Addis Ababa University Addis Ababa Institute of Technology

School of Electrical and Computer Engineering

Electromagnetic Fields ECEG - 2122 Assignment - 3

Solve the following problems. Show all relevant steps clearly and neatly. Justify your assumptions. Your results should include units. Unrelated and irrelevant text may result in deduction of marks.

- Region 1 (z < 0) contains a dielectric for which $\varepsilon_r = 2.5$, while region 2 (z > 0) is characterized by $\varepsilon_r = 4$. Let $\mathbf{E}_1 = -30\mathbf{a}_x + 50\mathbf{a}_y + 70\mathbf{a}_z$ V/m and find: (a) \mathbf{D}_2 , (b) \mathbf{P}_2 , (c) the angle between E_1 and the normal to the surface.
- Two homogeneous dielectric regions 1 ($\rho \le 4$ cm) and 2 ($\rho \ge 4$ cm) have dielectric 2. constants 3.5 and 1.5, respectively. If $\mathbf{D}_2 = 12\mathbf{a}_{\rho} - 6\mathbf{a}_{\phi} + 9\mathbf{a}_z \text{ nC/m}^2$, calculate: (a) \mathbf{E}_1 and \mathbf{D}_1 , (b) \mathbf{P}_2 and ρ_{pv2} , (c) the energy density for each region.
- (a) Given that $E = 15a_x 8a_z$ V/m at a point on a conductor surface, what is the 3. surface charge density at that point? Assume $\varepsilon = \varepsilon_0$.
 - (b) Region $y \ge 2$ is occupied by a conductor, If the surface charge on the conductor is -20 nC/m^2 , find **D** just outside the conductor.
- A parallel-plate capacitor has plate area 200 cm² and plate separation 3 mm. The charge density is $1 \mu \text{C/m}^2$ with air as dielectric. Find
 - (a) The capacitance of the capacitor
 - (a) The capacitance of the capacitor
 (b) The voltage between the plates
 - (c) The force with which the plates attract each other
- A parallel-plate capacitor has its plates at x = 0, d and the space between the plates is 5. filled with an inhomogeneous material with permittivity $\varepsilon = \varepsilon_0 \left(1 + \frac{x}{d} \right)$. If the plate at x = d is maintained at V_0 while the plate at x = 0 is grounded, find:
 - (a) V and E
 - (b) **P**
 - (c) $\rho_{\rho s}$ at x = 0, d
- (a) State Ampere's circuit law. 6.
 - (b) A hollow conducting cylinder has inner radius a and outer radius b and carries current I along the positive z-direction. Find **H** everywhere.
- If $\mathbf{H} = y\mathbf{a}_x x\mathbf{a}_y$ A/m on plane z = 0, (a) determine the current density and (b) verify Ampere's law by taking the circulation of H around the edge of the rectangle z = 0, 0 < x < 3, -1 < y < 4.Land Colombia Colombia Carlo and Colombia Carlo Colombia Carlo Car

8. For a current distribution in free space,

$$\mathbf{A} = (2x^2y + yz)\mathbf{a}_x + (xy^2 - xz^3)\mathbf{a}_y - (6xyz - 2x^2y^2)\mathbf{a}_z \text{ Wb/m}$$

- (a) Calculate B.
- (b) Find the magnetic flux through a loop described by x = 1, 0 < y, z < 2.
- (c) Show that $\nabla \cdot \mathbf{A} = 0$ and $\nabla \cdot \mathbf{B} = 0$.
- 9. A block of iron ($\mu = 5000 \mu_0$) is placed in a uniform magnetic field with 1.5 Wb/m². If iron consists of 8.5 \times 10²⁸ atoms/m³, calculate: (a) the magnetization **M**, (b) the average magnetic current.
- 10. In a ferromagnetic material ($\mu = 4.5\mu_0$),

$$\mathbf{B} = 4y\mathbf{a}_z \, \mathrm{mWb/m^2}$$

- calculate: (a) χ_m , (b) **H**, (c) **M**, (d) \mathbf{J}_b .
- 11. Region $0 \le z \le 2$ m is filled with an infinite slab of magnetic material ($\mu = 2.5\mu_0$). If the surfaces of the slab at z = 0 and z = 2, respectively, carry surface currents $30\mathbf{a}_x$ A/m and $-40\mathbf{a}_x$ A/m as in Figure 8.37, calculate **H** and **B** for
 - (a) z < 0
 - (b) 0 < z < 2
 - (c) z > 2
- 12. Prove that the mutual inductance between the closed wound coaxial solenoids of length ℓ_1 and ℓ_2 ($\ell_1 \gg \ell_2$), turns N_1 and N_2 , and radii r_1 and r_2 with $r_1 \approx r_2$ is

$$M_{12} = \frac{\mu N_1 N_2}{\ell_1} \, \pi r_1^2$$