
CHAPTER ONE 

Volumetric Properties of Pure 

Fluids

By Hanan E.



• Describe the general nature of PVT behavior of pure

fluids.

• Apply different equations of state to estimate the

thermodynamic properties of pure substances

• Present some of the best-known equations of state

• Introduce viral equation of state

• Generalized correlations are presented that allow

prediction of the PVT behavior of fluids for which

experimental data are lacking

• Applications of Viral equations

Learning Objectives



▪ Thermodynamic properties, such as internal energy and

enthalpy, from which one calculates the heat and work

requirements of industrial processes, are often evaluated

from volumetric data.

▪ Moreover, Pressure/Volume/Temperature (PVT) relations

are themselves important for such purposes as the metering

of fluids and the sizing of vessels and pipelines.

▪ Measurements of the vapor pressure of a pure substance,

both as a solid and as a liquid, lead to pressure-vs.-

temperature curves such as shown by lines 1-2 and 2-C in

Fig. 1.

▪ The third line (2-3) gives the solid/liquid equilibrium

relationship.
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Fig. 1. PT diagram for a pure substance



▪ The three lines display conditions of P and T at which two phases

may coexist, and are boundaries for the single-phase regions.

▪ Line 1-2, the sublimation curve, separates the solid and gas

▪ Line 2-3, the fusion curve, separates the solid and liquid
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▪ Line 2-C, the vaporization curve, separates the liquid and gas

regions and terminates at point C; Critical point

the critical pressure Pc and the critical temperature Tc, the highest

pressure and highest temperature at which a pure chemical species can

exist in vapor/liquid equilibrium.

▪ All three lines meet at the triple point, where the three phases

coexist in equilibrium.

▪ from A to B, liquid and gas phase become indistinguishable at C.



Phase Rule: For any system at equilibrium, the number of

independent variables that must be arbitrarily fixed to establish

its intensive state is given by the phase rule of J. Willard

Gibbs; who deduced it by theoretical reasoning in 1875.

▪ It is presented here without proof in the form applicable to non-

reacting systems:

F=2-π+N……………………………………………….1.1

▪ Where: π is the number of phases, N is the number of chemical

species, and F is the degrees of freedom(the number of

intensive(T and P) independent variable) of the system.

▪ The triple point is invariant (F = 0).

▪ The system exists along any of the two-phase lines is univariant

(F = 1), and the single-phase regions it is divariant (F = 2).
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Phase Rule:

Example: How many degrees of freedom have each one of the

following systems?

1. Liquid water in equilibrium with its vapor.

The system contains a single chemical species and two phases:

F=2-2+1=1

2. Liquid water in equilibrium with a mixture of water vapor and

nitrogen.

Two chemical species and two phases are present: F=2-2+2=2

3. A liquid solution of alcohol in water in equilibrium with its

vapor.

Two chemical species and two phases are present: F=2-2+2=2
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PV Diagram

▪ Fig.1. does not provide any information about volume; it merely

displays the phase boundaries on a PT diagram.

▪ On a PV diagram (Fig. 2 (a)) the boundaries become areas, i.e.,

regions where two phases; solid/liquid, solid/vapor, and

liquid/vapor, coexist in equilibrium.

▪ The two-phase liquid/vapor region lies under dome BCD,

whereas the sub-cooled-liquid and superheated-vapor regions lie

to the left and right, respectively.

▪ Sub-cooled liquid exists at temperatures below the boiling point,

and superheated vapor, at temperatures above the boiling point for

the given pressure.

▪ Isotherms in the sub-cooled-liquid region are very steep, because

liquid volumes change little with large changes in pressure.
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Figure 2: PV diagrams for a pure substance.

(a) Solid, liquid, and gas regions.

(b) Liquid, liquid/vapor, and vapor regions with isotherms
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PV Diagram

▪ The lines labeled Tl and T2 are for subcritical temperatures,

and consist of three segments. The horizontal segment of each

isotherm represents all possible mixtures of liquid and vapor in

equilibrium, ranging from 100% liquid at the left end to 100%

vapor at the right end.

▪ from B to C represents single -phase (saturated) liquids at their

vaporization (boiling) temperatures, and the

▪ From C to D, single-phase (saturated) vapors at their

condensation temperatures.
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Single-Phase Region

• An equation of state exists relating Pressure P, molar or

specific Volume v, and Temperature T; for any pure

homogeneous fluid in equilibrium states.

• For the regions of the diagram where a single phase exists,

Fig. 2(b) implies a relation connecting P, V, and T which may

be expressed by the functional equation:

f(P, V, T) =0 T=T(P<V), P=P(V,T), V=V(P,V)

• The simplest equation of state is for an ideal gas, PV = RT, a

relation which has approximate validity for the low pressure

gas region of Fig. 2(b).
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▪ An equation of state may be solved for any one of the

three quantities P, V, or T as a function of the other two.

▪ For example, if V is considered a function of T and P, then

V = V(T, P), and

….……………………..1.2

▪ The partial derivatives in this equation have definite

physical meanings, and are related to two properties,

commonly tabulated for liquids, and defined as follows:

1. Volume expansivity: 

2.    Isothermal compressibility:
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….............1.3

…........1.4

Combination of Eqs. (1.2) 

to (1.4) provides:-

…........1.5



▪ The isotherms for the liquid phase on the left side of Fig. 2(b) are
very steep and closely spaced.

▪ Thus both and , and hence both β and k are small.

▪ This characteristic behavior of liquids (outside the critical region)
suggests an idealization, commonly employed in fluid mechanics and
known as the incompressible fluid, for which both , β and k are
zero

▪ Integration of Eq. (1.5) then yields:

• For liquids β is almost positive (liquid water between 0°C and 4°C
is an exception), and κ is necessarily positive.

• At conditions not close to the critical point, β and κ are weak
functions of temperature and pressure. Thus for small changes in T
and P little error is introduced if they are assumed constant.
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….....................1.6



▪ It is difficult to represent P-V-T behaviors of pure substances in

all regions by a single equation, but for vapor phase only there

are simple equations.

▪ At constant temperature, the product PV is nearly constant

as compared to the individual parameters P and V.

▪ For example, PV along an isotherm may be expressed by a

power series expansion in P:

• Where: the coefficients a, b, c, etc. are functions only of

temperature (and not of pressure).

• It can also write as:

2. Virial Equations of State

….....................1.7

….....................1.8



• It In fact, P V T data shows that at low pressures truncation

after two terms usually provides satisfactory results.

• If we plot PV vs. P curve for four gases at the triple-point

temperature of water (Fig. 3), the limiting value of PV as P→0

is the same for all of the gases. (Boyle’s law)

2. Virial Equations of State
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▪ Experimentally, as the pressure becomes very small

(mathematically, in the limit (denoted by the asterisk) that P

goes to zero) the pressure volume product (PV) goes to the

same value for all gases.

▪ This is used to establish the ideal gas temperature scale and, in

turn, the value of the Universal Gas Constant.

• If we denote the gas independent value of PV as the pressure

goes to zero as (PV)*, then we can define the ideal gas

temperature scale by assigning the quantity (PV)* to be

proportional to temperature

i. Make (PV)* directly proportional to T, with “R” as the

proportionality constant:

2. Virial Equations of State

….....................1.9



ii. Assign the value 273.16 K to the temperature of the

triple point of water (denoted by subscript t):

• Division of Eq. (1.9) by Eq. (1.10) gives:

• The universal gas constant R, numerical value is determined by

means of Eq. (1.10) from experimental P V T data: The

accepted value of is 22.7118 m3 bar kmol-1,

2. Virial Equations of State

….........................1.11

….....................1.10



Two forms of virial equation

▪ From the definition of compressibility factor (The behavior of real
gases deviates from that of an ideal gas)

▪ With this definition and with a = RT [Eq. (1.9)], and Eq. (1.8) becomes
(Pressure Expansion): Taylor series

𝐙 = 𝟏 + 𝐁′𝐏 + 𝐂′𝐏𝟐 + 𝐃′𝐏𝟑 +⋯ 1.13

▪ An alternative expression for Z is also in common use (Volume
Expansion):

𝐙 = 𝟏 +
𝐁

𝐕
+

𝐂

𝐕𝟐
+

𝐃

𝐕𝟑
+⋯ 1.14

▪ Both of these equations are known as virial expansions, and the parameters
B', C', D', etc., and B, C, D, etc., are called virial coefficients.

▪ Parameters B' and B are second virial coefficients; C' and C are
third virial coefficients; etc.

2. Virial Equations of State

….........................1.12



• For a given gas the virial coefficients are functions of

temperature only.

• The two sets of coefficients in Eqs. (1.13) and (1.14)

are related as follows:

• They are given in Appendix C1,C2 and C3 on Smith

J.M., Van Ness H.C. and Abbott M.M. (2001).

Introduction to Chemical Engineering

Thermodynamics (6th Edition), McGraw-Hill.

2. Virial Equations of State



• For engineering purposes the use of the two forms of the

virial expansion is practical only where convergence is very

rapid, that is, where two or three terms suffice for reasonably

close approximations to the values of the series.

• This is realized for gases and vapors at low to moderate

pressures.

• For example: Values of the compressibility factor Z (as

calculated from PVT data for methane by the defining

equation Z=PV/RT) are plotted vs. pressure for various

constant temperatures.

• All isotherms originate at the value Z = 1 for P = 0. In addition

the isotherms are nearly straight lines at low pressures.

• Thus the tangent to an isotherm at P=0 is a good approximation

of the isotherm from P→0 to some finite pressure.

3. Application of Virial Equations of State



▪ Differentiation of Eq. (1.13) for a given temperature gives:

▪ And the equation of the tangent line is:

3. Application of Virial Equations of State



▪ The result is the same as truncating Eq. (1.14) to two terms. 

Substituting; B' = B/RT:

𝐙 = 𝟏 +
𝐁

𝐕
+

𝐂

𝐕𝟐
+

𝐃

𝐕𝟑
+⋯ 𝟏. 𝟏𝟒

𝐙 =
𝐏𝐕

𝐑𝐓
= 𝟏 +

𝐁

𝐕
𝟏. 𝟐𝟕

▪ Eq. (1.27) is more convenient in application and it represents

the PVT behavior of many vapors at subcritical temperatures up

to a pressure of about 5 bar.

3. Application of Virial Equations of State



• Since the terms B/V, C/V2, etc., of the virial expansion [Eq.

(1.14)] arise on account of molecular interactions, the virial

coefficients B, C, etc., would be zero if no such interactions

existed.

• The virial expansion would then reduce to:

𝒁 = 𝟏 𝐨𝐫 𝐏𝐕 = 𝑹𝑻 𝟏. 𝟏𝟓

• The internal energy of gas depends on temperature only:

𝐔 = 𝐔(𝐓) 𝟏. 𝟏𝟔

▪ The heat capacity at constant volume for an ideal gas Cv (is a

measure of the variation of internal energy of a substance with

temperature) is a function of temperature only:, and

𝑪𝒗 =
𝝏𝑼

𝝏𝑻
𝑽

=
𝒅𝑼

𝒅𝑻
= 𝑪𝒗(𝑻) 𝟏. 𝟏𝟕

4. THE IDEAL GAS



▪ The enthalpy, H also is a function of temperature only:

𝐇 = 𝐔 + 𝐏𝐕 = 𝐔 𝐓 + 𝐑𝐓 = 𝐇(𝐓) 𝟏. 𝟏𝟖

▪ The heat capacity at constant pressure for an ideal gas Cp (is a

measure of the variation of enthalpy of a substance with

temperature)is a function of temperature only:

𝑪𝑷 =
𝝏𝑯

𝝏𝑻
𝑷

=
𝒅𝑯

𝒅𝑻
= 𝑪𝑷(𝑻) 𝟏. 𝟏𝟗

▪ A useful relation between Cp and Cv for an ideal gas comes

from differentiation of Eq. (1.18)

𝑪𝑷 =
𝒅𝑯

𝒅𝑻
=
𝒅𝑼

𝒅𝑻
+ 𝑹 = 𝑪𝑽 +𝑹 𝟏. 𝟐𝟎

▪ This equation does not imply that CP and CV are themselves

constant for an ideal gas, but only that they vary with

temperature in such a way that their difference is equal to R.

4. THE IDEAL GAS



Equations for Process Calculations: Ideal Gases

▪ For an ideal gas in any mechanically reversible closed-system

process:

▪ Using first law of thermodynamics and ideal gas equation:-

dQ =
𝐶𝑉
𝑅
𝑉𝑑𝑃 +

𝐶𝑃
𝑅
𝑃𝑑𝑉

▪ For isothermal process?

▪ For isobaric process?

▪ For isochoric process?

▪ For Adiabatic process?

4. THE IDEAL GAS



▪ Using the ideal gas equation: PV=RT; let P=RT/V

➢ 𝛅𝐐 = 𝐂𝐕 𝐝𝐓 + 𝐑𝐓
𝐝𝐕

𝐕
𝟏. 𝟐𝟐

➢ 𝛅𝐖 = −𝐑𝐓
𝐝𝐕

𝐕
𝟏. 𝟐𝟑

▪ Alternatively, let V=RT/P

➢ 𝛅𝐐 = 𝑪𝑽 𝐝𝐓 + 𝐏
𝑹

𝑷
𝒅𝑻 −

𝑹𝑻

𝑷𝟐
𝒅𝑷 = 𝑪𝑷 𝒅𝑻 − 𝐑𝐓

𝒅𝑷

𝑷
𝟏. 𝟐𝟒

➢ 𝛅𝐖 = −𝑹𝒅𝑻 + 𝐑𝐓
𝒅𝑷

𝑷
𝟏. 𝟐𝟓

▪ Finally let, T=PV/R

➢ 𝛅𝐐 = 𝑪𝑽
𝑽

𝑹
𝒅𝑷 +

𝑷

𝑹
𝒅𝑽 + 𝐏𝐝𝐕 =

𝑪𝑽

𝑹
𝑽𝒅𝑷 +

𝑪𝑷

𝑹
𝑷𝒅𝑽 𝟏. 𝟐𝟔

Equations for  Process Calculations

1st Law:  𝛅𝐐 + 𝛅𝐖 = 𝐝𝐔 where; 𝐝𝐔 = 𝑪𝑽𝐝𝐓, and 𝛅𝐖 = −𝐏𝐝𝐕

Ideal Gas: 𝐙 =
𝐏𝐕

𝐑𝐓
and for ideal gas, Z = 1

➢ 𝛅𝐐 = 𝑪𝑽 𝐝𝐓 + 𝑷𝒅𝑽 𝟏. 𝟐𝟏



Isothermal (Constant - T) Process:

➢ ∆𝐔 = ∆𝐇 = 𝟎

➢ 𝐁𝐲 𝐄𝐪𝐬. (𝟏. 𝟐𝟐) 𝐚𝐧𝐝 (𝟏. 𝟐𝟒): 𝐐 = 𝐑𝐓𝐥𝐧
𝑽𝟐

𝑽𝟏
= −𝐑𝐓𝐥𝐧

𝑷𝟐

𝑷𝟏

➢ 𝐁𝐲 𝐄𝐪𝐬. (𝟏. 𝟐𝟑) 𝐚𝐧𝐝 (𝟏. 𝟐𝟓): 𝐖 = −𝐑𝐓𝐥𝐧
𝑽𝟐

𝑽𝟏
= 𝐑𝐓𝐥𝐧

𝑷𝟐

𝑷𝟏

Isobaric (Constant - P) Process:

➢ ∆𝐔 = 𝑪𝑽𝒅𝑻 𝐚𝐧𝐝 ∆𝐇 = 𝑪𝑷𝒅𝑻

➢ 𝐁𝐲 𝐄𝐪𝐬. 𝟏. 𝟐𝟒 𝐚𝐧𝐝 𝟏. 𝟐𝟓 : 𝐐 = 𝑪𝑷𝒅𝑻 𝐚𝐧𝐝 𝐖 = −𝐑(𝑻𝟐 − 𝑻𝟏)

➢ 𝑇ℎ𝑒𝑟𝑓𝑜𝑟𝑒, 𝐐 = ∆𝐇 = 𝑪𝑷𝒅𝑻

lsochoric (Constant - V) Process:

➢ ∆𝐔 = 𝑪𝑽𝒅𝑻 𝐚𝐧𝐝 ∆𝐇 = 𝑪𝑷𝒅𝑻

➢ 𝐐 = 𝑪𝑽𝐝𝐓 =∆𝐔 𝐚𝐧𝐝 𝐖 = 𝟎

Adiabatic Process: Constant Heat Capacities (𝛅Q=0):

➢ 𝐁𝐲 𝐄𝐪. 𝟏. 𝟐𝟐 :
𝒅𝑻

𝑻
= −

𝑹

𝑪𝒗

𝒅𝑽

𝑽

▪ Integration with CV constant then gives:

➢
𝐓𝟐

𝐓𝟏
=

𝐏𝟐

𝐏𝟏

ൗ𝐑 𝐂𝐕 𝒂𝒏𝒅
𝐏𝟐

𝐏𝟏
=

𝑽𝟏

𝑽𝟐

ൗ
𝑪𝒑

𝐂𝐕 𝒘𝒉𝒆𝒓𝒆; 𝜸 = ൗ
𝑪𝒑

𝐂𝐕
= 𝟏 + ൗ𝐑 𝐂𝐕

Equations for  Process Calculations



❑ An ideal gas undergoes the following sequence of mechanically

reversible processes in a closed system.

A) From an initial state of 343.15 K and 1bar, it is compressed

adiabatically to 423.15 K

B) It is then cooled from 423.15 K to 343.15 K at constant pressure

C) Finally, it is expanded isothermally to its original state

✓ Calculate W, Q, U and H for each of the three processes and for the

entire cycle.

Take Cv = (3/2)R and CP = (5/2)R ,R=8.314J/mol.K

➢ In these processes are carried out irreversibly but so as to

accomplish exactly the same changes of state (i.e, the same

changes in P, T, U and H), then different values of Q and W result.

✓ Calculate Q and W if each step carried out with an efficiency of 80%

Example-1 
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Irreversible Process

• The equations developed have been derived for mechanically reversible,
closed system processes for ideal gases.

• They apply equally to reversible and irreversible processes in both closed
and open systems, because changes in state functions depend only on the
initial and final states of the system.

• On the other hand, an equation for Q or W is specific to the process
considered in its derivation.

• The work of an irreversible process is calculated by a two-step procedure.

✓ First, W is determined for a mechanically reversible process that
accomplishes the same change of state as the actual irreversible process.

✓ Second, this result is multiplied or divided by an efficiency to give the
actual work.

• If the process produces work, the absolute value for the reversible process
is too large and must be multiplied by an efficiency.

• If the process requires work, the value for the reversible process is too
small and must be divided by an efficiency.

Example-1
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In conclusion

▪ The cycle is one which requires work and produce an equal 

amount of heat.

▪ The work required for the three irreversible steps is more than 

5X than the total work required for mechanically reversible 

processes



▪ Cubic equations are in fact the simplest equations capable of
representing both liquid and vapor behavior and give accurately
represent P,V,T characteristics.

▪ They compromise between generality and simplicity that is suitable
to many purposes.

The van der Waals Equation of State:

▪ It the first practical cubic equation of state was proposed by J. D. van der
waals in 1873:

𝑷 =
𝑹𝑻

𝑽 − 𝒃
−

𝒂

𝑽𝟐
𝟏. 𝟐𝟖

▪ Here, a and b are positive constants; when they are zero, the ideal-
gas equation is recovered.

▪ The constant a and b, can be calculated from critical pressure Pc and
critical temperature Tc values that are available in table.(appendix)

▪ If values of a and b for a particular fluid are given, P as a function of
V for various values of T can be calculated.

5. Cubic Equations of State



▪ The PV diagram shown below has three isotherms and the "dome"
representing states of saturated liquid and saturated vapor.

➢ For the isotherm:

▪ T1 > Tc: pressure is a monotonically decreasing function with
increasing molar volume.

▪ Tc (the critical isotherm): contains the horizontal inflection at C
characteristic of the critical point.

Cubic Equations of State

▪ T2 < Tc: the pressure decreases rapidly

in the sub-cooled liquid region with

increasing V; after crossing the

saturated-liquid line, it goes through a

minimum, rises to a maximum, and

then decreases, crossing the saturated-

vapor line and continuing downward

into the superheated-vapor region.



▪ The Cubic equations of state have three volume roots, of

which two may be complex.

▪ Physically meaningful values of V are always real,

positive, and greater than constant b.

i. For an isotherm at T > Tc reference to Fig. above shows

that solution for V at any positive value of P yields only

one root.

ii. For the critical isotherm (T = Tc), this is also true, except

at the critical pressure, where there are three roots, all

equal to Vc.

iii. For isotherms at T < Tc, the equation may exhibit one or

three real roots, depending on the pressure.

Cubic Equations of State



▪ Although these roots are real and positive, they are not

physically stable states for the portion of an isotherm lying

between saturated liquid and saturated vapor (under the

"dome").

▪ Only the roots for P = PSat, namely VSat (liq) and VSat (vap),

are stable states, connected by the horizontal portion of the

true isotherm.

▪ For other pressures (as indicated by the horizontal lines

shown on Fig. above and below PSat), the smallest root is a

liquid or "liquid-like" volume, and the largest is a vapor or

"vapor-like" volume.

▪ The third root, lying between the other values, is of no

significance.

Cubic Equations of State



Generic Cubic Equation of State

• Since the introduction of the van der Waals equation, scores of

cubic equations of state have been proposed.

• All are special cases of the equation:

𝐏 =
𝐑𝐓

𝐕 − 𝐛
−

𝛉(𝐕 − 𝛈)

𝐕 − 𝐛 (𝐕𝟐+𝛋𝐕 + 𝛌)
𝟏. 𝟐𝟗

• Here, b, θ, η, κ and λ are parameters which in general depend on

temperature and (for mixtures) composition.

• If, η = b, θ = a, and κ = λ = 0; Eq. (1.29) reduces to the van der

Waals equation.

𝐏 =
𝐑𝐓

𝐕 − 𝐛
−

𝐚

𝐕𝟐
𝟏. 𝟐𝟖

Cubic Equations of State



Generic Cubic Equation of State

▪ Because of its cubic form, the equation has inherent limitations;

hence, an important class of cubic equations results by assigning;

η = b, θ = a(T), κ = (ϵ+ σ)b and λ = ϵσb2:

𝐏 =
𝑹𝑻

𝑽 − 𝒃
−

𝐚(𝐓)

𝐕 + 𝝐𝒃 (𝐕 + 𝛔𝐛)
𝟏. 𝟑𝟎

▪ Where: ϵ and σ are pure numbers, the same for all substances,

whereas parameters a(T) and b are substance dependent.

▪ The temperature dependence of a(T) is specific to each equation

of state.

▪ For the van der Waals equation, a(T) = a is a substance-

dependent constant, and ϵ = σ = 0.

Cubic Equations of State



Determination of Equation-of-State Parameters

▪ For cubic equations of state, suitable estimates for the
parameters are usually found from values for the critical
constants Tc and Pc.

▪ Since the critical isotherm exhibits a horizontal inflection at the
critical point, we may impose the mathematical conditions:

𝝏𝑷

𝝏𝑽
𝑻:𝑪𝒓

=
𝝏𝟐𝑷

𝝏𝑽𝟐
𝑻:𝑪𝒓

= 𝟎

▪ Where: the subscript "cr" denotes the critical point.

▪ Differentiation of Eq. (1.30) yields expressions for both
derivatives, which may be equated to zero for P = Pc, T = Tc

and V = Vc.

▪ The equation of state may itself be written for the critical
conditions.
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▪These three equations contain five constants: Pc, Vc, Tc, a(T,), and b.

▪ Of the several ways to treat these equations, the most suitable is

elimination of Vc to yield expressions relating a(Tc) and b to Pc and Tc.

▪The reason is that Pc and Tc are usually more accurately known than Vc.

For the van der Waals equation:

➢ 𝐏 =
𝐑𝐓

𝐕−𝐛
−

𝐚

𝐕𝟐

➢
𝝏𝑷

𝝏𝑽 𝐓:𝑪𝒓
=

−𝑹𝑻

(𝑽−𝐛)𝟐
+

𝟐𝑽

𝑽𝟒
=

−𝐑𝐓

(𝐕−𝐛)𝟐
+

𝟐𝐚

𝐕𝟑
= 𝟎

➢
𝝏𝟐𝑷

𝝏𝑽𝟐 𝑻:𝑪𝒓
=

𝟐(𝑽−𝒃)𝑹𝑻

(𝑽−𝐛)𝟒
−

𝟑𝑽𝟐

𝑽𝟔
=

𝟐𝐑𝐓

(𝐕−𝐛)𝟑
−

𝟔𝐚

𝐕𝟒
= 𝟎

Therfore; 𝐏𝐜 =
𝐑𝐓𝐜
𝐕𝐜 − 𝐛

−
𝐚

𝐕𝐜
𝟐 −−−−−−−−−−−−−−−(𝐢)

−𝐑𝐓𝐜
𝐕𝐜 − 𝐛 𝟐 −

𝟐𝐚

𝐕𝐜
𝟑 = 𝟎 −−−−−−−−−−−−−−(𝐢𝐢)
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▪ Alternatively

➢ (𝑽 − 𝑽𝒄)
𝟑= 𝟎

➢ 𝑽𝟑 − 𝟑𝑽𝟐𝑽𝒄 + 𝟑𝐕𝑽𝒄
𝟐 − 𝑽𝒄

𝟑 = 𝟎 −−−−−−−−−−−−−−−−− 𝐀

➢ 𝐁𝐮𝐭, 𝐏 =
𝑹𝑻

𝑽−𝒃
−

𝒂

𝑽𝟐
⟹ 𝐏 𝑽𝟑 − 𝐛𝑽𝟐 = 𝐑𝐓𝑽𝟐 − 𝐚𝐕 + 𝐚𝐛

➢⟹ 𝑽𝟑 − 𝐛 +
𝐑𝑻𝒄

𝑷𝒄
𝑽𝟐 +

𝒂

𝑷𝒄
𝑽 −

𝒂𝒃

𝑷𝒄
= 𝟎 −−−−−−−−−−−−−−(𝐁)

▪ Recall that for a particular substance parameter a in the van der Waals
equation is a constant, independent of temperature.

▪ Term-by-term comparison of Eqs. (A) and (B) provides three
equations:

✓ 𝟑𝐕𝐜 = 𝐛 +
𝐑𝐓𝐜

𝐏𝐜
−−− (𝐂)

✓ 𝟑𝐕𝐜
𝟐 =

𝐚

𝐏𝐜
−−−−− (𝐃)

✓ 𝐕𝐜
𝟑 =

𝐚𝐛

𝐏𝐜
−−−−−− (𝐄)

Cubic Equations of State

Solving Eq. (D) for a, combining the result 

with Eq. (E), and solving for b gives:

𝐚 = 𝟑𝐏𝐜𝐕𝐜
𝟐 𝐛 =

𝟏

𝟑
𝐕𝐜



▪ Substitution for b in Eq. (C) allows solution for Vc which can then be

eliminated from the equations for a and b:

𝐕𝐜 =
𝟑

𝟖

𝐑𝐓𝐜
𝐏𝐜

𝐚 =
𝟐𝟕

𝟔𝟒

𝐑𝟐𝐓𝐜
𝟐

𝐏𝐜
𝐛 =

𝟏

𝟖

𝐑𝐓𝐜
𝐏𝐜

▪ Substitution for V, in the equation for the critical compressibility

factor reduces it immediately to:

𝐙𝐜 =
𝐏𝐜𝐕𝐜
𝐑𝐓𝐜

=
𝟑

𝟖
, 𝐚 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

▪ An analogous procedure may be applied to the generic cubic, Eq.

yielding expressions for parameters a(Tc) and b. For the former:

𝐚 𝑻𝒄 = 𝛙
𝑹𝟐𝑻𝒄

𝟐

𝑷𝒄
𝟏. 𝟑𝟏

▪ This result may be extended to temperatures other than the critical by

introduction of a dimensionless function α(Tr) that becomes unity at

the critical temperature. Thus:
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▪ Function α(Tr) is an empirical expression specific to a  particular 
equation  of state

𝐚 𝑻𝒄 = 𝛙
α(Tr)𝑹

𝟐𝑻𝒄
𝟐

𝑷𝒄

▪ Parameter b is given by:

𝐛 = 𝛀
𝐑𝑻𝒄
𝑷𝒄

𝟏. 𝟑𝟐

▪ In these equations Ω and ψ are pure numbers, independent of 
substance and determined for a particular equation of state from the 
values assigned to ϵ and σ.

▪ The modern development of cubic equations of state was initiated 
in 1949 by publication of the Redlic /Kwong (RK) equation:'

𝐏 =
𝑹𝑻

𝑽 − 𝒃
−

𝐚(𝐓)

𝐕(𝐕 + 𝐛)
𝟏. 𝟑𝟑

• Where: α(Tr) = Tr
-1/2
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Vapor & Vapor-Like Roots of the Generic Cubic Equation 

of State

▪ For vapor or vapor-like volume, Eq. (1.30) is multiplied through

by (V-b)/RT. It can then be written:

𝐏 =
𝐑𝐓

𝐕 − 𝐛
−

𝐚 𝐓

𝐕 + 𝛜𝐛 𝐕 + 𝛔𝐛
𝟏. 𝟑𝟎

⟹ 𝐕 =
𝐑𝐓

𝐏
+ 𝐛 −

𝐚(𝐓)

𝐏

𝐕 − 𝐛

𝐕 + 𝛜𝐛 (𝐕 + 𝛔𝐛)
𝟏. 𝟑𝟒

▪ Solution for V may be by trial, iteration, or with the solve

routine of a software package.

▪ An initial estimate for V is the ideal-gas value RT/ P. For

iteration, this value is substituted on the right side of Eq. (1.34).

▪ The resulting value of V on the left is then returned to the right

side, and the process continues until the change in V is suitably

small.
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▪ An equation for Z equivalent to Eq. (1.31) is obtained through the
substitution V = ZRT/P.

▪ In addition, the definition of two dimensionless quantities leads to
simplification.

𝛃 ≡
𝐛𝐏

𝐑𝐓
𝟏. 𝟑𝟓

𝐪 ≡
𝐚 𝐓

𝐛𝐑𝐓
𝟏. 𝟑𝟔

▪ Substitution of Eq. (1.35) and (1.36) to Eq. (1.34) yields:

𝐙 = 𝟏 + 𝛃 − 𝐪𝛃
𝐙 − 𝛃

𝐙 + 𝛜𝛃 𝐙 + 𝛔𝛃
𝟏. 𝟑𝟕

▪ Iterative solution of Eq.  (1.37)  starts with the value  Z  =  1  substituted  on 
the right side.

▪ Eq. (1.35) and (1.36) in combination with Eq. (1.31) and (1.32) yield:

𝛃 = 𝛀
𝐏𝐫
𝐓𝐫

𝟏. 𝟑𝟖

𝒒 =
𝝍𝜶 𝑻𝒓
𝛀𝑻𝒓

𝟏. 𝟑𝟗
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𝐛 = 𝛀
𝐑𝐓𝐜
𝐏𝐜

𝐚 𝐓 = 𝛙
𝛂(𝐓𝐫)𝐑

𝟐𝐓𝐜
𝟐

𝐏𝐜



Liquid & Liquid -Like Roots of the Generic Cubic 

Equation of State

▪ Equation (1.34) may be solved for the V in the numerator of the final

fraction to give:

𝐕 = 𝐛 𝐕 + 𝛜𝐛 𝐕 + 𝛔𝐛 𝐑𝐓 +
𝐛𝐏

𝐚 𝐓
− 𝐕𝐏 𝟏. 𝟒𝟎

▪ This equation with a starting value of V = 𝐛 on the right side

converges upon iteration to a liquid or liquid-like root.

▪ An equation for Z equivalent to Eq. (1.40) is obtained when Eq. (1.37)

is solved for the Z in the numerator of the final fraction:

𝐙 = 𝛃 + 𝐙 + 𝛜𝛃 𝐙 + 𝛔𝛃
𝟏 + 𝛃 − 𝐙

𝐪𝛃
𝟏. 𝟒𝟏

▪ For iteration a starting value of Z = β is substituted on the right side.

Once Z is known, the volume root is V = ZRT/ P.
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Theorem of Corresponding States; Acentric Factor

▪ Experimental observation shows that compressibility factors Z for
different fluids exhibit similar behavior when correlated as a function
of reduced temperature Tr and reduced pressure Pr; by definition:

𝐓𝐫 =
𝐓

𝐓𝐜
𝐚𝐧𝐝 𝐏𝐫 =

𝐏

𝐏𝐜
▪ Reduced condition means how far away substances are from the 

critical conditions.

▪ The two-parameter theorem of corresponding states:

✓ All fluids, when compared at the same reduced temperature and
reduced pressure, have approximately the same compressibility
factor, and all deviate from ideal-gas behavior to about the
same degree.

▪ Although this theorem is very nearly exact for the simple
fluids(spherical and non polar i.e. argon, krypton, and xenon)
systematic deviations are observed for more complex fluids.
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▪ Appreciable improvement is obtained by introduction of a third
corresponding-states parameter, characteristic of molecular
structure; i.e. “acentric factor ω”, introduced by K. S. Pitzer
and coworkers.

▪ The acentric factor for a pure chemical species is defined with
reference to its vapor pressure.

▪ Since the logarithm of the vapor pressure of a pure fluid is
approximately linear in the reciprocal of absolute temperature,

𝐝 𝐥𝐨𝐠𝐏𝐫
𝐬𝐚𝐭

𝐝(𝟏/𝐓𝐫)
= 𝐒

▪ Where: Pr
sat is the reduced vapor pressure,

Tr is the reduced temperature, and

S is the slope of a plot of log Pr
sat vs. 1/Tr.

Note that "log" denotes a logarithm to the base 10.
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▪ As shown the figure below; Pitzer noted that all vapor-

pressure data for the simple fluids (Ar, Kr, Xe) lie on the

same line when plotted as log Pr
sat vs. 1/Tr, and that the line

passes through log Pr
sat = -1.0 at Tr = 0.7.

Cubic Equations of State

Fig: Approximate temperature dependence 

of the reduced vapor pressure

▪ The acentric factor is defined
as this difference evaluated at
Tr = 0.7:

𝝎 = −𝟏. 𝟎 − 𝒍𝒐𝒈(𝑷𝒓
𝒔𝒂𝒕)𝑻𝒓=𝟎.𝟕

▪ Therefore ω can be determined for
any fluid from Tc, Pc, and a single
vapor-pressure measurement
made at Tr = 0.7.

▪ Values of ω and the critical
constants Tc, Pc, and Vc for a
number of fluids are listed in
App. B.



▪ The definition of ω makes its value zero for argon, krypton, and

xenon, and experimental data yield compressibility factors for all

three fluids that are correlated by the same curves when Z is

represented as a function of Tr and Pr.

▪ This is the basic premise of the following three-parameter

theorem of corresponding states:

✓ All fluids having the same value of ω, when compared at

the same Tr and Pr have about the same value of Z, and all

deviate from ideal-gas behavior to about the same degree.
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▪ Equations of state which express Z as a function of T, and P, are

said to be generalized, because of their general applicability to

all gases and liquids. In General:

i. Express Z as functions of Tr and Pr only, yield 2-parameter

corresponding states correlations:

✓ The van der Waals equation

✓ The Redlich/Kwong equation

ii. The acentric factor enters through function σ(Tr;ω) as an

additional parameter, yield 3-parameter corresponding state

correlations:

✓ The Soave/Redlich/Kwong(SRK) equation

✓ The Peng/Robinson (PR) equation
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▪ The numerical assignments for parameters ϵ, σ, Ω and ψ both for these

equations and for the van der Waals and Redlic/Kwong equations are

given in Table below.

▪ Expressions are also given for α(Tr ) for the SRK and PR equations.

✓ αSPK 𝑇𝑟; 𝜔 = 1 + 0.480 + 1.574𝜔 − 0.176𝜔2 1 − 𝑇𝑟
1/2 2

✓ αPR 𝑇𝑟; 𝜔 = 1 + 0.37464 + 1.54226𝜔 − 0.26992𝜔2 1 − 𝑇𝑟
1/2 2

Cubic Equations of State

EOS 𝛼 𝑇𝑟 𝜎 𝜖 Ω 𝜓 𝑍𝑐

Van dar Waals 1 0 0 1/8 27/64 3/8

Redlich-Kwong 𝑇𝑟
−1/2 1 0 0.08664 0.42748 1/3

SRK αSPK(𝑇𝑟; 𝜔) 1 0 0.08664 0.42748 1/3

(PR) αPR(𝑇𝑟; 𝜔) 1 + 2 1 − 2 0.07779 0.45724 0.30740



Pitzer Correlations for the Compressibility Factor:

▪ Generalized correlations find widespread use;

▪ In which the most popular are correlations developed by Pitzer
and coworkers for the compressibility factor Z and for the
second virial coefficient B.

▪ Pitzer Correlations for the Compressibility Factor:

𝐙 = 𝐙𝟎 +𝛚𝐙𝟏 𝟏. 𝟒𝟐

▪ Where; Z0 and Z1 are functions of both Tr and Pr.

▪ When ω = 0, as is the case for the simple fluids, the second term
disappears, and Z0 becomes identical with Z.

▪ Thus a generalized correlation for Z as a function of Tr and Pr

based on data for just argon, krypton, and xenon provides the
relationship:

Z0 = F0(Tr,Pr).
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Pitzer Correlations for the Second Virial Coefficient

▪ The complexity of the functions Z0 and Z1 precludes their accurate

representation by simple equations.

▪ However, we can give approximate analytical expression to these

functions for a limited range of pressures.

▪ The basis for this is the simplest form of the virial equation:

▪ Thus, Pitzer and coworkers proposed a second correlation, which

yields values for BPc/RTc:

𝐙 = 𝟏 +
𝐁𝐏

𝑹𝑻
= 1 +

𝐁𝐏𝐜

𝑹𝑻𝒄

𝑷𝒓

𝑻𝒓
𝐁𝐏𝐜
𝐑𝐓𝐜

= 𝐁𝟎 +𝛚𝐁𝟏 𝟏. 𝟒𝟑

▪ Together, these two equations become:

𝐙 = 𝟏 + 𝐁𝟎
𝐏𝐫
𝐓𝐫

+𝛚𝐁𝟏
𝐏𝐫
𝐓𝐫

𝟏. 𝟒𝟒
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Pitzer Correlations for the Second Virial Coefficient

▪ Comparison of this equation with Eq. (1.42) provides the following

identifications:

𝐙𝟎 = 𝟏 + 𝐁𝟎
𝐏𝐫
𝐓𝐫
; 𝐀𝐧𝐝

𝐙𝟏 = 𝐁𝟏
𝐏𝐫
𝐓𝐫

𝟏. 𝟒𝟓

▪ Second virial coefficients are functions of temperature only, and

similarly B0 and B1 are functions of reduced temperature only. They

are well represented by the following equations:

𝑩𝟎 = 𝟎. 𝟎𝟖𝟑 −
𝟎. 𝟒𝟐𝟐

𝑻𝒓
𝟏.𝟔 𝟏. 𝟒𝟔

𝑩𝟏 = 𝟎. 𝟏𝟑𝟗 −
𝟎. 𝟏𝟕𝟐

𝑻𝒓
𝟒.𝟐

𝟏. 𝟒𝟕
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❑ Given that the vapor pressure of n-butane at 350 K is

9.4573 bar, find the molar volumes of

A) Saturated vapor

B) Saturated liquid n-butane at these conditions as given 

by the Redlick/Kwong equation 

Values of Tc and Pc for n-butane from App.B are 425.1 k 

and 37.96 bar respectively. 
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❑ Given that the vapor pressure of n-butane at 350 K is

9.4573 bar, find the molar volumes of

A) Saturated vapor

B) Saturated liquid n-butane ate these conditions as 

given by the Redlick/Kwong equation 

Example-2

✓ αSPK 𝑇𝑟; 𝜔 = 1 + 0.480 + 1.574𝜔 − 0.176𝜔2 1 − 𝑇𝑟
1/2 2

✓ αPR 𝑇𝑟; 𝜔 = 1 + 0.37464 + 1.54226𝜔 − 0.26992𝜔2 1 − 𝑇𝑟
1/2 2

EOS 𝛼 𝑇𝑟 𝜎 𝜖 Ω 𝜓 𝑍𝑐

Van dar Waals 1 0 0 1/8 27/64 3/8

Redlich-Kwong 𝑻𝒓
−𝟏/𝟐 1 0 0.08664 0.42748 1/3

SRK αSPK(𝑇𝑟; 𝜔) 1 0 0.08664 0.42748 1/3

(PR) αPR(𝑇𝑟; 𝜔) 1 + 2 1 − 2 0.07779 0.45724 0.30740









❑ For comparison, values of Vv and Vl calculated for the

same conditions by all four cubic equations of state are:
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