
CHAPTER TWO

▪ Develop from the first and second laws the

fundamental property relations which underlie

the mathematical structure of thermodynamics

▪ Derive equations which allow calculation of

enthalpy and entropy values from PVT and heat-

capacity data.

▪ Develop generalized correlations which provide

estimates of property values in the absence of

complete experimental information.
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Property Relations for Homogeneous Phases

▪ The 1st law of thermodynamics for a simple compressible system

that undergoes an internally reversible process of n moles is:

𝐝(𝐧𝐔)𝐫𝐞𝐯 = 𝛅𝐐𝐫𝐞𝐯 + 𝛅𝐖𝐫𝐞𝐯 𝟐. 𝟏

▪ The incremental heat interaction 𝛿𝑄𝑟𝑒𝑣 is related directly to the

entropy change through the formal definition of entropy:(Entropy,

the measure of a system’s thermal energy per unit temperature

that is unavailable for doing useful work. )

𝐝𝐒 =
𝛅𝐐

𝐓
𝐫𝐞𝐯

𝐨𝐫 𝛅𝐐𝐫𝐞𝐯 = 𝐓𝐝(𝐧𝐒) 𝟐. 𝟐

▪ For a simple compressible system, the only reversible work mode is

compression and/or expansion, that is:

𝛅𝐖𝐫𝐞𝐯 = −𝐏𝐝 𝐧𝐕 𝟐. 𝟑
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▪ Substituting these expressions for δQrev and δWrev into the 1st -

law statement yields:

𝐝(𝐧𝐔) = 𝐓𝐝(𝐧𝐒) − 𝐏𝐝(𝐧𝐕 ) 𝟐. 𝟒(𝐚)

▪ Rearranging Eq. (2.4a)

𝐓𝐝(𝐧𝐒) = 𝐝(𝐧𝐔) + 𝐏𝐝(𝐧𝐕 ) 𝟐. 𝟒(𝐛)

▪ This equation contains only properties of the system.

▪ Properties depend on state alone, and not on the kind of process

that leads to the state.

▪ Thus Eq. (2.4) applies to any process in a system of constant

mass that results in a differential change from one equilibrium

state to another.

▪ The only requirements are that the system be closed and that

the change occurs between equilibrium states.

Thermodynamic Properties of Fluids



▪ All of the primary thermodynamic properties: P, V, T, U, and S are

included in Eq. (2.4).

▪ Additionally two properties, also defined for convenience, are:

i. Gibbs free energy or Gibbs function, G: is a composite

property involving enthalpy and entropy and is defined as:

𝐆 = 𝐇− 𝐓𝐒 𝟐. 𝟓

✓ The Gibbs free energy is particularly useful in defining equilibrium

conditions for reacting systems at constant P and T.

ii. Helmholtz Free Energy or Helmholtz Function, A: is also a

property, defined similarly to the Gibbs free energy, with the

internal energy replacing the enthalpy, that is,

𝐀 = 𝐔 − 𝐓𝐒 𝟐. 𝟔

✓ The Helmholtz free energy is useful in defining equilibrium

conditions for reacting systems at constant V and T.
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▪ The enthalpy was defined by the equation for n moles is:

𝐧𝐇 = 𝐧𝐔 + 𝐏 𝐧𝐕 𝟐. 𝟕

▪ Differentiating Eq. (2.7) gives:

𝐝 𝐧𝐇 = 𝐝 𝐧𝐔 + 𝐏𝐝 𝐧𝐕 + (𝐧𝐕)𝐝𝐏

▪ When d(nU) is replaced by Eq. (2.4(a)), this reduces to:

𝐝 𝐧𝐇 = 𝐓𝐝 𝐧𝐒 + (𝐧𝐕)𝐝𝐏 𝟐. 𝟖

▪ Similarly, Differentiating Helmholtz Function, Eq. (2.6):

𝐝 𝐧𝐀 = 𝐝 𝐧𝐔 − 𝐓𝐝 𝐧𝐒 − (𝐧𝐒)𝐝𝐓

▪ Eliminating d(nU) by Eq. (2.4(a)) gives:

𝐝 𝐧𝐀 = −𝐏𝐝 𝐧𝐕 − 𝐧𝐒 𝐝𝐓 𝟐. 𝟗

▪ In the same fusion, differentiating the Gibbs function, Eq. (2.5)

𝐝 𝐧𝐆 = 𝐝 𝐧𝐇 − 𝐓𝐝 𝐧𝐒 − (𝐧𝐒)𝐝𝐓

▪ Eliminating d(nH) by Eq. (2.8) gives:

𝐝 𝐧𝐆 = 𝐧𝐕 𝐝𝐏 − 𝐧𝐒 𝐝𝐓 𝟐. 𝟏𝟎
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▪ All the above equations are written for the entire mass of any

closed system.

▪ The immediate application of these equations is to one mole (or

to a unit mass) of a homogeneous fluid of constant

composition.

▪ For this case, they simplify to:

𝐝𝐔 = 𝐓𝐝𝐒 − 𝐏𝐝𝐕 𝟐. 𝟏𝟏
𝐝𝐇 = 𝐓𝐝𝐒 + 𝐕𝐝𝐏 𝟐. 𝟏𝟐
𝐝𝐀 = −𝐏𝐝𝐕 − 𝐒𝐝𝐓 𝟐. 𝟏𝟑
𝐝𝐆 = 𝐕𝐝𝐏 − 𝐒𝐝𝐓 𝟐. 𝟏𝟒

✓ These fundamental property relations; Eqs. (2.11) through 

Eq. (2.14) are general equations for a homogeneous fluid 

of constant composition.
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▪ Another set of equations follows from Eqs. (2.11) through Eq. (2.14) by

application of the criterion of exactness for a differential expression.

▪ If F = F(x, y), then the total differential of F is defined as:

𝐝𝐅 =
𝝏𝑭

𝝏𝒙 𝒚
𝐝𝐱 +

𝝏𝑭

𝝏𝒚 𝒙
𝐝𝐲 𝐨𝐫 𝐝𝐅 = 𝐌𝐝𝐱 + 𝐍𝐝𝐲 𝟐. 𝟏𝟓

Where: 𝐌 =
𝛛𝐅

𝛛𝐱
𝐲

𝐚𝐧𝐝 𝐍 =
𝛛𝐅

𝛛𝐲
𝐱

▪ Taking the partial derivative of M with respect to y and of N with respect

to x yields:

𝝏𝑴

𝝏𝒚
𝒙

=
𝝏𝟐𝑭

𝝏𝒚𝝏𝒙
𝐚𝐧𝐝

𝝏𝑵

𝝏𝒙
𝒚

=
𝝏𝟐𝑭

𝝏𝒙𝝏𝒚

▪ The order of differentiation is immaterial for properties since they are

continuous point functions and have exact differentials.

▪ Therefore, the two relations above are identical:

𝛛𝐌

𝛛𝐲
𝐱

=
𝛛𝐍

𝛛𝐱
𝐲

𝟐. 𝟏𝟔
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▪ This is an important relation for partial derivatives, and it is used in
calculus to test whether a differential dF is exact or inexact.

▪ In thermodynamics, this relation forms the basis for the development
of the Maxwell relations

▪ Since U, H, A, and G are properties and thus have exact differentials.

▪ Applying Eq. (2.16) to each of them, we obtain:

𝛛𝐓

𝛛𝐕
𝐒

= −
𝛛𝐏

𝛛𝐒
𝐕

𝟐. 𝟏𝟕

𝛛𝐓

𝛛𝐏
𝐒

=
𝛛𝐕

𝛛𝐒
𝐏

𝟐. 𝟏𝟖

𝛛𝐏

𝛛𝐓
𝐕

=
𝛛𝐒

𝛛𝐕
𝐓

𝟐. 𝟏𝟗

𝛛𝐕

𝛛𝐓
𝐩

= −
𝛛𝐒

𝛛𝐏
𝐓

𝟐. 𝟐𝟎
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▪ The Eqs (2.17) through Eq. (2.20) are called the Maxwell

relations.

▪ They are extremely valuable in thermodynamics because they

provide a means of determining the change in entropy, which

cannot be measured directly, by simply measuring the changes

in properties P, V, and T.

▪ Note that the Maxwell relations given above are limited to

simple compressible systems.

▪ We develop here only a few expressions useful for evaluation of

thermodynamic properties from experimental data.

▪ Their derivation requires application of Eqs. (2.11), (2.12),

(2.19), and (2.20).
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Enthalpy and Entropy as Functions of T and P

▪ The most useful property relations for the enthalpy and entropy

of a homogeneous phase result when these properties are

expressed as functions of T and P.

▪ What we need to know is how H and S vary with temperature

and pressure; Consider first the temperature derivatives.

𝝏𝑯

𝝏𝑻
𝒑

= 𝑪𝑷 𝟐. 𝟐𝟏

▪ Equation (2.21) defines the heat capacity at constant pressure:

▪ Another expression for this quantity is obtained by division of

Eq. (2.12) by dT and restriction of the result to constant P:

𝝏𝑯

𝝏𝑻 𝒑
= 𝑻

𝝏𝑺

𝝏𝑻 𝒑
𝟐. 𝟐𝟐
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▪ Combination of Eq. (2.22) with Eq. (2.21) gives:

𝝏𝑺

𝝏𝑻
𝒑

=
𝑪𝑷
𝑻

𝟐. 𝟐𝟑

▪ The pressure derivative of the entropy results directly from Eq.

(2.20):

𝝏𝑺

𝝏𝑷
𝑻

= −
𝝏𝑽

𝝏𝑻
𝒑

𝟐. 𝟐𝟒

▪ The corresponding derivative for the enthalpy is found by division

of Eq. (2.12) by dP and restriction to constant T:

𝝏𝑯

𝝏𝑷
𝑻

= 𝑻
𝝏𝑺

𝝏𝑷
𝑻

+ 𝐕

▪ As a result of Eq. (2.24) to the above equation becomes:

𝝏𝑯

𝝏𝑷
𝑻

= 𝑽 − 𝑻
𝝏𝑽

𝝏𝑻
𝒑

𝟐. 𝟐𝟓
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▪ The functional relations chosen here for H and S are:

𝐇 = 𝐇 𝐓,𝑷 𝐚𝐧𝐝 𝐒 = 𝐒(𝐓, 𝐏)

▪ Whence;

𝐝𝐇 =
𝝏𝑯

𝝏𝑻
𝑷

𝐝𝐓 +
𝝏𝑯

𝝏𝑷
𝑻

𝒅𝑷 𝒂𝒏𝒅 𝒅𝑺 =
𝝏𝑺

𝝏𝑻
𝑷

𝐝𝐓 +
𝝏𝑺

𝝏𝑷
𝑻

𝒅𝑷

▪ The partial derivatives in these two equations are given by the

following eqauations and (2.23) through (2.25):

𝐝𝐇 = 𝑪𝑷𝐝𝐓 + 𝑽 − 𝑻
𝝏𝑽

𝝏𝑻
𝒑

𝐝𝐏 𝟐. 𝟐𝟔

𝐝𝐒 = 𝐂𝐏
𝐝𝐓

𝐓
−

𝛛𝐕

𝛛𝐓
𝐩

𝐝𝐏 𝟐. 𝟐𝟕

▪ These are general equations relating the properties of homogeneous

fluids of constant composition to temperature and pressure
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Internal Energy as a Function of P

▪ The pressure dependence of the internal energy is obtained by

differentiation of the equation:

U = H – PV

𝛛𝐔

𝛛𝐏
𝐓

=
𝛛𝐇

𝛛𝐏
𝐓

− 𝐏
𝛛𝐕

𝛛𝐏
𝐓

− 𝐕

▪ Then by Eq. (2.25):

▪
𝝏𝑯

𝝏𝑷 𝑻
= 𝑽 − 𝑻

𝝏𝑽

𝝏𝑻 𝒑
𝟐. 𝟐𝟓

▪ Substitute Eq. (2.25) to the above equations:

𝝏𝑼

𝝏𝑷
𝑻

= −𝐓
𝝏𝑽

𝝏𝑻
𝑷

− 𝐏
𝝏𝑽

𝝏𝑷
𝑻

𝟐. 𝟐𝟖
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The Ideal-Gas State

▪ The coefficients of dT and dP in Eqs. (2.26) and (2.27) are

evaluated from heat-capacity and PVT data.

▪ The ideal-gas state provides an example of PVT behavior:

𝐏𝐕𝐢𝐠 = 𝐑𝐓
𝛛𝐕𝐢𝐠

𝛛𝐓
𝐏

=
𝐑

𝐏

▪ Where: superscript "ig" denotes an ideal-gas value.

𝐝𝐇𝐢𝐠 = 𝐂𝐏
𝐢𝐠𝐝𝐓 𝟐. 𝟐𝟗

𝐝𝐒𝐢𝐠 = 𝐂𝐏
𝐢𝐠 𝐝𝐓

𝐓
− 𝐑

𝐝𝐏

𝐏
𝟐. 𝟑𝟎
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Alternative Forms for Liquids

▪ Eq (2.23) through (2.26) are expressed in an alternative form by

elimination of
𝜕V

𝜕T P
in favor of the volume expansivity  by Eq. (1.3)

and of
𝜕V

𝜕P T
in favor of the isothermal compressibility κ by Eq. (1.4):

𝛛𝐒

𝛛𝐏
𝐓

= −𝐕 𝟐. 𝟑𝟏

𝛛𝐇

𝛛𝐏
𝐓

= (𝟏 − 𝛃𝐓)𝐕 𝟐. 𝟑𝟐

𝝏𝑼

𝝏𝑷
𝑻

= (𝜿𝑷 − 𝛃𝐓)𝑽 𝟐. 𝟑𝟑

▪ The above general equations, incorporating β and κ are usually
applied only to liquids.

▪ However, for liquids not near the critical point, the volume itself is
small, as are β and κ.
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Alternative Forms for Liquids

𝝏𝑺

𝝏𝑷
𝑻

= −
𝝏𝑽

𝝏𝑻
𝒑

𝟐. 𝟐𝟒

𝝏𝑯

𝝏𝑷
𝑻

= 𝑽 − 𝑻
𝝏𝑽

𝝏𝑻
𝒑

𝟐. 𝟐𝟓

𝝏𝑼

𝝏𝑷
𝑻

= −𝐓
𝝏𝑽

𝝏𝑻
𝑷

− 𝐏
𝝏𝑽

𝝏𝑷
𝑻

𝟐. 𝟐𝟖
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▪ Thus at most conditions pressure has little effect on the

properties of liquids;

✓ Which is the special case of an incompressible fluid.

▪ When
𝜕𝑉

𝜕𝑇 𝑃
is replaced in Eqs. (2.26) and (2.27) in favor of the

volume expansivity, they become:

𝐝𝐇 = 𝑪𝑷𝐝𝐓 + (𝟏 − 𝛃𝐓)𝐕𝐝𝐏 𝟐. 𝟑𝟒

𝐝𝐒 = 𝐂𝐏
𝐝𝐓

𝐓
− 𝛃𝐕𝐝𝐏 𝟐. 𝟑𝟓

▪ Since β and κ are weak functions of pressure for liquids, they

are usually assumed constant at appropriate average values for

integration of the final terms of Eqs. (2.34) and (2.35).
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Internal Energy and Entropy as Functions of T and V 

▪ Temperature and volume often serve as more convenient

independent variables than do temperature and pressure.

▪ The most useful property relations are then for internal energy and

entropy.

▪ Required here are the derivatives Τ𝜕U
𝜕T V, Τ𝜕U

𝜕V T, Τ𝜕S
𝜕T V and

Τ𝜕S
𝜕V T.

▪ The first two of these is directly from Eq. (2.11): (𝐝𝐔 = 𝐓𝐝𝐒 − 𝐏𝐝𝐕)

𝝏𝑼

𝝏𝑻
𝑽

= 𝐓
𝝏𝑺

𝝏𝑻
𝑽

𝝏𝑼

𝝏𝑽
𝑻

= 𝐓
𝝏𝑺

𝝏𝑽
𝑻

− 𝐏

▪ Eq. (2.36) defines the heat capacity at constant volume:

𝝏𝑼

𝝏𝑻
𝑽

= 𝑪𝑽 𝟐. 𝟑𝟔
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▪ With Eq. (2.36); the left side of the above equation becomes:

𝝏𝑺

𝝏𝑻
𝑽

=
𝑪𝑽
𝑻

𝟐. 𝟑𝟕

▪ With Eq. (2.19); the right side of the above eq becomes:

𝝏𝑼

𝝏𝑽
𝑻

= 𝐓
𝝏𝑷

𝝏𝑻
𝑽

− 𝐏 𝟐. 𝟑𝟖

▪ The chosen functional relations here are:

𝐔 = 𝐔 𝐓, 𝑽 𝐒 = 𝐒(𝐓, 𝐕)

▪ Whence;

𝐝𝐔 =
𝝏𝑼

𝝏𝑻
𝑽

𝐝𝐓 +
𝝏𝑼

𝝏𝑽
𝑻

𝐝𝐕 𝐚𝐧𝐝 𝐝𝐒 =
𝝏𝑺

𝝏𝑻
𝑽

𝐝𝐓 +
𝝏𝑺

𝝏𝑽
𝑻

𝐝𝐕

▪ The partial derivatives in these two equations are given by Eqs.

(2.36), (2.37), (2.38), and (2.19):
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▪ The following equations are therefore, the general equations relating
the internal energy and entropy of homogeneous fluids of constant
composition to temperature and volume.

𝐝𝐔 = 𝑪𝑽𝐝𝐓 + 𝐓
𝝏𝑷

𝝏𝑻
𝑽

− 𝑷 𝐝𝐕 𝟐. 𝟑𝟗

𝐝𝐒 = 𝑪𝑽
𝒅𝑻

𝑻
+

𝝏𝑷

𝝏𝑻
𝑽

𝐝𝐕 𝟐. 𝟒𝟎

▪ Equation (1.5) applied to a change of state at constant volume
becomes: and the alternative forms of eq (2.39 & 2.40) are:

↔
𝝏𝑷

𝝏𝑻
𝑽

=
𝜷

𝜿

𝐝𝐔 = 𝐂𝐕𝐝𝐓 +
𝛃

𝛋
𝐓 − 𝐏 𝐝𝐕 𝟐. 𝟒𝟏

𝐝𝐒 = 𝐂𝐕
𝐝𝐓

𝐓
+
𝜷

𝜿
𝐝𝐕 𝟐. 𝟒𝟐
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The Gibbs Energy as a Generating Function

▪ The fundamental property relations for homogenous fluids of
constant composition given by Eqs. (2.11) through (2.14) show
that each of the thermodynamic properties U, H, A, and G is
functionally related to a special pair of variables.

▪ In particular:

𝐝𝐆 = 𝑽𝒅𝑷 − 𝐒𝐝𝐓 𝟐. 𝟏𝟒

▪ Expresses the functional relation: 𝐆 = 𝐆(𝐏, 𝐓)

▪ Thus the special or canonical (variables confirm to a general
rule that is both simple and clear) variables for the Gibbs
energy are temperature and pressure.

▪ Since these variables can be directly measured and
controlled, the Gibbs energy is a thermodynamic property of
great potential utility.

Thermodynamic Properties of Fluids



The Gibbs Energy as a Generating Function

▪ An alternative form of Eq. (2.14), a fundamental property
relation, follows from the mathematical identity:

𝐝
𝑮

𝑹𝑻
=

𝟏

𝑹𝑻
𝒅𝑮 −

𝑮

𝐑𝑻𝟐
𝐝𝐓

▪ Substitution for dG by Eq. (2.14) and for G=H-TS gives, after
algebraic reduction:

𝐝
𝑮

𝑹𝑻
=

𝑽

𝑹𝑻
𝒅𝑷 −

𝑯

𝐑𝑻𝟐
𝐝𝐓 𝟐. 𝟒𝟑

▪ The advantage of this equation is that:

✓ All terms are dimensionless;

✓ Moreover, in contrast to Eq. (2.14), the enthalpy rather than
the entropy appears on the right side.
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▪ Eqs such as Eqs. (2.14) and (2.43) are too general for direct

practical application, but they are readily applied in restricted

form.

▪ Thus, from Eq. (2.43),

𝐕

𝐑𝐓
=

𝛛 Τ𝐆 𝐑𝐓

𝛛𝐏
𝐓

𝟐. 𝟒𝟒

𝐇

𝐑𝐓
= −𝐓

𝛛 Τ𝐆 𝐑𝐓

𝛛𝐓
𝐏

𝟐. 𝟒𝟓

▪ When G/RT is known as a function of T and P, V/RT and H/RT

follow by simple differentiation.
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▪ The remaining properties are given by defining equations.

▪ In particular,

𝐒

𝐑
=

𝐇

𝐑𝐓
−

𝐆

𝐑𝐓
𝐚𝐧𝐝

𝐔

𝐑𝐓
=

𝐇

𝐑𝐓
−
𝐏𝐕

𝐑𝐓

▪ Thus, when we know how G/RT (or G) is related to its canonical

variables, T and P, i.e., when we are given G/RT = g(T, P), we

can evaluate all other thermodynamic properties by simple

mathematical operations.

✓ The Gibbs energy when given as a function of T and P

therefore serves as a generating function for the other

thermodynamic properties, and implicitly represents

complete property information.
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▪ The partial derivatives in these two equations are given by Eqs.

(2.36), (2.37), (2.38), and (2.19):

𝐝𝐔 = 𝐂𝐕𝐝𝐓 +
𝛃

𝛋
𝐓 − 𝐏 𝐝𝐕 𝟐. 𝟒𝟏

𝐝𝐒 =
𝐂𝐕
𝐓
𝐝𝐓 +

𝛃

𝛋
𝐝𝐕 𝟐. 𝟒𝟐

Example 

▪ Determine the enthalpy and enropy changes of liquid water for a

change of state from 1bar and 298.15K to 1000bar and 323.15K.

The following data for water are available.
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