)|
100

ω
-1000000 1000000

-π

π
H( jω)

, 

ω
-50000 50000

|H( jω)|
1

ω
-50000 50000

-π

π
H( jω)

, 

ω
-1500 1500

|H( jω)|
0.001

ω
-1500

1500
-π

π
H( jω)

, 

ω
-150000 150000

|H( jω)|
3

ω
-150000 150000

-π

π
H( jω)

  9. The circuit in Figure E.9 is excited by the voltage v ( )i t  and the response is the 
voltage v ( )o t . The component values are R = 50 �, L = 100 mH and C = 5 �F. 

  

L

Rvi(t)

+

-

vo(t)

+

-

C

Figure E.9
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(a) Which kind of ideal fi lter does this practical passive fi lter approximate?

(b) Write an expression for the frequency response H( )
V ( )

V ( )
f

f

f
o

i
= .

(c) What is the numerical frequency fmax at which the maximum magnitude of 
H( )f  occurs and what is the phase of H( )f  at that frequency?

(d) Find the numerical magnitude of the frequency response at 0 Hz, 100 Hz and 
at a frequency approaching infi nity.

Answers: 0, 0, 0, 0.192, bandpass, 225

 10. For each circuit in Figure E.10 the frequency response is the ratio H( )
V ( )

V ( )
f

f

f
o

i
= . 

Which circuits have

(a) Zero frequency response at f = 0?

(b) Zero frequency response at f → + ∞?

(c) Frequency response magnitude of one at f = 0?

(d) Frequency response magnitude of one at f → + ∞?

(e) Frequency response magnitude nonzero and phase of zero at some frequency 
0 < < ∞f  (at a fi nite, nonzero frequency)?

R

C

Lvi(t) vo(t)

-

+

-

+
ii(t) R

C Lvi(t) vo(t)

-

+

-

+
ii(t)

vi(t)

ii(t)

vo(t)
+

-

+

-

C

R
R

Cvi(t) vo(t)
-

+

-

+
ii(t)

R

Lvi(t) vo(t)

-

+

-

+
ii(t)

R

L

vi(t) vo(t)

-

+

-

+
ii(t)

R

C

L
vi(t) vo(t)

-

+

-

+
ii(t)

R

CL

vi(t) vo(t)

-

+

-

+
ii(t)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure E.10

 11. Classify each of these frequency responses as lowpass, highpass, bandpass or 
bandstop.

(a) H( )f
jf

=
+
1

1
 

(b) H( )f
jf

jf
=

+1

(c) H( )j
j

j
�

�

� �
= −

− +
10

100 102

Answers: Lowpass, bandpass, highpass
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544 Chapter  11  Frequency Response Analysis

 12. Match each circuit in Figure E.12 to the magnitude asymptotic Bode diagram of 

its frequency response H( )
V ( )

V ( )
j

j

j
o

i
�

�

�
= .

  

vi(t) vo(t)
vx(t)

+

-

+

-

Rf

Ri Ciii(t)

if(t)

vi(t) vo(t)
vx(t)

+

-

+

-

Rf

Ciii(t)

if(t)

vi(t) vo(t)

vx(t)+

-

+

-

R

C

ii(t) if(t)

vi(t) vo(t)

vx(t)+

-

+

-

Ri

C

ii(t) if(t)

Rf

|H( jω)|dB

10k 10k+1 10k+2 10k+3
ω

20

-20

-40

-60

40

|H( jω)|dB

10k 10k+1 10k+2 10k+3
ω

20

-20

-40

-60

40

|H( jω)|dB

10k 10k+1 10k+2 10k+3
ω

20

-20

-40

-60

40

20

40

|H( jω)|dB

10k 10k+1 10k+2 10k+3
ω

-20

-40

-60

A B C D

1 2 3 4

Figure E.12

Answers: A-3, B-1, C-2, D-4

 Continuous-Time Practical Active Filters

 13. Find the frequency response H( )
V ( )

V ( )
f

f

f
o

i
=  of each of the active fi lters in Figure E.13 

and identify each of them as lowpass, highpass, bandpass or bandstop.

(a) 

vi(t)
vx(t)

+

-

vo(t)

+

-

K

R2

R1

C2C1

(b) 

vi(t)
vx(t)

+

-

vo(t)

+

-

K

R2R1

C2

C1

 Figure E.13

Answers: Highpass and lowpass
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 14. Show that the system in Figure E.14 has a highpass frequency response.

∫
x(t)

y(t)

Figure E.14

Answer: H( )
Y( )

X( )
j

j

j

j

j
�

�

�

�

�
= =

+ 1

 15. Draw the block diagram of a system with a bandpass frequency response using 
two integrators as functional blocks. Then fi nd its frequency response and verify 
that it is bandpass.
Answer: 

∫
x(t)

∫ y(t)

 Discrete-Time Frequency Response

 16. A system has an impulse response,

 h[ ] ( ) u[ ]n nn= 7 8/ .

 What is its half-power frequency bandwidth?
Answer: 0.1337 radians

 17. Classify each of these frequency responses as lowpass, highpass, bandpass or 
bandstop.

(a) H( )
sin( )

sin( )
e j� �

�
= 3 2

2

/

/
 (b) H( ) [sin( ) sin( )]e jj� � �= + 2

Answers: Lowpass, bandpass

 18. In Figure E.18 are pairs of excitations x and responses y. For each pair, identify 
the type of fi ltering that was done: lowpass, highpass, bandpass or bandstop.

  

n
-20 1 40 -20 140

-20 140-20 1 40

-1

1

-1

1

-1

1

-1

1

n

n

n

x[n]

y[n]

x[n]

y[n]

(a) (b)

Figure E.18

Answer: One bandpass and one lowpass
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546 Chapter  11  Frequency Response Analysis

 Discrete-Time Ideal Filters

 19. Classify each of the frequency responses in Figure E.19 as having a lowpass, 
highpass,  bandpass or bandstop frequency response.

F -2 2

|H(F)|
1

(a)

Ω
-4π 4π

1
|H(ejΩ)|

(b)

Ω 
-4π 4π

1

|H(ejΩ)|

(c)

F 
-2 2

|H(F)|
1

(d)

Figure E.19

Answers: One of each type

 20. Classify each of these frequency responses as lowpass, highpass, bandpass or bandstop.
(a) H( ) rect( ) ( )F F F= ∗10 1�

(b) H( ) [rect( ( )) rect( ( ))] (e j� � � �= − + + ∗20 4 20 4 1� � � � �/ / //2�)

Answers: One bandpass and one lowpass

 Discrete-Time Causality

 21. Determine whether the systems with these frequency responses are causal.

(a) H( )
sin( )

sin( )
e j� �

�
= 7 2

2

/

/
 (b) H( )

sin( )

sin( )
e ej j� ��

�
= −7 2

2

/

/

(c) H( )
sin( )

sin( )
e ej j� ��

�
= −3 2

2

/

/
 (d) H( ) rect( ) ( )e j� � �= ∗5 2/� � �

Answers: One causal, three noncausal

 Discrete-Time Practical Filters

 22. Find the frequency response H( )
Y( )

X( )
e

e

e
j

j

j
�

�

�
=  and graph it for each of the fi lters 

in Figure E.22 over the range − < <2 2� �� .

(a) 

x[n] y[n]

D

-

+

 

(b) 

x[n]
+ -

y[n]

D

0.9

(c) 

x[n] y[n]

0.9
D D
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(d) 

D

D

x[n] y[n] 

-0.6

 Figure E.22

Answers:

|H(e jΩ)|
20

Ω
-2π 2π

Ω
-2π

-π

π
H(e jΩ)

, 

Ω 
-2π 2π

10

Ω 
-2π 2π

−π

π
H(e jΩ)

jΩ

|H(e jΩ)|

, 

Ω
-2π 2π

|H(e jΩ)|
2

Ω
-2π 2π

-π

π
H(e jΩ)

, 

Ω
-2π 2π

|H(e jΩ)|
2

Ω
-2π 2π

-π

π
H(e jΩ)

 23. Find the minimum stop band attenuation of a moving-average fi lter with N = 3. 
Defi ne the stop band as the frequency region � �C < < � where �c is the 
frequency of the fi rst null in the frequency response.
Answer: 9.54 dB of attenuation

EXERCISES WITHOUT ANSWERS
Continuous-Time Frequency Response

 24. One problem with causal fi lters is that the output signal of the fi lter always lags 
the input signal. This problem cannot be eliminated if the fi ltering is done in real 
time, but if the signal is recorded for later “off-line” fi ltering, one simple way of 
eliminating the lag effect is to fi lter the signal, record the response and then fi lter 
that recorded response with the same fi lter but playing the signal back through 
the system backwards. Suppose the fi lter is a single-pole fi lter with a frequency 
response of the form

 H( )j
j c

�
� �

=
+

1

1 /

 where �c is the cutoff frequency (half-power frequency) of the fi lter. 

(a) What is the effective frequency response of the entire process of fi ltering the 
signal forward, then backward?

(b) What is the effective impulse response?

Continuous-Time Ideal Filters

 25. A signal x( )t  is described by

 x( ) rect( ) ( ).t t t= ∗1000 0 002�

 Exercises without Answers 547
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548 Chapter  11  Frequency Response Analysis

(a) If x(t), is the input signal of an ideal lowpass fi lter with a cutoff frequency 
of 3 kHz, graph the input signal x(t) and the output signal y(t) on the same 
scale and compare.

(b) If x(t), is the input signal of an ideal bandpass fi lter with a low cutoff 
frequency of 1 kHz and a high cutoff frequency of 5 kHz, graph the input 
signal x(t) and the output signal y(t) on the same scale and compare.

Continuous-Time Causality

 26. Determine whether the systems with these frequency responses are causal.

(a) H( )j
j

�
�

= 2
 (b) H( )j

j
�

�
=

+
10

6 4

(c) H( )j
j

�
� �

=
− +

4

25 62  (d) H( )j
j

e j�
� �

�=
− +

4

25 62

(e) H( )j
j

e j�
� �

�=
− +

−4

25 62
 (f ) H( )j

j

j
�

�

� �
= +

− +
9

45 62

(g) H( )j�
�

=
+
49

49 2

Bode Diagrams

 27. Draw asymptotic and exact magnitude and phase Bode diagrams for the 
frequency responses of the circuits and systems in Figure E.27.

(a) 

R1 = 1 kΩ

C1 = 1 μFvi(t)

+

-

+

-

R2 = 10 kΩ

C2 = 0.1 μF vC2(t)

(b) 10
jω+10

jω
jω+10

X( jω) Y( jω)

(c) A system whose frequency response is H( )
,

j
j

j
�

�

� �
=

− +
20

10 000 202  

 Figure E.27

 28. An LTI system has a frequency response H( )j
j

j
�

� �

� �
= −

− +
3

1000 10 250

2

2 .

(a) Find all the corner frequencies (in radians per second) in a magnitude Bode 
diagram of this frequency response. 

(b) At very low and very high frequencies what is the slope of the magnitude 
Bode diagram in dB/decade? 
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Continuous-Time Practical Passive Filters

 29. The causal square wave voltage signal illustrated in Figure E.29 excites fi ve practical 
passive fi lters (a) – (e) also illustrated in Figure E.29. The responses of the fi ve fi lters 
are illustrated below them in a random order. Match the responses to the fi lters.

-2 0 2 4 6 8 10
-1

0

1

Time, t (s)

v o
(t

)

-2 0 2 4 6 8 10
-1

0

1

Time, t (s)

v o
(t

)

-2 0 2 4 6 8 10
-1

0

1

Time, t (s)

v o
(t

)

-2 0 2 4 6 8 10
-1

0

1

Time, t (s)
v o

(t
)

-2 0 2 4 6 8 10
-1

0

1

Time, t (s)

v o
(t

)

(1) (2) (3) (4) (5)

(a) (b) (c) (d) (e)

Excitation

-2 0 2 4 6 8 10
-1

0

1

v i
(t

)
Time, t (s)

-

+

C = 0.1Fvin(t) vout(t)
-

+

-

+
R = 1 Ω 

+

-

+

-

vi(t)

C = 0.1 F

R = 1 Ω vo(t) vo(t)

+

-

+

-

vi(t) R = 1 Ω 

C = 1 F

vin(t)

-

+

C = 1F

R = 1 Ω 

L = 1H vout(t)

-

+

-

+
vin(t)

R = 1 Ω 

C = 1F vout(t)

Figure E.29

 30. Find and graph the frequency response of each of the circuits in Figure E.30 
given the indicated excitation and response.

(a) Excitation v ( )i t  − Response v ( )C t2

R1 = 1 kΩ 

C1 = 1 μFvi(t)

+

-

+

-

R2 = 10 kΩ 

C2 = 0.1 μF vC2(t)

(b) Excitation v ( )i t  − Response i ( )C t1

R1 = 1 kΩ 

C1 = 1 μF vi(t)

iC1(t)

+

-

R2 = 10 kΩ 

C2 = 0.1 μF 
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550 Chapter  11  Frequency Response Analysis

(c) Excitation v ( )i t  − Response v ( )R t2

C1 = 1 μF

vi(t) 

+

-

vR2(t)

+

-

R2 = 10 kΩR1 = 10 kΩ

C2 = 1 μF 

(d) Excitation i ( )i t  − Response v ( )R t1

 

C1 = 1 μF

ii(t)

vR1(t)

+

-

R2 = 10 kΩ 

R1 = 10 kΩ C2 = 1 μF

(e) Excitation v ( )i t  − Response v ( )RL t

 

vi(t) vRL(t)

+

-

+

-

R1 = 10 kΩ RL = 1 kΩ

R2 = 10 kΩ

C1 = 1 μF C2 = 1 μF

 Figure E.30

 31. Find, and graph versus frequency, the magnitude and phase of the input 

impedance Z ( )
V ( )

I ( )
in

i

i
j

j

j
�

�

�
=  and frequency response H( )

V ( )

V ( )
j

j

j
o

i
�

�

�
=  for each 

of the fi lters in Figure E.31.

1 μF

vi(t)

ii(t)

vo(t)

+

-

+

-

1 kΩ 10 nFvi(t) vo(t)

+

-

+

-

100 Ω 50 mHii(t)

(a) (b)

Figure E.31
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 32. The signal x(t) in Exercise 25 is the input voltage signal of an RC lowpass fi lter 
with R = 1k� and C = 0 3. �F. Graph the input and output voltage signals versus 
time on the same scale.

Continuous-Time Filters

 33. In Figure E.33 are some descriptions of fi lters in the form of an impulse 
response, a frequency-response magnitude and a circuit diagram. For each of 
these, to the extent possible, classify the fi lters as ideal or practical, causal or 
noncausal, lowpass, highpass, bandpass or bandstop. 

(a) 

t

h(t)

 (b) 

R

C Lvin(t) vout(t)

-

+

-

+

(c) 
1

ω

|H( jω) |

 Figure E.33

Continuous-Time Practical Active Filters

 34. Find the frequency response for the circuit in Figure E.34. What function does it 
perform?

  

vi(t) vo(t)

vx(t)
+

-

+

-

Rf

Ciii(t)

if (t)

Figure E.34

 35. Design an active highpass fi lter using an ideal operational amplifi er, two resistors 
and one capacitor and derive its frequency response to verify that it is highpass.

 36. Find the frequency response H( )
V ( )

V ( )
j

j

j
o

i
�

�

�
=  of the active fi lter in Figure E.36 

with Ri = 1000 �, Ci = 1�F and Rf = 5000 �.

  

vi(t) vo(t)
vx(t)

+

-

+

-

Rf

Ri Ciii(t)

if (t)

Figure E.36
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552 Chapter  11  Frequency Response Analysis

(a) Find all the corner frequencies (in radians per second) in a magnitude Bode 
diagram of this frequency response. 

(b) At very low and very high frequencies what is the slope of the magnitude 
Bode diagram in dB/decade?

 37. Find the frequency responses H( )
V ( )

V ( )
f

f

f
o

i
=  of the active fi lters in Figure E.37 

and identify them as lowpass, highpass, bandpass or bandstop.

(a) 

vi(t)

vx(t)
+

-
vo(t)

+

-

C3

C4

R1

R2

R5

(b) 

vi(t)

vx(t)
+

-
vo(t)

+

-

C3

C4

C1

R2

R5

(c) 

vi(t)

vx(t)
+

-
vo(t)

+

-

R3

R4

R1

C2

C5

 Figure E.37

 38. In Figure E.38 are some active fi lters and some asymptotic magnitude Bode 

diagrams of frequency responses 
V ( )

V ( )
o

i

j

j

�

�
. For each fi lter fi nd the magnitude 

Bode diagram that matches it. 
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Cs Rs

Rf

vi(t)
+

- vo(t)
+

-
vi(t) vo(t)
+

-

+

-

Rs Cf

Rf

vi(t)
vx(t)

+

-
vo(t)

+

-

K

R2

R1

C2C1

vi(t)
vx(t)

+

-
vo(t)

+

-

K
R2R1

C2

C1

vi(t) vo(t)
vx(t)

+

-

+

-

Rf

Ciii(t)

if (t)

ω
Slope of 6 dB/octave 
or 20 dB/decade

|H( jω)|

Slope of 12 dB/octave 
or 40 dB/decade

ω

Slope of 6 dB/octave or 
20 dB/decade

|H( jω)|

ω
Slope of 6 dB/octave
or 20 dB/decade

|H( jω)|

ω

Slope of  
-6 dB/octave 
or -20 dB/decade

|H( jω)| ω
Slope of -6 dB/octave 
or -20 dB/decade

|H( jω)|

Slope of 
-12 dB/octave 
or -40 dB/decade

A B C

D E

Figure E.38

 39. In the active fi lters in Figure E.39 all resistors are 1 ohm and all capacitors are 

1 farad. For each fi lter the frequency response is H( )
V ( )

V ( )
j

j

ji
�

�

�
= 0 . Identify the 

transfer-function magnitude Bode diagram for each circuit.

vi(t) vo(t)

vx(t)
+

-

+

-
Ci

Rf

ii(t) if (t)

vi(t) vo(t)

vx(t)
+

-

+

-

Ci

Cf

ii(t) if (t)

Rf

vi(t) vo(t)

vx(t)+

-

+

-

Ri

Cf

ii(t) if (t)

vi(t) vo(t)

vx(t)
+

-

+

-

Ri

C

ii(t) if (t)

Rf

vi(t) vo(t)

vx(t)
+

-

+

-

Rf

ii(t) if (t)

Cf

Ri

vi(t) vo(t)
vx(t)

+

-

+

-if (t)

ii(t) Rf

Cf
Ri

vi(t) vo(t)
vx(t)

+

-

+

-
if (t)ii(t) Rf Cf

Ri

vi(t) vo(t)
vx(t)

+

-

+

-if (t)

ii(t) Rf

Ri Ci

A B C D

E F G H
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554 Chapter  11  Frequency Response Analysis

 40. When music is recorded on analog magnetic tape and later played back, a 
high-frequency noise component called tape “ hiss” is added to the music. For 
purposes of analysis assume that the spectrum of the music is fl at at –30 dB 
across the audio spectrum from 20 Hz to 20 kHz. Also assume that the spectrum 
of the signal played back on the tape deck has an added component, making the 
playback signal have a Bode diagram as illustrated in Figure E.40. 

 

f 
200 2 kHz

6 kHz 12 kHz

20 kHz

-30 dB

-24 dB

Figure E.40 Bode diagram of playback signal

     The extra high-frequency noise could be attenuated by a lowpass fi lter but that 
would also attenuate the high-frequency components of the music, reducing its fi del-
ity. One solution to the problem is to “preemphasize” the high-frequency part of the 
music during the recording process so that when the lowpass fi lter is applied to the 
playback the net effect on the music is zero but the “hiss” has been attenuated. Design 
an active fi lter that could be used during the recording process to do the preemphasis.

Discrete-Time Causality

 41. Determine whether the systems with these frequency responses are causal.

(a) H( ) [rect( ) ( )]e ej j� �� �= ∗ −5 2
10/� � �  

(b) H( ) sin( )e jj� �=

(c) H( )e ej j� �= − −1 2  

(d) H( )e
e

e
j

j

j
�

�

�
=

− −
8

8 5

Discrete-Time Filters

 42. In Figure E.42 are pairs of excitations x and responses y. For each pair, identify 
the type of fi ltering that was done, lowpass, highpass, bandpass or bandstop.

10-1 100 101
-20
-10

0
10
20

ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
10
20
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|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
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ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
10
20

ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
10
20

ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
10
20

ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

10
20

ω

|H
(j

ω
)| d

B

10-1 100 101
-20
-10

0
10
20

ω

|H
(j

ω
)| d

B

1 2 3 4

5 6 7 8

Figure E.39
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n
-10 60

x[n]

-1

4

n
-10 60

y[n]
1.6

n
-10

-10

60

x[n]
20

n
60

y[n]

-4

8

(a) (b)

n
-10 60

x[n]
16

n
-10 60

y[n]

-3

3

(c)

n
-10 60

x[n]
20

n
-10 60

y[n]

-15

5

(d)

n
-10 60

x[n]
1

n
-10 60

y[n]
0.7

(e)

n
-10 60

x[n]
1

n
-10 60

y[n]

-1

1

(f )

Figure E.42

 43. Find the frequency response H( )
Y( )

X( )
e

e

e
j

j

j
�

�

�
=  and graph it for each of the fi lters 

in Figure E.43 over the range − < <� �� . 
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556 Chapter  11  Frequency Response Analysis

(a) +

+
+

+
+

+ -

+

X(z) Y(z)

-1.143 0.135

0.413 0.0675

0.0675

z-1

z-1

(b) +

+
+

+
+

+ -

+

X(z) Y(z)

1.257 -0.0914

0.467 0.0593

0.0593

z-1

z-1

(c) 

+

+

+

+

+

+ -

+

X(z) Y(z)

+

+

+

+

+

-

+

0.5747

-0.403

1.0216

-0.403

0.5747

-0.528

1.083

-0.3254

0.4228

z-1

z-1

z-1

z-1

 Figure E.43

 44. In Figure E.44 are some descriptions of fi lters in the form of an impulse 
response and two frequency-response magnitudes. For each of these, to the 
extent possible, classify the fi lters as ideal or practical, causal or noncausal, 
lowpass, highpass, bandpass or bandstop.

(a) 
n

h[n]

 (b) 

Ω 
-2π 2π

|H(e jΩ)|
1

(c) 

F 
-1 1

|H( F )|
1

   

 Figure E.44
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Image Filtering

 45. Create a discrete-space image consisting of 96 by 96 pixels. Let the image be a 
“checkerboard” consisting of 8 by 8 alternating black-and-white squares. 

(a) Filter the image row-by-row and then column-by-column with a fi lter whose 
impulse response is 

 h[ ] . ( . ) u[ ]n nn= 0 2 0 8

   and display the image on the screen using the imagesc command in MATLAB.
(b) Filter the image row-by-row and then column-by-column with a fi lter whose 

impulse response is

 h[ ] [ ] . ( . ) u[ ]n n nn= −� 0 2 0 8

  and display the image on the screen using the imagesc command in MATLAB.
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558

 12 C H A P T E R

12.1 INTRODUCTION AND GOALS
The world economy, government and individual human interaction depend on commu-
nication systems and that dependence becomes stronger as time passes. These systems 
include telephone networks, computer networks from local area networks to the World 
Wide Web, and commercial and publicly funded radio and television broadcast services. 

Fourier analysis methods are usually preferred in the analysis of communication 
systems. Many of these systems use sinusoidal carrier waves that are modulated by 
information signals. The carrier waves operate continuously over long periods of time 
and are usefully modeled as sinusoids. Therefore unmodulated and modulated carrier 
waves can be effi ciently described by their Fourier transforms. Some systems use car-
riers that are periodic but not sinusoidal. They can also be effi ciently represented by 
their Fourier transforms.

C H A P T E R  G OA L S

 1. To learn how frequency multiplexing can allow many channels of 
communication that operate simultaneously without interfering with each other

 2. To explore the most common types of sinusoidal-carrier amplitude modulation 
and demodulation and understand their advantages and disadvantages

 3. To learn the basic concepts involved in angle modulation

 4. To extend the concepts of continuous-time modulation and demodulation to 
discrete-time modulation and demodulation

12.2  CONTINUOUS TIME COMMUNICATION SYSTEMS

NEED FOR  COMMUNICATION SYSTEMS

One of the most important applications of the Fourier transform is in the analysis 
and design of communication systems. We will approach this concept by analyzing 
the operation of a radio transmitter and receiver. Why do we have radios? They solve 

Communication System 
Analysis
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Amplifier Amplifier

Miami Seattle

Figure 12.1
A naïve, absurd communication system

the problem of communication between people who are too far apart to communicate 
directly with sound. There are, of course, many types of communication at a distance. 
The communication could be one-way as in radio and television or two-way as in tele-
phone, amateur radio, Internet and so on. The information transferred could be voice, 
data, images. The communication could be real-time or delayed.

When two people are within a few meters of each other they can communicate 
verbally by simply speaking directly to each other without any technological aid. If 
the distance between them extends to a few tens of meters they may have to shout to 
be heard or perhaps use a bullhorn. When the distance reaches hundreds of meters 
powerful amplifi cation must be used to converse acoustically. To extend this thought 
process to an absurd extreme, suppose a person in Miami and a person in Seattle want 
to converse. We could theoretically use amplifi ers and loudspeakers to increase the 
acoustic power of the voice but because the acoustical power dies quite rapidly with 
distance we would need an astronomically powerful system to be heard at that distance 
(Figure 12.1).

If a voice in Miami could be heard in Seattle and vice versa, with acoustic am-
plifi cation, there might be a few complaints from the people in Orlando and Spokane 
about the noise. (There would not be any complaints from people in Miami and Seattle 
because they would all have been killed by the  acoustic energy.) Also, if the communi-
cation is two-way, given the speed of sound in air, the person in Seattle would have to 
wait more than 8 hours to hear a response to a question asked of the person in Miami. If 
we throw in the problems of millions of people in the United States talking simultane-
ously and the attendant lack of privacy of their communication, we quickly realize that 
this would be an extremely unsatisfactory, and ridiculous, system.

A good solution to many of these problems is to use  electromagnetic energy prop-
agation to carry messages between widely separated locations. Its speed is so much 
greater than the speed of sound that the problem of delay would be solved. But we now 
have some other problems to solve. How do we encode an acoustic message in an elec-
tromagnetic signal so the message will propagate at the speed of the electromagnetic 
wave (the speed of light)? The simplest idea is to use a microphone, an amplifi er and 
an antenna to directly convert acoustic energy to electromagnetic energy (Figure 12.2). 
A receiver antenna at the remote location could collect some of the transmitted elec-
tromagnetic energy and an amplifi er and speaker could reconvert the electromagnetic 
energy to acoustic energy.

There are two big problems with this simple approach. First, the frequency spec-
trum of voice communication is mostly between 30 Hz and 300 Hz and even music 

 12.2 Continuous Time Communication Systems 559
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560 Chapter  12  Communication System Analysis

program sources do not extend much beyond 10 kHz. An effi cient antenna in this 
frequency range would have to be very long (many miles long). Also the variation of 
frequency over a range of 10:1 up to maybe 1000:1 in frequency would mean that the 
signal would be signifi cantly distorted by the variation of antenna effi ciency with fre-
quency. Maybe we could build a very long antenna or maybe we could just live with an 
ineffi cient one. But the second problem is more signifi cant. 

On the assumption that many people would want to talk simultaneously (a pretty 
good assumption), after conversion of the energy back to acoustic form we still have 
the problem of hearing everyone talking at once because they are all transmitting at 
the same time. Imagine that you and one other person are the only customers in a 
large restaurant and you are seated in opposite corners. If you want to converse with 
that person, you may have to raise your voice a little but it shouldn’t be diffi cult. Now 
imagine that the restaurant fi lls up with customers. Now if you want to converse with 
that same person, it will be much more diffi cult because of the cacophony of all the 
other restaurant patrons talking at once. This is the same problem we get when we try 
to transmit signals in the same bandwidth at the same time as everyone else.

 FREQUENCY MULTIPLEXING

Standard telephone systems solve the problem of separating signals by confi ning the 
electromagnetic energy of each signal to a cable, either copper or optical fi ber. The sig-
nals are  spatially separated by having a dedicated direct connection between the parties. 
But with modern wireless cellular telephones that solution does not work because the 
electromagnetic energy is not confi ned on its path between the handset and the nearest 
cellular antenna. Another solution would be to assign to each transmitter a unique set 
of time intervals in which every other transmitter would not transmit. Then, to receive 
the correct message, the receiver would have to be synchronized to these same times 
(accounting for propagation delays). This solution is called time multiplexing . Time 
multiplexing is used extensively in telephone systems where the signal is confi ned to 
cables or in local cellular areas where the telephone company can control all the timing 
and the intervals can be made so short that they are not noticed by the people using the 
system. But time multiplexing has some problems in other communication systems. 

Transmitter

Transmitter

Receiver

Receiver

Amplifier Amplifier

AmplifierAmplifier

Miami Seattle

Figure 12.2
Communication system using direct  acoustic-to-electromagnetic and 
electromagnetic-to-acoustic conversion
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t

t

x(t)

x(t)cos(2πfct)

Figure 12.4 
The modulation x( )t  and the modulated carrier y( ) x( )cos( )t t f tc= 2�

If the electromagnetic energy propagation is in free space, with multiple independent 
transmitters and receivers involved in a national or global communication system, time 
multiplexing becomes practically impossible. There is a better solution, and it is best 
understood by using the Fourier transform. The solution is called frequency multi-
plexing and it depends on using a technique called  modulation.

 ANALOG MODULATION AND DEMODULATION

 Amplitude Modulation
 Double-Sideband Suppressed-Carrier Modulation Let x( )t  be an information signal to 
be transmitted. If we were to multiply this signal by a sinusoid as illustrated in Figure 12.3 
we would get a new signal y( )t , the product of the original signal and the sinusoid.

In the language of communication systems the signal x( )t  modulates the  carrier 
cos( )2�f tc . In this case the modulation is called amplitude modulation because the 
amplitude of the carrier is constantly being modifi ed by the signal level of the modula-
tion x( )t  (Figure 12.4).

Figure 12.3
An analog multiplier acting as 
a modulator

x(t) y(t)

cos(2πfct)

Multiplier

The modulator response is y( ) x( ) cos( )t t f tc= 2� . Fourier transforming both 
sides, 

 Y( ) X( ) ( )[ ( ) ( )]f f f f f fc c= ∗ − + +1 2/ � �  

or 

 Y( ) ( )[X( ) X( )]f f f f fc c= − + +1 2/ .

This kind of modulation has the effect of simply shifting the spectrum of the modulating 
signal up and down by the carrier frequency fc in the frequency domain (Figure 12.5). 
So something that looks complicated in the time domain looks quite simple in the fre-
quency domain. This is one of the advantages of frequency-domain analysis. This kind 
of amplitude modulation is called double-sideband suppressed-carrier (DSBSC) 
modulation and it is the simplest to describe mathematically. The  sidebands are the 
parts of the information signal’s frequency spectrum. In the modulation process they 
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562 Chapter  12  Communication System Analysis

are translated into the two sidebands above and below ± fc. The designation “ suppressed 
carrier” refers to the fact that there is no impulse at the carrier frequency in the spec-
trum of the modulated signal.

Communication system theory makes a distinction between two general types of 
  signal  transmission, baseband and  RF or passband. (The term “RF” comes from the 
phrase “radio frequency”.) A baseband signal typically has a Fourier spectrum that ex-
tends from zero to some relatively low frequency. An RF signal is created by modulat-
ing a relatively high frequency carrier with a baseband signal. So in our example x( )t  
is the baseband signal and y( )t is the RF signal.

DSBSC modulation is not used much in practice. However, an understanding of 
DSBSC modulation goes a long way toward understanding the more commonly used 
forms of modulation, so this is a good place to start. We have now accomplished one 
goal. The spectrum of the original signal, which started out in a range of low frequen-
cies, has been shifted to a new range that can be located anywhere we desire by choos-
ing the appropriate carrier frequency. 

The solution to the problem of everyone talking at once in the same frequency range 
is to have everyone use a different frequency range by using a different carrier frequency. 
Consider the case of AM broadcast radio. There are many transmitting stations in any 
given geographic region simultaneously broadcasting. Each station is assigned a fre-
quency band in which to broadcast. These frequency bands are about 20 kHz wide. So 
a radio station modulates a carrier with its program source signal (the baseband signal). 
The carrier is at the center of its assigned frequency band. The  modulated carrier then 
drives the transmitter. If the baseband signal has a bandwidth of less than 10 kHz, the 
station’s broadcast signal will lie completely within its assigned frequency band. A  re-
ceiver has to choose one station to listen to and reject the others. Its antenna receives 
energy from all stations and converts them all into a voltage at its terminals. Therefore 
the receiver has to somehow select one frequency band to listen to and reject all others. 

There is more than one way to select a single station to receive. But the most 
common way is to use the modulation idea again, but this time the operation is called 
 demodulation. Suppose the signal received by the antenna x ( )r t  is the sum of signals 
from several radio stations in the area and that the spectrum of the antenna signal is as 
illustrated in Figure 12.6.

Figure 12.5
The modulation and the modulated carrier in the 
frequency domain
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Figure 12.6 
Spectrum of signal received by receiver antenna
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Figure 12.7
Receiver signal after demodulation
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Shifted Down Shifted Up

Suppose the station we want to hear is the one centered at fc3. We multiply the received 
antenna signal by a sinusoid at that frequency creating a demodulated signal y ( )r t .
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This result looks complicated but it is really not. Again, we are just shifting the incom-
ing signal up and down in frequency space and adding, as illustrated in Figure 12.7.

Notice that the information spectrum that was centered at fc3 has moved up and 
down and is now centered at zero (and also at ±2 3fc ). We can now recover the original 
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564 Chapter  12  Communication System Analysis

signal that was modulated up by the transmitter to fc3 by applying a lowpass fi lter to 
this signal that passes only the signal power contained in the bandwidth of the desired 
information, which is now centered at zero. This is not exactly how a typical AM 
receiver works, but many of the same processes are used in a typical AM receiver, 
and this technique does work. This demodulation operation is a good example of the 
advantage of using transform methods that include negative frequencies. In this case 
some of the spectral peaks are shifted from negative to positive frequencies and vice 
versa and directly indicate the correct demodulated signal.

One problem with this technique is that the sinusoid at a frequency of fc3, which is 
used in demodulation, produced by the so-called  local oscillator in the receiver, must 
not only be at exactly the right frequency fc3 but must also be in phase with the carrier 
as received for best results. If the frequency of the local oscillator drifts even the slight-
est bit, the receiver will not work right. An annoying tone called the  beat frequency will 
be heard as the local oscillator drifts off the exact frequency. The beat frequency is the 
difference between the carrier frequency and the local oscillator frequency. As a result, 
for this technique to work, the local oscillator’s frequency and phase must be locked 
to the carrier phase. This is most commonly done with a device called a  phase-locked 
loop. This type of demodulation is called  synchronous demodulation because of the 
requirement that the carrier and the local oscillator be in phase (synchronized).

We use the term “ tuning” a radio receiver to select the desired station. When we 
tune to a station we are simply changing the frequency of the local oscillator in the 
receiver to cause a different station’s signal to appear centered at zero (at baseband). As 
we will see in the next section, there are simpler and more economical ways of doing 
the demodulation that are used in most standard AM receivers. 

Double-Sideband Transmitted-Carrier Modulation As mentioned in the previous 
section, double-sideband suppressed-carrier modulation is not widely used. A modula-
tion technique that is widely used is  double-sideband transmitted-carrier (DSBTC) 
modulation. This is the technique used by commercial AM radio transmitters and by 
most international shortwave transmitters. It is very similar to DSBSC, the only dif-
ference being multiplication of the modulation by a factor m and the addition of a 
constant K to the signal x( )t  before modulation (Figure 12.8).

Figure 12.8
A double-sideband  transmitted-carrier modulator

x(t) y(t)

Accos(2πfct)

m

K

The constant K is a positive number chosen large enough that when it is added to 
m tx( ) the sum never goes negative. In this implementation m is called the  modulation 
index. (For most practical modulating signals, if the maximum negative excursion is 
−K, the maximum positive excursion is approximately +K .) The output signal from 
the modulator is

 y( ) [ x( )] cos( )t K m t A f tc c= + 2�  (12.1)

(Figure 12.9). Fourier transforming (12.1),

 Y( ) [ ( ) X( )] ( )[ ( ) ( )]f K f m f A f f f fc c c= + ∗ − + +� � �/2  
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Figure 12.9
DSBTC modulation and modulated carrier
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Figure 12.10
Spectra of baseband signal and DSBTC signal
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 Y( ) ( ){[ ( ) ( )] [X( ) X(f KA f f f f m f f f fc c c c c= − + + + − + +/2 � � ))]}

(Figure 12.10).
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Looking at the spectrum we can see where the name “transmitted carrier” came 
from. There is an impulse at the carrier frequency that was not present in DSBSC 
modulation. It is natural to wonder why this modulation technique is so widely used, 
given that it requires a more complicated system to implement. The reason is that, 
even though DSBTC modulation is a little more complicated than DSBSC modula-
tion, DSBTC demodulation is much simpler than DSBSC demodulation. For each 
commercial AM radio station there is one transmitter, which modulates the carrier 
with the baseband signal and thousands or even millions of receivers, which demodu-
late the modulated carrier signal to recreate the baseband signal. DSBTC demodula-
tion is very simple using a circuit called an  envelope detector. Its operation is best 
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566 Chapter  12  Communication System Analysis

understood in the time domain. In DSBTC modulation, the modulated carrier traces 
out the shape of the baseband signal with the positive (and negative) peaks of the 
carrier oscillation (Figure 12.11). The envelope detector is a circuit that, in a sense, 
follows the peaks of the modulated carrier, thereby approximately reproducing the 
baseband signal (Figure 12.12).

Figure 12.11
 Relation between baseband signal and modulated carrier

t

Modulating Signal

Modulated Carrier

Figure 12.12
Envelope detector circuit

R C

The reproduction of the baseband signal represented in Figure 12.12 is not very 
good but it does illustrate the concept of the operation of an envelope detector. In actual 
practice the carrier frequency would be much higher than represented in this fi gure and 
the reproduction of the baseband signal would be much better. The explanation of the 
operation of the envelope detector was done in the time domain. That is because the 
envelope detector is a nonlinear system and therefore linear system theory does not 
apply. No local oscillator or synchronization is required for envelope detection so this 
demodulation technique is called  asynchronous demodulation.

A DSBTC signal can also be demodulated by the same demodulation technique 
used for the DSBSC signal in the previous section but requiring a local oscillator in the 
receiver generating a sinusoid in phase with the received carrier. The envelope detector 
is simpler and less expensive.

If m is too large or K is too small, K m t+ x( ) will go negative, overmodulation 
will occur and the envelope detector cannot recover the original baseband signal with-
out some distortion (Figure 12.13).

 Single-Sideband Suppressed-Carrier Modulation The amplitude spectrum X( )f  of 
any real signal x( )t  has the quality that X( ) X ( )*f f= − . Therefore the information in 
X( )f  for f ≥ 0 only is suffi cient to reconstruct the signal exactly. That fact underlies 
the concept of  single-sideband suppressed-carrier (SSBSC) modulation. In DSBSC 
modulation, the amplitude spectrum centered at the carrier frequency (and at the nega-
tive of the carrier frequency) has information from X( )f  over the frequency range 
− < <f f fm m. But, if the receiver is designed correctly, only half of that amplitude 
spectrum needs to be transmitted. The advantage of transmitting only half the amplitude 
spectrum is that only half as much bandwidth is needed as in DSBSC modulation.
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Figure 12.13 
Overmodulation
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Figure 12.14
Single-sideband suppressed-carrier modulator

x(t) y(t)
yDSBSC(t)

cos(2πfct)

Multiplier

f
fc-fc

fm fm

|H( f )|

An SSBSC modulator is almost the same as a DSBSC modulator. The difference is a 
fi lter that removes either the upper or lower sideband before transmitting (Figure 12.14).

The response from the multiplier is the same as it was in the DSBSC case earlier 
y ( ) x( ) cos( )DSBSC ct t f t= 2� . In the frequency domain the amplitude spectrum of the 
response of the multiplier is Y ( ) ( )[X( ) X( )]DSBSC c cf f f f f= − + +1 2/ . The fi lter in 
Figure 12.14 removes the lower sideband and leaves the upper sideband. The ampli-
tude spectrum that results is Y( ) ( )[X( ) X( )]H( )f f f f f fc c= − + +1 2/  (Figure 12.15).

The  demodulation process for SSBSC is the same as the fi rst technique introduced 
for DSBSC, multiplication of the received signal by a local oscillator in phase with the 
received carrier (Figure 12.16).

If this signal is now lowpass fi ltered, the original spectrum is recovered. The origi-
nal signal is completely recovered because all the information is in a single sideband. 
This type of modulation is much more easily understood using frequency-domain 
analysis than using time-domain analysis.

 Angle Modulation
All the modulation ideas we have explored so far vary the amplitude of the carrier 
in proportion to the information signal. An alternate form of modulation with some 
advantanges over amplitude modulation is angle modulation. In angle modulation, 
instead of the information signal controlling the amplitude of the carrier, it controls the 
phase angle of the carrier. Let the carrier be of the form

 A tc ccos( )�  
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568 Chapter  12  Communication System Analysis

and let the modulated carrier be of the form

 y( ) cos( ( ))t A tc c= �  

or

 y( ) cos( ( ))t A t tc c= +� ��  

where � � �c ct t t( ) ( )= + �  and � �c cf= 2 . The phase has two parts, the phase of an 
unmodulated carrier �ct and the deviation from the phase of an unmodulated carrier 
��( )t . If we let ��( ) x( )t k tp=  where x( )t  is the information signal, the angle modula-
tion is called  phase modulation (PM).

In an unmodulated carrier the radian frequency is �c. If we differentiate the sinusoidal 
argument �ct of an unmodulated carrier with respect to time, we get the constant �c. So one 
way of defi ning the radian frequency of a sinusoid is as the time derivative of the argument 
of the sinusoid. We could similarly defi ne cyclic frequency as the derivative of the argu-
ment divided by 2�. If we apply that defi nition to the modulated angle � � �c ct t t( ) ( )= + � , 
we get a function of time that is defi ned as  instantaneous frequency

 � � � �( ) ( ( )) ( ( )).t
d

dt
t

d

dt
tc c= = + �  

or

 f( ) ( ( )) ( ( )).t
d

dt
t f

d

dt
tc c= = +1

2

1

2�
�

�
��

Figure 12.16
SSBSC demodulation
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Operation of an SSBSC modulator
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In the case of phase modulation the instantaneous radian frequency is 

 � �( ) (x( ))t k
d

dt
tc p= + .

If, instead of proportionally controlling the phase deviation with the information signal, 
we proportionally control the  derivative of the phase with the information signal, then

 d

dt
t k tf( ( )) x( )�� =

and the instantaneous radian and cyclic frequencies are

 � �
�

( ) x( ) f( ) x( )t k t t f
k

tc f c
f= + = +and

2
.

This type of angle modulation is called   frequency modulation (FM) because the in-
formation signal proportionally controls the instantaneous frequency of the modulated 
carrier.

In understanding angle modulation it is helpful to see graphs of information sig-
nals and the modulated carriers they create on the same time scale for comparison 
(Figure 12.17 and Figure 12.18).

Figure 12.17
 Square-wave phase and   frequency modulation of a carrier
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Figure 12.18
 Sine-wave phase and frequency modulation of a carrier
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570 Chapter  12  Communication System Analysis

The next task is to fi nd the  spectra of the  PM and FM signals. When we found 
the spectra of AM signals they turned out to be scaled and frequency-shifted replicas 
of the spectra of the information signals. This occurs because amplitude modulation 
involves multiplication and/or convolution and/or addition. Multiplication in time cor-
responds to convolution in frequency, convolution in time corresponds to multiplica-
tion in frequency and addition is the same in both domains. The spectra of PM and FM 
signals are not as simple because now the modulation is not done by multiplication, 
convolution and addition. For phase modulation

 y ( ) cos( x( ))PM t A t k tc c p= +�

and for frequency modulation

 y ( ) cos x( )FM t A t k dc c f

t

t

= +
⎛

⎝
⎜

⎞

⎠
⎟∫� � �

0

.

There is no simple expression for the CTFTs of these signals in the general case. 
Using the trigonometric identity, 

 cos( ) cos( ) cos( ) sin( )sin( )x + y x y x y= −

we can express the modulated signals as

 y ( ) [cos( ) cos( x( )) sin( )sin( x(PM t A t k t t k tc c p c p= −� � )))]

and

 y ( ) cos( ) cos x( ) sin( )FM t A t k d tc c f

t

t

c=
⎛

⎝
⎜

⎞

⎠
⎟ −∫� � � �

0

ssin x( )k df
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� �
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∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

If k kp fand  are small enough,

 cos( x( ))k tp ≅ 1  and  sin( x( )) x( )k t k tp p≅

and

 cos x( )k df

t

t

� �

0

1∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅   and  sin x( ) x( )k d k df
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t
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� � � �

0 0

∫ ∫
⎛

⎝
⎜

⎞

⎠
⎟ ≅ .

Then

 y ( ) [cos( ) x( )sin( )]PM t A t k t tc c p c≅ −� �

and

 y ( ) cos( ) sin( ) x( )FM t A t t k dc c c f

t

t

≅ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫� � � �

0

.

These approximations are called  narrowband PM and  narrowband FM. We can fi nd 
the Fourier transforms of these approximations

 Y ( ) ( ){ [ ( ) ( )] [X( (PM /j A jk jc c c p c� � � � � � � � � �≅ − + + − +2 2 ))) X( ( ))]}− −j c� �
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and
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or, in cyclic form,
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using the  integration property of the Fourier transform (where we have assumed that 
the average value of x( )t  is zero.)

If the information signal is a pure sinusoid of the form

 x( ) cos( ) cos( )t A t A f tm m m m= =� �2

then 
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or, using the equivalence property of the impulse,
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(Figure 12.19). Notice that in FM the upper and lower sidebands are 180° out of phase.
If x( ) sinc( )t f f tm m= 2 2 , then X( ) rect( )f f fm= /2 , a bandlimited, fl at, baseband 

spectrum and
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572 Chapter  12  Communication System Analysis

Figure 12.19
Spectra of carriers that are phase and frequency modulated by a cosine

f

f

|YPM( f )|

YPM( f ) YFM( f )

|YFM( f )|

f 

f

-π

π

ff 

-π

π

-fc-fc-fm -fc+fm fcfc-fm fc+fm
-fc-fc-fm -fc+fm fcfc-fm fc+fm

Figure 12.20
Spectra of carriers that are phase and frequency   modulated by 
a sinc function
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(Figure 12.20). Again, in FM the upper and lower sidebands are 180° out of phase.
If the narrowband PM and FM approximations are not adequate, we must deal 

with the more accurate, but more complicated, wideband cases. For the sake of brev-
ity and clarity this discussion will be limited to FM. The PM case is similar. Let the 
instantaneous radian frequency be k tf x( ). Then

 y ( ) cos( ) cos x( ) sin( )FM t A t k d tc c f

t

t

c=
⎛

⎝
⎜

⎞

⎠
⎟ −∫� � � �

0

ssin x( )k df

t

t

� �

0

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

If the modulation is x( ) cos( )t A tm m= � , then (letting the constant of integration be zero)

 y ( ) cos( ) cos sin( ) sin(FM t A t
k A

tc c
f m

m
m c= ⎛

⎝⎜
⎞
⎠⎟

−�
�

� � tt
k A

tf m

m
m)sin sin( )

�
�

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥.
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To streamline the notation, defi ne a modulation index m k Af m m= /� . Then

 y ( ) [cos( ) cos( sin( )) sin( )sin( sFM t A t m t t mc c m c= −� � � iin( ))]�mt

and each of the terms

 cos( sin( )) sin( sin( ))m t m tm m� �and

is periodic in time with period 2� �/ m. Therefore they can each be expressed as a 
Fourier series. Then the Fourier series for the expression

 y ( ) [cos( ) cos( sin( )) sin( )sin( sFM t A t m t t mc c m c= −� � � iin( ))]�mt

is a linear combination of the Fourier series for 

 cos( sin( )) sin( sin( ))m t m tm m� �and

except scaled and shifted to be centered at ±�c. The  CTFS harmonic functions of 

 cos( sin( )) sin( sin( ))m t m tm m� �and

can be found using the defi nition

 c [ ] y( ) y( )y
/k

T
t e dt t e dtj kt T

T

m jk tm= =− −∫
1

20

2
2

0

0

� ��

� �� �/ m
∫

where y( )t  is one of those functions. For example,

 cos( sin( )) c [ ]m t k em c
jk t

k

m� �=
= −∞

∞

∑
and

 cos( ) cos( sin( )) c [ ][ ( ) (� � � �
c m c

j k t j kt m t k e em c= ++1

2
�� �m c t

k

−

= −∞

∞

∑ ) ]

where

 c [ ] cos( sin( )) .c
m

m
jk tk m t e dtm

m

= −∫
�

�
� �

� �2 2 /

 c [ ] [ ]sin( ) sin( )
c

m jm t jm t jk tk e e e dtm m m= + − −

−

�

�
� � �

�
4

//

/

�

� �

m

m

∫

 c [ ] [ [ sin( ) ] [ sin( )
c

m j m t k t j m t kk e em m m m= +− − −�

�
� � � �

4
tt dt

m

m

]]
−

∫
� �

� �

/

/

This integral can be evaluated using 

 J ( ) ( sin( ) )
k

j z kz e d= −

−
∫

1

2�
�� �

�

�

where J ( )k ⋅  is the Bessel function of the fi rst kind, of order k (Figure 12.21). Two useful 
properties of this Bessel function are

 J ( ) ( ) J ( ) J ( ) ( ) J ( )− = − = − −k
k

k k
k

kz z z z k1 1, , an inteeger.

From these we can derive

 J ( ) J ( )k kz z= −− .
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574 Chapter  12  Communication System Analysis

Figure 12.21
 Bessel functions of the fi rst kind for orders 0 through 5
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 c [ ] [ [ sin( ) ] [ sin( )
c

m j m t k t j m t kk e em m m m= +− − −�

�
� � � �

4
tt dt

m

m

]

/

/

]
−

∫
� �

� �

let � � � �m mt dt d= ⇒ = . Then

 c [ ] [ ][ sin( ) ] [ sin( ) ]
c

j m k j m kk e e d= +− − −

−
∫

1

4�
�� � � �

�

�

 c [ ] ( )[J ( ) J ( )] ( )[J ( ) J ( )].c k k k kk m m m m= + − = + −1 2 1 2/ /

Similarly,

 sin( sin( )) c [ ]m t k em s
jk t

k

m� �=
= −∞

∞

∑
and

 sin( )sin( sin( )) c [ ][ ( ) (� � � �
c m s

j k t jt m t
j

k e em c= −+1

2
kk t

k

m c� �−

=−∞

∞

∑ ) ]

where

 c [ ] ( )[J ( ) J ( )] ( )[J ( ) J ( )]s k k k kk j m m j m m= − − = − −1 2 1 2/ / ..

Recall the form of the FM signal

 y ( ) [cos( ) cos( sin( )) sin( )sin( sFM t A t m t t mc c m c= −� � � iin( ))]�mt

Then

 
y ( )

( )( )[J ( ) J ( )][ ( )

FM
/ /

t A
m m e e

c
k k

j k tm c

=
+ − ++1 2 1 2 � � jj k t

k k
j k

m c

mj j m m e

( )

(

]

( )( )[J ( ) J ( )][

� �

�

−

+− − −1 2 1 2/ / �� � �c m ct j k t
k e) ( ) ]−

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪−
= −∞

∞

∑
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 y ( ) J ( ) J ( )( ) ( )
FM t

A
m e m ec

k
j k t

k
j k tm c m c= +⎡⎣ ⎤+

−
−

2
� � � �

⎦⎦
= −∞

∞

∑
k

or

 y ( ) J ( ) J ( )( ) ( )
FM t

A
m e m ec

k
j kf f t

k
j kf fm c m c= ++

−
−

2
2 2� � tt

k

⎡⎣ ⎤⎦
= −∞

∞

∑

and its CTFT (cyclic form) is

 Y ( ) [J ( ) ( ( )) J ( ) ( (FM f
A

m f kf f m f kf fc
k m c k m c= − + + − −−

2
� � )))]

k = −∞

∞

∑

 
Y ( )

J ( )[ ( ) ( )]

J ( ) ( (FM
+

f
A

m f f f f

m f kfc

c c

k m=

− + +
− +

2

0 � �

� ff m f kf f

m f kf f
c k m c

k m c

)) J ( ) ( ( ))

J ( ) ( ( ))

+ − −
+ − − + +

−

−

�

� JJ ( ) ( ( ))k m ck m f kf f� − − −
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⎣⎢

⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

∞

∑
1

This is the exact  wideband FM spectrum for a  cosine-wave frequency modulation. The 
corresponding time-domain expression is

 
y ( )FM t =

 
J ( ) cos( ) J ( ) cos( ( ) )+A m f t m f kf tc c k c m+ +0 2 2� � JJ ( ) cos( ( ) )−

=

∞
−[ ]⎧

⎨
⎩

⎫
⎬
⎭

∑ k c m
k

m f kf t2
1

�

Therefore, there are infi nitely many impulses spaced apart by the modulation’s funda-
mental frequency. That might imply infi nite bandwidth. But if we graph the impulses 
for a typical value of modulation index, we fi nd that, even though the impulses theo-
retically go on forever, their strengths decay very rapidly with frequency beyond a fre-
quency deviation of m fm (Figure 12.22). So the bandwidth of wideband FM modulated 
by a cosine of frequency fm is approximately 2m fm.

At very small values of m, 

 J ( ) ( ) ( ) J ( )0 1 11 2 2 0m m m m m mn→ → → − →−, J / , J / and , n > 1.
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Figure 12.22
An example of the spectrum of wideband 
FM with cosine modulation
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576 Chapter  12  Communication System Analysis

Then for small values of m

 Y ( )
[ ( ) ( )] ( )[ ( ) (

FM
/

f
A f f f f m f f fc c c m c≅

− + + + − − −
2

2� � � � ff f f

m f f f f f f
m c

m c m c

− +
− + − − + +

⎧
⎨
⎩

⎫
⎬
⎭

)]

( )[ ( ) ( )]/2 � �

and

 y ( ) {cos( ) ( )[cos( ( ) ) cos(FM + /t A f t m f f tc c c m= + +2 2 2� � 22�( ) )]}f f tc m−

These expressions are the same as derived above in the narrowband FM approximation.

12.3  DISCRETE-TIME SINUSOIDAL-CARRIER 
AMPLITUDE MODULATION
Modulation can also be used in discrete-time systems in a manner similar to the way it 
is used in continuous-time systems. The simplest form of discrete-time  modulation is 
DSBSC modulation in which we multiply a carrier signal c[ ]n  by a modulation signal 
x[ ]n . Let the carrier be the sinusoid

 c[ ] cos( )n F n= 2 0�

where F N0 01= /  and N0 is the period (an integer). Then the response of the modulator is

 y[ ] x[ ]c[ ] x[ ]cos( )n n n n F n= = 2 0�

(Figure 12.23).
Multiplication in discrete time corresponds to periodic convolution in discrete-

time frequency,

 Y( ) X( ) C( ) X( ) {( )[ ( ) ( )] (F F F F F F F F= = − + + ∗� � 1 2 0 0 1/ � � � FF)}

Figure 12.23
Modulation, carrier and modulated carrier in a discrete-time DSBSC system
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Figure 12.24 
DTFTs  of modulation, carrier and modulated carrier
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Figure 12.25 
DTFTs of modulation, carrier, and modulated carrier

If this type of modulation is to be used to accomplish frequency multiplexing, the 
sum of the bandwidths (in F ) of all the signals must be less than one-half. 

One particularly simple and interesting type of discrete-time DSBSC modulation 
is to use a carrier c[ ] cos( )n n= � . This is a discrete-time cosine formed by sampling 
a continuous-time cosine at a sampling rate that is exactly twice its frequency. It is 
particularly simple because it is the sequence � �1 1 1 1 1 1, , , , , ,− − − . When this 
carrier is used, the DTFTs that result are illustrated in Figure 12.25.

This type of modulation inverts the frequency spectrum of a discrete-time modula-
tion. If it is initially a lowpass spectrum, it becomes highpass and vice-versa. This is 
a very easy type of modulation to implement because it consists of simply changing 
the sign of every other value of the modulation signal. The demodulation to recover 
the original signal is to do exactly the same process again, putting all the frequency 
components back in their original positions.

One interesting use of this type of modulation is to convert a  lowpass discrete-
time fi lter into a highpass discrete-time fi lter. If we modulate this type of carrier with 
a signal and then pass it through a lowpass fi lter, the frequencies that were originally 
low will be high and will not pass through and the frequencies that were originally 
high will be low and will pass through. Then we can demodulate the output of the fi lter 
by exactly the same type of modulation, converting the high frequencies (the original 

 12.3 Discrete-Time Sinusoidal-Carrier Amplitude Modulation 577

or
 Y( ) ( )[X( ) X( )]F F F F F= − + +1 2 0 0/ ,

(Figure 12.24), which is very similar to the analogous result for DSBSC continuous-
time modulation,

 Y( ) ( )[X( ) X( )]f f f f f= − + +1 2 0 0/ .
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578 Chapter  12  Communication System Analysis

low frequencies) back to low frequencies. Using this technique we can use one type of 
discrete-time fi lter for both lowpass and highpass fi ltering.

12.4 SUMMARY OF IMPORTANT POINTS
 1. Communication systems that use frequency multiplexing are conveniently 

analyzed using Fourier methods.
 2. In amplitude modulation, the information signal directly controls the amplitude 

of the carrier.
 3. Amplitude modulation and synchronous demodulation are very similar 

operations.
 4. Transmitted carrier amplitude modulation can be demodulated with simple and 

inexpensive circuitry avoiding the need for synchronous demodulation.
 5. Single-sideband modulation uses half the bandwidth of double-sideband 

modulation. This makes more effi cient use of bandwidth but requires 
synchronous demodulation.

 6. The two forms of angle modulation are phase modulation and frequency 
modulation, which have many similarities. Frequency modulation is used more 
in practice.

 7. The amplitude modulation techniques used in continuous time have direct 
counterparts in amplitude modulation in discrete time.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Amplitude Modulation

  1. In the system in Figure E.1, x ( ) sinc( )t t t= , fc = 10 and the cutoff frequency of 
the lowpass fi lter is 1 Hz. Graph the signals x ( )t t , y ( )t t , y ( )d t  and y ( )f t  and the 
magnitudes and phases of their CTFTs.

  

xt(t)
yt(t) = xr(t)

cos(2πfct)

yd(t)
yf (t)LPF

cos(2πfct)

Figure E.1

Answers:

t 
-3 3

xt(t)
1

f 
-2 2

|Xt( f )|
1

f 
-2 2−π

π
Xt( f )

, 

t 
-3 3

yt(t)

 1

1

f 
-15 15

|Yt( f )|
0.5

f 
-15 15−π

π
Yt( f )

,
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t
-3 3

yd(t)
1

f 

|Yd( f )|
0.5

f 
-30 30

-30 30

−π
π
Yd( f )

, 

t
-3 3

yf (t)
0.5

f 
-2 2

|Yf ( f )|
0.5

f 
-2 2−π

π
Yf ( f )

  2. In the system in Figure E.2,x ( ) sinc( ) ( )t t t t= ∗5 1� , m = 1, fc = 40 and the cutoff 
frequency of the lowpass fi lter is 4 Hz. Graph the signals x ( )t t , y ( )t t , y ( )d t  and 
y ( )f t  and the magnitudes and phases of their CTFTs.

  

m

1

yt(t) = xr(t)

cos(2πfct)

xt(t)
yd(t)

yf (t)LPF

cos(2πfct)

Figure E.2

Answers:

t-1 1

xt(t)
1

f -10 10

|Xt( f )|
0.2

f -10 10−π
π

Xt( f )

, 

t
-1 1

yt(t)

-2

2

f 
-60 60

|Yt( f )|
0.6

f 
-60 60−π

π
Yt( f )

,

t
-1 1

yd(t)
2

f 
-100 100

|Yd( f )|
0.6

f 
-100 100−π

π
Yd( f )

, 

t-1 1

yf (t)
1

f 
-4 4

|Yf ( f )|
0.5

f -4 4−π
π
Yf ( f )

  3. An AM radio station broadcasts music with an absolute bandwidth of 5 kHz. 
The station uses double-sideband, transmitted-carrier modulation and its carrier 
frequency is 1 MHz. 

(a) What are the minimum and maximum frequency limits flow and fhigh  of the 
bandwidth in positive frequency space occupied by the modulated carrier 
that is broadcast by this station?

 Exercises with Answers 579
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t
1.2e-05

x(t)

1

Information Signal

t
1.2e-05

c(t)

-1

1

Phase-Modulated Carrier

 

t
1.2e-05

x(t)

1

Information Signal

t
1.2e-05

c(t)

-1

1

Phase-Modulated Carrier

t
1.2e-05

x(t)

1

Information Signal

t
1.2e-05

c(t)

-1

1

Phase-Modulated Carrier

(b) If the carrier frequency is changed to 1.5 MHz, what are the new minimum and 
maximum frequency limits flow and fhigh of the bandwidth in positive frequency 
space occupied by the modulated carrier that is broadcast by this station?

(c) If the station changed to single-sideband suppressed-carrier modulation, 
broadcasting the upper sideband only (in positive frequency space) and the 
carrier frequency were the original 1 MHz, what are the new minimum and 
maximum frequency limits flow and fhigh of the bandwidth in positive frequency 
space occupied by the modulated carrier that is broadcast by this station?

Answers: 1.005 MHz, 0.995 MHz, 1 MHz, 1.495 MHz, 1.005 MHz, 1.505 MHz

  4. A signal x( ) sinc( )t t= 4 10  is the input signal to a single-sideband, suppressed-
carrier (SSBSC) modulation system whose carrier is 10 2000cos( )�t . The system 
generates the product of x( )t  and the carrier to form a DSBSC signal y ( )DSBSC t . It 
then transmits the upper sideband and suppresses the lower sideband of y ( )DSBSC t  
with an ideal highpass fi lter to form the transmitted signal y( )t . The transmitted 
signal y( )t  can be expressed in the form y( ) sinc( ) cos( )t A bt ct= . Find the 
numerical values of A, b, and c.
Answers: 2005�, 20, 5

 Angle Modulation

  5. In a PM modulator let the information signal be x( ) rect( ) ( )t t t= ∗106
5� �s  

and let the carrier be sin( )8 106� × t . Graph the modulator output signal for 
the time range 0 10< <t �s for three different values of the modulation index 
kp = � � �, / and /4.2
Answers:
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  6. In an FM modulator let the information signal be x( ) rect( ) ( )t t t= ∗106
5� 	s  

and let the carrier be sin( )8 106� × t . Graph the modulator output signal for 
the time range 0 10< <t 	s for three different values of the modulation index 
k f = × × ×8 106 6 6� � �, 4 10 and 2 10 . 

Answers:

Frequency-Modulated Carrier

t
1.2e-05

x(t)

1

Information Signal

t
1.2e-05

c(t)

-1

1

 

Information Signal

Frequency-Modulated Carrier

t
1.2e-05

x(t)

1

t
1.2e-05

c(t)

-1

1

Information Signal

Frequency-Modulated Carrier

t
1.2e-05

x(t)

1

t
1.2e-05

c(t)

-1

1
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582 Chapter  12  Communication System Analysis

EXERCISES WITHOUT ANSWERS
Amplitude Modulation

  7. Repeat Exercise 1 but with the second cos( )2�f tc  replaced by sin( )2�f tc .
  8. In the system in Figure E.8, x ( ) sinc( )t t t= , fc = 10 and the cutoff frequency of 

the lowpass fi lter is 1 Hz. Graph the signals x ( )t t , y ( )t t , y ( )d t  and y ( )f t  and the 
magnitudes and phases of their CTFTs.

 

yt(t) = xr(t)
xt(t)

cos(2π fct)

yd(t)
yf (t)LPF

cos(2π fct)

f
fm fm

|H( f )|

fc-fc

Figure E.8

  9. A sinusoid x( ) cos( )t A f tm m= 2�  modulates a sinusoidal carrier A f tc ccos( )2�  in 
a double-sideband transmitted-carrier (DSBTC) system of the type illustrated in 
Figure E.9. If A f A f mm m c c= = = = =1 10 4 1000 1, , , and , fi nd the numerical 
value of the total signal power in y( )t at the carrier frequency Pc and the 
numerical value of the total signal power in y( )t in its sidebands Ps.

  

y(t)

cos(2πfct)

x(t) m

1

Figure E.9

 10. In the system in Figure E.10 let x ( ) sin( )t t t= 3 1000� , let fc = 5000 and let the 
lowpass fi lter (LPF) be ideal with a frequency response magnitude of one in its 
passband. 

  

xt(t)
yt(t) = xr(t) 

cos(2πfct)

yd(t)
yf (t)LPF

cos(2πfct)

Figure E.10

(a) Find the signal power of y ( )t t . 
(b) Find the signal power of y ( )d t .
(c) Find the signal power of y ( )f t  if the cutoff frequency of the lowpass fi lter is 

1 kHz.
(d) Find the signal power of y ( )f t  if the cutoff frequency of the lowpass fi lter is 

100 Hz.
 11. In the system in Figure E.11 let x ( ) sin( )t t t= 3 1000� , let m = 1, let A = 3, let 

fc = 5000 and let the lowpass fi lter (LPF) be ideal with a frequency response 
magnitude of one in its passband. 

m

A

yt(t) = xr(t)

cos(2πfct)

xt(t)
yd(t)

yf (t)LPF

cos(2πfct)

Figure E.11
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(a) Find the signal power of y ( )t t . 
(b) Find the signal power of y ( )d t .
(c) Find the signal power of y ( )f t  if the cutoff frequency of the lowpass fi lter is 

1 kHz.
(d) Find the signal power of y ( )f t  if the cutoff frequency of the lowpass fi lter is 

100 Hz.

 12. A power signal x( )t  with no signal power outside the frequency range 
− < <f f fc c/ /100 100 is multiplied by a carrier cos( )2�f tc  to form a signal, y ( )t t . 
Then y ( )t t  is multiplied by cos( )2�f tc  to form y ( )r t . Then y ( )r t  is fi ltered by an 
ideal lowpass fi lter whose frequency response is H( ) rect( )f f fc= 6 2/  to form y ( )f t . 
What is the ratio of the signal power in y ( )f t  to the signal power in x( )t  P P

f xy / ?

 13. In the system of Figure E.13 let the CTFT of the input signal be X( ) tri( )f f fc= / . 
This system is sometimes called a scrambler because it moves the frequency 
components of a signal to new locations, making it unintelligible. 

(a) Using only an analog multiplier and an ideal fi lter, design a “descrambler” 
that would recover the original signal. 

(b) Graph the magnitude spectrum of each of the signals in the scrambler-
descrambler system.

x(t)

cos(2πfct)

Multiplier

ys(t)

Figure E.13 A “scrambler”

Angle Modulation

 14. In a PM modulator let the information signal be x( ) sin( )t t= 105 , let the carrier be 
cos( )2 106� × t  and let the modulation indices be k k kp f p= = ×�/ and /5 10 56 . 
Graph the modulator output signal for the time range 0 20< <t 	s. Compute the 
modulator output two ways, (1) directly as a modulated signal, and (2) using the 
narrowband PM and FM approximations. Compare the graphs.

Envelope Detector

 15. In Figure E.15 is a circuit diagram of an envelope detector. Model the diode as 
ideal and let the input voltage signal be a cosine at 100 kHz with an amplitude 
of 200 mV. Let the RC time constant be 60 microseconds. Find and graph the 
magnitude of the CTFT of the output voltage signal.

Figure E.15 An envelope detector.

R Cvi(t) vo(t)

+

-

+

-
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584 Chapter  12  Communication System Analysis

Chopper-Stabilized Amplifi er

 16. Electronic amplifiers that handle very-low-frequency signals are difficult 
to design because thermal drifts of offset voltages cannot be distinguished 
from the signals. For this reason a popular technique for designing low-
frequency amplifiers is the so called “chopper-stabilized” amplifier in 
Figure E.16. 

vi(t)
+

-
vo(t)
+

-

Typical Amplifier

Chopper-Stabilized Amplifier

vi(t)
+

- vo(t)
+

-

BPF
LPF

Figure E.16 A  chopper-stabilized amplifi er

A chopper-stabilized amplifi er “chops” the input signal by switching it on and 
off periodically. This action is equivalent to a pulse amplitude modulation in which 
the pulse train being modulated by the input signal is a 50% duty-cycle square wave 
that alternates between zero and one. Then the chopped signal is bandpass fi ltered 
to remove any slow thermal drift signals from the fi rst amplifi er. Then the amplifi ed 
signal is chopped again at exactly the same rate and in phase with the chopping signal 
used at the input of the fi rst amplifi er. Then this signal may be further amplifi ed. The 
last step is to lowpass-fi lter the signal out of the last amplifi er to recover an amplifi ed 
version of the original signal. (This is a simplifi ed model but it illustrates the essential 
features of a chopper-stabilized amplifi er.)

Let the following be the parameters of the chopper-stabilized amplifi er.

Chopping frequency 500 Hz
Gain of the fi rst amplifi er 100 V/V
Bandpass fi lter Unity-gain, ideal, zero-phase
Passband 250 750< <f
Gain of the second amplifi er 10 V/V
Lowpass fi lter Unity-gain, ideal, zero-phase
Bandwidth 100 Hz 

Let the input signal have a 100 Hz bandwidth. What is the effective DC gain of this 
chopper-stabilized amplifi er?
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Multipath

 17. A common problem in over-the-air television signal transmission is  multipath 
distortion of the received signal due to the transmitted signal bouncing off 
structures. Typically a strong “main” signal arrives at some time and a weaker 
“ghost” signal arrives later. So if the transmitted signal is x ( )t t , the received 
signal is

 x ( ) x ( ) x ( )g gr m t m tt K t t K t t= − + −

 where K Km >> g and t tmg > .

(a) What is the frequency response of this communication channel?
(b) What would be the frequency response of an  equalization system that would 

compensate for the effects of multipath?

 Exercises without Answers 585
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586

13.1 INTRODUCTION AND GOALS
Pierre  Laplace invented the  Laplace transform as a method of solving linear, 
constant-coeffi cient differential equations. Most continuous-time LTI systems are 
described, at least approximately, by differential equations of that type. The Laplace 
transform describes the impulse responses of LTI systems as linear combinations of 
the eigenfunctions of the differential equations that describe them. Because of this 
Laplace transform directly encapsulates the characteristics of a system in a powerful 
way. Many system analysis and design techniques are based on the use of the Laplace 
transform without ever directly referring to the differential equations that describe 
them. In this chapter we will explore some of the most common applications of the 
Laplace transform in system analysis.

C H A P T E R  G OA L S

 1. To apply the Laplace transform to the generalized analysis of LTI systems, 
including feedback systems, for stability, time-domain response to standard 
signals and frequency response

 2. To develop techniques for realizing systems in different forms

13.2  SYSTEM REPRESENTATIONS
The discipline of system analysis includes systems of many kinds, electrical, hydraulic, 
pneumatic, chemical, and so on. LTI systems can be described by differential equations 
or block diagrams. Differential equations can be transformed into algebraic equations 
by the Laplace transform and these transformed equations form an alternate type of 
system description. 

Electrical systems can be described by circuit diagrams.  Circuit analysis can 
be done in the time domain, but it is often done in the frequency domain because 
of the power of linear algebra in expressing system interrelationships in terms of 
algebraic (instead of differential) equations.  Circuits are interconnections of circuit 
elements such as resistors, capacitors, inductors, transistors, diodes, transformers, 
voltage sources, current sources, and so forth. To the extent that these elements 
can be characterized by linear frequency-domain relationships, the circuit can be 

 13 C H A P T E R

Laplace System Analysis
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Figure 13.1
Time-domain circuit diagram of an RLC circuit

R1

vg(t)

vC(t)
iL(t)

R2L

C

+ -

analyzed by frequency-domain techniques. Nonlinear elements such as transistors, 
diodes and transformers can often be modeled approximately over small signal ranges 
as linear devices. These models consist of linear resistors, capacitors and inductors 
plus dependent voltage and current sources, all of which can be characterized by 
LTI system transfer functions.

As an example of circuit analysis using Laplace methods, consider the circuit of 
Figure 13.1, which illustrates a circuit description in the time domain. This circuit can 
be described by two coupled differential equations

 

− + +⎡
⎣⎢

⎤
⎦⎥

+ =

−

v ( ) i ( ) (v ( )) (i ( ))g t R t C
d

dt
t L

d

dt
tL C L1 0

LL
d

dt
t t R C

d

dt
tL C C(i ( )) v ( ) (v ( ))+ + =2 0

If we Laplace transform both equations we get

 
− + + − + −+ +V ( ) {I ( ) [ V ( ) v ( )]} I ( ) i (g s R s C s s sL sL C c L L1 0 0 ))

[ I ( ) i ( )] V ( ) [ V ( ) v ( )]

=

− − + + − =+ +

0

0 02sL s s R C s sL L C C c 00

If there is initially no energy stored in the circuit (it is in its zero state), these equations 
simplify to

 
− + + + =V ( ) I ( ) V ( ) I ( )g s R s sR C s sL sL C L1 1 0

I ( ) V ( ) V ( ) .− + + =sL s s sR C sL C C2 0

It is common to rewrite the equations in the form

 
R sL sR C

sL sR C

s

s
L

C

1 1

21

+
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
I ( )

V ( )

Vg(( )s

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

or

 
Z ( ) Z ( ) Z ( ) Z ( )

Z ( ) Z ( ) Z ( )

R L R C

L R C

s s s s

s s s
1 1

21

+
− +

⎡

⎣
⎢

/

/⎢⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I ( )

V ( )

V ( )gL

C

s

s

s

0

where

 Z ( ) , Z ( ) , Z ( ) , Z ( ) .R R L Cs R s R s sL s sC1 21 2 1= = = = /

The equations are written this way to emphasize the  impedance concept of circuit 
analysis. The terms sL and 1/sC are the impedances of the inductor and capacitor, 

 13.2 System Representations 587
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588 Chapter  13  Laplace System Analysis

respectively. Impedance is a generalization of the concept of resistance. Using this 
concept, equations can be written directly from circuit diagrams using relations similar 
to Ohm’s law for resistors,

V ( ) Z I( ) I( ), V ( ) Z I( ) I( ), V ( ) ZR R L L C Cs s R s s s sL s s= = = = = II( ) ( ) I( ).s sC s= 1/

Now the circuit of Figure 13.1 can be conceived as the circuit of Figure 13.2.
The  circuit equations can now be written directly from Figure 13.2 as two equa-

tions in the complex frequency domain without ever writing the time-domain equa-
tions (again, if there is initially no stored energy in the circuit).

 
− + + + =

− +
V ( ) [I ( ) V ( )] I ( )

I ( ) V (

g s R s sC s sL s

sL s s

L C L

L C

1 0

)) V ( )+ =sR C sC2 0

These circuit equations can be interpreted in a system sense as differentiation, and/or 
multiplication by a constant and summation of signals, in this case, IL(s) and VC (s).

R s sR CL C1 1I ( ) V (
multiplication
by a constant

��� �� + ss)
differentiation and

multiplication
by a constannt

differentiation and
multiplicati

� �� �� + sL sLI ( )

oon
by a constant

summation

��� ��

� �������� ��������

==

−

V ( )

I ( )

g s

sL sL

differentiation and
multiplicationn
by a constant

differentia
� �� �� + +V ( ) V ( )C Cs sR C s2

ttion and
multiplication
by a constant

summat

� �� ��

iion
� ������� �������

= 0

A block diagram could be drawn for this system using integrators, amplifi ers and sum-
ming junctions.

Other kinds of systems can also be  modeled by interconnections of integrators, 
amplifi ers and summing junctions. These elements may represent various physical 
systems that have the same mathematical relationships between an excitation and a 
response. As a very simple example, suppose a mass m is acted upon by a force (an 
excitation) f(t). It responds by moving. The response could be the position p(t) of the 
mass in some appropriate coordinate system. According to classical Newtonian me-
chanics, the acceleration of a body in any coordinate direction is the force applied to 
the body in that direction divided by the mass of the body,

 
d

dt
t

t

m

2

2 (p( ))
f( )

.=

Figure 13.2 
Frequency-domain circuit diagram of an  RLC circuit

R1

Vg(s)

VC(s)
IL(s)

R2sL

sC
1

+ -
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This can be directly stated in the Laplace domain (assuming the initial position and 
velocity are zero) as

 s s
s

m
2 P( )

F( )
.=

So this very simple system could be modeled by a multiplication by a constant and two 
integrations (Figure 13.3).

∫ ∫f(t) p(t)

F(s) P(s)

1/m

1/m
s-1s-1

Figure 13.3
Block diagrams of d2 p(t)/dt = f(t)/m and s2 P(s) = F(s)/m 

Figure 13.4
A mechanical system

System at Rest

f(t) is the system excitation signal

System in Motion

m1

m1

m2

Ks1 Ks2

Kd

f(t)
m2

Ks1 Ks2

Kd

x1
x2

 We can also represent with block diagrams more complicated systems like Figure 13.4. 
In Figure 13.4, the positions x1(t) and x2(t) are the distances from the rest positions of 
masses m1 and m2, respectively. Summing forces on mass m1,

 f( ) x ( ) [x ( ) x ( )] x ( ).t K t K t t m td s− ′ − − = ′′1 1 1 2 1 1

Summing forces on mass m2,

 K t t K t m ts s1 1 2 2 2 2 2[x ( ) x ( )] x ( ) x ( ).− − = ′′

 13.2 System Representations 589
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590 Chapter  13  Laplace System Analysis

Laplace transforming both equations,

 F( ) X ( ) [X ( ) X ( )] X ( )
.

s K s s K s s m s sd s− − − =1 1 1 2 1
2

1

[X ( ) X ( )] X ( ) X ( )K s s K s m s ss s1 1 2 2 2 2
2

2− − =

We can also model the mechanical system with a block diagram (Figure 13.5).

∫ ∫

∫ ∫

Kd /m1

Ks2/m2 Ks2/m2

Kd /m1

Ks1

f(t) x1(t)

x2(t)

Ks1

F(s) X1(s)

X2(s)

1/m1 1/m1

1/m1

1/m2

1/m1

1/m2

s-1 s-1

s-1 s-1

Figure 13.5
Time-domain and frequency-domain block diagrams of the mechanical system of Figure 13.4

13.3  SYSTEM STABILITY
A very important consideration in system analysis is system stability. As shown in 
Chapter 5, a continuous-time system is BIBO stable if its impulse response is abso-
lutely integrable. The Laplace transform of the impulse response is the transfer func-
tion. For systems that can be described by differential equations of the form

 a
d

dt
t b

d

dt
tk

k

k
k

N

k

k

k
k

M

(y( )) (x( ))
= =
∑ ∑=

0 0

where aN = 1, without loss of generality, the transfer function is of the form

 H( )
Y( )

X( )
s

s

s

b s

a s

b s b sk
k

k

M

k
k

k

N
M

M
M

M

= = = + +=

=

−
−∑

∑
0

0

1
1 ��
�

+ +
+ + + +−

−
b s b

s a s a s aN
N

N
1 0

1
1

1 0
.

The denominator can always be factored (numerically, if necessary), so the transfer 
function can also be written in the form

 H( )
Y( )

X( ) ( )(
s

s

s

b s b s b s b

s p s p
M

M
M

M

= = + + + +
− −

−
−

1
1

1 0

1 2

�
)) ( )

.
� s pN−

If there are any pole-zero pairs that lie at exactly the same location in the s-plane, they 
cancel in the transfer function and should be removed before examining the transfer 
function for stability. If M < N, and none of the poles is repeated, then the transfer 
function can be expressed in partial-fraction form as

 H( )s
K

s p

K

s p

K

s p
N

N
=

−
+

−
+ +

−
1

1

2

2
�
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and the impulse response is then of the form,

 h( ) ( ) u( )t K e K e K e tp t p t
N

p tN= + + +1 2
1 2 �

where the p’s are the poles of the transfer function. For h(t) to be absolutely integrable, 
each of the terms must be individually absolutely integrable. The integral of the 
magnitude of a typical term is

 I Ke t dt K e e dtpt p t j p t= =
−∞

∞ ∞

∫ ∫u( ) Re( ) Im( )

0

 I K e e dt K e dtp t j p t p t= =
=

∞ ∞

∫ ∫Re( ) Im( ) Re( )

10 0
��� ��

In the last integral eRe( p)t is non-negative over the range of integration. Therefore

 I K e dtp t=
∞

∫ Re( ) .
0

For this integral to converge, the real part of the pole p must be negative. 

For  BIBO stability, of an LTI system all the poles of its transfer 
function must lie in the  open left half-plane (LHP).

The term open left half-plane means the left half-plane not including the ω axis. 
If there are simple (nonrepeated) poles on the ω axis and no poles are in the  right 
half-plane (RHP), the system is called marginally stable because, even though the 
impulse response does not decay with time, it does not grow, either.  Marginal stability 
is a special case of BIBO instability because in these cases it is possible to fi nd a 
bounded input signal that will produce an unbounded output signal. (Even though it 
sounds strange, a marginally stable system is also a   BIBO unstable system.)

If there is a repeated pole of order n in the transfer function, the impulse response 
will have terms of the general form t n–1ept u(t) where p is the location of the repeated 
pole. If the real part of p is not negative, terms of this form grow without bound in 
positive time, indicating there is an unbounded response to a bounded excitation 
and that the  system is BIBO unstable. Therefore, if a system’s transfer function has 
repeated poles, the rule is unchanged. The poles must all be in the open left half-plane 
for system stability. However, there is one small difference from the case of simple 
poles. If there are repeated poles on the � axis and no poles in the right half-plane, the 
system is not marginally stable, it is simply unstable. These conditions are summarized 
in Table 13.1.

Table 13.1 Conditions for system stability,  marginal stability or instability (which includes 
marginal stability as a special case)

  Stability Marginal Stability Instability

All poles in the open LHP  One or more simple poles on  One or more poles in the
the � axis but no repeated poles  open RHP or on the � axis 
on the � axis and no poles in  (includes marginal stability).
the open RHP

 13.3 System Stability 591
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592 Chapter  13  Laplace System Analysis

If we excite the system in Figure 13.6 (a) by applying an impulse of horizontal 
force to the sphere, it responds by moving and then rolling back and forth. If there 
is even the slightest bit of  rolling friction (or any other loss mechanism like air re-
sistance), the sphere eventually returns to its initial equilibrium position. This is an 
example of a stable system. If there is no friction (or any other loss mechanism), the 
sphere will oscillate back and forth forever but will remain confi ned near the relative 
low-point of the surface. Its response does not grow with time, but it does not decay, 
either. In this case the system is marginally stable. 

If we excite the sphere in Figure 13.6 (b) even the slightest bit, the sphere rolls down 
the hill and never returns. If the hill is infi nitely high, the sphere’s speed will approach 
infi nity, an unbounded response to a bounded excitation. This is an unstable system. 

In Figure 13.6 (c) if we excite the sphere with an impulse of horizontal force, it 
responds by rolling. If there is any loss mechanism, the sphere eventually comes to rest 
but not at its original point. This is a bounded response to a bounded excitation and 
the system is stable. If there is no loss mechanism, the sphere will roll forever without 
accelerating. This is  marginal stability again. 

EXAMPLE 13.1

Repeated pole on the ω axis

The simplest form of a system with a repeated pole on the ω axis is the double integrator with 
transfer function H( )s A s= / 2 where A is a constant. Find its impulse response.
 Using t t n sn nu( ) !L← →⎯ +/ 1 we fi nd the transform pair At t A su( ) L← →⎯ / 2, a ramp function 
that grows without bound in positive time indicating that the system is unstable (and not margin-
ally stable).

Stable Equilibrium Stable EquilibriumUnstable Equilibrium

Unstable Equilibrium
Marginally Stable

Equilibrium

Without Rolling Friction

With Rolling Friction

Marginally Stable
Equilibrium

(a) (b) (c)

Figure 13.6
Illustrations of three types of stability

An analogy that is sometimes helpful in remembering the different descriptions 
 of system stability or instability is to consider the movement of a sphere placed on 
different kinds of surfaces (Figure 13.6).
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13.4  SYSTEM CONNECTIONS

 CASCADE AND PARALLEL CONNECTIONS

Earlier we found the impulse response and frequency responses of cascade and parallel 
connections  of systems. The results for these types of systems are the same for transfer 
functions as they were for frequency responses (Figure 13.7 and Figure 13.8).

Figure 13.7 
Cascade connection of systems

H1(s)H2(s)X(s) Y(s)

H1(s) H2(s)X(s) X(s)H1(s) Y(s) � X(s)H1(s)H2(s)

Figure 13.8 
Parallel connection of systems

H1(s) � H2(s)X(s) Y(s)

H1(s)

H2(s)

X(s) Y(s) � X(s)H1(s) � X(s)H2(s) � X(s)[H1(s) � H2(s)]

X(s)H1(s)

X(s)H2(s)

�

�
�

Figure 13.9 
Feedback connection of systems

H1(s)

H2(s)

X(s) Y(s)
E(s)�

�
�

 THE FEEDBACK CONNECTION

Terminology and Basic Relationships
Another type of connection that is very important in  system analysis is the feedback 
connection (Figure 13.9). The transfer function H1(s) is in the  forward path and the 
transfer function H2(s) is in the  feedback path. In the control-system literature it is 
common to call the forward-path transfer function H1(s) the  plant because it is usually 
an established system designed to produce something and the feedback-path transfer 
function H2(s) the  sensor because it is usually a system added to the plant to help 
control it or stabilize it by sensing the plant response and feeding it back to the summing 
junction at the plant input. The excitation of the plant is called the  error signal and is 
given by E(s) = X(s) − H2(s) Y(s) and the response of H1(s), which is Y(s) = H1(s)E(s), 
is the excitation for the sensor H2(s). Combining equations and solving for the overall 
transfer function

 H( )
Y( )

X( )

H ( )

H ( )H ( )
s

s

s

s

s s
= =

+
1

1 21
.  (13.1)

In the block diagram illustrating feedback in Figure 13.9 the feedback signal is sub-
tracted from the input signal. This is a very common convention in  feedback system 
analysis and stems from the history of feedback used as  negative feedback to stabilize 
a system. The basic idea behind the term “negative” is that if the plant output signal 

 13.4 System Connections 593
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594 Chapter  13  Laplace System Analysis

goes too far in some direction, the sensor will feed back a signal proportional to the 
plant output signal, which is subtracted from the input signal and therefore tends to 
move the plant output signal in the opposite direction, moderating it. This, of course, 
assumes that the signal fed back by the sensor really does have the quality of stabiliz-
ing the system. Whether the sensor signal actually does stabilize the system depends 
on its dynamic response and the dynamic response of the plant.

It is conventional in system analysis to give the product of the forward- 
and feedback-path transfer functions the special name  loop transfer function 
T(s) = H1(s) H2(s) because it shows up so much in feedback system analysis. In 
electronic feedback amplifi er design this is sometimes called the   loop transmission. 
It is given the name loop transfer function or loop transmission because it represents 
what happens to a signal as it goes from any point in the loop, around the loop exactly 
one time and back to the starting point (except for the effect of the minus sign on the 
summing junction). So the transfer function of the feedback system is the forward-path 
transfer function H1(s) divided by one plus the loop transfer function or

 H( )
H ( )

T( )
.s

s

s
=

+
1

1
 

Notice that when H2(s) goes to zero (meaning there is no feedback) that T(s) does also 
and the system transfer function H(s) becomes the same as the forward-path transfer 
function H1(s).

 Feedback Effects on Stability
It is important to realize that feedback can have a very dramatic effect on system 
response, changing it from slow to fast, fast to slow, stable to unstable or unstable to 
stable. The simplest type of feedback is to feed back a signal directly proportional to 
the output signal. That means that H2(s) = K, a constant. In that case the overall system 
transfer function becomes

 H( )
H ( )

H ( )
.s

s

K s
=

+
1

11
 

Suppose the forward-path system is an integrator with transfer function H1(s) = 1/s, 

which is marginally stable. Then H( ) .s
s

K s s K
=

+
=

+
1

1

1/

/
 The forward-path transfer 

function H1(s) has a pole at s = 0, but H(s) has a pole at s = –K. If K is positive, the 
overall feedback system is stable, having one pole in the open left half-plane. If K is 
negative the overall  feedback system is unstable with a pole in the right half-plane. As 
K is made a larger positive value the pole moves farther from the origin of the s plane 
and the system responds more quickly to an input signal. This is a simple demonstra-
tion of an effect of feedback. There is much more to learn about feedback and usually a 
full semester of feedback control theory is needed for a real appreciation of the effects 
of feedback on system dynamics.

Feeding the forward-path output signal back to alter its own input signal is often 
called “closing the loop” for obvious reasons and if there is no feedback path the 
system is said to be operating “ open-loop.” Politicians, business executives and other 
would-be movers and shakers in our society want to be “in the loop.” This terminology 
probably came from feedback loop concepts because one who is in the loop has the 
chance of affecting the system performance and therefore has power in the political, 
economic or social system.
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If K is large enough, then, at least for some values of s, K H2(s) >> 1 and H(s) ≈ 1/ H2(s) 
and the overall transfer function of the feedback system performs the approximate inverse 
of the operation of the feedback path. That means that if we were to cascade connect a 
system with transfer function H2(s) to this feedback system, the overall system transfer 
function would be approximately one (Figure 13.11) over some range of values of s.

It is natural to wonder at this point what has been accomplished because the system 
of Figure 13.11 seems to have no net effect. There are real situations in which a signal 
has been changed by some kind of unavoidable system effect and we desire to  restore 
the original signal. This is very common in communication systems in which a signal 
has been sent over a channel that ideally would not change the signal but actually 
does for reasons beyond the control of the designer. An  equalization fi lter can be 
used to restore the original signal. It is designed to have the inverse of the effect of 
the channel on the signal as nearly as possible. Some systems designed to measure 
physical phenomena use sensors that have inherently lowpass transfer functions, 
usually because of some unavoidable mechanical or thermal inertia. The measurement 
system can be made to respond more quickly by cascading the sensor with an electronic 
signal-processing system whose transfer function is the approximate inverse of the 
sensor’s transfer function.

Another benefi cial effect of feedback is to reduce the sensitivity of a system to 
parameter changes. A very common example of this benefi t is the use of feedback in 
an operational amplifi er confi gured as in Figure 13.12.

Figure 13.10
A feedback system

K

H2(s)

X(s) Y(s)
E(s)�

�
�

Figure 13.11 
A system cascaded with another system designed 
to be its approximate inverse

H2(s)X(s) Y(s)

H2(s)

K�
�

�

Figure 13.12
An inverting voltage amplifi er using an 
operational amplifi er with feedback

Zi(s)

Zf (s)

Ve(s)

Vo(s)

�
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�

�
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 Benefi cial Effects of  Feedback
Feedback is used for many different purposes. One interesting effect of feedback can 
be seen in a system like Figure 13.10. The overall transfer function is 

 H( )
H ( )

.s
K

K s
=

+1 2

 

A typical approximate expression for the gain of an operational amplifi er with the 
noninverting input grounded (H1(s) in the feedback block diagram) is 

 H ( )
V ( )

V ( )
1

0

1
s

s

s

A

s p
o

e
= = −

− /
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596 Chapter  13  Laplace System Analysis

where A0 is the magnitude of the operational amplifi er voltage gain at low frequencies 
and p is a single pole on the negative real axis of the s-plane. The overall transfer func-
tion can be found using standard circuit analysis techniques. But it can also be found 
by using feedback concepts. The error voltage Ve(s) is a function of Vi (s) and Vo (s). 
Since the input impedance of the operational amplifi er is typically very large compared 
with the two external impedances Zi (s) and Zf  (s), the error voltage is

 V ( ) V ( ) [V ( ) V ( )]
Z ( )

Z ( ) Z ( )
e o i o

f

i f
s s s s

s

s s
= + −

+
 

or

 V ( ) V ( )
Z ( )

Z ( ) Z ( )
V ( )

Z ( )

Z ( ) Z
i

i
i

i
e o

f

f

f
s s

s

s s
s

s

s
=

+
− −

+ (( )s

⎡

⎣
⎢

⎤

⎦
⎥  

So we can model the system using the block diagram in Figure 13.13.

According to the general feedback-system transfer function

 H( )
Y( )

X( )

H ( )

H ( )H ( )
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s
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s

s s
= =

+
1

1 21
 

the amplifi er transfer function should be
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Simplifying, and forming the ratio of Vo(s) to Vi (s) as the desired overall transfer function,
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If the low-frequency gain magnitude A0 is very large (which it usually is), then we can 
approximate this transfer function at low frequencies as
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Z ( )

Z ( )
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Figure 13.13
Block diagram of an inverting voltage amplifi er using feedback on 
an operational amplifi er

Zf (s)
Zi(s) � Zf (s)

Zi(s)
Zi(s) � Zf (s)

Vi(s)
Ve(s)

Vo(s)
�

�
� �

A0

1 � s
p

rob80687_ch13_586-640.indd   596rob80687_ch13_586-640.indd   596 12/24/10   7:39:35 PM12/24/10   7:39:35 PM



This is the well-known  ideal-operational-amplifi er formula for the gain of an invert-
ing voltage amplifi er. In this case “being large” means that A0 is large enough that the 
denominator of the transfer function is approximately A0 Zi (s), which means that 

 A
s

p
A

s

p

s

s
f

i
0 01 1>> − >> −and

Z ( )

Z ( )
.

Its exact value is not important as long as it is very large and that fact represents the 
reduction in the system’s sensitivity to changes in parameter values that affect A0 or p.

To illustrate the effects of feedback on amplifi er performance let 

 A0 = 107 and p = –100.

Also, let Z f  (s) be a resistor of 10 kΩ and let Z i (s) be a resistor of 1 kΩ. Then the over-
all system transfer function is 

 
V ( )

V ( )
.o

i

s

s s
= −

+( ) +
10

11 1 100 10

8

7/

The numerical value of the transfer function at a real radian frequency of ω = 100 
(a cyclic frequency of f = 100/2� ≅ 15.9 Hz) is

 
V ( )

V ( )
o

i

s

s j
j= −

+ +
= − +10

11 11 10

8

7 9.999989 0.000011..

Now let the operational amplifi er’s low-frequency  gain be reduced by a factor of 10 to 
A0 = 106. When we recalculate the transfer function at 15.9 Hz we get

 
V ( )

V ( )
o

i

s

s j
j= −

+ +
= − +10

11 11 10

7

6 9.99989 0.00011

which represents a change of approximately 0.001% in the magnitude of the transfer 
function. So a change in the  forward-path transfer function by a factor of 10 produced 
a change in the overall system transfer function magnitude of about 0.001%. The feed-
back connection made the overall transfer function very insensitive to changes in the 
operational amplifi er gain, even very large changes. In amplifi er design this is a very 
benefi cial result because resistors, and especially resistor ratios, can be made very 
insensitive to environmental factors and can hold the system transfer function almost 
constant, even if components in the operational amplifi er change by large percentages 
from their nominal values.

Another consequence of the relative insensitivity of the system transfer function to 
the gain A0 of the operational amplifi er is that if A0 is a function of signal level, mak-
ing the operational amplifi er gain nonlinear, as long as A0 is large the system transfer 
function is still very accurate (Figure 13.14) and practically linear.

Another benefi cial effect of feedback can be seen by calculating the bandwidth of 
the operational amplifi er itself and comparing that to the bandwidth of the inverting 
amplifi er with feedback. The corner frequency of the operational amplifi er itself in this 
example is 15.9 Hz. The corner frequency of the inverting amplifi er with feedback is the 
frequency at which the real and imaginary parts of the denominator of the overall trans-
fer function are equal in magnitude. That occurs at a cyclic frequency of f ≅ 14.5 MHz. 
This is an increase in bandwidth by a factor of approximately 910,000. It is hard to 
overstate the importance of feedback principles in improving the performance of many 
systems in many ways.

 13.4 System Connections 597

rob80687_ch13_586-640.indd   597rob80687_ch13_586-640.indd   597 12/24/10   7:39:35 PM12/24/10   7:39:35 PM



598 Chapter  13  Laplace System Analysis

The transfer function of the operational amplifi er is a very large number at low 
frequencies. So the  operational amplifi er has a large voltage gain at low frequencies. The 
voltage gain of the feedback amplifi er is typically much smaller. So, in using feedback, 
we have lost voltage gain but gained gain stability and bandwidth (among other things). 
In effect, we have traded gain for improvements in other amplifi er characteristics.

Feedback can be used to stabilize an otherwise unstable system. The  F-117 stealth 
fi ghter is inherently aerodynamically unstable. It can fl y under a pilot’s control only 
with the help of a computer-controlled feedback system that senses the aircraft’s 
position, speed and attitude and constantly compensates when it starts to go unstable. 
A very simple example of stabilization of an unstable system using feedback would be 
a system whose transfer function is

 H ( ) , .1
1

0s
s p

p=
−

>

With a pole in the right half-plane this system is unstable. If we use a feedback-path 
transfer function that is a constant gain K we get the overall system transfer function,

 H( ) .s
s p

K
s p

s p K
= −

+
−

=
− +

1

1

1

For any value of K satisfying K > p, the feedback system is stable.

 Instability  Caused by  Feedback
Although feedback can have many very benefi cial effects, there is another effect of 
feedback in systems that is also very important and can be a problem rather than a 
benefi t. The addition of feedback  to a stable system can cause it to become unstable. 
The overall feedback-system transfer function is

 H( )
Y( )

X( )

H ( )

H ( )H ( )
.s

s

s

s

s s
= =

+
1

1 21

Even though all the poles of H1(s) and H2(s) may lie in the open left-half plane, the 
poles of H(s) may not. Consider the forward and feedback transfer functions

 H ( )
( )( )

1
3 5

s
K

s s
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+ +
 and H ( ) .2

1

4
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Figure 13.14
Linear and nonlinear operational amplifi er gain
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rob80687_ch13_586-640.indd   598rob80687_ch13_586-640.indd   598 12/24/10   7:39:35 PM12/24/10   7:39:35 PM



H1(s) and H2(s) are both BIBO stable. But if we put them into a feedback system like 
Figure 13.10, the overall system gain is then

 H( )
( )

( )( )( )

( )
s

K s

s s s K

K s

s s s
= +

+ + + +
= +

+ + +
4

3 4 5

4

12 473 2 660 + K
.

Whether or not this feedback system is stable now depends on the value of K. If K is 5, the 
poles lie at −5.904 and –3.048 ± j1.311. They are all in the open left half-plane and the 
feedback system is stable. But if K is 700, the poles lie at –12.917 and 0.4583 ± j7.657. 
Two poles are in the right half-plane and the system is unstable.

Almost everyone has experienced a system made unstable by feedback. Often 
when large crowds gather to hear someone speak, a public-address system is used. 
The speaker speaks into a microphone. His voice is amplifi ed and fed to one or more 
speakers so everyone in the audience can hear his voice. Of course, the sound emanating 
from the speakers is also detected and amplifi ed by the microphone and amplifi er. This 
is an example of feedback because the output signal of the public address system is 
fed back to the input of the system. Anyone who has ever heard it will never forget the 
sound of the public address system when it goes unstable, usually a very loud tone. 
And we probably know the usual solution, turn down the amplifi er gain. This tone can 
occur even when no one is speaking into the microphone. Why does the system go 
unstable with no apparent input signal, and why does turning down the amplifi er gain 
not just reduce the volume of the tone, but eliminate it entirely?

Albert Einstein was famous for the  Gedankenversuch ( thought experiment). We can 
understand the feedback phenomenon through a thought experiment. Imagine that we 
have a microphone, amplifi er and speaker in the middle of a desert with no one around 
and no wind or other acoustic disturbance and that the amplifi er gain is initially turned 
down to zero. If we tap on the microphone we hear only the direct sound of tapping and 
nothing from the speakers. Then we turn the amplifi er gain up a little. Now when we 
tap on the microphone we hear the tap directly but also some sound from the speakers, 
slightly delayed because of the distance the sound has to travel from the speakers to our 
ears (assuming the speakers are farther away from our ears than the microphone). As we 
turn the gain up more and more, increasing the loop transfer function T, the tapping 
sound from the speakers rises in volume (Figure 13.15). (In Figure 13.15, p(t) is acous-
tic pressure as a function of time.) 

As we increase the magnitude of the loop transfer function T by turning up the 
amplifi er gain, when we tap on the microphone we gradually notice a change, not just 
in the volume, but also in the nature of the sound from the speakers. We hear not only 
the tap but we hear what is commonly called  reverberation, multiple echoes of the tap. 
These multiple echoes are caused by the sound of the tap coming from the speaker to 
the microphone, being amplifi ed and going to the speaker again and returning to the 
microphone again multiple times. As the gain is increased this phenomenon becomes 
more obvious and, at some gain level, a loud tone begins and continues, without any 
tapping or any other acoustic input to the microphone, until we turn the gain back down. 

At some level of amplifi er gain, any signal from the microphone, no matter how 
weak, is amplifi ed, fed to the speaker, returns to the microphone and causes a new signal 
in the microphone, which is the same strength as the original signal. At this gain the sig-
nal never dies, it just keeps on circulating. If the gain is made slightly higher, the signal 
grows every time it makes the round trip from microphone to speaker and back. If the 
public address system were truly linear, that signal would increase without bound. But 
no real public address system is truly linear and, at some volume level, the amplifi er is 
driving the speaker as hard as it can but the sound level does not increase any more. 
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600 Chapter  13  Laplace System Analysis

It is natural to wonder how this process begins without any acoustic input to the 
microphone. First, as a practical matter, it is impossible to arrange to have absolutely 
no ambient sound strike the microphone. Second, even if that were possible, the ampli-
fi er has inherent random noise processes that cause an acoustic signal from the speaker 
and that is enough to start the feedback process.

Now carry the experiment a little further. With the amplifi er gain high enough 
to cause the tone we move the speaker farther from the microphone. As we move the 
speaker away, the pitch of the loud tone changes and, at some distance, the tone stops. 
The pitch changes because the frequency of the tone depends on the time sound takes 
to propagate from the speaker to the microphone. The loud tone stops at some distance 
because the sound intensity from the speaker is reduced as it is moved farther away, 
and the return signal due to feedback is less than the original signal, and the signal dies 
away instead of increasing in power.

Now we will  mathematically model the public address system with the tools we 
have learned and see exactly how feedback instability occurs (Figure 13.16). To keep 
the model simple, yet illustrative, we will let the transfer functions of the microphone, 
amplifi er and speaker be the constants, Km, KA and Ks. Then we model the propagation of 
sound from the speaker to the microphone as a simple delay with a gain that is inversely 
proportional to the square of the distance d from the speaker to the microphone

 p ( )
p ( )

m
st K

t d v

d
= − /

2  (13.2)

where Ps (t) is the sound (acoustic pressure) from the speaker, Pm (t) is the sound ar-
riving at the microphone, v is the speed of sound in air and K is a constant. Laplace 
transforming both sides of (13.2),

 P ( ) P ( ) .m s
ds vs

K

d
s e= −

2
/

Figure 13.15
Public address system sound from tapping on the microphone for 
three different system loop transfer functions
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Then we can model the public address system as a feedback system with a forward-
path transfer function

 H1(s) = KmKAKs

and a feedback-path transfer function

 H ( )2 2s
K

d
e ds v= − /

(Figure 13.17). The overall transfer function is

 H( ) .s
K K K

K K K K
d

e

m A s

m A s ds v
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− −1 2
/

The poles p of this system transfer function lie at the zeros of 1– (Km KA Ks K/d2)e–dp/v. 
Solving,

 1 02− =−K K K K

d
em A s dp v/  (13.3)

or

 e
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K K K K
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m A s

− =/
2

.

Any value of p that solves this equation is a pole location. If we take the logarithm of 
both sides and solve for p we get

 p
v

d

d

K K K Km A s
= −

⎛
⎝⎜

⎞
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ln .
2

So this is a solution of (13.3). But it is not the only solution. It is just the only 
real-valued solution. If we add any integer multiple of j2�v/d to p we get another 
solution because 

 e e e ed p j n v d v dp v j n dp v− + − −
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−= =( )2 2

1
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where n is any integer. That means that there are infi nitely many poles, all with the 

same real part − ⎛
⎝⎜

⎞
⎠⎟

v

d

d

K K K Km A s
ln

2

 (Figure 13.18).

This system is a little different from the systems we have been analyzing because 
this system has infi nitely many poles, one for each integer n. But that is not a problem 
in this analysis because we are only trying to establish the conditions under which the 

Figure 13.17
Block diagram of a public address system
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602 Chapter  13  Laplace System Analysis

system is stable. As we have already seen, stability requires that all poles lie in the open 
left half-plane. That means, in this case, that

 − ⎛
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⎞
⎠⎟

<v

d

d

K K K Km A s
ln

2

0

or

 ln
d
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⎞
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>

or

 
K K K K

d
m A s

2 1<  (13.4)

In words, the product of all the transfer-function magnitudes around the feedback loop 
must be less than one. This makes common sense because if the product of all the 
transfer-function magnitudes around the loop exceeds one, that means that when a signal 
makes a complete round-trip through the feedback loop it is bigger when it comes back 
than when it left and that causes it to grow without bound. So when we turn down the 
amplifi er gain KA to stop the loud tone caused by feedback, we are satisfying (13.4).

Suppose we increase the loop transfer function magnitude Km KA Ks K/d 2 by turning 
up the amplifi er gain KA. The poles move to the right, parallel to the � axis, and, at 
some gain value, they reach the � axis. Now suppose instead we increase the loop 
transfer function magnitude by moving the microphone and speaker closer together. 
This moves the poles to the right but also away from the � axis so that when we reach 
marginal stability the poles are all at higher radian frequencies.

A system that obeys this simple model can oscillate at multiple frequencies 
simultaneously. In reality that is unlikely. A real public address system microphone, 
amplifi er and speaker would have transfer functions that are functions of frequency 
and would therefore change the pole locations so that only one pair of poles would lie 
on the � axis at marginal stability. If the gain is turned up above the gain for marginal 
stability the system is driven into a nonlinear mode of operation and linear system 
analysis methods fail to predict exactly how it will oscillate. But linear system methods 
do predict accurately that it will oscillate and that is very important.

  Stable Oscillation Using Feedback
The oscillation of the public address system in the last section was an undesirable 
system response. But some systems are designed to oscillate. Examples are labora-
tory function generators, computer clocks, local oscillators in radio receivers, quartz 

Figure 13.18
 Pole-zero diagram of the public 
address system
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crystals in wristwatches, a pendulum on a grandfather clock, and so on. Some systems 
are designed to oscillate in a nonlinear mode in which they simply alternate between 
two or more unstable states and their response signals are not necessarily sinusoidal. 
Free-running computer clocks are a good example. But some systems are designed to 
operate as an LTI system in a  marginally stable mode with a true sinusoidal oscillation. 
Since marginal stability requires that the system have poles on the � axis of the s plane, 
this mode of operation is very exacting. The slightest movement of the system poles 
due to any parameter variation will cause the oscillation either to grow or decay with 
time. So systems that operate in this mode must have some mechanism for keeping the 
poles on the � axis.

The  prototype feedback diagram in Figure 13.19 has an excitation and a response. 
A system designed to oscillate does not have an (apparent) excitation; that is, X(s) = 0 
(Figure 13.20). (The sign is changed on H2(s) to make the system in Figure 13.20 be 
just like the system in Figure 13.19 with X(s) = 0.) How can we have a response if we 
have no excitation? The short answer is, we cannot. However, it is important to realize 
that every system is constantly being excited whether we intend it or not. Every system 
has random noise processes that cause signal fl uctuations. The system responds to 
these noise fl uctuations just as it would to an intentional excitation.

Figure 13.19
Prototype feedback system
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E(s)

Y(s)

H2(s)

H1(s)�
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�

Figure 13.20
 Oscillator feedback system
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The key to having a stable oscillation is having a transfer function with poles on 
the � axis of the form,

 H( ) .s
A

s
=

+2
0
2�

Then the system gain at the radian frequency �0 (s = ± j�0) is infi nite, implying that 
the response is infi nitely greater than the excitation. That could mean either that a 
fi nite excitation produces an infi nite response or that a zero excitation produces a fi nite 
response. Therefore a system with poles on the � axis can produce a stable nonzero 
response with no excitation.1

One very interesting and important example of a system designed to oscillate in 
a marginally stable mode is a  laser. The acronym LASER stands for “Light Amplifi -
cation by Stimulated Emission of Radiation.” A laser is not actually a light amplifi er 
(although, internally, light amplifi cation does occur), it is a light oscillator. But the 
acronym for “Light Oscillation by Stimulated Emission of Radiation,” LOSER, de-
scribed itself and did not catch on.

1 It is important here to distinguish between two uses of the word “stable.” A  BIBO stable system is one that has 
a bounded response to any arbitrary bounded excitation. A stable oscillation, in the context of this section, is an 
oscillating output signal that maintains a constant amplitude, neither growing or decaying. If an LTI system has 
an impulse response that is a stable oscillation, the system is marginally stable, a special case of BIBO unstable. 
That is, for such a system there exists a bounded excitation that would produce an unbounded response. If we 
were to actually excite any real system with such an excitation, its response would grow for a while but then at 
some signal level would change from an LTI system to a nonlinear system (or would start to reveal that it was 
never actually an LTI system in the fi rst place) and the response signal would remain bounded.
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604 Chapter  13  Laplace System Analysis

Even though the laser is an oscillator, light amplifi cation is an inherent process in 
its operation. A laser is fi lled with a medium that has been “pumped” by an external 
power source in such a way that light of the right wavelength propagating through the 
pumped medium experiences an increase in power as it propagates (Figure 13.21).

The device illustrated in Figure 13.21 is a one-pass,  travelling-wave light 
 amplifi er, not a laser. The oscillation of light in a laser is caused by introducing into 
the one-pass travelling-wave light amplifi er mirrors on each end that refl ect some or 
all of the light striking them. At each mirror some or all of the light is fed back into the 
pumped laser medium for further amplifi cation (Figure 13.22).

Pumped Laser Medium
Mirror Mirror

Figure 13.22
A laser

Pumped Laser Medium

Light in Light out

Figure 13.21
A one-pass travelling-wave light amplifi er

It would be possible, in principle, to introduce light at one end of this device through 
a partial mirror and amplify it. Such a device is called a  regenerative travelling-
wave light amplifi er. But it is much more common to make the mirror at one end as 
refl ective as possible, essentially refl ecting all the light that strikes it, and make the 
mirror at the other end a partial mirror, refl ecting some of the light that strikes it and 
transmitting the rest. 

A laser operates without any external light signal as an excitation. The light that 
it emits begins in the pumped laser medium itself. A phenomenon called  spontane-
ous emission causes light to be generated at random times and in random directions 
in the pumped medium. Any such light that happens to propagate perpendicular to a 
mirror gets amplifi ed on its way to the mirror, then refl ected and further amplifi ed as it 
bounces between the mirrors. The closer the propagation is to perpendicular to the mir-
rors, the longer the beam bounces and the more it is amplifi ed by the multiple passes 
through the laser medium. In steady-state operation the light that is perpendicular to 
the mirrors has the highest power of all the light propagation inside the laser cavity 
because it has the greatest gain advantage. One mirror is always a partial mirror so 
some light transmits at each bounce off that mirror. This light constitutes the output 
light beam of the laser (Figure 13.23).

In order for  light oscillation to be sustained, the loop transfer function of the sys-
tem must be the real number, −1, under the assumed negative feedback sign on the 
prototype feedback system of Figure 13.19 or it must be the real number, +1, under 
the assumption of the oscillator system of Figure 13.20. Under either assumption, for 
stable oscillation, the light, as it travels from a starting point to one mirror, back to the 
other mirror and then back to the starting point, must experience an overall gain magni-
tude of one and phase shift of an integer multiple of 2� radians. This simply means that 
the  wavelength of the light must be such that it fi ts into the  laser cavity with exactly an 
integer number of waves in one round-trip path.

It is important to realize here that the wavelength of light in lasers is typically 
somewhere in the range from 100 nm to many microns (ultraviolet to far infrared), and 
typical lengths of laser cavities are in the range of a 100 μm for a laser diode to more 
than a meter in some cases. Therefore, as light propagates between the mirrors it may 
experience more than a million radians of phase shift and, even in the shortest cavities, 
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the phase shift is usually a large multiple of 2� radians. So in a laser the exact wave-
length of oscillation is determined by which optical wavelength fi ts into the round-trip 
path with exactly an integer number of waves. There are infi nitely many wavelengths 
that satisfy this criterion, the wave that fi ts into the round trip exactly once plus all its 
harmonics (Figure 13.24).

Although all these wavelengths of light could theoretically oscillate, there are other 
mechanisms (atomic or molecular resonances, wavelength-selective mirrors, etc.) that 
limit the actual oscillation to a small number of these wavelengths that experience 
enough gain to oscillate.

A laser can be modeled by a block diagram with a forward path and a feedback 
path (Figure 13.25). The constants KF and KR represent the magnitude of the gain ex-
perienced by the electric fi eld of the light as it propagates from one mirror to the other 

100%
mirror

Partial
mirror

100%
mirror

Partial
mirror

100%
mirror

Partial
mirror

100%
mirror

Partial
mirror

100%
mirror

Partial
mirror

100%
mirror

Partial
mirror

Figure 13.23
Multiple light refl ections at different initial angles

…

Figure 13.24
Illustrations of wavelengths that 
fi t into the laser cavity an integer 
number of times

E(s)

Kro

Kto

Kr

KFe
L
c� s

KRe
L
c� s

Figure 13.25
Laser block diagram

along the forward and reverse paths, respectively. The factors e–(L /c)s account for the 
phase shift due to propagation time where L is the distance between the mirrors and c 
is the speed of light in the laser cavity. The constant Kto is the electric fi eld transmission 
coeffi cient for light exiting the laser cavity through the output partial mirror and the 
constant Kro  is the electric fi eld refl ection coeffi cient for light refl ected at the output 
partial mirror back into the laser cavity. The constant Kr is the electric fi eld refl ection 
coeffi cient for light refl ected at the 100% mirror back into the laser cavity. Kto, Kro and 
Kr are, in general, complex, indicating that there is a phase shift of the electric fi eld 
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606 Chapter  13  Laplace System Analysis

during refl ection and transmission. The loop transfer function is (using the defi nition 
developed based on the sign convention in Figure 13.19)

 T( ) .( )s K K K K eF ro R r
L c s= − − 2 /

Its value is −1 when

 K K K KF ro R r = 1

and 

 e L c s− =( )2 1/

or, equivalently,

 s j n
c

L
j

c

L
n= − ⎛

⎝
⎞
⎠ = −2

2
�

�
, n any integer,

where the quantity c/2L is the round-trip travel time for the propagating light wave. 
These are values of s on the � axis at harmonics of a fundamental radian frequency 
�c/L. Since this is the fundamental frequency it is also the spacing between frequen-
cies, which is conventionally called the  axial mode spacing ��ax.

When a laser is fi rst turned on the medium is pumped and a light beam starts 
through spontaneous emission. It grows in intensity because, at fi rst, the magnitude 
of the round-trip gain is greater than one ( K K K KF ro R r > 1). But, as it grows, it 
extracts energy from the pumped medium, and that reduces the gains KF and KR. An 
equilibrium is reached when the beam strength is exactly the right magnitude to keep 
the loop transfer function magnitude K K K KF ro R r  at exactly one. The pumping and 
light-amplifi cation mechanisms in a laser together form a self-limiting process that 
stabilizes at a loop transfer function magnitude of one. So, as long as there is enough 
pumping power and the mirrors are refl ective enough to achieve a loop transfer function 
magnitude of one at some very low output power, the laser will oscillate stably.

The  Root-Locus Method
A very common situation in feedback system analysis is a system for which the 
forward-path gain H1(s) contains a “gain” constant K that can be adjusted. That is, 

 
H ( )

P ( )

Q ( )
.1

1

1
s K

s

s
=

The adjustable gain parameter K (conventionally taken to be non-negative) has a strong 
effect on the system’s dynamics. The overall system transfer function is

 H( )
H ( )

H ( )H ( )
s

s

s s
=

+
1

1 21

and the loop transfer function is

 T( ) H ( )H ( ).s s s= 1 2

The poles of H(s) are the zeros of 1 + T(s). The loop transfer function, can be written 
in the form of K times a numerator divided by a denominator

 T( )
P ( )

Q ( )

P ( )

Q ( )

P( )

Q( )
s K

s

s

s

s
K

s

s
= =1

1

2

2
 (13.5)
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so the poles of H(s) occur where 

 
1 0+ =K

s

s

P( )

Q( )  

which can be expressed in the two alternate forms,

 Q( ) P( )s K s+ = 0  (13.6)

and

 
Q( )

P( ) .
s

K
s+ = 0  (13.7)

From (13.5), we see that if T(s) is proper (Q(s) is of higher order than P(s)) the zeros 
of Q(s) constitute all the poles of T(s) and the zeros of P(s) are all fi nite zeros of T(s) 
but, because the order of P(s) is less than the order of Q(s), there are also one or more 
zeros of T(s) at infi nity.

The full range of possible adjustment of K is from zero to infi nity. First let K 
approach zero. In that limit, from (13.6), the zeros of 1 + T(s), which are the poles of 
H(s), are the zeros of Q(s) and the poles of H(s) are therefore the poles of T(s) because 
T(s) = K P(s)/Q(s). Now consider the opposite case, K approaching infi nity. In that 
limit, from (13.7), the zeros of 1 + T(s) are the zeros of P(s) and the poles of H(s) are 
the zeros of T(s) (including any zeros at infi nity). So the loop transfer function poles 
and zeros are very important in the analysis of the feedback system.

As the gain factor K moves from zero to infi nity, the poles of the feedback system 
move from the poles of the loop transfer function to the zeros of the loop transfer 
function (some of which may be at infi nity). A  root-locus plot is a plot of the locations 
of the feedback-system poles as the gain factor K is varied from zero to infi nity. The 
name “root locus” comes from the location (locus) of a root of 1 + T(s) as the gain 
factor K is varied.

We will fi rst examine two simple examples of the root-locus method and then 
establish some general rules for drawing the root locus of any system. Consider fi rst a 
system whose forward-path gain is 

 H ( )
( )( )

1
1 2

s
K

s s
=

+ +

and whose feedback-path gain is H2(s) = 1. Then 

 T( )
( )( )

s
K

s s
=

+ +1 2

and the root-locus plot begins at s = –1 and s = –2, the poles of T(s). All the zeros of 
T(s) are at infi nity and those are the zeros that the root locus approaches as the gain 
factor K is increased (Figure 13.26).

The roots of 1 + T(s) are the roots of 

 ( )( )s s K s s K+ + + = + + + =1 2 3 2 02

and, using the quadratic formula, the roots are at ( )− ± −3 1 4 2K / . For K = 0 we get 
roots at s = –1 and s = –2, the poles of T(s). For K = 1/4 we get a repeated root at –3/2. 
For K > 1/4 we get two complex-conjugate roots whose imaginary parts go to plus and 

 13.4 System Connections 607

rob80687_ch13_586-640.indd   607rob80687_ch13_586-640.indd   607 12/24/10   7:39:37 PM12/24/10   7:39:37 PM



608 Chapter  13  Laplace System Analysis

minus infi nity as K increases but whose real parts stay at –3/2. Since this root locus 
extends to infi nity in the imaginary dimension with a real part that always places the 
roots in the left half-plane, this feedback system is stable for any value of K. 

Now add one pole to the forward-path transfer function making it

 H ( )
( )( )( )

.1
1 2 3

s
K

s s s
=

+ + +

The new root locus is the locus of solutions to the equation s3 + 6s2 + 11s + 6 + K = 0 
(Figure 13.27).

At or above the value of K for which two branches of the root locus cross the � axis, 
this system is unstable. So this system, which is open-loop stable, can be made unstable 
by using feedback. The poles are at the roots of s3 + 6s2 + 11s + 6 + K = 0. It is possible 
to fi nd a general solution for a cubic equation of this type, but it is very tedious. It is 
much easier to generate multiple values for K and solve for the roots numerically to 
fi nd the value of K that causes the poles of H(s) to move into the right half-plane.

In Figure 13.28 we can see that K = 60 puts two poles exactly on the � axis. So any 
value of K greater than or equal to 60 will cause this feedback system to be unstable.

Figure 13.28
Roots of s3 + 6s2 + 11s + 6 + K = 0 for several values of K
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Figure 13.29 illustrates some root-locus plots for different numbers and different 
locations of the poles and zeros of T(s). There are several  rules for plotting a root locus. 
These rules come from rules of algebra derived by mathematicians about the locations 
of the roots of polynomial equations.

 1. The number of branches in a root locus is the greater of the degree of the 
numerator polynomial and the degree of the denominator polynomial of T(s).

 2. Each root-locus branch begins on a pole of T(s) and terminates on a zero of T(s).

 3. Any region of the real axis for which the sum of the number of real poles and/or 
real zeros lying to its right on the real axis is odd, is a part of the root locus and 
all other regions of the real axis are not part of the root locus. The regions that 
are part of the root locus are called “allowed” regions.

 4. The root locus is symmetrical about the real axis.

 5. If the number of fi nite poles of T(s) exceeds the number of fi nite zeros of T(s) 
by an integer m, then m branches of the root locus terminate on zeros of T(s) 
that lie at infi nity. Each of these branches approaches a straight-line asymptote 
and the angles of these asymptotes are (2k + 1)�/m, k = 0, 1, �m – 1, with 
respect to the positive real axis. These asymptotes intersect on the real axis at 
the location

 � = −( )∑ ∑1

m
finite poles finite zeros

  called the  centroid of the root locus. (These are sums of all fi nite poles and all 
fi nite zeros, not just the ones on the real axis.)

 6. The breakaway or break-in points where the root locus branches intersect occur 
where

 d

ds s

1
0

T( )
.

⎛
⎝⎜

⎞
⎠⎟

=

Figure 13.29
Example root-locus plots 
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610 Chapter  13  Laplace System Analysis

EXAMPLE 13.2

Root locus 1

 Draw a root locus for a system whose loop transfer function is 

 T( )
( )( )

( )( )( )
s

s s

s s s
= + +

+ + +
4 5

1 2 3

The thinking steps in fi guring out where the root-locus branches go are the following.

 1. T(s) has poles at � = –1, � = –2 and � = –3 and zeros at � = – 4, � = –5 and s → ∞. 
 2. The number of root-locus branches is 3 (Rule 1).
 3. The allowed regions on the real axis are in the ranges –2 < � < –1, – 4 < � < –3 and � < –5 

(Figure 13.30) (Rule 3). 

Figure 13.31
Initial stage of drawing a root locus
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Figure 13.30
Allowed regions on the real axis
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 4. The root-locus branches must begin at � = –1, � = –2 and � = –3 (Rule 2).
 5. Two root-locus branches must terminate on � = –4 and � = –5 and the third branch must 

terminate on the zero at infi nity (Rule 2).
 6. The two root-locus branches beginning at � = –1 and � = –2 initially move toward each 

other because they must stay in an allowed region (Rule 3). When they intersect they must 
both become complex and must be complex conjugates of each other (Rule 4).

 7. The third root-locus branch beginning at � = –3 must move to the left toward the zero at 
� = – 4 (Rule 3). This branch cannot go anywhere else and, at the same time, preserve 
the symmetry about the real axis. So this branch simply terminates on the zero at � = –4 
(Rule 2) (Figure 13.31). 

 8. Now we know that the two other root-locus branches must terminate on the zero at � = –5 
and the zero at s → ∞. They are already complex. Therefore they have to move to the left and 
back down to the � axis and then one must go to the right to terminate on the zero at � = –5 
while the other one moves to the left on the real axis approaching negative infi nity (Rule 2). 

 9. There are three fi nite poles and two fi nite zeros. That means there is only one root-
locus branch going to a zero at infi nity, as we have already seen. The angle that branch 
approaches should be � radians, the negative real axis (Rule 5). This agrees with the 
previous conclusion (number 8).
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10. The point at which the two branches break out of the real axis and the point at which the two 
branches break back into the real axis must both occur where (d/ds)(1/ T(s)) = 0 (Rule 6).

 d

ds T s

d

ds

s s s

s s

1 1 2 3

4 5( )

( )( )( )

( )( )
⎛
⎝⎜

⎞
⎠⎟

= + + +
+ +

⎡
⎣⎢

⎤
⎦⎦⎥

= 0

Differentiating and equating to zero, we get s4 + 18s3 + 103s2 + 228s + 166 = 0 . The roots are at 
s = –9.47, s = –4.34, s = –2.69 and s = –1.50. So the breakout point is at � = –1.50 and the break-
in point is at � = –9.47. The root locus never moves into the right half-plane, so this system is 
stable for any non-negative value of the gain factor K (Figure 13.32). 

 (The other two solutions of s4 + 18s3 + 103s2 + 228s + 166 = 0, s = – 4.34 and s = –2.69, are 
the breakout and break-in points for the so-called  complementary root locus. The complemen-
tary root locus is the locus of the poles of H(s) as K goes from zero to negative infi nity.)

EXAMPLE 13.3

Root locus 2

Draw a root locus for a system whose forward path (plant) is the system of Figure 13.33 with 
a2 = 1, a1 = –2, a0 = 2, b2 = 0, b1 = 1 and b0 = 0, and whose feedback path (sensor) is the system 
of Figure 13.33 with a2 = 1, a1 = 2, a0 = 0, b2 = 1, b1 = 1, b0 = 0 and K = 1.

Figure 13.32
Completed root locus
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Figure 13.33
A second-order system with a gain factor K
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612 Chapter  13  Laplace System Analysis

 The forward-path transfer function H1(s) and the feedback-path transfer function H2(s) are 

 H ( )1 2 2 2
s

Ks

s s
=

− +
 and H ( ) .2

2

2 2

1

2
s

s s

s s

s

s
= +

+
= +

+

 The loop transfer function is 

 T( ) H ( )H ( )
( )

( )( )
.s s s

Ks s

s s s
= = +

− + +1 2 2
1

2 2 2

The poles of T are at s = 1 ± j and s = –2. The zeros are at s = 0, s = –1 and s → ∞. Since H1(s) 
has poles in the right half-plane, the forward-path system is unstable.

1. The root locus has three branches (Rule 1). 
2. The allowed regions on the real axis are –1 < � < 0 and � < –2 (Rule 3). 
3. The root locus begins on the poles of T(s). So the branch that begins at s = –2 can only go 

to the left and remain in an allowed region on the real axis. It can never leave the real axis 
because of symmetry requirements (Rule 4). Therefore, this branch terminates on the zero 
at infi nity.

4. The other two branches begin on complex conjugate poles at s = 1 ± j. They must 
terminate on the remaining two zeros at s = 0 and s = –2. To reach these zeros and, at the 
same time preserve symmetry about the real axis (Rule 4), they must migrate to the left 
and down into the allowed region, –1 < � < 0.

5. The break-in point can be found be setting (d/ds)(1/ T(s)) = 0. The solution gives us a 
break-in point at s = – 0.4652 (Figure 13.34).

In this example, the overall feedback system starts out unstable at a low K value, but as K is 
increased the poles that were initially in the right half-plane migrate into the left half-plane. So 
if K is large enough, the overall feedback system becomes stable, even though the forward-path 
system is unstable.

 Tracking Errors in Unity-Gain Feedback Systems
A very common type of feedback system is one in which the purpose of the system is 
to make the output signal track the input signal using unity-gain feedback, (H2(s) = 1) 
(Figure 13.35).

Figure 13.35
A unity-gain feedback system

H1(s)X(s) Y(s)
E(s)�

�
�

Figure 13.34
Complete root locus
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σ
-3

-3

3

This type of system is called unity-gain because the output signal is always com-
pared directly with the input signal and, if there is any difference (error signal), that 
is amplifi ed by the forward-path gain of the system in an attempt to bring the output 
signal closer to the input signal. If the forward-path gain of the system is large, that 
forces the error signal to be small, making the output and input signals closer together. 
Whether or not the error signal can be forced to zero depends on the forward-path 
transfer function H1(s) and the type of excitation.

It is natural to wonder at this point what the purpose is of a system whose output 
signal equals its input signal. What have we gained? If the system is an electronic 
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amplifi er and the signals are voltages, we have a voltage gain of one, but the input im-
pedance could be very high and the response voltage could drive a very low impedance 
so that the actual power, in watts, delivered by the output signal is much greater than 
the actual power supplied by the input signal. In other systems the input signal could be 
a voltage set by a low-power amplifi er or a potentiometer and the output signal could 
be a voltage indicating the position of some large mechanical device like a crane, an 
artillery piece, an astronomical telescope, and so on. 

Now we will mathematically determine the nature of the  steady-state error. The 
term steady-state means the behavior as time approaches infi nity. The error signal is

 E( ) X( ) Y( ) X( ) H ( )E( ).s s s s s s= − = − 1

Solving for E(s),

 E( )
X( )

H ( )
.s

s

s
=

+1 1

We can fi nd the steady-state value of the error signal using the  fi nal-value theorem

 lim e( ) lim E( ) lim
X( )

H ( )
.

t s s
t s s s

s

s→∞ → →
= =

+0 0 11

If the input signal is a step of the form, x(t) = Au(t), then X(s) = A/s and 

 lim e( ) lim
H ( )t s

t
A

s→∞ →
=

+0 11

and the steady-state error is zero if 

 lim
H ( )s s→ +0 1

1

1

is zero. If H1(s) is in the familiar form of a ratio of polynomials in s

 H ( )1
1

1
2

2
1 0

1
1s

b s b s b s b s b

a s a s
N

N
N

N

D
D

D
D= + + + +

+ +
−

−

−
−

�
�aa s a s a2

2
1 0+ +

,  (13.8)

then 

 
lim e( ) lim
t s N

N
N

Nt
b s b s b s b s b→∞ → −

−=
+ + + + +0 1

1
2

2
1

1

1
� 00

1
1

2
2

1 0

0

0 0

a s a s a s a s a

a

a b

D
D

D
D+ + + +

=
+

−
− �

and, if a0 = 0 and b0 ≠ 0, the steady-state error is zero. If a0 = 0, then H1(s) can be 
expressed in the form,

 H ( )
(

1
1

1
2

2
1 0

1
1

s
b s b s b s b s b

s a s a s
N

N
N

N

D
D

D
D= + + + +

+
−

−

−
−

�
−− + +2

2 1�a s a )

and it is immediately apparent that H1(s) has a pole at s = 0. So we can summarize by 
saying that if a  stable unity-gain feedback system has a forward-path transfer function 
with a pole at s = 0, the steady-state error for a step excitation is zero. If there is no pole 
at s = 0, the steady-state error is a0 /(a0 + b0) and the larger b0 is in comparison with a0, 
the smaller the steady-state error. This makes sense from another point of view because 
if the forward-path gain is of the form (13.8) the feedback-system, low-frequency gain 
is b0 /(a0 + b0), which approaches one for b0 >> a0 indicating that the input and output 
signals approach the same value.
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614 Chapter  13  Laplace System Analysis

A unity-gain feedback system with a forward-path transfer function H1(s) that has 
no poles at s = 0 is called a  type 0 system. If it has one pole at s = 0, the system is a  type 1 
system. In general any unity-gain feedback system is a  type n system where n is the 
number of poles at s = 0 in H1(s). So, summarizing using the new terminology, 

 1. A stable type 0 system has a fi nite steady-state error for step excitation.
 2. A stable type n system, n ≥ 1, has a zero steady-state error for step excitation.

Figure 13.36 illustrates typical  steady-state responses to step excitation for stable 
type 0 and type 1 systems.

Figure 13.36
Type 0 and type 1 system responses to a step

Type 0 system

y(t)

x(t)

t

h�1(t)

Type 1 system

t

y(t)

x(t)

h�1(t)

Now we will consider a  ramp excitation x(t) = A ramp(t) = At u(t) whose Laplace 
transform is X(s) = A/s2. The steady-state error is

 lim e( ) lim
[ H ( )]

.
t s

t
A

s s→∞ →
=

+0 11

Again, if H1(s) is a ratio of polynomials in s,
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−
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⎣
⎢

⎤

⎦
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.

This limit depends on the values of the a’s and b’s. If a0 ≠ 0, the steady-state error is 
infi nite. If a0 = 0 and b0 ≠ 0, the limit is a1/b0 indicating that the steady-state error is 
a nonzero constant. If a0 = 0 and a1 = 0 and b0 ≠ 0, the steady-state error is zero. The 
condition, a0 = 0 and a1 = 0, means there is a repeated pole at s = 0 in the forward-
path transfer function. So for a stable type 2 system, the steady-state error under ramp 
excitation is zero. Summarizing, 

 1. A stable type 0 system has an infi nite steady-state error for ramp excitation.
 2. A stable type 1 system has a fi nite steady-state error for ramp excitation.
 3. A stable type n system, n ≥ 2, has a zero steady-state error for ramp excitation.

Figure 13.37 illustrates typical steady-state responses to ramp excitation for stable type 0, 
type 1 and type 2 systems. These results can be extrapolated to higher order excitations, 
(At 2 u(t), At 3 u(t), etc). When the highest power of s in the denominator of the transform 
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of the excitation is the same as, or lower than, the type number (0, 1, 2, etc.) of the 
system, and the system is stable, the steady state error is zero. This result was illustrated 
with forward-path transfer functions in the form of a ratio of polynomials but the result 
can be shown to be true for any form of transfer function based only on the number of 
poles at s = 0. It may seem that more poles in the forward-path transfer function at s = 0 
are generally desirable because they reduce the steady-state error in the overall feedback 
system. But, generally speaking, the more poles in the forward-path transfer function, the 
harder it is to make a feedback system stable. So we may trade one problem for another 
by putting poles at s = 0 in the forward-path transfer function.

EXAMPLE 13.4

Instability caused by adding a pole at zero in the  forward  transfer function

Let the forward transfer function of a unity-gain feedback system be H ( )
( )

1
100

4
s

s s
=

+
. Then the 

overall transfer function is

 H( )s
s s

=
+ +

100

4 1002

with poles at s = –2 ± j9.798. Both poles are in the left half-plane so the system is stable. Now 
add a pole at zero to H1(s) and reevaluate the stability of the system.
 The new H1(s) is

 H ( )
( )

1 2
100

4
s

s s
=

+

and the new overall transfer function is

 
H( )s

s s
=

+ +
100

4 1003 2

with poles at s = –6.4235 and s = 1.212 ± j3.755. Two of the poles are in the right half-plane and 
the overall system is unstable.

13.5  SYSTEM ANALYSIS  USING  MATLAB
The  MATLAB  system object was introduced in Chapter 6. The syntax for creating a 
system object with tf is 

sys = tf(num,den).

Figure 13.37
Type 0, 1 and 2 system responses to a ramp
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616 Chapter  13  Laplace System Analysis

The syntax for creating a system object with zpk is

sys = zpk(z,p,k),

The real power of the control-system toolbox comes in  interconnecting systems. 
Suppose we want the overall  transfer function H(s) = H1(s)H2(s) of the two systems

 H1

2

5 4 3 2

4

4 7 15 31 75
( )s

s

s s s s s
= +

+ + + + +
and

 H2 20
4

3 10
( )

( )( )
s

s

s s
= +

+ +

in a cascade connection. In MATLAB.

»num = [1 0 4];
»den = [1 4 7 15 31 75];
»H1 = tf(num,den);

»z = [–4];
»p = [–3 –10];
»k = 20
»H2 = zpk(z,p,k);

»Hc = H1*H2 ;
»Hc
Zero/pole/gain:

20 (s+4) (s^2 + 4)
------------------------------------------------------------
(s+3.081) (s+3) (s+10) (s^2 + 2.901s + 5.45) (s^2 - 1.982s + 
4.467)
»tf(Hc)

Transfer function:
20 s^3 + 80 s^2 + 80 s + 320

-----------------------------------------------------------
s^7 + 17 s^6 + 89 s^5 + 226 s^4 + 436 s^3 + 928 s^2 + 1905 s + 
2250

If we want to know what the transfer function of these two systems in parallel would be,

»Hp = H1 + H2 ;
»Hp

Zero/pole/gain:
20 (s+4.023) (s+3.077) (s^2 + 2.881s + 5.486) (s^2 - 1.982s + 
4.505)
-----------------------------------------------------------
(s+3.081) (s+3) (s+10) (s^2 + 2.901s + 5.45) (s^2 - 1.982s + 
4.467)
»tf(Hp)
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Transfer function:
20 s^6 + 160 s^5 + 461 s^4 + 873 s^3 + 1854 s^2 + 4032 s + 
6120
-----------------------------------------------------------
s^7 + 17 s^6 + 89 s^5 + 226 s^4 + 436 s^3 + 928 s^2 + 1905 s 
+ 2250

There is also a command feedback for forming the overall transfer function of a 
feedback system.

>> Hf = feedback(H1,H2) ;
>> Hf
Zero/pole/gain:

(s+3) (s+10) (s^2 + 4)
-----------------------------------------------------------
(s+9.973) (s^2 + 6.465s + 10.69) (s^2 + 2.587s + 5.163) (s^2 - 
2.025s + 4.669)

Sometimes, when manipulating system objects, the result will not be in the ideal 
form. It may have a pole and zero at the same location. Although there is nothing 
mathematically wrong with this, it is generally better to cancel that pole and zero to 
simplify the transfer function. This can be done using the command   minreal (for 
minimum realization). 

Once we have a system described, we can graph its step response with step, its im-
pulse response with impulse and a Bode diagram of its frequency response with bode. 
We can also draw its pole-zero diagram using the MATLAB command   pzmap. MATLAB 
has a function called   freqresp that does frequency response graphs. The syntax is

H = freqresp(sys,w)

where sys is the MATLAB-system object, w is a vector of radian frequencies (�) and 
H is the frequency response of the system at those radian frequencies. The MATLAB 
control toolbox also has a command for plotting the root-locus of a system loop transfer 
function. The syntax is

  rlocus(sys)

where sys is a MATLAB system object. There are many other useful commands in 
the control toolbox, which can be examined by typing help control.

13.6  SYSTEM RESPONSES  TO STANDARD SIGNALS
We have seen in previous signal and system analysis that an LTI system is completely 
characterized by its impulse response. In testing real systems, the application of an im-
pulse to fi nd the system’s impulse response is not practical. First, a true impulse can-
not be generated and second, even if we could generate a true impulse, since it has an 
unbounded amplitude it would inevitably drive a real system into a nonlinear mode of 
operation. We could generate an approximation to the true unit impulse in the form of a 
very short-duration and very tall pulse of unit area. Its time duration should be so small 
that making it any smaller would not signifi cantly change any signals in the system. Al-
though this type of test is possible, a very tall pulse may drive a system into nonlinearity. 
It is much easier to generate a good approximation to a step than to an impulse, and the 
step amplitude can be small enough so as to not cause the system to go nonlinear. 

Sinusoids are also easy to generate and are confi ned to varying between fi nite 
bounds that can be small enough that the sinusoid will not overdrive the system and 
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618 Chapter  13  Laplace System Analysis

force it into nonlinearity. The frequency of the sinusoid can be varied to determine 
the frequency response of the system. Since sinusoids are very closely related to 
complex exponentials, this type of testing can directly yield information about the 
system characteristics.

 UNIT-STEP RESPONSE

Let the transfer function of an LTI system be of the form

 H( )
N ( )

D ( )
H

H
s

s

s
=

where NH(s) is of a lower degree in s than DH(s). Then the Laplace transform of the 
zero-state response Y(s) to X(s) is

 Y( )
N ( )

D ( )
X( ).H

H
s

s

s
s=

Let x(t) be a unit step. Then the Laplace transform of the zero-state response is

 Y( ) H ( )
N ( )

D ( )
.H

H
s s

s

s s
= =−1

Using the partial fraction expansion technique, this can be separated into two terms

 Y( )
N ( )

D ( )

H( )
.H

H
s

s

s s
= +1 0

If the system is BIBO stable, the roots of DH(s) are all in the open left half-plane and 
the  inverse Laplace transform of NH1(s)/DH(s) is called the  natural response or the 
 transient response because it decays to zero as time t approaches infi nity. The  forced 
response of the system to a unit step is the inverse Laplace transform of H(0)/s, which 
is H(0)u(t). The expression

 Y( )
N ( )

D ( )

H( )H

H
s

s

s s
= +1 0

has two terms. The fi rst term has poles that are identical to the system poles and the 
second term has a pole at the same location as the Laplace transform of the unit step. 

This result can be generalized to an arbitrary excitation. If the Laplace transform 
of the excitation is

 X( )
N ( )

D ( )
s

s

s
x

x
=

then the Laplace transform of the system response is

 
Y( )

N ( )

D ( )
X( )

N ( )

D ( )

N ( )

D ( )

N ( )H

H

H

H

Hs
s

s
s

s

s

s

s

sx

x
= = = 1

DD ( )

N ( )

D ( )H s

s

s
x

x

same poles
as system

same
��� ��

+ 1

ppoles
as excitation

���
.

 Now let’s examine the unit-step response of some  simple systems. The simplest 
dynamic system is a fi rst-order system whose transfer function is of the form

 H( )s
A

s p

Ap

s p
=

−
= −

−1 /
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where A is the low-frequency transfer function of the system and p is the pole location 
in the s plane. The Laplace transform of the step response is

 Y( ) H ( )
( )

.s s
A

s p s

A p

s p

A

s

A

s

A

s p
= =

−
=

−
+ = −

−−1
1 1/

/

/

Inverse Laplace transforming, y(t) = A(1 – ept)u(t). If p is positive, the system is 
unstable and the magnitude of the response to a unit step increases exponentially with 
time (Figure 13.38).

Unstable Systems Stable Systems
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1 1

y(t) = h-1(t)

Figure 13.38
Responses of a fi rst-order system to a unit-step and the corresponding 
pole-zero diagrams

The speed of the exponential increase depends on the magnitude of p, being greater 
for a larger magnitude of p. If p is negative the system is stable and the response 
approaches a constant A with time. The speed of the approach to A depends on the magni-
tude of p, being greater for a larger magnitude of p. The negative reciprocal of p is called 
the  time constant � of the system, � = –1/p and, for a stable system, the response to a unit 
step moves 63.2% of the distance to the fi nal value in a time equal to one time constant.

Now consider a second-order system whose transfer function is of the form,

 �( ) .s
A

s s
n

n n
n=

+ +
>�

�� �
�

2

2 22
0,

This form of a second-order system transfer function has three parameters, the 
low-frequency gain A, the damping ratio � and the natural radian frequency �n. 
The form of the unit-step response depends on these parameter values. The Laplace 
transform of the system unit-step response is

 H ( )
( ) [ ( )][

− =
+ +

=
+ + −

1

2

2 2

2

22 1
s

A

s s s

A

s s

n

n n

n

n

�

�� �

�

� � � ss n+ − −� � �( )]
.

2 1

This can be expanded in partial fractions (if � ≠ ±1) as
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( )

( )

(
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− + −
+ + −

+
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2 2

2
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2 1 1
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−
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⎡

⎣

⎢
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⎢
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⎥

)

( )s n
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620 Chapter  13  Laplace System Analysis

and the time-domain response is then

 h ( )
( )

( ) ( )
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− + − − − −
=

− + −
+1
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2 2

12 2

2 1 1
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⎦
⎥
⎥

For the special case of � ≠ ±1 the system unit-step response is

 H ( )
( )

− =
±1

2

2s
A

s s
n

n

�

�

the two poles are identical, the partial fraction expansion is
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and the time-domain response is
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 It is diffi cult, just by examining the mathematical functional form of the unit-step 
response, to immediately determine what it will look like for an arbitrary choice of 
parameters. To explore the effect of the parameters, let’s fi rst set A and �n constant and 
examine the effect of the damping ratio �. Let A = 1 and let �n = 1. Then the unit-step 
response and the corresponding pole-zero diagrams are as illustrated in Figure 13.39 
for six choices of �.

Figure 13.39
Second-order system responses to a unit step and the corresponding pole-zero diagrams
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We can see why these different types of behavior occur if we examine the unit-step 
response

 h ( )
( )

( ) ( )
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− + − − − −
=

− + −
+1

1

2 2
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2 1 1
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 (13.9)

and, in particular, the exponents of e, − ± −� � �n t( )2 1 . The signs of the real parts of 
these exponents determine whether the response grows or decays with time t > 0. For 
times t < 0 the response is zero because of the unit step u(t).

Case 1: � < 0 

If � < 0, then the exponent of e in both terms in (13.9) has a positive real part 
for positive time and the step response therefore grows with time and the system 
is unstable. The exact form of the unit-step response depends on the value of �. 
It is a simple increasing exponential for � < –1 and an exponentially growing 
oscillation for –1 < � < 0. But either way the system is unstable.

Case 2: � > 0
If � > 0, then the exponent of e in both terms in (13.9) has a negative real part for 
positive time and the step response therefore decays with time and the system is 
stable.

Case 2a: � > 1
If � > 1, then �2 –1 > 0, and the coeffi cients of t in (13.9) − ± −� � �n t( )2 1  are both 
negative real numbers and the unit-step response is in the form of a constant plus the 
sum of two decaying exponentials. This case � > 1 is called the  overdamped case.

Case 2b: 0 < � < 1
If 0 < � < 1, then �2 –1 < 0, and the coeffi cients of t in(13.9) − ± −� � �n t( )2 1  
are both complex numbers in a complex-conjugate pair with negative real 
parts, and the unit-step response is in the form of a constant plus the sum of 
two sinusoids multiplied by a decaying exponential. Even though the response 
overshoots its fi nal value, it still settles to a constant value and is therefore the 
response of a stable system. This case 0 < � < 1 is called the  underdamped case.

The dividing line between the overdamped and underdamped cases is the case � = 1. 
This condition is called  critical damping.

Now let’s examine the effect of changing �n while holding the other parameters 
constant. Let A = 1 and � = 0.5. The step response is illustrated in Figure 13.40 for 3 
values of �n.

Since �n is the natural radian frequency, it is logical that it would affect the ringing 
rate of the step response.

The response of any LTI system to a unit step can be found using the MATLAB 
control toolbox command step.

 SINUSOID RESPONSE

Now let’s examine the response of a system to a “ causal” sinusoid (one applied to the 
system at time t = 0). Again let the system transfer function be of the form

 H( )
N ( )

D ( )
.H

H
s

s

s
=
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622 Chapter  13  Laplace System Analysis

Then the Laplace transform of the zero-state response to x(t) = cos(�0t) u(t), would be
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+2
0
2�

This can be separated into partial fractions in the form
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j s j j s j= + − + +1 0 0 0 01

2

� � � �

ss2
0
2+ �

 Y( )
N ( )

D ( )
[H( ) H ( )]H

H

*s
s

s

s

s
j j

j

s
= +

+
+ +1

2
0
2 0 0

01

2 �
� �

�
22

0
2 0 0+

−
⎧
⎨
⎩

⎫
⎬
⎭�

� �[H( ) H ( )]*j j

 Y( )
N ( )

D ( )
Re(H( )) Im(H( ))H

H
s

s

s
j

s

s
j= +

+
−1

0 2
0
2 0

0�
�

�
�

ss2
0
2+ �

.

The inverse Laplace transform of the term Re(H( j�0))( s/(s2 	 �0
2) is the product of a 

unit step and a cosine at �0 with an amplitude of Re(H(j�0)), and the inverse Laplace 
transform of the term Im(H( j�0))�0/(s2 	 �0

2) is the product of a unit step and a sine 
at �0 with an amplitude of Im(H( j�0)). That is,

 y( )
N ( )

D ( )
[Re(H( ))cos( ) IH

H
t

s

s
j t= ⎛

⎝⎜
⎞
⎠⎟

+ −−L 1 1
0 0� � mm(H( ))sin( )]u( )j t t� �0 0

or, using Re(A)cos(�0t) 
 Im(A)sin(�0t) �|A|cos(�0t 	 �A),

 y( )
N ( )

D ( )
H( ) cos( H( )H

H
t

s

s
j t j= ⎛

⎝⎜
⎞
⎠⎟

+ +−L 1 1
0 0 0� � �� )) u( ).t

If the system is stable, the roots of DH(s) are all in the open left half-plane and the 
inverse Laplace transform of NH1(s)/DH(s) (the transient response) decays to zero as 
time t approaches infi nity. Therefore the forced response that persists after the transient 

Figure 13.40
Second-order system response for three different values of �n and 
the corresponding pole-zero plots

1

t

ωn = 1

ωn = 1

ωn = 0.5

ωn = 0.5 

ωn = 0.2

ωn = 0.2
σ

ω

[s]

h-1(t)
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response has died away is a causal sinusoid of the same frequency as the excitation and 
with an amplitude and phase determined by the transfer function evaluated at s � j�0. 
The forced response is exactly the same as the response obtained by using Fourier 
methods because the Fourier methods assume that the excitation is a true sinusoid 
(applied at time t  −�), not a causal sinusoid and therefore there is no transient 
response in the solution.

EXAMPLE 13.5

Zero-state response of a system to a  causal cosine

Find the total zero-state response of a system characterized by the transfer function

 H( )s
s

=
+
10

10

to a unit-amplitude causal cosine at a frequency of 2 Hz.
 The radian frequency �0 of the cosine is 4�. Therefore the Laplace transform of the 
response is

 Y( )
( )

s
s

s

s
=

+ +
10

10 42 2�

 Y( )
.

Re(H( ))
( )

Im(H( ))s
s

j
s

s
j= −

+
+

+
−0 388

10
4

4
42 2�

�
�

�00
2 24s + ( )�

and the time-domain response is

 y( )
.

H( ) cos( H( ))t
s

j t j= −
+

⎛
⎝⎜

⎞
⎠⎟ + +−L 1 0 388

10
4 4 4� � �� uu( )t

or

 y( ) . cos( ( ))t e
j

t jt= − +
+

− +
⎡

⎣
⎢

⎤−0 388
10

4 10
4 4 1010

�
� ��

⎦⎦
⎥ u( )t

or

 y( ) [ . . cos( . )]u( ).t e t tt= − + −−0 388 0 623 4 0 89910 �

The excitation and response are illustrated in Figure 13.41. Looking at the graph we see that 
the response appears to reach a stable amplitude in less than one second. This is reasonable 

Figure 13.41
Excitation and response of a fi rst-order system excited by a cosine 
applied at time t = 0

t

Excitation
Response

1 2

-1

1

 13.6 System Responses to Standard Signals 623
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624 Chapter  13  Laplace System Analysis

given that the transient response has a time constant of 1/10 of a second. After the response 
stabilizes, its amplitude is about 62% of the excitation amplitude and its phase is shifted so 
that it lags the excitation by about a 0.899 radian phase shift, which is equivalent to about a 
72 ms time delay.
 If we solve for the response of the system using Fourier methods, we write the frequency 
response from the transfer function as

 H( ) .j
j

�
�

=
+

10

10

If we make the excitation of the system a true cosine, it is x(t) � cos(4�t) and its CTFT is 
X( j�) � �[
(� 
 4�) 	 
(� 	 4�)]. Then the system response is

 Y( ) [ ( ) ( )]
( )

j
j j

� � 
 � � 
 � �
�

�

 � �

�
= − + +

+
= −

+
4 4

10

10
10

4

4 100

4

4 10
+ +

− +
⎡
⎣
⎢

⎤
⎦
⎥


 � �

�

( )

j

or

 Y( )
[ ( ) ( )] [ ( ) (

j
j

� �

 � � 
 � � � 
 � � 
 � �= − + + + + − −

10
10 4 4 4 4 4 ))]

.
16 1002� +

Inverse Fourier transforming, y(t) � 0.388 cos(4�t) 	 0.487 sin(4�t) or, using

 
Re( )cos( ) Im( )sin( ) cos( )A t A t A t A� � �0 0 0− = + �

y( ) .t = 0 6223 4 0 899cos( . ).�t −

This is exactly the same (except for the unit step) as the forced response of the previous solution, 
which was found using Laplace transforms.

13.7  STANDARD  REALIZATIONS  OF SYSTEMS
The process of system design, as opposed to system analysis, is to develop a desired 
transfer function for a class of excitations that yields a desired response or responses. 
Once we have found the desired transfer function, the next logical step is to actually 
build or perhaps simulate the system. The usual fi rst step in building or simulating 
a system is to form a block diagram that describes the interactions among all the 
signals in the system. This step is called realization, arising from the concept of 
making a real system instead of just a set of equations that describe its behavior. There 
are several standard types of system realization. We have already seen Direct Form II 
in Chapter 8. We will explore two more here.

 CASCADE REALIZATION

The second standard system realization is the cascade form. The numerator and 
denominator of the general transfer function form

 H( )
Y( )

X( )
s

s

s

b s

a s

b s b sk
k

k

M

k
k

k

N
M

M
M

M

= = = + +=

=

−
−∑

∑
0

0

1
1 ��
�

+ +
+ + + +

=
−

−
b s b

s a s a s a
aN

N
N N

1 0

1
1

1 0
1,  (13.10)
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where M ≤ N can be factored yielding a transfer function expression of the form

 H( )s A
s z

s p

s z

s p

s z

s p s p s p
M

M M M
= −

−
−
−

−
− − −+ +

1

1

2

2 1 2

1 1 1
� �

ss pN−
.

Any of the component fractions 
Y ( )

X ( )
k

k

k

k

s

s

s z

s p
= −

−
 or 

Y ( )

X ( )
k

k k

s

s s p
=

−
1

 represents a sub-

system that can be realized by writing the relationship as

 H ( ) ( )

H ( )
H ( )

k
k

s

k

s

s
s p

s z

k

k

=
−

−1

1

2���
��� ��   or H ( )k

k
s

s p
=

−
1

and realizing it as a Direct Form II system (Figure 13.42). Then the entire original 
system can be realized in cascade form (Figure 13.43). 

      H ( )k
k

k
s

s z

s p
= −

−               H ( )k
k

s
s p

=
−
1

Figure 13.42
Direct Form II  realization of a single subsystem in the cascade realization

+

+

zk

+ -

-pk -pk

Xk(s) Xk(s)Yk(s) Yk(s)
+ -

s-1 s-1

Figure 13.43
Overall cascade system realization

+

+

-z1 -z2-p1 -p2 -pN-1 -pN

Y(s)X(s)
+

+
+ + + + + +

- +
+ - + - + -

...

s-1 s-1 s-1 s-1

A problem sometimes arises with this type of cascade realization. Sometimes the 
fi rst-order subsystems have complex poles. This necessitates multiplication by complex 
numbers and that usually cannot be done in a system realization. In such cases, two 
subsystems with complex conjugate poles should be combined into one  second-order 
subsystem of the form

 H ( )k s
s b

s a s a
= +

+ +
0

2
1 0

which can always be realized with real coeffi cients (Figure 13.44).

 13.7 Standard Realizations of Systems 625
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626 Chapter  13  Laplace System Analysis

PARALLEL REALIZATION

The last standard realization of a system is the  parallel realization. This can be accom-
plished by expanding the standard transfer function form (13.10) in partial fractions 
of the form

 H( )s
K

s p

K

s p

K

s p
N

N
=

−
+

−
+ +

−
1

1

2

2
�

(Figure 13.45).

13.8 SUMMARY OF IMPORTANT POINTS
 1. Continuous-time systems can be described by differential equations, block 

diagrams or circuit diagrams in the time or frequency domain.

 2. A continuous-time LTI system is stable if all the poles of its transfer function lie 
in the open left half-plane.

 3. Marginally stable systems form a subset of unstable systems.

 4. The three most important types of system interconnections are the cascade 
connection, the parallel connection and the feedback connection.

 5. The unit step and the sinusoid are important practical signals for testing system 
characteristics.

 6. The Direct Form II, cascade and parallel realizations are important standard ways 
of realizing systems.

Figure 13.45
Overall parallel system realization

X(s) Y(s)

+

+
+

+

-

-p1

-p2

K1

K1

+ -

+ -

-pN

KN

s-1

s-1

s-1

... ......

Figure 13.44
A standard-form second-order subsystem

+

+

b0

+

+ -

+

a1

a0

X(s) Y(s)

s-1

s-1
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EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Transfer Functions

 1. For each circuit in Figure E.1 write the transfer function between the indicated 
excitation and indicated response. Express each transfer function in the standard form

 H( )s A
s b s b s b s b

s a s a

M
N

M

N
D

N= + + + + +
+ + +

−
−

−
−

1
1

2
2

1 0

1
1

2

�
� ss a s a2

1 0+ +
.

(a) Excitation vs(t)       Response vo(t)

R1 L

C R2vs(t) vo(t)

+

-

(b) Excitation is(t)       Response vo(t)

R1

R2

vo(t)is(t)
+

-

C1

C2

(c) Excitation vs(t)       Response i1(t)

 R1 C2

C1 R2
vs(t)

i1(t)

Figure E.1
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628 Chapter  13  Laplace System Analysis

Answers:

1
1

1 1 1 11

2

2 2

2

2 2 2 1 1 1 1 2 1

R

s s
R C

s s
R C R C R C R R C

+

+ + +⎛
⎝⎜

⎞
⎠⎟

+
CC

R

R LC
s s

R C
R
L

R R
R LC

R C

2

2

1 2

1

2 2 1

1

1

1
1

1

,

,
+ +⎛

⎝⎜
⎞
⎠⎟

+ +

−
11 2 2

2 2 1 1 1 2 1 2

1
1 1 1C

s s
R C R C R R C C

+ +⎛
⎝⎜

⎞
⎠⎟

+

  2. For each block diagram in Figure E.2 write the transfer function with x(t) as the 
input signal and y(t) as the output signal.

(a) 

x(t)

y(t)

+

+ -

+

8

2

∫

∫

∫

(b) 

x(t)

∫

∫
y(t) 

+

+ +

++

-4

-10

∫

-1

Figure E.2

Answers: 
1

8 2

1

4 103 2 3 2s s s

s

s s s+ +
− −

+ +
,

 Stability

  3. Evaluate the stability of the systems with each of these transfer functions.

(a) H( )s
s

= −
+
100

200
  (b) H( )s

s
=

−
80

4

(c) H( )
( )

s
s s

=
+
6

1
   (d) H( )s

s

s s
= −

+ +
15

4 42

(e) H( )s
s

s s
= −

+ +
3

10

4 292   (f ) H( )s
s

s s
= +

− +
3

4

4 29

2

2
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(g) H( )s
s

=
+
1

642    (h) H( )s
s s s

=
+ +

10

4 293 2

Answers: 3 stable, 5 unstable including 3 marginally stable

 Parallel,  Cascade and  Feedback Connections

  4. Find the overall transfer functions of the systems in Figure E.4 in the form of a 
single ratio of polynomials in s.

(a) 
10

s2 + 3s + 2
s2

s2 + 3s + 2
X(s) Y(s)

(b) 

s + 1

s2 + 2s + 13

1
s + 10

X(s) Y(s)

(c) s

s2 + s + 5
X(s) Y(s)

(d) 
20s

s2 + 200s + 290000

1

s + 400

X(s) Y(s)

Figure E.4

Answers: 20
400

600 370020 1 16 10
2

62

3 2 8

2s s

s s s

s+
+ + + ×

+
.

,
.55 11 5

12 33 1303 2

s

s s s

+
+ + +

.
,

 10
6 13 12 4 2 5

2

4 3 2 2

s

s s s s

s

s s+ + + + + +
,  

  5. In the feedback system in Figure E.5, fi nd the overall system transfer function for 
these values of forward-path gain K.

(a) K = 106   (b) K = 105    (c) K = 10 

(d) K = 1   (e) K = –1    (f ) K = –10

K

0.1

X(s) Y(s)

Figure E.5

  Answers: 5, –1.111, –∞, 0.909, 10, 10
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630 Chapter  13  Laplace System Analysis

  6. In the feedback system in Figure E.6, graph the response of the system to a unit 
step for the time interval  0 < t < 10, then write the expression for the overall 
system transfer function and draw a pole-zero diagram for these values of K.

(a) K = 20   (b) K = 10    (c) K = 1
(d) K = –1   (e) K = –10    (f ) K = –20

K

0.1
e-s

X(s) Y(s)

One-second
time delay

Figure E.6

Answers:

t
-1 10

h-1(t)
1

, 

σ -3 3

ω

-8π

8π

, 

h-1(t)
t-1 10

-32000
, 

σ -3 3

ω

-8π

8π

, 

s -3 3

ω

-8π

8π

, 

t -1 10

h-1(t)

-8000

8000

, 

σ-3 3

ω

-8p

8p

, 

t-1 10

h-1(t)

-100 , 

σ -3 3

ω

-8π

8π

, 

h-1(t)

t -1 10

10

, 

h-1(t)

t -1 10

-2 , 

σ -3 3

ω

-8π

8π

  7. For what range of values of K is the system in Figure E.7 stable? Graph the step 
responses for K = 0, K = 4 and K = 8.

Ks

X(s) Y(s)
1

s2 - 4s + 4

Figure E.7
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Answer: K > 4, 

t 
-1 4

h-1(t)

h-1(t)

h-1(t)

3000

K = 0 

t 
-1 4-0.5

0.5

K = 4 

t 
-1 4

0.25

K = 8 

  8. Graph the impulse response and the pole-zero diagram for the forward-path and 
the overall system in Figure E.8.

x(t) y(t)
+ -

100

s2+2s+26

10

s+20

Figure E.8

Answers: 

t
-0.5 4

h1(t)

-20

20

Forward Path

t
-0.5 8

h(t)

-30

30

Overall System

, 

[s]

σ

ω

-1

5

[s]

σ

ω
-5

0.0612

8.29

-8.29

-22.12

-20

H1(s)

H(s)

Root  Locus

  9. Draw the root locus for each of the systems that have these loop transfer 
functions and identify the transfer functions that are stable for all positive real 
values of K.

(a) T( )
( )( )

s
K

s s
=

+ +3 8

(b) T( )
( )( )

s
Ks

s s
=

+ +3 8

(c) T( )
( )( )

s
Ks

s s
=

+ +

2

3 8

(d) T( )
( )( )

s
K

s s s
=

+ + +1 4 82
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632 Chapter  13  Laplace System Analysis

Answers: Three stable for fi nite positive values of K and one unstable for some 
fi nite positive values of K.

�
�8 �3

� �

�

�
�3

� �

�

�
�8�3

� �

�

�

�

�

�

�

�1

, , ,

 Tracking Errors in Unity-Gain Feedback Systems

 10. Graph the unit step and ramp responses of unity-gain feedback systems with 
these forward-path transfer functions.

(a) H ( )1
100

10
s

s
=

+

(b) H ( )
( )

1
100

10
s

s s
=

+

(c) H ( )
( )

1 2

100

10
s

s s
=

+

(d) H ( )
( )( )

1
20

2 6
s

s s
=

+ +

Answers: 

2

t
2

h�2(t)

Unit ramp response

0.1

t
0.1

h�2(t)

Unit ramp response

1

t
1

h�1(t)

Unit step response

40

t
10

h�1(t)

�40

Unit step response

1

t
1

h�2(t)

Unit ramp response

20

t
10

h�2(t)

�5

�1

Unit ramp response

1

t
0.1

h�1(t)

Unit step response

1

t
2

h�1(t)

Unit step response

, , , ,

, , ,

  

 Response to Standard Signals

 11. Using the Laplace transform, fi nd and graph the time-domain response y(t) of the 
systems with these transfer functions to the causal sinusoid x(t) = A cos(10�t) u(t).

(a) H( )s
s

=
+
1

1
  (b) H( )

( )
s

s

s
= −

− +
2

2 162
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Answers: 

t 1

y(t)

-0.033333

0.033333

, 

t -1 5

y(t)

-10

5

 12. Find the responses of the systems with these transfer functions to a unit-step 
and a unit-amplitude, 1 Hz cosine applied at time t = 0. Also fi nd the responses 
to a true unit-amplitude, 1 Hz cosine using the CTFT and compare to the forced 
response of the total solution found using the Laplace transform.

(a) H( )s
s

= 1
   (b) H( )s

s

s
=

+ 1

(c) H( )s
s

s s
=

+ +2 2 40
  (d) H( )s

s s

s
= + +2

2

2 40

Answers: (Step responses) [1 + 2t + 20t2] u(t), ramp(t), 0.16e–t sin(6.245t) u(t), 
e–t u(t) 

 System Realization

 13. Draw cascade system diagrams of the systems with these transfer functions.

(a) H( )s
s

s
=

+ 1
  (b) H( )

( )( )
s

s

s s
= +

+ +
4

2 12

(c) H( )
( )

s
s s s

=
+ +
20

5 102
Answers:

+ - Y(s) X(s)

1
s

, 

+ - Y(s)X(s)

1
s

+

++ -
1
s2 12 4

, 

Y(s) 

1
s+

+ -

+

X(s)

1
s

1
s

20

10

5

 14. Draw parallel system diagrams of the systems with these transfer functions.

(a) H( )s
s s

= −
+ +

12

11 302   (b) H( )s
s

s s
=

+ +
2

12 32

2

2

Answers: 

+
+

+

+ -
1
s

X(s)

+ -
1
s

Y(s)

2

-32

8

8

4 , 

+

+
+

-
1
s

+ -
1
s

X(s)

Y(s)

12

-12

6

5
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634 Chapter  13  Laplace System Analysis

EXERCISES WITHOUT ANSWERS

Transfer Functions

 15. Find the s-domain transfer functions for the circuits in Figure E.15 and then draw 
block diagrams for them as systems with vi(s) as the excitation and vo(s) as the 
response.

R = 10 kΩ

L = 5 mH

R = 10 kΩ R = 10 kΩ

C = 1 μFC = 1 μF

C = 1 μF

vi(t)

+

−

vi(t)

+

−

+

−

vo(t)

+

−

vo(t)

R = 10 kΩ

L = 5 mH C = 1 μF

+

−

vi(t)

+

−

vo(t)

(a) (b)

(d)

R = 10 kΩ L = 5 mH

C = 1 μFvi(t)

+

−

+

−

vo(t)

(c)

Figure E.15

Stability

 16. Determine whether the systems with these transfer functions are stable, 
marginally stable or unstable.

(a) H( )
( )

s
s s

s
= +

+
2

82   (b) H( )
( )

s
s s

s
= −

+
2

82

(c) H( )s
s

s s
=

+ +

2

2 4 8
 (d) H( )s

s

s s
=

− +

2

2 4 8

(e) H( )s
s

s s s
=

+ +3 24 8

Parallel, Cascade and Feedback Connections

 17. Find the expression for the overall system transfer function of the system in 
Figure E.17. 
(a) Let � = 1. For what values of K is the system stable?
(b) Let � = –1. For what values of K is the system stable?
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(c) Let � = 10. For what values of K is the system stable?

K

s+10
X(s) Y(s)

β

Figure E.17

 18. Find the expression for the overall system transfer function of the system in 
Figure E.18. For what positive values of K is the system stable?

x(t) y(t) 
+ -

K

(s+1)(s+2)

Figure E.18

 19. A laser operates on the fundamental principle that a pumped medium amplifi es a 
traveling light beam as it propagates through the medium. Without mirrors a laser 
becomes a single-pass traveling wave amplifi er (Figure E.19a). This is a system 
without feedback. If we now place mirrors at each end of the pumped medium, 
we introduce feedback into the system (Figure E.19b).

Medium

Light In Light Out

Pumped Laser

Figure E.19a
A one-pass traveling-wave light amplifi er

Medium
Mirror Mirror

Pumped Laser

Figure E.19b
A regenerative traveling-wave amplifi er

   When the gain of the medium becomes large enough the system oscillates, 
creating a coherent output light beam. That is laser operation. If the gain of the 
medium is less that that required to sustain oscillation, the system is known as a 
 regenerative traveling-wave amplifi er ( RTWA). 
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636 Chapter  13  Laplace System Analysis

   Let the electric fi eld of a light beam incident on the RTWA from the left be the 
excitation of the system Einc(s) and let the electric fi elds of the refl ected light Erefl (s) 
and the transmitted light Etrans(s) be the responses of the system (Figure E.19c) .

grp

gfp

jti

jti jto

ri

ri

ro

Einc(s) Etrans(s)
Ecirc(s)

Erefl(s)

+ +

++

Figure E.19c 
Block diagram of an RTWA1

 Let the system parameters be as follows:
 Electric fi eld refl ectivity of the input mirror ri = 0.99 

 Electric fi eld transmissivity of the input mirror t ri i= −1 2

 Electric fi eld refl ectivity of the output mirror, ro = 0.98

 Electric fi eld transmissivity of the output mirror t ro o= −1 2

 Forward and reverse path electric fi eld gains g ( ) g ( ) .fp rp
ss s e= = − −

1 01 10 9

 Find an expression for the frequency response E ( )

E ( )
trans

inc

f

f
 and graph its 

magnitude over the frequency range 3 10 5 1014 8× ± × Hz.

 20. A classical example of the use of feedback is the phase-locked loop used to 
demodulate frequency-modulated signals (Figure E.20).

Phase
Detector

Loop
Filter, HLF(s)

Voltage-
Controlled
Oscillator

x(t) xLF(t)
y(t)

yVCO(t)

+

-

Figure E.20
A phase-locked loop

   The input signal x(t) is a  frequency-modulated sinusoid. The  phase 
detector detects the phase difference between the input signal and the signal 
produced by the voltage-controlled oscillator. The response of the phase 
detector is a voltage proportional to phase difference. The loop fi lter fi lters 
that voltage. Then the loop fi lter output signal controls the frequency of the 
voltage-controlled oscillator. When the input signal is at a constant frequency 
and the loop is “locked” the phase difference between the two phase-detector 
input signals is zero. (In an actual phase detector the phase difference is 90° 
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at lock. But that is not signifi cant in this analysis since that only causes is a 
90° phase shift and has no impact on system performance or stability.) As the 
frequency of the input signal x(t) varies, the loop detects the accompanying 
phase variation and tracks it. The overall output signal y(t)  is a signal 
proportional to the frequency of the input signal.

   The actual excitation, in a system sense, of this system is not x(t), but 
rather the phase of x(t), φx(t), because the phase detector detects differences 
in phase, not voltage. Let the frequency of x(t) be  fx(t). The relation 
between phase and frequency can be seen by examining a sinusoid. Let 
x(t) = A cos(2�f0t). The phase of this cosine is 2�f0t and, for a simple 
sinusoid (f0 constant), it increases linearly with time. The frequency is 
f0, the derivative of the phase. Therefore the relation between phase and 
frequency for a frequency-modulated signal is 

 f ( ) ( ( )).x xt
d

dt
t= 1

2�
�

  Let the frequency x(t) be 100 MHz. Let the transfer function of the voltage-

controlled oscillator be 108 Hz

V
. Let the transfer function of the loop fi lter be 

 H ( )
.

.LF s
s

=
+ ×

1

1 2 105

  Let the transfer function of the phase detector be 1
V

radian
. If the frequency of x(t) 

signal suddenly changes to 100.001MHz, graph the change in the output signal, 
�y(t).

 21. The circuit in Figure E.21 is a simple approximate model of an operational 
amplifi er with the inverting input grounded. 

+
+

-
-

Ri

RoRx

Cx

Output

A0vi(t)
vx(t)vi(t)

+

-

vx(t)

Figure E.21

 R R C R Ai x x o= = = = =1 1 8 10 100
6M k F� � �, , , ,�

(a) Defi ne the excitation of the circuit as the current of a current source applied 
to the noninverting input and defi ne the response as the voltage developed 
between the noninverting input and ground. Find the transfer function and 
graph its frequency response. This transfer function is the input impedance.
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638 Chapter  13  Laplace System Analysis

(b) Defi ne the excitation of the circuit as the current of a current source applied 
to the output and defi ne the response as the voltage developed between the 
output and ground with the noninverting input grounded. Find the transfer 
function and graph its frequency response. This transfer function is the 
output impedance.

(c) Defi ne the excitation of the circuit as the voltage of a voltage source applied 
to the noninverting input and defi ne the response as the voltage developed 
between the output and ground. Find the transfer function and graph its 
frequency response. This transfer function is the voltage gain.

 22. Change the circuit of Exercise 21 to the circuit in Figure E.22. This is a 
feedback circuit, which establishes a positive closed-loop voltage gain of the 
overall amplifi er. Repeat steps (a), (b) and (c) of Problem #6 for the feedback 
circuit and compare the results. What are the important effects of feedback for 
this circuit?

+
+

-
-

Ri

Rf
Rs

RoRx

Cx

Output

A0vi(t)
vx(t)vx(t)vi(t)

+

-

Figure E.22

R R C R A R Ri x x o s= = = = = = =1 1 8 10 10 10 50
6M k F k� � � �, , , , , ,f� kk�

Root Locus

 23. Draw the root locus for each of the systems that have these loop transfer functions 
and identify the transfer functions that are stable for all positive real values of K.

(a) T( )
( )

( )( )
s

K s

s s s
= +

+ + +
10

1 4 82  (b) T( )
( )

( )( )
s

K s

s s s
= +

+ + +

2

2

10

1 4 8

(c) T( )s
K

s s s
=

+ + +3 237 332 800
 (d) T( )

( )
s

K s

s
= −

+
4

4

(e) T( )
( )

( )
s

K s

s
= −

+
4

4 2   (f ) T( )
( )

( )( )( )
s

K s

s s s s
= +

+ + + +
6

5 9 4 122  
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Tracking Errors in Unity-Gain Feedback Systems

 24. Graph the unit step and ramp responses of unity-gain feedback systems with 
these forward-path transfer functions.

(a) H ( )
( )( )

1
20

2 6
s

s s s
=

+ +
  (b) H ( )

( )( )
1 2

20

2 6
s

s s s
=

+ +

(c) H ( )1 2

100

10 34
s

s s
=

+ +
   (d) H ( )

( )
1 2

100

10 34
s

s s s
=

+ +

(e) H ( )
( )

1 2 2

100

10 34
s

s s s
=

+ +

Responses to Standard Signals

 25. Given an LTI system transfer function, fi nd the time-domain response y(t) to the 
signals x(t).

(a) x( ) sin( )u( ), H( )t t t s
s

= =
+

2
1

1
�  (b) x( ) u( ), H( )t t s

s
= =

+
3

2

(c) x( ) u( ), H( )t t s
s

s
= =

+
3

2
 (d) x( ) u( ), H( )t t s

s

s s
= =

+ +
5

2 22

(e) x( ) sin( )u( ), H( )t t t s
s

s s
= =

+ +
2

5

2 22�

 26. Two systems A and B in Figure E.26 have the two pole-zero diagrams shown. 
Which of them responds more quickly to a unit step (approaches the fi nal value 
at a faster rate)? Explain your answer. 

    A    B

σ

ω

1-1-2-3-4 2 3 4

[s]

σ

ω

1-1-2-3-4 2 3 4

[s]

Figure E.26

 27. Two systems A and B in Figure E.27 have the two pole-zero diagrams shown. 
Which of them has a unit-step response that overshoots the fi nal value before 
settling to the fi nal value? Explain your answer. 

σ

ω

-1

[s]
σ

ω

-1

[s]

Figure E.27 

 28. A second-order system is excited by a unit step and the response is as illustrated 
in Figure E.28. Write an expression for the transfer function of the system.
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640 Chapter  13  Laplace System Analysis

Time (sec.)

A
m

pl
itu

de

Step Response

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure E.28
Step response of a second-order system

System Realization

 29. Draw cascade system diagrams of the systems with these transfer functions.

(a) H( )s
s

s s s
= −

+ + +
50

8 13 40

2

3 2  (b) H( )s
s

s s s
=

+ + +

3

3 218 92 120

30. Draw parallel system diagrams of the systems with these transfer functions.

(a) H( )s
s

s s s
=

+ + +
10

4 9 3

3

3 2
 (b) H( )s

s s s
=

+ + +
5

6 77 228 1893 2

 31. A system has a transfer function H( )
( )

.s
s

s s s
= −

+ +
10

16

4 3

2

2  Three realizations are 

illustrated in Figure E.31, Direct Form II, cascade and parallel. Find the values of 
all the gains K. 

+

+
+

+
+

+
+

+ -

+
+

+

X(s) Y(s)

s-1

s-1

s-1

s-1

s-1

s-1

s-1s-1s-1

Kd12 Kp12 Kp11

Kp21Kp22

Kp32 Kp31

Kd11

Kd22Kd21

Kd32Kd31

Kd42

Kc11 Kc12 Kc21 Kc22 Kc31 Kc32

Kd41

+

+
+

+

-

+ -
X(s)

+ -

Y(s)

+

++ -X(z)
+

++ - + - Y(z)

 Figure E.31
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641

 C H A P T E R  14

14.1 INTRODUCTION AND GOALS
This chapter follows a path similar to that of Chapter 13 on system analysis using the 
 Laplace transform, except as applied to discrete-time signals and systems instead of 
continuous-time signals and systems.

C H A P T E R  G OA L S

 1. To appreciate the relationship between the z and Laplace transforms

 2. To apply the z transform to the generalized analysis of LTI systems, including 
feedback systems, for stability and time-domain response to standard signals

 3. To develop techniques for realizing discrete-time systems in different forms

14.2 SYSTEM MODELS

DIFFERENCE EQUATIONS

The real power of the Laplace transform is in the  analysis of the dynamic behavior of 
continuous-time systems. In an analogous manner, the real power of the z transform 
is in the analysis of the dynamic behavior of discrete-time systems. Most continuous-
time systems analyzed by engineers are described by differential equations and most 
discrete-time systems are described by difference equations. The general form of a 
difference equation  describing a discrete-time system with an excitation x[ ]n  and a 
response y[ ]n  is

 a n k b n kk
k

N

k
k

M

y[ ] x[ ]− = −
= =
∑ ∑

0 0

.

If both x[ ]n  and y[ ]n  are causal, and we z transform both sides, we get

 a z z b z zk
k

k

N

k
k

k

M
−

=

−

=
∑ ∑=Y( ) X( )

0 0

.

z-Transform System Analysis
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642 Chapter  14  z-Transform System Analysis

The transfer function H( )z  is the ratio of Y( )z  to X( )z

 H( )
Y( )

X( )
z

z

z

b z

a z

b b z bk
k

k

M

k
k

k

N= = = + + +−
=

−
=

−∑
∑

0

0

0 1
1 � MM

M

N
N

z

a a z a z

−

− −+ + +0 1
1 �

or

 H( )z z
b z b z b z b

a z a z a
N M

M M
M M

N N
N

= + + + +
+ + +

−
−

−
−

0 1
1

1

0 1
1

�
� −− +1z aN

.

So the transfer function of a discrete-time system described by a difference equation 
is a ratio of polynomials in z just as the transfer function of a continuous-time system 
described by a differential equation is a ratio of polynomials in s.

BLOCK DIAGRAMS

Discrete-time systems are conveniently  modeled by block diagrams just as continuous-
time systems are and transfer functions can be written directly from block diagrams. 
Consider the system in Figure 14.1.

The describing difference equation is y[ ] x[ ] x[ ] ( ) y[ ]n n n n= − − − −2 1 1 2 1/ . 
We can redraw the block diagram to make it a  z-domain block diagram instead of a 
time-domain block diagram (Figure 14.2). In the z domain the describing equation is 
Y( ) X( ) X( ) ( ) Y( )z z z z z z= − −− −2 1 21 1/  and the transfer function is

 H( )
Y( )

X( ) ( )
z

z

z

z

z

z

z
= = −

+
= −

+

−

−
2

1 1 2

2 1

1 2

1

1/ /
.

Figure 14.1
 Time-domain block diagram of a system

D

D

x[n] y[n]
2

1
2

Figure 14.2
z-domain  block diagram of a system

X(z) Y(z)
2

1
2

z-1

z-1

14.3  SYSTEM STABILITY
A  causal discrete-time system is BIBO stable if its impulse response is absolutely sum-
mable, that is, if the sum of the magnitudes of the impulses in the impulse response is 
fi nite. For a system whose transfer function is a ratio of polynomials in z of the form

 H( )z
b z b z b

a z a z a

M M
M

N N
N

= + + +
+ + +

−

−
0 1

1

0 1
1

�
�

,

with M N<  and all distinct poles, the transfer function can be written in the partial 
fraction form

 H( )z
K

z p

K

z p

K

z p
N

N
=

−
+

−
+ +

−
1

1

2

2
�
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and the impulse response is then of the form

 h[ ] u[ ]n K p K p K p nn n
N N

n= + + +( ) −− − −
1 1

1
2 2

1 1 1� ,

(some of the p’s may be complex). For the system to be stable each term must be abso-
lutely summable. The summation of the absolute value of a typical term is

 Kp n K p K p e K pn

n

n

n

n j p n

n

−

= −∞

∞
−

=

∞
∠

=

∞
− = = =∑ ∑ ∑1 1

1 0

1u[ ] ( ) nn jn p

n

e ∠

==

∞

∑
10

�

 Kp n K pn

n

n

n

−

= −∞

∞

=

∞
− =∑ ∑1

0

1u[ ] .

Convergence of this last summation requires that p < 1. Therefore for stability, all the 
poles must satisfy the condition pk < 1. 

In a discrete-time system all the poles of the transfer function must lie in the 
open interior of the unit circle in the z plane for system stability. 

    

This is directly analogous to the requirement in continuous-time systems that all 
the poles lie in the open left half of the s plane for system stability. This analysis was 
done for the most common case in which all the poles are distinct. If there are repeated 
poles, it can be shown that the requirement that all the poles lie in the open interior of 
the unit circle for system stability is unchanged.

14.4  SYSTEM  CONNECTIONS
The transfer functions of components in the cascade, parallel and feedback connec-
tions of discrete-time  systems combine in the same way they do in continuous-time 
systems (Figure 14.3 through Figure 14.5).

We fi nd the overall transfer function of a feedback system by the same technique 
used for continuous-time systems and the result is

 H( )
Y( )

X( )

H ( )

H ( ) H ( )

H ( )

T( )
z

z

z

z

z z

z

z
= =

+
=

+
1

1 2

1

1 1
 , (14.1)

where T( ) H ( ) H ( )z z z= 1 2  is the loop transfer function. 

Figure 14.3
Cascade connection of systems

H1(z) X(z)H1(z)X(z) Y(z) � X(z)H1(z)H2(z)H2(z)

Y(z)X(z) H1(z)H2(z)

Figure 14.4
Parallel connection of systems

H1(z) � H2(z)X(z) Y(z)

X(z) Y(z) � X(z)H1(z) � X(z)H2(z) � X(z)[H1(z) � H2(z)]

X(z)H2(z)

X(z)H1(z)

�

H1(z)

H2(z)

�

�

Figure 14.5
Feedback connection of systems

H1(z)

H2(z)

X(z) Y(z)
E(z)�

�

�
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644 Chapter  14  z-Transform System Analysis

Just as was true for continuous-time feedback systems, a root locus can be drawn 
for a discrete-time feedback system for which 

 H ( )
P ( )

Q ( )
1

1

1
z K

z

z
=  and H ( )

P ( )

Q ( )
2

2

2
z

z

z
= .

The procedure for drawing the root locus is exactly the same as for continuous-time 
systems except that the loop transfer function

 T( ) H ( ) H ( )z z z= 1 2  

is a function of z instead of s. However the  intrepretation of the root locus, after it is 
drawn, is a little different. For continuous-time systems, the forward-path gain K at 
which the root locus crosses into the right half-plane is the value at which the system 
becomes unstable.  For discrete-time systems, the statement is the same except that 
“right half-plane” is replaced with “exterior of the unit circle.”

EXAMPLE 14.1

 Discrete-time system stability analysis using root locus

Draw a root-locus for the discrete-time system whose forward-path transfer function is

 H ( )1
1

1 2
z K

z

z
= −

+ /

and whose feedback-path transfer function is

 H ( )2
2 3

1 3
z

z

z
= −

+
/

/
.

The loop transfer function is

 T( )z K
z

z

z

z
= −

+
−
+

1

1 2

2 3

1 3/

/

/
.

There are two zeros, at z = 2 3/  and z = 1 and two poles at z = −1 2/  and z = −1 3/ . It is apparent from 
the root locus (Figure 14.6) that this system is unconditionally stable for any fi nite positive K.

Figure 14.6
Root locus of T( )z K

z

z

z

z
= −

+
−
+

1

1 2

2 3

1 3/

/

/

�1

�1

1

1

Im(z)

Re(z)� �
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14.5  SYSTEM RESPONSES TO STANDARD SIGNALS
As indicated in Chapter 13, it is impractical to fi nd the impulse response of a continuous-
time system by actually applying an impulse to the system. In contrast, the discrete-time 
impulse is a simple well-behaved function and can be applied in a practical situation 
with no real problems. In addition to fi nding impulse response, fi nding the responses 
of systems to the unit sequence and to a sinusoid applied to the system at time n = 0 
are also good ways of testing system dynamic performance. 

UNIT-SEQUENCE RESPONSE

Let the transfer function of a system be 

 H( )
N ( )

D ( )
H

H
z

z

z
= .

Then the unit-sequence response of the system  in the z domain is

 Y( )
N ( )

D ( )
H

H
z

z

z

z

z
=

− 1
.

The unit-sequence response can be written in the partial-fraction form

 Y( )
N ( )

D ( )

H( ) N ( )

D ( )
H(H

H

H

H
z z

z

z z
z

z

z
= +

−
⎡
⎣⎢

⎤
⎦⎥

= +1 11

1
11

1
)

z

z −
.

If the system is stable and causal, the  inverse z transform of the term z z zN ( ) D ( )H H1 /  
is a signal that decays with time (the transient response) and the inverse z transform of 
the term H( ) ( )1 1z z/ −  is a unit-sequence multiplied by the value of the transfer function 
at z = 1 (the forced response). 

EXAMPLE 14.2

Unit-sequence response  using the z transform

A system has a transfer function

 H( )z
z

z
=

−
100

1 2/
.

Find and graph the unit-sequence response. 
In the z domain the unit sequence response is

 H ( )− =
− −

= −
−

+
−

⎡
⎣⎢

⎤
⎦⎥

=1
1

100

1 2

100

1 2

200

1
10z

z

z

z

z
z

z z/ /
00

2

1 1 2

z

z

z

z−
−

−
⎡
⎣⎢

⎤
⎦⎥/
.

The time-domain, unit-sequence response is the inverse z transform which is

 h [ ] [2 ( ) ]u[ ]− = −1 100 1 2n nn/

(Figure 14.7).
The fi nal value that the unit-sequence response approaches is 200, and that is the same 

as H( )1 .

 14.5 System Responses to Standard Signals 645
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646 Chapter  14  z-Transform System Analysis

In signal and system analysis, the two most commonly encountered systems are 
one-pole and two-pole systems. The typical transfer function of a  one-pole system is 
of the form

 H( )z
Kz

z p
=

−

where p is the location of a real pole in the z plane. Its  z-domain response to a unit-
sequence is

 H ( )− =
− −

=
− −

−
−

⎛
⎝⎜

⎞
⎠⎟1

1 1 1
z

z

z

Kz

z p

K

p

z

z

pz

z p

and its  time-domain response is

 h [ ] ( ) u[ ]−
+=

−
−1

1

1
1n

K

p
p nn .

To simplify this expression and isolate effects, let the gain constant K be 1 − p. Then

 h [ ] ( ) u[ ]−
+= −1

11n p nn .

The forced response is u[ ]n  and the transient response is − +p nn 1 u[ ].
This is the discrete-time counterpart of the classic unit-step response  of a one-pole 

continuous-time system, and the speed of the response is determined by the pole loca-
tion. For 0 1< <p , the system is stable and the closer p is to 1, the slower the response 
is (Figure 14.8). For p > 1, the system is unstable.

A typical transfer function for a  second-order system is of the form

 H( )
cos( )

z K
z

z r z r
=

− +

2

2
0 0 0

22 �
.

The poles of H( )z  lie at p r e j
1 2 0

0
, = ± � . If r0 1< , both poles lie inside the unit-circle 

and the system is stable. The z transform of the  unit-sequence response is

 H ( )
cos( )

− =
− − +1

2

2
0 0 0

21 2
z K

z

z

z

z r z r�
.

Figure 14.7
Unit-sequence response
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For �0 ≠ ±m�, m an integer, the partial fraction expansion of H ( )−1 z Kz/  is

 H ( )

cos( )

cos( )− =
− + −

+
−( )1

0 0 0
2

0
2

0 01

1 2

1

1

2z

Kz r r z

r r

�

� zz r

z r z r

+
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0
2

2
0 0 0

22 cos( )
.

�

Then

 H ( )
cos( )

cos( )
− =

− + −
+

−( )
1

0 0 0
2

0
2

0 0

1 2

1

1

2
z

Kz

r r z

r r z

�

� ++
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r

z r z r
0
2

2
0 0 0

22 cos( )�

or

 H ( ) H( )
cos( )

cos
− =

−
+

−( ) +
−1

0
2

0 0 0
2

2
0

1
1

2

2
z

z

z
z

r r z r

z r

�

(( )�0 0
2z r+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

which can be written as

 H ( ) H( )

[ cos( )]
cos( )

− =
−

+
− −

−
1 0

0 0

2
0 0

2

1
1

2

z
z

z
r

r
z r z

z
�

�

22

1 2

0 0 0
2

0 0 0

0

r z r

r z

cos( )

[ cos( )]cos( )

sin( )

�

� �

�

+

+ + − rr

z r z r
0 0

2
0 0 0

22

sin( )

cos( )

�

�− +

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The inverse z transform is

 h [ ] H( ) [ cos( )] cos( )
[

− = + − + + −
1 0 0 0 0 0

01 1 2
1 2

n r r r n
rn� �

ccos( )]cos( )

sin( )
sin( ) u

� �

�
�

0 0

0
0 0r nn⎧

⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

[[ ].n

This is the general solution for the unit-sequence response of this kind of second-order 
system. If we let K r r= − +1 2 0 0 0

2cos( )�  then the system has unity gain (H( )1 1= ).

EXAMPLE 14.3

Pole-zero diagrams and unit-sequence response   using the z transform

A system has a transfer function of the form

 H( )
cos( )

z K
z

z r z r
=

− +

2

2
0 0 0

22 �
 with K r r= − +1 2 0 0 0

2cos( )� .

Figure 14.8
Response of a one-pole system to a unit-sequence as the pole location changes
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648 Chapter  14  z-Transform System Analysis

Plot the pole-zero diagrams and graph the unit-sequence responses for

(a) r0 01 2 6= =/ /, � � ,  (b) r0 01 2 3= =/ /, � � ,
(c) r0 03 4 6= =/ /, � � , and (d) r0 03 4 3= =/ /, � � .

Figure 14.9 shows the pole-zero diagrams and unit-sequence responses for the values of r0 and 
�0 given above.

Figure 14.9
Pole-zero diagrams and unit-sequence responses of a unity-gain, second-order 
system for four combinations of r0 and �0
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 As r0 is increased the response becomes more underdamped, ringing for a longer time. As 
�0 is increased the speed of the ringing is increased. So we can generalize by saying that poles 
near the unit circle cause a more underdamped response than poles farther away from (and 
inside) the unit circle. We can also say that the rate of ringing of the response depends on the 
angle of the poles, being greater for a greater angle.

RESPONSE TO A  CAUSAL SINUSOID

The response of a system to a unit-amplitude cosine of radian frequency �0 applied to 
the system at time n = 0 is

 Y( )
N ( )

D ( )

[ cos( )]

cos( )
H

H
z

z

z

z z

z z
= −

− +
�

�

0
2

02 1
.

The poles of this response are the poles of the transfer function plus the roots of 
z z2

02 1 0− + =cos( )� , which are the complex conjugate pair p e p ej j
1 2

0 0= = −� �and . 
Therefore p p p p p p j p p1 2 1 2 0 1 2 0 1 22 2 1= + = − = =*, cos( ), sin( )� � and . Then if 
�0 ≠ m�, m an integer and, if there is no pole-zero cancellation, these poles are dis-
tinct and the response can be written in partial-fraction form as

 Y( )
N ( )

D ( )

H( )( cos( ))H

H
z z

z

z p p

p p

z p
= +

−
−
−

+1

1 2

1 1 0

1

1 1�

pp p

p p

z p2 1

2 2 0

2−
−

−
⎡
⎣⎢

⎤
⎦⎥

H( )( cos( ))�

or, after simplifi cation,

 Y( )
N ( )

D ( )

H ( )( ) H ( )

(
H

H
z z

z

z

p z p p p

z z
r r i i= + − −

−
1 1 1 1 1

2 2pp r1 1) +
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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where p p jpr i1 1 1= +  and H( ) H ( ) H ( )p p j pr i1 1 1= + . This can be written in terms of the 
original parameters as 

 Y( )
N ( )

D ( )

Re(H(cos( ) sin( )))
co

H

H
z z

z

z

j
z z

= +
+ −

1
0 0

2

� �
ss( )

( cos( ))

Im(H(cos( ) sin( )))

�

�

� �

0
2

0

0 0

2 1z z

j
z

− +

− + ssin( )

( cos( ))

�

�

0
2

02 1z z− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭⎭
⎪
⎪

.

The  inverse z transform is

 y[ ]
N ( )

D ( )

Re(H(cos( ) sin(H

H
n z

z

z

j
= ⎛

⎝⎜
⎞
⎠⎟

+
+−Z 1 1 0 0� � )))) cos( )

Im(H(cos( ) sin( )))sin( )

�

� � �

0

0 0 0

n

j n− +
⎡
⎣⎢

⎤⎤
⎦⎥

u[ ]n

or, using 

 Re( ) cos( ) Im( )sin( ) cos( )A n A n A n A� � �0 0 0− = + � ,

 
y[ ]

N ( )

D ( )
H(cos( ) sin( )) cH

H
n z

z

z
j= ⎛

⎝⎜
⎞
⎠⎟

+ +−Z 1 1
0 0� � oos( H(cos( ) sin( ))) u[ ]� � �0 0 0n j n+ +�

 

or

 y[ ]
N ( )

D ( )
H( ) cos( H( ))H

H
n z

z

z
p n p= ⎛

⎝⎜
⎞
⎠⎟

+ +−Z 1 1
1 0 1� � uu[ ]n . (14.2)

If the system is stable, the term 

 Z − ⎛
⎝⎜

⎞
⎠⎟

1 1z
z

z

N ( )

D ( )
H

H

(the transient response) decays to zero with discrete time, and the term 
H( ) cos( H( )) u[ ]p n p n1 0 1� + �  (the forced response) is equal to a sinusoid after dis-
crete time n = 0 and persists forever.

EXAMPLE 14.4

System response to a causal cosine using the z transform

The system of Example 14.2 has a transfer function

 H( )z
z

z
=

−
100

1 2/
.

Find and graph the response to x[ ] cos( )u[ ]n n n= �0  with �0 4= �/ .
 In the z domain the response is of the form

 Y( )
[ cos( )]

cos( )

[ c
z

Kz

z p

z z

z z

Kz

z p

z z=
−

−
− +

=
−

−�

�

0
2

02 1

oos( )]

( )( )

�
� �

0
0 0z e z ej j− − −

where K = 100, p = 1 2/  and �0 4= �/ . This response can be written in the partial-fraction 
form,

 Y( )

[ cos( )]

( )( )
z Kz

p p

p e p e
z p

j j
=

−
− −

−

−
�

� �
0

0 0

transientt response forced
� ����� �����

+ +
− +

Az B

z z2
02 1cos( )�

response
� ���� ����

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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650 Chapter  14  z-Transform System Analysis

Using (14.2),

 y[ ]

( )[ cos( )]

( )(/
n z

e j
=

−
− −−Z 1

4
100

1 2 1 2 4

1 2 1 2

/ / /

/ /

�
� ee

z

e

e
n

j j

j

−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+
−

� �

�

/ /

// /

4 4

4 0
1 2

100

1 2
)

cos � ++
−

⎛
⎝⎜

⎞
⎠⎟

�
100

1 2

4

4
e

e
n

j

j

�

�

/

// u[ ]

 y[ ] [ . ( ) . cos( . )]u[ ]n n nn= − + −19 07 1 2 135 72 4 0 5/ /�  (14.3)

(Figure 14.10).

Figure 14.10
Causal cosine and system response
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For comparison let’s fi nd the system response to a true cosine (applied at time n → −∞) 
using the DTFT. The transfer function, expressed as a function of radian frequency � using the 
relationship z e j= �, is

 H( )e
e

e
j

j

j
�

�

�
=

−
100

1 2/
.

The DTFT of x[ ]n  is

 X( ) [ ( ) ( )]e j� � � � �= − + +� � �� �2 0 2 0 .

Therefore the response is 

 Y( ) [ ( ) ( )]e
e

e
j

j

j
�

�

�
� � � �= − + +

−
� � �� �2 0 2 0

100

1 2/

or

 Y( ) ( )e
e

e
k

e

e
j

j

j
k

j

j
�

�

�

�

�
� �=

−
− − +

−= −∞

∞

∑100
1 2

2
1

0� � �
/ //2

20� �( ) .� �+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= −∞

∞

∑ k
k
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Using the equivalence property of the impulse,

 Y( ) ( )
( )

( )e
e

e
kj

j k

j k
�

�

�
� �=

−
− − +

+

+100
1 2

2
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2 0� � �
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� /

ee

e
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j k

j k
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− +
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⎡

⎣
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⎦
⎥

�

�
� �

0

0

2

2 0
1 2

2
�

�
� �

/∞∞

∞

∑ .

Since e ej k j( )� �0 02+ =�  and e ej k j( )− + −=� �0 02�  for integer values of k,

 Y( )
( ) (

e
e k

e

ej
j

j

j
�

�

�

�� � � �= − −
−

+ + −−
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2

1 2
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0

00 0
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� � �

/
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e j
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)
−

= −∞

∞

−
⎡

⎣
⎢

⎤

⎦
⎥∑ � /

or

 Y( )
( ) ( )

e
e

e

ej
j

j

j
�

�

�

�� � � �= −
−

+ +−
100

1 2

0

0

02 0 2 0
�

� �� �

/ ee j− −
⎡

⎣
⎢

⎤

⎦
⎥�0 1 2/
.

Finding a common denominator, applying Euler’s identity and simplifying,

 Y( )
cos( )

( ( )cos( ))[ (
e j�

�

� � �
=

−
− −100

5 4

1 1 2

0

0 2 0� � �

/

/ )) ( )]

( )sin( )[ ( ) ( )]

+ +
+ + − −

�

� �

�

� �

2 0

0 2 0 2 02

� �

� � � � �j /
⎧⎧
⎨
⎩

⎫
⎬
⎭
.

Finding the inverse DTFT,

 y[ ]
cos( )

{[ ( )cos( )] cos( ) sin n=
−

− +50

5 4
1 1 2 2

0
0 0

/
/

�
� � nn( )sin( )}� �0 0n

or, since �0 4= �/ , 

 y[ ] . cos( ) . sin( ) . cos(n n n= + =119 06 4 65 113 4 135 72� �/ / ��n/4 0 5− . ).

This is exactly the same (except for the unit sequence u[ ]n ) as the forced response in (14.3).

14.6   SIMULATING CONTINUOUS-TIME SYSTEMS 
WITH DISCRETE-TIME SYSTEMS

 z-TRANSFORM-LAPLACE-TRANSFORM RELATIONSHIPS

We explored in earlier chapters important relationships between Fourier transform 
methods. In particular we showed that there is an information equivalence between a 
discrete-time signal x[ ] x( )n nTs=  formed by sampling a continuous-time signal and 
a continuous-time impulse signal x ( ) x( ) ( )� �t t tTs

=  formed by impulse sampling the 
same  continuous-time signal, with f Ts s= 1/ . We also derived the relationships between 
the DTFT of x[ ]n  and the CTFT of x ( )� t  in Chapter 10. Since the z transform applies 
to a discrete-time signal and is a generalization of the DTFT and a Laplace transform 
applies to a continuous-time signal and is a generalization of the CTFT, we should 
expect a close relationship between them also.

Consider two systems, a discrete-time system with impulse response h[ ]n  and a 
continuous-time system with impulse response h ( )� t  and let them be related by

 h ( ) h[ ] ( )� �t n t nTs
n

= −
= −∞

∞

∑ . (14.4)

This equivalence indicates that everything that happens to x[ ]n  in the discrete-time 
system, happens in a corresponding way to x ( )� t  in the continuous-time system 
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652 Chapter  14  z-Transform System Analysis

(Figure 14.11). Therefore it is possible to analyze discrete-time systems using the 
Laplace transform with the strengths of continuous-time impulses representing the 
values of the discrete-time signals at equally spaced points in time. But it is notation-
ally more convenient to use the z transform instead. 

The transfer function of the discrete-time system is

 H( ) h[ ]z n z n

n

= −

=

∞

∑
0

and the transfer function of the continuous-time system is

 H ( ) h[ ]� s n e nT s

n

s= −

=

∞

∑
0

.

If the impulse responses are equivalent in the sense of (14.4), then the transfer func-
tions must also be equivalent. The equivalence is seen in the relationship,

 H ( ) H( )� s z z esTs= → .

It is important at this point to consider some of the implications of the transforma-
tion z esTs→ . One good way of seeing the relationship between the s and z complex 
planes is to map a contour or region in the s plane into a corresponding contour or 
region in the z plane. Consider fi rst a very simple contour in the s plane, the contour 
s j j f= =� �2  with � and f representing real radian and cyclic frequency, respectively. 
This contour is the � axis of the s plane. The corresponding contour in the z plane is 
e j Ts�  or e j fTs2�  and, for any real value of � and f, must lie on the unit circle. However 
the mapping is not as simple as the last statement makes it sound. 

To illustrate the complication, map the segment of the imaginary axis in the s 
plane − < <� � �/ /T Ts s that corresponds to − < <f f fs s/ /2 2 into the corresponding 
contour in the z plane. As � traverses the contour − → →� � �/ /T Ts s, z traverses the 
unit circle from e j− � to e j+ � in the counterclockwise direction, making one complete 
traversal of the unit circle. Now if we let � traverse the contour � � �/ /T Ts s→ → 3 , 
z traverses the unit circle from e j� to e j+ 3�, which is exactly the same contour again 
because e e e ej j j j n− += = =� � � �3 2 1( ) , n any integer. Therefore it is apparent that the 
transformation z esTs→  maps the � axis of the s plane into the unit circle of the z plane, 
infi nitely many times (Figure 14.12).

This is another way of looking at the phenomenon of  aliasing. All those segments 
of the imaginary axis of the s plane of length 2�/Ts look exactly the same when trans-
lated into the z plane because of the effects of sampling. So, for every point on the 

Figure 14.11
Equivalence of a discrete-time and a continuous-time system
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imaginary axis of the s plane there is a corresponding unique point on the unit circle 
in the z plane. But this unique correspondence does not work the other way. For every 
point on the unit circle in the z plane there are infi nitely many corresponding points on 
the imaginary axis of the s plane.

Carrying the mapping idea one step farther, the left half of the s plane maps into 
the interior of the unit circle in the z plane and the right half of the s plane maps into the 
exterior of the unit circle in the z plane (infi nitely many times in both cases). The cor-
responding ideas about stability and pole locations translate in the same way. A stable 
continuous-time system has a transfer function with all its poles in the open left half of 
the s plane and a stable discrete-time system has a transfer function with all its poles in 
the open interior of the unit circle in the z plane (Figure 14.13).

Figure 14.12
Mapping the � axis of the s plane into the unit circle of the z plane
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Figure 14.13
Mapping of the regions of the s plane into regions in the z plane
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 IMPULSE INVARIANCE

In Chapter 10 we examined how continuous-time signals are converted to discrete-time 
signals by sampling. We found that, under certain conditions, the discrete-time signal 
was a good representation of the continuous-time signal in the sense that it preserved 
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654 Chapter  14  z-Transform System Analysis

all or practically all of its information. A discrete-time signal formed by properly sam-
pling a continuous-time signal in a sense  simulates the continuous-time signal. In this 
chapter we examined the equivalence between a discrete-time system with impulse 
response h[ ]n  and a continuous-time system with impulse response

 h ( ) h[ ] ( )� �t n t nTs
n

= −
= −∞

∞

∑ .

The system whose impulse response is h ( )� t  is a very special type of system because 
its impulse response consists only of impulses. As a practical matter, this is impossible 
to achieve because the transfer function of such a system, being periodic, has a nonzero 
response at frequencies approaching infi nity. No real continuous-time system can have 
an impulse response that contains actual impulses, although in some cases that might 
be a good approximation for analysis purposes. 

To simulate a continuous-time system with a discrete-time system we must fi rst 
address the problem of forming a useful equivalence between a discrete-time sys-
tem, whose impulse response must be discrete, and a continuous-time system, whose 
impulse response must be continuous. The most obvious and direct equivalence 
between a discrete-time signal and a continuous-time signal is to have the values of 
the continuous-time signal at the sampling instants be the same as the values of the 
discrete-time signal at the corresponding discrete times x[ ] x( )n nTs= . So if the excita-
tion of a discrete-time system is a sampled version of a excitation of a continuous-time 
system, we want the response of the discrete-time system to be a sampled version of 
the response of the continuous-time system (Figure 14.14).

Figure 14.14
Signal sampling and  system discretization

x(t)

Sampling SamplingDiscretization

y(t)h(t)

x[n] y[n]h[n]

The most natural choice for h[ ]n  would be h[ ] h( )n nTs= . Since h[ ]n  is not actually 
a signal occurring in this system, but rather a function that characterizes the system, we 
cannot accurately say that Figure 14.14 indicates a sampling process. We are not sam-
pling a signal. Instead we are  discretizing a system. The choice of impulse response 
for the discrete-time system h[ ] h( )n nTs=  establishes an equivalence between the 
impulse responses of the two systems. With this choice of impulse response, if a unit 
continuous-time impulse excites the continuous-time system and a unit discrete-time 
impulse of the same strength excites the discrete-time system, the response y[ ]n  is a 
sampled version of the response y( )t  and y[ ] y( )n nTs= . But even though the two sys-
tems have equivalent impulse responses in the sense of h[ ] h( )n nTs=  and y[ ] y( )n nTs= ,
that does not mean that the system responses to other excitations will be equivalent in 
the same sense. A system design for which h[ ] h( )n nTs=  is called an  impulse invariant 
design because of the equivalence of the system responses to unit impulses.

It is important to point out here that if we choose to make h[ ] h( )n nTs= , and we excite 
both systems with unit impulses, the responses are related by y[ ] y( )n nTs= , but we can-
not say that x[ ] x( )n nTs=  as in Figure 14.14. Figure 14.14 indicates that the discrete-time 
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excitation is formed by sampling the continuous-time excitation. But if the continuous-time 
excitation is an impulse we cannot sample it. Try to imagine sampling a continuous-time im-
pulse. First, if we are sampling at points in time at some fi nite rate to try to “catch” the impulse 
when it occurs, the probability of actually seeing the impulse in the samples is zero because it 
has zero width. Even if we could sample exactly when the impulse occurs we would have to 
say that � �[ ] ( )n nTs=  but this makes no sense because the amplitude of a continuous-time 
impulse at its time of occurrence is not defi ned (because it is not an ordinary function), so we 
cannot establish the corresponding strength of the discrete-time impulse �[ ]n . 

 SAMPLED-DATA SYSTEMS

Because of the great increases in microprocessor speed and memory and large reductions 
in the cost of microprocessors, modern system design often uses discrete-time subsystems 
to replace subsystems that were traditionally continuous-time subsystems to save money 
or space or power consumption and to increase the fl exibility or reliability of the system. 
Aircraft autopilots, industrial chemical process control, manufacturing processes, auto-
mobile ignition and fuel systems are examples. Systems that contain both discrete-time 
subsystems and continuous-time subsystems and mechanisms for converting between 
discrete-time and continuous-time signals are called sampled-data systems.

The fi rst type of sampled-data system used to replace a continuous-time system, 
and still the most prevalent type, comes from a natural idea. We convert a continu-
ous-time signal to a discrete-time signal with an  analog-to-digital converter (ADC). 
We process the samples from the ADC in a discrete-time system. Then we convert the 
discrete-time response back to continuous-time form using a  digital-to-analog con-
verter (DAC) (Figure 14.15).

Figure 14.15
A common type of sampled-data simulation of a continuous-time system

t

x(t)

h(t)
t

y(t)

h[n]ADC DAC
t

x(t)

t

x[n]

t

y[n]

t

yd(t)

The desired design would have the response of the sampled-data system be very 
close to the response that would have come from the continuous-time system. To do 
that we must choose h[ ]n  properly and, in order to do that, we must also understand the 
actions of the ADC and DAC.

It is straightforward to model the action of the ADC. It simply acquires the value 
of its input signal at the sampling time and responds with a number proportional to that 
signal value. (It also quantizes the signal, but we will ignore that effect as negligible in 
this analysis.) The subsystem with impulse response h[ ]n  is then designed to make the 
sampled-data system emulate the action of the continuous-time system whose impulse 
response is h( )t .

The action of the DAC is a little more complicated to model mathematically than 
the ADC. It is excited by a number from the discrete-time subsystem, the strength of 
an impulse, and responds with a continuous-time signal proportional to that number, 
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656 Chapter  14  z-Transform System Analysis

which stays constant until the number changes to a new value. This can be modeled by 
thinking of the process as two steps. First let the discrete-time impulse be converted to 
a continuous-time impulse of the same strength. Then let the continuous-time impulse 
excite a zero-order hold (fi rst introduced in Chapter 10) with an impulse response that 
is rectangular with height one and width Ts beginning at time t = 0

 h ( )

,

,

,

rectzoh s

s

st

t

t T

t T

t T=
<
< <
>

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −

0 0

1 0

0

/22

Ts

⎛
⎝⎜

⎞
⎠⎟

(Figure 14.16). 

The transfer function of the zero-order hold is the Laplace transform of its impulse 
response h ( )zoh t , which is

 H ( ) h ( )zoh zohs t e dt e dt
e

s
st st

T sts

= = =
−

⎡
⎣
⎢

−
∞

−
−

− −
∫ ∫
0 0

⎤⎤
⎦
⎥ = −

−

−

0

1
T sTs

se

s
.

The next design task is to make h[ ]n  emulate the action of h( )t  in the sense that the 
overall system responses will be as close as possible. The continuous-time system is 
excited by a signal x( )t  and produces a response y ( )c t . We would like to design the cor-
responding sampled-data system such that if we convert x( )t  to a discrete-time signal 
x[ ] x( )n nTs=  with an ADC, process that with a system to produce the response y[ ]n , 
then convert that to a response y ( )d t  with a DAC, then y ( ) y ( )d ct t=  (Figure 14.17).

Figure 14.17
Desired equivalence of continuous-time and sampled-
data systems

x(t)

yd(t)h[n]
x[n]

h(t)

y[n]
DACADC

yc(t)

Figure 14.16
Equivalence of a DAC and a discrete-time-to-continuous-time impulse conversion followed by a zero-order hold 

x[n]

n t

x(t)

D/A

x[n]

n t t

x�(t) x(t)

Zero-order
hold

�[n]    �(t)

This cannot be accomplished exactly (except in the theoretical limit in which the 
sampling rate approaches infi nity). But we can establish conditions under which a good 
approximation can be made, one that gets better as the sampling rate is increased.
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As a step toward determining the impulse response h[ ]n  of the subsystem, fi rst 
consider the response of the continuous-time system, not to x( )t , but rather to x ( )� t  
defi ned by

 x ( ) x( ) ( ) x( ) ( )� � �t nT t nT t ts s
n

Ts
= − =

= −∞

∞

∑ .

The response to x ( )� t  is

 y( ) h( ) x ( ) h( ) x( ) ( ) x[ ]ht t t t nT t mT ms s
m

= ∗ = ∗ − =
= −∞

∞

∑� � (( )t mTs
m

−
= −∞

∞

∑

where x[ ]n  is the sampled version of x( )t , x( )nTs . The response at the nth multiple 
of Ts is

 y( ) x[ ]h(( ) )nT m n m Ts s
m

= −
= −∞

∞

∑ . (14.5)

Compare this to the response of a discrete-time system with impulse response 
h[ ] h( )n nTs=  to x[ ] x( )n nTs=  which is

 y[ ] x[ ] h[ ] x[ ]h[ ]n n n m n m
m

= ∗ = −
= −∞

∞

∑ . (14.6)

By comparing (14.5) and (14.6) it is apparent that the response y( )t  of a continuous-time 
system with impulse response h( )t  at the sampling instants nTs to a continuous-time 
impulse-sampled signal

 x ( ) x( ) ( )� �t nT t nTs s
n

= −
= −∞

∞

∑

can be found by fi nding the response of a system with impulse response h[ ] h( )n nTs=  
to x[ ] x( )n nTs=  and making the equivalence y( ) y[ ]nT ns =  (Figure 14.18).

Figure 14.18
Equivalence, at continuous times nTs and corresponding discrete times n of the responses of  continuous-time and discrete-
time systems excited by continuous-time and discrete-time signals derived from the same continuous-time signal

h(t)

h[n] � h(nTs)

Impulse
modulation

Ts

t

x(t)
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digital

conversion

t

x�(t)

n

x[n]

t

n

y(t)

y[n]

Now, returning to our original continuous-time and sampled-data systems, modify 
the continuous-time system as illustrated in Figure 14.19. Using the equivalence in 
Figure 14.18, y[ ] y( )n nTs= .
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658 Chapter  14  z-Transform System Analysis

Now change both the continuous-time system and discrete-time system impulse 
responses by multiplying them by the time between samples Ts (Figure 14.20). In this 
modifi ed system we can still say that y[ ] y( )n nTs=  where now

y( ) x ( ) h( ) x( ) ( ) h(t t T t nT t nTs s s
n

= ∗ = −
⎡

⎣
⎢

⎤

⎦
⎥ ∗

= −∞

∞

∑� � tt T nT t nT Ts s s s
n

) x( ) h( )= −
= −∞

∞

∑ , (14.7)

 y[ ] x[ ]h[ ] x[ ] h(( ) ).n m n m m T n m T
m

s s
m

= − = −
= −∞

∞

= −∞

∞

∑ ∑

Figure 14.20
Continuous-time and sampled-data systems when their impulse 
responses are multiplied by the time between samples Ts
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Figure 14.19
Continuous-time and sampled-data systems when the 
continuous-time system is excited by x ( )� t  instead of x( )t
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The new subsystem impulse response is h[ ] h( )n T nTs s=  and h( )t  still represents the 
impulse response of the original continuous-time system. Now in (14.7) let Ts approach 
zero. In that limit, the summation on the right-hand side becomes the  convolution inte-
gral fi rst developed in the derivation of convolution in Chapter 5,

 lim y( ) lim x( ) h( ) x( ) h
T T

s s s
ns s

t nT t nT T
→ → = −∞

∞
= − =∑

0 0
� (( )t d−

−∞

∞

∫ � �,

which is the signal y ( )c t , the response of the original continuous-time system in 
Figure 14.17 to the signal x( )t . Also, in that limit, y[ ] y ( )n nTc s= . So, in the limit, 
the spacing between points Ts approaches zero, the sampling instants nTs merge into 
a continuum t and there is a one-to-one correspondence between the signal values 
y[ ]n  and the signal values y ( )c t . The response of the sampled-data system y ( )d t  will 
be indistinguishable from the response y ( )c t  of the original system to the signal x( )t . 
Of course, in practice we can never sample at an infi nite rate, so the correspondence 
y[ ] y ( )n nTc s=  can never be exact, but it does establish an approximate equivalence 
between a continuous-time and a sampled-data system.

There is another conceptual route to arriving at the same conclusion for the 
discrete-time-system impulse response h[ ] h( )n T nTs s= . In the development above we 
formed a continuous-time impulse signal

 x ( ) x( ) ( )� �t nT t nTs s
n

= −
= −∞

∞

∑

rob80687_ch14_641-669.indd   658rob80687_ch14_641-669.indd   658 12/28/10   6:30:56 PM12/28/10   6:30:56 PM



whose impulse strengths were equal to samples of the signal x( )t . Now, instead, form a 
modifi ed version of this impulse signal. Let the new correspondence between x( )t  and 
x ( )� t  be that the strength of an impulse at nTs  is approximately the area under x( )t  in 
the sampling interval nT t n Ts s≤ < +( )1  not the value at nTs. The equivalence between 
x( )t  and x ( )� t  is now based on (approximately) equal areas (Figure 14.21). (The ap-
proximation gets better as the sampling rate is increased.)

Figure 14.21
A  comparison of  value sampling and area sampling

Value sampling Area sampling

t

x(t)

t

x(t)

t

x�(t)

t
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The area under x( )t  is approximately T nTs sx( ) in each sampling interval. There-
fore the new continuous-time impulse signal would be

 x ( ) x( ) ( )� �t T nT t nTs s s
n

= −
= −∞

∞

∑ .

If we now apply this impulse signal to a system with impulse response h( )t  we get 
exactly the same response as in (14.7)

 y( ) x( ) h( )t nT t nT Ts s s
n

= −
= −∞

∞

∑
and, of course, the same result that y[ ] y ( )n nTc s=  in the limit as the sampling rate ap-
proaches infi nity. All we have done in this development is associate the factor Ts  with the 
excitation instead of with the impulse response. When the two are convolved the result 
is the same. If we sampled signals setting impulse strengths equal to signal areas over 
a sampling interval, instead of setting them equal to signal values at sampling instants, 
then the correspondence h[ ] h( )n nTs=  would be the design correspondence between a 
continuous-time system and a  sampled-data system that simulates it. But, since we don’t 
sample that way (because most ADC’s do not work that way) we instead associate the 
factor Ts with the impulse response and form the correspondence h[ ] h( )n T nTs s= .

EXAMPLE 14.5

Design of a sampled-data system to simulate a continuous-time system

A continuous-time system is characterized by a transfer function

 H ( )c s
s s

=
+ +

1

40 3002
.
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660 Chapter  14  z-Transform System Analysis

Design a sampled-data system of the form of Figure 14.15 to simulate this system. Do the de-
sign for two sampling rates fs = 10 and fs = 100 and compare step responses.
 The impulse response of the continuous-time system is 

 h ( ) ( )( )u( )c
t tt e e t= −− −1 20 10 30/ .

The discrete-time-subsystem impulse response is then

 h [ ] ( )( )u[ ]d s
nT nTn T e e ns s= −− −/20 10 30

and the corresponding z-domain transfer function is

 H ( )d
s

T Tz
T z

z e

z

z es s
=

−
−

−
⎛
⎝⎜

⎞
⎠⎟− −20 10 30 .

The step response of the continuous-time system is

 h ( ) u( )−
− −

= − +
1

10 302 3

600
c

t t
t

e e
t .

The response of the subsystem to a unit sequence is

 h [ ]
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− −= −
− −
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⎦⎦
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and the response of the D/A converter is

 h ( ) y[ ]rect
( )

−
=

∞
= − +⎛

⎝⎜
⎞
⎠⎟∑1

0

1 2
d

s

sn

t n
t T n

T

/

(Figure 14.22).

Figure 14.22
Comparison of the step responses of a continuous-time system and two sampled-data systems that 
simulate it with different sampling rates
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For the lower sampling rate the sampled-data system simulation is very poor. It approaches 
a  forced response value that is about 78% of the forced response of the continuous-time system. 
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At the higher sampling rate the simulation is much better with a forced response approaching 
a value that is about 99% of the forced response of the continuous-time system. Also, at the 
higher sampling rate, the difference between the continuous-time response and the sampled-
data-system response is much smaller than at the lower sampling rate.

We can see why the disparity between forced values exists by examining the expression,

 y[ ]
( )( )

n
T e e

e e

es
T T

T T

s s

s s
= −

− −
+

− −

− −

−

20 1 1

10 30

10 30
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s

s

s

s

s
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e
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e
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−
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−
⎡

⎣
⎢
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1 1
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The forced response is

 y
( )( )

forced
s

T T

T T
T e e

e e

s s

s s
= −

− −

− −

− −20 1 1

10 30

10 30
.

If we approximate the exponential functions by the fi rst two terms in their series expansions, as 
e TT

ss− ≈ −10 1 10  and e TT
ss− ≈ −30 1 30  we get y forced = 1 300/ , which is the correct forced re-

sponse. However, if Ts is not small enough, the approximation of the exponential function by the 
fi rst two terms of its series expansion is not very good and actual and ideal forced values are sig-
nifi cantly different. When fs = 10, we get e Ts− =10 0 368.  and 1 10 0− =Ts  and e Ts− =30 0 0498.  
and 1 30 2− = −Ts , which are terrible approximations. But when fs = 100 we get e Ts− =10 0 905.  
and 1 10 0 9− =Ts .  and e Ts− =30 0 741.  and 1 30 0 7− =Ts . , which are much better approximations.

14.7 STANDARD REALIZATIONS OF SYSTEMS
The realization of discrete-time systems very closely parallels the realization of continuous-
time systems. The same general techniques apply and the same types of realizations result. 

 CASCADE  REALIZATION

We can realize a system in cascade form from the factored form of the transfer function

 H( )z A
z z

z p

z z

z p

z z

z p z p z p
M

M M M
= −

−
−
−

−
− − −+ +

1

1

2

2 1 2

1 1 1
� �

zz pN−

where the numerator order is M N≤  (Figure 14.23).

Figure 14.23
Overall cascade system  realization
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 PARALLEL REALIZATION

We can express the transfer function as the sum of partial fractions

 H( )z
K

z p

K

z p

K

z p
N

N
=

−
+

−
+ +

−
1

1

2

2
�

and realize the system in parallel form (Figure 14.24).
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662 Chapter  14  z-Transform System Analysis

Discrete-time systems are actually built using  digital hardware. In these systems 
the signals are all in the form of  binary numbers with a fi nite number of bits. The 
operations are usually performed in  fi xed-point arithmetic. That means all the signals 
are quantized to a fi nite number of possible values and therefore are not exact repre-
sentations of the ideal signals. This type of design usually leads to the fastest and most 
effi cient system, but the round-off error between the ideal signals and the actual signals 
is an error that must be managed to avoid noisy, or in some cases even unstable, system 
operation. The analysis of such errors is beyond the scope of this text but, generally 
speaking, the cascade and parallel realizations are more tolerant and forgiving of such 
errors than the Direct Form II canonical realization.

14.8 SUMMARY OF IMPORTANT POINTS
 1. It is possible to do analysis of discrete-time systems with the Laplace transform 

through the use of continuous-time impulses to simulate discrete time. But the z 
transform is notationally more convenient.

 2. Discrete-time systems can be modeled by difference equations or block diagrams 
in the time or frequency domain.

 3. A discrete-time LTI system is stable if all the poles of its transfer function lie in 
the open interior of the unit circle.

 4. The three most important types of system interconnections are the cascade 
connection, the parallel connection and the feedback connection.

 5. The unit sequence and sinusoid are important practical signals for testing system 
characteristics.

 6. Discrete-time systems can closely approximate the actions of continuous-time 
systems and the approximation improves as the sampling rate is increased.

 7. The Direct Form II, cascade and parallel realizations are important standard ways 
of realizing systems.

Figure 14.24
Overall parallel system realization
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  EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Stability

  1. Evaluate the stability of the systems with each of these transfer functions.

(a) H( )z
z

z
=

− 2
 (b) H( )z

z

z
=

−2 7 8/

(c) H( )
( )

z
z

z z
=

− +2 3 2 9 8/ /
 (d) H( )

. .
z

z

z z z
= −

− + −

2

3 2

1

2 3 75 0 5625

Answers: Three unstable and one stable.

 Parallel, Cascade and Feedback Connections

  2. A feedback system has a transfer function,

 H( )

.

z
K

K
z

z

=
+

−
1

0 9

.

For what range of K’s is this system stable?
Answer: K > −0 1.  or K < −1 9.

  3. Find the overall transfer functions of the systems in Figure E.3 in the form of a 
single ratio of polynomials in z.

(a) 
z-1

X(z) Y(z)

0.3

(b) 

X(z)

0.3

Y(z)

0.9

z-1 z-1

 Figure E.3

Answers: 
z

z + 0 3.
, 

z

z z

2

2 1 2 0 27+ +. .

Response to  Standard Signals

  4. Find the responses h [ ]−1 n  of the systems with these transfer functions to the unit 
sequence x[ ] u[ ]n n= .

(a) H( )z
z

z
=

− 1
 (b) H( )z

z

z
= −

−
1

1 2/

Answers: 1 2/( )n nu[ ], ramp[ ]n + 1
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664 Chapter  14  z-Transform System Analysis

  5. Find the responses y[ ]n  of the systems with these transfer functions to 
x[ ] cos( ) u[ ]n n n= 2 8� / . Then show that the forced response is the same as 
would have been obtained by using DTFT analysis with x[ ] cos( )n n= 2 8� / .

(a) H( )
.

z
z

z
=

− 0 9
 (b) H( )

. .
z

z

z z
=

− +

2

2 1 6 0 63

Answers:  y[ ] { . ( . ) . ( . ) . cos(n nn n= + +0 03482 0 7 1 454 0 9 1 9293 2 8� / −− 1 3145. )}u[ ]n , 
0 3232 0 9 1 3644 2 8 1 0517. ( . ) u[ ] . cos( . ) u[ ]n n n n+ −� /

 Root Locus

  6. Draw a root locus for each system with the given forward and feedback path 
transfer functions.

(a) H ( )1
1
1

2

z K
z

z
= −

+
, H ( )

.
2

4

0 8
z

z

z
=

−

(b) H ( )1
1
1

2

z K
z

z
= −

+
, H ( )

.
2

4

0 8
z

z
=

−

(c) H ( )1 1

4

z K
z

z
=

−
, H ( )2

1

5
3

4

z
z

z
=

+

−

(d) H ( )1 1

4

z K
z

z
=

−
, H ( )2

2
3

4

z
z

z
= +

−

(e) H ( )1
2

1
1

3

2

9

z K
z z

=
− −

, H ( )2 1z =

Answers:

Re(z)

Im(z)

Re(z)

Im(z)

, , ,

Re(z)

Im(z)

Re(z)

Im(z)

Re(z)

Im(z)

,
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 Laplace-Transform-z-Transform Relationship

  7. Graph regions in the z plane corresponding to these regions in the s plane.

(a) 0 1 0< < < <� � �/ /T Ts s,

(b) − < < − < <1 0 0/ /T Ts s� � �,

(c) −∞ < < ∞ < <� � �, 0 2 /Ts

Answers: The entire z plane, 
[z]

Re(z)

Im(z)

1

2.718 , 
[z]

Re(z)

Im(z)

10.368

 Sampled-Data Systems

  8. Using the impulse-invariant design method, design a system to approximate the 
systems with these transfer functions at the sampling rates specifi ed. Compare 
the impulse and unit step (or sequence) responses of the continuous-time and 
discrete-time systems.

(a) H( )s
s

=
+
6

6
, fs = 4 Hz  (b) H( )s

s
=

+
6

6
, fs = 20 Hz

Answers:

t
1

h�1(t) h�1[n]

1 8

Unit step response

n
10�5

Unit sequence response

h�1(t)

1

Unit step response

h�1[n]

25

Unit sequence response

t
1

n
30-5,

 System Realization

  9. Draw a cascade-form block diagram for each of these system transfer functions.

(a) H( )
( )( )

z
z

z z
=

+ −1 3 3 4/ /
 (b) H( )z

z

z z z
= −

+ + +
1

4 2 2 33 2

Answers: 
+ -

X(z) + -
Y(z)

1/3 -3/4
z-1 z-1

+

+
+ -

X(z)

+

+ -

+

Y(z)

0.888 -1 -0.388

0.8446 0.25

z-1 z-1

z-1

 10. Draw a parallel-form block diagram for each of these system transfer functions.

(a) H( )
( )( )

z
z

z z
=

+ −1 3 3 4/ /
 (b) H( )z

z z z

z z z
= − + +

+ + +
8 4 5 9

7 4 2

3 2

3 2
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666 Chapter  14  z-Transform System Analysis

Answers:

+

+

-
z-1

z-1

+ -
X(z)

Y(z)

1/3 4/13

-3/4 9/13
, 

+

+
+

+

-

X(z) Y(z)

0.8212 -0.2599

+
+

+

+ -

+

z-1

z-1

z-1

-0.2497

0.3479

-0.9646

1.278

1.143

EXERCISES WITHOUT ANSWERS

Stability

 11. If ( . ) cos( ) H ( )1 1 2 16 1
n n z� / Z← →⎯ , and H ( ) H ( )2 1z az=  and H ( )1 z  and H ( )2 z  are 

transfer functions of systems #1 and #2 respectively, what range of values of a 
will make system #2 stable and physically realizable? 

Parallel, Cascade and Feedback Connections

 12. A feedback system has a forward path transfer function H ( )
.

1
0 5

z
Kz

z
=

−
 and a 

feedback path transfer function H ( )2
14z z= − . For what range of values of K is 

the system stable?

 13. Find the overall transfer functions of the systems in Figure E.13 in the form of a 
single ratio of polynomials in z.

(a) 

z-1

z-1

X(z)

0.6

Y(z)

0.8

(b) 

z-1

z-1

0.6X(z) Y(z)

0.8

 Figure E.13
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Response to Standard Signals

 14. A system has a transfer function

 H( )
.

z
z

z z
=

+ +2 0 24
.

  If a unit sequence u[ ]n  is applied to this system, what are the values of the re-
sponses y[ ]0 , y[ ]1 , and y[ ]2 ?

 15. Find the responses y[ ]n  of the systems with these transfer functions to the unit 
sequence x[ ] u[ ]n n= .

(a) H( )
. .

z
z

z z
=

− +2 1 8 0 82

(b) H( )
.

( . )
z

z z

z z
= − +

−

2 1 932 1

0 95

 16. In Figure E.16 are 6 pole-zero diagrams for 6 discrete-time system transfer 
functions.

(a) Which of these systems have an impulse response that is monotonic? 
(b) Of those systems that have a monotonic impulse response, which one has the 

fastest response to a unit sequence? 
(c) Of those systems that have an oscillatory or ringing impulse response, 

which one rings at the fastest rate and has the largest overshoot in its 
response?

 1 2 3

 

Re

Im

[z]

Re

Im

[z]

2 Re

Im

[z]

2

 4 5 6

 

Re

Im

[z]

2 Re

Im

[z]

2 Re

Im

[z]

 Figure E.16

 17. Answer the following questions.

(a) A digital fi lter has an impulse response h[ ] . u[ ]n nn= 0 6 . If it is excited by a 
unit sequence, what is the fi nal value of the response?

 limg[ ] lim( ) G( )
n z

n z z
→∞ →

= −⎛
⎝

⎞
⎠1

1
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668 Chapter  14  z-Transform System Analysis

(b) A digital fi lter has a transfer function H( )
.

z
z

z
=

−
10

0 5
. At what radian frequency

 � is its magnitude response a minimum? 

(c) A digital fi lter has a transfer function H( )
( )

.
z

z

z
= −

−
10 1

0 3
. At what radian 

 frequency � is its magnitude response a minimum? 

(d) A digital fi lter has a transfer function H( )
.

z
z

z
=

−
2

0 7
. What is the magnitude 

of its response at a radian frequency of � = �/2?

Laplace-Transform-z-Transform Relationship

 18. For any given sampling rate fs the relationship between the s and z planes is 
given by z esTs=  where T fs s= 1/ . Let fs = 100.

(a) Describe the contour in the z plane that corresponds to the entire negative 
� axis in the s plane.

(b) What is the minimum length of a line segment along the � axis in the s plane 
that corresponds to the entire unit circle in the z plane?

(c) Find the values of two different points in the s plane s1 and s2 that correspond 
to the point z = 1 in the z plane.

Sampled-Data Systems

 19. Using the impulse-invariant design method, design a system to approximate the 
systems with these transfer functions at the sampling rates specifi ed. Compare 
the impulse and unit step (or sequence) responses of the continuous-time and 
discrete-time systems.

(a) H( )s
s

s s
=

+ +
712

46 2402 , fs = 20 Hz

(b) H( )s
s

s s
=

+ +
712

46 2402 , fs = 200 Hz

System Realization

 20. Draw a cascade-form block diagram for each of these system transfer functions.

(a) H( )
. .

z
z

z z

z

z
=

− −
+

−

2

2 0 1 0 12 1
 

(b) H( )z

z

z
z

z

z

z

= −

+
− −

1

1
1 1 2

2

2 /

 21. Draw a parallel-form block diagram for each of these system transfer functions.

(a) H( ) ( )
( . )( . )

z z
z z

= +
− +

−1
18

0 1 0 7
1  

(b) H( )z

z

z
z

z

z

z

= −

+
− −

1

1
1 1 2

2

2 /
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General

 22. In Figure E.22 are some descriptions of systems in different forms. 

(a) Which of these systems are unstable (including marginally stable)? 
(b) Which of these systems have one or more zeros on the unit circle?

+ -

z–1
0.7

x[n]

y[n]

x[n] +
+

y[n]

D
1.1

x[n] y[n]

D
-

+

 A B C

H( )z
z

z
= −

+
1

1
  y[ ] x[ ] x[ ]n n n= + − 1   2 1y[ ] y[ ] x[ ]n n n− − =

 D E F

H( )z
z z

z
= + +2

2

1
  Y( ) X( ) . Y( ) . Y( )z z z z z z= − +− −0 8 1 11 2

 G H

Figure E.22
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670

15.1 INTRODUCTION AND GOALS
One of the most important practical systems is the fi lter. Every system is, in one 
sense, a fi lter because every system has a frequency response that attenuates some 
frequencies more than others. Filters are used to tailor the sound of music according 
to personal tastes, to smooth and eliminate trends from signals, to stabilize otherwise 
unstable systems, to remove undesirable noise from a received signal, and so on. 
The study of the analysis and design of fi lters is a very good example of the  use of 
transform methods.

C H A P T E R  G OA L S

 1. To become familiar with the most common types of optimized continuous-time 
fi lters, to understand in what sense they are optimal and to be able to design them 
to meet specifi cations

 2. To become familiar with the fi lter design and analysis tools in MATLAB

 3. To understand how to convert one type of fi lter to another through a change of 
variable

 4. To learn methods of simulating optimized continuous-time fi lters with 
discrete-time fi lters and to understand the relative advantages and disadvantages 
of each method

 5. To explore both infi nite-duration and fi nite-duration discrete-time fi lter 
designs and to understand the relative advantages and disadvantages of 
each method

15.2  ANALOG FILTERS
In this chapter continuous-time fi lters will be referred to as analog fi lters and discrete-
time fi lters will be referred to as  digital fi lters. Also, when discussing both analog and 
digital fi lters the subscript a will be used to indicate functions or parameters applying 
to analog fi lters and the subscript d will be used similarly for functions or parameters 
applying to digital fi lters. 

 15 C H A P T E R

Filter Analysis and Design
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 BUTTERWORTH FILTERS

 Normalized Butterworth Filters
A very popular type of analog fi lter is the Butterworth fi lter, named after British en-
gineer S. Butterworth, who invented it. An nth order lowpass Butterworth fi lter has a 
frequency response whose squared magnitude is 

 H ( )
( )

.a
c

nj�
� �

2
2

1

1
=

+ /

The lowpass Butterworth fi lter is designed to be   maximally fl at for frequencies in its 
passband � < �c, meaning its variation with frequency in the passband is monotonic and 
approaches a zero derivative as the frequency approaches zero. Figure 15.1 illustrates 
the frequency response of a Butterworth fi lter with a corner frequency of �c = 1 for four 
different orders n. As the order is increased the fi lter’s magnitude frequency response 
approaches that of an ideal lowpass fi lter. 

Figure 15.1
Butterworth fi lter magnitude frequency responses for a corner 
frequency, �c = 1, and four different orders

�5 �4 �3 �2 �1 1 2 3 4 5
�

�Ha( j�)�

n � 1

n � 2

n � 4n � 8

2
1

1

Figure 15.2
Butterworth fi lter pole locations

n � 2

�

�

�c
�

�

90�
60�

60�
�

n � 1

�

�

�c

�

n � 3

�

�

�c�

�

The poles of a lowpass Butterworth fi lter lie on a semicircle of radius �c in the 
open left half-plane (Figure 15.2). The number of poles is n and the angular spacing 
between poles (for n > 1) is always �/n. If n is odd, there is a pole on the negative real 
axis and all the other poles occur in complex conjugate pairs. If n is even, all the poles 
occur in complex conjugate pairs. Using these properties, the transfer function of a 
unity-gain lowpass Butterworth fi lter can always be found and is of the form

 H ( )
( )( ) ( )

a
n kk

n

s
s p s p s p s p

=
− − −

=
−

= −
=

∏1

1 1 1

1

11 2 1/ / / /�
pp

s p
k

kk

n

−=
∏

1

where the pk’s are the pole locations.
The MATLAB signal toolbox has functions for  designing analog Butterworth 

fi lters. The MATLAB function call,

[za,pa,ka] = buttap(N);

returns the fi nite zeros in the vector za, the fi nite poles in the vector pa, and the gain 
coeffi cient in the scalar ka, for an N-th order, unity-gain, Butterworth lowpass fi lter 

 15.2 Analog Filters 671
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672 Chapter  15  Filter Analysis and Design

with a corner frequency, �c = 1. (There are no fi nite zeros in a lowpass Butterworth 
fi lter transfer function so za is always an empty vector and, since the fi lter is unity-
gain, ka is always one. The zeros and gain are included in the returned data because 
this form of returned data is used for other types of fi lters, for which there may be fi nite 
zeros and the gain may not be one.)

>> [za,pa,ka] = buttap(4) ;
>> za
za =
 []
>> pa
pa =
 -0.3827 + 0.9239i
 -0.3827 - 0.9239i
 -0.9239 + 0.3827i
 -0.9239 - 0.3827i
>> ka
ka =
 1

 Filter Transformations
Once a design has been done for a lowpass Butterworth fi lter of a given order with a 
corner frequency �c = 1 the conversion of that fi lter to a different corner frequency and/or 
to a highpass, bandpass or bandstop fi lter can be done with a change of the frequency 
variable. MATLAB allows the designer to quickly and easily design an nth-order lowpass 
Butterworth fi lter with unity gain and a corner frequency �c = 1. Denormalizing the 
gain to a nonunity gain is trivial since it simply involves changing the gain coeffi cient. 
Changing the corner frequency or the fi lter type is a little more involved.

To change the frequency response from a corner frequency �c = 1 to a general 
corner frequency �c ≠ 1, make the independent-variable change s → s/�c in the trans-
fer function. For example, a fi rst-order, unity-gain, normalized Butterworth fi lter has 
a transfer function

 H ( ) .norm s
s

=
+
1

1

If we want to move the corner frequency to �c = 10, the new transfer function is

 H ( ) H ( ) .10 10
1

10 1

10

10
s s

s s
norm= =

+
=

+
/

/

This is the transfer function of a unity-gain lowpass fi lter with a corner frequency �c = 10.
The real power of the fi lter transformation process is seen in  converting a lowpass 

fi lter to a highpass fi lter. If we make the change of variable s → 1/s then

 H ( ) H ( )HP norms s
s

s

s
= =

+
=

+
1

1

1 1 1
/

/

and HHP(s) is the transfer function of a fi rst-order, unity-gain, highpass Butterworth 
fi lter with a corner frequency �c = 1. We can also simultaneously change the corner 
frequency by making the change of variable s → �c /s. We now have a transfer function 
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with one fi nite pole and one fi nite zero at s = 0. In the general form of the transfer 
function of a normalized lowpass Butterworth fi lter

 H ( )norm
k

kk

n

s
p

s p
= −

−=
∏

1

when we make the change of variable s → 1/s we get

 H ( )HP
k

kk

n

s s

k

kk

n

s
p

s p

p

s p

p= −
−

⎡

⎣
⎢

⎤

⎦
⎥ = −

−
=

= → =
∏ ∏

1 1 1 1
/

/
kk

k kk

n

k

n s

p s

s

s p− −==
∏∏ 1 111 /

.

The poles are at s = 1/pk. They are the reciprocals of the normalized lowpass fi lter 
poles, all of which have a magnitude of one. The reciprocal of any complex number 
is at an angle that is the negative of the angle of the complex number. In this case, 
since the magnitudes of the poles have not changed, the poles move to their complex 
conjugates and the overall constellation of poles is unchanged. Also, there are now 
n zeros at s = 0. If we make the change of variable s → �c /s, the poles have the same 
angles but their magnitudes are now all �c instead of one. 

 Transforming a lowpass fi lter into a  bandpass fi lter is a little more complicated. We 
can do it by using the change of variable

 s
s

s
L H

H L
→ +

−

2 � �

� �( )
 

where �L is the lower positive corner frequency of the bandpass fi lter and �H is the 
higher positive corner frequency. For example, let’s design a fi rst-order, unity-gain, 
bandpass fi lter with a passband from � = 100 to � = 200 (Figure 15.3).

H ( ) H
( )

(

H

H
BP norm

L

L L H

H

s
s

s s
s

= +
−

⎛
⎝⎜

⎞
⎠⎟

=
+

−

2

2

1� �

� � � �

� ��

� �

� � � �

L

H L

H L L H

s

s s
)

( )

( )+
= −

+ − +
1

2

 H ( )
( )

( )
BP

H L

H L L H
j

j

j
�

� � �

� � � � � �
= −

− + − +2

Figure 15.3
Magnitude frequency response of a unity-gain, fi rst-order 
bandpass Butterworth fi lter

1000

�1

�

�1000 200
100�100

�200

�HBP( j�)�

1

2

Simplifying and inserting numerical values,

 H ( )
, ( .

BP j
j

j

j

j j
�

�

� �

�

�
=

− + +
=

+ +
100

100 20 000

100

50 1322 22 50 132 2)( . )
.

j j� + −
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674 Chapter  15  Filter Analysis and Design

 The peak of the bandpass response occurs where the derivative of the frequency 
response with respect to � is zero. 

d

d
j

j j j

BP

H L L H H L H

�
�

� � � � � � � � � � �

H

( ( ) ) ( ) (

( )

= − + − + − − −2
LL H L

H L L H

j

j

)( ( ))

[ ( ) ]

− + −
− + − +

=2
02 2

� � �

� � � � � �

 
( ( ) ) ( )− + − + + − − =

⇒ + = ⇒

� � � � � � � � � �

� � �

2 2

2

2 0

0

j jH L L H H L

L H �� � �= ± L H

So the natural radian frequency is � � �n L H= ± . Also, to conform to the standard 
second-order system transfer function form,

 j jn H L
H L

L H
2

2
�� � � � � �

� �

� �
= − ⇒ = −

( ) .

So the damping ratio is �
� �

� �
= −H L

H L2
.

 Finally, we can transform a lowpass fi lter into a bandstop fi lter with the 
transformation

 s
s

s
L

L
→ −

+
( )

.H

H

� �

� �2

Notice that for a lowpass fi lter of order n the degree of the denominator of the transfer 
function is n, but for a bandpass of order n the degree of the denominator of the transfer 
function is 2n. Similarly, for a highpass fi lter the denominator degree is n and for a 
bandstop fi lter the degree of the denominator is 2n.

MATLAB  Design Tools
MATLAB has commands for the  transformation of  normalized fi lters. They are 

lp2bp Lowpass to bandpass analog fi lter transformation
lp2bs Lowpass to  bandstop analog fi lter transformation
lp2hp Lowpass to highpass analog fi lter transformation
lp2lp Lowpass to lowpass analog fi lter transformation

The syntax for lp2bp is 

[numt,dent] = lp2bp(num,den,w0,bw)

where num and den are vectors of coeffi cients of s in the numerator and denomina-
tor of the normalized lowpass fi lter transfer function, respectively, w0 is the center 
frequency of the bandpass fi lter and bw is the bandwidth of the bandpass fi lter (both 
in rad/s), and numt and dent are vectors of coeffi cients of s in the numerator and 
denominator of the bandpass fi lter transfer function. The syntax of each of the other 
commands is similar.

As an example, we can design a normalized  lowpass Butterworth fi lter with   buttap.

»[z,p,k] = buttap(3) ;
»z
z =
 []
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»p
p =
 -0.5000 + 0.8660i
 -1.0000 
 -0.5000 - 0.8660i
»k
k =
 1

This result indicates that a third-order normalized lowpass Butterworth fi lter has the 
frequency response

 H ( )
( )( . . )( . . )

.L P s
s s j s j

=
+ + + + −

1

1 0 5 0 866 0 5 0 866

We can convert this to a ratio of polynomials using MATLAB   system-object commands.

»[num,den] = tfdata(zpk(z,p,k),’v’) ;
»num

num =

 0 0 0 1

»den

den =

 1.0000 2.0000 + 0.0000i 2.0000 + 0.0000i 1.0000 + 0.0000i

This result indicates that the normalized lowpass frequency response can be written 
more compactly as

 H ( ) .L P s
s s s

=
+ + +

1

2 2 13 2

Using this result we can transform the normalized lowpass fi lter to a denormalized 
bandpass fi lter with center frequency � = 8 and bandwidth �� = 2.

»[numt,dent] = lp2bp(num,den,8,2) ;
»numt
numt =
 Columns 1 through 4 
  0 0.0000 - 0.0000i 0.0000 - 0.0000i 8.0000 - 0.0000i
 Columns 5 through 7 
 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
»dent
dent =
 1.0e+05 *
 Columns 1 through 4 
 0.0000 0.0000 + 0.0000i 0.0020 + 0.0000i 0.0052 + 0.0000i
 Columns 5 through 7 
 0.1280 + 0.0000i 0.1638 + 0.0000i 2.6214 - 0.0000i
»bpf = tf(numt,dent) ;
»bpf
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676 Chapter  15  Filter Analysis and Design

Figure 15.4
Typical magnitude frequency responses of Butterworth, Chebyshev and 
Elliptic fi lters
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Transfer function:
1.542e-14 s^5 + 2.32e-13 s^4 + 8 s^3 + 3.644e-11 s^2 + 
9.789e-11 s + 9.952e-10
------------------------------------------------------------
 s^6 + 4 s^5 + 200 s 4̂ + 520 s^3 + 1.28e04 s^2 + 1.638e04 s + 
2.621e05
»

This result indicates that the  bandpass-fi lter transfer function can be written as

 H ( )BP s
s

s s s s s s
=

+ + + + + +
8

4 200 520 12800 16380 262

3

6 5 4 3 2 1100
.

(The extremely small nonzero coeffi cients in the numerator of the transfer function 
reported by MATLAB are the result of round-off errors in the MATLAB calculations 
and have been neglected. Notice they did not appear in numt.)

 CHEBYSHEV, ELLIPTIC AND  BESSEL FILTERS

We have just seen how the MATLAB command buttap can be used to design a 
normalized Butterworth fi lter and how to denormalize it to other Butterworth fi lters. 
There are several other MATLAB commands that are useful in analog fi lter design. 
There are four other “...ap” commands, cheb1ap, cheb2ap, ellipap and 
besselap that design normalized analog fi lters of optimal types other than the 
Butterworth fi lter. The other optimal analog fi lter types are the Chebyshev (sometimes 
spelled Tchebysheff or Tchebischeff) fi lter, the  Elliptic fi lter (sometimes called the 
Cauer fi lter) and the Bessel fi lter. Each of these fi lter types optimizes the performance 
of the fi lter according to a different criterion. 

The Chebyshev fi lter is similar to the Butterworth fi lter but has an extra degree of 
design freedom (Figure 15.4). 
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The Butterworth fi lter is called maximally fl at because it is monotonic in the pass 
and stop bands and approaches a fl at response in the passband as the order is increased. 
There are two types of Chebyshev fi lter, types one and two. The  type-one Chebyshev 
has a frequency response that is not monotonic in the passband but is monotonic in the 
stopband. Its frequency response  ripples (varies up and down with frequency) in the 
passband. The presence of ripple in the passband is usually not in itself desirable but it 
allows the transition from the passband to the stopband to be faster than a Butterworth 
fi lter of the same order. In other words, we trade passband monotonicity for a narrower 
transition band. The more ripple we allow in the passband, the narrower the transition 
band can be. The  type-two Chebyshev fi lter is just the opposite. It has a monotonic 
passband and ripple in the stop band and, for the same fi lter order, also allows for a 
narrower transition band than a  Butterworth fi lter.

The Elliptic fi lter has ripple in both the passband and stopband and, for the same 
fi lter order, it has an even narrower transition band than either of the two types of 
Chebyshev fi lter. The Bessel fi lter is optimized on a different basis. The Bessel fi lter is 
optimized for linearity of the phase in the passband rather than fl at magnitude response 
in the passband and/or stopband, or narrow transition band.

The syntax for each of these  normalized analog fi lter designs is given below.

[z,p,k] =  cheb1ap(N,Rp) ;
[z,p,k] =  cheb2ap(N,Rs) ;
[z,p,k] =  ellipap(N,Rp,Rs) ;
[z,p,k] =  besselap(N) ;-

where N is the order of the fi lter, Rp is allowable ripple in the passband in dB and Rs 
is allowable ripple in the stop band in dB.

Once a fi lter has been designed, its frequency response can be found using either 
bode, which was introduced earlier, or freqs. The function  freqs has the syntax

H = freqs(num,den,w) ;

where H is a vector of responses at the real radian-frequency points in the vector w, 
and num and den are vectors containing the coeffi cients of s in the numerator and 
denominator of the fi lter transfer function.

EXAMPLE 15.1

Comparison of fourth-order bandstop Butterworth and Chebyshev fi lters using 
MATLAB

Using MATLAB, design a normalized fourth-order lowpass  Butterworth fi lter, transform it into 
a denormalized bandstop fi lter with a center frequency of 60 Hz and a bandwidth of 10 Hz then 
compare its frequency response with a  type-one Chebyshev bandstop fi lter of the same order 
and corner frequencies and an allowable ripple in the pass band of 0.3 dB.

% Butterworth design

% Design a normalized fourth-order Butterworth lowpass fi lter

% and put the zeros, poles and gain in zb, pb and kb

[zb,pb,kb] = buttap(4) ; 
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678 Chapter  15  Filter Analysis and Design

% Use MATLAB system tools to obtain the numerator and 

% denominator coeffi cient vectors, numb and denb

[numb,denb] = tfdata(zpk(zb,pb,kb),’v’) ;

% Set the cyclic center frequency and bandwidth and then set

% the corresponding radian center frequency and bandwidth

f0 = 60 ; fbw = 10 ; w0 = 2*pi*f0 ; wbw = 2*pi*fbw ;

% Denormalize the lowpass Butterworth to a bandstop Butterworth

[numbsb,denbsb] = lp2bs(numb,denb,w0,wbw) ;

% Create a vector of cyclic frequencies to use in plotting the

% frequency response of the fi lter. Then create a corresponding

% radian-frequency vector and compute the frequency response.

wbsb = 2*pi*[40:0.2:80]’ ; Hbsb = freqs(numbsb,denbsb,wbsb) ;

% Chebyshev design

% Design a normalized fourth-order type-one Chebyshev lowpass

% fi lter and put the zeros, poles and gain in zc, pc and kc

[zc,pc,kc] = cheb1ap(4,0.3) ; wc = wb ;

% Use MATLAB system tools to obtain the numerator and 

% denominator coeffi cient vectors, numc and denc

[numc,denc] = tfdata(zpk(zc,pc,kc),’v’) ;

% Denormalize the lowpass Chebyshev to a bandstop Chebyshev

[numbsc,denbsc] = lp2bs(numc,denc,w0,wbw) ;

% Use the same radian-frequency vector used in the Butterworth

% design and compute the frequency response of the Chebyshev

% bandstop fi lter.

wbsc = wbsb ; Hbsc = freqs(numbsc,denbsc,wbsc) ;

The magnitude frequency responses are compared in Figure 15.5. Notice that the Butterworth fi lter 
is monotonic in the passbands while the Chebyshev fi lter is not, but that the Chebyshev fi lter has a 
steeper slope in the transition between pass and stop bands and slightly better stopband attenuation.
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15.3  DIGITAL FILTERS
The analysis and design of analog fi lters is a large and important topic. An equally 
large and important topic (maybe even more important) is the design of digital fi lters 
that simulate some of the popular kinds of standard analog fi lters. Nearly all discrete-
time systems are fi lters in a sense because they have frequency responses that are not 
constant with frequency.

SIMULATION OF ANALOG FILTERS

There are many optimized standard fi lter design techniques for analog fi lters. One very 
popular way of designing digital fi lters is to simulate a proven analog fi lter design. 
All the commonly used standard analog fi lters have s-domain transfer functions that 
are ratios of polynomials in s and therefore have impulse responses that endure for an 
infi nite time. This type of impulse response is called an   infi nite-duration impulse 
response (IIR). Many of the techniques that simulate the analog fi lter with a digital 
fi lter create a digital fi lter that also has an infi nite-duration impulse response, and these 
types of digital fi lters are called  IIR fi lters. Another popular design method for digital 
fi lters produces fi lters with a fi nite-duration impulse response and these fi lters are 
called  FIR fi lters.

In the following discussion of simulation of analog fi lters with digital fi lters 
the analog fi lter’s impulse response will be ha(t), its transfer function will be Ha(s), the 
digital fi lter’s impulse response will be hd[n] and its transfer function will be Hd (z).

FILTER  DESIGN TECHNIQUES

 IIR Filter Design

 Time-Domain Methods
Impulse-Invariant Design One approach to digital fi lter design is to try to make 
the digital fi lter response to a standard digital excitation a sampled version of the 
analog fi lter response to the corresponding standard continuous-time excitation. This 
idea leads to the impulse-invariant and  step-invariant design procedures. Impulse- 
invariant design makes the response of the digital fi lter to a discrete-time unit impulse a 

Figure 15.5
Comparison of the Butterworth and Chebyshev magnitude 
frequency responses
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680 Chapter  15  Filter Analysis and Design

sampled version of the response of the analog fi lter to a continuous-time unit impulse. 
Step-invariant design makes the response of the digital fi lter to a unit sequence a sampled 
version of the response of the analog fi lter to a unit step. Each of these design processes 
produces an IIR fi lter (Figure 15.6).

Figure 15.6
The impulse-invariant and step-invariant digital fi lter design techniques
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We know from sampling theory that we can  impulse sample the analog fi lter impulse 
response ha(t) to form hδ(t) whose Laplace transform is Hδ(s) and whose CTFT is

 H ( ) H ( ( )).� � � �j f j ks a s
k

= −
=−∞

∞

∑

where Ha(s) is the analog fi lter’s transfer function and �s = 2�fs. We also know that we 
can sample ha(t) to form hd[n] whose z transform is Hd (z) and whose DTFT is

 H ( ) H ( ( ))d
j

s a s
k

e f j f k	 	= −
=−∞

∞

∑ 2�  (15.1)

So it is apparent that the digital fi lter’s frequency response is the sum of  scaled aliases 
of the analog fi lter’s frequency response and, to the extent that the aliases overlap, the 
two frequency responses must differ. As an example of  impulse-invariant design, let 
Ha(s) be the transfer function of a second-order, Butterworth lowpass fi lter with low-
frequency gain of A and cutoff frequency of �c radians per second.

 H ( ) .a
c

c c
s

A

s s
=

+ +
�

� �

2

2 22

Then, inverse Laplace transforming,

 h ( ) sin( )u( )/
a c

t
ct A e t tc= −2 22� �� /

Now sample at the rate fs to form h [ ] sin( )u[ ]d c
nT

c sn A e nT nc s= −2 22� �� / /  
(Figure 15.7) and 

 H ( )
sin( )

cos(
d c

T
c s

T
z A

ze T

z e

c s

c s
=

−

−

−
2

2

2

2

2 2
�

�

�

�

�

/

/

/

cc s
TT z e c s/ /2 2 2) + − �
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or

 H ( )
sin( )

d
j

c

j T
c s

j T
e A

e e T

e e

c s

c s

	
	

	
=

−

−

−
2

2

2

2

2
�

��

�

/

/

/
22 2 22cos( )� �

c s
j TT e e c s/ /	 + −   (15.2)

Equating the two forms (15.1) and (15.2),

 

H ( )
[ ( )] ( )

d
j

s
c

s c s ck

e f
A

jf k j f k
	

	 	
=

− + − +=

�

� � � �

2

2 22 2 2−−∞

∞

−

∑

= sin( )
2

22

A
e e T

e
c

j T
c s

c s

�
��	 / /

jj T
c s

j Te T e ec s c s2 2 2 22 2	 	− +− −� ��/ //cos( )
.

If we let A = 10 and �c = 100 and sample at a rate of 200 samples/second, then

 H ( )
[ ( )] ( )

d
j

k

e
j k j k

	

	 	
=

− + − +=−∞

∞

∑2000
1

2 2 2 2 2 12� �
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/

/d
j

j

j
e

e e

e e
	

	

	
=

−

−

−
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1 2 2

2 1 2 2

/

11 2 2

343 825

1
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2

/ /)

.

.

e e

e

e

j

j

j

	

	

	

+

=
−

−

331751 0 49306e j	 + .
.

As a check compare the two forms at 	 = 0.
The complete  digital-fi lter frequency response is shown in Figure 15.8. The heavy 

line is the actual frequency response and the light lines are the individual  scaled aliases of 
the analog fi lter’s frequency response. The difference between the analog fi lter’s response 
at zero frequency and the digital fi lter’s response at zero frequency is about −2% due to 
the effects of aliasing.

This fi lter can be realized directly from its transfer function in Direct Form II.

 H ( )
Y ( )

X ( )

.

. .
d

d

d
z

z

z

z

z z
= =

− +
343 825

1 31751 0 493062

or

 z z z z z z zd d d d
2 1 31751 0 49306 343 825Y ( ) . Y ( ) . Y ( ) . X (− + = ))

Figure 15.7
Analog and digital fi lter impulse responses
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682 Chapter  15  Filter Analysis and Design

Rearranging and solving for Yd(z)

 Y ( ) . X ( ) . Y ( ) .d d dz z z z z z= + −− − −343 825 1 31751 0 493061 1 22 Y ( )d z

Then, inverse z transforming

 y [ ] . x [ ] . y [ ] . y [d d d dn n n n= − + − −343 825 1 1 31751 1 0 49306 −− 2]  (Figure 15.9).

Figure 15.8
Digital fi lter frequency response showing the effects of  aliasing
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Figure 15.9
Block diagram of a lowpass fi lter designed 
using the impulse-invariant method
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To illustrate a subtlety in this design method, consider a fi rst-order lowpass analog 
fi lter whose transfer function is 

 H ( ) H ( )a
c

c
a

c

c
s

A

s
j

A

j
=

+
⇒ =

+
�

�
�

�

� �

with impulse response

 h ( ) u( ).a c
tt A e tc= −� �

Sample at the rate fs to form h [ ] u[ ]d c
nTn A e nc s= −� �  and 

 H ( ) H ( )d c T d
j

c

j

j Tz A
z

z e
e A

e

e ec s c s
=

−
⇒ =

−− −� �
� �

	
	

	  (15.3)
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and the frequency response can be written in the two equivalent forms

 H ( )
( )

d
j

s
c

s ck
c

j

je f
A

jf k
A

e

e e c

	
	

		
=

− +
=

−= −∞

∞

−∑ �

� �
�

�2 TTs
.

Let a = 10, �c = 50 and fs = 100 and again check the equality at 	 = 0.

 f
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These two results, which should be equal, differ by almost 25% at 	 = 0. The two 
frequency responses are illustrated in Figure 15.10.
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Figure 15.10
Digital fi lter frequency response showing an apparent error between two 
frequency responses that should be equal

The question, of course, is why are they different? The error arises from the 
statement above that the digital fi lter impulse response found by sampling the analog 
fi lter impulse response is h [ ] u[ ]d c

nTn A e nc s= −� � . The analog impulse response has a 
discontinuity at t = 0. So what should the sample value be at that point? The impulse 
response h [ ] u[ ]d c

nTn A e nc s= −� �  implies that the sample value at t = 0 is A�c. But 
why isn’t a sample value of zero just as valid since the discontinuity extends from zero 
to A�c? If we replace the fi rst sample value of A�c with A�c /2, the average of the two 
limits from above and below of the analog fi lter’s impulse response at t = 0, then the 
two formulas for the digital fi lter frequency response agree exactly. So it would seem that 
when sampling at a discontinuity the best value to take is the average value of the two 
limits from above and below. This is in accord with  Fourier transform theory for which 
the Fourier transform representation of a discontinuous signal always goes through the 
midpoint of a discontinuity. This problem did not arise in the previous analysis of the 
second-order Butterworth lowpass fi lter because its impulse response is continuous.

Given the error in the fi rst-order lowpass digital fi lter design due to sampling at 
a discontinuity, one might suggest that, to avoid the problem, we could simply delay 
the analog fi lter’s impulse response by some small amount (less than the time between 
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684 Chapter  15  Filter Analysis and Design

samples) and avoid sampling at a discontinuity. That can be done and the two forms of 
the digital fi lter’s frequency response again agree exactly.

The MATLAB signal toolbox has a command  impinvar that does impulse-in-
variant digital fi lter design. The syntax is

[bd,ad] =  impinvar(ba,aa,fs)

where ba is a vector of coeffi cients of s in the numerator of the analog fi lter transfer 
function, aa is a vector of coeffi cients of s in the denominator of the analog fi lter 
transfer function, fs is the sampling rate in Hz, bd is a vector of coeffi cients of z in the 
numerator of the digital fi lter transfer function and ad is a vector of coeffi cients of z in 
the denominator of the digital fi lter transfer function. Its transfer function is not identi-
cal to the impulse-invariant design result given here. It has a different gain constant and 
is shifted in time, but the impulse response shape is the same (see Example 15.2).

EXAMPLE 15.2

 Digital bandpass fi lter design using the   impulse-invariant method

Using the impulse-invariant design method, design a digital fi lter to simulate a unity-gain, 
second-order,  bandpass, Butterworth analog fi lter with corner frequencies 150 Hz and 200 Hz 
and a sampling rate of 1 kHz. The transfer function is

 H ( )
.

. . .
a s

s

s s s
= ×

+ + × + ×
9 87 10

444 3 2 467 10 5 262 10

4 2

4 3 6 2 88 121 403 10s + ×.

and the impulse response is

 h ( ) [ . cos( . . ) ..
a

tt e t e= − +− −246 07 1199 4 1 48 200 5122 41 999 74 977 27 1 683. cos( . . )]u( )t t t+

Compare the frequency responses of the analog and digital fi lters.
 This impulse response is the sum of two exponentially damped sinusoids with time constants 
of about 8.2 ms and 10 ms, and sinusoidal frequencies of 1199.4/2� ≈ 190.9 and 977.27/2� ≈ 
155.54 Hz. For a reasonably accurate simulation we should choose a sampling rate such that the 
sinusoid is oversampled and there are several samples of the exponential decay per time constant. 
Let the sampling rate fs be 1 kHz. Then the discrete-time impulse response would be

 h [ ] [ . cos( . . ) ..
d

nn e n e= − +−246 07 1 1994 1 48 200 50 12241 −− +0 09974 0 97727 1 683. cos( . . )]u[ ]n n n

The z transform of this discrete-time impulse response is the transfer function,

 H ( )
. . .

. .
d z

z z z

z z z
= − +

− + −
48 4 107 7 51 46

1 655 2 252 1

3 2

4 3 2 .. .
.

319 0 6413z +

The  analog and digital fi lters’ impulse responses are illustrated in Figure 15.11.

Figure 15.11
Analog and digital fi lter impulse responses
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 The magnitude frequency responses of the analog and digital fi lters are illustrated in 
Figure 15.12 and their pole-zero diagrams are in Figure 15.13.
 Two things immediately stand out about this design. First, the analog fi lter has a response of 
zero at f = 0 and the digital fi lter does not. The digital fi lter’s frequency response at 	 = 0 is about 
0.85% of its peak frequency response. Since this fi lter is intended as a bandpass fi lter, this is an 
undesirable design result. The gain of the digital fi lter is much greater than the gain of the analog 
fi lter. The gain could be made the same as the analog fi lter by a simple adjustment of the multipli-
cation factor in the expression for Hd (z). Also, although the frequency response does peak at the 
right frequency, the attenuation of the digital fi lter in the stop band is not as good as the analog 
fi lter’s attenuation. If we had used a higher sampling rate the attenuation would have been better.
 Doing this design with MATLAB’s   impinvar command,

>> [bd,ad] = impinvar([9.87e4 0 0],[1 444.3 2.467e6 5.262e8 
1.403e12],1000)
bd =

2
σ

ω
[s]

-122.4077

-99.7364

-1199.4107

-977.2666

977.2666

1199.4107

Re(z)

Im(z)
[z]

0.3211
0.5062
0.69427

1.5316

-0.82447
-0.75028

0.75028
0.82447

Figure 15.13
 Pole-zero diagrams of the analog fi lter and its  digital simulation by the impulse-invariant method

Figure 15.12
Magnitude frequency responses of the analog fi lter and its digital simulation by 
the impulse-invariant method
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686 Chapter  15  Filter Analysis and Design

 -0.0000 0.0484 -0.1077 0.0515
ad =
 1.0000 -1.6547 2.2527 -1.3188 0.6413

The resulting transfer function is

 H ( )
Y( )

X( )

. . .

.
M z

z

z

z z

z
= = − +

−
0 0484 0 1077 0 0515

1 6547

2

4 zz z z3 22 2527 1 3188 0 6413+ − +. . .
.

Compare this to the result above

 H ( )
. . .

. .
d z

z z z

z z z
= − +

− + −
48 4 107 7 51 46

1 655 2 252 1

3 2

4 3 2 .. .
.

319 0 6413z +

The relation between them is

 H ( ) ( )H ( ).M s dz z f z= −1/

So  MATLAB’s version of impulse-invariant design divides the transfer function by the sampling 
rate, changing the fi lter’s gain constant and multiplies the transfer function by z–1, delaying the 
impulse response by one unit in discrete time. Multiplication by a constant and a time shift are 
the two things we can do to a signal without distorting it. Therefore the two impulse responses, 
although not identical, have the same shape.

 Step-Invariant Design A closely related design method for digital fi lters is the 
 step-invariant method. In this method the unit-sequence response of the digital fi lter is 
designed to match the unit step response of the analog fi lter at the sampling instants. 
If an analog fi lter has a transfer function Ha(s), the Laplace transform of its unit step 
response is Ha(s)/s. The unit step response is the inverse Laplace transform

 h ( )
H ( )

.−
−= ⎛

⎝
⎞
⎠1

1
a

at
s

s
L

The corresponding discrete-time unit-sequence response is then

 h [ ] h ( ).− −=1 1d a sn nT

Its z transform is the product of the z-domain transfer function and the z transform of 
a unit sequence,

 Z(h [ ]) H ( ).− =
−1

1
d dn

z

z
z

We can summarize by saying that, given an s-domain transfer function Ha(s), we can 
fi nd the corresponding z-domain transfer function Hd (z) as

 H ( )
H ( )

.
( ) ( ) [ ]

d
a

t nT n

z
z

z

s

s
s

= − ⎛
⎝

⎞
⎠

⎛

⎝⎜
⎞

⎠⎟
−

→ →

1 1Z L

 In this method we sample the analog unit-step response to get the digital 
unit-sequence response. If we impulse sample the analog fi lter unit-step response 
h–1a(t) we form h–1δ(t) whose Laplace transform is H–1δ(s) and whose CTFT is

 H ( ) H ( ( )).− −
=−∞

∞
= −∑1 1� � � �j f j ks a s

k
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where H–1a(s) is the Laplace transform of the analog fi lter’s unit-step response and 
�s = 2�fs. We also know that we can sample h–1a(t) to form h–1d[n] whose z transform 
is H–1d(z) and whose DTFT is

 H ( ) H ( ( ))− −
=−∞

∞
= −∑1 1 2d

j
s a s

k

e f jf k	 	 �  (15.4)

Relating this result to the analog and digital transfer functions

 H ( ) H ( )− =
−1

1
d

j
j

j d
je

e

e
e	

	

	
	

and

 H ( ) H ( )− =1a aj j j� � �/

 H ( ) H ( )
H ( (

d
j

j

j d
j

j

j s
a se

e

e
e

e

e
f

jf	
	

	
	

	

	

	= − = − −
−

1 1 2
1

�kk

jf ksk

))

( )
.

	 −=−∞

∞

∑ 2�

EXAMPLE 15.3

Digital bandpass fi lter design using the  step-invariant method

Using the step-invariant method, design a digital fi lter to approximate the analog fi lter whose 
transfer function is the same as in Example 15.2

 H ( )
.

. . .
a s

s

s s s
= ×

+ + × + ×
9 87 10

444 3 2 467 10 5 262 10

4 2

4 3 6 2 88 121 403 10s + ×.

with the same sampling rate fs = 1 kHz.
 The unit-step response is 

h ( ) [ . cos( . . ) ..
−

−= + +1
122 4080 2041 1199 4 3 1312 0a

tt e t 22041 977 27 0 0104299 74e t tt− +. cos( . . )]u( )

The unit-sequence response is

h [ ] [ . ( . ) cos( . . ) .− = + +1 0 2041 0 8847 1 1994 3 1312 0 2d
nn n 0041 0 9051 0 97727 0 0102( . ) cos( . . )]u[ ]n n n+

The digital fi lter transfer function is 

 H ( )
. . . .

.
d z

z z z

z
= − − +

−
0 03443 0 03905 0 02527 0 02988

1

3 2

4 6655 2 252 1 319 0 64133 2z z z+ − +. . .

The step responses, magnitude frequency responses and pole-zero diagrams of the analog and 
digital fi lters are compared in Figures 15.14, 15.15, and 15.16.

Figure 15.14
Step responses of the analog fi lter and its digital simulation by the 
step-invariant method
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688 Chapter  15  Filter Analysis and Design

 In contrast with the impulse invariant design, this digital fi lter has a response of zero at 
	 = 0. Also, the digital fi lter peak passband frequency response and the analog fi lter peak pass-
band frequency response differ by less than 0.1%. 

 Finite-Difference Design Another method for designing digital fi lters to simulate an-
alog fi lters is to approximate the differential equation describing the linear system with 
a difference equation. The basic idea in this method is to start with a desired transfer 
function of the analog fi lter Ha(s) and fi nd the differential equation corresponding to it 
in the time domain. Then  continuous-time derivatives are approximated by fi nite dif-
ferences in discrete time and the resulting expression is a digital fi lter transfer function 
approximating the original analog fi lter transfer function. For example, suppose that 

 H ( ) .a s
s a

=
+
1

Figure 15.15
Magnitude frequency responses of the analog fi lter and its digital simulation by 
the step-invariant method
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Figure 15.16
Pole-zero diagrams of the analog fi lter and its digital simulation by the step-invariant method
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Since this is a transfer function it is the ratio of the response Ya(s) to the excitation Xa(s).

 
Y ( )

X ( )
a

a

s

s s a
=

+
1

Then

 Y ( )( ) X ( ).a as s a s+ =

Taking the inverse Laplace transform of both sides,

 
d

dt
t a t ta a a(y ( )) y ( ) x ( ).+ =

A derivative can be approximated by various fi nite-difference expressions and each 
choice has a slightly different effect on the approximation of the digital fi lter to the 
analog fi lter. Let the derivative in this case be approximated by the forward difference

 
d

dt
t

n n

T
a

d d

s
(y ( ))

y [ ] y [ ]
.≅ + −1

Then the difference-equation  approximation to the differential equation is

 
y [ ] y [ ]

y [ ] x [ ]d d

s
d d

n n

T
a n n

+ − + =1

and the corresponding recursion relation is

 y [ ] x [ ] ( )y [ ].d d s s dn n T aT n+ = + −1 1

The digital fi lter transfer function can be found by z-transforming the equation into

 z z T z aT zd d s d s d(Y ( ) y [ ]) X ( ) ( )Y ( ).− = + −0 1

Transfer functions are computed based on the assumption that the system is initially in 
its zero state. Therefore yd [0] = 0 and

 H ( )
Y ( )

X ( ) ( )
d

d

d

s

s
z

z

z

T

z aT
= =

− −1
 (15.5)

A block diagram realization of this fi lter is illustrated in Figure 15.17.

Figure 15.17
Block diagram of a digital fi lter designed by 
approximating a differential equation with a 
difference equation using forward differences

Ts

1 - aTs

D
D

xd[n] +

+
yd[n]

 The digital fi lter could also have been based on a  backward difference approxima-
tion to the derivative,

 
d

dt
t

n n

T
a

d d

s
(y ( ))

y [ ] y [ ]≅ − − 1
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690 Chapter  15  Filter Analysis and Design

or a  central difference approximation to the derivative,

 
d

dt
t

n n

T
a

d d

s
(y ( ))

y [ ] y [ ]
.≅ + − −1 1

2

 We can systematize this method by realizing that every s in an s-domain expression 
represents a corresponding differentiation in the time domain,

 
d

dt
t s sa a(x ( )) X ( )L← →⎯

(again with the fi lter initially in its zero state). We can approximate derivatives with 
forward, backward or central differences,

 d

dt
t

t T t

T

n n

T
a

a s a

s

d d

s
(x ( ))

x ( ) x ( ) x [ ] x [ ]
,≅ + − = + −1

 d

dt
t

t t T

T

n n

T
a

a a s

s

d d

s
(x ( ))

x ( ) x ( ) x [ ] x [ ]≅ − − = − − 1

or

 
d

dt
t

t T t T

T

n n
a

a s a s

s

d d(x ( ))
x ( ) x ( ) x [ ] x [ ]≅ + − − = + − −

2

1 1

22Ts
.  

The z transforms of these differences are

 
x [ ] x [ ]

X ( ),d d

s s
d

n n

T

z

T
z

+ − ← →⎯ −1 1Z

 x [ ] x [ ]
X ( ) X ( )d d

s s
d

s
d

n n

T

z

T
z

z

zT
z

− − ← →⎯ − = −−1 1 11
Z

or

 x [ ] x [ ]
X ( ) X (d d

s s
d

s
d

n n

T

z z

T
z

z

zT

+ − − ← →⎯ − = −−1 1

2 2

1

2

1 2
Z zz).

Now we can replace every s in an s-domain expression with the corresponding 
z-domain expression. Then we can approximate the s-domain transfer function,

 H ( )a s
s a

=
+
1

with a forward-difference approximation to a derivative,

 H ( ) ,d
s

z

T
s

s

s
z

s a z
T

a

T

z aT
s

=
+

⎛
⎝

⎞
⎠ = − +

=
− +→ −

1 1
1 11  (15.6)

which is exactly the same as (15.5). This avoids the process of actually writing the 
differential equation and substituting a fi nite difference for each derivative.

There is one aspect of fi nite-difference digital fi lter design that must always be 
kept in mind. It is possible to approximate a stable analog fi lter and  create an unstable 
digital fi lter using this method. Take the transfer function in (15.5) as an example. It 
has a pole at z = 1 − aTs. The analog fi lter’s pole is at s = − a. If the analog fi lter is 
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stable a > 0 and 1 − aTs is at a location z = Re(z) < 1 on the real axis of the z plane. If 
aTs is greater than or equal to two, the z-plane pole is outside the unit circle and the 
digital fi lter is unstable. 

A digital fi lter’s transfer function can be expressed in partial fractions, one for 
each pole, and some poles may be complex. A pole at location s = s0 in the s plane 
maps into a pole at z = 1 + s0Ts in the z plane. So the mapping s0 → 1 + s0Ts maps the 
� axis of the s plane into the line z = 1 and the left half of the s plane into the region 
of the z plane to the left of z = 1. For stability the poles in the z plane should be inside 
the unit circle. Therefore this mapping does not guarantee a stable digital fi lter design. 
The s0’s are determined by the analog fi lter so we cannot change them. Therefore, to 
solve the instability problem we could reduce Ts which means we would increase the 
sampling rate. 

If, instead of using a forward difference, we had used a backward difference in 
(15.6) we would have gotten the digital fi lter transfer function

 
H ( )d

s
z

zT
s

s

s
z

s a z
zT

a

zT

z azT
s

=
+

⎛
⎝

⎞
⎠ = − +

=
− +

=
→ −

1 1
1 1

1

11 ++ − +aT

zT

z aTs

s

s1 1/( )
.

Now the pole is at z = 1/(1 + aTs). The mapping a → 1/(1 + aTs) maps positive values 
of a (for stable analog fi lters) into the real axis of the z plane between z = 0 and z = 1. 
The pole is inside the unit circle and the system is stable, regardless of the values of 
a and Ts. More generally, if the analog fi lter has a pole at s = s0, the digital fi lter has a 
pole at z = 1/(1 − s0Ts). This maps the � axis in the s plane into a circle in the z plane of 
radius 1/2 centered at z = 1/2 and maps the entire left-half of the s plane into the interior 
of that circle (Figure 15.18).

Although this mapping of poles guarantees a stable digital fi lter from a stable analog 
fi lter, it also restricts the type of digital fi lter that can be effectively designed using this 
method. Lowpass analog fi lters with poles on the negative real axis of the s plane 
become lowpass digital fi lters with poles on the real axis of the z plane in the interval 
0 < z < 1. If the analog fi lter has poles at 
0  ±  j�0 with �0 >> 
0, meaning the analog 
fi lter is tuned to strongly respond at frequencies near �0, and if �0Ts > 1, the z-plane 

Figure 15.18 
Mapping z = 1/(1 − s0Ts)

[s] [z]

z = 
1

1 − jω0Ts

1

ω0Ts = 1

ω

ω

σ
ω0Ts = −1
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σ
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692 Chapter  15  Filter Analysis and Design

poles will not lie close to the unit circle and its response will not be nearly as strong 
near the equivalent discrete-time frequency.

EXAMPLE 15.4

Bandpass fi lter design  using the  fi nite-difference method

Using the difference-equation design method with a backward difference, design a digital fi lter 
to simulate the analog fi lter of Example 15.2 whose transfer function is

 H ( )
.

. . .
a s

s

s s s
= ×

+ + × + ×
9 87 10

444 3 2 467 10 5 262 10

4 2

4 3 6 2 88 121 403 10s + ×.

using the same sampling rate, fs = 1 kHz. Compare the frequency responses of the two fi lters.
 If we choose the same sampling rate as in Example 15.2, fs = 1000, the z domain transfer 
function is

 H ( )
. ( )

. . .
d z

z z

z z z z
= −

− + − +
0 169 1

1 848 1 678 0 7609 0

2 2

4 3 2 ..
.

1712

The impulse responses, magnitude frequency responses and pole-zero diagrams of the analog 
and digital fi lters are compared in Figure 15.19, Figure 15.20 and Figure 15.21.

Figure 15.19
Impulse responses of the analog fi lter and its digital simulation using the 
fi nite-difference method
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Figure 15.20
Magnitude frequency responses of the analog fi lter and its digital simulation using 
the fi nite-difference method
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 The digital fi lter impulse response does not look much like a sampling of the analog fi lter 
impulse response and the width of the digital fi lter passband is much too large. Also, the at-
tenuation at higher frequencies is very poor. This result is much worse than the previous two 
designs.
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EXAMPLE 15.5

 Lowpass fi lter design using the  fi nite-difference method

Using the difference-equation design method with a forward difference, design a digital fi lter to 
simulate the analog fi lter whose transfer function is

 H ( )a s
s s

=
+ + ×

1

600 4 102 5

using a sampling rate, fs = 500 Hz. 
 The z-domain transfer function is

 H ( )d

s s

z
z
T

z
T

=
−⎛

⎝⎜
⎞
⎠⎟

+ − + ×

1

1
600

1
4 10

2
5

or

 H ( )
( ) ( )

d
s

s s s
z

T

z T z T T
=

+ − + − + ×

2

2 5 2600 2 1 600 4 10

or

 H ( )
. .

.d z
z z

= ×
− +

−4 10

0 8 1 4

6

2

This result looks quite simple and straightforward but the poles of this z-domain transfer function 
are outside the unit circle and the fi lter is unstable, even though the s-domain transfer function is 
stable. Stability can be restored by increasing the sampling rate or by using a backward difference.

Figure 15.21
Pole-zero diagrams of the analog fi lter and its digital simulation using the fi nite-difference method
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694 Chapter  15  Filter Analysis and Design

 Frequency-Domain Methods
 Direct Substitution and the Matched z-Transform A different approach to the design 
of digital fi lters is to fi nd a direct change of variable from s to z that maps the s plane 
into the z plane, converts the poles and zeros of the s-domain transfer function into 
appropriate corresponding locations in the z plane and converts stable analog fi lters into 
stable digital fi lters. The most common techniques that use this idea are the  matched-z 
transform, direct substitution and the  bilinear transformation. This type of design 
process produces an IIR fi lter (Figure 15.22).

The  direct substitution and matched z-transform methods are very similar. These 
methods are based on the idea of simply mapping the poles and zeros of the s domain 
transfer function into the z domain through the relationship z esTs= .

For example, to transform the analog fi lter frequency response,

 H ( )d s
s a

=
+
1

which has a pole at s = – a, we simply map the pole at – a to the corresponding loca-
tion in the z plane. Then the digital fi lter pole location is e aTs− . The direct substitution 
method implements the transformation s a z eaTs− → −  while the matched z-transform 
method implements the transformation s a e zaTs− → − −1 1. The z-domain transfer 
functions that result (in this case) are
 Direct Substitution:

 H ( )d aT aTz
z e

z

e zs s
=

−
=

−−

−

− −
1

1

1

1 , with a pole at z e aTs= −  and no fi nite zeros

 Matched z Transform:

H ( )d aT aTz
e z

z

z es s
=

−
=

−− − −
1

1 1 , with a pole at z e aTs= −  and a zero at z = 0 

Notice that the matched z transform result is exactly the same result as was obtained 
using the impulse invariant method and the direct substitution result is the same 
except for a single sample delay due to the z –1 factor. For more complicated s-domain 
transfer functions the results of these methods are not so similar. These methods do not 
directly involve any time-domain analysis. The design is done entirely in the s and z 
domains. The transformations s – a → z – eaT and s – a → 1 – eaT z–1 both map a pole in 
the open left-half of the s plane into a pole in the open interior of the unit circle in the z 
plane. Therefore, stable analog fi lters are transformed into stable digital fi lters.

Figure 15.22
Mapping of poles and zeros from the s plane to the z plane
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EXAMPLE 15.6

Digital bandpass fi lter design using the   matched-z transform

Using the matched-z transform design method, design a digital fi lter to simulate the analog fi lter 
of Example 15.2 whose transfer function is

 H ( )
.

. . .
a s

s

s s s
= ×

+ + × + ×
9 87 10

444 3 2 467 10 5 262 10

4 2

4 3 6 2 88 121 403 10s + ×.

using the same sampling rate, fs = 1 kHz. Compare the frequency responses of the two fi lters.
 This transfer function has a double zero at s = 0 and poles at s j= − ±99 7 978.  and at 
s j= − ±122 4 1198 6. . . Using the mapping,

 s a e zaT− → − −1 1,

we get a z-domain double zero at z = 1, a double zero at z = 0 and poles at 

 z j= ± ±0 5056 0 7506. . and 0.3217 j0.8242

and a z-domain transfer function,

 H ( )
( )

. .
d z

z z z

z z
= − +

− +

2 2

4 3
98700 197400 98700

1 655 2 252zz z2 1 319 0 6413− +. .

or

 H ( )
( )

. . . .
d z

z z

z z z z
= −

− + − +
98700

1

1 655 2 252 1 319 0

2 2

4 3 2 66413
.

The impulse responses, magnitude frequency responses and pole-zero diagrams of the analog 
and digital fi lters are compared in Figures 15.23, 15.24 and 15.25.
 If this design had been done using the direct substitution method, the only differences 
would be that the zeros at z = 0 would be removed, the impulse response would be the same 
except delayed two units in discrete time, the magnitude frequency response would be exactly 
the same and the phase of the frequency response would have a negative slope with a greater 
magnitude.

Figure 15.23
Impulse responses of the analog fi lter and its digital simulation 
by the matched-z transform method
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696 Chapter  15  Filter Analysis and Design

Figure 15.24
Frequency responses of the analog fi lter and its digital simulation by 
the matched-z transform method
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Figure 15.25
Pole-zero diagrams of the analog fi lter and its digital simulation by the matched-z transform method
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 The Bilinear Method The impulse-invariant and step-invariant design techniques try 
to make the digital fi lter’s discrete-time-domain response match the corresponding 
analog fi lter’s continuous-time-domain response to a corresponding standard excitation. 
Another way to approach digital fi lter design is to try to make the  frequency response 
of the digital fi lter match the frequency response of the analog fi lter. But, just as a 
discrete-time-domain response can never exactly match a continuous-time-domain 
response, the frequency response of a digital fi lter cannot exactly match the frequency 
response of an analog fi lter. One reason, mentioned earlier, that the frequency responses 
cannot exactly match is that the  frequency response of a digital fi lter is inherently 
periodic. When a sinusoidal continuous-time signal is sampled to create a sinusoidal 
discrete-time excitation, if the frequency of the continuous-time signal is changed by 
an integer multiple of the  sampling rate, the discrete-time signal does not change at 
all. The digital fi lter cannot tell the difference and responds the same way as it would 
respond to the original signal (Figure 15.26).
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According to the sampling theorem, if a continuous-time signal can be guaranteed 
never to have any frequency components outside the range � f � < fs /2 then when it is 
sampled at the rate fs the discrete-time signal created contains all the information in 
the continuous-time signal. Then, when the discrete-time signal excites a digital fi lter, 
the response contains all the information in a corresponding continuous-time signal. 
So the design process becomes a matter of making the digital fi lter frequency response 
match the analog fi lter frequency response only in the frequency range � f � < fs /2, not 
outside. In general this still cannot be done exactly but it is often possible to make a 
good approximation. Of course, no signal is truly bandlimited. Therefore in practice 
we must arrange to have very little signal power beyond half the sampling rate instead 
of no signal power (Figure 15.27). 

If a continuous-time excitation does not have any frequency components outside 
the range � f � < fs /2 any nonzero response of an analog fi lter outside that range would 
have no effect because it has nothing to fi lter. Therefore, in the design of a digital fi lter 
to simulate an analog fi lter, the sampling rate should be chosen such that the response 
of the analog fi lter at frequencies � f � > fs /2, is approximately zero. Then all the fi ltering 
action will occur at frequencies in the range � f � < fs /2. So the starting point for a 
frequency-domain design process is to specify the sampling rate such that

 X( ) H ( ) ,f f f fa s≅ ≅ >0 0 2and /

or

 X( ) H ( ) , .j j fa s s� � � � �≅ ≅ > =0 0 2and /

Now the problem is to fi nd a digital fi lter transfer function that has approxi-
mately the same shape as the analog fi lter transfer function we are trying to simulate 
in the frequency range � f � < fs /2. As discussed earlier, the straightforward method 
to accomplish this goal would be to use the transformation e zsTs →  to convert a 
desired transfer function Ha(s) into the corresponding Hd(z). The transformation, 

Figure 15.27
Magnitude spectrum of a continuous-time signal and 
a discrete-time signal formed by impulse sampling it
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Figure 15.26
Two identical discrete-time signals formed by sampling two 
different sinusoids
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698 Chapter  15  Filter Analysis and Design

e zsTs → , can be turned around into the form s → ln(z)/Ts. Then the design process 
would be

 H ( ) H ( ) .ln( )d a s
T

zz s
s

= → 1

 Although this development of the transformation method is satisfying from a 
theoretical point of view, the functional transformation s → ln(z)/Ts transforms an 
analog fi lter transfer function in the common form of the ratio of two polynomials into 
a digital fi lter transfer function, which involves a ratio of polynomials, not in z but rather 
in ln(z), making the function transcendental with infi nitely many poles and zeros. So, 
although this idea is appealing, it does not lead to a practical digital-fi lter design. 

At this point it is common to make an approximation in an attempt to simplify the 
form of the digital-fi lter transfer function. One such transformation arises from the 
series expression for the exponential function

 e x
x x x

k
x

k

k

= + + + + =
=

∞

∑1
2 3

2 3

0! ! !
.�

We can apply that to the transformation e zsTs →  yielding

 1
2 3

2 3

+ + + + →sT
sT sT

zs
s s( )

!

( )

!
.�

If we approximate this series by the fi rst two terms, we get

 1 + sTs → z

or

 s
z

Ts
→ − 1

.

The approximation e sTsT
s

s ≅ +1  is a good approximation if Ts is small and gets better 
as Ts gets smaller and, of course, fs gets larger. That is, this approximation becomes 
very good at high sampling rates. Examine the transformation s → (z − 1)/Ts. A 
multiplication by s in the s domain corresponds to a differentiation with respect to t of 
the corresponding function in the continuous-time domain. A multiplication by (z –1)/Ts 
in the z domain corresponds to a forward difference divided by the sampling time Ts 
of the corresponding function in the discrete-time domain. This is a forward-difference 
approximation to a derivative. As mentioned in the fi nite-difference method, the two 
operations, multiplication by  s and by (z – 1)/Ts are analogous. So this method has 
the same problem as the fi nite-difference method using forward differences. A  stable 
analog fi lter can become an  unstable digital fi lter.

A very clever modifi cation of this transformation solves the problem of creating an 
unstable digital fi lter from a stable analog fi lter and at the same time has other advan-
tages. We can write the transformation from the s domain to the z domain as

 e
e

e
zsT

sT

sT
s

s

s
= →−

/

/

2

2

approximate both exponentials with an infi nite series

 

1
2

2
2

2
3

1
2

2
2

2 3

2

+ + + +

− +

sT sT sT

sT sT

s s s

s s

( )
!

( )
!

( )
!

/ /

/

�

−− +
→

( )
!

sT
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s /2
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�
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and then truncate both series to two terms

 
1 2

1 2

+
−

→sT

sT
zs

s

/

/

yielding

 s
T

z

zs
→ −

+
2 1

1
  or  z

sT

sT
s

s
→ +

−
2

2
.

This mapping from s to z is called the  bilinear z transform because the numerator 
and denominator are both linear functions of s or z. (Don’t get the terms bilinear and 
bilateral z transform confused.) The bilinear z transform transforms any stable analog 
fi lter into a stable digital fi lter because it maps the entire open left half of the s plane 
into the open interior of the unit circle in the z plane. This was also true of matched-z 
transform and direct substitution but the correspondences are different. The mapping 
z esTs=  maps any strip �0/Ts < � < (�0 + 2�)/Ts of the s plane into the entire z plane. 
The mapping from s to z is unique but the mapping from z to s is not unique. The 
bilinear mapping s → (2/Ts)(z – 1)/(z + 1) maps each point in the s plane into a unique 
point in the z plane and the inverse mapping z → (2 + sTs)/(2 − sTs) maps each point in 
the z plane into a unique point in the s plane. To see how the mapping works consider 
the contour s = j� in the s plane. Setting z = (2 + sTs)/ (2 − sTs) we get

 z
j T

j T

T
es

s

s j
Ts

= +
−

= ⎛
⎝

⎞
⎠ =−

⎛
⎝⎜

−2

2
1 2

2
1

2
2

1�

�

�
�

� tan
tan ⎞⎞

⎠⎟  

which lies entirely on the unit circle in the z plane. Also the contour in the 
z plane is traversed exactly once for −∞   <   �   <   ∞. For the more general contour 
s = 
0 + j�, 
0 a constant, the corresponding contour is also a circle but with a different 
radius and centered on the Re(z) axis such that as � approaches ±∞, z approaches −1 
(Figure 15.28).

Figure 15.28
Mapping of an  s-plane region into a corre-
sponding z-plane region through the bilinear 
z-transform
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700 Chapter  15  Filter Analysis and Design

As the contours in the s plane move to the left, the contours in the z plane become 
smaller circles whose centers move closer to the z = −1 point. The mapping from s to z 
is a one-to-one mapping but the distortion of regions becomes more and more severe as 
s moves away from the origin. A higher sampling rate brings all poles and zeros in the 
s plane nearer to the z = 1 point in the z plane where the distortion is minimal. That can 
be seen by taking the limit as Ts approaches zero. In that limit, z approaches +1. 

The important difference between the bilinear z transform method and the impulse 
invariant or matched z-transform methods is that there is no aliasing using the bilinear 
z transform because of the unique mapping between the s and z planes. However, there 
is a warping that occurs because of the way the s = j� axis is mapped into the unit circle 
�z� = 1 and vice-versa. Letting z = e jΩ, 	 real, determines the unit circle in the z plane. 
The corresponding contour in the s plane is

 s
T

e

e
j
Ts

j

j
s

= −
+

= ⎛
⎝⎜

⎞
⎠⎟

2 1

1

2

2

	

	

	
tan

and, since s = 
 + j�, 
 = 0 and � = (2/Ts) tan(	/2) or, inverting the function, 
	 = 2 tan–1(�Ts/2)(Figure 15.29).

Figure 15.29
 Frequency warping caused by the bilinear transformation

�Ts

�20 20




�	

	

For low frequencies, the mapping is almost linear but the distortion gets pro-
gressively worse as we increase frequency because we are forcing high frequencies 
� in the s domain to fi t inside the range −� < 	 < � in the z domain. This means 
that the asymptotic behavior of an analog fi lter as f or � approaches positive infi nity 
occurs in the z domain at 	 = �, which, through 	 = �Ts = 2�f Ts, is at f = fs/2, the 
Nyquist frequency. Therefore, the warping forces the full infi nite range of continuous-
time frequencies into the discrete-time frequency range −� < 	 < � with a nonlinear 
invertible function, thereby avoiding aliasing.

 The MATLAB signal toolbox has a  command bilinear for designing a 
digital fi lter using the bilinear transformation. The syntax is

[bd,ad] =  bilinear(ba,aa,fs)

or

[zd,pd,kd] = bilinear(za,pa,ka,fs)

where ba is a vector of numerator coeffi cients in the analog fi lter transfer function, aa 
is a vector of denominator coeffi cients in the analog fi lter transfer function, bd is a 
vector of numerator coeffi cients in the digital fi lter transfer function, ad is a vector of 
denominator coeffi cients in the digital fi lter transfer function, za is a vector of analog 
fi lter zero locations, pa is a vector of analog fi lter pole locations, ka is the gain factor 
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of the analog fi lter, fs is the sampling rate in Hz, zd is a vector of digital fi lter zero 
locations, pd is a vector of digital fi lter pole locations and kd is the gain factor of the 
digital fi lter. For example,

»za = [] ; pa = -10 ; ka = 1 ; fs = 4 ;
»[zd,pd,kd] = bilinear(za,pa,ka,fs) ;
»zd
zd =
 -1
»pd
pd =
 -0.1111
»kd
kd =
 0.0556

EXAMPLE 15.7

Comparison of  digital lowpass fi lter designs using the  bilinear transformation 
with different sampling rates

Using the bilinear transformation, design a digital fi lter to approximate the analog fi lter whose 
transfer function is

 H ( )a s
s

=
+
1

10

and compare the frequency responses of the analog and digital fi lters for sampling rates of 4 Hz, 
20 Hz and 100 Hz.
 Using the transformation s

T

z

zs
→ −

+
2 1

1
,

 H ( )d

s

s

s s
z

T
z
z

T

T

z

z
T= −

+
+

=
+

⎛
⎝⎜

⎞
⎠⎟

+

− −
+

1
2 1

1
10 2 10

1
2 10
2 110Ts

.

For a 4 Hz sampling rate, 

 H ( ) .d z
z

z
= +

+

1

18

1
1
9

 

For a 20 Hz sampling rate, 

 
H ( ) .d z

z

z
= +

−

1

50

1
3
5

For a 100 Hz sampling rate,

 
H ( )d z

z

z
= +

−

1

210

1
19

21

(Figure 15.30).
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702 Chapter  15  Filter Analysis and Design

EXAMPLE 15.8

Digital bandpass fi lter design using the  bilinear transformation

Using the bilinear-z transform design method, design a digital fi lter to simulate the analog fi lter 
of Example 15.2 whose transfer function is

 H ( )
.

. . .
a s

s

s s s
= ×

+ + × + ×
9 87 10

444 3 2 467 10 5 262 10

4 2

4 3 6 2 88 121 403 10s + ×.

using the same sampling rate fs = 1 kHz. Compare the frequency responses of the two fi lters.
 Using the transformation s → (2/Ts)(z − 1)/(z + 1) and simplifying,

 H ( )
. . .

. .
d z

z z

z z z
= − +

− + −
12 38 24 77 12 38

1 989 2 656 1

4 2

4 3 2 .. .675 0 711z +

or

 H ( ) .
( ) ( )

. . .
d z

z z

z z z
= + −

− + −
12 38

1 1

1 989 2 656 1 675

2 2

4 3 2 zz + 0 711.
.

The impulse responses, magnitude frequency responses and pole-zero diagrams of the analog 
and digital fi lters are compared in Figure 15.31, Figure 15.32 and Figure 15.33.
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Figure 15.30
Magnitude frequency responses of the analog fi lter and three digital fi lters designed using the bilinear transform and three different 
sampling rates

Figure 15.31
Impulse responses of the analog fi lter and its digital simulation by the 
bilinear-z transform method
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 FIR Filter Design
 Truncated Ideal Impulse Response Even though the commonly used analog fi lters 
have  infi nite-duration impulse responses, because they are stable systems their impulse 
responses approach zero as time t approaches positive infi nity. Therefore, another way 
of simulating an analog fi lter is to sample the impulse response, as in the impulse- 
invariant design method, but then truncate the impulse response beginning at discrete 
time n = N where it has fallen to some low level, creating a fi nite-duration impulse 
response (Figure 15.34). Digital fi lters that have fi nite-duration impulse responses are 
called FIR fi lters.

The technique of truncating an impulse response can also be extended to approxi-
mating noncausal fi lters. If the part of an ideal fi lter’s impulse response that occurs 
before time t = 0 is insignifi cant in comparison with the part that occurs after time t = 0, 
then it can be truncated, forming a causal impulse response. It can also be truncated 
after some later time when the impulse response has fallen to a low value, as previously 
described (Figure 15.35).
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Figure 15.32
Magnitude frequency responses of the analog fi lter and its 
digital simulation by the bilinear method

Figure 15.33 
Pole-zero diagrams of the analog fi lter and its digital simulation by the bilinear-z transform 
method
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704 Chapter  15  Filter Analysis and Design

Of course, the truncation of an IIR response to an FIR response causes some 
difference between the impulse and frequency responses of the ideal analog and actual 
digital fi lters, but that is inherent in digital fi lter design. So the problem of digital fi lter 
design is still an approximation problem. The approximation is just done in a different 
way in this design method.

Once the impulse response has been truncated and sampled, the design of an FIR 
fi lter is quite straightforward. The discrete-time impulse response is in the form of a 
fi nite summation of discrete-time impulses

 h [ ] [ ]N m
m

N

n a n m= −
=

−

∑ �
0

1

 

and can be realized by a digital fi lter of the form illustrated in Figure 15.36.

Figure 15.35
Truncation of a noncausal impulse 
response to a causal FIR impulse 
response
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Truncation of an IIR impulse response 
to an FIR impulse response

ha(t)

hd[n]

hN[n]

t

n

n

N

Figure 15.36
Prototypical FIR fi lter
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One essential difference between this type of fi lter design and all the others 
presented so far is that there is no feedback of the response to combine with the excita-
tion to produce the next response. This type of fi lter has only  feedforward paths. Its 
transfer function is 

 H ( ) .d m
m

m

N

z a z= −

=

−

∑
0

1
 

This transfer function has N – 1 poles, all located at z = 0, and is absolutely stable re-
gardless of the choice of the coeffi cients a. 

This type of digital fi lter is an approximation to an analog fi lter. It is obvious what 
the difference between the two impulse responses is, but what are the differences in the 
frequency domain? The truncated impulse response is

 h [ ]
h [ ],

,
h [ ]w[ ]N

d
dn

n n N
n n=

≤ <⎧
⎨
⎩

⎫
⎬
⎭

=
0

0 otherwise

and the DTFT is

 H ( ) H ( ) W( )N
j

d
j je e e	 	 	= �

(Figure 15.37).
As the nonzero length of the truncated impulse increases, the frequency response 

approaches the ideal rectangular shape. The similarity in appearance to the conver-
gence of a CTFS is not accidental. A truncated CTFS exhibits the  Gibb’s phenomenon 
in the reconstructed signal. In this case, the truncation occurs in the continuous-time 
domain and the  ripple, which is the equivalent of the Gibb’s phenomenon, occurs in the 
frequency domain. This phenomenon causes the effects marked as passband ripple 
and as  side lobes in Figure 15.37. The peak amplitude of the passband ripple does not 
diminish as the truncation time increases but it is more and more confi ned to the region 
near the cutoff frequency.

We can reduce the  ripple effect in the frequency domain, without using a longer 
truncation time, by using a “softer” truncation in the time domain. Instead of window-
ing the original impulse response with a rectangular function we could use a differently 
shaped window function that does not cause such large discontinuities in the truncated 
impulse response. There are many  window shapes whose Fourier transforms have less 
ripple than a rectangular window’s Fourier transform. Some of the most popular are 
the following:

1.  von Hann or Hanning

 w[ ] cos ,n
n

N
n N= −

−
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤ <1

2
1

2

1
0

�

2.  Bartlett
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N
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706 Chapter  15  Filter Analysis and Design

3.  Hamming

 w[ ] . . cos ,n
n
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−
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⎝
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⎠ ≤ <0 54 0 46
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1
0

�

4.  Blackman
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Figure 15.37
Three truncated ideal- lowpass-fi lter discrete-time impulse responses and their associated 
magnitude frequency responses
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5.  Kaiser

 w[ ]n

I
N

n
N

I
N

a
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⎝
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2 2

0

1
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1
2

1
2

�

� ⎠⎠

where I0 is the modifi ed zeroth order Bessel function of the fi rst kind and �a is a pa-
rameter that can be adjusted to trade off between transition-band width and  side-lobe 
amplitude (Figure 15.38).

Figure 15.38
   Window functions (N = 32)
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The transforms of these   window functions determine how the frequency response 
will be affected. The magnitudes of the transforms of these common window functions 
are illustrated in Figure 15.39.

Looking at the magnitudes of the transforms of the window functions, it is ap-
parent that, for a fi xed N, two design goals are in confl ict. When approximating ideal 
fi lters with FIR fi lters we want a very narrow transition band and very high attenua-
tion in the stop band. The transfer function of the FIR fi lter is the convolution of the 
ideal fi lter’s transfer function with the transform of the window function. So the ideal 
window function would have a transform that is an impulse, and the corresponding 
window function would be an infi nite-width rectangle. That is impossible, so we must 
compromise. If we use a fi nite-width rectangle, the transform is the  Dirichlet function 
and we get the transform illustrated in Figure 15.39 for a rectangle, which makes a 
relatively fast transition from the peak of its central lobe to its fi rst null, but then the 
sinc function rises again to a peak that is only about 13 dB below the maximum. When 
we convolve it with an ideal lowpass fi lter frequency response the transition band 
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708 Chapter  15  Filter Analysis and Design

is narrow (compared to the other windows) but the stopband attenuation is not very 
good. Contrast that with the  Blackman window. The central lobe width of its transform 
magnitude is more than twice that of the rectangle so the transition band will not be 
as narrow. But once the magnitude goes down, it stays more than 60 dB down. So its 
stopband attenuation is much better.

Another feature of an FIR fi lter that makes it attractive is that it can be designed to 
have a linear phase response. The general form of the FIR impulse response is

 h [ ] h [ ] [ ] h [ ] [ ] h [ ] [ ( )]d d d dn n n N n N= + − + + − − −0 1 1 1 1� � �� ,,

its z transform is

 H ( ) h [ ] h [ ] h [ ] ( )
d d d d

Nz z N z= + + + −− − −0 1 11 1�

and the corresponding frequency response is

 H ( ) h [ ] h [ ] h [ ] .( )
d

j
d d

j
d

j Ne e N e	 	 	= + + + −− − −0 1 1 1�

The length N can be even or odd. First, let N be even and let the coeffi cients be chosen 
such that 

 h [ ] h [ ], h [ ] h [ ], , h [ ] h [d d d d d dN N N0 1 1 2 2 1= − = − − =� / NN/2]

(Figure 15.40).
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Figure 15.39
Magnitudes of z transforms of window functions (N = 32)

Figure 15.40
Example of a symmetric discrete-
time impulse response for N = 8
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This type of impulse response is  symmetric about its center point. Then we can 
write the frequency response as

 H ( )
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This frequency response consists of the product of a factor e– j((N – 1)/2)	 that has a linear 
phase shift with frequency and some other factors, which have real values for all 	. 
Therefore, the overall frequency response is linear with frequency (except for jumps of 
� radians at frequencies at which the sign of the real part changes). In a similar manner 
it can be shown that if the fi lter coeffi cients are  antisymmetric, meaning

 h [ ] h [ ], h [ ] h [ ], , h [ ] h [d d d d d dN N N0 1 1 2 2 1= − − = − − − = −� / NN/2]

then the phase shift is also linear with frequency. For N odd the results are similar. If 
the coeffi cients are symmetric,

 h [ ] h [ ], h [ ] h [ ], , h hd d d d d dN N
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or antisymmetric,
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the phase frequency response is linear. Notice that in the case of N odd there is a center 
point and, if the coeffi cients are antisymmetric, the center coeffi cient hd[(N – 1)/2] 
must be zero (Figure 15.41).
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710 Chapter  15  Filter Analysis and Design

EXAMPLE 15.9

 Digital lowpass FIR fi lter design by  truncating the ideal impulse response

Using the FIR method, design a digital fi lter to approximate a single-pole lowpass analog fi lter 
whose transfer function is

 H ( ) .a s
a

s a
=

+

Truncate the analog fi lter impulse response at 3 time constants and sample the truncated im-
pulse response with a time between samples that is one-fourth of the time constant, forming a 
discrete-time function. Then divide that discrete-time function by a to form the discrete-time 
impulse response of the digital fi lter. 

(a) Find and graph the magnitude frequency response of the digital fi lter versus discrete-time 
radian frequency 	. 

(b) Repeat part (a) for a truncation time of 5 time constants and a sampling rate of 10 samples 
per time constant.

The impulse response is 

 ha(t) = ae–at u(t).

The time constant is 1/a. Therefore the truncation time is 3/a, the time between samples is 1/4a 
and the samples are taken at discrete times 0 ≤ n ≤ 12. The FIR impulse response is then

 h [ ] (u[ ] u[ ]) [ ].d
n m

m

n ae n n a e n m= − − = −− −

=
∑/ /4 4

0

11

12 �

The z-domain transfer function is
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Figure 15.41
Examples of symmetric and antisymmetric discrete-time impulse responses for 
N even and N odd
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 For the second sampling rate in part (b), the truncation time is 5/a, the time between sam-
ples is 1/10a and the samples are taken at discrete times, 0 ≤ n ≤ 50. The FIR impulse response 
is then

 h [ ] (u[ ] u[ ]) [ ].d
n m

m

n ae n n a e n m= − − = −− −

=
∑/ /10 4

0

49

50 �

The z-domain transfer function is

 H ( )d
m m

m

z a e z= − −

=
∑ /10

0

49

and the frequency response is

 H ( ) ( ) ( )
d

j m j m
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m j
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e a e e a e	 	 	= =− −

=

− +

=
∑ / /10

0

49
1 10

0

49

∑∑

(Figure 15.42).

 The effects of truncation of the impulse response are visible as the ripple in the frequency 
response of the fi rst FIR design with the lower sampling rate and shorter truncation time.

EXAMPLE 15.10

 Communication-channel digital fi lter design

A range of frequencies between 900 and 905 MHz is divided into 20 equal-width channels in 
which wireless signals may be transmitted. To transmit in any of the channels, a transmitter 

Figure 15.42
Impulse responses and frequency responses for the two FIR designs
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712 Chapter  15  Filter Analysis and Design

must send a signal whose amplitude spectrum fi ts within the constraints of Figure 15.43. The 
transmitter operates by modulating a sinusoidal carrier whose frequency is the center frequency 
of one of the channels, with the baseband signal. Before modulating the carrier, the baseband 
signal, which has an approximately fl at spectrum, is prefi ltered by an FIR fi lter, which ensures 
that the transmitted signal meets the constraints of Figure 15.43. Assuming a sampling rate of 
2 MHz, design the fi lter.
 We know the shape of the ideal baseband analog lowpass fi lter’s impulse response

 h ( ) sinc( ( ))a m mt Af f t t= −2 2 0  

where fm is the corner frequency. The sampled impulse response is 

 h [ ] sinc( ( )).d m m sn Af f nT t= −2 2 0

We can set the corner frequency of the ideal lowpass fi lter to about halfway between 100 kHz 
and 125 kHz, say 115 kHz or 5.75% of the sampling rate. Let the gain constant A be one. 
The time between samples is 0.5μs. The fi lter will approach the ideal as its length approaches 
infi nity. As a fi rst try set the mean-squared difference between the fi lter’s impulse response and 
the ideal fi lter’s impulse response to be less than 1% and use a rectangular window. We can 
iteratively determine how long the fi lter must be by computing the mean-squared difference 
between the fi lter and a very long fi lter. Enforcing a mean-squared error of less than 1% sets a 
fi lter length of 108 or more. This design yields the frequency responses of Figure 15.44.

Figure 15.43
Specifi cation for spectrum of the transmitted signal
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Figure 15.44
Frequency response of an FIR fi lter with a rectangular window and less 
than 1% error in impulse response

Lowpass: rectangular window

f 
200,000

f 
200,000

�Hd(e j2	f Ts)�dB

�140

�Hd(e j2	f Ts)�dB

�1

1

Pass Stop Pass Stop

rob80687_ch15_670-725.indd   712rob80687_ch15_670-725.indd   712 12/30/10   4:26:53 PM12/30/10   4:26:53 PM



 This design is not good enough. The passband ripple is too large and the stopband attenu-
ation is not great enough. We can reduce the ripple by using a different window. Let’s try a 
Blackman window with every other parameter the same (Figure 15.45).

Figure 15.45
Frequency response of an FIR fi lter with a Blackman window and less 
than 1% error in impulse response

Lowpass: Blackman window
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Figure 15.46
Frequency response of an FIR fi lter with a Blackman window and 
less than 0.25% error in impulse response
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 This design is also inadequate. We need to make the mean-squared error smaller. Making 
the mean-squared error less than 0.25% sets a fi lter length of 210 and yields the magnitude 
frequency response in Figure 15.46.

 This fi lter meets specifi cations. The stopband attenuation just barely meets the specifi ca-
tion and the passband ripple easily meets specifi cation. This design is by no means unique. 
Many other designs with slightly different corner frequencies, mean-squared errors or windows 
could also meet the specifi cation.

 Optimal FIR Filter Design There is a technique for designing fi lters without win-
dowing impulse responses or approximating standard analog fi lter designs. It is called 
 Parks- McClellan optimal equiripple design and was developed by  Thomas W. Parks 
and James H. McClellan in the early 1970s. It uses an algorithm developed in 1934 
by  Evgeny Yakovlevich Remez called the  Remez exchange algorithm. An explanation 
of the method is beyond the scope of this text but it is important enough that students 
should be aware of it and able to use it to design digital fi lters.
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714 Chapter  15  Filter Analysis and Design

The Parks-McClellan digital fi lter design is implemented in MATLAB through the 
command   fi rpm with the syntax

B = fi rpm(N,F,A) 

where B is a vector of N+1 real symmetric coeffi cients in the impulse response of the FIR 
fi lter, which has the best approximation to the desired frequency response described by 
F and A. F is a vector of frequency band edges in pairs, in ascending order between 0 and 
1 with 1 corresponding to the Nyquist frequency or half the sampling frequency. At least 
one frequency band must have a nonzero width. A is a real vector the same size as F, which 
specifi es the desired amplitude of the frequency response of the resultant fi lter B. The desired 
response is the line connecting the points (F(k),A(k)) and (F(k+1),A(k+1)) for 
odd k. fi rpm treats the bands between F(k+1) and F(k+2) for odd k as transition 
bands. Thus the desired amplitude is piecewise linear with transition bands. 

This description serves only as an introduction to the method. More detail can be 
found in MATLAB’s help description.

EXAMPLE 15.11

  Parks-McClellan design of a digital bandpass fi lter

Design an optimal equiripple FIR fi lter to meet the magnitude frequency response specifi cation 
in Figure 15.47.

Figure 15.47
Bandpass fi lter specifi cation
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Figure 15.48
Frequency response of an optimal equiripple FIR bandpass fi lter with N = 70.
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 The band edges are at 	 = {0,0.6,0.7,2.2,2.3,�} and the desired amplitude responses at 
those band edges are A = {0,0,1,1,0,0}. The vector F should therefore be

 F = 	/� = {0,0.191,0.2228,0.7003,0.7321,1}

After a few choices of N, it was found that a fi lter with N = 70 met the specifi cation (Figure 15.48).
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MATLAB  Design Tools
In addition to the MATLAB features already mentioned in earlier chapters and in earlier 
sections of this chapter, there are many other commands and functions in MATLAB 
that can help in the design of digital  fi lters.

Probably the most generally useful function is the function fi lter. This is a 
function that actually digitally fi lters a vector of data representing a fi nite-time piece 
of a discrete-time signal. The syntax is y  =  fi lter(bd,ad,x) where x is the vector 
of data to be fi ltered and bd and ad are vectors of coeffi cients in the recursion relation 
for the fi lter. The recursion relation is of the form,

ad(1)*y(n) = bd(1)*x(n) + bd(2)*x(n-1) + ... + bd(nb+1)*x(n-nb)

- ad(2)*y(n-1) - ... - ad(na+1)*y(n-na).

(written in MATLAB syntax, which uses (·) for arguments of all functions without 
making a distinction between continuous-time and discrete-time functions). A related 
function is   fi ltfi lt. It operates exactly like  fi lter except that it fi lters the data vector 
in the normal sense and then fi lters the resulting data vector backward. This makes 
the phase shift of the overall fi ltering operation identically zero at all frequencies and 
doubles the magnitude effect (in dB) of the fi ltering operation.

There are four related  functions, each of which designs a digital fi lter. The 
function  butter designs an N’th order lowpass Butterworth digital fi lter through the 
syntax [bd,ad]  =   butter[N,wn] where N is the fi lter order and wn is the corner 
frequency expressed as a fraction of half the sampling rate (not the sampling rate itself). 
The function returns fi lter coeffi cients bd and ad, which can be used directly with 
fi lter or fi ltfi lt to fi lter a vector of data. This function can also design a bandpass 
Butterworth fi lter simply by making wn a row vector of two corner frequencies of the 
form [w1,w2]. The passband of the fi lter is then w1 < w < w2 in the same sense of 
being fractions of half the sampling rate. By adding a string ‘high’ or ‘stop’ this 
function can also design highpass and bandstop digital fi lters.

Examples:

[bd,ad] = butter[3,0.1]  lowpass third-order Butterworth fi lter, corner 
frequency 0.5 fs 

[bd,ad] = butter[4,[0.1 0.2]]  bandpass fourth-order Butterworth fi lter, 
corner frequencies of 0.05 fs and 0.1 fs 

[bd,ad] = butter[4,0.02,’high’]  highpass fourth-order Butterworth fi lter, 
corner frequency 0.1 fs 

[bd,ad] = butter[2,[0.32 0.34],’stop’]  bandstop second-order Butterworth fi lter, 
corner frequencies 0.16 fs and 0.17 fs 

(There are also alternate syntaxes for butter. Type help butter for details. It can 
also be used to do analog fi lter design).

The other three related digital fi lter design functions are   cheby1,   cheby2 
and   ellip. They design  Chebyshev and  Elliptical fi lters. Chebyshev and Elliptical 
fi lters have a narrower transition region for the same fi lter order than Butterworth 
fi lters but do so at the expense of passband and/or stopband ripple. Their syntax is 
similar except that maximum allowable ripple must also be specifi ed in the pass and/
or stop bands.

Several standard window functions are available for use with FIR fi lters. They 
are   bartlett,   blackman,   boxcar (rectangular),   chebwin (Chebyshev),   ham-
ming,   hanning (von Hann),   kaiser and   triang (similar to, but not identical 
to, bartlett).
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716 Chapter  15  Filter Analysis and Design

The function   freqz fi nds the frequency response of a digital fi lter in a manner similar 
to the operation of the function freqs for analog fi lters. The syntax of freqz is 

[H,W] = freqz(bd,ad,N) ;

where H is the complex frequency response of the fi lter, W is a vector of discrete-time 
frequencies in radians (not radians per second because it is a discrete-time frequency) 
at which H is computed, bd and ad are vectors of coeffi cients of the numerator and 
denominator of the digital fi lter transfer function and N is the number of points.

The function   upfi rdn changes the sampling rate of a signal by upsampling, FIR 
fi ltering and down sampling. Its syntax is

y = upfi rdn(x,h,p,q) ;

where y is the signal resulting from the change of sampling rate, x is the signal 
whose sampling rate is to be changed, h is the impulse response of the FIR fi lter, p is 
the factor by which the signal is upsampled by zero insertion before fi ltering and q is 
the factor by which the signal is downsampled (decimated) after fi ltering.

These are by no means all of the digital signal processing capabilities of MATLAB. 
Type help signal for other functions.

EXAMPLE 15.12

Filtering a  discrete-time pulse with a highpass Butterworth fi lter using MATLAB

Digitally fi lter the discrete-time signal

x[ ] u[ ] u[ ]n n n= − − 10

with a third-order highpass digital Butterworth fi lter whose discrete-time radian corner fre-
quency is �/6 radians.

% Use 30 points to represent the excitation, x, and the response, y

N = 30 ; 

% Generate the excitation signal

n = 0:N-1 ; x = uDT(n) - uDT(n-10) ;

% Design a third-order highpass digital Butterworth fi lter

[bd,ad] = butter(3,1/6,’high’) ;

% Filter the signal

y = fi lter(bd,ad,x) ;

The excitation and response are illustrated in Figure 15.49.
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15.4 SUMMARY OF IMPORTANT POINTS
 1. The Butterworth fi lter is maximally fl at in both the pass and stop bands and all its 

poles lie on a semicircle in the left half of the s plane.
 2. A lowpass Butterworth fi lter can be transformed into a highpass, bandpass or 

bandstop fi lter by appropriate variable changes.
 3. Chebyshev, Elliptic and Bessel fi lters are fi lters optimized on a different basis 

than Butterworth fi lters. They can also be designed as lowpass fi lters and then 
transformed into highpass, bandpass or bandstop fi lters.

 4. One popular design technique for digital fi lters is to simulate a proven analog 
fi lter design.

 5. Two broad classifi cations of digital fi lters are inifi nite-duration impulse response 
(IIR) and fi nite-duration impulse response (FIR).

 6. The most popular types of IIR digital fi lter design are the impulse invariant, 
step invariant, fi nite difference, direct substitution, matched z and bilinear 
methods.

 7. FIR fi lters can be designed by windowing ideal impulse responses or by the 
Parks-McClellan equiripple algorithm.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Continuous-Time Butterworth Filters

 1. Using only a calculator, fi nd the transfer function of a third-order (n = 3) lowpass 
Butterworth fi lter with corner frequency �c = 1 and unity gain at zero frequency.

  Answer: 
1

2 2 13 2s s s+ + +

Figure 15.49
Excitation and response of a third-order highpass digital Butterworth fi lter

x[n]

�1

1

y[n]

�1

1

30
n

30
n
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718 Chapter  15  Filter Analysis and Design

 2. Using MATLAB, fi nd the transfer function of an eighth-order lowpass 
Butterworth fi lter with corner frequency �c = 1 and unity gain at zero frequency.

  Answer: 

  1

5 126 13 1371 21 8462 25 6884 21 848 7 6 5 4s s s s s+ + + + +. . . . . 662 13 1371 5 126 13 2s s s+ + +. .

 3. Find the transfer functions of these Butterworth fi lters.

(a) Second-order highpass with a corner frequency of 20 kHz and a passband 
gain of 5.

(b) Third-order bandpass with corner frequencies of 4750 Hz and 5250 Hz and 
a passband gain of 1.

(c) Fourth-order bandstop with corner frequencies of 9.975 MHz and 10.025 MHz 
and a passband gain of 1.

Answers:

3 1 10

6283 2 97 10 1 24 10 2 93

10 3

6 5 9 4 13 3
.

. . .

×
+ + × + × +

s

s s s s ×× + × + ×10 6 09 10 9 542 1018 2 21 26s s. .
,

s s s s8 16 6 31 4 47 21 57 10 9 243 10 2 418 10 2 373+ × + × + × + ×. . . . 110

8 205 10 1 57 10 9 665 10 9

62

8 5 7 16 6 21 5s s s s+ × + × + × +. . . .224 10

3 729 10 2 419 10 5 256 10

31 4

37 3 47 2 52

×

+ × + × + ×

s

s s. . . ss + ×

⎡

⎣
⎢

⎤

⎦
⎥

2 373 1062.

,
 

5

1 777 10 1 579 10

2

2 5 10

s

s s+ × + ×. .

 4. Using MATLAB design Chebyshev Type 1 and Elliptic fourth-order analog 
highpass fi lters with a cutoff frequency of 1 kHz. Let the allowed ripple in the 
passband be 2 dB and let the minimum stopband attenuation be 60 dB. Graph 
the magnitude Bode diagram of their frequency responses on the same scale for 
comparison. How wide is the transition band for each fi lter?

Answers: Chebyshev Type 1: 726 Hz, Elliptic: 555 Hz

101 102 103 104 105
-160

-140

-120

-100

-80

-60

-40

-20

0

Frequency, f (Hz) 

 

 

Chebyshev

Elliptic

�H
a(

f)
� dB
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 Impulse-Invariant and Step-Invariant Filter Design

 5. Using the impulse-invariant and step-invariant design methods, design digital 
fi lters to approximate analog fi lters with these transfer functions. In each case 
choose a sampling frequency that is 10 times the magnitude of the distance of the 
farthest pole or zero from the origin of the s plane. Graphically compare the step 
responses of the digital and analog fi lters.

(a) H ( )a s
s s

=
+ +

2

3 22   (b) H ( )a s
s

s s
=

+ +
6

13 402  

(c) H ( )a s
s s

=
+ +

250

10 2502

Answers:

t
1.4

h-1a(t)

-0.2

1.6

n
35

h-1d[n]

-5

35
Unit Step Response Impulse-Invariant Unit Sequence Response

,

t
1.4

h-1a(t)

-0.2

1.6

n
35

h-1d[n]

-0.2

1.6Unit Step Response Step-Invariant Unit Sequence Response

,

t
1.2

h-1a(t)

-0.05

0.4

n
14

h-1d[n]

-0.05

0.4
Unit Step Response Step-Invariant Unit Sequence Response

,

t
1.2

h-1a(t)

-0.05

0.4

n
14

h-1d[n]

8
Unit Step Response Impulse-Invariant Unit Sequence Response

,

t
7

h-1a(t)

-0.2

1.2

n
25

h-1d[n]

-0.5

3.5Unit Step Response Impulse-Invariant Unit Sequence Response

,
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720 Chapter  15  Filter Analysis and Design

t
7

h-1a(t)

-0.2

1.2

n
25

h-1d[n]

-0.2

1.2Unit Step Response Step-Invariant Unit Sequence Response

Finite-Difference Filter Design
 6. Using the  fi nite-difference method and all backward differences, design digital 

fi lters to approximate analog fi lters with these transfer functions. In each case, if a 
sampling frequency is not specifi ed, choose a sampling frequency that is 10 times 
the magnitude of the distance of the farthest pole or zero from the origin of the 
s plane. Graphically compare the step responses of the digital and analog fi lters.

(a) Ha(s) = s,  fs = 1MHz  (b)  Ha(s) = 1/s, fs = 1kHz

(c) H ( )a s
s s

=
+ +

2

3 22

Answers:

n
10

-3

t

h�1(t)

1

1
t

h�1(t)h�1(t)

1

n

106

t
3�

n
30�5

1

1

h�1[n]h�1[n]h�1[n]

, ,

 Matched z-Transform and Direct Substitution Filter Design

 7. Using the matched-z-transform method, design digital fi lters to approximate 
analog fi lters with these transfer functions. In each case choose a sampling 
frequency that is 10 times the magnitude of the distance of the farthest pole or 
zero from the origin of the s plane (unless all poles or zeros are at the origin, 
in which case the sampling rate will not matter, in this method). Graphically 
compare the step responses of the digital and analog fi lters.

(a) Ha(s) = s     (b)  Ha(s) = 1/s    (c)  H ( )a s
s

s s
=

+ +
2

10 252
Answers:

t

h�1(t)

1

1

1
t

h�1(t)

1

h�1(t)

t
3.7699

0.14599

h�1[n]

n
30�5

h�1[n]

n

h�1[n]

n

12.134

, ,
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 Bilinear z-Transform Filter Design
 8. Using the bilinear-z-transform method, design digital fi lters to approximate 

analog fi lters with these transfer functions. In each case choose a sampling 
frequency that is 10 times the magnitude of the distance of the farthest pole or 
zero from the origin of the s plane. Graphically compare the step responses of the 
digital and analog fi lters.

(a) H ( )a s
s

s
= −

+
10

10
 (b)  H ( )a s

s s
=

+ +
10

11 102
 (c)  H ( )a s

s

s s
=

+ +
3

11 102

Answers:

h�1(t)

t
1.885

0.8313

h�1[n]

n
30

0.83648

h�1(t)

t
1.885

0.2322

h�1[n] h�1[n]

n
30

0.23256

h�1(t)

�1

t
1.885

n
30

�1
, ,

 FIR Filter Design
 9. Using a rectangular window of width 50 and a sampling rate of 10,000 samples/

second, design an FIR digital fi lter to approximate the analog fi lter whose 
transfer function is

 H ( )a s
s

s s
=

+ + ×
2000

2000 2 102 6

  Compare the frequency responses of the analog and digital fi lters.
  Answers:

5000
Frequency,  f (Hz)

Analog

0
0

0.2

1000 2000 3000 4000

0.4

0.6

0.8

1

|H
a
(f

)|

|H
d(

ejΩ
)|

3.5
Frequency, Ω

Digital

0
0

2000
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12000

 

5000

Frequency,  f (Hz)
0

0

1

-2 -1
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)|

0
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1
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722 Chapter  15  Filter Analysis and Design

10. Using a rectangular window of width 100 and a sampling rate of 50,000 samples/
second, design an FIR digital fi lter to approximate the analog fi lter whose 
transfer function is 

H ( )
.

( )( .
a s

s

s s s
= × + ×

+ × + + ×
3 10

1 6 10

3 10 5000 1 6 10
4

2 9

4 2 9))

  Graph the impulse and frequency responses of the digital fi lter. Repeat the design 
using a Blackman window and explain the effects you see on the frequency response.

Answers:

0

0 20 40 60 80 100

0.5 1 1.5 2
-1

0

1

2

3
x 104

x 104

Time, t (ms) 

Time, n

h a
(t

)

Analog Impulse Response

0 0.5 1 1.5 2
-1

-1

0

1
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1

2

3
x 104

x 104

Time, t (ms) 

h a
(t

)

Analog Impulse Response
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-400
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h d

[n
]

Digital Impulse Response with Blackman Window

0

0
0

2
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6
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11. Design a digital-fi lter approximation to each of these ideal analog fi lters by 
sampling a truncated version of the impulse response and using the specifi ed 
window. In each case choose a sampling frequency that is 10 times the highest 
frequency passed by the analog fi lter. Choose the delays and truncation times 
such that no more than 1% of the signal energy of the impulse response is 
truncated. Graphically compare the magnitude frequency responses of the digital 
and ideal analog fi lters using a dB magnitude scale versus linear frequency.

(a) Lowpass, fc = 1 Hz, Rectangular window
(b) Lowpass, fc = 1 Hz, von Hann window
Answers:

f
5

�Hd(e j2�fTs)�dB

20

�120

�Hd(e j2�f Ts)�dB

�5

f
1

,

f
5

�Hd(e j2�f Ts)�dB

�120

f
1

�Hd(e j2�f Ts)�dB

�5

EXERCISES WITHOUT ANSWERS

Analog Filter Design

12.  Thermocouples are used to measure temperature in many industrial processes. 
A thermocouple is usually mechanically mounted inside a “ thermowell,” a 
metal sheath that protects it from damage by vibration, bending stress, or 
other forces. One effect of the thermowell is that its thermal mass slows the 
effective time response of the thermocouple/thermowell combination compared 
with the inherent time response of the thermocouple alone. Let the actual 
temperature on the outer surface of the thermowell in Kelvins be Ts(t) and let 
the voltage developed by the thermocouple in response to temperature be vt (t). 
The response of the thermocouple to a one-Kelvin step change in the thermowell 
outer-surface temperature from T1 to T1 + 1 is

  v ( ) u( ).t

t

t K T e t= + −
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
1 0 21  

  where K is the thermocouple temperature-to-voltage conversion constant. 

(a) Let the conversion constant be K = 40 �V/K. Design an active fi lter that 
processes the thermocouple voltage and compensates for its time lag making 
the overall system have a response to a one-Kelvin step thermowell-surface 
temperature change that is itself a step of voltage of 1mV.

(b) Suppose that the thermocouple also is subject to electromagnetic 
interference (EMI) from nearby high-power electrical equipment. Let 
the EMI be modeled as a sinusoid with an amplitude of 20 �V at the 
thermocouple terminals. Calculate the response of the thermocouple-fi lter 
combination to EMI frequencies of 1 Hz, 10 Hz and 60 Hz. How big is the 
apparent temperature fl uctuation caused by the EMI in each case?
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724 Chapter  15  Filter Analysis and Design

13. Design a Chebyshev Type 2 bandpass fi lter of minimum order to meet these 
specifi cations.

Passband: 4 kHz to 6 kHz, Gain between 0 and −2 dB
Stopband: <3 kHz and >8 kHz, Attenuation >60 dB

  What is the minimum order? Make a Bode diagram of its magnitude and phase 
frequency response and check it to be sure the pass and stop band specifi cations 
are met. Make a pole-zero diagram. What is the time of occurrence of the peak of 
its impulse response?

Impulse-Invariant and Step-Invariant Filter Design

14. Using the impulse-invariant design method, design a discrete-time system to 
approximate the continuous-time systems with these transfer functions at the 
sampling rates specifi ed. Compare the impulse and unit-step (or sequence) 
responses of the continuous-time and discrete-time systems.

(a) H ( )a s
s

s s
=

+ +
712

46 2402
,  fs = 20 Hz (b) H ( )a s

s

s s
=

+ +
712

46 2402
,  fs = 200 Hz

15. Using the impulse-invariant and step-invariant design methods, design digital 
fi lters to approximate analog fi lters with these transfer functions. In each case 
choose a sampling frequency that is 10 times the magnitude of the distance of the 
farthest pole or zero from the origin of the s plane. Graphically compare the step 
responses of the digital and analog fi lters.

(a) H ( )a s
s

s s
=

+ +
16

10 2502   (b)  H ( )a s
s

s s
= +

+ +
4

12 322

(c) H ( )
( )

a s
s

s s s
= +

+ +

2

2

4

12 32

Finite-Difference Filter Design

16. Using the fi nite-difference method and all backward differences, design digital 
fi lters to approximate analog fi lters with these transfer functions. In each case 
choose a sampling frequency that is 10 times the magnitude of the distance of the 
farthest pole or zero from the origin of the s plane. Graphically compare the step 
responses of the digital and analog fi lters.

(a) H ( )a s
s

s s
=

+ +

2

2 3 2
  (b)  H ( )a s

s

s s
= +

+ +
60

120 20002

(c) H ( )a s
s

s s
=

+ +
16

10 2502

Matched z-Transform and Direct Substitution Filter Design

17. Using the direct substitution method, design digital fi lters to approximate analog 
fi lters with these transfer functions. In each case choose a sampling frequency that is 
10 times the magnitude of the distance of the farthest pole or zero from the origin of 
the s plane. Graphically compare the step responses of the digital and analog fi lters.

(a) H ( )a s
s

s s
=

+ +

2

2 51100 10
 (b)  H ( )a s

s s

s s
= + +

+ +

2

2

100 5000

120 2000

(c) H ( )
( )

a s
s

s s s
= +

+ +

2

2

4

12 32
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Bilinear z-Transform Filter Design

18. Using the bilinear-z-transform method, design digital fi lters to approximate analog 
fi lters with these transfer functions In each case choose a sampling frequency that is 
10 times the magnitude of the distance of the farthest pole or zero from the origin of 
the s plane. Graphically compare the step responses of the digital and analog fi lters.

(a) H ( )a s
s

s s
=

+ +

2

2 100 250000
 (b)  H ( )a s

s s

s s
= + +

+ +

2

2

100 5000

120 2000

(c) H ( )a s
s

s s
= +

+ +

2

2

4

12 32

19. Use the bilinear z-transform and a sampling rate of 10 kHz to approximate a 
4th-order lowpass Butterworth analog fi lter with a cutoff frequency of 4 kHz. 
Find the -3 dB point for the digital fi lter and compare it to the desired cutoff 
frequency of 	c = 2�fc /fs = 0.8�. Why are they different? 

FIR Filter Design

20. Design a digital-fi lter approximation to each of these ideal analog fi lters by 
sampling a truncated version of the impulse response and using the specifi ed 
window. In each case choose a sampling frequency that is 10 times the highest 
frequency passed by the analog fi lter. Choose the delays and truncation times 
such that no more than 1% of the signal energy of the impulse response is 
truncated. Graphically compare the magnitude frequency responses of the digital 
and ideal analog fi lters using a dB magnitude scale versus linear frequency.

(a) Bandpass, flow = 10 Hz, fhigh = 20Hz, Rectangular window
(b) Bandpass, flow = 10 Hz, fhigh = 20Hz, Blackman window

21. Graph the frequency response of an FIR fi lter designed using the Parks-
McClellan algorithm that meets the specifi cation in Figure E.21 with the shortest 
possible impulse response.

Figure E.21
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726

 16 C H A P T E R

16.1 INTRODUCTION AND GOALS
Most of the system analysis in previous chapters has been of relatively simple systems, 
with one input and one output. We now have the tools necessary to tackle larger sys-
tems. The analysis of a large system can quickly become very tedious and error-prone 
because of the size of the system of equations needed to describe it and the number of 
algebraic manipulations required to fi nd a solution to those equations. Therefore, it is 
necessary to develop some systematic procedures to enable us to grapple with large 
systems and fi nd solutions without errors and without spending inordinate amounts 
of time. A popular method of analyzing large systems is through state-space analysis 
 using state variables.

C H A P T E R  G OA L S

 1. To systematize the analysis of large complicated systems

 2. To recognize the order of a system and assign  state variables accordingly

 3. To apply matrix methods that hide the complexity of systems in a compact 
notation

 4. To defi ne certain system operations and parameters that encapsulate important 
system qualities

 5. To relate state-space analysis to transfer functions

 6. To learn how to transform from one set of state variables to another and how 
to diagonalize state variable descriptions of systems

 7. To become familiar with MATLAB tools for state-space analysis

 8. To apply state-space methods to both continuous-time and discete-time
systems

16.2  CONTINUOUS-TIME SYSTEMS
A set of state variables is a set of signals in a system, which, together with the system 
excitation(s), completely determines the state of the system at any future time. Con-
sider the RC lowpass fi lter. We needed to know the initial  capacitor voltage in order 

State-Space Analysis
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to solve for the arbitrary constant and get an exact solution for the future response 
voltage. In the RLC circuit we needed both the initial capacitor voltage and the initial 
 inductor current. The capacitor voltage and inductor current are simple examples of 
state variables. Their values completely defi ne the state (or condition) of the system 
at any time. Once we know them and the system dynamics and the excitations we can 
calculate anything else we want to know about the system at any future time.

Every system has an order. The  order of a system is the same as the number of 
state variables necessary to uniquely establish its state. If the system is described by 
one differential or difference equation, the order of the system is the same as the order 
of the equation. If the system is described by multiple independent equations, its order 
is the sum of the orders of the equations. The number of state variables required by a 
system sets the size of the  state vector and therefore the number of dimensions in the 
state space, which is just a specifi c example of a vector space. Then the state of the 
system can be conceptualized as a position in the  state space. Common terminology 
is that as the system responds to its excitation(s), the state of the system follows a 
 trajectory through that space.

A system’s state variables are not unique. One person might choose one set, 
another person might choose another set, and both sets could be correct and complete. 
However, in many cases there may be one set of state variables that is more convenient 
than another for some analysis purpose.

State-space analysis has the following desirable  characteristics:

 1. It reduces the probability of analysis errors by making the process systematic. 
 2. It describes all the important system signals, both internal and external. 
 3. It lends insight into system dynamics and that can help in design optimization. 
 4. It can be formulated using matrix methods and, when that is done, the state of 

the system and the response(s) of the system can be described by two matrix 
equations.

 5. When state-variable analysis techniques are combined with transform techniques 
they are even more powerful in the analysis of large systems.

 SYSTEM AND  OUTPUT EQUATIONS

To introduce state-space analysis techniques we will begin by applying them to a very 
simple system, a parallel RLC circuit (Figure 16.1). Let the excitation be designated as 
the current at the input port i ( )in t  and let the responses be designated as the voltage at 
the output port v ( )out t  and the current through the resistor i ( )R t . Summing the currents 
leaving the top node to zero we get

 G t
L

d C t tout out

t

out inv ( ) v ( ) v ( ) i ( )+ + ′ =
−∞
∫

1
� �

Figure 16.1
A  parallel RLC circuit

R

iR(t) iL(t)

L

�

�

C vout(t)

iin(t)

iC(t)

 16.2 Continuous-Time Systems 727
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728 Chapter  16  State-Space Analysis

where G R= 1/ . This is an integro-differential equation. We could differentiate it with 
respect to time and form a second-order differential equation. Therefore, this is a 
second-order system.

Instead of immediately trying to solve the system equation in its present form we 
will reformulate the information it contains. We identify the capacitor voltage v ( )C t  
and the inductor current i ( )L t  as state variables. The standard state variable description 
of a system has two sets of equations, the  system equations and the output equations. 
The system equations are written in a standard form. Each one has the derivative of a 
state variable on the left side and some linear combination of the state variables and 
excitations on the right side. Using Ohm’s law, Kirchhoff’s laws and the defi ning equa-
tions for inductors and capacitors we can write the system equations

 ′ =i ( ) ( )v ( )L Ct L t1/

and

 ′ = − − +v ( ) ( ) i ( ) ( )v ( ) ( ) i ( )C L C int C t G C t C t1 1/ / /

The  output equations express the responses as linear combinations of the state variables. 
In this case they would be

 v ( ) v ( )out Ct t=

and

 i ( ) v ( ).R Ct G t=

The system equations can be reformulated in a standard matrix form as

 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

i ( )

v ( )

i ( )

v (
L

C

L

C

t

t

L
C G C

t0 1
1

/
/ / tt C

tin
)

[i ( )]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

0
1/

 (16.1)

and the output equations can be written in a standard matrix form as

 
v ( )

i ( )

i ( )

v ( )
out

R

L

C

t

t G

t

t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦

0 1
0

⎥⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

0
0

[i ( )].in t  (16.2)

The state variables seem to be a lot like system responses. The distinction between 
state variables and responses comes only in the way they are used. The state vari-
ables are a set of system signals that completely describe the state of the system. The 
responses of a system are the signals we designate arbitrarily as responses for whatever 
system-design purpose we may have in any particular system analysis. A state variable 
can also be a response. But even if a state variable and a response are the same in the 
analysis of a particular system, in the standard state-space equation forms we give 
them separate names, just to be systematic. That may seem to be a waste of time, but in 
large system analysis it is actually a good idea and can prevent analysis errors.

The state-variable formulation of system equations makes the process of drawing 
a system block diagram realization very easy and systematic. For this example the 
system block diagram can be drawn directly from the system equations as illustrated 
in Figure 16.2.
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We will refer to the  vector of state variables as q( )t , the vector of excitations as 
x( )t  and the vector of responses as y( )t .1 The matrix that multiplies q( )t  in the system 
equation (16.1) is conventionally called A and the matrix that multiplies x( )t  in the 
system equation is conventionally called B. The matrix that multiplies q( )t  in the out-
put equation, (16.2), is conventionally called C and the matrix that multiplies the x( )t  
in the output equation is conventionally called D. Using this notation we can write the 
matrix system equation as

 ′ = +q Aq Bx( ) ( ) ( )t t t

where, in this case, q( )
i ( )

v ( )
t

t

t
L

C

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, A =
− −

⎡

⎣
⎢

⎤

⎦
⎥

0 1
1

/
/ /

L
C G C

, B =
⎡

⎣
⎢

⎤

⎦
⎥

0
1/C

, and x( ) [i ( )]t tin= .

We can write the equation for the response as

 y Cq Dx( ) ( ) ( )t t t= +

where, in this case, y( )
v ( )

i ( )
t

t

t
out

R

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 is the vector of responses, C =

⎡

⎣
⎢

⎤

⎦
⎥

0 1
0 G

 and D =
⎡

⎣
⎢

⎤

⎦
⎥

0
0

.

(The equation for the response is conventionally called the output equation.) No mat-
ter how complicated the system may be, with the proper assignment of state variable 
vectors and matrices, the  system and  output equations of LTI systems can always be 
written as these two matrix equations. In this relatively simple example the power of 
this formulation may not be evident because the solution of a system this simple is not 
diffi cult using classical techniques. But when the system gets larger, this systematic 
technique compares very favorably with less systematic techniques.

So far we have only described the system but have not solved the equations. One of 
the really powerful aspects of state-space formulation of system analysis is the straight-
forward and systematic way the equations can be solved. The state equations are

 
′ = +

= +
q Aq Bx

y Cq Dx

( ) ( ) ( )

( ) ( ) ( )

t t t

t t t

1 Some authors use the symbol x to represent the vector of state variables instead of the symbol q. The use of 
the symbol x to represent the state variable vector could be confusing because, in all previous material, we (and 
most authors) have consistently used the symbol x(t) to represent an excitation. Some authors use the symbol u 
for the vector of excitations instead of the symbol x. Also, in previous material we (and most other authors) have 
used the symbol u(t) to represent the unit-step function. So, even though u is boldface and u(t) is not, it should 
be less confusing to use the symbol x as the excitation rather than the symbol u, especially since the symbol x(t) 
has been used up until now to represent an excitation in a single-input system.

Figure 16.2
A state-variable system block diagram of the 
parallel RLC circuit

iin(t)

iR(t)

vout(t)
vC(t)

i'L(t) iL(t)

v'C(t)

G

1/C

–1/C

–G/C

+

+
+

+

1/L

∫

∫

 16.2 Continuous-Time Systems 729

rob80687_ch16_726-760.indd   729rob80687_ch16_726-760.indd   729 12/24/10   7:26:00 PM12/24/10   7:26:00 PM



730 Chapter  16  State-Space Analysis

Obviously if we can fi nd the solution vector q( )t  to the system equation we can imme-
diately calculate the response vector y( )t  because the excitation vector x( )t  is known. 
So the solution process is to fi rst fi nd the solution of the system equation.

It is possible to fi nd a time-domain solution directly from these matrix equations, 
but it is easier to use the unilateral Laplace transform to help fi nd the solution. Laplace 
transforming the system equation we get

 s s s sQ q AQ BX( ) ( ) ( ) ( )− = +−0

or

 [ ] ( ) ( ) ( )s s sI A Q BX q− = + −0

where q( )0−  is the vector of initial values of the state variables. We can solve this 
equation for Q( )s  by multiplying both sides by [ ]sI A− −1 yielding

 Q I A BX q( ) [ ] [ ( ) ( )]s s s= − +− −1 0 . (16.3)

The matrix [ ]sI A− −1 is conventionally designated by the symbol �( )s . Using that 
notation (16.3) becomes

 Q BX q BX( ) ( )[ ( ) ( )] ( ) ( )s s s s s= + =−

−

� �0
zero state
responnse

zero input
response

� �� �� � �� ��+ −

−

�( ) ( )s q 0  (16.4)

and the state vector is seen as consisting of two parts, the zero-state response and the 
zero-input response. We can now fi nd the time-domain solution by inverse Laplace 
transforming (16.4),

 
q Bx q( ) ( ) ( ) ( ) (t t t t= ∗ +

−

−� �

zero state
response

� �� �� 0 ))
zero input
response

−
� �� ��

where � t s( )← →⎯L �( ) and �( )t  is called the  state transition matrix. The name 
“state transition matrix” comes from the fact that once the initial state and excitations 
are known, �( )t  is what allows us to calculate the state at any future time. In other 
words, �( )t  lets us calculate the way the system makes a transition from one state to 
another.

We will now apply this method to the example. The matrices in the state equation are

 q( )
i ( )

v ( )
t

t

t
L

C

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, A =

− −
⎡

⎣
⎢

⎤

⎦
⎥

0 1
1

/
/ /

L
C G C

, B =
⎡

⎣
⎢

⎤

⎦
⎥

0
1/C

, and x( ) [i ( )]t tin= .

To make the problem concrete let the excitation current be a unit step

 i( ) u( )t A t= ,

let the initial conditions be

 q( )
i ( )

v ( )
0

0

0

0
1

−
−

−
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

L

C
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and let the component values be R C L= = =1 3 1 1/ , , . Then, using the fact that the inverse 
of a matrix is the transpose of the matrix of its cofactors, divided by its determinant,

 
�( ) ( )s s s L

C s G C

s G C C

= − = −
+

⎡

⎣
⎢

⎤

⎦
⎥ =

+ −

−
−

I A 1

1
1

1

1
1/

/ /

/ /
/LL s

s G C s LC

T
⎡

⎣
⎢

⎤

⎦
⎥

+ +2 1( )/ /

 
�( )

( )
s

s G C L
C s

s G C s LC
=

+
−

⎡

⎣
⎢

⎤

⎦
⎥

+ +

/ /
/

/ /

1
1

12

and the solution for the state variables in the Laplace domain is

 Q BX q( ) ( )[ ( ) ( )]s s s= + −� 0

 
Q( )

( )
s

s G C L
C s

s G C s LC C
=

+
−

⎡

⎣
⎢

⎤

⎦
⎥

+ +
⎡

⎣
⎢

⎤

⎦

/ /
/

/ / /

1
1

1
0

12 ⎥⎥ +

+
−

⎡

⎣
⎢

⎤

⎦
⎥

+ +
⎡

⎣
⎢

⎤
[ ]

( )
1

1
1

1
0
12

/

/ /
/

/ /
s

s G C L
C s

s G C s LC ⎦⎦
⎥

or

 
Q( )

(G )
s

sLC
C

L
s

s C s LC
=

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥

+ +

1
1

1

12

/
/

/

/ /

 Q( )
( ( ) ) ( ( ) )

(

s
sLC s G C s LC L s G C s LC

C

=
+ +

+
+ +

1

1

1

1

1

2 2/ / / /

ss G C s LC

s

s G C s LC2 21 1+ +
+

+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥( ) ) ( )

.

/ / / /

Substituting in numerical component values we get

 Q( )
( )

s
s s s s s

s s

s

s s

= + +
+

+ +

+ +
+

+ +

⎡

⎣

⎢
⎢
⎢

1

3 1

1

3 1

1

3 1 3 1

2 2

2 2
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

or in partial-fraction form,

 Q( )

.

.

.

.

.

.

.

s s s s s=
+

+
−

+
−

+
+1 0 17

2 62

1 17

0 382

0 447

2 62

0 4477

0 382
0 447

2 62

0 447

0 382

1 17

2 62

0
s

s s s

+

−
+

+
+

+
+

−

.
.

.

.

.

.

.

..

.

17

0 382s +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 Q( )

.

.

.

.
.

.

.
s

s s s

s

=
−

+
−

+

+
+

1 0 277

2 62

0 723

0 382
0 723

2 62

0 2777

0 382s +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥.

.
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732 Chapter  16  State-Space Analysis

Inverse Laplace transforming,

 q( ) . .

.

. .

.
t e e

e

t t

t
= − −

+

− −

−
1 0 277 0 723

0 723

2 62 0 382

0 382 00 277 2 62.
u( )

.e
t

t−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

Now we can fi nd the responses immediately using the output equation y(t) = Cq(t) + Dx(t).

 y q x( ) .t
G

e=
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

− −0 1
0

0
0

0 1
0 3

1 0 277 2.. .

. .

.

. .

62 0 382

0 382 2 62

0 723

0 723 0 277

t t

t t

e

e e

−
+

⎡

⎣

−

− −
⎢⎢
⎢

⎤

⎦
⎥
⎥

u( )t

or

 y( ) . .

. .

. .

.
t e e

e

t t

t
= +

+

− −

−
0 723 0 277

2 169 0

0 382 2 62

0 382 8831 2 62e
t

t−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥.

u( ) .

EXAMPLE 16.1

State-space analysis  of a  two-input, two-output system

Write the state equations for the system in Figure 16.3. Then fi nd the responses of the system to 
x ( ) u( )1 t t=  and x ( ) ( )2 t t= �  if the initial conditions are q , ,1 2 30 2 0 0 0 1( ) q ( ) q ( )− − −= = = − .

x1(t)

x2(t)

y2(t)

y1(t)

1.2 0.9

1.50.70.5

q1(t) q2(t)

  q3(t)

∫

–2.4

–3.5

∫

∫

+ +

+

Figure 16.3
Two-input, two-output system

 We can write the state equations directly from the diagram

 

′ = − − +q ( ) . {x ( ) . q ( ) . (q ( ) . [ . q (1 1 2 3 10 5 2 4 3 5 1 2 0 7t t t t t)) x ( )])}

q ( ) . [ . q ( ) x ( )]

q ( ) .

+
′ = +
′ =

2

2 1 2

3

1 5 0 7

0 9

t

t t t

t qq ( )

y ( ) q ( )

y ( ) q ( ) . [ . q ( ) x ( )

2

1 2

2 3 1 21 2 0 7

t

t t

t t t t

=
= + + ]]

Putting these equations in standard state-variable matrix form,

 ′ = +q Aq Bx( ) ( ) ( )t t t

  y Cq Dx( ) ( ) ( )t t t= +

where

 A B=
− − −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−1 47 1 2 1 75

1 05 0 0
0 0 9 0

0 5 2. . .
.

.

.
,

..
.

1
0 1 5
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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 C D x=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=0 1 0
0 84 0 1

0 0
0 1 2. .

( )
x

, , t
11

2

1

2

( )

x ( )
( )

y ( )

y ( )

t

t
t

t

t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, y

 �( ) ( )
. . .

.
.

s s
s

s
s

= − =
+
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

−I A 1
1 47 1 2 1 75

1 05 0
0 0 9

⎥⎥
⎥
⎥

−1

 � = + − − + = + +s s s s s2 3 21 47 1 2 1 05 1 75 0 945 1 47( . ) . ( . ) . ( . ) . 11 26 1 65375. .s +

 

�( )

. .
. . ( . ) . .

s

s s
s s s s

=

− − + +

2 1 05 0 945
1 2 1 575 1 47 0 9 1 323

−− − + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
1 75 1 8375 1 47 1 26

1 47

2

3

. . . .

.

s s s

s

T

ss s2 1 26 1 65375+ +. .

 

�( )

. . .
. ( . ) .

.
s

s s s
s s s

=

− − −
+ −

2 1 2 1 575 1 75
1 05 1 47 1 8375

0 9945 0 9 1 323 1 47 1 26

1 47

2

3

. . . .

.

s s s

s s

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ 22 1 26 1 65375+ +. .s

 X( )s
s=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1
/ , q( )0

2
0
1

− =
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 Q BX q( ) ( )[ ( ) ( )]s s s= + −� 0

 

Q( )

. . .
. ( . ) .

.
s

s s s
s s s

=

− − −
+ −

2 1 2 1 575 1 75
1 05 1 47 1 8375

0 9945 0 9 1 323 1 47 1 26

1 47

2

3

. . . .

.

s s s

s s

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ 22 1 26 1 65375

0 5 2 1
0 1 5
0 0

1
1+ +

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢. .

. .
.

s
s/ ⎤⎤

⎦
⎥
⎥

+
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2
0
1

 

Q( )

. . .
. ( . ) .

.
s

s s s
s s s

=

− − −
+ −

2 1 2 1 575 1 75
1 05 1 47 1 8375

0 9945 0 9 1 323 1 47 1 26

1 47

2

3

. . . .

.

s s s

s s

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ 22 1 26 1 65375

0 5 0 1
1 5

1
+ +

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥. .

. .
.

s

s/

Q( )

. . . . .

. .

s

s s s s

s

=

− − − +
− +

0 5 0 1 1 8 2 3625 1 75

0 525 0 105 1

2

.. . .

. . . .

5 2 205 1 8375

0 4725 0 0945 1 35 1 9845

2s s

s s

+ +
− + +/ −− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ + +
s s

s s s

2

3 2

1 47 1 26

1 47 1 26 1 65

. .

. . . 3375

 

0 1 0 45 2 3625

1 5 2 1 2 3625

0

2

2

2

=

− + −
+ −

− −

. . .

. . .

.

s s

s s

s 112 0 63 0 4725

1 47 1 26 13 2

s s

s s s

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ + +
. .

. .

/

..65375
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734 Chapter  16  State-Space Analysis

Q ( )
. . .

. . .
1

2

3 2
0 1 0 45 2 3625

1 47 1 26 1 6537
s

s s

s s s
= − + −

+ + + 55

1 04

1 409

0 9399 0 8105

0 06116 1 1742= −
+

+ −
+ +

.

.

. .

. .s

s

s s

q ( ) [ . . cos( .. .
1

1 4088 0 0305791 04 1 2181 1 08t e et t= − +− − 33 0 68951t t+ . )]u( )

Q ( )
. . .

. . .
2

2

3 2
1 5 2 1 2 3625

1 47 1 26 1 65375
s

s s

s s s
= + −

+ + +
= −−

+
+ −

+ +
0 7628

1 409

2 236 1 041

0 6116 1 1742
.

.

. .

. .s

s

s

q ( ) [ . . cos(. .
2

1 4088 0 0305790 76283 2 4843 1t e et t= − +− − .. . )]u( )083 0 42547t t+

Q ( )
. . .

( . .
3

3 2

3 2
0 12 0 63 0 4725

1 47 1 26
s

s s s

s s s s
= − − + +

+ + + 11 65375

0 4951

1 409

0 2857 0 7906 0 6041

. )

.

.

. . .= −
+

+ − −
s s

s

ss2 0 06116 1 174+ +. .

q [ . . .. .
3

1 4088 0 0300 49509 0 28571 0 98066t e et( ) = − + +− − 5579 1 083 2 5085t t tcos( . . )]u( )−

 y Cq Dx( ) ( ) ( )t t t= +

 y ( ) q ( ) [ . .. .
1 2

1 4088 0 0305790 76283 2 4843t t e et= = − +− − tt t tcos( . . )]u( )1 083 0 42547+

 Y ( ) Q ( ) . [ . Q ( ) X ( )]2 3 1 21 2 0 7s s s s= + +

Y ( )
.

.

. . .
2 2

0 4951

1 409

0 2857 0 7906 0 6041

0
s

s s

s

s
= −

+
+ − −

+ .. .

. .
.

.

.

06116 1 174

1 2 0 7
1 04

1 409

0

+

+ −
+

+
s

99399 0 8105

0 06116 1 174
12

s

s s

−
+ +

⎡
⎣⎢

⎤
⎦⎥

+⎧
⎨
⎩

⎫
⎬
⎭

.

. .

Y ( )
.

.

. . .
2 2

1 3687

1 409

0 2857 0 0011 0 0767

0
s

s s

s

s
= −

+
+ − +

+ .. .
.

06116 1 174
1 2

+
+

y ( ) . ( ) [ . . ..
2

1 40881 2 1 3687 0 2857 0 0708t t e et= + − + +− −� 00 03058 1 083 1 5863. cos( . . )]u( )t t t+

 One way to quickly check for errors in analysis is to compare the computed values of the 
states at t = +0  with what we should expect by looking at the system directly. The initial condi-
tions are q ( ) q ( ) q ( )1 2 30 2 0 0 0 1− − −= = = −, and . At t = 0 the step turns on and the impulse 
occurs. A step excitation of an integrator produces a ramp response so the response due to a step 
excitation at t = +0  is zero. Therefore, since all the states are integrator output signals, the step 
will not change any state values in this sytem at t = +0 . An impulse excitation of a integrator 
produces a step response and the size of the step is the strength of the impulse. In this system 
the x ( ) ( )2 t t= �  impulse propagates through the middle summing junction, is multiplied by 1.2, 
propagates through the bottom summing junction, is multiplied by −3.5, propagates through the 
left summing junction, is multiplied by 0.5, is integrated by the left integrator creating a step 
response that is multiplied by 0.7, and then propagates through the middle summing junction 
and is multiplied by 1.2 and propagates through the bottom summing junction. At the same 
time the impulse excites the top right integrator and produces a step response. All this happens 
instantaneously. So q1  should change from its initial value of 2 by 1 2 3 5 0 5 2 1. ( . ) . .× − × = −  to 
make q ( ) .1 0 0 1+ = − . From the analytical results above,

 q ( ) . . cos( . ) .1 0 1 04 1 2181 0 68951 0 1+ = − + = − .

The value of q2 should be its initial value of zero plus the change due to the impulse, which is 
1.5. From the analytical results,

 q ( ) . . cos( . ) .2 0 0 76283 2 4843 0 42547 1 5+ = − + =
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The value of q3  should be its initial value of −1 with no change because, since it is the output of 
an integrator and the impulse has to propagate through two integrators to reach it, the impulse can-
not instantaneously change it. Therefore it should stay at −1. From the analytical results above,

 q ( ) . . . cos( . )3 0 0 49509 0 28571 0 98066 2 5085 1+ = − + + − = − .

This analysis does not prove that the analytical results are correct at other times but it is a good 
check that will often reveal analytical errors (Figure 16.4).

-10 0 10 20 30 40
-5

0

5

t (s)

 

 

q1(t)

q2(t)

q3(t)

-10 0 10 20 30 40
-5

0

5

t (s)

 

 

y1(t)

y2(t)

Figure 16.4
States and responses of the two-input, two-output system

EXAMPLE 16.2

 State-space analysis  of a mechanical system

A very common type of mechanical system is a drum with rope or cable wrapped around it with 
the end of the rope or cable connected to a load that is to be moved up or down to a desired 
vertical position by rotating the drum (Figure 16.5).

Load

Mg

x(t)

Power 
Amplifier

Vertical 
Position 

Measurement

va(t)

τ(t)

r

vm(t)

vs(t)

vp(t) - +
+

Figure 16.5
 Electromechanical feedback system
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736 Chapter  16  State-Space Analysis

The position of the load is controlled by a feedback system consisting of a power ampli-
fi er to drive the motor that rotates the drum, a vertical-load-position measuring device and 
a summing junction to fi nd the difference between the voltage signal from the load-position 
measurement v ( )p t

 
(V) and the setpoint voltage v ( )s t

 
(V) that corresponds to the desired load 

position. That difference voltage v ( )a t  (V) is applied to the power amplifi er, and it drives the 
drum in the right direction to reduce the error voltage. The power amplifi er applies the voltage 
v ( ) v ( )m m at k t= −  (V) to the motor. 

The motor produces torque 	( ) v ( )t k tm m=  (N m⋅ ). A positive v ( )m t  produces a 
counterclockwise torque on the drum. The torque is related to the angular acceleration and 
velocity of the drum and the mass of the load by

 	 
 
( ) ( ) ( )t Mgr k t I tf d d d− − ′ = ′′

where M is the mass of the load (kg), g is the gravitational constant (9 80665 2. m s⋅ − ), r is the ra-
dius of the drum (m), k f  is a proportionality constant (N m s⋅ ⋅ ) that accounts for frictional energy 
loss, 
d  is the angular position (radians) of the drum (increasing in the counterclockwise direc-
tion) and Id  is the rotational moment of inertia (N m s⋅ ⋅ 2) of the motor-drum combination.
 The vertical position measurement system produces a voltage v ( ) x( )p pt k t=  (V) propor-
tional to the load position (more positive downward according to the diagram) where kp is the 
constant of proportionality (V m⋅ −1). The relationship (for t > 0) between the angular position 
of the drum and the vertical position of the load is

 x( ) ( )t r td= − 


Again the minus sign on the right side accounts for the relation between drum angle and load 
position.
 Let the states of the system be the angular position 
d t( ) and angular velocity v ( ) ( )d dt t= ′
  
of the drum. Let the inputs to the system be the setpoint voltage v ( )s t  and the mass of the load, 
M tu( ). Let the output of the system be the load position x( )t . The equations relating the various 
signals in the system are

 v ( ) v ( ) v ( )a s pt t t= −  v ( ) v ( )m a at k t= −  	( ) v ( )t k tm m=

 	 
 
( ) u( ) ( ) ( )t grM t k t I tf d d d− − ′ = ′′

 x( ) ( )t r td= − 
  v ( ) x( )p pt k t=

Combining some of the equations we get

 	 
( ) [v ( ) ( )]t k k t r k tm a s p d= − +

Then combining this result with the differential equation we can write the system equations as

 ′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥


d

d m a p d f d

t

t rk k k I k I
( )

v ( )

0 1
/ / ⎥⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥


d

d m a d d

st

t k k I gr I

( )

v ( )

v0 0
/ /

(( )

u( )

t

M t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

or
 ′ = +q Aq Bx( ) ( ) ( )t t t ,

where q( )
( )

v ( )
t

t

t
d

d
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



, A = − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 1
rk k k I k Im a p d f d/ /

,

 B =
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0
k k I gr Im a d d/ /

 and x( )
v ( )

u( )
t

t

M t
s=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
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We can also write the output equation as

 x( ) [ ]
( )

v ( )
[ ]

v ( )

u( )
t r

t

t

t

M t
d

d

s= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

0 0 0

 ⎤⎤

⎦
⎥
⎥

or
 y Cq Dx( ) ( ) ( )t t t= +

where y( ) x( )t t= , C = −[ ]r 0  and D = [ ]0 0 .
 Laplace transforming the system matrix equation

 s s s sQ q AQ BX( ) ( ) ( ) ( )− = +−0

where q( )
( )

v ( )
0

0

0
−

+

+
=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥


d

d

 (assuming no sudden change in the initial conditions at time t = 0). 

The solution is Q I A BX q( ) [ ] [ ( ) ( )]s s s= − +− −1 0 .

 
[ ]

( )
s

s k I

rk k k I s

s k I

f d

m a p d

f d
I A− =

+

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−1

2

1/

/

/ ss rk k k Im a p d+ /

 

Q( )

( ) ( ) ( )V ( ) v (

s

s k I k k I s Mgr sIf d d m a d s d d

=

+ − − ++/ / /
 0 00

0

+

+− − − +

)

( ) ( ) ( )V ( )r k k k I s k k I s Mgr Im a p d d m a d s d/ / /
 ss

s k I s r k k k I

d

f d m a p d

v ( )

( )

0

2

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ +/ /

If the set point is a constant after time t = 0, then v ( ) u( )s s st V t V s= ← →⎯L /  and

 Q( )

( ) [ ( ) v ( )] [( )

s

s k I s k k I Vd f d d d m a d

=

+ + −+ + +
 
0 0 02 / / ss d

f d m a p d

d

Mgr I

s s k I s r k k k I

s r k

+
+ +

−+

/

/ /

]

[ ( ) ]

v ( ) [(

2

0 mm a p d d m a d s d

f d

k k I k k I V Mgr I

s k I s

/ / /

/

) ( ) ( ) ]

( )


 0
2

+ + +
+ ++

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥r k k k Im a p d/

Let the system parameters be

 
.M r k k

k

m a

p

= = = ⋅ =50 0 4 100 10kg, m, N m/V, V/V

== = ⋅ ⋅ = ⋅ ⋅1 20 2502V/m, N m s , N m sI kd f

Let the initial conditions be 
d d( ) ( )0 8 0 2+ += − = −radians, v radians/s and let the setpoint 
voltage be Vs = 6 V. Then

 Q( )
[ . ]

.

s

s s

s s s

s

s s

=

− − −
+ +

− −
+

8 102 310

12 5 20

2 150

12 5

2

2

2 ++

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−

+
+

+
−

20

1 389

10 62

8 888

1 884

1.

.

.

.s s

55 5

14 74

10 62

16 74

1 884

.

.

.

.

.

s

s s+
−

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and, inverse Laplace transforming,

 q( )
( )

v ( )
. ..

t
t

t
e ed

d

t
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +− −
 1 389 8 88810 62 1..

. .

.

. .
u

884

10 62 1 884

15 5

14 74 16 74

t

t te e

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥− −

(( ).t
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738 Chapter  16  State-Space Analysis

The output x( )t  is 

 x( )
( )

v ( )
( .t

r t

t
e

d

d
= −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −0
0 0

0 556 10
 .. .. . )u( )62 1 8843 556 6 2t te t− +−

(Figure 16.6).

Figure 16.6
Drum angular position, drum angular velocity and load 
vertical position

t (s)1 2 3 4 5

1 2 3 4 5
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Drum Angular Position

-16
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Drum Angular Velocity
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 -8
 -6
 -4
 -2

t (s)

Load Vertical Position

3

4

5

6

7

ωd(t)(rad)

vd(t)(rad/s)

x(t)(m)

 The fi nal value of the load position is 6.2 m, not the 6 m set by the setpoint voltage. A larger 
loop transfer function would reduce this error. Also, the inclusion of an integrator in the loop 
will reduce the error to zero if the system remains stable.

 TRANSFER FUNCTIONS

We can use the state-space analysis technique to fi nd the  matrix transfer function of 
the system. Remember, transfer function is defi ned only for the zero-state response. 
Starting with

 s s s sQ q AQ BX( ) ( ) ( ) ( )− = +−0 ,

and requiring that the initial state q( )0−  be zero we can solve for Q( )s  as

 Q I A BX BX( ) [ ] ( ) ( ) ( )s s s s s= − =−1 � .

Then the response Y( )s  is

 Y CQ DX C BX DX C B D X( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ] (s s s s s s s s= + = + = +� � )).

Therefore, since the system response is the product of system transfer function and the 
system excitation, the matrix transfer function is

 H C B D( ) ( )s s= +� .
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This transfer function relates all the excitations of the system to all the responses of 
the system through

 Y H X( ) ( ) ( )s s s= .

Since �( ) [ ]s s= − −I A 1, 

 H C I A B D( ) [ ]s s= − +−1 .

 Examine [ ]sI A− −1. It is the inverse of [ ]sI A− , therefore it is the adjoint of [ ]sI A− , 
divided by the determinant sI A− . So every element in [ ]sI A− −1 has a denominator 
sI A−  (unless some factors in the transpose of the matrix of cofactors of sI A−  cancel 
some factors in sI A− ). Premultiplying by C and postmultiplying by B does not change 
that fact because C and B are matrices of constants. The addition of the D matrix does 
not change the denominators of the elements of H( )s  either because it is also a matrix of 
constants. Therefore the denominator of every element of H( )s  is sI A−  (unless some 
pole-zero cancellation occurred). All elements of H( )s , and therefore all transfer func-
tions from all excitations to all responses, have the same poles. This leads to an important 
idea. Even though transfer function is defi ned as the ratio of a zero-state response to an 
excitation, the poles of any system transfer function are determined by the system itself, 
not by the excitations or the responses. Those poles are the zeros of sI A−  (except for 
any pole-zero cancellation) and the zeros of sI A−  are the eigenvalues of A.

EXAMPLE 16.3

Finding a transfer function of a system

Find the matrix transfer function of the system of Example 16.1.
The matrix transfer function is

 H C B D( ) ( )s s= +� .

From Example 16.1

 B C=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 5 2 1
0 1 5
0 0

0 1 0
0 84 0 1

. .
.

.
, ,, D =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0
0 1 2.

 

�( )

. . .
. ( . ) .

.
s

s s s
s s s

=

− − −
+ −

2 1 2 1 575 1 75
1 05 1 47 1 8375

0 9945 0 9 1 323 1 47 1 26

1 47

2

3

. . . .

.

s s s

s s

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ 22 1 26 1 65375+ +. .s

Therefore

 

H( )
.

. . .
.

s

s s s
s s

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − −

0 1 0
0 84 0 1

1 2 1 575 1 75
1 05

2

(( . ) .

. . . . .

s

s s s

+ −

+ + +

⎡

⎣

⎢
1 47 1 8375

0 945 0 9 1 323 1 47 1 262

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ + +

−⎡

s s s3 21 47 1 26 1 65375

0 5 2 1
0 1 5
0 0

. . .

. .
.

⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0
0 1 2.

which can be simplifi ed to 

 

H( )

. .

. . . . .
s

s s

s s s
=

+ − +
0 525 1 5

0 42 0 4725 1 2 0 6345 1 98

2

2 3 445

1 47 1 26 1 653753 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ + +s s s. . .
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740 Chapter  16  State-Space Analysis

We can test the reasonableness of this answer by applying an impulse at one input and watching 
the response. Let x ( ) ( )1 t t= �  and x ( )2 0t = . Then

 
Y( )

. .

. . . . .
s

s s

s s s
=

+ − +
0 525 1 5

0 42 0 4725 1 2 0 6345 1 98

2

2 3 445

1 47 1 26 1 65375
1
0

0

3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
s s s. . .

.5525

0 42 0 4725

1 47 1 26 1 653

2

3 2

s

s

s s s

. .

. . .

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ + + 775

 Y ( )
.

. . .
1 3 2

0 525

1 47 1 26 1 65375
s

s

s s s
=

+ + +

 y ( ) [ . . cos(. .
1

1 4088 0 0305790 17087 0 27656 1t e et t= +− − .. . )]u( )083 2 2368t t−

From the system diagram, y ( )1 0 0+ =  (remember all initial conditions are zero). From the ana-
lytical result,

 y ( ) . . cos( . )1 0 0 17087 0 27656 2 2368 0+ = + − =

 Y ( )
. .

. . .
2

2

3 2
0 42 0 4725

1 47 1 26 1 65375
s

s

s s s
= +

+ + +

 y ( ) [ . . cos(. .
2

1 4088 0 0305790 4251 0 017964 1t e et t= +− − .. . )]u( )083 1 8588t t+

From the system diagram, y ( ) . . . .2 0 0 5 0 7 1 2 0 42+ = × × = . From the analytical result

 y ( ) . . cos( . ) .2 0 0 4251 0 017964 1 8588 0 42+ = + =

Now let x ( ) ( )2 t t= �  and x ( )1 0t = . Then

 

Y( )

.

. . .

.
s

s

s s

s s
=

− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

1 5

1 2 0 6345 1 9845

1 47

2

3

3 2 ++ +1 26 1 65375. .s

 y ( ) [ . . cos( .. .
1

1 4088 0 0305790 969 0 92752 1 0t e et t= +− − 883 0 96214

1 44 0 15512
1 408

t t

t t e

+

= − −

. )]u( )

y ( ) [ . ( ) . .� 88 0 030791 6171 1 083 3 0394t te t t+ −−. cos( . . )]u( ).

Directly from the system diagram we can see that y ( ) .1 0 1 5+ =  and y2(0+) = 1.2 × (−3.5) × 0.5 × 
0.7 × 1.2 = −1.764. From the analytical results,

 y ( ) . . cos( . ) .

y ( ) .

1

2

0 0 969 0 92752 0 96214 1 5

0 0 1

+

+

= + =

= − 5551 1 6171 3 0394 1 764+ − = −. cos( . ) .

 ALTERNATE  STATE-VARIABLE CHOICES

The RLC circit example above could have been solved using a different set of state 
variables. For example, the resistor current i ( )R t  and the inductor current i tL ( ) could 
have been chosen as the state variables. Then the system equation would be

 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −⎡

⎣
⎢

⎤
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⎥
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i ( )

i ( )

i
R

L

R

L

t

t
G C G C
LG

t/ /
/1 0 (( )

[i ( )]
t

G C tin

⎡

⎣
⎢
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⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

/
0
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and the output equation would be

 
v ( )

( )

i ( )

i ( )
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R

R

L

t

i t
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t

⎡
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⎢
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⎥
⎥
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/ ⎤⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

0
0

[i ( )]in t .

In solving for the state variables we fi nd

 
�( ) [ ]s s

s G C G C
LG s

s G C
LG s

= − = +
−

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−
−

I A 1

1

1

1/ /
/

/
/ ++

⎡

⎣
⎢

⎤

⎦
⎥

+ +
G C

s G C s LC

/

/ /2 1( )
.

It is important here to note that the determinant sI A−  is exactly the same as it was 
for the fi rst set of state variables. That can be shown to be generally true. That is, 
the determinant sI A−  is independent of the choice of state variables. The matrix 
A changes but the determinant sI A−  does not. Therefore the determinant sI A−  is 
saying something fundamental about the system itself, not any particular choice of the 
way we analyze the system. 

 TRANSFORMATIONS OF  STATE VARIABLES

Any set of state variables can be transformed to another set through a linear trans-
formation. Suppose we are using a state-variable vector q1( )t  and we decide to use 
another state-variable vector q2( )t  that is related to q1( )t  by

 q Tq2 1( ) ( )t t=  (16.5)

where T is the transformation matrix relating the two state-variable vectors. Then

 ′ = ′ = + = +q Tq T A q B x TA q TB x2 1 1 1 1 1 1 1( ) ( ) ( ( ) ( )) ( ) (t t t t t tt).

From (16.5) q T q1
1

2( ) ( )t t= − , therefore

 ′ = + = +−q TA T q TB x A q B x2 1
1

2 1 2 2 2( ) ( ) ( ) ( ) ( )t t t t t

where A TA T2 1
1= −  and B TB2 1= . In the output equation, we get

 y C q D x C T q D x C q D( ) ( ) ( ) ( ) ( ) ( )t t t t t t= + = + = +−
1 1 1 1

1
2 1 2 2 22x( )t

where C C T2 1
1= −  and D D2 1= . The eigenvalues of A1 are determined by the system. 

When we choose a different set of state variables by transforming one set to another 
through the transformation matrix T, we are not changing the system, only the way we 
analyze it. Therefore the eigenvalues of A1 and A TA T2 1

1= −  should be the same. That 
can be proven by the following argument. Consider the product

 T I A T TIT TA T I A
I A

[ ] .s s s− = − = −− − −
1

1 1
1

1
2

2

��� ��� ��  (16.6)

Finding the determinant of both sides of (16.6)

 T I A T I A[ ] .s s− = −−
1

1
2  (16.7)

Now we can use two determinant properties from  linear algebra theory. The de-
terminant of a product of two matrices is the product of their determinants and the 
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742 Chapter  16  State-Space Analysis

determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix. 
Applying the fi rst property to (16.7) we get

 T I A T I A[ ] .s s− = −−
1

1
2

Determinants are scalars, therefore multiplication of determinants is commutative and 
associative and

 T T I A I A− − = −1

1

1 2��� ��
s s

and, fi nally,

 s sI A I A− = −1 2 .

Since the determinants are the same, their roots are also the same, proving that the 
eigenvalues of a system are invariant to the choices of state variables and responses.

 DIAGONALIZATION

If all the eigenvalues of a system are distinct, it is possible to choose the state variables in 
such a way that the system matrix A is diagonal. If A is diagonal, then it is of the form

 A =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a

a

aNN

11

22

0 0

0 0

0 0

�
�

� � � �
�

where N is the order of the system. Then the determinant, sI A− , is

 s s a s a s aNNI A− = − − −( )( ) ( )11 22 � .

Since this is in factored form, the roots are exactly a11, a22, . . . ,aNN . Therefore, if the 
system matrix A is diagonal, the elements on the diagonal are the eigenvalues of the 
system and the matrix can be expressed in the form

 A = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

�

�

�

�

1

2

0 0

0 0

0 0

�
�

� � � �
� N

(where � is a capitalized �). Now suppose we have a system matrix A that is not diago-
nal and we want to fi nd a transformation T that makes it diagonal. Then

 � = −TAT 1.

Postmultiplying both sides by T,

 �T TA= . (16.8)

Since � and A are known, this equation can be solved for T. Notice that if we were to 
fi nd a solution T of (16.8) and multiply that T by a scalar K to create another transfor-
mation matrix T T2 = K , we could say

 � � �T T T2 = =K K
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and then, using (16.8), we get

 �T TA T A2 2= =K

or simply

 �T T A2 2=

which, except for the name of the transformation matrix, is the same as (16.8), proving 
that the solution T is not unique.
 Once we have found a transformation that diagonalizes the system matrix we then 
have a system of equations of the form,

 

′
′

′

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

q t

q t

q tN

1

2

1

2

0 0

0 0

( )

( )

( )
�

�
�

� � �

�

�

��
�

�
0 0

1

2

�N N

q t

q t

q t

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
( )

( )

( )

⎥⎥
⎥
⎥
⎥

+ Bx( )t

Since B and x( )t  are known, this matrix equation is equivalent to a set of N uncoupled 
differential equations in the N unknowns q1, q2,..., qN . Each equation can be solved 
without reference to the others. So the diagonalization of the system matrix con-
verts the solution of N coupled fi rst-order simultaneous differential equations into N 
 independent solutions of one differential equation each.

EXAMPLE 16.4

 Diagonalizing the A matrix

A system has an A matrix A1
2 1
3 4

= −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and a B matrix B1
4 0
2 1

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Find a matrix T that 

diagonalizes the A matrix and the new state variables corresponding to the diagonalized A.
 The eigenvalues are the solutions of sI A− =1 0 or 

 s
s

−
−

= ⇒ = =2 1
3 4

0 1 51 2� �, .

So we need to solve the matrix equation

 �T TA= ⇒
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=1
11 12

21 22

11 121 0
0 5

t t

t t

t t

t221 22

2 1
3 4t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Multiplying out the matrices we get these four equations in four unknowns

 ,

,

t t t t t t

t t t
11 11 12 12 11 12

21 21 22

2 3 4

5 2 3 5

= − = − +
= − tt t t22 21 224= − +

The top two equations, 

 t t t t t t11 11 12 12 11 122 3 4= − = − +and

both simplify to 

 − + =t t11 123 0

and are therefore not linearly independent. The same situation holds true for the bottom two 
equations, which simplify to t t21 22 0+ = . Therefore, there is no unique solution for T. There 
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744 Chapter  16  State-Space Analysis

are in fact infi nitely many solutions. We can choose any two of the elements of T arbitrarily and 
then determine the others. Let t a t b11 21= =and . Then

 t a

t b
a a
b b

12

22

3 3=
= −

⇒ =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/ /
T .

In this case a convenient choice might be t a t b11 213 1= = = =and . Then

 T =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 1
1 1

So now we can fi nd the state variables corresponding to the diagonalized A. 

 q Tq q2 1 1
3 1
1 1

= =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The new state equations are

 ′ = + = +−q TA T q TB x A q B x2 1
1

2 1 2 2 2( ) ( ) ( ) ( ) ( )t t t t t

 ′ =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q2
3 1
1 1

2 1
3 4

3 1
1 1

( )t

−−

+
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
3 1
1 1

4 0
2 1

q x( ) ( )t t

 ′ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q q x2 2
1 0
0 5

10 1
6 1

( ) ( ) ( )t t t

We can use MATLAB to fi nd the matrix T. MATLAB has a command   eig, which 
fi nds eigenvalues and eigenvectors. The syntax is 

 [V,L] = EIG(A)

where L is a diagonal matrix with the eigenvalues on the diagonal and V is a matrix 
whose columns are the corresponding eigenvectors such that 

 AV = VL

Recall from above that our T satisfi es

 �T TA=  or TA T= �

and the rows of T are the eigenvectors. The multiplication order has been reversed on 
both sides of the equation so the V returned by MATLAB is not the T we want. If we 
premultiply and postmultiply both sides of 

 TA T= �

by T−1 we get 

 AT T− −=1 1�

which is in the same form as AV = VL with T T− −= =1 1V Vor . So to fi nd our T 
we fi nd the inverse of the V returned by MATLAB.

EXAMPLE 16.5

Diagonalization of  state equations using MATLAB

Redo Example 16.4 using MATLAB.

>> A1 = [2 -1 ; -3 4] ; B1 = [4 0 ; -2 1] ;

>> [Tinv,L] = eig(A)
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Tinv =

 -0.7071 0.3162

 -0.7071 -0.9487

L =

 1.0000 0

 0 5.0000

>> T = inv(Tinv)

T =

 -1.0607 -0.3536

 0.7906 -0.7906

>> A2 = T*A1*inv(T)

A2 =

 1.0000 0.0000

 -0.0000 5.0000

>> B2 = T*B1

B2 =

 -3.5355 -0.3536

 4.7434 -0.7906

The T obtained this way 

 − −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0607 0 3536
0 7906 0 7906

. .
. .

is not the same as the T found in Example 16.4

 3 1
1 1−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

But the T matrix is not unique and the relationships 

 t t

t t
12 11

22 21

3=
= −

/

are satisfi ed by both choices of T. So either T will diagonalize the matrix.

 MATLAB TOOLS FOR  STATE-SPACE ANALYSIS

The MATLAB system-object concept includes continuous-time state-space models of 
systems. The fundamental function is  ss and its syntax is

sys = ss(A,B,C,D) ;

where A, B, C and D are the state-space-representation matrices of the same name. The 
function, ssdata, extracts state space matrices from a system description in a manner 
analogous to zpkdata and tfdata. The function  ss2ss transforms a state-space 
model to another state-space model. The syntax is

sys = ss2ss(sys,T) ;

where T is the transformation matrix.

>> A1 = [2 -1 ; -3 4] ; B1 = [4 0 ; -2 1] ;
>> C1 = [1 0 ; 0 2] ; D1 = [0 0 ; 0 0] ;
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746 Chapter  16  State-Space Analysis

>> sys1 = ss(A1,B1,C1,D1) ;
>> T = [3 1 ; 1 -1] ;
>> sys2 = ss2ss(sys1,T)
>> [A2,B2,C2,D2] = ssdata(sys2) ;
>> A2
A2 =
 1 0
 0 5
>> B2
B2 =
 10 1
 6 -1
>> C2
C2 =
 0.2500 0.2500
 0.5000 -1.5000
>> D2
D2 =
 0 0
 0 0

16.3 DISCRETE-TIME SYSTEMS

 SYSTEM AND OUTPUT EQUATIONS

As is true for continuous-time systems, the analysis of large discrete-time systems is 
best done using a systematic technique like state-space analysis, and state-space analy-
sis of discrete-time systems directly parallels state-space analysis of continuous-time 
systems. We still need to identify a number of state variables, which equals the order 
of the system. We begin with an example system (Figure 16.7).

Figure 16.7
An example discrete-time system

x1[n]

y[n]

x2[n]

2

3

q1[n]

q2[n]

D

D

1/3

1/2

1/4

+

+

+

+

+ +

+
+

+

+

2

3

1/3

1/2

1/4

X1(z) +
+

+ +

+

+

+

+

+

+

X2(z)
Q2(z)

Q1(z)

Y(z)

z-1

z-1

 In continuous-time-system state-space realization, the derivatives of the state vari-
ables are set equal to a linear combination of the state variables and the excitations. In 
discrete-time system state-space realization, the next state-variable values are equated 
to a linear combination of the present state-variable values and the present excitations. 
The system and output equations are

 
q Aq Bx

y Cq Dx

[ ] [ ] [ ]

[ ] [ ] [ ]

n n n

n n n

+ = +
= +

1
. (16.9)
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We choose the state variables in the simplest way, as the responses of the delay blocks. 
Then the state variables and matrices are

 q A B[ ]
q [ ]

q [ ]
, ,n

n

n
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ =1

2

1 3 1 4
1 2 0

1 0/ /
/ 00 1

1

2

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and
x

x
x[ ]

[ ]

[ ]
n

n

n

 y[ ] [y[ ]],n n=  C = [ ],2 3  D = [ ].0 0

 A direct way of solving the state equations is by  recursion. To illustrate the process 
let the excitation vector be 

 x[ ]
[ ]

[ ]
n

n

n
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u

�

and let the system be initially at rest so that q[ ] [ ]0 0= . Then doing the recursion  directly 
from (16.9), we get the values in Table 16.1. States and response found by recursion 
are graphed in Figure 16.8.

Figure 16.8
The states and response of the discrete-time 
system

States

Response

n
10

q1[n], q2[n]

2

n
10

y[n]

2

We can generalize the recursion process. From (16.9),

 

q Aq Bx

q Aq Bx A q ABx

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

1 0 0

2 1 1 0 02

= +

= + = + + BBx

q Aq Bx A q A Bx ABx Bx

[ ]

[ ] [ ] [ ] [ ] [ ] [ ]

1

3 2 2 0 0 13 2= + = + + + [[ ]

[ ] [ ] [ ] [ ] [

2

0 0 1 21 2 1
�

�q A q A Bx A Bx A Bxn nn n n= + + + + −− − ]] [ ]+ −A Bx0 1n
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Table 16.1 States and response found by 
recursion.

n n n nq [ ] q [ ] y[ ]

. . .

. .

1 2

0 0 0 0
1 1 1 5
2 1 5833 0 5 4 667
3 1 6528 0 77917 5 681.

� � � �
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748 Chapter  16  State-Space Analysis

and

 

y Cq Dx CAq CBx Dx

y Cq

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

1 1 1 0 0 1

2 2

= + = + +

= + DDx CA q CABx CBx Dx

y Cq D

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

2 0 0 1 2

3 3

2= + + +

= + xx CA q CA Bx CABx CBx Dx

y

[ ] [ ] [ ] [ ] [ ] [ ]

[

3 0 0 1 2 33 2= + + + +

�
n]] [ ] [ ] [ ] [ ]= + = + + − +− −CA q CA Bx CA Bx CA Bx Dn n n n0 0 1 11 2 0� xx[ ]n

.

These can be written in the forms,

 q A q A Bx[ ] [ ] [ ]n mn n m

m

n

= + − −

=

−

∑0 1

0

1

and

 y CA q C A Bx Dx[ ] [ ] [ ] [ ]n m nn n m

m

n

= + +− −

=

−

∑0 1

0

1

. (16.10)

In (16.10) the term, A qn [ ]0  is the zero-input response caused by the initial state of 
the system q[ ]0 . The matrix An is called the  state transition matrix and is often 
 denoted by the symbol �[ ]n . The name comes from the idea that the transition from 
one state to another is controlled by the dynamics of the system as characterized 
by the matrix An n= �[ ]. The second term A Bxn m

m

n
m− −

=
−∑ 1

0

1
[ ] is the zero-state re-

sponse of the system. This term is equivalent to the discrete-time convolution sum, 
A Bxn n n n− − ∗1 1u[ ] [ ]u[ ]  or, under the usual assumption in state-variable analysis, 
that x[ ]n  is zero for negative discrete time

 A Bx A Bxn m

m

n
nm n n− −

=

−
−∑ = − ∗1

0

1
1 1[ ] u[ ] [ ].

Then we can rewrite (16.8) as

 q q[ ] [ ] [ ] [ ] [n n n n= + − −� �0 1
zero-input
response

u� �� �� 11]* [ ]Bx n
zero-state
response

� ����� �����  (16.11)

By a similar process we can rewrite (16.10) as

 y C q C Bx Dx[ ] [ ] [ ] [ ] [ ]* [ ] [ ]n n n u n n n= + − − +� �0 1 1 . (16.12)

The last two results (16.11) and (16.12) are the discrete-time-domain solutions for the 
states and the responses of the system.
 We can also solve the state equations by using the unilateral z transform. Trans-
forming both sides of the system equation in (16.9)

 z z z z zQ q AQ Bx( ) [ ] ( ) ( ).− = +0

We can solve for the state-variable vector as

 Q I A BX( q I A Bx( ) [ ] [ ) [ ]] [ ] ( )z z z z z z= − + = −− −1 10
zero-staate
response

zero-input
resp

� ��� ��� + − −z z[ ] [ ]I A q1 0

oonse

� ��� ��� . (16.13)
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A comparison of (16.13) with (16.11) shows that 

 �[ ] [ ] .n z zz← →⎯ − −I A 1

Therefore it is consistent and logical to defi ne the z transform  of the state transition 
matrix as

 �( ) [ ] .z z z= − −I A 1

Notice the similarity to the corresponding result from continuous-time state-space 
analysis �( ) [ ]s s= − −I A 1.

To demonstrate a numerical solution, let the excitation vector again be 

 x[ ]
u[ ]

[ ]
n

n

n
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥�

and let the system again be initially at rest so that q[ ] [ ]0 0= . Then

 Q( )z
z

z

z

z=
− −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣

⎢
−

1 3 1 4

1 2
1 0
0 1

1

1

1
/ /

/ ⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

or

 Q( )z

z z

z z z

z z

z

=

+ −
− + +

− +
−

2

3 2

2

3

4 1 4

4 3 5 24 1 8

5 6 1 3

/ /

/ / /

/ /

44 3 5 24 1 8

4 1 4

1

2

2

z z

z z

z

/ / /

/ /

+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

+ −
−( )(zz z

z z

z z

− +

− +
− −

0 5575 0 2242

5 6 1 3

1 0 5575

2

. )( . )

( )( . )(

/ /

zz +

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥0 2242. )

Expanding in partial fractions,

 Q( )

. .

.

.

.
.

z
z z z

z

= −
−

−
−

+
1 846

1

0 578

0 5575

0 268

0 2242
0 923

−−
−

−
+

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

0 519

0 5575

0 596

0 2242

.

.

.

.z z

Taking the inverse z transform

 q[ ]
. . ( . ) . ( . )( ) (

n
n n

=
− − −− −1 846 0 578 0 5575 0 268 0 22421 11

1 10 923 0 519 0 5575 0 596 0 2242

)

( ) ( ). . ( . ) . ( . )− + −− −n n

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−u[ ]n 1  (16.14)

After fi nding the solution for the state-variable vector, we can immediately fi nd the 
response vector

 y[ ] [ . . ( . ) . ( . )( ) (n n n= − + −−6 461 2 713 0 5575 1 252 0 22421 −− −1 1) ] [ ]u n . (16.15)

Substituting values for n into (16.14) and (16.15) we get Table 16.2, which agrees 
 exactly with Table 16.1, verifying that the two solution methods, using recursion and 
the z-transform, yield the same result.
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750 Chapter  16  State-Space Analysis

 TRANSFER FUNCTIONS AND  TRANSFORMATIONS OF 
STATE VARIABLES

From the state-space equations we can fi nd the matrix transfer function relating all 
responses to all excitations. Starting with (16.8),

 z z z z zQ BX( ) [ ] ( ) ( )− = +q AQ0 ,

and setting the initial state to zero (which it must be for a transfer function to be defi ned), 
we can solve for Q( )z  as

 Q I A BX BX( ) [ ] ( ) ( ) ( ).z z z z z z= − =− −1 1�

The response Y( )z  is 

 Y CQ DX C BX DX( ) ( ) ( ) ( ) ( ) ( ).z z z z z z z= + = +−1 �

and the transfer function, which is the ratio of the response to the excitation, is

 H C B D C I A B D( ) ( ) [ ] .z z z z= + = − +− −1 1�

Everything derived in continuous-time state-space analysis about transformation from 
one set of state variables to another set applies exactly to discrete-time state-space 
analysis. If 

 q Tq2 1[ ] [ ]n n=  and q A q B x1 1 1 11[ ] [ ] [ ]n n n+ = + ,

then 

 q A q B x2 2 2 21[ ] [ ] [ ]n n n+ = +

where A TA T2 1
1= −  and 

 B TB2 1=  and y C q D x[ ] [ ] [ ]n n n= +2 2 2

where C C T2 1
1= −  and D D2 1= .

EXAMPLE 16.6

Zero-state response  of a discrete-time system using state-space methods

Find the responses of the system in Figure 16.9, which is initially at rest, to the excitations, 

 x [ ] u[ ]1 n n=  and x [ ] u[ ]2 2n n= − − .

Table 16.2 States and response found from 
closed-form solutions.

n n n nq [ ] q [ ] y[ ]

. . .

. .

1 2

0 0 0 0
1 1 1 5
2 1 5833 0 5 4 667
3 1 6528 0 77917 5 681.

� � � �
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The state equations are 

 q [ ] q [ ] x [ ]

q [ ] x [ ] [( )(q [ ] x
1 2 1

2 2 2

1

1 4 5

n n n

n n n

+ = −
+ = − −/ 11 1 12 3[ ]) ( )(q [ ] x [ ])]n n n+ +/

and the output equations are

 
y [ ] ( )(q [ ] x [ ]) ( )(q [ ] x [ ])

y [
1 2 1 1 1

2

4 5 2 3n n n n n

n

= − + +/ /

]] q [ ] x [ ]= +1 1n n
.

In standard matrix form,

 q Aq Bx[ ] [ ] [ ]n n n+ = +1

where

 A =
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 1
2 3 4 5/ /

 and B = −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0
2 15 1/

and

 y Cq Dx[ ] [ ] [ ]n n n= +

where

 C =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3 4 5
1 0
/ /

 and D = −⎡

⎣
⎢

⎤

⎦
⎥

2 15 0
1 0
/

.

The system is initially at rest so we can use the transfer function to fi nd the responses. The 
matrix transfer function is

 H C I A B D( ) [ ]z z
z

z
= − + =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
+

⎡

⎣
−1 2 3 4 5

1 0

1

2 3 4 5
/ /

/ /
⎢⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
1 0

2 15 1
2 15 0
1 0/
/

or

 H( )z
z z

z

z
=

+ +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

⎡

⎣
⎢

1

4 5 2 3
2 3 4 5
1 0

4 5 1

2 32 / /
/ / /

/⎢⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0
2 15 1

2 15 0
1 0/
/

or

 H( )z
z z

z z

z
=

+ +
− + +

− −

⎡

⎣
⎢

1

4 5 2 3

42 75 4 45 2 3 4 5

2 3 12 / /

/ / / /

/⎢⎢

⎤

⎦
⎥
⎥

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 15 0
1 0
/

.

Figure 16.9
A discrete-time system

y2[n]

x1[n]

x2[n]

y1[n]

q1[n]q2[n]

�

� � �

4/5

2/3

D D
�

�
�

� �
��

�
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752 Chapter  16  State-Space Analysis

The z transform of the excitation vector is

 X( ) .z

z

z

z

z

=
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−

1

1

1

Then the z-domain response vector is

 Y H X( ) ( ) ( )z z z
z z

z z

z

= =
+ +

− + +

− −

⎡
1
4

5

2

3

42

75

4

45

2

3

4

5
2

3
12

⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−

−

2

15
0

1 0

1

z

z

zz

z

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

1

or

 Y( )z
z z

z
z

z
z

=
+ +

− +⎛
⎝⎜

⎞
⎠⎟ −

− +⎛
⎝⎜

⎞
⎠1

4

5

2

3

42

75

4

45 1

2

3

4

5

2

⎟⎟ −

− −⎛
⎝⎜

⎞
⎠⎟ −

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+
−

−

−

z

z

z
z

z

z

z

1

1

1

2

3 1 1

2

115 1

1

z

z

z

z

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

or

 Y( )z
z

z z

z z z

z

z z

=
+ +

−
− + +

−

−
+

−1

2

3 2

3
4

5

2

3

42

75

4

45

4

5

2

3
1

2

3
22 1

1

2

15 1

1
+

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦
z

z

z

z

z

⎥⎥
⎥
⎥
⎥
⎥

or

 
Y( )

( )

z z

z z z

z z z

= −

− + +

− + +⎛
⎝⎜

⎞
⎠

−1

3 2

2

42

75

4

45

4

5

2

3

1
4

5

2

3
⎟⎟

+ +

− + +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

z z

z z z

3 2

2

2

3
1

1
4

5

2

3
( )

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

15 1

1

z

z

z

z

.

Expanding in partial fractions,

 Y( )

.
. . .

z z

z

z

z z
= −

+
−

− +

+ +
−1

2
0 56

0 7856

1

0 7625 0 5163
4

5

2

3

11
1 081

1

0 2144 0 9459
4

5

2

3
2

+
−

− +

+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

. . .

z

z

z z

⎥⎥
⎥
⎥
⎥
⎥
⎥

+
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

15 1

1

z

z

z

z
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or

 
Y( )

.
. .

.

.

z z

z

z

z
= −

+
−

−
+

−1

2
0 56

0 7856

1

0 7625

0 7118

0 7118
4

55

2

3

0 5163

0 7118

0 7118
4

5

2

3

1
1 081

1

2z
z

z

z z

z

+
−

+ +

+
−

− .

.

.

.

11

0 2144

0 7118

0 7118
4

5

2

3

0 9459

0 71182

1−
+ +

− −.

.

. .

.

z

z z
z

00 7118
4

5

2

3

2

15 1

2

. z

z z

z

z

z

z+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+
−

−

− 11

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Taking the inverse z transform,

 y[ ]

. [ ] . u[ ]

. ( . ) s

n

n n
n

= −

− + −

− −

0 56 1 0 7856 2

1 071 0 8165 1

�

iin( . ( ))u[ ]

. ( . ) sin( .

2 083 1 1

0 7253 0 8165 2 082

n n
n

− −

− − 33 2 2

1 1 081 2

0 30

( ))u[ ]

[ ] . u[ ]

.

n n

n n

− −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

− + −

−

�

112 0 8165 2 083 1 1

1 329 0 816

1( . ) sin( . ( ))u[ ]

. ( .

n n n− − −

− 55 2 083 2 22) sin( . ( ))u[ ]n n n− − −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 15/ u[ ]

u[ ]

n

n

MATLAB  TOOLS FOR STATE-SPACE ANALYSIS

The MATLAB system-object concept includes discrete-time state-space models of 
systems just as it does for continuous-time systems. The fundamental function is ss 
and its syntax is

sys =  ss(A,B,C,D,Ts) ;

where A, B, C and D are the state-space-representation matrices of the same names and 
Ts is the time between samples. The function  ssdata extracts state space matrices 
from a system description in a manner analogous to zpkdata and tfdata. The func-
tion  ss2ss transforms a state-space model to another state-space model. The syntax is

sys = ss2ss(sys,T) ;

where T is the transformation matrix.

16.4 SUMMARY OF IMPORTANT POINTS
 1. The order of a system is the sum of the orders of the independent differential 

equations needed to describe it.
 2. Any LTI system can be described by one matrix system equation and one matrix 

output equation containing four descriptive matrices, A, B, C and D.
 3. The quantity [ ]sI A− −1 is the Laplace transform of the state transition matrix and 

contains information about the dynamic behavior and stability of the system.
 4. Transfer functions from multiple inputs to multiple outputs can be directly 

derived from the matrices, A, B, C and D.
 5. The set of state variables describing a system is not unique.
 6. One set of state variables can be transformed into another set through a 

transformation matrix T. The system eigenvalues remain the same.

 16.4 Summary of Important Points 753
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754 Chapter  16  State-Space Analysis

 7. If a system does not have repeated eigenvalues, the state variables can be 
diagonalized, effectively separating them and allowing for solving for them one 
at a time.

 8. All the methods used in analysis of continuous-time systems have direct 
counterparts in the analysis of discrete-time systems.

EXERCISES WITH ANSWERS
(On each exercise, the answers listed are in random order.)

 Continuous-Time State Equations

 1. Write state equations for the circuit of Figure E.1 with the inductor current i ( )L t  
and capacitor voltage v ( )C t  as the state variables and the voltage at the input v ( )i t  
as the excitation and the voltage at the output v ( )L t  as the response.

L � 1 mH

R � 10 
 C � 1 �F
�

�

vL(t)

iL(t)
� � �

�

vi(t)

vC(t)

Figure E.1

Answer: 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

v ( )

i ( )

v ( )

i (
C

L

C

L

t

t
C

L R L

t0 1
1

/
/ / tt L

t

t R
t

L
C

)
v ( )

v ( ) [ ]
(

i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

= − −

0
1

1

/

v ))

( )
v ( )i

iL t
t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

 2. Write state equations for the circuit of Figure E.2 with the inductor current, i ( )L t , 
and capacitor voltage, v ( )C t , as the state variables and the current at the input, 
i ( )i t , as the excitation and the voltage at the output, v ( )R t , as the response.

L � 1 mH
R � 100 


C � 1 �F

�

�

�

�

ii(t)
iL(t)

vC(t)

vR(t)

Figure E.2

Answer: 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
−

⎡

⎣
⎢

⎤

⎦
⎥

v ( )

i ( )

v ( )

i (
C

L

C

L

t

t
C

L R L

t0 1
1

/
/ / tt

C
R L

t

t RR
C

)
( )

v ( ) [ ]
(

i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

= −

1

0

/
/

i

v tt

t
R t

L

)

( )
( )i

i
i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
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 3. From the system transfer function,

 H( )
( )

s
s s

s s
= +

+ +
3

2 92
,

  write a set of state equations using a minimum number of states for the system 
initially in its zero state.

Answer: 
s s

s s

s

s

Q ( )

Q ( )

Q ( )

Q ( )
1

2

1

2

1 0
9 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

= −
⎡

0
1

9 1
1

2

X( )

Y( ) [ ]
Q ( )

Q ( )

s

s
s

s⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ [ ]X( )1 s

 4. Write state equations for the system whose block diagram is in Figure E.4 using 
the responses of the integrators as the state variables.

Figure E.4
A system

x(t) �

�

�
y(t) 

+

+ +

+

-

+

8

2

Answer: 

′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − −
⎡

⎣

⎢
⎢
⎢

q ( )

q ( )

q ( )

1

2

3

0 1 0
2 8 1

0 0 0

t

t

t

⎤⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

q ( )

q ( )

q ( )

x[

1

2

3

0
0
1

t

t

t

tt

t

t

t

t

]

y[ ] [ ]

q ( )

q ( )

q ( )

[=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+1 0 0 0

1

2

3

]]x[ ]t

 5. A system is excited by the signal, x( ) u( )t t= 3 , and the response is 
y( ) . sin( . ) u( ).t e t tt= −0 961 3 1221 5 . Write a set of state equations using a minimum 
number of states.

Answer: 
s s

s s

s

s

Q

Q

Q

Q
1

2

1

2

0 1
12 3

( )

( )

( )

( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣

0
1

0 1
1

2

X

Y
Q

Q

( )

( ) [ ]
( )

( )

s

s
s

s
⎢⎢
⎢

⎤

⎦
⎥
⎥

 6. A system is described by the differential equation,

 ′′ + ′ + =y ( ) y ( ) y( ) x( ).t t t t4 7

Write a set of state equations for this system.
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756 Chapter  16  State-Space Analysis

Answer: 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

q ( )

q ( )

q ( )

q ( )

1

2

1

2

0 1
7 4

t

t

t

t

⎤⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢
⎢

0
1

1 0
1

2

x( )

y( ) [ ]
q ( )

q ( )

t

t
t

t

⎤⎤

⎦
⎥
⎥

 Continuous-Time System Response

 7. A system is described by the state equations,

 
′
′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤q ( )

q ( )

q ( )

q ( )
1

2

1

1

2 1
3 0

t

t

t

t ⎦⎦
⎥
⎥

+
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2
2 0

1

2

x ( )

x ( )

t

t

 and

 
y ( )

y ( )

q ( )

q ( )
1 t

t

t

t2

1

2

3 5
2 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥⎥

 With excitation, 
x ( )

x ( )

( )

u( )
1

2

t

t

t

t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

�
 and initial conditions, 

q ( )

q ( )

1

2

0

0

0
3

+

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ . Find 

the system response vector, 
y ( )

y ( )
1 t

t2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Answer: 
5 27 10

15 15 8

3

3

e e

e e
t

t t

t t

−

−
+ −

+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u( )

Diagonalization

 8. A system is described by the vector state equations,

 ′ = +q Aq Bx( ) ( ) ( )t t t

and

 y Cq Dx( ) ( ) ( )t t t= + ,

  where A = − −
−

⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 7

, B =
⎡

⎣
⎢

⎤

⎦
⎥

1 0
0 1

, C = −⎡

⎣
⎢

⎤

⎦
⎥

2 3
0 4

 and D =
⎡

⎣
⎢

⎤

⎦
⎥

1 0
0 0

. Defi ne two 

new states, in terms of the old states, for which the A matrix is diagonal and 
rewrite the state equations.

Answers: 
q q2 1

0 8446 0 5354
0 3893 0 9211

( )
. .
. .

( ),t t= −
−

⎡

⎣
⎢

⎤

⎦
⎥
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 ′ = −
−

⎡

⎣
⎢

⎤

⎦
⎥ + −

q2( )
.

.
( )

. .
t t

2 2679 0
0 5 7321

0 8446 0 535
2q

44
0 3893 0 9211−

⎡

⎣
⎢

⎤

⎦
⎥

. .
( )x t

 y( ) . .
. .

( )t t= −⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
1 184 2 5688
2 7342 5 9319

1 0
0 0

2q ⎢⎢
⎤

⎦
⎥ x( )t

 Differential-Equation Description

 9. For the original state equations of  Exercise 8 write a differential-equation 
description of the system.

Answer: ′ = − + + − + ′
′

y ( ) y ( ) ( ) y ( ) x ( ) x ( ) x ( )1 1 2 1 2 14 3 4 6 3t t t t t t/

yy ( ) y ( ) y ( ) x ( ) x ( )2 1 2 1 24 4 4 4t t t t t= − − +

 Discrete-Time State Equations

 10. For the system in Figure E.10 write state equations.

Figure E.10

x[n]

+

+ +

+ +

+

-

+
y[n]

D
+

+

D
+

+

D

2/3 4

-21/5

1/2

Answer: 

q [ ]

q [ ]

q [ ]

1

2

3

1

1

1

0 1 0
0 0 1
1 2 1 5

n

n

n

+
+
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− − −/ / 22 3

0
0
1

1

2

3/

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢

q [ ]

q [ ]

q [ ]

n

n

n ⎢⎢

⎤

⎦

⎥
⎥
⎥

= −

x[ ]

y[ ] [ ]

q [ ]

q [ ]

q [ ]

n

n

n

n

n

0 2 4

1

2

3

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 11. Write a set of state equations corresponding to these transfer functions.

(a) H( )
.

. .
z

z

z z
=

− +
0 9

1 65 0 92  (b) H( )
( )

( . )( . )
z

z

z z
= −

− −
4 1

0 9 0 7

Answers: 
q [ ]

q [ ] . .

q [ ]

q [

1

2

1

2

1

1
0 1

0 63 1 6

n

n

n+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢

⎤

⎦
⎥

nn
n

n

]
x[ ]

y[ ] [ ]
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

= −

0
1

4 4
1[[ ]

q [ ]

n

n2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,
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758 Chapter  16  State-Space Analysis

  
q [ ]

q [ ] . .

q [ ]

q [

1

2

1

2

1

1
0 1
0 9 1 65

n

n

n+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢

⎤

⎦
⎥

nn
n

n

]
x[ ]

y[ ] [ . ]
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

=

0
1

0 0 9
11

2
0

[ ]

q [ ]
[ ] [ ]

n

n
n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ x

 12. Convert the difference equation,

 10 4 1 2 2 3y[ ] y[ ] y[ ] y[ ] x[ ]n n n n n+ − + − + − =

into a set of state equations.

Answer: 

q [ ]

q [ ]

q [ ] . .

1

2

3

1

1

1

0 1 0
0 0 1
0 2 0 1

n

n

n

+
+
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− − −00 4

0
0
1

1

2

3.

q [ ]

q [ ]

q [ ]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢

n

n

n ⎢⎢

⎤

⎦

⎥
⎥
⎥

= − − −

x[ ]

y[ ] [ . . . ]

q [

n

n 0 02 0 01 0 04

1 nn

n

n

n

]

q [ ]

q [ ]

[ . ]x[ ]2

3

0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

 Difference-Equation Description

 13. Convert the state equations,

 

q [ ]

q [ ]

q [ ]

q [ ]

1

2

1

2

1

1
2 5

1 0

n

n

n

n

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

=

1
0

1 0
1

2

x[ ]

y[ ] [ ]
q [ ]

q

n

n
n

[[ ]
[ ]x[ ]

n
n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 0

into a single difference equation.

Answer: y[ ] y[ ] y[ ] x[ ]n n n n+ − + − =2 1 5 2

 Discrete-Time System Response

 14. Find the responses of the system described by this set of state equations. 
(Assume the system is initially at rest.)

 

q [ ]

q [ ]

q [ ]

q [ ]

1

2

1

2

1

1
3 1
0 2

n

n

n

n

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −

4
3

1 1
2

1

2

u[ ]

y [ ]

y [ ]

n

n

n 00
1

2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q [ ]

q [ ]

n

n

Answer: y[ ]
. ( ) . ( ) .

. ( ) . ( )
n

n n

n n
=

+ − −

+ − −

⎡

⎣
⎢
⎢
2 3 3 1 2 2 3 5

4 6 3 0 4 2 5

⎤⎤

⎦
⎥
⎥

u[ ]n
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EXERCISES WITHOUT ANSWERS

Continuous-Time State Equations

 15. Write state equations for the circuit of Figure E.15 with the two capacitor 
voltages, v ( )C t1  and v ( )C t2 , as the state variables and the voltage at the input, 
v ( )i t , as the excitation and the voltage, v ( )R t1 , as the response. Then, assuming 
the capacitors are initially uncharged, fi nd the unit-step response of the circuit.

 Figure E.15

�
�

�

�

�

�

�

�

C1 � 1 �F

R1 � 10 k
 C2 � 1 �F

vC1(t)

vC2(t)vi(t)

R2 � 10 k


vR1(t)

Continuous-Time System Response

 16. Write state equations for the circuit of Figure E.16 with the two capacitor 
voltages, v ( )C t1  and v ( )C t2 , as the state variables and the voltage at the input, 
v ( )i t , as the excitation and the voltage at the output, v ( )o t , as the response. Then, 
fi nd and plot the response voltage for a unit-step excitation assuming that the 
initial conditions are

 v ( )

v ( )
.

C

C

1

2

0

0
2
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢

⎤

⎦
⎥

Figure E.16

C1

C2

R2R1

vx(t)vi(t)
vC2(t)

vC1(t)

vo(t)

K �

�

� �

� �

�

�

R1 � 6.8 k
, R2 � 12 k
, C1 � 6.8 nF, C2 � 6.8 nF, K � 3

Discrete-Time State Equations

 17. Write a set of state equations corresponding to these transfer functions (which 
are for discrete-time Butterworth fi lters).

(a) H( )
. . .

. .
z

z z

z z
= + +

− +
0 06746 0 1349 0 06746

1 143 0 4128

2

2

(b) H( )
. . .

. .
z

z z

z z
= − +

− +
0 0201 0 0402 0 0201

2 5494 3 2024

4 2

4 3 zz z2 2 0359 0 6414− +. .
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760 Chapter  16  State-Space Analysis

 18. For the system in Figure E.18 write state equations.

x[n] y[n]D

D

10�

�

�
�

� �

�

�

�

2/3

1/5 1/2

Figure E.18

 19. A discrete-time system is excited by a unit sequence and the response is 

 y[ ] ( ( ) ( ) ) u[ ].n nn n= + − −− −8 2 1 2 9 3 4 11 1/ /

Write state equations for this system.

Discrete-Time System Response

 20. Find the response of the system in Figure E.18 to the excitation, x[ ] u[ ]n n= . 
(Assume that the system is initially at rest.)

 21. Find the response of the system described by this set of state equations. (Assume 
the system is initially at rest.)

 

q [ ]

q [ ]

q [ ]1

2

11

1
1 2 1 5
0 7 10

n

n

n+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −⎡

⎣
⎢

⎤

⎦
⎥

/ /
/ qq [ ]

u[ ]

( ) u[ ]2

2 3
1 1 3 4n

n

nn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥

/ ⎥⎥

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+y[ ] [ ]
q [ ]

q [ ]
[ ]

u
n

n

n
4 1 1 0

1

2

[[ ]

( ) u[ ]

n

nn3 4/

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Diagonalization

 22. Defi ne new states that transform this set of state equations into a set of 
diagonalized state equations and write the new state equations.

q [ ]

q [ ]

q [ ]

. . .
.

1

2

3

1

1

1

0 4 0 1 0 2
0 3

n

n

n

+
+
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− − −

00 0 2
1 0 1 3

1

2

3

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

.

q [ ]

q [ ]

q [ ]

n

n

n

++
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 0 5
1 0
0 3

0 1 2 16

3 4

. . cos( )u[ ]

( ) u[

�n n
n

/

/ nn

n

n

]

y [ ]

y [ ] . .

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −⎡

⎣
1

2

1

1
1 0 1
0 0 3 0 7

⎢⎢
⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

q [ ]

q [ ]

q [ ]

1

2

3

n

n

n
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e x
x xx � � � � � �1
2 3 4

2 3 4

! ! !

x
�

sin( )
! ! !

cos( )
! !

x x
x x x

x
x x x

� � � � �

� � � �

3 5 7

2 4 6

3 5 7

1
2 4 6

�

!!
��

cos( ) cos( ) and sin( ) sin( )x x x x� � �� �

e x j xjx � �cos( ) sin( )

sin ( ) cos ( )2 2 1x x� �

cos( ) cos( ) [cos( ) cos( )]

sin( )sin( )

x y x y x y

x y

� � � �

�

1

2

11

2

1

2

[cos( ) cos( )]

sin( ) cos( ) [sin( )

x y x y

x y x y

� � �

� � �ssin( )]x y�

cos( ) cos( ) cos( ) sin( )sin( )

sin( ) sin(

x y x y x y

x y

+

+

� �

� xx y x y) cos( ) cos( )sin( )�

A x B x A B x B Acos( ) sin( ) cos( tan ( ))� � � � �2 2 1 /

d

dx
x

x
[tan ( )]� �

�
1

2

1

1

udv uv vdu∫ ∫� �
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x x dx x x n x x dxn n nsin( ) cos( ) cos( )∫ ∫�� � �1

x x dx x x n x x dxn n ncos( ) sin( ) sin( )∫ ∫� � �1

x e dx
e

a
ax n ax n n axn ax

ax

n
n n n∫ � � � � �

�
� �

1
1 21[( ) ( ) ( )( ) .. . . � � � ��( ) !( ) ( ) !],1 1 01n nn ax n n ≥

e bx dx
e

a b
a bx b bx

e

ax
ax

ax

sin( ) [ sin( ) cos( )]

cos

∫ �
�

�
2 2

(( ) [ cos( ) sin( )]bx dx
e

a b
a bx b bx

ax

∫ �
�

�
2 2

dx

a bx ab

bx

a

dx

x a

x x

2 2
1

2 2
1

2

1

�
�

� �

�

( )
tan

( )

ln (

⎛
⎝⎜

⎞
⎠⎟

±

∫

22 2
1

2±∫ a )

sin( )
,

,

,

mx

x
dx

m

m

m0

2 0

0 0

2 0
2

∞

∫
⎧
⎨
⎪

⎩
⎪

⎫
⎬
⎪

⎭
⎪

�

�

�

� �

�

�

�

�
/

/

ssgn( )m

Z Z Z2 � *

r

r

r
r

N r

r
r

r

n

n

N

N

n

n

�

�

�

�

�

�

�

�
�

0

1

0

1

1
1

1

1

1

∑

∑

≠
⎧

⎨
⎪⎪

⎩
⎪
⎪

∞

,

,

, ��

�
�

�

�
�

�

�

�

1

1
1

1
1

0
2

r
r

r
r

nr
r

r
r

n

n k

k

n

n

∞

∞

∑

∑

,

( )
,
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e

e

n

N
N n n N

j n

j n N N

�

�
�

/
drcl , [ ],

0 0
0

0 0
⎛
⎝⎜

⎞
⎠⎟

� and inteegers

and intdrcl , [ ],
n

m
m n n mm2 1

2 1 2 1
�

� � �
⎛
⎝⎜

⎞
⎠⎟

� eegers
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764

 B A P P E N D I X

Continuous-Time Fourier 
Series Pairs

Continuous-time Fourier series ( CTFS) for a periodic function with fundamental 
period T f0 0 01 2= =/ /� 	  represented over the period T.

x( ) c [ ] c [ ] x( )x xt k e k
T

t ej kt T

k
T

j= ← →⎯ =
= −∞

∞
−∑ 2 21� �/ FS kkt T

T
dt/∫

In these pairs k n m, and  are integers.

t

Re(x(t))
1

Im(x(t))
1

-1
-1 T0

...

... k

|cx[k]|
1

k 

 

m
-π

π
cx[k]

t 

x(t)

-1

1

T0

...... k

|cx[k]|
1

k 
m-m

-π

π
 cx[k]

t

x(t)

-1

1

T0

...... k

|cx[k]|
1

k 

-π

π

m
-m

cx[k]

e k mj t T
mT

2 0

0

� �/ FS← →⎯⎯ −[ ]

cos( ) ( )( [ ] [ ])2 1 20
0

� � �t T k m k m
mT

/ /FS← →⎯⎯ − + +

sin( ) ( )( [ ] [ ])2 20
0

� � �t T j k m k m
mT

/ /FS← →⎯⎯ + − −
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t 

x(t)
1 ......

k 
-2m -m m 2m

-2m -m m 2m

|cx[k]|
1

k

-π

π

......

......

T0

cx[k]t

x(t)

1

......
T0

k

|cx[k]|
1

k 

-π

π
cx[k]

t 

x(t)

......

T0 w

w
1

k

|cx[k]|
1

k 

-π

π

w
T0

T0

cx[k]

t 

x(t)

T0 w
......

w
1

k

|cx[k]|

k 

-π

π

w
T0

T0

1

cx[k]

1 FS
T

k

T

← →⎯ �[ ]

is arbitrary

� �T mT mt f k
0 0

0( ) [ ]FS← →⎯⎯

( ) rect( ) ( ) sinc( )1
0 0

0 0/ /w t w t f wkfT T
∗ ← →⎯�

FS

( ) tri( ) ( ) sinc ( )1
0 0

0
2

0/ /w t w t f wkfT T
∗ ← →⎯�

FS
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t 

x(t)

T0

1

...... k

|cx[k]|

k 

-π

π

1
2M+1

M

cx[k]

t 

x(t)
1

w T0

......

k

|cx[k]|

k 

-π

π

2T0

w

cx[k]

drcl( , )
u[ ] u[ ]

f t M
n M n M

MT0 2 1
1

2 10
+ ← →⎯ + − − −

+
FS

an integerM

t

w
t t w t

wT

j kw T

T T
[u( ) u( )] ( )

[

− − ∗ ← →⎯

( )
�

�

0 0

1 2

0

FS

/ 00
2

0
2

1 1

2

0+ −−]

( )

( )e

k T

j kw T�

�

/

/

t 

x(t)

T0 w

......

w
1

k

|cx[k]|
1

k 

-π

π

w
T0

T0

cx[k]( )sinc( ) ( ) rect( )1
0 0

0 0/ /w t w t f wkfT T
∗ ← →⎯�

FS
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767

  A P P E N D I X  C
 Discrete Fourier Transform Pairs

Discrete Fourier transform (DFT) for a periodic discrete-time function with fundamen-
tal period N0 represented over the period N .

x[ ] X[ ] X[ ] x[ ]n
N

k e k n ej kn N

k N
N

j kn= ← →⎯⎯ =
=

−∑1 2 2� �/ DFT //N

n N=
∑

In all these pairs k, n, m, q, Nw, N0, N, n0 and n1 are integers.

n

Re(x[n])

1

Im(x[n])

1

-1

-1

N0

...

...

k 

|X[k]|
mN0

k
-π

π

-m(N0 – 1) m(N0 + 1)

......

......

m

X[k]

n

x[n]

-1

1

N0

...... k 

|X[k]|
mN0

mN0

k
-π

π

m-m

X[k]

......

......

n

x[n]

-1

1

N0

......

m
-m

mN0

k 

|X[k]|
mN0

k
-π

π
X[k]

......

......

e mN k mj n N
mN mN

2
0

0

0 0

� �/ DFT← →⎯⎯ −[ ]

cos( ) ( [ ] [ ])2
20

0

0 0 0
� � �n N

mN
k m k m

mN mN mN/ DFT← →⎯⎯ − + +

sin( ) ( [ ] [ ])2
20

0

0 0 0
� � �n N

jmN
k m k m

mN mN mN/ DFT← →⎯⎯ + − −
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n

x[n]

-1

1

N0

...... k 

|X[k]|
mN0

k
-π

π

mq
mN0

X[k]

......

......

n 

x[n]

-1

1
N0

...... k 

|X[k]|
mN0

k
-π

π

mq mN0

X[k]

......

......

n 

x[n]

1

......

N

k 

|X[k]|
N

k
-π

π

...

...

...

...

N-N

X[k]

n

x[n]

1

......
N0-N0

k 

|X[k]|

k
-π

π

......

......

m

m

mN0X[k]

n 

x[n]
1

N0

......

Nw

k 

|X[k]|

k
-π

π

......

......

N0-N0

2Nw+1

X[k]

cos( )

( [ ]

2

2

0

0

0

0

�

�

qn N

mN
k mq

mN

mN

/ DF T← →⎯⎯

− ++ +�mN k mq
0
[ ])

sin( )

( [ ]

2

2

0

0

0

0

�

�

qn N

jmN
k mq

mN

mN

/ DFT← →⎯⎯

+ − ��mN k mq
0
[ ])−

1 DFT
N NN k

N

← →⎯⎯ � [ ]

is arbitrary

� �N mN mNn m k
0 0 0
[ ] [ ]DFT← →⎯⎯

(u[ ] u[ ]) [ ]

(

n N n N n

N

w w N N

w

+ − − − ∗ ← →⎯⎯1

2

0 0
�

DFT

++ +1 2 10) drcl( , )k N N

N
w

w

/

an integer
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n 

x[n]
1

n1n0 n0+Nw

......
k 

k

|X[k]|

−π

π

N0

n1−n0

  X[k]

......

......

n 

x[n]
1

N0w

... ...

k 

w
|X[k]|

k
-π

π

N0
  X[k]

......

......

n 

x[n]
1

N0

... ...

k 

w

|X[k]|

k
-π

π

N0
  X[k]

......

......

n 

x[n]
1

N0

... ...

n 

|X[k]|

N0

......

......

M

n
N0M

N0

2M+1

  X[k]

(u[ ] u[ ]) [ ]

(

n n n n n

e

N N

j k

− − − ∗ ← →⎯⎯
−

0 1 0 0
�

�

DFT

nn n N

j k Ne
n n k N n n

1 0 0

0
1 0 0 1 0

+

− − −
)

( ) drcl( , )
/

/
/

�

tri( ) [ ] sinc ( ) [ ]

tri

2n w n w wk N kN N N/ /∗ ← →⎯⎯ ∗� �
0 0 00

DFT

(( ) [ ] drcl ( , )n N n N k N N

N

w N N w w

w

/ /

an in

∗ ← →⎯⎯�
0 0

2
0

DFT

tteger

sinc( ) [ ] ( ) [ ]n w n w wk N kN N N/ rect /∗ ← →⎯⎯ ∗� �
0 0 00

DFT

drcl( , )

u[ ]

n N M

n M

N
/ 0 2 1

0
+ ← →⎯⎯

+ −

DF T

uu[ ]
[ ]

n M

M
N k

M

N
− −

+
∗1

1 0 02
an integer

�
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770

 D A P P E N D I X

 Continuous-Time Fourier 
Transform Pairs

x( ) X( ) X( ) x( )t f e df f t e dtj ft j ft� ��

�

�

�

2 2� �

∞

∞

∞

∞

∫ ← →⎯F ∫∫

x( ) X( ) X( ) x( )t j e d j t e dtj t j t� ��

�

�

�

1

2�
	 	 		 	

∞

∞

∞
∫ ← →⎯F

∞∞

∫
For all the periodic time functions, the fundamental period is T0 � 1 / f0 � 2�/	0.

u( ) ( ) ( )t f j fF← →⎯ 1 2 1 2/ /� ��

u( ) ( )t jF← →⎯ �� 	 	�1/

t 

x(t)
1

-π

π

f -2 2

|X( f )|

f -2
2

1
2

X( f )

t 

x(t)
1

-4π 4π

-4π
4π

-π

π

ω 

|X( jω)|
π

ω

X( jω)
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sinc( ) rect( )t fF← →⎯

sinc ( ) tri( )2 t fF← →⎯

tri( ) sinc ( )t fF← →⎯ 2

tri( ) sinc ( )t F← →⎯ 2 2	 �/

sinc ( ) tri( )2 2t F← →⎯ 	 �/

sinc( ) rect( )t F← →⎯ 	 �/2t 
-1 1

x(t)
1

-4 4

f -1 1

ω -2π 2π

|X( f )| and |X( jω)|
1

f 
-1 1

-π

π

 

ω 
-2π 2π

 

  X( f ) and X( jω)

t -1-2 1 2

x(t)
1

f 
ω 

-4 4

-8π 8π

|X( f )| and |X( jω)|
1

f 
-4 4

-π

π

ω -8π 8π

X( f ) and X( jω)

t -1-4 1 4

x(t)
1

f 
ω 

-2π 2π
-1 1

-2π 2π

-1 1

|X( f )| and |X( jω)|
1

f 
-π

π

ω

X( f ) and X( jω)

rect( ) sinc( )t F← →⎯ 	 �/2

rect( ) sinc( )t fF← →⎯

t 

x(t)
1

1
2

1
2

f 
-4 4

ω 
-8π 8π

|X( f )| and |X( jω)|
1

f 
-4

4
-π

π

 

ω
-8π 8π

 

X( f ) and    X( jω)
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t 

x(t)
1

1
|X( f )| or |X( jω)|

f or ω 

f or ω 

π

-π

......

......

  X( f ) or    X( jω)

�( )t F← →⎯ 1

1 F← →⎯ �( )f

1 2F← →⎯ �� 	( )

e f fj f t2
0

0� �
F← →⎯ ( )�

1

x(t)

t 

...... f 

|X( f )|

1

f 

π

-π

X( f )

1

x(t)

t 

...... ω 

|X( jω)|

2π

ω 

π

-π

X( jω)

t

Re(x(t))
1

Im(x(t))

1

-1
-1 T0

...

... f 

|X( f )|
1

f 
-π

π

f0

X( f )

a b t

a b

a b t

a b
ab

�

�
�

�

�2

2

2

2
tri tri sinc

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

← →⎯F aa b	

�

	

�2 2
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

sinc

a b t

a b

a b t

a b
ab

�

�
�

�

�2

2

2

2
tri tri sinc

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

← →⎯F (( )sinc( )af bf

a � b � 0
t 

x(t)

a+b

a-b
b

f 

f 
-π

π

|X( f )| and |X( jω)|

ω 

ω

ab

a
1

a
1

a
1-

a
1-

a
2π- a

2π

a
2π- a

2π

  X( f ) and X( jω)
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sgn( )t j fF← →⎯ 1/ �

sgn( )t jF← →⎯ 2/ 	

� �T ft f f
0 00( ) ( )F← →⎯

f0 � 1/T0

� 	 � 		T t
0 00( ) ( )F← →⎯

	0 � 2�/T0

t 

x(t)

-1

1
f -2 2

|X( f )|
1

f -2
2

-π

π
  X( f )

t 

x(t)

-1

1

ω 
-4π 4π

|X( jω)|
2π

ω
-4π

4π

-π

π
  X( jω)

t 

x(t)

1

......

T0

f 

|X( f )|

f 

π

-π

......

......

f0

f0

f0

  X( f )

t 

x(t)

1

......

T0

ω  

|X( jω)|

ω  
π

-π

......

......

ω0

ω0

ω0

  X( jω)

e j t	 �� 	 	0 2 0
F← →⎯ ( )�

t

Re(x(t))
1

Im(x(t))
1

-1
-1 T0

...

... ω 

|X( jω)|
2π

ω 
-π

π

ω0

X( jω)
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cos( ) [ ( ) ( )]	 � � 	 	 � 	 	0 0 0t F← →⎯ � � �

sin( ) [ ( ) ( )]2
20 0 0� � �f t
j

f f f fF← →⎯ � � �

sin( ) [ ( ) ( )]	 � � 	 	 � 	 	0 0 0t jF← →⎯ � � �

t 

x(t)

-1

1

T0

...... ω 

|X( jω)|
2π
π

ω 

π

-π
ω0

ω0

-ω0

-ω0
X( jω)

t

x(t)

-1

1

T0

...... f 

|X( f )|
1

f 

π

-π

f0

f0

-f0

-f0

1
2

X( f )

t

x(t)

-1

1

T0

...... ω 

|X( jω)|

2π
π

ω 

π

-π

ω0

ω0
-ω0

-ω0
 X( jω)

cos( ) [ ( ) ( )]2
1

20 0 0� � �f t f f f fF← →⎯ � � �
t

x(t)

-1

1

T0

......
f  

|X( f )|
1

f 

π

-π
f0-f0

f0-f0

1
2

  X( f )
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te t
j a

aat�

�
�u( )

( )
, Re( )F← →⎯ 1

0
2	

te t
j f a

aat�

�
�u( )

( )
, Re( )F← →⎯ 1

2
0

2�
t 

x(t)

1
a

e-1

a
-1 1

1/2a2
1/a2

-1 1

f 
ω 

ω
-π

π

a
a

2π

f 

a

a
2π

|X( jω)| and |X( f )|

X( jω) and    X( f )

t 

x(t)

ln(a/b)
a - b

ω 

ω 
-π

π

f 

f 

|X( jω)| and |X( f )|
1

ab

  X( jω) and    X( f )

t 

x(t)

ωc

2π

ω 

ω 

-π

π
π

f 

f 

|X( jω)| and |X( f )|

fn

fn

ωn

ωn

2
-

  X( jω) and    X( f )

e e

b a
t

j a j b

a

b
at bt� ��

� � �

�

�u( )
( )( )

,

Re( )

Re( )
F← →⎯ 1

0

	 	
00

a b≠

e e

b a
t

j f a j f b

a
at bt� ��

� � �

�

u( )
( )( )

,

Re( )

Re
F← →⎯ 1

2 2

0

� �
(( )b

a b

� 0

≠

	 	 
 � 
	c n n� � �1 2 ,( )

e t t
j

e

at
c

c

c

t
n

n

�

�

� �

�

sin( ) u( )
( )

sin

	
	

	 � 	

	 

	

F← →⎯
2 2

1 22
2 22

t t
j j

c

n n
( ) ← →⎯u( )

( ) ( )
F 	

	 	 
	 	� �

e t
j a

aat�

�
�u( ) , Re( )F← →⎯ 1

0
	

e t
j f a

aat�

�
�u( ) , Re( )F← →⎯ 1

2
0

�
t 

x(t)
1

1
a

f 
ω 

1/a

ω
-π

π

a
a

a

2π

1
2

-π
4

f a

a

2π

|X( jω)| and |X( f )|

X( jω) and X( f )
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e t t
j

j

e

t
c

c

t
n

n

�

�

�

� �
�


	

	
	 �

	 � 	

	

cos( ) u( )
( )

cos

F← →⎯
2 2

1��
�

� �



	 
	

	 	 
	 	
2

2 22
t t

j

j j
n

n n
( ) ← →⎯u( )

( ) ( )
F

	 	 
 � 
	c n n� � �1 2 ,( )

e
a

a
aa t�

�
�

F← →⎯ 2
0

2 2	
, Re( )

e
a

f a
aa t�

�
�

F← →⎯ 2

2
0

2 2( )
, Re( )

�

e et f� �� �2 2F← →⎯

e et� �� 	 �2 2 4F← →⎯ /

t 

x(t)
1

ωc
2π

ω 

ω 
-π

π

f 

f 

|X( jω)| and |X( f )|

fn

fn

ωn

ωn

  X( jω) and    X( f )

t 

x(t)
1

1
a

e-1

2

f 

f 

ω 

ω 

-π

π

a

a

|X( jω)| and |X( f )|

1
a

  X( jω) and    X( f )

t 
-2 2

x(t)
1

1
2π

e-1/2

-2 2

-4π 4π

1

ω 

-π

π

f 

f 

|X( f )| and |X( jω)|

-4π 4π
ω 

-2 2

1
2π

2π

  X( f ) and    X( jω)

e-1/2

t 

x(t)
1

ln(a/b)
a - b

ω
f 

ω 

-π

π

f 

|X( jω)| and |X( f )|

  X( jω) and    X( f )

ae be

a b
t

j

j a j b

a
at bt� ��

� � �

�

u( )
( )( )

,

Re( )

Re(F← →⎯ 	

	 	

0

bb

a b

) � 0

≠

ae be

a b
t

j f

j f a j f b

a
at bt� ��

� � �
u( )

( )( )
,

Re(
F← →⎯ 2

2 2

�

� �

))

Re( )

�

�

0

0b

a b≠
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777

 A P P E N D I X  E
 Discrete-Time Fourier
Transform Pairs

x[ ] X( ) X( ) x[ ]n F e dF F n ej Fn j Fn

n

� � �

��

2
1

2� �∫ ∑← →⎯
∞

∞
F

x[ ] X( ) X( ) x[ ]n e e d e n ej j n j j n

n

� � �

��

1

2 2� �

� � � ��∫ ← →⎯
∞

F
∞∞

∑

For all the periodic time functions, the fundamental period is N0 � 1/F0 � 2�/�0. In 
all these pairs, n, NW, N0, n0 and n1 are integers.

1 2 2
F← →⎯ �� �( )�

1 1
F← →⎯ � ( )F

n 

x[n]
1

......

F 

|X(F)|
1

F 

π

-π

......

......

1 2-2 -1

1 2-2 -1

  X(F)

� 

2π

�

π

-π

......

......

π 2π-2π -π

π 2π-2π -π

|X(     )|

  X(     )e j�

e j�

n 

x[n]
1

......
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n 

x[n]
1

n0 n1

F 
-2 2

F 
-2 2

-π

π

|X(F)| and |X(e j�)| 

� 
-4π 4π

� -4π 4π

n1- n0 

n1- n0 
1

  X(F) and    X(e j�)

u[ ] u[ ]n n n n� � �0 1
F← →⎯

e

e
n n F n n

j F n n

j F

� �

�
� �

�

�

( )

( ) drcl( , )
1 0

1 0 1 0

u[ ] u[ ]n n n n� � �0 1
F← →⎯

e

e
n n n n

j n n

j

� �

�
� �

�

�

�( ) /

/
( ) drcl ,

1 0 2

2 1 0 1 02�

⎛
⎝⎜

⎞
⎠⎟

n 
-16 16

x[n]
1

w

F 

F 
-2 2

-2 2

-π

π

�

� -4π 4π

-4π 4π

w
|X(F )| and |X(e j�)| 

X(F) and    X(e j�)

tri( ) drcl ( , )n w w F w/ F← →⎯ 2

tri( ) drcl ( , )n w w w/ /F← →⎯ 2 2� �

n 

x[n]

w

1

-w

F -2 2

F 
-2 2

�

� 

w

w

1

π

-π

4π-4π

4π-4π

|X(F )| and |X(e j�)| 

X(F) and    X(e j�)

sinc( ) ( )n w w wF F/ rect( )F← →⎯ ∗�1

sinc( ) ( )n w w w/ rect( / )F← →⎯ ∗� �2 2� � �

n 

1

x[n]

1

F 
�

� 

F 
π

-    

......

......

|X(F )| and |X(e j�)| 

X(F) and     X(e j�)
�[ ]n F← →⎯ 1
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� � �N N Fn N F F F
0 0 0

1 0 1 0[ ] ( ) ( ) ( )/
F← →⎯ / �

u[ ] ( )n
e j

F← →⎯ 1

1
2

�
�

� �
��� �

� � � ��N Nn N
0 0 0

2 0 2 0[ ] ( ) ( ) ( )/
F← →⎯ / � � ���

n

x[n]

1

...

F -2 2

1

F -2 2

π

-π

|X(F )|

X(F)
u[ ] ( )n

e
F

j F
F← →⎯ 1

1 22 1
�

�
� �

�
1

� 

� 

π

-π

......

......

2π2π 4π-4π -2π

2π 4π-4π -2π

N0

2π
N0

|X(e j�)|

    X(e j�)n 

x[n]
1

......

N0

4π
-4π

4π-4π � 

π

� 
-π

π

|X(e j�)|

X(e j�)
n 

x[n]
1

...

n 

x[n]

1

......
N0

F 

F 

π

-π

......

......

1 2-2 -1

1 2-2 -1

N0

1

N0

1
|X(F )|

X(F)
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n 

x[n]

-1

1

N0

......

�

2π

� 

π

-π

......

......

2π 4π-4π -2π

2π 4π-4π -2π

N0

2π
N0

2π-

|X(e j�)|

    X(e j�)

� 

2π

� 

π

-π

......

......

2π 4π-4π -2π

2π 4π-4π -2π

N0

2π
N0

2π-

|X(e j�)|

    X(e j�)
sin( ) [ ( ) ( )]� � � � �0 2 0 2 0n jF← →⎯ � � �� �� � �n 

x[n]

-1

1

N0

......

cos( ) [ ( ) ( )]� � � � �0 2 0 2 0n F← →⎯ � � �� �� � �n 

x[n]

-1

1

N0

......

F 

1

F 

π

-π

......

......

1 2-2 -1

1 2-2 -1

N0

1
N0

1-

|X(F)|

    X(F)
sin( ) [ ( ) ( )]2

20 1 0 1 0� � �F n
j

F F F FF← →⎯ � � �

n 

x[n]

-1

1

N0

......
F 

1

F 

π

-π

......

......

1 2-2 -1

1 2-2 -1

1
N0 N0

1-

|X(F)|

X(F)
cos( ) [ ( ) ( )]2

1

20 1 0 1 0� � �F n F F F FF← →⎯ � � �
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�
�

�
�

�

�

n
j

n
j F

n
e

n
e

u[ ]

u[ ]

,

F

F

← →⎯

← →⎯

1

1
1

1

1

2

�

�

�
�

�

�

n 

x[n]
1 F  

-2 2

F 
-2 2

π

-π

-4π 4π � 

-4π 4π � 

1
1 - α

|X(e j�)| and |X(F)| 

X(e j�) and     X(F)

n 
-12 12

x[n]
1

n 
-4 20

x[n]

-1

1

n 
-4 20

x[n]

-1

1
F 

-2 2

F 
-2 2

F 
-2 2

-π

π

� -4π 4π

�-4π 4π

|X(e j�)| and |X(F)| 

X(e j�) and     X(F)

�
�

�
n

n
n

j

n
j

n n
e

e
cos( ) u[ ]

cos( )

cos( )
�

�

�

�

�

F← →⎯ 1

1 2

�

�

�

� ��

�

�

�

�

� �
� � �

2 2

2

2
1 2

e

F n n
F e

j

n
n

n
j F

�

cos( ) u[ ]
cos( )F← →⎯

11 2 2 2 2 4� �� �� � �� �cos( )F e en
j F j F

|�| < 1

F 
-2 2

F -2 2

-π

π

� 
-4π 4π

� -4π 4π

|X(e j�)| and |X(F)| 

X(e j�) and     X(F)

�
�

� �
n

n
n

j

n
j

n n
e

e
sin( ) u[ ]

sin( )

cos( )
�

�

�

�

�

F← →⎯
�

�� �1 2 22 2e j� �

� �
� �

� �

�
n

n
n

j F

F n n
F e

F
sin( ) u[ ]

sin( )

cos(
2

2

1 2 2

2
F← →⎯

�

� nn
j F j Fe e) � ��2 2 4� ��

|�| < 1

F 
-2 2

F 
-2 2

π

-π

-4π 4π � 

-4π 4π
� 

1 + α
1 - α

|X(F )| and |X(e j�)| 

X(F) and     X(e j�)

�
�

� � �

�
�

� �

n

n

F
F

F

← →⎯

← →⎯

1

1 2 2

1

1 2

2

2

2

�

� �

�

� �

cos( )

cos( )� 22

1, � �
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782

 F A P P E N D I X

Tables of  Laplace Transform Pairs

 CAUSAL FUNCTIONS

�( ) ,t sL← →⎯ 1 All

u( ) , Re( )t
s

sL← →⎯ 1
0�

u ( ) u( ) u( ) ,
( )

−
−

= ∗ ← →⎯n

n
n

t t t
s

�� �� ��
1

1

convolutions

L RRe( )s � 0

t t
s

su( ) , Re( )L← →⎯ 1
0

2
�

e t
s

st− ← →⎯
+

−�

�
�u( ) , Re( )L 1

�

t t
n

s
sn

n
u( )

!
, Re( )L← →⎯ >+1

0

te t
s

st− ← →⎯
+

> −�

�
�u( )

( )
, Re( )L 1

2

t e t
n

s
sn t

n
−

+← →⎯
+

−�

�
�u( )

!

( )
, Re( )L

1
�

sin( ) u( ) , Re( )	
	

	
0

0
2

0
2

0t t
s

sL← →⎯
+

�

cos( ) u( ) , Re( )	
	

0 2
0
2

0t t
s

s
sL← →⎯

+
�

e t t
s

st
c

c

c

− ← →⎯
+ +

−� 	
	

� 	
�sin( ) u( )

( )
, Re( )L

2 2
�
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e t t
s

s
st

c
c

− ← →⎯ +
+ +

−� 	
�

� 	
�cos( ) u( )

( )
, Re( )L

2 2
�

e A t
B A

t tt
c c

− + −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ← →⎯� 	

�



	cos( ) sin( ) u( ) L AAs B

s c

+
+ +( )� 	2 2

e A
B A

t
B A

A
t

c
c

c

− −+ −⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

� �

	
	

�

	
2

2
1cos tan⎜⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

← →⎯ +
+ +

u( )
( )

t
As B

s c

L

� 	2 2

e A D
C

t
B AC

D C
D

CC
t−

− ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ −

−
−2

2

22

2

4 2
cos sin

⎛⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ ← →⎯ +

+ +

2

2
t t

As B

s Cs D
u( ) L

e A
B AC

D C
D

C
t

C
t− −+ −

−

⎛

⎝⎜
⎞

⎠⎟
− ⎛

⎝⎜
⎞
⎠⎟

−2 2

2

2 2
12

4 2

2
cos tan

BB AC

A D C
t

As B−

−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

← →⎯ +

4 2
u( ) L

ss Cs D2 + +

 ANTICAUSAL FUNCTIONS

− − ← →⎯u( ) , Re( )t
s

sL 1
0�

− − ← →⎯
+

−−e t
s

st�

�
�u( ) , Re( )L 1

�

− − ← →⎯ +t t
n

s
sn

n
u( )

!
, Re( )L

1
0�

 NONCAUSAL FUNCTIONS

e
s s

st− ← →⎯
+

−
−

−�

� �
� �

L 1 1
, Re( )� �

rect( ) ,
/ /

t
e e

s
s

s s
L← →⎯ − −2 2

All

tri( ) ,
/ /

t
e e

s
s

s s
L← →⎯ −⎛

⎝⎜
⎞
⎠⎟

−2 2 2

All
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784

 G A P P E N D I X

 z Transform Pairs

 CAUSAL FUNCTIONS

�[ ] ,n zZ← →⎯ 1 All

u[ ] , | |

u[ ]

n
z

z z
z

n
z

z z
n

Z

Z

← →⎯ =

← →⎯ =

� �
�

� �

�

�

1

1

1
1

1

1

1

1
�

� �
,, | | | |

u[ ]
( ) ( )

, | |

u[

z

n n
z

z

z

z
z

n

�

� �
�

�

�

�

Z← →⎯ =
1 1

1
2

1

1 2

2 nn
z z

z

z

z z
z

n nn

]
( )

( ) ( )
, | |

u[ ]

Z

Z

← →⎯ �

�
�

�

�
�

�

�

1

1

1

1
1

3

1

1

� ←← →⎯ z

z

z

z
z

�

�

�

�
�

( ) ( )
, | | | |

�
�

�
�

�

�2

1

1 21

n n z
d

dz

z

z
zm n m

m

m
�

�
�u[ ] ( ) , | | |Z← →⎯ ⎛

⎝⎜
⎞
⎠⎟

�
�

�

n n n n m

m
n

z

z
zn m

m

( )( ) ( )

!
u[ ]

( )
, | |

� � � �

�
��

�

1 2 1
1

�
�

�

Z← →⎯ || �

sin( ) u[ ]
sin( )

cos( )

sin( )
�

�

�

�
0

0
2

0

0

2 1
n n

z

z z

zZ← →⎯
� �

�
��

� �� �
�

�

1

0
1 2

0

1 2
1

cos( )
, | |

cos( ) u[ ]
[ c

�

�

z z
z

n n
z zZ← →⎯ oos( )]

cos( )

cos( )

cos( )

�

�

�

�
0

2
0

0
1

02 1

1

1 2z z

z

z� �
�

�

�

�

�11 2

0
0

2

1

2

�
�

�

�z
z

n n
z

z z
n

, | |

sin( ) u[ ]
sin( )

co
�

�

�
�

�Z← →⎯
ss( )

sin( )

cos( )
, | | |

�

�

�0
2

0
1

0
1 2 21 2�

�
� �

�
�

� ��

�

� �

z

z z
z ��

�
�

�

|

cos( ) u[ ]
[ cos( )]

cos( )
n n n

z z

z z
�

�

�
0

0
2

02
Z← →⎯ �

� ��
�

�

� �
�

�

� ��

�

� �
�

2
0

1

0
1 2 2

1

1 2

cos( )

cos( )
, | | | |

�

�

z

z z
z
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 ANTICAUSAL FUNCTIONS

� � �
�

�u[ ] , | |n
z

z
z1

1
1Z← →⎯

� � �
�

�

� � �
�

�
�

�

�
�

�

n

n

n
z

z
z

n n
z

z

u[ ] , | | | |

u[ ]
(

1

1

Z

Z

← →⎯

← →⎯
))

, | | | |2 z � �

 NONCAUSAL FUNCTIONS

�
� �

� �n z

z

z

z
zZ← →⎯

�
�

�
� �

1
1

/
, | | | | | / |
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INDEX

A
A matrix, diagonalizing, 743–744
absolute bandwidth, 489
accumulation (or summation), 92–94
accumulation property, 392, 398–399, 400
acoustic energy, 559, 560
acquisition, of signals, 420
active fi lters, 508–517
active highpass fi lter, design of, 512–514
active integrator, 510
active RLC realization, of a biquadratic fi lter, 517
ADC response, 421
additive system, 128–129
air pressure variations, 14
aliases, 426
aliasing, 428–431, 436–437, 467–468, 652
almost-ideal discrete-time lowpass fi lter, 537
alternate state-variable choices, 740
ambiguity problem, 92
American Standard Code for Information 

Interchange (ASCII), 5
amplifi er, 119, 140
amplitude modulation, 41, 561–576, 578–580
amplitude scaling, 36, 37, 43–44, 87
analog and digital fi lter impulse responses, 684
analog fi lters, 670–679
analog modulation and demodulation, 561–576
analog multiplier, 136, 137
analog recording device, 420
analog signals, 3
analog voltage, converting to a binary 

bit pattern, 422
analog-to-digital converter (ADC), 4, 421, 655
angle modulation, 567–575

exercises, 580–581
anti-aliasing fi lter, RC fi lter as, 430–431
anticausal functions, 783, 785
anticausal signal, 134, 399
antiderivative, of a function of time, 48
antisymmetric fi lter coeffi cients, 709–710
aperiodic convolution, 230, 453–454
aperiodic function, 54, 56
aperiodic signals, 241, 304–305
aperture time, 421
area property, of the convolution integral, 174
area sampling, compared to value sampling, 659
arguments

of functions, 20, 34
in MATLAB, 25

artifi cial systems, 113
associativity property, of convolution, 174, 176, 

191, 195
asymptotes, 497
asynchronous demodulation, 566
asynchronous transmission, 5
attenuated signal, 519
attenuation, 512
audio amplifi er, 238–240, 483

audio compact disk (CD), 435–436
audio range, 481
audio-amplifi er controls, 482
automobile suspension system, model of, 114
axial mode spacing, 606

B
backward difference

approximation, 689
of a discrete-time function, 92, 94

band-limited periodic signals, 441–444
exercise, 468

bandlimited signals, 228, 427, 431–432, 489
exercises, 465–466

bandpass Butterworth analog fi lter, 684
bandpass Butterworth digital fi lter, 684
bandpass discrete-time fi lter, 528
bandpass fi lter(s), 123, 367, 369, 483, 484, 491, 

507, 673 See also causal bandpass fi lter
bandpass fi lter design, 692–693
bandpass signals, sampling, 435–437
bandpass-fi lter transfer function, 676
bandstop discrete-time fi lter, 528
bandstop fi lter(s), 123, 483, 484–485, 491, 674 

See also causal bandstop fi lter
bandwidth, 489
Bartlett window function, 705, 707
bartlett window function, in MATLAB, 715
baseband signal

relation with modulated carrier, 566
transmission, 562

basis vectors, 296
beat frequency, 564
bel(B), 493
Bell, Alexander Graham, 493
Bessel fi lter, 676–679
Bessel function, of the fi rst kind, 574
besselap command, 677
best possible approximation, 228
BIBO instability, 591
BIBO stability, of an LTI system, 591
BIBO stable system, 133, 195, 603
BIBO unstable system, 147, 149, 591–592
bilateral Laplace transform, 357
bilinear command, in MATLAB, 700–701
bilinear method, 696–701
bilinear transformation, 694, 701–703
bilinear z transform, 699

exercise, 721
binary numbers, 662
biological cell, as a system, 115
biquadratic RLC active fi lter, 516–518
biquadratic transfer function, 485
Blackman window, 708
Blackman window function, 706, 707
blackman window function, in MATLAB, 715
block diagrams, 140–141

of convolution, 168

of discrete-time systems, 642
representing systems, 119–121

Bode, Hendrik, 495
bode command, in MATLAB, 366
Bode diagrams, 493–503

exercises, 540
Bode plot, 495
bounded excitation, producing an 

unbounded response, 133–134, 149
bounded-input-bounded-output (BIBO) stable 

system. See BIBO stable system
boxcar (rectangular) window function, in 

MATLAB, 715
bridged-T network, response of, 361–362
brightness, of top row of pixels, 523
buttap command, in MATLAB, 674–675
butter function, in MATLAB, 715
Butterworth fi lters, 671–676, 677, 678
Butterworth lowpass fi lter, 431

C
capacitor values, 513
capacitor voltage, 726
capacitors, 123, 505, 512
carrier, modulating, 561
cascade connection, 593

exercises, 629–632, 663
of system, 311–312, 335, 385
of two systems, 176, 195

cascade realization, 624–625, 661
causal bandpass fi lter, 491, 522
causal bandstop fi lter, 491, 522
causal cosine, response of a system to, 623–624
causal discrete-time system, as BIBO stable, 642
causal energy signal, sampling, 452
causal exponential, z transform of, 396–397
causal exponentially damped sinusoid, z transform 

of, 396–397
causal functions, 782–783, 784
causal highpass fi lter, 491, 522
causal lowpass fi lter, 491, 522
causal signal, 134
causal sinusoid, 407, 621, 648–650
causal system, 134
causality, 134, 135, 520
causally-fi ltered brightness, 523
central difference approximation, 690
centroid, of the root locus, 609
change of period property, 231, 299
change-of-scale property, 397
change-of-scale-in-z property, 392, 395
channels, 1
cheb1ap command, 677
cheb2ap command, 677
chebwin (Chebyshev) window function, 

in MATLAB, 715
cheby1 function, in MATLAB, 715
cheby2 function, in MATLAB, 715

788
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 Index 789

Chebyshev (Tchebysheff or Tchebischeff) fi lter, 
676–679, 715

checkerboard pattern, fi ltered, 525, 526
chopper-stablilized amplifi er, 584–585
circuit analysis, using Laplace methods, 586–587
circuit equations, writing, 588–589
circuits, 122, 586
clipped signal, 487
clock, driving a computer, 79
closed-loop system, 120
closing the loop, 594
code, 421
combinations, of even and odd signals, 97–98
comment lines, in MATLAB, 25
communication

between people, 16
time delay, 39

communication system analysis, 558–578
communication systems, 1, 558–560
communication-channel digital fi lter 

design, 711–712
commutativity property, 174, 191
compact trigonometric Fourier series, 223–225
complementary root locus, 611
complex conjugate pair of poles, 502–504
complex CTFS, 220
complex exponential excitation, 177–178, 198
complex exponential excitation and response, 

334, 384
complex exponentials, 22, 139
complex sinusoids, 22, 55, 140, 179, 216
components, system as an assembly of, 119
compound interest, accruing, 149
computers, as discrete-time systems, 79
conjugation property, 231, 299, 312, 392
constant, as special case of sinusoid, 217–218, 292
constant-K bandpass fi lter, 514–515
contiguous-pulse approximation, 164
continuous independent variables, signals as 

functions of, 17
continuous signals, 225
continuous time, 159–181, 201–205, 310
continuous-space function, of spatial 

coordinates, 523
continuous-time Butterworth fi lters, 

exercises, 717–718
continuous-time causality, exercise, 540–541
continuous-time communication systems, 558–575
continuous-time convolution, 164–182, 453–454
continuous-time derivatives, approximating, 688
continuous-time exponential, 83
continuous-time feedback 

systems, 12–13, 121–122
continuous-time fi lters, 482–514, 526, 538–539
continuous-time Fourier methods, 215–261
continuous-time Fourier series. See CTFS
continuous-time Fourier transform. See CTFT
continuous-time frequency response exercise, 

539–540
continuous-time functions, 20–21
continuous-time ideal fi lters, exercises, 539
continuous-time impulse function, 445
continuous-time LTI system, as BIBO stable, 133
continuous-time numerical convolution, 193

continuous-time practical active fi lters, 
exercises, 544–545

continuous-time practical passive fi lters, 
exercises, 541–543

continuous-time pressure signal, 14–15
continuous-time problem, solving, 142
continuous-time sampling, 421–452
continuous-time signal functions, summary of, 34
continuous-time signals, 3–4, 5, 7

compared to discrete-time, 78
estimating CTFT of, 454
graphing convolution of, 193
mathematical description of, 19–56
sampling, 77–78, 425

continuous-time sinusoids, 80–81
continuous-time state equations, 

exercises, 754–756
continuous-time system response, exercise, 756
continuous-time systems, 114–137, 726–744

approximate modeling of, 141
as BIBO stable, 177
feedback in, 12
frequency response of, 180–181
interpretation of the root locus, 644
response to periodic excitation, 232–233
simulating with discrete-time 

systems, 651–660
continuous-value signal, 4
continuums, 4
control toolbox, in MATLAB, 370–372
conv command, in MATLAB, 191
conv function, in MATLAB, 193, 193–194
convD function, in MATLAB, 534–536
convergence, 225–227, 308
convergence factor, 246, 333–334
convolution, 6, 159, 215

in discrete time, 191
exercises, 201–204, 205–207
fi nding response of a system using, 

196–197
graphical and analytical examples of, 

168–172, 187–189
as two general procedures, 169
of two unit rectangles, 175

convolution in time property, 354
convolution integral, 32, 168, 174, 658
convolution method, 181–183
convolution operator, 168
convolution properties, 173–175, 191–192, 314, 392
convolution result, graphing, 188
convolution sum

computing with MATLAB, 192–193
for system response, 186

Cooley, James, 303
coordinated notation, for singularity functions, 33
corner frequency, 497
cosine(s), 52

carriers modulated by, 572
sampled, 438

cosine accumulation, graphing, 96
cosine-wave frequency modulation, 575
Cramer’s rule, 362
critical damping, 621

critical radian frequency, 139
CTFS (continuous-time Fourier series), 216–238

DFT approximating, 236–238
properties, 230, 231
relation to CTFT exercises, 280

CTFS harmonic function, 322, 573
computing with DFT, 452
from a DFT harmonic function, 442
estimating, 234
exercises, 267–270
of a periodic signal using CTFT, 252
of a rectangular wave, 224

CTFS pairs, 222, 230, 764–766
CTFS representation, of a continuous periodic 

signal, 225
CTFT (continuous-time Fourier transform), 

6, 241–267
approximating with DFT, 452
of convolution of signals, 258
DFT approximating, 260–262
of an impulse-sampled signal, 428
limitations of, 331
of a modulated sinusoid, 252
of scaled and shifted rectangle, 258
of the signum and unit-step functions, 

248–249
of a single continuous-time rectangle, 322
system analysis using, 263–267
of time-scaled and time-shifted sines, 257
total area under a function using, 257
of the unit-rectangle function, 250
using differentiation property, 256–257

CTFT pairs, 245, 770–776
CTFT-CTFS-DFT relationships, exercises, 

468–470
CTFT-DFT relationship, 444–445
CTFT-DTFT relationship, 445–448
cumsum function, in MATLAB, 49, 94
cumulative integral, 48
cup anemometer, 115

D
damped sinusoid, 140
damping factor, 139
damping ratio, 139
decaying exponential shape, signal with, 44
deci prefi x, 494
decibel (dB), 493–495
decimation, 88–89, 455, 456
defi nite integral, 48
delay, 140
demodulation, 562–563, 567
derivation, 164–169, 184–187
derivative of the phase, controlling, 569
derivatives

of even and odd functions, 53
exercises, 65–66

deterministic signal, 4
DFT (discrete Fourier transform), 235, 293–294

approximating CTFS, 236–238
approximating CTFS harmonic 

function, 259
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790 Index

DFT (discrete Fourier transform)—Cont.
approximating CTFT, 260–262
defi ned, 315
exercises, 324, 471–474
of a periodically repeated rectangular 

pulse, 299–300
properties, 298–302
signal processing using, 444–454
using to fi nd a system response, 320–321

DFT harmonic function, 293
based on one fundamental period, 304
of a discrete-time function, 442
period of, 304

DFT pairs, 302, 767–769
DFT transform pair, 298
diagonalization, 742–745

exercise, 757
diff function, in MATLAB, 94
difference, 92
difference equation, for a discrete-time system, 198
difference equations

describing discrete-time systems, 641
exercises solving, 414–415
with initial conditions, 400
modeling discrete-time systems, 141–146
solution of, 400–401

difference-equation description, exercise, 757
differencing and accumulation, 92

exercises, 105–107
differencing property, of the convolution sum, 191
differential equations

approximating difference equation, 689
exercises solving, 376
with initial conditions, 360–362
modeling systems using, 115–122
solution of, 116

differential-equation description, exercise, 757
differentiation, 47–50
differentiation property

of the convolution integral, 174
of the CTFT, 255–256
z transform using, 398

differentiators, 499
digital bandpass fi lter design

bilinear transformation, 702–703
impulse-invariant method, 684–686
matched-z transform, 695–696
Parks-McClellan, 714
step-invariant method, 687–691

digital fi lters, 420, 670, 679–712
creating unstable, 690–691
frequency response as periodic, 696
frequency response matching analog 

fi lter, 696–697
functions designing, 715

digital hardware, 662
digital image processing, on computers, 8
digital lowpass fi lter designs, 701–702, 710–711
digital signal processing (DSP), 420
digital signals, 4, 5–6
digital simulation, by impulse-invariant 

method, 685

digital-fi lter frequency response, 681–682
digital-to-analog converter (DAC), 422, 655–656
diode, as statically nonlinear component, 135, 136
Direct Form II, 336

realization, 336–338, 395
realization of a single subsystem, 625
system realization, 385–386, 386
system realization exercise, 373

Direct Form II system, 483
Direct Form II system realization, exercise, 411
direct substitution, 694
direct substitution method, 694–695
direct terms, vector of, 351
diric function, in MATLAB, 301–302
Dirichlet conditions, 223
Dirichlet function, 301, 707
discontinuities, functions with, 23–32
discontinuous function, 21
discontinuous signals, 226–227
discrete Fourier transform. See DFT
discrete independent variable, signals as 

functions of, 18
discrete time, 181–198, 310

exercises, 205–208
discrete-space function, 523
discrete-time causality, exercise, 546
discrete-time convolution, 184–199, 453–454
discrete-time delay, 11
discrete-time DSBSC modulation, 577
discrete-time exponentials, 83–84
discrete-time feedback system, 146
discrete-time fi lters, 518–536
discrete-time Fourier methods, 290–319
discrete-time Fourier series. See DTFS
discrete-time Fourier transform. See DTFT
discrete-time frequency response, 527

exercises, 545–546
discrete-time functions, 78

continuous-time singularity functions 
and, 84–87

domain of, 88
examples, 79
graphing, 79, 90–92
summations of, 98

discrete-time ideal fi lters, exercises, 546
discrete-time impulses, MATLAB function for, 84
discrete-time numerical convolution, 191
discrete-time practical fi lters, exercises, 546–547
discrete-time pulse, fi ltering, 716
discrete-time radian frequency, representing, 401
discrete-time sampling, 455–459
discrete-time signal functions, summary of, 87
discrete-time signals, 3, 6

from continuous-time signals, 428
examples, 78
sampling, 455
simulating continuous-time signals, 654

discrete-time sinusoidal-carrier amplitude 
modulation, 576–578

discrete-time sinusoids, 80–82
discrete-time state equations, exercises, 757–758
discrete-time system objects, 404–405
discrete-time system response, exercise, 758–759

discrete-time system stability, analysis, 644
discrete-time systems, 11–12, 140–149, 312

equivalence with continuous-time 
systems, 651

feedback in, 12
frequency response of, 401
modeled by block diagrams, 642
periodic frequency response, 402, 520
properties of, 147
realization of, 661–662
simulating continuous-time 

systems, 651–660
state-space analysis of, 745–752

discrete-time time scaling, 456
discrete-time unit ramp, 94
discrete-value signals, 4
discretizing, a system, 654
distortion, 487–488, 519
distortionless system, 488, 519
distributivity property, of convolution, 176, 195
“divide-and-conquer” approach, to solving 

linear-system problems, 129
domain, of a function, 20
double-sideband suppressed carrier 

modulation, 355
double-sideband suppressed-carrier (DSBSC)

modulation, 561–564
signal sampling, 459

double-sideband transmitted carrier (DSBTC), 
564–567

downsampling, 457
DTFS (discrete-time Fourier series), 290–293, 322
DTFS harmonic function, 293
DTFT (discrete-time Fourier transform), 304–319

of any discrete-time signal, 428
approximating with DFT, 452
compared to other Fourier methods, 321
convergence, 308
of a decimated signal, 457
defi ned, 315
derivation and defi nition, 305–306
derived from the z transform, 518
of a discrete-time function, 519
of a discrete-time signal, 455, 456
exercises, 324
generalized, 307
generalizing, 383–384
of modulation, carrier and modulated 

carrier, 577
numerical computation of, 315–320
of a periodic impulse, 311
properties, 309–314
of a system response, 406–407
of a window function, 447

DTFT pairs, 307, 308, 777–781
dynamic system, 135

E
ear-brain system, 215
eig command in MATLAB, 744–745
eigenfunction, 116
eigenfunctions, 22
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 Index 791

Einstein, Albert, Gedankenversuch (thought 
experiment), 599–600

electromagnetic energy propagation, 559
electromechanical feedback system, 735
ellip function, in MATLAB, 715
ellipap command, 677
Elliptic fi lter (Cauer fi lter), 676–679, 715
encoded response, 422
encoding, 422
encoding signals, 4–5
energy signals, 58, 60
energy spectral density, 256
envelope detector, 565
equalization fi lter, 595
equalization system, 585
equation of motion, 9
equivalence, of continuous-time and discrete-time 

systems, 657
equivalence property, of the impulse, 30, 265, 312
error signal, 593
Euler’s identity, 22, 179, 216
even and odd functions, combinations of, 52–53
even and odd parts, of a function, 50–51
even and odd signals, 96–98

exercises, 66–68, 106–107
even function, 49
excitation harmonic function, 233
excitations, 1, 171
existence of z transform, exercise, 411
exponentials, 80, 83–84
exponentials (exp), 21

F
F-117 stealth fi ghter, 12, 598
fast Fourier transform (FFT), 235, 302–304
feedback, 12

adding to a stable system, 598
benefi cial effects of, 595–598
instability caused by, 598–602
stable oscillation using, 602–605

feedback connection
exercises, 629–632, 663
of systems, 593–613, 643

feedback path, 593
feedback systems, 12–14, 144–147
feedforward paths, 705
fft algorithm, implementing DFT on computers, 

320–321
fft function, in MATLAB, 235, 303
fftshift function, in MATLAB, 237, 261
fi lter classifi cations, 488, 520–526
fi lter function, in MATLAB, 715
fi lter transformations, 672–674
fi ltering, images, 521–524
fi lters, 481, 482

continuous-time, 482–514
design techniques, 679–711
effects on signals, 530–532
processing signals, 6
uses of, 670

fi ltfi lt function, in MATLAB, 715
fi nal value theorem, 392, 613
fi nite difference design, 688–690, 720

fi nite-difference method, 692–693, 693
fi nite-duration impulse response, 679, 703
FIR fi lter design, 703–712

exercises, 721–723
FIR fi lters, 679
fi rpm command, in MATLAB, 714–715
fi rst backward difference property, 392
fi rst time derivative property, 358
fi rst-order hold, 434–435
fi rst-order systems, 138
fi xed-point arithmetic, 662
fl uid system, 9–10
fl uid-mechanical system, modeling, 117–118
FM (frequency modulation), 569, 570
forced response, 134, 140, 408, 618
forced response values, 660–661
forcing function, 116–117, 160
forward and inverse discrete-time Fourier 

transforms, exercises, 325–328
forward and inverse Laplace transforms, exercises, 

271–280, 373–374
forward and inverse z transforms

examples of, 394–398
exercises, 411–413

forward CTFT, 452
forward DFT, 294, 294–297, 302
forward difference, of a discrete-time 

function, 92, 93
forward Fourier transform, 332
forward Laplace transform, 332
forward path, 593
forward transfer function, instability in, 615
forward z transform, defi ned, 383
forward-path transfer function, changing, 597
Fourier, Jean Baptiste, 216
Fourier method comparisons, 321
Fourier methods matrix, 321
Fourier series, 216

of even and odd periodic functions, 229
exercises, 267
extending to aperiodic signals, 241–245
numerical computation of, 234–240

Fourier transform, 241
alternate defi nitions of, 332–333
generalized, 246–250
generalizing, 332–334
as not a function of time, 244
numerical computation of, 259–266

Fourier transform pairs, 244, 250
Fourier transform properties, 250–257
Fourier transform representation, of a 

discontinuous signal, 683
Fourier-series tables and properties, 230–233
freqresp function, in MATLAB, 617
freqs function, 677
frequency, 15, 427
frequency compression, 254
frequency differentiation property, 251
frequency domain, 6, 215
frequency modulation (FM), 569, 570
frequency multiplexing, 560
frequency response(es), 179–180, 199

of a bandpass fi lter, 534

of discrete-time and continuous-time 
lowpass fi lters, 527

of discrete-time systems, 401
in everyday life, 481
of a fi lter, 484
of ideal fi lters, 489, 490, 520
of a lowpass fi lter, 526–527
phase of, 363
from pole-zero diagram, 364–365
shaping, 482
of a system, 256, 312–313
from a transfer function, 403–404

frequency scaling property, 251, 254, 311, 359
frequency shifting, 38
frequency shifting property, 231, 251, 252, 254, 299
frequency warping, 700
frequency-domain methods, 694–701
frequency-domain resolution, 315
frequency-independent gain, 366, 499–500
frequency-modulated sinusoid, 636
frequency-scaling property, 396
frequency-shifting property, 310
freqz function, in MATLAB, 716
full-wave rectifi er, as not invertible, 138–139
functions

combinations of, 34–36
with discontinuities, 23–32
even and odd parts, 96
exercises, 102–103
fundamental period of, 98
graphing accumulation of in MATLAB, 95
graphing combinations, 35–36
with integrals, 48
sums, products and quotients of, 35
types of, 20

fundamental cyclic frequency, 53
fundamental period, 53, 233

of CTFS representation, 222
of a function, 98
of a signal, 55–56

fundamental radian frequency, 53

G
gain, as opposite of attenuation, 512
“gate” function, unit rectangle function as, 33
gcd function, in MATLAB, 56
generalized CTFT, 307
generalized derivative, 29
generalized DTFT, 307–308
generalized Fourier transform, 246–250, 333
generalized Fourier-transform pair, 247
Gibbs, Josiah Willard, 226
Gibbs phenomenon, 226
Gibb’s phenomenon, 705
graphic equalizer, 485–486, 518
graphing function, scaling and shifting with 

MATLAB, 45–46
greatest common divisor (GCD), 55

H
half-power bandwidth, 489
Hamming window function, 706, 707
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hamming window function, in MATLAB, 715
hanning (von Hann) window function, in 

MATLAB, 715
harmonic function, 219
harmonic number, 219, 293
harmonic response, 232–233
Heaviside, Oliver, 25
highpass active fi lters, cascade of two 

inverting, 513
highpass discrete-time fi lter, 528
highpass fi lters, 123, 364, 369, 483, 484, 491, 507 

See also causal highpass fi lter
design of active, 512–514
frequency response of, 367
response to sinusoids, 529–530

high-spatial-frequency information, in an 
image, 525

highway bridge, as a system, 115
hiss, 546–547, 554
home-entertainment audio system, 481
homogeneity, 126–127
homogeneous solution, 116, 159
homogeneous system, 126
human body, as a system, 115
human ear, response to sounds, 481–482

I
ideal bandpass fi lter, 488, 520
ideal bandstop fi lter, 488, 520
ideal discrete-time fi lters, 520
ideal fi lters, 481, 487–492

discrete-time, 519–525
frequency responses, 488–489
impulse and frequency responses of, 520
as noncausal, 490

ideal highpass fi lter, 488, 520
ideal interpolation, 432–433
ideal lowpass fi lter, 487, 488, 520
ideal operational amplifi er, 509
ideal-lowpass-fi lter impulse response, 536
ideal-operational-amplifi er formula, 597
IIR fi lter design, 679–700
IIR fi lters, 679
image-processing techniques, application of, 8
images, 7–8, 521–524
impedance, 505–506, 587
impinvar command, in MATLAB, 

684–685, 685
impulse invariance, 653
impulse invariant design, 654
impulse modulation, 426
impulse response(s), 159–163, 168, 176, 177, 

181–183
of any discrete-time system, 526
of continuous-time systems, 160–163
of discrete-time and RC lowpass fi lters, 527
of a distortionless system, 488, 519
exercises, 201–205
of a fi lter, 519
of ideal fi lters, 489, 490, 521–522
of an LTI system, 168
for the moving-average fi lter, 534
of an RC lowpass fi lter, 171, 498

of the RLC bandpass fi lter, 508–509
of a system, 183–184, 196
at three outputs, 530
time delay in, 538
truncating ideal, 710–711
of a zero-order hold, 434

impulse sample, 680
impulse sampling, 426

exercises, 462–464
interpolation and, 432

impulse train, 32
impulse-invariant design, 680–684

exercise, 462–464
MATLAB’s version of, 686

impulse-invariant method, digital bandpass fi lter 
design, 684–686

impulses, graphical representations of, 30
indefi nite integral, 48
independent variable, 34
inductor current, 727
inductors, equations for, 505
infi nite energy, 57, 58
infi nite-duration impulse response. 

See also IIR fi lters
infi nite-duration impulse response (IIR), 679
infi nitely many samples, availability of, 433
information, 15
inhomogeneous system, 126
initial value theorem, 392
inner product, of complex sinusoids, 221
in-phase part, 439
input signals, 1, 114
inputs, 1
instability

caused by feedback, 598–602
in forward transfer function, 615
of a system, 591

instantaneous frequency, 568
instrumentation system, in an industrial 

process, 486
integer multiple, of the fundamental frequency, 

441
integrals

of even and odd functions, 53
exercises, 65–66
of functions, 48

integration, 47–50
integration property, 263, 571
integrators, 119, 120, 499, 510
interconnecting systems, control-system toolbox 

and, 616–617
interference, 16
interpolation, 88, 432–435, 455, 457–459

exercises, 466–467
intrinsic functions, in MATLAB, 21
invariant functions, 49
inverse CTFT, 249–250, 453
inverse DFT, 293–294

approximating the inverse DTFT, 317
defi ned, 315, 316
of a periodic function, 448

inverse DTFT
exact and approximate, 317

MATLAB program fi nding, 318–319
of a periodically repeated rectangle, 314
of two periodic shifted rectangles, 310
using the DFT, 316–317

inverse Fourier transform, 334
inverse Fourier transform integral, 249–250
inverse Laplace transform, 337, 342–343, 618

using partial-fraction expansion, 344–345, 
347, 348–350

inverse unilateral Laplace transform, 357
inverse z transform, 386–387, 391–392, 408, 409, 

645, 649
inverse z-transform methods, 393–398
invertibility, 137–138
invertible system, 137
inverting amplifi er, 509

K
Kaiser window function, 707, 708
kaiser window function, in MATLAB, 715
Kirchhoff’s voltage law, 123
Kronecker delta function, 84

L
Laplace, Pierre Simon, 332, 586
Laplace transform, 179, 586

analysis of dynamic behavior of 
continuous-time systems, 641

counterpart to, 382
development of, 332–335
exercises, 372
existence of, 337
generalizing CTFT, 383
making Fourier transform more directly 

compatible with, 244
of a noncausal exponential signal, 342–343
properties, 354–356
of time-scaled rectangular pulses, 355

Laplace transform pairs, 334, 339–343, 782–783
Laplace-transform-z-transform relationship, 

exercise, 665–666
laser, 603, 604–605
lcm function, in MATLAB, 55
leakage

minimizing, 447
reducing, 448

least common multiple (LCM), 54
left-sided signal, 339, 387, 388
Leibniz’s formula, 133
L’Hôpital’s rule, 162, 225, 301
light oscillation, 604–605
light waves, Doppler shift with, 41
linear, time-invariant system, 129–130
linear algebra theory, 741
linear system, 129
linear system dynamics, 360
linearity, 129, 166
linearity property, 231, 251, 257, 299, 314, 354, 

392, 394, 399
linearizing, a system, 132
local oscillator, 564
log-amplifi ed signal, 519
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logarithmic graphs, 495
exercises, 540

logarithmic scale, uniform spacing on, 486
log-magnitude graph, 495
loop transfer function, 594
loop transmission, 594
lowpass Butterworth fi lter

converting to a highpass, 672
maximally fl at, 671
transforming into a bandpass fi lter, 673
transforming into a bandstop fi lter, 674

lowpass discrete-time fi lter, 577
lowpass fi lter, 123, 367, 483, 491, 492 504–506, 

510–511. See also causal lowpass fi lter
lowpass fi lter design, 693
LTI discrete-time system, 148
LTI systems, 129

excited by sinusoids, 216
frequency response of a cascade of, 256
impulse responses of, 331
response of, 352–353
response to a complex-exponential 

excitation, 334
system and output equations of, 729
testing for causality, 134

M
magnitude Bode diagrams, 495, 498, 502
magnitude spectrum, of a general bandpass 

signal, 436
magnitude-frequency-response Bode diagram, 495
marginal stability, 591, 592, 593
marginally stable mode, LTI system in, 603
matched-z transform, 694, 695–696
matched-z transform and direct substitution fi lter 

design, exercise, 720–721
mathematical functions, describing signals, 19, 35
mathematical model, 9
mathematical relations, useful, 761–763
mathematical voltage-current relations, 123
MATLAB

arguments, 26
bartlett window function, 715
bilinear command, 700–701
blackman window function, 715
bode command, 366
boxcar (rectangular) window function, 715
buttap command, 674–675
butter function, 715
chebwin (Chebyshev) window function, 

715
cheby1 function, 715
cheby2 function, 715
comment lines, 25
computing convolution sum, 192–193
control toolbox, 370–372
conv command, 192
conv function, 193–194
convD function, 534–536
creating functions in, 25
cumsum function, 49, 94
design tools, 674–675, 715–716

designing analog Butterworth fi lters, 671
diff function, 41–42, 85
dirac function, 31
diric function, 301–302
eig command, 744–745
ellip function, 715
exponentials and sinusoids in, 21
fft function, 235, 303
fftshift command, 261
fftshift function, 237
fi lter function, 715
fi ltfi lt function, 715
fi nding inverse DTFT, 318–319
fi rpm command, 714–715
freqresp function, 617
freqz function, 716
function for discrete-time impulses, 84
gcd function, 56
graphic function scaling and shifting, 45–46
graphing function combinations, 35–36
hamming window function, 715
hanning (von Hann) window 

function, 715
heaviside intrinsic function, 25
impinvar command, 684–685, 685
int function, 48
intrinsic functions, 21
invoking a function, 34
kaiser window function, 715
lcm function, 56
m fi le for the ramp function, 27
minreal command, 617
name, 25
NaN constant, 25
numerical integration functions in, 49
pzmap command, 366, 617
residue function, 351–352
rlocus command, 617
sign function, 24
simulating a discrete-time system, 11
stem command, 79
system analysis, 615–617
system objects, 370–372, 404–405, 615
system-object commands, 675–676
tf (transfer function) command, 370–371
tfdata command, 371
tools for state-space analysis, 753
transformation of normalized fi lters, 674
triang window function, 715
upfi rdn function, 716
use of, 18
zpk command, 370
zpkdata command, 371

matrix transfer function, 738
maximally fl at Butterworth fi lter, 671
McClellan, James H., 713
McLaurin series, 28
measurement instruments, 115
mechanical systems, 9

modeling, 115–117, 588–589
state-space analysis of, 735–738

memory, 134–135
minimum error, of Fourier-series partial sums, 

228–230
minimum sampling rate, reducing, 435
minreal command, in MATLAB, 617
modifi ed CTFS harmonic functions, 242

for rectangular-wave signals, 243
modulated carrier, 562
modulation, 561, 576
modulation index, 564
moving-average digital fi lter, 189–190
moving-average fi lter, 191, 532–535
multipath distortion, 585
multiple bandstop fi lter, 533
multiplication-convolution duality, 311
multiplication-convolution duality property, 230, 

231, 251, 252, 299, 449

N
name, in MATLAB, 25
narrowband FM, 570
narrowband PM, 570
narrow-bandpass-signal spectrum, 435
natural radian frequency, 139
natural response, 618
natural systems, 113
negative amplitude-scaling factor, 37
negative feedback, 593
negative sine function, signal shape of, 44
noise, 1, 4, 16, 17, 492–493
noise removal, 492–493
nonadditive system, 128–129
noncausal fi lter, 150
noncausal functions, 783, 785
noncausal lowpass fi lter, 525
noncausal signal-processing systems, 150
noninverting amplifi er, 509
noninverting amplifi er transfer function, 509
nonlinear systems, 132, 135
normalized analog fi lter designs, 677
normalized Butterworth fi lters, 671–673
normalized fi lters, MATLAB commands for 

transformation of, 674
null bandwidth, 489
numerical computation

of discrete-time Fourier transform, 315–320
of Fourier series, 213–219
of Fourier transform, 259–266

numerical convolution, 191
numerical CTFT, exercise, 281
numerical integration, cumsum function, 49
numerical integration functions, in MATLAB, 49
Nyquist, Harry, 427
Nyquist frequency, 428
Nyquist rates, 427

exercise, 465
of signals, 430–431
sinusoids sampled above, below and 

at, 438–440

O
octave intervals, fi lters spaced at, 486
odd functions, 49, 53
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Ohm’s law, 135
one-fi nite-pole, one-fi nite-zero highpass fi lter, 367
one-fi nite-pole lowpass fi lter, 365
one-pole system, unit-sequence response, 646
one-real-pole system, 497
one-real-zero system, 498
one-sided Laplace transform, 357–358
open left half-plane (LHP), 591
open loop system, 120, 594
operational amplifi ers, 509–510

with feedback, 595–597
gain, linear and nonlinear, 597
saturation in real, 136

optimal FIR fi lter design, 713–714
order, of a system, 727
orthogonal basis vectors, 295–296
orthogonal complex sinusoids, 220
orthogonality

exercises, 267, 323–324
harmonic function and, 220–222

oscillator feedback system, 603
output equations, 727, 728, 729
output signals, 1
outputs, 1
overdamped case, 621
overmodulation, 566
oversampled signal, 427

P
parallel, cascade and feedback connections, 

exercises, 629–632, 663
parallel connections

of systems, 593, 643
of two systems, 176, 195

parallel realization, 626, 661
parallel response, ADC, 421
parallel RLC circuit, 727
parentheses, indicating a continuous-time 

function, 79
Parks, Thomas W., 713
Parks-McClellan design, of a digital bandpass 

fi lter, 714
Parks-McClellan optimal equiripple design, 713
Parseval des Chênes, Marc-Antoine, 256
Parseval’s theorem, 231, 251, 256, 270, 299, 314
partial-fraction expansion, 344–353, 394
passband, 482

fi lter distortionless within, 488
ripple, 677, 705, 706
signal transmission, 562

passive fi lters, 504–507
pendulum, analyzing, 132–133
period

of a function, 53
in a periodic signal, 241

periodic convolution, 230, 453
periodic even signal, 229
periodic excitation, response of a continuous-time 

system and, 232–233
periodic functions, 54, 98–99
periodic impulse, 32
periodic odd function, 230
periodic signals, 53–55, 98–99, 134

average signal power calculation, 58

with discontinuities, 226–227
exercises, 68–69, 107–108
as power signals, 58

periodically repeated sinc function, 301
periodic-impulse sampling, 455–457
periodicity, of the DTFT, 312
periodic-repetition relationship, sampling 

and, 448–452
phase, 253, 255
phase Bode diagram, 496, 498, 502
phase detector, 636
phase modulation (PM), 568
phase-locked loop, 564
photographs, 523
physical systems, as fi lters, 508
picket fencing, 450
pitch, 15
pixels, 523
plant, 593
PM (phase modulation), 570
point spread function, 526
pole, of a Laplace transform, 341
pole-zero diagrams, 341

of an analog fi lter, 685
exercises, 377, 416
frequency response and, 362–368, 401–403
of system transfer functions, 402
using the z transform, 647–648

pole-zero plots, 397, 403–404
power of signals, fi nding, 59
power signals, 59, 60
power spectral density, 15–16
power spectrum, 486, 492
practical fi lters, 504–516, 526–537
practical interpolation, 433
propagation delay, in ordinary conversation, 38
prototype feedback system, 603
public address system

block diagram of, 600
feedback and, 598–602
mathematical model, 600
pole-zero diagram of, 602

pulse amplitude modulation, exercises, 461
pure sinusoids, 407
pzmap command, in MATLAB, 366, 617

Q
quadrature part, 439
qualitative concepts, 423–424
quantization, 422
quantized response, 422
quantizing signals, 4–5

R
radian frequency, 519
ramp excitation, steady-state responses to, 614
ramp function, 26
random signals, 4, 6, 530–532
range, of a function, 20
rate, 427
rational function, 178
RC circuit, frequency response of, 500–501
RC fi lter, as an anti-aliasing fi lter, 430–431
RC lowpass fi lter, 130, 165, 498, 504

real exponential functions, 21
real systems, eigenfunctions of, 130
realization, 624, 661–662
real-time fi ltering, of time signals, 524–525
real-valued sines and cosines, replacing, 220–221
real-valued sinusoids, 21
receiver, 1, 562
rectangular pulses, convolution of, 172
rectangular wave, CTFS harmonic function of, 224
rectangular-rule integration, 166
recursion, 395, 747–748
red shift, 41
regenerative traveling wave amplifi er (RTWA), 

604, 635
region of convergence (ROC), 338, 339, 341–342, 

357, 388
Remez, Evgeny Yakovlevich, 713
Remez exchange algorithm, 713
residue function, of MATLAB, 351–352
residues, vector of, 351
resistive voltage divider, 135
resistors, 123, 505, 512
resonant frequency, 507
response harmonic function, 233
responses, 1
result, in MATLAB, 25
reverberation, 599
RF signal transmission, 562
right half-plane (RHP), 591
right-sided signal, 338–339, 387
ripple effect, reducing in the frequency 

domain, 705
RLC circuit, 138, 588
rlocus command, in MATLAB, 617
ROC (region of convergence), 338, 339, 341–342, 

357, 388
rolling friction, 592
root locus

for discrete-time feedback system, 644
drawing for systems, 610–612
exercises, 631, 664
rules for plotting, 609

root-locus method, 606–611
root-locus plot, 607
RTWA (regenerative traveling wave amplifi er), 

604, 635
running integral, 48–49

S
Sa function, 225
Sallen-Key bandpass fi lter, 514–515
sample-and-hold (S/H), 421
sampled sinc function, 250
sampled-data systems, 655–661

designing, 659–660
exercise, 665

sampling, 77–78, 420
at a discontinuity, 683
exercises, 461
a signal, 3

sampling methods, 421–423
sampling period or interval, 78
sampling property, of the impulse, 31–32
sampling rate, 423–424, 435, 437–438, 696–697
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sampling signals, 4–5
sampling theorem, 423–427
satellite communication system, propagation 

delay, 38
scaled aliases, of an analog fi lter’s frequency 

response, 680, 681, 682
scaling, 36–45, 87

exercises, 61–64, 104
scaling property, 31, 174, 258
script fi le, 51
s-domain differentiation, 354, 355
s-domain shifting property, 355
second-order complex pole pair, 503
second-order complex zero pair, 504
second-order subsystem, standard-form, 625
second-order systems, 138–139, 646
sensor, 593
sequential-state machines, 79
serial response, ADC, 421
Shannon, Claude, 424
shifting, 37–46, 87

exercises, 61–64, 104
shifting property, 31
side lobes, 705, 707
sidebands, 561
signal energy, 56–57

exercises, 70, 108
fi nding signal power using MATLAB, 

100–102
fi nding using MATLAB, 59–60
per unit cyclic frequency, 257
of a signal, 99–100
of a sinc signal, 313–314

signal functions, exercises, 60–61
signal power, 57–58, 100
signal processing, using the DFT, 444–454
signal reconstruction, 434, 435
signal transmission, types of, 562
signals, 1

approximated by constants, 217
approximated by periodic functions, 54
examples of, 19
fi nding Nyquist rates of, 430–431
response to standard exercise, 632
restoring original, 595
spatially separating, 560
switching on or off, 23
system responses to standard, 617–623, 

645–651
types of, 3–8

signal-to-noise ratio (SNR), 16, 17, 493
signum function, 24–25, 85
simultaneous shifting and scaling, 43–44
sinc function

carriers modulated by, 572
defi nition of, 225
similarity to Dirichlet function, 301

sinc signal, signal energy of, 313–314
sines, 52, 439
sine-wave phase, of a carrier, 569
single-input, single-output system, 1, 119
single-negative-real-zero subsystem, 498
single-sideband suppressed-carrier (SSBSC) 

modulation, 566–567

singularity functions, 23, 33, 84–87
sinusoid response, 621–622
sinusoidal signal, signal power of, 58
sinusoids, 22, 80–82

adding to constants, 217
in discrete-time signal and system 

analysis, 80
multiplied by unit sequences, 408
real and complex, 216
responses to, 215
sampling, 438–440
signal as burst of, 44
system responses to, 407–408

smoothing fi lter, 533
sound, 14, 215
space, functions of, 7
space shifting, 38
spatial dimension, independent variable as, 38
spatial variables, 8
spectra, of PM and FM signals, 570–571
spectrum analyzer, 492
s-plane region, mapping, 698, 699
spontaneous emission, 604
square brackets [ ]

indicating a discrete-time function, 79
in MATLAB, 85

square wave, representing, 130
square-wave phase, of a carrier, 569
ss function, 745, 753
ss2ss function, 745, 753
SSBSC (single-sideband suppressed-carrier) 

modulation, 566–567
ssdata function, 753
stability, 133, 176

exercises, 204–205, 208, 628, 663
feedback effects on, 594–595
impulse response and, 195
of a system, 592
types of, 591

stable analog fi lter, becoming unstable digital 
fi lter, 698

stable feedback system, 594
stable oscillation, 602–605
stable unity-gain feedback system, 613
standard realizations, of systems, 624–626
standard signals, response to exercises, 663–664
start bit, 5
state equations, diagonalizing using 

MATLAB, 744
state space, 727
state transition matrix, 730, 748
state variables, 726, 740, 741
state vector, 727
state-space analysis

characteristics of, 727
MATLAB tools for, 745
of a mechanical system, 735–738
of a two-input, two-output system, 732–735
using state variables, 726

static nonlinear components, 135
static nonlinearity, 135–136
static system, 135
statically nonlinear system, 149–150
steady-state error, 613–614

steady-state responses, to step excitation, 614
stem command, in MATLAB, 79
step response, 176, 177
step-invariant design, 679, 686
step-invariant method, 686–690
stop bits, 5
stopbands, 482
straight-line signal reconstruction, 434
strength, of an impulse, 30
strictly bandlimited signals, 427, 489
subfunctions, 51
sum property, of the convolution sum, 191
summing junction, 11, 119–120, 140
superposition

applying to fi nd approximate system 
response, 166

applying to linear systems, 129
fi nding response of a linear system, 131
fi nding response to a square wave, 130
for LTI systems, 140

suppressed carrier, 562
symbolic integration, int function, 48
symmetric impulse response, 709
synchronous demodulation, 564
synthetic division, 393
system analysis

using CTFT, 263–267
using MATLAB, 615–617

system and output equations, 727–737, 746–750
system connections, 176–177, 195, 593–613, 

643–644
system discretization, signal sampling and, 654
system equations, 728–729
system modeling, 114–116, 117, 140–149

exercises, 151–152
system objects, in MATLAB, 369–371, 

404–405, 615
system properties, 122–135, 147–150

exercises, 153–155
system realization, 336

exercises, 633–634, 665
system representations, 586–589
system response

exercises, 271, 282
to standard signals, 617–624, 645–651
to system excitation, 186
using DTFT and DFT, 318–320

system stability, 590–592, 642–643
system-object commands, in MATLAB, 675–676
systems, 1

defi ning, 113
examples of, 8–14
standard realizations of, 624–626

T
tf (transfer function) command, in MATLAB, 

369–370, 616
tfdata command, in MATLAB, 371
thermocouples, 723
thermostat, 12, 114
thermowell, 723
thought experiment, 599–600
time compression, for discrete-time functions, 88–89
time constant, 619
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time derivative properties, 358
time differentiation property, 231, 251, 354
time expansion, 88–89
time expansion property, 392
time expression, 254
time index, 81
time integration property, 231, 251, 354, 

356–357, 358
time invariance, 127–128
time invariant system, 127
time limited signals, 57, 431–432
time multiplexing, 560
time reversal property, 231, 299, 392
time reversed function, 39
time scaling, 39–43, 87–91, 310
time scaling property, 231, 251, 258, 299, 354, 

358, 359
time shifting, 37–39, 42–43, 87
time shifting property, 231, 299, 392
time signals, 7
time translation, 37
time variant system, 127, 148
time-domain block diagram, of a system, 642
time-domain methods, 679–683
time-domain response, of a one-pole system, 646
time-domain system analysis, 159–198
time-limited signals, 338, 386

exercises, 465–466
time-scaling property, 254, 311
time-shifted signal, 487
time-shifted unit-step function, 38
time-shifting property, 251, 253–254, 258, 259, 

263, 300, 355, 358, 394, 395, 398
tonal sound, 15
tone, 15
Toricelli’s equation, 118, 141, 142, 143
total area property, 251
total harmonic distortion (THD), 238–240
total system response, 406–407
trajectory, 727
transfer function, 177–178, 335–336

common kind of, 362
for discrete-time systems, 198, 384
frequency response and, 179, 200–201
using time-shifting property, 394–395

transfer functions, 738–740, 750
exercises, 627–629

transform method comparisons, 406–410
transformation, 6
transformations, 741, 750
transient response, 618
transmitted carrier, 564
transmitter, 1
travelling-wave light amplifi er, 604
triang window function, in MATLAB, 715
triangular pulses, convolution of, 173
trigonometric form, of the CTFS, 219
trigonometric Fourier series, 223
truncated ideal impulse response, 703–708
Tukey, John, 303
tuning, a radio receiver, 564
two-dimensional signal, images as, 521
two-fi nite pole system, 367
two-fi nite-pole lowpass fi lter, 368

two-input, two-output system, state-space analysis 
of, 732–735

two-input OR gate, in a digital logic 
system, 149–150

two-pole highpass fi lter, 512
two-pole system. See second-order system
two-sided Laplace transform, 357
two-stage active fi lter, frequency response of, 

510–511
type 0 system, 614
type 1 system, 614
type n system, 614
type-one Chebyshev bandstop fl lter, 677–678
type-one Chebyshev fi lter, 677
type-two Chebyshev fi lter, 677

U
unbounded response, 133–134
unbounded zero-state response, 147
uncertainty principle, of Fourier analysis, 255
undamped resonance, 368
underdamped case, 621
underdamped highpass fi lter, 368, 369
underdamped low pass fi lter, 368
underdamped system, 139
undersampled signal, 427
undersampling, ambiguity caused by, 439
uniform sampling, 78
unilateral Laplace transform, 356–361
unilateral Laplace transform integral, exercise, 375
unilateral Laplace-transform pairs, 359
unilateral z transform, 399–400
unilateral z-transform properties, exercises, 413
unit discrete-time periodic impulse or 

impulse train, 86
unit doublet, 33
unit function, 225
unit impulse, 29–30
unit pulse response, of an RC lowpass fi lter, 165
unit ramp function, 26–27
unit rectangle function, 33, 250, 258
unit rectangles, convolution of, 175
unit sequence, defi ned, 94
unit step, integral relationship with unit ramp, 27
unit triangle function, 175
unit triplet, 33
unit-area rectangular pulse, 28
unit-area triangular pulse, 29
unit-impulse function, 84–85
unit-pulse response, 165
unit-ramp function, 86–87
unit-sample function. See unit-impulse function
unit-sequence function, 85–86
unit-sequence response

as accumulation of unit-impulse 
response, 196

impulse response and, 195–196
at three outputs, 531
using the z transform, 645–646, 647–648
in the z domain, 645

unit-sinc function, 224
unit-step function, 24–25, 29
unit-step response, 618–622

of a one-pole continuous-time system, 646

of an RC lowpass fi lter, 171
of simple systems, 618–621

unity-gain feedback systems
tracking errors exercise, 632–633
tracking errors in, 612–615

unstable digital fi lter, avoiding, 698
unstable feedback system, 593
unstable system, 593
upfi rdn function, in MATLAB, 716
upsampling, 457

V
value, returned by a function, 20
value sampling, compared to area sampling, 659
vector of state variables, 729
voiced sound, 15
voltage divider, RC lowpass fi lter as, 505
voltage gain, of an operational amplifi er, 598
voltage response, determinants of, 124
voltage signal, ASCII-encoded, 5
voltage-current relationships, for resistors, 

capacitors and inductors, 505
von Hann or Hanning window function, 705, 707

W
water level

differential equations for, 118
versus time for volumetric infl ows, 10

wavelength, of light in lasers, 604
weight, of an impulse, 30
wideband FM spectrum, with cosine modulation, 

575–576
window function, 446–447
window shapes, 705
windowing, 447
windows, exercise, 470–471

Z
z transform, 382–408

analysis of dynamic behavior of 
discrete-time systems, 641

existence of, 386–389
as a generalization of DTFT, 383
of a noncausal signal, 389–390
of the state transition matrix, 749
of a unit-sequence response, 646–647

z transform pairs, 389–392, 784–785
z-domain block diagram, of a system, 642
z-domain differentiation property, 392
z-domain response, to a unit-sequence, 646
zero, of a Laplace transform, 341
zero padding, 315
zero-input response, 117, 144–145
zero-order hold, 434
zero-state response, 117, 125, 534

of a discrete-time system, 750–753
to a unit-sequence excitation, 148

zpk command, in MATLAB, 370, 615
zpkdata command, in MATLAB, 371
z-transform pair, 383
z-transform properties, 392
z-transform-Laplace-transform relationships, 

651–653
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Errata for Second Edition of Signals and 
Systems  (August 2011) 

 
Chapter 2, Exercise 10 
 
The answer figures should be 

 
 
Chapter 5, Exercise 1 
 
In the answers insert a comma between e−5t u t( ) and − 3 / 4( )e−3t /2 u t( )+ 1 / 2( )δ t( ). 
 
Chapter 7, Page 308, Table 7.5 
 
On the last two lines the letter above the double-headed arrow should be an "F" instead of 
a "Z". 
 
Chapter 7, Exercise 11 
 
The answer figures should be 

or    
 



or     
 
 
Chapter 8, Exercise 12(a) 
 
The answers should be  
 

Answers: 1
s +1

, σ > −1 , 1
s

, σ > 0   , s − 2
s − 2( )2 + 200π( )2

, σ > 2 ,  

e−4 s

s
, σ > 0  

 
 
instead of  
 

Answers: 1
s +1

, σ > 1 , 1
s

, σ > 0   , s − 2
s − 2( )2 + 200π( )2

, σ > 2 ,  

e−4 s

s
, σ > 0  

(Add one minus sign.) 
 
Chapter 8, Exercise 26 
 
Delete the line "Answers:" and the four graphics below it. 
 
Chapter 9, Exercise 3 
 
Answers should be 
 

Answers: 
z−4

z −1
, z > 1 ; 

z3

z −1
, z > 1   ; 

9
4

z3

z − 2 / 3
, z > 2 / 3

 
 
 
 

Chapter 10, Exercise 2 
 
Change  

x p t( )= 1000x t( )× 0.001δ0.001 t( )  ∗ rect 104 t( ) 
to 



x p t( )= x t( )δ0.001 t( )  ∗ rect 104 t( ) 
 
Chapter 10, Exercise 26 
 
Change  

−N / 2 < k < N / 2( )−1 
to 

−N / 2 ≤ k < N / 2  
 
Chapter 11, Page 510, Last set of equations before Example 11.3 
 
Change Rs  to Ri  (two occurrences).  Also, down two text lines, change −Rf / Rs  
to−Rf / Ri . 
 
Chapter 15, Exercise 18, Second Line 
 
Insert a period after "these transfer functions" to terminate that sentence. 
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