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Part II: Biostatistics 

1. Statistical variable 

The unit that is the basis of the study is called the statistical unit (= smallest sampling unit, e.g. 

animal, herd, region, . . .). A property of the given statistical unit that is the subject of the study is 

called a (statistical) variable. Variables are things that we measure, control, or manipulate in 

research. They differ in many respects, most notably in the role they are given in our research 

and in the type of measures that can be applied to them. It is an attribute that describes a person, 

place, thing, or idea. The value of the variable can "vary" from one entity to another. The 

following classification of variables is given solely for sake of completeness, because the 

distinction between the different categories is in reality not so unambiguous. Also, whether or 

not continuous variables exist in real life is more a matter of philosophy than hard science. 

1.1. Quantitative vs. Qualitative Variables 

1.1.1. Quantitative variables (measurement variables) 

A quantitative variable is a variable that can be expressed numerically. Its 'level' can both be 

measured and expressed by a quantity, which we call the value of the variable. The different 

states of the variable can be expressed in a numerically ordered fashion. Quantitative variables 

can be further classified as discrete or continuous. If a variable can take on any value between 

its minimum value and its maximum value, it is called a continuous variable; otherwise, it is 

called a discrete/discontinuous variable. 

1.1.1.1. Continuous variables 

Continuous variables can (at least theoretically) take an infinite number of values between any 

two fixed points: e.g. there are (in theory) an infinite number of possible milk yields between 800 

kg and 801 kg. In practice, the precision of the measurement device defines the number of 

possible values and thus the extent of 'continuousness' of the variable. Despite this limitation, a 

number of variables in animal science and health are considered continuous (e.g. volumes, 

weights, temperatures, time etc). 

1.1.1.2. Discontinuous variables (discrete variables) 

These are variables that can take only a limited number of fixed values, with no intermediate 

values possible. E.g. the number of ticks on an animal is limited to whole numbers. The number 

of ticks on an animal could be any integer value between 0 and plus infinity. However, it could 

not be any number between 0 and plus infinity. We could not, for example, get 2.3 ticks. 

Note: quantitative variables can also be classified as interval and ratio variable based on their 

measurement scale. The meanings of interval and ratio variables are given below.    

1.1.2. Qualitative variables  

Qualitative variables take on values that are names or labels. Qualitative variables do not have 

the continuous nature that quantitative variables have. For example, gender is a qualitative 

variable. The two measurements on this variable, female and male are different in a qualitative 

way. Using a 0 and a 1 instead of names doesn’t change this fact. Another example of a 

qualitative variable is disease status (diseased or disease free using 0 for not disease and 1 for 
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diseased instead of names doesn’t change this fact). Qualitative variables could be nominal or 

ordinal. Unlike ordinal variables nominal variables, assuming no ranking or ordering. In the 

nominal scale, numbers are used simply as names and have no real quantitative value. When the 

nominal variable has only two states (e.g. diseased or disease-free, female or male, dead or alive) 

it is referred to as a binomial variable. When it can assume more than two states it is called a 

multinomial variable. Numerals on sports uniforms are an example of nominal variable. Thus, 9 

is different from 7, but that is all you can say. The person represented by 9 is not “more than” the 

person represented by 7, and certainly it would be meaningless to calculate a mean from the two 

scores. On a nominal scale, the numbers mean only that the categories are different. In fact, for a 

nominal scale variable, the numbers could be assigned to categories at random. 

Some qualitative variables have the characteristic of order: e.g. resistance to a disease is 

expressed as low, medium and high and they are called ordinal variables. These three states can 

be recorded as 1, 2 and 3. However, this does not imply that medium animals are twice as 

resistant as low animals or that the difference (or ratio) between high and medium animals is the 

same as between medium and low animals. Only an order or rank is assumed. However, when 

these variables are used in risk analysis or risk factor analysis contexts, special care must be paid 

to be sure that ordering on its own suffices to do the analysis or whether limiting values between 

different states are required to allow comparison.  

In the ordinal scale, the object with the number 3 has less or more of something than the object 

with the number 5. Finish places in a race are an example of an ordinal scale. The runners finish 

in rank order, with 1 assigned to the winner, 2 to the runner-up, and so on. Here, 1 means less 

time than 2. 

1.2. Explanatory vs response variables  
The purpose of statistical analyses is to quantify the probability that 2 variables, namely the 

response and the explanatory variables, are associated. The response or dependant variable is the 

variable that is considered to vary in function of variations of the explanatory variables. 

Explanatory variables also referred to as independent variables or predictors are the variables 

that are expected to have an effect on the response, whatever the effect of other variables. 

Explanatory variables can either be continuous or discrete. Classically, discrete variables with 

more than 2 categories (n categories) are transformed in (n-1) dummy binary variables (0 or 1). 

Explanatory variable: variable controlled by the researcher; changes in this variable may 

produce changes in the dependent variable. It is also called predictor, independent, covariate, 

factor variable    

Response variable: the observed variable that is expected to change as a result of changes in the 

independent variable in an experiment. It is also called outcome, dependent,  

A key distinction between dependent/independent is whether a variable is being predicted by the 

remaining variables, or whether it is being used to make the prediction. The variable singled out 

to be predicted from the remaining variables is called dependent variable and variables used to 

make the prediction are called independent variables.  
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2. Hypothesis testing 
A statistical hypothesis is an assumption about a population parameter. This assumption may or 

may not be true. Hypothesis testing refers to the formal procedures used by statisticians to 

accept or reject statistical hypotheses. In statistics, a result is called statistically significant if it 

has been predicted as unlikely to have occurred by chance alone, according to a pre-determined 

threshold probability, the significance level. These tests are used in determining what outcomes 

of a study would lead to a rejection of the null hypothesis for a pre-specified level of 

significance.  

There are two types of statistical hypotheses. 

Null hypothesis: the null hypothesis, denoted by H0, is usually the hypothesis that sample 

observations result purely from chance. Ho, is theory that has been put forward, either because it 

is believed to be true or because it is to be used as a basis for argument, but has not been proved. 

For example, in a clinical trial of a new drug, the null hypothesis might be that the new drug is 

no better, on average, than the current drug. We would write 

Ho: there is no difference between the two drugs on average. 

We give special consideration to the null hypothesis. This is due to the fact that the null 

hypothesis relates to the statement being tested, whereas the alternative hypothesis relates to the 

statement to be accepted if / when the null is rejected. The final conclusion once the test has been 

carried out is always given in terms of the null hypothesis. We either "Reject H0 in favour of H1" 

or "Do not reject H0"; we never conclude "Reject H1", or even "Accept H1". If we conclude "Do 

not reject H0", this does not necessarily mean that the null hypothesis is true; it only suggests that 

there is not sufficient evidence against H0 in favour of H1. Rejecting the null hypothesis then, 

suggests that the alternative hypothesis may be true. 

Alternative hypothesis: the alternative hypothesis, denoted by H1 or Ha, is the hypothesis that 

sample observations are influenced by some non-random cause. For example, in a clinical trial of 

a new drug, the alternative hypothesis might be that the new drug has a different effect, on 

average, compared to that of the current drug. We would write 

H1: the two drugs have different effects, on average. 

The alternative hypothesis might also be that the new drug is better, on average, than the current 

drug. In this case we would write 

H1: the new drug is better than the current drug, on average. 

 

Hypothesis testing consists of four steps.  

 State the hypotheses: this involves stating the null and alternative hypotheses. The 

hypotheses are stated in such a way that they are mutually exclusive. That is, if one is 

true, the other must be false.  

 Formulate an analysis plan: the analysis plan describes how to use sample data to 

evaluate the null hypothesis. The evaluation often focuses around a single test statistic.  

 Analyse sample data: find the value of the test statistic (mean score, proportion, t-score, 

z-score, etc.) described in the analysis plan.  

 Interpret results: apply the decision rule described in the analysis plan. If the value of the 

test statistic is unlikely, based on the null hypothesis, reject the null hypothesis. 

 

http://stattrek.com/Help/Glossary.aspx?Target=Parameter
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Luck
http://en.wikipedia.org/wiki/Null_hypothesis
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The analysis plan includes decision rules for rejecting the null hypothesis. The decision rules 

could be described in two ways - with reference to a P-value or with reference to a region of 

acceptance. 

 P-value: the strength of evidence in support of a null hypothesis is measured by the P-

value. Suppose the test statistic is equal to S. The P-value is the probability of observing 

a test statistic as extreme as S, assuming the null hypothesis is true. If the P-value is less 

than the significance level, we reject the null hypothesis. 

 Region of acceptance: the region of acceptance is a range of values for a test statistics 

for which the null hypothesis is not rejected. The region of acceptance is defined so that 

the chance of making a Type I error is equal to the significance level. The set of values 

outside the region of acceptance is called the region of rejection. If the test statistic falls 

within the region of rejection, the null hypothesis is rejected. In such cases, we say that 

the hypothesis has been rejected at α level of significance.  

These approaches are equivalent. Some statistics texts use the P-value approach; others use the 

region of acceptance approach. 

 

Two types of errors can result from a hypothesis test. 

Type I error: type I error is made when the null hypothesis is incorrectly rejected, or when we 

conclude that the outcomes are different when in fact they are not. The risk of falsely concluding 

that the null hypothesis is incorrect is the risk of committing a type I error. This error is 

traditionally represented by α or by p (a value of 5% (0.05) is accepted as the maximum risk to 

incorrectly reject the null hypothesis).  

Type II error: type II error occurs when the researcher fails to reject a null hypothesis that is 

false. The probability of committing a Type II error is called Beta, and is often denoted by β. The 

probability of not committing a Type II error is called the Power of the test. A type II error can 

arise in many situations but the most important cause is a sample size that is too low. Beta 

depends upon sample size and it gets smaller as the sample size gets larger. 

Summary of statistical errors 

Table 4 shows the relationship between the reality, the hypotheses, and the conclusions of the 

statistical test and the possible errors. 

Decision 

made on the 

basis of 

sample data 

 True situation in the population 

H0 correct  H0 incorrect  

Reject H0 1. Type I error(α) 3. Correct decision (1- β) 

Fail to reject (Retain) 

H0 

2. Correct decision (1- 

α) 

4. Type II error (β) 
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3. Data analysis and interpretation  

3.1. Basic statistical methods  
The basic principle of statistical testing is to compare two or more averages, taking into account 

the variances and the numbers of observations of the various groups. Statistical testing usually 

makes a distinction between independent/explanatory/predictor and dependent/response/outcome 

variables. Independent variables are those variables that distinguish the different groups 

(characteristics of individuals or experimental design). Dependent variables are usually the 

variables of interest in the observational study or in experiment (production, mortality, parasite 

burden, etc). 

Animal science and animal health studies often deal with: 

- Continuous data (e.g.: milk production) 

- Binary data (e.g.: diseased or not) 

- Count data (e.g.: tick load on animals) 

- Survival data (e.g.: disease-free survival time) 

In research we often wishes to find out if there are differences between some groups i.e. prove a 

hypothesis. To test our hypothesis we perform various tests like the t-test, Chi-Square test, 

Analysis of Variance (ANOVA) and Regression analysis to mention a few. In the sections below 

we will discuss the statistical tests which are often used in veterinary and animal sciences.   

3.1.1. Analysis of continuous data  

3.1.1.1. The t-test  

3.1.1.1.1. Independent sample t-test  

The independent sample t-test assesses whether the means of two groups are statistically 

different from each other. This analysis is appropriate whenever you want to compare the means 

of two groups/independent sample. It is methods for assessing the association of a categorical 

predictor (binary predictor) variable with a continuous outcome/response variable. While using t-

test we assume that the population from which sample has been taken is normal or approximately 

normal, sample is a random sample, observations are independent. 

Statistical Analysis of the t-test 

The formula for the t-test is a ratio. The top part of the ratio is just the difference between the 

two means or averages. The bottom part is a measure of the variability or dispersion of the 

scores. The top part of the formula is easy to compute -- just find the difference between the 

means. The bottom part is called the standard error of the difference. To compute it, we take 

the variance for each group and divide it by the number of sample in that group. We add these 

two values and then take their square root. The specific formula is given below 

𝑆𝐸(𝑋𝑇
̅̅̅̅ − 𝑋𝐶

̅̅̅̅ ) =  √
𝑣𝑎𝑟𝑇

𝑛𝑇
+

𝑣𝑎𝑟𝐶

𝑛𝐶
 

Remember, that the variance is simply the square of the standard deviation. 

http://www.socialresearchmethods.net/kb/statdesc.htm#Dispersion
http://www.socialresearchmethods.net/kb/statdesc.htm#Dispersion
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The final formula for the t-test therefore becomes,  

𝑡 =  
𝑋𝑇
̅̅̅̅ − 𝑋𝐶

̅̅̅̅

√
𝑣𝑎𝑟𝑇

𝑛𝑇
+

𝑣𝑎𝑟𝐶

𝑛𝐶

 

The t-value will be positive if the first mean is larger than the second and negative if it is smaller. 

Once we compute the t-value we have to look it up in a table of significance to test whether the 

ratio is large enough to say that the difference between the groups is not likely to have been a 

chance finding. To test the significance, we need to set a risk level (called the alpha level). The 

alpha level is often set at 0.05. This means that five times out of a hundred we would find a 

statistically significant difference between the means even if there was none (i.e., by "chance").  

We also need to determine the degrees of freedom (df) for the test. In the t-test, the degree of 

freedom is the sum of the animals or individuals in both groups minus 2. Given the alpha level, 

the df, and the t-value, you can look the t-value up in a standard table of significance to 

determine whether the t-value is large enough to be significant. If the calculated value of ‘t’ is 

either equal to or exceeds the table value, we infer that the difference is significant, but if 

calculated value of t is less than the concerning table value of t, the difference is not treated as 

significant.  

Example 1 

An experiment was carried out to verify whether or not a dietary supplement had an effect on the 

milk production of dairy animals. The results obtained during the course of this experiment are 

shown in Table 1. Do these results suffice to allow us to conclude that the supplement increased 

the milk production? The null hypothesis is: the milk production obtained when fed the 

supplemented ration is equal to the milk production obtained when fed the basic ration.  
Animal id Non-supplemented Milk yield  Animal id Supplemented   Milk yield 

1 basic 735 31 Supplemented 847 

2 basic 674 32 Supplemented 406 

3 basic 844 33 Supplemented 1046 

4 basic 768 34 Supplemented 1424 

5 basic 750 35 Supplemented 883 

6 basic 851 36 Supplemented 751 

7 basic 960 37 Supplemented 925 

8 basic 793 38 Supplemented 1130 

9 basic 764 39 Supplemented 755 

10 basic 765 40 Supplemented 903 

11 basic 887 41 Supplemented 964 

12 basic 1009 42 Supplemented 919 

13 basic 877 43 Supplemented 1436 

14 basic 878 44 Supplemented 947 

15 basic 741 45 Supplemented 865 

16 basic 712 46 Supplemented 1040 

17 basic 763 47 Supplemented 1255 

18 basic 1174 48 Supplemented 1216 

19 basic 651 49 Supplemented 1047 

20 basic 786 50 Supplemented 929 

http://www.socialresearchmethods.net/kb/power.php
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21 basic 760 51 Supplemented 927 

22 basic 1043 52 Supplemented 1232 

23 basic 708 53 Supplemented 913 

24 basic 726 54 Supplemented 1139 

25 basic 923 55 Supplemented 1120 

26 basic 825 56 Supplemented 1072 

27 basic 843 57 Supplemented 954 

28 basic 586 58 Supplemented 700 

29 basic 875 59 Supplemented 959 

30 basic 670 60 Supplemented 1125 

Here our independent variable is the ration type (basic and supplement) and it has two levels and 

the response variable is milk yield and it is a continuous variable. T-test is appropriate to test this 

data. So, let’s use the independent sample t-test to test our hypothesis of no difference.  

In STATA t-test is computed using a command “ttest” 

 
Now let’s use the STATA output in example to discuss the t – value.   

We obtained a t value: t = 4.1018 and Pr(|T| > |t|) =0.0001 

Interpretation  

This t value is significant at the 0.0001 level, which means that we would get a value of t as high 

as 4.1018 or higher only one time out of a thousand by chance if the null hypothesis is true. So 

we reject the null hypothesis of no difference, accept the alternate hypothesis, and conclude that 

the animals who fed on supplement produced more milk than those who fed on basic ration. In 

other words the difference between the milk production when fed the supplemented ration and 

the milk production when fed the basic ration is greater than zero (in this case it is 182.93).  

3.1.1.1.2. Paired sample t-test  

A paired t-test is used to compare two population means where you have two samples in which 

observations in one sample can be paired with observations in the other sample. Examples 

include measurements taken at two time points on the same individuals, or on other naturally 

linked pairs, as in a clinical trial where one eye is treated and the other serves as a control. 

 Pr(T < t) = 0.9999         Pr(|T| > |t|) = 0.0001          Pr(T > t) = 0.0001

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

Ho: diff = 0                                     degrees of freedom =       58

    diff = mean(Suppleme) - mean(basic)                           t =   4.1018

                                                                              

    diff              182.9333    44.59882                 93.6591    272.2076

                                                                              

combined        60    902.8333    25.11244    194.5201    852.5835    953.0832

                                                                              

   basic        30    811.3667     22.7707    124.7202    764.7954     857.938

Suppleme        30       994.3    38.34775    210.0393      915.87     1072.73

                                                                              

   Group       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

                                                                              

Two-sample t test with equal variances

. ttest milkyield, by(ration)
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Another example could be a comparison of two different methods of measurement or two 

different treatments where the measurements/treatments are applied to the same subjects (e.g. 

blood pressure measurements using a stethoscope and a dynamap). In these cases, the two 

samples are not independent and failure to take account of the pairwise relationships wastes 

information and is potentially erroneous. 

The paired t-test procedure first computes the pairwise differences for each individual or linked 

pair. In the first example, this is the change in the outcome from the first time point to the second, 

and in the second, the difference between the outcomes for the treated and control eyes. Then a t-

test is used to assess whether the population mean of these paired differences differs from zero. 

An increase in power results because between-individual variability is eliminated in the first step. 

The paired t-test is also implemented using the ttest command in Stata. 

Formula:   

𝑡 =
�̅� − ∆

𝑠

√𝑛
 

 

where �̅�   is the mean of the change scores, Δ is the hypothesized difference (0 if testing for equal 

means), s is the sample standard deviation of the differences, and n is the sample size. The 

number of degrees of freedom for the problem is n – 1. 

Assumption of paired t test  

The difference b/t the observation in each pair and the set of differences for all pairs is 

approximately normally distributed even though the original observation in the groups may not 

be.    

Example 2 

Nelson et al 1998 conducted a randomized cross- over trial of two diets in 11 insulin dependent 

diabetic dogs; they measured serum glucose as the variable indicating the quality of diabetic 

control. The diets contained either low insoluble fiber (LF) or high insoluble fiber (HF). Each 

dog was randomly allocated to receive a particular diet first. The dogs were adapted to the diet 

for two months and then fed on it for six months: evaluation was performed at six week intervals.  

As the study ran over 16 months of each dog's life, we might expect the animal to change in its 

metabolic responses to diabetes during the course of the trial, irrespective of diet. This would 

reduce the value of a cross-over deign since there might be considerable variability in the within 

dog comparisons even without a change in diet. However, as the order in which the dogs 

received the diets was determined randomly, the result should not be biased.  
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The table below has been developed from the authors' summary results and gives the mean 

morning pre-prandial serum glucose concentrations (mmol/l) for each dog in each six month 

period.  

Dog low insoluble fiber (LF) high insoluble fiber (HF) 

1 9.44 9.28 

2 17.61 8.67 

3 8.89 6.28 

4 16.94 12.67 

5 10.39 6.67 

6 11.78 7.28 

7 15.06 15.39 

8 7.06 5.61 

9 19.56 11.94 

10 8.22 5.11 

11 23.17 17.33 

The null hypothesis states that the true mean difference in the pre-prandial serum glucose levels 

between the low fiber and high fiber diets is zero; the two sided alternative hypothesis is that it is 

not zero.  

 

Interpretation  

The p–value 0.0014 is (two tailed); so the data is not consistent with the null hypothesis which 

we therefore reject. The mean of the pre-prandial serum glucose difference (LF-HF), estimated 

as 3.81 mmol/l is significantly different from zero, indicating that the high fiber diet significantly 

reduces fasting blood sugar.  

 

 

 Pr(T < t) = 0.9993         Pr(|T| > |t|) = 0.0014          Pr(T > t) = 0.0007

 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0

 Ho: mean(diff) = 0                              degrees of freedom =       10

     mean(diff) = mean(lf - hf)                                   t =   4.3680

                                                                              

    diff        11    3.808182    .8718391    2.891563    1.865603     5.75076

                                                                              

      hf        11    9.657273    1.243816    4.125271    6.885878    12.42867

      lf        11    13.46545     1.59857    5.301857    9.903619    17.02729

                                                                              

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

                                                                              

Paired t test

. ttest lf == hf
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3.1.1.1.3. Single sample t-test 

The single sample t method tests a null hypothesis that the population mean is equal to a 

specified value. 

Formula:   

𝑡 =
�̅� − ∆

𝑠

√𝑛
 

 

where �̅�   is the sample mean, Δ is a specified value to be tested, s is the sample standard 

deviation, and n is the size of the sample. Degrees of freedom for is n – 1 

Assumption  

The sample data is from normally distributed population of values and are representative of that 

population (random selection) 

Example 3 

The following table shows the daily live weight gain of a random sample of 36 growing pigs in a 

rearing unit. The rearing unit expects a mean daily weight gain of 607g for this stage of growth 

(weaning to 10 weeks of age) based on current performance indicators. Are these values 

consistent with a mean daily gain of around 607g?  

Daily weight gain   

577 621 

596 623 

594 598 

612 602 

600 581 

584 631 

618 570 

627 595 

588 603 

601 605 

606 616 

559 574 

615 578 

607 600 

608 596 

591 619 

565 636 

586 589 

Ho is that the mean daily live weight gain is 607g. The alternative hypothesis is that it is not.  
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Interpretation: the p –value is 0.0168 (two tailed); so the data is inconsistent with the mean daily 

mean gain of 607g. So we reject Ho. The test revealed that the pigs have significantly poorer 

mean daily weight gain than expected. The confidence interval indicates that the true mean 

weight gain may even be as low as 593g per day.   

3.1.1.2. Analysis of variance (ANOVA) 

As stated earlier, the significance of the difference between the means of two samples can be 

judged through t-test, but the difficulty arises when we happen to examine the significance of the 

difference amongst more than two sample means at the same time. So, ANOVA can be seen as 

methods for assessing the association of a categorical predictor (with two or more than two 

levels) with a continuous outcome. Using this technique, one can draw inferences about whether 

the samples have been drawn from populations having the same mean. 

Note: Variance is an important statistical measure and is described as the mean of the squares of 

deviations taken from the mean of the given series of data. It is a frequently used measure of 

variation. Its square root is known as standard deviation.  

 

If we take only one factor and investigate the differences amongst its various categories having 

numerous possible values, we are said to use one-way ANOVA and in case we investigate two 

factors at the same time, then we use two-way ANOVA. In a two or more way ANOVA, the 

interaction (i.e., inter-relation between two independent variables/factors), if any, between two 

independent variables affecting a dependent variable can as well be studied for better decisions. 

The Basic Principle of ANOVA 

The basic principle of ANOVA is to test for differences among the means of the populations by 

examining the amount of variation within each of these samples, relative to the amount of 

variation between the samples. In terms of variation within the given population, it is assumed 

that the values of (Xij) differ from the mean of this population only because of random effects 

i.e., there are influences on (Xij) which are unexplainable, whereas in examining differences 

between populations we assume that the difference between the mean of the j
th

 population and 

the grand mean is attributable to what is called a ‘specific factor’ or what is technically described 

as treatment effect. Thus while using ANOVA; we assume that each of the samples is drawn 

from a normal population and that each of these populations has the same variance. We also 

 Pr(T < t) = 0.0084         Pr(|T| > |t|) = 0.0168          Pr(T > t) = 0.9916

   Ha: mean < 607               Ha: mean != 607               Ha: mean > 607

Ho: mean = 607                                   degrees of freedom =       35

    mean = mean(dailyweightgain)                                  t =  -2.5104

                                                                              

dailyw~n        36    599.1944    3.109336    18.65601    592.8822    605.5067

                                                                              

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

                                                                              

One-sample t test

. ttest dailyweightgain == 607
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assume that all factors other than the one or more being tested are effectively controlled. This, in 

other words, means that we assume the absence of many factors that might affect our conclusions 

concerning the factor(s) to be studied.  

In short, we have to make two estimates of population variance: one based on between 

samples/groups variance and the other based on within samples/groups variance. 

3.1.1.2.1. One-Way Analysis of Variance (ANOVA) 

When we need to compare sample averages of trial with multiple treatments, or more generally 

across more than two independent samples; for this purpose, one-way analysis of variance 

(ANOVA) and the F-test take the place of the t-test.  

Computational Formulas for One-Way ANOVA 

Like any other test, the ANOVA test has its own test statistic. The statistic for ANOVA is called 

the F statistic, which we get from the F Test. The ANOVA F-statistic is a ratio of the Between 

Group Variaton divided by the Within Group Variation:  

It has six steps  

1. Calculate the total sum of squares (SST) 

Total sum of squares is sum of squares of all observations  

           = ∑(𝑜𝑏𝑠 − 𝑔𝑟𝑎𝑛𝑑 𝑚𝑒𝑎𝑛) 2 
=     

2. Calculate the b/n groups’ sum of squares SSB 

Between groups Sum of Squares (or Treatment Sum of Squares) – variation in the data between 

the different samples (or treatments). 

=∑(𝑚𝑒𝑎𝑛 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 − 𝑔𝑟𝑎𝑛𝑑 𝑚𝑒𝑎𝑛)2 ∗ 𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 =  

3. SS Within groups  

Within variation (or Error Sum of Squares) – variation in the data from each individual 

treatment. 

               = ∑(𝑜𝑏𝑠 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝)2
=  

Total sum of squares = SS B/n groups + SS Within groups 

4. Calculate the degrees of freedom  

 dfb = k-1 and  

 dfw = n – k 

Where n is the total sample size and k is the number of groups  

5. Construct the mean square estimates by dividing SSB and SSW by their degrees of freedom: 

    MSw = SSW / dfw 

    MSb = SSB / dfb 

6. Find F ratio by Formula: 

   F = MSb / MSw 

 

 

 

 

 

 

 

 

 

 

2)(  iSST

  nkSSB k *
2
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Example 4 

A study was conducted to evaluate the efficacy of trypanocidal drugs. The efficacy was assessed 

using a change in PCV value. Two types of trypanocidal drugs were used. Fifteen tyrpanosoma 

infected animals were randomly assigned to one of the three treatments (five animals for each). 

The PCV value of the animals after the experiment was presented below. Did the use of the 

trypanocidal drugs improve the PCV value?  

Treatments  PCV 

Control 22 

Control 19 

Control 15 

Control 24 

Control 18 

Diminazene  A. 26 

Diminazene  A. 35 

Diminazene  A. 40 

Diminazene  A. 23 

Diminazene  A. 30 

Trypamidium–Samorin  25 

Trypamidium–Samorin  44 

Trypamidium–Samorin  31 

Trypamidium–Samorin  21 

Trypamidium–Samorin  27 

 

The F-test assesses the null hypothesis that the mean value of the outcome (PCV in our case) is 

the same across all the populations sampled from, against the alternative that the means differ in 

at least two of the populations. For example, the one-way ANOVA shown in analysis above the 

F-test for between groups (P = 0.0428), suggests that mean PCV differs between the treatment 

groups. This indicates that the trypanocidal drugs significantly influenced the PCV value.  

3.1.1.2.2. Two-way ANOVA 

The example above is referred to as the one-way ANOVA because you can divide all the scores 

in one way only, by the type of the trypanosomal drug to which animals were assigned. The 

trypanosomal drug group is called a “factor” and this factor has three levels, meaning there are 

three application (control, Diminazene  A. and Trypamidium–Samorin ) categories. There may, 

however, be another factor that classifies individuals, and in that case we would have a two-way, 

or a two-factor, ANOVA. The two-way ANOVA compares the mean differences between groups 

    Total           925.333333     14   66.0952381

                                                                        

 Within groups           547.2     12         45.6

Between groups      378.133333      2   189.066667      4.15     0.0428

                                                                        

    Source              SS         df      MS            F     Prob > F

                        Analysis of Variance

. oneway pcv trypanocidaldrug
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that have been split on two independent variables (called factors). The primary purpose of a two-

way ANOVA is to understand if there is an interaction between the two independent variables on 

the dependent variable. 

EXAMPLE 5 

In the experiment we used as an example one way ANOVA, animals were assigned to one of the 

three applications noted above, as well as to one of the two feeding management  as indicated in 

table below. Now we are interested in comparing the three means that represent change in 

trypanosomal drug application and the two means that represent their feeding management.   
Trypanocidal drug feeding managment PCV 

Control good 22 

Control poor 19 

Control poor 15 

Control good 24 

Control poor 18 

Diminazene  A poor 26 

Diminazene  A good 35 

Diminazene  A good 40 

Diminazene  A poor 23 

Diminazene  A poor 30 

Trypamidium–Samorin  poor 25 

Trypamidium–Samorin  good 44 

Trypamidium–Samorin  good 31 

Trypamidium–Samorin  poor 21 

Trypamidium–Samorin  poor 27 

 

Note: string variables may not be used as factor variables in two way ANOVA, so we should 

code it with numerical value.  

Converting string variables with numeric values into numeric values  

Gen pcv_n = real(pcv)       or 

destring, replace  

Converting string variables with non-numeric values into numeric values 

encode trypanocidaldrug, generate(trypanocidaldrug2)  

                   Total    925.333333    14  66.0952381   

                                                                              

                Residual           151     9  16.7777778   

                          

 trypanoci~g#feedingma~t          36.2     2        18.1       1.08     0.3802

             feedingma~t           360     1         360      21.46     0.0012

             trypanoci~g         407.4     2       203.7      12.14     0.0028

                          

                   Model    774.333333     5  154.866667       9.23     0.0024

                                                                              

                  Source    Partial SS    df       MS           F     Prob > F

                           Root MSE      = 4.09607     Adj R-squared =  0.7462

                           Number of obs =      15     R-squared     =  0.8368

. anova pcv trypanocidaldrug##feedingmanagment
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Interpretation: Here the p-value for the interaction term (0.38) is greater than 0.05 so it 

indicates that there is no interaction between trypanosomal drug and feeding management.  

N.B. The t-test and ANOVA are basic tools for assessing the statistical significance of 

differences between the average values of a continuous outcome across two or more samples. 

They can be seen as methods for assessing the association of a categorical predictor – binary in 

the case of the t-test, with more than two levels in the case of ANOVA – with a continuous 

outcome. Both are based in statistical theory for normally distributed outcomes, but work well 

for many other types of data; and both turn out to be special cases of linear regression models. 

3.1.2. Linear regression  

Linear regression determines how the average value of the continuous response variable y varies 

with the value of the explanatory variable(s) x. Linear regression calculates an equation that 

minimizes the distance between the fitted line and all of the data points. Technically, ordinary 

least squares (OLS) regression minimizes the sum of the squared residuals. The average values 

of the response variable are assumed to lie on a “regression line” or “line of means.” In general, a 

model fits the data well if the differences between the observed values and the model's predicted 

values are small and unbiased. 

Thus, regression analysis allows us (among other things) to obtain estimations of the value of 

response variable in function of the values of one or more explanatory variables. It is thus 

necessary to first of all determine which variable will be expressed as a function of the others: 

this variable becomes the dependent variable (traditionally denoted by y) and the other variables 

then become independent or explanatory variables (traditionally denoted by x). The linear model 

then becomes: 
𝑌𝑖 = 𝛽0 + 𝛽𝑗𝑋𝑖𝑗 +  𝜖𝑖 

When: 

𝑌𝑖                       Value of the dependent variable for individual i 

𝛽0                     First parameter of the model (often called the constant/intercept of the model) 

𝛽𝑗                     Regression coefficient/slope of the independent variable j 

Xij                   Value of independent variable j for individual i 

𝛽0 + 𝛽𝑗𝑋𝑖𝑗       The deterministic part of the model, determined by the values of the 

                       various independent variables (also known as the regression line) 

𝜖𝑖                     the random part of the model due to random fluctuations of the individual values     

                        of Yi around the value 𝛽0 + 𝛽𝑗𝑋𝑖𝑗  , whose actual value is determined by   

                        uncontrolled factors (or variable not included in the model). Values of this part   

                        must be distributed normally, with identical variance for all 𝜖𝑖 and the 𝜖𝑖 must    

                        be independent of each other. We estimate these errors by residuals; these are   

                        the difference between the observed (actual) value of the observation and the  

                        value predicted by the model. 

 

How does Y change with one unit of X? 

βo is where the line crosses the Y axis. The quantity β1 is the slope and it is the rate of change in Y 

for a unit change in X given that the other predictors held constant. If the slope is 0, it means we 

have a straight line parallel to the x axis. It also means that we cannot predict Y from a 

knowledge of X since there is no relationship between Y and X. 
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If there is only one independent variable in the model, it is referred to as simple linear regression. 

3.1.2.1. Simple linear regression 

                                                                               Example 6 

For 10 consecutive years, we have data on the number of pigs sold in a given country and the 

average price of pigs. We wonder if the volumes of sales (independent variable) influence the 

price per unit (dependent variable)?                          

Year Number of pigs sold (millions) Price per pig($) 

2000 73 18 

2001 79 20 

2002 80 17.8 

2003 69 21.4 

2004 66 21.6 

2005 75 15 

2006 78 14.4 

2007 74 17.8 

2008 74 19.6 

2009 84 14.1 

 

The figure below shows the relationship between volume and unit price and indicates that there 

may in fact be a negative linear relationship (the price decreases as the volume increases) [in 

stata scatter plots are generated using a sign tax ‘sc”]. 

 
Figure 1: Scatterplot: price per pig in function of sales volume 

Now lets analyse the above data set using linear regression. In stata linear regression is computed using a 

sign tax ‘reg”.  

reg dep_variable indep_var 

1
4

1
6

1
8

2
0

2
2

p
ri

c
e
 p

e
r 

p
ig

 (
$

)

65 70 75 80 85
number of pigs sold (millions)
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The information of interest to us is found in the lines starting with ‘numberofpigssoldmillions’ 

and (_cons). The column headed Coef. represents the two regression parameters.(_cons) 

(45.55915) stands for β0, the constant of the regression. This constant is in theory the price per 

pig if nothing is sold (x = 0). Number (-.366877) stands for β1, the regression coefficient/slope. 

This means every time the number of pigs sold increases by 1 the price decreases by $ 0.37. The 

negative sign indicates the negative trend of the regression line. The model P-value is significant 

(0.0223) and it indicate a very good fit of the model. The P-value of our explanatory variable 

(number of pigs sold) is also significant (0.022) and it indicates a strong association between the 

number of pigs sold and the price of the pigs.    

The regression line for the price per unit in function of sales volume thus becomes: 

Expected value {price} = 45.56 - 0.37*numberofpigssoldmillions 

These expected values (i.e. regression line) can be calculated in stata using the sign tax ‘predict’.  

Predicted values  

predict pred 

18.78 16.58 16.21 20.24 21.35 18.04 16.94 18.41 18.41 and 14.74  

Let’s again use the scatter plot to express graph together the observed and the predicted values  

Sign tax 

sc pred priceperpig numberofpigssoldmillions , c(l) 

 

Figure 2: Scatterplot: price per pig (both observed and predicted) in function of sales volume 

As it is clearly observed in the diagram the price of the pig is inversely related to the number of 

pigs sold, as the as the number of pigs sold increases the price per pig decreases.  

                                                                                          

                   _cons     45.55915   9.783604     4.66   0.002     22.99812    68.12018

numberofpigssoldmillions     -.366877   .1298104    -2.83   0.022    -.6662202   -.0675337

                                                                                          

             priceperpig        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                          

       Total    68.3210017     9  7.59122241           Root MSE      =  2.0672

                                                       Adj R-squared =  0.4371

    Residual    34.1867667     8  4.27334584           R-squared     =  0.4996

       Model    34.1342349     1  34.1342349           Prob > F      =  0.0223

                                                       F(  1,     8) =    7.99

      Source         SS       df       MS              Number of obs =      10

. reg  priceperpig numberofpigssoldmillions
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3.1.2.2. Multiple linear regression  

If we have two or more explanatory variable and a continuous response variable we use multiple 

linear regression.  

Example 7 

In the table below, the calving to conception interval in cows was recorded. It is believed that the 

older the cow the longer the interval. Using ‘age’ as a single continuous explanatory variable for 

the conception interval is just the same as using the quantity of pig sale as explanatory variable 

of the price in the example above. 

id calvcon age metritis Ovar id calvcon age metritis ovar 

1 124 3 0 0 31 123 6 0 0 

2 76 7 0 0 32 165 4 0 0 

3 145 2 1 0 33 270 9 0 1 

4 122 4 1 0 34 190 3 0 0 

5 138 3 0 0 35 78 3 1 0 

6 60 3 0 0 36 69 4 0 0 

7 55 3 0 0 37 73 6 0 0 

8 154 3 0 0 38 154 5 0 0 

9 95 4 1 0 39 112 2 0 0 

10 94 3 0 0 40 119 7 1 0 

11 55 5 0 0 41 111 5 1 0 

12 134 2 0 0 42 147 6 0 1 

13 76 2 0 0 43 142 4 1 0 

14 94 4 1 0 44 163 6 0 0 

15 159 3 0 0 45 233 8 1 0 

16 64 2 0 0 46 115 5 0 0 

17 114 3 0 1 47 93 4 0 0 

18 154 3 0 0 48 56 6 0 0 

19 102 3 0 0 49 227 5 0 1 

20 101 4 0 0 50 98 5 0 0 

21 186 5 1 0 51 164 4 1 0 

22 90 3 0 1 52 161 10 0 0 

23 182 4 0 1 53 144 4 0 0 

24 122 5 0 0 54 117 3 0 1 

25 79 2 0 0 55 89 5 0 0 

26 129 4 0 1 56 96 2 0 0 

27 208 3 0 0 57 71 4 0 0 

28 117 2 1 0 58 131 4 0 1 

29 140 4 1 0 59 146 11 1 0 

30 51 2 0 0 60 165 6 1 1 
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The predicted values can be calculated: 

Predicted averages (pred = coef(_cons) + coef(age)*age): 

. predict pred 

Predicted standard errors of the observations 

. predict stdp, stdp 

95% confidence interval 

. gen low=pred-1.96*stdp 

. gen up=pred+1.96*stdp 

. sc pred low up age . sc  calvcon pred low up age, c(i L L L) m(o i i i ) 

  

It is also believed that the presence of metritis (coded as 0 or 1) and ovarian disease (coded as 0 

or 1) have an effect on the interval. Introducing these explanatory variables in the model make 2 

different major changes:  

 the model becomes “multivariate”: there are several explanatory variables 

 some of the explanatory variables are discrete (metritis and ovarian disease) 

                                                                              

       _cons      87.8671   13.90357     6.32   0.000     60.03608    115.6981

         age      8.47646   2.968753     2.86   0.006     2.533855    14.41907

                                                                              

     calvcon        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    130443.933    59  2210.91412           Root MSE      =  44.406

                                                       Adj R-squared =  0.1081

    Residual    114368.609    58  1971.87258           R-squared     =  0.1232

       Model     16075.324     1   16075.324           Prob > F      =  0.0060

                                                       F(  1,    58) =    8.15

      Source         SS       df       MS              Number of obs =      60

. reg  calvcon age
1
0

0
1
5

0
2
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0
2
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The generalization of the linear model allows the use of discrete explanatory variables but they 

should either be coded as 0 or 1 or declared as discrete using “i.” as a prefix and “xi:” as an 

introduction to the command. 

 

Interpretation: 

The model P value (0.0022) is very low indicating a strong association between the response and 

the explanatory variables. The significance of individual variables can then be evaluated. They 

are all significantly associated to calving interval (P<0.05) except metritis (P=0.196). All have a 

positive correlation.  

The coef. of age (7.03) indicate that when the age of the cow increases by one year the calving to 

conception interval increases by 7.03 days and 83.23 is the calving to conception interval of zero 

year age cow. So,   

 The calving interval of 5 year old cow = 83.23+7.03*5 = 451.3days 

 Calving interval of 5 year old cow with metrities but no ovarian disease = 83.23+7.03*5 

+17.07*1 = 468.37dyas  

 Calving interval of 5 year old cow with ovarian disease but no metrities = 83.23+7.03*5 

+39.21 = 490.51days  

3.1.3. Chi Square statistics  

As a test of independence, x
2 

test is used to determine whether there is a significant difference 

between the expected frequencies and the observed frequencies in one or more categories. Do the 

numbers of individuals or objects that fall in each category differ significantly from the number 

you would expect? Is this difference between the expected and observed due to sampling 

variation, or is it a real difference? For instance, we may be interested in knowing whether a new 

medicine is effective in curing a given disease or not, x
2
 test will help us in deciding this issue. In 

such a situation, we proceed with the null hypothesis that the two attributes (new medicine and 

cure of disease) are independent which means that new medicine is not effective in curing 

disease. On this basis we first calculate the expected frequencies and then work out the value of 

                                                                              

       _cons      83.2339   13.39646     6.21   0.000     56.39755    110.0702

    _Iovar_1     39.21718   15.00384     2.61   0.011     9.160887    69.27348

_Imetritis_1     17.07149   13.05991     1.31   0.196    -9.090659    43.23364

         age     7.030164   2.907865     2.42   0.019     1.205011    12.85532

                                                                              

     calvcon        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    130443.933    59  2210.91412           Root MSE      =  42.416

                                                       Adj R-squared =  0.1863

    Residual     100749.88    56    1799.105           R-squared     =  0.2276

       Model    29694.0532     3  9898.01772           Prob > F      =  0.0022

                                                       F(  3,    56) =    5.50

      Source         SS       df       MS              Number of obs =      60

i.ovar            _Iovar_0-1          (naturally coded; _Iovar_0 omitted)

i.metritis        _Imetritis_0-1      (naturally coded; _Imetritis_0 omitted)

. xi:reg  calvcon age i.metritis i.ovar
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x
2
. If the calculated value of x

2
 is less than the table value at a certain level of significance for 

given degrees of freedom, we conclude that null hypothesis stands which means that the two 

attributes are independent or not associated (i.e., the new medicine is not effective in curing the 

disease). But if the calculated value of x
2
 is greater than its table value, our inference then would 

be that null hypothesis does not hold good which means the two attributes are associated and the 

association is not because of some chance factor but it exists in reality (i.e., the new medicine is 

effective in curing the disease). It may, however, be stated here that x
2
 is not a measure of the 

degree of relationship or the form of relationship between two attributes, but is simply a 

technique of judging the significance of such association or relationship between two attributes. 
Example 8 

A researcher wants to test the effect of an anticoagulant drug on female patients with myocardial 

infarction. The researcher hope the drug lowers mortality, and set up his null hypothesis as 

follows: 

 Ho: There is no difference in mortality between the treated groups and the control group. 

 Ha: The mortality in the treated group is lower than in the control group. 

The  2 × 2 contingency table in which each patient is classified as belonging to one of the four cells: 

 Control Treated Total  

Lived 89 223 312 

Died 40 39 79 

Total 129 262 391 
The mortality in the control group is 40/129 = 31% and in the treated it is 39/262 = 15%. But could this 

difference have arisen by chance? We use the x
2
 test to answer this question. What we are really asking is 

whether the two categories of classification (control vs. treated by lived vs. died) are independent of each 

other. If they are independent, what frequencies would we expect in each of the cells? And how different 

are our observed frequencies from the expected ones? How do we measure the size of the difference? 

To determine the expected frequencies, consider the following: 

 Control Treated Total  

Lived a b a+b 

Died c d c+d 

Total a+c b+d N 

If the categories are independent, then the probability of a patient being both a control and living is 

P(control) × P(lived). The expected frequency of an event is equal to the probability of the event times the 

number of trials = N × P. So the expected number of patients who are both controls and live is 

N × P(control and lived) = N × P(control) × P(lived) = N ×
(a + c)

N
×

(a + b)

N
= (a + c) ×

(a + b)

N
 

In our case this yields the following table:  

 Control Treated Total  

Lived 129*312/391=103 262*312/391=209 312 

Died 129*79/391=26 262*79/391=53 79 

Total 129 262 391 

 

Another way of looking at this is to say that since 80% of the patients in the total study lived (i.e., 312/391 

= 80%), we would expect that 80% of the control patients and 80% of the treated patients would live. 

These expectations differ, as we see, from the observed frequencies noted earlier, that is, those patients 

treated did, in fact, have a lower mortality than those in the control group. Well, now that we have a table 

of observed frequencies and a table of expected values, how do we know just how different they are? Do 

they differ just by chance or is there some other factor that causes them to differ? To determine this, we 
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calculate its x
2 

value. This is obtained by taking the observed value in each cell, subtracting from it the 

expected value in each cell, squaring this difference, and dividing by the expected value for each cell. 

When this is done for each cell, the four resulting quantities are added together to get x
2 

value. 

Symbolically this formula is as follows: 

𝑥2 =
(O

a
− ea)2

ea

+
(O

b
− eb)2

eb

+
(O

c
− ec)2

ec

+
(O

d
− ed)2

ed

 

When O is observed frequency and e is expected frequency 

The particular value of x
2 

that we get for our example happens to be 13.94.  

From our knowledge of the distribution of values of x
2
, we know that if our null hypothesis is true, that is, 

if there is no difference in mortality between the control and treated group, then the probability that we 

get a value of x
2 

as large or larger than 13.94 by chance alone is very, very low; in fact this probability is 

less than 0.005. Since it is not likely that we would get such a large value of x
2 

by chance under the 

assumption of our null hypothesis, it must be that it has arisen not by chance but because our null 

hypothesis is incorrect. We, therefore, reject the null hypothesis at the .005 level of significance and 

accept the alternate hypothesis, that is, we conclude that among women with myocardial infarction the 

new drug does reduce mortality. The probability of obtaining these results by chance alone is less than 

5/1000 (0.005). Therefore, the probability of rejecting the null hypothesis, when it is in fact true (type I 

error) is less than 0.005. 

 

N.B.: That value of x
2 

that must be obtained from the data in order to be significant is called the 

critical value. The critical value of x
2 

at the 0.05 level of significance for a 2 × 2 table is 3.84. 

This means that when we get a value of 3.84 or greater from a 2 × 2 table, we can say there is a 

significant difference between the two groups. 

 

For a contingency table that has r rows and c columns, the x
2 

test can be calculated as follows:   
Example 9 

Suppose you have the following categorical data set. 

Trypanosome  spp.  District A District B District C Total 

T. congolense 31 14 45 90 

T. brucei 2 5 53 60 

T. vivax 53 45 2 100 

Totals 86 64 100 250 

 

Ho: the distribution of trypanosome spp. is not spatially different   

Ha: the spatial distribution of the trypanosome spp. is different   

We use the above equation i.e. x
2 

= the sum of all the (fo - fe)
2
 / fe 

Here fo denotes the frequency of the observed data and fe is the frequency of the expected values. Now we 

need to calculate the expected values for each cell in the table and we can do that using the row total 

times the column total divided by the grand total (N). For example, for cell a (i.e. the incidence of T. 

congolense in District A) the expected value would be 90*86/250. 
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We could now set up the following table: 

Observed Expected |O-E| (O—E)
2
 (O—E)

2
/E 

31 30.96 0.04 0.0016 0.0000516 

14 23.04 9.04 81.72 3.546 

45 36 9 81 2.25 

2 20.64 18.64 347.45 16.83 

5 15.36 10.36 107.33 6.99 

53 24 29 841 35.04 

53 34.4 18.6 345.96 10.06 

45 25.6 19.4 376.36 14.7 

2 40 38 1444 36.1 
2
 125.51605 

 

x
2
= 125.516 

Degrees of Freedom = (c - 1)(r - 1) = 2(2) = 4 

We reject Ho because 125.516 is greater than 9.488 (for alpha = 0.05) 

Thus, we would reject the null hypothesis that there is no relationship between location and trypanosome 

spp. Our data tell us there is a statistically significant relationship between trypanosome spp. and 

location.  

This could easily done in STATA as follows  

 
  

          Pearson chi2(4) = 125.5186   Pr = 0.000

     Total          90         60        100         250 

                                                        

District C          45         53          2         100 

District B          14          5         45          64 

District A          31          2         53          86 

                                                        

  district   T.  congo  T. brucei   T. vivax       Total

                         trysspp

. tab  district trysspp, chi2
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3.1.4. Logistic regression 

In epidemiology, data are often binomial (animals are infected or not, seropositive or not…). 

Logistic regression is appropriate when the dependent variable (outcome) is dichotomous (i.e., 

can be coded as 1 = event, 0 = no event), and when the question deals with the occurrence of the 

event of interest within a specified period time and the people/animals are all followed for that 

length of time. However, when follow-up time for people in the study differs, then survival 

analysis should be used.  
Like continuous data, binomial data are characterised by their average (p) and their variance (p.(1-p)).  

Using linear regression to analyse binomial data faces two major problems: 

 The variance varies with p and, hence, the assumption of homoscedasticity is violated. 

Homoscedasticity refers to the fact that the variance of the outcome is constant at all level 

of the explanatory variable and within all combinations of the explanatory variable.  

 The mean response should be constrained between 0 and 1 (proportions below 0 and over 

1 are not possible but could be obtained using a linear regression) 

The logit transformation meets these 2 concerns. 

The logistic transformation 

logit(p) = 








 p

p

1
ln  

logit(p) ranges between -∞ and ∞. Values below -7 or over 7 denote extreme proportions. A 

value of 0 corresponds to a proportion of 0.5. Proportions of 0 and 1 cannot be accommodated by 

the logistic transformation.  

Table 1. Relation between logit(p) and p 

p 1-p var logit 

0 1 0  
0.1 0.9 0.09 -2.20 
0.2 0.8 0.16 -1.39 
0.3 0.7 0.21 -0.85 
0.4 0.6 0.24 -0.41 
0.5 0.5 0.25 0.00 
0.6 0.4 0.24 0.41 
0.7 0.3 0.21 0.85 
0.8 0.2 0.16 1.39 
0.9 0.1 0.09 2.20 
1 0 0  
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Fig. Relation between logit(p) and p 

The inverse relationship is as follows: 
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The logit can then be used in a linear regression as a response variable. Explanatory variables are used 
as for a linear regression. 

logit(p) = a + bx 
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Odds ratios are quite easily calculated from a logistic regression: 
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since the explanatory variable x = 1 for p1 and 0 for p0 

Fitting a logistic regression model 

The calculation of the predictors is not as for a linear regression. It is based on iteration of 

estimates and the calculation of maximum likelihood. The set of values for the predictors that 

generate the highest likelihood to fit the data is retained as a model. 

In Stata, the command is: 

logit response_variable explanatory_variables 
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Example 

A study was conducted to determine the influence of climatic variable on the distribution of 
Rhipicephalus microplus. Does the distribution of R. microplus associated with temperature? how?                                                      

Table 2 
id microplus tmax tmin id microplus tmax tmin 

1 0 35 22 31 0 33 20 

2 0 33 20 32 0 34 21 

3 0 33 20 33 1 32 22 

4 1 33 23 34 1 32 22 

5 0 33 21 35 1 33 23 

6 0 32 22 36 0 33 20 

7 1 33 22 37 0 32 20 

8 0 33 20 38 0 34 21 

9 1 32 20 39 1 32 20 

10 0 34 21 40 1 33 22 

11 0 34 20 41 0 35 22 

12 0 33 20 42 0 33 20 

13 1 33 21 43 0 31 24 

14 1 33 21 44 1 32 23 

15 0 33 20 45 0 32 19 

16 0 31 23 46 0 33 20 

17 0 33 22 47 0 33 20 

18 0 33 23 48 0 33 23 

19 0 33 22 49 1 32 23 

20 0 33 22 50 0 35 23 

21 0 33 20 51 1 32 22 

22 0 34 20 52 0 32 23 

23 1 32 22 53 0 34 21 

24 0 32 22 54 0 33 20 

25 0 33 20 55 0 33 20 

26 1 32 23 56 1 33 21 

27 0 34 21 57 0 34 21 

28 1 32 22 58 1 31 23 

29 1 33 21 59 0 33 20 

30 1 33 22 60 0 33 20 
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Interpretation of the coefficients and the p-value  

tmax: coef = -0.93 and p-value = 0.030 –  meaning the distribution of R. microplus is 

significantly associated with tmax hence the p-value is less than 0.05. So we reject our Ho at 0.03 

significance level. The type I error we could make by rejecting our null hypothesis is only 3 in 

100. The negative sign of the coefficient indicates that when tmax decreases it is more suitable 

for distribution of R. microplus  

tmin: coef = 0.51 and p-value = 0.058 – here the p-value is greater than 0.05 so we don’t have 

sufficient evidence to reject our null hypothesis.  

logit(p) = min*51.0max*93.0_
1

ln ttcons
p

p











 

The predicted values can be estimated in Stata using a command ‘predict’. By default, ‘predict’ 

predicts the proportion of successes. The ‘xb’ value (linear estimation) and the observations’ 

standard errors can also be estimated using the ‘xb’ and ‘stdp’ options. 

. predict p 

 

. predict xb, xb 

 

. predict stdp, stdp 

 

. gen pred=exp(xb)/(1+exp(xb)) 

 

. gen lower=exp(xb-1.96*stdp)/(1+exp(xb-1.96*stdp)) 

 

. gen upper=exp(xb+1.96*stdp)/(1+exp(xb+1.96*stdp)) 

 

. list 

 

id microplus tmax tmin p xb stdp pred lower upper 

1 0 35 22 0.0804307 -2.436509 1.061194 0.0804307 0.0108096 0.4117904 

2 0 33 20 0.1686625 -1.595136 0.4882486 0.1686625 0.0722853 0.3456605 

3 0 33 20 0.1686625 -1.595136 0.4882486 0.1686625 0.0722853 0.3456605 

4 1 33 23 0.483337 -0.0666768 0.5557225 0.483337 0.2394144 0.7354669 

5 0 33 21 0.2524383 -1.08565 0.3432191 0.2524383 0.1469959 0.3982073 
more— 

 

                                                                              

       _cons     18.91084   16.26246     1.16   0.245    -12.96301    50.78468

        tmin     .5094865   .2683912     1.90   0.058    -.0165505    1.035524

        tmax    -.9301729   .4275883    -2.18   0.030    -1.768231   -.0921152

                                                                              

   microplus        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -31.184865                       Pseudo R2       =     0.1834

                                                  Prob > chi2     =     0.0009

                                                  LR chi2(2)      =      14.01

Logistic regression                               Number of obs   =         60

Iteration 4:   log likelihood = -31.184865  

Iteration 3:   log likelihood = -31.184865  

Iteration 2:   log likelihood = -31.185085  

Iteration 1:   log likelihood = -31.300714  

Iteration 0:   log likelihood =  -38.19085  

. logit  microplus  tmax tmin



Page 28 of 28 
 

Odds ratio scan either be estimated by calculating the exponential of the coefficients or by using the ‘or’ 
option in the ‘logit’ command. 

 

3.1.5. Non- parametric analysis 

Many statistical methods require assumptions to be made about the format of the data to be 

analysed. For example, the paired t-test introduced above requires that the distribution of the 

differences be approximately normal, while the unpaired t-test requires an assumption of 

Normality to hold separately for both sets of observations. Fortunately, these assumptions are 

often valid in clinical data, and where they are not true 

Of the raw data it is often possible to apply a suitable transformation. There are situations in 

which even transformed data may not satisfy the assumptions, however, and in these cases it may 

be inappropriate to use traditional (parametric) methods of analysis. (Methods such as the t-test 

are known as ‘parametric’ because they require estimation of the parameters that define the 

underlying distribution of the data; in the case of the t-test, for instance, these parameters are the 

mean and standard deviation that define the normal distribution.) 

 

Nonparametric methods provide an alternative series of statistical methods that require no or 

very limited assumptions to be made about the data. The analyses in non-parametric tests are 

usually based on the ranks of the data, i.e. on observations when they are arranged in increasing 

(or decreasing) order, rather than on the raw data.  

Table  parametric tests and some non-parametric equivalent 

Parametric test  Non parametric test  

Single sample t-test Sign test  

Paired t-test  Sign test, Wilcoxon signed rank test  

Independent sample t-test/two sample t-test  Wilcoxon signed rank test/ Mann-Whitney U-test 

One way ANOVA Kruskal-Wallis one way ANOVA 

Two way ANOVA Friedman two-way ANOVA 

Pearson correlation  Spearman rank correlation  

 


