

Assay for Urea

Yoseph Cherinet (BSc, MSc, Asst. Prof)

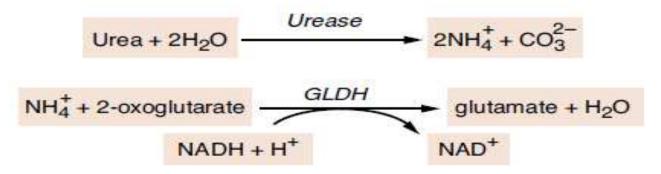
Biochemistry Lab

Rationale

- Urea is product of amino acid breakdown in the liver & readily filtered from the plasma by the glomerulus.
- Decreased renal function, decreased blood flow to the kidneys causes an increase in plasma urea concentration as a result of compromised urea excretion.
- Decreased plasma urea concentration include low protein intake, severe liver disease and during late pregnancy as a result of increased protein synthesis.

Specimen requirements & interfering substances

- Plasma /serum or urine can be used
 - Serum is recommended for the assay. Plasma may also be used, provided that the anticoagulant used contains neither ammonium nor fluoride salts. Fluoride inhibit urease & ammonium ions interfere the test.
- Hemolysis and lipemic samples.


- Urea is susceptible to bacterial decomposition, so samples (particularly urine) that can not be analyzed within a few hours should be refrigerated.
 - This due to urease producing bacteria such as S.aureus, proteus spp., Klebsiella spp.

Analytical methodology

- The enzyme urease hydrolyzes urea in the sample and the ammonium ion (NH_4) produced in the reaction is quantified.
 - Kinetic approach
 - Endpoint approach

Kinetic approach

 The most common method couples the urease reaction with glutamate dehydrogenase (GLDH) and the rate of disappearance of NADH at 340 nm is measured.

Reagents in use

- Working regent : Urease, GIDH, NADH
- Urea Standard : 80mg/dl

Procedure

Reaction temperature	37°
Working reagent	1000ul
Sample or standard	10ul

✓Mix gently by inversion, insert the cuvette in to the cell holder & start stop watch.

✓ Record the initial absorbance exactly after 30 seconds (A1) & exactly after 90 seconds (A2).

✓ Calculate the difference between absorbances

Calculation

$$\frac{(A_1 - A_2)_{\text{Sample}}}{(A_1 - A_2)_{\text{Standard}}} \times C_{\text{Standard}} = \text{mg/dL urea}$$

Endpoint approach

 Ammonium from the urease reaction react with saliciate & hyocholrite to form green dye whose color the intensity is directly proportional to the concentration of urea in the sample. The absorbance is measured at 578nm.

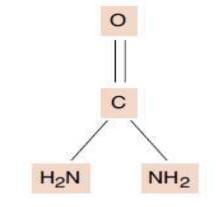
Reagents in use

- RGT 1: Saliciate, Urease
- RGT 2: Hypochlorite
- STD: Urea 80mg/dl

Procedure

	Blank	Standard	Sample				
Reagent1	1000ul	1000ul	1000ul				
Standard		10ul					
Sample			10ul				
Mix & incubate at +37° for 5 minutes or 10 minutes at +20-25° c							
Reagent 2	1000ul	1000ul	1000ul				
Mix and incubate at +37° for 5 minutes or 10 minutes at +20-25° & read the absorbance against blank							

Calculation $C_{test} = \frac{A test X C std}{A std}$


Normal values in mg/dl (Urea-N)	Dog	Cat	Cow	Sheep	Goat	Man
	8.8-25.9	15.4-31.2	7.8-24.6	10.3-26.0	12.6-25.8	4.7-23.0

Calculation

- A conversion factor used to correlate the nitrogen content to urea.
- ✓ Nitrogen gram molecular weight:
- \checkmark Urea contains 2N:
- ✓ Molecular weight of urea:

60/28 = 2.14

Urea N x 2.14 = Urea Urea x 0.466 = Urea-N 14 g/mole28 g/mole of urea60 g/mole

