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The New State-of-the-Art in Information Security: Now Covers the Economics of Cyber
Security and the Intersection of Privacy and Information Security

For years, IT and security professionals and students have turned to Security in Computing as
the definitive guide to information about computer security attacks and countermeasures. In their
new fourth edition, Charles P. Pfleeger and Shari Lawrence Pfleeger have thoroughly updated their
classic guide to reflect today's newest technologies, standards, and trends.

The authors first introduce the core concepts and vocabulary of computer security, including
attacks and controls. Next, the authors systematically identify and assess threats now facing
programs, operating systems, database systems, and networks. For each threat, they offer best-
practice responses.

Security in Computing, Fourth Edition, goes beyond technology, covering crucial management
issues faced in protecting infrastructure and information. This edition contains an all-new chapter
on the economics of cybersecurity, explaining ways to make a business case for security
investments. Another new chapter addresses privacy--from data mining and identity theft, to RFID
and e-voting.

New coverage also includes

Programming mistakes that compromise security: man-in-the-middle, timing, and privilege
escalation attacks

Web application threats and vulnerabilities

Networks of compromised systems: bots, botnets, and drones

Rootkits--including the notorious Sony XCP

Wi-Fi network security challenges, standards, and techniques

New malicious code attacks, including false interfaces and keystroke loggers

Improving code quality: software engineering, testing, and liability approaches



Biometric authentication: capabilities and limitations

Using the Advanced Encryption System (AES) more effectively

Balancing dissemination with piracy control in music and other digital content

Countering new cryptanalytic attacks against RSA, DES, and SHA

Responding to the emergence of organized attacker groups pursuing profit
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Foreword
In the 1950s and 1960s, the prominent conference gathering places for practitioners and users of
computer technology were the twice yearly Joint Computer Conferences (JCCs)initially called the
Eastern and Western JCCs, but later renamed the Spring and Fall JCCs and even later, the annual
National (AFIPS) Computer Conference. From this milieu, the topic of computer securitylater to be
called information system security and currently also referred to as "protection of the national
information infrastructure"moved from the world of classified defense interests into public view.

A few peopleRobert L. Patrick, John P. Haverty, and I among othersall then at the RAND
Corporationhad been talking about the growing dependence of the country and its institutions on
computer technology. It concerned us that the installed systems might not be able to protect
themselves and their data against intrusive and destructive attacks. We decided that it was time to
bring the security aspect of computer systems to the attention of the technology and user
communities.

The enabling event was the development within the National Security Agency (NSA) of a remote-
access time-sharing system with a full set of security access controls, running on a Univac 494
machine, and serving terminals and users not only within the headquarters building at Fort George
G. Meade, Maryland, but also worldwide. Fortuitously, I knew details of the system.

Persuading two others from RAND to helpDr. Harold Peterson and Dr. Rein Turnplus Bernard Peters
of NSA, I organized a group of papers and presented it to the SJCC conference management as a
ready-made additional paper session to be chaired by me. [1] The conference accepted the offer,
and the session was presented at the Atlantic City (NJ) Convention Hall in 1967.

Soon thereafter and driven by a request from a defense contractor to include both defense classified
and business applications concurrently in a single mainframe machine functioning in a remote-
access mode, the Department of Defense, acting through the Advanced Research Projects Agency
(ARPA) and later the Defense Science Board (DSB), organized a committee, which I chaired, to
study the issue of security controls for computer systems. The intent was to produce a document
that could be the basis for formulating a DoD policy position on the matter.

The report of the committee was initially published as a classified document and was formally
presented to the sponsor (the DSB) in January 1970. It was later declassified and republished (by
the RAND Corporation) in October 1979. [2] It was widely circulated and became nicknamed "the
Ware report." The report and a historical introduction are available on the RAND web site. [3]

Subsequently, the United States Air Force (USAF) sponsored another committee chaired by James P.
Anderson. [4] Its report, published in 1972, recommended a 6-year R&D security program totaling
some $8M. [5] The USAF responded and funded several projects, three of which were to design and
implement an operating system with security controls for a specific computer.

Eventually these activities led to the "Criteria and Evaluation" program sponsored by the NSA. It
culminated in the "Orange Book" [6] in 1983 and subsequently its supporting array of documents,
which were nicknamed "the rainbow series." [7] Later, in the 1980s and on into the 1990s, the
subject became an international one leading to the ISO standard known as the "Common Criteria."



[8]

It is important to understand the context in which system security was studied in the early decades.
The defense establishment had a long history of protecting classified information in document form.
It had evolved a very elaborate scheme for compartmenting material into groups, sub-groups and
super-groups, each requiring a specific personnel clearance and need-to-know as the basis for
access. [9] It also had a centuries-long legacy of encryption technology and experience for
protecting classified information in transit. Finally, it understood the personnel problem and the
need to establish the trustworthiness of its people. And it certainly understood the physical security
matter.

Thus, "the" computer security issue, as it was understood in the 1960s and even later, was how to
create in a computer system a group of access controls that would implement or emulate the
processes of the prior paper world, plus the associated issues of protecting such software against
unauthorized change, subversion, and illicit use, and of embedding the entire system in a secure
physical environment with appropriate management oversights and operational doctrine and
procedures. The poorly understood aspect of security was primarily the software issue with,
however, a collateral hardware aspect; namely, the risk that it might malfunctionor be
penetratedand subvert the proper behavior of software. For the related aspects of communications,
personnel, and physical security, there was a plethora of rules, regulations, doctrine, and experience
to cover them. It was largely a matter of merging all of it with the hardware/software aspects to
yield an overall secure system and operating environment.

However, the world has now changed in essential ways. The desktop computer and workstation
have appeared and proliferated widely. The Internet is flourishing and the reality of a World Wide
Web is in place. Networking has exploded and communication among computer systems is the rule,
not the exception. Many commercial transactions are now web-based; many commercial
communitiesthe financial one in particularhave moved into a web posture. The "user" of any
computer system can literally be anyone in the world. Networking among computer systems is
ubiquitous; informationsystem outreach is the goal.

The net effect of all of this has been to expose the computer-based information systemits hardware,
its software, its software processes, its databases, its communicationsto an environment over which
no onenot end-user, not network administrator or system owner, not even governmenthas control.
What must be done is to provide appropriate technical, procedural, operational, and environmental
safeguards against threats as they might appear or be imagined, embedded in a societally
acceptable legal framework.

And appear threats didfrom individuals and organizations, national and international. The
motivations to penetrate systems for evil purpose or to create malicious softwaregenerally with an
offensive or damaging consequencevary from personal intellectual satisfaction to espionage, to
financial reward, to revenge, to civil disobedience, and to other reasons. Information-system
security has moved from a largely self-contained bounded environment interacting with a generally
known and disciplined user community to one of worldwide scope with a body of users that may not
be known and are not necessarily trusted. Importantly, security controls now must deal with
circumstances over which there is largely no control or expectation of avoiding their impact.
Computer security, as it has evolved, shares a similarity with liability insurance; they each face a
threat environment that is known in a very general way and can generate attacks over a broad
spectrum of possibilities; but the exact details or even time or certainty of an attack is unknown
until an event has occurred.

On the other hand, the modern world thrives on information and its flows; the contemporary world,
society, and institutions cannot function without their computer-communication-based information



systems. Hence, these systems must be protected in all dimensionstechnical, procedural,
operational, environmental. The system owner and its staff have become responsible for protecting
the organization's information assets.

Progress has been slow, in large part because the threat has not been perceived as real or as
damaging enough; but also in part because the perceived cost of comprehensive information system
security is seen as too high compared to the risksespecially the financial consequencesof not doing
it. Managements, whose support with appropriate funding is essential, have been slow to be
convinced.

This book addresses the broad sweep of issues above: the nature of the threat and system
vulnerabilities (Chapter 1); cryptography (Chapters 2 and 12); the Common Criteria (Chapter 5);
the World Wide Web and Internet (Chapter 7); managing risk (Chapter 8); software vulnerabilities
(Chapter 3); and legal, ethical, and privacy issues (Chapters 10 and 11). The book also describes
security controls that are currently available such as encryption protocols, software development
practices, firewalls, and intrusion-detection systems. Overall, this book provides a broad and sound
foundation for the information-system specialist who is charged with planning and/or organizing
and/or managing and/or implementing a comprehensive information-system security program.

Yet to be solved are many technical aspects of information securityR&D for hardware, software,
systems, and architecture; and the corresponding products. Notwithstanding, technology per se is
not the long pole in the tent of progress. Organizational and management motivation and
commitment to get the security job done is. Today, the collective information infrastructure of the
country and of the world is slowly moving up the learning curve; every mischievous or malicious
event helps to push it along. The terrorism-based events of recent times are helping to drive it. Is it
far enough up the curve to have reached an appropriate balance between system safety and threat?
Almost certainly, the answer is, "No, not yet; there is a long way to go." [10]

Willis H. Ware
The RAND Corporation
Santa Monica, California
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Preface
Every day, the news media give more and more visibility to the effects of computer security on our
daily lives. For example, on a single day in June 2006, the Washington Post included three
important articles about security. On the front page, one article discussed the loss of a laptop
computer containing personal data on 26.5 million veterans. A second article, on the front page of
the business section, described Microsoft's new product suite to combat malicious code, spying, and
unsecured vulnerabilities in its operating system. Further back, a third article reported on a major
consumer electronics retailer that inadvertently installed software on its customers' computers,
making them part of a web of compromised slave computers. The sad fact is that news like this
appears almost every day, and has done so for a number of years. There is no end in sight.

Even though the language of computer securityterms such as virus, Trojan horse, phishing,
spywareis common, the application of solutions to computer security problems is uncommon.
Moreover, new attacks are clever applications of old problems. The pressure to get a new product or
new release to market still in many cases overrides security requirements for careful study of
potential vulnerabilities and countermeasures. Finally, many people are in denial, blissfully ignoring
the serious harm that insecure computing can cause.

Why Read This Book?

Admit it. You know computing entails serious risks to the privacy and integrity of your data, or the
operation of your computer. Risk is a fact of life: Crossing the street is risky, perhaps more so in
some places than others, but you still cross the street. As a child you learned to stop and look both
ways before crossing. As you became older you learned to gauge the speed of oncoming traffic and
determine whether you had the time to cross. At some point you developed a sense of whether an
oncoming car would slow down or yield. We hope you never had to practice this, but sometimes you
have to decide whether darting into the street without looking is the best means of escaping danger.
The point is all these matters depend on knowledge and experience. We want to help you develop
the same knowledge and experience with respect to the risks of secure computing.

How do you control the risk of computer security?

Learn about the threats to computer security.

Understand what causes these threats by studying how vulnerabilities arise in the development
and use of computer systems.

Survey the controls that can reduce or block these threats.

Develop a computing styleas a user, developer, manager, consumer, and voterthat balances
security and risk.

The field of computer security changes rapidly, but the underlying problems remain largely



unchanged. In this book you will find a progression that shows you how current complex attacks are
often instances of more fundamental concepts.

Users and Uses of This Book

This book is intended for the study of computer security. Many of you want to study this topic:
college and university students, computing professionals, managers, and users of all kinds of
computer-based systems. All want to know the same thing: how to control the risk of computer
security. But you may differ in how much information you need about particular topics: Some want
a broad survey, while others want to focus on particular topics, such as networks or program
development.

This book should provide the breadth and depth that most readers want. The book is organized by
general area of computing, so that readers with particular interests can find information easily. The
chapters of this book progress in an orderly manner, from general security concerns to the
particular needs of specialized applications, and finally to overarching management and legal issues.
Thus, the book covers five key areas of interest:

introduction: threats, vulnerabilities, and controls

encryption: the "Swiss army knife" of security controls

code: security in programs, including applications, operating systems, database management
systems, and networks

management: building and administering a computing installation, from one computer to
thousands, and understanding the economics of cybersecurity

law, privacy, ethics: non-technical approaches by which society controls computer security
risks

These areas are not equal in size; for example, more than half the book is devoted to code because
so much of the risk is at least partly caused by program code that executes on computers.

The first chapter introduces the concepts and basic vocabulary of computer security. Studying the
second chapter provides an understanding of what encryption is and how it can be used or misused.
Just as a driver's manual does not address how to design or build a car, Chapter 2 is not for
designers of new encryption schemes, but rather for users of encryption. Chapters 3 through 7
cover successively larger pieces of software: individual programs, operating systems, complex
applications like database management systems, and finally networks, which are distributed
complex systems. Chapter 8 discusses managing and administering security, and describes how to
find an acceptable balance between threats and controls. Chapter 9 addresses an important
management issue by exploring the economics of cybersecurity: understanding and communicating
the costs and benefits. In Chapter 10 we turn to the personal side of computer security as we
consider how security, or its lack, affects personal privacy. Chapter 11 covers the way society at
large addresses computer security, through its laws and ethical systems. Finally, Chapter 12 returns
to cryptography, this time to look at the details of the encryption algorithms themselves.

Within that organization, you can move about, picking and choosing topics of particular interest.
Everyone should read Chapter 1 to build a vocabulary and a foundation. It is wise to read Chapter 2



because cryptography appears in so many different control techniques. Although there is a general
progression from small programs to large and complex networks, you can in fact read Chapters 3
through 7 out of sequence or pick topics of greatest interest. Chapters 8 and 9 may be just right for
the professional looking for non-technical controls to complement the technical ones of the earlier
chapters. These chapters may also be important for the computer science student who wants to look
beyond a narrow view of bytes and protocols. We recommend Chapters 10 and 11 for everyone,
because those chapters deal with the human aspects of security: privacy, laws, and ethics. All
computing is ultimately done to benefit humans, and so we present personal risks and approaches
to computing. Chapter 12 is for people who want to understand some of the underlying
mathematics and logic of cryptography.

What background should you have to appreciate this book? The only assumption is an
understanding of programming and computer systems. Someone who is an advanced
undergraduate or graduate student in computer science certainly has that background, as does a
professional designer or developer of computer systems. A user who wants to understand more
about how programs work can learn from this book, too; we provide the necessary background on
concepts of operating systems or networks, for example, before we address the related security
concerns.

This book can be used as a textbook in a one- or two-semester course in computer security. The
book functions equally well as a reference for a computer professional or as a supplement to an
intensive training course. And the index and extensive bibliography make it useful as a handbook to
explain significant topics and point to key articles in the literature. The book has been used in
classes throughout the world; instructors often design one-semester courses that focus on topics of
particular interest to the students or that relate well to the rest of a curriculum.

What is New in This Book?

This is the fourth edition of Security in Computing, first published in 1989. Since then, the specific
threats, vulnerabilities, and controls have changed, even though many of the basic notions have
remained the same.

The two changes most obvious to people familiar with the previous editions are the additions of two
new chapters, on the economics of cybersecurity and privacy. These two areas are receiving more
attention both in the computer security community and in the rest of the user population.

But this revision touched every existing chapter as well. The threats and vulnerabilities of computing
systems have not stood still since the previous edition in 2003, and so we present new information
on threats and controls of many types. Change include:

the shift from individual hackers working for personal reasons to organized attacker groups
working for financial gain

programming flaws leading to security failures, highlighting man-in-the-middle, timing, and
privilege escalation errors

recent malicious code attacks, such as false interfaces and keystroke loggers

approaches to code quality, including software engineering, testing, and liability approaches



rootkits, including ones from unexpected sources

web applications' threats and vulnerabilities

privacy issues in data mining

WiFi network security

cryptanalytic attacks on popular algorithms, such as RSA, DES, and SHA, and
recommendations for more secure use of these

bots, botnets, and drones, making up networks of compromised systems

update to the Advanced Encryption System (AES) with experience from its first several years
of its use

the divide between sound authentication approaches and users' actions

biometric authentication capabilities and limitations

the conflict between efficient production and use of digital content (e.g., music and videos) and
control of piracy

In addition to these major changes, there are numerous small corrective and clarifying ones,
ranging from wording and notational changes for pedagogic reasons to replacement, deletion,
rearrangement, and expansion of sections.
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Chapter 1. Is There a Security Problem in
Computing?

In this chapter

The risks involved in computing

The goals of secure computing: confidentiality, integrity, availability

The threats to security in computing: interception, interruption, modification, fabrication

Controls available to address these threats: encryption, programming controls, operating
systems, network controls, administrative controls, law, and ethics



1.1. What Does "Secure" Mean?

How do we protect our most valuable assets? One option is to place them in a safe place, like a
bank. We seldom hear of a bank robbery these days, even though it was once a fairly lucrative
undertaking. In the American Wild West, banks kept large amounts of cash on hand, as well as gold
and silver, which could not be traced easily. In those days, cash was much more commonly used
than checks. Communications and transportation were primitive enough that it might have been
hours before the legal authorities were informed of a robbery and days before they could actually
arrive at the scene of the crime, by which time the robbers were long gone. To control the situation,
a single guard for the night was only marginally effective. Should you have wanted to commit a
robbery, you might have needed only a little common sense and perhaps several days to analyze
the situation; you certainly did not require much sophisticated training. Indeed, you usually learned
on the job, assisting other robbers in a form of apprenticeship. On balance, all these factors tipped
very much in the favor of the criminal, so bank robbery was, for a time, considered to be a
profitable business. Protecting assets was difficult and not always effective.

Today, however, asset protection is easier, with many factors working against the potential criminal.
Very sophisticated alarm and camera systems silently protect secure places like banks whether
people are around or not. The techniques of criminal investigation have become so effective that a
person can be identified by genetic material (DNA), fingerprints, retinal patterns, voice, a composite
sketch, ballistics evidence, or other hard-to-mask characteristics. The assets are stored in a safer
form. For instance, many bank branches now contain less cash than some large retail stores
because much of a bank's business is conducted with checks, electronic transfers, credit cards, or
debit cards. Sites that must store large amounts of cash or currency are protected with many levels
of security: several layers of physical systems, complex locks, multiple-party systems requiring the
agreement of several people to allow access, and other schemes. Significant improvements in
transportation and communication mean that police can be at the scene of a crime in minutes;
dispatchers can alert other officers in seconds about the suspects to watch for. From the criminal's
point of view, the risk and required sophistication are so high that there are usually easier ways
than bank robbery to make money.

Protecting Valuables

This book is about protecting our computer-related assets, not about protecting our money and gold
bullion. That is, we plan to discuss security for computing systems, not banks. But we can learn
from our analysis of banks because they tell us some general principles about protection. In other
words, when we think about protecting valuable information, we can learn a lot from the way we
have protected other valuables in the past. For example, Table 1-1 presents the differences between
how people protect computing systems and how banks protect money. The table reinforces the
point that we have many challenges to address when protecting computers and data, but the nature
of the challenges may mean that we need different and more effective approaches than we have
used in the past.



Table 1-1. Protecting Money vs. Protecting Information.

Characteristic Bank Protecting Money People Protecting Information

Size and
portability

Sites storing money are
large, unwieldy, not at all
portable. Buildings require
guards, vaults, many
levels of physical security
to protect money.

Items storing valuable assets are very
small and portable. The physical
devices in computing can be so small
that thousands of dollars'worth of
computing gear can fit comfortably in a
briefcase.

Ability to avoid
physical
contact

Difficult. When banks deal
with physical currency, a
criminal must physically
demand the money and
carry it away from the
bank's premises.

Simple. When information is handled
electronically, no physical contact is
necessary. Indeed, when banks handle
money electronically, almost all
transactions can be done without any
physical contact. Money can be
transferred through computers, mail,
or telephone.

Value of assets Very high. Variable, from very high to very low.
Some information, such as medical
history, tax payments, investments, or
educational background, is
confidential. Other information, about
troop movements, sales strategies,
buying patterns, can be very sensitive.
Still other information, such as address
and phone number, may be of no
consequence and easily accessible by
other means.

Protecting our valuables, whether they are expressed as information or in some other way, ranges
from quite unsophisticated to very sophisticated. We can think of the Wild West days as an example
of the "unsophisticated" end of the security spectrum. And even today, when we have more
sophisticated means of protection than ever before, we still see a wide range in how people and
businesses actually use the protections available to them.

In fact, we can find far too many examples of computer security that seem to be back in the Wild
West days. Although some organizations recognize computers and their data as valuable and
vulnerable resources and have applied appropriate protection, others are dangerously deficient in
their security measures. In some cases, the situation is even worse than that in the Wild West; as
Sidebar 1-1 illustrates, some enterprises do not even recognize that their resources should be
controlled and protected. And as software consumers, we find that the lack of protection is all the
more dangerous when we are not even aware that we are susceptible to software piracy or
corruption.



Sidebar 1-1: Protecting Software in Automobile Control Systems

The amount of software installed in an automobile grows larger from year to year. Most
cars, especially more expensive ones, use dozens of microcontrollers to provide a
variety of features to entice buyers. There is enough variation in microcontroller range
and function that the Society of Automotive Engineers (Warrendale, Pennsylvania) has
set standards for the U.S. automotive industry's software. Software in the
microcontrollers ranges through three classes:

low speed (class Aless than 10 kb per second) for convenience features, such as
radios

medium speed (class B10 to 125 kb per second) for the general transfer of
information, such as that related to emissions, speed, or instrumentation

high speed (class Cmore than 125 kb per second) for real-time control, such as
the power train or a brake-by-wire system

These digital cars use software to control individual subsystems, and then more
software to connect the systems in a network [WHI01].

However, the engineers designing and implementing this software see no reason to
protect it from hackers. Whitehorn-Umphres reports that, from the engineers' point of
view, the software is too complicated to be understood by a hacker. "And even if they
could [understand it], they wouldn't want to."

Whitehorn-Umphres points out a major difference in thinking between hardware
designers and software designers. "As hardware engineers, they assumed that, perhaps
aside from bolt-on aftermarket parts, everything else is and should be a black box." But
software folks have a different take: "As a software designer, I assume that all digital
technologies are fair game for being played with. . . . it takes a special kind of
personality to look at a software-enabled device and see the potential for manipulation
and changea hacker personality."

He points out that hot-rodders and auto enthusiasts have a long history of tinkering and
tailoring to make specialized changes to mass-produced cars. And the unprotected
software beckons them to continue the tradition. For instance, there are reports of
recalibrating the speedometer of two types of Japanese motorcycles to fool the bike
about how fast it is really going (and thereby enabling faster-than-legal speeds).
Whitehorn-Umphres speculates that soon you will be able to "download new ignition
mappings from your PC. The next step will be to port the PC software to handheld
computers so as to make on-the-road modifications that much easier."

The possibility of crime is bad enough. But worse yet, in the event of a crime, some organizations
neither investigate nor prosecute for fear that the revelation will damage their public image. For
example, would you feel safe depositing your money in a bank that had just suffered a several
million-dollar loss through computer-related embezzlement? In fact, the breach of security makes
that bank painfully aware of all its security weaknesses. Once bitten, twice shy; after the loss, the



bank will probably enhance its security substantially, quickly becoming safer than a bank that had
not been recently victimized.

Even when organizations want to take action against criminal activity, criminal investigation and
prosecution can be hindered by statutes that do not recognize electromagnetic signals as property.
The news media sometimes portrays computer intrusion by teenagers as a prank no more serious
than tipping over an outhouse. But, as we see in later chapters, computer intrusion can hurt
businesses and even take lives. The legal systems around the world are rapidly coming to grips with
the nature of electronic property as intellectual property critical to organizational or mission
success; laws are being implemented and court decisions declared that acknowledge the value of
information stored or transmitted via computers. But this area is still new to many courts, and few
precedents have been established.

Throughout this book, we look at examples of how computer security affects our livesdirectly and
indirectly. And we examine techniques to prevent security breaches or at least to mitigate their
effects. We address the security concerns of software practitioners as well as those professionals,
managers, and users whose products, services, and well-being depend on the proper functioning of
computer systems. By studying this book, you can develop an understanding of the basic problems
underlying computer security and the methods available to deal with them.

In particular, we do the following:

examine the risks of security in computing

consider available countermeasures or controls

stimulate thought about uncovered vulnerabilities

identify areas where more work is needed

In this chapter, we begin by examining what kinds of vulnerabilities computing systems are prone
to. We then consider why these vulnerabilities are exploited: the different kinds of attacks that are
possible. This chapter's third focus is on who is involved: the kinds of people who contribute to the
security problem. Finally, we introduce how to prevent possible attacks on systems.

Characteristics of Computer Intrusion

Any part of a computing system can be the target of a crime. When we refer to a computing
system,[1] we mean a collection of hardware, software, storage media, data, and people that an
organization uses to perform computing tasks. Sometimes, we assume that parts of a computing
system are not valuable to an outsider, but often we are mistaken. For instance, we tend to think
that the most valuable property in a bank is the cash, gold, or silver in the vault. But in fact the
customer information in the bank's computer may be far more valuable. Stored on paper, recorded
on a storage medium, resident in memory, or transmitted over telephone lines or satellite links, this
information can be used in myriad ways to make money illicitly. A competing bank can use this
information to steal clients or even to disrupt service and discredit the bank. An unscrupulous
individual could move money from one account to another without the owner's permission. A group
of con artists could contact large depositors and convince them to invest in fraudulent schemes. The
variety of targets and attacks makes computer security very difficult.

[1] In this book, boldface identifies new terms being introduced.



Any system is most vulnerable at its weakest point. A robber intent on stealing something from your
house will not attempt to penetrate a two-inch-thick metal door if a window gives easier access.
Similarly, a sophisticated perimeter physical security system does not compensate for unguarded
access by means of a simple telephone line and a modem. We can codify this idea as one of the
principles of computer security.

Principle of Easiest Penetration: An intruder must be expected to use any available means
of penetration. The penetration may not necessarily be by the most obvious means, nor is it
necessarily the one against which the most solid defense has been installed. And it certainly
does not have to be the way we want the attacker to behave.

This principle implies that computer security specialists must consider all possible means of
penetration. Moreover, the penetration analysis must be done repeatedly, and especially whenever
the system and its security change. People sometimes underestimate the determination or creativity
of attackers. Remember that computer security is a game with rules only for the defending team:
The attackers can (and will) use any means they can. Perhaps the hardest thing for people outside
the security community to do is to think like the attacker. One group of creative security
researchers investigated a wireless security system and reported a vulnerability to the system's
chief designer, who replied "that would work, but no attacker would try it" [BON06]. Don't believe
that for a minute: No attack is out of bounds.

Strengthening one aspect of a system may simply make another means of penetration more
appealing to intruders. For this reason, let us look at the various ways by which a system can be
breached.



1.2. Attacks

When you test any computer system, one of your jobs is to imagine how the system could
malfunction. Then, you improve the system's design so that the system can withstand any of the
problems you have identified. In the same way, we analyze a system from a security perspective,
thinking about ways in which the system's security can malfunction and diminish the value of its
assets.

Vulnerabilities, Threats, Attacks, and Controls

A computer-based system has three separate but valuable components: hardware, software, and
data. Each of these assets offers value to different members of the community affected by the
system. To analyze security, we can brainstorm about the ways in which the system or its
information can experience some kind of loss or harm. For example, we can identify data whose
format or contents should be protected in some way. We want our security system to make sure
that no data are disclosed to unauthorized parties. Neither do we want the data to be modified in
illegitimate ways. At the same time, we must ensure that legitimate users have access to the data.
In this way, we can identify weaknesses in the system.

A vulnerability is a weakness in the security system, for example, in procedures, design, or
implementation, that might be exploited to cause loss or harm. For instance, a particular system
may be vulnerable to unauthorized data manipulation because the system does not verify a user's
identity before allowing data access.

A threat to a computing system is a set of circumstances that has the potential to cause loss or
harm. To see the difference between a threat and a vulnerability, consider the illustration in Figure
1-1. Here, a wall is holding water back. The water to the left of the wall is a threat to the man on
the right of the wall: The water could rise, overflowing onto the man, or it could stay beneath the
height of the wall, causing the wall to collapse. So the threat of harm is the potential for the man to
get wet, get hurt, or be drowned. For now, the wall is intact, so the threat to the man is unrealized.

Figure 1-1. Threats, Controls, and Vulnerabilities.



However, we can see a small crack in the walla vulnerability that threatens the man's security. If
the water rises to or beyond the level of the crack, it will exploit the vulnerability and harm the man.

There are many threats to a computer system, including human-initiated and computer-initiated
ones. We have all experienced the results of inadvertent human errors, hardware design flaws, and
software failures. But natural disasters are threats, too; they can bring a system down when the
computer room is flooded or the data center collapses from an earthquake, for example.

A human who exploits a vulnerability perpetrates an attack on the system. An attack can also be
launched by another system, as when one system sends an overwhelming set of messages to
another, virtually shutting down the second system's ability to function. Unfortunately, we have
seen this type of attack frequently, as denial-of-service attacks flood servers with more messages
than they can handle. (We take a closer look at denial of service in Chapter 7.)

How do we address these problems? We use a control as a protective measure. That is, a control is
an action, device, procedure, or technique that removes or reduces a vulnerability. In Figure 1-1,
the man is placing his finger in the hole, controlling the threat of water leaks until he finds a more
permanent solution to the problem. In general, we can describe the relationship among threats,
controls, and vulnerabilities in this way:

A threat is blocked by control of a vulnerability.

Much of the rest of this book is devoted to describing a variety of controls and understanding the
degree to which they enhance a system's security.

To devise controls, we must know as much about threats as possible. We can view any threat as
being one of four kinds: interception, interruption, modification, and fabrication. Each threat exploits
vulnerabilities of the assets in computing systems; the threats are illustrated in Figure 1-2.

Figure 1-2. System Security Threats.



An interception means that some unauthorized party has gained access to an asset. The
outside party can be a person, a program, or a computing system. Examples of this type of
failure are illicit copying of program or data files, or wiretapping to obtain data in a network.
Although a loss may be discovered fairly quickly, a silent interceptor may leave no traces by
which the interception can be readily detected.

In an interruption, an asset of the system becomes lost, unavailable, or unusable. An
example is malicious destruction of a hardware device, erasure of a program or data file, or
malfunction of an operating system file manager so that it cannot find a particular disk file.

If an unauthorized party not only accesses but tampers with an asset, the threat is a
modification. For example, someone might change the values in a database, alter a program
so that it performs an additional computation, or modify data being transmitted electronically.
It is even possible to modify hardware. Some cases of modification can be detected with
simple measures, but other, more subtle, changes may be almost impossible to detect.

Finally, an unauthorized party might create a fabrication of counterfeit objects on a
computing system. The intruder may insert spurious transactions to a network communication
system or add records to an existing database. Sometimes these additions can be detected as
forgeries, but if skillfully done, they are virtually indistinguishable from the real thing.

These four classes of threatsinterception, interruption, modification, and fabricationdescribe the
kinds of problems we might encounter. In the next section, we look more closely at a system's
vulnerabilities and how we can use them to set security goals.

Method, Opportunity, and Motive



A malicious attacker must have three things:

method: the skills, knowledge, tools, and other things with which to be able to pull off the
attack

opportunity: the time and access to accomplish the attack

motive: a reason to want to perform this attack against this system

(Think of the acronym "MOM.") Deny any of those three things and the attack will not occur.
However, it is not easy to cut these off.

Knowledge of systems is widely available. Mass-market systems (such as the Microsoft or Apple or
Unix operating systems) are readily available, as are common products, such as word processors or
database management systems. Sometimes the manufacturers release detailed specifications on
how the system was designed or operates, as guides for users and integrators who want to
implement other complementary products. But even without documentation, attackers can purchase
and experiment with many systems. Often, only time and inclination limit an attacker.

Many systems are readily available. Systems available to the public are, by definition, accessible;
often their owners take special care to make them fully available so that if one hardware component
fails, the owner has spares instantly ready to be pressed into service.

Sidebar 1-2: Why Universities Are Prime Targets

Universities make very good targets for attack, according to an Associated Press story
from June 2001 [HOP01]. Richard Power, editorial director for the Computer Security
Institute, has reported that universities often run systems with vulnerabilities and little
monitoring or management. Consider that the typical university research or teaching lab
is managed by a faculty member who has many other responsibilities or by a student
manager who may have had little training. Universities are havens for free exchange of
ideas. Thus, their access controls typically are configured to promote sharing and wide
access to a population that changes significantly every semester.

A worse problem is that universities are really loose federations of departments and
research groups. The administrator for one group's computers may not even know other
administrators, let alone share intelligence or tools. Often, computers are bought for a
teaching or research project, but there is not funding for ongoing maintenance, either
buying upgrades or installing patches. Steve Hare, managing director of the computer
security research group at Purdue University, noted that groups are usually strapped for
resources.

David Dittrich, a security engineer at the University of Washington, said he is certain
that cracker(s) who attacked the eBay and CNN.com web sites in 2000 first practiced on
university computers. The large and frequently changing university student body gives
the attacker great opportunity to maintain anonymity while developing an attack.



Finally, it is difficult to determine motive for an attack. Some places are what are called "attractive
targets," meaning they are very appealing to attackers. Popular targets include law enforcement
and defense department computers, perhaps because they are presumed to be well protected
against attack (so that a successful attack shows the attacker's prowess). Other systems are
attacked because they are easy. (See Sidebar 1-2 on universities as targets.) And other systems are
attacked simply because they are there: random, unassuming victims.

Protecting against attacks can be difficult. Anyone can be a victim of an attack perpetrated by an
unhurried, knowledgeable attacker. In the remainder of this book we discuss the nature of attacks
and how to protect against them.



1.3. The Meaning of Computer Security

We have seen that any computer-related system has both theoretical and real weaknesses. The
purpose of computer security is to devise ways to prevent the weaknesses from being exploited. To
understand what preventive measures make the most sense, we consider what we mean when we
say that a system is "secure."

Security Goals

We use the term "security" in many ways in our daily lives. A "security system" protects our house,
warning the neighbors or the police if an unauthorized intruder tries to get in. "Financial security"
involves a set of investments that are adequately funded; we hope the investments will grow in
value over time so that we have enough money to survive later in life. And we speak of children's
"physical security," hoping they are safe from potential harm. Just as each of these terms has a
very specific meaning in the context of its use, so too does the phrase "computer security."

When we talk about computer security, we mean that we are addressing three important aspects of
any computer-related system: confidentiality, integrity, and availability.

Confidentiality ensures that computer-related assets are accessed only by authorized parties.
That is, only those who should have access to something will actually get that access. By
"access," we mean not only reading but also viewing, printing, or simply knowing that a
particular asset exists. Confidentiality is sometimes called secrecy or privacy.

Integrity means that assets can be modified only by authorized parties or only in authorized
ways. In this context, modification includes writing, changing, changing status, deleting, and
creating.

Availability means that assets are accessible to authorized parties at appropriate times. In
other words, if some person or system has legitimate access to a particular set of objects, that
access should not be prevented. For this reason, availability is sometimes known by its
opposite, denial of service.

Security in computing addresses these three goals. One of the challenges in building a secure
system is finding the right balance among the goals, which often conflict. For example, it is easy to
preserve a particular object's confidentiality in a secure system simply by preventing everyone from
reading that object. However, this system is not secure, because it does not meet the requirement
of availability for proper access. That is, there must be a balance between confidentiality and
availability.

But balance is not all. In fact, these three characteristics can be independent, can overlap (as shown
in Figure 1-3), and can even be mutually exclusive. For example, we have seen that strong
protection of confidentiality can severely restrict availability. Let us examine each of the three
qualities in depth.



Figure 1-3. Relationship Between Confidentiality, Integrity, and
Availability.

Confidentiality

You may find the notion of confidentiality to be straightforward: Only authorized people or systems
can access protected data. However, as we see in later chapters, ensuring confidentiality can be
difficult. For example, who determines which people or systems are authorized to access the current
system? By "accessing" data, do we mean that an authorized party can access a single bit? the
whole collection? pieces of data out of context? Can someone who is authorized disclose those data
to other parties?

Confidentiality is the security property we understand best because its meaning is narrower than the
other two. We also understand confidentiality well because we can relate computing examples to
those of preserving confidentiality in the real world.

Integrity

Integrity is much harder to pin down. As Welke and Mayfield [WEL90, MAY91, NCS91b] point out,
integrity means different things in different contexts. When we survey the way some people use the
term, we find several different meanings. For example, if we say that we have preserved the



integrity of an item, we may mean that the item is

precise

accurate

unmodified

modified only in acceptable ways

modified only by authorized people

modified only by authorized processes

consistent

internally consistent

meaningful and usable

Integrity can also mean two or more of these properties. Welke and Mayfield recognize three
particular aspects of integrityauthorized actions, separation and protection of resources, and error
detection and correction. Integrity can be enforced in much the same way as can confidentiality: by
rigorous control of who or what can access which resources in what ways. Some forms of integrity
are well represented in the real world, and those precise representations can be implemented in a
computerized environment. But not all interpretations of integrity are well reflected by computer
implementations.

Availability

Availability applies both to data and to services (that is, to information and to information
processing), and it is similarly complex. As with the notion of confidentiality, different people expect
availability to mean different things. For example, an object or service is thought to be available if

It is present in a usable form.

It has capacity enough to meet the service's needs.

It is making clear progress, and, if in wait mode, it has a bounded waiting time.

The service is completed in an acceptable period of time.

We can construct an overall description of availability by combining these goals. We say a data item,
service, or system is available if

There is a timely response to our request.

Resources are allocated fairly so that some requesters are not favored over others.

The service or system involved follows a philosophy of fault tolerance, whereby hardware or



software faults lead to graceful cessation of service or to work-arounds rather than to crashes
and abrupt loss of information.

The service or system can be used easily and in the way it was intended to be used.

Concurrency is controlled; that is, simultaneous access, deadlock management, and exclusive
access are supported as required.

As you can see, expectations of availability are far-reaching. Indeed, the security community is just
beginning to understand what availability implies and how to ensure it. A small, centralized control
of access is fundamental to preserving confidentiality and integrity, but it is not clear that a single
access control point can enforce availability. Much of computer security's past success has focused
on confidentiality and integrity; full implementation of availability is security's next great challenge.

Vulnerabilities

When we prepare to test a system, we usually try to imagine how the system can fail; we then look
for ways in which the requirements, design, or code can enable such failures. In the same way,
when we prepare to specify, design, code, or test a secure system, we try to imagine the
vulnerabilities that would prevent us from reaching one or more of our three security goals.

It is sometimes easier to consider vulnerabilities as they apply to all three broad categories of
system resources (hardware, software, and data), rather than to start with the security goals
themselves. Figure 1-4 shows the types of vulnerabilities we might find as they apply to the assets
of hardware, software, and data. These three assets and the connections among them are all
potential security weak points. Let us look in turn at the vulnerabilities of each asset.

Figure 1-4. Vulnerabilities of Computing Systems.

[View full size image]



Hardware Vulnerabilities

Hardware is more visible than software, largely because it is composed of physical objects. Because
we can see what devices are hooked to the system, it is rather simple to attack by adding devices,
changing them, removing them, intercepting the traffic to them, or flooding them with traffic until
they can no longer function. However, designers can usually put safeguards in place.

But there are other ways that computer hardware can be attacked physically. Computers have been
drenched with water, burned, frozen, gassed, and electrocuted with power surges. People have
spilled soft drinks, corn chips, ketchup, beer, and many other kinds of food on computing devices.
Mice have chewed through cables. Particles of dust, and especially ash in cigarette smoke, have
threatened precisely engineered moving parts. Computers have been kicked, slapped, bumped,
jarred, and punched. Although such attacks might be intentional, most are not; this abuse might be
considered "involuntary machine slaughter": accidental acts not intended to do serious damage to
the hardware involved.

A more serious attack, "voluntary machine slaughter" or "machinicide," usually involves someone
who actually wishes to harm the computer hardware or software. Machines have been shot with
guns, stabbed with knives, and smashed with all kinds of things. Bombs, fires, and collisions have
destroyed computer rooms. Ordinary keys, pens, and screwdrivers have been used to short-out
circuit boards and other components. Devices and whole systems have been carried off by thieves.
The list of the kinds of human attacks perpetrated on computers is almost endless.

In particular, deliberate attacks on equipment, intending to limit availability, usually involve theft or
destruction. Managers of major computing centers long ago recognized these vulnerabilities and
installed physical security systems to protect their machines. However, the proliferation of PCs,
especially laptops, as office equipment has resulted in several thousands of dollars'worth of
equipment sitting unattended on desks outside the carefully protected computer room. (Curiously,
the supply cabinet, containing only a few hundred dollars' worth of pens, stationery, and paper clips,
is often locked.) Sometimes the security of hardware components can be enhanced greatly by
simple physical measures such as locks and guards.

Laptop computers are especially vulnerable because they are designed to be easy to carry. (See
Sidebar 1-3 for the story of a stolen laptop.) Safeware Insurance reported 600,000 laptops stolen in
2003. Credent Technologies reported that 29 percent were stolen from the office, 25 percent from a
car, and 14 percent in an airport. Stolen laptops are almost never recovered: The FBI reports 97
percent were not returned [SAI05].



Sidebar 1-3: Record Record Loss

The record for number of personal records lost stands at 26.5 million.

Yes, 26.5 million records were on the hard drive of a laptop belonging to the U.S.
Veterans Administration (V.A.) The lost data included names, addresses, social security
numbers, and birth dates of all veterans who left the service after 1975, as well as any
disabled veterans who filed a claim for disability after 1975, as well as some spouses.
The data were contained on the hard drive of a laptop stolen on 3 May 2006 near
Washington D.C. A V.A. employee took the laptop home to work on the data, a practice
that had been going on for three years.

The unasked, and therefore unanswered, question in this case is why the employee
needed names, social security numbers, and birth dates of all veterans at home? One
supposes the employee was not going to print 26.5 million personal letters on a home
computer. Statistical trends, such as number of claims, type of claim, or time to process
a claim, could be determined without birth dates and social security numbers.

Computer security professionals repeatedly find that the greatest security threat is from
insiders, in part because of the quantity of data to which they need access to do their
jobs. The V.A. chief testified to Congress that his agency had failed to heed years of
warnings of lax security procedures. Now all employees have been ordered to attend a
cybersecurity training course.

Software Vulnerabilities

Computing equipment is of little use without the software (operating system, controllers, utility
programs, and application programs) that users expect. Software can be replaced, changed, or
destroyed maliciously, or it can be modified, deleted, or misplaced accidentally. Whether intentional
or not, these attacks exploit the software's vulnerabilities.

Sometimes, the attacks are obvious, as when the software no longer runs. More subtle are attacks
in which the software has been altered but seems to run normally. Whereas physical equipment
usually shows some mark of inflicted injury when its boundary has been breached, the loss of a line
of source or object code may not leave an obvious mark in a program. Furthermore, it is possible to
change a program so that it does all it did before, and then some. That is, a malicious intruder can
"enhance" the software to enable it to perform functions you may not find desirable. In this case, it
may be very hard to detect that the software has been changed, let alone to determine the extent
of the change.

A classic example of exploiting software vulnerability is the case in which a bank worker realized
that software truncates the fractional interest on each account. In other words, if the monthly
interest on an account is calculated to be $14.5467, the software credits only $14.54 and ignores
the $.0067. The worker amended the software so that the throw-away interest (the $.0067) was
placed into his own account. Since the accounting practices ensured only that all accounts balanced,
he built up a large amount of money from the thousands of account throw-aways without detection.
It was only when he bragged to a colleague of his cleverness that the scheme was discovered.



Software Deletion

Software is surprisingly easy to delete. Each of us has, at some point in our careers, accidentally
erased a file or saved a bad copy of a program, destroying a good previous copy. Because of
software's high value to a commercial computing center, access to software is usually carefully
controlled through a process called configuration management so that software cannot be
deleted, destroyed, or replaced accidentally. Configuration management uses several techniques to
ensure that each version or release retains its integrity. When configuration management is used,
an old version or release can be replaced with a newer version only when it has been thoroughly
tested to verify that the improvements work correctly without degrading the functionality and
performance of other functions and services.

Software Modification

Software is vulnerable to modifications that either cause it to fail or cause it to perform an
unintended task. Indeed, because software is so susceptible to "off by one" errors, it is quite easy to
modify. Changing a bit or two can convert a working program into a failing one. Depending on which
bit was changed, the program may crash when it begins or it may execute for some time before it
falters.

With a little more work, the change can be much more subtle: The program works well most of the
time but fails in specialized circumstances. For instance, the program may be maliciously modified
to fail when certain conditions are met or when a certain date or time is reached. Because of this
delayed effect, such a program is known as a logic bomb. For example, a disgruntled employee
may modify a crucial program so that it accesses the system date and halts abruptly after July 1.
The employee might quit on May l and plan to be at a new job miles away by July.

Another type of change can extend the functioning of a program so that an innocuous program has
a hidden side effect. For example, a program that ostensibly structures a listing of files belonging to
a user may also modify the protection of all those files to permit access by another user.

Other categories of software modification include

Trojan horse: a program that overtly does one thing while covertly doing another

virus: a specific type of Trojan horse that can be used to spread its "infection" from one
computer to another

trapdoor: a program that has a secret entry point

information leaks in a program: code that makes information accessible to unauthorized
people or programs

More details on these and other software modifications are provided in Chapter 3.

Of course, it is possible to invent a completely new program and install it on a computing system.
Inadequate control over the programs that are installed and run on a computing system permits this
kind of software security breach.



Software Theft

This attack includes unauthorized copying of software. Software authors and distributors are entitled
to fair compensation for use of their product, as are musicians and book authors. Unauthorized
copying of software has not been stopped satisfactorily. As we see in Chapter 11, the legal system is
still grappling with the difficulties of interpreting paper-based copyright laws for electronic media.

Data Vulnerabilities

Hardware security is usually the concern of a relatively small staff of computing center
professionals. Software security is a larger problem, extending to all programmers and analysts who
create or modify programs. Computer programs are written in a dialect intelligible primarily to
computer professionals, so a "leaked" source listing of a program might very well be meaningless to
the general public.

Printed data, however, can be readily interpreted by the general public. Because of its visible
nature, a data attack is a more widespread and serious problem than either a hardware or software
attack. Thus, data items have greater public value than hardware and software because more
people know how to use or interpret data.

By themselves, out of context, pieces of data have essentially no intrinsic value. For example, if you
are shown the value "42," it has no meaning for you unless you know what the number represents.
Likewise, "326 Old Norwalk Road" is of little use unless you know the city, state, and country for the
address. For this reason, it is hard to measure the value of a given data item.

On the other hand, data items in context do relate to cost, perhaps measurable by the cost to
reconstruct or redevelop damaged or lost data. For example, confidential data leaked to a
competitor may narrow a competitive edge. Data incorrectly modified can cost human lives. To see
how, consider the flight coordinate data used by an airplane that is guided partly or fully by
software, as many now are. Finally, inadequate security may lead to financial liability if certain
personal data are made public. Thus, data have a definite value, even though that value is often
difficult to measure.

Typically, both hardware and software have a relatively long life. No matter how they are valued
initially, their value usually declines gradually over time. By contrast, the value of data over time is
far less predictable or consistent. Initially, data may be valued highly. However, some data items
are of interest for only a short period of time, after which their value declines precipitously.

To see why, consider the following example. In many countries, government analysts periodically
generate data to describe the state of the national economy. The results are scheduled to be
released to the public at a predetermined time and date. Before that time, access to the data could
allow someone to profit from advance knowledge of the probable effect of the data on the stock
market. For instance, suppose an analyst develops the data 24 hours before their release and then
wishes to communicate the results to other analysts for independent verification before release. The
data vulnerability here is clear, and, to the right people, the data are worth more before the
scheduled release than afterward. However, we can protect the data and control the threat in simple
ways. For example, we could devise a scheme that would take an outsider more than 24 hours to
break; even though the scheme may be eminently breakable (that is, an intruder could eventually
reveal the data), it is adequate for those data because confidentiality is not needed beyond the 24-
hour period.



Data security suggests the second principle of computer security.

Principle of Adequate Protection: Computer items must be protected only until they lose
their value. They must be protected to a degree consistent with their value.

This principle says that things with a short life can be protected by security measures that are
effective only for that short time. The notion of a small protection window applies primarily to data,
but it can in some cases be relevant for software and hardware, too.

Sidebar 1-4 confirms that intruders take advantage of vulnerabilities to break in by whatever means
they can.

Figure 1-5 illustrates how the three goals of security apply to data. In particular, confidentiality
prevents unauthorized disclosure of a data item, integrity prevents unauthorized modification, and
availability prevents denial of authorized access.

Figure 1-5. Security of Data.

[View full size image]

Data Confidentiality

Data can be gathered by many means, such as tapping wires, planting bugs in output devices,
sifting through trash receptacles, monitoring electromagnetic radiation, bribing key employees,



inferring one data point from other values, or simply requesting the data. Because data are often
available in a form people can read, the confidentiality of data is a major concern in computer
security.

Sidebar 1-4: Top Methods of Attack

In 2006, the U.K. Department of Trade and Industry (DTI) released results of its latest
annual survey of businesses regarding security incidents [PWC06]. Of companies
surveyed, 62 percent reported one or more security breaches during the year (down
from 74 percent two years earlier). The median number of incidents was 8.

In 2006, 29 percent of respondents (compared to 27 percent in 2004) reported an
accidental security incident, and 57 percent (compared to 68 percent) reported a
malicious incident. The percentage reporting a serious incident fell to 23 percent from
39 percent.

The top type of attack was virus or other malicious code at 35 percent (down
significantly from 50 percent two years earlier). Staff misuse of data or resources was
stable at 21 percent (versus 22 percent). Intrusion from outside (including hacker
attacks) was constant at 17 percent in both periods, incidents involving fraud or theft
were down to 8 percent form 11 percent, and failure of equipment was up slightly to 29
percent from 27 percent.

Attempts to break into a system from outside get much publicity. Of the respondents, 5
percent reported they experienced hundreds of such attacks a day, and 17 percent
reported "several a day."

Data are not just numbers on paper; computer data include digital recordings such as CDs and
DVDs, digital signals such as network and telephone traffic, and broadband communications such as
cable and satellite TV. Other forms of data are biometric identifiers embedded in passports, online
activity preferences, and personal information such as financial records and votes. Protecting this
range of data types requires many different approaches.

Data Integrity

Stealing, buying, finding, or hearing data requires no computer sophistication, whereas modifying or
fabricating new data requires some understanding of the technology by which the data are
transmitted or stored, as well as the format in which the data are maintained. Thus, a higher level
of sophistication is needed to modify existing data or to fabricate new data than to intercept existing
data. The most common sources of this kind of problem are malicious programs, errant file system
utilities, and flawed communication facilities.

Data are especially vulnerable to modification. Small and skillfully done modifications may not be
detected in ordinary ways. For instance, we saw in our truncated interest example that a criminal
can perform what is known as a salami attack: The crook shaves a little from many accounts and
puts these shavings together to form a valuable result, like the meat scraps joined in a salami.



A more complicated process is trying to reprocess used data items. With the proliferation of
telecommunications among banks, a fabricator might intercept a message ordering one bank to
credit a given amount to a certain person's account. The fabricator might try to replay that
message, causing the receiving bank to credit the same account again. The fabricator might also try
to modify the message slightly, changing the account to be credited or the amount, and then
transmit this revised message.

Other Exposed Assets

We have noted that the major points of weakness in a computing system are hardware, software,
and data. However, other components of the system may also be possible targets. In this section,
we identify some of these other points of attack.

Networks

Networks are specialized collections of hardware, software, and data. Each network node is itself a
computing system; as such, it experiences all the normal security problems. In addition, a network
must confront communication problems that involve the interaction of system components and
outside resources. The problems may be introduced by a very exposed storage medium or access
from distant and potentially untrustworthy computing systems.

Thus, networks can easily multiply the problems of computer security. The challenges are rooted in
a network's lack of physical proximity, use of insecure shared media, and the inability of a network
to identify remote users positively.

Access

Access to computing equipment leads to three types of vulnerabilities. In the first, an intruder may
steal computer time to do general-purpose computing that does not attack the integrity of the
system itself. This theft of computer services is analogous to the stealing of electricity, gas, or
water. However, the value of the stolen computing services may be substantially higher than the
value of the stolen utility products or services. Moreover, the unpaid computing access spreads the
true costs of maintaining the computing system to other legitimate users. In fact, the unauthorized
access risks affecting legitimate computing, perhaps by changing data or programs. A second
vulnerability involves malicious access to a computing system, whereby an intruding person or
system actually destroys software or data. Finally, unauthorized access may deny service to a
legitimate user. For example, a user who has a time-critical task to perform may depend on the
availability of the computing system. For all three of these reasons, unauthorized access to a
computing system must be prevented.

Key People

People can be crucial weak points in security. If only one person knows how to use or maintain a
particular program, trouble can arise if that person is ill, suffers an accident, or leaves the
organization (taking her knowledge with her). In particular, a disgruntled employee can cause



serious damage by using inside knowledge of the system and the data that are manipulated. For
this reason, trusted individuals, such as operators and systems programmers, are usually selected
carefully because of their potential ability to affect all computer users.

We have described common assets at risk. In fact, there are valuable assets in almost any computer
system. (See Sidebar 1-5 for an example of exposed assets in ordinary business dealings.)

Next, we turn to the people who design, build, and interact with computer systems, to see who can
breach the systems' confidentiality, integrity, and availability.

Sidebar 1-5: Hollywood at Risk

Do you think only banks, government sites, and universities are targets? Consider
Hollywood. In 2001, Hollywoodspecifically the motion picture industrywas hit with a
series of attacks. Crackers entered computers and were able to obtain access to scripts
for new projects, and digital versions of films in production, including Ocean's 11 at
Warner Brothers and The One at Columbia Pictures. The attackers also retrieved and
made public executives' e-mail messages.

But, as is true of many computer security incidents, at least one attacker was an
insider. Global Network Security Services, a security consulting firm hired by several
Hollywood companies to test the security of their networks, found that an employee was
copying the day's (digital) film, taking it home, and allowing his roommate to post it to
an Internet site.



1.4. Computer Criminals

In television and film westerns, the bad guys always wore shabby clothes, looked mean and sinister,
and lived in gangs somewhere out of town. By contrast, the sheriff dressed well, stood proud and
tall, was known and respected by everyone in town, and struck fear in the hearts of most criminals.

To be sure, some computer criminals are mean and sinister types. But many more wear business
suits, have university degrees, and appear to be pillars of their communities. Some are high school
or university students. Others are middle-aged business executives. Some are mentally deranged,
overtly hostile, or extremely committed to a cause, and they attack computers as a symbol. Others
are ordinary people tempted by personal profit, revenge, challenge, advancement, or job security.
No single profile captures the characteristics of a "typical" computer criminal, and many who fit the
profile are not criminals at all.

Whatever their characteristics and motivations, computer criminals have access to enormous
amounts of hardware, software, and data; they have the potential to cripple much of effective
business and government throughout the world. In a sense, then, the purpose of computer security
is to prevent these criminals from doing damage.

For the purposes of studying computer security, we say computer crime is any crime involving a
computer or aided by the use of one. Although this definition is admittedly broad, it allows us to
consider ways to protect ourselves, our businesses, and our communities against those who use
computers maliciously.

The U.S. Federal Bureau of Investigation regularly reports uniform crime statistics. The data do not
separate computer crime from crime of other sorts. Moreover, many companies do not report
computer crime at all, perhaps because they fear damage to their reputation, they are ashamed to
have allowed their systems to be compromised, or they have agreed not to prosecute if the criminal
will "go away." These conditions make it difficult for us to estimate the economic losses we suffer as
a result of computer crime; our dollar estimates are really only vague suspicions. Still, the
estimates, ranging from $300 million to $500 billion per year, tell us that it is important for us to
pay attention to computer crime and to try to prevent it or at least to moderate its effects.

One approach to prevention or moderation is to understand who commits these crimes and why.
Many studies have attempted to determine the characteristics of computer criminals. By studying
those who have already used computers to commit crimes, we may be able in the future to spot
likely criminals and prevent the crimes from occurring. In this section, we examine some of these
characteristics.

Amateurs

Amateurs have committed most of the computer crimes reported to date. Most embezzlers are not
career criminals but rather are normal people who observe a weakness in a security system that
allows them to access cash or other valuables. In the same sense, most computer criminals are
ordinary computer professionals or users who, while doing their jobs, discover they have access to
something valuable.



When no one objects, the amateur may start using the computer at work to write letters, maintain
soccer league team standings, or do accounting. This apparently innocent time-stealing may expand
until the employee is pursuing a business in accounting, stock portfolio management, or desktop
publishing on the side, using the employer's computing facilities. Alternatively, amateurs may
become disgruntled over some negative work situation (such as a reprimand or denial of promotion)
and vow to "get even" with management by wreaking havoc on a computing installation.

Crackers or Malicious Hackers

System crackers,[2] often high school or university students, attempt to access computing facilities
for which they have not been authorized. Cracking a computer's defenses is seen as the ultimate
victimless crime. The perception is that nobody is hurt or even endangered by a little stolen
machine time. Crackers enjoy the simple challenge of trying to log in, just to see whether it can be
done. Most crackers can do their harm without confronting anybody, not even making a sound. In
the absence of explicit warnings not to trespass in a system, crackers infer that access is permitted.
An underground network of hackers helps pass along secrets of success; as with a jigsaw puzzle, a
few isolated pieces joined together may produce a large effect. Others attack for curiosity, personal
gain, or self-satisfaction. And still others enjoy causing chaos, loss, or harm. There is no common
profile or motivation for these attackers.

[2] The security community distinguishes between a "hacker," someone who (nonmaliciously) programs, manages, or uses

computing systems, and a "cracker," someone who attempts to access computing systems for malicious purposes. Crackers are

the "evildoers." Now, hacker has come to be used outside security to mean both benign and malicious users.

Career Criminals

By contrast, the career computer criminal understands the targets of computer crime. Criminals
seldom change fields from arson, murder, or auto theft to computing; more often, criminals begin
as computer professionals who engage in computer crime, finding the prospects and payoff good.
There is some evidence that organized crime and international groups are engaging in computer
crime. Recently, electronic spies and information brokers have begun to recognize that trading in
companies' or individuals' secrets can be lucrative.

Recent attacks have shown that organized crime and professional criminals have discovered just
how lucrative computer crime can be. Mike Danseglio, a security project manager with Microsoft,
said, "In 2006, the attackers want to pay the rent. They don't want to write a worm that destroys
your hardware. They want to assimilate your computers and use them to make money" [NAR06a].
Mikko Hyppönen, Chief Research Officer with the Finnish security company f-Secure, agrees that
today's attacks often come from Russia, Asia, and Brazil and the motive is now profit, not fame
[BRA06]. Ken Dunham, Director of the Rapid Response Team for Verisign says he is "convinced that
groups of well-organized mobsters have taken control of a global billion-dollar crime network
powered by skillful hackers" [NAR06b].

Snow [SNO05] observes that a hacker wants a score, bragging rights. Organized crime wants a
resource; they want to stay and extract profit from the system over time. These different objectives
lead to different approaches: The hacker can use a quick-and-dirty attack, whereas the professional
attacker wants a neat, robust, and undetected method.



As mentioned earlier, some companies are reticent to prosecute computer criminals. In fact, after
having discovered a computer crime, the companies are often thankful if the criminal quietly
resigns. In other cases, the company is (understandably) more concerned about protecting its
assets and so it closes down an attacked system rather than gathering evidence that could lead to
identification and conviction of the criminal. The criminal is then free to continue the same illegal
pattern with another company.

Terrorists

The link between computers and terrorism is quite evident. We see terrorists using computers in
three ways:

targets of attack: denial-of-service attacks and web site defacements are popular for any
political organization because they attract attention to the cause and bring undesired negative
attention to the target of the attack.

propaganda vehicles: web sites, web logs, and e-mail lists are effective, fast, and inexpensive
ways to get a message to many people.

methods of attack: to launch offensive attacks requires use of computers.

We cannot accurately measure the amount of computer-based terrorism because our definitions and
measurement tools are rather weak. Still, there is evidence that all three of these activities are
increasing. (For another look at terrorists' use of computers, see Sidebar 1-6.)



1.5. Methods of Defense

In Chapter 11, we investigate the legal and ethical restrictions on computer-based crime. But
unfortunately, computer crime is certain to continue for the foreseeable future. For this reason, we
must look carefully at controls for preserving confidentiality, integrity, and availability. Sometimes
these controls can prevent or mitigate attacks; other, less powerful methods can only inform us that
security has been compromised, by detecting a breach as it happens or after it occurs.

Harm occurs when a threat is realized against a vulnerability. To protect against harm, then, we can
neutralize the threat, close the vulnerability, or both. The possibility for harm to occur is called risk.
We can deal with harm in several ways. We can seek to

prevent it, by blocking the attack or closing the vulnerability

deter it, by making the attack harder but not impossible

deflect it, by making another target more attractive (or this one less so)

detect it, either as it happens or some time after the fact

recover from its effects

Sidebar 1-6: The Terrorists, Inc., IT Department

In 2001, a reporter for The Wall Street Journal bought a used computer in Afghanistan.
Much to his surprise, he found the hard drive contained what appeared to be files from
a senior al Qaeda operative. Cullison [CUL04] reports that he turned the computer over
to the FBI. In his story published in 2004 in The Atlantic, he carefully avoids revealing
anything he thinks might be sensitive.

The disk contained more than 1,000 documents, many of them encrypted with relatively
weak encryption. Cullison found draft mission plans and white papers setting forth
ideological and philosophical arguments for the attacks of 11 September 2001. There
were also copies of news stories on terrorist activities. He also found documents
indicating that al Qaeda were not originally interested in chemical, biological, or nuclear
weapons, but became interested after reading public news articles accusing al Qaeda of
having those capabilities.

Perhaps most unexpected were e-mail messages of the kind one would find in a typical
office: recommendations for promotions, justifications for petty cash expenditures,
arguments concerning budgets.

The computer appears to have been used by al Qaeda from 1999 to 2001. Cullison



notes that Afghanistan in late 2001 was a scene of chaos, and it is likely the laptop's
owner fled quickly, leaving the computer behind, where it fell into the hands of a
secondhand merchant who did not know its contents.

But this computer illustrates an important point of computer security and
confidentiality: We can never predict the time at which a security disaster will strike,
and thus we must always be prepared as if it will happen immediately.

Of course, more than one of these can be done at once. So, for example, we might try to prevent
intrusions. But in case we do not prevent them all, we might install a detection device to warn of an
imminent attack. And we should have in place incident response procedures to help in the recovery
in case an intrusion does succeed.

Controls

To consider the controls or countermeasures that attempt to prevent exploiting a computing
system's vulnerabilities, we begin by thinking about traditional ways to enhance physical security. In
the Middle Ages, castles and fortresses were built to protect the people and valuable property
inside. The fortress might have had one or more security characteristics, including

a strong gate or door, to repel invaders

heavy walls to withstand objects thrown or projected against them

a surrounding moat, to control access

arrow slits, to let archers shoot at approaching enemies

crenellations to allow inhabitants to lean out from the roof and pour hot or vile liquids on
attackers

a drawbridge to limit access to authorized people

gatekeepers to verify that only authorized people and goods could enter

Similarly, today we use a multipronged approach to protect our homes and offices. We may
combine strong locks on the doors with a burglar alarm, reinforced windows, and even a nosy
neighbor to keep an eye on our valuables. In each case, we select one or more ways to deter an
intruder or attacker, and we base our selection not only on the value of what we protect but also on
the effort we think an attacker or intruder will expend to get inside.

Computer security has the same characteristics. We have many controls at our disposal. Some are
easier than others to use or implement. Some are cheaper than others to use or implement. And
some are more difficult than others for intruders to override. Figure 1-6 illustrates how we use a
combination of controls to secure our valuable resources. We use one or more controls, according to
what we are protecting, how the cost of protection compares with the risk of loss, and how hard we
think intruders will work to get what they want.



Figure 1-6. Multiple Controls.
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In this section, we present an overview of the controls available to us. In later chapters, we
examine each control in much more detail.

Encryption

We noted earlier that we seek to protect hardware, software, and data. We can make it particularly
hard for an intruder to find data useful if we somehow scramble the data so that interpretation is
meaningless without the intruder's knowing how the scrambling was done. Indeed, the most
powerful tool in providing computer security is this scrambling or encoding.

Encryption is the formal name for the scrambling process. We take data in their normal,
unscrambled state, called cleartext, and transform them so that they are unintelligible to the
outside observer; the transformed data are called enciphered text or ciphertext. Using
encryption, security professionals can virtually nullify the value of an interception and the possibility
of effective modification or fabrication. In Chapters 2 and 12 we study many ways of devising and
applying these transformations.

Encryption clearly addresses the need for confidentiality of data. Additionally, it can be used to
ensure integrity; data that cannot be read generally cannot easily be changed in a meaningful
manner. Furthermore, as we see throughout this book, encryption is the basis of protocols that
enable us to provide security while accomplishing an important system or network task. A protocol
is an agreed-on sequence of actions that leads to a desired result. For example, some operating
system protocols ensure availability of resources as different tasks and users request them. Thus,
encryption can also be thought of as supporting availability. That is, encryption is at the heart of
methods for ensuring all aspects of computer security.

Although encryption is an important tool in any computer security tool kit, we should not overrate
its importance. Encryption does not solve all computer security problems, and other tools must
complement its use. Furthermore, if encryption is not used properly, it may have no effect on
security or could even degrade the performance of the entire system. Weak encryption can actually



be worse than no encryption at all, because it gives users an unwarranted sense of protection.
Therefore, we must understand those situations in which encryption is most useful as well as ways
to use it effectively.

Software Controls

If encryption is the primary way of protecting valuables, programs themselves are the second facet
of computer security. Programs must be secure enough to prevent outside attack. They must also
be developed and maintained so that we can be confident of the programs' dependability.

Program controls include the following:

internal program controls: parts of the program that enforce security restrictions, such as
access limitations in a database management program

operating system and network system controls: limitations enforced by the operating system
or network to protect each user from all other users

independent control programs: application programs, such as password checkers, intrusion
detection utilities, or virus scanners, that protect against certain types of vulnerabilities

development controls: quality standards under which a program is designed, coded, tested,
and maintained to prevent software faults from becoming exploitable vulnerabilities

We can implement software controls by using tools and techniques such as hardware components,
encryption, or information gathering. Software controls frequently affect users directly, such as
when the user is interrupted and asked for a password before being given access to a program or
data. For this reason, we often think of software controls when we think of how systems have been
made secure in the past. Because they influence the way users interact with a computing system,
software controls must be carefully designed. Ease of use and potency are often competing goals in
the design of a collection of software controls.

Hardware Controls

Numerous hardware devices have been created to assist in providing computer security. These
devices include a variety of means, such as

hardware or smart card implementations of encryption

locks or cables limiting access or deterring theft

devices to verify users' identities

firewalls

intrusion detection systems

circuit boards that control access to storage media



Policies and Procedures

Sometimes, we can rely on agreed-on procedures or policies among users rather than enforcing
security through hardware or software means. In fact, some of the simplest controls, such as
frequent changes of passwords, can be achieved at essentially no cost but with tremendous effect.
Training and administration follow immediately after establishment of policies, to reinforce the
importance of security policy and to ensure their proper use.

We must not forget the value of community standards and expectations when we consider how to
enforce security. There are many acts that most thoughtful people would consider harmful, and we
can leverage this commonality of belief in our policies. For this reason, legal and ethical controls are
an important part of computer security. However, the law is slow to evolve, and the technology
involving computers has emerged relatively suddenly. Although legal protection is necessary and
desirable, it may not be as dependable in this area as it would be when applied to more well-
understood and long-standing crimes.

Society in general and the computing community in particular have not adopted formal standards of
ethical behavior. As we see in Chapter 11, some organizations have devised codes of ethics for
computer professionals. However, before codes of ethics can become widely accepted and effective,
the computing community and the general public must discuss and make clear what kinds of
behavior are inappropriate and why.

Physical Controls

Some of the easiest, most effective, and least expensive controls are physical controls. Physical
controls include locks on doors, guards at entry points, backup copies of important software and
data, and physical site planning that reduces the risk of natural disasters. Often the simple physical
controls are overlooked while we seek more sophisticated approaches.

Effectiveness of Controls

Merely having controls does no good unless they are used properly. Let us consider several aspects
that can enhance the effectiveness of controls.

Awareness of Problem

People using controls must be convinced of the need for security. That is, people will willingly
cooperate with security requirements only if they understand why security is appropriate in a given
situation. However, many users are unaware of the need for security, especially in situations in
which a group has recently undertaken a computing task that was previously performed with lax or
no apparent security.

Likelihood of Use



Of course, no control is effective unless it is used. The lock on a computer room door does no good
if people block the door open. As Sidebar 1-7 tells, some computer systems are seriously
uncontrolled.

Principle of Effectiveness: Controls must be usedand used properlyto be effective. They
must be efficient, easy to use, and appropriate.

This principle implies that computer security controls must be efficient enough, in terms of time,
memory space, human activity, or other resources used, that using the control does not seriously
affect the task being protected. Controls should be selective so that they do not exclude legitimate
accesses.

Sidebar 1-7: Barn Door Wide Open

In 2001, Wilshire Associates, Inc., a Santa Monica, California-based investment
company that manages about $10 billion of other people's money, found that its e-mail
system had been operating for months with little security. Outsiders potentially had
access to internal messages containing confidential information about clients and their
investments, as well as sensitive company information.

According to a Washington Post article [OHA01], Wilshire had hired an outside security
investigator in 1999 to review the security of its system. Thomas Stevens, a senior
managing director of Wilshire said, "We had a report back that said our firewall is like
Swiss cheese. We plugged the holes. We didn't plug all of them." Company officials
were "not overly concerned" about that report because they are "not in the defense
business." In 2001, security analyst George Imburgia checked the system's security on
his own, from the outside (with the same limited knowledge an attacker would have)
and found it was "configured to be available to everyone; all you need to do is ask."

Wilshire's system enabled employees to access their e-mail remotely. A senior Wilshire
director suggested that the e-mail messages in the system should have been encrypted.

Overlapping Controls

As we have seen with fortress or home security, several different controls may apply to address a
single vulnerability. For example, we may choose to implement security for a microcomputer
application by using a combination of controls on program access to the data, on physical access to
the microcomputer and storage media, and even by file locking to control access to the processing
programs.

Periodic Review

Few controls are permanently effective. Just when the security specialist finds a way to secure
assets against certain kinds of attacks, the opposition doubles its efforts in an attempt to defeat the
security mechanisms. Thus, judging the effectiveness of a control is an ongoing task. (Sidebar 1-8



reports on periodic reviews of computer security.)

Seldom, if ever, are controls perfectly effective. Controls fail, controls are incomplete, or people
circumvent or misuse controls, for example. For that reason, we use overlapping controls,
sometimes called a layered defense, in the expectation that one control will compensate for a
failure of another. In some cases, controls do nicely complement each other. But two controls are
not always better than one and, in some cases, two can even be worse than one. This brings us to
another security principle.

Principle of Weakest Link: Security can be no stronger than its weakest link. Whether it is
the power supply that powers the firewall or the operating system under the security
application or the human who plans, implements, and administers controls, a failure of any
control can lead to a security failure.

Sidebar 1-8: U.S. Government's Computer Security Report Card

The U.S. Congress requires government agencies to supply annual reports to the Office
of Management and Budget (OMB) on the state of computer security in the agencies.
The agencies must report efforts to protect their computer networks against crackers,
terrorists, and other attackers.

In November 2001, for the third edition of this book, two-thirds of the government
agencies received a grade of F (the lowest possible) on the computer security report
card based on the OMB data. The good news for this edition is that in 2005 only 8 of 24
agencies received grades of F and 7 agencies received a grade of A. The bad, and
certainly sad, news is that the average grade was D+. Also disturbing is that the grades
of 7 agencies fell from 2004 to 2005. Among the failing agencies were Defense, State,
Homeland Security, and Veterans Affairs. The Treasury Department received a D-. A
grades went to Labor, Social Security Administration, and the National Science
Foundation, among others. (Source: U.S. House of Representatives Government Reform
Committee.)



1.6. What's Next

This book describes all aspects of security in computing. By studying it, you will become acquainted
with computer security's major problem areas, the controls that are effective against them, and how
current research is addressing the open problems.

To present security in a comprehensive way, this book is organized in four parts. The first part
introduces encryption, an important tool on which many controls are based. That introduction
presents encryption's goals, terminology, and use. You will be able to understand the role of
encryption in addressing security needs without having to learn the intricate details of particular
encryption methods. The second part contains material on the hardware and software components
of computing systems. We describe the types of problems to which each is subject and the kinds of
protection that can be implemented for each component. The third part of the book discusses
factors outside the system's hardware, software, and data that can influence the system's security.
In particular, this part contains a study of physical factors in security, as well as characteristics of
the people who use the system. The book's final section is a more detailed study of encryption, for
those readers who are interested in understanding the intricacies of encryption techniques and
evaluating their effectiveness.

The remainder of this section presents the contents of these parts in more depth.

Encryption Overview

Chapter 2 presents the goals and terminology of encryption so that you will understand not only
why data are scrambled but also the role of the scrambling in the larger context of protecting
assets. This chapter provides you with knowledge of encryption sufficient for study of its use as part
of other security tools and techniques.

Hardware and Software Security

Chapters 3 through 7 address the role of security in general programs, operating systems, database
management systems, and networks. In particular, the security problems and features of programs
are introduced in Chapter 3. Here, we look at viruses and other malicious code and ways to devise
controls against them.

Operating systems are considered separately, in Chapter 4, because they play a major role in
security and are fundamental to proper computer usage. While providing security features to protect
one user from another, operating systems can at the same time introduce security vulnerabilities
themselves. Chapter 5 focuses on a special type of operating system, called a trusted operating
system, to study how to make certain data and functions accessible only to those who have the
need or permission to view or handle them. This chapter is especially important for those developers
who plan to design their own operating systems or modify functions in an existing operating system.

Database management systems are also specialized programs: they permit many users to share



access to one common set of data. Because these systems are partially responsible for the
confidentiality, integrity, and availability of the shared data, we look at database security in Chapter
6.

Chapter 7 contains material on security problems and solutions particular to computer networks and
the communications media by which networked computers are connected. Network security has
become very significant because of the rapid growth in use of networks, especially the Internet.

Human Controls in Security

The first two parts of this book form a progression from simple security applications and tools to
complex security technology in multiuser, multicomputer systems. These technology-based security
methods are rather sophisticated, and researchers continue to look to technology to assist in
security assurance. However, most computer-based security breaches are caused by either human
or environmental factors. Thus, Chapters 8 through 11 suggest alternative or supplemental
approaches to computer security: Treat the causes (people and the environment) rather than the
symptoms (attacks and vulnerabilities). We examine procedures that can be implemented in spite
of, or in addition to, any controls built into hardware and software.

Chapter 8 addresses the administration of security. It begins with security planning and the
particularly important role played by risk analysis. The chapter also explains physical security
mechanisms that can be used to protect computing systems against human attacks or natural
disasters. It explains why security policy is essential to security planning, illustrating the concepts
with several examples from actual organizational policy documents. The chapter concludes with a
discussion of disaster recovery: how to deal with the failure of other controls.

Chapter 9 looks at the economics of cybersecurity. In any organization, security is just one of many
competing needs. Security will never be the "long pole in the tent," getting a disproportionately
large share of resources; too often, unfortunately, it ends up being the short pole, suffering from
inattention. In Chapter 9 we describe the economic case for cybersecurity: how to justify spending
on security (which often means not spending on facilities or benefits or marketing) and how to
demonstrate that investing in security has paid off.

In Chapter 10 we consider privacy, which is a different part of the human side of computer security.
As more data are collected about more people, two concerns arise: First, who owns or controls
personal data, and what are acceptable uses of that data, and second, how are personal data
protected against loss or inappropriate disclosure? As data collection and analysis systems grow and
new ones are developed, now is the right time to ensure that appropriate security controls protect
these valuable kinds of data.

Chapter 11 considers the use of law and ethics to control malicious behavior. Although computer law
is a relatively new field, it is evolving rapidly and is an important tool in the defense of computing
systems. We look at how ethical systems may address some situations where the law is ineffective,
inappropriate, or inadequately defined.

Encryption In-Depth

Chapter 12 builds on the simple encryption methods and terminology presented in Chapter 2. It
progresses from theoretical encryption algorithms to current standard practices in the field. We



study what makes a cryptosystem secure enough for commercial use; for protecting government
data; or for securing your own private, personal information.

Throughout the book, we raise issues related to the important problems in computer security today.
When the solution is known, we describe it or at least give you pointers to a fuller description of the
solution. At the same time, we discuss work in progress so that you can watch the media and the
literature for significant achievements in improving computer security.

It is important to remember that computer security is a relatively new field that is gaining
prominence as computing itself becomes pervasive. The speed of new development in computing far
outpaces capabilities in computer security. It sometimes seems as if each advance in computing
brings with it new security problems. In a sense, this is true. However, there is reason to be
optimistic. The fundamental work in security provides tools (such as encryption and operating
system features) that form the basis of controls for these new problems as the problems arise. Part
of the excitement of computer security is that there are always new challenges to address.



1.7. Summary

Computer security attempts to ensure the confidentiality, integrity, and availability of computing
systems' components. Three principal pieces of a computing system are subject to attacks:
hardware, software, and data. These three, and the communications among them, constitute the
basis of computer security vulnerabilities. In turn, those people and systems interested in
compromising a system can devise attacks that exploit the vulnerabilities. This chapter has
identified four kinds of attacks on computing systems: interception, interruption, modification, and
fabrication.

Four principles affect the direction of work in computer security. By the principle of easiest
penetration, a computing system penetrator will use whatever means of attack is the easiest;
therefore, all aspects of computing system security must be considered at once. By the principle of
timeliness, a system must be protected against penetration only so long as the penetration has
value to the penetrator. The principle of effectiveness states that controls must be usable and used
in order to serve their purpose. And the weakest link principle states that security is no stronger
than its weakest point.

Controls can be applied at the levels of the data, the programs, the system, the physical devices,
the communications links, the environment, and the personnel. Sometimes several controls are
needed to cover a single vulnerability, and sometimes one control addresses many problems at
once.



1.8. Terms and Concepts

Virus, Trojan horse, worm, rabbit, salami, firewall, spray paint, mental poker, orange book, war
dialer. The vocabulary of computer security is rich with terms that capture your attention. Also, the
field is filled with acronyms: DES, AES, RSA, TCSEC, CTCPEC, ITSEC, PEM, PGP, and SSE CMM, to
list a few. All of these are explained in this book. Each chapter ends with a list of terms and
concepts, in order of their occurrence, as a way to review and see whether you have learned the
important points of the chapter.

The list for this chapter includes some terms that may be new, as well as the major concepts
introduced here. Although these terms are elaborated on in future chapters, it is good to begin now
to learn the terms and the underlying concepts.

computing system, 5

principle of easiest penetration, 5

hardware, 6

software, 6

data, 6

vulnerability, 6

threat, 6

attack, 7

control, 7

interruption, 8

interception, 8

modification, 8

fabrication, 8

method, 8

opportunity, 8

motive, 8

security, secure, 10

confidentiality, 10



integrity, 10

availability, 10

secrecy, 10

privacy, 10

configuration management, 15

logic bomb, 16

Trojan horse, 16

virus, 16

trapdoor, 16

information leak, 16

principle of adequate protection, 17

salami attack, 19

replay, 19

cracker, 22

prevention, 23

deterrence, 23

deflection, 23

detection, 23

recovery, 23

encryption, 25

protocol, 26

policy, 27

procedure, 27

physical control, 27

principle of effectiveness, 28

overlapping control, 29

layered defense, 29

principle of weakest link, 29



administrative control, 31



1.9. Where the Field Is Headed

We conclude most chapters with a paragraph or two highlighting some interesting work being done.
For students interested in pursuing a career in security, these sections may identify an area of
interest.

The number of computer security professionals is growing rapidly but so, too, is the number of
attackers. The U.S. CERT and its counterpart organizations around the world do an exceptional job
of tracking serious system vulnerabilities and countermeasures. Several efforts are underway to
categorize and catalog computer security incidents and vulnerabilities (for example, Landwehr et al.
[LAN94]). Being able to sort and correlate incident information is critical to successful forensic
analysis of large incidents.

The severity of the computer security problem is causing many companies, schools and universities,
government bodies, and individuals to address their security needs. Looking at these groups
separately can be daunting and also risks your missing the ones who do it really well. Several
groups have promulgated codes of security best practices. The Information Security Forum [ISF00]
and the Internet Security Alliance [ISA02] have published codes of best security practices, which
are recommendations for secure computing. Governments and regulatory bodies are beginning to
enforce standards.

Obviously, the popular attack point today is computer networks and, specifically, the Internet. Do
not be misled, however, into thinking that all computer security is network security. As you will see
throughout the remainder of this book, network security problems are often just the latest
instantiation of computer security problems that predate the rise of the Internetproblems such as
identification and authentication, limited privilege, and designing for security. So although the
problems of networks are pressing, they are long-standing, open problems.



1.10. To Learn More

Today's bookshelves are full of books about computer security: its meaning, its impact, and the
people involved in preventing malicious behavior. However, two key works form the foundation for
much of subsequent work in computer security: the exploration of vulnerabilities and controls by
Ware [WAR79] and the security technology planning study by Anderson [AND72]. The concepts and
ideas put forth are still relevant, even though the papers are several decades old.

Three very good surveys of the field of computer security are Denning's classic textbook [DEN82],
much of which is still valid, and the more recent textbooks by Gollmann [GOL99] and Bishop
[BIS03]. Also, Schneier's book [SCH00a] is an enjoyable overview.

Some sources focus on a particular aspect of security. Confidentiality is explored by the Dennings
[DEN79a], and integrity is studied carefully by Welke and Mayfield [WEL90, MAY91, NCS91b].
Availability considerations are documented by Pfleeger and Mayfield [PFL92] and by Millen [MIL92].

Since 1991, the National Research Council of the National Academy of Science has published seven
reports on the state of aspects of computer security. The first volume [NRC91] lays out the
significant risk of the then current state of computing. Frighteningly, the latest report [NRC02]
concludes: "not much has changed with respect to security as it is practiced." These volumes are
worth reading for their realistic assessment of today's threats and preparedness.

For further study of threats affecting computer systems, see Denning [DEN99]. The hard-to-find
paper by Grant and Richie [GRA83] presents a compelling threat example. For examples of how
computer system vulnerabilities have actually been exploited, you may want to read [STO89],
[SHI96], and [FRE97].



1.11. Exercises

1 Distinguish among vulnerability, threat, and control.

2 Theft usually results in some kind of harm. For example, if someone steals your car,
you may suffer financial loss, inconvenience (by losing your mode of transportation),
and emotional upset (because of invasion of your personal property and space). List
three kinds of harm a company might experience from theft of computer equipment.

3 List at least three kinds of harm a company could experience from electronic
espionage or unauthorized viewing of confidential company materials.

4 List at least three kinds of damage a company could suffer when the integrity of a
program or company data is compromised.

5 Describe two examples of vulnerabilities in automobiles for which auto manufacturers
have instituted controls. Tell why you think these controls are effective, somewhat
effective, or ineffective.

6 One control against accidental software deletion is to save all old versions of a
program. Of course, this control is prohibitively expensive in terms of cost of storage.
Suggest a less costly control against accidental software deletion. Is your control
effective against all possible causes of software deletion? If not, what threats does it
not cover?

7 On a typical multiuser computing system (such as a shared Unix system at a
university or an industry), who can modify the code (software) of the operating
system? Of a major application program such as a payroll program or a statistical
analysis package? Of a program developed and run by a single user? Who should be
permitted to modify each of these examples of code?

8 Suppose a program to print paychecks secretly leaks a list of names of employees
earning more than a certain amount each month. What controls could be instituted to
limit the vulnerability of this leakage?

9 Some terms have been introduced intentionally without definition in this chapter. You
should be able to deduce their meanings. What is an electronic spy? What is an
information broker?

10 Preserving confidentiality, integrity, and availability of data is a restatement of the
concern over interruption, interception, modification, and fabrication. How do the first
three concepts relate to the last four? That is, is any of the four equivalent to one or
more of the three? Is one of the three encompassed by one or more of the four?



11 Do you think attempting to break in to (that is, obtain access to or use of) a
computing system without authorization should be illegal? Why or why not?

12 Describe an example (other than the one mentioned in this chapter) of data whose
confidentiality has a short timeliness, say, a day or less. Describe an example of data
whose confidentiality has a timeliness of more than a year.

13 Do you currently use any computer security control measures? If so, what? Against
what attacks are you trying to protect?

14 Describe an example in which absolute denial of service to a user (that is, the user
gets no response from the computer) is a serious problem to that user. Describe
another example where 10 percent denial of service to a user (that is, the user's
computation progresses, but at a rate 10 percent slower than normal) is a serious
problem to that user. Could access by unauthorized people to a computing system
result in a 10 percent denial of service to the legitimate users? How?

15 When you say that software is of high quality, what do you mean? How does security
fit into your definition of quality? For example, can an application be insecure and still
be "good"?

16 Developers often think of software quality in terms of faults and failures. Faults are
problems, such as loops that never terminate or misplaced commas in statements,
that developers can see by looking at the code. Failures are problems, such as a
system crash or the invocation of the wrong function, that are visible to the user.
Thus, faults can exist in programs but never become failures, because the conditions
under which a fault becomes a failure are never reached. How do software
vulnerabilities fit into this scheme of faults and failures? Is every fault a vulnerability?
Is every vulnerability a fault?

17 Consider a program to display on your web site your city's current time and
temperature. Who might want to attack your program? What types of harm might
they want to cause? What kinds of vulnerabilities might they exploit to cause harm?

18 Consider a program that allows consumers to order products from the web. Who
might want to attack the program? What types of harm might they want to cause?
What kinds of vulnerabilities might they exploit to cause harm?

19 Consider a program to accept and tabulate votes in an election. Who might want to
attack the program? What types of harm might they want to cause? What kinds of
vulnerabilities might they exploit to cause harm?

20 Consider a program that allows a surgeon in one city to assist in an operation on a
patient in another city via an Internet connection. Who might want to attack the
program? What types of harm might they want to cause? What kinds of
vulnerabilities might they exploit to cause harm?

21 Reports of computer security failures appear frequently in the daily news. Cite a
reported failure that exemplifies one (or more) of the principles listed in this chapter:
easiest penetration, adequate protection, effectiveness, weakest link.





Chapter 2. Elementary Cryptography

In this chapter

Concepts of encryption

Cryptanalysis: how encryption systems are "broken"

Symmetric (secret key) encryption and the DES and AES algorithms

Asymmetric (public key) encryption and the RSA algorithm

Key exchange protocols and certificates

Digital signatures

Cryptographic hash functions

Cryptographysecret writingis the strongest tool for controlling against many kinds of security
threats. Well-disguised data cannot be read, modified, or fabricated easily. Cryptography is rooted
in higher mathematics: group and field theory, computational complexity, and even real analysis,
not to mention probability and statistics. Fortunately, it is not necessary to understand the
underlying mathematics to be able to use cryptography.

We begin this chapter by examining what encryption does and how it works. We introduce the basic
principles of encryption with two simple encryption methods: substitution and transposition. Next,
we explore how they can be expanded and improved to create stronger, more sophisticated
protection. Because weak or flawed encryption provides only the illusion of protection, we also look
at how encryption can fail. We analyze techniques used to break through the protective scheme and
reveal the original text. Three very popular algorithms are in use today: DES, AES, and RSA. We
look at them in some detail to see how these and other algorithms can be used as building blocks
with protocols and structures to perform other computing tasks, such as signing documents,
detecting modification, and exchanging sensitive data.

Chapter 12 offers a deeper analysis of encryption techniques and algorithms, including their
mathematical bases, the mechanisms that make them work, and their limitations. Most users of
cryptography will never invent their own algorithms, just as most users of electricity do not build
their own power generators. Still, deeper knowledge of how cryptography works can help you use it



effectively, just as deeper knowledge of energy issues helps you understand the environmental and
cost trade-offs among different energy sources. This chapter offers you a rudimentary
understanding of what cryptography is; but we encourage you to study the details in Chapter 12 to
better understand the implications of each choice of cryptographic algorithm.



2.1. Terminology and Background

Consider the steps involved in sending messages from a sender, S, to a recipient, R. If S entrusts
the message to T, who then delivers it to R, T then becomes the transmission medium. If an
outsider, O, wants to access the message (to read, change, or even destroy it), we call O an
interceptor or intruder. Any time after S transmits it via T, the message is vulnerable to
exploitation, and O might try to access the message in any of the following ways:

Block it, by preventing its reaching R, thereby affecting the availability of the message.

Intercept it, by reading or listening to the message, thereby affecting the confidentiality of the
message.

Modify it, by seizing the message and changing it in some way, affecting the message's
integrity.

Fabricate an authentic-looking message, arranging for it to be delivered as if it came from S,
thereby also affecting the integrity of the message.

As you can see, a message's vulnerabilities reflect the four possible security failures we identified in
Chapter 1. Fortunately, encryption is a technique that can address all these problems. Encryption,
probably the most fundamental building block of secure computing, is a means of maintaining
secure data in an insecure environment. (It is not the only building block, however.) In this book,
we study encryption as a security technique, and we see how it is used in protecting programs,
databases, networks, and electronic communications.

Terminology

Encryption is the process of encoding a message so that its meaning is not obvious; decryption is
the reverse process, transforming an encrypted message back into its normal, original form.
Alternatively, the terms encode and decode or encipher and decipher are used instead of
encrypt and decrypt.[1] That is, we say that we encode, encrypt, or encipher the original message to
hide its meaning. Then, we decode, decrypt, or decipher it to reveal the original message. A system
for encryption and decryption is called a cryptosystem.

[1] There are slight differences in the meanings of these three pairs of words, although they are not significant in this context.

Strictly speaking, encoding is the process of translating entire words or phrases to other words or phrases, whereas

enciphering is translating letters or symbols individually; encryption is the group term that covers both encoding and

enciphering.

The original form of a message is known as plaintext, and the encrypted form is called ciphertext.
This relationship is shown in Figure 2-1. For convenience, we denote a plaintext message P as a
sequence of individual characters P = <p1, p2, …, pn>. Similarly, ciphertext is written as C = <c1, c2,
…, cm>. For instance, the plaintext message "I want cookies" can be denoted as the message string
<I, ,w,a,n,t, , c,o,o,k,i,e,s>. It can be transformed into ciphertext <c1, c2, …, c14>, and the



encryption algorithm tells us how the transformation is done.

Figure 2-1. Encryption.

We use this formal notation to describe the transformations between plaintext and ciphertext. For
example, we write C = E(P) and P = D(C), where C represents the ciphertext, E is the encryption
rule, P is the plaintext, and D is the decryption rule. What we seek is a cryptosystem for which P =
D(E(P)). In other words, we want to be able to convert the message to protect it from an intruder,
but we also want to be able to get the original message back so that the receiver can read it
properly.

Encryption Algorithms

The cryptosystem involves a set of rules for how to encrypt the plaintext and how to decrypt the
ciphertext. The encryption and decryption rules, called algorithms, often use a device called a key,
denoted by K, so that the resulting ciphertext depends on the original plaintext message, the
algorithm, and the key value. We write this dependence as C = E(K, P). Essentially, E is a set of
encryption algorithms, and the key K selects one specific algorithm from the set. We see later in this
chapter that a cryptosystem, such as the Caesar cipher, is keyless but that keyed encryptions are
more difficult to break.

This process is similar to using mass-produced locks in houses. As a homeowner, it would be very
expensive for you to contract with someone to invent and make a lock just for your house. In
addition, you would not know whether a particular inventor's lock was really solid or how it
compared with those of other inventors. A better solution is to have a few well-known, well-
respected companies producing standard locks that differ according to the (physical) key. Then, you
and your neighbor might have the same model of lock, but your key will open only your lock. In the
same way, it is useful to have a few well-examined encryption algorithms that everyone could use,
but the differing keys would prevent someone from breaking into what you are trying to protect.

Sometimes the encryption and decryption keys are the same, so P = D(K, E(K,P)). This form is
called symmetric encryption because D and E are mirror-image processes. At other times,
encryption and decryption keys come in pairs. Then, a decryption key, KD, inverts the encryption of
key KE so that P = D(KD, E(KE,P)). Encryption algorithms of this form are called asymmetric
because converting C back to P involves a series of steps and a key that are different from the steps
and key of E. The difference between symmetric and asymmetric encryption is shown in Figure 2-2.

Figure 2-2. Encryption with Keys.



[View full size image]

A key gives us flexibility in using an encryption scheme. We can create different encryptions of one
plaintext message just by changing the key. Moreover, using a key provides additional security. If
the encryption algorithm should fall into the interceptor's hands, future messages can still be kept
secret because the interceptor will not know the key value. Sidebar 2-1 describes how the British
dealt with written keys and codes in World War II. An encryption scheme that does not require the
use of a key is called a keyless cipher.

The history of encryption is fascinating; it is well documented in Kahn's book [KAH96]. Encryption
has been used for centuries to protect diplomatic and military communications, sometimes without
full success. The word cryptography means hidden writing, and it refers to the practice of using
encryption to conceal text. A cryptanalyst studies encryption and encrypted messages, hoping to
find the hidden meanings.

Both a cryptographer and a cryptanalyst attempt to translate coded material back to its original
form. Normally, a cryptographer works on behalf of a legitimate sender or receiver, whereas a
cryptanalyst works on behalf of an unauthorized interceptor. Finally, cryptology is the research into
and study of encryption and decryption; it includes both cryptography and cryptanalysis.



Sidebar 2-1: Silken Codes

Marks [MAR98] describes the life of a code-maker in Britain during World War II. That
is, the British hired Marks and others to devise codes that could be used by spies and
soldiers in the field. In the early days, the encryption scheme depended on poems that
were written for each spy and relied on the spy's ability to memorize and recall them
correctly.

Marks reduced the risk of error by introducing a coding scheme that was printed on
pieces of silk. Silk hidden under clothing could not be felt when the spy was patted
down and searched. And, unlike paper, silk burns quickly and completely, so the spy
could destroy the incriminating evidence, also ensuring that the enemy could not get
even fragments of the valuable code. When pressed by superiors as to why the British
should use valuable silk (which was already needed for war-time necessities like
parachutes) for codes, Marks said that it was a choice "between silk and cyanide."

Cryptanalysis

A cryptanalyst's chore is to break an encryption. That is, the cryptanalyst attempts to deduce the
original meaning of a ciphertext message. Better yet, he or she hopes to determine which
decrypting algorithm matches the encrypting algorithm so that other messages encoded in the same
way can be broken. For instance, suppose two countries are at war and the first country has
intercepted encrypted messages of the second. Cryptanalysts of the first country want to decipher a
particular message so that the first country can anticipate the movements and resources of the
second. But it is even better to discover the actual decryption algorithm; then the first country can
easily break the encryption of all messages sent by the second country.

Thus, a cryptanalyst can attempt to do any or all of six different things:

break a single message

recognize patterns in encrypted messages, to be able to break subsequent ones by applying a
straightforward decryption algorithm

infer some meaning without even breaking the encryption, such as noticing an unusual
frequency of communication or determining something by whether the communication was
short or long

deduce the key, to break subsequent messages easily

find weaknesses in the implementation or environment of use of encryption

find general weaknesses in an encryption algorithm, without necessarily having intercepted
any messages

In this book, we see examples of each type of activity.



An analyst works with a variety of pieces of information: encrypted messages, known encryption
algorithms, intercepted plaintext, data items known or suspected to be in a ciphertext message,
mathematical or statistical tools and techniques, properties of languages, computers, and plenty of
ingenuity and luck. Each piece of evidence can provide a clue, and the analyst puts the clues
together to try to form a larger picture of a message's meaning in the context of how the encryption
is done. Remember that there are no rules. An interceptor can use any means available to tease out
the meaning of the message.

Breakable Encryption

An encryption algorithm is called breakable when, given enough time and data, an analyst can
determine the algorithm. However, an algorithm that is theoretically breakable may in fact be
impractical to try to break. To see why, consider a 25-character message that is expressed in just
uppercase letters. A given cipher scheme may have 2625 (approximately 1035) possible
decipherments, so the task is to select the right one out of the 2625. If your computer could perform
on the order of 1010 operations per second, finding this decipherment would require on the order of
1016 seconds, or roughly 1011 years. In this case, although we know that theoretically we could
generate the solution, determining the deciphering algorithm by examining all possibilities can be
ignored as infeasible with current technology.

Two other important issues must be addressed when considering the breakability of encryption
algorithms. First, the cryptanalyst cannot be expected to try only the hard, long way. In the
example just presented, the obvious decryption might require 2625 machine operations, but a more
ingenious approach might require only 1015 operations. At the speed of 1010 operations per second,
1015 operations take slightly more than one day. The ingenious approach is certainly feasible. As we
see later in this chapter, some of the algorithms we study in this book are based on known "hard"
problems that take an unreasonably long time to solve. But the cryptanalyst does not necessarily
have to solve the underlying problem to break the encryption of a single message. As we note in
Sidebar 2-2, sloppy use of controls can reveal likely words or phrases, and an analyst can use
educated guesses combined with careful analysis to generate all or most of an important message.

Sidebar 2-2: Hidden Meanings Change the Course of World War

II

In the spring of 1942, the United States was fighting Japan in the Pacific. American
cryptanalysts had cracked some of the Japanese naval codes, but they didn't
understand the extra encoding the Japanese used to describe particular sites. A
message intercepted by the United States told the Allies' officers that "AF" was to be the
target of a major assault. The U.S. Navy suspected that the assault would be on Midway
island, but it needed to be sure.

Commander Joseph Rochefort, head of the U.S. Navy's cryptography center at Pearl
Harbor, devised a clever plan to unearth the meaning of "AF." He directed the naval
group at Midway to send a message, requesting fresh water because the water distillery
had been damaged. Soon, the United States intercepted a Japanese message indicating
that "AF" was short of waterverifying that "AF" indeed meant Midway! [SEI01]



Second, estimates of breakability are based on current technology. An enormous advance in
computing technology has occurred since 1950. Things that were infeasible in 1940 became possible
by the 1950s, and every succeeding decade has brought greater improvements. A conjecture known
as "Moore's Law" asserts that the speed of processors doubles every 1.5 years, and this conjecture
has been true for over two decades. It is risky to pronounce an algorithm secure just because it
cannot be broken with current technology, or worse, that it has not been broken yet.

Representing Characters

We want to study ways of encrypting any computer material, whether it is written as ASCII
characters, binary data, object code, or a control stream. However, to simplify the explanations, we
begin with the encryption of messages written in the standard 26-letter English[2] alphabet, A
through Z.

[2] Because this book is written in English, the explanations refer to English. However, with slight variations, the techniques are

applicable to most other written languages as well.

Throughout the book, we use the convention that plaintext is written in UPPERCASE letters, and
ciphertext is in lowercase letters. Because most encryption algorithms are based on mathematical
transformations, they can be explained or studied more easily in mathematical form. Therefore, in
this book, we switch back and forth between letters and the numeric encoding of each letter as
shown here.
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Thus, the letter A is represented by a zero, B by a one, and so on. This representation allows us to
consider performing arithmetic on the "letters" of a message. That is, we can perform addition and
subtraction on letters by adding and subtracting the corresponding code numbers. Expressions such
as A + 3 = D or K - 1 = J have their natural interpretation. Arithmetic is performed as if the
alphabetic table were circular.[3] In other words, addition wraps around from one end of the table to
the other so that Y + 3 = B. Thus, every result of an arithmetic operation is between 0 and 25.

[3] This form of arithmetic is called modular arithmetic, written mod n, which means that any result greater than n is reduced by

n as many times as necessary to bring it back into the range 0  result & < n. Another way to reduce a result is to use the

remainder after dividing the number by n. For example, the value of 95 mod 26 is the remainder of 95/26, which is 17, while 95 -

26 - 26 - 26 = 17; alternatively, starting at position 0 (A) and counting ahead 95 positions (and returning to position 0 each time

after passing position 25) also brings us to position 17.

There are many types of encryption. In the next two sections we look at two simple forms of
encryption: substitutions, in which one letter is exchanged for another, and transpositions, in
which the order of the letters is rearranged. The goals of studying these two forms are to become
familiar with the concept of encryption and decryption, to learn some of the terminology and
methods of cryptanalysis, and to study some of the weaknesses to which encryption is prone. Once
we have mastered the simple encryption algorithms, we explore "commercial grade" algorithms



used in modern computer applications.



2.2. Substitution Ciphers

Children sometimes devise "secret codes" that use a correspondence table with which to substitute
a character or symbol for each character of the original message. This technique is called a
monoalphabetic cipher or simple substitution. A substitution is an acceptable way of encrypting
text. In this section, we study several kinds of substitution ciphers.

The Caesar Cipher

The Caesar cipher has an important place in history. Julius Caesar is said to have been the first to
use this scheme, in which each letter is translated to the letter a fixed number of places after it in
the alphabet. Caesar used a shift of 3, so plaintext letter pi was enciphered as ciphertext letter ci by
the rule

ci = E(pi) = pi + 3

A full translation chart of the Caesar cipher is shown here.
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Using this encryption, the message

TREATY IMPOSSIBLE

would be encoded as

T R E A T Y   I M P O S S I B L E
w u h d w b   l p s r v v l e o h

Advantages and Disadvantages of the Caesar Cipher

Most ciphers, and especially the early ones, had to be easy to perform in the field. In particular, it
was dangerous to have the cryptosystem algorithms written down for the soldiers or spies to follow.
Any cipher that was so complicated that its algorithm had to be written out was at risk of being
revealed if the interceptor caught a sender with the written instructions. Then, the interceptor could
readily decode any ciphertext messages intercepted (until the encryption algorithm could be
changed).

The Caesar cipher is quite simple. During Caesar's lifetime, the simplicity did not dramatically
compromise the safety of the encryption because anything written, even in plaintext, was rather
well protected; few people knew how to read! The pattern pi + 3 was easy to memorize and



implement. A sender in the field could write out a plaintext and a ciphertext alphabet, encode a
message to be sent, and then destroy the paper containing the alphabets. Sidebar 2-3 describes
actual use of a cipher similar to the Caesar cipher.

Sidebar 2-3: Mafia Boss Uses Encryption

Arrested in Sicily in April 2006, the reputed head of an Italian Mafia family, Bernardo
Provenzano, made notes, pizzini in the Sicilian dialect. When arrested, he left
approximately 350 of the notes behind. In the pizzini he gives instructions to his
lieutenants regarding particular people.

Instead of writing the name of a person, Provenzano used a variation of the Caesar
cipher in which letters were replaced by numbers: A by 4, B by 5, … Z by 24 (there are
only 21 letters in the Italian alphabet). So in one of his notes the string "…I met
512151522 191212154 and we agreed that we will see each other after the holidays…,"
refers to Binnu Riina, an associate arrested soon after Provenzano [LOR06]. Police
decrypted notes found before Provenzano's arrest and used clues in them to find the
boss, wanted for 40 years.

All notes appear to use the same encryption, making them trivial to decrypt once police
discerned the pattern.

Suggestions we might make to Sig. Provenzano: use a strong encryption algorithm,
change the encryption key from time to time, and hire a cryptographer.

Its obvious pattern is also the major weakness of the Caesar cipher. A secure encryption should not
allow an interceptor to use a small piece of the ciphertext to predict the entire pattern of the
encryption.

Cryptanalysis of the Caesar Cipher

Let us take a closer look at the result of applying Caesar's encryption technique to "TREATY
IMPOSSIBLE." If we did not know the plaintext and were trying to guess it, we would have many
clues from the ciphertext. For example, the break between the two words is preserved in the
ciphertext, and double letters are preserved: The SS is translated to vv. We might also notice that
when a letter is repeated, it maps again to the same ciphertext as it did previously. So the letters T,
I, and E always translate to w, l, and h. These clues make this cipher easy to break.

Suppose you are given the following ciphertext message, and you want to try to determine the
original plaintext.

wklv phvvdjh lv qrw wrr kdug wr euhdn

The message has actually been enciphered with a 27-symbol alphabet: A through Z plus the "blank"
character or separator between words.[4] As a start, assume that the coder was lazy and has



allowed the blank to be translated to itself. If your assumption is true, it is an exceptional piece of
information; knowing where the spaces are allows us to see which are the small words. English has
relatively few small words, such as am, is, to, be, he, we, and, are, you, she, and so on. Therefore,
one way to attack this problem and break the encryption is to substitute known short words at
appropriate places in the ciphertext until you have something that seems to be meaningful. Once
the small words fall into place, you can try substituting for matching characters at other places in
the ciphertext.

[4] In fact, in most encryption schemes, spaces between words often are deleted, under the assumption that a legitimate receiver

can break most messages into words fairly easily. For ease of writing and decoding, messages are then arbitrarily broken into

blocks of a uniform size, such as every five characters, so that there is no significance to the places where the message is

broken.

Look again at the ciphertext you are decrypting. There is a strong clue in the repeated r of the word
wrr. You might use this text to guess at three-letter words that you know. For instance, two very
common three-letter words having the pattern xyy are see and too; other less common possibilities
are add, odd, and off. (Of course, there are also obscure possibilities like woo or gee, but it makes
more sense to try the common cases first.) Moreover, the combination wr appears in the ciphertext,
too, so you can determine whether the first two letters of the three-letter word also form a two-
letter word.

For instance, if wrr is SEE, wr would have to be SE, which is unlikely. However, if wrr is TOO, wr
would be TO, which is quite reasonable. Substituting T for w and O for r, the message becomes

wklv phvvdjh lv qrw wrr kdug wr euhdn
T--- ------- -- -OT TOO ---- TO -----

The OT could be cot, dot, got, hot, lot, not, pot, rot, or tot; a likely choice is not. Unfortunately, q =
N does not give any more clues because q appears only once in this sample.

The word lv is also the end of the word wklv, which probably starts with T. Likely two-letter words
that can also end a longer word include so, is, in, etc. However, so is unlikely because the form T-SO
is not recognizable; IN is ruled out because of the previous assumption that q is N. A more promising
alternative is to substitute IS for lv tHRoughout, and continue to analyze the message in that way.

By now, you might notice that the ciphertext letters uncovered are just three positions away from
their plaintext counterparts. You (and any experienced cryptanalyst) might try that same pattern on
all the unmatched ciphertext. The completion of this decryption is left as an exercise.

The cryptanalysis described here is ad hoc, using deduction based on guesses instead of solid
principles. But you can take a more methodical approach, considering which letters commonly start
words, which letters commonly end words, and which prefixes and suffixes are common.
Cryptanalysts have compiled lists of common prefixes, common suffixes, and words having
particular patterns. (For example, sleeps is a word that follows the pattern abccda.) In the next
section, we look at a different analysis technique.

Other Substitutions

In substitutions, the alphabet is scrambled, and each plaintext letter maps to a unique ciphertext



letter. We can describe this technique in a more mathematical way. Formally, we say that a
permutation is a reordering of the elements of a sequence. For instance, we can permute the
numbers l to 10 in many ways, including the permutations π1 = 1, 3, 5, 7, 9, 10, 8, 6, 4, 2; and π2

= 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. A permutation is a function, so we can write expressions such as
π1(3) = 5 meaning that the letter in position 3 is to be replaced by the fifth letter. If the set is the
first ten letters of the alphabet, π1(3) = 5 means that c is transformed into E.

One way to scramble an alphabet is to use a key, a word that controls the permutation. For
instance, if the key is word, the sender or receiver first writes the alphabet and then writes the key
under the first few letters of the alphabet.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
word

The sender or receiver then fills in the remaining letters of the alphabet, in some easy-to-remember
order, after the keyword.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
wordabcefghijklmnpqstuvxyz

In this example, the key is short, so most plaintext letters are only one or two positions off from
their ciphertext equivalents. With a longer keyword, the distance is greater and less predictable, as
shown below. Because π must map one plaintext letter to exactly one ciphertext letter, duplicate
letters in a keyword, such as the second s and o in professional, are dropped.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
profesinalbcdghjkmqtuvwxyz

Notice that near the end of the alphabet replacements are rather close, and the last seven
characters map to themselves. Conveniently, the last characters of the alphabet are among the
least frequently used, so this vulnerability would give little help to an interceptor.

Still, since regularity helps an interceptor, it is desirable to have a less regular rearrangement of the
letters. One possibility is to count by threes (or fives or sevens or nines) and rearrange the letters in
that order. For example, one encryption uses a table that starts with

ABCDEFGHIJKLMNOPQRSTUVWXYZ
adgj

using every third letter. At the end of the alphabet, the pattern continues mod 26, as shown below.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
adgjmpsvybehknqtwzcfilorux



There are many other examples of substitution ciphers. For instance, Sidebar 2-4 describes a
substitution cipher called a poem code, used in the early days of World War II by British spies to
keep the Germans from reading their messages.

Complexity of Substitution Encryption and Decryption

An important issue in using any cryptosystem is the time it takes to turn plaintext into ciphertext,
and vice versa. Especially in the field (when encryption is used by spies or decryption is attempted
by soldiers), it is essential that the scrambling and unscrambling not deter the authorized parties
from completing their missions. The timing is directly related to the complexity of the encryption
algorithm. For example, encryption and decryption with substitution ciphers can be performed by
direct lookup in a table illustrating the correspondence, like the ones shown in our examples.
Transforming a single character can be done in a constant amount of time, so we express the
complexity of the algorithm by saying that the time to encrypt a message of n characters is
proportional to n. One way of thinking of this expression is that if one message is twice as long as
another, it will take twice as long to encrypt.

Sidebar 2-4: Poem Codes

During World War II, the British Special Operations Executive (SOE) produced codes to
be used by spies in hostile territory. The SOE devised poem codes for use in encrypting
and decrypting messages. For security reasons, each message had to be at least 200
letters long.

To encode a message, an agent chose five words at random from his or her poem, and
then assigned a number to each letter of these words. The numbers were the basis for
the encryption. To let the Home Station know which five words were chosen, the words
were inserted at the beginning of the message. However, using familiar poems created
a huge vulnerability. For example, if the German agents knew the British national
anthem, then they might guess the poem from fewer than five words. As Marks
explains, if the words included "'our,' 'gracious,' 'him,' 'victorious,' 'send,' then God save
the agent" [MAR98].

For this reason, Leo Marks' job at SOE was to devise original poems so that "no
reference books would be of the slightest help" in tracing the poems and the messages.

Cryptanalysis of Substitution Ciphers

The techniques described for breaking the Caesar cipher can also be used on other substitution
ciphers. Short words, words with repeated patterns, and common initial and final letters all give
clues for guessing the permutation.

Of course, breaking the code is a lot like working a crossword puzzle: You try a guess and continue



to work to substantiate that guess until you have all the words in place or until you reach a
contradiction. For a long message, this process can be extremely tedious. Fortunately, there are
other approaches to breaking an encryption. In fact, analysts apply every technique at their
disposal, using a combination of guess, strategy, and mathematical skill.

Cryptanalysts may attempt to decipher a particular message at hand, or they may try to determine
the encryption algorithm that generated the ciphertext in the first place (so that future messages
can be broken easily). One approach is to try to reverse the difficulty introduced by the encryption.

To see why, consider the difficulty of breaking a substitution cipher. At face value, such encryption
techniques seem secure because there are 26! possible different encipherments. We know this
because we have 26 choices of letter to substitute for the a, then 25 (all but the one chosen for a)
for b, 24 (all but the ones chosen for a and b) for c, and so on, to yield 26 * 25 * 24 *…* 2 * 1 =
26! possibilities. By using a brute force attack, the cryptanalyst could try all 26! permutations of a
particular ciphertext message. Working at one permutation per microsecond (assuming the
cryptanalyst had the patience to review the probable-looking plaintexts produced by some of the
permutations), it would still take over a thousand years to test all 26! possibilities.

We can use our knowledge of language to simplify this problem. For example, in English, some
letters are used more often than others. The letters E, T, O, and A occur far more often than J, Q, X,
and Z, for example. Thus, the frequency with which certain letters are used can help us to break the
code more quickly. We can also recognize that the nature and context of the text being analyzed
affect the distribution. For instance, in a medical article in which the term x-ray was used often, the
letter x would have an uncommonly high frequency.

When messages are long enough, the frequency distribution analysis quickly betrays many of the
letters of the plaintext. In this and other ways, a good cryptanalyst finds approaches for bypassing
hard problems. An encryption based on a hard problem is not secure just because of the difficulty of
the problem.

How difficult is it to break substitutions? With a little help from frequency distributions and letter
patterns, you can probably break a substitution cipher by hand. It follows that, with the aid of
computer programs and with an adequate amount of ciphertext, a good cryptanalyst can break such
a cipher in an hour. Even an untrained but diligent interceptor could probably determine the
plaintext in a day or so. Nevertheless, in some applications, the prospect of one day's effort, or even
the appearance of a sheet full of text that makes no sense, may be enough to protect the message.
Encryption, even in a simple form, will deter the casual observer.

The Cryptographer's Dilemma

As with many analysis techniques, having very little ciphertext inhibits the effectiveness of a
technique being used to break an encryption. A cryptanalyst works by finding patterns. Short
messages give the cryptanalyst little to work with, so short messages are fairly secure with even
simple encryption.

Substitutions highlight the cryptologist's dilemma: An encryption algorithm must be regular for it to
be algorithmic and for cryptographers to be able to remember it. Unfortunately, the regularity gives
clues to the cryptanalyst.

There is no solution to this dilemma. In fact, cryptography and cryptanalysis at times seem to go
together like a dog chasing its tail. First, the cryptographer invents a new encryption algorithm to



protect a message. Then, the cryptanalyst studies the algorithm, finding its patterns and
weaknesses. The cryptographer then sets out to try to secure messages by inventing a new
algorithm, and then the cryptanalyst has a go at it. It is here that the principle of timeliness from
Chapter 1 applies; a security measure must be strong enough to keep out the attacker only for the
life of the data. Data with a short time value can be protected with simple measures.

One-Time Pads

A one-time pad is sometimes considered the perfect cipher. The name comes from an encryption
method in which a large, nonrepeating set of keys is written on sheets of paper, glued together into
a pad. For example, if the keys are 20 characters long and a sender must transmit a message 300
characters in length, the sender would tear off the next 15 pages of keys. The sender would write
the keys one at a time above the letters of the plaintext and encipher the plaintext with a
prearranged chart (called a Vigenère tableau) that has all 26 letters in each column, in some
scrambled order. The sender would then destroy the used keys.

For the encryption to work, the receiver needs a pad identical to that of the sender. Upon receiving
a message, the receiver takes the appropriate number of keys and deciphers the message as if it
were a plain substitution with a long key. Essentially, this algorithm gives the effect of a key as long
as the number of characters in the pad.

The one-time pad method has two problems: the need for absolute synchronization between sender
and receiver, and the need for an unlimited number of keys. Although generating a large number of
random keys is no problem, printing, distributing, storing, and accounting for such keys are
problems.

Long Random Number Sequences

A close approximation of a one-time pad for use on computers is a random number generator. In
fact, computer random numbers are not random; they really form a sequence with a very long
period (that is, they go for a long time before repeating the sequence). In practice, a generator with
a long period can be acceptable for a limited amount of time or plaintext.

To use a random number generator, the sender with a 300-character message would interrogate
the computer for the next 300 random numbers, scale them to lie between 0 and 25, and use one
number to encipher each character of the plaintext message.

The Vernam Cipher

The Vernam cipher is a type of one-time pad devised by Gilbert Vernam for AT&T. The Vernam
cipher is immune to most cryptanalytic attacks. The basic encryption involves an arbitrarily long
nonrepeating sequence of numbers that are combined with the plaintext. Vernam's invention used
an arbitrarily long punched paper tape that fed into a teletype machine. The tape contained random
numbers that were combined with characters typed into the teletype. The sequence of random
numbers had no repeats, and each tape was used only once. As long as the key tape does not
repeat or is not reused, this type of cipher is immune to cryptanalytic attack because the available
ciphertext does not display the pattern of the key. A model of this process is shown in Figure 2-3.



Figure 2-3. Vernam Cipher.

To see how this method works, we perform a simple Vernam encryption. Assume that the alphabetic
letters correspond to their counterparts in arithmetic notation mod 26. That is, the letters are
represented with numbers 0 through 25. To use the Vernam cipher, we sum this numerical
representation with a stream of random two-digit numbers. For instance, if the message is

VERNAM CIPHER

the letters would first be converted to their numeric equivalents, as shown here.

[View Full Width]

Next, we generate random numbers to combine with the letter codes. Suppose the following series
of random two-digit numbers is generated.

76 48 16 82 44 03 58 11 60 05 48 88

The encoded form of the message is the sum mod 26 of each coded letter with the corresponding
random number. The result is then encoded in the usual base-26 alphabet representation.

[View Full Width]



Thus, the message

VERNAM CIPHER

is encoded as

tahrsp itxmab

In this example, the repeated random number 48 happened to fall at the places of repeated letters,
accounting for the repeated ciphertext letter a; such a repetition is highly unlikely. The repeated
letter t comes from different plaintext letters, a much more likely occurrence. Duplicate ciphertext
letters are generally unrelated when this encryption algorithm is used.

Book Ciphers

Another source of supposedly "random" numbers is any book, piece of music, or other object of
which the structure can be analyzed. Both the sender and receiver need access to identical objects.
For example, a possible one-time pad can be based on a telephone book. The sender and receiver
might agree to start at page 35 and use two middle digits (ddd-DDdd) of each seven-digit phone
number, mod 26, as a key letter for a substitution cipher. They use an already agreed-on table (a
Vigenère tableau) that has all 26 letters in each column, in some scrambled order.

Any book can provide a key. The key is formed from the letters of the text, in order. This type of
encryption was the basis for Ken Follett's novel, The Key to Rebecca, in which Daphne du Maurier's
famous thriller acted as the source of keys for spies in World War II. Were the sender and receiver
known to be using a popular book, such as The Key to Rebecca, the bible, or Security in Computing,
it would be easier for the cryptanalyst to try books against the ciphertext, rather than look for
patterns and use sophisticated tools.

As an example of a book cipher, you might select a passage from Descarte's meditation: What of
thinking? I am, I exist, that is certain. The meditation goes on for great length, certainly long
enough to encipher many very long messages. To encipher the message MACHINES CANNOT THINK
by using the Descartes key, you would write the message under enough of the key and encode the
message by selecting the substitution in row pi, column ki.

iamie xistt hatis cert
MACHI NESCA NNOTT HINK

If we use the substitution table shown as Table 2-1, this message would be encrypted as uaopm
kmkvt unhbl jmed because row M column i is u, row A column a is a, and so on.

Table 2-1. Vigenère Tableau.
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It would seem as though this cipher, too, would be impossible to break. Unfortunately, that is not
true. The flaw lies in the fact that neither the message nor the key text is evenly distributed; in fact,
the distributions of both cluster around high-frequency letters. For example, the four letters A, E, O,
and T account for approximately 40 percent of all letters used in standard English text. Each



ciphertext letter is really the intersection of a plaintext letter and a key letter. But if the probability
of the plaintext or the key letter's being A, E, O, or T is 0.4, the probability of both being one of the
four is 0.4 * 0.4 = 0.16, or nearly one in six. Using the top six letters (adding N and I) increases the
sum of the frequencies to 50 percent and thus increases the probability for a pair to 0.25, or one in
four.

We look for frequent letter pairs that could have generated each ciphertext letter. The encrypted
version of the message MACHINES CANNOT THINK is

uaopm kmkvt unhbl jmed

To break the cipher, assume that each letter of the ciphertext comes from a situation in which the
plaintext letter (row selector) and the key letter (column selector) are both one of the six most
frequent letters. (As we calculated before, this guess will be correct approximately 25 percent of the
time.) The trick is to work the cipher inside out. For a ciphertext letter, look in the body of the table
for the letter to appear at the intersection of one of the six rows with one of the six columns. Find
combinations in the Vigenère tableau that could yield each ciphertext letter as the result of two
high-frequency letters.

Searching through this table for possibilities, we transform the cryptogram.

Ciphertext
Possible
plaintexts

u a o p m 
? A A ? E 
    O   I
        T 

k m k v t 
? E ? ? A
  I     T
  T 

u n h b l 
? A O N ? 
  N T T 

j m e d
? E A ?
  I E
  T

This technique does not reveal the entire message, or even enough of it to make the message MACHI
NESCA NNOTT HINK easy to identify. The technique did, however, make predictions in ten letter
positions, and there was a correct prediction in seven of those ten positions. (The correct predictions
are shown in bold type.) The algorithm made 20 assertions about probable letters, and eight of
those 20 were correct. (A score of 8 out of 20 is 40 percent, even better than the 25 percent
expected.) The algorithm does not come close to solving the cryptogram, but it substantially
reduces the 2619 possibilities for the analyst to consider. Giving this much help to the cryptanalyst is
significant. A similar technique can be used even if the order of the rows is permuted.

Also, we want to stress that a one-time pad cannot repeat. If there is any repetition, the interceptor
gets two streams of ciphertext: one for one block of plaintext, the other for a different plaintext, but
both encrypted using the same key. The interceptor combines the two ciphertexts in such a way
that the keys cancel each other out, leaving a combination of the two plaintexts. The interceptor can
then do other analysis to expose patterns in the underlying plaintexts and give some likely plaintext
elements. The worst case is when the user simply starts the pad over for a new message, for the
interceptor may then be able to determine how to split the plaintexts and unzip the two plaintexts
intact.

Summary of Substitutions



Substitutions are effective cryptographic devices. In fact, they were the basis of many cryptographic
algorithms used for diplomatic communication through the first half of the twentieth century.
Because they are interesting and intriguing, they show up in mysteries by Arthur Conan Doyle,
Edgar Allan Poe, Agatha Christie, Ken Follett, and others.

But substitution is not the only kind of encryption technique. In the next section, we introduce the
other basic cryptographic invention: the transposition (permutation). Substitutions and
permutations together form a basis for some widely used commercial-grade encryption algorithms
that we discuss later in this chapter.



2.3. Transpositions (Permutations)

The goal of substitution is confusion; the encryption method is an attempt to make it difficult for a
cryptanalyst or intruder to determine how a message and key were transformed into ciphertext. In
this section, we look at a different kind of scrambling with the similar goal. A transposition is an
encryption in which the letters of the message are rearranged. With transposition, the cryptography
aims for diffusion, widely spreading the information from the message or the key across the
ciphertext. Transpositions try to break established patterns. Because a transposition is a
rearrangement of the symbols of a message, it is also known as a permutation.

Columnar Transpositions

As with substitutions, we begin this study of transpositions by examining a simple example. The
columnar transposition is a rearrangement of the characters of the plaintext into columns.

The following set of characters is a five-column transposition. The plaintext characters are written in
rows of five and arranged one row after another, as shown here.

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11 c12 etc.    

You form the resulting ciphertext by reading down the columns, as shown in Figure 2-4.

Figure 2-4. Columnar Transposition.



For instance, suppose you want to write the plaintext message THIS IS A MESSAGE TO SHOW HOW A
COLUMNAR TRANSPOSITION WORKS. We arrange the letters in five columns as

T  H  I  S  I
S  A  M  E  S
S  A  G  E  T
O  S  H  O  W
H  O  W  A  C
O  L  U  M  N
A  R  T  R  A
N  S  P  O  S
I  T  I  O  N
W  O  R  K  S

The resulting ciphertext would then be read down the columns as

tssoh oaniw haaso lrsto imghw
utpir seeoa mrook istwc nasns

In this example, the length of this message happens to be a multiple of five, so all columns are the
same length. However, if the message length is not a multiple of the length of a row, the last
columns will be one or more letters short. When this happens, we sometimes use an infrequent
letter, such as X, to fill in any short columns.

Encipherment/Decipherment Complexity

This cipher involves no additional work beyond arranging the letters and reading them off again.
Therefore, the algorithm requires a constant amount of work per character, and the time needed to
apply the algorithm is proportional to the length of the message.

However, we must also consider the amount of space needed to record or store the ciphertext. So
far, the other ciphers we have seen require only a constant amount of space (admittedly up to 262

locations). But the columnar transposition algorithm requires storage for all characters of the
message, so the space required is not constant; it depends directly on the length of the message.

Furthermore, we cannot produce output characters until all the message's characters have been
read. This restriction occurs because all characters must be entered in the first column before
output of the second column can begin, but the first column is not complete until all characters have
been read. Thus, the delay associated with this algorithm also depends on the length of the
message, as opposed to the constant delay we have seen in previous algorithms.

Because of the storage space needed and the delay involved in decrypting the ciphertext, this
algorithm is not especially appropriate for long messages when time is of the essence.

Digrams, Trigrams, and Other Patterns



Just as there are characteristic letter frequencies, there are also characteristic patterns of pairs of
adjacent letters, called digrams. Letter pairs such as -re-, -th-, -en-, and -ed- appear very
frequently. Table 2-2 lists the ten most common digrams and trigrams (groups of three letters) in
English. (They are shown in descending order of frequency.)

Table 2-2. Most Common English Digrams and
Trigrams.

Digrams Trigrams

EN ENT

RE ION

ER AND

NT ING

TH IVE

ON TIO

IN FOR

TF OUR

AN THI

OR ONE

It is also useful to know which pairs and triples do not occur often in English because that
information helps us eliminate possibilities when decrypting a message. For instance, digram
combinations such as -vk- and -qp- occur very infrequently. (The infrequent combinations can occur
in acronyms, in foreign words or names, or across word boundaries.) The frequency of appearance
of letter groups can be used to match up plaintext letters that have been separated in a ciphertext.

Cryptanalysis by Digram Analysis

Suppose we want to decrypt a message that has used a columnar transposition for its encryption
algorithm. The basic attack on columnar transpositions is not as precise as the attack on
substitution ciphers. Even though transpositions look less secure than substitutions, they can in fact
be more secure. Transpositions leave the plaintext letters intact, so the work for the cryptanalyst is
more exhausting; more relies on a human's judgment of what "looks right."

The first step in analyzing the transposition is computing the letter frequencies. If we find that in
fact all letters appear with their normal frequencies, we can infer that a transposition has been
performed. Given a string of text, the trick then is to break it into columns.

Two different strings of letters from a transposition ciphertext can represent pairs of adjacent letters



from the plaintext. The problem is to find where in the ciphertext a pair of adjacent columns lies and
where the ends of the columns are.

We must do an exhaustive comparison of strings of ciphertext. The process compares a block of
ciphertext characters against characters successively farther away in the ciphertext. To see how this
works, imagine a moving window that locates a block of characters for checking. Assume the block
being compared is seven characters. The first comparison is c1 to c8, c2 to c9, …, c7 to c14. Then, we
try a distance of eight characters, and so the window of comparison shifts and c1 is compared to c9,
c2 to c10, and continuing. For a block of nine characters, the window shifts again to c1 against c10,
and so forth. This process is shown in Figure 2-5.

Figure 2-5. Moving Comparisons.

For each window position, we ask two questions. First, do common digrams appear, and second, do
most of the digrams look reasonable? When digrams indicate a possible match for a fragment of
ciphertext, the next step is to try to extend the match. The distance between c1 and ck+1 implies
that another column might begin k positions later (because the distance is k). If ci and ci+k match,
so also should ci+k and ci+2k, etc. To test that theory, we check ck against c2k, and so on.



Combinations of Approaches

Substitution and transposition can be considered as building blocks for encryption. Other techniques
can be based on each of them, both of them, or a combination with yet another approach. For
instance, Sidebar 2-5 describes how substitution can be combined with a one-time pad. Keep in
mind as you read about encryption that each technique is only one piece of the larger puzzle. Just
as you could have a locked car inside a locked garage, you could also combine various approaches
to encryption to strengthen the overall security of your system.

A combination of two ciphers is called a product cipher. Product ciphers are typically performed
one after another, as in E2(E1(P,k1), k2). Just because you apply two ciphers does not necessarily
mean the result is any stronger than, or even as strong as, either individual cipher.

Sidebar 2-5: Soviet Encryption During World War II

Kahn [KAH96] describes a system that the Soviet Union thought unbreakable during
World War II. It combined substitution with a one-time pad. The basic idea was to
diffuse high-frequency letters by mapping them to single digits. This approach kept the
length of cryptograms small and thus reduced the on-air time as the message was
transmitted.

To see how the encryption worked, consider the eight most common letters of the
English language: ASINTOER, arranged as in "a sin to er(r)" to make them easy to
remember. These letters were assigned to single digits, 0 to 7. To encode a message,
an analyst would begin by selecting a keyword that became the first row of a matrix.
Then, the remaining letters of the alphabet were listed in rows underneath, as shown
below. Moving vertically through the matrix, the digits 0 to 7 were assigned to the eight
common letters, and then the two-digit groups from 80 to 99 were mapped to the
remaining letters of the alphabet plus any symbols. In our example, the keyword is
SUNDAY:

S   U   N   D   A   Y
0   83  2   90  6   97
B   C   E   F   G   H
80  84  3   91  94  98
I   J   K   L   M   O
1   85  88  92  95  7
P   Q   R   T   V   W
81  86  4   5   96  99
X   Z   .   /
82  87  89  93

Then the message "whereis/456/airborne" would be encoded as

w  h  e  r  e  i  s  /  4  5  6  /  a  i
99 98 3  4  3  1  0  93 44 55 66 93 6  1



r  b  o  r  n  e
4  80 7  4  2  3

or 99983431 09344556 69361480 7423. (Digits of plaintext numbers were repeated.)
Finally, the numerical message was encrypted with a one-time pad from a common
reference book with numerical tablesone that would not arouse suspicion, such as a
navigator's book of tables.



2.4. Making "Good" Encryption Algorithms

So far, the encryption algorithms we have seen have been trivial, intended primarily to demonstrate
the concepts of substitution and permutation. At the same time, we have examined several
approaches cryptanalysts use to attack encryption algorithms. Now we examine algorithms that are
widely used in the commercial world. Unlike the previous sections, this section does not delve
deeply into the details either of the inner workings of an algorithm or its cryptanalysis. (We save
that investigation for Chapter 12.)

What Makes a "Secure" Encryption Algorithm?

There are many kinds of encryption, including many techniques beyond those we discuss in this
book. Suppose you have text to encrypt. How do you choose an encryption algorithm for a particular
application? To answer this question, reconsider what we have learned so far about encryption. We
looked at two broad classes of algorithms: substitutions and transpositions. Substitutions "hide" the
letters of the plaintext, and multiple substitutions dissipate high letter frequencies to make it harder
to determine how the substitution is done. By contrast, transpositions scramble text so that
adjacent-character analysis fails.

For each type of encryption we considered, we described the advantages and disadvantages. But
there is a broader question: What does it mean for a cipher to be "good"? The meaning of good
depends on the intended use of the cipher. A cipher to be used by military personnel in the field has
different requirements from one to be used in a secure installation with substantial computer
support. In this section, we look more closely at the different characteristics of ciphers.

Shannon's Characteristics of "Good" Ciphers

In 1949, Claude Shannon [SHA49] proposed several characteristics that identify a good cipher.

The amount of secrecy needed should determine the amount of labor appropriate for the
encryption and decryption.

1.

Principle 1 is a reiteration of the principle of timeliness from Chapter 1 and of the earlier observation
that even a simple cipher may be strong enough to deter the casual interceptor or to hold off any
interceptor for a short time.

The set of keys and the enciphering algorithm should be free from complexity.2.

This principle implies that we should restrict neither the choice of keys nor the types of plaintext on
which the algorithm can work. For instance, an algorithm that works only on plaintext having an



2.

equal number of A's and E's is useless. Similarly, it would be difficult to select keys such that the
sum of the values of the letters of the key is a prime number. Restrictions such as these make the
use of the encipherment prohibitively complex. If the process is too complex, it will not be used.
Furthermore, the key must be transmitted, stored, and remembered, so it must be short.

The implementation of the process should be as simple as possible.3.

Principle 3 was formulated with hand implementation in mind: A complicated algorithm is prone to
error or likely to be forgotten. With the development and popularity of digital computers, algorithms
far too complex for hand implementation became feasible. Still, the issue of complexity is important.
People will avoid an encryption algorithm whose implementation process severely hinders message
transmission, thereby undermining security. And a complex algorithm is more likely to be
programmed incorrectly.

Errors in ciphering should not propagate and cause corruption of further information in the
message.

4.

Principle 4 acknowledges that humans make errors in their use of enciphering algorithms. One error
early in the process should not throw off the entire remaining ciphertext. For example, dropping one
letter in a columnar transposition throws off the entire remaining encipherment. Unless the receiver
can guess where the letter was dropped, the remainder of the message will be unintelligible. By
contrast, reading the wrong row or column for a polyalphabetic substitution affects only one
characterremaining characters are unaffected.

The size of the enciphered text should be no larger than the text of the original message.5.

The idea behind principle 5 is that a ciphertext that expands dramatically in size cannot possibly
carry more information than the plaintext, yet it gives the cryptanalyst more data from which to
infer a pattern. Furthermore, a longer ciphertext implies more space for storage and more time to
communicate.

These principles were developed before the ready availability of digital computers, even though
Shannon was aware of computers and the computational power they represented. Thus, some of
the concerns he expressed about hand implementation are not really limitations on computer-based
implementation. For example, a cipher's implementation on a computer need not be simple, as long
as the time complexity of the implementation is tolerable.

Properties of "Trustworthy" Encryption Systems

Commercial users have several requirements that must be satisfied when they select an encryption
algorithm. Thus, when we say that encryption is "commercial grade," or "trustworthy," we mean
that it meets these constraints:

It is based on sound mathematics. Good cryptographic algorithms are not just invented; they
are derived from solid principles.



It has been analyzed by competent experts and found to be sound. Even the best
cryptographic experts can think of only so many possible attacks, and the developers may
become too convinced of the strength of their own algorithm. Thus, a review by critical outside
experts is essential.

It has stood the "test of time." As a new algorithm gains popularity, people continue to review
both its mathematical foundations and the way it builds on those foundations. Although a long
period of successful use and analysis is not a guarantee of a good algorithm, the flaws in many
algorithms are discovered relatively soon after their release.

Three algorithms are popular in the commercial world: DES (data encryption standard), RSA
(RivestShamirAdelman, named after the inventors), and AES (advanced encryption standard). The
DES and RSA algorithms (as well as others) meet our criteria for commercial-grade encryption;
AES, which is rather new, meets the first two and is starting to achieve widespread adoption.

Symmetric and Asymmetric Encryption Systems

Recall that the two basic kinds of encryptions are symmetric (also called "secret key") and
asymmetric (also called "public key"). Symmetric algorithms use one key, which works for both
encryption and decryption. Usually, the decryption algorithm is closely related to the encryption
one. (For example, the Caesar cipher with a shift of 3 uses the encryption algorithm "substitute the
character three letters later in the alphabet" with the decryption "substitute the character three
letters earlier in the alphabet.")

The symmetric systems provide a two-way channel to their users: A and B share a secret key, and
they can both encrypt information to send to the other as well as decrypt information from the
other. As long as the key remains secret, the system also provides authenticationproof that a
message received was not fabricated by someone other than the declared sender. Authenticity is
ensured because only the legitimate sender can produce a message that will decrypt properly with
the shared key.

The symmetry of this situation is a major advantage of this type of encryption, but it also leads to a
problem: key distribution. How do A and B obtain their shared secret key? And only A and B can use
that key for their encrypted communications. If A wants to share encrypted communication with
another user C, A and C need a different shared key. Key distribution is the major difficulty in using
symmetric encryption. In general, n users who want to communicate in pairs need n * (n - 1)/2
keys. In other words, the number of keys needed increases at a rate proportional to the square of
the number of users! So a property of symmetric encryption systems is that they require a means of
key distribution.

Public key systems, on the other hand, excel at key management. By the nature of the public key
approach, you can send a public key in an e-mail message or post it in a public directory. Only the
corresponding private key, which presumably is kept private, can decrypt what has been encrypted
with the public key.

But for both kinds of encryption, a key must be kept well secured. Once the symmetric or private
key is known by an outsider, all messages written previously or in the future can be decrypted (and
hence read or modified) by the outsider. So, for all encryption algorithms, key management is a
major issue. It involves storing, safeguarding, and activating keys.



Stream and Block Ciphers

Most of the ciphers we have presented so far are stream ciphers; that is, they convert one symbol
of plaintext immediately into a symbol of ciphertext. (The exception is the columnar transposition
cipher.) The transformation depends only on the symbol, the key, and the control information of the
encipherment algorithm. A model of stream enciphering is shown in Figure 2-6.

Figure 2-6. Stream Encryption.

Some kinds of errors, such as skipping a character in the key during encryption, affect the
encryption of all future characters. However, such errors can sometimes be recognized during
decryption because the plaintext will be properly recovered up to a point, and then all following
characters will be wrong. If that is the case, the receiver may be able to recover from the error by
dropping a character of the key on the receiving end. Once the receiver has successfully recalibrated
the key with the ciphertext, there will be no further effects from this error.

To address this problem and make it harder for a cryptanalyst to break the code, we can use block
ciphers. A block cipher encrypts a group of plaintext symbols as one block. The columnar
transposition and other transpositions are examples of block ciphers. In the columnar transposition,
the entire message is translated as one block. The block size need not have any particular
relationship to the size of a character. Block ciphers work on blocks of plaintext and produce blocks
of ciphertext, as shown Figure 2-7. In the figure, the central box represents an encryption machine:
The previous plaintext pair is converted to po, the current one being converted is IH, and the
machine is soon to convert ES.

Figure 2-7. Block Cipher Systems.



Table 2-3 compares the advantages and disadvantages of stream and block encryption algorithms.

Table 2-3. Comparing Stream and Block Algorithms.



  Stream Encryption
Algorithms

Block Encryption
Algorithms

Advantages

Speed of transformation.
Because each symbol is
encrypted without
regard for any other
plaintext symbols, each
symbol can be encrypted
as soon as it is read.
Thus, the time to
encrypt a symbol
depends only on the
encryption algorithm
itself, not on the time it
takes to receive more
plaintext.

Low error propagation.
Because each symbol is
separately encoded, an
error in the encryption
process affects only that
character.

High diffusion.
Information from the
plain-text is diffused into
several ciphertext
symbols. One ciphertext
block may depend on
several plaintext letters.

Immunity to insertion of
symbols. Because blocks
of symbols are
enciphered, it is
impossible to insert a
single symbol into one
block. The length of the
block would then be
incorrect, and the
decipherment would
quickly reveal the
insertion.

Disadvantages

Low diffusion. Each
symbol is separately
enciphered. Therefore,
all the information of
that symbol is contained
in one symbol of the
ciphertext.

Susceptibility to
malicious insertions and
modifications. Because
each symbol is
separately enciphered,
an active interceptor
who has broken the code
can splice together
pieces of previous
messages and transmit a
spurious new message
that may look authentic.

Slowness of encryption.
The person or machine
using a block cipher
must wait until an entire
block of plaintext
symbols has been
received before starting
the encryption process.

Error propagation. An
error will affect the
transformation of all
other characters in the
same block.

Confusion and Diffusion



Two additional important concepts are related to the amount of work required to perform an
encryption. An encrypting algorithm should take the information from the plaintext and transform it
so that the interceptor cannot readily recognize the message.

The interceptor should not be able to predict what will happen to the ciphertext by changing one
character in the plaintext. We call this characteristic confusion. An algorithm providing good
confusion has a complex functional relationship between the plaintext/key pair and the ciphertext.
In this way, it will take an interceptor a long time to determine the relationship between plaintext,
key, and ciphertext; therefore, it will take the interceptor a long time to break the code.

As an example, consider the Caesar cipher. This algorithm is not good for providing confusion
because an analyst who deduces the transformation of a few letters can also predict the
transformation of the remaining letters, with no additional information. By contrast, a one-time pad
(with a key effectively as long as the message length) provides good confusion because one
plaintext letter can be transformed to any ciphertext letter at different places in the output. There is
no apparent pattern to transforming a single plaintext letter.

The cipher should also spread the information from the plaintext over the entire ciphertext so that
changes in the plaintext affect many parts of the ciphertext. This principle is called diffusion, the
characteristic of distributing the information from single plaintext letters over the entire output.
Good diffusion means that the interceptor needs access to much of the ciphertext to be able to infer
the algorithm.

Before becoming too convinced of the strength of any algorithm, you should remember that there
are people very interested in defeating encryption. As we noted earlier in this chapter, the opponent
can work to weaken the apparent strength of the algorithm, to decrypt a single piece encrypted
text, or to derive a key with which to break subsequent encryptions. Commercial-grade
cryptographers need to keep in mind the possibility of commercial-grade cryptanalysts as well.

CryptanalysisBreaking Encryption Schemes

So far we have looked at a few particular techniques a cryptanalyst could use to break the
encryptions we have studied. Studying these techniques helps you appreciate the simplicity of the
encryptions we have presented so far. We introduced these algorithms primarily to illustrate several
encryption concepts as well as the analysis a cryptographer performs. But these techniques have
been more instructional than practical; no one would use these cryptosystems to protect data of any
significant value because the cryptosystems are relatively easy to break.

A different reason to consider cryptanalysis is to judge the difficulty of breaking an encryption or
algorithm. After all, encrypting data does no good if the attacker can find some way of decrypting it.

Therefore, we look at cryptanalysis in general: What does a cryptanalyst do when confronted with
an unknown, and possibly very strong, encryption scheme? Four possible situations confront the
cryptanalyst, depending on what information is available:

ciphertext

full plaintext

partial plaintext



algorithm

In turn, these four cases suggest five different approaches the analyst can use to address them. As
we describe each case, keep in mind that the cryptanalyst can also use any other collateral
information that can be obtained.

Ciphertext Only

In most of the discussions so far, we assumed that the analyst had only the ciphertext with which to
work. The decryption had to be based on probabilities, distributions, and characteristics of the
available ciphertext, plus publicly available knowledge. This method of attack is called a ciphertext-
only attack.

Full or Partial Plaintext

The analyst may be fortunate enough to have a sample message and its decipherment. For
example, a diplomatic service may have intercepted an encrypted message, suspected to be the
text of an official statement. If the official statement (in plaintext) is subsequently released, the
interceptor has both C and P and needs only to deduce the E for which C = E(P) to find D. In this
case the analyst is attempting to find E (or D) by using a known plaintext attack.

The analyst may have additional information, too. For example, the analyst may know that the
message was intercepted from a diplomatic exchange between Germany and Austria. From that
information, the analyst may guess that the words Bonn, Vienna, and Chancellor appear in the
message. Alternatively, the message may be a memorandum to the sales force from a corporate
president, and the memo would have a particular form (To: Sales Force, From: The President,
Subject: Weekly Sales Update, Date: nn/nn/nn).

In these cases, the analyst can use what is called a probable plaintext analysis. After doing part of
the decryption, the analyst may find places where the known message fits with the deciphered
parts, thereby giving more clues about the total translation.

After cryptanalysis has provided possible partial decipherments, a probable plaintext attack may
permit a cryptanalyst to fill in some blanks. For example, letter frequencies may suggest a
substitution for the most popular letters, but leave gaps such as SA_ES _OR_E. With a probable
plaintext, the cryptanalyst could guess that SALES FORCE appears somewhere in the memo and
could easily fill in these blanks.

Ciphertext of Any Plaintext

The analyst may have infiltrated the sender's transmission process so as to be able to cause
messages to be encrypted and sent at will. This attack is called a chosen plaintext attack. For
instance, the analyst may be able to insert records into a database and observe the change in
statistics after the insertions. Linear programming sometimes enables such an analyst to infer data
that should be kept confidential in the database. Alternatively, an analyst may tap wires in a
network and be able to notice the effect of sending a particular message to a particular network
user. The cryptanalyst may be an insider or have an inside colleague and thus be able to cause



certain transactions to be reflected in ciphertext; for example, the insider may forward messages
resulting from a receipt of a large order. A chosen plaintext attack is very favorable to the analyst.

Algorithm and Ciphertext

The analyst may have available both the encryption algorithm and the ciphertext. In a chosen
ciphertext attack, the analyst can run the algorithm on massive amounts of plaintext to find one
plaintext message that encrypts as the ciphertext. The purpose of a chosen ciphertext attack is to
deduce the sender's encryption key so as to be able to decrypt future messages by simply applying
the sender's decryption key to intercepted ciphertext. This approach fails if two or more distinct
keys can produce the same ciphertext as the result of encrypting (different) meaningful plaintext.

Ciphertext and Plaintext

The cryptanalyst may be lucky enough to have some pairs of plaintext and matching ciphertext.
Then, the game is to deduce the key by which those pairs were encrypted so that the same key can
be used in cases in which the analyst has only the ciphertext. Although it might seem uncommon to
be able to obtain matching plain- and ciphertext, in fact it happens sometimes. For example, during
World War II, cryptanalysts intercepted text from major diplomatic announcements sent in advance
to embassies (encrypted) and then released to the public. Having a few such pieces allowed the
cryptanalysts to determine current keys and decrypt other messages.

Weaknesses

A cryptanalyst works against humans, who can be hurried, lazy, careless, naïve, or uninformed.
Humans sometimes fail to change cryptographic keys when needed, broadcast cryptographic keys in
the clear, or choose keys in a predictable manner. That is, the algorithm may be strong and the
implementation effective, but the people using it fail in some way and open up the encryption to
detection. People have been known to be careless, discarding sensitive material that could give a
spy access to plaintext by matching known ciphertext. And humans can sometimes be bribed or
coerced. Sidebar 2-6 describes some examples of this behavior during World War II.



Sidebar 2-6: Human Fallibility Led to Cracked Codes

Kahn [KAH96] describes the history of the Enigma machine, a mechanical tool used by
the Germans in World War II to scramble messages and prevent the enemy from
understanding them. Enigma was based on revolving wheels, or rotors, that were wired
together and connected to a typewriter keyboard. There were so many ways to encrypt
a message that even if 1,000 analysts tried four different ways each minute, all day,
every day, it would have taken the team 1.8 billion years to test them all.

So how did the Allies break the encryption? First, they made use of the likely chatter
over the wires about each day's events. By guessing that the Germans would be
discussing certain places or issues, the Allies found sections of scrambled text that they
could relate to the original messages, or cleartext. Next, they concentrated on Luftwaffe
messages. Counting on the likelihood that the Luftwaffe signalmen were not as well
trained as those in the Army or Navy, the Allies watched for slip-ups that increased the
odds of understanding the encrypted messages. For instance, Luftwaffe signalmen often
used "a girlfriend's name for a key setting or beginning a second message with the
same setting as that left at the ending of the first." Such knowledge enabled the Allies
to determine some of the Luftwaffe's plans during the Battle of Britain. Thus,
sophisticated technology can be trumped when control protocols are not followed
carefully and completely.

Not only are people fallible, but so are hardware and software implementations. Sometimes
hardware fails in predictable ways, such as when disk reading heads lose their track alignment, and
sensitive data thought to be erased are still on the disk. At other times, seemingly small things can
weaken an otherwise strong approach. For example, in one attack, the analyst accurately measured
the electricity being used by a computer performing an encryption and deduced the key from the
difference in power used to compute a 1 versus a 0.

These problems are separate from issues of the algorithm itself, but they offer ways that a
cryptanalyst can approach the task of breaking the code. Remember that the only rule that applies
to the attacker is that there are no rules.

This background information has readied you to study the three most widely used encryption
schemes today: DES, AES, and RSA. Using these schemes is fairly easy, even though the detailed
construction of the algorithms can be quite complex. As you study the three algorithms, keep in
mind the possibility that cryptanalysts are also working to defeat these encryptions.



2.5. The Data Encryption Standard

The Data Encryption Standard (DES) [NBS77], a system developed for the U.S. government, was
intended for use by the general public. It has been officially accepted as a cryptographic standard
both in the United States and abroad. Moreover, many hardware and software systems have been
designed with the DES. However, recently its adequacy has been questioned.

Background and History

In the early 1970s, the U.S. National Bureau of Standards (NBS) recognized that the general public
needed a secure encryption technique for protecting sensitive information. Historically, the U.S.
Department of Defense and the Department of State had had continuing interest in encryption
systems; it was thought that these departments were home to the greatest expertise in cryptology.
However, precisely because of the sensitive nature of the information they were encrypting, the
departments could not release any of their work. Thus, the responsibility for a more public
encryption technique was delegated to the NBS.

At the same time, several private vendors had developed encryption devices, using either
mechanical means or programs that individuals or firms could buy to protect their sensitive
communications. The difficulty with this commercial proliferation of encryption techniques was
exchange: Two users with different devices could not exchange encrypted information. Furthermore,
there was no independent body capable of testing the devices extensively to verify that they
properly implemented their algorithms.

It soon became clear that encryption was ripe for assessment and standardization, to promote the
ability of unrelated parties to exchange encrypted information and to provide a single encryption
system that could be rigorously tested and publicly certified. As a result, in 1972 the NBS issued a
call for proposals for producing a public encryption algorithm. The call specified desirable criteria for
such an algorithm:

able to provide a high level of security

specified and easy to understand

publishable so that security does not depend on the secrecy of the algorithm

available to all users

adaptable for use in diverse applications

economical to implement in electronic devices

efficient to use

able to be validated



exportable

The NBS envisioned providing the encryption as a separate hardware device. To allow the algorithm
to be public, NBS hoped to reveal the algorithm itself, basing the security of the system on the keys
(which would be under the control of the users).

Few organizations responded to the call, so the NBS issued a second announcement in August 1974.
The most promising suggestion was the Lucifer algorithm on which IBM had been working for
several years. This idea had been published earlier, so the basic algorithm was already public and
had been open to scrutiny and validation. Although lengthy, the algorithm was straightforward, a
natural candidate for iterative implementation in a computer program. Furthermore, unlike the
MerkleHellman (which we study in Chapter 12) and RSA algorithms, which use arithmetic on 500- or
1,000- digit or longer binary numbers (far larger than most machine instructions would handle as a
single quantity), Lucifer used only simple logical operations on relatively small quantities. Thus, the
algorithm could be implemented fairly efficiently in either hardware or software on conventional
computers.

The data encryption algorithm developed by IBM for NBS was based on Lucifer, and it became
known as the Data Encryption Standard, although its proper name is DEA (Data Encryption
Algorithm) in the United States and DEA1 (Data Encryption Algorithm-1) in other countries.
Then, NBS called on the Department of Defense through its National Security Agency (NSA) to
analyze the strength of the encryption algorithm. Finally, the NBS released the algorithm for public
scrutiny and discussion.

The DES was officially adopted as a U.S. federal standard in November 1976, authorized by NBS for
use on all public and private sector unclassified communication. Eventually, DES was accepted as an
international standard by the International Standards Organization.

Overview of the DES Algorithm

The DES algorithm is a careful and complex combination of two fundamental building blocks of
encryption: substitution and transposition. The algorithm derives its strength from repeated
application of these two techniques, one on top of the other, for a total of 16 cycles. The sheer
complexity of tracing a single bit through 16 iterations of substitutions and transpositions has so far
stopped researchers in the public from identifying more than a handful of general properties of the
algorithm.

The algorithm begins by encrypting the plaintext as blocks of 64 bits. The key is 64 bits long, but in
fact it can be any 56-bit number. (The extra 8 bits are often used as check digits and do not affect
encryption in normal implementations.) The user can change the key at will any time there is
uncertainty about the security of the old key.

The algorithm, described in substantial detail in Chapter 12, leverages the two techniques Shannon
identified to conceal information: confusion and diffusion. That is, the algorithm accomplishes two
things: ensuring that the output bits have no obvious relationship to the input bits and spreading
the effect of one plaintext bit to other bits in the ciphertext. Substitution provides the confusion, and
transposition provides the diffusion. In general, plaintext is affected by a series of cycles of a
substitution then a permutation. The iterative substitutions and permutations are performed as
outlined in Figure 2-8.



Figure 2-8. Cycles of Substitution and Permutation.

DES uses only standard arithmetic and logical operations on numbers up to 64 bits long, so it is
suitable for implementation in software on most current computers. Although complex, the
algorithm is repetitive, making it suitable for implementation on a single-purpose chip. In fact,
several such chips are available on the market for use as basic components in devices that use DES
encryption in an application.

Double and Triple DES

As you know, computing power has increased rapidly over the last few decades, and it promises to
continue to do so. For this reason, the DES 56-bit key length is not long enough for some people to
feel comfortable. Since the 1970s, researchers and practitioners have been interested in a longer-
key version of DES. But we have a problem: The DES algorithm is fixed for a 56-bit key.

Double DES

To address the discomfort, some researchers suggest using a double encryption for greater secrecy.
The double encryption works in the following way. Take two keys, k1 and k2, and perform two
encryptions, one on top of the other: E(k2, E(k1,m)). In theory, this approach should multiply the
difficulty of breaking the encryption, just as two locks are harder to pick than one.



Unfortunately, that assumption is false. Merkle and Hellman [MER81] showed that two encryptions
are no better than one. The basis of their argument is that the cryptanalyst works plaintext and
ciphertext toward each other. The analyst needs two pairs of plaintext (call them P1 and P2) and
corresponding ciphertext, C1 and C2, but not the keys used to encrypt them. The analyst computes
and saves P1 encrypted under each possible key. The analyst then tries decrypting C1 with a single
key and looking for a match in the saved Ps. A match is a possible pair of double keys, so the
analyst checks the match with P2 and C2. Computing all the Ps takes 256 steps, but working
backward from C1 takes only the same amount of time, for a total of 2 * 256 or 257, equivalent to a
57-bit key. Thus, the double encryption only doubles the work for the attacker. As we soon see,
some 56-bit DES keys have been derived in just days; two times days is still days, when the hope
was to get months if not years for the effort of the second encryption.

Triple DES

However, a simple trick does indeed enhance the security of DES. Using three keys adds significant
strength.

The so-called triple DES procedure is C = E(k3, E(k2, E(k1,m))). That is, you encrypt with one key,
decrypt with the second, and encrypt with a third. This process gives a strength equivalent to a
112-bit key (because the double DES attack defeats the strength of one of the three keys).

A minor variation of triple DES, which some people also confusingly call triple DES, is C = E(k1,
D(k2, E(k1,m))). That is, you encrypt with one key, decrypt with the second, and encrypt with the
first again. This version requires only two keys. (The second decrypt step also makes this process
work for single encryptions with one key: The decryption cancels the first encryption, so the net
result is one encryption.) This approach is subject to another tricky attack, so its strength is rated at
only about 80 bits.

In summary, ordinary DES has a key space of 56 bits, double DES is scarcely better, but two-key
triple DES gives an effective length of 80 bits, and three-key triple DES gives a strength of 112 bits.
Now, over three decades after the development of DES, a 56-bit key is inadequate for any serious
confidentiality, but 80- and 112-bit effective key sizes provide reasonable security.

Security of the DES

Since its was first announced, DES has been controversial. Many researchers have questioned the
security it provides. Much of this controversy has appeared in the open literature, but certain DES
features have neither been revealed by the designers nor inferred by outside analysts.

In 1990, Biham and Shamir [BIH90] invented a technique, differential cryptanalysis, that
investigates the change in algorithmic strength when an encryption algorithm is changed in some
way. In 1991 they applied their technique to DES, showing that almost any change to the algorithm
weakens it. Their changes included cutting the number of iterations from 16 to 15, changing the
expansion or substitution rule, or altering the order of an iteration. In each case, when they
weakened the algorithm, Biham and Shamir could break the modified version. Thus, it seems as if
the design of DES is optimal.

However, Diffie and Hellman [DIF77] argued in 1977 that a 56-bit key is too short. In 1977, it was
prohibitive to test all 256 (approximately 1015) keys on then current computers. But they argued



that over time, computers would become more powerful and the DES algorithm would remain
unchanged; eventually, the speed of computers would exceed the strength of DES. Exactly that has
happened. In 1997 researchers using over 3,500 machines in parallel were able to infer a DES key
in four months' work. And in 1998 for approximately $100,000, researchers built a special "DES
cracker" machine that could find a DES key in approximately four days.

Does this mean that the DES is insecure? No, not yet. No one has yet shown serious flaws in the
DES. The 1997 attack required a great deal of cooperation, and the 1998 machine is rather
expensive. Triple DES is still well beyond the power of these attacks. Nevertheless, to anticipate the
increasing power of computers, it was clear a new, stronger algorithm was needed. In 1995, the
U.S. National Institute of Standards and Technology (NIST, the renamed NBS) began the search for
a new, strong encryption algorithm. The response to that search has become the Advanced
Encryption Standard, or AES.



2.6. The AES Encryption Algorithm

The AES is likely to be the commercial-grade symmetric algorithm of choice for years, if not
decades. Let us look at it more closely.

The AES Contest

In January 1997, NIST called for cryptographers to develop a new encryption system. As with the
call for candidates from which DES was selected, NIST made several important restrictions. The
algorithms had to be

unclassified

publicly disclosed

available royalty-free for use worldwide

symmetric block cipher algorithms, for blocks of 128 bits

usable with key sizes of 128, 192, and 256 bits

In August 1998, fifteen algorithms were chosen from among those submitted; in August 1999, the
field of candidates was narrowed to five finalists. The five then underwent extensive public and
private scrutiny. The final selection was made on the basis not only of security but also of cost or
efficiency of operation and ease of implementation in software. The winning algorithm, submitted by
two Dutch cryptographers, was Rijndael (pronounced RINE dahl or, to hear the inventors pronounce
it themselves, visit rijndael.com/audio/rijndael_pronunciation.wav); the algorithm's name is derived
from the creators' names, Vincent Rijmen and Joan Daemen. (NIST described the four not chosen as
also having adequate security for the AESno cryptographic flaws were identified in any of the five.
Thus, the selection was based on efficiency and implementation characteristics.)

The AES was adopted for use by the U.S. government in December 2001 and became Federal
Information Processing Standard 197 [NIS01].

Overview of Rijndael

Rijndael is a fast algorithm that can be implemented easily on simple processors. Although it has a
strong mathematical foundation, it primarily uses substitution; transposition; and the shift,
exclusive OR, and addition operations. Like DES, AES uses repeat cycles. There are 10, 12, or 14
cycles for keys of 128, 192, and 256 bits, respectively. In Rijndael, the cycles are called "rounds."

Each cycle consists of four steps.



Byte substitution: This step uses a substitution box structure similar to the DES, substituting
each byte of a 128-bit block according to a substitution table. This is a straight diffusion
operation.

Shift row: A transposition step. For 128- and 192-bit block sizes, row n is shifted left circular (n
- 1) bytes; for 256-bit blocks, row 2 is shifted 1 byte and rows 3 and 4 are shifted 3 and 4
bytes, respectively. This is a straight confusion operation.

Mix column: This step involves shifting left and exclusive-ORing bits with themselves. These
operations provide both confusion and diffusion.

Add subkey: Here, a portion of the key unique to this cycle is exclusive-ORed with the cycle
result. This operation provides confusion and incorporates the key.

These four steps are described in more detail in Chapter 12. Note that the steps perform both
diffusion and confusion on the input data. Bits from the key are combined with intermediate result
bits frequently, so key bits are also well diffused throughout the result. Furthermore, these four
steps are extremely fast. The AES algorithm is depicted in Figure 2-9.

Figure 2-9. AES Algorithm.



Strength of the Algorithm

The Rijndael algorithm is quite new, so there are few reports of extensive experience with its use.
However, between its submission as a candidate for AES in 1997 and its selection in 2001, it
underwent extensive cryptanalysis by both government and independent cryptographers. Its Dutch
inventors have no relationship to the NSA or any other part of the U.S. government, so there is no
suspicion that the government somehow weakened the algorithm or added a trapdoor. Although the
steps of a cycle are simple to describe and seem to be rather random transformations of bits, in fact
(as described in some detail in Chapter 12), these transformations have a sound mathematical
origin.

Comparison of DES and AES

The characteristics of DES and AES are compared in Table 2-4.



Table 2-4. Comparison of DES and AES.

  DES AES

Date 1976 1999

Block size 64 bits 128 bits

Key length 56 bits (effective length) 128, 192, 256 (and
possibly more) bits

Encryption
primitives

Substitution, permutation Substitution, shift, bit
mixing

Cryptographic
primitives

Confusion, diffusion Confusion, diffusion

Design Open Open

Design rationale Closed Open

Selection
process

Secret Secret, but accepted
open public comment

Source IBM, enhanced by NSA Independent Dutch
cryptographers

When Rijndael's predecessor, DES, was adopted, two questions quickly arose:

1. How strong is it, and in particular, are there any backdoors?

2. How long would it be until the encrypted code could be routinely cracked?

With nearly 30 years of use, suspicions of weakness (intentional or not) and backdoors have pretty
much been quashed. Not only have analysts failed to find any significant flaws, but in fact research
has shown that seemingly insignificant changes weaken the strength of the algorithmthat is, the
algorithm is the best it can be. The second question, about how long DES would last, went
unanswered for a long time but then was answered very quickly by two experiments in which DES
was cracked in days. Thus, after 20 years, the power of individual specialized processors and of
massive parallel searches finally overtook the fixed DES key size.

We must ask the same questions about AES: Does it have flaws, and for how long will it remain
sound? We cannot address the question of flaws yet, other than to say that teams of cryptanalysts
pored over the design of Rijndael during the two-year review period without finding any problems.

The longevity question is more difficult, but also more optimistic, to answer for AES than for DES.
The AES algorithm as defined can use 128-, 192-, or 256-bit keys. This characteristic means that
AES starts with a key more than double the size of a DES key and can extend to double it yet again.
(Remember that doubling the key length squares the number of possible keys that need to be
tested in attempts to break the encryption.) But because there is an evident underlying structure, it
is also possible to use the same general approach on a slightly different underlying problem and
accommodate keys of even larger size. (Even a key size of 256 is prodigious, however.) Thus, unlike
DES, AES can move to a longer key length any time technology seems to allow an analyst to



overtake the current key size.

Moreover, the number of cycles can be extended in a natural way. With DES the algorithm was
defined for precisely 16 cycles; to extend that number would require substantial redefinition of the
algorithm. The internal structure of AES has no a priori limitation on the number of cycles. If a
cryptanalyst ever concluded that 10 or 12 or 14 rounds were too low, the only change needed to
improve the algorithm would be to change the limit on a repeat loop.

A mark of confidence is that the U.S. government has approved AES for protecting Secret and Top
Secret classified documents. This is the first time the United States has ever approved use of a
commercial algorithm derived outside the government (and furthermore outside the United States)
to encrypt classified data.

However, we cannot rest on our laurels. It is impossible to predict now what limitations
cryptanalysts might identify in the future. At present, AES seems to be a significant improvement
over DES, and it can be improved in a natural way if necessary.



2.7. Public Key Encryption

So far, we have looked at encryption algorithms from the point of view of making the scrambling
easy to do (so that the sender can easily encrypt a message) and the decryption easy for the
receiver but not for an intruder. But this functional view of transforming plaintext to ciphertext is
only part of the picture. We must also examine the role of keys in encryption. We have noted how
useful keys can be in deterring an intruder, but we have assumed that the key must remain secret
for it to be effective. In this section, we look at ways to allow the key to be public but still protect
the message. We also focus on the RSA algorithm, a public key system that is a popular
commercial-grade encryption technique.

In 1976, Diffie and Hellman [DIF76] proposed a new kind of encryption system. With a public key[5]

encryption system, each user has a key that does not have to be kept secret. Although
counterintuitive, in fact the public nature of the key does not compromise the secrecy of the system.
Instead, the basis for public key encryption is to allow the key to be divulged but to keep the
decryption technique secret. Public key cryptosystems accomplish this goal by using two keys: one
to encrypt and the other to decrypt.

[5] Asymmetric or public key encryption systems use two keys, a public key and a private key. Unfortunately, a few people call a

symmetric or secret key system a "private key" system. This terminology is confusing. We do not use it in this book, but you

should be aware that you might encounter the terminology in other readings.

Motivation

Why should making the key public be desirable? With a conventional symmetric key system, each
pair of users needs a separate key. But with public key systems, anyone using a single public key
can send a secret message to a user, and the message remains adequately protected from being
read by an interceptor. Let us investigate why this is so.

Recall that in general, an n-user system requires n * (n - 1)/2 keys, and each user must track and
remember a key for each other user with which he or she wants to communicate. As the number of
users grows, the number of keys increases very rapidly, as shown in Figure 2-10. Determining and
distributing these keys is a problem. More serious is maintaining security for the keys already
distributed, because we cannot expect users to memorize so many keys.

Figure 2-10. Key Proliferation.



Characteristics

We can reduce the problem of key proliferation by using a public key approach. In a public key or
asymmetric encryption system, each user has two keys: a public key and a private key. The user
may publish the public key freely because each key does only half of the encryption and decryption
process. The keys operate as inverses, meaning that one key undoes the encryption provided by the
other key.

To see how, let kPRIV be a user's private key, and let kPUB be the corresponding public key. Then,
encrypted plaintext using the public key is decrypted by application of the private key; we write the
relationship as

P = D(kPRIV, E(kPUB, P))

That is, a user can decode with a private key what someone else has encrypted with the
corresponding public key. Furthermore, with some public key encryption algorithms, including RSA,
we have this relationship:

P = D(kPUB, E(kPRIV, P))

In other words, a user can encrypt a message with a private key, and the message can be
revealed only with the corresponding public key. These two properties tell us that public and private
keys can be applied in either order. In particular, the decryption function D can be applied to any
argument so that we can decrypt before we encrypt. With conventional encryption, we seldom think
of decrypting before encrypting. But the concept makes sense with public keys, where it simply
means applying the private transformation first and then the public one.

We have noted that a major problem with symmetric encryption is the sheer number of keys a
single user has to store and track. With public keys, only two keys are needed per user: one public
and one private. Let us see what difference this makes in the number of keys needed. Suppose we
have three users, B, C, and D, who must pass protected messages to user A as well as to each



other. Since each distinct pair of users needs a key, each user would need three different keys; for
instance, A would need a key for B, a key for C, and a key for D. But using public key encryption,
each of B, C, and D can encrypt messages for A by using A's public key. If B has encrypted a
message using A's public key, C cannot decrypt it, even if C knew it was encrypted with A's public
key. Applying A's public key twice, for example, would not decrypt the message. (We assume, of
course, that A's private key remains secret.) Thus, the number of keys needed in the public key
system is relatively small.

The characteristics of secret key and public key algorithms are compared in Table 2-5.

Table 2-5. Comparing Secret Key and Public Key
Encryption.

  Secret Key (Symmetric) Public Key (Asymmetric)

Number of
keys

1 2

Protection of
key

Must be kept secret One key must be kept secret;
the other can be freely
exposed

Best uses Cryptographic workhorse;
secrecy and integrity of
datasingle characters to
blocks of data, messages,
files

Key exchange, authentication

Key
distribution

Must be out-of-band Public key can be used to
distribute other keys

Speed Fast Slow; typically, 10,000 times
slower than secret key

RivestShamirAdelman Encryption

The RivestShamirAdelman (RSA) cryptosystem is a public key system. Based on an underlying
hard problem and named after its three inventors, this algorithm was introduced in 1978 and to
date remains secure. RSA has been the subject of extensive cryptanalysis, and no serious flaws
have yet been found. Although the amount of analysis is no guarantee of a method's security, our
confidence in the method grows as time passes without discovery of a flaw.

Let us look at how the RSA encryption scheme works; we investigate it in greater detail in Chapter
12. RSA relies on an area of mathematics known as number theory, in which mathematicians study
properties of numbers such as their prime factors. The RSA encryption algorithm combines results
from number theory with the degree of difficulty in determining the prime factors of a given
number. As do some of the other algorithms we have studied, the RSA algorithm also operates with
arithmetic mod n.

The two keys used in RSA, d and e, are used for decryption and encryption. They are actually



interchangeable: Either can be chosen as the public key, but one having been chosen, the other one
must be kept private. For simplicity, we call the encryption key e and the decryption key d. Also,
because of the nature of the RSA algorithm, the keys can be applied in either order:

P = E(D(P)) = D(E(P))

(You can think of E and D as two complementary functions, each of which "undoes" the other.)

Any plaintext block P is encrypted as Pe mod n. Because the exponentiation is performed mod n,
factoring Pe to uncover the encrypted plaintext is difficult. However, the decrypting key d is carefully
chosen so that (Pe)d mod n = P. Thus, the legitimate receiver who knows d simply computes (Pe)d

mod n = P and recovers P without having to factor Pe.

The encryption algorithm is based on the underlying problem of factoring large numbers. So far,
nobody has found a shortcut or easy way to factor large numbers in a finite set called a field. In a
highly technical but excellent paper, Boneh [BON99] reviews all the known cryptanalytic attacks on
RSA and concludes that none is significant. Because the factorization problem has been open for
many years, most cryptographers consider this problem a solid basis for a secure cryptosystem.



2.8. The Uses of Encryption

Encryption algorithms alone are not the answer to everyone's encryption needs. Although
encryption implements protected communications channels, it can also be used for other duties. In
fact, combining symmetric and asymmetric encryption often capitalizes on the best features of each.

Public key algorithms are useful only for specialized tasks because they are very slow. A public key
encryption can take 10,000 times as long to perform as a symmetric encryption because the
underlying modular exponentiation depends on multiplication and division, which are inherently
slower than the bit operations (addition, exclusive OR, substitution, and shifting) on which
symmetric algorithms are based. For this reason, symmetric encryption is the cryptographers'
"workhorse," and public key encryption is reserved for specialized, infrequent uses, where slow
operation is not a continuing problem.

Let us look more closely at four applications of encryption: cryptographic hash functions, key
exchange, digital signatures, and certificates.

Cryptographic Hash Functions

Encryption is most commonly used for secrecy; we usually encrypt something so that its contentsor
even its existenceare unknown to all but a privileged audience. In some cases, however, integrity is
a more important concern than secrecy. For example, in a document retrieval system containing
legal records, it may be important to know that the copy retrieved is exactly what was stored.
Likewise, in a secure communications system, the need for the correct transmission of messages
may override secrecy concerns. Let us look at how encryption provides integrity.

In most files, the elements or components of the file are not bound together in any way. That is,
each byte or bit or character is independent of every other one in the file. This lack of binding
means that changing one value affects the integrity of the file, but that one change can easily go
undetected.

What we would like to do is somehow put a seal or shield around the file so that we can detect when
the seal has been broken and thus know that something has been changed. This notion is similar to
the use of wax seals on letters in medieval days; if the wax was broken, the recipient would know
that someone had broken the seal and read the message inside. In the same way, cryptography can
be used to seal a file, encasing it so that any change becomes apparent. One technique for
providing the seal is to compute a cryptographic function, sometimes called a hash or checksum
or message digest of the file.

The hash function has special characteristics. For instance, some encryptions depend on a function
that is easy to understand but difficult to compute. For a simple example, consider the cube
function, y = x3. It is relatively easy to compute x3 by hand, with pencil and paper, or with a

calculator. But the inverse function,  is much more difficult to compute. And the function y = x2

has no inverse function since there are two possibilities for  and -x. Functions like these,



which are much easier to compute than their inverses, are called one-way functions.

A one-way function can be useful in an encryption algorithm. The function must depend on all bits of
the file being sealed, so any change to even a single bit will alter the checksum result. The
checksum value is stored with the file. Then, each time the file is accessed or used, the checksum is
recomputed. If the computed checksum matches the stored value, it is likely that the file has not
been changed.

A cryptographic function, such as the DES or AES, is especially appropriate for sealing values, since
an outsider will not know the key and thus will not be able to modify the stored value to match with
data being modified. For low-threat applications, algorithms even simpler than DES or AES can be
used. In block encryption schemes, chaining means linking each block to the previous block's value
(and therefore to all previous blocks), for example, by using an exclusive OR to combine the
encrypted previous block with the encryption of the current one. A file's cryptographic checksum
could be the last block of the chained encryption of a file since that block will depend on all other
blocks.

As we see later in this chapter, these techniques address the nonalterability and nonreusability
required in a digital signature. A change or reuse will be flagged by the checksum, so the recipient
can tell that something is amiss.

The most widely used cryptographic hash functions are MD4, MD5 (where MD stands for Message
Digest), and SHA/SHS (Secure Hash Algorithm or Standard). The MD4/5 algorithms were invented
by Ron Rivest and RSA Laboratories. MD5 is an improved version of MD4. Both condense a message
of any size to a 128-bit digest. SHA/SHS is similar to both MD4 and MD5; it produces a 160-bit
digest.

Wang et al. [WAN05] have announced cryptanalysis attacks on SHA, MD4, and MD5. For SHA, the
attack is able to find two plaintexts that produce the same hash digest in approximately 263 steps,
far short of the 280 steps that would be expected of a 160-bit hash function, and very feasible for a
moderately well-financed attacker. Although this attack does not mean SHA is useless (the attacker
must collect and analyze a large number of ciphertext samples), it does suggest use of long digests
and long keys. NIST [NIS05, NIS06] has studied the attack carefully and recommended
countermeasures.

Key Exchange

Suppose you need to send a protected message to someone you do not know and who does not
know you. This situation is more common than you may think. For instance, you may want to send
your income tax return to the government. You want the information to be protected, but you do
not necessarily know the person who is receiving the information. Similarly, you may want to use
your web browser to connect with a shopping web site, exchange private (encrypted) e-mail, or
arrange for two hosts to establish a protected channel. Each of these situations depends on being
able to exchange an encryption key in such a way that nobody else can intercept it. The problem of
two previously unknown parties exchanging cryptographic keys is both hard and important. Indeed,
the problem is almost circular: To establish an encrypted session, you need an encrypted means to
exchange keys.

Public key cryptography can help. Since asymmetric keys come in pairs, one half of the pair can be
exposed without compromising the other half. To see how, suppose S and R (our well-known sender
and receiver) want to derive a shared symmetric key. Suppose also that S and R both have public



keys for a common encryption algorithm; call these kPRIV-S, kPUB-S, kPRIV-R, and kPUB-R, for the
private and public keys for S and R, respectively. The simplest solution is for S to choose any
symmetric key K, and send E(kPRIV-S,K) to R. Then, R takes S's public key, removes the encryption,
and obtains K. Alas, any eavesdropper who can get S's public key can also obtain K.

Instead, let S send E(kPUB-R, K) to R. Then, only R can decrypt K. Unfortunately, R has no assurance
that K came from S.

But there is a useful alternative. The solution is for S to send to R:

E(kPUB-R, E(kPRIV-S, K))

We can think of this exchange in terms of lockboxes and keys. If S wants to send something
protected to R (such as a credit card number or a set of medical records), then the exchange works
something like this. S puts the protected information in a lockbox that can be opened only with S's
public key. Then, that lockbox is put inside a second lockbox that can be opened only with R's
private key. R can then use his private key to open the outer box (something only he can do) and
use S's public key to open the inner box (proving that the package came from S). In other words,
the protocol wraps the protected information in two packages: the first unwrapped only with S's
public key, and the second unwrapped only with R's private key. This approach is illustrated in
Figure 2-11.

Figure 2-11. The Idea Behind Key Exchange.

Another approach not requiring pre-shared public keys is the so-called DiffieHellman key
exchange protocol. In this protocol, S and R use some simple arithmetic to exchange a secret.
They agree on a field size n and a starting number g; they can communicate these numbers in the



clear. Each thinks up a secret number, say, s and r. S sends to R gs and R sends to S gr. Then S
computes (gr)s and R computes (gs)r, which are the same, so grs = gsr becomes their shared secret.
(One technical detail has been omitted for simplicity: these computations are done over a field of
integers mod n; see Chapter 12 for more information on modular arithmetic.)

Digital Signatures

Another typical situation parallels a common human need: an order to transfer funds from one
person to another. In other words, we want to be able to send electronically the equivalent of a
computerized check. We understand how this transaction is handled in the conventional, paper
mode:

A check is a tangible object authorizing a financial transaction.

The signature on the check confirms authenticity because (presumably) only the legitimate
signer can produce that signature.

In the case of an alleged forgery, a third party can be called in to judge authenticity.

Once a check is cashed, it is canceled so that it cannot be reused.

The paper check is not alterable. Or, most forms of alteration are easily detected.

Transacting business by check depends on tangible objects in a prescribed form. But tangible
objects do not exist for transactions on computers. Therefore, authorizing payments by computer
requires a different model. Let us consider the requirements of such a situation, both from the
standpoint of a bank and from the standpoint of a user.

Suppose Sandy sends her bank a message authorizing it to transfer $100 to Tim. Sandy's bank
must be able to verify and prove that the message really came from Sandy if she should later
disavow sending the message. The bank also wants to know that the message is entirely Sandy's,
that it has not been altered along the way. On her part, Sandy wants to be certain that her bank
cannot forge such messages. Both parties want to be sure that the message is new, not a reuse of a
previous message, and that it has not been altered during transmission. Using electronic signals
instead of paper complicates this process.

But we have ways to make the process work. A digital signature is a protocol that produces the
same effect as a real signature: It is a mark that only the sender can make, but other people can
easily recognize as belonging to the sender. Just like a real signature, a digital signature is used to
confirm agreement to a message.

Properties

A digital signature must meet two primary conditions:

It must be unforgeable. If person P signs message M with signature S(P,M), it is impossible for
anyone else to produce the pair [M, S(P,M)].



It must be authentic. If a person R receives the pair [M, S(P,M)] purportedly from P, R can
check that the signature is really from P. Only P could have created this signature, and the
signature is firmly attached to M.

These two requirements, shown in Figure 2-12, are the major hurdles in computer transactions. Two
more properties, also drawn from parallels with the paper-based environment, are desirable for
transactions completed with the aid of digital signatures:

It is not alterable. After being transmitted, M cannot be changed by S, R, or an interceptor.

It is not reusable. A previous message presented again will be instantly detected by R.

Figure 2-12. Requirements for a Digital Signature.

[View full size image]

To see how digital signatures work, we first present a mechanism that meets the first two
requirements. We then add to that solution to satisfy the other requirements.

Public Key Protocol

Public key encryption systems are ideally suited to digital signatures. For simple notation, let us



assume that the public key encryption for user U is accessed through E(M, KU) and that the private
key transformation for U is written as D(M,KU). We can think of E as the privacy transformation
(since only U can decrypt it) and D as the authenticity transformation (since only U can produce it).
Remember, however, that under some asymmetric algorithms such as RSA, D and E are
commutative, and either one can be applied to any message. Thus,

D(E(M, ), ) = M = E(D(M, ), )

If S wishes to send M to R, S uses the authenticity transformation to produce D(M, KS). S then
sends D(M, KS) to R. R decodes the message with the public key transformation of S, computing
E(D(M,KS), KS) = M. Since only S can create a message that makes sense under E(,KS), the
message must genuinely have come from S. This test satisfies the authenticity requirement.

R will save D(M,KS). If S should later allege that the message is a forgery (not really from S), R can
simply show M and D(M,KS). Anyone can verify that since D(M,KS) is transformed to M with the
public key transformation of Sbut only S could have produced D(M,KS)then D(M,KS) must be from
S. This test satisfies the unforgeable requirement.

There are other approaches to implementing digital signature; some use symmetric encryption,
others use asymmetric. The approach shown here illustrates how the protocol can address the
requirements for unforgeability and authenticity. To add secrecy, S applies E(M, KR) as shown in
Figure 2-13.

Figure 2-13. Use of Two Keys in Asymmetric Digital Signature.

Next, we learn about cryptographic certificates so that we can see how they are used to address
authenticity.

Certificates

As humans we establish trust all the time in our daily interactions with people. We identify people
we know by recognizing their voices, faces, or handwriting. At other times, we use an affiliation to



convey trust. For instance, if a stranger telephones us and we hear, "I represent the local
government…" or "I am calling on behalf of this charity…" or "I am calling from the
school/hospital/police about your mother/father/son/daughter/brother/sister…," we may decide to
trust the caller even if we do not know him or her. Depending on the nature of the call, we may
decide to believe the caller's affiliation or to seek independent verification. For example, we may
obtain the affiliation's number from the telephone directory and call the party back. Or we may seek
additional information from the caller, such as "What color jacket was she wearing?" or "Who is the
president of your organization?" If we have a low degree of trust, we may even act to exclude an
outsider, as in "I will mail a check directly to your charity rather than give you my credit card
number."

For each of these interactions, we have what we might call a "trust threshold," a degree to which we
are willing to believe an unidentified individual. This threshold exists in commercial interactions, too.
When Acorn Manufacturing Company sends Big Steel Company an order for 10,000 sheets of steel,
to be shipped within a week and paid for within ten days, trust abounds. The order is printed on an
Acorn form, signed by someone identified as Helene Smudge, Purchasing Agent. Big Steel may
begin preparing the steel even before receiving money from Acorn. Big Steel may check Acorn's
credit rating to decide whether to ship the order without payment first. If suspicious, Big Steel might
telephone Acorn and ask to speak to Ms. Smudge in the purchasing department. But more likely Big
Steel will actually ship the goods without knowing who Ms. Smudge is, whether she is actually the
purchasing agent, whether she is authorized to commit to an order of that size, or even whether the
signature is actually hers. Sometimes a transaction like this occurs by fax, so that Big Steel does not
even have an original signature on file. In cases like this one, which occur daily, trust is based on
appearance of authenticity (such as a printed, signed form), outside information (such as a credit
report), and urgency (Acorn's request that the steel be shipped quickly).

For electronic communication to succeed, we must develop similar ways for two parties to establish
trust without having met. A common thread in our personal and business interactions is the ability
to have someone or something vouch for the existence and integrity of one or both parties. The
police, the Chamber of Commerce, or the Better Business Bureau vouches for the authenticity of a
caller. Acorn indirectly vouches for the fact that Ms. Smudge is its purchasing agent by transferring
the call to her in the purchasing department. In a sense, the telephone company vouches for the
authenticity of a party by listing it in the directory. This concept of "vouching for" by a third party
can be a basis for trust in commercial settings where two parties do not know each other.

Trust Through a Common Respected Individual

A large company may have several divisions, each division may have several departments, each
department may have several projects, and each project may have several task groups (with
variations in the names, the number of levels, and the degree of completeness of the hierarchy).
The top executive may not know by name or sight every employee in the company, but a task group
leader knows all members of the task group, the project leader knows all task group leaders, and so
on. This hierarchy can become the basis for trust throughout the organization.

To see how, suppose two people meet: Ann and Andrew. Andrew says he works for the same
company as Ann. Ann wants independent verification that he does. She finds out that Bill and Betty
are two task group leaders for the same project (led by Camilla); Ann works for Bill and Andrew for
Betty. (The organizational relationships are shown in Figure 2-14.) These facts give Ann and Andrew
a basis for trusting each other's identity. The chain of verification might be something like this:



Ann asks Bill who Andrew is.

Bill either asks Betty if he knows her directly or if not, asks Camilla.

Camilla asks Betty.

Betty replies that Andrew works for her.

Camilla tells Bill.

Bill tells Ann.

Figure 2-14. Organization in Hypothetical Company.

If Andrew is in a different task group, it may be necessary to go higher in the organizational tree
before a common point is found.

We can use a similar process for cryptographic key exchange, as shown in Figure 2-15. If Andrew
and Ann want to communicate, Andrew can give his public key to Betty, who passes it to Camilla or
directly to Bill, who gives it to Ann. But this sequence is not exactly the way it would work in real
life. The key would probably be accompanied by a note saying it is from Andrew, ranging from a bit
of yellow paper to a form 947 Statement of Identity. And if a form 947 is used, then Betty would
also have to attach a form 632a Transmittal of Identity, Camilla would attach another 632a, and Bill
would attach a final one, as shown in Figure 2-15. This chain of 632a forms would say, in essence,
"I am Betty and I received this key and the attached statement of identity personally from a person
I know to be Andrew," "I am Camilla and I received this key and the attached statement of identity
and the attached transmittal of identity personally from a person I know to be Betty," and so forth.
When Ann receives the key, she can review the chain of evidence and conclude with reasonable
assurance that the key really did come from Andrew. This protocol is a way of obtaining
authenticated public keys, a binding of a key, and a reliable identity.

Figure 2-15. Andrew Passes a Key to Ann.



This model works well within a company because there is always someone common to any two
employees, even if the two employees are in different divisions so that the common person is the
president. The process bogs down, however, if Ann, Bill, Camilla, Betty, and Andrew all have to be
available whenever Ann and Andrew want to communicate. If Betty is away on a business trip or Bill
is off sick, the protocol falters. It also does not work well if the president cannot get any meaningful
work done because every day is occupied with handling forms 632a.

To address the first of these problems, Andrew can ask for his complete chain of forms 632a from
the president down to him. Andrew can then give a copy of this full set to anyone in the company
who wants his key. Instead of working from the bottom up to a common point, Andrew starts at the
top and derives his full chain. He gets these signatures any time his superiors are available, so they
do not need to be available when he wants to give away his authenticated public key.

The second problem is resolved by reversing the process. Instead of starting at the bottom (with
task members) and working to the top of the tree (the president), we start at the top. Andrew thus
has a preauthenticated public key for unlimited use in the future. Suppose the expanded structure
of our hypothetical company, showing the president and other levels, is as illustrated in Figure 2-16.

Figure 2-16. Expanded Corporate Structure.



The president creates a letter for each division manager saying "I am Edward, the president, I attest
to the identity of division manager Diana, whom I know personally, and I trust Diana to attest to the
identities of her subordinates." Each division manager does similarly, copying the president's letter
with each letter the manager creates, and so on. Andrew receives a packet of letters, from the
president down through his task group leader, each letter linked by name to the next. If every
employee in the company receives such a packet, any two employees who want to exchange
authenticated keys need only compare each other's packets; both packets will have at least Edward
in common, perhaps some other high managers, and at some point will deviate. Andrew and Ann,
for example, could compare their chains, determine that they were the same through Camilla, and
trace the bottom parts. Andrew knows Alice's chain is authentic through Camilla because it is
identical to his chain, and Ann knows the same. Each knows the rest of the chain is accurate
because it follows an unbroken line of names and signatures.

Certificates to Authenticate an Identity



This protocol is represented more easily electronically than on paper. With paper, it is necessary to
guard against forgeries, to prevent part of one chain from being replaced and to ensure that the
public key at the bottom is bound to the chain. Electronically the whole thing can be done with
digital signatures and hash functions. Kohnfelder [KOH78] seems to be the originator of the concept
of using an electronic certificate with a chain of authenticators, which is expanded in Merkle's paper
[MER80].

A public key and user's identity are bound together in a certificate, which is then signed by
someone called a certificate authority, certifying the accuracy of the binding. In our example, the
company might set up a certificate scheme in the following way. First, Edward selects a public key
pair, posts the public part where everyone in the company can retrieve it, and retains the private
part. Then, each division manager, such as Diana, creates her public key pair, puts the public key in
a message together with her identity, and passes the message securely to Edward. Edward signs it
by creating a hash value of the message and then encrypting the message and the hash with his
private key. By signing the message, Edward affirms that the public key (Diana's) and the identity
(also Diana's) in the message are for the same person. This message is called Diana's certificate.

All of Diana's department managers create messages with their public keys, Diana signs and hashes
each, and returns them. She also appends to each a copy of the certificate she received from
Edward. In this way, anyone can verify a manager's certificate by starting with Edward's well-known
public key, decrypting Diana's certificate to retrieve her public key (and identity), and using Diana's
public key to decrypt the manager's certificate. Figure 2-17 shows how certificates are created for
Diana and one of her managers, Delwyn. This process continues down the hierarchy to Ann and
Andrew. As shown in Figure 2-18, Andrew's certificate is really his individual certificate combined
with all certificates for those above him in the line to the president.

Figure 2-17. Signed Certificates.

[View full size image]



Figure 2-18. Chain of Certificates.

[View full size image]



Trust Without a Single Hierarchy

In our examples, certificates were issued on the basis of the managerial structure. But it is not
necessary to have such a structure or to follow it to use certificate signing for authentication.
Anyone who is considered acceptable as an authority can sign a certificate. For example, if you want
to determine whether a person received a degree from a university, you would not contact the
president or chancellor but would instead go to the office of records or the registrar. To verify
someone's employment, you might ask the personnel office or the director of human resources. And
to check if someone lives at a particular address, you might consult the office of public records.

Sometimes, a particular person is designated to attest to the authenticity or validity of a document
or person. For example, a notary public attests to the validity of a (written) signature on a
document. Some companies have a security officer to verify that an employee has appropriate
security clearances to read a document or attend a meeting. Many companies have a separate
personnel office for each site or each plant location; the personnel officer vouches for the
employment status of the employees at that site. Any of these officers or heads of offices could
credibly sign certificates for people under their purview. Natural hierarchies exist in society, and
these same hierarchies can be used to validate certificates.

The only problem with a hierarchy is the need for trust at the top level. The entire chain of
authenticity is secure because each certificate contains the key that decrypts the next certificate,
except for the top. Within a company, it is reasonable to trust the person at the top. But if
certificates are to become widely used in electronic commerce, people must be able to exchange
certificates securely across companies, organizations, and countries.

The Internet is a large federation of networks for intercompany, interorganizational, and
international (as well as intracompany, intraorganizational, and intranational) communication. It is
not a part of any government, nor is it a privately owned company. It is governed by a board called
the Internet Society. The Internet Society has power only because its members, the governments
and companies that together make up the Internet, agree to work together. But there really is no
"top" for the Internet. Different companies, such as C&W HKT, SecureNet, Verisign, Baltimore
Technologies, Deutsche Telecom, Societá Interbancaria per l'Automatzione di Milano, Entrust, and
Certiposte are root certification authorities, which means each is a highest authority that signs
certificates. So, instead of one root and one top, there are many roots, largely structured around
national boundaries.

In this chapter, we introduced several approaches to key distribution, ranging from direct exchange
to distribution through a central distribution facility to certified advance distribution. We explore the
notions of certificates and certificate authorities in more depth in Chapter 7, in which we discuss
Public Key Infrastructures. But no matter what approach is taken to key distribution, each has its
advantages and disadvantages. Points to keep in mind about any key distribution protocol include
the following:



• What operational restrictions are there? For example, does the protocol require a
continuously available facility, such as the key distribution center?

• What trust requirements are there? Who and what entities must be trusted to act
properly?

• What is the protection against failure? Can an outsider impersonate any of the
entities in the protocol and subvert security? Can any party of the protocol cheat
without detection?

• How efficient is the protocol? A protocol requiring several steps to establish an
encryption key that will be used many times is one thing; it is quite another to go
through several time-consuming steps for a one-time use.

• How easy is the protocol to implement? Notice that complexity in computer
implementation may be different from manual use.

The descriptions of the protocols have raised some of these issues; others are brought out in the
exercises at the end of this chapter.



2.9. Summary of Encryption

This chapter has examined the basic processes of encryption and cryptanalysis. We began by
describing what might be called "toy cryptosystems" because they illustrate principles of encryption
but are not suitable for real use. Those cryptosystems allowed us to introduce the two basic
methods of enciphermentsubstitution and transposition or permutationas well as techniques of
cryptanalysis.

Then, we examined three "real" cryptosystems: DES, AES, and RSA, two symmetric and one
asymmetric, which are used daily in millions of applications. We presented the characteristics of
these cryptosystems, focusing on where they come from and how they are used, but not necessarily
how they work. We save the internal details for Chapter 12.

Finally, we introduced several very important and widely used applications of cryptography: hash
functions, key exchange protocols, digital signatures, and certificates. Key exchange, especially with
public key cryptography, is used by almost everyone. For example, any time a user enters "secure"
(HTTPS) mode on a browser, a key exchange protocol is involved. Digital signatures give us a
reliable means to prove the origin of data or code. To support digital signatures, cryptographic hash
codes offer a fast, fairly reliable way of determining whether a piece of data has been modified
between sender and receiver. Finally, certificates and their distribution allow us to trust information
from someone or someplace else, even if we do not have direct interaction.

With these toolssymmetric encryption, public key encryption, key exchange protocols, digital
signatures, cryptographic hash codes, and certificateswe are ready to study how threats in major
application areas (such as program code, operating systems, database management systems, and
networks) can be countered with controls, some of which depend on cryptography. You will see
references to cryptography throughout the rest of this book, for example, signed code to show its
origin in Chapter 7, cryptographic sealing of sensitive data in databases in Chapter 6, SSL
encryption for browsers in Chapter 7, encryption for privacy in data mining in Chapter 10, and
cryptographically secured e-mail in Chapter 7. Although cryptography is not the only control for the
computer security specialist, it is certainly a very important one.

In the next chapter we look at another major way we achieve security: programs. Throughout a
computer, code both permits and controls our computer activity. In Chapter 3 we begin by studying
applications and work our way through operating systems and databases to networks in Chapter 7.
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2.11. Where the Field Is Headed

Throughout history, cryptography has attracted a select few to perform basic research. The world
always needs new and better algorithms, while at the same time, governments and others are
continually looking for ways to break those algorithms.

Cryptography is not a field for amateurs. One word-processor manufacturer found much to its
chagrin that the encryption feature it had built into its product could be broken with a ciphertext-
only attack in minutes with pencil and paper. Another browser manufacturer found that its means of
generating cryptographic keys was predictable. Both of these companies had employed ordinarily
smart developers but had not taken the step of involving an expert in cryptography. So while your
homemade cipher may be adequate to protect e-mail messages to your friends, for serious use you
should rely on the knowledge of professional cryptographers. Typically, professional cryptographers
have done significant advanced study, often obtaining doctorates in advanced mathematics.

As we stated very briefly in this chapter, the major hash functions, in particular SHA-1 and the MD4
and MD5 functions, have recently been shown to have a serious flaw: They permit an attacker to
find a second plaintext that produces the same hash result as given plaintext. This finding threatens
to undermine the basis of digital signatures. Various cryptographic and standards groups are
currently scrambling to verify the basis of these results and to understand which functions or what
key lengths are still adequate.

One interesting problem cryptographers are currently exploring is called "watermarking." The root
of the problem is a need to protect digital data from unauthorized copying. How can someone tell by
looking at a digital image picture file whether you took a similar photograph yourself or whether you
have an unauthorized copy of a copyrighted publication? By embedding a cryptographic string, or
watermark, a legitimate author can demonstrate the origin of the file. This research is the subject of
papers at cryptographic forums such as the Crypto and EuroCrypt conferences.

Another major research and development topic, certificate and public key infrastructures, was
addressed briefly in this chapter and is covered in Chapter 7.



2.12. To Learn More

This chapter does not present much of the history of encryption. Because encryption has been used
for military and diplomatic communications, many of the stories are fascinating. David Kahn's
thorough study of encryption [KAH67, KAH96] still stands as the masterpiece. Other interesting
sources are the works by Friedman [FRI76a, FRI76b, and FRI76c], [DEA85], [BAM82], and [YAR31].

The highly readable presentation of elementary cryptography by Sinkov [SIN66] is well worth study.
A more precise and mathematical analysis is done by Simmons [SIM79], Konheim [KON80], Beker
and Piper [BEK82] and Meyer and Matyas [MEY82]. Many more simple encryption algorithms are
presented in [FOS82]. Singh [SIN99] presents an overview of the history of cryptography from
primitive days to modern commercial uses. Schneier's book [SCH96] gives detailed description of
practically all publicly known encryption systems.

Cryptanalysis is treated on its own in [BRI88] and [SIM92, SIM94].

The history and politics of encryption is presented by Caloyannides [CAL00a, CAL00b].

Anderson points out that much cryptanalysis is done by governments in secret; thus the public
community has little opportunity to learn from past mistakes. His paper [AND94a] is an excellent
study of failures in commercial applications of cryptography.



2.13. Exercises

The first several exercises ask you to decrypt a piece of ciphertext. Each of these is an English prose
quotation. More important than the precise quotation is the process you use to analyze the
encryption. Justify your answer by describing the various tests you performed and the results you
obtained for those tests.

1. Decrypt the following encrypted quotation.

fqjcb rwjwj vnjax bnkhj whxcq nawjv
nfxdu mbvnu ujbbf nnc

2. Decrypt the following encrypted quotation.

oczmz vmzor jocdi bnojv dhvod igdaz
admno ojbzo rcvot jprvi oviyv aozmo
cvooj ziejt dojig toczr dnzno jahvi
fdiyv xcdzq zoczn zxjiy

3. Decrypt the following encrypted quotation.

pbegu uymiq icuuf guuyi qguuy qcuiv
fiqgu uyqcu qbeme vp

4. Decrypt the following encrypted quotation.

jrgdg idxgq anngz gtgtt sitgj ranmn
oeddi omnwj rajvk sexjm dxkmn wjrgm
ttgdt gognj ajmzg ovgki nlaqg tjamn
xmsmj jrgko jtgnw jrgnj rgvat tmgta
wamno jjrgw izgtn sgnji babgu

5. Decrypt the following encrypted quotation.

ejitp spawa qleji taiul rtwll rflrl
laoat wsqqj atgac kthls iraoa twlpl
qjatw jufrh lhuts qataq itats aittk



stqfj cae

6. Decrypt the following encrypted quotation.

auqrq rkrzd dmhxk ageho kfalu hkmog
rlagm hznhf fhglm hkrlh mvzmr znvir
klhgl vhodw krnra przgr jozdl vzkra
gmvrw almka xomah gmvrf zbhka mtqho
dwxre dzwmh mzcro imvra khqgz gwwri
zkm

7. Decrypt the following encrypted quotation.

jmjmj gsmsg lrjgu csqyj quflr mfajq
erdmc cmqlv lqyhg gawgq arpgq sblce
jrlrj lnemc cyjqu flrmf ajqer d

8. Decrypt the following encrypted quotation.

vcwpc kwblm smljy glbgu gbtwj jyats
lwsgm lwjjy vcrfc rikwl qjwte fscpw
lbgqm jwscb ktpbc pqats vfwsm dvwpw
lbsfc ktrfu wtlsc brpgk cmdqj wtefs
cpgle vfmjc ncmnj cq

9. Decrypt the following encrypted quotation.

ptgpz ggprf bdkrg pequt tngtf ggpzf
zfqgp tukrw wkzfg kquyd qxwzu ltuet
zfrfl ptgpz ggprf bdkrg pequt dhmgw
tgokr wwdtt bxqug tuedq xequt fraty
rdaur erfzg rqfot gjzfr gorfa wrftd
hdgqx rfyxz hwgdz fokpt utuzg ptugp
zfrfq hudtw jtdpt gpzgu tzydz fyluq
kdfqk rdtud hdcta gdfqg prdqk fytxr
artfa omhga qecwz rfdqx pzuyk quydz
fyqmd ahutd tfgtf atdzf yzdbd kpomq
qbdzu tkurg gtfkp rapaz ffqgm thfyt
udgqq y

10. Decrypt the following encrypted quotation.



mszkx ijddj nzatm lrkdj mlwmc qrktj
tnwir zatnj bxdrj amlrs zxrzd dbjbk
wsrir mlrxc icnic qrkza tmlrb cbriz
mlkco mnizx r

11. Decrypt the following encrypted quotation.

gahzh zgaff irfcc fqgmx eefsp xmgab
bxscy gadgb afqbf dsfzh rvhqm xsgnq
fxmgf qgafz nsmfh gxmxn sxbqk faduh
xnsbf jdvft nhcgp xmxns yhzdz gfszg
afznq gafjx xqdqy gafzg dszdz hmbfb
fsfuh ccdhq zkpqf rfzzh gpmxx czkpa
fdufq cprxj enczh xq

12. Decrypt the following encrypted quotation.

gasaz afxfk hqbzp zbqnq hfkqf zdfgr
gsaaf afdfz fzujz fhhxh irxxg rvnqp
fhsdm cqbqx cmfyx fxjgc qsdaz ggvfk
mnfzp xqtga efndf exhsd fmczu sggdf
pfpzq xqxhc mgmmp gaxbr afnfx bzsbj
bnyfe xshsn smzfc cfduz yhzhh gggcx
axfcq dmsdi

13. What characteristics would make an encryption absolutely unbreakable? What
characteristics would make an encryption impractical to break?

14. Does a substitution need to be a permutation of the plaintext symbols? Why or why
not?

15. Explain why the product of two relatively simple ciphers, such as a substitution and a
transposition, can achieve a high degree of security.

16. How would you quickly test a piece of ciphertext to suggest whether it was likely the
result of a simple substitution?

17. How would you quickly test a piece of ciphertext to suggest whether it was likely the
result of a transposition?

18. Suggest a source of a very long sequence of unpredictable numbers. Your source
must be something that both the sender and receiver can readily access but that is
not obvious to outsiders and is not transmitted directly from sender to receiver.



19. Given the speed of a current ordinary computer (for home or light office use),
estimate the amount of time necessary to crack a DES encryption by testing all 256

possible keys. Make a similar estimate for a 128-bit AES key.

20. List three kinds of data whose lifetime (amount of time for which confidentiality
protection is needed) is approximately one day. List three whose lifetime is closer to
one year. List three whose lifetime is closer to one century.

21. Obtain manufacturers' specifications on two current cryptographic products for the
same algorithm, such as AES, DES, a proprietary algorithm from the manufacturer,
or some other algorithm. The products should have different implementations, such
as one in hardware and the other software, or one on a smart card and one in
software. Determine the amount of time it would take to encrypt a block of
characters of some modest size (for example, 3,000 characters) with each.

22. List three applications in which a stream cipher would be desirable. Are applications
for block ciphers more prevalent? Why or why not? Why do you think this is true?

23. Are DES and AES stream or block ciphers?

24. What are the risks in the U.S. government's selecting a cryptosystem for widespread
commercial use (both inside and outside the United States)? How could users from
outside the United States overcome some or all of these risks?

25. DES and AES are both "turn the handle" algorithms in that they use repetition of
some number of very similar cycles. What are the advantages (to implementer,
users, cryptanalysts, etc.) of this approach?

26. Why should exportability be a criterion for selection of a cryptographic standard?

27. How do the NIST criteria for selection of DES and AES relate to Shannon's original
standards of a good cryptographic system? What are the significant differences? How
do these standards reflect a changed environment many years after Shannon wrote
his standards?

28. Obtain the manufacturer's specifications for a commercial product that performs
symmetric encryption (e.g., a DES, AES, or proprietary encryption module). Obtain
specifications for an asymmetric algorithm (from the same or a different
manufacturer). What is the expected time for each to encrypt a short (e.g., 1,500-
character) piece of plaintext?

29. If the useful life of DES was about 20 years (19771999), how long do you predict the
useful life of AES to be? Justify your answer.

30. Assume you are in charge of product development for a company that makes
cryptographic equipment. At its simplest, a cryptographic implementation is a black
box: insert key, insert plaintext, press "start," retrieve ciphertext. And for the same
algorithm, these so-called black boxes from different manufacturers will be similar.
What other features or capabilities would differentiate your cryptographic product
from the competition. Be specific. Do not simply say "user interface," for example,



but list specific features of capabilities you think users would like to have.

31. Should a cryptographic product manufacturer try to develop an "all in one" product
that could perform, for example, DES, AES, and RSA cryptography? Why or why not?

32. A one-time pad must never repeat. Yet, if the pad numbers are, for example, 8-bit
bytes, in a long enough stream of pad numbers, some byte value must repeat.
Explain why these two statements are not contradictory.

33. Why do cryptologists recommend changing the encryption key from time to time?
How frequently should a cryptographic key be changed?

34. Humans are said to be the weakest link in any security system. Give an example of
human failure that could lead to compromise of encrypted data.



Chapter 3. Program Security

In this chapter

Programming errors with security implications: buffer overflows, incomplete access control

Malicious code: viruses, worms, Trojan horses

Program development controls against malicious code and vulnerabilities: software
engineering principles and practices

Controls to protect against program flaws in execution: operating system support and
administrative controls

In the first two chapters, we learned about the need for computer security and we studied
encryption, a fundamental tool in implementing many kinds of security controls. In this chapter, we
begin to study how to apply security in computing. We start with why we need security at the
program level and how we can achieve it.

In one form or another, protecting programs is at the heart of computer security because programs
constitute so much of a computing system (the operating system, device drivers, the network
infrastructure, database management systems and other applications, even executable commands
on web pages). For now, we call all these pieces of code "programs." So we need to ask two
important questions:

• How do we keep programs free from flaws?

• How do we protect computing resources against programs that contain flaws?

In later chapters, we examine particular types of programsincluding operating systems, database
management systems, and network implementationsand the specific kinds of security issues that
are raised by the nature of their design and functionality. In this chapter, we address more general
themes, most of which carry forward to these special-purpose systems. Thus, this chapter not only
lays the groundwork for future chapters but also is significant on its own.

This chapter deals with the writing of programs. It defers to a later chapter what may be a much
larger issue in program security: trust. The trust problem can be framed as follows: Presented with
a finished program, for example, a commercial software package, how can you tell how secure it is



or how to use it in its most secure way? In part the answer to these questions is independent, third-
party evaluations, presented for operating systems (but applicable to other programs, as well) in
Chapter 5. The reporting and fixing of discovered flaws is discussed in Chapter 11, as are liability
and software warranties. For now, however, the unfortunate state of commercial software
development is largely a case of trust your source, and buyer beware.



3.1. Secure Programs

Consider what we mean when we say that a program is "secure." We saw in Chapter 1 that security
implies some degree of trust that the program enforces expected confidentiality, integrity, and
availability. From the point of view of a program or a programmer, how can we look at a software
component or code fragment and assess its security? This question is, of course, similar to the
problem of assessing software quality in general. One way to assess security or quality is to ask
people to name the characteristics of software that contribute to its overall security. However, we
are likely to get different answers from different people. This difference occurs because the
importance of the characteristics depends on who is analyzing the software. For example, one
person may decide that code is secure because it takes too long to break through its security
controls. And someone else may decide code is secure if it has run for a period of time with no
apparent failures. But a third person may decide that any potential fault in meeting security
requirements makes code insecure.

An assessment of security can also be influenced by someone's general perspective on software
quality. For example, if your manager's idea of quality is conformance to specifications, then she
might consider the code secure if it meets security requirements, whether or not the requirements
are complete or correct. This security view played a role when a major computer manufacturer
delivered all its machines with keyed locks, since a keyed lock was written in the requirements. But
the machines were not secure, because all locks were configured to use the same key! Thus,
another view of security is fitness for purpose; in this view, the manufacturer clearly had room for
improvement.

In general, practitioners often look at quantity and types of faults for evidence of a product's quality
(or lack of it). For example, developers track the number of faults found in requirements, design,
and code inspections and use them as indicators of the likely quality of the final product. Sidebar 3-
1 explains the importance of separating the faultsthe causes of problemsfrom the failures, the
effects of the faults.

Fixing Faults

One approach to judging quality in security has been fixing faults. You might argue that a module in
which 100 faults were discovered and fixed is better than another in which only 20 faults were
discovered and fixed, suggesting that more rigorous analysis and testing had led to the finding of
the larger number of faults. Au contraire, challenges your friend: a piece of software with 100
discovered faults is inherently full of problems and could clearly have hundreds more waiting to
appear. Your friend's opinion is confirmed by the software testing literature; software that has many
faults early on is likely to have many others still waiting to be found.



Sidebar 3-1: IEEE Terminology for Quality

Frequently, we talk about "bugs" in software, a term that can mean many different
things depending on context. A bug can be a mistake in interpreting a requirement, a
syntax error in a piece of code, or the (as-yet-unknown) cause of a system crash. The
IEEE has suggested a standard terminology (in IEEE Standard 729) for describing bugs
in our software products [IEEE83].

When a human makes a mistake, called an error, in performing some software activity,
the error may lead to a fault, or an incorrect step, command, process, or data definition
in a computer program. For example, a designer may misunderstand a requirement and
create a design that does not match the actual intent of the requirements analyst and
the user. This design fault is an encoding of the error, and it can lead to other faults,
such as incorrect code and an incorrect description in a user manual. Thus, a single
error can generate many faults, and a fault can reside in any development or
maintenance product.

A failure is a departure from the system's required behavior. It can be discovered
before or after system delivery, during testing, or during operation and maintenance.
Since the requirements documents can contain faults, a failure indicates that the system
is not performing as required, even though it may be performing as specified.

Thus, a fault is an inside view of the system, as seen by the eyes of the developers,
whereas a failure is an outside view: a problem that the user sees. Not every fault
corresponds to a failure; for example, if faulty code is never executed or a particular
state is never entered, then the fault will never cause the code to fail.

Early work in computer security was based on the paradigm of "penetrate and patch," in which
analysts searched for and repaired faults. Often, a top-quality "tiger team" would be convened to
test a system's security by attempting to cause it to fail. The test was considered to be a "proof" of
security; if the system withstood the attacks, it was considered secure. Unfortunately, far too often
the proof became a counterexample, in which not just one but several serious security problems
were uncovered. The problem discovery in turn led to a rapid effort to "patch" the system to repair
or restore the security. (See Schell's analysis in [SCH79].) However, the patch efforts were largely
useless, making the system less secure rather than more secure because they frequently introduced
new faults. There are at least four reasons why.

The pressure to repair a specific problem encouraged a narrow focus on the fault itself and not
on its context. In particular, the analysts paid attention to the immediate cause of the failure
and not to the underlying design or requirements faults.

The fault often had nonobvious side effects in places other than the immediate area of the
fault.

Fixing one problem often caused a failure somewhere else, or the patch addressed the problem
in only one place, not in other related places.

The fault could not be fixed properly because system functionality or performance would suffer



as a consequence.

Unexpected Behavior

The inadequacies of penetrate-and-patch led researchers to seek a better way to be confident that
code meets its security requirements. One way to do that is to compare the requirements with the
behavior. That is, to understand program security, we can examine programs to see whether they
behave as their designers intended or users expected. We call such unexpected behavior a
program security flaw; it is inappropriate program behavior caused by a program vulnerability.
Unfortunately, the terminology in the computer security field is not consistent with the IEEE
standard described in Sidebar 3-1; the terms "vulnerability" and "flaw" do not map directly to the
characterization of faults and failures. A flaw can be either a fault or failure, and a vulnerability
usually describes a class of flaws, such as a buffer overflow. In spite of the inconsistency, it is
important for us to remember that we must view vulnerabilities and flaws from two perspectives,
cause and effect, so that we see what fault caused the problem and what failure (if any) is visible to
the user. For example, a Trojan horse may have been injected in a piece of codea flaw exploiting a
vulnerabilitybut the user may not yet have seen the Trojan horse's malicious behavior. Thus, we
must address program security flaws from inside and outside, to find causes not only of existing
failures but also of incipient ones. Moreover, it is not enough just to identify these problems. We
must also determine how to prevent harm caused by possible flaws.

Program security flaws can derive from any kind of software fault. That is, they cover everything
from a misunderstanding of program requirements to a one-character error in coding or even
typing. The flaws can result from problems in a single code component or from the failure of several
programs or program pieces to interact compatibly through a shared interface. The security flaws
can reflect code that was intentionally designed or coded to be malicious or code that was simply
developed in a sloppy or misguided way. Thus, it makes sense to divide program flaws into two
separate logical categories: inadvertent human errors versus malicious, intentionally induced flaws.

These categories help us understand some ways to prevent the inadvertent and intentional insertion
of flaws into future code, but we still have to address their effects, regardless of intention. That is,
in the words of Sancho Panza in Man of La Mancha, "it doesn't matter whether the stone hits the
pitcher or the pitcher hits the stone, it's going to be bad for the pitcher." An inadvertent error can
cause just as much harm to users and their organizations as can an intentionally induced flaw.
Furthermore, a system attack often exploits an unintentional security flaw to perform intentional
damage. From reading the popular press (see Sidebar 3-2), you might conclude that intentional
security incidents (called cyber attacks) are the biggest security threat today. In fact, plain,
unintentional human errors are more numerous and cause much more damage.



Sidebar 3-2: Continuing Increase in Cyber Attacks

Carnegie Mellon University's Computer Emergency Response Team (CERT) tracks the
number and kinds of vulnerabilities and cyber attacks reported worldwide. Part of
CERT's mission is to warn users and developers of new problems and also to provide
information on ways to fix them. According to the CERT coordination center, fewer than
200 known vulnerabilities were reported in 1995, and that number ranged between 200
and 400 from 1996 to 1999. But the number increased dramatically in 2000, with over
1,000 known vulnerabilities in 2000, almost 2,420 in 2001, and 4,129 in 2002. Then the
trend seemed to taper off slightly with 3,784 in 2003 and 3,780 in 2004, but the count
shot up again with 5,990 in 2005 and 1,597 in the first quarter of 2006 alone. (For
current statistics, see http://www.cert.org/stats/cert_stats.html#vulnerabilities.)

How does that translate into cyber attacks? CERT reported over 137,000 incidents in
2003 and 319,992 total for the years 19882003. Because the number of incidents had
become so large, the attacks so widespread, and the reporting structure so widely used,
CERT stopped publishing a count of incidents in 2004, arguing that more significant
metrics were needed. Moreover, as of June 2006, Symantec's Norton antivirus software
checked for over 72,000 known virus patterns. The Computer Security Institute and the
FBI cooperate to take an annual survey of approximately 500 large institutions:
companies, government organizations, and educational institutions [CSI05]. The
response from 1999 through 2005 has been fairly constant: In each year approximately
40 percent of respondents reported from one to five incidents, 20 percent six to ten,
and 10 percent more than ten. The respondents reported total losses exceeding $42
million due to virus attacks.

It is clearly time to take security seriously, both as users and developers.

Regrettably, we do not have techniques to eliminate or address all program security flaws. As
Gasser [GAS88] notes, security is fundamentally hard, security often conflicts with usefulness and
performance, there is no ""silver bullet" to achieve security effortlessly, and false security solutions
impede real progress toward more secure programming. There are two reasons for this distressing
situation.

Program controls apply at the level of the individual program and programmer. When we test a
system, we try to make sure that the functionality prescribed in the requirements is
implemented in the code. That is, we take a "should do" checklist and verify that the code does
what it is supposed to do. However, security is also about preventing certain actions: a
"shouldn't do" list. A system shouldn't do anything not on its "should do" list. It is almost
impossible to ensure that a program does precisely what its designer or user intended, and
nothing more. Regardless of designer or programmer intent, in a large and complex system,
the pieces that have to fit together properly interact in an unmanageably large number of
ways. We are forced to examine and test the code for typical or likely cases; we cannot
exhaustively test every state and data combination to verify a system's behavior. So sheer size
and complexity preclude total flaw prevention or mediation. Programmers intending to implant
malicious code can take advantage of this incompleteness and hide some flaws successfully,

1.

2.

http://www.cert.org/stats/cert_stats.html#vulnerabilities


despite our best efforts.

Programming and software engineering techniques change and evolve far more rapidly than do
computer security techniques. So we often find ourselves trying to secure last year's
technology while software developers are rapidly adopting today'sand next year'stechnology.

2.

Still, the situation is far from bleak. Computer security has much to offer to program security. By
understanding what can go wrong and how to protect against it, we can devise techniques and tools
to secure most computer applications.

Types of Flaws

To aid our understanding of the problems and their prevention or correction, we can define
categories that distinguish one kind of problem from another. For example, Landwehr et al. [LAN94]
present a taxonomy of program flaws, dividing them first into intentional and inadvertent flaws.
They further divide intentional flaws into malicious and nonmalicious ones. In the taxonomy, the
inadvertent flaws fall into six categories:

validation error (incomplete or inconsistent): permission checks

domain error: controlled access to data

serialization and aliasing: program flow order

inadequate identification and authentication: basis for authorization

boundary condition violation: failure on first or last case

other exploitable logic errors

Other authors, such as Tsipenyuk et al. [TSI05], the OWASP project [OWA05], and Landwehr
[LAN93], have produced similar lists. This list gives us a useful overview of the ways in which
programs can fail to meet their security requirements. We leave our discussion of the pitfalls of
identification and authentication for Chapter 4, in which we also investigate separation into
execution domains. In this chapter, we address the other categories, each of which has interesting
examples.



3.2. Nonmalicious Program Errors

Being human, programmers and other developers make many mistakes, most of which are
unintentional and nonmalicious. Many such errors cause program malfunctions but do not lead to
more serious security vulnerabilities. However, a few classes of errors have plagued programmers
and security professionals for decades, and there is no reason to believe they will disappear. In this
section we consider three classic error types that have enabled many recent security breaches. We
explain each type, why it is relevant to security, and how it can be prevented or mitigated.

Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour two liters of water into a one-liter
pitcher: Some water is going to spill out and make a mess. And in computing, what a mess these
errors have made!

Definition

A buffer (or array or string) is a space in which data can be held. A buffer resides in memory.
Because memory is finite, a buffer's capacity is finite. For this reason, in many programming
languages the programmer must declare the buffer's maximum size so that the compiler can set
aside that amount of space.

Let us look at an example to see how buffer overflows can happen. Suppose a C language program
contains the declaration:

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for each of the 10 elements of the
array, sample[0] tHRough sample[9]. Now we execute the statement:

sample[10] = 'B';

The subscript is out of bounds (that is, it does not fall between 0 and 9), so we have a problem. The
nicest outcome (from a security perspective) is for the compiler to detect the problem and mark the
error during compilation. However, if the statement were

sample[i] = 'B';

we could not identify the problem until i was set during execution to a too-big subscript. It would be
useful if, during execution, the system produced an error message warning of a subscript out of
bounds. Unfortunately, in some languages, buffer sizes do not have to be predefined, so there is no



way to detect an out-of-bounds error. More importantly, the code needed to check each subscript
against its potential maximum value takes time and space during execution, and the resources are
applied to catch a problem that occurs relatively infrequently. Even if the compiler were careful in
analyzing the buffer declaration and use, this same problem can be caused with pointers, for which
there is no reasonable way to define a proper limit. Thus, some compilers do not generate the code
to check for exceeding bounds.

Let us examine this problem more closely. It is important to recognize that the potential overflow
causes a serious problem only in some instances. The problem's occurrence depends on what is
adjacent to the array sample. For example, suppose each of the ten elements of the array sample is
filled with the letter A and the erroneous reference uses the letter B, as follows:

for (i=0; i<=9; i++)
      sample[i] = 'A';
sample[10] = 'B'

All program and data elements are in memory during execution, sharing space with the operating
system, other code, and resident routines. So there are four cases to consider in deciding where the
'B' goes, as shown in Figure 3-1. If the extra character overflows into the user's data space, it
simply overwrites an existing variable value (or it may be written into an as-yet unused location),
perhaps affecting the program's result, but affecting no other program or data.

Figure 3-1. Places Where a Buffer Can Overflow.



In the second case, the 'B' goes into the user's program area. If it overlays an already executed
instruction (which will not be executed again), the user should perceive no effect. If it overlays an
instruction that is not yet executed, the machine will try to execute an instruction with operation
code 0x42, the internal code for the character 'B'. If there is no instruction with operation code
0x42, the system will halt on an illegal instruction exception. Otherwise, the machine will use
subsequent bytes as if they were the rest of the instruction, with success or failure depending on
the meaning of the contents. Again, only the user is likely to experience an effect.

The most interesting cases occur when the system owns the space immediately after the array that
overflows. Spilling over into system data or code areas produces similar results to those for the
user's space: computing with a faulty value or trying to execute an improper operation.

Security Implication



In this section we consider program flaws from unintentional or nonmalicious causes. Remember,
however, that even if a flaw came from an honest mistake, the flaw can still cause serious harm. A
malicious attacker can exploit these flaws.

Let us suppose that a malicious person understands the damage that can be done by a buffer
overflow; that is, we are dealing with more than simply a normal, errant programmer. The malicious
programmer looks at the four cases illustrated in Figure 3-1 and thinks deviously about the last two:
What data values could the attacker insert just after the buffer to cause mischief or damage, and
what planned instruction codes could the system be forced to execute? There are many possible
answers, some of which are more malevolent than others. Here, we present two buffer overflow
attacks that are used frequently. (See [ALE96] for more details.)

First, the attacker may replace code in the system space. Remember that every program is invoked
by the operating system and that the operating system may run with higher privileges than those of
a regular program. Thus, if the attacker can gain control by masquerading as the operating system,
the attacker can execute many commands in a powerful role. Therefore, by replacing a few
instructions right after returning from his or her own procedure, the attacker regains control from
the operating system, possibly with raised privileges. If the buffer overflows into system code
space, the attacker merely inserts overflow data that correspond to the machine code for
instructions.

On the other hand, the attacker may make use of the stack pointer or the return register.
Subprocedure calls are handled with a stack, a data structure in which the most recent item inserted
is the next one removed (last arrived, first served). This structure works well because procedure
calls can be nested, with each return causing control to transfer back to the immediately preceding
routine at its point of execution. Each time a procedure is called, its parameters, the return address
(the address immediately after its call), and other local values are pushed onto a stack. An old stack
pointer is also pushed onto the stack, and a stack pointer register is reloaded with the address of
these new values. Control is then transferred to the subprocedure.

As the subprocedure executes, it fetches parameters that it finds by using the address pointed to by
the stack pointer. Typically, the stack pointer is a register in the processor. Therefore, by causing an
overflow into the stack, the attacker can change either the old stack pointer (changing the context
for the calling procedure) or the return address (causing control to transfer where the attacker
wants when the subprocedure returns). Changing the context or return address allows the attacker
to redirect execution to a block of code the attacker wants.

In both these cases, a little experimentation is needed to determine where the overflow is and how
to control it. But the work to be done is relatively smallprobably a day or two for a competent
analyst. These buffer overflows are carefully explained in a paper by Mudge [MUD95] of the famed
l0pht computer security group. Pincus and Baker [PIN04] reviewed buffer overflows ten years after
Mudge and found that, far from being a minor aspect of attack, buffer overflows have been a very
significant attack vector and have spawned several other new attack types.

An alternative style of buffer overflow occurs when parameter values are passed into a routine,
especially when the parameters are passed to a web server on the Internet. Parameters are passed
in the URL line, with a syntax similar to

http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212
&parm2=2009Jan17

http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212


In this example, the page userinput receives two parameters, parm1 with value (808)555-1212
(perhaps a U.S. telephone number) and parm2 with value 2009Jan17 (perhaps a date). The web
browser on the caller's machine will accept values from a user who probably completes fields on a
form. The browser encodes those values and transmits them back to the server's web site.

The attacker might question what the server would do with a really long telephone number, say,
one with 500 or 1000 digits. But, you say, no telephone in the world has such a number; that is
probably exactly what the developer thought, so the developer may have allocated 15 or 20 bytes
for an expected maximum length telephone number. Will the program crash with 500 digits? And if
it crashes, can it be made to crash in a predictable and usable way? (For the answer to this
question, see Litchfield's investigation of the Microsoft dialer program [LIT99].) Passing a very long
string to a web server is a slight variation on the classic buffer overflow, but no less effective.

As noted earlier, buffer overflows have existed almost as long as higher-level programming
languages with arrays. For a long time they were simply a minor annoyance to programmers and
users, a cause of errors and sometimes even system crashes. Rather recently, attackers have used
them as vehicles to cause first a system crash and then a controlled failure with a serious security
implication. The large number of security vulnerabilities based on buffer overflows shows that
developers must pay more attention now to what had previously been thought to be just a minor
annoyance.

Incomplete Mediation

Incomplete mediation is another security problem that has been with us for decades. Attackers
are exploiting it to cause security problems.

Definition

Consider the example of the previous section:

http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212
&parm2=2009Jan17

The two parameters look like a telephone number and a date. Probably the client's (user's) web
browser enters those two values in their specified format for easy processing on the server's side.
What would happen if parm2 were submitted as 1800Jan01? Or 1800Feb30? Or 2048Min32? Or
1Aardvark2Many?

Something would likely fail. As with buffer overflows, one possibility is that the system would fail
catastrophically, with a routine's failing on a data type error as it tried to handle a month named
"Min" or even a year (like 1800) that was out of range. Another possibility is that the receiving
program would continue to execute but would generate a very wrong result. (For example, imagine
the amount of interest due today on a billing error with a start date of 1 Jan 1800.) Then again, the
processing server might have a default condition, deciding to treat 1Aardvark2Many as 3 July 1947.
The possibilities are endless.

One way to address the potential problems is to try to anticipate them. For instance, the

http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212


programmer in the examples above may have written code to check for correctness on the client's
side (that is, the user's browser). The client program can search for and screen out errors. Or, to
prevent the use of nonsense data, the program can restrict choices only to valid ones. For example,
the program supplying the parameters might have solicited them by using a drop-down box or
choice list from which only the twelve conventional months would have been possible choices.
Similarly, the year could have been tested to ensure that the value was between 1995 and 2015,
and date numbers would have to have been appropriate for the months in which they occur (no
30th of February, for example). Using these verification techniques, the programmer may have felt
well insulated from the possible problems a careless or malicious user could cause.

However, the program is still vulnerable. By packing the result into the return URL, the programmer
left these data fields in a place the user can access (and modify). In particular, the user could edit
the URL line, change any parameter values, and resend the line. On the server side, there is no way
for the server to tell if the response line came from the client's browser or as a result of the user's
editing the URL directly. We say in this case that the data values are not completely mediated: The
sensitive data (namely, the parameter values) are in an exposed, uncontrolled condition.

Security Implication

Incomplete mediation is easy to exploit, but it has been exercised less often than buffer overflows.
Nevertheless, unchecked data values represent a serious potential vulnerability.

To demonstrate this flaw's security implications, we use a real example; only the name of the
vendor has been changed to protect the guilty. Things, Inc., was a very large, international vendor
of consumer products, called Objects. The company was ready to sell its Objects through a web site,
using what appeared to be a standard e-commerce application. The management at Things decided
to let some of its in-house developers produce the web site so that its customers could order
Objects directly from the web.

To accompany the web site, Things developed a complete price list of its Objects, including pictures,
descriptions, and drop-down menus for size, shape, color, scent, and any other properties. For
example, a customer on the web could choose to buy 20 of part number 555A Objects. If the price
of one such part were $10, the web server would correctly compute the price of the 20 parts to be
$200. Then the customer could decide whether to have the Objects shipped by boat, by ground
transportation, or sent electronically. If the customer were to choose boat delivery, the customer's
web browser would complete a form with parameters like these:

http://www.things.com/order.asp?custID=101&part=555A&qy=20&price
=10&ship=boat&shipcost=5&total=205

So far, so good; everything in the parameter passage looks correct. But this procedure leaves the
parameter statement open for malicious tampering. Things should not need to pass the price of the
items back to itself as an input parameter; presumably Things knows how much its Objects cost,
and they are unlikely to change dramatically since the time the price was quoted a few screens
earlier.

A malicious attacker may decide to exploit this peculiarity by supplying instead the following URL,
where the price has been reduced from $205 to $25:

http://www.things.com/order.asp?custID=101&part=555A&qy=20&price


http://www.things.com/order.asp?custID=101&part=555A&qy=20&price
=1&ship=boat&shipcost=5&total=25

Surprise! It worked. The attacker could have ordered Objects from Things in any quantity at any
price. And yes, this code was running on the web site for a while before the problem was detected.
From a security perspective, the most serious concern about this flaw was the length of time that it
could have run undetected. Had the whole world suddenly made a rush to Things's web site and
bought Objects at a fraction of their price, Things probably would have noticed. But Things is large
enough that it would never have detected a few customers a day choosing prices that were similar
to (but smaller than) the real price, say 30 percent off. The e-commerce division would have shown
a slightly smaller profit than other divisions, but the difference probably would not have been
enough to raise anyone's eyebrows; the vulnerability could have gone unnoticed for years.
Fortunately, Things hired a consultant to do a routine review of its code, and the consultant found
the error quickly.

This web program design flaw is easy to imagine in other web settings. Those of us interested in
security must ask ourselves how many similar problems are there in running code today? And how
will those vulnerabilities ever be found?

Time-of-Check to Time-of-Use Errors

The third programming flaw we investigate involves synchronization. To improve efficiency, modern
processors and operating systems usually change the order in which instructions and procedures are
executed. In particular, instructions that appear to be adjacent may not actually be executed
immediately after each other, either because of intentionally changed order or because of the
effects of other processes in concurrent execution.

Definition

Access control is a fundamental part of computer security; we want to make sure that only those
who should access an object are allowed that access. (We explore the access control mechanisms in
operating systems in greater detail in Chapter 4.) Every requested access must be governed by an
access policy stating who is allowed access to what; then the request must be mediated by an
access-policy-enforcement agent. But an incomplete mediation problem occurs when access is not
checked universally. The time-of-check to time-of-use (TOCTTOU) flaw concerns mediation that
is performed with a "bait and switch" in the middle. It is also known as a serialization or
synchronization flaw.

To understand the nature of this flaw, consider a person's buying a sculpture that costs $100. The
buyer removes five $20 bills from a wallet, carefully counts them in front of the seller, and lays
them on the table. Then the seller turns around to write a receipt. While the seller's back is turned,
the buyer takes back one $20 bill. When the seller turns around, the buyer hands over the stack of
bills, takes the receipt, and leaves with the sculpture. Between the time the security was checked
(counting the bills) and the access (exchanging the sculpture for the bills), a condition changed:
What was checked is no longer valid when the object (that is, the sculpture) is accessed.

A similar situation can occur with computing systems. Suppose a request to access a file were
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presented as a data structure, with the name of the file and the mode of access presented in the
structure. An example of such a structure is shown in Figure 3-2.

Figure 3-2. Data Structure for File Access.

The data structure is essentially a "work ticket," requiring a stamp of authorization; once
authorized, it is put on a queue of things to be done. Normally the access control mediator receives
the data structure, determines whether the access should be allowed, and either rejects the access
and stops or allows the access and forwards the data structure to the file handler for processing.

To carry out this authorization sequence, the access control mediator would have to look up the file
name (and the user identity and any other relevant parameters) in tables. The mediator could
compare the names in the table to the file name in the data structure to determine whether access
is appropriate. More likely, the mediator would copy the file name into its own local storage area
and compare from there. Comparing from the copy leaves the data structure in the user's area,
under the user's control.

It is at this point that the incomplete mediation flaw can be exploited. While the mediator is
checking access rights for the file my_file, the user could change the file name descriptor to
your_file, the value shown in Figure 3-3. Having read the work ticket once, the mediator would not
be expected to reread the ticket before approving it; the mediator would approve the access and
send the now-modified descriptor to the file handler.

Figure 3-3. Modified Data.

The problem is called a time-of-check to time-of-use flaw because it exploits the delay between the
two times. That is, between the time the access was checked and the time the result of the check
was used, a change occurred, invalidating the result of the check.

Security Implication

The security implication here is pretty clear: Checking one action and performing another is an
example of ineffective access control. We must be wary whenever a time lag or loss of control
occurs, making sure that there is no way to corrupt the check's results during that interval.



Fortunately, there are ways to prevent exploitation of the time lag. One way is to ensure that critical
parameters are not exposed during any loss of control. The access checking software must own the
request data until the requested action is complete. Another way is to ensure serial integrity; that
is, to allow no interruption (loss of control) during the validation. Or the validation routine can
initially copy data from the user's space to the routine's areaout of the user's reachand perform
validation checks on the copy. Finally, the validation routine can seal the request data with a
checksum to detect modification.

Combinations of Nonmalicious Program Flaws

These three vulnerabilities are bad enough when each is considered on its own. But perhaps the
worst aspect of all three flaws is that they can be used together as one step in a multistep attack.
An attacker may not be content with causing a buffer overflow. Instead the attacker may begin a
three-pronged attack by using a buffer overflow to disrupt all execution of arbitrary code on a
machine. At the same time, the attacker may exploit a time-of-check to time-of-use flaw to add a
new user ID to the system. The attacker then logs in as the new user and exploits an incomplete
mediation flaw to obtain privileged status, and so forth. The clever attacker uses flaws as common
building blocks to build a complex attack. For this reason, we must know about and protect against
even simple flaws. (See Sidebar 3-3 for other examples of the effects of unintentional errors.)
Unfortunately, these kinds of flaws are widespread and dangerous. As we see in the next section,
innocuous-seeming program flaws can be exploited by malicious attackers to plant intentionally
harmful code.



3.3. Viruses and Other Malicious Code

By themselves, programs are seldom security threats. The programs operate on data, taking action
only when data and state changes trigger it. Much of the work done by a program is invisible to
users who are not likely to be aware of any malicious activity. For instance, when was the last time
you saw a bit? Do you know in what form a document file is stored? If you know a document resides
somewhere on a disk, can you find it? Can you tell if a game program does anything in addition to
its expected interaction with you? Which files are modified by a word processor when you create a
document? Which programs execute when you start your computer or open a web page? Most users
cannot answer these questions. However, since users usually do not see computer data directly,
malicious people can make programs serve as vehicles to access and change data and other
programs. Let us look at the possible effects of malicious code and then examine in detail several
kinds of programs that can be used for interception or modification of data.

Sidebar 3-3: Nonmalicious Flaws Cause Failures

In 1989, Crocker and Bernstein [CRO89] studied the root causes of the known
catastrophic failures of what was then called the ARPANET, the predecessor of today's
Internet. From its initial deployment in 1969 to 1989, the authors found 17 flaws that
either did cause or could have caused catastrophic failure of the network. They use
"catastrophic failure" to mean a situation that causes the entire network or a significant
portion of it to fail to deliver network service.

The ARPANET was the first network of its sort, in which data are communicated as
independent blocks (called "packets") that can be sent along different network routes
and are reassembled at the destination. As might be expected, faults in the novel
algorithms for delivery and reassembly were the source of several failures. Hardware
failures were also significant. But as the network grew from its initial three nodes to
dozens and hundreds, these problems were identified and fixed.

More than ten years after the network was born, three interesting nonmalicious flaws
appeared. The initial implementation had fixed sizes and positions of the code and data.
In 1986, a piece of code was loaded into memory in a way that overlapped a piece of
security code. Only one critical node had that code configuration, and so only that one
node would fail, which made it difficult to determine the cause of the failure.

In 1987, new code caused Sun computers connected to the network to fail to
communicate. The first explanation was that the developers of the new Sun code had
written the system to function as other manufacturers' code did, not necessarily as the
specification dictated. It was later found that the developers had optimized the code
incorrectly, leaving out some states the system could reach. But the first
explanationdesigning to practice, not to specificationis a common failing.



The last reported failure occurred in 1988. When the system was designed in 1969,
developers specified that the number of connections to a subnetwork, and consequently
the number of entries in a table of connections, was limited to 347, based on analysis of
the expected topology. After 20 years, people had forgotten the (undocumented) limit,
and a 348th connection was added, which caused the table to overflow and the system
to fail. But the system derived this table gradually by communicating with neighboring
nodes. So when any node's table reached 348 entries, it crashed, and when restarted, it
started building its table anew. Thus, nodes throughout the system would crash
seemingly randomly after running perfectly well for a while (with unfull tables).

None of these flaws were malicious nor could they have been exploited by a malicious
attacker to cause a failure. But they show the importance of the analysis, design,
documentation, and maintenance steps in development of a large, long-lived system.

Why Worry About Malicious Code?

None of us like the unexpected, especially in our programs. Malicious code behaves in unexpected
ways, thanks to a malicious programmer's intention. We think of the malicious code as lurking
inside our system: all or some of a program that we are running or even a nasty part of a separate
program that somehow attaches itself to another (good) program.

How can such a situation arise? When you last installed a major software package, such as a word
processor, a statistical package, or a plug-in from the Internet, you ran one command, typically
called INSTALL or SETUP. From there, the installation program took control, creating some files,
writing in other files, deleting data and files, and perhaps renaming a few that it would change. A
few minutes and a quite a few disk accesses later, you had plenty of new code and data, all set up
for you with a minimum of human intervention. Other than the general descriptions on the box, in
documentation files, or on web pages, you had absolutely no idea exactly what "gifts" you had
received. You hoped all you received was good, and it probably was. The same uncertainty exists
when you unknowingly download an application, such as a Java applet or an ActiveX control, while
viewing a web site. Thousands or even millions of bytes of programs and data are transferred, and
hundreds of modifications may be made to your existing files, all occurring without your explicit
consent or knowledge.

Malicious Code Can Do Much (Harm)

Malicious code can do anything any other program can, such as writing a message on a computer
screen, stopping a running program, generating a sound, or erasing a stored file. Or malicious code
can do nothing at all right now; it can be planted to lie dormant, undetected, until some event
triggers the code to act. The trigger can be a time or date, an interval (for example, after 30
minutes), an event (for example, when a particular program is executed), a condition (for example,
when communication occurs on a network interface), a count (for example, the fifth time something
happens), some combination of these, or a random situation. In fact, malicious code can do
different things each time, or nothing most of the time with something dramatic on occasion. In
general, malicious code can act with all the predictability of a two-year-old child: We know in
general what two-year-olds do, we may even know what a specific two-year-old often does in
certain situations, but two-year-olds have an amazing capacity to do the unexpected.



Malicious code runs under the user's authority. Thus, malicious code can touch everything the user
can touch, and in the same ways. Users typically have complete control over their own program
code and data files; they can read, write, modify, append, and even delete them. And well they
should. But malicious code can do the same, without the user's permission or even knowledge.

Malicious Code Has Been Around a Long Time

The popular literature and press continue to highlight the effects of malicious code as if it were a
relatively recent phenomenon. It is not. Cohen [COH84] is sometimes credited with the discovery of
viruses, but in fact Cohen gave a name to a phenomenon known long before. For example,
Thompson, in his 1984 Turing Award lecture, "Reflections on Trusting Trust" [THO84], described
code that can be passed by a compiler. In that lecture, he refers to an earlier Air Force document,
the Multics security evaluation by Karger and Schell [KAR74, KAR02]. In fact, references to virus
behavior go back at least to 1970. Ware's 1970 study (publicly released in 1979 [WAR79]) and
Anderson's planning study for the U.S. Air Force [AND72] still accurately describe threats,
vulnerabilities, and program security flaws, especially intentional ones. What is new about malicious
code is the number of distinct instances and copies that have appeared and the speed with which
exploit code appears. (See Sidebar 3-4 on attack timing.)

So malicious code is still around, and its effects are more pervasive. It is important for us to learn
what it looks like and how it works so that we can take steps to prevent it from doing damage or at
least mediate its effects. How can malicious code take control of a system? How can it lodge in a
system? How does malicious code spread? How can it be recognized? How can it be detected? How
can it be stopped? How can it be prevented? We address these questions in the following sections.

Kinds of Malicious Code

Malicious code or rogue program is the general name for unanticipated or undesired effects in
programs or program parts, caused by an agent intent on damage. This definition excludes
unintentional errors, although they can also have a serious negative effect. This definition also
excludes coincidence, in which two benign programs combine for a negative effect. The agent is the
writer of the program or the person who causes its distribution. By this definition, most faults found
in software inspections, reviews, and testing do not qualify as malicious code, because we think of
them as unintentional. However, keep in mind as you read this chapter that unintentional faults can
in fact invoke the same responses as intentional malevolence; a benign cause can still lead to a
disastrous effect.

You are likely to have been affected by a virus at one time or another, either because your
computer was infected by one or because you could not access an infected system while its
administrators were cleaning up the mess one made. In fact, your virus might actually have been a
worm: The terminology of malicious code is sometimes used imprecisely. A virus is a program that
can replicate itself and pass on malicious code to other nonmalicious programs by modifying them.
The term "virus" was coined because the affected program acts like a biological virus: It infects
other healthy subjects by attaching itself to the program and either destroying it or coexisting with
it. Because viruses are insidious, we cannot assume that a clean program yesterday is still clean
today. Moreover, a good program can be modified to include a copy of the virus program, so the
infected good program itself begins to act as a virus, infecting other programs. The infection usually
spreads at a geometric rate, eventually overtaking an entire computing system and spreading to all
other connected systems.



A virus can be either transient or resident. A transient virus has a life that depends on the life of
its host; the virus runs when its attached program executes and terminates when its attached
program ends. (During its execution, the transient virus may spread its infection to other
programs.) A resident virus locates itself in memory; then it can remain active or be activated as a
stand-alone program, even after its attached program ends.

Sidebar 3-4: Rapidly Approaching Zero

Y2K or the year 2000 problem, when dire consequences were forecast for computer
clocks with 2-digit year fields that would turn from 99 to 00, was an ideal problem: The
threat was easy to define, time of impact was easily predicted, and plenty of advance
warning was given. Perhaps as a consequence, very few computer systems and people
experienced significant harm early in the morning of 1 January 2000. Another
countdown clock has computer security researchers much more concerned.

The time between general knowledge of a product vulnerability and appearance of code
to exploit that vulnerability is shrinking. The general exploit timeline follows this
sequence:

An attacker discovers a previously unknown vulnerability.

The manufacturer becomes aware of the vulnerability.

Someone develops code (called proof of concept) to demonstrate the vulnerability
in a controlled setting.

The manufacturer develops and distributes a patch or wor-around that counters
the vulnerability.

Users implement the control.

Someone extends the proof of concept, or the original vulnerability definition, to
an actual attack.

As long as users receive and implement the control before the actual attack, no harm
occurs. An attack before availability of the control is called a zero day exploit. Time
between proof of concept and actual attack has been shrinking. Code Red, one of the
most virulent pieces of malicious code, in 2001 exploited vulnerabilities for which the
patches had been distributed more than a month before the attack. But more recently,
the time between vulnerability and exploit has steadily declined. On 18 August 2005,
Microsoft issued a security advisory to address a vulnerability of which the proof of
concept code was posted to the French SIRT (Security Incident Response Team) web
site frsirt.org. A Microsoft patch was distributed a week later. On 27 December 2005 a
vulnerability was discovered in Windows metafile (.WMF) files. Within hours hundreds of
sites began to exploit the vulnerability to distribute malicious code, and within six days
a malicious code toolkit appeared, by which anyone could easily create an exploit.
Microsoft released a patch in nine days.



But what exactly is a zero day exploit? It depends on who is counting. If the vendor
knows of the vulnerability but has not yet released a control, does that count as zero
day, or does the exploit have to surprise the vendor? David Litchfield of Next Generation
Software in the U.K. identified vulnerabilities and informed Oracle. He claims Oracle
took an astonishing 800 days to fix two of them and others were not fixed for 650 days.
Other customers are disturbed by the slow patch cycleOracle released no patches
between January 2005 and March 2006 [GRE06]. Distressed by the lack of response,
Litchfield finally went public with the vulnerabilities to force Oracle to improve its
customer support. Obviously, there is no way to determine if a flaw is known only to the
security community or to the attackers as well unless an attack occurs.

Shrinking time between knowledge of vulnerability and exploit puts pressure on vendors
and users both, and time pressure is not conducive to good software development or
system management.

The worse problem cannot be controlled: vulnerabilities known to attackers but not to
the security community.

A Trojan horse is malicious code that, in addition to its primary effect, has a second, nonobvious
malicious effect.[1] As an example of a computer Trojan horse, consider a login script that solicits a
user's identification and password, passes the identification information on to the rest of the system
for login processing, but also retains a copy of the information for later, malicious use. In this
example, the user sees only the login occurring as expected, so there is no evident reason to
suspect that any other action took place.

[1] The name is a reference to the Greek legends of the Trojan war. Legend tells how the Greeks tricked the Trojans into

breaking their defense wall to take a wooden horse, filled with the bravest of Greek soldiers, into their citadel. In the night, the

soldiers descended and signaled their troops that the way in was now clear, and Troy was captured.

A logic bomb is a class of malicious code that "detonates" or goes off when a specified condition
occurs. A time bomb is a logic bomb whose trigger is a time or date.

A trapdoor or backdoor is a feature in a program by which someone can access the program other
than by the obvious, direct call, perhaps with special privileges. For instance, an automated bank
teller program might allow anyone entering the number 990099 on the keypad to process the log of
everyone's transactions at that machine. In this example, the trapdoor could be intentional, for
maintenance purposes, or it could be an illicit way for the implementer to wipe out any record of a
crime.

A worm is a program that spreads copies of itself through a network. Shock and Hupp [SHO82] are
apparently the first to describe a worm, which, interestingly, was for nonmalicious purposes. The
primary difference between a worm and a virus is that a worm operates through networks, and a
virus can spread through any medium (but usually uses copied program or data files). Additionally,
the worm spreads copies of itself as a stand-alone program, whereas the virus spreads copies of
itself as a program that attaches to or embeds in other programs.

White et al. [WHI89] also define a rabbit as a virus or worm that self-replicates without bound,
with the intention of exhausting some computing resource. A rabbit might create copies of itself and
store them on disk in an effort to completely fill the disk, for example.

These definitions match current careful usage. The distinctions among these terms are small, and
often the terms are confused, especially in the popular press. The term "virus" is often used to refer



to any piece of malicious code. Furthermore, two or more forms of malicious code can be combined
to produce a third kind of problem. For instance, a virus can be a time bomb if the viral code that is
spreading will trigger an event after a period of time has passed. The kinds of malicious code are
summarized in Table 3-1.

Table 3-1. Types of Malicious Code.

Code Type Characteristics

Virus Attaches itself to program and propagates copies of itself to
other programs

Trojan horse Contains unexpected, additional functionality

Logic bomb Triggers action when condition occurs

Time bomb Triggers action when specified time occurs

Trapdoor Allows unauthorized access to functionality

Worm Propagates copies of itself through a network

Rabbit Replicates itself without limit to exhaust resources

Because "virus" is the popular name given to all forms of malicious code and because fuzzy lines
exist between different kinds of malicious code, we are not too restrictive in the following
discussion. We want to look at how malicious code spreads, how it is activated, and what effect it
can have. A virus is a convenient term for mobile malicious code, so in the following sections we use
the term "virus" almost exclusively. The points made apply also to other forms of malicious code.

How Viruses Attach

A printed copy of a virus does nothing and threatens no one. Even executable virus code sitting on a
disk does nothing. What triggers a virus to start replicating? For a virus to do its malicious work and
spread itself, it must be activated by being executed. Fortunately for virus writers but unfortunately
for the rest of us, there are many ways to ensure that programs will be executed on a running
computer.

For example, recall the SETUP program that you initiate on your computer. It may call dozens or
hundreds of other programs, some on the distribution medium, some already residing on the
computer, some in memory. If any one of these programs contains a virus, the virus code could be
activated. Let us see how. Suppose the virus code were in a program on the distribution medium,
such as a CD; when executed, the virus could install itself on a permanent storage medium
(typically, a hard disk) and also in any and all executing programs in memory. Human intervention
is necessary to start the process; a human being puts the virus on the distribution medium, and
perhaps another initiates the execution of the program to which the virus is attached. (It is possible
for execution to occur without human intervention, though, such as when execution is triggered by a
date or the passage of a certain amount of time.) After that, no human intervention is needed; the
virus can spread by itself.



A more common means of virus activation is as an attachment to an e-mail message. In this attack,
the virus writer tries to convince the victim (the recipient of the e-mail message) to open the
attachment. Once the viral attachment is opened, the activated virus can do its work. Some modern
e-mail handlers, in a drive to "help" the receiver (victim), automatically open attachments as soon
as the receiver opens the body of the e-mail message. The virus can be executable code embedded
in an executable attachment, but other types of files are equally dangerous. For example, objects
such as graphics or photo images can contain code to be executed by an editor, so they can be
transmission agents for viruses. In general, it is safer to force users to open files on their own rather
than automatically; it is a bad idea for programs to perform potentially security-relevant actions
without a user's consent. However, ease-of-use often trumps security, so programs such as
browsers, e-mail handlers, and viewers often "helpfully" open files without asking the user first.

Appended Viruses

A program virus attaches itself to a program; then, whenever the program is run, the virus is
activated. This kind of attachment is usually easy to program.

In the simplest case, a virus inserts a copy of itself into the executable program file before the first
executable instruction. Then, all the virus instructions execute first; after the last virus instruction,
control flows naturally to what used to be the first program instruction. Such a situation is shown in
Figure 3-4.

Figure 3-4. Virus Appended to a Program.

This kind of attachment is simple and usually effective. The virus writer does not need to know
anything about the program to which the virus will attach, and often the attached program simply
serves as a carrier for the virus. The virus performs its task and then transfers to the original
program. Typically, the user is unaware of the effect of the virus if the original program still does all



that it used to. Most viruses attach in this manner.

Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original program but has control before and
after its execution. For example, a virus writer might want to prevent the virus from being detected.
If the virus is stored on disk, its presence will be given away by its file name, or its size will affect
the amount of space used on the disk. The virus writer might arrange for the virus to attach itself to
the program that constructs the listing of files on the disk. If the virus regains control after the
listing program has generated the listing but before the listing is displayed or printed, the virus
could eliminate its entry from the listing and falsify space counts so that it appears not to exist. A
surrounding virus is shown in Figure 3-5.

Figure 3-5. Virus Surrounding a Program.

Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its target, integrating itself into the original
code of the target. Such a situation is shown in Figure 3-6. Clearly, the virus writer has to know the
exact structure of the original program to know where to insert which pieces of the virus.



Figure 3-6. Virus Integrated into a Program.

Finally, the virus can replace the entire target, either mimicking the effect of the target or ignoring
the expected effect of the target and performing only the virus effect. In this case, the user is most
likely to perceive the loss of the original program.

Document Viruses

Currently, the most popular virus type is what we call the document virus, which is implemented
within a formatted document, such as a written document, a database, a slide presentation, a
picture, or a spreadsheet. These documents are highly structured files that contain both data (words
or numbers) and commands (such as formulas, formatting controls, links). The commands are part
of a rich programming language, including macros, variables and procedures, file accesses, and
even system calls. The writer of a document virus uses any of the features of the programming
language to perform malicious actions.

The ordinary user usually sees only the content of the document (its text or data), so the virus
writer simply includes the virus in the commands part of the document, as in the integrated
program virus.

How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially, the virus either has to seem to
be T, saying effectively "I am T" or the virus has to push T out of the way and become a substitute
for T, saying effectively "Call me instead of T." A more blatant virus can simply say "invoke me [you
fool]."



The virus can assume T's name by replacing (or joining to) T's code in a file structure; this
invocation technique is most appropriate for ordinary programs. The virus can overwrite T in storage
(simply replacing the copy of T in storage, for example). Alternatively, the virus can change the
pointers in the file table so that the virus is located instead of T whenever T is accessed through the
file system. These two cases are shown in Figure 3-7.

Figure 3-7. Virus Completely Replacing a Program.

[View full size image]

The virus can supplant T by altering the sequence that would have invoked T to now invoke the
virus V; this invocation can be used to replace parts of the resident operating system by modifying
pointers to those resident parts, such as the table of handlers for different kinds of interrupts.

Homes for Viruses

The virus writer may find these qualities appealing in a virus:

It is hard to detect.

It is not easily destroyed or deactivated.



It spreads infection widely.

It can reinfect its home program or other programs.

It is easy to create.

It is machine independent and operating system independent.

Few viruses meet all these criteria. The virus writer chooses from these objectives when deciding
what the virus will do and where it will reside.

Just a few years ago, the challenge for the virus writer was to write code that would be executed
repeatedly so that the virus could multiply. Now, however, one execution is enough to ensure
widespread distribution. Many viruses are transmitted by e-mail, using either of two routes. In the
first case, some virus writers generate a new e-mail message to all addresses in the victim's
address book. These new messages contain a copy of the virus so that it propagates widely. Often
the message is a brief, chatty, nonspecific message that would encourage the new recipient to open
the attachment from a friend (the first recipient). For example, the subject line or message body
may read "I thought you might enjoy this picture from our vacation." In the second case, the virus
writer can leave the infected file for the victim to forward unknowingly. If the virus's effect is not
immediately obvious, the victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their infection and causing their effect in
that one execution. A virus often arrives as an e-mail attachment of a document virus. It is
executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular one, is the so-called boot sector
virus. When a computer is started, control begins with firmware that determines which hardware
components are present, tests them, and transfers control to an operating system. A given
hardware platform can run many different operating systems, so the operating system is not coded
in firmware but is instead invoked dynamically, perhaps even by a user's choice, after the hardware
test.

The operating system is software stored on disk. Code copies the operating system from disk to
memory and transfers control to it; this copying is called the bootstrap (often boot) load because
the operating system figuratively pulls itself into memory by its bootstraps. The firmware does its
control transfer by reading a fixed number of bytes from a fixed location on the disk (called the
boot sector) to a fixed address in memory and then jumping to that address (which will turn out to
contain the first instruction of the bootstrap loader). The bootstrap loader then reads into memory
the rest of the operating system from disk. To run a different operating system, the user just inserts
a disk with the new operating system and a bootstrap loader. When the user reboots from this new
disk, the loader there brings in and runs another operating system. This same scheme is used for
personal computers, workstations, and large mainframes.



To allow for change, expansion, and uncertainty, hardware designers reserve a large amount of
space for the bootstrap load. The boot sector on a PC is slightly less than 512 bytes, but since the
loader will be larger than that, the hardware designers support "chaining," in which each block of
the bootstrap is chained to (contains the disk location of) the next block. This chaining allows big
bootstraps but also simplifies the installation of a virus. The virus writer simply breaks the chain at
any point, inserts a pointer to the virus code to be executed, and reconnects the chain after the
virus has been installed. This situation is shown in Figure 3-8.

Figure 3-8. Boot Sector Virus Relocating Code.

[View full size image]

The boot sector is an especially appealing place to house a virus. The virus gains control very early
in the boot process, before most detection tools are active, so that it can avoid, or at least
complicate, detection. The files in the boot area are crucial parts of the operating system.
Consequently, to keep users from accidentally modifying or deleting them with disastrous results,
the operating system makes them "invisible" by not showing them as part of a normal listing of
stored files, preventing their deletion. Thus, the virus code is not readily noticed by users.

Memory-Resident Viruses

Some parts of the operating system and most user programs execute, terminate, and disappear,
with their space in memory being available for anything executed later. For very frequently used
parts of the operating system and for a few specialized user programs, it would take too long to
reload the program each time it was needed. Such code remains in memory and is called "resident"
code. Examples of resident code are the routine that interprets keys pressed on the keyboard, the
code that handles error conditions that arise during a program's execution, or a program that acts
like an alarm clock, sounding a signal at a time the user determines. Resident routines are



sometimes called TSRs or "terminate and stay resident" routines.

Virus writers also like to attach viruses to resident code because the resident code is activated many
times while the machine is running. Each time the resident code runs, the virus does too. Once
activated, the virus can look for and infect uninfected carriers. For example, after activation, a boot
sector virus might attach itself to a piece of resident code. Then, each time the virus was activated
it might check whether any removable disk in a disk drive was infected and, if not, infect it. In this
way the virus could spread its infection to all removable disks used during the computing session.

A virus can also modify the operating system's table of programs to run. On a Windows machine the
registry is the table of all critical system information, including programs to run at startup. If the
virus gains control once, it can insert a registry entry so that it will be reinvoked each time the
system restarts. In this way, even if the user notices and deletes the executing copy of the virus
from memory, the virus will return on the next system restart.

Other Homes for Viruses

A virus that does not take up residence in one of these cozy establishments has to fend more for
itself. But that is not to say that the virus will go homeless.

One popular home for a virus is an application program. Many applications, such as word processors
and spreadsheets, have a "macro" feature, by which a user can record a series of commands and
repeat them with one invocation. Such programs also provide a "startup macro" that is executed
every time the application is executed. A virus writer can create a virus macro that adds itself to the
startup directives for the application. It also then embeds a copy of itself in data files so that the
infection spreads to anyone receiving one or more of those files.

Libraries are also excellent places for malicious code to reside. Because libraries are used by many
programs, the code in them will have a broad effect. Additionally, libraries are often shared among
users and transmitted from one user to another, a practice that spreads the infection. Finally,
executing code in a library can pass on the viral infection to other transmission media. Compilers,
loaders, linkers, runtime monitors, runtime debuggers, and even virus control programs are good
candidates for hosting viruses because they are widely shared.

Virus Signatures

A virus cannot be completely invisible. Code must be stored somewhere, and the code must be in
memory to execute. Moreover, the virus executes in a particular way, using certain methods to
spread. Each of these characteristics yields a telltale pattern, called a signature, that can be found
by a program that looks for it. The virus's signature is important for creating a program, called a
virus scanner, that can detect and, in some cases, remove viruses. The scanner searches memory
and long-term storage, monitoring execution and watching for the telltale signatures of viruses. For
example, a scanner looking for signs of the Code Red worm can look for a pattern containing the
following characters:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3
%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858
%ucbd3%u7801%u9090
%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff
%u0078%u0000%u00=a
HTTP/1.0

When the scanner recognizes a known virus's pattern, it can then block the virus, inform the user,
and deactivate or remove the virus. However, a virus scanner is effective only if it has been kept up
to date with the latest information on current viruses. Sidebar 3-5 describes how viruses were the
primary security breach among companies surveyed in 2001.

Sidebar 3-5: The Malware Threat

Security firm Symantec reports that malicious code threats rose in 2005, as in previous
years. In 2005, they found 21,858 new instances of viruses and worms, compared to
11,846 for 2004 [SYM06]. Curiously, the number of distinct families of malicious code
decreased from 335 for 2004 to 274 for 2005, perhaps showing that malicious code
writers are becoming more adept at modifying a base attack code type or that self-
modifying malicious code is on the rise. E-mail is still the preferred medium of delivery,
with 92 percent of attacks using that for delivery. Other popular methods were peer-to-
peer sharing protocols at 14 percent and remote exploitation of a system or software
vulnerability at 13 percent. (A single malicious code strain could use more than one
propagation method, accounting for the sum of methods exceeding 100 percent.)

Storage Patterns

Most viruses attach to programs that are stored on media such as disks. The attached virus piece is
invariant, so the start of the virus code becomes a detectable signature. The attached piece is
always located at the same position relative to its attached file. For example, the virus might always
be at the beginning, 400 bytes from the top, or at the bottom of the infected file. Most likely, the
virus will be at the beginning of the file because the virus writer wants to obtain control of execution
before the bona fide code of the infected program is in charge. In the simplest case, the virus code
sits at the top of the program, and the entire virus does its malicious duty before the normal code is
invoked. In other cases, the virus infection consists of only a handful of instructions that point or
jump to other, more detailed instructions elsewhere. For example, the infected code may consist of
condition testing and a jump or call to a separate virus module. In either case, the code to which
control is transferred will also have a recognizable pattern. Both of these situations are shown in
Figure 3-9.

Figure 3-9. Recognizable Patterns in Viruses.



A virus may attach itself to a file, in which case the file's size grows. Or the virus may obliterate all
or part of the underlying program, in which case the program's size does not change but the
program's functioning will be impaired. The virus writer has to choose one of these detectable
effects.

The virus scanner can use a code or checksum to detect changes to a file. It can also look for
suspicious patterns, such as a JUMP instruction as the first instruction of a system program (in case
the virus has positioned itself at the bottom of the file but is to be executed first, as in Figure 3-9).

Execution Patterns

A virus writer may want a virus to do several things at the same time, namely, spread infection,
avoid detection, and cause harm. These goals are shown in Table 3-2, along with ways each goal
can be addressed. Unfortunately, many of these behaviors are perfectly normal and might otherwise
go undetected. For instance, one goal is modifying the file directory; many normal programs create
files, delete files, and write to storage media. Thus, no key signals point to the presence of a virus.

Table 3-2. Virus Effects and Causes.



Virus Effect How It Is Caused

Attach to executable program

Modify file directory

Write to executable program file

Attach to data or control file

Modify directory

Rewrite data

Append to data

Append data to self

Remain in memory

Intercept interrupt by modifying
interrupt handler address table

Load self in nontransient memory area

Infect disks

Intercept interrupt

Intercept operating system call (to
format disk, for example)

Modify system file

Modify ordinary executable program

Conceal self

Intercept system calls that would reveal
self and falsify result

Classify self as "hidden" file

Spread infection

Infect boot sector

Infect systems program

Infect ordinary program

Infect data ordinary program reads to
control its execution



Virus Effect How It Is Caused

Prevent deactivation

Activate before deactivating program
and block deactivation

Store copy to reinfect after deactivation

Most virus writers seek to avoid detection for themselves and their creations. Because a disk's boot
sector is not visible to normal operations (for example, the contents of the boot sector do not show
on a directory listing), many virus writers hide their code there. A resident virus can monitor disk
accesses and fake the result of a disk operation that would show the virus hidden in a boot sector by
showing the data that should have been in the boot sector (which the virus has moved elsewhere).

There are no limits to the harm a virus can cause. On the modest end, the virus might do nothing;
some writers create viruses just to show they can do it. Or the virus can be relatively benign,
displaying a message on the screen, sounding the buzzer, or playing music. From there, the
problems can escalate. One virus can erase files, another an entire disk; one virus can prevent a
computer from booting, and another can prevent writing to disk. The damage is bounded only by
the creativity of the virus's author.

Transmission Patterns

A virus is effective only if it has some means of transmission from one location to another. As we
have already seen, viruses can travel during the boot process by attaching to an executable file or
traveling within data files. The travel itself occurs during execution of an already infected program.
Since a virus can execute any instructions a program can, virus travel is not confined to any single
medium or execution pattern. For example, a virus can arrive on a disk or from a network
connection, travel during its host's execution to a hard disk boot sector, reemerge next time the
host computer is booted, and remain in memory to infect other disks as they are accessed.

Polymorphic Viruses

The virus signature may be the most reliable way for a virus scanner to identify a virus. If a
particular virus always begins with the string 47F0F00E08 (in hexadecimal) and has string 00113FFF
located at word 12, it is unlikely that other programs or data files will have these exact
characteristics. For longer signatures, the probability of a correct match increases.

If the virus scanner will always look for those strings, then the clever virus writer can cause
something other than those strings to be in those positions. Many instructions cause no effect, such
as adding 0 to a number, comparing a number to itself, or jumping to the next instruction. These
instructions, sometimes called no-ops, can be sprinkled into a piece of code to distort any pattern.
For example, the virus could have two alternative but equivalent beginning words; after being
installed, the virus will choose one of the two words for its initial word. Then, a virus scanner would
have to look for both patterns. A virus that can change its appearance is called a polymorphic
virus. (Poly means "many" and morph means "form.")

A two-form polymorphic virus can be handled easily as two independent viruses. Therefore, the
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virus writer intent on preventing detection of the virus will want either a large or an unlimited
number of forms so that the number of possible forms is too large for a virus scanner to search for.
Simply embedding a random number or string at a fixed place in the executable version of a virus is
not sufficient, because the signature of the virus is just the constant code excluding the random
part. A polymorphic virus has to randomly reposition all parts of itself and randomly change all fixed
data. Thus, instead of containing the fixed (and therefore searchable) string "HA! INFECTED BY A
VIRUS," a polymorphic virus has to change even that pattern sometimes.

Trivially, assume a virus writer has 100 bytes of code and 50 bytes of data. To make two virus
instances different, the writer might distribute the first version as 100 bytes of code followed by all
50 bytes of data. A second version could be 99 bytes of code, a jump instruction, 50 bytes of data,
and the last byte of code. Other versions are 98 code bytes jumping to the last two, 97 and three,
and so forth. Just by moving pieces around, the virus writer can create enough different
appearances to fool simple virus scanners. Once the scanner writers became aware of these kinds of
tricks, however, they refined their signature definitions.

A simple variety of polymorphic virus uses encryption under various keys to make the stored form
of the virus different. These are sometimes called encrypting viruses. This type of virus must
contain three distinct parts: a decryption key, the (encrypted) object code of the virus, and the
(unencrypted) object code of the decryption routine. For these viruses, the decryption routine itself,
or a call to a decryption library routine, must be in the clear so that becomes the signature.

To avoid detection, not every copy of a polymorphic virus has to differ from every other copy. If the
virus changes occasionally, not every copy will match a signature of every other copy.

The Source of Viruses

Since a virus can be rather small, its code can be "hidden" inside other larger and more complicated
programs. Two hundred lines of a virus could be separated into one hundred packets of two lines of
code and a jump each; these one hundred packets could be easily hidden inside a compiler, a
database manager, a file manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if two programs are equivalent.
However, theoretical results in computing are very discouraging when it comes to the complexity of
the equivalence problem. The general question "Are these two programs equivalent?" is undecidable
(although that question can be answered for many specific pairs of programs). Even ignoring the
general undecidability problem, two modules may produce subtly different results that mayor may
notbe security relevant. One may run faster, or the first may use a temporary file for workspace
whereas the second performs all its computations in memory. These differences could be benign, or
they could be a marker of an infection. Therefore, we are unlikely to develop a screening program
that can separate infected modules from uninfected ones.

Although the general is dismaying, the particular is not. If we know that a particular virus may
infect a computing system, we can check for it and detect it if it is there. Having found the virus,
however, we are left with the task of cleansing the system of it. Removing the virus in a running
system requires being able to detect and eliminate its instances faster than it can spread.

Prevention of Virus Infection



The only way to prevent the infection of a virus is not to receive executable code from an infected
source. This philosophy used to be easy to follow because it was easy to tell if a file was executable
or not. For example, on PCs, a .exe extension was a clear sign that the file was executable.
However, as we have noted, today's files are more complex, and a seemingly nonexecutable file
may have some executable code buried deep within it. For example, a word processor may have
commands within the document file; as we noted earlier, these commands, called macros, make it
easy for the user to do complex or repetitive things. But they are really executable code embedded
in the context of the document. Similarly, spreadsheets, presentation slides, other office- or
business-related files, and even media files can contain code or scripts that can be executed in
various waysand thereby harbor viruses. And, as we have seen, the applications that run or use
these files may try to be helpful by automatically invoking the executable code, whether you want it
run or not! Against the principles of good security, e-mail handlers can be set to automatically open
(without performing access control) attachments or embedded code for the recipient, so your e-mail
message can have animated bears dancing across the top.

Another approach virus writers have used is a little-known feature in the Microsoft file design.
Although a file with a .doc extension is expected to be a Word document, in fact, the true document
type is hidden in a field at the start of the file. This convenience ostensibly helps a user who
inadvertently names a Word document with a .ppt (Power-Point) or any other extension. In some
cases, the operating system will try to open the associated application but, if that fails, the system
will switch to the application of the hidden file type. So, the virus writer creates an executable file,
names it with an inappropriate extension, and sends it to the victim, describing it is as a picture or a
necessary code add-in or something else desirable. The unwitting recipient opens the file and,
without intending to, executes the malicious code.

More recently, executable code has been hidden in files containing large data sets, such as pictures
or read-only documents. These bits of viral code are not easily detected by virus scanners and
certainly not by the human eye. For example, a file containing a photograph may be highly
granular; if every sixteenth bit is part of a command string that can be executed, then the virus is
very difficult to detect.

Because you cannot always know which sources are infected, you should assume that any outside
source is infected. Fortunately, you know when you are receiving code from an outside source;
unfortunately, it is not feasible to cut off all contact with the outside world.

In their interesting paper comparing computer virus transmission with human disease transmission,
Kephart et al. [KEP93] observe that individuals' efforts to keep their computers free from viruses
lead to communities that are generally free from viruses because members of the community have
little (electronic) contact with the outside world. In this case, transmission is contained not because
of limited contact but because of limited contact outside the community. Governments, for military
or diplomatic secrets, often run disconnected network communities. The trick seems to be in
choosing one's community prudently. However, as use of the Internet and the World Wide Web
increases, such separation is almost impossible to maintain.

Nevertheless, there are several techniques for building a reasonably safe community for electronic
contact, including the following:

Use only commercial software acquired from reliable, well-established vendors. There is always
a chance that you might receive a virus from a large manufacturer with a name everyone
would recognize. However, such enterprises have significant reputations that could be
seriously damaged by even one bad incident, so they go to some degree of trouble to keep
their products virus-free and to patch any problem-causing code right away. Similarly,



software distribution companies will be careful about products they handle.

Test all new software on an isolated computer. If you must use software from a questionable
source, test the software first on a computer that is not connected to a network and contains
no sensitive or important data. Run the software and look for unexpected behavior, even
simple behavior such as unexplained figures on the screen. Test the computer with a copy of
an up-to-date virus scanner created before the suspect program is run. Only if the program
passes these tests should you install it on a less isolated machine.

Open attachments only when you know them to be safe. What constitutes "safe" is up to you,
as you have probably already learned in this chapter. Certainly, an attachment from an
unknown source is of questionable safety. You might also distrust an attachment from a known
source but with a peculiar message.

Make a recoverable system image and store it safely. If your system does become infected,
this clean version will let you reboot securely because it overwrites the corrupted system files
with clean copies. For this reason, you must keep the image write-protected during reboot.
Prepare this image now, before infection; after infection it is too late. For safety, prepare an
extra copy of the safe boot image.

Make and retain backup copies of executable system files. This way, in the event of a virus
infection, you can remove infected files and reinstall from the clean backup copies (stored in a
secure, offline location, of course). Also make and retain backups of important data files that
might contain infectable code; such files include word-processor documents, spreadsheets,
slide presentations, pictures, sound files, and databases. Keep these backups on inexpensive
media, such as CDs or DVDs so that you can keep old backups for a long time. In case you find
an infection, you want to be able to start from a clean backupthat is, one taken before the
infection.

Use virus detectors (often called virus scanners) regularly and update them daily. Many of the
available virus detectors can both detect and eliminate infection from viruses. Several scanners
are better than one because one may detect the viruses that others miss. Because scanners
search for virus signatures, they are constantly being revised as new viruses are discovered.
New virus signature files or new versions of scanners are distributed frequently; often, you can
request automatic downloads from the vendor's web site. Keep your detector's signature file
up to date.

Truths and Misconceptions About Viruses

Because viruses often have a dramatic impact on the computer-using community, they are often
highlighted in the press, particularly in the business section. However, there is much misinformation
in circulation about viruses. Let us examine some of the popular claims about them.

Viruses can infect only Microsoft Windows systems. False. Among students and office workers,
PCs running Windows are popular computers, and there may be more people writing software
(and viruses) for them than for any other kind of processor. Thus, the PC is most frequently
the target when someone decides to write a virus. However, the principles of virus attachment
and infection apply equally to other processors, including Macintosh computers, Unix and Linux
workstations, and mainframe computers. Cell phones and PDAs are now also virus targets. In
fact, no writeable stored-program computer is immune to possible virus attack. As we noted in



Chapter 1, this situation means that all devices containing computer code, including
automobiles, airplanes, microwave ovens, radios, televisions, voting machines, and radiation
therapy machines have the potential for being infected by a virus.

Viruses can modify "hidden" or "read-only" files. True. We may try to protect files by using
two operating system mechanisms. First, we can make a file a hidden file so that a user or
program listing all files on a storage device will not see the file's name. Second, we can apply a
read-only protection to the file so that the user cannot change the file's contents. However,
each of these protections is applied by software, and virus software can override the native
software's protection. Moreover, software protection is layered, with the operating system
providing the most elementary protection. If a secure operating system obtains control before
a virus contaminator has executed, the operating system can prevent contamination as long as
it blocks the attacks the virus will make.

Viruses can appear only in data files, or only in Word documents, or only in programs. False.
What are data? What is an executable file? The distinction between these two concepts is not
always clear, because a data file can control how a program executes and even cause a
program to execute. Sometimes a data file lists steps to be taken by the program that reads
the data, and these steps can include executing a program. For example, some applications
contain a configuration file whose data are exactly such steps. Similarly, word-processing
document files may contain startup commands to execute when the document is opened;
these startup commands can contain malicious code. Although, strictly speaking, a virus can
activate and spread only when a program executes, in fact, data files are acted on by
programs. Clever virus writers have been able to make data control files that cause programs
to do many things, including pass along copies of the virus to other data files.

Viruses spread only on disks or only through e-mail. False. File-sharing is often done as one
user provides a copy of a file to another user by writing the file on a transportable disk.
However, any means of electronic file transfer will work. A file can be placed in a network's
library or posted on a bulletin board. It can be attached to an e-mail message or made
available for download from a web site. Any mechanism for sharing filesof programs, data,
documents, and so forthcan be used to transfer a virus.

Viruses cannot remain in memory after a complete power off/power on reboot. True, but . . .
If a virus is resident in memory, the virus is lost when the memory loses power. That is,
computer memory (RAM) is volatile, so all contents are deleted when power is lost.[2]

However, viruses written to disk certainly can remain through a reboot cycle. Thus, you can
receive a virus infection, the virus can be written to disk (or to network storage), you can turn
the machine off and back on, and the virus can be reactivated during the reboot. Boot sector
viruses gain control when a machine reboots (whether it is a hardware or software reboot), so
a boot sector virus may remain through a reboot cycle because it activates immediately when
a reboot has completed.

[2] Some very low-evel hardware settings (for example, the size of disk installed) are retained in memory called

"nonvolatile RAM," but these locations are not directly accessible by programs and are written only by programs run from

read-only memory (ROM) during hardware initialization. Thus, they are highly immune to virus attack.

Viruses cannot infect hardware. True. Viruses can infect only things they can modify; memory,
executable files, and data are the primary targets. If hardware contains writeable storage (so-
called firmware) that can be accessed under program control, that storage is subject to virus
attack. There have been a few instances of firmware viruses. Because a virus can control
hardware that is subject to program control, it may seem as if a hardware device has been
infected by a virus, but it is really the software driving the hardware that has been infected.



Viruses can also exercise hardware in any way a program can. Thus, for example, a virus could
cause a disk to loop incessantly, moving to the innermost track then the outermost and back
again to the innermost.

Viruses can be malevolent, benign, or benevolent. True. Not all viruses are bad. For example,
a virus might locate uninfected programs, compress them so that they occupy less memory,
and insert a copy of a routine that decompresses the program when its execution begins. At
the same time, the virus is spreading the compression function to other programs. This virus
could substantially reduce the amount of storage required for stored programs, possibly by up
to 50 percent. However, the compression would be done at the request of the virus, not at the
request, or even knowledge, of the program owner.

To see how viruses and other types of malicious code operate, we examine four types of malicious
code that affected many users worldwide: the Brain, the Internet worm, the Code Red worm, and
web bugs.

First Example of Malicious Code: The Brain Virus

One of the earliest viruses is also one of the most intensively studied. The so-called Brain virus
was given its name because it changes the label of any disk it attacks to the word "BRAIN." This
particular virus, believed to have originated in Pakistan, attacks PCs running an old Microsoft
operating system. Numerous variants have been produced; because of the number of variants,
people believe that the source code of the virus was released to the underground virus community.

What It Does

The Brain, like all viruses, seeks to pass on its infection. This virus first locates itself in upper
memory and then executes a system call to reset the upper memory bound below itself so that it is
not disturbed as it works. It traps interrupt number 19 (disk read) by resetting the interrupt address
table to point to it and then sets the address for interrupt number 6 (unused) to the former address
of the interrupt 19. In this way, the virus screens disk read calls, handling any that would read the
boot sector (passing back the original boot contents that were moved to one of the bad sectors);
other disk calls go to the normal disk read handler, through interrupt 6.

The Brain virus appears to have no effect other than passing its infection, as if it were an
experiment or a proof of concept. However, variants of the virus erase disks or destroy the file
allocation table (the table that shows which files are where on a storage medium).

How It Spreads

The Brain virus positions itself in the boot sector and in six other sectors of the disk. One of the six
sectors will contain the original boot code, moved there from the original boot sector, while two
others contain the remaining code of the virus. The remaining three sectors contain a duplicate of
the others. The virus marks these six sectors "faulty" so that the operating system will not try to
use them. (With low-level calls, you can force the disk drive to read from what the operating system
has marked as bad sectors.) The virus allows the boot process to continue.

Once established in memory, the virus intercepts disk read requests for the disk drive under attack.



With each read, the virus reads the disk boot sector and inspects the fifth and sixth bytes for the
hexadecimal value 1234 (its signature). If it finds that value, it concludes that the disk is infected; if
not, it infects the disk as described in the previous paragraph.

What Was Learned

This virus uses some of the standard tricks of viruses, such as hiding in the boot sector, and
intercepting and screening interrupts. The virus is almost a prototype for later efforts. In fact, many
other virus writers seem to have patterned their work on this basic virus. Thus, one could say it was
a useful learning tool for the virus writer community.

Sadly, its infection did not raise public consciousness of viruses, other than a certain amount of fear
and misunderstanding. Subsequent viruses, such as the Lehigh virus that swept through the
computers of Lehigh University, the nVIR viruses that sprang from prototype code posted on bulletin
boards, and the Scores virus that was first found at NASA in Washington D.C. circulated more widely
and with greater effect. Fortunately, most viruses seen to date have a modest effect, such as
displaying a message or emitting a sound. That is, however, a matter of luck, since the writers who
could put together the simpler viruses obviously had all the talent and knowledge to make much
more malevolent viruses.

There is no general cure for viruses. Virus scanners are effective against today's known viruses and
general patterns of infection, but they cannot counter tomorrow's variant. The only sure prevention
is complete isolation from outside contamination, which is not feasible; in fact, you may even get a
virus from the software applications you buy from reputable vendors.

Example: The Internet Worm

On the evening of 2 November 1988, a worm was released to the Internet,[3] causing serious
damage to the network. Not only were many systems infected, but also when word of the problem
spread, many more uninfected systems severed their network connections to prevent themselves
from getting infected. Spafford and his team at Purdue University [SPA89] and Eichen and Rochlis at
M.I.T. [EIC89] studied the worm extensively, and Orman [ORM03] did an interesting retrospective
analysis 15 years after the incident.

[3] Note: This incident is normally called a "worm," although it shares most of the characteristics of viruses.

The perpetrator was Robert T. Morris, Jr., a graduate student at Cornell University who created and
released the worm. He was convicted in 1990 of violating the 1986 Computer Fraud and Abuse Act,
section 1030 of U.S. Code Title 18. He received a fine of $10,000, a three-year suspended jail
sentence, and was required to perform 400 hours of community service. (See Denning [DEN90b] for
a discussion of this punishment.)

What It Did

Judging from its code, Morris programmed the Internet worm to accomplish three main objectives:

1.

2.



Determine where it could spread to.1.

Spread its infection.2.

Remain undiscovered and undiscoverable.3.

What Effect It Had

The worm's primary effect was resource exhaustion. Its source code indicated that the worm was
supposed to check whether a target host was already infected; if so, the worm would negotiate so
that either the existing infection or the new infector would terminate. However, because of a
supposed flaw in the code, many new copies did not terminate. As a result, an infected machine
soon became burdened with many copies of the worm, all busily attempting to spread the infection.
Thus, the primary observable effect was serious degradation in performance of affected machines.

A second-order effect was the disconnection of many systems from the Internet. System
administrators tried to sever their connection with the Internet, either because their machines were
already infected and the system administrators wanted to keep the worm's processes from looking
for sites to which to spread or because their machines were not yet infected and the staff wanted to
avoid having them become so.

The disconnection led to a third-order effect: isolation and inability to perform necessary work.
Disconnected systems could not communicate with other systems to carry on the normal research,
collaboration, business, or information exchange users expected. System administrators on
disconnected systems could not use the network to exchange information with their counterparts at
other installations, so status and containment or recovery information was unavailable.

The worm caused an estimated 6,000 installations to shut down or disconnect from the Internet. In
total, several thousand systems were disconnected for several days, and several hundred of these
systems were closed to users for a day or more while they were disconnected. Estimates of the cost
of the damage range from $100,000 to $97 million.

How It Worked

The worm exploited several known flaws and configuration failures of Berkeley version 4 of the Unix
operating system. It accomplishedor had code that appeared to try to accomplishits three
objectives.

Determine where to spread. The worm had three techniques for locating potential machines to
victimize. It first tried to find user accounts to invade on the target machine. In parallel, the worm
tried to exploit a bug in the finger program and then to use a trapdoor in the sendmail mail handler.
All three of these security flaws were well known in the general Unix community.

The first security flaw was a joint user and system error, in which the worm tried guessing
passwords and succeeded when it found one. The Unix password file is stored in encrypted form,
but the ciphertext in the file is readable by anyone. (This visibility is the system error.) The worm
encrypted various popular passwords and compared their ciphertext to the ciphertext of the stored
password file. The worm tried the account name, the owner's name, and a short list of 432 common
passwords (such as "guest," "password," "help," "coffee," "coke," "aaa"). If none of these
succeeded, the worm used the dictionary file stored on the system for use by application spelling



checkers. (Choosing a recognizable password is the user error.) When it got a match, the worm
could log in to the corresponding account by presenting the plaintext password. Then, as a user, the
worm could look for other machines to which the user could obtain access. (See the article by
Robert T. Morris, Sr. and Ken Thompson [MOR79] on selection of good passwords, published a
decade before the worm, and the section in Chapter 4 on passwords people choose.)

The second flaw concerned fingerd, the program that runs continuously to respond to other
computers' requests for information about system users. The security flaw involved causing the
input buffer to overflow, spilling into the return address stack. Thus, when the finger call
terminated, fingerd executed instructions that had been pushed there as another part of the buffer
overflow, causing the worm to be connected to a remote shell.

The third flaw involved a trapdoor in the sendmail program. Ordinarily, this program runs in the
background, awaiting signals from others wanting to send mail to the system. When it receives such
a signal, sendmail gets a destination address, which it verifies, and then begins a dialog to receive
the message. However, when running in debugging mode, the worm causes sendmail to receive and
execute a command string instead of the destination address.

Spread infection. Having found a suitable target machine, the worm would use one of these three
methods to send a bootstrap loader to the target machine. This loader consisted of 99 lines of C
code to be compiled and executed on the target machine. The bootstrap loader would then fetch the
rest of the worm from the sending host machine. An element of good computer securityor
stealthwas built into the exchange between the host and the target. When the target's bootstrap
requested the rest of the worm, the worm supplied a one-time password back to the host. Without
this password, the host would immediately break the connection to the target, presumably in an
effort to ensure against "rogue" bootstraps (ones that a real administrator might develop to try to
obtain a copy of the rest of the worm for subsequent analysis).

Remain undiscovered and undiscoverable. The worm went to considerable lengths to prevent
its discovery once established on a host. For instance, if a transmission error occurred while the rest
of the worm was being fetched, the loader zeroed and then deleted all code already transferred and
then exited.

As soon as the worm received its full code, it brought the code into memory, encrypted it, and
deleted the original copies from disk. Thus, no traces were left on disk, and even a memory dump
would not readily expose the worm's code. The worm periodically changed its name and process
identifier so that no single name would run up a large amount of computing time.

What Was Learned

The Internet worm sent a shock wave through the Internet community, which at that time was
largely populated by academics and researchers. The affected sites closed some of the loopholes
exploited by the worm and generally tightened security. Some users changed passwords. Two
researchers, Farmer and Spafford [FAR90], developed a program for system administrators to check
for some of the same flaws the worm exploited. However, security analysts checking for site
vulnerabilities across the Internet find that many of the same security flaws still exist today. A new
attack on the Internet would not succeed on the same scale as the Internet worm, but it could still
cause significant inconvenience to many.

The Internet worm was benign in that it only spread to other systems but did not destroy any part
of them. It collected sensitive data, such as account passwords, but it did not retain them. While



acting as a user, the worm could have deleted or overwritten files, distributed them elsewhere, or
encrypted them and held them for ransom. The next worm may not be so benign.

The worm's effects stirred several people to action. One positive outcome from this experience was
development of an infrastructure for reporting and correcting malicious and nonmalicious code
flaws. The Internet worm occurred at about the same time that Cliff Stoll [STO89] reported his
problems in tracking an electronic intruder (and his subsequent difficulty in finding anyone to deal
with the case). The computer community realized it needed to organize. The resulting Computer
Emergency Response Team (CERT) at Carnegie Mellon University was formed; it and similar
response centers around the world have done an excellent job of collecting and disseminating
information on malicious code attacks and their countermeasures. System administrators now
exchange information on problems and solutions. Security comes from informed protection and
action, not from ignorance and inaction.

More Malicious Code: Code Red

Code Red appeared in the middle of 2001, to devastating effect. On July 29, the U.S. Federal
Bureau of Investigation proclaimed in a news release that "on July 19, the Code Red worm infected
more than 250,000 systems in just nine hours. . . . This spread has the potential to disrupt business
and personal use of the Internet for applications such as e-commerce, e-mail and entertainment"
[BER01]. Indeed, "the Code Red worm struck faster than any other worm in Internet history,"
according to a research director for a security software and services vendor. The first attack
occurred on July 12; overall, 750,000 servers were affected, including 400,000 just in the period
from August 1 to 10 [HUL01]. Thus, of the 6 million web servers running code subject to infection
by Code Red, about one in eight were infected. Michael Erbschloe, vice president of Computer
Economics, Inc., estimates that Code Red's damage will exceed $2 billion [ERB01].

Code Red was more than a worm; it included several kinds of malicious code, and it mutated from
one version to another. Let us take a closer look at how Code Red worked.

What It Did

There are several versions of Code Red, malicious software that propagates itself on web servers
running Microsoft's Internet Information Server (IIS) software. Code Red takes two steps: infection
and propagation. To infect a server, the worm takes advantage of a vulnerability in Microsoft's IIS.
It overflows the buffer in the dynamic link library idq.dll to reside in the server's memory. Then, to
propagate, Code Red checks IP addresses on port 80 of the PC to see if that web server is
vulnerable.

What Effect It Had

The first version of Code Red was easy to spot because it defaced web sites with the following text:

HELLO!
Welcome to
http://www.worm.com !
Hacked by Chinese!

http://www.worm.com !


The rest of the original Code Red's activities were determined by the date. From day 1 to 19 of the
month, the worm spawned 99 threads that scanned for other vulnerable computers, starting at the
same IP address. Then, on days 20 to 27, the worm launched a distributed denial-of-service attack
at the U.S. web site, www.whitehouse.gov. A denial-of-service attack floods the site with large
numbers of messages in an attempt to slow down or stop the site because the site is overwhelmed
and cannot handle the messages. Finally, from day 28 to the end of the month, the worm did
nothing.

However, there were several variants. The second variant was discovered near the end of July 2001.
It did not deface the web site, but its propagation was randomized and optimized to infect servers
more quickly. A third variant, discovered in early August, seemed to be a substantial rewrite of the
second. This version injected a Trojan horse in the target and modified software to ensure that a
remote attacker could execute any command on the server. The worm also checked the year and
month so that it would automatically stop propagating in October 2002. Finally, the worm rebooted
the server after 24 or 48 hours, wiping itself from memory but leaving the Trojan horse in place.

How It Worked

The Code Red worm looked for vulnerable personal computers running Microsoft IIS software.
Exploiting the unchecked buffer overflow, the worm crashed Windows NT-based servers but
executed code on Windows 2000 systems. The later versions of the worm created a trapdoor on an
infected server; the system was then open to attack by other programs or malicious users. To
create the trapdoor, Code Red copied %windir%\cmd.exe to four locations:

c:\inetpub\scripts\root.ext
c:\progra~1\common~1\system\MSADC\root.exe
d:\inetpub\scripts\root.ext
d:\progra~1\common~1\system\MSADC\root.exe

Code Red also included its own copy of the file explorer.exe, placing it on the c: and d: drives so
that Windows would run the malicious copy, not the original copy. This Trojan horse first ran the
original, untainted version of explorer.exe, but it modified the system registry to disable certain
kinds of file protection and to ensure that some directories have read, write, and execute
permission. As a result, the Trojan horse had a virtual path that could be followed even when
explorer.exe was not running. The Trojan horse continued to run in background, resetting the
registry every 10 minutes; thus, even if a system administrator noticed the changes and undid
them, the changes were applied again by the malicious code.

To propagate, the worm created 300 or 600 threads (depending on the variant) and tried for 24 or
48 hours to spread to other machines. After that, the system was forcibly rebooted, flushing the
worm in memory but leaving the backdoor and Trojan horse in place.

To find a target to infect, the worm's threads worked in parallel. Although the early version of Code
Red targeted www.whitehouse.gov, later versions chose a random IP address close to the host
computer's own address. To speed its performance, the worm used a nonblocking socket so that a
slow connection would not slow down the rest of the threads as they scanned for a connection.



What Was Learned

As of this writing, more than 6 million servers use Microsoft's IIS software. The Code Red variant
that allowed unlimited root access made Code Red a virulent and dangerous piece of malicious code.
Microsoft offered a patch to fix the overflow problem and prevent infection by Code Red, but many
administrators neglected to apply the patch. (See Sidebar 3-6.)

Some security analysts suggested that Code Red might be "a beta test for information warfare,"
meaning that its powerful combination of attacks could be a prelude to a large-scale, intentional
effort targeted at particular countries or groups [HUL01a]. For this reason, users and developers
should pay more and careful attention to the security of their systems. Forno [FOR01] warns that
security threats such as Code Red stem from our general willingness to buy and install code that
does not meet minimal quality standards and from our reluctance to devote resources to the large
and continuing stream of patches and corrections that flows from the vendors. As we see in Chapter
11, this problem is coupled with a lack of legal standing for users who experience seriously faulty
code.

Malicious Code on the Web: Web Bugs

With the web pervading the lives of average citizens everywhere, malicious code in web pages has
become a serious problem. But sometimes the malice is not always clear; code can be used to good
or bad ends, depending on your perspective. In this section, we look at a generic type of code,
called a web bug, to see how it can affect the code in which it is embedded.

What They Do

A web bug, sometimes called a pixel tag, clear gif, one-by-one gif, invisible gif, or beacon gif,
is a hidden image on any document that can display HTML tags, such as a web page, an HTML e-
mail message, or even a spreadsheet. Its creator intends the bug to be invisible, unseen by users
but very useful nevertheless because it can track the activities of a web user.

For example, if you visit the Blue Nile home page, www.bluenile.com, the following web bug code is
automatically downloaded as a one-by-one pixel image from Avenue A, a marketing agency:

<img height=1 width=1 src="http://switch.avenuea.com/action/
bluenile_homepage/v2/a/AD7029944">

What Effect They Have

Suppose you are surfing the web and load the home page for Commercial.com, a commercial
establishment selling all kinds of houseware. If this site contains a web bug for Market.com, a
marketing and advertising firm, then the bug places a file called a cookie on your system's hard
drive. This cookie, usually containing a numeric identifier unique to you, can be used to track your
surfing habits and build a demographic profile. In turn, that profile can be used to direct you to
retailers in whom you may be interested. For example, Commercial.com may create a link to other



sites, display a banner advertisement to attract you to its partner sites, or offer you content
customized for your needs.

Sidebar 3-6: Is the Cure Worse Than the Disease?

These days, a typical application program such as a word-processor or spreadsheet
package is sold to its user with no guarantee of quality. As problems are discovered by
users or developers, patches are made available to be downloaded from the web and
applied to the faulty system. This style of "quality control" relies on the users and
system administrators to keep up with the history of releases and patches and to apply
the patches in a timely manner. Moreover, each patch usually assumes that earlier
patches can be applied; ignore a patch at your peril.

For example, Forno [FOR01] points out that an organization hoping to secure a web
server running Windows NT 4.0's IIS had to apply over 47 patches as part of a service
pack or available as a download from Microsoft. Such stories suggest that it may cost
more to maintain an application or system than it cost to buy the application or system
in the first place! Many organizations, especially small businesses, lack the resources for
such an effort. As a consequence, they neglect to fix known system problems, which
can then be exploited by hackers writing malicious code.

Blair [BLA01] describes a situation shortly after the end of the Cold War when the
United States discovered that Russia was tracking its nuclear weapons materials by
using a paper-based system. That is, the materials tracking system consisted of boxes
of paper filled with paper receipts. In a gesture of friendship, the Los Alamos National
Lab donated to Russia the Microsoft software it uses to track its own nuclear weapons
materials. However, experts at the renowned Kurchatov Institute soon discovered that
over time some files become invisible and inaccessible! In early 2000, they warned the
United States. To solve the problem, the United States told Russia to upgrade to the
next version of the Microsoft software. But the upgrade had the same problem, plus a
security flaw that would allow easy access to the database by hackers or unauthorized
parties.

Sometimes patches themselves create new problems as they are fixing old ones. It is
well known in the software reliability community that testing and fixing sometimes
reduce reliability, rather than improve it. And with the complex interactions between
software packages, many computer system managers prefer to follow the adage "if it
ain't broke, don't fix it," meaning that if there is no apparent failure, they would rather
not risk causing one from what seems like an unnecessary patch. So there are several
ways that the continual bug-patching approach to security may actually lead to a less
secure product than you started with.

How They Work

On the surface, web bugs do not seem to be malicious. They plant numeric data but do not track
personal information, such as your name and address. However, if you purchase an item at



Commercial.com, you may be asked to supply such information. Thus, the web server can capture
things such as

your computer's IP address

the kind of web browser you use

your monitor's resolution

other browser settings, such as whether you have enabled Java technology

connection time

previous cookie values

and more.

This information can be used to track where and when you read a document, what your buying
habits are, or what your personal information may be. More maliciously, the web bug can be
cleverly used to review the web server's log files and to determine your IP addressopening your
system to hacking via the target IP address.

What Was Learned

Web bugs raise questions about privacy, and some countries are considering legislation to protect
specifically from probes by web bugs. In the meantime, the Privacy Foundation has made available
a tool called Bugnosis to locate web bugs and bring them to a user's attention. We will study the
privacy aspects of web bugs more in Chapter 10.

In addition, users can invoke commands from their web browsers to block cookies or at least make
the users aware that a cookie is about to be placed on a system. Each option offers some
inconvenience. Cookies can be useful in recording information that is used repeatedly, such as name
and address. Requesting a warning message can mean almost continual interruption as web bugs
attempt to place cookies on your system. Another alternative is to allow cookies but to clean them
off your system periodically, either by hand or by using a commercial product.



3.4. Targeted Malicious Code

So far, we have looked at anonymous code written to affect users and machines indiscriminately.
Another class of malicious code is written for a particular system, for a particular application, and for
a particular purpose. Many of the virus writers' techniques apply, but there are also some new ones.
Bradbury [BRA06] looks at the change over time in objectives and skills of malicious code authors.

Trapdoors

A trapdoor is an undocumented entry point to a module. Developers insert trapdoors during code
development, perhaps to test the module, to provide "hooks" by which to connect future
modifications or enhancements, or to allow access if the module should fail in the future. In addition
to these legitimate uses, trapdoors can allow a programmer access to a program once it is placed in
production.

Examples of Trapdoors

Because computing systems are complex structures, programmers usually develop and test systems
in a methodical, organized, modular manner, taking advantage of the way the system is composed
of modules or components. Often, programmers first test each small component of the system
separate from the other components, in a step called unit testing, to ensure that the component
works correctly by itself. Then, developers test components together during integration testing, to
see how they function as they send messages and data from one to the other. Rather than paste all
the components together in a "big bang" approach, the testers group logical clusters of a few
components, and each cluster is tested in a way that allows testers to control and understand what
might make a component or its interface fail. (For a more detailed look at testing, see Pfleeger and
Atlee [PFL06a].)

To test a component on its own, the developer or tester cannot use the surrounding routines that
prepare input or work with output. Instead, it is usually necessary to write "stubs" and "drivers,"
simple routines to inject data in and extract results from the component being tested. As testing
continues, these stubs and drivers are discarded because they are replaced by the actual
components whose functions they mimic. For example, the two modules MODA and MODB in Figure
3-10 are being tested with the driver MAIN and the stubs SORT, OUTPUT, and NEWLINE.

Figure 3-10. Stubs and Drivers.

[View full size image]



During both unit and integration testing, faults are usually discovered in components. Sometimes,
when the source of a problem is not obvious, the developers insert debugging code in suspicious
modules; the debugging code makes visible what is going on as the components execute and
interact. Thus, the extra code may force components to display the intermediate results of a
computation, to print the number of each step as it is executed, or to perform extra computations to
check the validity of previous components.

To control stubs or invoke debugging code, the programmer embeds special control sequences in
the component's design, specifically to support testing. For example, a component in a text
formatting system might be designed to recognize commands such as .PAGE, .TITLE, and .SKIP.
During testing, the programmer may have invoked the debugging code, using a command with a
series of parameters of the form var = value. This command allows the programmer to modify the
values of internal program variables during execution, either to test corrections to this component
or to supply values passed to components this one calls.

Command insertion is a recognized testing practice. However, if left in place after testing, the extra
commands can become a problem. They are undocumented control sequences that produce side
effects and can be used as trapdoors. In fact, the Internet worm spread its infection by using just
such a debugging trapdoor in an electronic mail program.

Poor error checking is another source of trapdoors. A good developer will design a system so that
any data value is checked before it is used; the checking involves making sure the data type is
correct as well as ensuring that the value is within acceptable bounds. But in some poorly designed



systems, unacceptable input may not be caught and can be passed on for use in unanticipated
ways. For example, a component's code may check for one of three expected sequences; finding
none of the three, it should recognize an error. Suppose the developer uses a CASE statement to
look for each of the three possibilities. A careless programmer may allow a failure simply to fall
through the CASE without being flagged as an error. The fingerd flaw exploited by the Morris worm
occurs exactly that way: A C library I/O routine fails to check whether characters are left in the
input buffer before returning a pointer to a supposed next character.

Hardware processor design provides another common example of this kind of security flaw. Here, it
often happens that not all possible binary opcode values have matching machine instructions. The
undefined opcodes sometimes implement peculiar instructions, either because of an intent to test
the processor design or because of an oversight by the processor designer. Undefined opcodes are
the hardware counterpart of poor error checking for software.

As with viruses, trapdoors are not always bad. They can be very useful in finding security flaws.
Auditors sometimes request trapdoors in production programs to insert fictitious but identifiable
transactions into the system. Then, the auditors trace the flow of these transactions through the
system. However, trapdoors must be documented, access to them should be strongly controlled,
and they must be designed and used with full understanding of the potential consequences.

Causes of Trapdoors

Developers usually remove trapdoors during program development, once their intended usefulness
is spent. However, trapdoors can persist in production programs because the developers

forget to remove them

intentionally leave them in the program for testing

intentionally leave them in the program for maintenance of the finished program, or

intentionally leave them in the program as a covert means of access to the component after it
becomes an accepted part of a production system

The first case is an unintentional security blunder, the next two are serious exposures of the
system's security, and the fourth is the first step of an outright attack. It is important to remember
that the fault is not with the trapdoor itself, which can be a useful technique for program testing,
correction, and maintenance. Rather, the fault is with the system development process, which does
not ensure that the trapdoor is "closed" when it is no longer needed. That is, the trapdoor becomes
a vulnerability if no one notices it or acts to prevent or control its use in vulnerable situations.

In general, trapdoors are a vulnerability when they expose the system to modification during
execution. They can be exploited by the original developers or used by anyone who discovers the
trapdoor by accident or through exhaustive trials. A system is not secure when someone believes
that no one else would find the hole.

Salami Attack

We noted in Chapter 1 an attack known as a salami attack. This approach gets its name from the



way odd bits of meat and fat are fused in a sausage or salami. In the same way, a salami attack
merges bits of seemingly inconsequential data to yield powerful results. For example, programs
often disregard small amounts of money in their computations, as when there are fractional pennies
as interest or tax is calculated. Such programs may be subject to a salami attack, because the small
amounts are shaved from each computation and accumulated elsewheresuch as in the
programmer's bank account! The shaved amount is so small that an individual case is unlikely to be
noticed, and the accumulation can be done so that the books still balance overall. However,
accumulated amounts can add up to a tidy sum, supporting a programmer's early retirement or new
car. It is often the resulting expenditure, not the shaved amounts, that gets the attention of the
authorities.

Examples of Salami Attacks

The classic tale of a salami attack involves interest computation. Suppose your bank pays 6.5
percent interest on your account. The interest is declared on an annual basis but is calculated
monthly. If, after the first month, your bank balance is $102.87, the bank can calculate the interest
in the following way. For a month with 31 days, we divide the interest rate by 365 to get the daily
rate, and then multiply it by 31 to get the interest for the month. Thus, the total interest for 31 days
is 31/365*0.065*102.87 = $0.5495726. Since banks deal only in full cents, a typical practice is to
round down if a residue is less than half a cent, and round up if a residue is half a cent or more.
However, few people check their interest computation closely, and fewer still would complain about
having the amount $0.5495 rounded down to $0.54, instead of up to $0.55. Most programs that
perform computations on currency recognize that because of rounding, a sum of individual
computations may be a few cents different from the computation applied to the sum of the
balances.

What happens to these fractional cents? The computer security folk legend is told of a programmer
who collected the fractional cents and credited them to a single account: hers! The interest program
merely had to balance total interest paid to interest due on the total of the balances of the individual
accounts. Auditors will probably not notice the activity in one specific account. In a situation with
many accounts, the roundoff error can be substantial, and the programmer's account pockets this
roundoff.

But salami attacks can net more and be far more interesting. For example, instead of shaving
fractional cents, the programmer may take a few cents from each account, again assuming that no
individual has the desire or understanding to recompute the amount the bank reports. Most people
finding a result a few cents different from that of the bank would accept the bank's figure,
attributing the difference to an error in arithmetic or a misunderstanding of the conditions under
which interest is credited. Or a program might record a $20 fee for a particular service, while the
company standard is $15. If unchecked, the extra $5 could be credited to an account of the
programmer's choice. The amounts shaved are not necessarily small: One attacker was able to
make withdrawals of $10,000 or more against accounts that had shown little recent activity;
presumably the attacker hoped the owners were ignoring their accounts.

Why Salami Attacks Persist

Computer computations are notoriously subject to small errors involving rounding and truncation,
especially when large numbers are to be combined with small ones. Rather than document the exact
errors, it is easier for programmers and users to accept a small amount of error as natural and



unavoidable. To reconcile accounts, the programmer includes an error correction in computations.
Inadequate auditing of these corrections is one reason why the salami attack may be overlooked.

Usually the source code of a system is too large or complex to be audited for salami attacks, unless
there is reason to suspect one. Size and time are definitely on the side of the malicious
programmer.

Rootkits and the Sony XCP

A later variation on the virus theme is the rootkit. A rootkit is a piece of malicious code that goes to
great lengths not to be discovered or, if discovered and removed, to reestablish itself whenever
possible. The name rootkit refers to the code's attempt to operate as root, the superprivileged user
of a Unix system.

A typical rootkit will interfere with the normal interaction between a user and the operating system
as follows. Whenever the user executes a command that would show the rootkit's presence, for
example, by listing files or processes in memory, the rootkit intercepts the call and filters the result
returned to the user so that the rootkit does not appear. For example, if a directory contains six
files, one of which is the rootkit, the rootkit will pass the directory command to the operating
system, intercept the result, delete the listing for itself, and display to the user only the five other
files. The rootkit will also adjust such things as file size totals to conceal itself. Notice that the
rootkit needs to intercept this data between the result and the presentation interface (the program
that formats results for the user to see).

Ah, two can play that game. Suppose you suspect code is interfering with your file display program.
Then you write a program that displays files, then examines the disk and file system directly to
enumerate files, and compares these two results. A rootkit revealer is just such a program.

A computer security expert named Mark Russinovich developed a rootkit revealer, which he ran on
one of his systems. He was surprised to find a rootkit [RUS05]. On further investigation he
determined the rootkit had been installed when he loaded and played a music CD on his computer.
Felten and Halderman [FEL06] extensively examined this rootkit, named XCP (short for extended
copy protection).

What XCP Does

The XCP rootkit prevents a user from copying a music CD, while allowing the CD to be played as
music. To do this, it includes its own special music player that is allowed to play the CD. But XCP
interferes with any other access to the protected music CD by garbling the result any other process
would obtain in trying to read from the CD.

The rootkit has to install itself when the CD is first inserted in the PC's drive. To do this, XCP
depends on a "helpful" feature of Windows: With "autorun" Windows looks for a file with a specific
name, and if it finds that, it opens and executes the file without the user's involvement. (The file
name can be configured in Windows, although it is autorun.exe by default.) You can disable the
autorun feature; see [FEL06] for details.

XCP has to hide from the user so that the user cannot just remove it. So the rootkit does as we just
described: It blocks display of any program whose name begins with $sys$ (which is how it is



named). Unfortunately for Sony, this feature concealed not just XCP but any program beginning
with $sys$ from any source, malicious or not. So any virus writer could conceal a virus just by
naming it $sys$virus-1, for example.

Sony did two things wrong: First, as we just observed, it distributed code that inadvertently opens
an unsuspecting user's system to possible infection by other writers of malicious code. Second, Sony
installs that code without the user's knowledge, much less consent, and it employs strategies to
prevent the code's removal.

Patching the Penetration

The story of XCP became very public in November 2005 when Russinovich described what he found
and several news services picked up the story. Faced with serious negative publicity, Sony decided
to release an uninstaller for the XCP rootkit. Remember, however, from the start of this chapter why
"penetrate and patch" was abandoned as a security strategy? The pressure for a quick repair
sometimes led to shortsighted solutions that addressed the immediate situation and not the
underlying cause: Fixing one problem often caused a failure somewhere else.

Sony's uninstaller itself opened serious security holes. It was presented as a web page that
downloaded and executed the uninstaller. But the programmers did not check what code they were
executing, so the web page would run any code from any source, not just the intended uninstaller.
And worse, the downloading code remained even after uninstalling XCP, meaning that the
vulnerability persisted. (In fact, Sony used two different rootkits from two different sources and,
remarkably, the uninstallers for both rootkits had this same vulnerability.)

How many computers were infected by this rootkit? Nobody knows for sure. Kaminsky [KAM06]
found 500,000 references in DNS tables to the site the rootkit contacts, but some of those DNS
entries could support accesses by hundreds or thousands of computers. How many users of
computers on which the rootkit was installed are aware of it? Again nobody knows, nor does
anybody know how many of those installations might not yet have been removed.

Felten and Halderman [FEL06] present an interesting analysis of this situation, examining how
digital rights management (copy protection for digital media such as music CDs) leads to
requirements very similar to those for a malicious code developer. Levine et al. [LEV06] consider
the full potential range of rootkit behavior as a way of determining how to defend against them.

Schneier [SCH06b] considers everyone who, maliciously or not, wants to control a PC: Automatic
software updates, antivirus tools, spyware, even applications all do many things without the user's
express permission or even knowledge. They also conspire against the user: Sony worked with
major antivirus vendors so its rootkit would not be detected, because keeping the user uninformed
was better for all of them.

Privilege Escalation

Programs run in a context: Their access rights and privileges are controlled by that context. Most
programs run in the context of the invoking user. If system access rights are set up correctly, you
can create, modify, or delete items you own, but critical system objects are protected by being
outside your context. Malicious code writers want to be able to access not just your objects but
those outside your context as well. To do this, the malicious code has to run with privileges higher



than you have. A privilege escalation attack is a means for malicious code to be launched by a
user with lower privileges but run with higher privileges.

A Privilege Escalation Example

In April 2006, Symantec announced a fix to a flaw in their software (bulletin Sym06-007). Symantec
produces security software, such as virus scanners and blockers, e-mail spam filters, and system
integrity tools. So that a user's product will always have up-to-date code and supporting data (such
as virus definition files), Symantec has a Live Update option by which the product periodically
fetches and installs new versions from a Symantec location. A user can also invoke Live Update at
any time to get up-to-the-minute updates. The Live Update feature has to run with elevated
privileges because it will download and install programs in the system program directory. The
update process actually involves executing several programs, which we will call LU1, LU2, Sys3, and
Sys4; LU1 and LU2 are components of Live Update, and Sys3 and Sys4 are standard components of
the operating system. These four pieces complete the downloading and installation.

Operating systems use what is called a search path to find programs to execute. The search path is
a list of directories or folders in which to look for a program that is called. When a program A calls a
program B, the operating system looks for B in the first directory specified in the search path. If the
operating system finds such a program, it executes it; otherwise, it continues looking in the
subsequent directories in the search path until it finds B or it fails to find B by the end of the list.
The operating system uses the first B it finds. The user can change the search path so a user's
program B would be run instead of another program of the same name in another directory. You
can always specify a program's location explicitlyfor example, c:\program files\ symantec\LU1to
control precisely which version runs.

In some releases for the Macintosh, Symantec allowed Live Update to find programs from the
search path instead of by explicit location. Remember that Live Update runs with elevated
privileges; it passes those elevated privileges along to Sys3 and Sys4. But if the user sets a search
path starting in the user's space and the user happens to have a program named Sys3, the user's
version of Sys3 runs with elevated privileges.

Impact of Privilege Escalation

A malicious code writer likes a privilege escalation. Creating, installing, or modifying a system file is
difficult, but it is easier to load a file into the user's space. In this example, the malicious code writer
only has to create a small shell program, name it Sys3, store it anywhere (even in a temporary
directory), reset the search path, and invoke a program (Live Update). Each of these actions is
common for nonmalicious downloaded code.

The result of running this attack is that the malicious version of Sys3 receives control in privileged
mode, and from that point it can replace operating system files, download and install new code,
modify system tables, and inflict practically any other harm. Having run once with higher privilege,
the malicious code can set a flag to receive elevated privileges in the future.

Interface Illusions

The name for this attack is borrowed from Elias Levy [LEV04]. An interface illusion is a spoofing



attack in which all or part of a web page is false. The object of the attacker is to convince the user
to do something inappropriate, for example, to enter personal banking information on a site that is
not the bank's, to click yes on a button that actually means no, or simply to scroll the screen to
activate an event that causes malicious software to be installed on the victim's machine. Levy's
excellent article gives other excellent examples.

The problem is that every dot of the screen is addressable. So if a genuine interface can paint dot
17 red, so can a malicious interface. Given that, a malicious interface can display fake address bars,
scroll bars that are not scroll bars, and even a display that looks identical to the real thing, because
it is identical in all ways the attacker wants it to be.

Nothing here is new, of course. People diligently save copies of e-mail messages as proof that they
received such a message when, in fact, a simple text editor will produce any authentic-looking
message you want. System pranksters like to send facetious messages to unsuspecting users,
warning that the computer is annoyed. These all derive from the same point: There is nothing
unique, no trusted path assured to be a private and authentic communication channel directly to the
user.

Keystroke Logging

Remember the movies in which a detective would spy a note pad on a desk, hold it up to the light,
and read the faint impression of a message that had been written and then torn off that pad? There
is a computer counterpart of that tactic, too.

First, recognize that there is not a direct path between a key you press on your keyboard and the
program (let's say a word processor) that handles that keystroke. When you press A, it activates a
switch that generates a signal that is received by a device driver, converted and analyzed and
passed along, until finally your word processor receives the A; there is still more conversion,
analysis, and transmission until the A appears on your screen. Many programs cooperate in this
chain. At several points along the way you could change a program so that A would appear on the
screen when you pressed W if you wanted.

If all programs work as intended, they receive and send characters efficiently and discard each
character as soon as it is sent and another arrives. A malicious program called a keystroke logger
retains a surreptitious copy of all keys pressed. Most keystrokes are uninteresting, but we may want
to protect the privacy of identification numbers, authentication strings, and love notes.

A keystroke logger can be independent (retaining a log of every key pressed) or it can be tied to a
certain program, retaining data only when a particular program (such as a banking application)
runs.

Man-in-the-Middle Attacks

A keystroke logger is a special form of the more general man-in-the-middle attack. There are two
versions of this attack: we cover the application type here and then expand on the concept in
Chapter 7 on networks.

A man-in-the-middle attack is one in which a malicious program interjects itself between two
other programs, typically between a user's input and an application's result. One example of a man-



in-the-middle attack could be a program that operated between your word processor and the file
system, so that each time you thought you were saving your file, the middle program prevented
that, or scrambled your text or encrypted your file. What ransom would you be willing to pay to get
back the paper on which you had been working for the last week?

Timing Attacks

Computers are fast, and they work far faster than humans can follow. But, as we all know, the time
it takes a computer to perform a task depends on the size of the task: Creating 20 database records
takes approximately twice as long as creating 10. So, in theory at least, if we could measure
computer time precisely, and we could control other things being done in the computer, we could
infer the size of the computer's input. In most situations size is relatively uninteresting to the
attacker. But in cryptography, even the smallest bit of information can be significant.

Brumley and Boneh [BRU05] investigated a program that does RSA encryption for web sites. The
authors try to derive the key by successive guesses of increasing value as possibilities for the key.
Although the details of the attack are beyond the scope of this book, the idea is to use a trick in the
optimization of RSA encryption. Grossly oversimplified, encryption with numbers less than the key
take successively longer amounts of time as the numbers get closer to the key, but then the time to
encrypt drops sharply once the key value is passed. Brute force guessing is prohibitive in time. But
the authors show that you don't have to try all values. You infer the key a few bits at a time from
the left (most significant bit). So you might try 00xxx, 01xxx, 10xxx, and 11xxx, noticing that the
time to compute rises from 00xxx to 01xxx, rises from 01xxx to 10xxx, and falls between 10xxx and
11xxx. This tells you the key value is between 10xxx and 11xxx. The attack works with much longer
keys (on the order of 1000 bits) and the authors use about a million possibilities for the xxx portion.
Still, this technique allows the authors to infer the key a bit at a time, all based on the amount of
time the encryption takes. The authors performed their experiments on a network, not with precise
local timing instruments, and still they were able to deduce keys.

Cryptography is the primary area in which speed and size are information that should not be
revealed. But you should be aware that malicious code can perform similar attacks undetected.

Covert Channels: Programs That Leak Information

So far, we have looked at malicious code that performs unwelcome actions. Next, we turn to
programs that communicate information to people who should not receive it. The communication
travels unnoticed, accompanying other, perfectly proper, communications. The general name for
these extraordinary paths of communication is covert channels. The concept of a covert channel
comes from a paper by Lampson [LAM73]; Millen [MIL88] presents a good taxonomy of covert
channels.

Suppose a group of students is preparing for an exam for which each question has four choices (a,
b, c, d); one student in the group, Sophie, understands the material perfectly and she agrees to
help the others. She says she will reveal the answers to the questions, in order, by coughing once
for answer "a," sighing for answer "b," and so forth. Sophie uses a communications channel that
outsiders may not notice; her communications are hidden in an open channel. This communication
is a human example of a covert channel.

We begin by describing how a programmer can create covert channels. The attack is more complex



than one by a lone programmer accessing a data source. A programmer who has direct access to
data can usually just read the data and write it to another file or print it out. If, however, the
programmer is one step removed from the datafor example, outside the organization owning the
datathe programmer must figure how to get at the data. One way is to supply a bona fide program
with a built-in Trojan horse; once the horse is enabled, it finds and transmits the data. However, it
would be too bold to generate a report labeled "Send this report to Jane Smith in Camden, Maine";
the programmer has to arrange to extract the data more surreptitiously. Covert channels are a
means of extracting data clandestinely.

Figure 3-11 shows a "service program" containing a Trojan horse that tries to copy information from
a legitimate user (who is allowed access to the information) to a "spy" (who ought not be allowed to
access the information). The user may not know that a Trojan horse is running and may not be in
collusion to leak information to the spy.

Figure 3-11. Covert Channel Leaking Information.

Covert Channel Overview

A programmer should not have access to sensitive data that a program processes after the program
has been put into operation. For example, a programmer for a bank has no need to access the



names or balances in depositors' accounts. Programmers for a securities firm have no need to know
what buy and sell orders exist for the clients. During program testing, access to the real data may
be justifiable, but not after the program has been accepted for regular use.

Still, a programmer might be able to profit from knowledge that a customer is about to sell a large
amount of a particular stock or that a large new account has just been opened. Sometimes a
programmer may want to develop a program that secretly communicates some of the data on which
it operates. In this case, the programmer is the "spy," and the "user" is whoever ultimately runs the
program written by the programmer.

How to Create Covert Channels

A programmer can always find ways to communicate data values covertly. Running a program that
produces a specific output report or displays a value may be too obvious. For example, in some
installations, a printed report might occasionally be scanned by security staff before it is delivered to
its intended recipient.

If printing the data values themselves is too obvious, the programmer can encode the data values in
another innocuous report by varying the format of the output, changing the lengths of lines, or
printing or not printing certain values. For example, changing the word "TOTAL" to "TOTALS" in a
heading would not be noticed, but this creates a 1-bit covert channel. The absence or presence of
the S conveys one bit of information. Numeric values can be inserted in insignificant positions of
output fields, and the number of lines per page can be changed. Examples of these subtle channels
are shown in Figure 3-12.

Figure 3-12. Covert Channels.

[View full size image]



Storage Channels

Some covert channels are called storage channels because they pass information by using the
presence or absence of objects in storage.

A simple example of a covert channel is the file lock channel. In multiuser systems, files can be
"locked" to prevent two people from writing to the same file at the same time (which could corrupt
the file, if one person writes over some of what the other wrote). The operating system or database
management system allows only one program to write to a file at a time by blocking, delaying, or
rejecting write requests from other programs. A covert channel can signal one bit of information by
whether or not a file is locked.

Remember that the service program contains a Trojan horse written by the spy but run by the



unsuspecting user. As shown in Figure 3-13, the service program reads confidential data (to which
the spy should not have access) and signals the data one bit at a time by locking or not locking
some file (any file, the contents of which are arbitrary and not even modified). The service program
and the spy need a common timing source, broken into intervals. To signal a 1, the service program
locks the file for the interval; for a 0, it does not lock. Later in the interval the spy tries to lock the
file itself. If the spy program cannot lock the file, it knows the service program must have locked
the file, and thus the spy program concludes the service program is signaling a 1; if the spy
program can lock the file, it knows the service program is signaling a 0.

Figure 3-13. File Lock Covert Channel.

This same approach can be used with disk storage quotas or other resources. With disk storage, the
service program signals a 1 by creating an enormous file, so large that it consumes most of the
available disk space. The spy program later tries to create a large file. If it succeeds, the spy
program infers that the service program did not create a large file, and so the service program is
signaling a 0; otherwise, the spy program infers a 1. Similarly the existence of a file or other
resource of a particular name can be used to signal. Notice that the spy does not need access to a
file itself; the mere existence of the file is adequate to signal. The spy can determine the existence
of a file it cannot read by trying to create a file of the same name; if the request to create is
rejected, the spy determines that the service program has such a file.

To signal more than one bit, the service program and the spy program signal one bit in each time
interval. Figure 3-14 shows a service program signaling the string 100 by toggling the existence of a
file.



Figure 3-14. File Existence Channel Used to Signal 100.

[View full size image]

In our final example, a storage channel uses a server of unique identifiers. Recall that some
bakeries, banks, and other commercial establishments have a machine to distribute numbered
tickets so that customers can be served in the order in which they arrived. Some computing
systems provide a similar server of unique identifiers, usually numbers, used to name temporary
files, to tag and track messages, or to record auditable events. Different processes can request the
next unique identifier from the server. But two cooperating processes can use the server to send a
signal: The spy process observes whether the numbers it receives are sequential or whether a
number is missing. A missing number implies that the service program also requested a number,
thereby signaling 1.

In all of these examples, the service program and the spy need access to a shared resource (such
as a file, or even knowledge of the existence of a file) and a shared sense of time. As shown, shared
resources are common in multiuser environments, where the resource may be as seemingly
innocuous as whether a file exists, a device is free, or space remains on disk. A source of shared
time is also typically available, since many programs need access to the current system time to set
timers, to record the time at which events occur, or to synchronize activities. Karger and Wray
[KAR91b] give a real-life example of a covert channel in the movement of a disk's arm and then
describe ways to limit the potential information leakage from this channel.

Transferring data one bit at a time must seem awfully slow. But computers operate at such speeds
that even the minuscule rate of 1 bit per millisecond (1/1000 second) would never be noticed but
could easily be handled by two processes. At that rate of 1000 bits per second (which is
unrealistically conservative), this entire book could be leaked in about two days. Increasing the rate
by an order of magnitude or two, which is still quite conservative, reduces the transfer time to



minutes.

Timing Channels

Other covert channels, called timing channels, pass information by using the speed at which
things happen. Actually, timing channels are shared resource channels in which the shared resource
is time.

A service program uses a timing channel to communicate by using or not using an assigned amount
of computing time. In the simple case, a multiprogrammed system with two user processes divides
time into blocks and allocates blocks of processing alternately to one process and the other. A
process is offered processing time, but if the process is waiting for another event to occur and has
no processing to do, it rejects the offer. The service process either uses its block (to signal a 1) or
rejects its block (to signal a 0). Such a situation is shown in Figure 3-15, first with the service
process and the spy's process alternating, and then with the service process communicating the
string 101 to the spy's process. In the second part of the example, the service program wants to
signal 0 in the third time block. It will do this by using just enough time to determine that it wants
to send a 0 and then pause. The spy process then receives control for the remainder of the time
block.

Figure 3-15. Covert Timing Channel.

[View full size image]

So far, all examples have involved just the service process and the spy's process. But in fact,
multiuser computing systems typically have more than just two active processes. The only
complications added by more processes are that the two cooperating processes must adjust their
timings and deal with the possible interference from others. For example, with the unique identifier
channel, other processes will also request identifiers. If on average n other processes will request m
identifiers each, then the service program will request more than n*m identifiers for a 1 and no
identifiers for a 0. The gap dominates the effect of all other processes. Also, the service process and
the spy's process can use sophisticated coding techniques to compress their communication and



detect and correct transmission errors caused by the effects of other unrelated processes.

Identifying Potential Covert Channels

In this description of covert channels, ordinary things, such as the existence of a file or time used
for a computation, have been the medium through which a covert channel communicates. Covert
channels are not easy to find because these media are so numerous and frequently used. Two
relatively old techniques remain the standards for locating potential covert channels. One works by
analyzing the resources of a system, and the other works at the source code level.

Shared Resource Matrix

Since the basis of a covert channel is a shared resource, the search for potential covert channels
involves finding all shared resources and determining which processes can write to and read from
the resources. The technique was introduced by Kemmerer [KEM83]. Although laborious, the
technique can be automated.

To use this technique, you construct a matrix of resources (rows) and processes that can access
them (columns). The matrix entries are R for "can read (or observe) the resource" and M for "can
set (or modify, create, delete) the resource." For example, the file lock channel has the matrix
shown in Table 3-3.

Table 3-3. Shared Resource Matrix.

  Service Process Spy's Process

Locked R, M R, M

Confidential data R  

You then look for two columns and two rows having the following pattern:

This pattern identifies two resources and two processes such that the second process is not allowed
to read from the second resource. However, the first process can pass the information to the second
by reading from the second resource and signaling the data through the first resource. Thus, this
pattern implies the potential information flow as shown here.



Next, you complete the shared resource matrix by adding these implied information flows, and
analyzing the matrix for undesirable flows. Thus, you can tell that the spy's process can read the
confidential data by using a covert channel through the file lock, as shown in Table 3-4.

Table 3-4. Complete Information Flow Matrix.

  Service Process Spy's Process

Locked R, M R, M

Confidential data R R

Information Flow Method

Denning [DEN76a] derived a technique for flow analysis from a program's syntax. Conveniently, this
analysis can be automated within a compiler so that information flow potentials can be detected
while a program is under development.

Using this method, we can recognize nonobvious flows of information between statements in a
program. For example, we know that the statement B:=A, which assigns the value of A to the
variable B, obviously supports an information flow from A to B. This type of flow is called an "explicit
flow." Similarly, the pair of statements B:=A; C:=B indicates an information flow from A to C (by
way of B). The conditional statement IF D=1 THEN B:=A has two flows: from A to B because of the
assignment, but also from D to B, because the value of B can change if and only if the value of D is
1. This second flow is called an "implicit flow."

The statement B:=fcn(args) supports an information flow from the function fcn to B. At a superficial
level, we can say that there is a potential flow from the arguments args to B. However, we could
more closely analyze the function to determine whether the function's value depended on all of its
arguments and whether any global values, not part of the argument list, affected the function's
value. These information flows can be traced from the bottom up: At the bottom there must be
functions that call no other functions, and we can analyze them and then use those results to
analyze the functions that call them. By looking at the elementary functions first, we could say
definitively whether there is a potential information flow from each argument to the function's result
and whether there are any flows from global variables. Table 3-5 lists several examples of syntactic
information flows.



Table 3-5. Syntactic Information Flows.

Statement Flow

B:=A from A to B

IF C=1 THEN B:=A from A to B; from C to B

FOR K:=1 to N DO stmts END from K to stmts

WHILE K>0 DO stmts END from K to stmts

CASE (exp) val1: stmts from exp to stmts

B:=fcn(args) from fcn to B

OPEN FILE f none

READ (f, X) from file f to X

WRITE (f, X) from X to file f

Finally, we put all the pieces together to show which outputs are affected by which inputs. Although
this analysis sounds frightfully complicated, it can be automated during the syntax analysis portion
of compilation. This analysis can also be performed on the higher-level design specification.

Covert Channel Conclusions

Covert channels represent a real threat to secrecy in information systems. A covert channel attack is
fairly sophisticated, but the basic concept is not beyond the capabilities of even an average
programmer. Since the subverted program can be practically any user service, such as a printer
utility, planting the compromise can be as easy as planting a virus or any other kind of Trojan
horse. And recent experience has shown how readily viruses can be planted.

Capacity and speed are not problems; our estimate of 1000 bits per second is unrealistically low,
but even at that rate much information leaks swiftly. With modern hardware architectures, certain
covert channels inherent in the hardware design have capacities of millions of bits per second. And
the attack does not require significant finance. Thus, the attack could be very effective in certain
situations involving highly sensitive data.

For these reasons, security researchers have worked diligently to develop techniques for closing
covert channels. The closure results have been bothersome; in ordinarily open environments, there
is essentially no control over the subversion of a service program, nor is there an effective way of
screening such programs for covert channels. And other than in a few very high security systems,
operating systems cannot control the flow of information from a covert channel. The hardware-
based channels cannot be closed, given the underlying hardware architecture.

For variety (or sobriety), Kurak and McHugh [KUR92] present a very interesting analysis of covert
signaling through graphic images.[4] In their work they demonstrate that two different images can
be combined by some rather simple arithmetic on the bit patterns of digitized pictures. The second
image in a printed copy is undetectable to the human eye, but it can easily be separated and
reconstructed by the spy receiving the digital version of the image. Byers [BYE04] explores the topic



in the context of covert data passing through pictures on the Internet.

[4] This form of data communication is called steganography, which means the art of concealing data in clear sight.

Although covert channel demonstrations are highly speculativereports of actual covert channel
attacks just do not existthe analysis is sound. The mere possibility of their existence calls for more
rigorous attention to other aspects of security, such as program development analysis, system
architecture analysis, and review of output.



3.5. Controls Against Program Threats

The picture we have just described is not pretty. There are many ways a program can fail and many
ways to turn the underlying faults into security failures. It is of course better to focus on prevention
than cure; how do we use controls during software developmentthe specifying, designing,
writing, and testing of the programto find and eliminate the sorts of exposures we have discussed?
The discipline of software engineering addresses this question more globally, devising approaches to
ensure the quality of software. In this book, we provide an overview of several techniques that can
prove useful in finding and fixing security flaws. For more depth, we refer you to texts such as
Pfleeger et al. [PFL01] and Pfleeger and Atlee [PFL06a].

In this section we look at three types of controls: developmental, operating system, and
administrative. We discuss each in turn.

Developmental Controls

Many controls can be applied during software development to ferret out and fix problems. So let us
begin by looking at the nature of development itself, to see what tasks are involved in specifying,
designing, building, and testing software.

The Nature of Software Development

Software development is often considered a solitary effort; a programmer sits with a specification or
design and grinds out line after line of code. But in fact, software development is a collaborative
effort, involving people with different skill sets who combine their expertise to produce a working
product. Development requires people who can

specify the system, by capturing the requirements and building a model of how the system
should work from the users' point of view

design the system, by proposing a solution to the problem described by the requirements and
building a model of the solution

implement the system, by using the design as a blueprint for building a working solution

test the system, to ensure that it meets the requirements and implements the solution as
called for in the design

review the system at various stages, to make sure that the end products are consistent with
the specification and design models

document the system, so that users can be trained and supported

manage the system, to estimate what resources will be needed for development and to track



when the system will be done

maintain the system, tracking problems found, changes needed, and changes made, and
evaluating their effects on overall quality and functionality

One person could do all these things. But more often than not, a team of developers works together
to perform these tasks. Sometimes a team member does more than one activity; a tester can take
part in a requirements review, for example, or an implementer can write documentation. Each team
is different, and team dynamics play a large role in the team's success.

Keep in mind the kinds of sophisticated attacks described in the previous section. Balfanz [BAL04]
reminds us that we must design systems that are both secure and usable, recommending these
points:

You can't retrofit usable security.

Tools aren't solutions.

Mind the upper layers.

Keep the customers satisfied.

Think locally; act locally.

We can examine product and process to see how both contribute to quality and in particular to
security as an aspect of quality. Let us begin with the product, to get a sense of how we recognize
high-quality secure software.

Modularity, Encapsulation, and Information Hiding

Code usually has a long shelf-life and is enhanced over time as needs change and faults are found
and fixed. For this reason, a key principle of software engineering is to create a design or code in
small, self-contained units, called components or modules; when a system is written this way, we
say that it is modular. Modularity offers advantages for program development in general and
security in particular.

If a component is isolated from the effects of other components, then it is easier to trace a problem
to the fault that caused it and to limit the damage the fault causes. It is also easier to maintain the
system, since changes to an isolated component do not affect other components. And it is easier to
see where vulnerabilities may lie if the component is isolated. We call this isolation encapsulation.

Information hiding is another characteristic of modular software. When information is hidden,
each component hides its precise implementation or some other design decision from the others.
Thus, when a change is needed, the overall design can remain intact while only the necessary
changes are made to particular components.

Let us look at these characteristics in more detail.

Modularity



Modularization is the process of dividing a task into subtasks. This division is done on a logical or
functional basis. Each component performs a separate, independent part of the task. Modularity is
depicted in Figure 3-16. The goal is to have each component meet four conditions:

Figure 3-16. Modularity.

single-purpose: performs one function

small: consists of an amount of information for which a human can readily grasp both
structure and content

simple: is of a low degree of complexity so that a human can readily understand the purpose
and structure of the module

independent: performs a task isolated from other modules

Other component characteristics, such as having a single input and single output or using a limited
set of programming constructs, indicate modularity. From a security standpoint, modularity should
improve the likelihood that an implementation is correct.

In particular, smallness is an important quality that can help security analysts understand what each
component does. That is, in good software, design and program units should be only as large as
needed to perform their required functions. There are several advantages to having small,
independent components.



Maintenance. If a component implements a single function, it can be replaced easily with a
revised one if necessary. The new component may be needed because of a change in
requirements, hardware, or environment. Sometimes the replacement is an enhancement,
using a smaller, faster, more correct, or otherwise better module. The interfaces between this
component and the remainder of the design or code are few and well described, so the effects
of the replacement are evident.

Understandability. A system composed of many small components is usually easier to
comprehend than one large, unstructured block of code.

Reuse. Components developed for one purpose can often be reused in other systems. Reuse of
correct, existing design or code components can significantly reduce the difficulty of
implementation and testing.

Correctness. A failure can be quickly traced to its cause if the components perform only one
task each.

Testing. A single component with well-defined inputs, outputs, and function can be tested
exhaustively by itself, without concern for its effects on other modules (other than the
expected function and output, of course).

Security analysts must be able to understand each component as an independent unit and be
assured of its limited effect on other components.

A modular component usually has high cohesion and low coupling. By cohesion, we mean that all
the elements of a component have a logical and functional reason for being there; every aspect of
the component is tied to the component's single purpose. A highly cohesive component has a high
degree of focus on the purpose; a low degree of cohesion means that the component's contents are
an unrelated jumble of actions, often put together because of time-dependencies or convenience.

Coupling refers to the degree with which a component depends on other components in the
system. Thus, low or loose coupling is better than high or tight coupling because the loosely coupled
components are free from unwitting interference from other components. This difference in coupling
is shown in Figure 3-17.

Figure 3-17. Coupling.



Encapsulation

Encapsulation hides a component's implementation details, but it does not necessarily mean
complete isolation. Many components must share information with other components, usually with
good reason. However, this sharing is carefully documented so that a component is affected only in
known ways by others in the system. Sharing is minimized so that the fewest interfaces possible are
used. Limited interfaces reduce the number of covert channels that can be constructed.

An encapsulated component's protective boundary can be translucent or transparent, as needed.
Berard [BER00] notes that encapsulation is the "technique for packaging the information [inside a
component] in such a way as to hide what should be hidden and make visible what is intended to be
visible."

Information Hiding

Developers who work where modularization is stressed can be sure that other components will have
limited effect on the ones they write. Thus, we can think of a component as a kind of black box, with
certain well-defined inputs and outputs and a well-defined function. Other components' designers do
not need to know how the module completes its function; it is enough to be assured that the
component performs its task in some correct manner.

This concealment is the information hiding, depicted in Figure 3-18. Information hiding is desirable
because developers cannot easily and maliciously alter the components of others if they do not
know how the components work.

Figure 3-18. Information Hiding.

These three characteristicsmodularity, encapsulation, and information hidingare fundamental
principles of software engineering. They are also good security practices because they lead to
modules that can be understood, analyzed, and trusted.

Mutual Suspicion

Programs are not always trustworthy. Even with an operating system to enforce access limitations,
it may be impossible or infeasible to bound the access privileges of an untested program effectively.
In this case, the user U is legitimately suspicious of a new program P. However, program P may be



invoked by another program, Q. There is no way for Q to know that P is correct or proper, any more
than a user knows that of P.

Therefore, we use the concept of mutual suspicion to describe the relationship between two
programs. Mutually suspicious programs operate as if other routines in the system were malicious
or incorrect. A calling program cannot trust its called subprocedures to be correct, and a called
subprocedure cannot trust its calling program to be correct. Each protects its interface data so that
the other has only limited access. For example, a procedure to sort the entries in a list cannot be
trusted not to modify those elements, while that procedure cannot trust its caller to provide any list
at all or to supply the number of elements predicted.

Confinement

Confinement is a technique used by an operating system on a suspected program. A confined
program is strictly limited in what system resources it can access. If a program is not trustworthy,
the data it can access are strictly limited. Strong confinement would be helpful in limiting the spread
of viruses. Since a virus spreads by means of transitivity and shared data, all the data and
programs within a single compartment of a confined program can affect only the data and programs
in the same compartment. Therefore, the virus can spread only to things in that compartment; it
cannot get outside the compartment.

Genetic Diversity

At your local electronics shop you can buy a combination printerscannercopierfax machine. It comes
at a good price (compared to costs of the four separate components) because there is considerable
overlap in functionality among those four. It is compact, and you need only install one thing on your
system, not four. But if any part of it fails, you lose a lot of capabilities all at once.

Related to the argument for modularity and information hiding and reuse or interchangeability of
software components, some people recommend genetic diversity: it is risky having many
components of a system come from one source, they say.

Geer at al. [GEE03a] wrote a report examining the monoculture of computing dominated by one
manufacturer: Microsoft today, IBM yesterday, unknown tomorrow. They look at the parallel in
agriculture where an entire crop is vulnerable to a single pathogen. Malicious code from the Morris
worm to the Code Red virus was especially harmful because a significant proportion of the world's
computers ran versions of the same operating systems (Unix for Morris, Windows for Code Red).
Geer refined the argument in [GEE03b], which was debated by Whitaker [WHI03b] and Aucsmith
[AUC03].

Tight integration of products is a similar concern. The Windows operating system is tightly linked to
Internet Explorer, the Office Suite, and the Outlook e-mail handler. A vulnerability in one of these
can also affect the others. Because of the tight integration, fixing a vulnerability in one can have an
impact on the others, whereas a vulnerability in another vendor's browser, for example, can affect
Word only to the extent they communicate through a well-defined interface.

Peer Reviews



We turn next to the process of developing software. Certain practices and techniques can assist us
in finding real and potential security flaws (as well as other faults) and fixing them before we turn
the system over to the users. Pfleeger et al. [PFL01] recommend several key techniques for building
what they call "solid software":

peer reviews

hazard analysis

testing

good design

prediction

static analysis

configuration management

analysis of mistakes

Here, we look at each practice briefly, and we describe its relevance to security controls. We begin
with peer reviews.

You have probably been doing some form of review for as many years as you have been writing
code: desk-checking your work or asking a colleague to look over a routine to ferret out any
problems. Today, a software review is associated with several formal process steps to make it more
effective, and we review any artifact of the development process, not just code. But the essence of
a review remains the same: sharing a product with colleagues able to comment about its
correctness. There are careful distinctions among three types of peer reviews:

Review: The artifact is presented informally to a team of reviewers; the goal is consensus and
buy-in before development proceeds further.

Walk-through: The artifact is presented to the team by its creator, who leads and controls the
discussion. Here, education is the goal, and the focus is on learning about a single document.

Inspection: This more formal process is a detailed analysis in which the artifact is checked
against a prepared list of concerns. The creator does not lead the discussion, and the fault
identification and correction are often controlled by statistical measurements.

A wise engineer who finds a fault can deal with it in at least three ways:

by learning how, when, and why errors occur1.

by taking action to prevent mistakes2.

by scrutinizing products to find the instances and effects of errors that were missed3.

Peer reviews address this problem directly. Unfortunately, many organizations give only lip service
to peer review, and reviews are still not part of mainstream software engineering activities.



3.

But there are compelling reasons to do reviews. An overwhelming amount of evidence suggests that
various types of peer review in software engineering can be extraordinarily effective. For example,
early studies at Hewlett-Packard in the 1980s revealed that those developers performing peer
review on their projects enjoyed a significant advantage over those relying only on traditional
dynamic testing techniques, whether black box or white box. Figure 3-19 compares the fault
discovery rate (that is, faults discovered per hour) among white-box testing, black-box testing,
inspections, and software execution. It is clear that inspections discovered far more faults in the
same period of time than other alternatives [GRA87]. This result is particularly compelling for large,
secure systems, where live running for fault discovery may not be an option.

Figure 3-19. Fault Discovery Rate Reported at Hewlett-Packard.

Researchers and practitioners have repeatedly shown the effectiveness of reviews. For instance,
Jones [JON91] summarized the data in his large repository of project information to paint a picture
of how reviews and inspections find faults relative to other discovery activities. Because products
vary so wildly by size, Table 3-6 presents the fault discovery rates relative to the number of
thousands of lines of code in the delivered product.

Table 3-6. Faults Found During Discovery Activities.

Discovery Activity Faults Found (Per Thousand Lines
of Code)

Requirements review 2.5

Design review 5.0

Code inspection 10.0

Integration test 3.0

Acceptance test 2.0



The inspection process involves several important steps: planning, individual preparation, a logging
meeting, rework, and reinspection. Details about how to perform reviews and inspections can be
found in software engineering books such as [PFL01] and [PFL06a].

During the review process, someone should keep careful track of what each reviewer discovers and
how quickly he or she discovers it. This log suggests not only whether particular reviewers need
training but also whether certain kinds of faults are harder to find than others. Additionally, a root
cause analysis for each fault found may reveal that the fault could have been discovered earlier in
the process. For example, a requirements fault that surfaces during a code review should probably
have been found during a requirements review. If there are no requirements reviews, you can start
performing them. If there are requirements reviews, you can examine why this fault was missed
and then improve the requirements review process.

The fault log can also be used to build a checklist of items to be sought in future reviews. The
review team can use the checklist as a basis for questioning what can go wrong and where. In
particular, the checklist can remind the team of security breaches, such as unchecked buffer
overflows, that should be caught and fixed before the system is placed in the field. A rigorous
design or code review can locate trapdoors, Trojan horses, salami attacks, worms, viruses, and
other program flaws. A crafty programmer can conceal some of these flaws, but the chance of
discovery rises when competent programmers review the design and code, especially when the
components are small and encapsulated. Management should use demanding reviews throughout
development to ensure the ultimate security of the programs.

Hazard Analysis

Hazard analysis is a set of systematic techniques intended to expose potentially hazardous system
states. In particular, it can help us expose security concerns and then identify prevention or
mitigation strategies to address them. That is, hazard analysis ferrets out likely causes of problems
so that we can then apply an appropriate technique for preventing the problem or softening its likely
consequences. Thus, it usually involves developing hazard lists, as well as procedures for exploring
"what if" scenarios to trigger consideration of nonobvious hazards. The sources of problems can be
lurking in any artifacts of the development or maintenance process, not just in the code, so a
hazard analysis must be broad in its domain of investigation; in other words, hazard analysis is a
system issue, not just a code issue. Similarly, there are many kinds of problems, ranging from
incorrect code to unclear consequences of a particular action. A good hazard analysis takes all of
them into account.

Although hazard analysis is generally good practice on any project, it is required in some regulated
and critical application domains, and it can be invaluable for finding security flaws. It is never too
early to be thinking about the sources of hazards; the analysis should begin when you first start
thinking about building a new system or when someone proposes a significant upgrade to an
existing system. Hazard analysis should continue throughout the system life cycle; you must
identify potential hazards that can be introduced during system design, installation, operation, and
maintenance.

A variety of techniques support the identification and management of potential hazards. Among the
most effective are hazard and operability studies (HAZOP), failure modes and effects
analysis (FMEA), and fault tree analysis (FTA). HAZOP is a structured analysis technique
originally developed for the process control and chemical plant industries. Over the last few years it



has been adapted to discover potential hazards in safety-critical software systems. FMEA is a
bottom-up technique applied at the system component level. A team identifies each component's
possible faults or fault modes; the team then determines what could trigger the fault and what
systemwide effects each fault might have. By keeping system consequences in mind, the team often
finds possible system failures that are not made visible by other analytical means. FTA complements
FMEA. It is a top-down technique that begins with a postulated hazardous system malfunction.
Then, the FTA team works backward to identify the possible precursors to the mishap. By tracing
back from a specific hazardous malfunction, the team can locate unexpected contributors to
mishaps, and can then look for opportunities to mitigate the risks.

Each of these techniques is clearly useful for finding and preventing security breaches. We decide
which technique is most appropriate by understanding how much we know about causes and
effects. For example, Table 3-7 suggests that when we know the cause and effect of a given
problem, we can strengthen the description of how the system should behave. This clearer picture
will help requirements analysts understand how a potential problem is linked to other requirements.
It also helps designers understand exactly what the system should do and helps testers know how
to test to verify that the system is behaving properly. If we can describe a known effect with
unknown cause, we use deductive techniques such as fault tree analysis to help us understand the
likely causes of the unwelcome behavior. Conversely, we may know the cause of a problem but not
understand all the effects; here, we use inductive techniques such as failure modes and effects
analysis to help us trace from cause to all possible effects. For example, suppose we know that a
subsystem is unprotected and might lead to a security failure, but we do not know how that failure
will affect the rest of the system. We can use FMEA to generate a list of possible effects and then
evaluate the tradeoffs between extra protection and possible problems. Finally, to find problems
about which we may not yet be aware, we can perform an exploratory analysis such as a hazard
and operability study.

Table 3-7. Perspectives for Hazard Analysis (adapted
from [PFL06a]).

  Known Cause Unknown Cause

Known effect Description of system
behavior

Deductive analysis, including
fault tree analysis

Unknown
effect

Inductive analysis, including
failure modes and effects
analysis studies

Exploratory analysis, including
hazard and operability

We see in Chapter 8 that hazard analysis is also useful for determining vulnerabilities and mapping
them to suitable controls.

Testing

Testing is a process activity that homes in on product quality: making the product failure free or
failure tolerant. Each software problem (especially when it relates to security) has the potential not
only for making software fail but also for adversely affecting a business or a life. Thomas Young,



head of NASA's investigation of the Mars lander failure, noted that "One of the things we kept in
mind during the course of our review is that in the conduct of space missions, you get only one
strike, not three. Even if thousands of functions are carried out flawlessly, just one mistake can be
catastrophic to a mission" [NAS00]. This same sentiment is true for security: The failure of one
control exposes a vulnerability that is not ameliorated by any number of functioning controls.
Testers improve software quality by finding as many faults as possible and by writing up their
findings carefully so that developers can locate the causes and repair the problems if possible.

Do not ignore a point from Thompson [THO03]: Security testing is hard. Side effects, dependencies,
unpredictable users, and flawed implementation bases (languages, compilers, infrastructure) all
contribute to this difficulty. But the essential complication with security testing is that we cannot
look at just the one behavior the program gets right; we also have to look for the hundreds of ways
the program might go wrong.

Testing usually involves several stages. First, each program component is tested on its own, isolated
from the other components in the system. Such testing, known as module testing, component
testing, or unit testing, verifies that the component functions properly with the types of input
expected from a study of the component's design. Unit testing is done in a controlled environment
whenever possible so that the test team can feed a predetermined set of data to the component
being tested and observe what output actions and data are produced. In addition, the test team
checks the internal data structures, logic, and boundary conditions for the input and output data.

When collections of components have been subjected to unit testing, the next step is ensuring that
the interfaces among the components are defined and handled properly. Indeed, interface mismatch
can be a significant security vulnerability. Integration testing is the process of verifying that the
system components work together as described in the system and program design specifications.

Once we are sure that information is passed among components in accordance with the design, we
test the system to ensure that it has the desired functionality. A function test evaluates the system
to determine whether the functions described by the requirements specification are actually
performed by the integrated system. The result is a functioning system.

The function test compares the system being built with the functions described in the developers'
requirements specification. Then, a performance test compares the system with the remainder of
these software and hardware requirements. It is during the function and performance tests that
security requirements are examined, and the testers confirm that the system is as secure as it is
required to be.

When the performance test is complete, developers are certain that the system functions according
to their understanding of the system description. The next step is conferring with the customer to
make certain that the system works according to customer expectations. Developers join the
customer to perform an acceptance test, in which the system is checked against the customer's
requirements description. Upon completion of acceptance testing, the accepted system is installed in
the environment in which it will be used. A final installation test is run to make sure that the
system still functions as it should. However, security requirements often state that a system should
not do something. As Sidebar 3-7 demonstrates, it is difficult to demonstrate absence rather than
presence.

The objective of unit and integration testing is to ensure that the code implemented the design
properly; that is, that the programmers have written code to do what the designers intended.
System testing has a very different objective: to ensure that the system does what the customer
wants it to do. Regression testing, an aspect of system testing, is particularly important for security
purposes. After a change is made to enhance the system or fix a problem, regression testing



ensures that all remaining functions are still working and that performance has not been degraded
by the change.

Each of the types of tests listed here can be performed from two perspectives: black box and clear
box (sometimes called white box). Black-box testing treats a system or its components as black
boxes; testers cannot "see inside" the system, so they apply particular inputs and verify that they
get the expected output. Clear-box testing allows visibility. Here, testers can examine the design
and code directly, generating test cases based on the code's actual construction. Thus, clear-box
testing knows that component X uses CASE statements and can look for instances in which the input
causes control to drop through to an unexpected line. Black-box testing must rely more on the
required inputs and outputs because the actual code is not available for scrutiny.

Sidebar 3-7: Absence vs. Presence

Pfleeger [PFL97] points out that security requirements resemble those for any other
computing task, with one seemingly insignificant difference. Whereas most
requirements say "the system will do this," security requirements add the phrase "and
nothing more." As we pointed out in Chapter 1, security awareness calls for more than a
little caution when a creative developer takes liberties with the system's specification.
Ordinarily, we do not worry if a programmer or designer adds a little something extra.
For instance, if the requirement calls for generating a file list on a disk, the "something
more" might be sorting the list in alphabetical order or displaying the date it was
created. But we would never expect someone to meet the requirement by displaying the
list and then erasing all the files on the disk!

If we could determine easily whether an addition was harmful, we could just disallow
harmful additions. But unfortunately we cannot. For security reasons, we must state
explicitly the phrase "and nothing more" and leave room for negotiation in the
requirements definition on any proposed extensions.

It is natural for programmers to want to exercise their creativity in extending and
expanding the requirements. But apparently benign choices, such as storing a value in a
global variable or writing to a temporary file, can have serious security implications. And
sometimes the best design approach for security is counterintuitive. For example, one
cryptosystem attack depends on measuring the time to perform an encryption. That is,
an efficient implementation can undermine the system's security. The solution, oddly
enough, is to artificially pad the encryption process with unnecessary computation so
that short computations complete as slowly as long ones.

In another instance, an enthusiastic programmer added parity checking to a
cryptographic procedure. Because the keys were generated randomly, the result was
that 255 of the 256 encryptions failed the parity check, leading to the substitution of a
fixed keyso that 255 of every 256 encryptions were being performed under the same
key!

No technology can automatically distinguish between malicious and benign code. For
this reason, we have to rely on a combination of approaches, including human-intensive
ones, to help us detect when we are going beyond the scope of the requirements and
threatening the system's security.



The mix of techniques appropriate for testing a given system depends on the system's size,
application domain, amount of risk, and many other factors. But understanding the effectiveness of
each technique helps us know what is right for each particular system. For example, Olsen [OLS93]
describes the development at Contel IPC of a system containing 184,000 lines of code. He tracked
faults discovered during various activities, and found differences:

17.3 percent of the faults were found during inspections of the system design

19.1 percent during component design inspection

15.1 percent during code inspection

29.4 percent during integration testing

16.6 percent during system and regression testing

Only 0.1 percent of the faults were revealed after the system was placed in the field. Thus, Olsen's
work shows the importance of using different techniques to uncover different kinds of faults during
development; it is not enough to rely on a single method for catching all problems.

Who does the testing? From a security standpoint, independent testing is highly desirable; it may
prevent a developer from attempting to hide something in a routine or keep a subsystem from
controlling the tests that will be applied to it. Thus, independent testing increases the likelihood that
a test will expose the effect of a hidden feature.

One type of testing is unique to computer security: penetration testing. In this form of testing,
testers specifically try to make software fail. That is, instead of testing to see that software does do
what it is expected to (as is the goal in the other types of testing we just listed), the testers try to
see if the software does what it is not supposed to do, which is to fail or, more specifically, fail to
enforce security. Because penetration testing usually applies to full systems, not individual
applications, we study penetration testing in Chapter 5.

Good Design

We saw earlier in this chapter that modularity, information hiding, and encapsulation are
characteristics of good design. Several design-related process activities are particularly helpful in
building secure software:

using a philosophy of fault tolerance

having a consistent policy for handling failures

capturing the design rationale and history

using design patterns

We describe each of these activities in turn.



Designers should try to anticipate faults and handle them in ways that minimize disruption and
maximize safety and security. Ideally, we want our system to be fault free. But in reality, we must
assume that the system will fail, and we make sure that unexpected failure does not bring the
system down, destroy data, or destroy life. For example, rather than waiting for the system to fail
(called passive fault detection), we might construct the system so that it reacts in an acceptable
way to a failure's occurrence. Active fault detection could be practiced by, for instance, adopting
a philosophy of mutual suspicion. Instead of assuming that data passed from other systems or
components are correct, we can always check that the data are within bounds and of the right type
or format. We can also use redundancy, comparing the results of two or more processes to see
that they agree, before we use their result in a task.

If correcting a fault is too risky, inconvenient, or expensive, we can choose instead to practice fault
tolerance: isolating the damage caused by the fault and minimizing disruption to users. Although
fault tolerance is not always thought of as a security technique, it supports the idea, discussed in
Chapter 8, that our security policy allows us to choose to mitigate the effects of a security problem
instead of preventing it. For example, rather than install expensive security controls, we may choose
to accept the risk that important data may be corrupted. If in fact a security fault destroys
important data, we may decide to isolate the damaged data set and automatically revert to a
backup data set so that users can continue to perform system functions.

More generally, we can design or code defensively, just as we drive defensively, by constructing a
consistent policy for handling failures. Typically, failures include

failing to provide a service

providing the wrong service or data

corrupting data

We can build into the design a particular way of handling each problem, selecting from one of three
ways:

Retrying: restoring the system to its previous state and performing the service again, using a
different strategy

1.

Correcting: restoring the system to its previous state, correcting some system characteristic,
and performing the service again, using the same strategy

2.

Reporting: restoring the system to its previous state, reporting the problem to an error-
handling component, and not providing the service again

3.

This consistency of design helps us check for security vulnerabilities; we look for instances that are
different from the standard approach.

Design rationales and history tell us the reasons the system is built one way instead of another.
Such information helps us as the system evolves, so we can integrate the design of our security
functions without compromising the integrity of the system's overall design.

Moreover, the design history enables us to look for patterns, noting what designs work best in which
situations. For example, we can reuse patterns that have been successful in preventing buffer
overflows, in ensuring data integrity, or in implementing user password checks.



Prediction

Among the many kinds of prediction we do during software development, we try to predict the risks
involved in building and using the system. As we see in depth in Chapter 8, we must postulate
which unwelcome events might occur and then make plans to avoid them or at least mitigate their
effects. Risk prediction and management are especially important for security, where we are always
dealing with unwanted events that have negative consequences. Our predictions help us decide
which controls to use and how many. For example, if we think the risk of a particular security
breach is small, we may not want to invest a large amount of money, time, or effort in installing
sophisticated controls. Or we may use the likely risk impact to justify using several controls at once,
a technique called "defense in depth."

Static Analysis

Before a system is up and running, we can examine its design and code to locate and repair security
flaws. We noted earlier that the peer review process involves this kind of scrutiny. But static
analysis is more than peer review, and it is usually performed before peer review. We can use tools
and techniques to examine the characteristics of design and code to see if the characteristics warn
us of possible faults lurking within. For example, a large number of levels of nesting may indicate
that the design or code is hard to read and understand, making it easy for a malicious developer to
bury dangerous code deep within the system.

To this end, we can examine several aspects of the design and code:

control flow structure

data flow structure

data structure

The control flow is the sequence in which instructions are executed, including iterations and loops.
This aspect of design or code can also tell us how often a particular instruction or routine is
executed.

Data flow follows the trail of a data item as it is accessed and modified by the system. Many times,
transactions applied to data are complex, and we use data flow measures to show us how and when
each data item is written, read, and changed.

The data structure is the way in which the data are organized, independent of the system itself. For
instance, if the data are arranged as lists, stacks, or queues, the algorithms for manipulating them
are likely to be well understood and well defined.

There are many approaches to static analysis, especially because there are so many ways to create
and document a design or program. Automated tools are available to generate not only numbers
(such as depth of nesting or cyclomatic number) but also graphical depictions of control flow, data
relationships, and the number of paths from one line of code to another. These aids can help us see
how a flaw in one part of a system can affect other parts.



Configuration Management

When we develop software, it is important to know who is making which changes to what and when:

corrective changes: maintaining control of the system's day-to-day functions

adaptive changes: maintaining control over system modifications

perfective changes: perfecting existing acceptable functions

preventive changes: preventing system performance from degrading to unacceptable levels

We want some degree of control over the software changes so that one change does not
inadvertently undo the effect of a previous change. And we want to control what is often a
proliferation of different versions and releases. For instance, a product might run on several
different platforms or in several different environments, necessitating different code to support the
same functionality. Configuration management is the process by which we control changes
during development and maintenance, and it offers several advantages in security. In particular,
configuration management scrutinizes new and changed code to ensure, among other things, that
security flaws have not been inserted, intentionally or accidentally.

Four activities are involved in configuration management:

configuration identification1.

configuration control and change management2.

configuration auditing3.

status accounting4.

Configuration identification sets up baselines to which all other code will be compared after
changes are made. That is, we build and document an inventory of all components that comprise
the system. The inventory includes not only the code you and your colleagues may have created,
but also database management systems, third-party software, libraries, test cases, documents, and
more. Then, we "freeze" the baseline and carefully control what happens to it. When a change is
proposed and made, it is described in terms of how the baseline changes.

Configuration control and configuration management ensure we can coordinate separate, related
versions. For example, there may be closely related versions of a system to execute on 16-bit and
32-bit processors. Three ways to control the changes are separate files, deltas, and conditional
compilation. If we use separate files, we have different files for each release or version. For
example, we might build an encryption system in two configurations: one that uses a short key
length, to comply with the law in certain countries, and another that uses a long key. Then, version
1 may be composed of components A1 through Ak and B1, while version 2 is A1 through Ak and B2,
where B1 and B2 do key length. That is, the versions are the same except for the separate key
processing files.

Alternatively, we can designate a particular version as the main version of a system and then define
other versions in terms of what is different. The difference file, called a delta, contains editing



commands to describe the ways to transform the main version into the variation.

Finally, we can do conditional compilation, whereby a single code component addresses all
versions, relying on the compiler to determine which statements to apply to which versions. This
approach seems appealing for security applications because all the code appears in one place.
However, if the variations are very complex, the code may be very difficult to read and understand.

Once a configuration management technique is chosen and applied, the system should be audited
regularly. A configuration audit confirms that the baseline is complete and accurate, that changes
are recorded, that recorded changes are made, and that the actual software (that is, the software
as used in the field) is reflected accurately in the documents. Audits are usually done by
independent parties taking one of two approaches: reviewing every entry in the baseline and
comparing it with the software in use or sampling from a larger set just to confirm compliance. For
systems with strict security constraints, the first approach is preferable, but the second approach
may be more practical.

Finally, status accounting records information about the components: where they came from (for
instance, purchased, reused, or written from scratch), the current version, the change history, and
pending change requests.

All four sets of activities are performed by a configuration and change control board, or CCB.
The CCB contains representatives from all organizations with a vested interest in the system,
perhaps including customers, users, and developers. The board reviews all proposed changes and
approves changes based on need, design integrity, future plans for the software, cost, and more.
The developers implementing and testing the change work with a program librarian to control and
update relevant documents and components; they also write detailed documentation about the
changes and test results.

Configuration management offers two advantages to those of us with security concerns: protecting
against unintentional threats and guarding against malicious ones. Both goals are addressed when
the configuration management processes protect the integrity of programs and documentation.
Because changes occur only after explicit approval from a configuration management authority, all
changes are also carefully evaluated for side effects. With configuration management, previous
versions of programs are archived, so a developer can retract a faulty change when necessary.

Malicious modification is made quite difficult with a strong review and configuration management
process in place. In fact, as presented in Sidebar 3-8, poor configuration control has resulted in at
least one system failure; that sidebar also confirms the principle of easiest penetration from Chapter
1. Once a reviewed program is accepted for inclusion in a system, the developer cannot sneak in to
make small, subtle changes, such as inserting trapdoors. The developer has access to the running
production program only through the CCB, whose members are alert to such security breaches.

Lessons from Mistakes

One of the easiest things we can do to enhance security is learn from our mistakes. As we design
and build systems, we can document our decisionsnot only what we decided to do and why, but also
what we decided not to do and why. Then, after the system is up and running, we can use
information about the failures (and how we found and fixed the underlying faults) to give us a better
understanding of what leads to vulnerabilities and their exploitation.

From this information, we can build checklists and codify guidelines to help ourselves and others.



That is, we do not have to make the same mistake twice, and we can assist other developers in
staying away from the mistakes we made. The checklists and guidelines can be invaluable,
especially during reviews and inspections, in helping reviewers look for typical or common mistakes
that can lead to security flaws. For instance, a checklist can remind a designer or programmer to
make sure that the system checks for buffer overflows. Similarly, the guidelines can tell a developer
when data require password protection or some other type of restricted access.

Sidebar 3-8: There's More Than One Way to Crack a System

In the 1970s the primary security assurance strategy was "penetration" or "tiger team"
testing. A team of computer security experts would be hired to test the security of a
system prior to its being pronounced ready to use. Often these teams worked for
months to plan their tests.

The U.S. Department of Defense was testing the Multics system, which had been
designed and built under extremely high security quality standards. Multics was being
studied as a base operating system for the WWMCCS command and control system. The
developers from M.I.T. were justifiably proud of the strength of the security of their
system, and the sponsoring agency invoked the penetration team with a note of
haughtiness. But the developers underestimated the security testing team.

Led by Roger Schell and Paul Karger, the team analyzed the code and performed their
tests without finding major flaws. Then one team member thought like an attacker. He
wrote a slight modification to the code to embed a trapdoor by which he could perform
privileged operations as an unprivileged user. He then made a tape of this modified
system, wrote a cover letter saying that a new release of the system was enclosed, and
mailed the tape and letter to the site where the system was installed.

When it came time to demonstrate their work, the penetration team congratulated the
Multics developers on generally solid security, but said they had found this one apparent
failure, which the team member went on to show. The developers were aghast because
they knew they had scrutinized the affected code carefully. Even when told the nature
of the trapdoor that had been added, the developers could not find it [KAR74, KAR02].

Proofs of Program Correctness

A security specialist wants to be certain that a given program computes a particular result,
computes it correctly, and does nothing beyond what it is supposed to do. Unfortunately, results in
computer science theory (see [PFL85] for a description) indicate that we cannot know with certainty
that two programs do exactly the same thing. That is, there can be no general decision procedure
which, given any two programs, determines if the two are equivalent. This difficulty results from the
"halting problem," which states that there is no general technique to determine whether an arbitrary
program will halt when processing an arbitrary input.

In spite of this disappointing general result, a technique called program verification can
demonstrate formally the "correctness" of certain specific programs. Program verification involves
making initial assertions about the inputs and then checking to see if the desired output is



generated. Each program statement is translated into a logical description about its contribution to
the logical flow of the program. Finally, the terminal statement of the program is associated with the
desired output. By applying a logic analyzer, we can prove that the initial assumptions, through the
implications of the program statements, produce the terminal condition. In this way, we can show
that a particular program achieves its goal. Sidebar 3-9 presents the case for appropriate use of
formal proof techniques. We study an example of program verification in Chapter 5.

Sidebar 3-9: Formal Methods Can Catch Difficult-to-See

Problems

Formal methods are sometimes used to check various aspects of secure systems. The
notion "formal methods" means many things to many people, and many types of formal
methods are proffered for use in software development. Each formal technique involves
the use of mathematically precise specification and design notations. In its purest form,
formal development is based on refinement and proof of correctness at each stage in
the life cycle. But all formal methods are not created equal.

Pfleeger and Hatton [PFL97a] point out that, for some organizations, the changes in
software development practices needed to support such techniques can be
revolutionary. That is, there is not always a simple migration path from current practice
to inclusion of formal methods, because the effective use of formal methods can require
a radical change right at the beginning of the traditional software life cycle: how we
capture and record customer requirements. Thus, the stakes in this area can be
particularly high. For this reason, compelling evidence of the effectiveness of formal
methods is highly desirable.

Gerhart et al. [GER94] point out that

There is no simple answer to the question: do formal methods pay off? Our cases
provide a wealth of data but only scratch the surface of information available to
address these questions. All cases involve so many interwoven factors that it is
impossible to allocate payoff from formal methods versus other factors, such as
quality of people or effects of other methodologies. Even where data was collected,
it was difficult to interpret the results across the background of the organization
and the various factors surrounding the application.

Naur [NAU93] reports that the use of formal notations does not lead inevitably to
improving the quality of specifications, even when used by the most mathematically
sophisticated minds. In his experiment the use of a formal notation often led to a
greater number of defects, rather than fewer. Thus, we need careful analyses of the
effects of formal methods to understand what contextual and methodological
characteristics affect the end results.

However, anecdotal support for formal methods has grown, and practitioners have been
more willing to use formal methods on projects where the software is safety critical. For
example, McDermid [MCD93] asserts that "these mathematical approaches provide us
with the best available approach to the development of high-integrity safety-critical
systems." Formal methods are becoming used routinely to evaluate communication



protocols and proposed security policies. Evidence from Heitmeyer's work [HEI01] at
the U.S. Naval Research Laboratory suggests that formal methods are becoming easier
to use and more effective. Dill and Rushby [DIL96] report that use of formal methods to
analyze correctness of hardware design "has become attractive because it has focused
on reducing the cost and time required for validation … [T]here are some lessons and
principles from hardware verification that can be transferred to the software world." And
Pfleeger and Hatton report that an air traffic control system built with several types of
formal methods resulted in software of very high quality. For these reasons, formal
methods are being incorporated into standards and imposed on developers. For
instance, the interim U.K. defense standard for such systems, DefStd 00-55, makes
mandatory the use of formal methods.

However, more evaluation must be done. We must understand how formal methods
contribute to quality. And we must decide how to choose among the many competing
formal methods, which may not be equally effective in a given situation.

Proving program correctness, although desirable and useful, is hindered by several factors. (For
more details see [PFL94].)

Correctness proofs depend on a programmer or logician to translate a program's statements
into logical implications. Just as programming is prone to errors, so also is this translation.

Deriving the correctness proof from the initial assertions and the implications of statements is
difficult, and the logical engine to generate proofs runs slowly. The speed of the engine
degrades as the size of the program increases, so proofs of correctness are even less
appropriate for large programs.

The current state of program verification is less well developed than code production. As a
result, correctness proofs have not been consistently and successfully applied to large
production systems.

Program verification systems are being improved constantly. Larger programs are being verified in
less time than before. As program verification continues to mature, it may become a more
important control to ensure the security of programs.

Programming Practice Conclusions

None of the development controls described here can guarantee the security or quality of a system.
As Brooks often points out [BRO87], the software development community seeks, but is not likely to
find, a "silver bullet": a tool, technique, or method that will dramatically improve the quality of
software developed. "There is no single development in either technology or management technique
that by itself promises even one order-of-magnitude improvement in productivity, in reliability, in
simplicity." He bases this conjecture on the fact that software is complex, it must conform to the
infinite variety of human requirements, and it is abstract or invisible, leading to its being hard to
draw or envision. While software development technologiesdesign tools, process improvement
models, development methodologieshelp the process, software development is inherently
complicated and, therefore, prone to errors. This uncertainty does not mean that we should not
seek ways to improve; we should. However, we should be realistic and accept that no technique is
sure to prevent erroneous software. We should incorporate in our development practices those



techniques that reduce uncertainty and reduce risk. At the same time, we should be skeptical of new
technology, making sure each one can be shown to be reliable and effective.

In the early 1970s, Paul Karger and Roger Schell led a team to evaluate the security of the Multics
system for the U.S. Air Force. They republished their original report [KAR74] thirty years later with a
thoughtful analysis of how the security of Multics compares to the security of current systems
[KAR02]. Among their observations were that buffer overflows were almost impossible in Multics
because of support from the programming language, and security was easier to ensure because of
the simplicity and structure of the Multics design. Karger and Schell argue that we can and have
designed and implemented systems with both functionality and security.

Standards of Program Development

No software development organization worth its salt allows its developers to produce code at any
time in any manner. The good software development practices described earlier in this chapter have
all been validated by many years of practice. Although none is Brooks's mythical "silver bullet" that
guarantees program correctness, quality, or security, they all add demonstrably to the strength of
programs. Thus, organizations prudently establish standards for how programs are developed. Even
advocates of agile methods, which give developers an unusual degree of flexibility and autonomy,
encourage goal-directed behavior based on past experience and past success. Standards and
guidelines can capture wisdom from previous projects and increase the likelihood that the resulting
system will be correct. In addition, we want to ensure that the systems we build are reasonably
easy to maintain and are compatible with the systems with which they interact.

We can exercise some degree of administrative control over software development by considering
several kinds of standards or guidelines:

standards of design, including using specified design tools, languages, or methodologies, using
design diversity, and devising strategies for error handling and fault tolerance

standards of documentation, language, and coding style, including layout of code on the page,
choices of names of variables, and use of recognized program structures

standards of programming, including mandatory peer reviews, periodic code audits for
correctness, and compliance with standards

standards of testing, such as using program verification techniques, archiving test results for
future reference, using independent testers, evaluating test thoroughness, and encouraging
test diversity

standards of configuration management, to control access to and changes of stable or
completed program units

Standardization improves the conditions under which all developers work by establishing a common
framework so that no one developer is indispensable. It also allows carryover from one project to
another; lessons learned on previous projects become available for use by all on the next project.
Standards also assist in maintenance, since the maintenance team can find required information in
a well-organized program. However, we must take care that the standards do not unnecessarily
constrain the developers.

Firms concerned about security and committed to following software development standards often



perform security audits. In a security audit, an independent security evaluation team arrives
unannounced to check each project's compliance with standards and guidelines. The team reviews
requirements, designs, documentation, test data and plans, and code. Knowing that documents are
routinely scrutinized, a developer is unlikely to put suspicious code in a component in the first place.

Process Standards

You have two friends. Sonya is extremely well organized, she keeps lists of things to do, she always
knows where to find a tool or who has a particular book, and everything is done before it is needed.
Dorrie, on the other hand, is a mess. She can never find her algebra book, her desk has so many
piles of papers you cannot see the top, and she seems to deal with everything as a crisis because
she tends to ignore things until the last minute. Who would you choose to organize and run a major
social function, a new product launch, or a multiple-author paper? Most people would pick Sonya,
concluding that her organization skills are crucial. There is no guarantee that Sonya would do a
better job than Dorrie, but you might assume the chances are better with Sonya.

We know that software development is difficult in part because it has inherently human aspects that
are very difficult to judge in advance. Still, we may conclude that software built in an orderly
manner has a better chance of being good or secure.

The Software Engineering Institute developed the Capability Maturity Model (CMM) to assess
organizations, not products (see [HUM88] and [PAU93]). The International Standards Organization
(ISO) developed process standard ISO 9001 [ISO94], which is somewhat similar to the CMM (see
[PAU95]). Finally the U.S. National Security Agency (NSA) developed the System Security
Engineering CMM (SSE CMM, see [NSA95a]). All of these are process models, in that they
examine how an organization does something, not what it does. Thus, they judge consistency, and
many people extend consistency to quality. For views on that subject, see Bollinger and McGowan
[BOL91] and Curtis [CUR87]. El Emam [ELE95] has also looked at the reliability of measuring a
process.

Now go back to the original descriptions of Sonya and Dorrie. Who would make the better
developer? That question is tricky because many of us have friends like Dorrie who are fabulous
programmers, but we may also know great programmers who resemble Sonya. And some
successful teams have both. Order, structure, and consistency may lead to good software projects,
but it is not sure to be the only way to go.

Program Controls in General

This section has explored how to control for faults during the program development process. Some
controls apply to how a program is developed, and others establish restrictions on the program's
use. The best is a combination, the classic layered defense.

Is one control essential? Can one control be skipped if another is used? Although these are valid
questions, the security community does not have answers. Software development is both an art and
a science. As a creative activity, it is subject not only to the variety of human minds, but also to the
fallibility of humans. We cannot rigidly control the process and get the same results time after time,
as we can with a machine.

But creative humans can learn from their mistakes and shape their creations to account for



fundamental principles. Just as a great painter will achieve harmony and balance in a painting, a
good software developer who truly understands security will incorporate security into all phases of
development. Thus, even if you never become a security professional, this exposure to the needs
and shortcomings of security will influence many of your future actions. Unfortunately, many
developers do not have the opportunity to become sensitive to security issues, which probably
accounts for many of the unintentional security faults in today's programs.



3.6. Summary of Program Threats and Controls

This chapter has covered development issues in computer security: the kinds and effects of security
flaws, both unintentional and in malicious code, and the techniques that can help to control threats.
Malicious code receives a great deal of attention in the media; the colorful terminology certainly
draws people to stories about it, and the large numbers of affected systems ensure that major
malicious code attacks get wide visibility. But it is important for us to realize that the seriousness of
the threat and the degree of vulnerability should also cause people to pay attention. The total
amount of damage already done is not measurable, but it is certainly large. Many successful attacks
go undetectedfor now, at least. With the explosive growth in connectivity to massive public
networks such as the Internet, the exposure to threats is increasing dramatically. Yet the public
continues to increase its reliance on computers and networks, ignoring the obvious danger.

In this chapter, we considered two general classes of security flaws: those that compromise or
change data and those that affect computer service. There are essentially three controls on such
activities: development controls, operating system controls, and administrative controls.
Development controls limit software development activities, making it harder for a developer to
create malicious programs. These same controls are effective against inadvertent mistakes made by
developers. The operating system provides some degree of control by limiting access to computing
system objects. Finally, administrative controls limit the kinds of actions people can take.

These controls are important for more than simply the actions they prohibit. They have significant
positive effects that contribute to the overall quality of a system, from the points of view of
developer, maintainer, and user. Program controls help produce better software. Operating systems
limit access as a way of promoting the safe sharing of information among programs. And
administrative controls and standards improve system usability, reusability, and maintainability. For
all of them, the security features are a secondary but important aspect of the controls' goals.

Program controls are part of the more general problem of limiting the effect of one user on another.
In the next chapter, we consider the role of the operating system in regulating user interaction.



3.7. Terms and Concepts

program, 98

secure program, 99

fault, 100
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bug, 100

error, 100
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penetrate and patch, 100
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rabbit, 116
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Brain virus, 133

the Internet worm, 134
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penetration test, 172

passive fault detection, 172
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redundancy, 173
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configuration audit, 175

proof of program correctness, 177

program verification, 177

process standards, 180
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security audit, 180



3.8. Where the Field Is Headed

Software is increasingly used in systems which, should the software malfunction, may threaten life,
health, national security, the environment, or the economy. This situation means that developers,
regulators, and users place an increasing priority on high-confidence software: software for
which compelling evidence is required that it delivers a specified set of services in a manner that
satisfies specified critical properties. For this reason, we look to software engineering research to
help us build software that is not only more secure but also is of generally higher quality than the
software we build and use today. Thus, the security field can leverage work being done in other
domains on high-confidence software development.

The software engineering practices that offer us the most benefit can involve processes, products,
or resources. When software has tight quality constraints, we do not want to wait until the system is
developed to see if they are met. Rather, we want to see some evidence during development that
the completed system is likely to meet the quality requirements we have imposed. We want to have
confidence, based on compelling and objective evidence, that the risk associated with using a
system conforms with our willingness to tolerate that risk.

An assurance argument lays out the evidence, not only in terms of software properties but also in
terms of steps taken, resources used, and any other relevant issue that may have bearing on our
confidence in the software's quality. The Common Criteria (studied in Chapter 5) require such an
assurance case for security-critical systems. A framework for assurance arguments includes a
description of what assurance is required for the system, how the case will be made that the
required confidence is justified, what evidence is to be gathered, and how the evidence will be
combined and evaluated. Some such frameworks exist and are being used. However, assurance
argument frameworks suffer from several deficiencies:

They are strong on organization and layout but weak on process.

They emphasize repeated but narrow measurements instead of offering a broad perspective.

They offer no guidance on assurance for evolving systems.

Researchers at RAND and MITRE are addressing these issues. MITRE is mapping existing assurance
arguments to a common, machine-processable form, using two kinds of notations: Toulmin
structures, developed as a general framework for presenting and analyzing arguments in legal and
regulatory contexts, and Goal Structuring Notation, developed in the U.K.'s safety-critical software
community for structuring safety arguments. RAND researchers are examining questions of
confidence and assurance, particularly about how bodies of evidence and constructions of
arguments support confidence in the assurance case. In particular, RAND is determining how
assurance activities and techniques, such as reliability modeling and design-by-contract, fit into the
larger picture of providing an assurance argument.

At the same time, researchers are examining ways to make code self-stabilizing or self-healing.
Such systems can sense when they reach an illegitimate statethat is, an insecure oneand can
automatically return to a legitimate, secure state. The self-healing process is not as simple as
realizing a failure and correcting it in one step. Imagine, instead, that you awaken one morning and



discover that you are in poor physical shape, overweight, and bored. A program of exercise,
nutrition, and mental stimulation can gradually bring you back, but there may be some missteps
along the way. Similarly, a program team may realize that it has allowed many program
extensionssome perhaps maliciousto become integrated into the system and wants to return
gradually to a secure configuration. Dijkstra [DIJ74] introduced this concept, and Lamport [LAM84]
publicized it; it is closely related to the Byzantine generals problem [LAM82] that has been studied
in many similar contexts.

In looking to the future it is important not to forget the past. Every student of computer security
should know the foundational literature of computer security, including the works of Saltzer and
Schroeder [SAL75] and Lampson [LAM71]. We list other historical papers of interest in the "To
Learn More" section.



3.9. To Learn More

Some of the earliest examples of security vulnerabilities are programs that compromise data. To
read about them, start with the reports written by Anderson [AND72] and Ware [WAR79], both of
which contain observations that are still valid today. Then read the papers of Thompson [THO84]
and Schell [SCH79], and ask yourself why people act as if malicious code is a new phenomenon.

If you want good examples of flaws in many available commercial applications and the ways in
which they could have been avoided, consider the books by Whitaker and Thompson [WHI03a],
Andrews and Whitaker [AND06], Hoglund and McGraw [HOG04], and Howard et al. [HOW05].

Various examples of program flaws are described by Parker [PAR83] and Denning [DEN82]. The
volumes edited by Hoffman [HOF90] and Denning [DEN90a] are excellent collections on malicious
code. A good summary of current malicious code techniques and examples is presented by Denning
[DEN99].

Stoll's accounts of finding and dealing with intrusions are worth reading, both for their lighthearted
tone and for the serious situation they describe [STO88, STO89].

Software engineering principles are discussed by numerous authors. The books by Pfleeger et al.
[PFL01] and Pfleeger and Atlee [PFL06a] are good places to get an overview of the issues and
approaches. Corbató [COR91] reflects on why building complex systems is hard and how we can
improve our ability to build them.

The books by DeMarco and Lister [DEM87] and DeMarco [DEM95] are filled with sensible, creative
ways to address software development. More recent books about agile development and extreme
programming can give you a different perspective on software development; these techniques try to
address the need to develop products quickly in a constrained business environment. In 1975
Brooks wrote an excellent book called The Mythical Man-Month on the realities and limitations of
software development, which he updated and reissued in 1995 [BRO95]. Now over 30 years old, the
book still has valuable lessonsif only people would read and heed them.

The world does not lack models for solid development of security-critical software. Villarroel et al.
[VIL05] compare and contrast many recent models



3.10. Exercises

1. Suppose you are a customs inspector. You are responsible for checking suitcases for
secret compartments in which bulky items such as jewelry might be hidden. Describe
the procedure you would follow to check for these compartments.

2. Your boss hands you a microprocessor and its technical reference manual. You are
asked to check for undocumented features of the processor. Because of the number
of possibilities, you cannot test every operation code with every combination of
operands. Outline the strategy you would use to identify and characterize
unpublicized operations.

3. Your boss hands you a computer program and its technical reference manual. You
are asked to check for undocumented features of the program. How is this activity
similar to the task of the previous exercises? How does it differ? Which is the most
feasible? Why?

4. Could a computer program be used to automate testing for trapdoors? That is, could
you design a computer program that, given the source or object version of another
program and a suitable description, would reply Yes or No to show whether the
program had any trapdoors? Explain your answer.

5. A program is written to compute the sum of the integers from 1 to 10. The
programmer, well trained in reusability and maintainability, writes the program so
that it computes the sum of the numbers from k to n. However, a team of security
specialists scrutinizes the code. The team certifies that this program properly sets k
to 1 and n to 10; therefore, the program is certified as being properly restricted in
that it always operates on precisely the range 1 to 10. List different ways that this
program can be sabotaged so that during execution it computes a different sum,
such as 3 to 20.

6. One means of limiting the effect of an untrusted program is confinement: controlling
what processes have access to the untrusted program and what access the program
has to other processes and data. Explain how confinement would apply to the earlier
example of the program that computes the sum of the integers 1 to 10.

7. List three controls that could be applied to detect or prevent salami attacks.

8. The distinction between a covert storage channel and a covert timing channel is not
clear-cut. Every timing channel can be transformed into an equivalent storage
channel. Explain how this transformation could be done.

9. List the limitations on the amount of information leaked per second through a covert
channel in a multiaccess computing system.



10. An electronic mail system could be used to leak information. First, explain how the
leakage could occur. Then, identify controls that could be applied to detect or prevent
the leakage.

11. Modularity can have a negative as well as a positive effect. A program that is
overmodularized performs its operations in very small modules, so a reader has
trouble acquiring an overall perspective on what the system is trying to do. That is,
although it may be easy to determine what individual modules do and what small
groups of modules do, it is not easy to understand what they do in their entirety as a
system. Suggest an approach that can be used during program development to
provide this perspective.

12. You are given a program that purportedly manages a list of items through hash
coding. The program is supposed to return the location of an item if the item is
present or to return the location where the item should be inserted if the item is not
in the list. Accompanying the program is a manual describing parameters such as the
expected format of items in the table, the table size, and the specific calling
sequence. You have only the object code of this program, not the source code. List
the cases you would apply to test the correctness of the program's function.

13. You are writing a procedure to add a node to a doubly linked list. The system on
which this procedure is to be run is subject to periodic hardware failures. The list
your program is to maintain is of great importance. Your program must ensure the
integrity of the list, even if the machine fails in the middle of executing your
procedure. Supply the individual statements you would use in your procedure to
update the list. (Your list should be fewer than a dozen statements long.) Explain the
effect of a machine failure after each instruction. Describe how you would revise this
procedure so that it would restore the integrity of the basic list after a machine
failure.

14. Explain how information in an access log could be used to identify the true identity of
an impostor who has acquired unauthorized access to a computing system. Describe
several different pieces of information in the log that could be combined to identify
the impostor.

15. Several proposals have been made for a processor that could decrypt encrypted data
and machine instructions and then execute the instructions on the data. The
processor would then encrypt the results. How would such a processor be useful?
What are the design requirements for such a processor?



Chapter 4. Protection in General-Purpose
Operating Systems

In this chapter

Protection features provided by general-purpose operating systems: protecting memory,
files, and the execution environment

Controlled access to objects

User authentication

In the previous chapter, we looked at several types of security problems that can occur in
programs. The problems may be unintentional, as with buffer overflows, or intentional, as when a
virus or worm is inserted in code. In addition to these general problems, some kinds of programs
may be vulnerable to certain kinds of security problems simply because of the nature of the
program itself. For example, operating systems and databases offer security challenges beyond
those in more general programs; these programs offer different access to different items by
different kinds of users, so program designers must pay careful attention to defining access,
granting access, and controlling intentional and unintentional corruption of data and relationships.
For this reason, we devote three chapters to these specialized programs and their particular security
concerns. In this chapter and the next, we study operating systems and their role in computer
security; we look at databases in Chapter 6.

An operating system has two goals: controlling shared access and implementing an interface to
allow that access. Underneath those goals are support activities, including identification and
authentication, naming, filing objects, scheduling, communication among processes, and reclaiming
and reusing objects. Operating system functions can be categorized as

access control

identity and credential management

information flow

audit and integrity protection

Each of these activities has security implications. Operating systems range from simple ones
supporting a single task at a time (such an operating system might run a personal digital assistant)



to complex multiuser, multitasking systems, and, naturally, security considerations increase as
operating systems become more complex.

We begin by studying the contributions that operating systems have made to user security. An
operating system supports multiprogramming (that is, the concurrent use of a system by more than
one user), so operating system designers have developed ways to protect one user's computation
from inadvertent or malicious interference by another user. Among those facilities provided for this
purpose are memory protection, file protection, general control of access to objects, and user
authentication. This chapter surveys the controls that provide these four features. We have oriented
this discussion to the user: How do the controls protect users, and how do users apply those
controls? In the next chapter, we see how operating system design is affected by the need to
separate levels of security considerations for particular users.

There are many commercially available operating systems, but we draw examples largely from two
families: the Microsoft Windows NT, 2000, XP, 2003 Server, and Vista operating systems (which we
denote NT+) and Unix, Linux, and their derivatives (which we call Unix+). Other proprietary
operating systems are in wide use, notably Apple's Mac OS X (based on a system called Darwin that
is derived from Mach and FreeBSD) and IBM's z/OS, the successor to S/390, but for security
purposes, NT+ and Unix+ are the most widely known.



4.1. Protected Objects and Methods of Protection

We begin by reviewing the history of protection in operating systems. This background helps us
understand what kinds of things operating systems can protect and what methods are available for
protecting them. (Readers who already have a good understanding of operating system capabilities
may want to jump to Section 4.3.)

A Bit of History

Once upon a time, there were no operating systems: Users entered their programs directly into the
machine in binary by means of switches. In many cases, program entry was done by physical
manipulation of a toggle switch; in other cases, the entry was performed with a more complex
electronic method, by means of an input device such as a keyboard. Because each user had
exclusive use of the computing system, users were required to schedule blocks of time for running
the machine. These users were responsible for loading their own libraries of support
routinesassemblers, compilers, shared subprogramsand "cleaning up" after use by removing any
sensitive code or data.

The first operating systems were simple utilities, called executives, designed to assist individual
programmers and to smooth the transition from one user to another. The early executives provided
linkers and loaders for relocation, easy access to compilers and assemblers, and automatic loading
of subprograms from libraries. The executives handled the tedious aspects of programmer support,
focusing on a single programmer during execution.

Operating systems took on a much broader role (and a different name) as the notion of
multiprogramming was implemented. Realizing that two users could interleave access to the
resources of a single computing system, researchers developed concepts such as scheduling,
sharing, and parallel use. Multiprogrammed operating systems, also known as monitors,
oversaw each program's execution. Monitors took an active role, whereas executives were passive.
That is, an executive stayed in the background, waiting to be called into service by a requesting
user. But a monitor actively asserted control of the computing system and gave resources to the
user only when the request was consistent with general good use of the system. Similarly, the
executive waited for a request and provided service on demand; the monitor maintained control
over all resources, permitting or denying all computing and loaning resources to users as they
needed them.

Multiprogramming brought another important change to computing. When a single person was using
a system, the only force to be protected against was the user himself or herself. A user making an
error may have felt foolish, but one user could not adversely affect the computation of any other
user. However, multiple users introduced more complexity and risk. User A might rightly be angry if
User B's programs or data had a negative effect on A's program's execution. Thus, protecting one
user's programs and data from other users' programs became an important issue in
multiprogrammed operating systems.



Protected Objects

In fact, the rise of multiprogramming meant that several aspects of a computing system required
protection:

memory

sharable I/O devices, such as disks

serially reusable I/O devices, such as printers and tape drives

sharable programs and subprocedures

networks

sharable data

As it assumed responsibility for controlled sharing, the operating system had to protect these
objects. In the following sections, we look at some of the mechanisms with which operating systems
have enforced these objects' protection. Many operating system protection mechanisms have been
supported by hardware. But, as noted in Sidebar 4-1, that approach is not always possible.

Security Methods of Operating Systems

The basis of protection is separation: keeping one user's objects separate from other users.
Rushby and Randell [RUS83] note that separation in an operating system can occur in several ways:

Sidebar 4-1: Hardware-Enforced Protection

From the 1960s to the 1980s, vendors produced both hardware and the software to run
on it. The major mainframe operating systemssuch as IBM's MVS, Digital Equipment's
VAX, and Burroughs's and GE's operating systems, as well as research systems such as
KSOS, PSOS, KVM, Multics, and SCOMPwere designed to run on one family of hardware.
The VAX family, for example, used a hardware design that implemented four distinct
protection levels: Two were reserved for the operating system, a third for system
utilities, and the last went to users' applications. This structure put essentially three
distinct walls around the most critical functions, including those that implemented
security. Anything that allowed the user to compromise the wall between user state and
utility state still did not give the user access to the most sensitive protection features. A
BiiN operating system from the late 1980s offered an amazing 64,000 different levels of
protection (or separation) enforced by the hardware.

Two factors changed this situation. First, the U.S. government sued IBM in 1969,
claiming that IBM had exercised unlawful monopolistic practices. As a consequence,
during the 1970s IBM made its hardware available to run with other vendors' operating
systems (thereby opening its specifications to competitors). This relaxation encouraged



more openness in operating system selection: Users were finally able to buy hardware
from one manufacturer and go elsewhere for some or all of the operating system.
Second, the Unix operating system, begun in the early 1970s, was designed to be
largely independent of the hardware on which it ran. A small kernel had to be recoded
for each different kind of hardware platform, but the bulk of the operating system,
running on top of that kernel, could be ported without change.

These two situations together meant that the operating system could no longer depend
on hardware support for all its critical functionality. So, although an operating system
might still be structured to reach several states, the underlying hardware might enforce
separation between only two of those states, with the remainder being enforced in
software.

Today three of the most prevalent families of operating systemsthe Windows
NT/2000/XP series, Unix, and Linuxrun on many different kinds of hardware. (Only
Apple's Mac OS is strongly integrated with its hardware base.) The default expectation is
one level of hardwareenforced separation (two states). This situation means that an
attacker is only one step away from complete system compromise through a "get_root"
exploit. (See this chapter's "Where the Field Is Headed" section to read of a recent
Microsoft initiative to reintroduce hardware-enforced separation for security-critical code
and data.)

physical separation, in which different processes use different physical objects, such as
separate printers for output requiring different levels of security

temporal separation, in which processes having different security requirements are executed at
different times

logical separation, in which users operate under the illusion that no other processes exist, as
when an operating system constrains a program's accesses so that the program cannot access
objects outside its permitted domain

cryptographic separation, in which processes conceal their data and computations in such a
way that they are unintelligible to outside processes

Of course, combinations of two or more of these forms of separation are also possible.

The categories of separation are listed roughly in increasing order of complexity to implement, and,
for the first three, in decreasing order of the security provided. However, the first two approaches
are very stringent and can lead to poor resource utilization. Therefore, we would like to shift the
burden of protection to the operating system to allow concurrent execution of processes having
different security needs.

But separation is only half the answer. We want to separate users and their objects, but we also
want to be able to provide sharing for some of those objects. For example, two users with different
security levels may want to invoke the same search algorithm or function call. We would like the
users to be able to share the algorithms and functions without compromising their individual
security needs. An operating system can support separation and sharing in several ways, offering
protection at any of several levels.



Do not protect. Operating systems with no protection are appropriate when sensitive
procedures are being run at separate times.

Isolate. When an operating system provides isolation, different processes running concurrently
are unaware of the presence of each other. Each process has its own address space, files, and
other objects. The operating system must confine each process somehow so that the objects of
the other processes are completely concealed.

Share all or share nothing. With this form of protection, the owner of an object declares it to
be public or private. A public object is available to all users, whereas a private object is
available only to its owner.

Share via access limitation. With protection by access limitation, the operating system checks
the allowability of each user's potential access to an object. That is, access control is
implemented for a specific user and a specific object. Lists of acceptable actions guide the
operating system in determining whether a particular user should have access to a particular
object. In some sense, the operating system acts as a guard between users and objects,
ensuring that only authorized accesses occur.

Share by capabilities. An extension of limited access sharing, this form of protection allows
dynamic creation of sharing rights for objects. The degree of sharing can depend on the owner
or the subject, on the context of the computation, or on the object itself.

Limit use of an object. This form of protection limits not just the access to an object but the
use made of that object after it has been accessed. For example, a user may be allowed to
view a sensitive document, but not to print a copy of it. More powerfully, a user may be
allowed access to data in a database to derive statistical summaries (such as average salary at
a particular grade level), but not to determine specific data values (salaries of individuals).

Again, these modes of sharing are arranged in increasing order of difficulty to implement, but also
in increasing order of fineness of protection they provide. A given operating system may provide
different levels of protection for different objects, users, or situations.

When we think about data, we realize that access can be controlled at various levels: the bit, the
byte, the element or word, the field, the record, the file, or the volume. Thus, the granularity of
control concerns us. The larger the level of object controlled, the easier it is to implement access
control. However, sometimes the operating system must allow access to more than the user needs.
For example, with large objects, a user needing access only to part of an object (such as a single
record in a file) must be given access to the entire object (the whole file).

Let us examine in more detail several different kinds of objects and their specific kinds of protection.



4.2. Memory and Address Protection

The most obvious problem of multiprogramming is preventing one program from affecting the data
and programs in the memory space of other users. Fortunately, protection can be built into the
hardware mechanisms that control efficient use of memory, so solid protection can be provided at
essentially no additional cost.

Fence

The simplest form of memory protection was introduced in single-user operating systems to prevent
a faulty user program from destroying part of the resident portion of the operating system. As its
name implies, a fence is a method to confine users to one side of a boundary.

In one implementation, the fence was a predefined memory address, enabling the operating system
to reside on one side and the user to stay on the other. An example of this situation is shown in
Figure 4-1. Unfortunately, this kind of implementation was very restrictive because a predefined
amount of space was always reserved for the operating system, whether it was needed or not. If
less than the predefined space was required, the excess space was wasted. Conversely, if the
operating system needed more space, it could not grow beyond the fence boundary.

Figure 4-1. Fixed Fence.



Another implementation used a hardware register, often called a fence register, containing the
address of the end of the operating system. In contrast to a fixed fence, in this scheme the location
of the fence could be changed. Each time a user program generated an address for data
modification, the address was automatically compared with the fence address. If the address was
greater than the fence address (that is, in the user area), the instruction was executed; if it was less
than the fence address (that is, in the operating system area), an error condition was raised. The
use of fence registers is shown in Figure 4-2.

Figure 4-2. Variable Fence Register.

A fence register protects only in one direction. In other words, an operating system can be
protected from a single user, but the fence cannot protect one user from another user. Similarly, a
user cannot identify certain areas of the program as inviolable (such as the code of the program
itself or a read-only data area).

Relocation

If the operating system can be assumed to be of a fixed size, programmers can write their code
assuming that the program begins at a constant address. This feature of the operating system
makes it easy to determine the address of any object in the program. However, it also makes it
essentially impossible to change the starting address if, for example, a new version of the operating
system is larger or smaller than the old. If the size of the operating system is allowed to change,
then programs must be written in a way that does not depend on placement at a specific location in
memory.



Relocation is the process of taking a program written as if it began at address 0 and changing all
addresses to reflect the actual address at which the program is located in memory. In many
instances, this effort merely entails adding a constant relocation factor to each address of the
program. That is, the relocation factor is the starting address of the memory assigned for the
program.

Conveniently, the fence register can be used in this situation to provide an important extra benefit:
The fence register can be a hardware relocation device. The contents of the fence register are added
to each program address. This action both relocates the address and guarantees that no one can
access a location lower than the fence address. (Addresses are treated as unsigned integers, so
adding the value in the fence register to any number is guaranteed to produce a result at or above
the fence address.) Special instructions can be added for the few times when a program legitimately
intends to access a location of the operating system.

Base/Bounds Registers

A major advantage of an operating system with fence registers is the ability to relocate; this
characteristic is especially important in a multiuser environment. With two or more users, none can
know in advance where a program will be loaded for execution. The relocation register solves the
problem by providing a base or starting address. All addresses inside a program are offsets from
that base address. A variable fence register is generally known as a base register.

Fence registers provide a lower bound (a starting address) but not an upper one. An upper bound
can be useful in knowing how much space is allotted and in checking for overflows into "forbidden"
areas. To overcome this difficulty, a second register is often added, as shown in Figure 4-3. The
second register, called a bounds register, is an upper address limit, in the same way that a base
or fence register is a lower address limit. Each program address is forced to be above the base
address because the contents of the base register are added to the address; each address is also
checked to ensure that it is below the bounds address. In this way, a program's addresses are
neatly confined to the space between the base and the bounds registers.

Figure 4-3. Pair of Base/Bounds Registers.



This technique protects a program's addresses from modification by another user. When execution
changes from one user's program to another's, the operating system must change the contents of
the base and bounds registers to reflect the true address space for that user. This change is part of
the general preparation, called a context switch, that the operating system must perform when
transferring control from one user to another.

With a pair of base/bounds registers, a user is perfectly protected from outside users, or, more
correctly, outside users are protected from errors in any other user's program. Erroneous addresses
inside a user's address space can still affect that program because the base/bounds checking
guarantees only that each address is inside the user's address space. For example, a user error
might occur when a subscript is out of range or an undefined variable generates an address
reference within the user's space but, unfortunately, inside the executable instructions of the user's
program. In this manner, a user can accidentally store data on top of instructions. Such an error
can let a user inadvertently destroy a program, but (fortunately) only the user's own program.

We can solve this overwriting problem by using another pair of base/bounds registers, one for the
instructions (code) of the program and a second for the data space. Then, only instruction fetches
(instructions to be executed) are relocated and checked with the first register pair, and only data
accesses (operands of instructions) are relocated and checked with the second register pair. The use
of two pairs of base/bounds registers is shown in Figure 4-4. Although two pairs of registers do not
prevent all program errors, they limit the effect of data-manipulating instructions to the data space.
The pairs of registers offer another more important advantage: the ability to split a program into
two pieces that can be relocated separately.

Figure 4-4. Two Pairs of Base/Bounds Registers.



These two features seem to call for the use of three or more pairs of registers: one for code, one for
read-only data, and one for modifiable data values. Although in theory this concept can be
extended, two pairs of registers are the limit for practical computer design. For each additional pair
of registers (beyond two), something in the machine code of each instruction must indicate which
relocation pair is to be used to address the instruction's operands. That is, with more than two pairs,
each instruction specifies one of two or more data spaces. But with only two pairs, the decision can
be automatic: instructions with one pair, data with the other.

Tagged Architecture

Another problem with using base/bounds registers for protection or relocation is their contiguous
nature. Each pair of registers confines accesses to a consecutive range of addresses. A compiler or
loader can easily rearrange a program so that all code sections are adjacent and all data sections
are adjacent.

However, in some cases you may want to protect some data values but not all. For example, a
personnel record may require protecting the field for salary but not office location and phone
number. Moreover, a programmer may want to ensure the integrity of certain data values by
allowing them to be written when the program is initialized but prohibiting the program from
modifying them later. This scheme protects against errors in the programmer's own code. A
programmer may also want to invoke a shared subprogram from a common library. We can address
some of these issues by using good design, both in the operating system and in the other programs
being run. Recall that in Chapter 3 we studied good design characteristics such as information
hiding and modularity in program design. These characteristics dictate that one program module
must share with another module only the minimum amount of data necessary for both of them to do
their work.



Additional, operating-system-specific design features can help, too. Base/bounds registers create an
all-or-nothing situation for sharing: Either a program makes all its data available to be accessed and
modified or it prohibits access to all. Even if there were a third set of registers for shared data, all
data would need to be located together. A procedure could not effectively share data items A, B,
and C with one module, A, C, and D with a second, and A, B, and D with a third. The only way to
accomplish the kind of sharing we want would be to move each appropriate set of data values to
some contiguous space. However, this solution would not be acceptable if the data items were large
records, arrays, or structures.

An alternative is tagged architecture, in which every word of machine memory has one or more
extra bits to identify the access rights to that word. These access bits can be set only by privileged
(operating system) instructions. The bits are tested every time an instruction accesses that location.

For example, as shown in Figure 4-5, one memory location may be protected as execute-only (for
example, the object code of instructions), whereas another is protected for fetch-only (for example,
read) data access, and another accessible for modification (for example, write). In this way, two
adjacent locations can have different access rights. Furthermore, with a few extra tag bits, different
classes of data (numeric, character, address or pointer, and undefined) can be separated, and data
fields can be protected for privileged (operating system) access only.

Figure 4-5. Example of Tagged Architecture.



This protection technique has been used on a few systems, although the number of tag bits has
been rather small. The Burroughs B6500-7500 system used three tag bits to separate data words
(three types), descriptors (pointers), and control words (stack pointers and addressing control
words). The IBM System/38 used a tag to control both integrity and access.

A variation used one tag that applied to a group of consecutive locations, such as 128 or 256 bytes.
With one tag for a block of addresses, the added cost for implementing tags was not as high as with
one tag per location. The Intel I960 extended architecture processor used a tagged architecture with
a bit on each memory word that marked the word as a "capability," not as an ordinary location for
data or instructions. A capability controlled access to a variable-sized memory block or segment.
This large number of possible tag values supported memory segments that ranged in size from 64
to 4 billion bytes, with a potential 2256 different protection domains.

Compatibility of code presented a problem with the acceptance of a tagged architecture. A tagged
architecture may not be as useful as more modern approaches, as we see shortly. Some of the
major computer vendors are still working with operating systems that were designed and
implemented many years ago for architectures of that era. Indeed, most manufacturers are locked
into a more conventional memory architecture because of the wide availability of components and a
desire to maintain compatibility among operating systems and machine families. A tagged
architecture would require fundamental changes to substantially all the operating system code, a
requirement that can be prohibitively expensive. But as the price of memory continues to fall, the
implementation of a tagged architecture becomes more feasible.

Segmentation

We present two more approaches to protection, each of which can be implemented on top of a
conventional machine structure, suggesting a better chance of acceptance. Although these
approaches are ancient by computing's standardsthey were designed between 1965 and 1975they
have been implemented on many machines since then. Furthermore, they offer important
advantages in addressing, with memory protection being a delightful bonus.

The first of these two approaches, segmentation, involves the simple notion of dividing a program
into separate pieces. Each piece has a logical unity, exhibiting a relationship among all of its code or
data values. For example, a segment may be the code of a single procedure, the data of an array,
or the collection of all local data values used by a particular module. Segmentation was developed
as a feasible means to produce the effect of the equivalent of an unbounded number of base/bounds
registers. In other words, segmentation allows a program to be divided into many pieces having
different access rights.

Each segment has a unique name. A code or data item within a segment is addressed as the pair
<name, offset>, where name is the name of the segment containing the data item and offset is its
location within the segment (that is, its distance from the start of the segment).

Logically, the programmer pictures a program as a long collection of segments. Segments can be
separately relocated, allowing any segment to be placed in any available memory locations. The
relationship between a logical segment and its true memory position is shown in Figure 4-6.

Figure 4-6. Logical and Physical Representation of Segments.



The operating system must maintain a table of segment names and their true addresses in memory.
When a program generates an address of the form <name, offset>, the operating system looks up
name in the segment directory and determines its real beginning memory address. To that address
the operating system adds offset, giving the true memory address of the code or data item. This
translation is shown in Figure 4-7. For efficiency there is usually one operating system segment
address table for each process in execution. Two processes that need to share access to a single
segment would have the same segment name and address in their segment tables.

Figure 4-7. Translation of Segment Address.



Thus, a user's program does not know what true memory addresses it uses. It has no wayand no
needto determine the actual address associated with a particular <name, offset>. The <name,
offset> pair is adequate to access any data or instruction to which a program should have access.

This hiding of addresses has three advantages for the operating system.

The operating system can place any segment at any location or move any segment to any
location, even after the program begins to execute. Because it translates all address references
by a segment address table, the operating system needs only update the address in that one
table when a segment is moved.

A segment can be removed from main memory (and stored on an auxiliary device) if it is not
being used currently.

Every address reference passes through the operating system, so there is an opportunity to
check each one for protection.

Because of this last characteristic, a process can access a segment only if that segment appears in
that process's segment translation table. The operating system controls which programs have
entries for a particular segment in their segment address tables. This control provides strong
protection of segments from access by unpermitted processes. For example, program A might have
access to segments BLUE and GREEN of user X but not to other segments of that user or of any
other user. In a straightforward way we can allow a user to have different protection classes for
different segments of a program. For example, one segment might be read-only data, a second
might be execute-only code, and a third might be writeable data. In a situation like this one,
segmentation can approximate the goal of separate protection of different pieces of a program, as



outlined in the previous section on tagged architecture.

Segmentation offers these security benefits:

Each address reference is checked for protection.

Many different classes of data items can be assigned different levels of protection.

Two or more users can share access to a segment, with potentially different access rights.

A user cannot generate an address or access to an unpermitted segment.

One protection difficulty inherent in segmentation concerns segment size. Each segment has a
particular size. However, a program can generate a reference to a valid segment name, but with an
offset beyond the end of the segment. For example, reference <A,9999> looks perfectly valid, but
in reality segment A may be only 200 bytes long. If left unplugged, this security hole could allow a
program to access any memory address beyond the end of a segment just by using large values of
offset in an address.

This problem cannot be stopped during compilation or even when a program is loaded, because
effective use of segments requires that they be allowed to grow in size during execution. For
example, a segment might contain a dynamic data structure such as a stack. Therefore, secure
implementation of segmentation requires checking a generated address to verify that it is not
beyond the current end of the segment referenced. Although this checking results in extra expense
(in terms of time and resources), segmentation systems must perform this check; the segmentation
process must maintain the current segment length in the translation table and compare every
address generated.

Thus, we need to balance protection with efficiency, finding ways to keep segmentation as efficient
as possible. However, efficient implementation of segmentation presents two problems: Segment
names are inconvenient to encode in instructions, and the operating system's lookup of the name in
a table can be slow. To overcome these difficulties, segment names are often converted to numbers
by the compiler when a program is translated; the compiler also appends a linkage table matching
numbers to true segment names. Unfortunately, this scheme presents an implementation difficulty
when two procedures need to share the same segment because the assigned segment numbers of
data accessed by that segment must be the same.

Paging

One alternative to segmentation is paging. The program is divided into equal-sized pieces called
pages, and memory is divided into equal-sized units called page frames. (For implementation
reasons, the page size is usually chosen to be a power of two between 512 and 4096 bytes.) As with
segmentation, each address in a paging scheme is a two-part object, this time consisting of <page,
offset>.

Each address is again translated by a process similar to that of segmentation: The operating system
maintains a table of user page numbers and their true addresses in memory. The page portion of
every <page, offset> reference is converted to a page frame address by a table lookup; the offset
portion is added to the page frame address to produce the real memory address of the object
referred to as <page, offset>. This process is illustrated in Figure 4-8.



Figure 4-8. Page Address Translation.

Unlike segmentation, all pages in the paging approach are of the same fixed size, so fragmentation
is not a problem. Each page can fit in any available page in memory, and thus there is no problem
of addressing beyond the end of a page. The binary form of a <page, offset> address is designed so
that the offset values fill a range of bits in the address. Therefore, an offset beyond the end of a
particular page results in a carry into the page portion of the address, which changes the address.

To see how this idea works, consider a page size of 1024 bytes (1024 = 210), where 10 bits are
allocated for the offset portion of each address. A program cannot generate an offset value larger
than 1023 in 10 bits. Moving to the next location after <x,1023> causes a carry into the page
portion, thereby moving translation to the next page. During the translation, the paging process
checks to verify that a <page, offset>reference does not exceed the maximum number of pages the
process has defined.

With a segmentation approach, a programmer must be conscious of segments. However, a
programmer is oblivious to page boundaries when using a paging-based operating system.
Moreover, with paging there is no logical unity to a page; a page is simply the next 2n bytes of the
program. Thus, a change to a program, such as the addition of one instruction, pushes all
subsequent instructions to lower addresses and moves a few bytes from the end of each page to the
start of the next. This shift is not something about which the programmer need be concerned
because the entire mechanism of paging and address translation is hidden from the programmer.



However, when we consider protection, this shift is a serious problem. Because segments are logical
units, we can associate different segments with individual protection rights, such as read-only or
execute-only. The shifting can be handled efficiently during address translation. But with paging
there is no necessary unity to the items on a page, so there is no way to establish that all values on
a page should be protected at the same level, such as read-only or execute-only.

Combined Paging with Segmentation

We have seen how paging offers implementation efficiency, while segmentation offers logical
protection characteristics. Since each approach has drawbacks as well as desirable features, the two
approaches have been combined.

The IBM 390 family of mainframe systems used a form of paged segmentation. Similarly, the
Multics operating system (implemented on a GE-645 machine) applied paging on top of
segmentation. In both cases, the programmer could divide a program into logical segments. Each
segment was then broken into fixed-size pages. In Multics, the segment name portion of an address
was an 18-bit number with a 16-bit offset. The addresses were then broken into 1024-byte pages.
The translation process is shown in Figure 4-9. This approach retained the logical unity of a segment
and permitted differentiated protection for the segments, but it added an additional layer of
translation for each address. Additional hardware improved the efficiency of the implementation.

Figure 4-9. Paged Segmentation.
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4.3. Control of Access to General Objects

Protecting memory is a specific case of the more general problem of protecting objects . As
multiprogramming has developed, the numbers and kinds of objects shared have also increased.
Here are some examples of the kinds of objects for which protection is desirable:

memory

a file or data set on an auxiliary storage device

an executing program in memory

a directory of files

a hardware device

a data structure, such as a stack

a table of the operating system

instructions, especially privileged instructions

passwords and the user authentication mechanism

the protection mechanism itself

The memory protection mechanism can be fairly simple because every memory access is
guaranteed to go through certain points in the hardware. With more general objects, the number of
points of access may be larger, a central authority through which all accesses pass may be lacking,
and the kind of access may not simply be limited to read, write, or execute.

Furthermore, all accesses to memory occur through a program, so we can refer to the program or
the programmer as the accessing agent. In this book, we use terms like the user or the subject in
describing an access to a general object. This user or subject could be a person who uses a
computing system, a programmer, a program, another object, or something else that seeks to use
an object.

There are several complementary goals in protecting objects.

Check every access. We may want to revoke a user's privilege to access an object. If we have
previously authorized the user to access the object, we do not necessarily intend that the user
should retain indefinite access to the object. In fact, in some situations, we may want to
prevent further access immediately after we revoke authorization. For this reason, every
access by a user to an object should be checked.

Enforce least privilege. The principle of least privilege states that a subject should have access
to the smallest number of objects necessary to perform some task. Even if extra information



would be useless or harmless if the subject were to have access, the subject should not have
that additional access. For example, a program should not have access to the absolute
memory address to which a page number reference translates, even though the program could
not use that address in any effective way. Not allowing access to unnecessary objects guards
against security weaknesses if a part of the protection mechanism should fail.

Verify acceptable usage. Ability to access is a yes-or-no decision. But it is equally important to
check that the activity to be performed on an object is appropriate. For example, a data
structure such as a stack has certain acceptable operations, including push , pop , clear , and
so on. We may want not only to control who or what has access to a stack but also to be
assured that the accesses performed are legitimate stack accesses.

In the next section we consider protection mechanisms appropriate for general objects of
unspecified types, such as the kinds of objects listed above. To make the explanations easier to
understand, we sometimes use an example of a specific object, such as a file. Note, however, that a
general mechanism can be used to protect any of the types of objects listed.

Directory

One simple way to protect an object is to use a mechanism that works like a file directory . Imagine
we are trying to protect files (the set of objects) from users of a computing system (the set of
subjects). Every file has a unique owner who possesses "control" access rights (including the rights
to declare who has what access) and to revoke access to any person at any time. Each user has a
file directory, which lists all the files to which that user has access.

Clearly, no user can be allowed to write in the file directory because that would be a way to forge
access to a file. Therefore, the operating system must maintain all file directories, under commands
from the owners of files. The obvious rights to files are the common read , write , and execute
familiar on many shared systems. Furthermore, another right, owner , is possessed by the owner,
permitting that user to grant and revoke access rights. Figure 4-10 shows an example of a file
directory.

Figure 4-10. Directory Access.

[View full size image]



This approach is easy to implement because it uses one list per user, naming all the objects that
user is allowed to access. However, several difficulties can arise. First, the list becomes too large if
many shared objects, such as libraries of subprograms or a common table of users, are accessible
to all users. The directory of each user must have one entry for each such shared object, even if the
user has no intention of accessing the object. Deletion must be reflected in all directories. (See
Sidebar 4-2 for a different issue concerning deletion of objects.)

A second difficulty is revocation of access . If owner A has passed to user B the right to read file F
, an entry for F is made in the directory for B . This granting of access implies a level of trust
between A and B . If A later questions that trust, A may want to revoke the access right of B . The
operating system can respond easily to the single request to delete the right of B to access F
because that action involves deleting one entry from a specific directory. But if A wants to remove
the rights of everyone to access F , the operating system must search each individual directory for
the entry F , an activity that can be time consuming on a large system. For example, large
timesharing systems or networks of smaller systems can easily have 5,000 to 10,000 active
accounts. Moreover, B may have passed the access right for F to another user, so A may not know
that F 's access exists and should be revoked. This problem is particularly serious in a network.



Sidebar 4-2: "Out, Damned Spot! Out, I Say!"

Shakespeare's Lady Macbeth symbolically and obsessively sought to remove from her
hands the blood of the man her husband had murdered at her instigation. As others
have found (less dramatically), removing bits can be real, critical, and challenging.

Early Microsoft operating systems didn't actually erase a deleted file; they simply
flagged its directory entry to show the file had been deleted. A user who accidentally
deleted a file could recover the file by resetting the flag in the directory. Now Microsoft
implements a recycle bin (originally an idea from Apple).

What happens to the bits of deleted files? In early multiuser operating systems, it was
possible to retrieve someone else's data by looking through the trash. The technique
was to create a large file, and then before writing to the file, read from it to get the
contents previously written in that memory or storage space. Although an attacker had
to restructure the data (blocks might not be stored contiguously, and a large space
might include scraps of data from several other users), sensitive data could be found
with some luck and some work. This flaw led to an operating system's enforcing "object
reuse." The operating system had to ensure that no residue from a previous user was
accessible by another. The operating system could erase (for example, overwrite with
all 0s) all storage being assigned to a new user, or it could enforce a policy that a user
could read from a space only after having written into it.

Magnetic devices retain some memory of what was written in an area. As President
Nixon's secretary discovered with her 17-minute gap, with specialized equipment
engineers can sometimes bring back something previously written and then written
over. This property, called "magnetic remanence," causes organizations with sensitive
data to require a seven- or more pass erasure, rewriting first with 0s, then with 1s, and
then with a random pattern of 0s and 1s. And agencies with the most sensitive data opt
to destroy the medium rather than risk inadvertent disclosure. Garfinkel and Shelat
discuss sanitizing magnetic media in [GAR03a] .

A third difficulty involves pseudonyms. Owners A and B may have two different files named F , and
they may both want to allow access by S . Clearly, the directory for S cannot contain two entries
under the same name for different files. Therefore, S has to be able to uniquely identify the F for A
(or B ). One approach is to include the original owner's designation as if it were part of the file
name, with a notation such as A :F (or B :F ).

Suppose, however, that S has trouble remembering file contents from the name F . Another
approach is to allow S to name F with any name unique to the directory of S . Then, F from A could
be called Q to S . As shown in Figure 4-11 , S may have forgotten that Q is F from A, and so S
requests access again from A for F . But by now A may have more trust in S , so A transfers F with
greater rights than before. This action opens up the possibility that one subject, S , may have two
distinct sets of access rights to F , one under the name Q and one under the name F . In this way,
allowing pseudonyms leads to multiple permissions that are not necessarily consistent. Thus, the
directory approach is probably too simple for most object protection situations.



Figure 4-11. Alternative Access Paths.

[View full size image]

Access Control List

An alternative representation is the access control list . There is one such list for each object, and
the list shows all subjects who should have access to the object and what their access is. This
approach differs from the directory list because there is one access control list per object ; a
directory is created for each subject. Although this difference seems small, there are some
significant advantages.

To see how, consider subjects A and S , both of whom have access to object F . The operating
system will maintain just one access list for F, showing the access rights for A and S , as shown in
Figure 4-12 . The access control list can include general default entries for any users. In this way,
specific users can have explicit rights, and all other users can have a default set of rights. With this
organization, a public file or program can be shared by all possible users of the system without the
need for an entry for the object in the individual directory of each user.

Figure 4-12. Access Control List.



The Multics operating system used a form of access control list in which each user belonged to three
protection classes: a user , a group , and a compartment . The user designation identified a specific
subject, and the group designation brought together subjects who had a common interest, such as
coworkers on a project. The compartment confined an untrusted object; a program executing in one
compartment could not access objects in another compartment without specific permission. The
compartment was also a way to collect objects that were related, such as all files for a single
project.

To see how this type of protection might work, suppose every user who initiates access to the
system identifies a group and a compartment with which to work. If Adams logs in as user Adams in
group Decl and compartment Art2 , only objects having Adams-Decl-Art2 in the access control list
are accessible in the session.

By itself, this kind of mechanism would be too restrictive to be usable. Adams cannot create general
files to be used in any session. Worse yet, shared objects would have not only to list Adams as a
legitimate subject but also to list Adams under all acceptable groups and all acceptable
compartments for each group.

The solution is the use of wild cards , meaning placeholders that designate "any user" (or "any
group" or "any compartment"). An access control list might specify access by Adams-Decl-Art1 ,
giving specific rights to Adams if working in group Decl on compartment Art1 . The list might also
specify Adams-*-Art1 , meaning that Adams can access the object from any group in compartment



Art1 . Likewise, a notation of *-Decl-* would mean "any user in group Decl in any compartment."
Different placements of the wildcard notation * have the obvious interpretations.

The access control list can be maintained in sorted order, with * sorted as coming after all specific
names. For example, Adams-Decl-* would come after all specific compartment designations for
Adams. The search for access permission continues just until the first match. In the protocol, all
explicit designations are checked before wild cards in any position, so a specific access right would
take precedence over a wildcard right. The last entry on an access list could be * -* -* , specifying
rights allowable to any user not explicitly on the access list. By using this wildcard device, a shared
public object can have a very short access list, explicitly naming the few subjects that should have
access rights different from the default.

Access Control Matrix

We can think of the directory as a listing of objects accessible by a single subject, and the access list
as a table identifying subjects that can access a single object. The data in these two representations
are equivalent, the distinction being the ease of use in given situations.

As an alternative, we can use an access control matrix , a table in which each row represents a
subject, each column represents an object, and each entry is the set of access rights for that subject
to that object. An example representation of an access control matrix is shown in Table 4-1 . In
general, the access control matrix is sparse (meaning that most cells are empty): Most subjects do
not have access rights to most objects. The access matrix can be represented as a list of triples,
having the form <subject , object , rights >. Searching a large number of these triples is inefficient
enough that this implementation is seldom used.

Table 4-1. Access Control Matrix.

  BIBLIOG TEMP F HELP.TXT C_COMP LINKER SYS_CLOCK PRINTER

USER A ORW ORW ORW R X X R W

USER B R - - R X X R W

USER S RW - R R X X R W

USER T - - - R X X R W

SYS_MGR - - - RW OX OX ORW O

USER_SVCS - - - O X X R W

Capability

So far, we have examined protection schemes in which the operating system must keep track of all
the protection objects and rights. But other approaches put some of the burden on the user. For
example, a user may be required to have a ticket or pass that enables access, much like a ticket or
identification card that cannot be duplicated. More formally, we say that a capability is an
unforgeable token that gives the possessor certain rights to an object. The Multics [SAL74] , CAL
[LAM76] , and Hydra [WUL74] systems used capabilities for access control. In theory, a subject can



create new objects and can specify the operations allowed on those objects. For example, users can
create objects, such as files, data segments, or subprocesses, and can also specify the acceptable
kinds of operations, such as read , write , and execute . But a user can also create completely new
objects, such as new data structures, and can define types of accesses previously unknown to the
system.

A capability is a ticket giving permission to a subject to have a certain type of access to an object.
For the capability to offer solid protection, the ticket must be unforgeable. One way to make it
unforgeable is to not give the ticket directly to the user. Instead, the operating system holds all
tickets on behalf of the users. The operating system returns to the user a pointer to an operating
system data structure, which also links to the user. A capability can be created only by a specific
request from a user to the operating system. Each capability also identifies the allowable accesses.

Alternatively, capabilities can be encrypted under a key available only to the access control
mechanism. If the encrypted capability contains the identity of its rightful owner, user A cannot
copy the capability and give it to user B .

One possible access right to an object is transfer or propagate . A subject having this right can pass
copies of capabilities to other subjects. In turn, each of these capabilities also has a list of permitted
types of accesses, one of which might also be transfer . In this instance, process A can pass a copy
of a capability to B, who can then pass a copy to C . B can prevent further distribution of the
capability (and therefore prevent further dissemination of the access right) by omitting the transfer
right from the rights passed in the capability to C . B might still pass certain access rights to C , but
not the right to propagate access rights to other subjects.

As a process executes, it operates in a domain or local name space . The domain is the collection
of objects to which the process has access. A domain for a user at a given time might include some
programs, files, data segments, and I/O devices such as a printer and a terminal. An example of a
domain is shown in Figure 4-13 .

Figure 4-13. Process Execution Domain.



As execution continues, the process may call a subprocedure, passing some of the objects to which
it has access as arguments to the subprocedure. The domain of the subprocedure is not necessarily
the same as that of its calling procedure; in fact, a calling procedure may pass only some of its
objects to the subprocedure, and the subprocedure may have access rights to other objects not
accessible to the calling procedure. The caller may also pass only some of its access rights for the
objects it passes to the subprocedure. For example, a procedure might pass to a subprocedure the
right to read but not modify a particular data value.

Because each capability identifies a single object in a domain, the collection of capabilities defines
the domain. When a process calls a subprocedure and passes certain objects to the subprocedure,
the operating system forms a stack of all the capabilities of the current procedure. The operating
system then creates new capabilities for the subprocedure, as shown in Figure 4-14 .

Figure 4-14. Passing Objects to a Subject.

Operationally, capabilities are a straightforward way to keep track of the access rights of subjects to
objects during execution. The capabilities are backed up by a more comprehensive table, such as an
access control matrix or an access control list. Each time a process seeks to use a new object, the
operating system examines the master list of objects and subjects to determine whether the object
is accessible. If so, the operating system creates a capability for that object.

Capabilities must be stored in memory inaccessible to normal users. One way of accomplishing this



is to store capabilities in segments not pointed at by the user's segment table or to enclose them in
protected memory as from a pair of base/bounds registers. Another approach is to use a tagged
architecture machine to identify capabilities as structures requiring protection.

During execution, only the capabilities of objects that have been accessed by the current process
are kept readily available. This restriction improves the speed with which access to an object can be
checked. This approach is essentially the one used in Multics, as described in [FAB74] .

Capabilities can be revoked. When an issuing subject revokes a capability, no further access under
the revoked capability should be permitted. A capability table can contain pointers to the active
capabilities spawned under it so that the operating system can trace what access rights should be
deleted if a capability is revoked. A similar problem is deleting capabilities for users who are no
longer active.

Kerberos

Fundamental research on capabilities laid the groundwork for subsequent production use in systems
such as Kerberos [STE88] (studied in greater detail in Chapter 7 ). Kerberos implements both
authentication and access authorization by means of capabilities, called tickets , secured with
symmetric cryptography. Microsoft has based much of its access control in NT+ on Kerberos.

Kerberos requires two systems, called the authentication server (AS) and the ticket-granting
server (TGS), which are both part of the key distribution center (KDC) . A user presents an
authenticating credential (such as a password) to the authentication server and receives a ticket
showing that the user has passed authentication. Obviously, the ticket must be encrypted to prevent
the user from modifying or forging one claiming to be a different user, and the ticket must contain
some provision to prevent one user from acquiring another user's ticket to impersonate that user.

Now let us suppose that a user, Joe, wants to access a resource R (for example, a file, printer, or
network port). Joe sends the TGS his authenticated ticket and a request to use R. Assuming Joe is
allowed access, the TGS returns to Joe two tickets: One shows Joe that his access to R has been
authorized, and the second is for Joe to present to R in order to access R.

Kerberos implements single sign-on ; that is, a user signs on once and from that point on all the
user's (allowable) actions are authorized without the user needing to sign on again. So if a user
wants access to a resource in a different domain, say on a different system or in a different
environment or even a different company or institution, as long as authorization rights have been
established between the two domains, the user's access takes place without the user's signing on to
a different system.

Kerberos accomplishes its local and remote authentication and authorization with a system of
shared secret encryption keys. In fact, each user's password is used as an encryption key. (That
trick also means that passwords are never exposed, reducing the risk from interception.) We study
the exact mechanism of Kerberos in Chapter 7 .

Procedure-Oriented Access Control

One goal of access control is restricting not just which subjects have access to an object, but also
what they can do to that object. Read versus write access can be controlled rather readily by most
operating systems, but more complex control is not so easy to achieve.



By procedure-oriented protection, we imply the existence of a procedure that controls access to
objects (for example, by performing its own user authentication to strengthen the basic protection
provided by the basic operating system). In essence, the procedure forms a capsule around the
object, permitting only certain specified accesses.

Procedures can ensure that accesses to an object be made through a trusted interface. For example,
neither users nor general operating system routines might be allowed direct access to the table of
valid users. Instead, the only accesses allowed might be through three procedures: one to add a
user, one to delete a user, and one to check whether a particular name corresponds to a valid user.
These procedures, especially add and delete, could use their own checks to make sure that calls to
them are legitimate.

Procedure-oriented protection implements the principle of information hiding because the means of
implementing an object are known only to the object's control procedure. Of course, this degree of
protection carries a penalty of inefficiency. With procedure-oriented protection, there can be no
simple, fast access, even if the object is frequently used.

Our survey of access control mechanisms has intentionally progressed from simple to complex.
Historically, as the mechanisms have provided greater flexibility, they have done so with a price of
increased overhead. For example, implementing capabilities that must be checked on each access is
far more difficult than implementing a simple directory structure that is checked only on a subject's
first access to an object. This complexity is apparent both to the user and to the implementer. The
user is aware of additional protection features, but the naïve user may be frustrated or intimidated
at having to select protection options with little understanding of their usefulness. The
implementation complexity becomes apparent in slow response to users. The balance between
simplicity and functionality is a continuing battle in security.

Role-Based Access Control

We have not yet distinguished among kinds of users, but we want some users (such as
administrators) to have significant privileges, and we want others (such as regular users or guests)
to have lower privileges. In companies and educational institutions, this can get complicated when
an ordinary user becomes an administrator or a baker moves to the candlestick makers' group.
Role-based access control lets us associate privileges with groups, such as all administrators can
do this or candlestick makers are forbidden to do this. Administering security is easier if we can
control access by job demands, not by person. Access control keeps up with a person who changes
responsibilities, and the system administrator does not have to choose the appropriate access
control settings for someone. For more details on the nuances of role-based access control, see
[FER03] .



4.4. File Protection Mechanisms

Until now, we have examined approaches to protecting a general object, no matter the object's
nature or type. But some protection schemes are particular to the type. To see how they work, we
focus in this section on file protection. The examples we present are only representative; they do
not cover all possible means of file protection on the market.

Basic Forms of Protection

We noted earlier that all multiuser operating systems must provide some minimal protection to keep
one user from maliciously or inadvertently accessing or modifying the files of another. As the
number of users has grown, so also has the complexity of these protection schemes.

AllNone Protection

In the original IBM OS operating systems, files were by default public. Any user could read, modify,
or delete a file belonging to any other user. Instead of software- or hardware-based protection, the
principal protection involved trust combined with ignorance. System designers supposed that users
could be trusted not to read or modify others' files because the users would expect the same
respect from others. Ignorance helped this situation, because a user could access a file only by
name; presumably users knew the names only of those files to which they had legitimate access.

However, it was acknowledged that certain system files were sensitive and that the system
administrator could protect them with a password. A normal user could exercise this feature, but
passwords were viewed as most valuable for protecting operating system files. Two philosophies
guided password use. Sometimes, passwords controlled all accesses (read, write, or delete), giving
the system administrator complete control over all files. But at other times passwords controled only
write and delete accesses because only these two actions affected other users. In either case, the
password mechanism required a system operator's intervention each time access to the file began.

However, this all-or-none protection is unacceptable for several reasons.

Lack of trust. The assumption of trustworthy users is not necessarily justified. For systems with
few users who all know each other, mutual respect might suffice; but in large systems where
not every user knows every other user, there is no basis for trust.

Too coarse. Even if a user identifies a set of trustworthy users, there is no convenient way to
allow access only to them.

Rise of sharing. This protection scheme is more appropriate for a batch environment, in which
users have little chance to interact with other users and in which users do their thinking and
exploring when not interacting with the system. However, on shared-use systems, users
interact with other users and programs representing other classes of users.



Complexity. Because (human) operator intervention is required for this file protection,
operating system performance is degraded. For this reason, this type of file protection is
discouraged by computing centers for all but the most sensitive data sets.

File listings. For accounting purposes and to help users remember for what files they are
responsible, various system utilities can produce a list of all files. Thus, users are not
necessarily ignorant of what files reside on the system. Interactive users may try to browse
through any unprotected files.

Group Protection

Because the all-or-nothing approach has so many drawbacks, researchers sought an improved way
to protect files. They focused on identifying groups of users who had some common relationship. In
a typical Unix+ implementation, the world is divided into three classes: the user, a trusted working
group associated with the user, and the rest of the users. For simplicity we can call these classes
user, group, and world. Windows NT+ uses groups such as Administrators, Power Users, Users, and
Guests. (NT+ administrators can also create other groups.)

All authorized users are separated into groups. A group may consist of several members working on
a common project, a department, a class, or a single user. The basis for group membership is need
to share. The group members have some common interest and therefore are assumed to have files
to share with the other group members. In this approach, no user belongs to more than one group.
(Otherwise, a member belonging to groups A and B could pass along an A file to another B group
member.)

When creating a file, a user defines access rights to the file for the user, for other members of the
same group, and for all other users in general. Typically, the choices for access rights are a limited
set, such as {update, readexecute, read, writecreatedelete}. For a particular file, a user might
declare read-only access to the general world, read and update access to the group, and all rights to
the user. This approach would be suitable for a paper being developed by a group, whereby the
different members of the group might modify sections being written within the group. The paper
itself should be available for people outside the group to review but not change.

A key advantage of the group protection approach is its ease of implementation. A user is
recognized by two identifiers (usually numbers): a user ID and a group ID. These identifiers are
stored in the file directory entry for each file and are obtained by the operating system when a user
logs in. Therefore, the operating system can easily check whether a proposed access to a file is
requested from someone whose group ID matches the group ID for the file to be accessed.

Although this protection scheme overcomes some of the shortcomings of the all-or-nothing scheme,
it introduces some new difficulties of its own.

Group affiliation. A single user cannot belong to two groups. Suppose Tom belongs to one
group with Ann and to a second group with Bill. If Tom indicates that a file is to be readable by
the group, to which group(s) does this permission refer? Suppose a file of Ann's is readable by
the group; does Bill have access to it? These ambiguities are most simply resolved by declaring
that every user belongs to exactly one group. (This restriction does not mean that all users
belong to the same group.)

Multiple personalities. To overcome the one-person one-group restriction, certain people might



obtain multiple accounts, permitting them, in effect, to be multiple users. This hole in the
protection approach leads to new problems because a single person can be only one user at a
time. To see how problems arise, suppose Tom obtains two accounts, thereby becoming Tom1
in a group with Ann and Tom2 in a group with Bill. Tom1 is not in the same group as Tom2, so
any files, programs, or aids developed under the Tom1 account can be available to Tom2 only
if they are available to the entire world. Multiple personalities lead to a proliferation of
accounts, redundant files, limited protection for files of general interest, and inconvenience to
users.

All groups. To avoid multiple personalities, the system administrator may decide that Tom
should have access to all his files any time he is active. This solution puts the responsibility on
Tom to control with whom he shares what things. For example, he may be in Group1 with Ann
and Group2 with Bill. He creates a Group1 file to share with Ann. But if he is active in Group2
the next time he is logged in, he still sees the Group1 file and may not realize that it is not
accessible to Bill, too.

Limited sharing. Files can be shared only within groups or with the world. Users want to be
able to identify sharing partners for a file on a per-file basis; for example, sharing one file with
ten people and another file with twenty others.

Individual Permissions

In spite of their drawbacks, the file protection schemes we have described are relatively simple and
straightforward. The simplicity of implementing them suggests other easy-to-manage methods that
provide finer degrees of security while associating permission with a single file.

Persistent Permission

From other contexts you are familiar with persistent permissions. The usual implementation of
such a scheme uses a name (you claim a dinner reservation under the name of Sanders), a token
(you show your driver's license or library card), or a secret (you say a secret word or give the club
handshake). Similarly, in computing you are allowed access by being on the access list, presenting a
token or ticket, or giving a password. User access permissions can be required for any access or
only for modifications (write access).

All these approaches present obvious difficulties in revocation: Taking someone off one list is easy,
but it is more complicated to find all lists authorizing someone and remove him or her. Reclaiming a
token or password is even more challenging.

Temporary Acquired Permission

Unix+ operating systems provide an interesting permission scheme based on a three-level
usergroupworld hierarchy. The Unix designers added a permission called set userid (suid). If this
protection is set for a file to be executed, the protection level is that of the file's owner, not the
executor. To see how it works, suppose Tom owns a file and allows Ann to execute it with suid.
When Ann executes the file, she has the protection rights of Tom, not of herself.

This peculiar-sounding permission has a useful application. It permits a user to establish data files



to which access is allowed only through specified procedures.

For example, suppose you want to establish a computerized dating service that manipulates a
database of people available on particular nights. Sue might be interested in a date for Saturday,
but she might have already refused a request from Jeff, saying she had other plans. Sue instructs
the service not to reveal to Jeff that she is available. To use the service, Sue, Jeff, and others must
be able to read the file and write to it (at least indirectly) to determine who is available or to post
their availability. But if Jeff can read the file directly, he would find that Sue has lied. Therefore,
your dating service must force Sue and Jeff (and all others) to access this file only through an
access program that would screen the data Jeff obtains. But if the file access is limited to read and
write by you as its owner, Sue and Jeff will never be able to enter data into it.

The solution is the Unix SUID protection. You create the database file, giving only you access
permission. You also write the program that is to access the database, and save it with the SUID
protection. Then, when Jeff executes your program, he temporarily acquires your access permission,
but only during execution of the program. Jeff never has direct access to the file because your
program will do the actual file access. When Jeff exits from your program, he regains his own access
rights and loses yours. Thus, your program can access the file, but the program must display to Jeff
only the data Jeff is allowed to see.

This mechanism is convenient for system functions that general users should be able to perform
only in a prescribed way. For example, only the system should be able to modify the file of users'
passwords, but individual users should be able to change their own passwords any time they wish.
With the SUID feature, a password change program can be owned by the system, which will
therefore have full access to the system password table. The program to change passwords also has
SUID protection so that when a normal user executes it, the program can modify the password file
in a carefully constrained way on behalf of the user.

Per-Object and Per-User Protection

The primary limitation of these protection schemes is the ability to create meaningful groups of
related users who should have similar access to related objects. The access control lists or access
control matrices described earlier provide very flexible protection. Their disadvantage is for the user
who wants to allow access to many users and to many different data sets; such a user must still
specify each data set to be accessed by each user. As a new user is added, that user's special
access rights must be specified by all appropriate users.



4.5. User Authentication

An operating system bases much of its protection on knowing who a user of the system is. In real-
life situations, people commonly ask for identification from people they do not know: A bank
employee may ask for a driver's license before cashing a check, library employees may require
some identification before charging out books, and immigration officials ask for passports as proof
of identity. In-person identification is usually easier than remote identification. For instance, some
universities do not report grades over the telephone because the office workers do not necessarily
know the students calling. However, a professor who recognizes the voice of a certain student can
release that student's grades. Over time, organizations and systems have developed means of
authentication, using documents, voice recognition, fingerprint and retina matching, and other
trusted means of identification.

In computing, the choices are more limited and the possibilities less secure. Anyone can attempt to
log in to a computing system. Unlike the professor who recognizes a student's voice, the computer
cannot recognize electrical signals from one person as being any different from those of anyone
else. Thus, most computing authentication systems must be based on some knowledge shared only
by the computing system and the user.

Authentication mechanisms use any of three qualities to confirm a user's identity.

Something the user knows. Passwords, PIN numbers, passphrases, a secret handshake,
and mother's maiden name are examples of what a user may know.

1.

Something the user has. Identity badges, physical keys, a driver's license, or a uniform are
common examples of things people have that make them recognizable.

2.

Something the user is. These authenticators, called biometrics, are based on a physical
characteristic of the user, such as a fingerprint, the pattern of a person's voice, or a face
(picture). These authentication methods are old (we recognize friends in person by their faces
or on a telephone by their voices) but are just starting to be used in computer authentications.
See Sidebar 4-3 for a glimpse at some of the promising approaches.

3.

Two or more forms can be combined for more solid authentication; for example, a bank card and a
PIN combine something the user has with something the user knows.

Sidebar 4-3: Biometrics: Ready for Prime Time?

Biometric authentication is a strong technology, certainly far superior to the password
approach that is by far the most common form of authentication. The technology is
mature, products exist, standards define products' interfaces, reliability rates are
acceptable, and costs are reasonable. Why then is use of biometrics so small?



The reason seems to be user acceptance. Few rigorous scientific studies have been done
of users' reactions to biometrics, but there is plenty of anecdotal evidence.

In perhaps the biggest commercial use of biometrics, Piggly-Wiggly supermarkets tried
to encourage its customers to use a fingerprint technology to pay for groceries. The
primary advantage for Piggly-Wiggly was cost: By speeding its customers through the
checkout process, it could serve more customers in a fixed amount of time with no
additional staff, thereby reducing cost. Bonuses were strong authentication reducing the
likelihood of credit card or check-writing fraud (saving more money) and being able to
track customers' buying habits. The stores did not anticipate the negative customer
reaction they got [SCH06a]. Even though the reactions were to psychological
perceptions and not technological deficiencies, they help explain why biometric
authentication has not caught on in voluntary settings.

Some customers did not like the idea of registering and using their fingerprints because
of the association of fingerprints with law enforcement and criminals. Others feared that
criminals would harm them to obtain their authenticators (for example, cutting off a
finger). And still others cited Biblical concerns about the "mark of the devil" being
imprinted on the hand as a precondition to purchasing.

In other settings, people question the hygiene of pressing a finger onto a plate others
have used. And others resist having their biometric data entered into a database, for
example, by having a picture taken, citing fears of losing privacy, either to the
government or to commercial data banks.

Prabhakar et al. [PRA03] list three categories of privacy concerns:

Unintended functional scope. The authentication does more than authenticate, for
example, finding a tumor in the eye from a scan or detecting arthritis from a hand
reading

Unintended application scope. The authentication routine identifies the subject, for
example if a subject enrolls under a false name but is identified by a match with
an existing biometric record in another database

Covert identification. The subject is identified without seeking identification or
authentication, for example, if the subject is identified as a face in a crowd

All these concerns arise from a subject's having lost control of private biometric
information through an authentication application. People may misunderstand or
overestimate the capability of biometric technology, but there is no denying the depth
of feeling. Even when Piggly-Wiggly offered free turkeys to people who enrolled in their
biometric program, the turnout was meager.

Thus, for a wide range of reasons, people prefer not to use biometrics. Unless and until
human perception is changed, biometrics will achieve wide acceptance only in situations
in which its use is mandatory.

Passwords as Authenticators



The most common authentication mechanism for user to operating system is a password, a "word"
known to computer and user. Although password protection seems to offer a relatively secure
system, human practice sometimes degrades its quality. In this section we consider passwords,
criteria for selecting them, and ways of using them for authentication. We conclude by noting other
authentication techniques and by studying problems in the authentication process, notably Trojan
horses masquerading as the computer authentication process.

Use of Passwords

Passwords are mutually agreed-upon code words, assumed to be known only to the user and the
system. In some cases a user chooses passwords; in other cases the system assigns them. The
length and format of the password also vary from one system to another.

Even though they are widely used, passwords suffer from some difficulties of use:

Loss. Depending on how the passwords are implemented, it is possible that no one will be able
to replace a lost or forgotten password. The operators or system administrators can certainly
intervene and unprotect or assign a particular password, but often they cannot determine what
password a user has chosen; if the user loses the password, a new one must be assigned.

Use. Supplying a password for each access to a file can be inconvenient and time consuming.

Disclosure. If a password is disclosed to an unauthorized individual, the file becomes
immediately accessible. If the user then changes the password to reprotect the file, all the
other legitimate users must be informed of the new password because their old password will
fail.

Revocation. To revoke one user's access right to a file, someone must change the password,
thereby causing the same problems as disclosure.

The use of passwords is fairly straightforward. A user enters some piece of identification, such as a
name or an assigned user ID; this identification can be available to the public or easy to guess
because it does not provide the real security of the system. The system then requests a password
from the user. If the password matches that on file for the user, the user is authenticated and
allowed access to the system. If the password match fails, the system requests the password again,
in case the user mistyped.

Additional Authentication Information

In addition to the name and password, we can use other information available to authenticate users.
Suppose Adams works in the accounting department during the shift between 8:00 a.m. and 5:00
p.m., Monday through Friday. Any legitimate access attempt by Adams should be made during
those times, through a workstation in the accounting department offices. By limiting Adams to
logging in under those conditions, the system protects against two problems:

Someone from outside might try to impersonate Adams. This attempt would be thwarted by
either the time of access or the port through which the access was attempted.



Adams might attempt to access the system from home or on a weekend, planning to use
resources not allowed or to do something that would be too risky with other people around.

Limiting users to certain workstations or certain times of access can cause complications (as when a
user legitimately needs to work overtime, a person has to access the system while out of town on a
business trip, or a particular workstation fails). However, some companies use these authentication
techniques because the added security they provide outweighs inconveniences.

Using additional authentication information is called multifactor authentication. Two forms of
authentication (which is, not surprisingly, known as two-factor authentication) are better than
one, assuming of course that the two forms are strong. But as the number of forms increases, so
also does the inconvenience. (For example, think about passing through a security checkpoint at an
airport.) Each authentication factor requires the system and its administrators to manage more
security information.

Attacks on Passwords

How secure are passwords themselves? Passwords are somewhat limited as protection devices
because of the relatively small number of bits of information they contain.

Here are some ways you might be able to determine a user's password, in decreasing order of
difficulty.

Try all possible passwords.

Try frequently used passwords.

Try passwords likely for the user.

Search for the system list of passwords.

Ask the user.

Loose-Lipped Systems

So far the process seems secure, but in fact it has some vulnerabilities. To see why, consider the
actions of a would-be intruder. Authentication is based on knowing the <name, password> pair A
complete outsider is presumed to know nothing of the system. Suppose the intruder attempts to
access a system in the following manner. (In the following examples, the system messages are in
uppercase, and the user's responses are in lowercase.)

WELCOME TO THE XYZ COMPUTING SYSTEMS
ENTER USER NAME: adams
INVALID USER NAMEUNKNOWN USER
ENTER USER NAME:

We assumed that the intruder knew nothing of the system, but without having to do much, the



intruder found out that adams is not the name of an authorized user. The intruder could try other
common names, first names, and likely generic names such as system or operator to build a list of
authorized users.

An alternative arrangement of the login sequence is shown below.

WELCOME TO THE XYZ COMPUTING SYSTEMS
ENTER USER NAME: adams
ENTER PASSWORD: john
INVALID ACCESS
ENTER USER NAME:

This system notifies a user of a failure only after accepting both the user name and the password.
The failure message should not indicate whether it is the user name or password that is
unacceptable. In this way, the intruder does not know which failed.

These examples also gave a clue as to which computing system is being accessed. The true outsider
has no right to know that, and legitimate insiders already know what system they have accessed. In
the example below, the user is given no information until the system is assured of the identity of the
user.

ENTER USER NAME: adams
ENTER PASSWORD: john
INVALID ACCESS
ENTER USER NAME: adams
ENTER PASSWORD: johnq
WELCOME TO THE XYZ COMPUTING SYSTEMS

Exhaustive Attack

In an exhaustive or brute force attack, the attacker tries all possible passwords, usually in some
automated fashion. Of course, the number of possible passwords depends on the implementation of
the particular computing system. For example, if passwords are words consisting of the 26
characters AZ and can be of any length from 1 to 8 characters, there are 261 passwords of 1
character, 262 passwords of 2 characters, and 268 passwords of 8 characters. Therefore, the system

as a whole has 261 + 262 + ... + 268 = 269 - 1  5 * 1012 or five million million possible
passwords. That number seems intractable enough. If we were to use a computer to create and try
each password at a rate of checking one password per millisecond, it would take on the order of 150
years to test all passwords. But if we can speed up the search to one password per microsecond,
the work factor drops to about two months. This amount of time is reasonable if the reward is large.
For instance, an intruder may try to break the password on a file of credit card numbers or bank
account information.

But the break-in time can be made more tractable in a number of ways. Searching for a single
particular password does not necessarily require all passwords to be tried; an intruder needs to try
only until the correct password is identified. If the set of all possible passwords were evenly
distributed, an intruder would likely need to try only half of the password space: the expected



number of searches to find any particular password. However, an intruder can also use to advantage
the fact that passwords are not evenly distributed. Because a password has to be remembered,
people tend to pick simple passwords. This feature reduces the size of the password space.

Probable Passwords

Think of a word.

Is the word you thought of long? Is it uncommon? Is it hard to spell or to pronounce? The answer to
all three of these questions is probably no.

Penetrators searching for passwords realize these very human characteristics and use them to their
advantage. Therefore, penetrators try techniques that are likely to lead to rapid success. If people
prefer short passwords to long ones, the penetrator will plan to try all passwords but to try them in
order by length. There are only 261 + 262 + 263=18,278 passwords of length 3 or less. At the
assumed rate of one password per millisecond, all of these passwords can be checked in 18.278
seconds, hardly a challenge with a computer. Even expanding the tries to 4 or 5 characters raises
the count only to 475 seconds (about 8 minutes) or 12,356 seconds (about 3.5 hours), respectively.

This analysis assumes that people choose passwords such as vxlag and msms as often as they pick
enter and beer. However, people tend to choose names or words they can remember. Many
computing systems have spelling checkers that can be used to check for spelling errors and
typographic mistakes in documents. These spelling checkers sometimes carry online dictionaries of
the most common English words. One contains a dictionary of 80,000 words. Trying all of these
words as passwords takes only 80 seconds.

Passwords Likely for a User

If Sandy is selecting a password, she is probably not choosing a word completely at random. Most
likely Sandy's password is something meaningful to her. People typically choose personal
passwords, such as the name of a spouse, a child, a brother or sister, a pet, a street name, or
something memorable or familiar. If we restrict our password attempts to just names of people
(first names), streets, projects, and so forth, we generate a list of only a few hundred possibilities at
most. Trying this number of passwords takes under a second! Even a person working by hand could
try ten likely candidates in a minute or two.

Thus, what seemed formidable in theory is in fact quite vulnerable in practice, and the likelihood of
successful penetration is frightening. Morris and Thompson [MOR79] confirmed our fears in their
report on the results of having gathered passwords from many users, shown in Table 4-2. Figure 4-
15 (based on data from that study) shows the characteristics of the 3,289 passwords gathered. The
results from that study are distressing, and the situation today is likely to be the same. Of those
passwords, 86 percent could be uncovered in about one week's worth of 24-hour-a-day testing,
using the very generous estimate of 1 millisecond per password check.

Table 4-2. Distribution of Actual Passwords.



15 0.5% were a single(!) ASCII character

72 2% were two ASCII characters

464 14% were three ASCII characters

477 14% were four alphabetic letters

706 21% were five alphabetic letters, all the same
case

605 18% were six lowercase alphabetic letters

492 15% were words in dictionaries or lists of names

2831 86% total of all above categories

Figure 4-15. Users' Password Choices.

Lest you dismiss these results as dated (they were reported in 1979), Klein repeated the experiment
in 1990 [KLE90] and Spafford in 1992 [SPA92]. Each collected approximately 15,000 passwords.
Klein reported that 2.7 percent of the passwords were guessed in only 15 minutes of machine time
and 21 percent were guessed within a week! Spafford found the average password length was 6.8
characters, and 28.9 percent consisted of only lowercase alphabetic characters. Notice that both



these studies were done after the Internet worm (described in Chapter 3) succeeded, in part by
breaking weak passwords.

Even in 2002, the British online bank Egg found users still choosing weak passwords [BUX02]. A full
50 percent of passwords for their online banking service were family members' names: 23 percent
children's names, 19 percent a spouse or partner, and 9 percent their own. Alas, pets came in at
only 8 percent, while celebrities and football (soccer) stars tied at 9 percent each. And in 1998,
Knight and Hartley [KNI98] reported that approximately 35 percent of passwords are deduced from
syllables and initials of the account owner's name.

Two friends we know have told us their passwords as we helped them administer their systems, and
their passwords would both have been among the first we would have guessed. But, you say, these
are amateurs unaware of the security risk of a weak password. At a recent meeting, a security
expert related this experience: He thought he had chosen a solid password, so he invited a class of
students to ask him a few questions and offer some guesses as to his password. He was amazed
that they asked only a few questions before they had deduced the password. And this was a security
expert.

Several news articles have claimed that the four most common passwords are "God," "sex,"
"love,"and "money" (the order among those is unspecified). The perhaps apocryphal list of common
passwords at geodsoft.com/howto/password/common.htm appears at several other places on the
Internet. Or see the default password list at www.phenoelit.de/dpl/dpl.html. Whether these are
really passwords we do not know. Still, it warrants a look because similar lists are bound to be built
into some hackers' tools.

Several network sites post dictionaries of phrases, science fiction characters, places, mythological
names, Chinese words, Yiddish words, and other specialized lists. All these lists are posted to help
site administrators identify users who have chosen weak passwords, but the same dictionaries can
also be used by attackers of sites that do not have such attentive administrators. The COPS
[FAR90], Crack [MUF92], and SATAN [FAR95] utilities allow an administrator to scan a system for
weak passwords. But these same utilities, or other homemade ones, allow attackers to do the same.
Now Internet sites offer so-called password recovery software as freeware or shareware for under
$20. (These are password-cracking programs.)

People think they can be clever by picking a simple password and replacing certain characters, such
as 0 (zero) for letter O, 1 (one) for letter I or L, 3 (three) for letter E or @ (at) for letter A. But
users aren't the only people who could think up these substitutions. Knight and Hartley [KNI98] list,
in order, 12 steps an attacker might try in order to determine a password. These steps are in
increasing degree of difficulty (number of guesses), so they indicate the amount of work to which
the attacker must go to derive a password. Here are their password guessing steps:



•. no password

•. the same as the user ID

•. is, or is derived from, the user's name

•. common word list (for example, "password," "secret," "private") plus common names and
patterns (for example, "asdfg," "aaaaaa")

•. short college dictionary

•. complete English word list

•. common non-English language dictionaries

•. short college dictionary with capitalizations (PaSsWorD) and substitutions (0 for O, and so
forth)

•. complete English with capitalizations and substitutions

•. common non-English dictionaries with capitalization and substitutions

•. brute force, lowercase alphabetic characters

•. brute force, full character set

Although the last step will always succeed, the steps immediately preceding it are so time
consuming that they will deter all but the dedicated attacker for whom time is not a limiting factor.

Plaintext System Password List

To validate passwords, the system must have a way of comparing entries with actual passwords.
Rather than trying to guess a user's password, an attacker may instead target the system password
file. Why guess when with one table you can determine all passwords with total accuracy?

On some systems, the password list is a file, organized essentially as a two-column table of user IDs
and corresponding passwords. This information is certainly too obvious to leave out in the open.
Various security approaches are used to conceal this table from those who should not see it.

You might protect the table with strong access controls, limiting access to the operating system. But
even this tightening of control is looser than it should be, because not every operating system
module needs or deserves access to this table. For example, the operating system scheduler,
accounting routines, or storage manager have no need to know the table's contents. Unfortunately,
in some systems, there are n+1 known users: n regular users and the operating system. The
operating system is not partitioned, so all its modules have access to all privileged information. This
monolithic view of the operating system implies that a user who exploits a flaw in one section of the
operating system has access to all the system's deepest secrets. A better approach is to limit table



access to the modules that need access: the user authentication module and the parts associated
with installing new users, for example.

If the table is stored in plain sight, an intruder can simply dump memory at a convenient time to
access it. Careful timing may enable a user to dump the contents of all of memory and, by
exhaustive search, find values that look like the password table.

System backups can also be used to obtain the password table. To be able to recover from system
errors, system administrators periodically back up the file space onto some auxiliary medium for
safe storage. In the unlikely event of a problem, the file system can be reloaded from a backup,
with a loss only of changes made since the last backup. Backups often contain only file contents,
with no protection mechanism to control file access. (Physical security and access controls to the
backups themselves are depended on to provide security for the contents of backup media.) If a
regular user can access the backups, even ones from several weeks, months, or years ago, the
password tables stored in them may contain entries that are still valid.

Finally, the password file is a copy of a file stored on disk. Anyone with access to the disk or anyone
who can overcome file access restrictions can obtain the password file.

Encrypted Password File

There is an easy way to foil an intruder seeking passwords in plain sight: encrypt them. Frequently,
the password list is hidden from view with conventional encryption or one-way ciphers.

With conventional encryption, either the entire password table is encrypted or just the password
column. When a user's password is received, the stored password is decrypted, and the two are
compared.

Even with encryption, there is still a slight exposure because for an instant the user's password is
available in plaintext in main memory. That is, the password is available to anyone who could obtain
access to all of memory.

A safer approach uses one-way encryption, defined in Chapter 2. The password table's entries are
encrypted by a one-way encryption and then stored. When the user enters a password, it is also
encrypted and then compared with the table. If the two values are equal, the authentication
succeeds. Of course, the encryption has to be such that it is unlikely that two passwords would
encrypt to the same ciphertext, but this characteristic is true for most secure encryption algorithms.

With one-way encryption, the password file can be stored in plain view. For example, the password
table for the Unix operating system can be read by any user unless special access controls have
been installed. Because the contents are encrypted, backup copies of the password table are no
longer a problem.

There is always the possibility that two people might choose the same password, thus creating two
identical entries in the password file. Even though the entries are encrypted, each user will know the
plaintext equivalent. For instance, if Bill and Kathy both choose their passwords on April 1, they
might choose APRILFOOL as a password. Bill might read the password file and notice that the
encrypted version of his password is the same as Kathy's.

Unix+ circumvents this vulnerability by using a password extension, called the salt. The salt is a 12-
bit number formed from the system time and the process identifier. Thus, the salt is likely to be



unique for each user, and it can be stored in plaintext in the password file. The salt is concatenated
to Bill's password (pw) when he chooses it; E(pw+saltB) is stored for Bill, and his salt value is also
stored. When Kathy chooses her password, the salt is different because the time or the process
number is different. Call this new one saltK. For her, E(pw+saltK) and saltK are stored. When either
person tries to log in, the system fetches the appropriate salt from the password table and combines
that with the password before performing the encryption. The encrypted versions of (pw+salt) are
very different for these two users. When Bill looks down the password list, the encrypted version of
his password will not look at all like Kathy's.

Storing the password file in a disguised form relieves much of the pressure to secure it. Better still
is to limit access to processes that legitimately need access. In this way, the password file is
protected to a level commensurate with the protection provided by the password itself. Someone
who has broken the controls of the file system has access to data, not just passwords, and that is a
serious threat. But if an attacker successfully penetrates the outer security layer, the attacker still
must get past the encryption of the password file to access the useful information in it.

Indiscreet Users

Guessing passwords and breaking encryption can be tedious or daunting. But there is a simple way
to obtain a password: Get it directly from the user! People often tape a password to the side of a
terminal or write it on a card just inside the top desk drawer. Users are afraid they will forget their
passwords, or they cannot be bothered trying to remember them. It is particularly tempting to write
the passwords down when users have several accounts.

Users sharing work or data may also be tempted to share passwords. If someone needs a file, it is
easier to say "my password is x; get the file yourself" than to arrange to share the file. This
situation is a result of user laziness, but it may be brought about or exacerbated by a system that
makes sharing inconvenient.

In an admittedly unscientific poll done by Verisign [TEC05], two-thirds of people approached on the
street volunteered to disclose their password for a coupon good for a cup of coffee, and 79 percent
admitted they used the same password for more than one system or web site.

Password Selection Criteria

At the RSA Security Conference in 2006, Bill Gates, head of Microsoft, described his vision of a world
in which passwords would be obsolete, having gone the way of the dinosaur. In their place
sophisticated multifactor authentication technologies would offer far greater security than passwords
ever could. But that is Bill Gates' view of the future; despite decades of articles about their
weakness, passwords are with us still and will be for some time.

So what can we conclude about passwords? They should be hard to guess and difficult to determine
exhaustively. But the degree of difficulty should be appropriate to the security needs of the
situation. To these ends, we present several guidelines for password selection:

Use characters other than just AZ. If passwords are chosen from the letters AZ, there are only
26 possibilities for each character. Adding digits expands the number of possibilities to 36.
Using both uppercase and lowercase letters plus digits expands the number of possible



characters to 62. Although this change seems small, the effect is large when someone is
testing a full space of all possible combinations of characters. It takes about 100 hours to test
all 6-letter words chosen from letters of one case only, but it takes about 2 years to test all 6-
symbol passwords from upper- and lowercase letters and digits. Although 100 hours is
reasonable, 2 years is oppressive enough to make this attack far less attractive.

Choose long passwords. The combinatorial explosion of passwords begins at length 4 or 5.
Choosing longer passwords makes it less likely that a password will be uncovered. Remember
that a brute force penetration can stop as soon as the password is found. Some penetrators
will try the easy casesknown words and short passwordsand move on to another target if those
attacks fail.

Avoid actual names or words. Theoretically, there are 266 or about 300 million 6-letter
"words", but there are only about 150,000 words in a good collegiate dictionary, ignoring
length. By picking one of the 99.95 percent nonwords, you force the attacker to use a longer
brute force search instead of the abbreviated dictionary search.

Choose an unlikely password. Password choice is a double bind. To remember the password
easily, you want one that has special meaning to you. However, you don't want someone else
to be able to guess this special meaning. One easy-to-remember password is 2Brn2B. That
unlikely looking jumble is a simple transformation of "to be or not to be." The first letters of
words from a song, a few letters from different words of a private phrase, or a memorable
basketball score are examples of reasonable passwords. But don't be too obvious. Password-
cracking tools also test replacements of 0 (zero) for o or O (letter "oh") and 1 (one) for l (letter
"ell") or $ for S (letter "ess"). So I10veu is already in the search file.

Change the password regularly. Even if there is no reason to suspect that the password has
been compromised, change is advised. A penetrator may break a password system by
obtaining an old list or working exhaustively on an encrypted list.

Don't write it down. (Note: This time-honored advice is relevant only if physical security is a
serious risk. People who have accounts on many different machines and servers, not to
mention bank and charge card PINs, may have trouble remembering all the access codes.
Setting all codes the same or using insecure but easy-to-remember passwords may be more
risky than writing passwords on a reasonably well protected list.)

Don't tell anyone else. The easiest attack is social engineering, in which the attacker
contacts the system's administrator or a user to elicit the password in some way. For example,
the attacker may phone a user, claim to be "system administration," and ask the user to verify
the user's password. Under no circumstances should you ever give out your private password;
legitimate administrators can circumvent your password if need be, and others are merely
trying to deceive you.

To help users select good passwords, some systems provide meaningless but pronounceable
passwords. For example, the VAX VMS system randomly generates five passwords from which the
user chooses one. They are pronounceable, so that the user should be able to repeat and memorize
them. However, the user may misremember a password because of having interchanged syllables or
letters of a meaningless string. (The sound "bliptab" is no more easily misremembered than
"blaptib" or "blabtip.")

Yan et al. [YAN04] did experiments to determine whether users could remember passwords or
passphrases better. First, they found that users are poor at remembering random passwords. And
instructions to users about the importance of selecting good passwords had little effect. But when



they asked users to select their own password based on some mnemonic phrase they chose
themselves, the users selected passwords that were harder to guess than regular (not based on a
phrase) passwords.

Other systems encourage users to change their passwords regularly. The regularity of password
change is usually a system parameter, which can be changed for the characteristics of a given
installation. Suppose the frequency is set at 30 days. Some systems begin to warn the user after 25
days that the password is about to expire. Others wait until 30 days and inform the user that the
password has expired. Some systems nag without end, whereas other systems cut off a user's
access if a password has expired. Still others force the user immediately into the password change
utility on the first login after 30 days.

Grampp and Morris [GRA84a] argue that this reminder process is not necessarily good. Choosing
passwords is not difficult, but under pressure a user may adopt any password, just to satisfy the
system's demand for a new one. Furthermore, if this is the only time a password can be changed, a
bad password choice cannot be changed until the next scheduled time.

Sometimes when systems force users to change passwords periodically, users with favorite
passwords will alternate between two passwords each time a change is required. To prevent
password reuse, Microsoft Windows 2000 systems refuse to accept any of the k most recently used
passwords. One user of such a system went through 24 password changes each month, just to cycle
back to the favorite password.

One-Time Passwords

A one-time password is one that changes every time it is used. Instead of assigning a static
phrase to a user, the system assigns a static mathematical function. The system provides an
argument to the function, and the user computes and returns the function value. Such systems are
also called challengeresponse systems because the system presents a challenge to the user and
judges the authenticity of the user by the user's response. Here are some simple examples of one-
time password functions; these functions are overly simplified to make the explanation easier. Very
complex functions can be used in place of these simple ones for host authentication in a network.

f(x) = x + 1. With this function, the system prompts with a value for x, and the user enters
the value x + 1. The kinds of mathematical functions used are limited only by the ability of the
user to compute the response quickly and easily. Other similar possibilities are f(x) = 3x2 - 9x
+ 2, f(x) = px, where px is the xth prime number, or f(x) = d * h, where d is the date and h is
the hour of the current time. (Alas, many users cannot perform simple arithmetic in their
heads.)

f(x) = r(x). For this function, the receiver uses the argument as the seed for a random number
generator (available to both the receiver and host). The user replies with the value of the first
random number generated. A variant of this scheme uses x as a number of random numbers
to generate. The receiver generates x random numbers and sends the xth of these to the host.

f(a1a2a3a4a5a6) = a3a1a1a4. With this function, the system provides a character string, which
the user must transform in some predetermined manner. Again, many different character
operations can be used.

f(E(x)) = E(D(E(x)) + 1). In this function, the computer sends an encrypted value, E(x). The



user must decrypt the value, perform some mathematical function, and encrypt the result to
return it to the system. Clearly, for human use, the encryption function must be something
that can be done easily by hand, unlike the strong encryption algorithms in Chapter 2. For
machine-to-machine authentication, however, an encryption algorithm such as DES or AES is
appropriate.

One-time passwords are very important for authentication because (as becomes clear in Chapter 7)
an intercepted password is useless because it cannot be reused. However, their usefulness is limited
by the complexity of algorithms people can be expected to remember. A password-generating
device can implement more complex functions. Several models are readily available at reasonable
prices. They are very effective at countering the threat of transmitting passwords in plaintext across
a network. (See Sidebar 4-4 for another dilemma in remote authentication.)

The Authentication Process

Authentication usually operates as described previously. However, users occasionally mistype their
passwords. A user who receives a message of INCORRECT LOGIN will carefully retype the login and
gain access to the system. Even a user who is a terrible typist should be able to log in successfully
in a few tries.

Some authentication procedures are intentionally slow. A legitimate user will not complain if the
login process takes 5 or 10 seconds. To a penetrator who is trying an exhaustive search or a
dictionary search, however, 5 or 10 seconds per trial makes this class of attack generally infeasible.

Someone whose login attempts continually fail may not be an authorized user. Systems commonly
disconnect a user after a small number of failed logins, forcing the user to reestablish a connection
with the system. (This action will slow down a penetrator who is trying to penetrate the system by
telephone. After a small number of failures, the penetrator must reconnect, which takes a few
seconds.)

Sidebar 4-4: Single Sign-On

Authenticating to multiple systems is unpopular with users. Left on their own, users will
reuse the same password to avoid having to remember many different passwords. For
example, users become frustrated at having to authenticate to a computer, a network, a
mail system, an accounting system, and numerous web sites. The panacea for this
frustration is called single sign-on. A user authenticates once per session, and the
system forwards that authenticated identity to all other processes that would require
authentication.

Obviously, the strength of single sign-on can be no better than the strength of the initial
authentication, and quality diminishes if someone compromises that first authentication
or the transmission of the authenticated identity. Trojan horses, sniffers and wiretaps,
man-in-the-middle attacks, and guessing can all compromise a single sign-on.

Microsoft has developed a single sign-on solution for its .net users. Called a "passport,"
the single sign-on mechanism is effectively a folder in which the user can store login



credentials for other sites. But, as the market research firm Gartner Group points out
[PES01], users are skeptical about using single sign-on for the Internet, and they are
especially wary of entrusting the security of credit card numbers to a single sign-on
utility.

Although a desired feature, single sign-on raises doubt about what a computer is doing
on behalf of or in the name of a user, perhaps without that user's knowledge.

In more secure installations, stopping penetrators is more important than tolerating users' mistakes.
For example, some system administrators assume that all legitimate users can type their passwords
correctly within three tries. After three successive password failures, the account for that user is
disabled and only the security administrator can reenable it. This action identifies accounts that may
be the target of attacks by penetrators.

Fixing Flaws in the Authentication Process

Password authentication assumes that anyone who knows a password is the user to whom the
password belongs. As we have seen, passwords can be guessed, deduced, or inferred. Some people
give out their passwords for the asking. Other passwords have been obtained just by someone
watching a user typing in the password. The password can be considered as a preliminary or first-
level piece of evidence, but skeptics will want more convincing proof.

There are several ways to provide a second level of protection, including another round of
passwords or a challengeresponse interchange.

ChallengeResponse Systems

As we have just seen, the login is usually time invariant. Except when passwords are changed, each
login looks like every other. A more sophisticated login requires a user ID and password, followed by
a challengeresponse interchange. In such an interchange, the system prompts the user for a reply
that will be different each time the user logs in. For example, the system might display a four-digit
number, and the user would have to correctly enter a function such as the sum or product of the
digits. Each user is assigned a different challenge function to compute. Because there are many
possible challenge functions, a penetrator who captures the user ID and password cannot
necessarily infer the proper function.

A physical device similar to a calculator can be used to implement a more complicated response
function. The user enters the challenge number, and the device computes and displays the response
for the user to type in order to log in. (For more examples, see Chapter 7's discussion of network
authentication.)

Impersonation of Login

In the systems we have described, the proof is one-sided. The system demands certain
identification of the user, but the user is supposed to trust the system. However, a programmer can
easily write a program that displays the standard prompts for user ID and password, captures the



pair entered, stores the pair in a file, displays SYSTEM ERROR; DISCONNECTED, and exits. This
attack is a type of Trojan horse. The perpetrator sets it up, leaves the terminal unattended, and
waits for an innocent victim to attempt a login. The naïve victim may not even suspect that a
security breach has occurred.

To foil this type of attack, the user should be sure the path to the system is reinitialized each time
the system is used. On some systems, turning the terminal off and on again or pressing the BREAK
key generates a clear signal to the computer to halt any running process for the terminal. (Microsoft
chose <CTRLALTDELETE> as the path to the secure authorization mechanism for this reason.) Not
every computer recognizes power-off or BREAK as an interruption of the current process, though.
And computing systems are often accessed through networks, so physical reinitialization is
impossible.

Alternatively, the user can be suspicious of the computing system, just as the system is suspicious
of the user. The user will not enter confidential data (such as a password) until convinced that the
computing system is legitimate. Of course, the computer acknowledges the user only after passing
the authentication process. A computing system can display some information known only by the
user and the system. For example, the system might read the user's name and reply "YOUR LAST
LOGIN WAS 10 APRIL AT 09:47." The user can verify that the date and time are correct before
entering a secret password. If higher security is desired, the system can send an encrypted
timestamp. The user decrypts this and discovers that the time is current. The user then replies with
an encrypted timestamp and password, to convince the system that a malicious intruder has not
intercepted a password from some prior login.

Biometrics: Authentication Not Using Passwords

Some sophisticated authentication devices are now available. These devices include handprint
detectors, voice recognizers, and identifiers of patterns in the retina. Authentication with such
devices uses unforgeable physical characteristics to authenticate users. The cost continues to fall as
these devices are adopted by major markets; the devices are useful in very high security situations.
In this section we consider a few of the approaches available.

Biometrics are biological authenticators, based on some physical characteristic of the human body.
The list of biometric authentication technologies is still growing. Now there are devices to recognize
the following biometrics: fingerprints, hand geometry (shape and size of fingers), retina and iris
(parts of the eye), voice, handwriting, blood vessels in the finger, and face. Authentication with
biometrics has advantages over passwords because a biometric cannot be lost, stolen, forgotten,
lent, or forged and is always available, always at hand, so to speak.

Identification versus Authentication

Two concepts are easily confused: identification and authentication. Biometrics are very reliable for
authentication but much less reliable for authentication. The reason is mathematical. All biometric
readers operate in two phases: First, a user registers with the reader, during which time a
characteristic of the user (for example, the geometry of the hand) is captured and reduced to a
template or pattern. During registration, the user may be asked to present the hand several times
so that the registration software can adjust for variations, such as how the hand is positioned.
Second, the user later seeks authentication from the system, during which time the system
remeasures the hand and compares the new measurements with the stored template. If the new



measurement is close enough to the template, the system accepts the authentication; otherwise,
the system rejects it. Every template is thus a pattern of some number of measurements.

Unless every template is unique, that is, no two people have the same measured hand geometry,
the system cannot uniquely identify subjects. However, as long as it is unlikely that an imposter will
have the same biometric template as the real user, the system can authenticate. The difference is
between a system that looks at a hand geometry and says "this is Captain Hook" (identification)
versus a man who says "I, Captain Hook, present my hand to prove who I am" and the system
confirms "this hand matches Captain Hook's template" (authentication). Biometric authentication is
feasible today; biometric identification is largely still a research topic.

Problems with Biometrics

There are several problems with biometrics:

Biometrics are relatively new, and some people find their use intrusive. Hand geometry and
face recognition (which can be done from a camera across the room) are scarcely invasive, but
people have real concerns about peering into a laser beam or sticking a finger into a slot. (See
[SCH06a] for some examples of people resisting biometrics.)

Biometric recognition devices are costly, although as the devices become more popular, their
costs go down. Still, outfitting every user's workstation with a reader can be expensive for a
large company with many employees.

All biometric readers use sampling and establish a threshold for when a match is close enough
to accept. The device has to sample the biometric, measure often hundreds of key points, and
compare that set of measurements with a template. There is normal variability if, for example,
your face is tilted, you press one side of a finger more than another, or your voice is affected
by an infection. Variation reduces accuracy.

Biometrics can become a single point of failure. Consider a retail application in which a
biometric recognition is linked to a payment scheme: As one user puts it, "If my credit card
fails to register, I can always pull out a second card, but if my fingerprint is not recognized, I
have only that one finger." Forgetting a password is a user's fault; failing biometric
authentication is not.

Although equipment is improving, there are still false readings. We label a "false positive" or
"false accept" a reading that is accepted when it should be rejected (that is, the authenticator
does not match) and a "false negative" or "false reject" one that rejects when it should accept.
Often, reducing a false positive rate increases false negatives, and vice versa. The
consequences for a false negative are usually less than for a false positive, so an acceptable
system may have a false positive rate of 0.001 percent but a false negative rate of 1 percent.

The speed at which a recognition must be done limits accuracy. We might ideally like to take
several readings and merge the results or evaluate the closest fit. But authentication is done to
allow a user to do something: Authentication is not the end goal but a gate keeping the user
from the goal. The user understandably wants to get past the gate and becomes frustrated and
irritated if authentication takes too long.

Although we like to think of biometrics as unique parts of an individual, forgeries are possible.



The most famous example was an artificial fingerprint produced by researchers in Japan
[MAT02]. Although difficult and uncommon, forgery will be an issue whenever the reward for a
false positive is high enough.

Sidebar 4-5: Using Cookies for Authentication

On the web, cookies are often used for authentication. A cookie is a pair of data items
sent to the web browsing software by the web site's server. The data items consist of a
key and a value, designed to represent the current state of a session between a user
and a web site. Once the cookie is placed on the user's system (usually in a directory
with other cookies), the browser continues to use it for subsequent interaction between
the user and that web site. Each cookie is supposed to have an expiration date, but that
date can be modified later or even ignored.

For example, The Wall Street Journal 's web site, wsj.com, creates a cookie when a user
first logs in. In subsequent transactions, the cookie acts as an identifier; the user no
longer needs a password to access that site. (Other sites use the same or a similar
approach.)

It is important that users be protected from exposure and forgery. That is, users may
not want the rest of the world to know what sites they have visited. Neither will they
want someone to examine information or buy merchandise online by impersonation and
fraud. However, Sit and Fu [SIT01] point out that cookies were not designed for
protection. There is no way to establish or confirm a cookie's integrity, and not all sites
encrypt the information in their cookies.

Sit and Fu also point out that a server's operating system must be particularly vigilant
to protect against eavesdropping: "Most HTTP exchanges do not use SSL to protect
against eavesdropping; anyone on the network between the two computers can
overhear the traffic. Unless a server takes strong precautions, an eavesdropper can
steal and reuse a cookie, impersonating a user indefinitely."

Sometimes overlooked in the authentication discussion is that credibility is a two-sided issue: The
system needs assurance that the user is authentic, but the user needs that same assurance about
the system. This second issue has led to a new class of computer fraud called phishing, in which an
unsuspecting user submits sensitive information to a malicious system impersonating a trustworthy
one. Common targets of phishing attacks are banks and other financial institutions because
fraudsters use the sensitive data they obtain from customers to take customers' money from the
real institutions. We consider phishing in more detail in Chapter 7.

Authentication is essential for an operating system because accurate user identification is the key to
individual access rights. Most operating systems and computing system administrators have applied
reasonable but stringent security measures to lock out illegal users before they can access system
resources. But, as reported in Sidebar 4-5, sometimes an inappropriate mechanism is forced into
use as an authentication device.



4.6. Summary of Security for Users

This chapter has addressed four topics: memory protection, file protection, general object access
control, and user authentication. Memory protection in a multiuser setting has evolved with
advances in hardware and system design. Fences, base/bounds registers, tagged architecture,
paging, and segmentation are all mechanisms designed both for addressing and for protection.

File protection schemes on general-purpose operating systems are often based on a three- or four-
level format (for example, usergroupall). This format is reasonably straightforward to implement,
but it restricts the granularity of access control to few levels.

Access control in general is addressed by an access control matrix or by lists organized on a per-
object or per-user basis. Although flexible, these mechanisms can be difficult to implement
efficiently.

User authentication is a serious issue that becomes even more serious when unacquainted users
seek to share facilities by means of computer networks. The traditional authentication device is the
password. A plaintext password file presents a serious vulnerability for a computing system. These
files are usually either heavily protected or encrypted. The more serious problem, however, is how
to convince users to choose strong passwords. Additional protocols are needed to perform mutual
authentication in an atmosphere of distrust.

This chapter concentrates on the user's side of protection, presenting protection mechanisms visible
to and invoked by users of operating systems. Chapter 5 addresses security from the perspective of
the operating system designer. It includes material on how the security features of an operating
system are implemented and why security considerations should be a part of the initial design of the
operating system.



4.7. Terms and Concepts
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4.8. Where the Field Is Headed

Operating system research has been popular and important since the 1960s. University research
projects have explored approaches that have influenced mainstream commercial operating systems.
Two prominent examples have been the Multics project at M.I.T. in the 1960s, which was a
precursor to the Unix operating system (albeit as a desire to keep the information-sharing aspects
of Multics within a much slimmer, elemental system), and Mach from Carnegie Mellon University,
which influenced the Microsoft NT family. Computer security depends heavily on the operating
system, so it is important to follow the current research in operating systems to evaluate its impact
on security.

In June 2002, Microsoft unveiled a project, code-named Palladium [WAL02]. The project involves
establishing a memory section of the processor protected by hardware to hold security enforcement
data. The Trusted Computing Alliance, a federation of major computer hardware and software
vendors, has begun to implement the concept. The first step, the Trusted Computing Platform, is a
microprocessor with a protected space for such uses as digital rights management (checking
authenticity of code and data), secure identification and authentication, and network security
authorizations. The platform is currently being implemented in microprocessors; in 2005
approximately 40 percent of new laptops had this technology. There are security advantages of this
approachif it is used properly. Misused, it could have the unintended side effect of undermining
privacy or denying legitimate access.

This hardware design is similar to a multistate hardware architecture from two decades earlier.
Arbaugh et al. [ARB97] present a similar hardware-enforced protection approach. Interestingly, the
simple operating systems of the 1980s (such as MSDOS) did not use the process separation
available on chips in those days. Now, however, the need for separation of security-critical data has
become apparent on larger, more complex operating systems that need to implement controlled
information sharing. Perhaps next someone will find a need for the four-state architecture common
on hardware from machines of Digital Equipment Corporation in the 1980s. The concept of
hardware-enforced separation to protect the security-critical code and data in operating systems
should expand in the next few years.

Single sign-on and distributed authentication are open topics certain to evolve in the next few years.
User convenience must be balanced with security because, as has been demonstrated repeatedly,
unused security features are worse than no security at all.



4.9. To Learn More

The survey article by Denning and Denning [DEN77] gives a good background on access control in
operating systems, and the paper by Linden [LIN76] describes operating systems components that
affect protection. Lampson [LAM71], Graham and Denning [GRA72], Popek [POP74a], and Saltzer
and Schroeder [SAL74, SAL75] are good treatments of protection in operating systems.

Capability-based protection is described in Fabry [FAB74] and Wulf [WUL74]. Lampson and Sturgis
[LAM76] and Karger and Herbert [KAR84] discuss the subject in general. Password authentication is
discussed in [SEE89] and [KNI98].

Several other papers on different aspects of operating system design are noted in the bibliographic
notes for Chapter 5.



4.10. Exercises

1. Give an example of the use of physical separation for security in a computing
environment.

2. Give an example of the use of temporal separation for security in a computing
environment.

3. Give an example of an object whose security level may change during execution.

4. Respond to the allegation "An operating system requires no protection for its
executable code (in memory) because that code is a duplicate of code maintained on
disk."

5. Explain how a fence register is used for relocating a user's program.

6. Can any number of concurrent processes be protected from one another by just one
pair of base/bounds registers?

7. The discussion of base/bounds registers implies that program code is execute-only
and that data areas are read-write-only. Is this ever not the case? Explain your
answer.

8. A design using tag bits presupposes that adjacent memory locations hold dissimilar
things: a line of code, a piece of data, a line of code, two pieces of data, and so forth.
Most programs do not look like that. How can tag bits be appropriate in a situation in
which programs have the more conventional arrangement of code and data?

9. What are some other levels of protection that users might want to apply to code or
data, in addition to the common read, write, and execute permission?

10. If two users share access to a segment, they must do so by the same name. Must
their protection rights to it be the same? Why or why not?

11. A problem with either segmented or paged address translation is timing. Suppose a
user wants to read some data from an input device into memory. For efficiency
during data transfer, often the actual memory address at which the data are to be
placed is provided to an I/O device. The real address is passed so that time-
consuming address translation does not have to be performed during a very fast data
transfer. What security problems does this approach bring?

12. A directory is also an object to which access should be controlled. Why is it not
appropriate to allow users to modify their own directories?



13. Why should the directory of one user not be generally accessible (for read-only
access) to other users?

14. Describe each of the following four kinds of access control mechanisms in terms of
(a) ease of determining authorized access during execution, (b) ease of adding
access for a new subject, (c) ease of deleting access by a subject, and (d) ease of
creating a new object to which all subjects by default have access.

per-subject access control list (that is, one list for each subject tells all the
objects to which that subject has access)

per-object access control list (that is, one list for each object tells all the
subjects who have access to that object)

access control matrix

capability

15. Suppose a per-subject access control list is used. Deleting an object in such a system
is inconvenient because all changes must be made to the control lists of all subjects
who did have access to the object. Suggest an alternative, less costly means of
handling deletion.

16. File access control relates largely to the secrecy dimension of security. What is the
relationship between an access control matrix and the integrity of the objects to
which access is being controlled?

17. One feature of a capability-based protection system is the ability of one process to
transfer a copy of a capability to another process. Describe a situation in which one
process should be able to transfer a capability to another.

18. Describe a mechanism by which an operating system can enforce limited transfer of
capabilities. That is, process A might transfer a capability to process B, but A wants
to prevent B from transferring the capability to any other processes.

Your design should include a description of the activities to be performed by A and B,
as well as the activities performed by and the information maintained by the
operating system.

19. List two disadvantages of using physical separation in a computing system. List two
disadvantages of using temporal separation in a computing system.

20. Explain why asynchronous I/O activity is a problem with many memory protection
schemes, including base/bounds and paging. Suggest a solution to the problem.

21. Suggest an efficient scheme for maintaining a per-user protection scheme. That is,
the system maintains one directory per user, and that directory lists all the objects to
which the user is allowed access. Your design should address the needs of a system
with 1000 users, of whom no more than 20 are active at any time. Each user has an
average of 200 permitted objects; there are 50,000 total objects in the system.



22.

If passwords are three uppercase alphabetic characters long, how how much
time would it take to determine a particular password, assuming that testing an
individual password requires 5 seconds?

a.

Argue for a particular amount of time as the starting point for "secure." That is,
suppose an attacker plans to use a brute force attack to determine a password.
For what value of x (the total amount of time to try as many passwords as
necessary) would the attacker find this attack prohibitively long?

b.

If the cutoff between "insecure" and "secure" were x amount of time, how long
would a secure password have to be? State and justify your assumptions
regarding the character set from which the password is selected and the
amount of time required to test a single password.

c.

23. Design a protocol by which two mutually suspicious parties can authenticate each
other. Your protocol should be usable the first time these parties try to authenticate
each other.

24. List three reasons people might be reluctant to use biometrics for authentication. Can
you think of ways to counter those objections?

25. False positive and false negative rates can be adjusted, and they are often
complementary: Lowering one raises the other. List two situations in which false
negatives are significantly more serious than false positives.

26. In a typical office, biometric authentication might be used to control access to
employees and registered visitors only. We know the system will have some false
negatives, some employees falsely denied access, so we need a human override,
someone who can examine the employee and allow access in spite of the failed
authentication. Thus, we need a human guard at the door to handle problems, as
well as the authentication device; without biometrics we would have had just the
guard. Consequently, we have the same number of personnel with or without
biometrics, plus we have the added cost to acquire and maintain the biometrics
system. Explain the security advantage in this situation that justifies the extra
expense.

27. A flaw in the protection system of many operating systems is argument passing.
Often a common shared stack is used by all nested routines for arguments as well as
for the remainder of the context of each calling process.

Explain what vulnerabilities this flaw presents.a.

Explain how the flaw can be controlled. The shared stack is still to be used for
passing arguments and storing context.

b.

28. Outline the design of an authentication scheme that "learns." The authentication
scheme would start with certain primitive information about a user, such as name
and password. As the use of the computing system continued, the authentication



system would gather such information as commonly used programming languages;
dates, times, and lengths of computing sessions; and use of distinctive resources.
The authentication challenges would become more individualized as the system
learned more information about the user.

Your design should include a list of many pieces of information about a user that the
system could collect. It is permissible for the system to ask an authenticated user for
certain additional information, such as favorite book, to use in subsequent
challenges. Your design should also consider the problem of presenting and validating
these challenges: Does the would-be user answer a truefalse or a multiple-choice
question? Does the system interpret natural language prose?



Chapter 5. Designing Trusted Operating
Systems

In this chapter

What makes an operating system "secure"? Or "trustworthy"?

How are trusted systems designed, and which of those design principles carry over
naturally to other program development tasks?

How do we develop "assurance" of the correctness of a trusted operating system?

Operating systems are the prime providers of security in computing systems. They support many
programming capabilities, permit multiprogramming and sharing of resources, and enforce
restrictions on program and user behavior. Because they have such power, operating systems are
also targets for attack, because breaking through the defenses of an operating system gives access
to the secrets of computing systems.

In Chapter 4 we considered operating systems from the perspective of users, asking what primitive
security services general operating systems provide. We studied these four services:

memory protection

file protection

general object access control

user authentication

We say that an operating system is trusted if we have confidence that it provides these four
services consistently and effectively. In this chapter, we take the designer's perspective, viewing a
trusted operating system in terms of the design and function of components that provide security
services. The first four sections of this chapter correspond to the four major underpinnings of a
trusted operating system:

Policy. Every system can be described by its requirements: statements of what the system
should do and how it should do it. An operating system's security requirements are a set of
well-defined, consistent, and implementable rules that have been clearly and unambiguously



expressed. If the operating system is implemented to meet these requirements, it meets the
user's expectations. To ensure that the requirements are clear, consistent, and effective, the
operating system usually follows a stated security policy: a set of rules that lay out what is to
be secured and why. We begin this chapter by studying several security policies for trusted
operating systems.

Model. To create a trusted operating system, the designers must be confident that the
proposed system will meet its requirements while protecting appropriate objects and
relationships. They usually begin by constructing a model of the environment to be secured.
The model is actually a representation of the policy the operating system will enforce.
Designers compare the model with the system requirements to make sure that the overall
system functions are not compromised or degraded by the security needs. Then, they study
different ways of enforcing that security. In the second part of this chapter we consider several
different models for operating system security.

Design. After having selected a security model, designers choose a means to implement it.
Thus, the design involves both what the trusted operating system is (that is, its intended
functionality) and how it is to be constructed (its implementation). The third major section of
this chapter addresses choices to be made during development of a trusted operating system.

Trust. Because the operating system plays a central role in enforcing security, we (as
developers and users) seek some basis (assurance) for believing that it will meet our
expectations. Our trust in the system is rooted in two aspects: features (the operating system
has all the necessary functionality needed to enforce the expected security policy) and
assurance (the operating system has been implemented in such a way that we have
confidence it will enforce the security policy correctly and effectively). In the fourth part of this
chapter we explore what makes a particular design or implementation worthy of trust.

The chapter ends with some examples of actual trusted operating systems. Several such systems
have been written, and more are under development. In some cases, the secure systems were
originally designed for security; in others, security features were added to existing operating
systems. Our examples show that both approaches can produce a secure operating system.



5.1. What Is a Trusted System?

Before we begin to examine a trusted operating system in detail, let us look more carefully at the
terminology involved in understanding and describing trust. What would it take for us to consider
something secure? The word secure reflects a dichotomy: Something is either secure or not secure.
If secure, it should withstand all attacks, today, tomorrow, and a century from now. And if we claim
that it is secure, you either accept our assertion (and buy and use it) or reject it (and either do not
use it or use it but do not trust it). How does security differ from quality? If we claim that something
is good, you are less interested in our claims and more interested in an objective appraisal of
whether the thing meets your performance and functionality needs. From this perspective, security
is only one facet of goodness or quality; you may choose to balance security with other
characteristics (such as speed or user friendliness) to select a system that is best, given the choices
you may have. In particular, the system you build or select may be pretty good, even though it may
not be as secure as you would like it to be.

We say that software is trusted software if we know that the code has been rigorously developed
and analyzed, giving us reason to trust that the code does what it is expected to do and nothing
more. Typically, trusted code can be a foundation on which other, untrusted, code runs. That is, the
untrusted system's quality depends, in part, on the trusted code; the trusted code establishes the
baseline for security of the overall system. In particular, an operating system can be trusted
software when there is a basis for trusting that it correctly controls the accesses of components or
systems run from it. For example, the operating system might be expected to limit users' accesses
to certain files.

To trust any program, we base our trust on rigorous analysis and testing, looking for certain key
characteristics:

Functional correctness. The program does what it is supposed to, and it works correctly.

Enforcement of integrity. Even if presented erroneous commands or commands from
unauthorized users, the program maintains the correctness of the data with which it has
contact.

Limited privilege: The program is allowed to access secure data, but the access is minimized
and neither the access rights nor the data are passed along to other untrusted programs or
back to an untrusted caller.

Appropriate confidence level. The program has been examined and rated at a degree of trust
appropriate for the kind of data and environment in which it is to be used.

Trusted software is often used as a safe way for general users to access sensitive data. Trusted
programs are used to perform limited (safe) operations for users without allowing the users to have
direct access to sensitive data.

Security professionals prefer to speak of trusted instead of secure operating systems. A trusted
system connotes one that meets the intended security requirements, is of high enough quality, and
justifies the user's confidence in that quality. That is, trust is perceived by the system's receiver or



user, not by its developer, designer, or manufacturer. As a user, you may not be able to evaluate
that trust directly. You may trust the design, a professional evaluation, or the opinion of a valued
colleague. But in the end, it is your responsibility to sanction the degree of trust you require.

It is important to realize that there can be degrees of trust; unlike security, trust is not a dichotomy.
For example, you trust certain friends with deep secrets, but you trust others only to give you the
time of day. Trust is a characteristic that often grows over time, in accordance with evidence and
experience. For instance, banks increase their trust in borrowers as the borrowers repay loans as
expected; borrowers with good trust (credit) records can borrow larger amounts. Finally, trust is
earned, not claimed or conferred. The comparison in Table 5-1 highlights some of these distinctions.

Table 5-1. Qualities of Security and Trustedness

Secure Trusted

Either-or: Something either is or is
not secure.

Graded: There are degrees of
"trustworthiness."

Property of presenter Property of receiver

Asserted based on product
characteristics

Judged based on evidence and
analysis

Absolute: not qualified as to how
used, where, when, or by whom

Relative: viewed in context of use

A goal A characteristic

The adjective trusted appears many times in this chapter, as in trusted process (a process that
can affect system security, or a process whose incorrect or malicious execution is capable of
violating system security policy), trusted product (an evaluated and approved product), trusted
software (the software portion of a system that can be relied upon to enforce security policy),
trusted computing base (the set of all protection mechanisms within a computing system,
including hardware, firmware, and software, that together enforce a unified security policy over a
product or system), or trusted system (a system that employs sufficient hardware and software
integrity measures to allow its use for processing sensitive information). These definitions are
paraphrased from [NIS91b]. Common to these definitions are the concepts of

enforcement of security policy

sufficiency of measures and mechanisms

evaluation

In studying trusted operating systems, we examine closely what makes them trustworthy.



5.2. Security Policies

To know that an operating system maintains the security we expect, we must be able to state its
security policy. A security policy is a statement of the security we expect the system to enforce.
An operating system (or any other piece of a trusted system) can be trusted only in relation to its
security policy; that is, to the security needs the system is expected to satisfy.

We begin our study of security policy by examining military security policy because it has been the
basis of much trusted operating system development and is fairly easy to state precisely. Then, we
move to security policies that commercial establishments might adopt.

Military Security Policy

Military security policy is based on protecting classified information. Each piece of information is
ranked at a particular sensitivity level, such as unclassified, restricted, confidential, secret, or top
secret. The ranks or levels form a hierarchy, and they reflect an increasing order of sensitivity, as
shown in Figure 5-1. That is, the information at a given level is more sensitive than the information
in the level below it and less sensitive than in the level above it. For example, restricted information
is more sensitive than unclassified but less sensitive than confidential. We can denote the sensitivity
of an object O by rankO. In the rest of this chapter we assume these five sensitivity levels.

Figure 5-1. Hierarchy of Sensitivities.



Information access is limited by the need-to-know rule: Access to sensitive data is allowed only to
subjects who need to know those data to perform their jobs. Each piece of classified information
may be associated with one or more projects, called compartments, describing the subject matter
of the information. For example, the alpha project may use secret information, as may the beta
project, but staff on alpha do not need access to the information on beta. In other words, both
projects use secret information, but each is restricted to only the secret information needed for its
particular project. In this way, compartments help enforce need-to-know restrictions so that people
obtain access only to information that is relevant to their jobs. A compartment may include
information at only one sensitivity level, or it may cover information at several sensitivity levels. The
relationship between compartments and sensitivity levels is shown in Figure 5-2.

Figure 5-2. Compartments and Sensitivity Levels.



We can assign names to identify the compartments, such as snowshoe, crypto, and Sweden. A
single piece of information can be coded with zero, one, two, or more compartment names,
depending on the categories to which it relates. The association of information and compartments is
shown in Figure 5-3. For example, one piece of information may be a list of publications on
cryptography, whereas another may describe development of snowshoes in Sweden. The
compartment of this first piece of information is {crypto}; the second is {snowshoe, Sweden}.

Figure 5-3. Association of Information and Compartments.

[View full size image]



The combination <rank; compartments> is called the class or classification of a piece of
information. By designating information in this way, we can enforce need-to-know both by security
level and by topic.

A person seeking access to sensitive information must be cleared. A clearance is an indication that
a person is trusted to access information up to a certain level of sensitivity and that the person
needs to know certain categories of sensitive information. The clearance of a subject is expressed as
a combination <rank; compartments>. This combination has the same form as the classification of a
piece of information.

Now we introduce a relation , called dominance, on the sets of sensitive objects and subjects.
For a subject s and an object o,

We say that o dominates s (or s is dominated by o) if s o; the relation  is the opposite.
Dominance is used to limit the sensitivity and content of information a subject can access. A subject
can read an object only if

the clearance level of the subject is at least as high as that of the information and

the subject has a need to know about all compartments for which the information is classified

These conditions are equivalent to saying that the subject dominates the object.

To see how the dominance relation works, consider the concentric circles in Figure 5-3. According to
the relationships depicted there, information classified as <secret;{Sweden}> could be read by
someone cleared for access to <top secret;{Sweden}> or <secret;{Sweden, crypto}>, but not by
someone with a <top secret;{crypto}> clearance or someone cleared for <confidential;{Sweden}>
or <secret;{France}>.

Military security enforces both sensitivity requirements and need-to-know requirements. Sensitivity
requirements are known as hierarchical requirements because they reflect the hierarchy of
sensitivity levels; need-to-know restrictions are nonhierarchical because compartments do not
necessarily reflect a hierarchical structure. This combinational model is appropriate for a setting in
which access is rigidly controlled by a central authority. Someone, often called a security officer,
controls clearances and classifications, which are not generally up to individuals to alter.

Commercial Security Policies

Commercial enterprises have significant security concerns. They worry that industrial espionage will
reveal information to competitors about new products under development. Likewise, corporations
are often eager to protect information about the details of corporate finance. So even though the
commercial world is usually less rigidly and less hierarchically structured than the military world, we
still find many of the same concepts in commercial security policies. For example, a large



organization, such as a corporation or a university, may be divided into groups or departments,
each responsible for a number of disjoint projects. There may also be some corporate-level
responsibilities, such as accounting and personnel activities. Data items at any level may have
different degrees of sensitivity, such as public, proprietary, or internal; here, the names may vary
among organizations, and no universal hierarchy applies.

Let us assume that public information is less sensitive than proprietary, which in turn is less
sensitive than internal. Projects and departments tend to be fairly well separated, with some overlap
as people work on two or more projects. Corporate-level responsibilities tend to overlie projects and
departments, as people throughout the corporation may need accounting or personnel data.
However, even corporate data may have degrees of sensitivity. Projects themselves may introduce a
degree of sensitivity: Staff members on project old-standby have no need to know about project
new-product, while staff members on new-product may have access to all data on old-standby. For
these reasons, a commercial layout of data might look like Figure 5-4.

Figure 5-4. Commercial View of Sensitive Information.

Two significant differences exist between commercial and military information security. First, outside
the military, there is usually no formalized notion of clearances: A person working on a commercial
project does not require approval for project MARS access by a central security officer. Typically, an
employee is not conferred a different degree of trust by being allowed access to internal data.
Second, because there is no formal concept of a clearance, the rules for allowing access are less
regularized. For example, if a senior manager decides that a person needs access to a piece of
MARS internal data, the manager will instruct someone to allow the access, either one-time or
continuing. Thus, there is no dominance function for most commercial information access because
there is no formal concept of a commercial clearance.

So far, much of our discussion has focused only on read access, which addresses confidentiality in
security. In fact, this narrow view holds true for much of the existing work in computer security.
However, integrity and availability are at least as important as confidentiality in many instances.
Policies for integrity and availability are significantly less well formulated than those for
confidentiality, in both military and commercial realms. In the two examples that follow, we explore
some instances of integrity concerns.



ClarkWilson Commercial Security Policy

In many commercial applications, integrity can be at least as important as confidentiality. The
correctness of accounting records, the accuracy of legal work, and the proper timing of medical
treatments are the essence of their fields. Clark and Wilson [CLA87] proposed a policy for what they
call well-formed transactions, which they assert are as important in their field as is confidentiality in
a military realm.

To see why, consider a company that orders and pays for materials. A representation of the
procurement process might be this:

1. A purchasing clerk creates an order for a supply, sending copies of the order to both the
supplier and the receiving department.

2. The supplier ships the goods, which arrive at the receiving department. A receiving clerk
checks the delivery, ensures that the correct quantity of the right item has been received, and
signs a delivery form. The delivery form and the original order go to the accounting
department.

3. The supplier sends an invoice to the accounting department. An accounting clerk compares the
invoice with the original order (as to price and other terms) and the delivery form (as to
quantity and item) and issues a check to the supplier.

The sequence of activities is important. A receiving clerk will not sign a delivery form without
already having received a matching order (because suppliers should not be allowed to ship any
quantities of any items they want and be paid), and an accounting clerk will not issue a check
without already having received a matching order and delivery form (because suppliers should not
be paid for goods not ordered or received). Furthermore, in most cases, both the order and the
delivery form must be signed by authorized individuals. Performing the steps in order, performing
exactly the steps listed, and authenticating the individuals who perform the steps constitute a well-
formed transaction. The goal of the ClarkWilson policy is to maintain consistency between the
internal data and the external (users') expectations of those data.

Clark and Wilson present their policy in terms of constrained data items, which are processed by
transformation procedures. A transformation procedure is like a monitor in that it performs only
particular operations on specific kinds of data items; these data items are manipulated only by
transformation procedures. The transformation procedures maintain the integrity of the data items
by validating the processing to be performed. Clark and Wilson propose defining the policy in terms
of access triples: <userID, TPi, {CDIj, CDIk, ...}>, combining a transformation procedure, one or
more constrained data items, and the identification of a user who is authorized to operate on those
data items by means of the transaction procedure.

Separation of Duty

A second commercial security policy involves separation of responsibility. Clark and Wilson [CLA87]
raised this issue in their analysis of commercial security requirements, and Lee [LEE88] and Nash
and Poland [NAS90] added to the concept.



To see how it works, we continue our example of a small company ordering goods. In the company,
several people might be authorized to issue orders, receive goods, and write checks. However, we
would not want the same person to issue the order, receive the goods, and write the check, because
there is potential for abuse. Therefore, we might want to establish a policy that specifies that three
separate individuals issue the order, receive the goods, and write the check, even though any of the
three might be authorized to do any of these tasks. This required division of responsibilities is called
separation of duty.

Separation of duty is commonly accomplished manually by means of dual signatures. Clark and
Wilson triples are "stateless," meaning that a triple does not have a context of prior operations;
triples are incapable of passing control information to other triples. Thus, if one person is authorized
to perform operations TP1 and TP2, the Clark and Wilson triples cannot prevent the same person
from performing both TP1 and TP2 on a given data item. However, it is quite easy to implement
distinctness if it is stated as a policy requirement.

Chinese Wall Security Policy

Brewer and Nash [BRE89] defined a security policy called the Chinese Wall that reflects certain
commercial needs for information access protection. The security requirements reflect issues
relevant to those people in legal, medical, investment, or accounting firms who might be subject to
conflict of interest. A conflict of interest exists when a person in one company can obtain sensitive
information about people, products, or services in competing companies.

The security policy builds on three levels of abstraction.

Objects. At the lowest level are elementary objects, such as files. Each file contains
information concerning only one company.

Company groups. At the next level, all objects concerning a particular company are grouped
together.

Conflict classes. At the highest level, all groups of objects for competing companies are
clustered.

With this model, each object belongs to a unique company group, and each company group is
contained in a unique conflict class. A conflict class may contain one or more company groups. For
example, suppose you are an advertising company with clients in several fields: chocolate
companies, banks, and airlines. You might want to store data on chocolate companies Suchard and
Cadbury; on banks Citicorp, Deutsche Bank, and Credit Lyonnais; and on airline SAS. You want to
prevent your employees from inadvertently revealing information to a client about that client's
competitors, so you establish the rule that no employee will know sensitive information about
competing companies. Using the Chinese Wall hierarchy, you would form six company groups (one
for each company) and three conflict classes: {Suchard, Cadbury}, {Citicorp, Deutsche Bank, Credit
Lyonnais}, and {SAS}.

The hierarchy guides a simple access control policy: A person can access any information as long as
that person has never accessed information from a different company in the same conflict class.
That is, access is allowed if either the object requested is in the same company group as an object
that has previously been accessed or the object requested belongs to a conflict class that has never
before been accessed. In our example, initially you can access any objects. Suppose you read from



a file on Suchard. A subsequent request for access to any bank or to SAS would be granted, but a
request to access Cadbury files would be denied. Your next access, of SAS data, does not affect
future accesses. But if you then access a file on Credit Lyonnais, you will be blocked from future
accesses to Deutsche Bank or Citicorp. From that point on, as shown in Figure 5-5, you can access
objects only concerning Suchard, SAS, Credit Lyonnais, or a newly defined conflict class.

Figure 5-5. Chinese Wall Security Policy.

The Chinese Wall is a commercially inspired confidentiality policy. It is unlike most other commercial
policies, which focus on integrity. It is also interesting because access permissions change
dynamically: As a subject accesses some objects, other objects that would previously have been
accessible are subsequently denied.



5.3. Models of Security

In security and elsewhere, models are often used to describe, study, or analyze a particular
situation or relationship. McLean [MCL90a] gives a good overview of models for security. In
particular, security models are used to

test a particular policy for completeness and consistency

document a policy

help conceptualize and design an implementation

check whether an implementation meets its requirements

We assume that some access control policy dictates whether a given user can access a particular
object. We also assume that this policy is established outside any model. That is, a policy decision
determines whether a specific user should have access to a specific object; the model is only a
mechanism that enforces that policy. Thus, we begin studying models by considering simple ways to
control access by one user.

Multilevel Security

Ideally, we want to build a model to represent a range of sensitivities and to reflect the need to
separate subjects rigorously from objects to which they should not have access. For instance,
consider an election and the sensitivity of data involved in the voting process. The names of the
candidates are probably not sensitive. If the results have not yet been released, the name of the
winner is somewhat sensitive. If one candidate received an embarrassingly low number of votes, the
vote count may be more sensitive. Finally, the way a particular individual voted is extremely
sensitive. Users can also be ranked by the degree of sensitivity of information to which they can
have access.

For obvious reasons, the military has developed extensive procedures for securing information. A
generalization of the military model of information security has also been adopted as a model of
data security within an operating system. Bell and La Padula [BEL73] were first to describe the
properties of the military model in mathematical notation, and Denning [DEN76a] first formalized
the structure of this model. In 2005, Bell [BEL05] returned to the original model to highlight its
contribution to computer security. He observed that the model demonstrated the need to
understand security requirements before beginning system design, build security into not onto the
system, develop a security toolbox, and design the system to protect itself. The generalized model
is called the lattice model of security because its elements form a mathematical structure called a
lattice. (See Sidebar 5-1.) In this section, we describe the military example and then use it to
explain the lattice model.



Lattice Model of Access Security

The military security model is representative of a more general scheme, called a lattice. The

dominance relation defined in the military model is the relation for the lattice. The relation is
transitive and antisymmetric. The largest element of the lattice is the classification <top secret; all
compartments>, and the smallest element is <unclassified; no compartments>; these two elements
respectively dominate and are dominated by all elements. Therefore, the military model is a lattice.

Many other structures are lattices. For example, we noted earlier that a commercial security policy
may contain data sensitivities such as public, proprietary, and internal, with the natural ordering
that public data are less sensitive than proprietary, which are less sensitive than internal. These
three levels also form a lattice.

Security specialists have chosen to base security systems on a lattice because it naturally
represents increasing degrees. A security system designed to implement lattice models can be used
in a military environment. However, it can also be used in commercial environments with different
labels for the degrees of sensitivity. Thus, lattice representation of sensitivity levels applies to many
computing situations.

Sidebar 5-1: What Is a Lattice?

Alattice is a mathematical structure of elements organized by a relation among them,

represented by a relational operator. We use the notation to denote this relation,

and we say that b a means the same thing as a b. A relation is called a partial
ordering when it is both transitive and antisymmetric. These terms mean that for
every three elements a, b, and c, the following two rules hold:

transitive: If a b and b c, then a c

antisymmetric: If a b and b a, then a = b

In a lattice, not every pair of elements needs to be comparable; that is, there may be

elements a and b for which neither a b nor b a. However, every pair of elements

possesses an upper bound, namely, an element at least as large as ( ) both a and b.

In other words, even though a and b may be noncomparable under , in a lattice there

is an upper bound element u such that a u and b u. Furthermore, in a lattice, every
pair of elements possesses a lower bound, an element l dominated by both a and b;

that is, l  a and l  b.

Consider the lattice in Figure 5-6, which represents all factors of the number 60. The

relational operator represents the relationship "is a factor of." Thus, the notation a b
means that a divides b or, equivalently, b is a multiple of a. The lattice shows us that
the number 60 dominates all other elements; 12 dominates 4, 6, 2, 3, and 1; 20
dominates 4, 10, and 5; and so on. We can also see that some elements are not
comparable. For instance, 2 and 5 are not comparable and therefore are not directly
connected by lines in the diagram.



Figure 5-6. Sample Lattice.

Lattices are helpful for depicting relationships, and they appear most commonly when
the relationship shows a difference in power, substance, or value. But many typical
relationships form only half a lattice. In the relationships "is less than," "is a subset of,"
"reports to (for employees)," or "is a descendant of," there is a unique least upper
bound (for example, a common ancestor) but not a greatest lower bound for each pair.

BellLa Padula Confidentiality Model

The Bell and La Padula model [BEL73] is a formal description of the allowable paths of information
flow in a secure system. The model's goal is to identify allowable communication when maintaining
secrecy is important. The model has been used to define security requirements for systems
concurrently handling data at different sensitivity levels. This model is a formalization of the military
security policy and was central to the U.S. Department of Defense's evaluation criteria, described
later in this chapter.

We are interested in secure information flows because they describe acceptable connections
between subjects and objects of different levels of sensitivity. One purpose for security-level
analysis is to enable us to construct systems that can perform concurrent computation on data at
two different sensitivity levels. For example, we may want to use one machine for top-secret and
confidential data at the same time. The programs processing top-secret data would be prevented
from leaking top-secret data to the confidential data, and the confidential users would be prevented
from accessing the top-secret data. Thus, the BellLa Padula model is useful as the basis for the
design of systems that handle data of multiple sensitivities.

To understand how the BellLa Padula model works, consider a security system with the following



properties. The system covers a set of subjects S and a set of objects O. Each subject s in S and
each object o in O has a fixed security class C(s) and C(o) (denoting clearance and classification

level). The security classes are ordered by a relation . (Note: The classes may form a lattice, even
though the BellLa Padula model can apply to even less restricted cases.)

Two properties characterize the secure flow of information.

Simple Security Property. A subject s may have read access to an object o only if C(o) 
C(s).

In the military model, this property says that the security class (clearance) of someone receiving a
piece of information must be at least as high as the class (classification) of the information.

*-Property (called the "star property"). A subject s who has read access to an object o may

have write access to an object p only if C(o) C(p).

In the military model, this property says that the contents of a sensitive object can be written only
to objects at least as high.

In the military model, one interpretation of the *-property is that a person obtaining information at
one level may pass that information along only to people at levels no lower than the level of the
information. The *-property prevents write-down, which occurs when a subject with access to
high-level data transfers that data by writing it to a low-level object.

Literally, the *-property requires that a person receiving information at one level not talk with
people cleared at levels lower than the level of the informationnot even about the weather! This
example points out that this property is stronger than necessary to ensure security; the same is
also true in computing systems. The BellLa Padula model is extremely conservative: It ensures
security even at the expense of usability or other properties.

The implications of these two properties are shown in Figure 5-7. The classifications of subjects
(represented by squares) and objects (represented by circles) are indicated by their positions: As
the classification of an item increases, it is shown higher in the figure. The flow of information is
generally horizontal (to and from the same level) and upward (from lower levels to higher). A
downward flow is acceptable only if the highly cleared subject does not pass any high-sensitivity
data to the lower-sensitivity object.

Figure 5-7. Secure Flow of Information.



For computing systems, downward flow of information is difficult because a computer program
cannot readily distinguish between having read a piece of information and having read a piece of
information that influenced what was later written. (McLean [MCL90b], in work related to Goguen
and Meseguer [GOG82], presents an interesting counter to the *-property of Bell and La Padula. He
suggests considering noninterference, which can be loosely described as tracing the effects of inputs
on outputs. If we can trace all output effects, we can determine conclusively whether a particular
low-level output was "contaminated" with high-level input.)

Biba Integrity Model

The BellLa Padula model applies only to secrecy of information: The model identifies paths that
could lead to inappropriate disclosure of information. However, the integrity of data is important,
too. Biba [BIB77] constructed a model for preventing inappropriate modification of data.

The Biba model is the counterpart (sometimes called the dual) of the BellLa Padula model. Biba
defines "integrity levels," which are analogous to the sensitivity levels of the BellLa Padula model.
Subjects and objects are ordered by an integrity classification scheme, denoted I(s) and I(o). The
properties are

Simple Integrity Property. Subject s can modify (have write access to) object o only if I(s)

I(o)

Integrity *-Property. If subject s has read access to object o with integrity level I(o), s can

have write access to object p only if I(o) I(p)



These two rules cover untrustworthy information in a natural way. Suppose John is known to be
untruthful sometimes. If John can create or modify a document, other people should distrust the
truth of the statements in that document. Thus, an untrusted subject who has write access to an
object reduces the integrity of that object. Similarly, people are rightly skeptical of a report based
on unsound evidence. The low integrity of a source object implies low integrity for any object based
on the source object.

This model addresses the integrity issue that the BellLa Padula model ignores. However, in doing so,
the Biba model ignores secrecy. Secrecy-based security systems have been much more fully studied
than have integrity-based systems. The current trend is to join secrecy and integrity concerns in
security systems, although no widely accepted formal models achieve this compromise.

Models Proving Theoretical Limitations of Security Systems

Models are also useful for demonstrating the feasibility of an approach. Consider the security
properties that we want a system to have. We want to build a model that tells us (before we invest
in design, code, and testing) whether the properties can actually be achieved. This new class of
models is based on the general theory of computability, which you may have studied in your
computer science classes. Computability helps us determine decidability: If we pose a question, we
want to know if we will ever be able to decide what the answer is. The results of these
computability-based models show us the limitations of abstract security systems.

GrahamDenning Model

Lampson [LAM71] and Graham and Denning [GRA72] introduced the concept of a formal system of
protection rules. Graham and Denning constructed a model having generic protection properties.
This model forms the basis for two later models of security systems.

The GrahamDenning model operates on a set of subjects S, a set of objects O, a set of rights R, and
an access control matrix A. The matrix has one row for each subject and one column for each
subject and each object. The rights of a subject on another subject or an object are shown by the
contents of an element of the matrix. For each object, one subject designated the "owner" has
special rights; for each subject, another subject designated the "controller" has special rights.

The GrahamDenning model has eight primitive protection rights. These rights are phrased as
commands that can be issued by subjects, with effects on other subjects or objects.

Create object allows the commanding subject to introduce a new object to the system.

Create subject, delete object, and delete subject have the similar effect of creating or
destroying a subject or object.

Read access right allows a subject to determine the current access rights of a subject to an
object.

Grant access right allows the owner of an object to convey any access rights for an object to
another subject.

Delete access right allows a subject to delete a right of another subject for an object, provided



that the deleting subject either is the owner of the object or controls the subject from which
access should be deleted.

Transfer access right allows a subject to transfer one of its rights for an object to another
subject. Each right can be transferable or nontransferable. If a subject receives a transferable
right, the subject can then transfer that right (either transferable or not) to other subjects. If a
subject receives a nontransferable right, it can use the right but cannot transfer that right to
other subjects.

These rules are shown in Table 5-2 (for more details see [GRA72]), which shows prerequisite
conditions for executing each command and its effect. The access control matrix is A [s,o], where s
is a subject and o is an object. The subject executing each command is denoted x. A transferable
right is denoted r*; a nontransferable right is written r.

Table 5-2. Protection System Commands.

Command Precondition Effect

Create object o Add column for o in A; place
owner in A[x,o]

Create subject s Add row for s in A; place
control in A[x,s]

Delete object o Owner in A[x,o] Delete column o

Delete subject s Control in A[x,s] Delete row s

Read access right of s on o Control in A[x,s] or owner in
A[x,o]

Copy A[s,o] to x

Delete access right r of s on o Control in A[x,s] or owner in
A[x,o]

Remove r from A[s,o]

Grant access right r to s on o Owner in A[x,o] Add r to A[s,o]

Transfer access right r or r*
to s on o

r* in A[x,o] Add r or r* to A[s,o]

This set of rules provides the properties necessary to model the access control mechanisms of a
protection system. For example, this mechanism can represent a reference monitor or a system of
sharing between two untrustworthy, mutually suspicious subsystems.

HarrisonRuzzoUllman Results

Harrison, Ruzzo, and Ullman [HAR76] proposed a variation on the GrahamDenning model. This
revised model answered several questions concerning the kinds of protection a given system can
offer. Suppose you are about to use a particular operating system and you want to know if a given
user can ever be granted a certain kind of access. For example, you may be establishing protection
levels in Windows or MVS. You set up the access controls and then ask whether user X will ever
have access to object Y. The three researchers developed their model so that we might be able to



answer questions like this one.

The HarrisonRuzzoUllman model (called the HRU model) is based on commands, where each
command involves conditions and primitive operations. The structure of a command is as
follows.

This command is structured like a procedure, with parameters o1 through ok. The notation of the
HRU model is slightly different from the GrahamDenning model; in HRU every subject is an object,
too. Thus, the columns of the access control matrix are all the subjects and all the objects that are
not subjects. For this reason, all the parameters of a command are labeled o, although they could
be either subjects or nonsubject objects. Each r is a generic right, as in the GrahamDenning model.
Each op is a primitive operation, defined in the following list. The access matrix is shown in Table 5-
3.

Table 5-3. Access Matrix in HRU Model.

Objects

Subjects S1 S2 S3 O1 O2 O3

S1 Control Own, Suspend,
Resume

  Own Own Read,
Propagate

S2   Control     Extend Own

S3     Control Read, Write Write Read

The primitive operations op, similar to those of the GrahamDenning model, are as follows:

create subject s



create object o

destroy subject s

destroy object o

enter right r into A[s,o]

delete right r from A[s,o]

The interpretations of these operations are what their names imply. A protection system is a set
of subjects, objects, rights, and commands.

Harrison et al. demonstrate that these operations are adequate to model several examples of
protection systems, including the Unix protection mechanism and an indirect access mode
introduced by Graham and Denning [GRA72]. Thus, like the GrahamDenning model, the HRU model
can represent "reasonable" interpretations of protection.

Two important results derived by Harrison et al. have major implications for designers of protection
systems. We omit the complete proofs of these results, but we outline them in Sidebar 5-2 to give
you an idea of what is involved.

The first result from HRU indicates that

In the modeled system, in which commands are restricted to a single operation each, it is
possible to decide whether a given subject can ever obtain a particular right to an object.

Therefore, we can decide (that is, we can know in advance) whether a low-level subject can ever
obtain read access to a high-level object, for example.

The second result is less encouraging. Harrison et al. show that

If commands are not restricted to one operation each, it is not always decidable whether a
given protection system can confer a given right.

Thus, we cannot determine in general whether a subject can obtain a particular right to an object.

As an example, consider protection in the Unix operating system. The Unix protection scheme is
relatively simple; other protection systems are more complex. Because the Unix protection scheme
requires more than one operation per command in the HRU model, there can be no general
procedure to determine whether a certain access right can be given to a subject.

The HRU result is important but bleak. In fact, the HRU result can be extended. There may be an
algorithm to decide the access right question for a particular collection of protection systems, but
even an infinite number of algorithms cannot decide the access right question for all protection
systems. However, the negative results do not say that no decision process exists for any protection
system. In fact, for certain specific protection systems, it is decidable whether a given access right
can be conferred.



Sidebar 5-2: Proving the HRU Results

The first HRU result applies when commands are restricted to containing just one
operation each. In this case, it is possible to decide whether a given protection system,
started with a given initial configuration of the access control matrix, can allow a given
user a given access right to a given object. In other words, suppose you want to know
whether a particular protection system can allow a subject s to obtain access right r to
object o. (Harrison et al. say that such a system leaks the access right.)

As long as each command consists of only a single operation, there is an algorithm that
can answer this question. The proof involves analyzing the minimum number of
commands by which a right can be conferred. Certain operations, such as delete and
destroy, have no effect on expanding access rights; they can be ignored. The shortest
sequence of commands by which such a right can be conferred contains at most m = | r
| * ( |s|+1) *( |o|+1) + 1 commands, where | r | is the number of rights, |s| is the
number of subjects, and |o| is the number of objects in the protection system. The
algorithm calls for testing all sequences of commands of length up to m. (There are 2km

such sequences, for some constant k.) If the right is conferred, it will be in one of the
sequences.

The proof of the second HRU result uses commands of an HRU protection system to
represent operations of a formal system called a Turing machine. Turing machines are
general models of computing devices, expressed as a machine reading a tape that has a
string of zeros and ones. The decidability problems we want to solve are often framed
so that the result we seek is true if we can decide whether the Turing machine will ever
halt when reading commands from the tape. Any conventional computing system and
program can be modeled with a Turing machine. Several decidable results about Turing
machines are well known, including one that shows it is impossible to develop a general
procedure to determine whether a given Turing machine will halt when performing a
given computation. The proof of the second HRU result follows by the demonstration
that a decision procedure for protection systems would also solve the halting problem
for Turing machines, which is known to be unsolvable.

Therefore, the HRU results are negative for general procedures but do not rule out the possibility of
making decisions about particular protection systems.

TakeGrant Systems

One final model of a protection system is the takegrant system, introduced by Jones [JON78a] and
expanded by Lipton and Snyder [LIP77, SNY81].

This model has only four primitive operations: create, revoke, take, and grant. Create and revoke
are similar to operations from the GrahamDenning and HRU models; take and grant are new types
of operations. These operations are presented most naturally through the use of graphs.

As in other systems, let S be a set of subjects and O be a set of objects; objects can be either active
(subjects) or passive (nonsubject objects). Let R be a set of rights. Each subject or object is



denoted by a node of a graph; the rights of a particular subject to a particular object are denoted by
a labeled, directed edge from the subject to the object. Figure 5-8 shows an example of subject,
object, and rights.

Figure 5-8. Subject, Object, and Rights.

Let s be the subject performing each of the operations. The four operations are defined as follows.
The effects of these operations are shown in Figure 5-9.

Figure 5-9. Creating an Object; Revoking, Granting, and Taking Access
Rights.

[View full size image]

Create(o,r). A new node with label o is added to the graph. From s to o is a directed edge with
label r, denoting the rights of s on o.

Revoke(o,r). The rights r are revoked from s on o. The edge from s to o was labeled q  r;
the label is replaced by q. Informally, we say that s can revoke its rights to do r on o.

Grant(o,p,r). Subject s grants to o access rights r on p. A specific right is grant. Subject s can
grant to o access rights r on p only if s has grant rights on o and s has r rights on p.
Informally, s can grant (share) any of its rights with o, as long as s has the right to grant
privileges to o. An edge from o to p is added, with label r.



Take(o,p,r). Subject s takes from o access rights r on p. A specific right is take. Subject s can
take from o access rights r on p only if s has take right on o and o has r rights on p.
Informally, s can take any rights o has, as long as s has the right to take privileges from o. An
edge from s to p is added, with label r.

This set of operations is even shorter than the operations of either of the two previous models.
However, take and grant are more complex rights.

Snyder shows that in this system certain protection questions are decidable; furthermore, they are
decidable in reasonable (less than exponential) time. In [SNY81], Snyder considers two questions:

1. Can we decide whether a given subject can share an object with another subject?

2. Can we decide whether a given subject can steal access to an object from another
subject?

Clearly, these are important questions to answer about a protection system, for they show whether
the access control mechanisms are secure against unauthorized disclosure.

The answer to Snyder's first question is yes. Sharing can occur only if several other subjects
together have the desired access to the object and the first subject is connected to each of the
group of other subjects by a path of edges having a particular form. An algorithm that detects
sharability runs in time proportional to the size of the graph of the particular case.

Snyder also answers the second question affirmatively, in a situation heavily dependent on the
ability to share. Thus, an algorithm can decide whether access can be stolen by direct appeal to the
algorithm to decide sharability.

Landwehr [LAN81] points out that the takegrant model assumes the worst about users: If a user
can grant access rights, the model assumes that the user will. Suppose a user can create a file and
grant access to it to everyone. In that situation, every user could allow access to every object by
every other user. This worst-case assumption limits the applicability of the model to situations of
controlled sharing of information. In general, however, the takegrant model is useful because it
identifies conditions under which a user can obtain access to an object.

Summary of Models of Protection Systems

We study models of computer security for two reasons. First, models are important in determining
the policies a secure system should enforce. For example, the BellLa Padula and Biba models
identify specific conditions we must enforce so that we can ensure secrecy or integrity. Second, the
study of abstract models can lead to an understanding of the properties of protection systems. For
example, the HRU model states certain characteristics that can or cannot be decided by an arbitrary
protection system. These characteristics are important for designers of protection systems to know.

Building and analyzing models are essential to designing a trusted operating system. We use models
of protection systems to establish our security policies, determining what is feasible and desirable
from what is not. From the policies we move to the operating system design itself. In the next
section, we look closely at trusted operating system design.





5.4. Trusted Operating System Design

Operating systems by themselves (regardless of their security constraints) are very difficult to
design. They handle many duties, are subject to interruptions and context switches, and must
minimize overhead so as not to slow user computations and interactions. Adding the responsibility
for security enforcement to the operating system substantially increases the difficulty of designing
an operating system.

Nevertheless, the need for effective security is becoming more pervasive, and good software
engineering principles tell us that it is better to design the security in at the beginning than to
shoehorn it in at the end. (See Sidebar 5-3 for more about good design principles.) Thus, this
section focuses on the design of operating systems for a high degree of security. First, we examine
the basic design of a standard multipurpose operating system. Then, we consider isolation, through
which an operating system supports both sharing and separating user domains. We look in
particular at the design of an operating system's kernel; how the kernel is designed suggests
whether security will be provided effectively. We study two different interpretations of the kernel,
and then we consider layered or ring-structured designs.

Sidebar 5-3: The Importance of Good Design Principles

Every design, whether it be for hardware or software, must begin with a design
philosophy and guiding principles. These principles suffuse the design, are built in from
the beginning, and are preserved (according to the design philosophy) as the design
evolves.

The design philosophy expresses the overall intentions of the designers, not only in
terms of how the system will look and act but also in terms of how it will be tested and
maintained. Most systems are not built for short-term use. They grow and evolve as the
world changes over time. Features are enhanced, added, or deleted. Supporting or
communicating hardware and software change. The system is fixed as problems are
discovered and their causes rooted out. The design philosophy explains how the system
will "hang together," maintaining its integrity through all these changes. A good design
philosophy will make a system easy to test and easy to change.

The philosophy suggests a set of good design principles. Modularity, information hiding,
and other notions discussed in Chapter 3 form guidelines that enable designers to meet
their goals for software quality. Since security is one of these goals, it is essential that
security policy be consistent with the design philosophy and that the design principles
enable appropriate protections to be built into the system.

When the quality of the design is not considered up front and embedded in the
development process, the result can be a sort of software anarchy. The system may run
properly at first, but as changes are made, the software degrades quickly and in a way
that makes future changes more difficult and time consuming. The software becomes



brittle, failing more often and sometimes making it impossible to add or change
features, including security. Equally important, brittle and poorly designed software can
easily hide vulnerabilities because the software is so difficult to understand and the
execution states so hard to follow, reproduce, and test. Thus, good design is in fact a
security issue, and secure software must be designed well.

Trusted System Design Elements

That security considerations pervade the design and structure of operating systems implies two
things. First, an operating system controls the interaction between subjects and objects, so security
must be considered in every aspect of its design. That is, the operating system design must include
definitions of which objects will be protected in what way, which subjects will have access and at
what levels, and so on. There must be a clear mapping from the security requirements to the
design, so that all developers can see how the two relate. Moreover, once a section of the operating
system has been designed, it must be checked to see that the degree of security that it is supposed
to enforce or provide has actually been designed correctly. This checking can be done in many
ways, including formal reviews or simulations. Again, a mapping is necessary, this time from the
requirements to design to tests so that developers can affirm that each aspect of operating system
security has been tested and shown to work correctly.

Second, because security appears in every part of an operating system, its design and
implementation cannot be left fuzzy or vague until the rest of the system is working and being
tested. It is extremely hard to retrofit security features to an operating system designed with
inadequate security. Leaving an operating system's security to the last minute is much like trying to
install plumbing or wiring in a house whose foundation is set, structure defined, and walls already
up and painted; not only must you destroy most of what you have built, but you may also find that
the general structure can no longer accommodate all that is needed (and so some has to be left out
or compromised). Thus, security must be an essential part of the initial design of a trusted operating
system. Indeed, the security considerations may shape many of the other design decisions,
especially for a system with complex and constraining security requirements. For the same reasons,
the security and other design principles must be carried throughout implementation, testing, and
maintenance.

Good design principles are always good for security, as we have noted above. But several important
design principles are quite particular to security and essential for building a solid, trusted operating
system. These principles have been articulated well by Saltzer [SAL74] and Saltzer and Schroeder
[SAL75]:

Least privilege. Each user and each program should operate by using the fewest privileges
possible. In this way, the damage from an inadvertent or malicious attack is minimized.

Economy of mechanism. The design of the protection system should be small, simple, and
straightforward. Such a protection system can be carefully analyzed, exhaustively tested,
perhaps verified, and relied on.

Open design. The protection mechanism must not depend on the ignorance of potential
attackers; the mechanism should be public, depending on secrecy of relatively few key items,
such as a password table. An open design is also available for extensive public scrutiny,
thereby providing independent confirmation of the design security.



Complete mediation. Every access attempt must be checked. Both direct access attempts
(requests) and attempts to circumvent the access checking mechanism should be considered,
and the mechanism should be positioned so that it cannot be circumvented.

Permission based. The default condition should be denial of access. A conservative designer
identifies the items that should be accessible, rather than those that should not.

Separation of privilege. Ideally, access to objects should depend on more than one condition,
such as user authentication plus a cryptographic key. In this way, someone who defeats one
protection system will not have complete access.

Least common mechanism. Shared objects provide potential channels for information flow.
Systems employing physical or logical separation reduce the risk from sharing.

Ease of use. If a protection mechanism is easy to use, it is unlikely to be avoided.

Although these design principles were suggested several decades ago, they are as accurate now as
they were when originally written. The principles have been used repeatedly and successfully in the
design and implementation of numerous trusted systems. More importantly, when security problems
have been found in operating systems in the past, they almost always derive from failure to abide
by one or more of these principles.

Security Features of Ordinary Operating Systems

As described in Chapter 4, a multiprogramming operating system performs several functions that
relate to security. To see how, examine Figure 5-10, which illustrates how an operating system
interacts with users, provides services, and allocates resources.

Figure 5-10. Overview of an Operating System's Functions.
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We can see that the system addresses several particular functions that involve computer security:

User authentication. The operating system must identify each user who requests access and
must ascertain that the user is actually who he or she purports to be. The most common
authentication mechanism is password comparison.

Memory protection. Each user's program must run in a portion of memory protected against
unauthorized accesses. The protection will certainly prevent outsiders' accesses, and it may
also control a user's own access to restricted parts of the program space. Differential security,
such as read, write, and execute, may be applied to parts of a user's memory space. Memory
protection is usually performed by hardware mechanisms, such as paging or segmentation.

File and I/O device access control. The operating system must protect user and system files
from access by unauthorized users. Similarly, I/O device use must be protected. Data
protection is usually achieved by table lookup, as with an access control matrix.

Allocation and access control to general objects. Users need general objects, such as
constructs to permit concurrency and allow synchronization. However, access to these objects
must be controlled so that one user does not have a negative effect on other users. Again,
table lookup is the common means by which this protection is provided.

Enforced sharing. Resources should be made available to users as appropriate. Sharing brings
about the need to guarantee integrity and consistency. Table lookup, combined with integrity
controls such as monitors or transaction processors, is often used to support controlled
sharing.

Guaranteed fair service. All users expect CPU usage and other service to be provided so that



no user is indefinitely starved from receiving service. Hardware clocks combine with scheduling
disciplines to provide fairness. Hardware facilities and data tables combine to provide control.

Interprocess communication and synchronization. Executing processes sometimes need to
communicate with other processes or to synchronize their accesses to shared resources.
Operating systems provide these services by acting as a bridge between processes, responding
to process requests for asynchronous communication with other processes or synchronization.
Interprocess communication is mediated by access control tables.

Protected operating system protection data. The operating system must maintain data by
which it can enforce security. Obviously if these data are not protected against unauthorized
access (read, modify, and delete), the operating system cannot provide enforcement. Various
techniques, including encryption, hardware control, and isolation, support isolation of operating
system protection data.

Security Features of Trusted Operating Systems

Unlike regular operating systems, trusted systems incorporate technology to address both features
and assurance. The design of a trusted system is delicate, involving selection of an appropriate and
consistent set of features together with an appropriate degree of assurance that the features have
been assembled and implemented correctly. Figure 5-11 illustrates how a trusted operating system
differs from an ordinary one. Compare it with Figure 5-10. Notice how objects are accompanied or
surrounded by an access control mechanism, offering far more protection and separation than does
a conventional operating system. In addition, memory is separated by user, and data and program
libraries have controlled sharing and separation.

Figure 5-11. Security Functions of a Trusted Operating System.
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In this section, we consider in more detail the key features of a trusted operating system, including

user identification and authentication

mandatory access control

discretionary access control

object reuse protection

complete mediation

trusted path

audit

audit log reduction

intrusion detection

We consider each of these features in turn.

Identification and Authentication



Identification is at the root of much of computer security. We must be able to tell who is requesting
access to an object, and we must be able to verify the subject's identity. As we see shortly, most
access control, whether mandatory or discretionary, is based on accurate identification. Thus as
described in Chapter 4, identification involves two steps: finding out who the access requester is
and verifying that the requester is indeed who he/she/it claims to be. That is, we want to establish
an identity and then authenticate or verify that identity. Trusted operating systems require secure
identification of individuals, and each individual must be uniquely identified.

Mandatory and Discretionary Access Control

Mandatory access control (MAC) means that access control policy decisions are made beyond the
control of the individual owner of an object. A central authority determines what information is to be
accessible by whom, and the user cannot change access rights. An example of MAC occurs in
military security, where an individual data owner does not decide who has a top-secret clearance;
neither can the owner change the classification of an object from top secret to secret.

By contrast, discretionary access control (DAC), as its name implies, leaves a certain amount of
access control to the discretion of the object's owner or to anyone else who is authorized to control
the object's access. The owner can determine who should have access rights to an object and what
those rights should be. Commercial environments typically use DAC to allow anyone in a designated
group, and sometimes additional named individuals, to change access. For example, a corporation
might establish access controls so that the accounting group can have access to personnel files. But
the corporation may also allow Ana and Jose to access those files, too, in their roles as directors of
the Inspector General's office. Typically, DAC access rights can change dynamically. The owner of
the accounting file may add Renee and remove Walter from the list of allowed accessors, as
business needs dictate.

MAC and DAC can both be applied to the same object. MAC has precedence over DAC, meaning that
of all those who are approved for MAC access, only those who also pass DAC will actually be allowed
to access the object. For example, a file may be classified secret, meaning that only people cleared
for secret access can potentially access the file. But of those millions of people granted secret access
by the government, only people on project "deer park" or in the "environmental" group or at
location "Fort Hamilton" are actually allowed access.

Object Reuse Protection

One way that a computing system maintains its efficiency is to reuse objects. The operating system
controls resource allocation, and as a resource is freed for use by other users or programs, the
operating system permits the next user or program to access the resource. But reusable objects
must be carefully controlled, lest they create a serious vulnerability. To see why, consider what
happens when a new file is created. Usually, space for the file comes from a pool of freed,
previously used space on a disk or other storage device. Released space is returned to the pool
"dirty," that is, still containing the data from the previous user. Because most users would write to a
file before trying to read from it, the new user's data obliterate the previous owner's, so there is no
inappropriate disclosure of the previous user's information. However, a malicious user may claim a
large amount of disk space and then scavenge for sensitive data. This kind of attack is called object
reuse. The problem is not limited to disk; it can occur with main memory, processor registers and
storage, other magnetic media (such as disks and tapes), or any other reusable storage medium.



To prevent object reuse leakage, operating systems clear (that is, overwrite) all space to be
reassigned before allowing the next user to have access to it. Magnetic media are particularly
vulnerable to this threat. Very precise and expensive equipment can sometimes separate the most
recent data from the data previously recorded, from the data before that, and so forth. This threat,
called magnetic remanence, is beyond the scope of this book. For more information, see
[NCS91a]. In any case, the operating system must take responsibility for "cleaning" the resource
before permitting access to it. (See Sidebar 5-4 for a different kind of persistent data.)

Complete Mediation

For mandatory or discretionary access control to be effective, all accesses must be controlled. It is
insufficient to control access only to files if the attack will acquire access through memory or an
outside port or a network or a covert channel. The design and implementation difficulty of a trusted
operating system rises significantly as more paths for access must be controlled. Highly trusted
operating systems perform complete mediation, meaning that all accesses are checked.

Trusted Path

One way for a malicious user to gain inappropriate access is to "spoof" users, making them think
they are communicating with a legitimate security enforcement system when in fact their keystrokes
and commands are being intercepted and analyzed. For example, a malicious spoofer may place a
phony user ID and password system between the user and the legitimate system. As the illegal
system queries the user for identification information, the spoofer captures the real user ID and
password; the spoofer can use these bona fide entry data to access the system later on, probably
with malicious intent. Thus, for critical operations such as setting a password or changing access
permissions, users want an unmistakable communication, called a trusted path, to ensure that
they are supplying protected information only to a legitimate receiver. On some trusted systems,
the user invokes a trusted path by pressing a unique key sequence that, by design, is intercepted
directly by the security enforcement software; on other trusted systems, security-relevant changes
can be made only at system startup, before any processes other than the security enforcement code
run.



Sidebar 5-4: Hidden, But Not Forgotten

When is something gone? When you press the delete key, it goes away, right? Wrong.

By now you know that deleted files are not really deleted; they are moved to the recycle
bin. Deleted mail messages go to the trash folder. And temporary Internet pages hang
around for a few days waiting for repeat interest. But you sort of expect keystrokes to
disappear with the delete key.

Microsoft Word saves all changes and comments since a document was created.
Suppose you and a colleague collaborate on a document, you refer to someone else's
work, and your colleague inserts the comment "this research is rubbish." You concur, so
you delete the reference and your colleague's comment. Then you submit the paper to a
journal for review and, as luck would have it, your paper is sent to the author whose
work you disparaged. Then the author turns on change marking and finds not just the
deleted reference but the deletion of your colleague's comment. (See [BYE04].) If you
really wanted to remove that text, you should have used the Microsoft Hidden Data
Removal Tool. (Of course, inspecting the file with a binary editor is the only way you
can be sure the offending text is truly gone.)

The Adobe PDF document format is a simpler format intended to provide a platform-
independent way to display (and print) documents. Some people convert a Word
document to PDF to eliminate hidden sensitive data. That does remove the change-
tracking data; but it preserves even invisible output. Some people create a white box to
paste over data to be hidden, for example, to cut out part of a map or to hide a profit
column in a table. When you print the file, the box hides your sensitive information. But
the PDF format preserves all layers in a document, so your recipient can effectively peel
off the white box to reveal the hidden content. The NSA issued a report detailing steps
to ensure that deletions are truly deleted [NSA05].

Or if you want to show that something was there and has been deleted, you can do that
with the Microsoft Redaction Tool, which, presumably, deletes the underlying text and
replaces it with a thick black line.

Accountability and Audit

A security-relevant action may be as simple as an individual access to an object, such as a file, or it
may be as major as a change to the central access control database affecting all subsequent
accesses. Accountability usually entails maintaining a log of security-relevant events that have
occurred, listing each event and the person responsible for the addition, deletion, or change. This
audit log must obviously be protected from outsiders, and every security-relevant event must be
recorded.

Audit Log Reduction

Theoretically, the general notion of an audit log is appealing because it allows responsible parties to



evaluate all actions that affect all protected elements of the system. But in practice an audit log may
be too difficult to handle, owing to volume and analysis. To see why, consider what information
would have to be collected and analyzed. In the extreme (such as where the data involved can
affect a business' viability or a nation's security), we might argue that every modification or even
each character read from a file is potentially security relevant; the modification could affect the
integrity of data, or the single character could divulge the only really sensitive part of an entire file.
And because the path of control through a program is affected by the data the program processes,
the sequence of individual instructions is also potentially security relevant. If an audit record were to
be created for every access to a single character from a file and for every instruction executed, the
audit log would be enormous. (In fact, it would be impossible to audit every instruction, because
then the audit commands themselves would have to be audited. In turn, these commands would be
implemented by instructions that would have to be audited, and so on forever.)

In most trusted systems, the problem is simplified by an audit of only the opening (first access to)
and closing of (last access to) files or similar objects. Similarly, objects such as individual memory
locations, hardware registers, and instructions are not audited. Even with these restrictions, audit
logs tend to be very large. Even a simple word processor may open fifty or more support modules
(separate files) when it begins, it may create and delete a dozen or more temporary files during
execution, and it may open many more drivers to handle specific tasks such as complex formatting
or printing. Thus, one simple program can easily cause a hundred files to be opened and closed, and
complex systems can cause thousands of files to be accessed in a relatively short time. On the other
hand, some systems continuously read from or update a single file. A bank teller may process
transactions against the general customer accounts file throughout the entire day; what is
significant is not that the teller accessed the accounts file, but which entries in the file were
accessed. Thus, audit at the level of file opening and closing is in some cases too much data and in
other cases not enough to meet security needs.

A final difficulty is the "needle in a haystack" phenomenon. Even if the audit data could be limited to
the right amount, typically many legitimate accesses and perhaps one attack will occur. Finding the
one attack access out of a thousand legitimate accesses can be difficult. A corollary to this problem
is the one of determining who or what does the analysis. Does the system administrator sit and
analyze all data in the audit log? Or do the developers write a program to analyze the data? If the
latter, how can we automatically recognize a pattern of unacceptable behavior? These issues are
open questions being addressed not only by security specialists but also by experts in artificial
intelligence and pattern recognition.

Sidebar 5-5 illustrates how the volume of audit log data can get out of hand very quickly. Some
trusted systems perform audit reduction, using separate tools to reduce the volume of the audit
data. In this way, if an event occurs, all the data have been recorded and can be consulted directly.
However, for most analysis, the reduced audit log is enough to review.

Intrusion Detection

Closely related to audit reduction is the ability to detect security lapses, ideally while they occur. As
we have seen in the State Department example, there may well be too much information in the
audit log for a human to analyze, but the computer can help correlate independent data. Intrusion
detection software builds patterns of normal system usage, triggering an alarm any time the usage
seems abnormal. After a decade of promising research results in intrusion detection, products are
now commercially available. Some trusted operating systems include a primitive degree of intrusion
detection software. See Chapter 7 for a more detailed description of intrusion detection systems.



Although the problems are daunting, there have been many successful implementations of trusted
operating systems. In the following section, we examine some of them. In particular, we consider
three properties: kernelized design (a result of least privilege and economy of mechanism), isolation
(the logical extension of least common mechanism), and ring-structuring (an example of open
design and complete mediation).

Sidebar 5-5: Theory vs. Practice: Audit Data Out of Control

In the 1980s, the U.S. State Department was enhancing the security of the automated
systems that handled diplomatic correspondence among its embassies worldwide. One
of the security requirements for an operating system enhancement requested an audit
log of every transaction related to protected documents. The requirement included the
condition that the system administrator was to review the audit log daily, looking for
signs of malicious behavior.

In theory, this requirement was sensible, since revealing the contents of protected
documents could at least embarrass the nation, even endanger it. But, in fact, the
requirement was impractical. The State Department ran a test system with five users,
printing out the audit log for ten minutes. At the end of the test period, the audit log
generated a stack of paper more than a foot high! Because the actual system involved
thousands of users working around the clock, the test demonstrated that it would have
been impossible for the system administrator to review the logeven if that were all the
system administrator had to do every day.

The State Department went on to consider other options for detecting malicious
behavior, including audit log reduction and automated review of the log's contents.

Kernelized Design

A kernel is the part of an operating system that performs the lowest-level functions. In standard
operating system design, the kernel implements operations such as synchronization, interprocess
communication, message passing, and interrupt handling. The kernel is also called a nucleus or
core. The notion of designing an operating system around a kernel is described by Lampson and
Sturgis [LAM76] and by Popek and Kline [POP78].

A security kernel is responsible for enforcing the security mechanisms of the entire operating
system. The security kernel provides the security interfaces among the hardware, operating system,
and other parts of the computing system. Typically, the operating system is designed so that the
security kernel is contained within the operating system kernel. Security kernels are discussed in
detail by Ames [AME83].

There are several good design reasons why security functions may be isolated in a security kernel.

Coverage. Every access to a protected object must pass through the security kernel. In a
system designed in this way, the operating system can use the security kernel to ensure that
every access is checked.



Separation. Isolating security mechanisms both from the rest of the operating system and
from the user space makes it easier to protect those mechanisms from penetration by the
operating system or the users.

Unity. All security functions are performed by a single set of code, so it is easier to trace the
cause of any problems that arise with these functions.

Modifiability. Changes to the security mechanisms are easier to make and easier to test.

Compactness. Because it performs only security functions, the security kernel is likely to be
relatively small.

Verifiability. Being relatively small, the security kernel can be analyzed rigorously. For
example, formal methods can be used to ensure that all security situations (such as states and
state changes) have been covered by the design.

Notice the similarity between these advantages and the design goals of operating systems that we
described earlier. These characteristics also depend in many ways on modularity, as described in
Chapter 3.

On the other hand, implementing a security kernel may degrade system performance because the
kernel adds yet another layer of interface between user programs and operating system resources.
Moreover, the presence of a kernel does not guarantee that it contains all security functions or that
it has been implemented correctly. And in some cases a security kernel can be quite large.

How do we balance these positive and negative aspects of using a security kernel? The design and
usefulness of a security kernel depend somewhat on the overall approach to the operating system's
design. There are many design choices, each of which falls into one of two types: Either the kernel
is designed as an addition to the operating system, or it is the basis of the entire operating system.
Let us look more closely at each design choice.

Reference Monitor

The most important part of a security kernel is the reference monitor, the portion that controls
accesses to objects [AND72, LAM71]. A reference monitor is not necessarily a single piece of code;
rather, it is the collection of access controls for devices, files, memory, interprocess communication,
and other kinds of objects. As shown in Figure 5-12, a reference monitor acts like a brick wall
around the operating system or trusted software.

Figure 5-12. Reference Monitor.



A reference monitor must be

tamperproof, that is, impossible to weaken or disable

unbypassable, that is, always invoked when access to any object is required

analyzable, that is, small enough to be subjected to analysis and testing, the completeness of
which can be ensured

A reference monitor can control access effectively only if it cannot be modified or circumvented by a
rogue process, and it is the single point through which all access requests must pass. Furthermore,
the reference monitor must function correctly if it is to fulfill its crucial role in enforcing security.
Because the likelihood of correct behavior decreases as the complexity and size of a program
increase, the best assurance of correct policy enforcement is to build a small, simple,
understandable reference monitor.

The reference monitor is not the only security mechanism of a trusted operating system. Other
parts of the security suite include audit, identification, and authentication processing, as well as the
setting of enforcement parameters, such as who the allowable subjects are and which objects they
are allowed to access. These other security parts interact with the reference monitor, receiving data
from the reference monitor or providing it with the data it needs to operate.

The reference monitor concept has been used for many trusted operating systems and also for
smaller pieces of trusted software. The validity of this concept is well supported both in research
and in practice.

Trusted Computing Base

The trusted computing base, or TCB, is the name we give to everything in the trusted operating
system necessary to enforce the security policy. Alternatively, we say that the TCB consists of the
parts of the trusted operating system on which we depend for correct enforcement of policy. We can



think of the TCB as a coherent whole in the following way. Suppose you divide a trusted operating
system into the parts that are in the TCB and those that are not, and you allow the most skillful
malicious programmers to write all the non-TCB parts. Since the TCB handles all the security, there
is nothing the malicious non-TCB parts can do to impair the correct security policy enforcement of
the TCB. This definition gives you a sense that the TCB forms the fortress-like shell that protects
whatever in the system needs protection. But the analogy also clarifies the meaning of trusted in
trusted operating system: Our trust in the security of the whole system depends on the TCB.

It is easy to see that it is essential for the TCB to be both correct and complete. Thus, to understand
how to design a good TCB, we focus on the division between the TCB and non-TCB elements of the
operating system and spend our effort on ensuring the correctness of the TCB.

TCB Functions

Just what constitutes the TCB? We can answer this question by listing system elements on which
security enforcement could depend:

hardware, including processors, memory, registers, and I/O devices

some notion of processes, so that we can separate and protect security-critical processes

primitive files, such as the security access control database and identification/authentication
data

protected memory, so that the reference monitor can be protected against tampering

some interprocess communication, so that different parts of the TCB can pass data to and
activate other parts. For example, the reference monitor can invoke and pass data securely to
the audit routine.

It may seem as if this list encompasses most of the operating system, but in fact the TCB is only a
small subset. For example, although the TCB requires access to files of enforcement data, it does
not need an entire file structure of hierarchical directories, virtual devices, indexed files, and
multidevice files. Thus, it might contain a primitive file manager to handle only the small, simple
files needed for the TCB. The more complex file manager to provide externally visible files could be
outside the TCB. Figure 5-13 shows a typical division into TCB and non-TCB sections.

Figure 5-13. TCB and Non-TCB Code.



The TCB, which must maintain the secrecy and integrity of each domain, monitors four basic
interactions.

Process activation. In a multiprogramming environment, activation and deactivation of
processes occur frequently. Changing from one process to another requires a complete change
of registers, relocation maps, file access lists, process status information, and other pointers,
much of which is security-sensitive information.

Execution domain switching. Processes running in one domain often invoke processes in other
domains to obtain more sensitive data or services.

Memory protection. Because each domain includes code and data stored in memory, the TCB
must monitor memory references to ensure secrecy and integrity for each domain.

I/O operation. In some systems, software is involved with each character transferred in an I/O
operation. This software connects a user program in the outermost domain to an I/O device in
the innermost (hardware) domain. Thus, I/O operations can cross all domains.

TCB Design



The division of the operating system into TCB and non-TCB aspects is convenient for designers and
developers because it means that all security-relevant code is located in one (logical) part. But the
distinction is more than just logical. To ensure that the security enforcement cannot be affected by
non-TCB code, TCB code must run in some protected state that distinguishes it. Thus, the
structuring into TCB and non-TCB must be done consciously. However, once this structuring has
been done, code outside the TCB can be changed at will, without affecting the TCB's ability to
enforce security. This ability to change helps developers because it means that major sections of the
operating systemutilities, device drivers, user interface managers, and the likecan be revised or
replaced any time; only the TCB code must be controlled more carefully. Finally, for anyone
evaluating the security of a trusted operating system, a division into TCB and non-TCB simplifies
evaluation substantially because non-TCB code need not be considered.

TCB Implementation

Security-related activities are likely to be performed in different places. Security is potentially
related to every memory access, every I/O operation, every file or program access, every initiation
or termination of a user, and every interprocess communication. In modular operating systems,
these separate activities can be handled in independent modules. Each of these separate modules,
then, has both security-related and other functions.

Collecting all security functions into the TCB may destroy the modularity of an existing operating
system. A unified TCB may also be too large to be analyzed easily. Nevertheless, a designer may
decide to separate the security functions of an existing operating system, creating a security kernel.
This form of kernel is depicted in Figure 5-14.

Figure 5-14. Combined Security Kernel/Operating System.

[View full size image]



A more sensible approach is to design the security kernel first and then design the operating system
around it. This technique was used by Honeywell in the design of a prototype for its secure
operating system, Scomp. That system contained only twenty modules to perform the primitive
security functions, and it consisted of fewer than 1,000 lines of higher-level-language source code.
Once the actual security kernel of Scomp was built, its functions grew to contain approximately
10,000 lines of code.

In a security-based design, the security kernel forms an interface layer, just atop system hardware.
The security kernel monitors all operating system hardware accesses and performs all protection
functions. The security kernel, which relies on support from hardware, allows the operating system
itself to handle most functions not related to security. In this way, the security kernel can be small
and efficient. As a byproduct of this partitioning, computing systems have at least three execution
domains: security kernel, operating system, and user. See Figure 5-15.

Figure 5-15. Separate Security Kernel.

[View full size image]



Separation/Isolation

Recall from Chapter 4 that Rushby and Randell [RUS83] list four ways to separate one process from
others: physical, temporal, cryptographic, and logical separation. With physical separation, two
different processes use two different hardware facilities. For example, sensitive computation may be
performed on a reserved computing system; nonsensitive tasks are run on a public system.
Hardware separation offers several attractive features, including support for multiple independent
threads of execution, memory protection, mediation of I/O, and at least three different degrees of
execution privilege. Temporal separation occurs when different processes are run at different
times. For instance, some military systems run nonsensitive jobs between 8:00 a.m. and noon, with
sensitive computation only from noon to 5:00 p.m. Encryption is used for cryptographic
separation, so two different processes can be run at the same time because unauthorized users
cannot access sensitive data in a readable form. Logical separation, also called isolation, is
provided when a process such as a reference monitor separates one user's objects from those of
another user. Secure computing systems have been built with each of these forms of separation.

Multiprogramming operating systems should isolate each user from all others, allowing only
carefully controlled interactions between the users. Most operating systems are designed to provide
a single environment for all. In other words, one copy of the operating system is available for use by
many users, as shown in Figure 5-16. The operating system is often separated into two distinct
pieces, located at the highest and lowest addresses of memory.

Figure 5-16. Conventional Multiuser Operating System Memory.



Virtualization

Virtualization is a powerful tool for trusted system designers because it allows users to access
complex objects in a carefully controlled manner. By virtualization we mean that the operating
system emulates or simulates a collection of a computer system's resources. We say that a virtual
machine is a collection of real or simulated hardware facilities: a [central] processor that runs an
instruction set, an amount of directly addressable storage, and some I/O devices. These facilities
support the execution of programs.

Obviously, virtual resources must be supported by real hardware or software, but the real resources
do not have to be the same as the simulated ones. There are many examples of this type of
simulation. For instance, printers are often simulated on direct access devices for sharing in
multiuser environments. Several small disks can be simulated with one large one. With demand
paging, some noncontiguous memory can support a much larger contiguous virtual memory space.
And it is common even on PCs to simulate space on slower disks with faster memory. In these ways,
the operating system provides the virtual resource to the user, while the security kernel precisely
controls user accesses.

Multiple Virtual Memory Spaces

The IBM MVS/ESA operating system uses virtualization to provide logical separation that gives the
user the impression of physical separation. IBM MVS/ESA is a paging system such that each user's
logical address space is separated from that of other users by the page mapping mechanism.
Additionally, MVS/ESA includes the operating system in each user's logical address space, so a user
runs on what seems to be a complete, separate machine.



Most paging systems present to a user only the user's virtual address space; the operating system
is outside the user's virtual addressing space. However, the operating system is part of the logical
space of each MVS/ESA user. Therefore, to the user MVS/ESA seems like a single-user system, as
shown in Figure 5-17.

Figure 5-17. Multiple Virtual Addressing Spaces.

[View full size image]

A primary advantage of MVS/ESA is memory management. Each user's virtual memory space can
be as large as total addressable memory, in excess of 16 million bytes. And protection is a second
advantage of this representation of memory. Because each user's logical address space includes the
operating system, the user's perception is of running on a separate machine, which could even be
true.

Virtual Machines

The IBM Processor Resources/System Manager (PR/SM) system provides a level of protection that is
stronger still. A conventional operating system has hardware facilities and devices that are under
the direct control of the operating system, as shown in Figure 5-18. PR/SM provides an entire virtual
machine to each user, so that each user not only has logical memory but also has logical I/O



devices, logical files, and other logical resources. PR/SM performs this feat by strictly separating
resources. (The PR/SM system is not a conventional operating system, as we see later in this
chapter.)

Figure 5-18. Conventional Operating System.

The PR/SM system is a natural extension of the concept of virtual memory. Virtual memory gives
the user a memory space that is logically separated from real memory; a virtual memory space is
usually larger than real memory, as well. A virtual machine gives the user a full set of hardware
features; that is, a complete machine that may be substantially different from the real machine.
These virtual hardware resources are also logically separated from those of other users. The
relationship of virtual machines to real ones is shown in Figure 5-19.

Figure 5-19. Virtual Machine.

[View full size image]



Both MVS/ESA and PR/SM improve the isolation of each user from other users and from the
hardware of the system. Of course, this added complexity increases the overhead incurred with
these levels of translation and protection. In the next section we study alternative designs that
reduce the complexity of providing security in an operating system.

Layered Design

As described previously, a kernelized operating system consists of at least four levels: hardware,
kernel, operating system, and user. Each of these layers can include sublayers. For example, in
[SCH83b], the kernel has five distinct layers. At the user level, it is not uncommon to have quasi
system programs, such as database managers or graphical user interface shells, that constitute
separate layers of security themselves.

Layered Trust

As we have seen earlier in this chapter (in Figure 5-15), the layered view of a secure operating
system can be depicted as a series of concentric circles, with the most sensitive operations in the
innermost layers. Then, the trustworthiness and access rights of a process can be judged by the
process's proximity to the center: The more trusted processes are closer to the center. But we can
also depict the trusted operating system in layers as a stack, with the security functions closest to
the hardware. Such a system is shown in Figure 5-20.



Figure 5-20. Layered Operating System.

In this design, some activities related to protection functions are performed outside the security
kernel. For example, user authentication may include accessing a password table, challenging the
user to supply a password, verifying the correctness of the password, and so forth. The
disadvantage of performing all these operations inside the security kernel is that some of the
operations (such as formatting the userterminal interaction and searching for the user in a table of
known users) do not warrant high security.

Alternatively, we can implement a single logical function in several different modules; we call this a
layered design. Trustworthiness and access rights are the basis of the layering. In other words, a
single function may be performed by a set of modules operating in different layers, as shown in
Figure 5-21. The modules of each layer perform operations of a certain degree of sensitivity.

Figure 5-21. Modules Operating In Different Layers.



Neumann [NEU86] describes the layered structure used for the Provably Secure Operating System
(PSOS). As shown in Table 5-4, some lower-level layers present some or all of their functionality to
higher levels, but each layer properly encapsulates those things below itself.

Table 5-4. PSOS Design Hierarchy.

Level Function Hidden by Level Visible to User

16 User request interpreter   Yes

15 User environments and name
spaces

  Yes

14 User I/O   Yes

13 Procedure records   Yes

12 User processes and visible I/O   Yes

11 Creation and deletion of user
objects

  Yes

10 Directories 11 Partially

9 Extended types 11 Partially



Level Function Hidden by Level Visible to User

8 Segments 11 Partially

7 Paging 8 No

6 System processes and I/O 12 No

5 Primitive I/O 6 No

4 Arithmetic and other basic
operations

  Yes

3 Clocks 6 No

2 Interrupts 6 No

1 Registers and addressable
memory

7 Partially

0 Capabilities   Yes

From [NEU86], © IEEE, 1986. Used with permission.

A layered approach is another way to achieve encapsulation, discussed in Chapter 3. Layering is
recognized as a good operating system design. Each layer uses the more central layers as services,
and each layer provides a certain level of functionality to the layers farther out. In this way, we can
"peel off" each layer and still have a logically complete system with less functionality. Layering
presents a good example of how to trade off and balance design characteristics.

Another justification for layering is damage control. To see why, consider Neumann's [NEU86] two
examples of risk, shown in Tables 5-5 and 5-6. In a conventional, nonhierarchically designed system
(shown in Table 5-5), any problemhardware failure, software flaw, or unexpected condition, even in
a supposedly non-security-relevant portioncan cause disaster because the effect of the problem is
unbounded and because the system's design means that we cannot be confident that any given
function has no (indirect) security effect.

Table 5-5. Conventionally (Nonhierarchically) Designed
System.

Level Functions Risk

All Noncritical functions Disaster possible

All Less critical functions Disaster possible

All Most critical functions Disaster possible

Table 5-6. Hierarchically Designed System.
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7 Paging 8 No

6 System processes and I/O 12 No

5 Primitive I/O 6 No

4 Arithmetic and other basic
operations

  Yes

3 Clocks 6 No

2 Interrupts 6 No

1 Registers and addressable
memory

7 Partially

0 Capabilities   Yes

From [NEU86], © IEEE, 1986. Used with permission.

A layered approach is another way to achieve encapsulation, discussed in Chapter 3. Layering is
recognized as a good operating system design. Each layer uses the more central layers as services,
and each layer provides a certain level of functionality to the layers farther out. In this way, we can
"peel off" each layer and still have a logically complete system with less functionality. Layering
presents a good example of how to trade off and balance design characteristics.

Another justification for layering is damage control. To see why, consider Neumann's [NEU86] two
examples of risk, shown in Tables 5-5 and 5-6. In a conventional, nonhierarchically designed system
(shown in Table 5-5), any problemhardware failure, software flaw, or unexpected condition, even in
a supposedly non-security-relevant portioncan cause disaster because the effect of the problem is
unbounded and because the system's design means that we cannot be confident that any given
function has no (indirect) security effect.

Table 5-5. Conventionally (Nonhierarchically) Designed
System.

Level Functions Risk

All Noncritical functions Disaster possible

All Less critical functions Disaster possible

All Most critical functions Disaster possible

Table 5-6. Hierarchically Designed System.



Level Functions Risk

2 Noncritical functions Few disasters likely from noncritical
software

1 Less critical functions Some failures possible from less critical
functions, but because of separation, effect
limited

0 Most critical functions Disasters possible but unlikely if system
simple enough to be analyzed extensively

By contrast, as shown in Table 5-6, hierarchical structuring has two benefits:

Hierarchical structuring permits identification of the most critical parts, which can then be
analyzed intensely for correctness, so the number of problems should be smaller.

Isolation limits effects of problems to the hierarchical levels at and above the point of the
problem, so the effects of many problems should be confined.

These design propertiesthe kernel, separation, isolation, and hierarchical structurehave been the
basis for many trustworthy system prototypes. They have stood the test of time as best design and
implementation practices. (They are also being used in a different form of trusted operating system,
as described in Sidebar 5-6.)

In the next section, we look at what gives us confidence in an operating system's security.

Sidebar 5-6: An Operating System for the Untrusting

The U.K. Regulation of Investigatory Powers Act (RIPA) was intended to broaden
government surveillance capabilities, but privacy advocates worry that it can permit too
much government eavesdropping.

Peter Fairbrother, a British mathematician, is programming a new operating system he
calls M-o-o-t to keep the government at bay by carrying separation to the extreme. As
described in The New Scientist [KNI02], Fairbrother's design has all sensitive data
stored in encrypted form on servers outside the U.K. government's jurisdiction.
Encrypted communications protect the file transfers from server to computer and back
again. Each encryption key is used only once and isn't known by the user. Under RIPA,
the government will have the power to require any user to produce the key for any
message that user has encrypted. But if the user does not know the key, the user
cannot surrender it.

Fairbrother admits that in the wrong hands M-o-o-t could benefit criminals, but he
thinks the personal privacy benefits outweigh this harm.





5.5. Assurance in Trusted Operating Systems

This chapter has moved our discussion from the general to the particular. We began by studying
different models of protection systems. By the time we reached the last section, we examined three
principlesisolation, security kernel, and layered structureused in designing secure operating
systems, and we looked in detail at the approaches taken by designers of particular operating
systems. Now, we suppose that an operating system provider has taken these considerations into
account and claims to have a secure design. It is time for us to consider assurance, ways of
convincing others that a model, design, and implementation are correct.

What justifies our confidence in the security features of an operating system? If someone else has
evaluated the system, how have the confidence levels of operating systems been rated? In our
assessment, we must recognize that operating systems are used in different environments; in some
applications, less secure operating systems may be acceptable. Overall, then, we need ways of
determining whether a particular operating system is appropriate for a certain set of needs. Both in
Chapter 4 and in the previous section, we looked at design and process techniques for building
confidence in the quality and correctness of a system. In this section, we explore ways to actually
demonstrate the security of an operating system, using techniques such as testing, formal
verification, and informal validation. Snow [SNO05] explains what assurance is and why we need it.

Typical Operating System Flaws

Periodically throughout our analysis of operating system security features, we have used the phrase
"exploit a vulnerability." Throughout the years, many vulnerabilities have been uncovered in many
operating systems. They have gradually been corrected, and the body of knowledge about likely
weak spots has grown.

Known Vulnerabilities

In this section, we discuss typical vulnerabilities that have been uncovered in operating systems.
Our goal is not to provide a "how-to" guide for potential penetrators of operating systems. Rather,
we study these flaws to understand the careful analysis necessary in designing and testing
operating systems. User interaction is the largest single source of operating system
vulnerabilities, for several reasons:

The user interface is performed by independent, intelligent hardware subsystems. The
humancomputer interface often falls outside the security kernel or security restrictions
implemented by an operating system.

Code to interact with users is often much more complex and much more dependent on the
specific device hardware than code for any other component of the computing system. For
these reasons, it is harder to review this code for correctness, let alone to verify it formally.



User interactions are often character oriented. Again, in the interest of fast data transfer, the
operating systems designers may have tried to take shortcuts by limiting the number of
instructions executed by the operating system during actual data transfer. Sometimes the
instructions eliminated are those that enforce security policies as each character is transferred.

A second prominent weakness in operating system security reflects an ambiguity in access
policy. On one hand, we want to separate users and protect their individual resources. On the other
hand, users depend on shared access to libraries, utility programs, common data, and system
tables. The distinction between isolation and sharing is not always clear at the policy level, so the
distinction cannot be sharply drawn at implementation.

A third potential problem area is incomplete mediation. Recall that Saltzer [SAL74] recommended
an operating system design in which every requested access was checked for proper authorization.
However, some systems check access only once per user interface operation, process execution, or
machine interval. The mechanism is available to implement full protection, but the policy decision on
when to invoke the mechanism is not complete. Therefore, in the absence of any explicit
requirement, system designers adopt the "most efficient" enforcement; that is, the one that will
lead to the least use of machine resources.

Generality is a fourth protection weakness, especially among commercial operating systems for
large computing systems. Implementers try to provide a means for users to customize their
operating system installation and to allow installation of software packages written by other
companies. Some of these packages, which themselves operate as part of the operating system,
must execute with the same access privileges as the operating system. For example, there are
programs that provide stricter access control than the standard control available from the operating
system. The "hooks" by which these packages are installed are also trapdoors for any user to
penetrate the operating system.

Thus, several well-known points of security weakness are common to many commercial operating
systems. Let us consider several examples of actual vulnerabilities that have been exploited to
penetrate operating systems.

Examples of Exploitations

Earlier, we discussed why the user interface is a weak point in many major operating systems. We
begin our examples by exploring this weakness in greater detail. On some systems, after access has
been checked to initiate a user operation, the operation continues without subsequent checking,
leading to classic time-of-check to time-of-use flaws. Checking access permission with each
character transferred is a substantial overhead for the protection system. The command often
resides in the user's memory space. Any user can alter the source or destination address of the
command after the operation has commenced. Because access has already been checked once, the
new address will be used without further checkingit is not checked each time a piece of data is
transferred. By exploiting this flaw, users have been able to transfer data to or from any memory
address they desire.

Another example of exploitation involves a procedural problem. In one system a special supervisor
function was reserved for the installation of other security packages. When executed, this supervisor
call returned control to the user in privileged mode. The operations allowable in that mode were not
monitored closely, so the supervisor call could be used for access control or for any other high-
security system access. The particular supervisor call required some effort to execute, but it was
fully available on the system. Additional checking should have been used to authenticate the



program executing the supervisor request. As an alternative, the access rights for any subject
entering under that supervisor request could have been limited to the objects necessary to perform
the function of the added program.

The time-of-check to time-of-use mismatch described in Chapter 3 can introduce security problems,
too. In an attack based on this vulnerability, access permission is checked for a particular user to
access an object, such as a buffer. But between the time the access is approved and the access
actually occurs, the user changes the designation of the object, so that instead of accessing the
approved object, the user now accesses another, unacceptable, one.

Other penetrations have occurred by exploitation of more complex combinations of vulnerabilities.
In general, however, security flaws in trusted operating systems have resulted from a faulty
analysis of a complex situation, such as user interaction, or from an ambiguity or omission in the
security policy. When simple security mechanisms are used to implement clear and complete
security policies, the number of penetrations falls dramatically.

Assurance Methods

Once we understand the potential vulnerabilities in a system, we can apply assurance techniques to
seek out the vulnerabilities and mitigate or eliminate their effects. In this section, we consider three
such techniques, showing how they give us confidence in a system's correctness: testing,
verification, and validation. None of these is complete or foolproof, and each has advantages and
disadvantages. However, used with understanding, each can play an important role in deriving
overall assurance of the systems' security.

Testing

Testing, first presented in Chapter 3, is the most widely accepted assurance technique. As Boebert
[BOE92] observes, conclusions from testing are based on the actual product being evaluated, not on
some abstraction or precursor of the product. This realism is a security advantage. However,
conclusions based on testing are necessarily limited, for the following reasons:

Testing can demonstrate the existence of a problem, but passing tests does not demonstrate
the absence of problems.

Testing adequately within reasonable time or effort is difficult because the combinatorial
explosion of inputs and internal states makes testing very complex.

Testing based only on observable effects, not on the internal structure of a product, does not
ensure any degree of completeness.

Testing based on the internal structure of a product involves modifying the product by adding
code to extract and display internal states. That extra functionality affects the product's
behavior and can itself be a source of vulnerabilities or mask other vulnerabilities.

Testing real-time or complex systems presents the problem of keeping track of all states and
triggers. This problem makes it hard to reproduce and analyze problems reported as testers
proceed.



Ordinarily, we think of testing in terms of the developer: unit testing a module, integration testing
to ensure that modules function properly together, function testing to trace correctness across all
aspects of a given function, and system testing to combine hardware with software. Likewise,
regression testing is performed to make sure a change to one part of a system does not degrade
any other functionality. But for other tests, including acceptance tests, the user or customer
administers tests to determine if what was ordered is what is delivered. Thus, an important aspect
of assurance is considering whether the tests run are appropriate for the application and level of
security. The nature and kinds of testing reflect the developer's testing strategy: which tests
address what issues.

Similarly, it is important to recognize that testing is almost always constrained by a project's budget
and schedule. The constraints usually mean that testing is incomplete in some way. For this reason,
we consider notions of test coverage, test completeness, and testing effectiveness in a testing
strategy. The more complete and effective our testing, the more confidence we have in the
software. More information on testing can be found in Pfleeger and Atlee [PFL06a].

Penetration Testing

A testing strategy often used in computer security is called penetration testing, tiger team
analysis, or ethical hacking. In this approach, a team of experts in the use and design of
operating systems tries to crack the system being tested. (See, for example, [RUB01, TIL03,
PAL01].) The tiger team knows well the typical vulnerabilities in operating systems and computing
systems, as described in previous sections and chapters. With this knowledge, the team attempts to
identify and exploit the system's particular vulnerabilities. The work of penetration testers closely
resembles what an actual attacker might do [AND04, SCH00b].

Penetration testing is both an art and a science. The artistic side requires careful analysis and
creativity in choosing the test cases. But the scientific side requires rigor, order, precision, and
organization. As Weissman observes [WEI95], there is an organized methodology for hypothesizing
and verifying flaws. It is not, as some might assume, a random punching contest.

Using penetration testing is much like asking a mechanic to look over a used car on a sales lot. The
mechanic knows potential weak spots and checks as many of them as possible. It is likely that a
good mechanic will find significant problems, but finding a problem (and fixing it) is no guarantee
that no other problems are lurking in other parts of the system. For instance, if the mechanic checks
the fuel system, the cooling system, and the brakes, there is no guarantee that the muffler is good.
In the same way, an operating system that fails a penetration test is known to have faults, but a
system that does not fail is not guaranteed to be fault-free. Nevertheless, penetration testing is
useful and often finds faults that might have been overlooked by other forms of testing. One
possible reason for the success of penetration testing is its use under real-life conditions. Users
often exercise a system in ways that its designers never anticipated or intended. So penetration
testers can exploit this real-life environment and knowledge to make certain kinds of problems
visible.

Penetration testing is popular with the commercial community who think skilled hackers will test
(attack) a site and find problems in hours if not days. These people do not realize that finding flaws
in complex code can take weeks if not months. Indeed, the original military red teams to test
security in software systems were convened for 4- to 6-month exercises. Anderson et al. [AND04]
point out the limitation of penetration testing. To find one flaw in a space of 1 million inputs may
require testing all 1 million possibilities; unless the space is reasonably limited, this search is
prohibitive. Karger and Schell [KAR02] point out that even after they informed testers of a piece of



malicious code they inserted in a system, the testers were unable to find it. Penetration testing is
not a magic technique for finding needles in haystacks.

Formal Verification

The most rigorous method of analyzing security is through formal verification, which was introduced
in Chapter 3. Formal verification uses rules of mathematical logic to demonstrate that a system has
certain security properties. In formal verification, the operating system is modeled and the
operating system principles are described as assertions. The collection of models and assertions is
viewed as a theorem, which is then proven. The theorem asserts that the operating system is
correct. That is, formal verification confirms that the operating system provides the security
features it should and nothing else.

Proving correctness of an entire operating system is a formidable task, often requiring months or
even years of effort by several people. Computer programs called theorem provers can assist in
this effort, although much human activity is still needed. The amount of work required and the
methods used are well beyond the scope of this book. However, we illustrate the general principle of
verification by presenting a simple example that uses proofs of correctness. You can find more
extensive coverage of this topic in [BOW95], [CHE81], [GRI81], [HAN76], [PFL06a], and [SAI96].

Consider the flow diagram of Figure 5-22, illustrating the logic in a program to determine the
smallest of a set of n values, A[1] through A[n]. The flow chart has a single identified beginning
point, a single identified ending point, and five internal blocks, including an if-then structure and a
loop.

Figure 5-22. Flow Diagram for Finding the Minimum Value.



In program verification, we rewrite the program as a series of assertions about the program's
variables and values. The initial assertion is a statement of conditions on entry to the module. Next,
we identify a series of intermediate assertions associated with the work of the module. We also
determine an ending assertion, a statement of the expected result. Finally, we show that the initial
assertion leads logically to the intermediate assertions that in turn lead logically to the ending
assertion.

We can formally verify the example in Figure 5-22 by using four assertions. The first assertion, P, is
a statement of initial conditions, assumed to be true on entry to the procedure.

n > 0 (P)

The second assertion, Q, is the result of applying the initialization code in the first box.

n > 0 and (Q)

1  i  n and

min  A[1]

The third assertion, R, is the loop assertion. It asserts what is true at the start of each iteration of
the loop.



n > 0 and (R)

1  i  n and

for all j, 1  j  i - 1, min  A[j]

The final assertion, S, is the concluding assertion, the statement of conditions true at the time the
loop exit occurs.

n > 0 and (S)

i = n + 1 and

for all j, 1  j  n, min  A[j]

These four assertions, shown in Figure 5-23, capture the essence of the flow chart. The next step in
the verification process involves showing the logical progression of these four assertions. That is, we
must show that, assuming P is true on entry to this procedure, Q is true after completion of the
initialization section, R is true the first time the loop is entered, R is true each time through the
loop, and the truth of R implies that S is true at the termination of the loop.

Figure 5-23. Verification Assertions.

Clearly, Q follows from P and the semantics of the two statements in the second box. When we



enter the loop for the first time, i = 2, so i - 1 = 1. Thus, the assertion about min applies only for j
= 1, which follows from Q. To prove that R remains true with each execution of the loop, we can use
the principle of mathematical induction. The basis of the induction is that R was true the first time
through the loop. With each iteration of the loop the value of i increases by 1, so it is necessary to

show only that min A[i] for this new value of i. That proof follows from the meaning of the
comparison and replacement statements. Therefore, R is true with each iteration of the loop. Finally,
S follows from the final iteration value of R. This step completes the formal verification that this flow
chart exits with the smallest value of A[1] through A[n] in min.

The algorithm (not the verification) shown here is frequently used as an example in the first few
weeks of introductory programming classes. It is quite simple; in fact, after studying the algorithm
for a short time, most students convince themselves that the algorithm is correct. The verification
itself takes much longer to explain; it also takes far longer to write than the algorithm itself. Thus,
this proof-of-correctness example highlights two principal difficulties with formal verification
methods:

Time. The methods of formal verification are time consuming to perform. Stating the
assertions at each step and verifying the logical flow of the assertions are both slow processes.

Complexity. Formal verification is a complex process. For some systems with large numbers of
states and transitions, it is hopeless to try to state and verify the assertions. This situation is
especially true for systems that have not been designed with formal verification in mind.

These two difficulties constrain the situations in which formal verification can be used successfully.
Gerhart [GER89] succinctly describes the advantages and disadvantages of using formal methods,
including proof of correctness. As Schaefer [SCH89a] points out, too often people focus so much on
the formalism and on deriving a formal proof that they ignore the underlying security properties to
be ensured.

Validation

Formal verification is a particular instance of the more general approach to assuring correctness:
verification. As we have seen in Chapter 3, there are many ways to show that each of a system's
functions works correctly. Validation is the counterpart to verification, assuring that the system
developers have implemented all requirements. Thus, validation makes sure that the developer is
building the right product (according to the specification), and verification checks the quality of the
implementation [PFL06a]. There are several different ways to validate an operating system.

Requirements checking. One technique is to cross-check each operating system requirement
with the system's source code or execution-time behavior. The goal is to demonstrate that the
system does each thing listed in the functional requirements. This process is a narrow one, in
the sense that it demonstrates only that the system does everything it should do. In security,
we are equally concerned about prevention: making sure the system does not do the things it
is not supposed to do. Requirements checking seldom addresses this aspect of requirements
compliance.

Design and code reviews. As described in Chapter 3, design and code reviews usually address
system correctness (that is, verification). But a review can also address requirements
implementation. To support validation, the reviewers scrutinize the design or the code to



ensure traceability from each requirement to design and code components, noting problems
along the way (including faults, incorrect assumptions, incomplete or inconsistent behavior, or
faulty logic). The success of this process depends on the rigor of the review.

System testing. The programmers or an independent test team select data to check the
system. These test data can be organized much like acceptance testing, so behaviors and data
expected from reading the requirements document can be confirmed in the actual running of
the system. The checking is done in a methodical manner to ensure completeness.

Open Source

A debate has opened in the software development community over so-called open source
operating systems (and other programs), ones for which the source code is freely released for public
analysis. The arguments are predictable: With open source, many critics can peruse the code,
presumably finding flaws, whereas closed (proprietary) source makes it more difficult for attackers
to find and exploit flaws.

The Linux operating system is the prime example of open source software, although the source of
its predecessor Unix was also widely available. The open source idea is catching on: According to a
survey by IDG Research, reported in the Washington Post [CHA01], 27 percent of high-end servers
now run Linux, as opposed to 41 percent for a Microsoft operating system, and the open source
Apache web server outruns Microsoft Internet Information Server by 63 percent to 20 percent.

Lawton [LAW02] lists additional benefits of open source:

Cost: Because the source code is available to the public, if the owner charges a high fee, the
public will trade the software unofficially.

Quality: The code can be analyzed by many reviewers who are unrelated to the development
effort or the firm that developed the software.

Support: As the public finds flaws, it may also be in the best position to propose the fixes for
those flaws.

Extensibility: The public can readily figure how to extend code to meet new needs and can
share those extensions with other users.

Opponents of public release argue that giving the attacker knowledge of the design and
implementation of a piece of code allows a search for shortcomings and provides a blueprint for
their exploitation. Many commercial vendors have opposed open source for years, and Microsoft is
currently being quite vocal in its opposition. Craig Mundie, senior vice president of Microsoft, says
open source software "puts at risk the continued vitality of the independent software sector"
[CHA01]. Microsoft favors a scheme under which it would share source code of some of its products
with selected partners, while still retaining intellectual property rights. The Alexis de Tocqueville
Institution argues that "terrorists trying to hack or disrupt U.S. computer networks might find it
easier if the Federal government attempts to switch to 'open source' as some groups propose,"
citing threats against air traffic control or surveillance systems [BRO02].

But noted computer security researchers argue that open or closed source is not the real issue to
examine. Marcus Ranum, president of Network Flight Recorder, has said, "I don't think making



[software] open source contributes to making it better at all. What makes good software is single-
minded focus." Eugene Spafford of Purdue University [LAW02] agrees, saying, "What really
determines whether it is trustable is quality and care. Was it designed well? Was it built using
proper tools? Did the people who built it use discipline and not add a lot of features?" Ross Anderson
of Cambridge University [AND02] argues that "there are more pressing security problems for the
open source community. The interaction between security and openness is entangled with attempts
to use security mechanisms for commercial advantage, to entrench monopolies, to control
copyright, and above all to control interoperability."

Anderson presents a statistical model of reliability that shows that after open or closed testing, the
two approaches are equivalent in expected failure rate [AND05]. Boulanger [BOU05] comes to a
similar conclusion.

Evaluation

Most system consumers (that is, users or system purchasers) are not security experts. They need
the security functions, but they are not usually capable of verifying the accuracy or adequacy of test
coverage, checking the validity of a proof of correctness, or determining in any other way that a
system correctly implements a security policy. Thus, it is useful (and sometimes essential) to have
an independent third party evaluate an operating system's security. Independent experts can review
the requirements, design, implementation, and evidence of assurance for a system. Because it is
helpful to have a standard approach for an evaluation, several schemes have been devised for
structuring an independent review. In this section, we examine three different approaches: from the
United States, from Europe, and a scheme that combines several known approaches.

U.S. "Orange Book" Evaluation

In the late 1970s, the U.S. Department of Defense (DoD) defined a set of distinct, hierarchical levels
of trust in operating systems. Published in a document [DOD85] that has become known informally
as the "Orange Book," the Trusted Computer System Evaluation Criteria (TCSEC) provides the
criteria for an independent evaluation. The National Computer Security Center (NCSC), an
organization within the National Security Agency, guided and sanctioned the actual evaluations.

The levels of trust are described as four divisions, A, B, C, and D, where A has the most
comprehensive degree of security. Within a division, additional distinctions are denoted with
numbers; the higher numbers indicate tighter security requirements. Thus, the complete set of
ratings ranging from lowest to highest assurance is D, C1, C2, B1, B2, B3, and A1. Table 5-7 (from
Appendix D of [DOD85]) shows the security requirements for each of the seven evaluated classes of
NCSC certification. (Class D has no requirements because it denotes minimal protection.)

Table 5-7. Trusted Computer System Evaluation Criteria.

Criteria D C1 C2 B1 B2 B3 A1

Security Policy              



Criteria D C1 C2 B1 B2 B3 A1

Discretionary access
control

-

Object reuse
- -

Labels
- - -

Label integrity
- - -

Exportation of labeled
information

- - -

Labeling human-
readable output

- - -

Mandatory access
control

- - -

Subject sensitivity labels
- - - -

Device labels
- - - -

Accountability              

Identification and
authentication

-

Audit
- -

Trusted path
- - - -

Assurance              

System architecture
-

System integrity
-

Security testing
-

Design specification and
verification

- - -

Discretionary access
control

-

Object reuse
- -

Labels
- - -

Label integrity
- - -

Exportation of labeled
information

- - -

Labeling human-
readable output

- - -

Mandatory access
control

- - -

Subject sensitivity labels
- - - -

Device labels
- - - -

Accountability              

Identification and
authentication

-

Audit
- -

Trusted path
- - - -

Assurance              

System architecture
-

System integrity
-

Security testing
-

Design specification and
verification

- - -



Criteria D C1 C2 B1 B2 B3 A1

Covert channel analysis
- - - -

Trusted facility
management

- - - -

Configuration
management

- - - -

Trusted recovery
- - - - -

Trusted distribution
- - - - - -

Documentation              

Security features user's
guide

-

Trusted facility manual
-

Test documentation
-

Design documentation
-

Legend: -: no requirement; : same requirement as previous class; : additional
requirement

The table's pattern reveals four clusters of ratings:

D, with no requirements

C1/C2/B1, requiring security features common to many commercial operating systems

B2, requiring a precise proof of security of the underlying model and a narrative specification
of the trusted computing base

B3/A1, requiring more precisely proven descriptive and formal designs of the trusted
computing base

These clusters do not imply that classes C1, C2, and B1 are equivalent. However, there are
substantial increases of stringency between B1 and B2, and between B2 and B3 (especially in the
assurance area). To see why, consider the requirements for C1, C2, and B1. An operating system
developer might be able to add security measures to an existing operating system in order to
qualify for these ratings. However, security must be included in the design of the operating system
for a B2 rating. Furthermore, the design of a B3 or A1 system must begin with construction and

Covert channel analysis
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Trusted facility
management

- - - -

Configuration
management

- - - -

Trusted recovery
- - - - -

Trusted distribution
- - - - - -
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Security features user's
guide

-

Trusted facility manual
-

Test documentation
-

Design documentation
-

Legend: -: no requirement; : same requirement as previous class; : additional
requirement

The table's pattern reveals four clusters of ratings:

D, with no requirements

C1/C2/B1, requiring security features common to many commercial operating systems

B2, requiring a precise proof of security of the underlying model and a narrative specification
of the trusted computing base

B3/A1, requiring more precisely proven descriptive and formal designs of the trusted
computing base

These clusters do not imply that classes C1, C2, and B1 are equivalent. However, there are
substantial increases of stringency between B1 and B2, and between B2 and B3 (especially in the
assurance area). To see why, consider the requirements for C1, C2, and B1. An operating system
developer might be able to add security measures to an existing operating system in order to
qualify for these ratings. However, security must be included in the design of the operating system
for a B2 rating. Furthermore, the design of a B3 or A1 system must begin with construction and



proof of a formal model of security. Thus, the distinctions between B1 and B2 and between B2 and
B3 are significant.

Let us look at each class of security described in the TCSEC. In our descriptions, terms in quotation
marks have been taken directly from the Orange Book to convey the spirit of the evaluation criteria.

Class D: Minimal Protection

This class is applied to systems that have been evaluated for a higher category but have failed the
evaluation. No security characteristics are needed for a D rating.

Class C1: Discretionary Security Protection

C1 is intended for an environment of cooperating users processing data at the same level of
sensitivity. A system evaluated as C1 separates users from data. Controls must seemingly be
sufficient to implement access limitation, to allow users to protect their own data. The controls of a
C1 system may not have been stringently evaluated; the evaluation may be based more on the
presence of certain features. To qualify for a C1 rating, a system must have a domain that includes
security functions and that is protected against tampering. A keyword in the classification is
"discretionary." A user is "allowed" to decide when the controls apply, when they do not, and which
named individuals or groups are allowed access.

Class C2: Controlled Access Protection

A C2 system still implements discretionary access control, although the granularity of control is
finer. The audit trail must be capable of tracking each individual's access (or attempted access) to
each object.

Class B1: Labeled Security Protection

All certifications in the B division include nondiscretionary access control. At the B1 level, each
controlled subject and object must be assigned a security level. (For class B1, the protection system
does not need to control every object.)

Each controlled object must be individually labeled for security level, and these labels must be used
as the basis for access control decisions. The access control must be based on a model employing
both hierarchical levels and nonhierarchical categories. (The military model is an example of a
system with hierarchical levelsunclassified, classified, secret, top secretand nonhierarchical
categories, need-to-know category sets.) The mandatory access policy is the BellLa Padula model.
Thus, a B1 system must implement BellLa Padula controls for all accesses, with user discretionary
access controls to further limit access.

Class B2: Structured Protection

The major enhancement for B2 is a design requirement: The design and implementation of a B2



system must enable a more thorough testing and review. A verifiable top-level design must be
presented, and testing must confirm that the system implements this design. The system must be
internally structured into "well-defined largely independent modules." The principle of least privilege
is to be enforced in the design. Access control policies must be enforced on all objects and subjects,
including devices. Analysis of covert channels is required.

Class B3: Security Domains

The security functions of a B3 system must be small enough for extensive testing. A high-level
design must be complete and conceptually simple, and a "convincing argument" must exist that the
system implements this design. The implementation of the design must "incorporate significant use
of layering, abstraction, and information hiding."

The security functions must be tamperproof. Furthermore, the system must be "highly resistant to
penetration." There is also a requirement that the system audit facility be able to identify when a
violation of security is imminent.

Class A1: Verified Design

Class A1 requires a formally verified system design. The capabilities of the system are the same as
for class B3. But in addition there are five important criteria for class A1 certification: (1) a formal
model of the protection system and a proof of its consistency and adequacy, (2) a formal top-level
specification of the protection system, (3) a demonstration that the top-level specification
corresponds to the model, (4) an implementation "informally" shown to be consistent with the
specification, and (5) formal analysis of covert channels.

European ITSEC Evaluation

The TCSEC was developed in the United States, but representatives from several European
countries also recognized the need for criteria and a methodology for evaluating security-enforcing
products. The European efforts culminated in the ITSEC, the Information Technology Security
Evaluation Criteria [ITS91b].

Origins of the ITSEC

England, Germany, and France independently began work on evaluation criteria at approximately
the same time. Both England and Germany published their first drafts in 1989; France had its
criteria in limited review when these three nations, joined by the Netherlands, decided to work
together to develop a common criteria document. We examine Britain and Germany's efforts
separately, followed by their combined output.

German Green Book

The (then West) German Information Security Agency (GISA) produced a catalog of criteria [GIS88]



five years after the first use of the U.S. TCSEC. Keeping with tradition, the security community
began to call the document the German Green Book because of its green cover. The German criteria
identified eight basic security functions, deemed sufficient to enforce a broad spectrum of security
policies:

identification and authentication: unique and certain association of an identity with a subject or
object

administration of rights: the ability to control the assignment and revocation of access rights
between subjects and objects

verification of rights: mediation of the attempt of a subject to exercise rights with respect to an
object

audit: a record of information on the successful or attempted unsuccessful exercise of rights

object reuse: reusable resources reset in such a way that no information flow occurs in
contradiction to the security policy

error recovery: identification of situations from which recovery is necessary and invocation of
an appropriate action

continuity of service: identification of functionality that must be available in the system and
what degree of delay or loss (if any) can be tolerated

data communication security: peer entity authentication, control of access to communications
resources, data confidentiality, data integrity, data origin authentication, and nonrepudiation

Note that the first five of these eight functions closely resemble the U.S. TCSEC, but the last three
move into entirely new areas: integrity of data, availability, and a range of communications
concerns.

Like the U.S. DoD, GISA did not expect ordinary users (that is, those who were not security experts)
to select appropriate sets of security functions, so ten functional classes were defined. Classes F1
through F5 corresponded closely to the functionality requirements of U.S. classes C1 through B3.
(Recall that the functionality requirements of class A1 are identical to those of B3.) Class F6 was for
high data and program integrity requirements, class F7 was appropriate for high availability, and
classes F8 through F10 relate to data communications situations. The German method addressed
assurance by defining eight quality levels, Q0 through Q7, corresponding roughly to the assurance
requirements of U.S. TCSEC levels D through A1, respectively. For example,

The evaluation of a Q1 system is merely intended to ensure that the implementation more or
less enforces the security policy and that no major errors exist.

The goal of a Q3 evaluation is to show that the system is largely resistant to simple
penetration attempts.

To achieve assurance level Q6, it must be formally proven that the highest specification level
meets all the requirements of the formal security policy model. In addition, the source code is
analyzed precisely.

These functionality classes and assurance levels can be combined in any way, producing potentially



80 different evaluation results, as shown in Table 5-8. The region in the upper-right portion of the
table represents requirements in excess of U.S. TCSEC requirements, showing higher assurance
requirements for a given functionality class. Even though assurance and functionality can be
combined in any way, there may be limited applicability for a low-assurance, multilevel system (for
example, F5, Q1) in usage. The Germans did not assert that all possibilities would necessarily be
useful, however.

Table 5-8. Relationship of German and U.S. Evaluation Criteria.

  Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

F1   =U.S.C1           Beyond U.S.A1

F2     =U.S.C2         Beyond U.S.A1

F3       =U.S.B1       Beyond U.S.A1

F4         =U.S.B2     Beyond U.S.A1

F5           =U.S.B3 =U.S.A1 Beyond U.S.A1

F6 New functional class

F7 New functional class

F8 New functional class

F9 New functional class

F10 New functional class

Another significant contribution of the German approach was to support evaluations by independent,
commercial evaluation facilities.

British Criteria

The British criteria development was a joint activity between the U.K. Department of Trade and
Industry (DTI) and the Ministry of Defence (MoD). The first public version, published in 1989
[DTI89a], was issued in several volumes.

The original U.K. criteria were based on the "claims" language, a metalanguage by which a
vendor could make claims about functionality in a product. The claims language consisted of lists of
action phrases and target phrases with parameters. For example, a typical action phrase might
look like this:

This product can [not] determine … [using the mechanism described in paragraph n of this
document] …

The parameters product and n are, obviously, replaced with specific references to the product to be
evaluated. An example of a target phrase is



… the access-type granted to a [user, process] in respect of a(n) object.

These two phrases can be combined and parameters replaced to produce a claim about a product.

This access control subsystem can determine the read access granted to all subjects in
respect to system files.

The claims language was intended to provide an open-ended structure by which a vendor could
assert qualities of a product and independent evaluators could verify the truth of those claims.
Because of the generality of the claims language, there was no direct correlation of U.K. and U.S.
evaluation levels.

In addition to the claims language, there were six levels of assurance evaluation, numbered L1
through L6, corresponding roughly to U.S. assurance C1 through A1 or German Q1 through Q6.

The claims language was intentionally open-ended because the British felt it was impossible to
predict which functionality manufacturers would choose to put in their products. In this regard, the
British differed from Germany and the United States, who thought manufacturers needed to be
guided to include specific functions with precise functionality requirements. The British envisioned
certain popular groups of claims being combined into bundles that could be reused by many
manufacturers.

The British defined and documented a scheme for Commercial Licensed Evaluation Facilities (CLEFs)
[DTI89b], with precise requirements for the conduct and process of evaluation by independent
commercial organizations.

Other Activities

As if these two efforts were not enough, Canada, Australia, and France were also working on
evaluation criteria. The similarities among these efforts were far greater than their differences. It
was as if each profited by building upon the predecessors' successes.

Three difficulties, which were really different aspects of the same problem, became immediately
apparent.

Comparability. It was not clear how the different evaluation criteria related. A German F2/E2
evaluation was structurally quite similar to a U.S. C2 evaluation, but an F4/E7 or F6/E3
evaluation had no direct U.S. counterpart. It was not obvious which U.K. claims would
correspond to a particular U.S. evaluation level.

Transferability. Would a vendor get credit for a German F2/E2 evaluation in a context requiring
a U.S. C2? Would the stronger F2/E3 or F3/E2 be accepted?

Marketability. Could a vendor be expected to have a product evaluated independently in the
United States, Germany, Britain, Canada, and Australia? How many evaluations would a
vendor support? (Many vendors suggested that they would be interested in at most one
because the evaluations were costly and time consuming.)

For reasons including these problems, Britain, Germany, France, and the Netherlands decided to
pool their knowledge and synthesize their work.



ITSEC: Information Technology Security Evaluation Criteria

In 1991 the Commission of the European Communities sponsored the work of these four nations to
produce a harmonized version for use by all European Union member nations. The result was a good
amalgamation.

The ITSEC preserved the German functionality classes F1F10, while allowing the flexibility of the
British claims language. There is similarly an effectiveness component to the evaluation,
corresponding roughly to the U.S. notion of assurance and to the German E0E7 effectiveness levels.

A vendor (or other "sponsor" of an evaluation) has to define a target of evaluation (TOE), the
item that is the evaluation's focus. The TOE is considered in the context of an operational
environment (that is, an expected set of threats) and security enforcement requirements. An
evaluation can address either a product (in general distribution for use in a variety of environments)
or a system (designed and built for use in a specified setting). The sponsor or vendor states the
following information:

system security policy or rationale: why this product (or system) was built

specification of security-enforcing functions: security properties of the product (or system)

definition of the mechanisms of the product (or system) by which security is enforced

a claim about the strength of the mechanisms

the target evaluation level in terms of functionality and effectiveness

The evaluation proceeds to determine the following aspects:

suitability of functionality: whether the chosen functions implement the desired security
features

binding of functionality: whether the chosen functions work together synergistically

vulnerabilities: whether vulnerabilities exist either in the construction of the TOE or how it will
work in its intended environment

ease of use

strength of mechanism: the ability of the TOE to withstand direct attack

The results of these subjective evaluations determine whether the evaluators agree that the product
or system deserves its proposed functionality and effectiveness rating.

Significant Departures from the Orange Book

The European ITSEC offers the following significant changes compared with the Orange Book. These
variations have both advantages and disadvantages, as listed in Table 5-9.



Table 5-9. Advantages and Disadvantages of ITSEC Approach vs.
TCSEC.

Quality
Advantages of ITSEC over
TCSEC

Disadvantages of ITSEC
Compared with TCSEC

New functionality requirement
classes

Surpasses traditional
confidentiality focus of
TCSEC

Shows additional areas
in which products are
needed

Complicates user's
choice

Decoupling of features and
assurance

Allows low-assurance or
high-assurance product

Requires user
sophistication to decide
when high assurance is
needed

Some functionality may
inherently require high
assurance but not
guarantee receiving it

Permitting new feature
definitions; independence
from specific security policy Allows evaluation of any

kind of security-
enforcing product

Allows vendor to decide
what products the
market requires

Complicates comparison
of evaluations of
differently described but
similar products

Requires vendor to
formulate requirements
to highlight product's
features

Preset feature bundles
not necessarily
hierarchical

Commercial evaluation
facilities

Subject to market forces
for time, schedule, price

Government does not
have direct control of
evaluation

Evaluation cost paid by
vendor



U.S. Combined Federal Criteria

In 1992, partly in response to other international criteria efforts, the United States began a
successor to the TCSEC, which had been written over a decade earlier. This successor, the
Combined Federal Criteria [NSA92], was produced jointly by the National Institute for Standards
and Technology (NIST) and the National Security Agency (NSA) (which formerly handled criteria and
evaluations through its National Computer Security Center, the NCSC).

The team creating the Combined Federal Criteria was strongly influenced by Canada's criteria
[CSS93], released in draft status just before the combined criteria effort began. Although many of
the issues addressed by other countries' criteria were the same for the United States, there was a
compatibility issue that did not affect the Europeans, namely, the need to be fair to vendors that
had already passed U.S. evaluations at a particular level or that were planning for or in the middle
of evaluations. Within that context, the new U.S. evaluation model was significantly different from
the TCSEC. The combined criteria draft resembled the European model, with some separation
between features and assurance.

The Combined Federal Criteria introduced the notions of security target (not to be confused with a
target of evaluation, or TOE) and protection profile. A user would generate a protection profile to
detail the protection needs, both functional and assurance, for a specific situation or a generic
scenario. This user might be a government sponsor, a commercial user, an organization
representing many similar users, a product vendor's marketing representative, or a product
inventor. The protection profile would be an abstract specification of the security aspects needed in
an information technology (IT) product. The protection profile would contain the elements listed in
Table 5-10.

Table 5-10. Protection Profile.

Rationale

Protection policy and regulations

Information protection philosophy

Expected threats

Environmental assumptions

Intended use

Functionality

Security features

Security services



Rationale

Available security mechanisms
(optional)

Assurance

Profile-specific assurances

Profile-independent assurances

Dependencies

Internal dependencies

External dependencies

In response to a protection profile, a vendor might produce a product that, the vendor would assert,
met the requirements of the profile. The vendor would then map the requirements of the protection
profile in the context of the specific product onto a statement called a security target. As shown in
Table 5-11, the security target matches the elements of the protection profile.

Table 5-11. Security Target.

Rationale

Implementation fundamentals

Information protection philosophy

Countered threats

Environmental assumptions

Intended use

Functionality

Security features

Security services

Security mechanisms selected

Assurance

Available security mechanisms
(optional)

Assurance

Profile-specific assurances

Profile-independent assurances

Dependencies

Internal dependencies

External dependencies
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met the requirements of the profile. The vendor would then map the requirements of the protection
profile in the context of the specific product onto a statement called a security target. As shown in
Table 5-11, the security target matches the elements of the protection profile.

Table 5-11. Security Target.

Rationale

Implementation fundamentals

Information protection philosophy

Countered threats

Environmental assumptions

Intended use

Functionality

Security features

Security services

Security mechanisms selected



Rationale

Assurance

Target-specific assurances

Target-independent assurances

Dependencies

Internal dependencies

External dependencies

The security target then becomes the basis for the evaluation. The target details which threats are
countered by which features, to what degree of assurance and using which mechanisms. The
security target outlines the convincing argument that the product satisfies the requirements of the
protection profile. Whereas the protection profile is an abstract description of requirements, the
security target is a detailed specification of how each of those requirements is met in the specific
product.

The criteria document also included long lists of potential requirements (a subset of which could be
selected for a particular protection profile), covering topics from object reuse to accountability and
from covert channel analysis to fault tolerance. Much of the work in specifying precise requirement
statements came from the draft version of the Canadian criteria.

The U.S. Combined Federal Criteria was issued only once, in initial draft form. After receiving a
round of comments, the editorial team announced that the United States had decided to join forces
with the Canadians and the editorial board from the ITSEC to produce the Common Criteria for the
entire world.

Common Criteria

The Common Criteria [CCE94, CCE98] approach closely resembles the U.S. Federal Criteria (which,
of course, was heavily influenced by the ITSEC and Canadian efforts). It preserves the concepts of
security targets and protections profiles. The U.S. Federal Criteria were intended to have packages
of protection requirements that were complete and consistent for a particular type of application,
such as a network communications switch, a local area network, or a stand-alone operating system.
The example packages received special attention in the Common Criteria.

The Common Criteria defined topics of interest to security, shown in Table 5-12. Under each of
these classes, they defined families of functions or assurance needs, and from those families, they
defined individual components, as shown in Figure 5-24.

Table 5-12. Classes in Common Criteria.

Assurance

Target-specific assurances

Target-independent assurances

Dependencies

Internal dependencies

External dependencies
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The U.S. Combined Federal Criteria was issued only once, in initial draft form. After receiving a
round of comments, the editorial team announced that the United States had decided to join forces
with the Canadians and the editorial board from the ITSEC to produce the Common Criteria for the
entire world.

Common Criteria

The Common Criteria [CCE94, CCE98] approach closely resembles the U.S. Federal Criteria (which,
of course, was heavily influenced by the ITSEC and Canadian efforts). It preserves the concepts of
security targets and protections profiles. The U.S. Federal Criteria were intended to have packages
of protection requirements that were complete and consistent for a particular type of application,
such as a network communications switch, a local area network, or a stand-alone operating system.
The example packages received special attention in the Common Criteria.

The Common Criteria defined topics of interest to security, shown in Table 5-12. Under each of
these classes, they defined families of functions or assurance needs, and from those families, they
defined individual components, as shown in Figure 5-24.

Table 5-12. Classes in Common Criteria.



Functionality Assurance

Identification and authentication Development

Trusted path Testing

Security audit Vulnerability assessment

Invocation of security functions Configuration management

User data protection Life-cycle support

Resource utilization Guidance documents

Protection of the trusted security functions Delivery and operation

Privacy  

Communication  

Figure 5-24. Classes, Families, and Components in Common Criteria.

Individual components were then combined into packages of components that met some
comprehensive requirement (for functionality) or some level of trust (for assurance), as shown in
Figure 5-25.

Figure 5-25. Functionality or Assurance Packages in Common Criteria.



Finally, the packages were combined into requirements sets, or assertions, for specific applications
or products, as shown in Figure 5-26.

Figure 5-26. Protection Profiles and Security Targets in Common Criteria.

Summary of Evaluation Criteria

The criteria were intended to provide independent security assessments in which we could have
some confidence. Have the criteria development efforts been successful? For some, it is too soon to
tell. For others, the answer lies in the number and kinds of products that have passed evaluation
and how well the products have been accepted in the marketplace.



Evaluation Process

We can examine the evaluation process itself, using our own set of objective criteria. For instance, it
is fair to say that there are several desirable qualities we would like to see in an evaluation,
including the following:

Extensibility. Can the evaluation be extended as the product is enhanced?

Granularity. Does the evaluation look at the product at the right level of detail?

Speed. Can the evaluation be done quickly enough to allow the product to compete in the
marketplace?

Thoroughness. Does the evaluation look at all relevant aspects of the product?

Objectivity. Is the evaluation independent of the reviewer's opinions? That is, will two different
reviewers give the same rating to a product?

Portability. Does the evaluation apply to the product no matter what platform the product runs
on?

Consistency. Do similar products receive similar ratings? Would one product evaluated by
different teams receive the same results?

Compatibility. Could a product be evaluated similarly under different criteria? That is, does one
evaluation have aspects that are not examined in another?

Exportability. Could an evaluation under one scheme be accepted as meeting all or certain
requirements of another scheme?

Using these characteristics, we can see that the applicability and extensibility of the TCSEC are
somewhat limited. Compatibility is being addressed by combination of criteria, although the
experience with the ITSEC has shown that simply combining the words of criteria documents does
not necessarily produce a consistent understanding of them. Consistency has been an important
issue, too. It was unacceptable for a vendor to receive different results after bringing the same
product to two different evaluation facilities or to one facility at two different times. For this reason,
the British criteria documents stressed consistency of evaluation results; this characteristic was
carried through to the ITSEC and its companion evaluation methodology, the ITSEM. Even though
speed, thoroughness, and objectivity are considered to be three essential qualities, in reality
evaluations still take a long time relative to a commercial computer product delivery cycle of 6 to 18
months.

Criteria Development Activities

Evaluation criteria continue to be developed and refined. If you are interested in doing evaluations,
in buying an evaluated product, or in submitting a product for evaluation, you should follow events
closely in the evaluation community. You can use the evaluation goals listed above to help you
decide whether an evaluation is appropriate and which kind of evaluation it should be.

It is instructive to look back at the evolution of evaluation criteria documents, too. Figure 5-27



shows the timeline for different criteria publications; remember that the writing preceded the
publication by one or more years. The figure begins with Anderson's original Security Technology
Planning Study [AND72], calling for methodical, independent evaluation. To see whether progress is
being made, look at the dates when different criteria documents were published; earlier documents
influenced the contents and philosophy of later ones.

Figure 5-27. Criteria Development Efforts.

The criteria development activities have made significant progress since 1983. The U.S. TCSEC was
based on the state of best practice known around 1980. For this reason, it draws heavily from the
structured programming paradigm that was popular throughout the 1970s. Its major difficulty was
its prescriptive manner; it forced its model on all developments and all types of products. The
TCSEC applied most naturally to monolithic, stand-alone, multiuser operating systems, not to the
heterogeneous, distributed, networked environment based largely on individual intelligent
workstations that followed in the next decade.

Experience with Evaluation Criteria

To date, criteria efforts have been paid attention to by the military, but those efforts have not led to
much commercial acceptance of trusted products. The computer security research community is
heavily dominated by defense needs because much of the funding for security research is derived
from defense departments. Ware [WAR95] points out the following about the initial TCSEC:

It was driven by the U.S. Department of Defense.



It focused on threat as perceived by the U.S. Department of Defense.

It was based on a U.S. Department of Defense concept of operations, including cleared
personnel, strong respect for authority and management, and generally secure physical
environments.

It had little relevance to networks, LANs, WANs, Internets, client-server distributed
architectures, and other more recent modes of computing.

When the TCSEC was introduced, there was an implicit contract between the U.S. government and
vendors, saying that if vendors built products and had them evaluated, the government would buy
them. Anderson [AND82] warned how important it was for the government to keep its end of this
bargain. The vendors did their part by building numerous products: KSOS, PSOS, Scomp, KVM, and
Multics. But unfortunately, the products are now only of historical interest because the U.S.
government did not follow through and create the market that would encourage those vendors to
continue and other vendors to join. Had many evaluated products been on the market, support and
usability would have been more adequately addressed, and the chance for commercial adoption
would have been good. Without government support or perceived commercial need, almost no
commercial acceptance of any of these products has occurred, even though they have been
developed to some of the highest quality standards.

Schaefer [SCH04a] gives a thorough description of the development and use of the TCSEC. In his
paper he explains how the higher evaluation classes became virtually unreachable for several
reasons, and thus the world has been left with less trustworthy systems than before the start of the
evaluation process. The TCSEC's almost exclusive focus on confidentiality would have permitted
serious integrity failures (as obliquely described in [SCH89b]).

On the other hand, some major vendors are actively embracing low and moderate assurance
evaluations: As of May 2006, there are 78 products at EAL2, 22 at EAL3, 36 at EAL4, 2 at EAL5 and
1 at EAL7. Product types include operating systems, firewalls, antivirus software, printers, and
intrusion detection products. (The current list of completed evaluations (worldwide) is maintained at
www.commoncriteriaportal.org.) Some vendors have announced corporate commitments to
evaluation, noting that independent evaluation is a mark of quality that will always be a stronger
selling point than so-called emphatic assertion (when a vendor makes loud claims about the
strength of a product, with no independent evidence to substantiate those claims). Current efforts in
criteria-writing support objectives, such as integrity and availability, as strongly as confidentiality.
This approach can allow a vendor to identify a market niche and build a product for it, rather than
building a product for a paper need (that is, the dictates of the evaluation criteria) not matched by
purchases. Thus, there is reason for optimism regarding criteria and evaluations. But realism
requires everyone to accept that the marketnot a criteria documentwill dictate what is desired and
delivered. As Sidebar 5-7 describes, secure systems are sometimes seen as a marketing niche: not
part of the mainstream product line, and that can only be bad for security.

It is generally believed that the market will eventually choose quality products. The evaluation
principles described above were derived over time; empirical evidence shows us that they can
produce high-quality, reliable products deserving our confidence. Thus, evaluation criteria and
related efforts have not been in vain, especially as we see dramatic increases in security threats and
the corresponding increased need for trusted products. However, it is often easier and cheaper for
product proponents to speak loudly than to present clear evidence of trust. We caution you to look
for solid support for the trust you seek, whether that support be in test and review results,
evaluation ratings, or specialized assessment.



Sidebar 5-7: Security as an Add-On

In the 1980s, the U.S. State Department handled its diplomatic office functions with a
network of Wang computers. Each American embassy had at least one Wang system,
with specialized word processing software to create documents, modify them, store and
retrieve them, and send them from one location to another. Supplementing Wang's
office automation software was the State Department's own Foreign Affairs Information
System (FAIS).

In the mid-1980s, the State Department commissioned a private contractor to add
security to FAIS. Diplomatic and other correspondence was to be protected by a secure
"envelope" surrounding sensitive materials. The added protection was intended to
prevent unauthorized parties from "opening" an envelope and reading the contents.

To design and implement the security features, the contractor had to supplement
features offered by Wang's operating system and utilities. The security design depended
on the current Wang VS operating system design, including the use of unused words in
operating system files. As designed and implemented, the new security features worked
properly and met the State Department requirements. But the system was bound for
failure because the evolutionary goals of VS were different from those of the State
Department. That is, Wang could not guarantee that future modifications to VS would
preserve the functions and structure required by the contractor's security software.
Eventually, there were fatal clashes of intent and practice.



5.6. Summary of Security in Operating Systems

We study operating systems in depth because they are at the heart of security systems for modern
computers. They must provide mechanisms for both separation and sharing, mechanisms that must
be robust and yet easy to use.

Developing secure operating systems involves four activities. First, the environment to be protected
must be well understood. Through policy statements and models, the essential components of
systems are identified, and the interactions among components can be studied. This chapter has
presented a variety of policies and models of security. Whereas the policies covered confidentiality
and integrity, the models ranged from reference monitors and information flow filters to multilevel
security and integrity models. Models such as that of Bell and La Padula describe permissible access
in a multilevel environment, and the HRU model demonstrates the limits of computer security.

After an environment is understood, a system to implement it must be designed to provide the
desired protection. We have seen how certain design principles for secure operating systems help us
meet that design goal. Not surprisingly, features such as least privilege, openness of design, and
economy of mechanism are quite similar to the software engineering design principles described in
Chapter 3; characteristics that lead to good design of an operating system apply to the design of
other programs as well. We studied security-specific design principles in some detail, including
isolation or separation, layered design, and the notion of a security kernel.

It is not enough to have a good operating system design. We also want assurance that the design
and its implementation are correct. This chapter considered three methods to demonstrate
correctness: formal verification, validation, and penetration testing. Because of the many formal
evaluation schemes for assigning a security rating to software, we also examined several evaluation
criteria in detail; they represent the current standard for certifying trusted computing systems.

Next, we turn from operating systems to major applications or subsystems, looking in particular at
database management systems as an example of how to deal with data that must be protected. In
Chapter 6, we study secure database management systems. We see that database systems have
many of the same requirements as operating systems: access control, availability, and multilevel
security. Indeed, since database management systems are implemented on top of operating
systems, they use some of the services provided by operating systems. However, integrity and
granularity are substantially different, and we look at novel ways of dealing with these issues.



5.7. Terms and Concepts

trust, 242

trusted process, 245

trusted product, 245

trusted software, 245

trusted computing base, 245

trusted system, 245

security policy, 245

military security policy, 246

sensitivity level, 246

object, 246

need-to-know rule, 246

compartment, 246

classification, 248

clearance, 248

dominance, 248

subject, 248

hierarchical security, 248

nonhierarchical security, 248

ClarkWilson policy, 250

well-formed transaction, 250

constrained data item, 250

transformation procedure, 250

access triple, 250

separation of duty, 250



Chinese wall policy, 251

lattice model, 253

BellLa Padula model, 254

simple security property, 255

*-property, 255

write-down, 256

Biba model, 257

simple integrity policy, 257

integrity *-property, 257

GrahamDenning model, 257

HarrisonRuzzoUllman model, 259

command, 259

condition, 259

primitive operation, 259

protection system, 260

takegrant system, 261

least privilege, 265

economy of mechanism, 265

open design, 265

complete mediation, 265

permission-based access, 266

separation of privilege, 266

least common mechanism, 266

ease of use, 266

user authentication, 266

memory protection, 266

object access control, 266

enforced sharing, 267



fair service, 267

interprocess communication, 267

synchronization, 267

protected control data, 267

user identification and authentication, 269

mandatory access control, 269

discretionary access control, 269

object reuse, 270

magnetic remanence, 270

trusted path, 270

audit, 272

accountability, 272

audit log reduction, 272

intrusion detection, 273

kernel, 274

nucleus, 274

core, 274

security kernel, 274

reference monitor, 275

reference monitor properties:

tamperproof, 275

unbypassable, 275

analyzable, 275

trusted computing base (TCB), 275

process activation, 276

execution domain switching, 276

memory protection, 276

physical separation, 279



temporal separation, 279

cryptographic separation, 279

logical separation, 279

virtualization, 280

virtual machine, 280

virtual memory, 281

layering, 283

hierarchically structured operating system, 285

assurance, 287

flaw exploitation, 288

user interface processing flaw, 288

access ambiguity flaw, 288

incomplete mediation flaw, 288

generality flaw, 289

time-of-check to time-of-use flaw, 289

testing, 290

penetration testing, 291

tiger team analysis, 291

ethical hacking, 291

formal verification, 292

proof of correctness, 292

theorem prover, 292

validation, 295

requirements checking, 295

design and code review, 295

module and system testing, 295

open source, 295

evaluation, 296



Orange Book (TCSEC), 297

D, C1, C2, B1, B2, B3, A1 rating, 297

German Green Book, 300

functionality class, 301

assurance level, 301

British evaluation criteria, 301

claims language, 301

action phrase, 301

target phrase, 301

CLEF, 302

comparable evaluation, 303

transferable evaluation, 303

ITSEC, 303

effectiveness, 303

target of evaluation, 303

security-enforcing function, 303

mechanism, 303

strength of mechanism, 303

target evaluation level, 303

suitability of functionality, 303

binding of functionality, 304

vulnerabilities, 304

Combined Federal Criteria, 304

protection profile, 305

security target, 306

Common Criteria, 307

extensibility, 309

granularity, 309



speed, 309

thoroughness, 309

objectivity, 309

portability, 309

emphatic assertion, 311



5.8. Where the Field Is Headed

The field of trusted operating systems advanced significantly during the 1970s and early 1980s
because of major investment by the U.S. and other governments, especially the defense
departments. Progress slowed when funding stopped. Trusted, trustworthy, or secure operating
systems do not seem to be commercially viable, and without a large government market to spur the
new products and approaches, little innovation occurs. In a move reminiscent of the 1978 Computer
Security Act (leading to the Orange Book) and the later "C2 by '92" directive (requiring all
computing systems for U.S. Defense Department use to have passed at least a C2 evaluation), the
U.S. Defense Department required national security organizations to use the Common Criteria to
evaluate information assurance products by July 2002. As a result, the market for Common Criteria
evaluations heated up again. Continuing refinement is likely for evaluation standards, evaluation
processes, and protection profiles for specific purposes and product types.

Composition has always been the next problem after evaluation: If you combine two evaluated
products, what can you say about their security when those products run together? Consider, for
example, a database management system running on an operating system, or an operating system
on a network infrastructure. Is a high-assurance product degraded by being combined with a lower-
assurance one? Does one high-assurance component compensate for shortcomings in a lower-
assurance one? Examples can show that simple algebra does not hold: good+good is not always
good, and bad+bad is not necessarily worse. Ross [FRA02] acknowledges that solving the
composition problembuilding secure or high-assurance systems composed from evaluated
productsis not easy. And Schell [SCH01] observed, "Even though there has been wishful thinking
that it would be nice to discover a means of 'building trustworthy systems from untrustworthy
components' [NAS98], to the current state of science this appears to be intractable."



5.9. To Learn More

The topic of secure computing systems includes fundamental papers such as Lampson [LAM71],
Popek [POP74a], Hoare [HOA74], Graham [GRA68], Saltzer and Schroeder [SAL75], and Jones
[JON78a]. Landwehr [LAN81] provides a good overview of models of protection systems. Additional
information on policy and models of security is provided by Bell [BEL83], Harrison [HAR85], Goguen
and Meseguer [GOG82], Clark and Wilson [CLA87], Badger [BAD89], Karger [KAR88], and Brewer
and Nash [BRE89].

The design of secure systems is discussed by Gasser [GAS88], Ames [AME83], and Landwehr
[LAN83]. Certification of security-enforcing systems is discussed by Neumann [NEU78] and Neugent
[NEU82]. Criteria documents are the easiest to locate: in [CCE94], [NSA92], [ITS91a, ITS91b],
[CSS93], [DTI89a, DTI89b, DTI89c], and [GIS88]. Also read commentary by Neumann [NEU90a,
NEU90b] and Ware [WAR95].



5.10. Exercises

1. A principle of the BellLa Padula model was not mentioned in this chapter. Called the
tranquillity principle, it states that the classification of a subject or object does not
change while it is being referenced. Explain the purpose of the tranquillity principle.
What are the implications of a model in which the tranquillity principle is not true?

2. Subjects can access objects, but they can also access other subjects. Describe how a
reference monitor would control access in the case of a subject acting on another
subject. Describe how a reference monitor would control access in the case of two
subjects interacting.

3. List the source and end of all information flows in each of the following statements.

sum := a+b+c;a.

if a+b < c+d then q:=0 else q:=1;b.

write (a,b,c);c.

read (a,b,c);d.

case (k) of
      0: d:= 10;
      1,2: d:= 20;
      other: d:= 30;
end; /* case */

e.

for i:=min to max do k:=2*k+1;f.

repeat
      a[i]:=0;
      i:=i-1;

      until i  0;

g.

4. Does the system of all subsets of a finite set under the operation "subset of" ( )
form a lattice? Why or why not?

5. Can a user cleared for <secret;{dog, cat, pig}> have access to documents classified
in each of the following ways under the military security model?

1.

2.



<top secret;dog>1.

<secret;{dog}>2.

<secret;{dog,cow}>3.

<secret;{moose}>4.

<confidential;{dog,pig,cat}>5.

<confidential;{moose}>6.

6. According to the BellLa Padula model, what restrictions are placed on two active
subjects (for example, two processes) that need to send and receive signals to and
from each other? Justify your answer.

7. Write a set of rules combining the secrecy controls of the BellLa Padula model with
the integrity controls of the Biba model.

8. Demonstrate a method for limited transfer of rights in the GrahamDenning model. A
limit of one is adequate. That is, give a method by which A can transfer to B right R,
with the provision that B can transfer that right to any one other subject. The subject
to which B transfers the right cannot transfer the right, nor can B transfer it again.

9. Explain what is necessary to provide temporal separation. That is, what conditions
must be met in order for two processes to be adequately separated?

10. Does the standard Unix operating system use a nondiscretionary access control?
Explain your answer.

11. Why is labeling of objects a security requirement? That is, why cannot the trusted
computing base just maintain an access control table with entries for each object and
each subject?

12. Label integrity is a technique that ensures that the label on each object is changed
only by the trusted computing base. Suggest a method to implement label integrity
for a data file. Suggest a method to implement label integrity for a callable
procedure.

13. Describe a situation in which you might want to allow the security kernel to violate
one of the security properties of the BellLa Padula model.

14. Explain the meaning of the term granularity in reference to access control. Discuss
the tradeoff between granularity and efficiency.

15. Explain how a semaphore could be used to implement a covert channel in concurrent
processing. Explain how concurrent processing primitives, such as fork and join,
could be used to implement a covert channel in concurrent processing.

16. The Unix operating system structures files by using a tree. Each file is at a leaf of the
tree, and the file is identified by the (unique) path from the root to the leaf. Each



interior node is a "subdirectory," which specifies the names of the paths leading from
that node. A user can block access through a node by restricting access to the
subdirectory. Devise a method that uses this structure to implement a discretionary
access policy.

17. In the Unix file system described in this chapter, could a nondiscretionary access
policy be defined so that a user has access to a file only if the user has access to all
subdirectories higher (closer to the root) in the file structure? What would be the
effect of this policy?

18. I/O appears as the source of several successful methods of penetration. Discuss why
I/O is hard to secure in a computing system.



Chapter 6. Database and Data Mining
Security

In this chapter

Integrity for databases: record integrity, data correctness, update integrity

Security for databases: access control, inference, and aggregation

Multilevel secure databases: partitioned, cryptographically sealed, filtered

Security in data mining applications

Protecting data is at the heart of many secure systems, and many users (people, programs, or
systems) rely on a database management system (DBMS) to manage the protection. For this
reason, we devote this chapter to the security of database management systems, as an example of
how application security can be designed and implemented for a specific task. There is substantial
current interest in DBMS security because databases are newer than programming and operating
systems. Databases are essential to many business and government organizations, holding data
that reflect the organization's core competencies. Often, when business processes are reengineered
to make them more effective and more in tune with new or revised goals, one of the first systems to
receive careful scrutiny is the set of databases supporting the business processes. Thus, databases
are more than software-related repositories. Their organization and contents are considered
valuable corporate assets that must be carefully protected.

However, the protection provided by database management systems has had mixed results. Over
time, we have improved our understanding of database security problems, and several good
controls have been developed. But, as you will see, there are still more security concerns for which
there are no available controls.

We begin this chapter with a brief summary of database terminology. Then we consider the security
requirements for database management systems. Two major security problemsintegrity and
secrecyare explained in a database context. We continue the chapter by studying two major (but
related) database security problems, the inference problem and the multilevel problem. Both
problems are complex, and there are no immediate solutions. However, by understanding the
problems, we become more sensitive to ways of reducing potential threats to the data. Finally, we
conclude the chapter by looking at data mining, a technology for deriving patterns from one or more
databases. Data mining involves many of the security issues we raise in this chapter.





6.1. Introduction to Databases

We begin by describing a database and defining terminology related to its use. We draw on
examples from what is called the relational database because it is one of the most widely used
types. However, all the concepts described here apply to any type of database. We first define the
basic concepts and then use them to discuss security concerns.

Concept of a Database

A database is a collection of data and a set of rules that organize the data by specifying certain
relationships among the data. Through these rules, the user describes a logical format for the data.
The data items are stored in a file, but the precise physical format of the file is of no concern to the
user. A database administrator is a person who defines the rules that organize the data and also
controls who should have access to what parts of the data. The user interacts with the database
through a program called a database manager or a database management system (DBMS),
informally known as a front end.

Components of Databases

The database file consists of records, each of which contains one related group of data. As shown in
the example in Table 6-1, a record in a name and address file consists of one name and address.
Each record contains fields or elements, the elementary data items themselves. The fields in the
name and address record are NAME, ADDRESS, CITY, STATE, and ZIP (where ZIP is the U.S. postal
code). This database can be viewed as a two-dimensional table, where a record is a row and each
field of a record is an element of the table.

Table 6-1. Example of a Database.

ADAMS 212 Market St. Columbus OH 43210

BENCHLY 501 Union St. Chicago IL 60603

CARTER 411 Elm St. Columbus OH 43210

Not every database is easily represented as a single, compact table. The database in Figure 6-1
logically consists of three files with possibly different uses. These three files could be represented as
one large table, but that depiction may not improve the utility of or access to the data.



Figure 6-1. Related Parts of a Database.

The logical structure of a database is called a schema. A particular user may have access to only
part of the database, called a subschema. The overall schema of the database in Figure 6-1 is
detailed in Table 6-2. The three separate blocks of the figure are examples of subschemas, although
other subschemas of this database can be defined. We can use schemas and subschemas to present
to users only those elements they wish or need to see. For example, if Table 6-1 represents the
employees at a company, the subschema on the lower left can list employee names without
revealing personal information such as home address.

Table 6-2. Schema of Database Shown in Figure 6-1.

Name First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH

ADAMS Edward 212 Market St. Columbus OH 43210 CMH

BENCHLY Zeke 501 Union St. Chicago IL 60603 ORD

CARTER Marlene 411 Elm St. Columbus OH 43210 CMH

CARTER Beth 411 Elm St. Columbus OH 43210 CMH

CARTER Ben 411 Elm St. Columbus OH 43210 CMH

CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH

CARTER Mary 411 Elm St. Columbus OH 43210 CMH



The rules of a database identify the columns with names. The name of each column is called an
attribute of the database. A relation is a set of columns. For example, using the database in Table
6-2, we see that NAMEZIP is a relation formed by taking the NAME and ZIP columns, as shown in
Table 6-3. The relation specifies clusters of related data values in much the same way that the
relation "mother of" specifies a relationship among pairs of humans. In this example, each cluster
contains a pair of elements, a NAME and a ZIP. Other relations can have more columns, so each
cluster may be a triple, a 4-tuple, or an n-tuple (for some value n) of elements.

Table 6-3. Relation in a Database.

Name Zip

ADAMS 43210

BENCHLY 60603

CARTER 43210

Queries

Users interact with database managers through commands to the DBMS that retrieve, modify, add,
or delete fields and records of the database. A command is called a query. Database management
systems have precise rules of syntax for queries. Most query languages use an English-like notation,
and many are based on SQL, a structured query language originally developed by IBM. We have
written the example queries in this chapter to resemble English sentences so that they are easy to
understand. For example, the query

SELECT NAME = 'ADAMS'

retrieves all records having the value ADAMS in the NAME field.

The result of executing a query is a subschema. One way to form a subschema of a database is by
selecting records meeting certain conditions. For example, we might select records in which
ZIP=43210, producing the result shown in Table 6-4.

Table 6-4. Result of Select Query.

Name First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH

ADAMS Edward 212 Market St. Columbus OH 43210 CMH

CARTER Marlene 411 Elm St. Columbus OH 43210 CMH



Name First Address City State Zip Airport

CARTER Beth 411 Elm St. Columbus OH 43210 CMH

CARTER Ben 411 Elm St. Columbus OH 43210 CMH

CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH

CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Other, more complex, selection criteria are possible, with logical operators such as and ( ) and or (

), and comparisons such as less than (<). An example of a select query is

SELECT (ZIP='43210')  (NAME='ADAMS')

After having selected records, we may project these records onto one or more attributes. The
select operation identifies certain rows from the database, and a project operation extracts the
values from certain fields (columns) of those records. The result of a select-project operation is the
set of values of specified attributes for the selected records. For example, we might select records
meeting the condition ZIP=43210 and project the results onto the attributes NAME and FIRST, as in
Table 6-5. The result is the list of first and last names of people whose addresses have zip code
43210.

Table 6-5. Results of Select-Project Query.

ADAMS Charles

ADAMS Edward

CARTER Marlene

CARTER Beth

CARTER Ben

CARTER Lisabeth

CARTER Mary

Notice that we do not have to project onto the same attribute(s) on which the selection is done. For
example, we can build a query using ZIP and NAME but project the result onto FIRST:

SHOW FIRST WHERE (ZIP='43210')  (NAME='ADAMS')

The result would be a list of the first names of people whose last names are ADAMS and ZIP is
43210.

CARTER Beth 411 Elm St. Columbus OH 43210 CMH

CARTER Ben 411 Elm St. Columbus OH 43210 CMH

CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH

CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Other, more complex, selection criteria are possible, with logical operators such as and ( ) and or (

), and comparisons such as less than (<). An example of a select query is

SELECT (ZIP='43210')  (NAME='ADAMS')

After having selected records, we may project these records onto one or more attributes. The
select operation identifies certain rows from the database, and a project operation extracts the
values from certain fields (columns) of those records. The result of a select-project operation is the
set of values of specified attributes for the selected records. For example, we might select records
meeting the condition ZIP=43210 and project the results onto the attributes NAME and FIRST, as in
Table 6-5. The result is the list of first and last names of people whose addresses have zip code
43210.

Table 6-5. Results of Select-Project Query.

ADAMS Charles

ADAMS Edward

CARTER Marlene

CARTER Beth

CARTER Ben

CARTER Lisabeth

CARTER Mary

Notice that we do not have to project onto the same attribute(s) on which the selection is done. For
example, we can build a query using ZIP and NAME but project the result onto FIRST:

SHOW FIRST WHERE (ZIP='43210')  (NAME='ADAMS')

The result would be a list of the first names of people whose last names are ADAMS and ZIP is
43210.



We can also merge two subschema on a common element by using a join query. The result of this
operation is a subschema whose records have the same value for the common element. For
example, Figure 6-2 shows that the subschema NAMEZIP and the subschema ZIPAIRPORT can be
joined on the common field ZIP to produce the subschema NAMEAIRPORT.

Figure 6-2. Results of Select-Project-Join Query.

Advantages of Using Databases

The logical idea behind a database is this: A database is a single collection of data, stored and
maintained at one central location, to which many people have access as needed. However, the
actual implementation may involve some other physical storage arrangement or access. The
essence of a good database is that the users are unaware of the physical arrangements; the unified
logical arrangement is all they see. As a result, a database offers many advantages over a simple
file system:

shared access, so that many users can use one common, centralized set of data

minimal redundancy, so that individual users do not have to collect and maintain their own
sets of data

data consistency, so that a change to a data value affects all users of the data value

data integrity, so that data values are protected against accidental or malicious undesirable
changes

controlled access, so that only authorized users are allowed to view or to modify data values

A DBMS is designed to provide these advantages efficiently. However, as often happens, the



objectives can conflict with each other. In particular, as we shall see, security interests can conflict
with performance. This clash is not surprising because measures taken to enforce security often
increase the computing system's size or complexity. What is surprising, though, is that security
interests may also reduce the system's ability to provide data to users by limiting certain queries
that would otherwise seem innocuous.



6.2. Security Requirements

The basic security requirements of database systems are not unlike those of other computing
systems we have studied. The basic problemsaccess control, exclusion of spurious data,
authentication of users, and reliabilityhave appeared in many contexts so far in this book. Following
is a list of requirements for database security.

Physical database integrity. The data of a database are immune to physical problems, such as
power failures, and someone can reconstruct the database if it is destroyed through a
catastrophe.

Logical database integrity. The structure of the database is preserved. With logical integrity of
a database, a modification to the value of one field does not affect other fields, for example.

Element integrity. The data contained in each element are accurate.

Auditability. It is possible to track who or what has accessed (or modified) the elements in
the database.

Access control. A user is allowed to access only authorized data, and different users can be
restricted to different modes of access (such as read or write).

User authentication. Every user is positively identified, both for the audit trail and for
permission to access certain data.

Availability. Users can access the database in general and all the data for which they are
authorized.

We briefly examine each of these requirements.

Integrity of the Database

If a database is to serve as a central repository of data, users must be able to trust the accuracy of
the data values. This condition implies that the database administrator must be assured that
updates are performed only by authorized individuals. It also implies that the data must be
protected from corruption, either by an outside illegal program action or by an outside force such as
fire or a power failure. Two situations can affect the integrity of a database: when the whole
database is damaged (as happens, for example, if its storage medium is damaged) or when
individual data items are unreadable.

Integrity of the database as a whole is the responsibility of the DBMS, the operating system, and
the (human) computing system manager. From the perspective of the operating system and the
computing system manager, databases and DBMSs are files and programs, respectively. Therefore,
one way of protecting the database as a whole is to regularly back up all files on the system. These
periodic backups can be adequate controls against catastrophic failure.



Sometimes it is important to be able to reconstruct the database at the point of a failure. For
instance, when the power fails suddenly, a bank's clients may be in the middle of making
transactions or students may be in the midst of registering online for their classes. In these cases,
we want to be able to restore the systems to a stable point without forcing users to redo their
recently completed transactions. To handle these situations, the DBMS must maintain a log of
transactions. For example, suppose the banking system is designed so that a message is generated
in a log (electronic or paper or both) each time a transaction is processed. In the event of a system
failure, the system can obtain accurate account balances by reverting to a backup copy of the
database and reprocessing all later transactions from the log.

Element Integrity

The integrity of database elements is their correctness or accuracy. Ultimately, authorized users
are responsible for entering correct data into databases. However, users and programs make
mistakes collecting data, computing results, and entering values. Therefore, DBMSs sometimes take
special action to help catch errors as they are made and to correct errors after they are inserted.

This corrective action can be taken in three ways. First, the DBMS can apply field checks, activities
that test for appropriate values in a position. A field might be required to be numeric, an uppercase
letter, or one of a set of acceptable characters. The check ensures that a value falls within specified
bounds or is not greater than the sum of the values in two other fields. These checks prevent simple
errors as the data are entered. (Sidebar 6-1 demonstrates the importance of element integrity.)

A second integrity action is provided by access control. To see why, consider life without
databases. Data files may contain data from several sources, and redundant data may be stored in
several different places. For example, a student's home address may be stored in many different
campus files: at class registration, for dining hall privileges, at the bookstore, and in the financial
aid office. Indeed, the student may not even be aware that each separate office has the address on
file. If the student moves from one residence to another, each of the separate files requires
correction. Without a database, there are several risks to the data's integrity. First, at a given time,
there could be some data files with the old address (they have not yet been updated) and some
simultaneously with the new address (they have already been updated). Second, there is always the
possibility that the data fields were changed incorrectly, again leading to files with incorrect
information. Third, there may be files of which the student is unaware, so he or she does not know
to notify the file owner about updating the address information. These problems are solved by
databases. They enable collection and control of this data at one central source, ensuring the
student and users of having the correct address.



Sidebar 6-1: Element Integrity Failure Crashes Network

Crocker and Bernstein [CRO89] studied catastrophic failures of what was then known as
the ARPANET, the predecessor of today's Internet. Several failures came from problems
with the routing tables used to direct traffic through the network.

A 1971 error was called the "black hole." A hardware failure caused one node to declare
that it was the best path to every other node in the network. This node sent this
declaration to other nodes, which soon propagated the erroneous posting throughout
the network. This node immediately became the black hole of the network because all
traffic was routed to it but never made it to the real destination.

The ARPANET used simple tables, not a full-featured database management system, so
there was no checking of new values prior to their being installed in the distributed
routing tables. Had there been a database, integrity checking software could have
performed error checking on the newly distributed values and raised a flag for human
review.

However, the centralization is easier said than done. Who owns this shared central file? Who has
authorization to update which elements? What if two people apply conflicting modifications? What if
modifications are applied out of sequence? How are duplicate records detected? What action is taken
when duplicates are found? These are policy questions that must be resolved by the database
administrator. Sidebar 6-2 describes how these issues are addressed for managing the configuration
of programs; similar formal processes are needed for managing changes in databases.

The third means of providing database integrity is maintaining a change log for the database. A
change log lists every change made to the database; it contains both original and modified values.
Using this log, a database administrator can undo any changes that were made in error. For
example, a library fine might erroneously be posted against Charles W. Robertson, instead of
Charles M. Robertson, flagging Charles W. Robertson as ineligible to participate in varsity athletics.
Upon discovering this error, the database administrator obtains Charles W.'s original eligibility value
from the log and corrects the database.

Auditability

For some applications it may be desirable to generate an audit record of all access (read or write) to
a database. Such a record can help to maintain the database's integrity, or at least to discover after
the fact who had affected which values and when. A second advantage, as we see later, is that
users can access protected data incrementally; that is, no single access reveals protected data, but
a set of sequential accesses viewed together reveals the data, much like discovering the clues in a
detective novel. In this case, an audit trail can identify which clues a user has already been given,
as a guide to whether to tell the user more.

As we noted in Chapters 4 and 5, granularity becomes an impediment in auditing. Audited events in
operating systems are actions like open file or call procedure; they are seldom as specific as write
record 3 or execute instruction I. To be useful for maintaining integrity, database audit trails should



include accesses at the record, field, and even element levels. This detail is prohibitive for most
database applications.

Furthermore, it is possible for a record to be accessed but not reported to a user, as when the user
performs a select operation. (Accessing a record or an element without transferring to the user the
data received is called the pass-through problem.) Also, you can determine the values of some
elements without accessing them directly. (For example, you can ask for the average salary in a
group of employees when you know the number of employees in the group is only one.) Thus, a log
of all records accessed directly may both overstate and understate what a user actually knows.

Sidebar 6-2: Configuration Management and Access Control

Software engineers must address access control when they manage the configurations
of large computer systems. The code of a major system and changes to it over time are
actually a database. In many instances multiple programmers make changes to a
system at the same time; the configuration management database must help ensure
that the correct and most recent changes are stored.

There are three primary ways to control the proliferation of versions and releases
[PFL06a].

Separate files: A separate file can be kept for each different version or release. For
instance, version 1 may exist for machines that store all data in main memory,
and version 2 is for machines that must put some data out to a disk. Suppose the
common functions are the same in both versions, residing in components C1
through Ck, but memory management is done by component M1 for version 1 and
M2 for version 2. If new functionality is to be added to the memory management
routines, keeping both versions current and correct may be difficult; the results
must be the same from the user's point of view.

Deltas: One version of the system is deemed the main version, and all other
versions are considered to be variations from the main version. The database
keeps track only of the differences, in a file called a delta file. The delta contains
commands that are "applied" to the main version to transform it into the
alternative version. This approach saves storage space but can become unwieldy.

Conditional compilation: All versions are handled by a single file, and conditional
statements are used to determine which statements apply under which conditions.
In this case, shared code appears only once, so only one correction is needed if a
problem is found. But the code in this single file can be very complex and difficult
to maintain.

In any of these three cases, it is essential to control access to the configuration files. It
is common practice for two different programmers fixing different problems to need to
make changes to the same component. If care is not taken in controlling access, then
the second programmer can inadvertently "undo" the changes made by the first
programmer, resulting in not only recurrence of the initial problems but also
introduction of additional problems. For this reason, files are controlled in several ways,



including being locked while changes are made by one programmer, and being subject
to a group of people called a configuration control board who ensure that no changed
file is put back into production without the proper checking and testing. More
information about these techniques can be found in [PFL06a].

Access Control

Databases are often separated logically by user access privileges. For example, all users can be
granted access to general data, but only the personnel department can obtain salary data and only
the marketing department can obtain sales data. Databases are very useful because they centralize
the storage and maintenance of data. Limited access is both a responsibility and a benefit of this
centralization.

The database administrator specifies who should be allowed access to which data, at the view,
relation, field, record, or even element level. The DBMS must enforce this policy, granting access to
all specified data or no access where prohibited. Furthermore, the number of modes of access can
be many. A user or program may have the right to read, change, delete, or append to a value, add
or delete entire fields or records, or reorganize the entire database.

Superficially, access control for a database seems like access control for operating systems or any
other component of a computing system. However, the database problem is more complicated, as
we see throughout this chapter. Operating system objects, such as files, are unrelated items,
whereas records, fields, and elements are related. Although a user cannot determine the contents of
one file by reading others, a user might be able to determine one data element just by reading
others. The problem of obtaining data values from others is called inference, and we consider it in
depth later in this chapter.

It is important to notice that you can access data by inference without needing direct access to the
secure object itself. Restricting inference may mean prohibiting certain paths to prevent possible
inferences. However, restricting access to control inference also limits queries from users who do
not intend unauthorized access to values. Moreover, attempts to check requested accesses for
possible unacceptable inferences may actually degrade the DBMS's performance.

Finally, size or granularity is different between operating system objects and database objects. An
access control list of several hundred files is much easier to implement than an access control list
for a database with several hundred files of perhaps a hundred fields each. Size affects the
efficiency of processing.

User Authentication

The DBMS can require rigorous user authentication. For example, a DBMS might insist that a user
pass both specific password and time-of-day checks. This authentication supplements the
authentication performed by the operating system. Typically, the DBMS runs as an application
program on top of the operating system. This system design means that there is no trusted path
from the DBMS to the operating system, so the DBMS must be suspicious of any data it receives,
including user authentication. Thus, the DBMS is forced to do its own authentication.



Availability

A DBMS has aspects of both a program and a system. It is a program that uses other hardware and
software resources, yet to many users it is the only application run. Users often take the DBMS for
granted, employing it as an essential tool with which to perform particular tasks. But when the
system is not availablebusy serving other users or down to be repaired or upgradedthe users are
very aware of a DBMS's unavailability. For example, two users may request the same record, and
the DBMS must arbitrate; one user is bound to be denied access for a while. Or the DBMS may
withhold unprotected data to avoid revealing protected data, leaving the requesting user unhappy.
We examine these problems in more detail later in this chapter. Problems like these result in high
availability requirements for a DBMS.

Integrity/Confidentiality/Availability

The three aspects of computer securityintegrity, confidentiality, and availabilityclearly relate to
database management systems. As we have described, integrity applies to the individual elements
of a database as well as to the database as a whole. Thus, integrity is a major concern in the design
of database management systems. We look more closely at integrity issues in the next section.

Confidentiality is a key issue with databases because of the inference problem, whereby a user can
access sensitive data indirectly. Inference and access control are covered later in this chapter.

Finally, availability is important because of the shared access motivation underlying database
development. However, availability conflicts with confidentiality. The last sections of the chapter
address availability in an environment in which confidentiality is also important.



6.3. Reliability and Integrity

Databases amalgamate data from many sources, and users expect a DBMS to provide access to the
data in a reliable way. When software engineers say that software has reliability, they mean that
the software runs for very long periods of time without failing. Users certainly expect a DBMS to be
reliable, since the data usually are key to business or organizational needs. Moreover, users entrust
their data to a DBMS and rightly expect it to protect the data from loss or damage. Concerns for
reliability and integrity are general security issues, but they are more apparent with databases.

A DBMS guards against loss or damage in several ways that we study them in this section.
However, the controls we consider are not absolute: No control can prevent an authorized user from
inadvertently entering an acceptable but incorrect value.

Database concerns about reliability and integrity can be viewed from three dimensions:

Database integrity: concern that the database as a whole is protected against damage, as from
the failure of a disk drive or the corruption of the master database index. These concerns are
addressed by operating system integrity controls and recovery procedures.

Element integrity: concern that the value of a specific data element is written or changed only
by authorized users. Proper access controls protect a database from corruption by
unauthorized users.

Element accuracy: concern that only correct values are written into the elements of a
database. Checks on the values of elements can help prevent insertion of improper values.
Also, constraint conditions can detect incorrect values.

Protection Features from the Operating System

In Chapter 4 we discussed the protection an operating system provides for its users. A responsible
system administrator backs up the files of a database periodically along with other user files. The
files are protected during normal execution against outside access by the operating system's
standard access control facilities. Finally, the operating system performs certain integrity checks for
all data as a part of normal read and write operations for I/O devices. These controls provide basic
security for databases, but the database manager must enhance them.

Two-Phase Update

A serious problem for a database manager is the failure of the computing system in the middle of
modifying data. If the data item to be modified was a long field, half of the field might show the new
value, while the other half would contain the old. Even if errors of this type were spotted easily
(which they are not), a more subtle problem occurs when several fields are updated and no single
field appears to be in obvious error. The solution to this problem, proposed first by Lampson and



Sturgis [LAM76] and adopted by most DBMSs, uses a two-phase update.

Update Technique

During the first phase, called the intent phase, the DBMS gathers the resources it needs to perform
the update. It may gather data, create dummy records, open files, lock out other users, and
calculate final answers; in short, it does everything to prepare for the update, but it makes no
changes to the database. The first phase is repeatable an unlimited number of times because it
takes no permanent action. If the system fails during execution of the first phase, no harm is done
because all these steps can be restarted and repeated after the system resumes processing.

The last event of the first phase, called committing, involves the writing of a commit flag to the
database. The commit flag means that the DBMS has passed the point of no return: After
committing, the DBMS begins making permanent changes.

The second phase makes the permanent changes. During the second phase, no actions from before
the commit can be repeated, but the update activities of phase two can also be repeated as often as
needed. If the system fails during the second phase, the database may contain incomplete data, but
the system can repair these data by performing all activities of the second phase. After the second
phase has been completed, the database is again complete.

Two-Phase Update Example

Suppose a database contains an inventory of a company's office supplies. The company's central
stockroom stores paper, pens, paper clips, and the like, and the different departments requisition
items as they need them. The company buys in bulk to obtain the best prices. Each department has
a budget for office supplies, so there is a charging mechanism by which the cost of supplies is
recovered from the department. Also, the central stockroom monitors quantities of supplies on hand
so as to order new supplies when the stock becomes low.

Suppose the process begins with a requisition from the accounting department for 50 boxes of
paper clips. Assume that there are 107 boxes in stock and a new order is placed if the quantity in
stock ever falls below 100. Here are the steps followed after the stockroom receives the requisition.



1. The stockroom checks the database to determine that 50 boxes of paper clips are on hand. If
not, the requisition is rejected and the transaction is finished.

2. If enough paper clips are in stock, the stockroom deducts 50 from the inventory figure in the
database (107 - 50 = 57).

3. The stockroom charges accounting's supplies budget (also in the database) for 50 boxes of
paper clips.

4. The stockroom checks its remaining quantity on hand (57) to determine whether the remaining
quantity is below the reorder point. Because it is, a notice to order more paper clips is
generated, and the item is flagged as "on order" in the database.

5. A delivery order is prepared, enabling 50 boxes of paper clips to be sent to accounting.

All five of these steps must be completed in the order listed for the database to be accurate and for
the transaction to be processed correctly.

Suppose a failure occurs while these steps are being processed. If the failure occurs before step 1 is
complete, there is no harm because the entire transaction can be restarted. However, during steps
2, 3, and 4, changes are made to elements in the database. If a failure occurs then, the values in
the database are inconsistent. Worse, the transaction cannot be reprocessed because a requisition
would be deducted twice, or a department would be charged twice, or two delivery orders would be
prepared.

When a two-phase commit is used, shadow values are maintained for key data points. A shadow
data value is computed and stored locally during the intent phase, and it is copied to the actual
database during the commit phase. The operations on the database would be performed as follows
for a two-phase commit.

Intent:

1. Check the value of COMMIT-FLAG in the database. If it is set, this phase cannot be performed.
Halt or loop, checking COMMIT-FLAG until it is not set.

2. Compare number of boxes of paper clips on hand to number requisitioned; if more are
requisitioned than are on hand, halt.

3. Compute TCLIPS = ONHAND - REQUISITION.

4. Obtain BUDGET, the current supplies budget remaining for accounting department. Compute
TBUDGET = BUDGET - COST, where COST is the cost of 50 boxes of clips.

5. Check whether TCLIPS is below reorder point; if so, set TREORDER = TRUE; else set
TREORDER = FALSE.

Commit:



1. Set COMMIT-FLAG in database.

2. Copy TCLIPS to CLIPS in database.

3. Copy TBUDGET to BUDGET in database.

4. Copy TREORDER to REORDER in database.

5. Prepare notice to deliver paper clips to accounting department. Indicate transaction completed
in log.

6. Unset COMMIT-FLAG.

With this example, each step of the intent phase depends only on unmodified values from the
database and the previous results of the intent phase. Each variable beginning with T is a shadow
variable used only in this transaction. The steps of the intent phase can be repeated an unlimited
number of times without affecting the integrity of the database.

Once the DBMS begins the commit phase, it writes a commit flag. When this flag is set, the DBMS
will not perform any steps of the intent phase. Intent steps cannot be performed after committing
because database values are modified in the commit phase. Notice, however, that the steps of the
commit phase can be repeated an unlimited number of times, again with no negative effect on the
correctness of the values in the database.

The one remaining flaw in this logic occurs if the system fails after writing the "transaction
complete" message in the log but before clearing the commit flag in the database. It is a simple
matter to work backward through the transaction log to find completed transactions for which the
commit flag is still set and to clear those flags.

Redundancy/Internal Consistency

Many DBMSs maintain additional information to detect internal inconsistencies in data. The
additional information ranges from a few check bits to duplicate or shadow fields, depending on the
importance of the data.

Error Detection and Correction Codes

One form of redundancy is error detection and correction codes, such as parity bits, Hamming
codes, and cyclic redundancy checks. These codes can be applied to single fields, records, or the
entire database. Each time a data item is placed in the database, the appropriate check codes are
computed and stored; each time a data item is retrieved, a similar check code is computed and
compared to the stored value. If the values are unequal, they signify to the DBMS that an error has
occurred in the database. Some of these codes point out the place of the error; others show
precisely what the correct value should be. The more information provided, the more space required
to store the codes.



Shadow Fields

Entire attributes or entire records can be duplicated in a database. If the data are irreproducible,
this second copy can provide an immediate replacement if an error is detected. Obviously,
redundant fields require substantial storage space.

Recovery

In addition to these error correction processes, a DBMS can maintain a log of user accesses,
particularly changes. In the event of a failure, the database is reloaded from a backup copy and all
later changes are then applied from the audit log.

Concurrency/Consistency

Database systems are often multiuser systems. Accesses by two users sharing the same database
must be constrained so that neither interferes with the other. Simple locking is done by the DBMS.
If two users attempt to read the same data item, there is no conflict because both obtain the same
value.

If both users try to modify the same data items, we often assume that there is no conflict because
each knows what to write; the value to be written does not depend on the previous value of the
data item. However, this supposition is not quite accurate.

To see how concurrent modification can get us into trouble, suppose that the database consists of
seat reservations for a particular airline flight. Agent A, booking a seat for passenger Mock, submits
a query to find which seats are still available. The agent knows that Mock prefers a right aisle seat,
and the agent finds that seats 5D, 11D, and 14D are open. At the same time, Agent B is trying to
book seats for a family of three traveling together. In response to a query, the database indicates
that 8ABC and 11DEF are the two remaining groups of three adjacent unassigned seats. Agent A
submits the update command

SELECT (SEAT-NO = '11D')
ASSIGN 'MOCK,E' TO PASSENGER-NAME

while Agent B submits the update sequence

SELECT (SEAT-NO = '11D')
ASSIGN 'EHLERS,P' TO PASSENGER-NAME

as well as commands for seats 11E and 11F. Then two passengers have been booked into the same
seat (which would be uncomfortable, to say the least).

Both agents have acted properly: Each sought a list of empty seats, chose one seat from the list,
and updated the database to show to whom the seat was assigned. The difficulty in this situation is



the time delay between reading a value from the database and writing a modification of that value.
During the delay time, another user has accessed the same data.

To resolve this problem, a DBMS treats the entire queryupdate cycle as a single atomic operation.
The command from the agent must now resemble "read the current value of seat PASSENGER-
NAME for seat 11D; if it is 'UNASSIGNED', modify it to 'MOCK,E' (or 'EHLERS,P')." The readmodify
cycle must be completed as an uninterrupted item without allowing any other users access to the
PASSENGER-NAME field for seat 11D. The second agent's request to book would not be considered
until after the first agent's had been completed; at that time, the value of PASSENGERNAME would
no longer be 'UNASSIGNED'.

A final problem in concurrent access is readwrite. Suppose one user is updating a value when a
second user wishes to read it. If the read is done while the write is in progress, the reader may
receive data that are only partially updated. Consequently, the DBMS locks any read requests until a
write has been completed.

Monitors

The monitor is the unit of a DBMS responsible for the structural integrity of the database. A
monitor can check values being entered to ensure their consistency with the rest of the database or
with characteristics of the particular field. For example, a monitor might reject alphabetic characters
for a numeric field. We discuss several forms of monitors.

Range Comparisons

A range comparison monitor tests each new value to ensure that the value is within an acceptable
range. If the data value is outside the range, it is rejected and not entered into the database. For
example, the range of dates might be 131, "/," 112, "/," 19002099. An even more sophisticated
range check might limit the day portion to 130 for months with 30 days, or it might take into
account leap year for February.

Range comparisons are also convenient for numeric quantities. For example, a salary field might be
limited to $200,000, or the size of a house might be constrained to be between 500 and 5,000
square feet. Range constraints can also apply to other data having a predictable form.

Range comparisons can be used to ensure the internal consistency of a database. When used in this
manner, comparisons are made between two database elements. For example, a grade level from
K8 would be acceptable if the record described a student at an elementary school, whereas only 912
would be acceptable for a record of a student in high school. Similarly, a person could be assigned a
job qualification score of 75100 only if the person had completed college or had had at least ten
years of work experience. Filters or patterns are more general types of data form checks. These
can be used to verify that an automobile plate is two letters followed by four digits, or the sum of all
digits of a credit card number is a multiple of 9.

Checks of these types can control the data allowed in the database. They can also be used to test
existing values for reasonableness. If you suspect that the data in a database have been corrupted,
a range check of all records could identify those having suspicious values.



State Constraints

State constraints describe the condition of the entire database. At no time should the database
values violate these constraints. Phrased differently, if these constraints are not met, some value of
the database is in error.

In the section on two-phase updates, we saw how to use a commit flag, which is set at the start of
the commit phase and cleared at the completion of the commit phase. The commit flag can be
considered a state constraint because it is used at the end of every transaction for which the commit
flag is not set. Earlier in this chapter, we described a process to reset the commit flags in the event
of a failure after a commit phase. In this way, the status of the commit flag is an integrity constraint
on the database.

For another example of a state constraint, consider a database of employees' classifications. At any
time, at most one employee is classified as "president." Furthermore, each employee has an
employee number different from that of every other employee. If a mechanical or software failure
causes portions of the database file to be duplicated, one of these uniqueness constraints might be
violated. By testing the state of the database, the DBMS could identify records with duplicate
employee numbers or two records classified as "president."

Transition Constraints

State constraints describe the state of a correct database. Transition constraints describe
conditions necessary before changes can be applied to a database. For example, before a new
employee can be added to the database, there must be a position number in the database with
status "vacant." (That is, an empty slot must exist.) Furthermore, after the employee is added,
exactly one slot must be changed from "vacant" to the number of the new employee.

Simple range checks and filters can be implemented within most database management systems.
However, the more sophisticated state and transition constraints can require special procedures for
testing. Such user-written procedures are invoked by the DBMS each time an action must be
checked.

Summary of Data Reliability

Reliability, correctness, and integrity are three closely related concepts in databases. Users trust the
DBMS to maintain their data correctly, so integrity issues are very important to database security.



6.4. Sensitive Data

Some databases contain what is called sensitive data. As a working definition, let us say that
sensitive data are data that should not be made public. Determining which data items and fields
are sensitive depends both on the individual database and the underlying meaning of the data.
Obviously, some databases, such as a public library catalog, contain no sensitive data; other
databases, such as defense-related ones, are totally sensitive. These two casesnothing sensitive and
everything sensitiveare the easiest to handle because they can be covered by access controls to the
database as a whole. Someone either is or is not an authorized user. These controls are provided by
the operating system.

The more difficult problem, which is also the more interesting one, is the case in which some but not
all of the elements in the database are sensitive. There may be varying degrees of sensitivity. For
example, a university database might contain student data consisting of name, financial aid, dorm,
drug use, sex, parking fines, and race. An example of this database is shown in Table 6-6. Name
and dorm are probably the least sensitive; financial aid, parking fines, and drug use the most; sex
and race somewhere in between. That is, many people may have legitimate access to name, some
to sex and race, and relatively few to financial aid, parking fines, or drug use. Indeed, knowledge of
the existence of some fields, such as drug use, may itself be sensitive. Thus, security concerns not
only the data elements but also their context and meaning.

Table 6-6. Sample Database.

Name Sex Race Aid Fines Drugs Dorm

Adams M C 5000 45. 1 Holmes

Bailey M B 0 0. 0 Grey

Chin F A 3000 20. 0 West

Dewitt M B 1000 35. 3 Grey

Earhart F C 2000 95. 1 Holmes

Fein F C 1000 15. 0 West

Groff M C 4000 0. 3 West

Hill F B 5000 10. 2 Holmes

Koch F C 0 0. 1 West

Liu F A 0 10. 2 Grey

Majors M C 2000 0. 2 Grey

Furthermore, we must take into account different degrees of sensitivity. For instance, although they



are all highly sensitive, the financial aid, parking fines, and drug-use fields may not have the same
kinds of access restrictions. Our security requirements may demand that a few people be authorized
to see each field, but no one be authorized to see all three. The challenge of the access control
problem is to limit users' access so that they can obtain only the data to which they have legitimate
access. Alternatively, the access control problem forces us to ensure that sensitive data are not to
be released to unauthorized people.

Several factors can make data sensitive.

Inherently sensitive. The value itself may be so revealing that it is sensitive. Examples are the
locations of defensive missiles or the median income of barbers in a town with only one barber.

From a sensitive source. The source of the data may indicate a need for confidentiality. An
example is information from an informer whose identity would be compromised if the
information were disclosed.

Declared sensitive. The database administrator or the owner of the data may have declared
the data to be sensitive. Examples are classified military data or the name of the anonymous
donor of a piece of art.

Part of a sensitive attribute or a sensitive record. In a database, an entire attribute or record
may be classified as sensitive. Examples are the salary attribute of a personnel database or a
record describing a secret space mission.

Sensitive in relation to previously disclosed information. Some data become sensitive in the
presence of other data. For example, the longitude coordinate of a secret gold mine reveals
little, but the longitude coordinate in conjunction with the latitude coordinate pinpoints the
mine.

All of these factors must be considered to determine the sensitivity of the data.

Access Decisions

Remember that a database administrator is a person who decides what data should be in the
database and who should have access to it. The database administrator considers the need for
different users to know certain information and decides who should have what access. Decisions of
the database administrator are based on an access policy.

The database manager or DBMS is a program that operates on the database and auxiliary control
information to implement the decisions of the access policy. We say that the database manager
decides to permit user x to access data y. Clearly, a program or machine cannot decide anything; it
is more precise to say that the program performs the instructions by which x accesses y as a way of
implementing the policy established by the database administrator. (Now you see why we use the
simpler wording.) To keep explanations concise, we occasionally describe programs as if they can
carry out human thought processes.

The DBMS may consider several factors when deciding whether to permit an access. These factors
include availability of the data, acceptability of the access, and authenticity of the user. We expand
on these three factors below.



Availability of Data

One or more required elements may be inaccessible. For example, if a user is updating several
fields, other users' accesses to those fields must be blocked temporarily. This blocking ensures that
users do not receive inaccurate information, such as a new street address with an old city and state,
or a new code component with old documentation. Blocking is usually temporary. When performing
an update, a user may have to block access to several fields or several records to ensure the
consistency of data for others.

Notice, however, that if the updating user aborts the transaction while the update is in progress, the
other users may be permanently blocked from accessing the record. This indefinite postponement is
also a security problem, resulting in denial of service.

Acceptability of Access

One or more values of the record may be sensitive and not accessible by the general user. A DBMS
should not release sensitive data to unauthorized individuals.

Deciding what is sensitive, however, is not as simple as it sounds, because the fields may not be
directly requested. A user may have asked for certain records that contain sensitive data, but the
user's purpose may have been only to project the values from particular fields that are not
sensitive. For example, a user of the database shown in Table 6-6 may request the NAME and DORM
of any student for whom FINES is not 0. The exact value of the sensitive field FINES is not disclosed,
although "not 0" is a partial disclosure. Even when a sensitive value is not explicitly given, the
database manager may deny access on the grounds that it reveals information the user is not
authorized to have.

Alternatively, the user may want to derive a nonsensitive statistic from the sensitive data; for
example, if the average financial aid value does not reveal any individual's financial aid value, the
database management system can safely return the average. However, the average of one data
value discloses that value.

Assurance of Authenticity

Certain characteristics of the user external to the database may also be considered when permitting
access. For example, to enhance security, the database administrator may permit someone to
access the database only at certain times, such as during working hours. Previous user requests
may also be taken into account; repeated requests for the same data or requests that exhaust a
certain category of information may be used to find out all elements in a set when a direct query is
not allowed. As we shall see, sensitive data can sometimes be revealed by combined results from
several less sensitive queries.

Types of Disclosures

Data can be sensitive, but so can their characteristics. In this section, we see that even descriptive
information about data (such as their existence or whether they have an element that is zero) is a
form of disclosure.



Exact Data

The most serious disclosure is the exact value of a sensitive data item itself. The user may know
that sensitive data are being requested, or the user may request general data without knowing that
some of it is sensitive. A faulty database manager may even deliver sensitive data by accident,
without the user's having requested it. In all of these cases the result is the same: The security of
the sensitive data has been breached.

Bounds

Another exposure is disclosing bounds on a sensitive value; that is, indicating that a sensitive value,
y, is between two values, L and H. Sometimes, by using a narrowing technique not unlike the binary

search, the user may first determine that L  y  H and then see whether L  y  H/2, and so
forth, thereby permitting the user to determine y to any desired precision. In another case, merely
revealing that a value such as the athletic scholarship budget or the number of CIA agents exceeds
a certain amount may be a serious breach of security.

Sometimes, however, bounds are a useful way to present sensitive data. It is common to release
upper and lower bounds for data without identifying the specific records. For example, a company
may announce that its salaries for programmers range from $50,000 to $82,000. If you are a
programmer earning $79,700, you can presume that you are fairly well off, so you have the
information you want; however, the announcement does not disclose who are the highest- and
lowest-paid programmers.

Negative Result

Sometimes we can word a query to determine a negative result. That is, we can learn that z is not
the value of y. For example, knowing that 0 is not the total number of felony convictions for a
person reveals that the person was convicted of a felony. The distinction between 1 and 2 or 46 and
47 felonies is not as sensitive as the distinction between 0 and 1. Therefore, disclosing that a value
is not 0 can be a significant disclosure. Similarly, if a student does not appear on the honors list,
you can infer that the person's grade point average is below 3.50. This information is not too
revealing, however, because the range of grade point averages from 0.0 to 3.49 is rather wide.

Existence

In some cases, the existence of data is itself a sensitive piece of data, regardless of the actual
value. For example, an employer may not want employees to know that their use of long distance
telephone lines is being monitored. In this case, discovering a LONG DISTANCE field in a personnel
file would reveal sensitive data.

Probable Value

Finally, it may be possible to determine the probability that a certain element has a certain value.



To see how, suppose you want to find out whether the president of the United States is registered in
the Tory party. Knowing that the president is in the database, you submit two queries to the
database:

How many people have 1600 Pennsylvania Avenue as their official residence? (Response: 4)

How many people have 1600 Pennsylvania Avenue as their official residence and have YES as
the value of TORY? (Response: 1)

From these queries you conclude there is a 25 percent likelihood that the president is a registered
Tory.

Summary of Partial Disclosure

We have seen several examples of how a security problem can result if characteristics of sensitive
data are revealed. Notice that some of the techniques we presented used information about the
data, rather than direct access to the data, to infer sensitive results. A successful security strategy
must protect from both direct and indirect disclosure.

Security versus Precision

Our examples have illustrated how difficult it is to determine which data are sensitive and how to
protect them. The situation is complicated by a desire to share nonsensitive data. For reasons of
confidentiality we want to disclose only those data that are not sensitive. Such an outlook
encourages a conservative philosophy in determining what data to disclose: less is better than
more.

On the other hand, consider the users of the data. The conservative philosophy suggests rejecting
any query that mentions a sensitive field. We may thereby reject many reasonable and
nondisclosing queries. For example, a researcher may want a list of grades for all students using
drugs, or a statistician may request lists of salaries for all men and for all women. These queries
probably do not compromise the identity of any individual. We want to disclose as much data as
possible so that users of the database have access to the data they need. This goal, called
precision, aims to protect all sensitive data while revealing as much nonsensitive data as possible.

We can depict the relationship between security and precision with concentric circles. As Figure 6-3
shows, the sensitive data in the central circle should be carefully concealed. The outside band
represents data we willingly disclose in response to queries. But we know that the user may put
together pieces of disclosed data and infer other, more deeply hidden, data. The figure shows us
that beneath the outer layer may be yet more nonsensitive data that the user cannot infer.

Figure 6-3. Security versus Precision.



The ideal combination of security and precision allows us to maintain perfect confidentiality with
maximum precision; in other words, we disclose all and only the nonsensitive data. But achieving
this goal is not as easy as it might seem, as we show in the next section. Sidebar 6-3 gives an
example of using imprecise techniques to improve accuracy. In the next section, we consider ways
in which sensitive data can be obtained from queries that appear harmless.

Sidebar 6-3: Accuracy and Imprecision

Article I of the U.S. Constitution charges Congress with determining the "respective
numbers… of free…and all other persons…within every…term of ten years." This count is
used for many things, including apportioning the number of representatives to Congress
and distributing funds fairly to the states. Although difficult in 1787, this task has
become increasingly challenging. The count cannot simply be based on residences,
because some homeless people would be missed. A fair count cannot be obtained solely
by sending a questionnaire for each person to complete and return, because some
people cannot read and, more significantly, many people do not return such forms. And
there is always the possibility that a form would be lost in the mail.

For the 2000 census the U.S. Census Bureau proposed using statistical sampling and
estimating techniques to approximate the population. With these techniques they would
select certain areas in which to take two counts: a regular count and a second,
especially diligent search for every person residing in the area. In this way the bureau
could determine the "undercount," the number of people missed in the regular count.



They could then use this undercount factor to adjust the regular count in other similar
areas and thus obtain a more accurate, although less precise, count.

The Supreme Court ruled that statistical sampling techniques were acceptable for
determining revenue distribution to the states but not for allocating representatives in
Congress. As a result, the census can never get an exact, accurate count of the number
of people in the United States or even in a major U.S. city. At the same time, concerns
about precision and privacy prevent the Census Bureau from releasing information
about any particular individual living in the United States.

Does this lack of accuracy and exactness mean that the census is not useful? No. We
may not know exactly how many people live in Washington, D.C., or the exact
information about a particular resident of Washington, D.C., but we can use the census
information to characterize the residents of Washington, D.C. For example, we can
determine the maximum, minimum, mean, and median ages or incomes, and we can
investigate the relationships among characteristics, such as between education level
and income. So accuracy and precision help to reflect the balance between protection
and need to know.



6.5. Inference

Inference is a way to infer or derive sensitive data from nonsensitive data. The inference problem
is a subtle vulnerability in database security.

The database in Table 6-7 can help illustrate the inference problem. Recall that AID is the amount of
financial aid a student is receiving. FINES is the amount of parking fines still owed. DRUGS is the
result of a drug-use survey: 0 means never used and 3 means frequent user. Obviously this
information should be kept confidential. We assume that AID, FINES, and DRUGS are sensitive
fields, although only when the values are related to a specific individual. In this section, we look at
ways to determine sensitive data values from the database.

Table 6-7. Sample Database (repeated).

Name Sex Race Aid Fines Drugs Dorm

Adams M C 5000 45. 1 Holmes

Bailey M B 0 0. 0 Grey

Chin F A 3000 20. 0 West

Dewitt M B 1000 35. 3 Grey

Earhart F C 2000 95. 1 Holmes

Fein F C 1000 15. 0 West

Groff M C 4000 0. 3 West

Hill F B 5000 10. 2 Holmes

Koch F C 0 0. 1 West

Liu F A 0 10. 2 Grey

Majors M C 2000 0. 2 Grey

Direct Attack

In a direct attack, a user tries to determine values of sensitive fields by seeking them directly with
queries that yield few records. The most successful technique is to form a query so specific that it
matches exactly one data item.

In Table 6-7, a sensitive query might be

List NAME where



      SEX=M  DRUGS=1

This query discloses that for record ADAMS, DRUGS=1. However, it is an obvious attack because it
selects people for whom DRUGS=1, and the DBMS might reject the query because it selects records
for a specific value of the sensitive attribute DRUGS.

A less obvious query is

List NAME where

      (SEX=M  DRUGS=1) 

      (SEX M  SEX F) 
      (DORM=AYRES)

On the surface, this query looks as if it should conceal drug usage by selecting other non-drug-
related records as well. However, this query still retrieves only one record, revealing a name that
corresponds to the sensitive DRUG value. The DBMS needs to know that SEX has only two possible
values so that the second clause will select no records. Even if that were possible, the DBMS would
also need to know that no records exist with DORM=AYRES, even though AYRES might in fact be an
acceptable value for DORM.

Organizations that publish personal statistical data, such as the U.S. Census Bureau, do not reveal
results when a small number of people make up a large proportion of a category. The rule of "n
items over k percent" means that data should be withheld if n items represent over k percent of the
result reported. In the previous case, the one person selected represents 100 percent of the data
reported, so there would be no ambiguity about which person matches the query.

Indirect Attack

Another procedure, used by the U.S. Census Bureau and other organizations that gather sensitive
data, is to release only statistics. The organizations suppress individual names, addresses, or other
characteristics by which a single individual can be recognized. Only neutral statistics, such as sum,
count, and mean, are released.

The indirect attack seeks to infer a final result based on one or more intermediate statistical results.
But this approach requires work outside the database itself. In particular, a statistical attack seeks
to use some apparently anonymous statistical measure to infer individual data. In the following
sections, we present several examples of indirect attacks on databases that report statistics.

Sum

An attack by sum tries to infer a value from a reported sum. For example, with the sample database
in Table 6-7, it might seem safe to report student aid total by sex and dorm. Such a report is shown
in Table 6-8. This seemingly innocent report reveals that no female living in Grey is receiving
financial aid. Thus, we can infer that any female living in Grey (such as Liu) is certainly not receiving



financial aid. This approach often allows us to determine a negative result.

Table 6-8. Sums of Financial Aid by Dorm and Sex.

  Holmes Grey West Total

M 5000 3000 4000 12000

F 7000 0 4000 11000

Total 12000 3000 8000 23000

Count

The count can be combined with the sum to produce some even more revealing results. Often these
two statistics are released for a database to allow users to determine average values. (Conversely, if
count and mean are released, sum can be deduced.)

Table 6-9 shows the count of records for students by dorm and sex. This table is innocuous by itself.
Combined with the sum table, however, this table demonstrates that the two males in Holmes and
West are receiving financial aid in the amount of $5000 and $4000, respectively. We can obtain the
names by selecting the subschema of NAME, DORM, which is not sensitive because it delivers only
low-security data on the entire database.

Table 6-9. Count of Students by Dorm and Sex.

  Holmes Grey West Total

M 1 3 1 5

F 2 1 3 6

Total 3 4 4 11

Mean

The arithmetic mean (average) allows exact disclosure if the attacker can manipulate the subject
population. As a trivial example, consider salary. Given the number of employees, the mean salary
for a company and the mean salary of all employees except the president, it is easy to compute the
president's salary.

Median

By a slightly more complicated process, we can determine an individual value from medians. The



attack requires finding selections having one point of intersection that happens to be exactly in the
middle, as shown in Figure 6-4.

Figure 6-4. Intersecting Medians.

For example, in our sample database, there are five males and three persons whose drug use value
is 2. Arranged in order of aid, these lists are shown in Table 6-10. Notice that Majors is the only
name common to both lists, and conveniently that name is in the middle of each list. Someone
working at the Health Clinic might be able to find out that Majors is a white male whose drug-use
score is 2. That information identifies Majors as the intersection of these two lists and pinpoints
Majors' financial aid as $2000. In this example, the queries

Table 6-10. Inference from Median of Two Lists.

Name Sex Drugs Aid

Bailey M 0 0

Dewitt M 3 1000

Majors M 2 2000

Groff M 3 4000

Adams M 1 5000



Name Sex Drugs Aid

Liu F 2 0

Majors M 2 2000

Hill F 2 5000

q = median(AID where SEX = M)
p = median(AID where DRUGS = 2)

reveal the exact financial aid amount for Majors.

Tracker Attacks

As already explained, database management systems may conceal data when a small number of
entries make up a large proportion of the data revealed. A tracker attack can fool the database
manager into locating the desired data by using additional queries that produce small results. The
tracker adds additional records to be retrieved for two different queries; the two sets of records
cancel each other out, leaving only the statistic or data desired. The approach is to use intelligent
padding of two queries. In other words, instead of trying to identify a unique value, we request n - 1
other values (where there are n values in the database). Given n and n - 1, we can easily compute
the desired single element.

For instance, suppose we wish to know how many female Caucasians live in Holmes Hall. A query
posed might be

count ((SEX=F)  (RACE=C)  (DORM=Holmes))

The database management system might consult the database, find that the answer is 1, and refuse
to answer that query because one record dominates the result of the query.

However, further analysis of the query allows us to track sensitive data through nonsensitive
queries.

The query

q=count((SEX=F)  (RACE=C)  (DORM=Holmes))

is of the form

q = count(a  b  c)

Liu F 2 0

Majors M 2 2000

Hill F 2 5000

q = median(AID where SEX = M)
p = median(AID where DRUGS = 2)

reveal the exact financial aid amount for Majors.

Tracker Attacks

As already explained, database management systems may conceal data when a small number of
entries make up a large proportion of the data revealed. A tracker attack can fool the database
manager into locating the desired data by using additional queries that produce small results. The
tracker adds additional records to be retrieved for two different queries; the two sets of records
cancel each other out, leaving only the statistic or data desired. The approach is to use intelligent
padding of two queries. In other words, instead of trying to identify a unique value, we request n - 1
other values (where there are n values in the database). Given n and n - 1, we can easily compute
the desired single element.

For instance, suppose we wish to know how many female Caucasians live in Holmes Hall. A query
posed might be

count ((SEX=F)  (RACE=C)  (DORM=Holmes))

The database management system might consult the database, find that the answer is 1, and refuse
to answer that query because one record dominates the result of the query.

However, further analysis of the query allows us to track sensitive data through nonsensitive
queries.

The query

q=count((SEX=F)  (RACE=C)  (DORM=Holmes))

is of the form

q = count(a  b  c)



By using the rules of logic and algebra, we can transform this query to

q = count(a  b  c) = count(a)  count(a  ¬ (b  c))

Thus, the original query is equivalent to

count (SEX=F)

minus

count ((SEX=F)  ((RACE C)  (DORM Holmes)))

Because count(a) = 6 and count(a  ¬ (b  c)) = 5, we can determine the suppressed value
easily: 6 - 5 = 1. Furthermore, neither 6 nor 5 is a sensitive count.

Linear System Vulnerability

A tracker is a specific case of a more general vulnerability. With a little logic, algebra, and luck in
the distribution of the database contents, it may be possible to construct a series of queries that
returns results relating to several different sets. For example, the following system of five queries
does not overtly reveal any single c value from the database. However, the queries' equations can
be solved for each of the unknown c values, revealing them all.

To see how, use basic algebra to note that q1 - q2 = c3 + c5, and q3 - q4 = c3 - c5. Then, subtracting
these two equations, we obtain c5 = ((q1 - q2) - (q3 - q4))/2. Once we know c5, we can derive the
others.

In fact, this attack can also be used to obtain results other than numerical ones. Recall that we can

apply logical rules to and ( ) and or ( ), typical operators for database queries, to derive values
from a series of logical expressions. For example, each expression might represent a query asking
for precise data instead of counts, such as the equation

q = s1  s2  s3  s4  s5

The result of the query is a set of records. Using logic and set algebra in a manner similar to our



numerical example, we can carefully determine the actual values for each of the si.

Controls for Statistical Inference Attacks

Denning and Schlörer [DEN83a] present a very good survey of techniques for maintaining security
in databases. The controls for all statistical attacks are similar. Essentially, there are two ways to
protect against inference attacks: Either controls are applied to the queries or controls are applied
to individual items within the database. As we have seen, it is difficult to determine whether a given
query discloses sensitive data. Thus, query controls are effective primarily against direct attacks.

Suppression and concealing are two controls applied to data items. With suppression, sensitive
data values are not provided; the query is rejected without response. With concealing, the answer
provided is close to but not exactly the actual value.

These two controls reflect the contrast between security and precision. With suppression, any
results provided are correct, yet many responses must be withheld to maintain security. With
concealing, more results can be provided, but the precision of the results is lower. The choice
between suppression and concealing depends on the context of the database. Examples of
suppression and concealing follow.

Limited Response Suppression

The n-item k-percent rule eliminates certain low-frequency elements from being displayed. It is not
sufficient to delete them, however, if their values can also be inferred. To see why, consider Table
6-11, which shows counts of students by dorm and sex.

Table 6-11. Students by Dorm and Sex.

  Holmes Grey West Total

M 1 3 1 5

F 2 1 3 6

Total 3 4 4 11

The data in this table suggest that the cells with counts of 1 should be suppressed; their counts are
too revealing. But it does no good to suppress the MaleHolmes cell when the value 1 can be
determined by subtracting FemaleHolmes (2) from the total (3) to determine 1, as shown in Table
6-12.

Table 6-12. Students by Dorm and Sex, with Low Count
Suppression.



  Holmes Grey West Total

M - 3 - 5

F 2 - 3 6

Total 3 4 4 11

When one cell is suppressed in a table with totals for rows and columns, it is necessary to suppress
at least one additional cell on the row and one on the column to provide some confusion. Using this
logic, all cells (except totals) would have to be suppressed in this small sample table. When totals
are not provided, single cells in a row or column can be suppressed.

Combined Results

Another control combines rows or columns to protect sensitive values. For example, Table 6-13
shows several sensitive results that identify single individuals. (Even though these counts may not
seem sensitive, they can be used to infer sensitive data such as NAME; therefore, we consider them
to be sensitive.)

Table 6-13. Students by Sex and Drug Use.

Sex

Drug Use

0 1 2 3

M 1 1 1 2

F 2 2 2 0

These counts, combined with other results such as sum, permit us to infer individual drug-use
values for the three males, as well as to infer that no female was rated 3 for drug use. To suppress
such sensitive information, it is possible to combine the attribute values for 0 and 1, and also for 2
and 3, producing the less sensitive results shown in Table 6-14. In this instance, it is impossible to
identify any single value.

Table 6-14. Suppression by
Combining Revealing Values.

Sex

Drug Use

0 or 1 2 or 3

M 2 3

F 4 2



Another way of combining results is to present values in ranges. For example, instead of releasing
exact financial aid figures, results can be released for the ranges $01999, $20003999, and $4000
and above. Even if only one record is represented by a single result, the exact value of that record
is not known. Similarly, the highest and lowest financial aid values are concealed.

Yet another method of combining is by rounding. This technique is actually a fairly well-known
example of combining by range. If numbers are rounded to the nearest multiple of 10, the effective
ranges are 05, 615, 1625, and so on. Actual values are rounded up or down to the nearest multiple
of some base.

Random Sample

With random sample control, a result is not derived from the whole database; instead the result is
computed on a random sample of the database. The sample chosen is large enough to be valid.
Because the sample is not the whole database, a query against this sample will not necessarily
match the result for the whole database. Thus, a result of 5 percent for a particular query means
that 5 percent of the records chosen for the sample for this query had the desired property. You
would expect that approximately 5 percent of the entire database will have the property in question,
but the actual percentage may be quite different.

So that averaging attacks from repeated, equivalent queries are prevented, the same sample set
should be chosen for equivalent queries. In this way, all equivalent queries will produce the same
result, although that result will be only an approximation for the entire database.

Random Data Perturbation

It is sometimes useful to perturb the values of the database by a small error. For each xi that is the
true value of data item i in the database, we can generate a small random error term εi and add it
to xi for statistical results. The ε values are both positive and negative, so that some reported
values will be slightly higher than their true values and other reported values will be lower.
Statistical measures such as sum and mean will be close but not necessarily exact. Data
perturbation is easier to use than random sample selection because it is easier to store all the ε
values in order to produce the same result for equivalent queries.

Query Analysis

A more complex form of security uses query analysis. Here, a query and its implications are
analyzed to determine whether a result should be provided. As noted earlier, query analysis can be
quite difficult. One approach involves maintaining a query history for each user and judging a query
in the context of what inferences are possible given previous results.

Conclusion on the Inference Problem

There are no perfect solutions to the inference problem. The approaches to controlling it follow the



three paths listed below. The first two methods can be used either to limit queries accepted or to
limit data provided in response to a query. The last method applies only to data released.

Suppress obviously sensitive information. This action can be taken fairly easily. The tendency
is to err on the side of suppression, thereby restricting the usefulness of the database.

Track what the user knows. Although possibly leading to the greatest safe disclosure, this
approach is extremely costly. Information must be maintained on all users, even though most
are not trying to obtain sensitive data. Moreover, this approach seldom takes into account
what any two people may know together and cannot address what a single user can
accomplish by using multiple IDs.

Disguise the data. Random perturbation and rounding can inhibit statistical attacks that
depend on exact values for logical and algebraic manipulation. The users of the database
receive slightly incorrect or possibly inconsistent results.

It is unlikely that research will reveal a simple, easy-to-apply measure that determines exactly
which data can be revealed without compromising sensitive data.

Nevertheless, an effective control for the inference problem is just knowing that it exists. As with
other problems in security, recognition of the problem leads to understanding of the purposes of
controlling the problem and to sensitivity to the potential difficulties caused by the problem.
However, just knowing of possible database attacks does not necessarily mean people will protect
against those attacks, as explained in Sidebar 6-4. It is also noteworthy that much of the research
on database inference was done in the early 1980s, but this proposal appeared almost two decades
later.

Aggregation

Related to the inference problem is aggregation, which means building sensitive results from less
sensitive inputs. We saw earlier that knowing either the latitude or longitude of a gold mine does
you no good. But if you know both latitude and longitude, you can pinpoint the mine. For a more
realistic example, consider how police use aggregation frequently in solving crimes: They determine
who had a motive for committing the crime, when the crime was committed, who had alibis
covering that time, who had the skills, and so forth. Typically, you think of police investigation as
starting with the entire population and narrowing the analysis to a single person. But if the police
officers work in parallel, one may have a list of possible suspects, another may have a list with
possible motive, and another may have a list of capable persons. When the intersection of these
lists is a single person, the police have their prime suspect.

Addressing the aggregation problem is difficult because it requires the database management
system to track which results each user had already received and conceal any result that would let
the user derive a more sensitive result. Aggregation is especially difficult to counter because it can
take place outside the system. For example, suppose the security policy is that anyone can have
either the latitude or longitude of the mine, but not both. Nothing prevents you from getting one,
your friend from getting the other, and the two of you talking to each other.

Recent interest in data mining has raised concern again about aggregation. Data mining is the
process of sifting through multiple databases and correlating multiple data elements to find useful
information. Marketing companies use data mining extensively to find consumers likely to buy a



product. As Sidebar 6-5 points out, it is not only marketers who are interested in aggregation
through data mining.

Sidebar 6-4: Iceland Protects Privacy Against Inference

In 1998, Iceland authorized the building of a database of citizens' medical records,
genealogy, and genetic information. Ostensibly, this database would provide data on
genetic diseases to researchersmedical professionals and drug companies. Iceland is
especially interesting for genetic disease research because the gene pool has remained
stable for a long time; few outsiders have moved to Iceland, and few Icelanders have
emigrated. For privacy, all identifying names or numbers would be replaced by a unique
pseudonym. The Iceland health department asked computer security expert Ross
Anderson to analyze the security aspects of this approach.

Anderson found several flaws with the proposed approach [AND98a]:

Inclusion in the genealogical database complicates the task of maintaining
individuals' anonymity because of distinctive family features. Moreover, parts of
the genealogical database are already public because information about individuals
is published in their birth and death records. It would be rather easy to identify
someone in a family of three children born, respectively, in 1910, 1911, and 1929.

Even a life's history of medical events may identify an individual. Many people
would know that a person broke her leg skiing one winter and contracted a skin
disease the following summer.

Even small sample set restrictions on queries would fail to protect against
algebraic attacks.

To analyze the genetic data, which by its nature is necessarily of very fine detail,
researchers would require the ability to make complex and specific queries. This
same powerful query capability could lead to arbitrary selection of combinations of
results.

For these reasons (and others), Anderson recommended against continuing to develop
the public database. In spite of these problems, the Iceland Parliament voted to proceed
with its construction and public release [JON00].

Aggregation was of interest to database security researchers at the same time as was inference. As
we have seen, some approaches to inference have proven useful and are currently being used. But
there have been few proposals for countering aggregation.



6.6. Multilevel Databases

So far, we have considered data in only two categories: either sensitive or nonsensitive. We have
alluded to some data items being more sensitive than others, but we have allowed only yes-or-no
access. Our presentation may have implied that sensitivity was a function of the attribute, the
column in which the data appeared, although nothing we have done depended on this interpretation
of sensitivity. Such a model appears in Table 6-15, where two columns are identified (by shading)
as sensitive. In fact, though, sensitivity is determined not just by attribute but also in ways that we
investigate in the next section.

Table 6-15. Attribute-Level Sensitivity. (Sensitive attributes
are shaded.)

Name Department Salary Phone Performance

Rogers training 43,800 4-5067 A2

Jenkins research 62,900 6-4281 D4

Poling training 38,200 4-4501 B1

Garland user services 54,600 6-6600 A4

Hilten user services 44,500 4-5351 B1

Davis administration 51,400 4-9505 A3

Sidebar 6-5: Who Wrote Shakespeare's Plays?

Most people would answer "Shakespeare" when asked who wrote any of the plays
attributed to the bard. But for 150 years literary scholars have had their doubts. In
1852, it was suggested that Edward de Vere, Earl of Oxford, wrote at least some of the
works. For decades scholarly debate raged, citing what was known of Shakespeare's
education, travels, work schedule, and the few other facts known about him.

In the 1980s a new analytic technique was developed: computerized analysis of text.
Different researchers studied qualities such as word choice, images used in different
plays, word pairs, sentence structure, and the likeany structural element that could
show similarity or dissimilarity. (See, for example, [FAR96a] and [KAR01], as well as
www.shakespearefellowship.org.) The debate continues as researchers develop more
and more qualities to correlate among databases (the language of the plays and other
works attributed to Shakespeare). The debate will probably never be settled.



But the technique has proven useful. In 1996, an author called Anonymous published
the novel Primary Colors. Many people tried to determine who the author was. But
Donald Foster, a professor at Vassar College, aided by some simple computer tools,
attributed the novel to Joe Klein, who later admitted being the author. Neumann
[NEU96] in the Risks forum, notes how hard it is to lie convincingly, even having tried to
alter your writing style, given "telephone records, credit-card records, airplane
reservation databases, library records, snoopy neighbors, coincidental encounters,
etc."in short, given aggregation.

The approach has uses outside the literary field. In 2002 the SAS Institute, vendors of
statistical analysis software, introduced data mining software intended to find patterns
in old e-mail messages and other masses of text. The company suggests the tool might
be useful in identifying and blocking spam. Another possible use is detecting lies, or
perhaps just flagging potential inconsistencies. It could also help locate the author of
malicious code.

The Case for Differentiated Security

Consider a database containing data on U.S. government expenditures. Some of the expenditures
are for paper clips, which is not sensitive information. Some salary expenditures are subject to
privacy requirements. Individual salaries are sensitive, but the aggregate (for example, the total
Agriculture Department payroll, which is a matter of public record) is not sensitive. Expenses of
certain military operations are more sensitive; for example, the total amount the United States
spends for ballistic missiles, which is not public. There are even operations known only to a few
people, and so the amount spent on these operations, or even the fact that anything was spent on
such an operation, is highly sensitive.

Table 6-15 lists employee information. It may in fact be the case that Davis is a temporary
employee hired for a special project, and her whole record has a different sensitivity from the
others. Perhaps the phone shown for Garland is her private line, not available to the public. We can
refine the sensitivity of the data by depicting it as shown in Table 6-16.

Table 6-16. Data and Attribute Sensitivity.

Name Department Salary Phone Performance

Rogers training 43,800 4-5067 A2

Jenkins research 62,900 6-4281 D4

Poling training 38,200 4-4501 B1

Garland user services 54,600 6-6600 A4

Hilten user services 44,500 4-5351 B1

Davis administration 51,400 4-9505 A3



From this description, three characteristics of database security emerge.

The security of a single element may be different from the security of other elements of the
same record or from other values of the same attribute. That is, the security of one element
may differ from that of other elements of the same row or column. This situation implies that
security should be implemented for each individual element.

Two levelssensitive and nonsensitiveare inadequate to represent some security situations.
Several grades of security may be needed. These grades may represent ranges of allowable
knowledge, which may overlap. Typically, the security grades form a lattice.

The security of an aggregatea sum, a count, or a group of values in a databasemay differ from
the security of the individual elements. The security of the aggregate may be higher or lower
than that of the individual elements.

These three principles lead to a model of security not unlike the military model of security
encountered in Chapter 5, in which the sensitivity of an object is defined as one of n levels and is
further separated into compartments by category.

Granularity

Recall that the military classification model applied originally to paper documents and was adapted
to computers. It is fairly easy to classify and track a single sheet of paper or, for that matter, a
paper file, a computer file, or a single program or process. It is entirely different to classify
individual data items.

For obvious reasons, an entire sheet of paper is classified at one level, even though certain words,
such as and, the, or of, would be innocuous in any context, and other words, such as codewords like
Manhattan project, might be sensitive in any context. But defining the sensitivity of each value in a
database is similar to applying a sensitivity level to each individual word of a document.

And the problem is still more complicated. The word Manhattan by itself is not sensitive, nor is
project. However, the combination of these words produces the sensitive codeword Manhattan
project. A similar situation occurs in databases. Therefore, not only can every element of a database
have a distinct sensitivity, every combination of elements can also have a distinct sensitivity.
Furthermore, the combination can be more or less sensitive than any of its elements.

So what would we need in order to associate a sensitivity level with each value of a database? First,
we need an access control policy to dictate which users may have access to what data. Typically, to
implement this policy each data item is marked to show its access limitations. Second, we need a
means to guarantee that the value has not been changed by an unauthorized person. These two
requirements address both confidentiality and integrity.

Security Issues

In Chapter 1, we introduced three general security concerns: integrity, confidentiality, and
availability. In this section, we extend the first two of these concepts to include their special roles
for multilevel databases.



Integrity

Even in a single-level database in which all elements have the same degree of sensitivity, integrity
is a tricky problem. In the case of multilevel databases, integrity becomes both more important and
more difficult to achieve. Because of the *-property for access control, a process that reads high-
level data is not allowed to write a file at a lower level. Applied to databases, however, this principle
says that a high-level user should not be able to write a lower-level data element.

The problem with this interpretation arises when the DBMS must be able to read all records in the
database and write new records for any of the following purposes: to do backups, to scan the
database to answer queries, to reorganize the database according to a user's processing needs, or
to update all records of the database.

When people encounter this problem, they handle it by using trust and common sense. People who
have access to sensitive information are careful not to convey it to uncleared individuals. In a
computing system, there are two choices: Either the process cleared at a high level cannot write to
a lower level or the process must be a "trusted process," the computer equivalent of a person with a
security clearance.

Confidentiality

Users trust that a database will provide correct information, meaning that the data are consistent
and accurate. As indicated earlier, some means of protecting confidentiality may result in small
changes to the data. Although these perturbations should not affect statistical analyses, they may
produce two different answers representing the same underlying data value in response to two
differently formed queries. In the multilevel case, two different users operating at two different
levels of security might get two different answers to the same query. To preserve confidentiality,
precision is sacrificed.

Enforcing confidentiality also leads to unknowing redundancy. Suppose a personnel specialist works
at one level of access permission. The specialist knows that Bob Hill works for the company.
However, Bob's record does not appear on the retirement payment roster. The specialist assumes
this omission is an error and creates a record for Bob.

The reason that no record for Bob appears is that Bob is a secret agent, and his employment with
the company is not supposed to be public knowledge. A record on Bob actually is in the file but,
because of his special position, his record is not accessible to the personnel specialist. The DBMS
cannot reject the record from the personnel specialist because doing so would reveal that there
already is such a record at a sensitivity too high for the specialist to see. The creation of the new
record means that there are now two records for Bob Hill: one sensitive and one not, as shown in
Table 6-17. This situation is called polyinstantiation, meaning that one record can appear (be
instantiated) many times, with a different level of confidentiality each time.

Table 6-17. Polyinstantiated Records.



Name Sensitivity Assignment Location

     

Hill, Bob C Program Mgr London

Hill, Bob TS Secret Agent South Bend

     

This problem is exacerbated because Bob Hill is a common enough name that there might be two
different people in the database with that name. Thus, merely scanning the database (from a high-
sensitivity level) for duplicate names is not a satisfactory way to find records entered unknowingly
by people with only low clearances.

We might also find other reasons, unrelated to sensitivity level, that result in polyinstantiation. For
example, Mark Thyme worked for Acme Corporation for 30 years and retired. He is now drawing a
pension from Acme, so he appears as a retiree in one personnel record. But Mark tires of being
home and is rehired as a part-time contractor; this new work generates a second personnel record
for Mark. Each is a legitimate employment record. In our zeal to reduce polyinstantiation, we must
be careful not to eliminate legitimate records such as these.



6.7. Proposals for Multilevel Security

As you can already tell, implementing multilevel security for databases is difficult, probably more so
than in operating systems, because of the small granularity of the items being controlled. In the
remainder of this section, we study approaches to multilevel security for databases.

Separation

As we have already seen, separation is necessary to limit access. In this section, we study
mechanisms to implement separation in databases. Then, we see how these mechanisms can help
to implement multilevel security for databases.

Partitioning

The obvious control for multilevel databases is partitioning. The database is divided into separate
databases, each at its own level of sensitivity. This approach is similar to maintaining separate files
in separate file cabinets.

This control destroys a basic advantage of databases: elimination of redundancy and improved
accuracy through having only one field to update. Furthermore, it does not address the problem of a
high-level user who needs access to some low-level data combined with high-level data.

Nevertheless, because of the difficulty of establishing, maintaining, and using multilevel databases,
many users with data of mixed sensitivities handle their data by using separate, isolated databases.

Encryption

If sensitive data are encrypted, a user who accidentally receives them cannot interpret the data.
Thus, each level of sensitive data can be stored in a table encrypted under a key unique to the level
of sensitivity. But encryption has certain disadvantages.

First, a user can mount a chosen plaintext attack. Suppose party affiliation of REP or DEM is stored
in encrypted form in each record. A user who achieves access to these encrypted fields can easily
decrypt them by creating a new record with party=DEM and comparing the resulting encrypted
version to that element in all other records. Worse, if authentication data are encrypted, the
malicious user can substitute the encrypted form of his or her own data for that of any other user.
Not only does this provide access for the malicious user, but it also excludes the legitimate user
whose authentication data have been changed to that of the malicious user. These possibilities are
shown in Figures 6-5 and 6-6.



Figure 6-5. Cryptographic Separation: Different Encryption Keys.

Figure 6-6. Cryptographic Separation: Block Chaining.

Using a different encryption key for each record overcomes these defects. Each record's fields can
be encrypted with a different key, or all fields of a record can be cryptographically linked, as with
cipher block chaining.

The disadvantage, then, is that each field must be decrypted when users perform standard database
operations such as "select all records with SALARY > 10,000." Decrypting the SALARY field, even on



rejected records, increases the time to process a query. (Consider the query that selects just one
record but that must decrypt and compare one field of each record to find the one that satisfies the
query.) Thus, encryption is not often used to implement separation in databases.

Integrity Lock

The integrity lock was first proposed at the U.S. Air Force Summer Study on Data Base Security
[AFS83]. The lock is a way to provide both integrity and limited access for a database. The
operation was nicknamed "spray paint" because each element is figuratively painted with a color
that denotes its sensitivity. The coloring is maintained with the element, not in a master database
table.

A model of the basic integrity lock is shown in Figure 6-7. As illustrated, each apparent data item
consists of three pieces: the actual data item itself, a sensitivity label, and a checksum. The
sensitivity label defines the sensitivity of the data, and the checksum is computed across both data
and sensitivity label to prevent unauthorized modification of the data item or its label. The actual
data item is stored in plaintext, for efficiency because the DBMS may need to examine many fields
when selecting records to match a query.

Figure 6-7. Integrity Lock.

The sensitivity label should be

unforgeable, so that a malicious subject cannot create a new sensitivity level for an element

unique, so that a malicious subject cannot copy a sensitivity level from another element

concealed, so that a malicious subject cannot even determine the sensitivity level of an
arbitrary element

The third piece of the integrity lock for a field is an error-detecting code, called a cryptographic
checksum. To guarantee that a data value or its sensitivity classification has not been changed,
this checksum must be unique for a given element, and must contain both the element's data value
and something to tie that value to a particular position in the database. As shown in Figure 6-8, an
appropriate cryptographic checksum includes something unique to the record (the record number),



something unique to this data field within the record (the field attribute name), the value of this
element, and the sensitivity classification of the element. These four components guard against
anyone's changing, copying, or moving the data. The checksum can be computed with a strong
encryption algorithm or hash function.

Figure 6-8. Cryptographic Checksum.

Sensitivity Lock

The sensitivity lock shown in Figure 6-9 was designed by Graubert and Kramer [GRA84b] to meet
these principles. A sensitivity lock is a combination of a unique identifier (such as the record
number) and the sensitivity level. Because the identifier is unique, each lock relates to one
particular record. Many different elements will have the same sensitivity level. A malicious subject
should not be able to identify two elements having identical sensitivity levels or identical data values
just by looking at the sensitivity level portion of the lock. Because of the encryption, the lock's
contents, especially the sensitivity level, are concealed from plain view. Thus, the lock is associated
with one specific record, and it protects the secrecy of the sensitivity level of that record.

Figure 6-9. Sensitivity Lock.



Designs of Multilevel Secure Databases

This section covers different designs for multilevel secure databases. These designs show the
tradeoffs among efficiency, flexibility, simplicity, and trustworthiness.

Integrity Lock

The integrity lock DBMS was invented as a short-term solution to the security problem for multilevel
databases. The intention was to be able to use any (untrusted) database manager with a trusted
procedure that handles access control. The sensitive data were obliterated or concealed with
encryption that protected both a data item and its sensitivity. In this way, only the access procedure
would need to be trusted because only it would be able to achieve or grant access to sensitive data.
The structure of such a system is shown in Figure 6-10.

Figure 6-10. Trusted Database Manager.

The efficiency of integrity locks is a serious drawback. The space needed for storing an element
must be expanded to contain the sensitivity label. Because there are several pieces in the label and
one label for every element, the space required is significant.

Problematic, too, is the processing time efficiency of an integrity lock. The sensitivity label must be
decoded every time a data element is passed to the user to verify that the user's access is
allowable. Also, each time a value is written or modified, the label must be recomputed. Thus,



substantial processing time is consumed. If the database file can be sufficiently protected, the data
values of the individual elements can be left in plaintext. That approach benefits select and project
queries across sensitive fields because an element need not be decrypted just to determine whether
it should be selected.

A final difficulty with this approach is that the untrusted database manager sees all data, so it is
subject to Trojan horse attacks by which data can be leaked through covert channels.

Trusted Front End

The model of a trusted front-end process is shown in Figure 6-11. A trusted front end is also
known as a guard and operates much like the reference monitor of Chapter 5. This approach,
originated by Hinke and Schaefer [HIN75], recognizes that many DBMSs have been built and put
into use without consideration of multilevel security. Staff members are already trained in using
these DBMSs, and they may in fact use them frequently. The front-end concept takes advantage of
existing tools and expertise, enhancing the security of these existing systems with minimal change
to the system. The interaction between a user, a trusted front end, and a DBMS involves the
following steps.

Figure 6-11. Trusted Front End.



1. A user identifies himself or herself to the front end; the front end authenticates the user's
identity.

2. The user issues a query to the front end.

3. The front end verifies the user's authorization to data.

4. The front end issues a query to the database manager.

5. The database manager performs I/O access, interacting with low-level access control to
achieve access to actual data.

6. The database manager returns the result of the query to the trusted front end.

7. The front end analyzes the sensitivity levels of the data items in the result and selects those
items consistent with the user's security level.

8. The front end transmits selected data to the untrusted front end for formatting.

9. The untrusted front end transmits formatted data to the user.

The trusted front end serves as a one-way filter, screening out results the user should not be able to
access. But the scheme is inefficient because potentially much data is retrieved and then discarded
as inappropriate for the user.

Commutative Filters

The notion of a commutative filter was proposed by Denning [DEN85] as a simplification of the
trusted interface to the DBMS. Essentially, the filter screens the user's request, reformatting it if
necessary, so that only data of an appropriate sensitivity level are returned to the user.

A commutative filter is a process that forms an interface between the user and a DBMS. However,
unlike the trusted front end, the filter tries to capitalize on the efficiency of most DBMSs. The filter
reformats the query so that the database manager does as much of the work as possible, screening
out many unacceptable records. The filter then provides a second screening to select only data to
which the user has access.

Filters can be used for security at the record, attribute, or element level.

When used at the record level, the filter requests desired data plus cryptographic checksum
information; it then verifies the accuracy and accessibility of data to be passed to the user.

At the attribute level, the filter checks whether all attributes in the user's query are accessible
to the user and, if so, passes the query to the database manager. On return, it deletes all
fields to which the user has no access rights.

At the element level, the system requests desired data plus cryptographic checksum



information. When these are returned, it checks the classification level of every element of
every record retrieved against the user's level.

Suppose a group of physicists in Washington works on very sensitive projects, so the current user
should not be allowed to access the physicists' names in the database. This restriction presents a
problem with this query:

retrieve NAME where ((OCCUP=PHYSICIST)  (CITY=WASHDC))

Suppose, too, that the current user is prohibited from knowing anything about any people in
Moscow. Using a conventional DBMS, the query might access all records, and the DBMS would then
pass the results on to the user. However, as we have seen, the user might be able to infer things
about Moscow employees or Washington physicists working on secret projects without even
accessing those fields directly.

The commutative filter re-forms the original query in a trustable way so that sensitive information is
never extracted from the database. Our sample query would become

retrieve NAME where ((OCCUP=PHYSICIST)  (CITY=WASHDC))
from all records R where

      (NAME-SECRECY-LEVEL (R)  USER-SECRECY-LEVEL) 

      (OCCUP-SECRECY-LEVEL (R)  USER-SECRECY-LEVEL) 

      (CITY-SECRECY-LEVEL (R)  USER-SECRECY-LEVEL))

The filter works by restricting the query to the DBMS and then restricting the results before they are
returned to the user. In this instance, the filter would request NAME, NAME-SECRECY-LEVEL,
OCCUP, OCCUP-SECRECY-LEVEL, CITY, and CITY-SECRECY-LEVEL values and would then filter and
return to the user only those fields and items that are of a secrecy level acceptable for the user.
Although even this simple query becomes complicated because of the added terms, these terms are
all added by the front-end filter, invisible to the user.

An example of this query filtering in operation is shown in Figure 6-12. The advantage of the
commutative filter is that it allows query selection, some optimization, and some subquery handling
to be done by the DBMS. This delegation of duties keeps the size of the security filter small, reduces
redundancy between it and the DBMS, and improves the overall efficiency of the system.

Figure 6-12. Commutative Filters.



Distributed Databases

The distributed or federated database is a fourth design for a secure multilevel database. In this
case, a trusted front end controls access to two unmodified commercial DBMSs: one for all low-
sensitivity data and one for all high-sensitivity data.

The front end takes a user's query and formulates single-level queries to the databases as
appropriate. For a user cleared for high-sensitivity data, the front end submits queries to both the
high- and low-sensitivity databases. But if the user is not cleared for high-sensitivity data, the front
end submits a query to only the low-sensitivity database. If the result is obtained from either back-
end database alone, the front end passes the result back to the user. If the result comes from both
databases, the front end has to combine the results appropriately. For example, if the query is a
join query having some high-sensitivity terms and some low, the front end has to perform the
equivalent of a database join itself.

The distributed database design is not popular because the front end, which must be trusted, is
complex, potentially including most of the functionality of a full DBMS itself. In addition, the design
does not scale well to many degrees of sensitivity; each sensitivity level of data must be maintained
in its own separate database.

Window/View

Traditionally, one of the advantages of using a DBMS for multiple users of different interests (but
not necessarily different sensitivity levels) is the ability to create a different view for each user. That
is, each user is restricted to a picture of the data reflecting only what the user needs to see. For
example, the registrar may see only the class assignments and grades of each student at a
university, not needing to see extracurricular activities or medical records. The university health
clinic, on the other hand, needs medical records and drug-use information but not scores on
standardized academic tests.



The notion of a window or a view can also be an organizing principle for multilevel database access.
A window is a subset of a database, containing exactly the information that a user is entitled to
access. Denning [DEN87a] surveys the development of views for multilevel database security.

A view can represent a single user's subset database so that all of a user's queries access only that
database. This subset guarantees that the user does not access values outside the permitted ones,
because nonpermitted values are not even in the user's database. The view is specified as a set of
relations in the database, so the data in the view subset change as data change in the database.

For example, a travel agent might have access to part of an airline's flight information database.
Records for cargo flights would be excluded, as would the pilot's name and the serial number of the
plane for every flight. Suppose the database contained an attribute TYPE whose value was either
CARGO or PASS (for passenger). Other attributes might be flight number, origin, destination,
departure time, arrival time, capacity, pilot, and tail number.

Now suppose the airline created some passenger flights with lower fares that could be booked only
directly through the airline. The airline might assign their flight numbers a more sensitive rating to
make these flights unavailable to travel agents. The whole database, and the agent's view, might
have the logical structure shown in Table 6-18.

Table 6-18. Airline Database.

(a) Airline's View.

FLT# ORIG DEST DEP ARR CAP TYPE PILOT TAIL

362 JFK BWI 0830 0950 114 PASS Dosser 2463

397 JFK ORD 0830 1020 114 PASS Bottoms 3621

202 IAD LGW 1530 0710 183 PASS Jevins 2007

749 LGA ATL 0947 1120 0 CARGO Witt 3116

286 STA SFO 1020 1150 117 PASS Gross 4026

…                

…                

                 

(b) Travel Agent's View.

    FLT ORIG DEST DEP ARR CAP  

    362 JFK BWI 0830 0950 114  

    397 JFK ORD 0830 1020 114  

    202 IAD LGW 1530 0710 183  

    286 STA SFO 1020 1150 117  



(a) Airline's View.

FLT# ORIG DEST DEP ARR CAP TYPE PILOT TAIL

    …            

    …            

The travel agent's view of the database is expressed as

view AGENT-INFO
      FLTNO:=MASTER.FLTNO
      ORIG:=MASTER.ORIG
      DEST:=MASTER.DEST

      DEP:=MASTER.DEP

      ARR:=MASTER.ARR
      CAP:=MASTER.CAP
            where MASTER.TYPE='PASS'
      class AGENT
      auth retrieve

Because the access class of this view is AGENT, more sensitive flight numbers (flights booked only
through the airline) do not appear in this view. Alternatively, we could have eliminated the entire
records for those flights by restricting the record selection with a where clause. A view may involve
computation or complex selection criteria to specify subset data.

The data presented to a user is obtained by filtering of the contents of the original database.
Attributes, records, and elements are stripped away so that the user sees only acceptable items.
Any attribute (column) is withheld unless the user is authorized to access at least one element. Any
record (row) is withheld unless the user is authorized to access at least one element. Then, for all
elements that still remain, if the user is not authorized to access the element, it is replaced by
UNDEFINED. This last step does not compromise any data because the user knows the existence of
the attribute (there is at least one element that the user can access) and the user knows the
existence of the record (again, at least one accessible element exists in the record).

In addition to elements, a view includes relations on attributes. Furthermore, a user can create new
relations from new and existing attributes and elements. These new relations are accessible to other
users, subject to the standard access rights. A user can operate on the subset database defined in a
view only as allowed by the operations authorized in the view. As an example, a user might be
allowed to retrieve records specified in one view or to retrieve and update records as specified in
another view. For instance, the airline in our example may restrict travel agents to retrieving data.

The Sea Views project described in [DEN87a, LUN90a] is the basis for a system that integrates a
trusted operating system to form a trusted database manager. The layered implementation as
described is shown in Figure 6-13. The lowest layer, the reference monitor, performs file interaction,
enforcing the BellLa Padula access controls, and does user authentication. Part of its function is to
filter data passed to higher levels. The second level performs basic indexing and computation
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functions of the database. The third level translates views into the base relations of the database.
These three layers make up the trusted computing base (TCB) of the system. The remaining layers
implement normal DBMS functions and the user interface.

Figure 6-13. Secure Database Decomposition.

This layered approach makes views both a logical division of a database and a functional one. The
approach is an important step toward the design and implementation of a trustable database
management system.

Practical Issues

The multilevel security problem for databases has been studied since the 1970s. Several promising
research results have been identified, as we have seen in this chapter. However, as with trusted
operating systems, the consumer demand has not been sufficient to support many products. Civilian
users have not liked the inflexibility of the military multilevel security model, and there have been
too few military users. Consequently, multilevel secure databases are primarily of research and
historical interest.

The general concepts of multilevel databases are important. We do need to be able to separate data
according to their degree of sensitivity. Similarly, we need ways of combining data of different
sensitivities into one database (or at least into one virtual database or federation of databases). And



these needs will only increase over time as larger databases contain more sensitive information,
especially for privacy concerns.

In the next section we study data mining, a technique of growing significance, but one for which we
need to be able to address degrees of sensitivity of the data.



6.8. Data Mining

Databases are great repositories of data. More data are being collected and saved (partly because
the cost per megabyte of storage has fallen from dollars a few years ago to fractions of cents
today). Networks and the Internet allow sharing of databases by people and in ways previously
unimagined. But to find needles of information in those vast fields of haystacks of data requires
intelligent analyzing and querying of the data. Indeed, a whole specialization, called data mining,
has emerged. In a largely automated way, data mining applications sort and search thorough data.

Data mining uses statistics, machine learning, mathematical models, pattern recognition, and other
techniques to discover patterns and relations on large datasets. (See, for example, [SEI04].) Data
mining tools use association (one event often goes with another), sequences (one event often leads
to another), classification (events exhibit patterns, for example coincidence), clustering (some items
have similar characteristics), and forecasting (past events foretell future ones). The distinction
between a database and a data mining application is becoming blurred; you can probably see how
you could implement these techniques in ordinary database queries. Generally, database queries
are manual, whereas data mining is more automatic. You could develop a database query to see
what other products are bought by people who buy digital cameras and you might notice a
preponderance of MP3 players in the result, but you would have to observe that relationship
yourself. Data mining tools would present the significant relationships, not just between cameras
and MP3 players, but also among bagels, airline tickets, and running shoes (if such a relationship
existed). Humans have to analyze these correlations and determine what is significant.

Data mining presents probable relationships, but these are not necessarily cause-and-effect
relationships. Suppose you analyzed data and found a correlation between sale of ice cream cones
and death by drowning. You would not conclude that selling ice cream cones causes drowning (nor
the converse). This distinction shows why humans must be involved in data mining to interpret the
output: Only humans can discern that more variables are involved (for example, time of year or
places where cones are sold).

Computer security gains from data mining. Data mining is widely used to analyze system data, for
example, audit logs, to identify patterns related to attacks. Finding the precursors to an attack can
help develop good prevention tools and techniques, and seeing the actions associated with an attack
can help pinpoint vulnerabilities to control and damage that may have occurred. (One of the early
works in this area is [LEE98], and entire conferences have been devoted to this important and
maturing topic.)

In this section, however, we want to examine security problems involving data mining. Our now-
familiar triad of confidentiality, integrity, and availability gives us clues to what these security issues
are. Confidentiality concerns start with privacy but also include proprietary and commercially
sensitive data and protecting the value of intellectual property: How do we control what is disclosed
or derived? For integrity the important issue is correctnessincorrect data are both useless and
potentially damaging, but we need to investigate how to gauge and ensure correctness. The
availability consideration relates to both performance and structure: Combining databases not
originally designed to be combined affects whether results can be obtained in a timely manner or
even at all.



Privacy and Sensitivity

Because the goal of data mining is summary results, not individual data items, you would not expect
a problem with sensitivity of individual data items. Unfortunately that is not true.

Individual privacy can suffer from the same kinds of inference and aggregation issues we studied for
databases. Because privacy, specifically protecting what a person considers private information, is
an important topic that relates to many areas of computer security, we study it in depth in Chapter
10.

Not only individual privacy is affected, however: Correlation by aggregation and inference can affect
companies, organizations, and governments, too. Take, for example, a problem involving Firestone
tires and the Ford Explorer vehicle. In May 2000, the U.S. National Highway Traffic Safety
Administration (NHTSA) found a high incidence of tire failure on Ford Explorers fitted with Firestone
tires. In certain conditions the Firestone tire tread separated; in certain conditions the Ford Explorer
tipped over, and when the tread separated, the Ford was more likely to tip over [PUB01].
Consumers had complained to both Ford and Firestone since shortly after the tire and vehicle
combination was placed on the market in 1990, but problems began to arise after a design change
in 1995. Both companies had some evidence of the problem, but the NHTSA review of combined
data better showed the correlation. Maintaining data on products' quality is a standard management
practice. But the sensitivity of data in these databases would preclude much sharing. Even if a
trustworthy neutral party could be found to mine the data, the owners would be reasonably
concerned about what might be revealed. A large number of failures of one product could show a
potential market weakness, or a series of small amounts of data could reveal test marketing
activities to outsiders.

As we describe in Chapter 10, data about an entity (a person, company, organization, government
body) may not be under that entity's control. Supermarkets collect product data from their
shoppers, either from single visits or, more usefully, across all purchases for a customer who uses a
"customer loyalty" card. In aggregate the data show marketing results useful to the manufacturers,
advertising agencies, health researchers, government food agencies, financial institutions,
researchers, and others. But these results were collected by the supermarket that can now do
anything with the results, including sell them to manufacturers' competitors, for example.

There has been little research done on, or consideration given to, the sensitivity of data obtained
from data mining. Clifton [CLI03, KAN04] has investigated the problem and proposed approaches
that would produce close but not exact aggregate results that would preclude revealing sensitive
information.

Data Correctness and Integrity

"Connecting the dots" is a phrase currently in vogue: It refers to drawing conclusions from
relationships between discrete bits of data. But before we can connect dots, we need to do two
other important things: collect and correct them. Data storage and computer technology is making
it possible to collect more dots than ever before. But if your name or address has ever appeared
incorrectly on a mailing list, you know that not all collected dots are accurate.

Correcting Mistakes in Data



Let's take the mailing list as an example. Your neighbor at 510 Thames Street brought a catalog for
kitchen supplies to you at 519 Thames Street with your name but address 510 instead of 519;
clearly someone made a mistake entering your address. You contact the kitchen supply place, and
they are pleased to change your address on their records, because it is in their interest to send
catalogs to people who are interested in them. But they bought your name and address along with
others from a mailing list, and they have no incentive to contact the list owner to correct your
master record. So additional catalogs continue to show up with your neighbor. You can see where
this story leadsmistaken addresses never die.

Data mining exacerbates this situation. Databases need unique keys to help with structure and
searches. But different databases may not have shared keys, so they use some data field as if it
were a key. In our example case, this shared data field might be the address, so now your
neighbor's address is associated with cooking (even if your neighbor needs a recipe to make tea).
Fortunately, this example is of little consequence.

Consider terrorists, however. A government's intelligence service collects data on suspicious
activities. But the names of suspicious persons are foreign, written in a different alphabet. When
transformed into the government's alphabet, the transformation is irregular: One agent writes
"Doe," another "Do," and another "Dho." Trying to use these names as common keys is difficult at
best. One approach is phonetic. You cluster terms that sound similar. In this case, however, you
might bring in "Jo," "Cho," "Toe," and "Tsiao," too, thereby implicating innocent people in the
terrorist search. (In fact, this has happened; see Sidebar 6-6.) Assuming a human analyst could
correctly separate all these and wanted to correct the Doe/Do/Doh databases, there are still two
problems. First, the analyst might not have access to the original databases held by other agencies.
Even if the analyst could get to the originals, the analyst would probably never learn where else
these original databases had already been copied.

One important goal of databases is to have a record in one place so that one correction serves all
uses. With data mining, a result is an aggregate from multiple databases. There is no natural way to
work backward from the result to the amalgamated databases to find and correct errors.

Using Comparable Data

Data semantics is another important consideration when mining for data. Consider two geographical
databases with data on family income. Except one database has income by dollar, and the other has
the data in thousands of dollars. Even if the field names are the same, combining the raw data
would result in badly distorted statistics. Consider another attribute rated high/medium/low in one
database and on a numerical scale of 1 to 5 in another. Should high/medium/low be treated as
1/3/5? Even if analysts use that transformation, computing with some 3-point and some 5-point
precision reduces the quality of the results. Or how can you meaningfully combine one database
that has a particular attribute with another that does not?



Sidebar 6-6: Close, But No Cigar

Database management systems are excellent at finding matches: all people named
Bfstplk or everyone whose age is under 125. They have limited capabilities to find
"almost" matches: people whose names begin Hgw or have any four of five attributes.
DBMSs have trouble finding names similar to d'Estaing or given a set of symptoms to
determine a disease. DBMS vendors add domain-specific comparison engines to define
"close," for pronunciation, orthography, features, or other pattern-matching operations.
Dealing in imprecision, these engines can produce some spectacular failures.

Airport security databases are in the news in the United States. The plight of Senator
Edward Kennedy and Representative John Lewis, both repeatedly caught for secondary
screening presumably because their names resemble those of terrorists, would be
worrying, except that their status in the government gave them clout to suggest the
situation be fixed. Many other sound-alikes are not so well placed. And people with
names like Michelle Green and David Nelson have no idea why their names trigger more
scrutiny.

Eliminating False Matches

As we described earlier, coincidence is not correlation or causation; because two things occur
together does not mean either causes the other. Data mining tries to highlight nonobvious
connections in data, but data mining applications often use fuzzy logic to find these connections.
These approaches will generate both false positives (false matches) and missed connections (false
negatives). We need to be sensitive to the inherent inaccuracy of data mining approaches and guard
against putting too much trust in the output of a data mining application just because "the computer
said so."

Correctness of results and correct interpretation of those results are major security issues for data
mining.

Availability of Data

Interoperability among distinct databases is a third security issue for data mining. As we just
described, databases must have compatible structure and semantics to make data mining possible.
Missing or incomparable data can make data mining results incorrect, so perhaps a better
alternative is not to produce a result. But no result is not the same as a result of no correlation. As
with single databases, data mining applications must deal with multiple sensitivities. Trying to
combine databases on an attribute with more sensitive values can lead to no data and hence no
matches.



6.9. Summary of Database Security

This chapter has addressed three aspects of security for database management systems:
confidentiality and integrity problems specific to database applications, the inference problem for
statistical databases, and problems of including users and data of different sensitivity levels in one
database.

Both confidentiality and integrity are important to users of databases. Confidentiality can be broken
by indirect disclosure of a negative result or of the bounds of a value. Integrity of the entire
database is a responsibility of the DBMS software; this problem is handled by most major
commercial systems through backups, redundancy, change logs, and two-step updates. Integrity of
an individual element of the database is the responsibility of the database administrator who defines
the access policy.

The inference problem in a statistical database arises from the mathematical relationships between
data elements and query results. We studied controls for preventing statistical inference, including
limited response suppression, perturbation of results, and query analysis. One very complex control
involves monitoring all data provided to a user in order to prevent inference from independent
queries.

Multilevel secure databases must provide both confidentiality and integrity. Separation can be
implemented physically, logically, or cryptographically. We explored five approaches for ensuring
confidentiality in multilevel secure databases: integrity lock, trusted front end, commutative filters,
distributed databases, and restricted views. Other solutions are likely to evolve as the problem is
studied further.

The emerging field of data mining shares some security problems with databases. Confidentiality,
especially personal privacy, is a challenge to maintain, and inference across multiple databases is a
further threat to confidentiality. Each database is usually owned and controlled by one party that is
responsible for data correctness. Conversely, data mining applications often deal with multiple
databases from different sources, which complicates ensuring the correctness or integrity of data
mining results. Using comparable data items as keys becomes an issue with amalgamated
databases being mined.

Many of the techniques discussed in this chapter are particular to database management systems.
But the analysis of the problems and the derivation of techniques are typical of how we analyze
security needs in any software application. In a sense, we must do a threat analysis, trying to
imagine ways in which the security of the application can be breached. Once we conjecture ways to
destroy integrity, confidentiality, or availability, we conjure up designs to help us build the security
into the application's design, rather than after the fact. In the next chapter, we examine the security
implications of another specialized form of application, networks.



6.10. Terms and Concepts

database, 319

database administrator, 319

database manager, 319
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record, 319
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linear system inference, 346
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6.11. Where the Field Is Headed

Database security has been receiving renewed interest, in part because of privacy concerns related
to information gathering to counter terrorism.

Privacy concerns (for more discussion of which see Chapter 10) will lead to more investigation of
ways to protect privacy while allowing the power of databases to track targeted individuals. Because
most targets become such only when their profile emerges from a database, many of these controls
will have to be procedural, to ensure that sensitive information is not misused, rather than
technical, to restrict access to potentially sensitive information. Controls are especially needed for
the field of data mining, the practice of pulling closely focused results from large and perhaps only
partially structured data. Agrawal and Srikant [AGR00] present an approach that could address both
needs.

A second trend in database technology that should be of interest is decentralization. Segmentation,
replication, and mirroring of databases are all methods that can improve performance, usability, and
reliability in databases. Yet in the decentralization, data are also subject to inadvertent and
nonmalicious integrity failures, as well as malicious ones. The well-studied topic of Byzantine
failures has been applied to cooperating processes [LAM82]. (The problem, simply stated, is how to
protect the correctness of a compound system against one or more compromised subsystems.) A
similar approach will need to be applied to distributed databases. Work in this area is already
underway at Xerox PARC [TER98] and other places.



6.12. To Learn More

Date [DAT81] addresses general topics of database management, and the second volume [DAT83]
covers recovery, integrity, concurrency, and security (secrecy). Fernandez et al. [FER81] also cover
basic security issues for databases. The state of the art is surveyed by Lunt and Fernandez [LUN90]
and Schaefer [SCH90a].

The inference problem dates back at least to [HOF70]. Denning and Schlörer [DEN83a] and Smith
[SMI88b] survey the problems and controls for inference in databases. Burns [BUR90] raises an
issue of the secrecy/integrity tradeoff. Lunt [LUN89] clarifies several issues regarding aggregation
and inference. Adam and Wortmann [ADA89] cover statistical databases, and Denning et al.
[DEN79b] describe tracker attacks. Access control is first proposed by Stonebraker and Wong
[STO74].

The best description of the multilevel security problem for databases is [AFS83], the "Wood's Hole"
report of the Air Force Studies Board of the National Academy of Sciences. Multilevel security issues
for databases have been explored by Denning [DEN85, DEN86, and DEN87a], Lunt [LUN90a], and
Graubert [GRA84b, GRA85].



6.13. Exercises

1. In an environment in which several users are sharing access to a single database,
how can indefinite postponement occur? Describe a scenario in which two users could
cause the indefinite postponement of each other. Describe a scenario in which a
single user could cause the indefinite postponement of all users.

2. Using the two-step commit presented in the beginning of this chapter, describe how
to avoid assigning one seat to two people, as in the airline example. That is, list
precisely which steps the database manager should follow in assigning passengers to
seats.

3. UNDO is a recovery operation for databases. It is a command that obtains
information from a transaction log and resets the elements of a database to their
values before a particular transaction is performed. Describe a situation in which an
UNDO command would be useful.

4. The UNDO operation described in the previous exercise must be repeatable. That is,
if x is the original value of a database and x' is an incorrectly modified version, we
want

UNDO(x') = x,

but also

UNDO(x) = x

and

UNDO(UNDO(x')) = x

Why must UNDO(x) = x?a.

Why must UNDO(UNDO(x')) = x?b.



a.

b.

5. Suppose a database manager were to allow nesting of one transaction inside
another. That is, after having updated part of one record, the DBMS would allow you
to select another record, update it, and then perform further updates on the first
record. What effect would nesting have on the integrity of a database? Suggest a
mechanism by which nesting could be allowed.

6. Can a database contain two identical records without a negative effect on the
integrity of the database? Why or why not?

7. Some operating systems perform buffered I/O. In this scheme, an output request is
accepted from a user and the user is informed of the normal I/O completion.
However, the actual physical write operation is performed later, at a time convenient
to the operating system. Discuss the effect of buffered I/O on integrity in a DBMS.

8. A database transaction implements the command "set STATUS to 'CURRENT' in all
records where BALANCE-OWED = 0."

Describe how that transaction would be performed with the two-step commit
described in this chapter.

a.

Suppose the relations from which that command was formed are (CUSTOMER-
ID,STATUS) and (CUSTOMER-ID,BALANCE-OWED). How would the transaction
be performed?

b.

Suppose the relations from which that command was formed are (CUSTOMER-
ID,STATUS), (CREDIT-ID,CUSTOMER-ID), (CREDIT-ID, BALANCE-OWED). How
would the transaction be performed?

c.

9. Show that if longitudinal parity is used as an error detection code, values in a
database can still be modified without detection. (Longitudinal parity is computed for
the nth bit of each byte; that is, one parity bit is computed and retained for all bits in
the 0th position, another parity bit for all bits in the 1st position, etc.)

10. Suppose query Q1 obtains the median ml of a set S1 of values. Suppose query Q2

obtains the median m2 of a subset S2 of S1. If m1 < m2, what can be inferred about
S1, S2, and the elements of S1 not in S2?

11. Disclosure of the sum of all financial aid for students in Smith dorm is not sensitive
because no individual student is associated with an amount. Similarly, a list of names
of students receiving financial aid is not sensitive because no amounts are specified.
However, the combination of these two lists reveals the amount for an individual
student if only one student in Smith dorm receives aid. What computation would a
database management system have to perform to determine that the list of names
might reveal sensitive data? What records would the database management system
have to maintain on what different users know in order to determine that the list of
names might reveal sensitive data?



12. One approach suggested to ensure privacy is the small result rejection, in which the
system rejects (returns no result from) any query, the result of which is derived from
a small number, for example, five, of records. Show how to obtain sensitive data by
using only queries derived from six records.

13. The response "sensitive value; response suppressed" is itself a disclosure. Suggest a
manner in which a database management system could suppress responses that
reveal sensitive information without disclosing that the responses to certain queries
are sensitive.

14. Cite a situation in which the sensitivity of an aggregate is greater than that of its
constituent values. Cite a situation in which the sensitivity of an aggregate is less
than that of its constituent values.

15. Explain the disadvantages of partitioning as a means of implementing multilevel
security for databases.

16. A database management system is implemented under an operating system trusted
to provide multilevel separation of users.

What security features of the operating system can be used to simplify the
design of the database management system?

a.

Suppose the operating system has rating r, where r is C2 or B1 or B3, and so
on. State and defend a policy for the degree of trust in the database
management system, based on the trust of the operating system.

b.

17. What is the purpose of encryption in a multilevel secure database management
system?



Chapter 7. Security in Networks

In this chapter

Networks vs. stand-alone applications and environments: differences and similarities

Threats against networked applications, including denial of service, web site defacements,
malicious mobile code, and protocol attacks

Controls against network attacks: physical security, policies and procedures, and a range
of technical controls

Firewalls: design, capabilities, limitations

Intrusion detection systems

Private e-mail: PGP and S/MIME

Networkstheir design, development, and usageare critical to our style of computing. We interact
with networks daily, when we perform banking transactions, make telephone calls, or ride trains and
planes. The utility companies use networks to track electricity or water usage and bill for it. When
we pay for groceries or gasoline, networks enable our credit or debit card transactions and billing.
Life without networks would be considerably less convenient, and many activities would be
impossible. Not surprisingly, then, computing networks are attackers' targets of choice. Because of
their actual and potential impact, network attacks attract the attention of journalists, managers,
auditors, and the general public. For example, when you read the daily newspapers, you are likely
to find a story about a network-based attack at least every month. The coverage itself evokes a
sense of evil, using terms such as hijacking, distributed denial of service, and our familiar friends
viruses, worms, and Trojan horses. Because any large-scale attack is likely to put thousands of
computing systems at risk, with potential losses well into the millions of dollars, network attacks
make good copy.

The media coverage is more than hype; network attacks are critical problems. Fortunately, your
bank, your utility company, and even your Internet service provider take network security very
seriously. Because they do, they are vigilant about applying the most current and most effective
controls to their systems. Of equal importance, these organizations continually assess their risks
and learn about the latest attack types and defense mechanisms so that they can maintain the
protection of their networks.



In this chapter we describe what makes a network similar to and different from an application
program or an operating system, which you have studied in earlier chapters. In investigating
networks, you will learn how the concepts of confidentiality, integrity, and availability apply in
networked settings. At the same time, you will see that the basic notions of identification and
authentication, access control, accountability, and assurance are the basis for network security, just
as they have been in other settings.

Networking is growing and changing perhaps even faster than other computing disciplines.
Consequently, this chapter is unlikely to present you with the most current technology, the latest
attack, or the newest defense mechanism; you can read about those in daily newspapers and at
web sites. But the novelty and change build on what we know today: the fundamental concepts,
threats, and controls for networks. By developing an understanding of the basics, you can absorb
the most current news quickly and easily. More importantly, your understanding can assist you in
building, protecting, and using networks.



7.1. Network Concepts

To study network threats and controls, we first must review some of the relevant networking terms
and concepts. This review does not attempt to provide the depth of a classic networking reference,
such as [COM04, STE02, GAL99, or TAN03]. In earlier chapters, our study of security focused on the
individual pieces of a computing system, such as a single application, an operating system, or a
database. Networks involve not only the pieces but alsoimportantlythe connections among them.

Networks are both fragile and strong. To see why, think about the power, cable television,
telephone, or water network that serves your home. If a falling tree branch breaks the power line to
your home, you are without electricity until that line is repaired; you are vulnerable to what is called
a single point of failure, because one cut to the network destroys electrical functionality for your
entire home. Similarly, there may be one telephone trunk line or water main that serves your home
and those nearby; a failure can leave your building, street, or neighborhood without service. But we
have ways to keep the entire network from failing. If we trace back through the network from your
home to the source of what flows through it, we are likely to see that several main distribution lines
support an entire city or campus. That is, there is more than one way to get from the source to your
neighborhood, enabling engineers to redirect the flow along alternative paths. Redundancy makes it
uncommon for an entire city to lose service from a single failure. For this reason, we say that such a
network has resilience or fault tolerance.

Complex routing algorithms reroute the flow not just around failures but also around overloaded
segments. The routing is usually done automatically; the control program is often supplemented by
human supervision or intervention. Many types of networks have very high reliability by design, not
by accident. But because there often is less redundancy near a network's endpoints than elsewhere,
we say that the network has great strength in the middle and fragility at the perimeter.

From the user's perspective, a network is sometimes designed so that it looks like two endpoints
with a single connection in the middle. For example, the municipal water supply may appear to be
little more than a reservoir (the source), the pipes (the transmission or communication medium),
and your water faucet (the destination). Although this simplistic view is functionally correct, it
ignores the complex design, implementation, and management of the "pipes." In a similar way, we
describe computer networks in this chapter in ways that focus on the security concepts but present
the networks themselves in a simplistic way, to highlight the role of security and prevent the
complexity of the networks from distracting our attention. Please keep in mind that our network
descriptions are often abstractions of a more complex actuality.

The Network

Figure 7-1 shows a network in its simplest form, as two devices connected across some medium by
hardware and software that enable the communication. In some cases, one device is a computer
(sometimes called a "server") and the other is a simpler device (sometimes called a "client")
enabled only with some means of input (such as a keyboard) and some means of output (such as a
screen). For example, a powerful computer can be a server, but a handheld personal digital
assistant (PDA) or a cell phone might be a network client. In fact, because more consumer devices



are becoming network-enabled, network security issues will continue to grow.

Figure 7-1. Simple View of Network.

Although this model defines a basic network, the actual situation is frequently significantly more
complicated.

The simpler client device, employed for user-to-computer communication, is often a PC or
workstation, so the client has considerable storage and processing capability.

A network can be configured as just a single client connected to a single server. But more
typically, many clients interact with many servers.

The network's services are often provided by many computers. As a single user's
communication travels back and forth from client to server, it may merely pass through some
computers but pause at others for significant interactions.

The end user is usually unaware of many of the communications and computations taking
place in the network on the user's behalf.

Most real-world situations are more like Figure 7-2. In this second view, the user at one of the
lettered client machines may send a message to System 3, unaware that communication is actually
passing through the active Systems 1 and 2. In fact, the user may be unaware that System 3
sometimes passes work to System 4.

A single computing system in a network is often called a node, and its processor (computer) is
called a host. A connection between two hosts is known as a link. Network computing consists of
users, communications media, visible hosts, and systems not generally visible to end users. In
Figure 7-2, Systems 1 through 4 are nodes. In our figure the users are at the lettered client
machines, perhaps interacting with Server F.

Users communicate with networked systems by interacting directly with terminals, workstations,
and computers. A workstation is an end-user computing device, usually designed for a single user
at a time. Workstations often have powerful processors and good-sized memory and storage so that
they can do sophisticated data manipulation (such as converting coded data to a graphical format
and displaying the picture). A system is a collection of processors, perhaps including a mixture of
workstations and independent processors, typically with more processing power and more storage
capacity than a workstation.



Environment of Use

The biggest difference between a network and a stand-alone device is the environment in which
each operates. Although some networks are located in protected spaces (for example, a local area
network in a single laboratory or office), at least some portion of most networks is exposed, often to
total strangers. The relatively simple network in Figure 7-2 is a good example. Systems 2, 3, and 4
are remote from System 1, and they may be under different ownership or control.

Figure 7-2. More Complex but More Typical View of Networks.

[View full size image]

Networks can be described by several typical characteristics:

Anonymity. You may have seen the cartoon image that shows a dog typing at a workstation,
and saying to another dog, "On the Internet, nobody knows you're a dog." A network removes
most of the clues, such as appearance, voice, or context, by which we recognize
acquaintances.

Automation. In some networks, one or both endpoints, as well as all intermediate points,
involved in a given communication may be machines with only minimal human supervision.

Distance. Many networks connect endpoints that are physically far apart. Although not all
network connections involve distance, the speed of communication is fast enough that humans
usually cannot tell whether a remote site is near or far.

Opaqueness. Because the dimension of distance is hidden, users cannot tell whether a remote
host is in the room next door or in a different country. In the same way, users cannot
distinguish whether they are connected to a node in an office, school, home, or warehouse, or
whether the node's computing system is large or small, modest or powerful. In fact, users
cannot tell if the current communication involves the same host with which they communicated
the last time.



Routing diversity. To maintain or improve reliability and performance, routings between two
endpoints are usually dynamic. That is, the same interaction may follow one path through the
network the first time and a very different path the second time. In fact, a query may take a
different path from the response that follows a few seconds later.

Shape and Size

The way a network is configured, in terms of nodes and connections, is called the network
topology. You can think of the topology as the shape of the network. The topology ranges from
very simple, such as two hosts connected by one path, to very complex, such as the Internet. These
two extremes highlight three dimensions of networks that have particular bearing on a network's
security.

Boundary. The boundary distinguishes an element of the network from an element outside it.
For a simple network, we can easily list all the components and draw an imaginary line around
it to separate what is in the network from what is outside. But listing all the hosts connected to
the Internet is practically impossible. For example, a line surrounding the Internet would have
to surround the entire globe today, and Internet connections also pass through satellites in
orbit around the earth. Moreover, as people and organizations choose to be connected or not,
the number and type of hosts change almost second by second, with the number generally
increasing over time.

Ownership. It is often difficult to know who owns each host in a network. The network
administrator's organization may own the network infrastructure, including the cable and
network devices. However, certain hosts may be connected to a network for convenience, not
necessarily implying ownership.

Control. Finally, if ownership is uncertain, control must be, too. To see how, pick an arbitrary
host. Is it part of network A? If yes, is it under the control of network A's administrator? Does
that administrator establish access control policies for the network, or determine when its
software must be upgraded and to what version? Indeed, does the administrator even know
what version of software that host runs?

The truth is that, for many networks, it is difficult and at times impossible to tell which hosts are
part of that network, who owns the hosts, and who controls them. Even for networks significantly
smaller than the Internet, major corporate, university, or government networks are hard to
understand and are not even well known by their system administrators. Although it seems contrary
to common sense, many corporations today have no accurate picture of how their networks are
configured. To understand why, consider a network of automated teller machines for a multinational
bank. The bank may have agreements with other banks to enable customers to withdraw money
anywhere in the world. The multinational bank may understand its own bank's network, but it may
have no conception of how the connecting banks' networks are configured; no "big picture" shows
how the combined networks look or operate. Similarly, a given host may be part of more than one
network. In such a situation, suppose a host has two network interfaces. Whose rules does that host
(and that host's administrator) have to follow?

Depicting, configuring, and administering networks are not easy tasks.



Mode of Communication

A computer network implements communication between two endpoints. Data are communicated
either in digital format (in which data items are expressed as discrete binary values) or analog (in
which data items are expressed as points in a continuous range, using a medium like sound or
electrical voltage). Computers typically store and process digital data, but some telephone and
similar cable communications are in analog form (because telephones were originally designed to
transmit voice). When the transmission medium expects to transfer analog data, the digital signals
must be converted to analog for transmission and then back to digital for computation at the
receiving end. Some mostly analog networks may even have some digital segments, so the analog
signals are digitized more than once. These conversions are performed by a modem (the term is
derived from modulator-demodulator), which converts a digital data stream to tones and back
again.

Media

Communication is enabled by several kinds of media. We can choose among several types, such as
along copper wires or optical fiber or through the air, as with cellular phones. Let us look at each
type in turn.

Cable

Because much of our computer communication has historically been done over telephone lines, the
most common network communication medium today is wire. Inside our homes and offices, we use
a pair of insulated copper wires, called a twisted pair or unshielded twisted pair (UTP). Copper
has good transmission properties at a relatively low cost. The bandwidth of UTP is limited to under
10 megabits per second (Mbps),[1] so engineers cannot transmit a large number of communications
simultaneously on a single line. Moreover, the signal strength degrades as it travels through the
copper wire, and it cannot travel long distances without a boost. Thus, for many networks, line
lengths are limited to approximately 300 feet. Single twisted pair service is most often used locally,
within a building or up to a local communications drop (that is, the point where the home or office
service is connected to the larger network, such as the commercial telephone system). Although
regular copper wire can transmit signals, the twisting reduces crossover (interference and signal
transfer) between adjacent wires.

[1] The figures in this section were accurate when they were written, but technology is constantly changing. However, as speeds

or capacities change, the basic ranking of two technologies tends to remain the same.

Another choice for network communication is coaxial (coax) cable, the kind used for cable
television. Coax cable is constructed with a single wire surrounded by an insulation jacket. The
jacket is itself surrounded by a braided or spiral-wound wire. The inner wire carries the signal, and
the outer braid acts as a ground. The most widely used computer communication coax cable is
Ethernet, carrying up to 100 Mbps over distances of up to 1500 feet.

Coax cable also suffers from degradation of signal quality over distance. Repeaters (for digital
signals) or amplifiers (for analog signals) can be spaced periodically along the cable to pick up the
signal, amplify it, remove spurious signals called "noise," and retransmit it.



Optical Fiber

A newer form of cable is made of very thin strands of glass. Instead of carrying electrical energy,
these fibers carry pulses of light. The bandwidth of optical fiber is up to 1000 Mbps, and the signal
degrades less over fiber than over wire or coax; the fiber is good for a run of approximately 2.5
miles. Optical fiber involves less interference, less crossover between adjacent media, lower cost,
and less weight than copper. Thus, optical fiber is generally a much better transmission medium
than copper. Consequently, as copper ages, it is being replaced by optical fiber in most
communication systems. In particular, most long distance communication lines are now fiber.

Wireless

Radio signals can also carry communications. Similar to pagers, wireless microphones, garage door
openers, and portable telephones, wireless radio can be used in networks, following a protocol
developed for short-range telecommunications, designated the 802.11 family of standards. The
wireless medium is used for short distances; it is especially useful for networks in which the nodes
are physically close together, such as in an office building or at home. Many 802.11 devices are
becoming available for home and office wireless networks.

Microwave

Microwave is a form of radio transmission especially well suited for outdoor communication.
Microwave has a channel capacity similar to coax cable; that is, it carries similar amounts of data.
Its principal advantage is that the signal is strong from point of transmission to point of receipt.
Therefore, microwave signals do not need to be regenerated with repeaters, as do signals on cable.

However, a microwave signal travels in a straight line, presenting a problem because the earth
curves. Microwave signals travel by line of sight: The transmitter and receiver must be in a straight
line with one another, with no intervening obstacles, such as mountains. As shown in Figure 7-3, a
straight microwave signal transmitted between towers of reasonable height can travel a distance of
only about 30 miles because of the earth's curvature. Thus, microwave signals are "bounced" from
receiver to receiver, spaced less than 30 miles apart, to cover a longer distance.

Infrared

Infrared communication carries signals for short distances (up to 9 miles) and also requires a clear
line of sight. Because it does not require cabling, it is convenient for portable objects, such as laptop
computers and connections to peripherals. An infrared signal is difficult to intercept because it is a
point-to-point signal. However, it is subject to "in the middle" attacks in which the interceptor
functions like a repeater, receiving the signal, extracting any desired data, and retransmitting to the
original destination the original signal or a modified version. Because of line-of-sight requirements
and limited distance, infrared is typically used in a protected space, such as an office, in which in-
the-middle attacks would be difficult to conceal.

Figure 7-3. Microwave Transmission.



Satellite

Many communications, such as international telephone calls, must travel around the earth. In the
early days of telephone technology, telephone companies ran huge cables along the ocean's bottom,
enabling calls to travel from one continent to another. Today, we have other alternatives. The
communication companies place satellites in orbits that are synchronized with the rotation of the
earth (called geosynchronous orbits), so the satellite appears to hover in a fixed position 22,300
miles above the earth. Although the satellite can be expensive to launch, once in space it is
essentially maintenance free. Furthermore, the quality of a satellite communication link is often
better than an earthbound wire cable.

Satellites act as naïve transponders: Whatever they receive they broadcast out again. Thus,
satellites are really sophisticated receivers, in that their sole function is to receive and repeat
signals. From the user's point of view, the signal essentially "bounces" off the satellite and back to
earth. For example, a signal from North America travels 22,300 miles into the sky and the same
distance back to a point in Europe. The process of bouncing a signal off a satellite is shown in Figure
7-4.

We can project a signal to a satellite with reasonable accuracy, but the satellite is not expected to
have the same level of accuracy when it sends the signal back to earth. To reduce complexity and
eliminate beam focusing, satellites typically spread their transmissions over a very wide area. A
rather narrow angle of dispersion from the satellite's transmitter produces a fairly broad pattern
(called the footprint) on the surface of the earth because of the 22,300-mile distance from the
satellite to earth. Thus, a typical satellite transmission can be received over a path several hundred
miles wide; some cover the width of the entire continental United States in a single transmission.
For some applications, such as satellite television, a broad footprint is desirable. But for secure
communications, the smaller the footprint, the less the risk of interception.



Figure 7-4. Satellite Communication.

Protocols

When we use a network, the communication media are usually transparent to us. That is, most of us
do not know whether our communication is carried over copper wire, optical fiber, satellite,
microwave, or some combination. In fact, the communication medium may change from one
transmission to the next. This ambiguity is actually a positive feature of a network: its
independence. That is, the communication is separated from the actual medium of communication.
Independence is possible because we have defined protocols that allow a user to view the network
at a high, abstract level of communication (viewing it in terms of user and data); the details of how
the communication is accomplished are hidden within software and hardware at both ends. The
software and hardware enable us to implement a network according to a protocol stack, a layered
architecture for communications. Each layer in the stack is much like a language for communicating
information relevant at that layer.

Two popular protocol stacks are used frequently for implementing networks: the Open Systems
Interconnection (OSI) and the Transmission Control Protocol and Internet Protocol (TCP/IP)
architecture. We examine each one in turn.

ISO OSI Reference Model

The International Standards Organization (ISO) Open Systems Interconnection model consists of
layers by which a network communication occurs. The OSI reference model contains the seven



layers listed in Table 7-1.

Table 7-1. OSI Protocol Layer Levels.

Layer Name Activity

7 Application User-level data

6 Presentation Standardized data appearance, blocking, text
compression

5 Session Sessions or logical connections between parts of an
application; message sequencing, recovery

4 Transport Flow control, end-to-end error detection and
correction, priority service

3 Network Routing, message blocking into uniformly sized
packets

2 Data Link Reliable data delivery over physical medium;
transmission error recovery, separating packets into
uniformly sized frames

1 Physical Actual communication across physical medium;
individual bit transmission

How communication works across the different layers is depicted in Figure 7-5. We can think of the
layers as creating an assembly line, in which each layer adds its own service to the communication.
In concert, the layers represent the different activities that must be performed for actual
transmission of a message. Separately, each layer serves a purpose; equivalent layers perform
similar functions for the sender and receiver. For example, the sender's layer four affixes a header
to a message, designating the sender, the receiver, and relevant sequence information. On the
receiving end, layer four reads the header to verify that the message is for the intended recipient,
and then removes this header.

Figure 7-5. ISO OSI Network Model.

[View full size image]



Each layer passes data in three directions: above with a layer communicating more abstractly,
parallel or across to the same layer in another host, and below with a layer handling less abstract
(that is, more fundamental) data items. The communications above and below are actual
interactions, while the parallel one is a virtual communication path. Parallel layers are called
"peers."

Let us look at a simple example of protocol transmission. Suppose that, to send email to a friend,
you run an application such as Eudora, Outlook, or Unix mail. You type a message, using the
application's editor, and the application formats the message into two parts: a header that shows to
whom the message is intended (as well as other things, such as sender and time sent), and a body
that contains the text of your message. The application reformats your message into a standard
format so that even if you and your friend use different mail applications, you can still exchange e-
mail. This transformation is shown in Figure 7-6.

Figure 7-6. Transformation.

[View full size image]



However, the message is not transmitted exactly as you typed it, as raw text. Raw text is a very
inefficient coding, because an alphabet uses relatively few of the 255 possible characters for an 8-bit
byte. Instead, the presentation layer is likely to change the raw text into something else. It may do
compression, character conversions, and even some cryptography. An e-mail message is a one-way
transfer (from sender to receiver), so it is not initiating a session in which data fly back and forth
between the two endpoints. Because the notion of a communication session is not directly relevant
in this scenario, we ignore the session layer for now. Occasionally, spurious signals intrude in a
communication channel, as when static rustles a telephone line or interference intrudes on a radio
or television signal. To address this, the transport layer adds error detection and correction coding
to filter out these spurious signals.

Addressing

Suppose your message is addressed to yourfriend@somewhere.net. This notation means that
"somewhere.net" is the name of a destination host (or more accurately, a destination network). At
the network layer, a hardware device called a router actually sends the message from your
network to a router on the network somewhere.net. The network layer adds two headers to show
your computer's address as the source and somewhere.net's address as the destination. Logically,
your message is prepared to move from your machine to your router to your friend's router to your
friend's computer. (In fact, between the two routers there may be many other routers in a path
through the networks from you to your friend.) Together, the network layer structured with
destination address, source address, and data is called a packet. The basic network layer protocol
transformation is shown in Figure 7-7.



Figure 7-7. Network Layer Transformation.
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The message must travel from your computer to your router. Every computer connected to a
network has a network interface card (NIC) with a unique physical address, called a MAC
address (for Media Access Control). At the data link level, two more headers are added, one for
your computer's NIC address (the source MAC) and one for your router's NIC address. A data link
layer structure with destination MAC, source MAC, and data is called a frame. Every NIC selects
from the network those frames with its own address as a destination address. As shown in Figure 7-
8, the data link layer adds the structure necessary for data to get from your computer to another
computer (a router is just a dedicated computer) on your network.

Figure 7-8. Data Link Layer Transformation.

[View full size image]

Finally, the message is ready to be sent out as a string of bits. We noted earlier that analog
transmissions communicate bits by using voltage or tone changes, and digital transmissions
communicate them as discrete pulses. The physics and electronics of how bits are actually sent are
handled at the physical layer.

On the receiving (destination) side, this process is exercised in reverse: Analog or digital signals are
converted to digital data. The NIC card receives frames destined for it. The recipient network layer
checks that the packet is really addressed to it. Packets may not arrive in the order in which they
were sent (because of network delays or differences in paths through the network), so the session
layer may have to reorder packets. The presentation layer removes compression and sets the



appearance appropriate for the destination computer. Finally, the application layer formats and
delivers the data as an e-mail message to your friend.

The layering and coordinating are a lot of work, and each protocol layer does its own part. But the
work is worth the effort because the different layers are what enable Outlook running on an IBM PC
on an Ethernet network in Washington D.C. to communicate with a user running Eudora on an Apple
computer via a dial-up connection in Prague. Moreover, the separation by layers helps the network
staff troubleshoot when something goes awry.

Layering

Each layer reformats the transmissions and exchanges information with its peer layer. Let us
summarize what each layer contributes. Figure 7-9 shows a typical message that has been acted
upon by the seven layers in preparation for transmission. Layer 6 breaks the original message data
into blocks. At the session layer (5), a session header is added to show the sender, the receiver,
and some sequencing information. Layer 4 adds information concerning the logical connection
between the sender and receiver. The network layer (3) adds routing information and divides the
message into units called packets, the standard units of communication in a network. The data link
layer (2) adds both a header and a trailer to ensure correct sequencing of the message blocks and
to detect and correct transmission errors. The individual bits of the message and the control
information are transmitted on the physical medium by level 1. All additions to the message are
checked and removed by the corresponding layer on the receiving side.

Figure 7-9. Message Prepared for Transmission.
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The OSI model is one of several transmission models. Different network designers implement
network activities in slightly different combinations, although there is always a clear delineation of
responsibility. Some designers argue that the OSI model is overly complexit has too many levelsand
so other models are typically shorter.



TCP/IP

The OSI model is a conceptual one; it shows the different activities required for sending a
communication. However, full implementation of a seven-layer transmission carries too much
overhead for megabit-per-second communications; the OSI protocol slows things down to
unacceptable levels. For this reason, TCP/IP (Transmission Control Protocol/Internet Protocol) is the
protocol stack used for most wide area network communications. TCP/IP was invented for what
became the Internet. TCP/IP is defined by protocols, not layers, but we can think of it in terms of
four layers: application, host-to-host (end-to-end) transport, Internet, and physical. In particular,
an application program deals only with abstract data items meaningful to the application user.
Although TCP/IP is often used as a single acronym, it really denotes two different protocols: TCP
implements a connected communications session on top of the more basic IP transport protocol. In
fact, a third protocol, UDP (user datagram protocol) is also an essential part of the suite.

The transport layer receives variable-length messages from the application layer; the transport
layer breaks them down into units of manageable size, transferred in packets. The Internet layer
transmits application layer packets in datagrams, passing them to different physical connections
based on the data's destination (provided in an address accompanying the data). The physical layer
consists of device drivers to perform the actual bit-by-bit data communication. Table 7-2 shows how
each layer contributes to the complete interaction.

Table 7-2. Internet Communication Layers.

Layer Action Responsibilities

Application Prepare messages from user interactions User interaction,
addressing

Transport Convert messages to packets Sequencing, reliability (integrity),
error correction

Internet Convert packets to datagrams Flow control, routing

Physical Transmit datagrams as individual
bits

Data communication

The TCP protocol must ensure the correct sequencing of packets as well as the integrity (correct
transmission) of data within packets. The protocol will put out-of-sequence packets in proper order,
call for retransmitting a missing packet, and obtain a fresh copy of a damaged packet. In this way,
TCP hands a stream of correct data in proper order to the invoking application. But this service
comes at a price. Recording and checking sequence numbers, verifying integrity checks, and
requesting and waiting for retransmissions of faulty or missing packets take time and induce
overhead. Most applications expect a flawless stream of bits, but some applications can tolerate a
less accurate stream of data if speed or efficiency is critical.

A TCP packet is a data structure that includes a sequence number, an acknowledgment number for
connecting the packets of a communication session, flags, and source and destination port
numbers. A port is a number designating a particular application running on a computer. For
example, if Jose and Walter begin a communication, they establish a unique channel number by
which their computers can route their respective packets to each of them. The channel number is



called a port. Each service uses a well-known port, such as port 80 for HTTP (web pages), 23 for
Telnet (remote terminal connection), 25 for SMTP (e-mail), or 161 for SNMP (network
management). More precisely, each of these services has a waiting process that monitors the
specified port number and tries to perform its service on any data passed to the port.

The UDP protocol does not provide the error-checking and correcting features of TCP, but it is a
much smaller, faster protocol. For instance, a UDP datagram adds 8 bytes for control information,
whereas the more complex TCP packet adds at least 24 bytes.

Most applications do not interact directly in TCP or UDP themselves. Instead, they operate on data
structured by an application-level protocol applied on top of TCP or UDP. Some of the more common
Internet protocols are shown in Table 7-3.

Table 7-3. Internet Services.

Layer TCP Protocols UDP Protocols

Application
Protocol

SMTP (Simple Mail Transfer Protocol):
used for communicating e-mail
HTTP (Hypertext Transfer Protocol):
used for communicating web pages
FTP (File Transfer Protocol): used for
receiving or sending files
Telnet (Terminal Emulation Protocol):
used for performing remote
operations as if directly connected to
the host from a terminal and others

SNMP (Simple Network
Monitoring Protocol): used for
controlling network devices
Syslog (System Audit Log):
used for entering records in
the system log
Time: used for
communicating and
synchronizing time among
network devices and others

Transport TCP UDP

Internet IP IP

Physical Data communication Data communication

Whatever the model, a layer will typically subdivide data it receives from a higher layer and then
add header and/or trailer information to the data before passing it to a lower layer. Each layer
encapsulates the higher layer, so that higher layer headers and trailers are seen simply as part of
the data to be transmitted.

Addressing Scheme

For communication to occur, the bits have to be directed to somewhere. All networks use an
addressing scheme so that data can be directed to the expected recipient. Because it is the most
common, we use the Internet addressing scheme known as IP addresses in our examples, since it is
the addressing handled by the IP protocol.

All network models implement an addressing scheme. An address is a unique identifier for a single
point in the network. For obvious reasons, addressing in shared, wide area networks follows
established rules, while addressing in local area networks is less constrained.



Starting at the local area network, each node has a unique address, defined in hardware on the
network connector device (such as a network interface card) or its software driver. A network
administrator may choose network addresses to be easy to work with, such as 1001, 1002, 1003 for
nodes on one LAN, and 2001, 2002, and so forth on another.

A host on a TCP/IP wide area network has a 32-bit address,[2] called an IP address. An IP address
is expressed as four 8-bit groups in decimal notation, separated by periods, such as 100.24.48.6.
People prefer speaking in words or pseudowords, so network addresses are also known by domain
names, such as ATT.COM or CAM.AC.UK. Addressing tables convert domain names to IP addresses.

[2] The world's networks are running out of unique addresses. This 32-bit standard address is being increased to 128 bits in a

scheme called IPv6. But because 32-bit addresses will remain for some time, we focus on the older version.

A domain name is parsed from right to left. The rightmost portion, such as .COM, .EDU, .NET, .ORG,
or .GOV, or one of the two-letter country specific codes, such as .UK, .FR, .JP, or .DE, is called a
top-level domain. A small set of organizations called the Internet Registrars controls these top-
level domains; the registrars also control the registration of second-level domains, such as ATT in
ATT.COM. Essentially, the registrars publish addresses of hosts that maintain tables of the second-
level domains contained in the top-level domain. A host connected to the Internet queries one of
these tables to find the numeric IP address of ATT in the .COM domain. AT&T, the company owning
the ATT Internet site, must maintain its own host to resolve addresses within its own domain, such
as MAIL.ATT.COM. You may find that the first time you try to resolve a fully qualified domain name
to its IP address, your system performs a lookup starting at the top; for subsequent attempts, your
system maintains a cache of domain name records that lets it resolve addresses locally. Finally, a
domain name is translated into a 32-bit, four-octet address, and that address is included in the IP
packets destined for that address. (We return to name resolution later in this chapter because it can
be used in network attacks.)

Routing Concepts

A host needs to know how to direct a packet from its own IP address. Each host knows to what
other hosts it is directly connected, and hosts communicate their connections to their neighbors. For
the example network of Figure 7-2, System 1 would inform System 2 that it was one hop away from
Clients A, B, and C. In turn, System 2 would inform its other neighbor, System 3, that it (System 2)
was two hops away from Clients A, B, and C. From System 3, System 2 would learn that System 3
was one hop away from Clients D and E, Server F, and System 4, which System 2 would then pass
to System 1 as being a distance of two hops. The routing protocols are actually more complex than
this description, but the concepts are the same; hosts advertise to their neighbors to describe to
which hosts (addresses) they can route traffic and at what cost (number of hops). Each host routes
traffic to a neighbor that offers a path at the cheapest cost.

Types of Networks

A network is a collection of communicating hosts. But to understand the network and how it works,
we have several key questions to ask, such as How many hosts? Communicating by what means?
To answer these questions, we are helped by an understanding of several types of subclasses of
networks, since they commonly combine into larger networks. The subclasses are general notions,
not definitive distinctions. But since the terms are commonly used, we present several common
network subclasses that have significant security properties.



Local Area Networks

As the name implies, a local area network (or LAN) covers a small distance, typically within a
single building. Usually a LAN connects several small computers, such as personal computers, as
well as printers and perhaps some dedicated file storage devices. Figure 7-10 shows the
arrangement of a typical LAN. The primary advantage of a LAN is the opportunity for its users to
share data and programs and to share access to devices such as printers.

Figure 7-10. Typical LAN.

Most LANs have the following characteristics.

Small. Typically, fewer than 100 users share a single LAN, within a distance less than 3
kilometers, or 2 miles. More commonly, a LAN is much smaller, stretching less than 1
kilometer inside a single building.

Locally controlled. The equipment is owned and managed by a single organization. The users
all are affiliated with a single organization, such as a company, a department, a workgroup, or
a physical proximity.

Physically protected. The LAN is on the premises of a company or other organization, so
malicious outsiders usually cannot readily get to the LAN equipment.

Limited scope. Many LANs support a single group, department, floor, activity, or other
geographical or administrative unit. As a result, each has a narrowly scoped set of functions it
performs.



Wide Area Networks

A wide area network, or WAN, differs from a local area network in terms of both size or distance
(as its name implies, it covers a wider geographic area than does a LAN) and control or ownership
(it is more likely not to be owned or controlled by a single body). Still, there tends to be some
unifying principle to a WAN. The hosts on a WAN may all belong to a company with many offices,
perhaps even in different cities or countries, or they may be a cluster of independent organizations
within a few miles of each other, who share the cost of networking hardware. These examples also
show how WANs themselves differ. Some are under close control and maintain a high degree of
logical and physical isolation (typically, these are WANs controlled by one organization), while
others are only marriages of convenience. Typical characteristics of WANs are these.

Single control. Typically, a single organization is responsible for and controls a wide area
network. Even if a network is shared by several unrelated subscribers, one organization usually
determines who may join the network.

Covers a significant distance. A WAN generally serves a distance greater than a LAN can cover,
typically from a few miles to the entire globe.

Physically exposed (often, but not always). Most wide area networks use publicly available
communications media, which are relatively exposed. However, the fact that many subscribers
share those media helps protect the privacy of any one subscriber.

Other network types include campus area networks (CANs) and metropolitan area networks (MANs).
A CAN is usually under the control of a single organization, such as a university or company, and
covers the adjacent buildings of one site of that organization. A MAN often covers a city, with the
communication offering of one provider in that area. CANs, MANs, and WANs cover a wide range of
possibilities; they loosely characterize everything between LANs and Internets, the two extremes of
the networking spectrum.

Internetworks (Internets)

Networks of networks, or internetwork networks, are sometimes called internets. An internet is a
connection of two or more separate networks, in that they are separately managed and controlled.
The most significant internetwork is known as the Internet, because it connects so many of the
other public networks.

The Internet is, in fact, a federation of networks, loosely controlled by the Internet Society (ISOC)
and the Internet Corporation for Assigned Names and Numbers (ICANN). These organizations
enforce certain minimal rules of fair play to ensure that all users are treated equitably, and they
support standard protocols so that users can communicate. These are the characteristics of the
Internet.

Federation. Almost no general statements can be made about Internet users or even network
service providers. Some may access the network through businesses or government
organizations whose memberships are very restrictive, while others may obtain access simply
by paying a small monthly fee.

Enormous. No one really knows how large the Internet is. Our knowledge is incomplete in part



because new hosts are added daily, in part because one Internet access point can support
hundreds or thousands of machines connected through that single access point, and in part
because nobody has laid the basis for an accurate census. The Internet connects many
thousands of networks. In 2006, according to isc.org, there were almost 400 million Internet
hosts and well over 700 million users.[3] Based on past history, we can expect the size of the
Internet to double each year. Sidebar 7-1 describes the large number of outside accesses just
to one pubic news web site.

[3] Counting the number of hosts or users is obviously difficult. But from a security perspective, even if these numbers are

too high and if only a small percentage of hosts and users are malicious, the number of possible attacks is still large

enough to be worth attention.

Sidebar 7-1: Traffic at a Typical Web Site

Many sites record network traffic data; some publicize the data and many more use
the data internally to monitor performance, manage resources, or demonstrate
usage. For example, the site worldpress.org provides readers with an international
view of important news: what stories are reported and how stories are covered
throughout the world. During summer 2006, they averaged monthly 2 million visits
by 800,000 visitors with over 3 million pages viewed.

The median length of a visit was approximately two minutes, which would
correspond to a user who read several headlines and perhaps one news story. Over
60 percent of visits came from the United States, with approximately 20 percent
from other countries and 20 percent of undeterminable origin. Full statistics are at
http://www.worldpress.org/traffic.cfm.

But these statistics count all traffic, not just the security-relevant activity. The
security company ISS (Internet Security Systems) tracks the status of actual
Internet security risk. Its four-point scale goes from 1 (normal risk from random
malicious attacks experienced by all site administrators) to 4 (actual or potential
catastrophic security event requiring immediate defense). During a period from
April to June 2002, ISS reported 56 days at level 1, 22 at level 2, and 7 at level 3
[ISS02].

Heterogeneous. Probably at least one of every kind of commercially available hardware and
software is connected to the Internet. Unix is popular as the operating system at the Internet
connection point, although most other multiuser operating systems could support access.

Physically and logically exposed. Since there is no global access control, practically any
attacker can access the Internet and, because of its complex connectivity, reach practically any
resource on the net.

http://www.worldpress.org/traffic.cfm


7.2. Threats in Networks

Up to now, we have reviewed network concepts with very little discussion of their security
implications. But our earlier discussion of threats and vulnerabilities, as well as outside articles and
your own experiences, probably have you thinking about the many possible attacks against
networks. This section describes some of the threats you have already hypothesized and perhaps
presents you with some new ones. But the general thrust is the same: threats aimed to compromise
confidentiality, integrity, or availability, applied against data, software, and hardware by nature,
accidents, nonmalicious humans, and malicious attackers.

What Makes a Network Vulnerable?

An isolated home user or a stand-alone office with a few employees is an unlikely target for many
attacks. But add a network to the mix and the risk rises sharply. Consider how a network differs
from a stand-alone environment:

Anonymity. An attacker can mount an attack from thousands of miles away and never come
into direct contact with the system, its administrators, or users. The potential attacker is thus
safe behind an electronic shield. The attack can be passed through many other hosts in an
effort to disguise the attack's origin. And computer-to-computer authentication is not the same
for computers as it is for humans; as illustrated by Sidebar 7-2, secure distributed
authentication requires thought and attention to detail.

Many points of attackboth targets and origins. A simple computing system is a self-contained
unit. Access controls on one machine preserve the confidentiality of data on that processor.
However, when a file is stored in a network host remote from the user, the data or the file
itself may pass through many hosts to get to the user. One host's administrator may enforce
rigorous security policies, but that administrator has no control over other hosts in the
network. Thus, the user must depend on the access control mechanisms in each of these
systems. An attack can come from any host to any host, so that a large network offers many
points of vulnerability.

Sharing. Because networks enable resource and workload sharing, more users have the
potential to access networked systems than on single computers. Perhaps worse, access is
afforded to more systems, so that access controls for single systems may be inadequate in
networks.

Complexity of system. In Chapter 4 we saw that an operating system is a complicated piece of
software. Reliable security is difficult, if not impossible, on a large operating system, especially
one not designed specifically for security. A network combines two or more possibly dissimilar
operating systems. Therefore, a network operating/control system is likely to be more complex
than an operating system for a single computing system. Furthermore, the ordinary desktop
computer today has greater computing power than did many office computers in the last two
decades. The attacker can use this power to advantage by causing the victim's computer to
perform part of the attack's computation. And because an average computer is so powerful,



most users do not know what their computers are really doing at any moment: What processes
are active in the background while you are playing Invaders from Mars? This complexity
diminishes confidence in the network's security.

Sidebar 7-2: Distributed Authentication in Windows NT and

2000

Authentication must be handled carefully and correctly in a network because a
network involves authentication not just of people but of processes, servers, and
services only loosely associated with a person. And for a network, the
authentication process and database are often distributed for performance and
reliability. Consider Microsoft's authentication scheme for its Windows operating
systems. In Windows NT 4.0, the authentication database is distributed among
several domain controllers. Each domain controller is designated as a primary or
backup controller. All changes to the authentication database must be made to the
(single) primary domain controller; then the changes are replicated from the
primary to the backup domain controllers.

In Windows 2000, the concept of primary and backup domain controllers has been
abandoned. Instead, the network views the controllers as equal trees in a forest, in
which any domain controller can update the authentication database. This scheme
reflects Microsoft's notion that the system is "multimaster": Only one controller can
be master at a given time, but any controller can be a master. Once changes are
made to a master, they are automatically replicated to the remaining domain
controllers in the forest.

This approach is more flexible and robust than the primary-secondary approach
because it allows any controller to take chargeespecially useful if one or more
controllers have failed or are out of service for some reason. But the multimaster
approach introduces a new problem. Because any domain controller can initiate
changes to the authentication database, any hacker able to dominate a domain
controller can alter the authentication database. And, what's worse, the changes
are then replicated throughout the remaining forest. Theoretically, the hacker could
access anything in the forest that relies on Windows 2000 for authentication.

When we think of attackers, we usually think of threats from outside the system.
But in fact the multimaster approach can tempt people inside the system, too. A
domain administrator in any domain in the forest can access domain controllers
within that domain. Thanks to multimaster, the domain administrator can also
modify the authentication database to access anything else in the forest.

For this reason, system administrators must consider how they define domains and
their separation in a network. Otherwise, we can conjure up scary but possible
scenarios. For instance, suppose one domain administrator is a bad apple. She
works out a way to modify the authentication database to make herself an
administrator for the entire forest. Then she can access any data in the forest, turn
on services for some users, and turn off services for other users.



Unknown perimeter. A network's expandability also implies uncertainty about the network
boundary. One host may be a node on two different networks, so resources on one network
are accessible to the users of the other network as well. Although wide accessibility is an
advantage, this unknown or uncontrolled group of possibly malicious users is a security
disadvantage. A similar problem occurs when new hosts can be added to the network. Every
network node must be able to react to the possible presence of new, untrustable hosts. Figure
7-11 points out the problems in defining the boundaries of a network. Notice, for example, that
a user on a host in network D may be unaware of the potential connections from users of
networks A and B. And the host in the middle of networks A and B in fact belongs to A, B, C,
and E. If there are different security rules for these networks, to what rules is that host
subject?

Figure 7-11. Unclear Network Boundaries.

Unknown path. Figure 7-12 illustrates that there may be many paths from one host to another.
Suppose that a user on host A1 wants to send a message to a user on host B3. That message
might be routed through hosts C or D before arriving at host B3. Host C may provide
acceptable security, but not D. Network users seldom have control over the routing of their



messages.

Figure 7-12. Uncertain Message Routing in a Network.

Thus, a network differs significantly from a stand-alone, local environment. Network characteristics
significantly increase the security risk.

Who Attacks Networks?

Who are the attackers? We cannot list their names, just as we cannot know who are all the criminals
in our city, country, or the world. Even if we knew who they were, we do not know if we could stop
their behavior. (See Sidebar 7-3 for a first, tenuous link between psychological traits and hacking.)
To have some idea of who the attackers might be, we return to concepts introduced in Chapter 1,
where we described the three necessary components of an attack: method, opportunity, and
motive.

In the next sections we explore method: tools and techniques the attackers use. Here we consider
first the motives of attackers. Focusing on motive may give us some idea of who might attack a
networked host or user. Four important motives are challenge or power, fame, money, and
ideology.

Challenge

Why do people do dangerous or daunting things, like climb mountains or swim the English Channel
or engage in extreme sports? Because of the challenge. The situation is no different for someone
skilled in writing or using programs. The single most significant motivation for a network attacker is



the intellectual challenge. He or she is intrigued with knowing the answers to Can I defeat this
network? What would happen if I tried this approach or that technique?

Some attackers enjoy the intellectual stimulation of defeating the supposedly undefeatable. For
example, Robert Morris, who perpetrated the Internet worm in 1988 (described in Chapter 3),
attacked supposedly as an experiment to see if he could exploit a particular vulnerability. Other
attackers, such as the Cult of the Dead Cow, seek to demonstrate weaknesses in security defenses
so that others will pay attention to strengthening security. Still other attackers are unnamed,
unknown individuals working persistently just to see how far they can go in performing unwelcome
activities.

However, as you will soon see, only a few attackers find previously unknown flaws. The vast
majority of attackers repeat well-known and even well-documented attacks, sometimes only to see
if they work against different hosts. In these cases, intellectual stimulation is certainly not the
driving force, when the attacker is merely pressing [run] to activate an attack discovered, designed,
and implemented by someone else.

Sidebar 7-3: An Attacker's Psychological Profile?

Temple Grandin, a professor of animal science at Colorado State University and a
sufferer from a mental disorder called Asperger syndrome (AS), thinks that Kevin
Mitnick and several other widely described hackers show classic symptoms of Asperger
syndrome. Although quick to point out that no research has established a link between
AS and hacking, Grandin notes similar behavior traits among Mitnick, herself, and other
AS sufferers. An article in USA Today (29 March 2001) lists the following AS traits:

Poor social skills, often associated with being loners during childhood; the classic
"computer nerd"

Fidgeting, restlessness, inability to make eye contact, lack of response to cues in
social interaction, such as facial expressions or body language

Exceptional ability to remember long strings of numbers

Ability to focus on a technical problem intensely and for a long time, although
easily distracted on other problems and unable to manage several tasks at once

Deeply honest and law abiding

Donn Parker [PAR98] has studied hacking and computer crime for over 20 years. He
states "hackers are characterized by an immature, excessively idealistic attitude . . .
They delight in presenting themselves to the media as idealistic do-gooders, champions
of the underdog."

Consider the following excerpt from an interview [SHA00] with "Mixter," the German
programmer who admitted he was the author of the denial-of-service attacks called
Tribal Flood Network (TFN) and its sequel TFN2K:



Q: Why did you write the software?

A: I first heard about Trin00 [another denial of service attack] in July '99
and I considered it as interesting from a technical perspective, but also
potentially powerful in a negative way. I knew some facts of how Trin00
worked, and since I didn't manage to get Trin00 sources or binaries at
that time, I wrote my own server-client network that was capable of
performing denial of service.

Q: Were you involved . . . in any of the recent high-profile attacks?

A: No. The fact that I authored these tools does in no way mean that I
condone their active use. I must admit I was quite shocked to hear about
the latest attacks. It seems that the attackers are pretty clueless people
who misuse powerful resources and tools for generally harmful and
senseless activities just "because they can."

Notice that from some information about denial-of-service attacks, he wrote his own
server-client network and then a denial-of-service attack. But he was "quite shocked" to
hear they were used for harm.

More research is needed before we will be able to define the profile of a hacker. And
even more work will be needed to extend that profile to the profile of a (malicious)
attacker. Not all hackers become attackers; some hackers become extremely dedicated
and conscientious system administrators, developers, or security experts. But some
psychologists see in AS the rudiments of a hacker's profile.

Fame

The challenge of accomplishment is enough for some attackers. But other attackers seek recognition
for their activities. That is, part of the challenge is doing the deed; another part is taking credit for
it. In many cases, we do not know who the attackers really are, but they leave behind a "calling
card" with a name or moniker: Mafiaboy, Kevin Mitnick, Fluffy Bunny, and members of the Chaos
Computer Club, for example. The actors often retain some anonymity by using pseudonyms, but
they achieve fame nevertheless. They may not be able to brag too openly, but they enjoy the
personal thrill of seeing their attacks written up in the news media.

Money and Espionage

As in other settings, financial reward motivates attackers, too. Some attackers perform industrial
espionage, seeking information on a company's products, clients, or long-range plans. We know
industrial espionage has a role when we read about laptops and sensitive papers having been lifted
from hotel rooms when other more valuable items were left behind. Some countries are notorious
for using espionage to aid their state-run industries.

Sometimes industrial espionage is responsible for seemingly strange corporate behavior. For



example, in July 2002, newspapers reported that a Yale University security audit had revealed that
admissions officers from rival Princeton University broke into Yale's online admissions notification
system. The Princeton snoops admitted looking at the confidential decisions about eleven students
who had applied to both schools but who had not yet been told of their decisions by Yale. In another
case, a startup company was about to activate its first application on the web. Two days before the
application's unveiling, the head offices were burglarized. The only item stolen was the one
computer containing the application's network design. Corporate officials had to make a difficult
choice: Go online knowing that a competitor might then take advantage of knowing the internal
architecture or delay the product's rollout until the network design was changed. They chose the
latter. Similarly, the chief of security for a major manufacturing company has reported privately to
us of evidence that one of the company's competitors had stolen information. But he could take no
action because he could not determine which of three competitors was the actual culprit.

Industrial espionage is illegal, but it occurs, in part because of the high potential gain. Its existence
and consequences can be embarrassing for the target companies. Thus, many incidents go
unreported, and there are few reliable statistics on how much industrial espionage and "dirty tricks"
go on. Yearly since 1997, the Computer Security Institute and the U.S. Federal Bureau of
Investigation have surveyed security professionals from companies, government agencies,
universities, and organizations, asking them to report perceptions of computer incidents. About 500
responses are received for each survey. Theft of intellectual property amounted to a total loss of
$31 million, with an average loss per incident of $350 thousand, making this the category of third-
highest loss. That amount was more than double the amount reported in the 2004 survey. (These
survey results are anecdotal, so it is hard to draw many conclusions. For full details on the survey
see [CSI05].) Industrial espionage, leading to loss of intellectual property, is clearly a problem.

Organized Crime

With the growth in commercial value of the Internet, participation by organized crime has also
increased. In October 2004, police arrested members of a 28-person gang of Internet criminals,
called the Shadowcrew, who operated out of six foreign countries and eight states in the United
States. Six leaders of that group pled guilty to charges, closing an illicit business that trafficked in at
least 1.5 million stolen credit and bank card numbers and resulted in losses in excess of $4 million.
In July 2003, Alexey Ivanov was convicted as the supervisor of a wide-ranging, organized criminal
enterprise that engaged in sophisticated manipulation of computer data, financial information, and
credit card numbers. Ivanov and group were responsible for an aggregate loss of approximately $25
million. And in January 2006, Jeanson James Ancheta pled guilty to having infected 400,000
computers with malicious code and renting their use to others to use to launch attacks on others. In
June 2005, the FBI and law enforcement from 10 other countries conducted over 90 searches
worldwide as part of "Operation Site Down," designed to disrupt and dismantle many of the leading
criminal organizations that illegally distribute and trade in copyrighted software, movies, music, and
games on the Internet [DOJ06]. Brazilian police arrested 85 people in 2005 for Internet fraud.

Although money is common to these crimes, the more interesting fact is that they often involve
collaborators from several countries. These more sophisticated attacks require more than one
person working out of a bedroom, and so organization and individual responsibilities follow. With
potential revenue in the millions of dollars and operations involving hundreds of thousands of credit
card numbers and other pieces of identity, existing organized crime units are sure to take notice. As
Williams [WIL01] says, "[T]here is growing evidence that organized crime groups are exploiting the
new opportunities offered by the Internet."



Ideology

In the last few years, we are starting to find cases in which attacks are perpetrated to advance
ideological ends. For example, many security analysts believe that the Code Red worm of 2001 was
launched by a group motivated by the tension in U.S.China relations. Denning [DEN99a] has
distinguished between two types of related behaviors, hactivism and cyberterrorism. Hactivism
involves "operations that use hacking techniques against a target's [network] with the intent of
disrupting normal operations but not causing serious damage." In some cases, the hacking is seen
as giving voice to a constituency that might otherwise not be heard by the company or government
organization. For example, Denning describes activities such as virtual sit-ins, in which an interest
group floods an organization's web site with traffic to demonstrate support of a particular position.
Cyberterrorism is more dangerous than hactivism: "politically motivated hacking operations
intended to cause grave harm such as loss of life or severe economic damage."

Security and terrorism experts are seeing increasing use of the Internet as an attack vector, as a
communications medium among attackers, and as a point of attack. Cullison [CUL04] presents a
very interesting insight (which we overview in Sidebar 1-6, p. 24) into of the use of technology by al
Qaeda.

Sidebar 7-4: To Catch a Thief

The U.S. FBI launched a program in 1999 to identify and arrest malicious hackers. Led
by William Swallow, the FBI set up a classic sting operation in which it tracked hackers.
Swallow chose an online identity and began visiting hackers' web sites and chat rooms.
At first the team merely monitored what the hackers posted. To join the hacker
underground community, Swallow had to share knowledge with other hackers. He and
his team decided what attack techniques they could post without compromising the
security of any sites; they reposted details of attacks that they picked up from other
sites or combined known methods to produce shortcuts.

But, to be accepted into "the club," Swallow had to demonstrate that he personally had
hacker skillsthat he was not just repeating what others had done. This situation required
that Swallow pursue real exploits. With permission, he conducted more than a dozen
defacements of government web sites to establish his reputation. Sharing information
with the hackers gave Swallow credibility. He became "one of them."

During the eighteen-month sting operation, Swallow and his team gathered critical
evidence on several people, including "Mafiaboy," the 17-year-old hacker who pled
guilty to 58 charges related to a series of denial-of-service attacks in February 2000
against companies such as Amazon.com, eBay, and Yahoo.

Proving the adage that "on the Internet, nobody knows you're a dog," Swallow, in his
40s, was able to befriend attackers in their teens.

Reconnaissance



Now that we have listed many motives for attacking, we turn to how attackers perpetrate their
attacks. Attackers do not ordinarily sit down at a terminal and launch an attack. A clever attacker
investigates and plans before acting. Just as you might invest time in learning about a jewelry store
before entering to steal from it, a network attacker learns a lot about a potential target before
beginning the attack. We study the precursors to an attack so that if we can recognize characteristic
behavior, we may be able to block the attack before it is launched.

Because most vulnerable networks are connected to the Internet, the attacker begins preparation
by finding out as much as possible about the target. An example of information gathering is given in
[HOB97]. (Not all information gathered is accurate, however; see Sidebar 7-4 for a look at
reconnaissance combined with deception.)

Port Scan

An easy way to gather network information is to use a port scan, a program that, for a particular IP
address, reports which ports respond to messages and which of several known vulnerabilities seem
to be present. Farmer and Venema [FAR93] are among the first to describe the technique.

A port scan is much like a routine physical examination from a doctor, particularly the initial
questions used to determine a medical history. The questions and answers by themselves may not
seem significant, but they point to areas that suggest further investigation.

Port scanning tells an attacker three things: which standard ports or services are running and
responding on the target system, what operating system is installed on the target system, and what
applications and versions of applications are present. This information is readily available for the
asking from a networked system; it can be obtained quietly, anonymously, without identification or
authentication, drawing little or no attention to the scan.

Port scanning tools are readily available, and not just to the underground community. The nmap
scanner by Fyodor at www.insecure.org/nmap is a useful tool that anyone can download. Given an
address, nmap will report all open ports, the service they support, and the owner (user ID) of the
daemon providing the service. (The owner is significant because it implies what privileges would
descend upon someone who compromised that service.) Another readily available scanner is netcat,
written by Hobbit, at www.l0pht.com/users/l0pht. (That URL is "letter ell," "digit zero," p-h-t.)
Commercial products are a little more costly, but not prohibitive. Well-known commercial scanners
are Nessus (Nessus Corp. [AND03]), CyberCop Scanner (Network Associates), Secure Scanner
(Cisco), and Internet Scanner (Internet Security Systems).

Social Engineering

The port scan gives an external picture of a networkwhere are the doors and windows, of what are
they constructed, to what kinds of rooms do they open? The attacker also wants to know what is
inside the building. What better way to find out than to ask?

Suppose, while sitting at your workstation, you receive a phone call. "Hello, this is John Davis from
IT support. We need to test some connections on the internal network. Could you please run the
command ipconfig/all on your workstation and read to me the addresses it displays?" The request
sounds innocuous. But unless you know John Davis and his job responsibilities well, the caller could
be an attacker gathering information on the inside architecture.



Social engineering involves using social skills and personal interaction to get someone to reveal
security-relevant information and perhaps even to do something that permits an attack. The point of
social engineering is to persuade the victim to be helpful. The attacker often impersonates someone
inside the organization who is in a bind: "My laptop has just been stolen and I need to change the
password I had stored on it," or "I have to get out a very important report quickly and I can't get
access to the following thing." This attack works especially well if the attacker impersonates
someone in a high position, such as the division vice president or the head of IT security. (Their
names can sometimes be found on a public web site, in a network registration with the Internet
registry, or in publicity and articles.) The attack is often directed at someone low enough to be
intimidated or impressed by the high-level person. A direct phone call and expressions of great
urgency can override any natural instinct to check out the story.

Because the victim has helped the attacker (and the attacker has profusely thanked the victim), the
victim will think nothing is wrong and not report the incident. Thus, the damage may not be known
for some time.

An attacker has little to lose in trying a social engineering attack. At worst it will raise awareness of
a possible target. But if the social engineering is directed against someone who is not skeptical,
especially someone not involved in security management, it may well succeed. We as humans like
to help others when asked politely.

Intelligence

From a port scan the attacker knows what is open. From social engineering, the attacker knows
certain internal details. But a more detailed floor plan would be nice. Intelligence is the general
term for collecting information. In security it often refers to gathering discrete bits of information
from various sources and then putting them together like the pieces of a puzzle.

One commonly used intelligence technique is called "dumpster diving." It involves looking through
items that have been discarded in rubbish bins or recycling boxes. It is amazing what we throw
away without thinking about it. Mixed with the remains from lunch might be network diagrams,
printouts of security device configurations, system designs and source code, telephone and
employee lists, and more. Even outdated printouts may be useful. Seldom will the configuration of a
security device change completely. More often only one rule is added or deleted or modified, so an
attacker has a high probability of a successful attack based on the old information.

Gathering intelligence may also involve eavesdropping. Trained spies may follow employees to lunch
and listen in from nearby tables as coworkers discuss security matters. Or spies may befriend key
personnel in order to co-opt, coerce, or trick them into passing on useful information.

Most intelligence techniques require little training and minimal investment of time. If an attacker
has targeted a particular organization, spending a little time to collect background information yields
a big payoff.

Operating System and Application Fingerprinting

The port scan supplies the attacker with very specific information. For instance, an attacker can use
a port scan to find out that port 80 is open and supports HTTP, the protocol for transmitting web
pages. But the attacker is likely to have many related questions, such as which commercial server



application is running, what version, and what the underlying operating system and version are.
Once armed with this additional information, the attacker can consult a list of specific software's
known vulnerabilities to determine which particular weaknesses to try to exploit.

How can the attacker answer these questions? The network protocols are standard and vendor
independent. Still, each vendor's code is implemented independently, so there may be minor
variations in interpretation and behavior. The variations do not make the software noncompliant
with the standard, but they are different enough to make each version distinctive. For example,
each version may have different sequence numbers, TCP flags, and new options. To see why,
consider that sender and receiver must coordinate with sequence numbers to implement the
connection of a TCP session. Some implementations respond with a given sequence number, others
respond with the number one greater, and others respond with an unrelated number. Likewise,
certain flags in one version are undefined or incompatible with others. How a system responds to a
prompt (for instance, by acknowledging it, requesting retransmission, or ignoring it) can also reveal
the system and version. Finally, new features offer a strong clue: A new version will implement a
new feature but an old version will reject the request. All these peculiarities, sometimes called the
operating system or application fingerprint, can mark the manufacturer and version.

For example, in addition to performing its port scan, a scanner such as nmap will respond with a
guess at the target operating system. For more information about how this is done, see the paper at
www.insecure.org/nmap/nmap-fingerprinting-article.html.

Sometimes the application identifies itself. Usually a client-server interaction is handled completely
within the application according to protocol rules: "Please send me this page; OK but run this
support code; thanks, I just did." But the application cannot respond to a message that does not
follow the expected form. For instance, the attacker might use a Telnet application to send
meaningless messages to another application. Ports such as 80 (HTTP), 25 (SMTP), 110 (POP), and
21 (FTP) may respond with something like

Server: Netscape-Commerce/1.12
Your browser sent a non-HTTP compliant message.

or

Microsoft ESMTP MAIL Service, Version: 5.0.2195.3779

This reply tells the attacker which application and version are running.

Bulletin Boards and Chats

The Internet is probably the greatest tool for sharing knowledge since the invention of the printing
press. It is probably also the most dangerous tool for sharing knowledge.

Numerous underground bulletin boards and chat rooms support exchange of information. Attackers
can post their latest exploits and techniques, read what others have done, and search for additional
information on systems, applications, or sites. Remember that, as with everything on the Internet,
anyone can post anything, so there is no guarantee that the information is reliable or accurate. And
you never know who is reading from the Internet. (See Sidebar 7-4 on law enforcement officials'



"going underground" to catch malicious hackers.)

Availability of Documentation

The vendors themselves sometimes distribute information that is useful to an attacker. For example,
Microsoft produces a resource kit by which application vendors can investigate a Microsoft product in
order to develop compatible, complementary applications. This toolkit also gives attackers tools to
use in investigating a product that can subsequently be the target of an attack.

Reconnaissance: Concluding Remarks

A good thief, that is, a successful one, spends time understanding the context of the target. To
prepare for perpetrating a bank theft, the thief might monitor the bank, seeing how many guards
there are, when they take breaks, when cash shipments arrive, and so forth.

Sidebar 7-5: A Network Dating Service?

Searching for open wireless networks within range is called war driving. To find open
networks you need only a computer equipped with a wireless network receiver. Similar
to bird sightings, four World Wide War Driving events were held (see
http://www.worldwidewardrive.org/), two in 2002, and one each in 2003 and 2004. The
goal was to identify as many different open wireless access points as possible in a one-
week time: 9,374 were found the first time, growing to 228,537 the last. The counts are
not comparable because as word spread more people became involved in searching
sites. For each of the four events, approximately two-thirds of the sites found did not
support encrypted communication. Also approximately 30 percent of access points in
each event used the default SSID (identifier by which the access point is accessed).
Typically (in 20022004), the default SSID was something like "wireless," "default," or
"linksys" (a brand name). A wireless base station with default SSID and no encryption is
the equivalent of a box saying "here I am, please use my wireless network."

While helping a friend set up his home network in the United States, I had a wireless-
enabled laptop with me. When we scanned to find his (secured) access point, we found
five others near enough to get a good signal; three were running unsecured, and two of
those three had SSIDs obvious enough to guess easily to which neighbors they
belonged.

Just because it is available does not mean it is safe. A rogue access point is another
means to intercept sensitive information. All you have to do is broadcast an open access
point in a coffee shop or near a major office building, allow people to connect, and then
use a network sniffer to surreptitiously copy traffic. Most commercial sites employ
encryption (such as SSL) when obtaining sensitive information, so a user's credit card or
personal identification should not be exposed. But many other things, such as
passwords or e-mail messages, are open for the taking.

http://www.worldwidewardrive.org/


Remember that time is usually on the side of the attacker. In the same way that a bank might
notice someone loitering around the entrance, a computing site might notice exceptional numbers of
probes in a short time. But the clever thief or attacker will collect a little information, go dormant for
a while, and resurface to collect more. So many people walk past banks and peer in the windows, or
scan and probe web hosts that individual peeks over time are hard to correlate.

The best defense against reconnaissance is silence. Give out as little information about your site as
possible, whether by humans or machines.

Threats in Transit: Eavesdropping and Wiretapping

By now, you can see that an attacker can gather a significant amount of information about a victim
before beginning the actual attack. Once the planning is done, the attacker is ready to proceed. In
this section we turn to the kinds of attacks that can occur. Recall from Chapter 1 that an attacker
has many ways by which to harm in a computing environment: loss of confidentiality, integrity, or
availability to data, hardware or software, processes, or other assets. Because a network involves
data in transit, we look first at the harm that can occur between a sender and a receiver. Sidebar 7-
5 describes the ease of interception.

The easiest way to attack is simply to listen in. An attacker can pick off the content of a
communication passing in the clear. The term eavesdrop implies overhearing without expending
any extra effort. For example, we might say that an attacker (or a system administrator) is
eavesdropping by monitoring all traffic passing through a node. The administrator might have a
legitimate purpose, such as watching for inappropriate use of resources (for instance, visiting non-
work-related web sites from a company network) or communication with inappropriate parties (for
instance, passing files to an enemy from a military computer).

A more hostile term is wiretap, which means intercepting communications through some effort.
Passive wiretapping is just "listening," much like eavesdropping. But active wiretapping means
injecting something into the communication. For example, Marvin could replace Manny's
communications with his own or create communications purported to be from Manny. Originally
derived from listening in on telegraph and telephone communications, the term wiretapping usually
conjures up a physical act by which a device extracts information as it flows over a wire. But in fact
no actual contact is necessary. A wiretap can be done covertly so that neither the sender nor the
receiver of a communication knows that the contents have been intercepted.

Wiretapping works differently depending on the communication medium used. Let us look more
carefully at each possible choice.

Cable

At the most local level, all signals in an Ethernet or other LAN are available on the cable for anyone
to intercept. Each LAN connector (such as a computer board) has a unique address; each board and
its drivers are programmed to label all packets from its host with its unique address (as a sender's
"return address") and to take from the net only those packets addressed to its host.

But removing only those packets addressed to a given host is mostly a matter of politeness; there is
little to stop a program from examining each packet as it goes by. A device called a packet sniffer
can retrieve all packets on the LAN. Alternatively, one of the interface cards can be reprogrammed



to have the supposedly unique address of another existing card on the LAN so that two different
cards will both fetch packets for one address. (To avoid detection, the rogue card will have to put
back on the net copies of the packets it has intercepted.) Fortunately (for now), LANs are usually
used only in environments that are fairly friendly, so these kinds of attacks occur infrequently.

Clever attackers can take advantage of a wire's properties and read packets without any physical
manipulation. Ordinary wire (and many other electronic components) emit radiation. By a process
called inductance an intruder can tap a wire and read radiated signals without making physical
contact with the cable. A cable's signals travel only short distances, and they can be blocked by
other conductive materials. The equipment needed to pick up signals is inexpensive and easy to
obtain, so inductance threats are a serious concern for cable-based networks. For the attack to
work, the intruder must be fairly close to the cable; this form of attack is thus limited to situations
with reasonable physical access.

If the attacker is not close enough to take advantage of inductance, then more hostile measures
may be warranted. The easiest form of intercepting a cable is by direct cut. If a cable is severed, all
service on it stops. As part of the repair, an attacker can easily splice in a secondary cable that then
receives a copy of all signals along the primary cable. There are ways to be a little less obvious but
accomplish the same goal. For example, the attacker might carefully expose some of the outer
conductor, connect to it, then carefully expose some of the inner conductor and connect to it. Both
of these operations alter the resistance, called the impedance, of the cable. In the first case, the
repair itself alters the impedance, and the impedance change can be explained (or concealed) as
part of the repair. In the second case, a little social engineering can explain the change. ("Hello, this
is Matt, a technician with Bignetworks. We are changing some equipment on our end, and so you
might notice a change in impedance.")

Signals on a network are multiplexed, meaning that more than one signal is transmitted at a given
time. For example, two analog (sound) signals can be combined, like two tones in a musical chord,
and two digital signals can be combined by interleaving, like playing cards being shuffled. A LAN
carries distinct packets, but data on a WAN may be heavily multiplexed as it leaves its sending host.
Thus, a wiretapper on a WAN needs to be able not only to intercept the desired communication but
also to extract it from the others with which it is multiplexed. While this can be done, the effort
involved means it will be used sparingly.

Microwave

Microwave signals are not carried along a wire; they are broadcast through the air, making them
more accessible to outsiders. Typically, a transmitter's signal is focused on its corresponding
receiver. The signal path is fairly wide, to be sure of hitting the receiver, as shown in Figure 7-13.
From a security standpoint, the wide swath is an invitation to mischief. Not only can someone
intercept a microwave transmission by interfering with the line of sight between sender and
receiver, someone can also pick up an entire transmission from an antenna located close to but
slightly off the direct focus point.

Figure 7-13. Path of Microwave Signals.

[View full size image]



A microwave signal is usually not shielded or isolated to prevent interception. Microwave is,
therefore, a very insecure medium. However, because of the large volume of traffic carried by
microwave links, it is unlikelybut not impossiblethat someone will be able to separate an individual
transmission from all the others interleaved with it. A privately owned microwave link, carrying only
communications for one organization, is not so well protected by volume.

Satellite Communication

Satellite communication has a similar problem of being dispersed over an area greater than the
intended point of reception. Different satellites have different characteristics, but some signals can
be intercepted in an area several hundred miles wide and a thousand miles long. Therefore, the
potential for interception is even greater than with microwave signals. However, because satellite
communications are generally heavily multiplexed, the risk is small that any one communication will
be intercepted.

Optical Fiber

Optical fiber offers two significant security advantages over other transmission media. First, the
entire optical network must be tuned carefully each time a new connection is made. Therefore, no
one can tap an optical system without detection. Clipping just one fiber in a bundle will destroy the
balance in the network.

Second, optical fiber carries light energy, not electricity. Light does not emanate a magnetic field as
electricity does. Therefore, an inductive tap is impossible on an optical fiber cable.

Just using fiber, however, does not guarantee security, any more than does using encryption. The
repeaters, splices, and taps along a cable are places at which data may be available more easily
than in the fiber cable itself. The connections from computing equipment to the fiber may also be
points for penetration. By itself, fiber is much more secure than cable, but it has vulnerabilities too.

Wireless

Wireless networking is becoming very popular, with good reason. With wireless (also known as
WiFi), people are not tied to a wired connection; they are free to roam throughout an office, house,



or building while maintaining a connection. Universities, offices, and even home users like being
able to connect to a network without the cost, difficulty, and inconvenience of running wires. The
difficulties of wireless arise in the ability of intruders to intercept and spoof a connection.

As we noted earlier, wireless communications travel by radio. In the United States, wireless
computer connections share the same frequencies as garage door openers, local radios (typically
used as baby monitors), some cordless telephones, and other very short distance applications.
Although the frequency band is crowded, few applications are expected to be on the band from any
single user, so contention or interference is not an issue.

But the major threat is not interference; it is interception. A wireless signal is strong for
approximately 100 to 200 feet. To appreciate those figures, picture an ordinary ten-story office
building, ten offices "wide" by five offices "deep," similar to many buildings in office parks or on
university campuses. Assume you set up a wireless base station (receiver) in the corner of the top
floor. That station could receive signals transmitted from the opposite corner of the ground floor. If
a similar building were adjacent, the signal could also be received throughout that building, too.
(See Sidebar 7-5 on how easy it is to make a connection.) Few people would care to listen to
someone else's baby monitor, but many people could and do take advantage of a passive or active
wiretap of a network connection.

A strong signal can be picked up easily. And with an inexpensive, tuned antenna, a wireless signal
can be picked up several miles away. In other words, someone who wanted to pick up your
particular signal could do so from several streets away. Parked in a truck or van, the interceptor
could monitor your communications for quite some time without arousing suspicion.

Interception

Interception of wireless traffic is always a threat, through either passive or active wiretapping.
Sidebar 7-6 illustrates how software faults may make interception easier than you might think. You
may react to that threat by assuming that encryption will address it. Unfortunately, encryption is not
always used for wireless communication, and the encryption built into some wireless devices is not
as strong as it should be to deter a dedicated attacker.

Theft of Service

Wireless also admits a second problem: the possibility of rogue use of a network connection. Many
hosts run the Dynamic Host Configuration Protocol (DHCP), by which a client negotiates a one-time
IP address and connectivity with a host. This protocol is useful in office or campus settings, where
not all users (clients) are active at any time. A small number of IP addresses can be shared among
users. Essentially the addresses are available in a pool. A new client requests a connection and an
IP address through DHCP, and the server assigns one from the pool.

This scheme admits a big problem with authentication. Unless the host authenticates users before
assigning a connection, any requesting client is assigned an IP address and network access.
(Typically, this assignment occurs before the user on the client workstation actually identifies and
authenticates to a server, so there may not be an authenticatable identity that the DHCP server can
demand.) The situation is so serious that in some metropolitan areas a map is available, showing
many networks accepting wireless connections.



A user wanting free Internet access can often get it simply by finding a wireless LAN offering DHCP
service. But is it legal? In separate cases Benjamin Smith III in Florida in July 2005 and Dennis
Kauchak in Illinois in March 2006 were convicted of remotely accessing a computer wirelessly
without the owner's permission. Kauchak was sentenced to a $250 fine. So, even though you are
able to connect, it may not be legal to do so.

On the other hand, some cities or organizations make wireless access freely available as a
community service. Free wireless cities include Albuquerque and Honolulu in the United States, Oulu
in Finland, and the central districts of cities such as Hamburg, Germany, and Adelaide, Australia.
The cities hope that providing free access will spur IT growth and attract tourists and business
travelers.

Sidebar 7-6: Wireless Vulnerabilities

The New Zealand Herald [GRI02] reports that a major telecommunications company
was forced to shut down its mobile e-mail service because of a security flaw in its
wireless network software. The flaw affected users on the company's CDMA network
who were sending e-mail on their WAP-enabled (wireless applications protocol) mobile
phones.

The vulnerability occurred when the user finished an e-mail session. In fact, the
software did not end the WAP session for 60 more seconds. If a second network
customer were to initiate an e-mail session within those 60 seconds and be connected
to the same port as the first customer, the second customer could then view the first
customer's message.

The company blamed the third-party software provided by a mobile portal.
Nevertheless, the company was highly embarrassed, especially because it "perceived
security issues with wireless networks" to be "a major factor threatening to hold the
[wireless] technology's development back." [GRI02]

But perceivedand realsecurity issues should hold back widespread use of wireless. It is
estimated that 85 percent of wireless users do not enable encryption on their access
points, and weaknesses in the WEP protocol leave many of the remaining 15 percent
vulnerable.

Anyone with a wireless network card can search for an available network. Security
consultant Chris O'Ferrell has been able to connect to wireless networks in Washington
D.C. from outside a Senate office building, the Supreme Court, and the Pentagon
[NOG02]; others join networks in airports, on planes, and at coffee shops. Internet
bulletin boards have maps of metropolitan areas with dots showing wireless access
points. The so-called parasitic grid movement is an underground attempt to allow
strangers to share wireless Internet access in metropolitan areas. A listing of some of
the available wireless access points by city is maintained at
www.guerilla.net/freenets.html. Products like AirMagnet from AirMagnet, Inc., Observer
from Network Instruments, and IBM's Wireless Security Analyzer can locate open
wireless connections on a network so that a security administrator can know a network
is open to wireless access.



And then there are wireless LAN users who refuse to shut off their service. Retailer
BestBuy was embarrassed by a customer who bought a wireless product. While in the
parking lot, he installed it in his laptop computer. Much to his surprise, he found he
could connect to the store's wireless network. BestBuy subsequently took all its wireless
cash registers offline. But the CVS pharmacy chain announced plans to continue use of
wireless networks in all 4100 of its stores, arguing "We use wireless technology strictly
for internal item management. If we were to ever move in the direction of transmitting
[customer] information via in-store wireless LANs, we would encrypt the data" [BRE02].

Summary of Wiretapping

There are many points at which network traffic is available to an interceptor. Figure 7-14 illustrates
how communications are exposed from their origin to their destination.

Figure 7-14. Wiretap Vulnerabilities.

From a security standpoint, you should assume that all communication links between network nodes
can be broken. For this reason, commercial network users employ encryption to protect the
confidentiality of their communications, as we demonstrate later in this chapter. Local network
communications can be encrypted, although for performance reasons it may be preferable to protect
local connections with strong physical and administrative security instead.



Protocol Flaws

Internet protocols are publicly posted for scrutiny by the entire Internet community. Each accepted
protocol is known by its Request for Comment (RFC) number. Many problems with protocols have
been identified by sharp reviewers and corrected before the protocol was established as a standard.

But protocol definitions are made and reviewed by fallible humans. Likewise, protocols are
implemented by fallible humans. For example, TCP connections are established through sequence
numbers. The client (initiator) sends a sequence number to open a connection, the server responds
with that number and a sequence number of its own, and the client responds with the server's
sequence number. Suppose (as pointed out by Morris [MOR85]) someone can guess a client's next
sequence number. That person could impersonate the client in an interchange. Sequence numbers
are incremented regularly, so it can be easy to predict the next number. (Similar protocol problems
are summarized in [BEL89].)

Impersonation

In many instances, there is an easier way than wiretapping for obtaining information on a network:
Impersonate another person or process. Why risk tapping a line, or why bother extracting one
communication out of many, if you can obtain the same data directly?

Impersonation is a more significant threat in a wide area network than in a local one. Local
individuals often have better ways to obtain access as another user; they can, for example, simply
sit at an unattended workstation. Still, impersonation attacks should not be ignored even on local
area networks, because local area networks are sometimes attached to wider area networks without
anyone's first thinking through the security implications.

In an impersonation, an attacker has several choices:

Guess the identity and authentication details of the target.

Pick up the identity and authentication details of the target from a previous communication or
from wiretapping.

Circumvent or disable the authentication mechanism at the target computer.

Use a target that will not be authenticated.

Use a target whose authentication data are known.

Let us look at each choice.

Authentication Foiled by Guessing

Chapter 4 reported the results of several studies showing that many users choose easy-to-guess
passwords. In Chapter 3, we saw that the Internet worm of 1988 capitalized on exactly that flaw.
Morris's worm tried to impersonate each user on a target machine by trying, in order, a handful of
variations of the user name, a list of about 250 common passwords and, finally, the words in a



dictionary. Sadly, many users' accounts are still open to these easy attacks.

A second source of password guesses is default passwords. Many systems are initially configured
with default accounts having GUEST or ADMIN as login IDs; accompanying these IDs are well-
known passwords such as "guest" or "null" or "password" to enable the administrator to set up the
system. Administrators often forget to delete or disable these accounts, or at least to change the
passwords.

In a trustworthy environment, such as an office LAN, a password may simply be a signal that the
user does not want others to use the workstation or account. Sometimes the password-protected
workstation contains sensitive data, such as employee salaries or information about new products.
Users may think that the password is enough to keep out a curious colleague; they see no reason to
protect against concerted attacks. However, if that trustworthy environment is connected to an
untrustworthy wider-area network, all users with simple passwords become easy targets. Indeed,
some systems are not originally connected to a wider network, so their users begin in a less
exposed situation that clearly changes when the connection occurs.

Dead accounts offer a final source of guessable passwords. To see how, suppose Professor Romine,
a faculty member, takes leave for a year to teach at another university. The existing account may
reasonably be kept on hold, awaiting the professor's return. But an attacker, reading a university
newspaper online, finds out that the user is away. Now the attacker uses social engineering on the
system administration ("Hello, this is Professor Romine calling from my temporary office at State
University. I haven't used my account for quite a while, but now I need something from it urgently.
I have forgotten the password. Can you please reset it to ICECREAM? No? Well, send me a new
password by email to my account r1@stateuniv.edu.") Alternatively, the attacker can try several
passwords until the password guessing limit is exceeded. The system then locks the account
administratively, and the attacker uses a social engineering attack. In all these ways the attacker
may succeed in resetting or discovering a password.

Authentication Thwarted by Eavesdropping or Wiretapping

Because of the rise in distributed and client-server computing, some users have access privileges on
several connected machines. To protect against arbitrary outsiders using these accesses,
authentication is required between hosts. This access can involve the user directly, or it can be done
automatically on behalf of the user through a host-to-host authentication protocol. In either case,
the account and authentication details of the subject are passed to the destination host. When these
details are passed on the network, they are exposed to anyone observing the communication on the
network. These same authentication details can be reused by an impersonator until they are
changed.

Because transmitting a password in the clear is a significant vulnerability, protocols have been
developed so that the password itself never leaves a user's workstation. But, as we have seen in
several other places, the details are important.

Microsoft LAN Manager was an early method for implementing networks. It had a password
exchange mechanism in which the password itself was never transmitted in the clear; instead only a
cryptographic hash of it was transmitted. A password could consist of up to 14 characters. It could
include upper- and lowercase letters, digits, and special characters, for 67 possibilities in any one
position, and 6714 possibilities for a whole 14-character passwordquite a respectable work factor.
However, those 14 characters were not diffused across the entire hash; they were sent in separate
substrings, representing characters 17 and 814. A 7-character or shorter password had all nulls in



the second substring and was instantly recognizable. An 8-character password had 1 character and
6 nulls in the second substring, so 67 guesses would find the one character. Even in the best case, a
14-character password, the work factor fell from 6714 to 677 + 677 = 2 * 677. These work factors
differ by a factor of approximately 10 billion. (See [MUD97] for details.) LAN Manager authentication
was preserved in many later systems (including Windows NT) as an option to support backward
compatibility with systems such as Windows 95/98. This lesson is a good example of why security
and cryptography are very precise and must be monitored by experts from concept through design
and implementation.

Authentication Foiled by Avoidance

Obviously, authentication is effective only when it works. A weak or flawed authentication allows
access to any system or person who can circumvent the authentication.

In a classic operating system flaw, the buffer for typed characters in a password was of fixed size,
counting all characters typed, including backspaces for correction. If a user typed more characters
than the buffer would hold, the overflow caused the operating system to bypass password
comparison and act as if a correct authentication had been supplied. These flaws or weaknesses can
be exploited by anyone seeking access.

Many network hosts, especially those that connect to wide area networks, run variants of Unix
System V or BSD Unix. In a local environment, many users are not aware of which networked
operating system is in use; still fewer would know of, be capable of, or be interested in exploiting
flaws. However, some hackers regularly scan wide area networks for hosts running weak or flawed
operating systems. Thus, connection to a wide area network, especially the Internet, exposes these
flaws to a wide audience intent on exploiting them.

Nonexistent Authentication

If two computers are used by the same users to store data and run processes and if each has
authenticated its users on first access, you might assume that computer-to-computer or local user-
to-remote process authentication is unnecessary. These two computers and their users are a
trustworthy environment in which the added complexity of repeated authentication seems
excessive.

However, this assumption is not valid. To see why, consider the Unix operating system. In Unix, the
file .rhosts lists trusted hosts and .rlogin lists trusted users who are allowed access without
authentication. The files are intended to support computer-to-computer connection by users who
have already been authenticated at their primary hosts. These "trusted hosts" can also be exploited
by outsiders who obtain access to one system through an authentication weakness (such as a
guessed password) and then transfer to another system that accepts the authenticity of a user who
comes from a system on its trusted list.

An attacker may also realize that a system has some identities requiring no authentication. Some
systems have "guest" or "anonymous" accounts to allow outsiders to access things the systems
want to release to anyone. For example, a bank might post a current listing of foreign currency
rates, a library with an online catalog might make that catalog available for anyone to search, or a
company might allow access to some of its reports. A user can log in as "guest" and retrieve publicly
available items. Typically, no password is required, or the user is shown a message requesting that



the user type "GUEST" (or your name, which really means any string that looks like a name) when
asked for a password. Each of these accounts allows access to unauthenticated users.

Well-Known Authentication

Authentication data should be unique and difficult to guess. But unfortunately, the convenience of
one well-known authentication scheme sometimes usurps the protection. For example, one
computer manufacturer planned to use the same password to allow its remote maintenance
personnel to access any of its computers belonging to any of its customers throughout the world.
Fortunately, security experts pointed out the potential danger before that idea was put in place.

The system network management protocol (SNMP) is widely used for remote management of
network devices, such as routers and switches, that support no ordinary users. SNMP uses a
"community string," essentially a password for the community of devices that can interact with one
another. But network devices are designed especially for quick installation with minimal
configuration, and many network administrators do not change the default community string
installed on a router or switch. This laxity makes these devices on the network perimeter open to
many SNMP attacks.

Some vendors still ship computers with one system administration account installed, having a
default password. Or the systems come with a demonstration or test account, with no required
password. Some administrators fail to change the passwords or delete these accounts.

Trusted Authentication

Finally, authentication can become a problem when identification is delegated to other trusted
sources. For instance, a file may indicate who can be trusted on a particular host. Or the
authentication mechanism for one system can "vouch for" a user. We noted earlier how the Unix
.rhosts, .rlogin, and /etc/hosts/equiv files indicate hosts or users that are trusted on other hosts.
While these features are useful to users who have accounts on multiple machines or for network
management, maintenance, and operation, they must be used very carefully. Each of them
represents a potential hole through which a remote useror a remote attackercan achieve access.

Spoofing

Guessing or otherwise obtaining the network authentication credentials of an entity (a user, an
account, a process, a node, a device) permits an attacker to create a full communication under the
entity's identity. Impersonation falsely represents a valid entity in a communication. Closely related
is spoofing, when an attacker falsely carries on one end of a networked interchange. Examples of
spoofing are masquerading, session hijacking, and man-in-the-middle attacks.

Masquerade

In a masquerade one host pretends to be another. A common example is URL confusion. Domain
names can easily be confused, or someone can easily mistype certain names. Thus xyz.com,
xyz.org, and xyz.net might be three different organizations, or one bona fide organization (for



example, xyz.com) and two masquerade attempts from someone who registered the similar domain
names. Names with or without hyphens (coca-cola.com versus cocacola.com) and easily mistyped
names (l0pht.com versus lopht.com, or citibank.com versus citybank.com) are candidates for
masquerading.

From the attacker's point of view, the fun in masquerading comes before the mask is removed. For
example, suppose you want to attack a real bank, First Blue Bank of Chicago. The actual bank has
the domain name BlueBank.com, so you register the domain name Blue-Bank.com. Next, you put
up a web page at Blue-Bank.com, perhaps using the real Blue Bank logo that you downloaded to
make your site look as much as possible like that of the Chicago bank. Finally, you ask people to log
in with their name, account number, and password or PIN. (This redirection can occur in many
ways. For example, you can pay for a banner ad that links to your site instead of the real bank's, or
you can send e-mail to Chicago residents and invite them to visit your site.) After collecting personal
data from several bank users, you can drop the connection, pass the connection on to the real Blue
Bank, or continue to collect more information. You may even be able to transfer this connection
smoothly to an authenticated access to the real Blue Bank so that the user never realizes the
deviation. (First Blue Bank would probably win a suit to take ownership of the Blue-Bank.com
domain.)

A variation of this attack is called phishing. You send an e-mail message, perhaps with the real
logo of Blue Bank, and an enticement to click on a link, supposedly to take the victim to the Blue
Bank web site. The enticement might be that your victim's account has been suspended or that you
offer your victim some money for answering a survey (and need the account number and PIN to be
able to credit the money), or some other legitimate-sounding explanation. The link might be to your
domain Blue-Bank.com, the link might say click here to access your account (where the click here
link connects to your fraudulent site), or you might use some other trick with the URL to fool your
victim, like www.redirect.com/bluebank.com.

In another version of a masquerade, the attacker exploits a flaw in the victim's web server and is
able to overwrite the victim's web pages. Although there is some public humiliation at having one's
site replaced, perhaps with obscenities or strong messages opposing the nature of the site (for
example, a plea for vegetarianism on a slaughterhouse web site), most people would not be fooled
by a site displaying a message absolutely contrary to its aims. However, a clever attacker can be
more subtle. Instead of differentiating from the real site, the attacker can try to build a false site
that resembles the real one, perhaps to obtain sensitive information (names, authentication
numbers, credit card numbers) or to induce the user to enter into a real transaction. For example, if
one bookseller's site, call it Books-R-Us, were overtaken subtly by another, called Books Depot, the
orders may actually be processed, filled, and billed to the naïve users by Books Depot. Test your
ability to distinguish phishing sites from real ones at
http://survey.mailfrontier.com/survey/quiztest.html.

Phishing is becoming a serious problem, according to a trends report from the Anti-Phishing
Working Group [APW05]. This group received over 12,000 complaints each month from March 2005
to March 2006, with the number peaking above 18,000 for March 2006.

Session Hijacking

Session hijacking is intercepting and carrying on a session begun by another entity. Suppose two
entities have entered into a session but then a third entity intercepts the traffic and carries on the
session in the name of the other. Our example of Books-R-Us could be an instance of this technique.
If Books Depot used a wiretap to intercept packets between you and Books-R-Us, Books Depot could
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simply monitor the information flow, letting Books-R-Us do the hard part of displaying titles for sale
and convincing the user to buy. Then, when the user has completed the order, Books Depot
intercepts the "I'm ready to check out" packet, and finishes the order with the user, obtaining
shipping address, credit card details, and so forth. To Books-R-Us, the transaction would look like
any other incomplete transaction: The user was browsing but for some reason decided to go
elsewhere before purchasing. We would say that Books Depot had hijacked the session.

A different type of example involves an interactive session, for example, using Telnet. If a system
administrator logs in remotely to a privileged account, a session hijack utility could intrude in the
communication and pass commands as if they came from the administrator.

Man-in-the-Middle Attack

Our hijacking example requires a third party involved in a session between two entities. A man-in-
the-middle attack is a similar form of attack, in which one entity intrudes between two others. We
studied one form of this attack in Chapter 3. The difference between man-in-the-middle and
hijacking is that a man-in-the-middle usually participates from the start of the session, whereas a
session hijacking occurs after a session has been established. The difference is largely semantic and
not too significant.

Man-in-the-middle attacks are frequently described in protocols. To see how an attack works,
suppose you want to exchange encrypted information with your friend. You contact the key server
and ask for a secret key with which to communicate with your friend. The key server responds by
sending a key to you and your friend. One man-in-the-middle attack assumes someone can see and
enter into all parts of this protocol. A malicious middleman intercepts the response key and can then
eavesdrop on, or even decrypt, modify, and reencrypt any subsequent communications between you
and your friend. This attack is depicted in Figure 7-15.

Figure 7-15. Key Interception by a Man-in-the-Middle Attack.



This attack would be changed with public keys, because the man-in-the-middle would not have the
private key to be able to decrypt messages encrypted under your friend's public key. The man-in-
the-middle attack now becomes more of the three-way interchange its name implies. The man-in-
the-middle intercepts your request to the key server and instead asks for your friend's public key.
The man-in-the-middle passes to you his own public key, not your friend's. You encrypt using the
public key you received (from the man-in-the-middle); the man-in-the-middle intercepts and
decrypts, reads, and reencrypts, using your friend's public key; and your friend receives. In this
way, the man-in-the-middle reads the messages and neither you nor your friend is aware of the
interception. A slight variation of this attack works for secret key distribution under a public key.

Message Confidentiality Threats

An attacker can easily violate message confidentiality (and perhaps integrity) because of the public
nature of networks. Eavesdropping and impersonation attacks can lead to a confidentiality or
integrity failure. Here we consider several other vulnerabilities that can affect confidentiality.

Misdelivery

Sometimes messages are misdelivered because of some flaw in the network hardware or software.
Most frequently, messages are lost entirely, which is an integrity or availability issue. Occasionally,



however, a destination address is modified or some handler malfunctions, causing a message to be
delivered to someone other than the intended recipient. All of these "random" events are quite
uncommon.

More frequent than network flaws are human errors. It is far too easy to mistype an address such as
100064,30652 as 10064,30652 or 100065,30642, or to type "idw" or "iw" instead of "diw" for David
Ian Walker, who is called Ian by his friends. There is simply no justification for a computer network
administrator to identify people by meaningless long numbers or cryptic initials when "iwalker"
would be far less prone to human error.

Exposure

To protect the confidentiality of a message, we must track it all the way from its creation to its
disposal. Along the way, the content of a message may be exposed in temporary buffers; at
switches, routers, gateways, and intermediate hosts throughout the network; and in the workspaces
of processes that build, format, and present the message. In earlier chapters, we considered
confidentiality exposures in programs and operating systems. All of these exposures apply to
networked environments as well. Furthermore, a malicious attacker can use any of these exposures
as part of a general or focused attack on message confidentiality.

Passive wiretapping is one source of message exposure. So also is subversion of the structure by
which a communication is routed to its destination. Finally, intercepting the message at its source,
destination, or at any intermediate node can lead to its exposure.

Traffic Flow Analysis

Sometimes not only is the message itself sensitive but the fact that a message exists is also
sensitive. For example, if the enemy during wartime sees a large amount of network traffic between
headquarters and a particular unit, the enemy may be able to infer that significant action is being
planned involving that unit. In a commercial setting, messages sent from the president of one
company to the president of a competitor could lead to speculation about a takeover or conspiracy
to fix prices. Or communications from the prime minister of one country to another with whom
diplomatic relations were suspended could lead to inferences about a rapprochement between the
countries. In these cases, we need to protect both the content of messages and the header
information that identifies sender and receiver.

Message Integrity Threats

In many cases, the integrity or correctness of a communication is at least as important as its
confidentiality. In fact for some situations, such as passing authentication data, the integrity of the
communication is paramount. In other cases, the need for integrity is less obvious. Next we
consider threats based on failures of integrity in communication.

Falsification of Messages

Increasingly, people depend on electronic messages to justify and direct actions. For example, if you



receive a message from a good friend asking you to meet at the pub for a drink next Tuesday
evening, you will probably be there at the appointed time. Likewise, you will comply with a message
from your supervisor telling you to stop work on project A and devote your energy instead to project
B. As long as it is reasonable, we tend to act on an electronic message just as we would on a signed
letter, a telephone call, or a face-to-face communication.

However, an attacker can take advantage of our trust in messages to mislead us. In particular, an
attacker may

change some or all of the content of a message

replace a message entirely, including the date, time, and sender/receiver identification

reuse (replay) an old message

combine pieces of different messages into one

change the apparent source of a message

redirect a message

destroy or delete a message

These attacks can be perpetrated in the ways we have already examined, including

active wiretap

Trojan horse

impersonation

preempted host

preempted workstation

Noise

Signals sent over communications media are subject to interference from other traffic on the same
media, as well as from natural sources, such as lightning, electric motors, and animals. Such
unintentional interference is called noise. These forms of noise are inevitable, and they can
threaten the integrity of data in a message.

Fortunately, communications protocols have been intentionally designed to overcome the negative
effects of noise. For example, the TCP/IP protocol suite ensures detection of almost all transmission
errors. Processes in the communications stack detect errors and arrange for retransmission, all
invisible to the higher-level applications. Thus, noise is scarcely a consideration for users in security-
critical applications.

Format Failures



Network communications work because of well-designed protocols that define how two computers
communicate with a minimum of human intervention. The format of a message, size of a data unit,
sequence of interactions, even the meaning of a single bit is precisely described in a standard. The
whole network works only because everyone obeys these rules.

Almost everyone, that is. Attackers purposely break the rules to see what will happen. Or the
attacker may seek to exploit an undefined condition in the standard. Software may detect the
violation of structure and raise an error indicator. Sometimes, however, the malformation causes a
software failure, which can lead to a security compromise, just what the attacker wants. In this
section we look at several kinds of malformation.

Malformed Packets

Packets and other data items have specific formats, depending on their use. Field sizes, bits to
signal continuations, and other flags have defined meanings and will be processed appropriately by
network service applications called protocol handlers. These services do not necessarily check for
errors, however. What happens if a packet indicates a data field is 40 characters long and the actual
field length is 30 or 50? Or what if a packet reports its content is continued in the next packet and
there is no next packet? Or suppose for a 2-bit flag only values 00, 01, and 10 are defined; what
does the handler do if it receives the value 11?

For example, in 2003 Microsoft distributed a patch for its RPC (Remote Procedure Call) service. If a
malicious user initiated an RPC session and then sent an incorrectly formatted packet, the entire
RPC service failed, as well as some other Microsoft services.

Attackers try all sorts of malformations of packets. Of course, many times the protocol handler
detects the malformation and raises an error condition, and other times the failure affects only the
user (the attacker). But when the error causes the protocol handler to fail, the result can be denial
of service, complete failure of the system, or some other serious result.

Protocol Failures and Implementation Flaws

Each protocol is a specification of a service to be provided; the service is then implemented in
software, which, as discussed in Chapter 3, may be flawed. Network protocol software is basic to
the operating system, so flaws in that software can cause widespread harm because of the
privileges with which the software runs and the impact of the software on many users at once.
Certain network protocol implementations have been the source of many security flaws; especially
troublesome have been SNMP (network management), DNS (addressing service), and e-mail
services such as SMTP and S/MIME. Although different vendors have implemented the code for
these services themselves, they often are based on a common (flawed) prototype. For example, the
CERT advisory for SNMP flaws (Vulnerability Note 107186) lists approximately 200 different
implementations to which the advisory applies.

Or the protocol itself may be incomplete. If the protocol does not specify what action to take in a
particular situation, vendors may produce different results. So an interaction on Windows, for
example, might succeed while the same interaction on a Unix system would fail.

The protocol may have an unknown security flaw. In a classic example, Bellovin [BEL89] points out
a weakness in the way packet sequence numbers are assignedan attacker could intrude into a



communication in such a way that the intrusion is accepted as the real communication and the real
sender is rejected.

Attackers can exploit all of these kinds of errors.

Web Site Vulnerabilities

A web site is especially vulnerable because it is almost completely exposed to the user. If you use
an application program, you do not usually get to view the program's code. With a web site, the
attacker can download the site's code for offline study over time. With a program, you have little
ability to control in what order you access parts of the program, but a web attacker gets to control
in what order pages are accessed, perhaps even accessing page 5 without first having run pages 1
through 4. The attacker can also choose what data to supply and can run experiments with different
data values to see how the site will react. In short, the attacker has some advantages that can be
challenging to control.

The list of web site vulnerabilities is too long to explore completely here. Hoglund and McGraw
[HOG04], Andrews and Whitaker [AND06], and Howard et al. [HOW05] offer excellent analyses of
how to find and fix flaws in web software. Be sure to review the code development issues in Chapter
3, because many code techniques there (such as buffer overflows and insufficient parameter
checking) are applicable here.

Web Site Defacement

One of the most widely known attacks is the web site defacement attack. Because of the large
number of sites that have been defaced and the visibility of the result, the attacks are often
reported in the popular press.

A defacement is common not only because of its visibility but also because of the ease with which
one can be done. Web sites are designed so that their code is downloaded, enabling an attacker to
obtain the full hypertext document and all programs directed to the client in the loading process. An
attacker can even view programmers' comments left in as they built or maintained the code. The
download process essentially gives the attacker the blueprints to the web site.

The ease and appeal of a defacement are enhanced by the seeming plethora of vulnerabilities that
web sites offer an attacker. For example, between December 1999 and June 2001 (the first 18
months after its release), Microsoft provided 17 security patches for its web server software,
Internet Information Server (IIS) version 4.0. And version 4.0 was an upgrade for three previous
versions, so theoretically Microsoft had a great deal of time earlier to work out its security flaws.

Buffer Overflows

Buffer overflow is alive and well on web pages, too. It works exactly the same as described in
Chapter 3: The attacker simply feeds a program far more data than it expects to receive. A buffer
size is exceeded, and the excess data spill over into adjoining code and data locations.

Perhaps the best-known web server buffer overflow is the file name problem known as iishack. This
attack is so well known that is has been written into a procedure (see



http://www.technotronic.com). To execute the procedure, an attacker supplies as parameters the
site to be attacked and the URL of a program the attacker wants that server to execute.

Other web servers are vulnerable to extremely long parameter fields, such as passwords of length
10,000 or a long URL padded with space or null characters.

Dot-Dot-Slash

Web server code should always run in a constrained environment. Ideally, the web server should
never have editors, xterm and Telnet programs, or even most system utilities loaded. By
constraining the environment in this way, even if an attacker escapes from the web server
application, no other executable programs will help the attacker use the web server's computer and
operating system to extend the attack. The code and data for web applications can be transferred
manually to a web server or pushed as a raw image.

But many web applications programmers are naïve. They expect to need to edit a web application in
place, so they install editors and system utilities on the server to give them a complete environment
in which to program.

A second, less desirable, condition for preventing an attack is to create a fence confining the web
server application. With such a fence, the server application cannot escape from its area and access
other potentially dangerous system areas (such as editors and utilities). The server begins in a
particular directory subtree, and everything the server needs is in that same subtree.

Enter the dot-dot. In both Unix and Windows, '..' is the directory indicator for "predecessor." And
'../..' is the grandparent of the current location. So someone who can enter file names can travel
back up the directory tree one .. at a time. Cerberus Information Security analysts found just that
vulnerability in the webhits.dll extension for the Microsoft Index Server. For example, passing the
following URL causes the server to return the requested file, autoexec.nt, enabling an attacker to
modify or delete it.

http://yoursite.com/webhits.htw?CiWebHits&File=
../../../../../winnt/system32/autoexec.nt

Application Code Errors

A user's browser carries on an intricate, undocumented protocol interchange with applications on
the web server. To make its job easier, the web server passes context strings to the user, making
the user's browser reply with full context. A problem arises when the user can modify that context.

To see why, consider our fictitious shopping site called CDs-R-Us, selling compact discs. At any
given time, a server at that site may have a thousand or more transactions in various states of
completion. The site displays a page of goods to order, the user selects one, the site displays more
items, the user selects another, the site displays more items, the user selects two more, and so on
until the user is finished selecting. Many people go on to complete the order by specifying payment
and shipping information. But other people use web sites like this one as an online catalog or guide,
with no real intention of ordering. For instance, they can use this site to find out the price of the
latest CD from Cherish the Ladies; they can use an online book service to determine how many
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books by Iris Murdoch are in print. And even if the user is a bona fide customer, sometimes web
connections fail, leaving the transaction incomplete. For these reasons, the web server often keeps
track of the status of an incomplete order in parameter fields appended to the URL. These fields
travel from the server to the browser and back to the server with each user selection or page
request.

Assume you have selected one CD and are looking at a second web page. The web server has
passed you a URL similar to

http://www.CDs-r-us.com/buy.asp?i1=459012&p1=1599

This URL means you have chosen CD number 459012, and its price is $15.99. You now select a
second and the URL becomes

http://www.CDs-r-us.com/
buy.asp?i1=459012&p1=1599&i2=365217&p2=1499

But if you are a clever attacker, you realize that you can edit the URL in the address window of your
browser. Consequently, you change each of 1599 and 1499 to 199. And when the server totals up
your order, lo and behold, your two CDs cost only $1.99 each.

This failure is an example of the time-of-check to time-of-use flaw that we discussed in Chapter 3.
The server sets (checks) the price of the item when you first display the price, but then it loses
control of the checked data item and never checks it again. This situation arises frequently in server
application code because application programmers are generally not aware of security (they haven't
read Chapter 3!) and typically do not anticipate malicious behavior.

Server-Side Include

A potentially more serious problem is called a server-side include. The problem takes advantage
of the fact that web pages can be organized to invoke a particular function automatically. For
example, many pages use web commands to send an e-mail message in the "contact us" part of the
displayed page. The commands, such as e-mail, if, goto, and include, are placed in a field that is
interpreted in HTML.

One of the server-side include commands is exec, to execute an arbitrary file on the server. For
instance, the server-side include command

<!#exec cmd="/usr/bin/telnet &">

opens a Telnet session from the server running in the name of (that is, with the privileges of) the
server. An attacker may find it interesting to execute commands such as chmod (change access
rights to an object), sh (establish a command shell), or cat (copy to a file).

For more web application vulnerabilities see [HOG04, AND06, and HOW05].
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Denial of Service

So far, we have discussed attacks that lead to failures of confidentiality or integrityproblems we
have also seen in the contexts of operating systems, databases, and applications. Availability
attacks, sometimes called denial-of-service or DOS attacks, are much more significant in networks
than in other contexts. There are many accidental and malicious threats to availability or continued
service.

Transmission Failure

Communications fail for many reasons. For instance, a line is cut. Or network noise makes a packet
unrecognizable or undeliverable. A machine along the transmission path fails for hardware or
software reasons. A device is removed from service for repair or testing. A device is saturated and
rejects incoming data until it can clear its overload. Many of these problems are temporary or
automatically fixed (circumvented) in major networks, including the Internet.

However, some failures cannot be easily repaired. A break in the single communications line to your
computer (for example, from the network to your network interface card or the telephone line to
your modem) can be fixed only by establishment of an alternative link or repair of the damaged
one. The network administrator will say "service to the rest of the network was unaffected," but that
is of little consolation to you.

From a malicious standpoint, you can see that anyone who can sever, interrupt, or overload
capacity to you can deny you service. The physical threats are pretty obvious. We consider instead
several electronic attacks that can cause a denial of service.

Connection Flooding

The most primitive denial-of-service attack is flooding a connection. If an attacker sends you as
much data as your communications system can handle, you are prevented from receiving any other
data. Even if an occasional packet reaches you from someone else, communication to you will be
seriously degraded.

More sophisticated attacks use elements of Internet protocols. In addition to TCP and UDP, there is
a third class of protocols, called ICMP or Internet Control Message Protocols. Normally used for
system diagnostics, these protocols do not have associated user applications. ICMP protocols include

ping, which requests a destination to return a reply, intended to show that the destination
system is reachable and functioning

echo, which requests a destination to return the data sent to it, intended to show that the
connection link is reliable (ping is actually a version of echo)

destination unreachable, which indicates that a destination address cannot be accessed

source quench, which means that the destination is becoming saturated and the source should
suspend sending packets for a while



These protocols have important uses for network management. But they can also be used to attack
a system. The protocols are handled within the network stack, so the attacks may be difficult to
detect or block on the receiving host. We examine how these protocols can be used to attack a
victim.

Echo-Chargen

This attack works between two hosts. Chargen is a protocol that generates a stream of packets; it is
used to test the network's capacity. The attacker sets up a chargen process on host A that
generates its packets as echo packets with a destination of host B. Then, host A produces a stream
of packets to which host B replies by echoing them back to host A. This series puts the network
infrastructures of A and B into an endless loop. If the attacker makes B both the source and
destination address of the first packet, B hangs in a loop, constantly creating and replying to its own
messages.

Ping of Death

A ping of death is a simple attack. Since ping requires the recipient to respond to the ping request,
all the attacker needs to do is send a flood of pings to the intended victim. The attack is limited by
the smallest bandwidth on the attack route. If the attacker is on a 10-megabyte (MB) connection
and the path to the victim is 100 MB or more, the attacker cannot mathematically flood the victim
alone. But the attack succeeds if the numbers are reversed: The attacker on a 100-MB connection
can easily flood a 10-MB victim. The ping packets will saturate the victim's bandwidth.

Smurf

The smurf attack is a variation of a ping attack. It uses the same vehicle, a ping packet, with two
extra twists. First, the attacker chooses a network of unwitting victims. The attacker spoofs the
source address in the ping packet so that it appears to come from the victim. Then, the attacker
sends this request to the network in broadcast mode by setting the last byte of the address to all
1s; broadcast mode packets are distributed to all hosts on the network. The attack is shown in
Figure 7-16.

Figure 7-16. Smurf Attack.

[View full size image]



Syn Flood

Another popular denial-of-service attack is the syn flood. This attack uses the TCP protocol suite,
making the session-oriented nature of these protocols work against the victim.

For a protocol such as Telnet, the protocol peers establish a virtual connection, called a session, to
synchronize the back-and-forth, command-response nature of the Telnet terminal emulation. A
session is established with a three-way TCP handshake. Each TCP packet has flag bits, two of which
are denoted SYN and ACK. To initiate a TCP connection, the originator sends a packet with the SYN
bit on. If the recipient is ready to establish a connection, it replies with a packet with both the SYN
and ACK bits on. The first party then completes the exchange to demonstrate a clear and complete
communication channel by sending a packet with the ACK bit on, as shown in Figure 7-17.

Figure 7-17. Three-Way Connection Handshake

Occasionally packets get lost or damaged in transmission. The destination maintains a queue called
the SYN_RECV connections, tracking those items for which a SYNACK has been sent but no
corresponding ACK has yet been received. Normally, these connections are completed in a short
time. If the SYNACK (2) or the ACK (3) packet is lost, eventually the destination host will time out
the incomplete connection and discard it from its waiting queue.

The attacker can deny service to the target by sending many SYN requests and never responding
with ACKs, thereby filling the victim's SYN_RECV queue. Typically, the SYN_RECV queue is quite
small, such as 10 or 20 entries. Because of potential routing delays in the Internet, typical holding



times for the SYN_RECV queue can be minutes. So the attacker need only send a new SYN request
every few seconds and it will fill the queue.

Attackers using this approach usually do one more thing: They spoof the nonexistent return address
in the initial SYN packet. Why? For two reasons. First, the attacker does not want to disclose the
real source address in case someone should inspect the packets in the SYN_RECV queue to try to
identify the attacker. Second, the attacker wants to make the SYN packets indistinguishable from
legitimate SYN packets to establish real connections. Choosing a different (spoofed) source address
for each one makes them unique. A SYNACK packet to a nonexistent address results in an ICMP
Destination Unreachable response, but this is not the ACK for which the TCP connection is waiting.
(Remember that TCP and ICMP are different protocol suites, so an ICMP reply does not necessarily
get back to the sender's TCP handler.)

Teardrop

The teardrop attack misuses a feature designed to improve network communication. A network IP
datagram is a variable-length object. To support different applications and conditions, the datagram
protocol permits a single data unit to be fragmented, that is, broken into pieces and transmitted
separately. Each fragment indicates its length and relative position within the data unit. The
receiving end is responsible for reassembling the fragments into a single data unit.

In the teardrop attack, the attacker sends a series of datagrams that cannot fit together properly.
One datagram might say it is position 0 for length 60 bytes, another position 30 for 90 bytes, and
another position 41 for 173 bytes. These three pieces overlap, so they cannot be reassembled
properly. In an extreme case, the operating system locks up with these partial data units it cannot
reassemble, thus leading to denial of service.

For more on these and other denial of service threats, see [CER99 and MAR05].

Traffic Redirection

As we saw earlier, at the network layer, a router is a device that forwards traffic on its way through
intermediate networks between a source host's network and a destination's network. So if an
attacker can corrupt the routing, traffic can disappear.

Routers use complex algorithms to decide how to route traffic. No matter the algorithm, they
essentially seek the best path (where "best" is measured in some combination of distance, time,
cost, quality, and the like). Routers are aware only of the routers with which they share a direct
network connection, and they use gateway protocols to share information about their capabilities.
Each router advises its neighbors about how well it can reach other network addresses. This
characteristic allows an attacker to disrupt the network.

To see how, keep in mind that, in spite of its sophistication, a router is simply a computer with two
or more network interfaces. Suppose a router advertises to its neighbors that it has the best path to
every other address in the whole network. Soon all routers will direct all traffic to that one router.
The one router may become flooded, or it may simply drop much of its traffic. In either case, a lot
of traffic never makes it to the intended destination.



DNS Attacks

Our final denial-of-service attack is actually a class of attacks based on the concept of domain name
server. A domain name server (DNS) is a table that converts domain names like ATT.COM into
network addresses like 211.217.74.130; this process is called resolving the domain name. A domain
name server queries other name servers to resolve domain names it does not know. For efficiency,
it caches the answers it receives so it can resolve that name more rapidly in the future. A pointer to
a DNS server can be retained for weeks or months.

In the most common implementations of Unix, name servers run software called Berkeley
Internet Name Domain or BIND or named (a shorthand for "name daemon"). There have been
numerous flaws in BIND, including the now-familiar buffer overflow.

By overtaking a name server or causing it to cache spurious entries (called DNS cache poisoning),
an attacker can redirect the routing of any traffic, with an obvious implication for denial of service.

In October 2002, a massive flood of traffic inundated the top-level domain DNS servers, the servers
that form the foundation of the Internet addressing structure. Roughly half the traffic came from
just 200 addresses. Although some people think the problem was a set of misconfigured firewalls,
nobody knows for sure what caused the attack.

An attack in March 2005 used a flaw in a Symantec firewall to allow a change in the DNS records
used on Windows machines. The objective of this attack was not denial of service, however. In this
attack, the poisoned DNS cache redirected users to advertising sites that received money from
clients each time a user visited the site. Nevertheless, the attack also prevented users from
accessing the legitimate sites.

Distributed Denial of Service

The denial-of-service attacks we have listed are powerful by themselves, and Sidebar 7-7 shows us
that many are launched. But an attacker can construct a two-stage attack that multiplies the effect
many times. This multiplicative effect gives power to distributed denial of service.

To perpetrate a distributed denial-of-service (or DDoS) attack, an attacker does two things, as
illustrated in Figure 7-18. In the first stage, the attacker uses any convenient attack (such as
exploiting a buffer overflow or tricking the victim to open and install unknown code from an e-mail
attachment) to plant a Trojan horse on a target machine. That Trojan horse does not necessarily
cause any harm to the target machine, so it may not be noticed. The Trojan horse file may be
named for a popular editor or utility, bound to a standard operating system service, or entered into
the list of processes (daemons) activated at startup. No matter how it is situated within the system,
it will probably not attract any attention.

Figure 7-18. Distributed Denial-of-Service Attack.

[View full size image]



The attacker repeats this process with many targets. Each of these target systems then becomes
what is known as a zombie. The target systems carry out their normal work, unaware of the
resident zombie.

Sidebar 7-7: How Much Denial-of-Service Activity Is There?

Researchers at the University of California, San Diego (UCSD) studied the amount of
denial-of-service activity on the Internet [UCS01]. Because many DOS attacks use a
fictitious return address, the researchers asserted that traffic to nonexistent addresses
was indicative of the amount of denial-of-service attacking. They monitored a large,
unused address space on the Internet for a period of three weeks. They found

More than 12,000 attacks were aimed at more than 5,000 targets during the
three-week period.

Syn floods likely accounted for more than half of the attacks.

Half the attacks lasted less than ten minutes, and 90 percent of attacks lasted less
than an hour.

Steve Gibson of Gibson Research Corporation (GRC) experienced several denial-of-
service attacks in mid-2001. He collected data for his own forensic purposes [GIB01].
The first attack lasted 17 hours, at which point he was able to reconfigure the router
connecting him to the Internet so as to block the attack. During those 17 hours he
found his site was attacked by 474 Windows-based PCs. A later attack lasted 6.5 hours
before it stopped by itself. These attacks were later found to have been launched by a



13-year old from Kenosha, Wisconsin.

At some point the attacker chooses a victim and sends a signal to all the zombies to launch the
attack. Then, instead of the victim's trying to defend against one denial-of-service attack from one
malicious host, the victim must try to counter n attacks from the n zombies all acting at once. Not
all of the zombies need to use the same attack; for instance, some could use smurf attacks and
others, could use syn floods to address different potential weaknesses.

In addition to their tremendous multiplying effect, distributed denial-of-service attacks are a serious
problem because they are easily launched from scripts. Given a collection of denial-of-service
attacks and a Trojan horse propagation method, one can easily write a procedure to plant a Trojan
horse that can launch any or all of the denial-of-service attacks. DDoS attack tools first appeared in
mid-1999. Some of the original DDoS tools include Tribal Flood Network (TFN), Trin00, and
TFN2K (Tribal Flood Network, year 2000 edition). As new vulnerabilities are discovered that allow
Trojan horses to be planted and as new denial-of-service attacks are found, new combination tools
appear. For more details on this topic, see [HAN00a].

According to the U.S. Computer Emergency Response Team (CERT) [HOU01a], scanning to find a
vulnerable host (potential zombie) is now being included in combination tools; a single tool now
identifies its zombie, installs the Trojan horse, and activates the zombie to wait for an attack signal.
Recent target (zombie) selection has been largely random, meaning that attackers do not seem to
care which zombies they infect. This revelation is actually bad news, because it means that no
organization or accessible host is safe from attack. Perhaps because they are so numerous and
because their users are assumed to be less knowledgeable about computer management and
protection, Windows-based machines are becoming more popular targets for attack than other
systems. Most frightening is the CERT finding that the time is shrinking between discovery of a
vulnerability and its widespread exploitation.

Threats in Active or Mobile Code

Active code or mobile code is a general name for code that is pushed to the client for execution.
Why should the web server waste its precious cycles and bandwidth doing simple work that the
client's workstation can do? For example, suppose you want your web site to have bears dancing
across the top of the page. To download the dancing bears, you could download a new image for
each movement the bears take: one bit forward, two bits forward, and so forth. However, this
approach uses far too much server time and bandwidth to compute the positions and download new
images. A more efficient use of (server) resources is to download a program that runs on the client's
machine and implements the movement of the bears.

Since you have been studying security and are aware of vulnerabilities, you probably are saying to
yourself, "You mean a site I don't control, which could easily be hacked by teenagers, is going to
push code to my machine that will execute without my knowledge, permission, or oversight?"
Welcome to the world of (potentially malicious) mobile code. In fact, there are many different kinds
of active code, and in this section we look at the related potential vulnerabilities.

Cookies

Strictly speaking, cookies are not active code. They are data files that can be stored and fetched by



a remote server. However, cookies can be used to cause unexpected data transfer from a client to a
server, so they have a role in a loss of confidentiality.

A cookie is a data object that can be held in memory (a per-session cookie) or stored on disk for
future access (a persistent cookie). Cookies can store anything about a client that the browser can
determine: keystrokes the user types, the machine name, connection details (such as IP address),
date and type, and so forth. On command a browser will send to a server the cookies saved for it.
Per-session cookies are deleted when the browser is closed, but persistent cookies are retained until
a set expiration date, which can be years in the future.

Cookies provide context to a server. Using cookies, certain web pages can greet you with "Welcome
back, James Bond" or reflect your preferences, as in "Shall I ship this order to you at 135 Elm
Street?" But as these two examples demonstrate, anyone possessing someone's cookie becomes
that person in some contexts. Thus, anyone intercepting or retrieving a cookie can impersonate the
cookie's owner.

What information about you does a cookie contain? Even though it is your information, most of the
time you cannot tell what is in a cookie, because the cookie's contents are encrypted under a key
from the server.

So a cookie is something that takes up space on your disk, holding information about you that you
cannot see, forwarded to servers you do not know whenever the server wants it, without informing
you. The philosophy behind cookies seems to be "Trust us, it's good for you."

Scripts

Clients can invoke services by executing scripts on servers. Typically, a web browser displays a
page. As the user interacts with the web site via the browser, the browser organizes user inputs into
parameters to a defined script; it then sends the script and parameters to a server to be executed.
But all communication is done through HTML. The server cannot distinguish between commands
generated from a user at a browser completing a web page and a user's handcrafting a set of
orders. The malicious user can monitor the communication between a browser and a server to see
how changing a web page entry affects what the browser sends and then how the server reacts.
With this knowledge, the malicious user can manipulate the server's actions.

To see how easily this manipulation is done, remember that programmers do not often anticipate
malicious behavior; instead, programmers assume that users will be benign and will use a program
in the way it was intended to be used. For this reason, programmers neglect to filter script
parameters to ensure that they are reasonable for the operation and safe to execute. Some scripts
allow arbitrary files to be included or arbitrary commands to be executed. An attacker can see the
files or commands in a string and experiment with changing them.

A well-known attack against web servers is the escape-character attack. A common scripting
language for web servers, CGI (Common Gateway Interface), defines a machine-independent
way to encode communicated data. The coding convention uses %nn to represent ASCII special
characters. However, special characters may be interpreted by CGI script interpreters. So, for
example, %0A (end-of-line) instructs the interpreter to accept the following characters as a new
command. The following command requests a copy of the server's password file:

http://www.test.com/cgi-bin/query?%0a/bin/cat%20/etc/passwd

http://www.test.com/cgi-bin/query?%0a/bin/cat%20/etc/passwd


CGI scripts can also initiate actions directly on the server. For example, an attacker can observe a
CGI script that includes a string of this form:

<!-#action arg1=value arg2=value ->

and submit a subsequent command where the string is replaced by

<!--#exec cmd="rm *" ->

to cause a command shell to execute a command to remove all files in the shell's current directory.

Microsoft uses active server pages (ASP) as its scripting capability. Such pages instruct the
browser on how to display files, maintain context, and interact with the server. These pages can
also be viewed at the browser end, so any programming weaknesses in the ASP code are available
for inspection and attack.

The server should never trust anything received from a client, because the remote user can send
the server a string crafted by hand, instead of one generated by a benign procedure the server sent
the client. As with so many cases of remote access, these examples demonstrate that if you allow
someone else to run a program on your machine, you can no longer be confident that your machine
is secure.

Active Code

Displaying web pages started simply with a few steps: generate text, insert images, and register
mouse clicks to fetch new pages. Soon, people wanted more elaborate action at their web sites:
toddlers dancing atop the page, a three-dimensional rotating cube, images flashing on and off,
colors changing, totals appearing. Some of these tricks, especially those involving movement, take
significant computing power; they require a lot of time and communication to download from a
server. But typically, the client has a capable and underutilized processor, so the timing issues are
irrelevant.

To take advantage of the processor's power, the server may download code to be executed on the
client. This executable code is called active code. The two main kinds of active code are Java code
and ActiveX controls.

Java Code

Sun Microsystems [GOS96] designed and promoted the Java technology as a truly machine-
independent programming language. A Java program consists of Java byte-code executed on a Java
virtual machine (JVM) program. The bytecode programs are machine independent, and only the
JVM interpreter needs to be implemented on each class of machine to achieve program portability.
The JVM interpreter contains a built-in security manager that enforces a security policy. A Java



program runs in a Java "sandbox," a constrained resource domain from which the program cannot
escape. The Java programming language is strongly typed, meaning that the content of a data item
must be of the appropriate type for which it is to be used (for example, a text string cannot be used
as a numeric).

The original, Java 1.1 specification was very solid, very restrictive, and hence very unpopular. In it,
a program could not write permanently to disk, nor could it invoke arbitrary procedures that had not
been included in the sandbox by the security manager's policy. Thus, the sandbox was a collection
of resources the user was willing to sacrifice to the uncertainties of Java code. Although very strong,
the Java 1.1 definition proved unworkable. As a result, the original restrictions on the sandbox were
relaxed, to the detriment of security. Koved et al. [KOV98] describe how the Java security model
evolved.

The Java 1.2 specification opened the sandbox to more resources, particularly to stored disk files
and executable procedures. (See, for example, [GON96, GON97].) Although it is still difficult to
break its constraints, the Java sandbox contains many new toys, enabling more interesting
computation but opening the door to exploitation of more serious vulnerabilities. (For more
information, see [DEA96] and review the work of the Princeton University Secure Internet
Programming group, http://www.cs.princeton.edu/sip/history/index.php3.)

Does this mean that the Java system's designers made bad decisions? No. As we have seen many
times before, a product's security flaw is not necessarily a design flaw. Sometimes the designers
choose to trade some security for increased functionality or ease of use. In other cases, the design
is fine, but implementers fail to uphold the high security standards set out by designers. The latter
is certainly true for Java technology. Problems have occurred with implementations of Java virtual
machines for different platforms and in different components. For example, a version of Netscape
browser failed to implement type checking on all data types, as is required in the Java
specifications. A similar vulnerability affected Microsoft Internet Explorer. Although these
vulnerabilities have been patched, other problems could occur with subsequent releases.

A hostile applet is downloadable Java code that can cause harm on the client's system. Because an
applet is not screened for safety when it is downloaded and because it typically runs with the
privileges of its invoking user, a hostile applet can cause serious damage. Dean et al. [DEA96] list
necessary conditions for secure execution of applets:

The system must control applets' access to sensitive system resources, such as the file
system, the processor, the network, the user's display, and internal state variables.

The language must protect memory by preventing forged memory pointers and array (buffer)
overflows.

The system must prevent object reuse by clearing memory contents for new objects; the
system should perform garbage collection to reclaim memory that is no longer in use.

The system must control interapplet communication as well as applets' effects on the
environment outside the Java system through system calls.

ActiveX Controls

Microsoft's answer to Java technology is the ActiveX series. Using ActiveX controls, objects of

http://www.cs.princeton.edu/sip/history/index.php3


arbitrary type can be downloaded to a client. If the client has a viewer or handler for the object's
type, that viewer is invoked to present the object. For example, downloading a Microsoft Word .doc
file would invoke Microsoft Word on a system on which it is installed. Files for which the client has
no handler cause other code to be downloaded. Thus, in theory, an attacker could invent a type,
called .bomb, and cause any unsuspecting user who downloaded a web page with a .bomb file also
to download code that would execute .bombs.

To prevent arbitrary downloads, Microsoft uses an authentication scheme under which downloaded
code is cryptographically signed and the signature is verified before execution. But the
authentication verifies only the source of the code, not its correctness or safety. Code from Microsoft
(or Netscape or any other manufacturer) is not inherently safe, and code from an unknown source
may be more or less safe than that from a known source. Proof of origin shows where it came from,
not how good or safe it is. And some vulnerabilities allow ActiveX to bypass the authentication.

Auto Exec by Type

Data files are processed by programs. For some products, the file type is implied by the file
extension, such as .doc for a Word document, .pdf (Portable Document Format) for an Adobe
Acrobat file, or .exe for an executable file. On many systems, when a file arrives with one of these
extensions, the operating system automatically invokes the appropriate processor to handle it.

By itself, a Word document is unintelligible as an executable file. To prevent someone from running
a file temp.doc by typing that name as a command, Microsoft embeds within a file what type it
really is. Double-clicking the file in a Windows Explorer window brings up the appropriate program
to handle that file.

But, as we noted in Chapter 3, this scheme presents an opportunity to an attacker. A malicious
agent might send you a file named innocuous.doc, which you would expect to be a Word document.
Because of the .doc extension, Word would try to open it. Suppose that file is renamed "innocuous"
(without a .doc). If the embedded file type is .doc, then double-clicking innocuous also brings the
file up in Word. The file might contain malicious macros or invoke the opening of another, more
dangerous file.

Generally, we recognize that executable files can be dangerous, text files are likely to be safe, and
files with some active content, such as .doc files, fall in between. If a file has no apparent file type
and will be opened by its built-in file handler, we are treading on dangerous ground. An attacker can
disguise a malicious active file under a nonobvious file type.

Bots

Bots, hackerese for robots, are pieces of malicious code under remote control. These code objects
are Trojan horses that are distributed to large numbers of victims' machines. Because they may not
interfere with or harm a user's computer (other than consuming computing and network resources),
they are often undetected.

Bots coordinate with each other and with their master through ordinary network channels, such as
Internet Relay Chat (IRC) channels or peer-to-peer networking (which has been used for sharing
music over the Internet). Structured as a loosely coordinated web, a network of bots, called a
botnet, is not subject to failure of any one bot or group of bots, and with multiple channels for



communication and coordination, they are highly resilient.

Botnets are used for distributed denial-of-service attacks, launching attacks from many sites in
parallel against a victim. They are also used for spam and other bulk email attacks, in which an
extremely large volume of e-mail from any one point might be blocked by the sending service
provider.

Complex Attacks

As if these vulnerabilities were not enough, two other phenomena multiply the risk. Scripts let
people perform attacks even if the attackers do not understand what the attack is or how it is
performed. Building blocks let people combine components of an attack, almost like building a
house from prefabricated parts.

Script Kiddies

Attacks can be scripted. A simple smurf denial-of-service attack is not hard to implement. But an
underground establishment has written scripts for many of the popular attacks. With a script,
attackers need not understand the nature of the attack or even the concept of a network. The
attackers merely download the attack script (no more difficult than downloading a newspaper story
from a list of headlines) and execute it. The script takes care of selecting an appropriate (that is,
vulnerable) victim and launching the attack.

The hacker community is active in creating scripts for known vulnerabilities. For example, within
three weeks of a CERT advisory for a serious SNMP vulnerability in February 2002 [CER02], scripts
had appeared. These scripts probed for the vulnerability's existence in specific brands and models of
network devices; then they executed attacks when a vulnerable host was found.

People who download and run attack scripts are called script kiddies. As the rather derogatory
name implies, script kiddies are not well respected in the attacker community because the damage
they do requires almost no creativity or innovation. Nevertheless, script kiddies can cause serious
damage, sometimes without even knowing what they do.

Building Blocks

This chapter's attack types do not form an exhaustive list, but they represent the kinds of
vulnerabilities being exploited, their sources, and their severity. A good attacker knows these
vulnerabilities and many more.

An attacker simply out to cause minor damage to a randomly selected site could use any of the
techniques we have described, perhaps under script control. A dedicated attacker who targets one
location can put together several pieces of an attack to compound the damage. Often, the attacks
are done in series so that each part builds on the information gleaned from previous attacks. For
example, a wiretapping attack may yield reconnaissance information with which to form an ActiveX
attack that transfers a Trojan horse that monitors for sensitive data in transmission. Putting the
attack pieces together like building blocks expands the number of targets and increases the degree
of damage.



Summary of Network Vulnerabilities

A network has many different vulnerabilities, but all derive from an underlying model of computer,
communications, and information systems security. Threats are raised against the key aspects of
security: confidentiality, integrity, and availability, as shown in Table 7-4.

Table 7-4. Network Vulnerabilities.

Target Vulnerability

Precursors to attack  

 

Port scan

Social engineering

Reconnaissance

OS and application fingerprinting

Authentication failures  

 

Impersonation

Guessing

Eavesdropping

Spoofing

Session hijacking

Man-in-the-middle attack

Programming flaws  

 

Buffer overflow

Addressing errors

Parameter modification, time-of-check to time-
of-use errors

Server-side include

Cookie



Target Vulnerability Cookie

Malicious active code: Java, ActiveX

Malicious code: virus, worm, Trojan horse

Malicious typed code

Confidentiality  

 

Protocol flaw

Eavesdropping

Passive wiretap

Misdelivery

Exposure within the network

Traffic flow analysis

Cookie

Integrity  

 

Protocol flaw

Active wiretap

Impersonation

Falsification of message

Noise

Web site defacement

DNS attack

Availability  

 

Protocol flaw

Transmission or component failure

Connection flooding, e.g., echo-chargen, ping
of death, smurf, syn flood

DNS attack

Cookie

Malicious active code: Java, ActiveX

Malicious code: virus, worm, Trojan horse

Malicious typed code

Confidentiality  

 

Protocol flaw

Eavesdropping

Passive wiretap

Misdelivery

Exposure within the network

Traffic flow analysis

Cookie

Integrity  

 

Protocol flaw

Active wiretap

Impersonation

Falsification of message

Noise

Web site defacement

DNS attack

Availability  

 

Protocol flaw

Transmission or component failure

Connection flooding, e.g., echo-chargen, ping
of death, smurf, syn flood

DNS attack



Target Vulnerability

Traffic redirection

Distributed denial of service

Traffic redirection

Distributed denial of service



7.3. Network Security Controls

The list of security attacks is long, and the news media carry frequent accounts of serious security
incidents. From these, you may be ready to conclude that network security is hopeless. Fortunately,
that is not the case. Previous chapters have presented several strategies for addressing security
concerns, such as encryption for confidentiality and integrity, reference monitors for access control,
and overlapping controls for defense in depth. These strategies are also useful in protecting
networks. This section presents many excellent defenses available to the network security engineer.
Subsequent sections provide detailed explanations for three particularly important controlsfirewalls,
intrusion detection systems, and encrypted e-mail.

Security Threat Analysis

Recall the three steps of a security threat analysis in other situations. First, we scrutinize all the
parts of a system so that we know what each part does and how it interacts with other parts. Next,
we consider possible damage to confidentiality, integrity, and availability. Finally, we hypothesize
the kinds of attacks that could cause this damage. We can take the same steps with a network. We
begin by looking at the individual parts of a network:

local nodes connected via

local communications links to a

local area network, which also has

local data storage,

local processes, and

local devices.

The local network is also connected to a

network gateway which gives access via

network communications links to

network control resources,

network routers, and

network resources, such as databases.

These functional needs are typical for network users. But now we look again at these parts, this
time conjuring up the negative effects threat agents can cause. We posit a malicious agentcall him



Hectorwho wants to attack networked communications between two users, Andy and Bo. What
might Hector do?

Read communications. The messages sent and received are exposed inside Andy's machine, at
all places through the network, and inside Bo's machine. Thus, a confidentiality attack can be
mounted from practically any place in the network.

Modify communications from Andy to Bo. Again, the messages are exposed at all places
through the network.

Forge communications allegedly from Andy to Bo. This action is even easier than modifying a
communication because a forgery can be inserted at any place in the network. It need not
originate with the ostensible sender, and it does not require that a communication be caught in
transit. Since Andy does not deliver his communications personally and since Bo might even
never have met Andy, Bo has little basis for judging whether a communication purportedly
sent by Andy is authentic.

Inhibit communications from Andy to Bo. Here again, Hector can achieve this result by
invading Andy's machine, Bo's machine, routers between them, or communications links. He
can also disrupt communications in general by flooding the network or disrupting any unique
path on the network.

Inhibit all communications passing through a point. If the point resides on a unique path to or
from a node, all traffic to or from that node is blocked. If the path is not unique, blocking it
shifts traffic to other nodes, perhaps overburdening them.

Read data at some machine C between Andy and Bo. Hector can impersonate Andy (who is
authorized to access data at C). Bo might question a message that seems out of character for
Andy, but machine C will nevertheless apply the access controls for Andy. Alternatively, Hector
can invade (run a program on) machine C to override access controls. Finally, he can search
the network for machines that have weak or improperly administered access controls.

Modify or destroy data at C. Here again, Hector can impersonate Andy and do anything Andy
could do. Similarly, Hector can try to circumvent controls.

We summarize these threats with a list:

intercepting data in traffic

accessing programs or data at remote hosts

modifying programs or data at remote hosts

modifying data in transit

inserting communications

impersonating a user

inserting a repeat of a previous communication

blocking selected traffic



blocking all traffic

running a program at a remote host

Why are all these attacks possible? Size, anonymity, ignorance, misunderstanding, complexity,
dedication, and programming all contribute. But we have help at hand; we look next at specific
threats and their countermeasures. Later in this chapter we investigate how these countermeasures
fit together into specific tools.

Design and Implementation

Throughout this book we have discussed good principles of system analysis, design,
implementation, and maintenance. Chapter 3, in particular, presented techniques that have been
developed by the software engineering community to improve requirements, design, and code
quality. Concepts from the work of the early trusted operating systems projects (presented in
Chapter 5) have natural implications for networks as well. And assurance, also discussed in Chapter
5, relates to networked systems. In general, the Open Web Applications project [OWA02, OWA05]
has documented many of the techniques people can use to develop secure web applications. Thus,
having addressed secure programming from several perspectives already, we do not belabor the
points now.

Architecture

As with so many of the areas we have studied, planning can be the strongest control. In particular,
when we build or modify computer-based systems, we can give some thought to their overall
architecture and plan to "build in" security as one of the key constructs. Similarly, the architecture
or design of a network can have a significant effect on its security.

Segmentation

Just as segmentation was a powerful security control in operating systems, it can limit the potential
for harm in a network in two important ways: Segmentation reduces the number of threats, and it
limits the amount of damage a single vulnerability can allow.

Assume your network implements electronic commerce for users of the Internet. The fundamental
parts of your network may be

a web server, to handle users' HTTP sessions

application code, to present your goods and services for purchase

a database of goods, and perhaps an accompanying inventory to the count of stock on hand
and being requested from suppliers

a database of orders taken

If all these activities were to run on one machine, your network would be in trouble: Any



compromise or failure of that machine would destroy your entire commerce capability.

A more secure design uses multiple segments, as shown in Figure 7-19. Suppose one piece of
hardware is to be a web server box exposed to access by the general public. To reduce the risk of
attack from outside the system, that box should not also have other, more sensitive, functions on it,
such as user authentication or access to a sensitive data repository. Separate segments and
serverscorresponding to the principles of least privilege and encapsulationreduce the potential harm
should any subsystem be compromised.

Figure 7-19. Segmented Architecture.

[View full size image]

Separate access is another way to segment the network. For example, suppose a network is being
used for three purposes: using the "live" production system, testing the next production version,
and developing subsequent systems. If the network is well segmented, external users should be
able to access only the live system, testers should access only the test system, and developers
should access only the development system. Segmentation permits these three populations to
coexist without risking that, for instance, a developer will inadvertently change the production
system.

Redundancy

Another key architectural control is redundancy: allowing a function to be performed on more than
one node, to avoid "putting all the eggs in one basket." For example, the design of Figure 7-19 has
only one web server; lose it and all connectivity is lost. A better design would have two servers,
using what is called failover mode. In failover mode the servers communicate with each other



periodically, each determining if the other is still active. If one fails, the other takes over processing
for both of them. Although performance is cut approximately in half when a failure occurs, at least
some processing is being done.

Single Points of Failure

Ideally, the architecture should make the network immune to failure. In fact, the architecture should
at least make sure that the system tolerates failure in an acceptable way (such as slowing down but
not stopping processing, or recovering and restarting incomplete transactions). One way to evaluate
the network architecture's tolerance of failure is to look for single points of failure. That is, we
should ask if there is a single point in the network that, if it were to fail, could deny access to all or
a significant part of the network. So, for example, a single database in one location is vulnerable to
all the failures that could affect that location. Good network design eliminates single points of
failure. Distributing the databaseplacing copies of it on different network segments, perhaps even in
different physical locationscan reduce the risk of serious harm from a failure at any one point. There
is often substantial overhead in implementing such a design; for example, the independent
databases must be synchronized. But usually we can deal with the failure-tolerant features more
easily than with the harm caused by a failed single link.

Architecture plays a role in implementing many other controls. We point out architectural features
as we introduce other controls throughout the remainder of this chapter.

Mobile Agents

Mobile code and hostile agents are potential methods of attack, as described earlier in this chapter.
However, they can also be forces for good. Good agents might look for unsecured wireless access,
software vulnerabilities, or embedded malicious code. Schneider and Zhou [SCH05] investigate
distributed trust, through a corps of communicating, state-sharing agents. The idea is
straightforward: Just as with soldiers, you know some agents will be stopped and others will be
subverted by the enemy, but some agents will remain intact. The corps can recover from Byzantine
failures [LAM82]. Schneider and Zhou propose a design in which no one agent is critical to the
overall success but the overall group can be trusted.

Encryption

Encryption is probably the most important and versatile tool for a network security expert. We have
seen in earlier chapters that encryption is powerful for providing privacy, authenticity, integrity, and
limited access to data. Because networks often involve even greater risks, they often secure data
with encryption, perhaps in combination with other controls.

Before we begin to study the use of encryption to counter network security threats, let us consider
these points. First, remember that encryption is not a panacea or silver bullet. A flawed system
design with encryption is still a flawed system design. Second, notice that encryption protects only
what is encrypted (which should be obvious but isn't). Data are exposed between a user's fingertips
and the encryption process before they are transmitted, and they are exposed again once they have
been decrypted on the remote end. The best encryption cannot protect against a malicious Trojan
horse that intercepts data before the point of encryption. Finally, encryption is no more secure than



its key management. If an attacker can guess or deduce a weak encryption key, the game is over.
People who do not understand encryption sometimes mistake it for fairy dust to sprinkle on a
system for magic protection. This book would not be needed if such fairy dust existed.

In network applications, encryption can be applied either between two hosts (called link encryption)
or between two applications (called end-to-end encryption). We consider each below. With either
form of encryption, key distribution is always a problem. Encryption keys must be delivered to the
sender and receiver in a secure manner. In this section, we also investigate techniques for safe key
distribution in networks. Finally, we study a cryptographic facility for a network computing
environment.

Link Encryption

In link encryption, data are encrypted just before the system places them on the physical
communications link. In this case, encryption occurs at layer 1 or 2 in the OSI model. (A similar
situation occurs with TCP/IP protocols.) Similarly, decryption occurs just as the communication
arrives at and enters the receiving computer. A model of link encryption is shown in Figure 7-20.

Figure 7-20. Link Encryption.

[View full size image]

Encryption protects the message in transit between two computers, but the message is in plaintext
inside the hosts. (A message in plaintext is said to be "in the clear.") Notice that because the
encryption is added at the bottom protocol layer, the message is exposed in all other layers of the
sender and receiver. If we have good physical security, we may not be too concerned about this
exposure; the exposure occurs on the sender's or receiver's host or workstation, protected by
alarms or locked doors, for example. Nevertheless, you should notice that the message is exposed
in two layers of all intermediate hosts through which the message may pass. This exposure occurs



because routing and addressing are not read at the bottom layer, but only at higher layers. The
message is in the clear in the intermediate hosts, and one of these hosts may not be especially
trustworthy.

Link encryption is invisible to the user. The encryption becomes a transmission service performed by
a low-level network protocol layer, just like message routing or transmission error detection. Figure
7-21 shows a typical link encrypted message, with the shaded fields encrypted. Because some of
the data link header and trailer is applied before the block is encrypted, part of each of those blocks
is shaded. As the message M is handled at each layer, header and control information is added on
the sending side and removed on the receiving side. Hardware encryption devices operate quickly
and reliably; in this case, link encryption is invisible to the operating system as well as to the
operator.

Figure 7-21. Message Under Link Encryption.

Link encryption is especially appropriate when the transmission line is the point of greatest
vulnerability. If all hosts on a network are reasonably secure but the communications medium is
shared with other users or is not secure, link encryption is an easy control to use.

End-to-End Encryption

As its name implies, end-to-end encryption provides security from one end of a transmission to
the other. The encryption can be applied by a hardware device between the user and the host.
Alternatively, the encryption can be done by software running on the host computer. In either case,
the encryption is performed at the highest levels (layer 7, application, or perhaps at layer 6,
presentation) of the OSI model. A model of end-to-end encryption is shown in Figure 7-22.

Figure 7-22. End-to-End Encryption.
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Since the encryption precedes all the routing and transmission processing of the layer, the message
is transmitted in encrypted form throughout the network. The encryption addresses potential flaws
in lower layers in the transfer model. If a lower layer should fail to preserve security and reveal data
it has received, the data's confidentiality is not endangered. Figure 7-23 shows a typical message
with end-to-end encryption, again with the encrypted field shaded.

Figure 7-23. End-to-End Encrypted Message.

When end-to-end encryption is used, messages sent through several hosts are protected. The data
content of the message is still encrypted, as shown in Figure 7-24, and the message is encrypted



(protected against disclosure) while in transit. Therefore, even though a message must pass
through potentially insecure nodes (such as C through G) on the path between A and B, the
message is protected against disclosure while in transit.

Figure 7-24. Encrypted Message Passing Through a Host.

Comparison of Encryption Methods

Simply encrypting a message is not absolute assurance that it will not be revealed during or after
transmission. In many instances, however, the strength of encryption is adequate protection,
considering the likelihood of the interceptor's breaking the encryption and the timeliness of the
message. As with many aspects of security, we must balance the strength of protection with the
likelihood of attack. (You will learn more about managing these risks in Chapter 8.)

With link encryption, encryption is invoked for all transmissions along a particular link. Typically, a
given host has only one link into a network, meaning that all network traffic initiated on that host
will be encrypted by that host. But this encryption scheme implies that every other host receiving
these communications must also have a cryptographic facility to decrypt the messages.
Furthermore, all hosts must share keys. A message may pass through one or more intermediate
hosts on the way to its final destination. If the message is encrypted along some links of a network
but not others, then part of the advantage of encryption is lost. Therefore, link encryption is usually
performed on all links of a network if it is performed at all.

By contrast, end-to-end encryption is applied to "logical links," which are channels between two
processes, at a level well above the physical path. Since the intermediate hosts along a transmission
path do not need to encrypt or decrypt a message, they have no need for cryptographic facilities.
Thus, encryption is used only for those messages and applications for which it is needed.
Furthermore, the encryption can be done with software, so we can apply it selectively, one



application at a time or even to one message within a given application.

The selective advantage of end-to-end encryption is also a disadvantage regarding encryption keys.
Under end-to-end encryption, there is a virtual cryptographic channel between each pair of users.
To provide proper security, each pair of users should share a unique cryptographic key. The number
of keys required is thus equal to the number of pairs of users, which is n * (n - 1)/2 for n users.
This number increases rapidly as the number of users increases. However, this count assumes that
single key encryption is used. With a public key system, only one pair of keys is needed per
recipient.

As shown in Table 7-5, link encryption is faster, easier for the user, and uses fewer keys. End-to-
end encryption is more flexible, can be used selectively, is done at the user level, and can be
integrated with the application. Neither form is right for all situations.

Table 7-5. Comparison of Link and End-to-End
Encryption.

Link Encryption End-to-End Encryption

Security within hosts

Data exposed in sending host Data encrypted in sending host

Data exposed in intermediate
nodes

Data encrypted in intermediate nodes

Role of user

Applied by sending host Applied by sending process

Invisible to user User applies encryption

Host maintains encryption User must find algorithm

One facility for all users User selects encryption

Typically done in hardware Either software or hardware implementation

All or no data encrypted User chooses to encrypt or not, for each data
item

Implementation concerns

Requires one key per host
pair

Requires one key per user pair

Provides node authentication Provides user authentication

In some cases, both forms of encryption can be applied. A user who does not trust the quality of the
link encryption provided by a system can apply end-to-end encryption as well. A system
administrator who is concerned about the security of an end-to-end encryption scheme applied by
an application program can also install a link encryption device. If both encryptions are relatively
fast, this duplication of security has little negative effect.



Virtual Private Networks

Link encryption can be used to give a network's users the sense that they are on a private network,
even when it is part of a public network. For this reason, the approach is called a virtual private
network (or VPN).

Typically, physical security and administrative security are strong enough to protect transmission
inside the perimeter of a network. Thus, the greatest exposure for a user is between the user's
workstation or client and the perimeter of the host network or server.

A firewall is an access control device that sits between two networks or two network segments. It
filters all traffic between the protected or "inside" network and a less trustworthy or "outside"
network or segment. (We examine firewalls in detail later in this chapter.)

Many firewalls can be used to implement a VPN. When a user first establishes a communication with
the firewall, the user can request a VPN session with the firewall. The user's client and the firewall
negotiate a session encryption key, and the firewall and the client subsequently use that key to
encrypt all traffic between the two. In this way, the larger network is restricted only to those given
special access by the VPN. In other words, it feels to the user that the network is private, even
though it is not. With the VPN, we say that the communication passes through an encrypted
tunnel or tunnel. Establishment of a VPN is shown in Figure 7-25.

Figure 7-25. Establishing a Virtual Private Network.

[View full size image]

Virtual private networks are created when the firewall interacts with an authentication service inside
the perimeter. The firewall may pass user authentication data to the authentication server and,
upon confirmation of the authenticated identity, the firewall provides the user with appropriate
security privileges. For example, a known trusted person, such as an employee or a system
administrator, may be allowed to access resources not available to general users. The firewall
implements this access control on the basis of the VPN. A VPN with privileged access is shown in



Figure 7-26. In that figure, the firewall passes to the internal server the (privileged) identity of User
2.

Figure 7-26. VPN to Allow Privileged Access

PKI and Certificates

A public key infrastructure, or PKI, is a process created to enable users to implement public key
cryptography, usually in a large (and frequently, distributed) setting. PKI offers each user a set of
services, related to identification and access control, as follows:

•. Create certificates associating a user's identity with a (public) cryptographic key

•. Give out certificates from its database

•. Sign certificates, adding its credibility to the authenticity of the certificate

•. Confirm (or deny) that a certificate is valid

•. Invalidate certificates for users who no longer are allowed access or whose private key has
been exposed

PKI is often considered to be a standard, but in fact it is a set of policies, products, and procedures
that leave some room for interpretation. (Housley and Polk [HOU01b] describe both the technical
parts and the procedural issues in developing a PKI.) The policies define the rules under which the
cryptographic systems should operate. In particular, the policies specify how to handle keys and
valuable information and how to match level of control to level of risk. The procedures dictate how
the keys should be generated, managed, and used. Finally, the products actually implement the
policies, and they generate, store, and manage the keys.



PKI sets up entities, called certificate authorities, that implement the PKI policy on certificates.
The general idea is that a certificate authority is trusted, so users can delegate the construction,
issuance, acceptance, and revocation of certificates to the authority, much as one would use a
trusted bouncer to allow only some people to enter a restricted nightclub. The specific actions of a
certificate authority include the following:

managing public key certificates for their whole life cycle

issuing certificates by binding a user's or system's identity to a public key with a digital
signature

scheduling expiration dates for certificates

ensuring that certificates are revoked when necessary by publishing certificate revocation lists

The functions of a certificate authority can be done in-house or by a commercial service or a trusted
third party.

PKI also involves a registration authority that acts as an interface between a user and a certificate
authority. The registration authority captures and authenticates the identity of a user and then
submits a certificate request to the appropriate certificate authority. In this sense, the registration
authority is much like the U.S. Postal Service; the postal service acts as an agent of the U.S. State
Department to enable U.S. citizens to obtain passports (official U.S. authentication) by providing the
appropriate forms, verifying identity, and requesting the actual passport (akin to a certificate) from
the appropriate passport-issuing office (the certificate authority). As with passports, the quality of
registration authority determines the level of trust that can be placed in the certificates that are
issued. PKI fits most naturally in a hierarchically organized, centrally controlled organization, such
as a government agency.

PKI efforts are under way in many countries to enable companies and government agencies to
implement PKI and interoperate. For example, a Federal PKI Initiative in the United States will
eventually allow any U.S. government agency to send secure communication to any other U.S.
government agency, when appropriate. The initiative also specifies how commercial PKI-enabled
tools should operate, so agencies can buy ready-made PKI products rather than build their own. The
European Union has a similar initiative (see www.europepki.org for more information.) Sidebar 7-8
describes the commercial use of PKI in a major U.K. bank. Major PKI solutions vendors include
Baltimore Technologies, Northern Telecom/Entrust, and Identrus.



Sidebar 7-8: Using PKI at Lloyd's Bank

Lloyd's TSB is a savings bank based in the United Kingdom. With 16 million customers
and over 2,000 branches, Lloyd's has 1.2 million registered Internet customers. In fact,
lloydstsb.com is the most visited financial web site in the United Kingdom [ACT02]. In
2002, Lloyd's implemented a pilot project using smart cards for online banking services.
Called the Key Online Banking (KOB) program, it is the first large-scale deployment of
smart-card-based PKI for Internet banking. Market research revealed that 75 percent of
the bank's clients found appealing the enhanced security offered by KOB.

To use KOB, customers insert the smart card into an ATM-like device and then supply a
unique PIN. Thus, authentication is a two-step approach required before any financial
transaction can be conducted. The smart card contains PKI key pairs and digital
certificates. When the customer is finished, he or she logs out and removes the smart
card to end the banking session.

According to Alan Woods, Lloyd's TSB's business banking director of distribution, "The
beauty of the Key Online Banking solution is that it reduces the risk of a business' digital
identity credentials from being exposed. This is becauseunlike standard PKI systemsthe
user's private key is not kept on their desktop but is issued, stored, and revoked on the
smart card itself. This Key Online Banking smart card is kept with the user at all times."

The benefits of this system are clear to customers, who can transact their business
more securely. But the bank has an added benefit as well. The use of PKI protects
issuing banks and financial institutions against liability under U.K. law.

Most PKI processes use certificates that bind identity to a key. But research is being done to expand
the notion of certificate to a broader characterization of credentials. For instance, a credit card
company may be more interested in verifying your financial status than your identity; a PKI scheme
may involve a certificate that is based on binding the financial status with a key. The Simple
Distributed Security Infrastructure (SDSI) takes this approach, including identity certificates, group
membership certificates, and name-binding certificates. As of this writing, there are drafts of two
related standards: ANSI standard X9.45 and the Simple Public Key Infrastructure (SPKI); the latter
has only a set of requirements and a certificate format.

PKI is close to but not yet a mature process. Many issues must be resolved, especially since PKI has
yet to be implemented commercially on a large scale. Table 7-6 lists several issues to be addressed
as we learn more about PKI. However, some things have become clear. First, the certificate
authority should be approved and verified by an independent body. The certificate authority's
private key should be stored in a tamper-resistant security module. Then, access to the certificate
and registration authorities should be tightly controlled, by means of strong user authentication
such as smart cards.

Table 7-6. Issues Relating to PKI.



Issue Questions

Flexibility How do we implement interoperability and stay consistent
with other PKI implementations?

Open, standard interfaces?

Compatible security policies?

How do we register certificates?

Face-to-face, e-mail, web, network?

Single or batch (e.g., national identity cards, bank
cards)?

Ease of use How do we train people to implement, use, maintain PKI?

How do we configure and integrate PKI?

How do we incorporate new users?

How do we do backup and disaster recovery?

Support for
security policy

How does PKI implement an organization's security policy?

Who has which responsibilities?

Scalability How do we add more users?

Add more applications?

Add more certificate authorities?

Add more registration authorities?

How do we expand certificate types?

How do we expand registration mechanisms?

The security involved in protecting the certificates involves administrative procedures. For example,
more than one operator should be required to authorize certification requests. Controls should be
put in place to detect hackers and prevent them from issuing bogus certificate requests. These
controls might include digital signatures and strong encryption. Finally, a secure audit trail is
necessary for reconstructing certificate information should the system fail and for recovering if a
hacking attack does indeed corrupt the authentication process.

SSH Encryption

SSH (secure shell) is a pair of protocols (versions 1 and 2), originally defined for Unix but also
available under Windows 2000, that provides an authenticated and encrypted path to the shell or



operating system command interpreter. Both SSH versions replace Unix utilities such as Telnet,
rlogin, and rsh for remote access. SSH protects against spoofing attacks and modification of data in
communication.

The SSH protocol involves negotiation between local and remote sites for encryption algorithm (for
example, DES, IDEA, AES) and authentication (including public key and Kerberos).

SSL Encryption

The SSL (Secure Sockets Layer) protocol was originally designed by Netscape to protect
communication between a web browser and server. It is also known now as TLS, for transport
layer security. SSL interfaces between applications (such as browsers) and the TCP/IP protocols to
provide server authentication, optional client authentication, and an encrypted communications
channel between client and server. Client and server negotiate a mutually supported suite of
encryption for session encryption and hashing; possibilities include triple DES and SHA1, or RC4
with a 128-bit key and MD5.

To use SSL, the client requests an SSL session. The server responds with its public key certificate so
that the client can determine the authenticity of the server. The client returns part of a symmetric
session key encrypted under the server's public key. Both the server and client compute the session
key, and then they switch to encrypted communication, using the shared session key.

The protocol is simple but effective, and it is the most widely used secure communication protocol
on the Internet. However, remember that SSL protects only from the client's browser to the server's
decryption point (which is often only to the server's firewall or, slightly stronger, to the computer
that runs the web application). Data are exposed from the user's keyboard to the browser and
throughout the recipient's company. Blue Gem Security has developed a product called LocalSSL
that encrypts data after it has been typed until the operating system delivers it to the client's
browser, thus thwarting any keylogging Trojan horse that has become implanted in the user's
computer to reveal everything the user types.

IPSec

As noted previously, the address space for the Internet is running out. As domain names and
equipment proliferate, the original, 30-year-old, 32-bit address structure of the Internet is filling up.
A new structure, called IPv6 (version 6 of the IP protocol suite), solves the addressing problem.
This restructuring also offered an excellent opportunity for the Internet Engineering Task Force
(IETF) to address serious security requirements.

As a part of the IPv6 suite, the IETF adopted IPSec, or the IP Security Protocol Suite. Designed
to address fundamental shortcomings such as being subject to spoofing, eavesdropping, and session
hijacking, the IPSec protocol defines a standard means for handling encrypted data. IPSec is
implemented at the IP layer, so it affects all layers above it, in particular TCP and UDP. Therefore,
IPSec requires no change to the existing large number of TCP and UDP protocols.

IPSec is somewhat similar to SSL, in that it supports authentication and confidentiality in a way that
does not necessitate significant change either above it (in applications) or below it (in the TCP
protocols). Like SSL, it was designed to be independent of specific cryptographic protocols and to
allow the two communicating parties to agree on a mutually supported set of protocols.



The basis of IPSec is what is called a security association, which is essentially the set of security
parameters for a secured communication channel. It is roughly comparable to an SSL session. A
security association includes

encryption algorithm and mode (for example, DES in block-chaining mode)

encryption key

encryption parameters, such as the initialization vector

authentication protocol and key

lifespan of the association, to permit long-running sessions to select a new cryptographic key
as often as needed

address of the opposite end of association

sensitivity level of protected data (usable for classified data)

A host, such as a network server or a firewall, might have several security associations in effect for
concurrent communications with different remote hosts. A security association is selected by a
security parameter index (SPI), a data element that is essentially a pointer into a table of
security associations.

The fundamental data structures of IPSec are the AH (authentication header) and the ESP
(encapsulated security payload). The ESP replaces (includes) the conventional TCP header and
data portion of a packet, as shown in Figure 7-27. The physical header and trailer depend on the
data link and physical layer communications medium, such as Ethernet.

Figure 7-27. Packets: (a) Conventional Packet; (b) IPSec Packet.

[View full size image]

The ESP contains both an authenticated portion and an encrypted portion, as shown in Figure 7-28.
The sequence number is incremented by one for each packet transmitted to the same address using
the same SPI, to preclude packet replay attacks. The payload data is the actual data of the packet.
Because some encryption or other security mechanisms require blocks of certain sizes, the padding



factor and padding length fields contain padding and the amount of padding to bring the payload
data to an appropriate length. The next header indicates the type of payload data. The
authentication field is used for authentication of the entire object.

Figure 7-28. Encapsulated Security Packet.

[View full size image]

As with most cryptographic applications, the critical element is key management. IPSec addresses
this need with ISAKMP or Internet Security Association Key Management Protocol . Like SSL,
ISAKMP requires that a distinct key be generated for each security association. The ISAKMP protocol
is simple, flexible, and scalable. In IPSec, ISAKMP is implemented through IKE or ISAKMP key
exchange. IKE provides a way to agree on and manage protocols, algorithms, and keys. For key
exchange between unrelated parties IKE uses the DiffieHellman scheme (also described in Chapter
2). In DiffieHellman, each of the two parties, X and Y, chooses a large prime and sends a number g
raised to the power of the prime to the other. That is, X sends gx and Y sends gy. They both raise
what they receive to the power they kept: Y raises gx to (gx)y and X raises gy to (gy)x, which are
both the same; voilà, they share a secret (gx)y = (gy)x. (The computation is slightly more
complicated, being done in a finite field mod(n), so an attacker cannot factor the secret easily.) With
their shared secret, the two parties now exchange identities and certificates to authenticate those
identities. Finally, they derive a shared cryptographic key and enter a security association.

The key exchange is very efficient: The exchange can be accomplished in two messages, with an
optional two more messages for authentication. Because this is a public key method, only two keys



are needed for each pair of communicating parties. IKE has submodes for authentication (initiation)
and for establishing new keys in an existing security association.

IPSec can establish cryptographic sessions with many purposes, including VPNs, applications, and
lower-level network management (such as routing). The protocols of IPSec have been published and
extensively scrutinized. Work on the protocols began in 1992. They were first published in 1995,
and they were finalized in 1998 (RFCs 24012409) [KEN98].

Signed Code

As we have seen, someone can place malicious active code on a web site to be downloaded by
unsuspecting users. Running with the privilege of whoever downloads it, such active code can do
serious damage, from deleting files to sending e-mail messages to fetching Trojan horses to
performing subtle and hard-to-detect mischief. Today's trend is to allow applications and updates to
be downloaded from central sites, so the risk of downloading something malicious is growing.

A partialnot completeapproach to reducing this risk is to use signed code. A trustworthy third party
appends a digital signature to a piece of code, supposedly connoting more trustworthy code. A
signature structure in a PKI helps to validate the signature.

Who might the trustworthy party be? A well-known manufacturer would be recognizable as a code
signer. But what of the small and virtually unknown manufacturer of a device driver or a code add-
in? If the code vendor is unknown, it does not help that the vendor signs its own code; miscreants
can post their own signed code, too.

In March 2001, Verisign announced it had erroneously issued two code-signing certificates under
the name of Microsoft Corp. to someone who purported to bebut was nota Microsoft employee.
These certificates were in circulation for almost two months before the error was detected. Even
after Verisign detected the error and canceled the certificates, someone would know the certificates
had been revoked only by checking Verisign's list. Most people would not question a code download
signed by Microsoft.

Encrypted E-mail

An electronic mail message is much like the back of a post card. The mail carrier (and everyone in
the postal system through whose hands the card passes) can read not just the address but also
everything in the message field. To protect the privacy of the message and routing information, we
can use encryption to protect the confidentiality of the message and perhaps its integrity.

As we have seen in several other applications, the encryption is the easy part; key management is
the more difficult issue. The two dominant approaches to key management are the use of a
hierarchical, certificate-based PKI solution for key exchange and the use of a flat, individual-to-
individual exchange method. The hierarchical method is called S/MIME and is employed by many
commercial mail-handling programs, such as Microsoft Exchange or Eudora. The individual method
is called PGP and is a commercial add-on. We look more carefully at encrypted e-mail in a later
section of this chapter.

Content Integrity



Content integrity comes as a bonus with cryptography. No one can change encrypted data in a
meaningful way without breaking the encryption. This does not say, however, that encrypted data
cannot be modified. Changing even one bit of an encrypted data stream affects the result after
decryption, often in a way that seriously alters the resulting plaintext. We need to consider three
potential threats:

malicious modification that changes content in a meaningful way

malicious or nonmalicious modification that changes content in a way that is not necessarily
meaningful

nonmalicious modification that changes content in a way that will not be detected

Encryption addresses the first of these threats very effectively. To address the others, we can use
other controls.

Error Correcting Codes

We can use error detection and error correction codes to guard against modification in a
transmission. The codes work as their names imply: Error detection codes detect when an error has
occurred, and error correction codes can actually correct errors without requiring retransmission of
the original message. The error code is transmitted along with the original data, so the recipient can
recompute the error code and check whether the received result matches the expected value.

The simplest error detection code is a parity check. An extra bit is added to an existing group of
data bits depending on their sum or an exclusive OR. The two kinds of parity are called even and
odd. With even parity the extra bit is 0 if the sum of the data bits is even and 1 if the sum is odd;
that is, the parity bit is set so that the sum of all data bits plus the parity bit is even. Odd parity is
the same except the sum is odd. For example, the data stream 01101101 would have an even
parity bit of 1 (and an odd parity bit of 0) because 0+1+1+0+1+1+0+1 = 5 + 1 = 6 (or 5 + 0 = 5
for odd parity). A parity bit can reveal the modification of a single bit. However, parity does not
detect two-bit errorscases in which two bits in a group are changed. That is, the use of a parity bit
relies on the assumption that single-bit errors will occur infrequently, so it is very unlikely that two
bits would be changed. Parity signals only that a bit has been changed; it does not identify which bit
has been changed.

There are other kinds of error detection codes, such as hash codes and Huffman codes. Some of
the more complex codes can detect multiple-bit errors (two or more bits changed in a data group)
and may be able to pinpoint which bits have been changed.

Parity and simple error detection and correction codes are used to detect nonmalicious changes in
situations in which there may be faulty transmission equipment, communications noise and
interference, or other sources of spurious changes to data.

Cryptographic Checksum

Malicious modification must be handled in a way that prevents the attacker from modifying the error
detection mechanism as well as the data bits themselves. One way to do this is to use a technique



that shrinks and transforms the data, according to the value of the data bits.

To see how such an approach might work, consider an error detection code as a many-to-one
transformation. That is, any error detection code reduces a block of data to a smaller digest whose
value depends on each bit in the block. The proportion of reduction (that is, the ratio of original size
of the block to transformed size) relates to the code's effectiveness in detecting errors. If a code
reduces an 8-bit data block to a 1-bit result, then half of the 28 input values map to 0 and half to 1,
assuming a uniform distribution of outputs. In other words, there are 28/2 = 27 = 128 different bit
patterns that all produce the same 1-bit result. The fewer inputs that map to a particular output, the
fewer ways the attacker can change an input value without affecting its output. Thus, a 1-bit result
is too weak for many applications. If the output is three bits instead of one, then each output result
comes from 28/23 or 25 = 32 inputs. The smaller number of inputs to a given output is important for
blocking malicious modification.

A cryptographic checksum (sometimes called a message digest) is a cryptographic function that
produces a checksum. The cryptography prevents the attacker from changing the data block (the
plaintext) and also changing the checksum value (the ciphertext) to match. Two major uses of
cryptographic checksums are code tamper protection and message integrity protection in transit.
For code protection, a system administrator computes the checksum of each program file on a
system and then later computes new checksums and compares the values. Because executable code
usually does not change, the administrator can detect unanticipated changes from, for example,
malicious code attacks. Similarly, a checksum on data in communication identifies data that have
been changed in transmission, maliciously or accidentally.

Strong Authentication

As we have seen in earlier chapters, operating systems and database management systems enforce
a security policy that specifies whowhich individuals, groups, subjectscan access which resources
and objects. Central to that policy is authentication: knowing and being assured of the accuracy of
identities.

Networked environments need authentication, too. In the network case, however, authentication
may be more difficult to achieve securely because of the possibility of eavesdropping and
wiretapping, which are less common in nonnetworked environments. Also, both ends of a
communication may need to be authenticated to each other: Before you send your password across
a network, you want to know that you are really communicating with the remote host you expect.
Lampson [LAM00] presents the problem of authentication in autonomous, distributed systems; the
real problem, he points out, is how to develop trust of network entities with which you have no basis
for a relationship. Let us look more closely at authentication methods appropriate for use in
networks.

One-Time Password

The wiretap threat implies that a password could be intercepted from a user who enters a password
across an unsecured network. A one-time password can guard against wiretapping and spoofing of a
remote host.

As the name implies, a one-time password is good for one use only. To see how it works, consider
the easiest case, in which the user and host both have access to identical lists of passwords, like the



one-time pad for cryptography from Chapter 2. The user would enter the first password for the first
login, the next one for the next login, and so forth. As long as the password lists remained secret
and as long as no one could guess one password from another, a password obtained through
wiretapping would be useless. However, as with the one-time cryptographic pads, humans have
trouble maintaining these password lists.

To address this problem, we can use a password token, a device that generates a password that
is unpredictable but that can be validated on the receiving end. The simplest form of password
token is a synchronous one, such as the SecurID device from RSA Security, Inc. This device displays
a random number, generating a new number every minute. Each user is issued a different device
(that generates a different random number sequence). The user reads the number from the device's
display and types it in as a one-time password. The computer on the receiving end executes the
algorithm to generate the password appropriate for the current minute; if the user's password
matches the one computed remotely, the user is authenticated. Because the devices may get out of
alignment if one clock runs slightly faster than the other, these devices use fairly natural rules to
account for minor drift.

What are the advantages and disadvantages of this approach? First, it is easy to use. It largely
counters the possibility of a wiretapper reusing a password. With a strong password-generating
algorithm, it is immune to spoofing. However, the system fails if the user loses the generating
device or, worse, if the device falls into an attacker's hands. Because a new password is generated
only once a minute, there is a small (one-minute) window of vulnerability during which an
eavesdropper can reuse an intercepted password.

ChallengeResponse Systems

To counter the loss and reuse problems, a more sophisticated one-time password scheme uses
challenge and response, as we first studied in Chapter 4. A challenge and response device looks like
a simple pocket calculator. The user first authenticates to the device, usually by means of a PIN.
The remote system sends a random number, called the "challenge," which the user enters into the
device. The device responds to that number with another number, which the user then transmits to
the system.

The system prompts the user with a new challenge for each use. Thus, this device eliminates the
small window of vulnerability in which a user could reuse a time-sensitive authenticator. A generator
that falls into the wrong hands is useless without the PIN. However, the user must always have the
response generator to log in, and a broken device denies service to the user. Finally, these devices
do not address the possibility of a rogue remote host.

Digital Distributed Authentication

In the 1980s, Digital Equipment Corporation recognized the problem of needing to authenticate
nonhuman entities in a computing system. For example, a process might retrieve a user query,
which it then reformats, perhaps limits, and submits to a database manager. Both the database
manager and the query processor want to be sure that a particular communication channel is
authentic between the two. Neither of these servers is running under the direct control or
supervision of a human (although each process was, of course, somehow initiated by a human).
Human forms of access control are thus inappropriate.



Digital [GAS89, GAS90] created a simple architecture for this requirement, effective against the
following threats:

impersonation of a server by a rogue process, for either of the two servers involved in the
authentication

interception or modification of data exchanged between servers

replay of a previous authentication

The architecture assumes that each server has its own private key and that the corresponding public
key is available to or held by every other process that might need to establish an authenticated
channel. To begin an authenticated communication between server A and server B, A sends a
request to B, encrypted under B's public key. B decrypts the request and replies with a message
encrypted under A's public key. To avoid replay, A and B can append a random number to the
message to be encrypted.

A and B can establish a private channel by one of them choosing an encryption key (for a secret key
algorithm) and sending it to the other in the authenticating message. Once the authentication is
complete, all communication under that secret key can be assumed to be as secure as was the
original dual public key exchange. To protect the privacy of the channel, Gasser recommends a
separate cryptographic processor, such as a smart card, so that private keys are never exposed
outside the processor.

Two implementation difficulties remain to be solved: (a) How can a potentially large number of
public keys be distributed and (b) how can the public keys be distributed in a way that ensures the
secure binding of a process with the key? Digital recognized that a key server (perhaps with multiple
replications) was necessary to distribute keys. The second difficulty is addressed with certificates
and a certification hierarchy, as described in Chapter 2.

Both of these design decisions are to a certain degree implied by the nature of the rest of the
protocol. A different approach was taken by Kerberos, as we see in the following sections.

Kerberos

As we introduced in Chapter 4, Kerberos is a system that supports authentication in distributed
systems. Originally designed to work with secret key encryption, Kerberos, in its latest version, uses
public key technology to support key exchange. The Kerberos system was designed at
Massachusetts Institute of Technology [STE88, KOH93].

Kerberos is used for authentication between intelligent processes, such as client-to-server tasks, or
a user's workstation to other hosts. Kerberos is based on the idea that a central server provides
authenticated tokens, called tickets, to requesting applications. A ticket is an unforgeable,
nonreplayable, authenticated object. That is, it is an encrypted data structure naming a user and a
service that user is allowed to obtain. It also contains a time value and some control information.

The first step in using Kerberos is to establish a session with the Kerberos server, as shown in
Figure 7-29. A user's workstation sends the user's identity to the Kerberos server when a user logs
in. The Kerberos server verifies that the user is authorized. The Kerberos server sends two
messages:



1. to the user's workstation, a session key SG for use in communication with the ticket-granting
server (G) and a ticket TG for the ticket-granting server; SG is encrypted under the user's
password: E(SG + TG, pw)[4]

[4] In Kerberos version 5, only SG is encrypted; in Kerberos version 4, both the session key and the ticket
were encrypted when returned to the user.

2. to the ticket-granting server, a copy of the session key SG and the identity of the user
(encrypted under a key shared between the Kerberos server and the ticket-granting server)

Figure 7-29. Initiating a Kerberos Session.

If the workstation can decrypt E(SG + TG, pw) by using pw, the password typed by the user, then
the user has succeeded in an authentication with the workstation.

Notice that passwords are stored at the Kerberos server, not at the workstation, and that the user's
password did not have to be passed across the network, even in encrypted form. Holding passwords
centrally but not passing them across the network is a security advantage.

Next, the user will want to exercise some other services of the distributed system, such as accessing
a file. Using the key SG provided by the Kerberos server, the user U requests a ticket to access file F
from the ticket-granting server. As shown in Figure 7-30, after the ticket-granting server verifies U's
access permission, it returns a ticket and a session key. The ticket contains U's authenticated
identity (in the ticket U obtained from the Kerberos server), an identification of F (the file to be
accessed), the access rights (for example, to read), a session key SF for the file server to use while
communicating this file to U, and an expiration date for the ticket. The ticket is encrypted under a
key shared exclusively between the ticket-granting server and the file server. This ticket cannot be
read, modified, or forged by the user U (or anyone else). The ticket-granting server must, therefore,
also provide U with a copy of SF, the session key for the file server. Requests for access to other
services and servers are handled similarly.



Figure 7-30. Obtaining a Ticket to Access a File.

Kerberos was carefully designed to withstand attacks in distributed environments:

No passwords communicated on the network. As already described, a user's password is stored
only at the Kerberos server. The user's password is not sent from the user's workstation when
the user initiates a session. (Obviously, a user's initial password must be sent outside the
network, such as in a letter.)

Cryptographic protection against spoofing. Each access request is mediated by the ticket-
granting server, which knows the identity of the requester, based on the authentication
performed initially by the Kerberos server and on the fact that the user was able to present a
request encrypted under a key that had been encrypted under the user's password.

Limited period of validity. Each ticket is issued for a limited time period; the ticket contains a
timestamp with which a receiving server will determine the ticket's validity. In this way, certain
long-term attacks, such as brute force cryptanalysis, will usually be neutralized because the
attacker will not have time to complete the attack.

Timestamps to prevent replay attacks. Kerberos requires reliable access to a universal clock.
Each user's request to a server is stamped with the time of the request. A server receiving a
request compares this time to the current time and fulfills the request only if the time is
reasonably close to the current time. This time-checking prevents most replay attacks, since
the attacker's presentation of the ticket will be delayed too long.

Mutual authentication. The user of a service can be assured of any server's authenticity by
requesting an authenticating response from the server. The user sends a ticket to a server and
then sends the server a request encrypted under the session key for that server's service; the
ticket and the session key were provided by the ticket-granting server. The server can decrypt
the ticket only if it has the unique key it shares with the ticket-granting server. Inside the
ticket is the session key, which is the only means the server has of decrypting the user's
request. If the server can return to the user a message encrypted under this same session key



but containing 1 + the user's timestamp, the server must be authentic. Because of this mutual
authentication, a server can provide a unique channel to a user and the user may not need to
encrypt communications on that channel to ensure continuous authenticity. Avoiding
encryption saves time in the communication.

Kerberos is not a perfect answer to security problems in distributed systems.

Kerberos requires continuous availability of a trusted ticket-granting server. Because the
ticket-granting server is the basis of access control and authentication, constant access to that
server is crucial. Both reliability (hardware or software failure) and performance (capacity and
speed) problems must be addressed.

Authenticity of servers requires a trusted relationship between the ticket-granting server and
every server. The ticket-granting server must share a unique encryption key with each
"trustworthy" server. The ticket-granting server (or that server's human administrator) must
be convinced of the authenticity of that server. In a local environment, this degree of trust is
warranted. In a widely distributed environment, an administrator at one site can seldom justify
trust in the authenticity of servers at other sites.

Kerberos requires timely transactions. To prevent replay attacks, Kerberos limits the validity of
a ticket. A replay attack could succeed during the period of validity, however. And setting the
period fairly is hard: Too long increases the exposure to replay attacks, while too short
requires prompt user actions and risks providing the user with a ticket that will not be honored
when presented to a server. Similarly, subverting a server's clock allows reuse of an expired
ticket.

A subverted workstation can save and later replay user passwords. This vulnerability exists in
any system in which passwords, encryption keys, or other constant, sensitive information is
entered in the clear on a workstation that might be subverted.

Password guessing works. A user's initial ticket is returned under the user's password. An
attacker can submit an initial authentication request to the Kerberos server and then try to
decrypt the response by guessing at the password.

Kerberos does not scale well. The architectural model of Kerberos, shown in Figure 7-31,
assumes one Kerberos server and one ticket-granting server, plus a collection of other servers,
each of which shares a unique key with the ticket-granting server. Adding a second ticket-
granting server, for example, to enhance performance or reliability, would require duplicate
keys or a second set for all servers. Duplication increases the risk of exposure and complicates
key updates, and second keys more than double the work for each server to act on a ticket.

Kerberos is a complete solution. All applications must use Kerberos authentication and access
control. Currently, few applications use Kerberos authentication, and so integration of Kerberos
into an existing environment requires modification of existing applications, which is not
feasible.

Figure 7-31. Access to Services and Servers in Kerberos.

[View full size image]



Access Controls

Authentication deals with the who of security policy enforcement; access controls enforce the what
and how.

ACLs on Routers

Routers perform the major task of directing network traffic either to subnetworks they control or to
other routers for subsequent delivery to other subnetworks. Routers convert external IP addresses
into internal MAC addresses of hosts on a local subnetwork.

Suppose a host is being spammed (flooded) with packets from a malicious rogue host. Routers can
be configured with access control lists to deny access to particular hosts from particular hosts. So, a
router could delete all packets with a source address of the rogue host and a destination address of
the target host.

This approach has three problems, however. First, routers in large networks perform a lot of work:
They have to handle every packet coming into and going out of the network. Adding ACLs to the
router requires the router to compare every packet against the ACLs. One ACL adds work, degrading
the router's performance; as more ACLs are added, the router's performance may become
unacceptable. The second problem is also an efficiency issue: Because of the volume of work they
perform, routers are designed to perform only essential services. Logging of activity is usually not
done on a router because of the volume of traffic and the performance penalty logging would entail.
With ACLs, it would be useful to know how many packets were being deleted, to know if a particular



ACL could be removed (thereby improving performance). But without logging it is impossible to
know whether an ACL is being used. These two problems together imply that ACLs on routers are
most effective against specific known threats but that they should not be used indiscriminately.

The final limitation on placing ACLs on routers concerns the nature of the threat. A router inspects
only source and destination addresses. An attacker usually does not reveal an actual source
address. To reveal the real source address would be equivalent to a bank robber's leaving his home
address and a description of where he plans to store the stolen money.

Because someone can easily forge any source address on a UDP datagram, many attacks use UDP
protocols with false source addresses so that the attack cannot be blocked easily by a router with an
ACL. Router ACLs are useful only if the attacker sends many datagrams with the same forged source
address.

In principle, a router is an excellent point of access control because it handles every packet coming
into and going out of a subnetwork. In specific situations, primarily for internal subnetworks, ACLs
can be used effectively to restrict certain traffic flows, for example, to ensure that only certain hosts
(addresses) have access to an internal network management subnetwork. But for large-scale,
general traffic screening, routers are less useful than firewalls.

Firewalls

A firewall does the screening that is less appropriate for a router to do. A router's primary function
is addressing, whereas a firewall's primary function is filtering. Firewalls can also do auditing. Even
more important, firewalls can examine an entire packet's contents, including the data portion,
whereas a router is concerned only with source and destination MAC and IP addresses. Because
they are an extremely important network security control, we study firewalls in an entire section
later in this chapter.

Wireless Security

Because wireless computing is so exposed, it requires measures to protect communications between
a computer (called the client) and a wireless base station or access point. Remembering that all
these communications are on predefined radio frequencies, you can expect an eavesdropping
attacker to try to intercept and impersonate. Pieces to protect are finding the access point,
authenticating the remote computer to the access point, and vice versa, and protecting the
communication stream.

SSID

As described earlier in this chapter, the Service Set Identifier or SSID is the identification of an
access point; it is a string of up to 32 characters. Obviously the SSIDs need to be unique in a given
area to distinguish one wireless network from another. The factory-installed default for early
versions of wireless access points was not unique, such as "wireless," "tsunami" or "Linksys" (a
brand name); now most factory defaults are a serial number unique to the device.

A client and an access point engage in a handshake to locate each other: Essentially the client says,
"I am looking to connect to access point S" and the access point says, "I am access point S; connect



to me." The order of these two steps is important. In what is called "open mode," an access point
can continually broadcast its appeal, indicating that it is open for the next step in establishing a
connection. Open mode is a poor security practice because it advertises the name of an access point
to which an attacker might attach. "Closed" or "stealth mode" reverses the order of the protocol:
The client must send a signal seeking an access point with a particular SSID before the access point
responds to that one query with an invitation to connect.

But closed mode does not prevent knowledge of the SSID. The initial exchange "looking for S," "I
am S" occurs in the clear and is available to anyone who uses a sniffer to intercept wireless
communications in range. Thus, anyone who sniffs the SSID can save the SSID (which is seldom
changed in practice) to use later.

WEP

The second step in securing a wireless communication involves use of encryption. The original
802.11 wireless standard relied upon a cryptographic protocol called wired equivalent privacy or
WEP. WEP was meant to provide users privacy equivalent to that of a dedicated wire, that is,
immunity to most eavesdropping and impersonation attacks. WEP uses an encryption key shared
between the client and the access point. To authenticate a user, the access point sends a random
number to the client, which the client encrypts using the shared key and returns to the access point.
From that point on, the client and access point are authenticated and can communicate using their
shared encryption key. Several problems exist with this seemingly simple approach.

First, the WEP standard uses either a 64- or 128-bit encryption key. The user enters the key in any
convenient form, usually in hexadecimal or as an alphanumeric string that is converted to a
number. Entering 64 or 128 bits in hex requires choosing and then typing 16 or 32 symbols
correctly for the client and access point. Not surprisingly, hex strings like C0DE C0DE… (that is a
zero between C and D) are common. Passphrases are vulnerable to a dictionary attack.

Even if the key is strong, it really has an effective length of only 40 or 104 bits because of the way it
is used in the algorithm. A brute force attack against a 40-bit key succeeds quickly. Even for the
104-bit version, flaws in the RC4 algorithm and its use (see [BOR01, FLU01, and ARB02]) defeat
WEP security. Several tools, starting with WEPCrack and AirSnort, allow an attacker to crack a WEP
encryption, usually in a few minutes. At a 2005 conference, the FBI demonstrated the ease with
which a WEP-secured wireless session can be broken.

For these reasons, in 2001 the IEEE began design of a new authentication and encryption scheme
for wireless. Unfortunately, some wireless devices still on the market allow only the false security of
WEP.

WPA and WPA2

The alternative to WEP is WiFi Protected Access or WPA, approved in 2003. The IEEE standard
802.11i is now known as WPA2, approved in 2004, and is an extension of WPA. How does WPA
improve upon WEP?

First, WEP uses an encryption key that is unchanged until the user enters a new key at the client
and access point. Cryptologists hate unchanging encryption keys because a fixed key gives the
attacker a large amount of ciphertext to try to analyze and plenty of time in which to analyze it.



WPA has a key change approach, called Temporal Key Integrity Program (TKIP), by which the
encryption key is changed automatically on each packet.

Second, WEP uses the encryption key as an authenticator, albeit insecurely. WPA employs the
extensible authentication protocol (EAP) by which authentication can be done by password, token,
certificate, or other mechanism. For small network (home) users, this probably still means a shared
secret, which is not ideal. Users are prone to selecting weak keys, such as short numbers or pass
phrases subject to a dictionary attack.

The encryption algorithm for WEP is RC4, which has cryptographic flaws both in key length and
design [ARB02]. In WEP the initialization vector for RC4 is only 24 bits, a size so small that collisions
commonly occur; furthermore, there is no check against initialization vector reuse. WPA2 adds AES
as a possible encryption algorithm (although RC4 is also still supported for compatibility reasons).

WEP includes a 32-bit integrity check separate from the data portion. But because the WEP
encryption is subject to cryptanalytic attack [FLU01], the integrity check was also subject, so an
attacker could modify content and the corresponding check without having to know the associated
encryption key [BOR01]. WPA includes a 64-bit integrity check that is encrypted.

The setup protocol for WPA and WPA2 is much more robust than that for WEP. Setup for WPA
involves three protocol steps: authentication, a four-way handshake (to ensure that the client can
generate cryptographic keys and to generate and install keys for both encryption and integrity on
both ends), and an optional group key handshake (for multicast communication.) A good overview
of the WPA protocols is in [LEH05].

WPA and WPA2 address the security deficiencies known in WEP. Arazi et al. [ARA05] make a strong
case for public key cryptography in wireless sensor networks, and a similar argument can be made
for other wireless applications (although the heavier computation demands of public key encryption
is a limiting factor on wireless devices with limited processor capabilities.)

Alarms and Alerts

The logical view of network protection looks like Figure 7-32, in which both a router and a firewall
provide layers of protection for the internal network. Now let us add one more layer to this defense.

Figure 7-32. Layered Network Protection.
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An intrusion detection system is a device that is placed inside a protected network to monitor
what occurs within the network. If an attacker passes through the router and passes through the
firewall, an intrusion detection system offers the opportunity to detect the attack at the beginning,
in progress, or after it has occurred. Intrusion detection systems activate an alarm, which can take
defensive action. We study intrusion detection systems in more detail later in this chapter.

Honeypots

How do you catch a mouse? You set a trap with bait (food the mouse finds attractive) and catch the
mouse after it is lured into the trap. You can catch a computer attacker the same way.

In a very interesting book, Cliff Stoll [STO89] details the story of attracting and monitoring the
actions of an attacker. Cheswick [CHE90, CHE02] and Bellovin [BEL92c] tell a similar story. These
two cases describe the use of a honeypot: a computer system open to attackers.

You put up a honeypot for several reasons:

to watch what attackers do, in order to learn about new attacks (so that you can strengthen
your defenses against these new attacks)

to lure an attacker to a place in which you may be able to learn enough to identify and stop
the attacker

to provide an attractive but diversionary playground, hoping that the attacker will leave your
real system alone

A honeypot has no special features. It is just a computer system or a network segment, loaded with
servers and devices and data. It may be protected with a firewall, although you want the attackers
to have some access. There may be some monitoring capability, done carefully so that the
monitoring is not evident to the attacker.

The two difficult features of a honeypot are putting up a believable, attractive false environment and
confining and monitoring the attacker surreptitiously. Spitzner [SPI02, SPI03a] has done extensive
work developing and analyzing honeypots. He thinks like the attacker, figuring what the attacker will
want to see in an invaded computer, but as McCarty [MCC03] points out, it is always a race between
attacker and defender. Spitzner also tries to move much of his data off the target platform so that
the attacker will not be aware of the analysis and certainly not be able to modify or erase the data
gathered. Raynal [RAY04a. RAY04b] discusses how to analyze the data collected.

Traffic Flow Security

So far, we have looked at controls that cover the most common network threats: cryptography for
eavesdropping, authentication methods for impersonation, intrusion detection systems for attacks in
progress, architecture for structural flaws. Earlier in this chapter, we listed threats, including a
threat of traffic flow inference. If the attacker can detect an exceptional volume of traffic between
two points, the attacker may infer the location of an event about to occur.

The countermeasure to traffic flow threats is to disguise the traffic flow. One way to disguise traffic



flow, albeit costly and perhaps crude, is to ensure a steady volume of traffic between two points. If
traffic between A and B is encrypted so that the attacker can detect only the number of packets
flowing, A and B can agree to pass recognizable (to them) but meaningless encrypted traffic. When
A has much to communicate to B, there will be few meaningless packets; when communication is
light, A will pad the traffic stream with many spurious packets.

A more sophisticated approach to traffic flow security is called onion routing [SYV97]. Consider a
message that is covered in multiple layers, like the layers of an onion. A wants to send a message
to B but doesn't want anyone in or intercepting traffic on the network to know A is communicating
with B. So A takes the message to B, wraps it in a package for D to send to B. Then, A wraps that
package in another package for C to send to D. Finally, A sends this package to C. This process is
shown in Figure 7-33. The internal wrappings are all encrypted under a key appropriate for the
intermediate recipient.

Figure 7-33. Onion Routing.

Receiving the package, C knows it came from A, although C does not know if A is the originator or
an intermediate point. C then unwraps the outer layer and sees it should be sent to D. At this point,
C cannot know if D is the final recipient or merely an intermediary. C sends the message to D, who
unwraps the next layer. D knows neither where the package originally came from nor where its final
destination is. D forwards the package to B, its ultimate recipient.

With this scheme, any intermediate recipientsthose other than the original sender and ultimate
receiverknow neither where the package originated nor where it will end up. This scheme provides
confidentiality of content, source, destination, and routing.

Controls Review



At the end of our earlier discussion on threats in networks, we listed in Table 7-4 many of the
vulnerabilities present in networks. Now that we have surveyed the controls available for networks,
we repeat that table as Table 7-7, adding a column to show the controls that can protect against
each vulnerability. (Note: This table is not exhaustive; other controls can be used against some of
the vulnerabilities.)

Table 7-7. Network Vulnerabilities and Controls.

Target Vulnerability Control

Precursors to
attack

   

 

Port scan Firewall

Intrusion detection system

Running as few services as
possible

Services that reply with only
what is necessary

 

Social
engineering

Education, user awareness

Policies and procedures

Systems in which two people
must agree to perform certain
security-critical functions

 

Reconnaissance Firewall

"Hardened" (self-defensive)
operating system and
applications

Intrusion detection system

 

OS and
application
fingerprinting

Firewall

"Hardened" (self-defensive)
applications

Programs that reply with only



Target Vulnerability Control Programs that reply with only
what is necessary

Intrusion detection system

Authentication
failures

   

 

Impersonation Strong, one-time authentication

 

Guessing Strong, one-time authentication

Education, user awareness

 

Eavesdropping Strong, one-time authentication

Encrypted authentication
channel

 

Spoofing Strong, one-time authentication

 

Session hijacking Strong, one-time authentication

Encrypted authentication
channel

Virtual private network

 

Man-in-the-
middle attack

Strong, one-time authentication

Virtual private network

Protocol analysis

Programming
flaws

   

 

Buffer overflow Programming controls

Intrusion detection system

Controlled execution
environment

Programs that reply with only
what is necessary

Intrusion detection system

Authentication
failures

   

 

Impersonation Strong, one-time authentication

 

Guessing Strong, one-time authentication

Education, user awareness

 

Eavesdropping Strong, one-time authentication

Encrypted authentication
channel

 

Spoofing Strong, one-time authentication

 

Session hijacking Strong, one-time authentication

Encrypted authentication
channel

Virtual private network

 

Man-in-the-
middle attack

Strong, one-time authentication

Virtual private network

Protocol analysis

Programming
flaws

   

 

Buffer overflow Programming controls

Intrusion detection system

Controlled execution
environment



Target Vulnerability Control

Personal firewall

 

Addressing
errors

Programming controls

Intrusion detection system

Controlled execution
environment

Personal firewall

Two-way authentication

 

Parameter
modification,
time-of-check to
time-of-use
errors

Programming controls

Intrusion detection system

Controlled execution
environment

Intrusion detection system

Personal firewall

Server-side
include

Programming controls

Personal firewall

Controlled execution
environment

Intrusion detection system

 

Cookie Firewall

Intrusion detection system

Controlled execution
environment

Personal firewall

 

Malicious active
code: Java,
ActiveX

Intrusion detection system

Programming controls

Personal firewall

 

Addressing
errors

Programming controls

Intrusion detection system

Controlled execution
environment

Personal firewall

Two-way authentication

 

Parameter
modification,
time-of-check to
time-of-use
errors

Programming controls

Intrusion detection system

Controlled execution
environment

Intrusion detection system

Personal firewall

Server-side
include

Programming controls

Personal firewall

Controlled execution
environment

Intrusion detection system

 

Cookie Firewall

Intrusion detection system

Controlled execution
environment

Personal firewall

 

Malicious active
code: Java,
ActiveX

Intrusion detection system

Programming controls



Target Vulnerability Control

Signed code

 

Malicious code:
virus, worm,
Trojan horse

Intrusion detection system

Signed code

Controlled execution
environment
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As Table 7-7 shows, network security designers have many successful tools at their disposal. Some
of these, such as encryption, access control and authentication, and programming controls, are
familiar from previous chapters in this book.

But three are specific to networked settings, and we explore them now in greater depth: firewalls,
intrusion detection systems, and encrypted e-mail. Firewalls control traffic flow into and out of
protected network segments. Intrusion detection systems monitor traffic within a network to spot
potential attacks under way or about to occur. And encrypted email uses encryption to enhance the
confidentiality or authenticity of e-mail messages.

 

Traffic
redirection

Encryption

Audit

 

Distributed
denial of service

Firewall

Intrusion detection system

ACL on border router

Honeypot

As Table 7-7 shows, network security designers have many successful tools at their disposal. Some
of these, such as encryption, access control and authentication, and programming controls, are
familiar from previous chapters in this book.

But three are specific to networked settings, and we explore them now in greater depth: firewalls,
intrusion detection systems, and encrypted e-mail. Firewalls control traffic flow into and out of
protected network segments. Intrusion detection systems monitor traffic within a network to spot
potential attacks under way or about to occur. And encrypted email uses encryption to enhance the
confidentiality or authenticity of e-mail messages.



7.4. Firewalls

Firewalls were officially invented in the early 1990s, but the concept really reflects the reference
monitor (described in Chapter 5) from two decades earlier. The first reference to a firewall by that
name may be [RAN92]; other early references to firewalls are the Trusted Information Systems
firewall toolkit [RAN94] and the book by Cheswick and Bellovin [updated as CHE02].

What Is a Firewall?

A firewall is a device that filters all traffic between a protected or "inside" network and a less
trustworthy or "outside" network. Usually a firewall runs on a dedicated device; because it is a
single point through which traffic is channeled, performance is important, which means nonfirewall
functions should not be done on the same machine. Because a firewall is executable code, an
attacker could compromise that code and execute from the firewall's device. Thus, the fewer pieces
of code on the device, the fewer tools the attacker would have by compromising the firewall.
Firewall code usually runs on a proprietary or carefully minimized operating system.

The purpose of a firewall is to keep "bad" things outside a protected environment. To accomplish
that, firewalls implement a security policy that is specifically designed to address what bad things
might happen. For example, the policy might be to prevent any access from outside (while still
allowing traffic to pass from the inside to the outside). Alternatively, the policy might permit
accesses only from certain places, from certain users, or for certain activities. Part of the challenge
of protecting a network with a firewall is determining which security policy meets the needs of the
installation.

People in the firewall community (users, developers, and security experts) disagree about how a
firewall should work. In particular, the community is divided about a firewall's default behavior. We
can describe the two schools of thought as "that which is not expressly forbidden is permitted"
(default permit) and "that which is not expressly permitted is forbidden" (default deny). Users,
always interested in new features, prefer the former. Security experts, relying on several decades of
experience, strongly counsel the latter. An administrator implementing or configuring a firewall must
choose one of the two approaches, although the administrator can often broaden the policy by
setting the firewall's parameters.

Design of Firewalls

Remember from Chapter 5 that a reference monitor must be

always invoked

tamperproof

small and simple enough for rigorous analysis



A firewall is a special form of reference monitor. By carefully positioning a firewall within a network,
we can ensure that all network accesses that we want to control must pass through it. This
restriction meets the "always invoked" condition. A firewall is typically well isolated, making it highly
immune to modification. Usually a firewall is implemented on a separate computer, with direct
connections only to the outside and inside networks. This isolation is expected to meet the
"tamperproof" requirement. And firewall designers strongly recommend keeping the functionality of
the firewall simple.

Types of Firewalls

Firewalls have a wide range of capabilities. Types of firewalls include

packet filtering gateways or screening routers

stateful inspection firewalls

application proxies

guards

personal firewalls

Each type does different things; no one is necessarily "right" and the others "wrong." In this section,
we examine each type to see what it is, how it works, and what its strengths and weaknesses are.
In general, screening routers tend to implement rather simplistic security policies, whereas guards
and proxy gateways have a richer set of choices for security policy. Simplicity in a security policy is
not a bad thing; the important question to ask when choosing a type of firewall is what threats an
installation needs to counter.

Because a firewall is a type of host, it often is as programmable as a good-quality workstation.
While a screening router can be fairly primitive, the tendency is to host even routers on complete
computers with operating systems because editors and other programming tools assist in
configuring and maintaining the router. However, firewall developers are minimalists: They try to
eliminate from the firewall all that is not strictly necessary for the firewall's functionality. There is a
good reason for this minimal constraint: to give as little assistance as possible to a successful
attacker. Thus, firewalls tend not to have user accounts so that, for example, they have no
password file to conceal. Indeed, the most desirable firewall is one that runs contentedly in a back
room; except for periodic scanning of its audit logs, there is seldom reason to touch it.

Packet Filtering Gateway

A packet filtering gateway or screening router is the simplest, and in some situations, the most
effective type of firewall. A packet filtering gateway controls access to packets on the basis of
packet address (source or destination) or specific transport protocol type (such as HTTP web traffic).
As described earlier in this chapter, putting ACLs on routers may severely impede their
performance. But a separate firewall behind (on the local side) of the router can screen traffic
before it gets to the protected network. Figure 7-34 shows a packet filter that blocks access from (or
to) addresses in one network; the filter allows HTTP traffic but blocks traffic using the Telnet



protocol.

Figure 7-34. Packet Filter Blocking Addresses and Protocols.

[View full size image]

For example, suppose an international company has three LANs at three locations throughout the
world, as shown in Figure 7-35. In this example, the router has two sides: inside and outside. We
say that the local LAN is on the inside of the router, and the two connections to distant LANs
through wide area networks are on the outside. The company might want communication only
among the three LANs of the corporate network. It could use a screening router on the LAN at
100.24.4.0 to allow in only communications destined to the host at 100.24.4.0 and to allow out only
communications addressed either to address 144.27.5.3 or 192.19.33.0.

Figure 7-35. Three Connected LANs.



Packet filters do not "see inside" a packet; they block or accept packets solely on the basis of the IP
addresses and ports. Thus, any details in the packet's data field (for example, allowing certain
Telnet commands while blocking other services) is beyond the capability of a packet filter.

Packet filters can perform the very important service of ensuring the validity of inside addresses.
Inside hosts typically trust other inside hosts for all the reasons described as characteristics of LANs.
But the only way an inside host can distinguish another inside host is by the address shown in the
source field of a message. Source addresses in packets can be forged, so an inside application might
think it was communicating with another host on the inside instead of an outside forger. A packet
filter sits between the inside network and the outside net, so it can know if a packet from the
outside is forging an inside address, as shown in Figure 7-36. A screening packet filter might be
configured to block all packets from the outside that claimed their source address was an inside
address. In this example, the packet filter blocks all packets claiming to come from any address of
the form 100.50.25.x (but, of course, it permits in any packets with destination 100.50.25.x).

Figure 7-36. Filter Screening Outside Addresses.



The primary disadvantage of packet filtering routers is a combination of simplicity and complexity.
The router's inspection is simplistic; to perform sophisticated filtering, the filtering rules set needs to
be very detailed. A detailed rules set will be complex and therefore prone to error. For example,
blocking all port 23 traffic (Telnet) is simple and straightforward. But if some Telnet traffic is to be
allowed, each IP address from which it is allowed must be specified in the rules; in this way, the rule
set can become very long.

Stateful Inspection Firewall

Filtering firewalls work on packets one at a time, accepting or rejecting each packet and moving on
to the next. They have no concept of "state" or "context" from one packet to the next. A stateful
inspection firewall maintains state information from one packet to another in the input stream.

One classic approach used by attackers is to break an attack into multiple packets by forcing some
packets to have very short lengths so that a firewall cannot detect the signature of an attack split
across two or more packets. (Remember that with the TCP protocols, packets can arrive in any
order, and the protocol suite is responsible for reassembling the packet stream in proper order
before passing it along to the application.) A stateful inspection firewall would track the sequence of
packets and conditions from one packet to another to thwart such an attack.

Application Proxy

Packet filters look only at the headers of packets, not at the data inside the packets. Therefore, a
packet filter would pass anything to port 25, assuming its screening rules allow inbound connections
to that port. But applications are complex and sometimes contain errors. Worse, applications (such
as the e-mail delivery agent) often act on behalf of all users, so they require privileges of all users
(for example, to store incoming mail messages so that inside users can read them). A flawed
application, running with all users' privileges, can cause much damage.

An application proxy gateway, also called a bastion host, is a firewall that simulates the
(proper) effects of an application so that the application receives only requests to act properly. A
proxy gateway is a two-headed device: It looks to the inside as if it is the outside (destination)
connection, while to the outside it responds just as the insider would.



An application proxy runs pseudoapplications. For instance, when electronic mail is transferred to a
location, a sending process at one site and a receiving process at the destination communicate by a
protocol that establishes the legitimacy of a mail transfer and then actually transfers the mail
message. The protocol between sender and destination is carefully defined. A proxy gateway
essentially intrudes in the middle of this protocol exchange, seeming like a destination in
communication with the sender that is outside the firewall, and seeming like the sender in
communication with the real destination on the inside. The proxy in the middle has the opportunity
to screen the mail transfer, ensuring that only acceptable e-mail protocol commands are sent to the
destination.

As an example of application proxying, consider the FTP (file transfer) protocol. Specific protocol
commands fetch (get) files from a remote location, store (put) files onto a remote host, list files (ls)
in a directory on a remote host, and position the process (cd) at a particular point in a directory tree
on a remote host. Some administrators might want to permit gets but block puts, and to list only
certain files or prohibit changing out of a particular directory (so that an outsider could retrieve only
files from a prespecified directory). The proxy would simulate both sides of this protocol exchange.
For example, the proxy might accept get commands, reject put commands, and filter the local
response to a request to list files.

To understand the real purpose of a proxy gateway, let us consider several examples.

A company wants to set up an online price list so that outsiders can see the products and
prices offered. It wants to be sure that (a) no outsider can change the prices or product list
and (b) outsiders can access only the price list, not any of the more sensitive files stored
inside.

A school wants to allow its students to retrieve any information from World Wide Web
resources on the Internet. To help provide efficient service, the school wants to know what
sites have been visited and what files from those sites have been fetched; particularly popular
files will be cached locally.

A government agency wants to respond to queries through a database management system.
However, because of inference attacks against databases, the agency wants to restrict queries
that return the mean of a set of fewer than five values.

A company with multiple offices wants to encrypt the data portion of all e-mail to addresses at
its other offices. (A corresponding proxy at the remote end will remove the encryption.)

A company wants to allow dial-in access by its employees, without exposing its company
resources to login attacks from remote nonemployees.

Each of these requirements can be met with a proxy. In the first case, the proxy would monitor the
file transfer protocol data to ensure that only the price list file was accessed, and that file could only
be read, not modified. The school's requirement could be met by a logging procedure as part of the
web browser. The agency's need could be satisfied by a special-purpose proxy that interacted with
the database management system, performing queries but also obtaining the number of values
from which the response was computed and adding a random minor error term to results from small
sample sizes. The requirement for limited login could be handled by a specially written proxy that
required strong user authentication (such as a challengeresponse system), which many operating
systems do not require. These functions are shown in Figure 7-37.



Figure 7-37. Actions of Firewall Proxies.
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The proxies on the firewall can be tailored to specific requirements, such as logging details about
accesses. They can even present a common user interface to what may be dissimilar internal
functions. Suppose the internal network has a mixture of operating system types, none of which
support strong authentication through a challengeresponse token. The proxy can demand strong
authentication (name, password, and challengeresponse), validate the challengeresponse itself, and
then pass on only simple name and password authentication details in the form required by a
specific internal host's operating system.

The distinction between a proxy and a screening router is that the proxy interprets the protocol
stream to an application, to control actions through the firewall on the basis of things visible within
the protocol, not just on external header data.

Guard

A guard is a sophisticated firewall. Like a proxy firewall, it receives protocol data units, interprets
them, and passes through the same or different protocol data units that achieve either the same
result or a modified result. The guard decides what services to perform on the user's behalf in
accordance with its available knowledge, such as whatever it can reliably know of the (outside)
user's identity, previous interactions, and so forth. The degree of control a guard can provide is
limited only by what is computable. But guards and proxy firewalls are similar enough that the
distinction between them is sometimes fuzzy. That is, we can add functionality to a proxy firewall
until it starts to look a lot like a guard.



Guard activities can be quite sophisticated, as illustrated in the following examples:

A university wants to allow its students to use e-mail up to a limit of so many messages or so
many characters of e-mail in the last so many days. Although this result could be achieved by
modifying e-mail handlers, it is more easily done by monitoring the common point through
which all e-mail flows, the mail transfer protocol.

A school wants its students to be able to access the World Wide Web but, because of the slow
speed of its connection to the web, it will allow only so many characters per downloaded image
(that is, allowing text mode and simple graphics, but disallowing complex graphics, animation,
music, or the like).

A library wants to make available certain documents but, to support fair use of copyrighted
matter, it will allow a user to retrieve only the first so many characters of a document. After
that amount, the library will require the user to pay a fee that will be forwarded to the author.

A company wants to allow its employees to fetch files via ftp. However, to prevent introduction
of viruses, it will first pass all incoming files through a virus scanner. Even though many of
these files will be nonexecutable text or graphics, the company administrator thinks that the
expense of scanning them (which should pass) will be negligible.

Each of these scenarios can be implemented as a modified proxy. Because the proxy decision is
based on some quality of the communication data, we call the proxy a guard. Since the security
policy implemented by the guard is somewhat more complex than the action of a proxy, the guard's
code is also more complex and therefore more exposed to error. Simpler firewalls have fewer
possible ways to fail or be subverted.

Personal Firewalls

Firewalls typically protect a (sub)network of multiple hosts. University students and employees in
offices are behind a real firewall. Increasingly, home users, individual workers, and small businesses
use cable modems or DSL connections with unlimited, always-on access. These people need a
firewall, but a separate firewall computer to protect a single workstation can seem too complex and
expensive. These people need a firewall's capabilities at a lower price.

A personal firewall is an application program that runs on a workstation to block unwanted traffic,
usually from the network. A personal firewall can complement the work of a conventional firewall by
screening the kind of data a single host will accept, or it can compensate for the lack of a regular
firewall, as in a private DSL or cable modem connection.

Just as a network firewall screens incoming and outgoing traffic for that network, a personal firewall
screens traffic on a single workstation. A workstation could be vulnerable to malicious code or
malicious active agents (ActiveX controls or Java applets), leakage of personal data stored on the
workstation, and vulnerability scans to identify potential weaknesses. Commercial implementations
of personal firewalls include Norton Personal Firewall from Symantec, McAfee Personal Firewall, and
Zone Alarm from Zone Labs (now owned by CheckPoint).

The personal firewall is configured to enforce some policy. For example, the user may decide that
certain sites, such as computers on the company network, are highly trustworthy, but most other
sites are not. The user defines a policy permitting download of code, unrestricted data sharing, and



management access from the corporate segment, but not from other sites. Personal firewalls can
also generate logs of accesses, which can be useful to examine in case something harmful does slip
through the firewall.

Combining a virus scanner with a personal firewall is both effective and efficient. Typically, users
forget to run virus scanners daily, but they do remember to run them occasionally, such as
sometime during the week. However, leaving the virus scanner execution to the user's memory
means that the scanner detects a problem only after the factsuch as when a virus has been
downloaded in an e-mail attachment. With the combination of a virus scanner and a personal
firewall, the firewall directs all incoming e-mail to the virus scanner, which examines every
attachment the moment it reaches the target host and before it is opened.

A personal firewall runs on the very computer it is trying to protect. Thus, a clever attacker is likely
to attempt an undetected attack that would disable or reconfigure the firewall for the future. Still,
especially for cable modem, DSL, and other "always on" connections, the static workstation is a
visible and vulnerable target for an ever-present attack community. A personal firewall can provide
reasonable protection to clients that are not behind a network firewall.

Comparison of Firewall Types

We can summarize the differences among the several types of firewalls we have studied in depth.
The comparisons are shown in Table 7-8.

Table 7-8. Comparison of Firewall Types.
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Example Firewall Configurations

Let us look at several examples to understand how to use firewalls. We present situations designed
to show how a firewall complements a sensible security policy and architecture.

The simplest use of a firewall is shown in Figure 7-38. This environment has a screening router
positioned between the internal LAN and the outside network connection. In many cases, this
installation is adequate when we need only screen the address of a router.

Figure 7-38. Firewall with Screening Router.

However, to use a proxy machine, this organization is not ideal. Similarly, configuring a router for a
complex set of approved or rejected addresses is difficult. If the firewall router is successfully
attacked, then all traffic on the LAN to which the firewall is connected is visible. To reduce this
exposure, a proxy firewall is often installed on its own LAN, as shown in Figure 7-39. In this way the
only traffic visible on that LAN is the traffic going into and out of the firewall.

Figure 7-39. Firewall on Separate LAN.
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For even more protection, we can add a screening router to this configuration, as shown in Figure 7-
40. Here, the screening router ensures address correctness to the proxy firewall (so that the proxy
firewall cannot be fooled by an outside attacker forging an address from an inside host); the proxy
firewall filters traffic according to its proxy rules. Also, if the screening router is subverted, only the
traffic to the proxy firewall is visiblenot any of the sensitive information on the internal protected
LAN.

Figure 7-40. Firewall with Proxy and Screening Router.

Although these examples are simplifications, they show the kinds of configurations firewalls protect.
Next, we review the kinds of attacks against which firewalls can and cannot protect.

What Firewalls Canand CannotBlock

As we have seen, firewalls are not complete solutions to all computer security problems. A firewall
protects only the perimeter of its environment against attacks from outsiders who want to execute
code or access data on the machines in the protected environment. Keep in mind these points about
firewalls.

Firewalls can protect an environment only if the firewalls control the entire perimeter. That is,
firewalls are effective only if no unmediated connections breach the perimeter. If even one



inside host connects to an outside address, by a modem for example, the entire inside net is
vulnerable through the modem and its host.

Firewalls do not protect data outside the perimeter; data that have properly passed (outbound)
through the firewall are just as exposed as if there were no firewall.

Firewalls are the most visible part of an installation to the outside, so they are the most
attractive target for attack. For this reason, several different layers of protection, called
defense in depth, are better than relying on the strength of just a single firewall.

Firewalls must be correctly configured, that configuration must be updated as the internal and
external environment changes, and firewall activity reports must be reviewed periodically for
evidence of attempted or successful intrusion.

Firewalls are targets for penetrators. While a firewall is designed to withstand attack, it is not
impenetrable. Designers intentionally keep a firewall small and simple so that even if a
penetrator breaks it, the firewall does not have further tools, such as compilers, linkers,
loaders, and the like, to continue an attack.

Firewalls exercise only minor control over the content admitted to the inside, meaning that
inaccurate data or malicious code must be controlled by other means inside the perimeter.

Firewalls are important tools in protecting an environment connected to a network. However, the
environment must be viewed as a whole, all possible exposures must be considered, and the firewall
must fit into a larger, comprehensive security strategy. Firewalls alone cannot secure an
environment.



7.5. Intrusion Detection Systems

After the perimeter controls, firewall, and authentication and access controls block certain actions,
some users are admitted to use a computing system. Most of these controls are preventive: They
block known bad things from happening. Many studies (for example, see [DUR99]) have shown that
most computer security incidents are caused by insiders, people who would not be blocked by a
firewall. And insiders require access with significant privileges to do their daily jobs. The vast
majority of harm from insiders is not malicious; it is honest people making honest mistakes. Then,
too, there are the potential malicious outsiders who have somehow passed the screens of firewalls
and access controls. Prevention, although necessary, is not a complete computer security control;
detection during an incident copes with harm that cannot be prevented in advance. Halme and
Bauer [HAL95] survey the range of controls to address intrusions.

Intrusion detection systems complement these preventive controls as the next line of defense. An
intrusion detection system (IDS) is a device, typically another separate computer, that monitors
activity to identify malicious or suspicious events. Kemmerer and Vigna [KEM02] survey the history
of IDSs. An IDS is a sensor, like a smoke detector, that raises an alarm if specific things occur. A
model of an IDS is shown in Figure 7-41. The components in the figure are the four basic elements
of an intrusion detection system, based on the Common Intrusion Detection Framework of [STA96].
An IDS receives raw inputs from sensors. It saves those inputs, analyzes them, and takes some
controlling action.

Figure 7-41. Common Components of an Intrusion Detection Framework.



IDSs perform a variety of functions:

monitoring users and system activity

auditing system configuration for vulnerabilities and misconfigurations

assessing the integrity of critical system and data files

recognizing known attack patterns in system activity

identifying abnormal activity through statistical analysis

managing audit trails and highlighting user violation of policy or normal activity

correcting system configuration errors

installing and operating traps to record information about intruders

No one IDS performs all of these functions. Let us look more closely at the kinds of IDSs and their
use in providing security.

Types of IDSs

The two general types of intrusion detection systems are signature based and heuristic. Signature-
based intrusion detection systems perform simple pattern-matching and report situations that
match a pattern corresponding to a known attack type. Heuristic intrusion detection systems, also



known as anomaly based, build a model of acceptable behavior and flag exceptions to that model;
for the future, the administrator can mark a flagged behavior as acceptable so that the heuristic IDS
will now treat that previously unclassified behavior as acceptable.

Intrusion detection devices can be network based or host based. A network-based IDS is a stand-
alone device attached to the network to monitor traffic throughout that network; a host-based IDS
runs on a single workstation or client or host, to protect that one host.

Early intrusion detection systems (for example, [DEN87b, LUN90a, FOX90, LIE89]) worked after the
fact, by reviewing logs of system activity to spot potential misuses that had occurred. The
administrator could review the results of the IDS to find and fix weaknesses in the system. Now,
however, intrusion detection systems operate in real time (or near real time), watching activity and
raising alarms in time for the administrator to take protective action.

Signature-Based Intrusion Detection

A simple signature for a known attack type might describe a series of TCP SYN packets sent to many
different ports in succession and at times close to one another, as would be the case for a port scan.
An intrusion detection system would probably find nothing unusual in the first SYN, say, to port 80,
and then another (from the same source address) to port 25. But as more and more ports receive
SYN packets, especially ports that are not open, this pattern reflects a possible port scan. Similarly,
some implementations of the protocol stack fail if they receive an ICMP packet with a data length of
65535 bytes, so such a packet would be a pattern for which to watch.

The problem with signature-based detection is the signatures themselves. An attacker will try to
modify a basic attack in such a way that it will not match the known signature of that attack. For
example, the attacker may convert lowercase to uppercase letters or convert a symbol such as
"blank space" to its character code equivalent %20. The IDS must necessarily work from a canonical
form of the data stream in order to recognize that %20 matches a pattern with a blank space. The
attacker may insert malformed packets that the IDS will see, to intentionally cause a pattern
mismatch; the protocol handler stack will discard the packets because of the malformation. Each of
these variations could be detected by an IDS, but more signatures require additional work for the
IDS, which reduces performance.

Of course, signature-based IDSs cannot detect a new attack for which a signature is not yet
installed in the database. Every attack type starts as a new pattern at some time, and the IDS is
helpless to warn of its existence.

Signature-based intrusion detection systems tend to use statistical analysis. This approach uses
statistical tools both to obtain sample measurements of key indicators (such as amount of external
activity, number of active processes, number of transactions) and to determine whether the
collected measurements fit the predetermined attack signatures.

Ideally, signatures should match every instance of an attack, match subtle variations of the attack,
but not match traffic that is not part of an attack. However, this goal is grand but unreachable.

Heuristic Intrusion Detection

Because signatures are limited to specific, known attack patterns, another form of intrusion
detection becomes useful. Instead of looking for matches, heuristic intrusion detection looks for



behavior that is out of the ordinary. The original work in this area (for example, [TEN90]) focused
on the individual, trying to find characteristics of that person that might be helpful in understanding
normal and abnormal behavior. For example, one user might always start the day by reading e-
mail, write many documents using a word processor, and occasionally back up files. These actions
would be normal. This user does not seem to use many administrator utilities. If that person tried to
access sensitive system management utilities, this new behavior might be a clue that someone else
was acting under the user's identity.

If we think of a compromised system in use, it starts clean, with no intrusion, and it ends dirty, fully
compromised. There may be no point in the trace of use in which the system changed from clean to
dirty; it was more likely that little dirty events occurred, occasionally at first and then increasing as
the system became more deeply compromised. Any one of those events might be acceptable by
itself, but the accumulation of them and the order and speed at which they occurred could have
been signals that something unacceptable was happening. The inference engine of an intrusion
detection system performs continuous analysis of the system, raising an alert when the system's
dirtiness exceeds a threshold.

Inference engines work in two ways. Some, called state-based intrusion detection systems, see the
system going through changes of overall state or configuration. They try to detect when the system
has veered into unsafe modes. Others try to map current activity onto a model of unacceptable
activity and raise an alarm when the activity resembles the model. These are called model-based
intrusion detection systems. This approach has been extended to networks in [MUK94]. Later work
(for example, [FOR96, LIN99]) sought to build a dynamic model of behavior, to accommodate
variation and evolution in a person's actions over time. The technique compares real activity with a
known representation of normality.

Alternatively, intrusion detection can work from a model of known bad activity. For example, except
for a few utilities (login, change password, create user), any other attempt to access a password file
is suspect. This form of intrusion detection is known as misuse intrusion detection. In this work,
the real activity is compared against a known suspicious area.

All heuristic intrusion detection activity is classified in one of three categories: good/benign,
suspicious, or unknown. Over time, specific kinds of actions can move from one of these categories
to another, corresponding to the IDS's learning whether certain actions are acceptable or not.

As with pattern-matching, heuristic intrusion detection is limited by the amount of information the
system has seen (to classify actions into the right category) and how well the current actions fit into
one of these categories.

Stealth Mode

An IDS is a network device (or, in the case of a host-based IDS, a program running on a network
device). Any network device is potentially vulnerable to network attacks. How useful would an IDS
be if it itself were deluged with a denial-of-service attack? If an attacker succeeded in logging in to a
system within the protected network, wouldn't trying to disable the IDS be the next step?

To counter those problems, most IDSs run in stealth mode, whereby an IDS has two network
interfaces: one for the network (or network segment) being monitored and the other to generate
alerts and perhaps other administrative needs. The IDS uses the monitored interface as input only;
it never sends packets out through that interface. Often, the interface is configured so that the
device has no published address through the monitored interface; that is, a router cannot route



anything to that address directly, because the router does not know such a device exists. It is the
perfect passive wiretap. If the IDS needs to generate an alert, it uses only the alarm interface on a
completely separate control network. Such an architecture is shown in Figure 7-42.

Figure 7-42. Stealth Mode IDS Connected to Two Networks.

Other IDS Types

Some security engineers consider other devices to be IDSs as well. For instance, to detect
unacceptable code modification, programs can compare the active version of a software code with a
saved version of a digest of that code. The tripwire program [KIM98] is the most well known
software (or static data) comparison program. You run tripwire on a new system, and it generates a
hash value for each file; then you save these hash values in a secure place (offline, so that no
intruder can modify them while modifying a system file). If you later suspect your system may have
been compromised, you rerun tripwire, providing it the saved hash values. It recomputes the hash
values and reports any mismatches, which would indicate files that were changed.

System vulnerability scanners, such as ISS Scanner or Nessus, can be run against a network. They
check for known vulnerabilities and report flaws found.

As we have seen, a honeypot is a faux environment intended to lure an attacker. It can be
considered an IDS, in the sense that the honeypot may record an intruder's actions and even
attempt to trace who the attacker is from actions, packet data, or connections.



Goals for Intrusion Detection Systems

The two styles of intrusion detectionpattern matching and heuristicrepresent different approaches,
each of which has advantages and disadvantages. Actual IDS products often blend the two
approaches.

Ideally, an IDS should be fast, simple, and accurate, while at the same time being complete. It
should detect all attacks with little performance penalty. An IDS could use someor allof the following
design approaches:

Filter on packet headers

Filter on packet content

Maintain connection state

Use complex, multipacket signatures

Use minimal number of signatures with maximum effect

Filter in real time, online

Hide its presence

Use optimal sliding time window size to match signatures

Responding to Alarms

Whatever the type, an intrusion detection system raises an alarm when it finds a match. The alarm
can range from something modest, such as writing a note in an audit log, to something significant,
such as paging the system security administrator. Particular implementations allow the user to
determine what action the system should take on what events.

What are possible responses? The range is unlimited and can be anything the administrator can
imagine (and program). In general, responses fall into three major categories (any or all of which
can be used in a single response):

Monitor, collect data, perhaps increase amount of data collected

Protect, act to reduce exposure

Call a human

Monitoring is appropriate for an attack of modest (initial) impact. Perhaps the real goal is to watch
the intruder, to see what resources are being accessed or what attempted attacks are tried. Another
monitoring possibility is to record all traffic from a given source for future analysis. This approach
should be invisible to the attacker. Protecting can mean increasing access controls and even making
a resource unavailable (for example, shutting off a network connection or making a file unavailable).
The system can even sever the network connection the attacker is using. In contrast to monitoring,



protecting may be very visible to the attacker. Finally, calling a human allows individual
discrimination. The IDS can take an initial defensive action immediately while also generating an
alert to a human who may take seconds, minutes, or longer to respond.

False Results

Intrusion detection systems are not perfect, and mistakes are their biggest problem. Although an
IDS might detect an intruder correctly most of the time, it may stumble in two different ways: by
raising an alarm for something that is not really an attack (called a false positive, or type I error in
the statistical community) or not raising an alarm for a real attack (a false negative, or type II
error). Too many false positives means the administrator will be less confident of the IDS's
warnings, perhaps leading to a real alarm's being ignored. But false negatives mean that real
attacks are passing the IDS without action. We say that the degree of false positives and false
negatives represents the sensitivity of the system. Most IDS implementations allow the
administrator to tune the system's sensitivity, to strike an acceptable balance between false
positives and negatives.

IDS Strengths and Limitations

Intrusion detection systems are evolving products. Research began in the mid-1980s and products
had appeared by the mid-1990s. However, this area continues to change as new research influences
the design of products.

On the upside, IDSs detect an ever-growing number of serious problems. And as we learn more
about problems, we can add their signatures to the IDS model. Thus, over time, IDSs continue to
improve. At the same time, they are becoming cheaper and easier to administer.

On the downside, avoiding an IDS is a first priority for successful attackers. An IDS that is not well
defended is useless. Fortunately, stealth mode IDSs are difficult even to find on an internal network,
let alone to compromise.

IDSs look for known weaknesses, whether through patterns of known attacks or models of normal
behavior. Similar IDSs may have identical vulnerabilities, and their selection criteria may miss
similar attacks. Knowing how to evade a particular model of IDS is an important piece of intelligence
passed within the attacker community. Of course, once manufacturers become aware of a
shortcoming in their products, they try to fix it. Fortunately, commercial IDSs are pretty good at
identifying attacks.

Another IDS limitation is its sensitivity, which is difficult to measure and adjust. IDSs will never be
perfect, so finding the proper balance is critical.

A final limitation is not of IDSs per se, but is one of use. An IDS does not run itself; someone has to
monitor its track record and respond to its alarms. An administrator is foolish to buy and install an
IDS and then ignore it.

In general, IDSs are excellent additions to a network's security. Firewalls block traffic to particular
ports or addresses; they also constrain certain protocols to limit their impact. But by definition,
firewalls have to allow some traffic to enter a protected area. Watching what that traffic actually
does inside the protected area is an IDS's job, which it does quite well.





7.6. Secure E-Mail

The final control we consider in depth is secure e-mail. Think about how much you use e-mail and
how much you rely on the accuracy of its contents. How would you react if you received a message
from your instructor saying that because you had done so well in your course so far, you were
excused from doing any further work in it? What if that message were a joke from a classmate? We
rely on e-mail's confidentiality and integrity for sensitive and important communications, even
though ordinary e-mail has almost no confidentiality or integrity. In this section we investigate how
to add confidentiality and integrity protection to ordinary e-mail.

Security for E-mail

E-mail is vital for today's commerce, as well a convenient medium for communications among
ordinary users. But, as we noted earlier, e-mail is very public, exposed at every point from the
sender's workstation to the recipient's screen. Just as you would not put sensitive or private
thoughts on a postcard, you must also acknowledge that e-mail messages are exposed and
available for others to read.

Sometimes we would like e-mail to be more secure. To define and implement a more secure form,
we begin by examining the exposures of ordinary e-mail.

Threats to E-mail

Consider threats to electronic mail:

message interception (confidentiality)

message interception (blocked delivery)

message interception and subsequent replay

message content modification

message origin modification

message content forgery by outsider

message origin forgery by outsider

message content forgery by recipient

message origin forgery by recipient

denial of message transmission



Confidentiality and content forgery are often handled by encryption. Encryption can also help in a
defense against replay, although we would also have to use a protocol in which each message
contains something unique that is encrypted. Symmetric encryption cannot protect against forgery
by a recipient, since both sender and recipient share a common key; however, public key schemes
can let a recipient decrypt but not encrypt. Because of lack of control over the middle points of a
network, senders or receivers generally cannot protect against blocked delivery.

Requirements and Solutions

If we were to make a list of the requirements for secure e-mail, our wish list would include the
following protections.

message confidentiality (the message is not exposed en route to the receiver)

message integrity (what the receiver sees is what was sent)

sender authenticity (the receiver is confident who the sender was)

nonrepudiation (the sender cannot deny having sent the message)

Not all these qualities are needed for every message, but an ideal secure e-mail package would
allow these capabilities to be invoked selectively.

Designs

The standard for encrypted e-mail was developed by the Internet Society, through its architecture
board (IAB) and research (IRTF) and engineering (IETF) task forces. The encrypted e-mail protocols
are documented as an Internet standard in documents 1421, 1422, 1423, and 1424 [LIN93, KEN93,
BAL93, KAL93a]. This standard is actually the third refinement of the original specification.

One of the design goals for encrypted e-mail was allowing security-enhanced messages to travel as
ordinary messages through the existing Internet e-mail system. This requirement ensures that the
large existing e-mail network would not require change to accommodate security. Thus, all
protection occurs within the body of a message.

Confidentiality

Because the protection has several aspects, we begin our description of them by looking first at how
to provide confidentiality enhancements. The sender chooses a (random) symmetric algorithm
encryption key. Then, the sender encrypts a copy of the entire message to be transmitted, including
FROM:, TO:, SUBJECT:, and DATE: headers. Next, the sender prepends plaintext headers. For key
management, the sender encrypts the message key under the recipient's public key, and attaches
that to the message as well. The process of creating an encrypted e-mail message is shown in
Figure 7-43.



Figure 7-43. Overview of Encrypted E-mail Processing.

[View full size image]

Encryption can potentially yield any string as output. Many e-mail handlers expect that message
traffic will not contain characters other than the normal printable characters. Network e-mail
handlers use unprintable characters as control signals in the traffic stream. To avoid problems in
transmission, encrypted e-mail converts the entire ciphertext message to printable characters. An
example of an encrypted e-mail message is shown in Figure 7-44. Notice the three portions: an
external (plaintext) header, a section by which the message encryption key can be transferred, and
the encrypted message itself. (The encryption is shown with shading.)

Figure 7-44. Encrypted E-mailSecured Message.

[View full size image]



The encrypted e-mail standard works most easily as just described, using both symmetric and
asymmetric encryption. The standard is also defined for symmetric encryption only: To use
symmetric encryption, the sender and receiver must have previously established a shared secret
encryption key. The processing type ("Proc-Type") field tells what privacy enhancement services
have been applied. In the data exchange key field ("DEK-Info"), the kind of key exchange
(symmetric or asymmetric) is shown. The key exchange ("Key-Info") field contains the message
encryption key, encrypted under this shared encryption key. The field also identifies the originator
(sender) so that the receiver can determine which shared symmetric key was used. If the key
exchange technique were to use asymmetric encryption, the key exchange field would contain the
message encryption field, encrypted under the recipient's public key. Also included could be the
sender's certificate (used for determining authenticity and for generating replies).

The encrypted e-mail standard supports multiple encryption algorithms, using popular algorithms
such as DES, triple DES, and AES for message confidentiality, and RSA and DiffieHellman for key
exchange.

Other Security Features

In addition to confidentiality, we may want various forms of integrity for secure e-mail.

Encrypted e-mail messages always carry a digital signature, so the authenticity and nonrepudiability
of the sender is assured. The integrity is also assured because of a hash function (called a message
integrity check, or MIC) in the digital signature. Optionally, encrypted e-mail messages can be
encrypted for confidentiality.

Notice in Figure 7-44 that the header inside the message (in the encrypted portion) differs from that
outside. A sender's identity or the actual subject of a message can be concealed within the



encrypted portion.

The encrypted e-mail processing can integrate with ordinary e-mail packages, so a person can send
both enhanced and nonenhanced messages, as shown in Figure 7-45. If the sender decides to add
enhancements, an extra bit of encrypted e-mail processing is invoked on the sender's end; the
receiver must also remove the enhancements. But without enhancements, messages flow through
the mail handlers as usual.

Figure 7-45. Encrypted E-mail Processing in Message Transmission.

S/MIME (discussed later in this section) can accommodate the exchange of other than just text
messages: support for voice, graphics, video, and other kinds of complex message parts.

Encryption for Secure E-mail

The major problem with encrypted e-mail is key management. The certificate scheme described in
Chapter 2 is excellent for exchanging keys and for associating an identity with a public encryption
key. The difficulty with certificates is building the hierarchy. Many organizations have hierarchical
structures. The encrypted e-mail dilemma is moving beyond the single organization to an
interorganizational hierarchy. Precisely because of the problem of imposing a hierarchy on a
nonhierarchical world, PGP was developed as a simpler form of encrypted e-mail.

Encrypted e-mail provides strong end-to-end security for electronic mail. Triple DES, AES, and RSA
cryptography are quite strong, especially if RSA is used with a long bit key (1024 bits or more). The
vulnerabilities remaining with encrypted e-mail come from the points not covered: the endpoints. An



attacker with access could subvert a sender's or receiver's machine, modifying the code that does
the privacy enhancements or arranging to leak a cryptographic key.

Example Secure E-mail Systems

Encrypted e-mail programs are available from many sources. Several universities (including
Cambridge University in England and The University of Michigan in the United States) and
companies (BBN, RSA-DSI, and Trusted Information Systems) have developed either prototype or
commercial versions of encrypted e-mail.

PGP

PGP stands for Pretty Good Privacy. It was invented by Phil Zimmerman in 1991. Originally a free
package, it became a commercial product after being bought by Network Associates in 1996. A
freeware version is still available. PGP is widely available, both in commercial versions and freeware,
and it is heavily used by individuals exchanging private e-mail.

PGP addresses the key distribution problem with what is called a "ring of trust" or a user's
"keyring." One user directly gives a public key to another, or the second user fetches the first's
public key from a server. Some people include their PGP public keys at the bottom of e-mail
messages. And one person can give a second person's key to a third (and a fourth, and so on).
Thus, the key association problem becomes one of caveat emptor: "Let the buyer beware." If I am
reasonably confident that an e-mail message really comes from you and has not been tampered
with, I will use your attached public key. If I trust you, I may also trust the keys you give me for
other people. The model breaks down intellectually when you give me all the keys you received from
people, who in turn gave you all the keys they got from still other people, who gave them all their
keys, and so forth.

You sign each key you give me. The keys you give me may also have been signed by other people. I
decide to trust the veracity of a key-and-identity combination, based on who signed the key.

PGP does not mandate a policy for establishing trust. Rather, each user is free to decide how much
to trust each key received.

The PGP processing performs some or all of the following actions, depending on whether
confidentiality, integrity, authenticity, or some combination of these is selected:

Create a random session key for a symmetric algorithm.

Encrypt the message, using the session key (for message confidentiality).

Encrypt the session key under the recipient's public key.

Generate a message digest or hash of the message; sign the hash by encrypting it with the
sender's private key (for message integrity and authenticity).

Attach the encrypted session key to the encrypted message and digest.

Transmit the message to the recipient.



The recipient reverses these steps to retrieve and validate the message content.

S/MIME

An Internet standard governs how e-mail is sent and received. The general MIME specification
defines the format and handling of e-mail attachments. S/MIME (Secure Multipurpose Internet Mail
Extensions) is the Internet standard for secure e-mail attachments.

S/MIME is very much like PGP and its predecessors, PEM (Privacy-Enhanced Mail) and RIPEM. The
Internet standards documents defining S/MIME (version 3) are described in [HOU99] and [RAM99].
S/MIME has been adopted in commercial e-mail packages, such as Eudora and Microsoft Outlook.

The principal difference between S/MIME and PGP is the method of key exchange. Basic PGP
depends on each user's exchanging keys with all potential recipients and establishing a ring of
trusted recipients; it also requires establishing a degree of trust in the authenticity of the keys for
those recipients. S/MIME uses hierarchically validated certificates, usually represented in X.509
format, for key exchange. Thus, with S/MIME, the sender and recipient do not need to have
exchanged keys in advance as long as they have a common certifier they both trust.

S/MIME works with a variety of cryptographic algorithms, such as DES, AES, and RC2 for symmetric
encryption.

S/MIME performs security transformations very similar to those for PGP. PGP was originally
designed for plaintext messages, but S/MIME handles (secures) all sorts of attachments, such as
data files (for example, spreadsheets, graphics, presentations, movies, and sound). Because it is
integrated into many commercial e-mail packages, S/MIME is likely to dominate the secure e-mail
market.



7.7. Summary of Network Security

This chapter covers a very large and important area of computer security: networks and distributed
applications. As the world becomes more connected by networks, the significance of network
security will certainly continue to grow. Security issues for networks are visible and important, but
their analysis is similar to the analysis done for other aspects of security. That is, we ask questions
about what we are protecting and why we are protecting it. In particular, we ask

• What are the assets?

• What are the threats?

• Who are the threat agents?

• What are the controls?

• What is the residual, uncontrolled risk?

Network assets include the network infrastructure, applications programs and, most importantly,
data. Recall that threats are actions or situations that offer potential harm to or loss of
confidentiality, integrity, or availability, in the form of interception (eavesdropping or passive
wiretapping), modification (active wiretapping, falsification, and compromise of authenticity), and
denial of service. In stand-alone computing, most agents have a strong motive for an attack. But in
networks we see new threat agents; anyone can be a victim of essentially a random attack. The
strongest network controls are solid authentication, access control, and encryption.

Networks usually employ many copies of the same or similar software, with a copy on each of
several (or all) machines in the network. This similarity, combined with connectivity, means that any
fault in one copy of a program can create vulnerabilities spread across many machines. Mass-
market software often has flaws, and each flaw can be studied and exploited by an attacker. In
large networks, a huge number of potential attackers can probe the software extensively; the result
is that a network often includes many identified faults and software patches to counter them.

In a sense, security in networks is the combination and culmination of everything we know about
security, and certainly everything we have discussed in this book so far. A network's security
depends on all the cryptographic tools at our disposal, good program development processes,
operating system controls, trust and evaluation and assurance methods, and inference and
aggregation controls.

Networks and their security remind us that good software engineering practices can go a long way
toward making software difficult to attack. When a network and its components are structured,
designed, and architected well, the resulting system presents solid defenses and avoids potential
single points of failure. And a well-engineered network is easy to change as it evolves; because it is
easier to understand, changes seldom introduce unintentional flaws.



Many of the controls useful for stand-alone systems are also useful in networks. But three controls
are specific to networks: firewalls, intrusion detection systems, and secure e-mail. These controls
have evolved from many years of research, both in security and in other computer science realms.
They emphasize why we should know not only the history of security but also the relevance of other
computing research. For example, firewalls are just an updated form of reference monitor. Similarly,
intrusion detection profits from more fundamental research into pattern matching and expert
systems. And secure e-mail is really a carefully designed application of cryptography. You might
think that controls such as these are the result of strokes of genius. But in fact, they reflect the
long-term nature of knowledge and engineering practice; new ways to provide security build on a
growing base of understanding and experience.

Until now we have stressed technical controls, which can be very effective in protecting our
computing assets. But many security losses come from trusted insiderseither honest people making
honest, human mistakes or dishonest insiders able to capitalize on their knowledge or privileges. In
the next chapter we consider administrative controls, such as security policies, user awareness, and
risk analysis, as a way to address the insider threat.



7.8. Terms and Concepts
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7.9. Where the Field Is Headed

Much work is being done to enhance the security of networks. Research by vendor companies will
lead to more flexible and secure boxes, while more fundamental research will look into the
fundamental problems of networking: authentication, access types, and authorizations. A particular
problem of security in networks is one of speed: As the speed, capacity, bandwidth, and throughput
of networks and network devices continue to increase, security devices have to keep pace, which is
always a challenge.

A second security challenge with networks is ubiquity: As automobiles, cell phones, personal digital
assistants, and even refrigerators become network enabled, they need security. The need for a
firewall for a cell phone will become apparent the first time a cell phone is subject to a denial-of-
service attack. Once again, security will be called upon to protect after a product is in use.

Joshi et al. [JOS01] present seven different models that could be used for access control in
networked applications. These models include the decades-old mandatory and discretionary access
control, about which literally hundreds of research results have been published, and more recent
task- and agent-based models. The article is an excellent analysis of the models and their
applicability in different network situations. But the article clearly shows the immaturity of network
security if after three decades into networking we still need to analyze which security models are
appropriate for networking.

Protocol development continues as new networked applications arise. The challenge is to ensure
that protocols are scrutinized for security flaws and that security measures are incorporated as
needed. An example of a new protocol that addresses interesting security needs is Stajano and
Anderson's "resurrecting duckling" protocol [STA02]. This protocol invents the concept of a "secure
transient association," to describe a connection that must be created, acquire security properties,
operate, and terminate, perhaps passing those properties to other entities. This work is a good
example of development of the protection model before the need arises.

The firewall technology has matured nicely in the past decade. The pace of innovation in firewalls
has slowed, and it seems as if freestanding firewalls have gone about as far as they can. But we can
expect to see more firewall features incorporated into applications, appliances, and devices. The
personal firewall to protect a single workstation is a good example of how security technology is
extended to new domains of use.

Intrusion detection systems have a much longer history than firewalls, but they also have further to
go. Interesting new work is underway to define "good" or "safe" behavior and to restrict access
rights. (See, for example, [KO97, FOR96].) The next big challenge for IDS products is to integrate
data from more sources to be able to infer a threat picture from many individually insignificant
clues.

Denning [DEN99] has done a very thorough and thoughtful study of the potential for misuse of the
Internet for political purposes or terrorism. Because the Internet is becoming so much a part of the
essential infrastructure for commerce, education, and personal interaction, its protection is very
important to society. But because of its necessarily open structure, protecting it is often inconsistent
with promoting its use. Denning carefully explores these issues, as well as the possibility of using



the Internet for harm.

The security of mobile code will become a larger issue as remote updates and patches and
downloading of agents continue to increase. The classic security problem of demonstrating
assurance is exacerbated by the anonymity of networking. Rubin and Geer [RUB98] provide a good
overview of the field. Proof-carrying code [NEC96], code signing, type checking [VOL96], and
constrained execution [GON96, GON97] are possibilities that have been proposed. (Interestingly,
these approaches build on the use of the compiler to enforce security, a technique first suggested
by Denning and Denning [DEN77].)

Networks used to be just computers communicating in clientserver or serverserver patterns.
Recently, client types have expanded dramatically to include consumer devices such as cell phones,
cameras and personal digital assistants; processors embedded in things such as automobiles and
airplanes; and intelligent devices such as a refrigerator that can detect limited supply and send a
message to the owner's cell phone. Although these new devices have processors and memory, thus
qualifying as computers, they often lack memory capacity, processor speed, and published
programming interfaces to allow anyone to develop security controls for them, such as primitive
firewalls or even encryption. And typically, the devices' designs and implementations are done with
little attention to security. As the number and kind of network client devices continue to expand,
inevitably their security threats and vulnerabilities will, too.

Conti and Ahamad [CON05] have developed a concept they call "denial of information," which
means a user cannot obtain desired information. A classic denial-of-service attack is directed at all
processing on a node, but a denial-of-information attack seeks to overwhelm a human's resources.
Spam and other data-flooding attacks cause the victim to sift through useless information to get to
nuggets of useful information.



7.10. To Learn More

Network security is a rapidly changing field, but there are many current works and some classics
everyone should read. Garfinkel and Spafford [GAR96] is an excellent place to start. For depth on
hackers' tools and techniques, read Scambrey et al. [SCA01]. Some of the early works on network
security have been reprinted in Davies and Price [DAV89] and Abrams and Podell [ABR87].

Anderson [AND01] presents a well-thought-out approach to putting the pieces together securely.
Schneier [SCH00a] presents the concepts of network security clearly.

For firewalls, Cheswick and Bellovin [CHE02] and Chapman and Zwicky [CHA00] are recent
revisions of two standards.

For intrusion detection systems, Northcutt [NOR00] is recommended; Allen [ALL99] and Kemmerer
and Vigna [KEM02] also give good surveys of the state of the field. The products have matured
nicely and research results are now found in commercial products.



7.11. Exercises

1. Does a gasoline engine have a single point of failure? Does a motorized fire engine?
Does a fire department? How does each of the last two compensate for single points
of failure in the previous one(s)? Explain your answers.

2. Telecommunications network providers and users are concerned about the single
point of failure in "the last mile," which is the single cable from the network
provider's last switching station to the customer's premises. How can a customer
protect against that single point of failure? Comment on whether your approach
presents a good cost-benefit tradeoff.

3. You are designing a business in which you will host companies' web sites. What
issues can you see as single points of failure? List the resources that could be
involved. State ways to overcome each resource's being a single point of failure.

4. The human body exhibits remarkable resilience. State three examples in which the
body compensates for failure of single body parts.

5. How can hardware be designed for fault tolerance? Are these methods applicable to
software? Why or why not?

6. The old human telephone "switches" were quaint but very slow. You would signal the
operator and say you wanted to speak to Jill, but the operator, knowing Jill was
visiting Sally, would connect you there. Other than slowness or inefficiency, what are
two other disadvantages of this scheme?

7. An (analog) telephone call is "circuit based," meaning that the system chooses a wire
path from sender to receiver and that path or circuit is dedicated to the call until it is
complete. What are two disadvantages of circuit switching?

8. The OSI model is inefficient; each layer must take the work of higher layers, add
some result, and pass the work to lower layers. This process ends with the equivalent
of a gift inside seven nested boxes, each one wrapped and sealed. Surely this
wrapping (and unwrapping) is inefficient. From reading earlier chapters of this book,
cite a security advantage of the layered approach.

9. Obviously, the physical layer has to be at the bottom of the OSI stack, with
applications at the top. Justify the order of the other five layers as moving from low
to high abstraction.

10. List the major security issues dealt with at each level of the OSI protocol stack.

11. What security advantage occurs from a packet's containing the source NIC address
and not just the destination NIC address?



12. TCP is a robust protocol: Sequencing and error correction are ensured, but there is a
penalty in overhead (for example, if no resequencing or error correction is needed).
UDP does not provide these services but is correspondingly simpler. Cite specific
situations in which the lightweight UDP protocol could be acceptable, that is, when
error correction or sequencing is not needed.

13. Assume no FTP protocol exists. You are asked to define a function analogous to the
FTP PUT for exchange of files. List three security features or mechanisms you would
include in your protocol.

14. A 32-bit IP addressing scheme affords approximately 4 billion addresses. Compare
this number to the world's population. Every additional bit doubles the number of
potential addresses. Although 32 bits is becoming too small, 128 bits seems
excessive, even allowing for significant growth. But not all bits have to be dedicated
to specifying an address. Cite a security use for a few bits in an address.

15. Sidebar 7-1 on usage statistics states that approximately 20 percent of visitors to the
site were from outside the United States. How do they know? Describe a means that
an attacker could falsely make it seem as if there was access from outside or inside
the United States. (You may treat these two cases separately.)

16. When a new domain is created, for example, yourdomain.com, a table in the .com
domain has to receive an entry for yourdomain. What security attack might someone
try against the registrar of .com (the administrator of the .com table) during the
creation of yourdomain.com?

17. Describe a social engineering attack you could use to obtain a user's password.

18. Is a social engineering attack more likely to succeed in person, over the telephone, or
through e-mail? Justify your answer.

19. A port scanner is a tool useful to an attacker to identify possible vulnerabilities in a
potential victim's system. Cite a situation in which someone who is not an attacker
could use a port scanner for a nonmalicious purpose.

20. One argument in the security community is that lack of diversity is itself a
vulnerability. For example, the two dominant browsers, Mozilla Firefox and Microsoft
Internet Explorer, are used by approximately 95 percent of Internet users. What
security risk does this control of the market introduce? Suppose there were three
(each with a significant share of the market). Would three negate that security risk?

21. Compare copper wire, microwave, optical fiber, infrared, and (radio frequency)
wireless in their resistance to passive and active wiretapping.

22. How many 4-digit numeric PINs are there? Suppose a ban prohibits "obvious" PINs
like 0000 and 1234. What would you define as "obvious," and how many PINs would
that disallow? Now assume people choose PINs not for their numeric significance but
because they are all or the first four letters of a word as on a telephone keypad:
A,B,C=2, D,E,F=3, etc. Using the cryptanalysis lessons from Chapter 2, estimate how
many 4-digit PINs that people might choose would really exist. The goal of this



exercise is not to obtain the definitive answer but to present a reasonable analysis.
In what network settings is a PIN still justified as an authenticator, in spite of the
small numbers you obtain in this exercise?

23. What is a "man in the middle" attack? Cite a real-life example (not from computer
networking) of such an attack. Suggest a means by which sender and receiver can
preclude a man-in-the-middle attack. (a) Cite a means not requiring cryptography.
(b) Cite a means involving cryptography but also ensuring that the man in the middle
cannot get in the middle of the key exchange.

24. Suggest a countermeasure for traffic flow analysis.

25. A problem with pattern matching is synonyms. If the current directory is bin, and .
denotes the current directory and .. its parent, then bin, ../bin, ../bin/., .././bin/../bin
all denote the same directory. If you are trying to block access to the bin directory in
a command script, you need to consider all these variants (and an infinite number
more). Cite a means by which a pattern-matching algorithm copes with synonyms.

26. The HTTP protocol is by definition stateless, meaning that it has no mechanism for
"remembering" data from one interaction to the next. (a) Suggest a means by which
you can preserve state between two HTTP calls. For example, you may send the user
a page of books and prices matching a user's query, and you want to avoid having to
look up the price of each book again once the user chooses one to purchase. (b)
Suggest a means by which you can preserve some notion of state between two web
accesses many days apart. For example, the user may prefer prices quoted in euros
instead of dollars, and you want to present prices in the preferred currency next time
without asking the user.

27. How can a web site distinguish between lack of capacity and a denial-of-service
attack? For example, web sites often experience a tremendous increase in volume of
traffic right after an advertisement with the site's URL is shown on television during
the broadcast of a popular sporting event. That spike in usage is the result of normal
access that happens to occur at the same time. How can a site determine that high
traffic is reasonable?

28. Syn flood is the result of some incomplete protocol exchange: The client initiates an
exchange but does not complete it. Unfortunately, these situations can also occur
normally. Describe a benign situation that could cause a protocol exchange to be
incomplete.

29. A distributed denial-of-service attack requires zombies running on numerous
machines to perform part of the attack simultaneously. If you were a system
administrator looking for zombies on your network, what would you look for?

30. Signing of mobile code is a suggested approach for addressing the vulnerability of
hostile code. Outline what a code-signing scheme would have to do.

31. The system must control applets' accesses to sensitive system resources, such as the
file system, the processor, the network, and internal state variables. But the term
"the file system" is very broad, and useful applets usually need some persistent
storage. Suggest controls that could be placed on access to the file system. Your



answer has to be more specific than "allow all reads" or "disallow all writes." Your
answer should essentially differentiate between what is "security critical" and not, or
"harmful" and not.

32. Suppose you have a high-capacity network connection coming into your home, and
you also have a wireless network access point. Also suppose you do not use the full
capacity of your network connection. List three reasons you might still want to
prevent an outsider from obtaining free network access by intruding into your
wireless network.

33. Why is segmentation recommended for network design? That is, what makes it better
to have a separate network segment for web servers, one for the back-end office
processing, one for testing new code, and one for system management?

34. For large applications, some web sites use devices called "load balancers" to
distribute traffic evenly among several equivalent servers. For example, a search
engine might have a massive database of content and URLs, and several front-end
processors that formulate queries to the database manager and format results to
display to an inquiring client. A load balancer would assign each incoming client
request to the least busy processor. What is a security advantage of using a load
balancer?

35. Can link and end-to-end encryption both be used on the same communication? What
would be the advantage of that? Cite a situation in which both forms of encryption
might be desirable.

36. Does a VPN use link encryption or end-to-end? Justify your answer.

37. Why is a firewall a good place to implement a VPN? Why not implement it at the
actual server(s) being accessed?

38. Does a VPN use symmetric or asymmetric encryption? Explain your answer.

39. Does a PKI perform encryption? Explain your answer.

40. Does a PKI use symmetric or asymmetric encryption? Explain your answer.

41. Should a PKI be supported on a firewall (meaning that the certificates would be
stored on the firewall and the firewall would distribute certificates on demand)?
Explain your answer.

42. Why does a PKI need a means to cancel or invalidate certificates? Why is it not
sufficient for the PKI to stop distributing a certificate after it becomes invalid?

43. Some people think the certificate authorities for a PKI should be the government, but
others think certificate authorities should be private entities, such as banks,
corporations, or schools. What are the advantages and disadvantages of each
approach?



44. If you live in country A and receive a certificate signed by a government certificate
authority in country B, what conditions would cause you to trust that signature as
authentic?

45. A certificate contains an identity, a public key, and signatures attesting that the
public key belongs to the identity. Other fields that may be present include the
organization (for example, university, company, or government) to which that
identity belongs and perhaps suborganizations (college, department, program,
branch, office). What security purpose do these other fields serve, if any? Explain
your answer.

46. What is the security purpose for the fields, such as sequence number, of an IPSec
packet?

47. Discuss the tradeoffs between a manual challenge response system (one to which the
user computes the response by hand or mentally) and a system that uses a special
device, like a calculator.

48. A synchronous password token has to operate at the same pace as the receiver. That
is, the token has to advance to the next random number at the same time the
receiver advances. Because of clock imprecision, the two units will not always be
perfectly together; for example, the token's clock might run 1 second per day slower
than the receiver's. Over time, the accumulated difference can be significant.
Suggest a means by which the receiver can detect and compensate for clock drift on
the part of the token.

49. The workstation is a weak link in systems like PKI and Kerberos: A compromised
workstation can collect and transmit cleartext passwords and encryption keys.
Suggest a means to prevent compromise of a workstation from, for example, a
Trojan horse.

50. This chapter listed several disadvantages to ACLs on routers as a network access
control method. List two advantages.

51. List a situation in which you might want to block (reject) certain traffic through an
ACL on a router; that is, a situation in which the performance penalty would not be
the deciding factor.

52. What information might a stateful inspection firewall want to examine from multiple
packets?

53. Recall that packet reordering and reassembly occur at the transport level of the
TCP/IP protocol suite. A firewall will operate at a lower layer, either the Internet or
data layer. How can a stateful inspection firewall determine anything about a traffic
stream when the stream may be out of order or damaged?

54. Do firewall rules have to be symmetric? That is, does a firewall have to block a
particular traffic type both inbound (to the protected site) and outbound (from the
site)? Why or why not?

55. The FTP protocol is relatively easy to proxy; the firewall decides, for example,



whether an outsider should be able to access a particular directory in the file system
and issues a corresponding command to the inside file manager or responds
negatively to the outsider. Other protocols are not feasible to proxy. List three
protocols that it would be prohibitively difficult or impossible to proxy. Explain your
answer.

56. How would the content of the audit log differ for a screening router versus an
application proxy firewall?

57. Cite a reason why an organization might want two or more firewalls on a single
network.

58. Firewalls are targets for penetrators. Why are there few compromises of firewalls?

59. Should a network administrator put a firewall in front of a honeypot? Why or why
not?

60. Can a firewall block attacks using server scripts, such as the attack in which the user
could change a price on an item offered by an e-commerce site? Why or why not?

61. Why does a stealth mode IDS need a separate network to communicate alarms and
to accept management commands?

62. One form of IDS starts operation by generating an alert for every action. Over time,
the administrator adjusts the setting of the IDS so that common, benign activities do
not generate alarms. What are the advantages and disadvantages of this design for
an IDS?

63. Can encrypted e-mail provide verification to a sender that a recipient has read an e-
mail message? Why or why not?

64. Can message confidentiality and message integrity protection be applied to the same
message? Why or why not?

65. What are the advantages and disadvantages of an e-mail program (such as Eudora
or Outlook) that automatically applies and removes protection to e-mail messages
between sender and receiver?



Chapter 8. Administering Security

In this chapter

Security planning

Risk analysis

Security policies

Physical security

In reading this book you may have concluded by now that security is achieved through technology.
You may think that the important activities in security are picking the right IDS, configuring your
firewall properly, encrypting your wireless link, and deciding whether fingerprint readers are better
than retina scanners. These are important matters. But not all of security is addressed by
technology. Focusing on the firewall alone is like choosing a car by the shape of the headlight.
Before you get to the headlights, there are some more fundamental questions to answer, such as
how you intend to use the car, how much you can afford, and whether you have other
transportation choices.

Security is a combination of technical, administrative, and physical controls, as we first pointed out
in Chapter 1. So far, we have considered technical controls almost exclusively. But stop and think
for a moment: What good is a firewall if there is no power to run it? How effective is a public key
infrastructure if someone can walk off with the certificate server? And why have elaborate access
control mechanisms if your employee mails a sensitive document to a competitor? The
administrative and physical controls may be less glamorous than the technical ones, but they are
surely as important.

In this chapter we complete our study of security controls by considering administrative and
physical aspects. We look at four related areas:

Planning. What advance preparation and study lets us know that our implementation meets
our security needs for today and tomorrow?

Risk analysis. How do we weigh the benefits of controls against their costs, and how do we
justify any controls?

Policy. How do we establish a framework to see that our computer security needs continue to



be met?

Physical control. What aspects of the computing environment have an impact on security?

These four areas are just as important to achieving security as are the latest firewall or coding
practice.



8.1. Security Planning

Years ago, when most computing was done on mainframe computers, data processing centers were
responsible for protection. Responsibility for security rested neither with the programmers nor the
users but instead with the computing centers themselves. These centers developed expertise in
security, and they implemented many protection activities in the background, without users having
to be conscious of protection needs and practices.

Since the early 1980s, the introduction of personal computers and the general ubiquity of computing
have changed the way many of us work and interact with computers. In particular, a significant
amount of the responsibility for security has shifted to the user and away from the computing
center. But many users are unaware of (or choose to ignore) this responsibility, so they do not deal
with the risks posed or do not implement simple measures to prevent or mitigate problems.

Unfortunately, there are many common examples of this neglect. Moreover, it is exacerbated by the
seemingly hidden nature of important data: Things we would protect if they were on paper are
ignored when they are stored electronically. For example, a person who carefully locks up paper
copies of company confidential records overnight may leave running a personal computer or
terminal on an assistant's or manager's desk. In this situation, a curious or malicious person walking
past can retrieve confidential memoranda and data. Similarly, the data on laptops and workstations
are often more easily available than on older, more isolated systems. For instance, the large and
cumbersome disk packs and tapes from a few years ago have been replaced by media such as
diskettes, zip disks, and CDs, which hold a similar volume of data but fit easily in a pocket or
briefcase. Moreover, we all recognize that a box of CDs or diskettes may contain many times more
data than a printed report. But since the report is an apparent, visible exposure and the CD or
diskette is not, we leave the computer media in plain view, easy to borrow or steal.

In all cases, whether the user initiates some computing action or simply interacts with an active
application, every application has confidentiality, integrity, and availability requirements that relate
to the data, programs, and computing machinery. In these situations, users suffer from lack of
sensitivity: They often do not appreciate the security risks associated with using computers.

For these reasons, every organization using computers to create and store valuable assets should
perform thorough and effective security planning. A security plan is a document that describes
how an organization will address its security needs. The plan is subject to periodic review and
revision as the organization's security needs change.

A good security plan is an official record of current security practices, plus a blueprint for orderly
change to improve those practices. By following the plan, developers and users can measure the
effect of proposed changes, leading eventually to further improvements. The impact of the security
plan is important, too. A carefully written plan, supported by management, notifies employees that
security is important to management (and therefore to everyone). Thus, the security plan has to
have the appropriate content and produce the desired effects.

In this section we study how to define and implement a security plan. We focus on three aspects of
writing a security plan: what it should contain, who writes it, and how to obtain support for it. Then,
we address two specific cases of security plans: business continuity plans, to ensure that an



organization continues to function in spite of a computer security incident, and incident response
plans, to organize activity to deal with the crisis of an incident.

Contents of a Security Plan

A security plan identifies and organizes the security activities for a computing system. The plan is
both a description of the current situation and a plan for improvement. Every security plan must
address seven issues.

policy, indicating the goals of a computer security effort and the willingness of the people
involved to work to achieve those goals

1.

current state, describing the status of security at the time of the plan2.

requirements, recommending ways to meet the security goals3.

recommended controls, mapping controls to the vulnerabilities identified in the policy and
requirements

4.

accountability, describing who is responsible for each security activity5.

timetable, identifying when different security functions are to be done6.

continuing attention, specifying a structure for periodically updating the security plan7.

There are many approaches to creating and updating a security plan. Some organizations have a
formal, defined security planning process, much as they might have a defined and accepted
development or maintenance process. Others look to security professionals for guidance on how to
perform security planning. For example, Sidebar 8-1 describes a security planning methodology
suggested by the U.S. Software Engineering Institute and made available on its web site. But every
security plan contains the same basic material, no matter the format. The following sections expand
on the seven parts of a security plan.

1. Policy

A security plan must state the organization's policy on security. A security policy is a high-level
statement of purpose and intent. Initially, you might think that all policies would be the same: to
prevent security breaches. But in fact the policy is one of the most difficult sections to write well. As
we discuss later in this chapter, there are tradeoffs among the strength of the security, the cost, the
inconvenience to users, and more.



Sidebar 8-1: The OCTAVESM Methodology

The Software Engineering Institute at Carnegie Mellon University has created a
framework for building a security plan. (See [ALB99, ALB01].) The framework, called
OCTAVE, includes eight steps:

1. Identify enterprise knowledge.

2. Identify operational area knowledge.

3. Identify staff knowledge.

4. Establish security requirements.

5. Map high-priority information assets to information infrastructure.

6. Perform an infrastructure vulnerability evaluation.

7. Conduct a multidimensional risk analysis.

8. Develop a protection strategy.

These steps lead a project manager or security analyst in determining the security risks
and finding controls to address them. The OCTAVE web site (www.cert.org/octave)
contains detailed information and checklists to guide the planning process.

For example, we must decide whether to implement very stringentand possibly unpopularcontrols
that prevent all security problems or simply mitigate the effects of security breaches once they
happen. For this reason, the policy statement must answer three essential questions:

• Who should be allowed access?

• To what system and organizational resources should access be allowed?

• What types of access should each user be allowed for each resource?

The policy statement should specify the following:

The organization's goals on security. For example, should the system protect data from
leakage to outsiders, protect against loss of data due to physical disaster, protect the data's
integrity, or protect against loss of business when computing resources fail? What is the higher
priority: serving customers or securing data?



Where the responsibility for security lies. For example, should the responsibility rest with a
small computer security group, with each employee, or with relevant managers?

The organization's commitment to security. For example, who provides security support for
staff, and where does security fit into the organization's structure?

2. Current Security Status

To be able to plan for security, an organization must understand the vulnerabilities to which it may
be exposed. The organization can determine the vulnerabilities by performing a risk analysis: a
careful investigation of the system, its environment, and the things that might go wrong. The risk
analysis forms the basis for describing the current status of security. The status can be expressed as
a listing of organizational assets, the security threats to the assets, and the controls in place to
protect the assets. We look at risk analysis in more detail later in this chapter.

The status portion of the plan also defines the limits of responsibility for security. It describes not
only which assets are to be protected but also who is responsible for protecting them. The plan may
note that some groups may be excluded from responsibility; for example, joint ventures with other
organizations may designate one organization to provide security for all member organizations. The
plan also defines the boundaries of responsibility, especially when networks are involved. For
instance, the plan should clarify who provides the security for a network router or for a leased line
to a remote site.

Even though the security plan should be thorough, there will necessarily be vulnerabilities that are
not considered. These vulnerabilities are not always the result of ignorance or naïveté; rather, they
can arise from the addition of new equipment or data as the system evolves. They can also result
from new situations, such as when a system is used in ways not anticipated by its designers. The
security plan should detail the process to be followed when someone identifies a new vulnerability.
In particular, instructions should explain how to integrate controls for that vulnerability into the
existing security procedures.

3. Requirements

The heart of the security plan is its set of security requirements: functional or performance
demands placed on a system to ensure a desired level of security. The requirements are usually
derived from organizational needs. Sometimes these needs include the need to conform to specific
security requirements imposed from outside, such as by a government agency or a commercial
standard.

Pfleeger [PFL91] points out that we must distinguish the requirements from constraints and
controls. A constraint is an aspect of the security policy that constrains, circumscribes, or directs
the implementation of the requirements. As we learned in Chapter 1, a control is an action, device,
procedure, or technique that removes or reduces a vulnerability. To see the difference between
requirements, constraints, and controls, consider the six "requirements" of the U.S. Department of
Defense's TCSEC, introduced in Chapter 5. These six items are listed in Table 8-1.

Table 8-1. The Six "Requirements" of the TCSEC.



Security policy There must be an explicit and well-defined security policy
enforced by the system.

Identification Every subject must be uniquely and convincingly identified.
Identification is necessary so that subject/object access can
be checked.

Marking Every object must be associated with a label that indicates
its security level. The association must be done so that the
label is available for comparison each time an access to the
object is requested.

Accountability The system must maintain complete, secure records of
actions that affect security. Such actions include introducing
new users to the system, assigning or changing the security
level of a subject or an object, and denying access attempts.

Assurance The computing system must contain mechanisms that
enforce security, and it must be possible to evaluate the
effectiveness of these mechanisms.

Continuous
protection

The mechanisms that implement security must be protected
against unauthorized change.

Given our definitions of requirement, constraint, and control, it is easy to see that the first
"requirement" of the TCSEC is really a constraint: the security policy. The second and third
"requirements" describe mechanisms for enforcing security, not descriptions of required behaviors.
That is, the second and third "requirements" describe explicit implementations, not a general
characteristic or property that the system must have. However, the fourth, fifth, and sixth TCSEC
"requirements" are indeed true requirements. They state that the system must have certain
characteristics, but they do not enforce a particular implementation.

These distinctions are important because the requirements explain what should be accomplished,
not how. That is, the requirements should always leave the implementation details to the designers,
whenever possible. For example, rather than writing a requirement that certain data records should
require passwords for access (an implementation decision), a security planner should state only that
access to the data records should be restricted (and note to whom the access should be restricted).
This more flexible requirement allows the designers to decide among several other access controls
(such as access control lists) and to balance the security requirements with other system
requirements, such as performance and reliability. Figure 8-1 illustrates how the different aspects of
system analysis support the security planning process.

Figure 8-1. Inputs to the Security Plan.



As with the general software development process, the security planning process must allow
customers or users to specify desired functions, independent of the implementation. The
requirements should address all aspects of security: confidentiality, integrity, and availability. They
should also be reviewed to make sure that they are of appropriate quality. In particular, we should
make sure that the requirements have these characteristics:

Correctness: Are the requirements understandable? Are they stated without error?

Consistency: Are there any conflicting or ambiguous requirements?

Completeness: Are all possible situations addressed by the requirements?

Realism: Is it possible to implement what the requirements mandate?

Need: Are the requirements unnecessarily restrictive?

Verifiability: Can tests be written to demonstrate conclusively and objectively that the
requirements have been met? Can the system or its functionality be measured in some way
that will assess the degree to which the requirements are met?

Traceability: Can each requirement be traced to the functions and data related to it so that
changes in a requirement can lead to easy reevaluation?

The requirements may then be constrained by budget, schedule, performance, policies,
governmental regulations, and more. Given the requirements and constraints, the developers then
choose appropriate controls.

4. Recommended Controls

The security requirements lay out the system's needs in terms of what should be protected. The
security plan must also recommend what controls should be incorporated into the system to meet
those requirements. Throughout this book you have seen many examples of controls, so we need



not review them here. As we see later in this chapter, we can use risk analysis to create a map from
vulnerabilities to controls. The mapping tells us how the system will meet the security requirements.
That is, the recommended controls address implementation issues: how the system will be designed
and developed to meet stated security requirements.

5. Responsibility for Implementation

A section of the security plan should identify which people are responsible for implementing the
security requirements. This documentation assists those who must coordinate their individual
responsibilities with those of other developers. At the same time, the plan makes explicit who is
accountable should some requirement not be met or some vulnerability not be addressed. That is,
the plan notes who is responsible for implementing controls when a new vulnerability is discovered
or a new kind of asset is introduced. (But see Sidebar 8-2 on who is responsible.)

People building, using, and maintaining the system play many roles. Each role can take some
responsibility for one or more aspects of security. Consider, for example, the groups listed here.

Personal computer users may be responsible for the security of their own machines.
Alternatively, the security plan may designate one person or group to be coordinator of
personal computer security.

Project leaders may be responsible for the security of data and computations.

Sidebar 8-2: Who Is Responsible for Using Security?

We put a lot of responsibility on the user: Apply these patches, don't download
unknown code, keep sensitive material private, change your password frequently,
don't forget your umbrella. We are all fairly technology-savvy, so we take in stride
messages like "fatal error." (A neighbor once called in a panic that her entire
machine and all its software data were about to go up in a puff of electronic smoke
because she had received a "fatal error" message; I explained calmly that the
message was perhaps a bit melodramatic.)

But that neighbor raises an important point: how can we expect users to use their
computers securely when that is so hard to do? Take, for example, the various
steps necessary in securing a wireless access point (see Chapter 7): Use WPA or
WPA2, not WEP; set the access point into nonbroadcast mode, not open; choose a
random 128-bit number for an initial value. Whitten and Tygar [WHI99] list four
points critical to users' security: users must be

aware of the security of tasks they need to perform

able to figure out how to perform those tasks successfully

prevented from making dangerous errors



sufficiently comfortable with the technology to continue using it

Whitten and Tygar conclude that the popular PGP product, which has a fairly good
user interface, is not usable enough to provide effective security for most computer
users. Furnell [FUR05] reached a similar conclusion about the security features in
Microsoft Word.

The field of humancomputer interaction (HCI) is mature, guidance materials are
available, and numerous good examples exist. Why, then, are security settings
hidden on a sub-sub-tab and written in highly technical jargon? We cannot expect
users to participate in security enforcement unless they can understand what they
should do.

A leader in the HCI field, Ben Shneiderman counsels that the humancomputer
interface should be, in his word, fun. Citing work others have done on computer
game interfaces, Shneiderman notes that such interfaces satisfy needs for
challenge, curiosity, and fantasy. He then argues that computer use must "(1)
provide the right functions so that users can accomplish their goals, (2) offer
usability plus reliability to prevent frustration from undermining the fun, and (3)
engage users with fun-features." [SHN04]

One can counter that security functionality is serious, unlike computer games or
web browsers. Still, this does not relieve us from the need to make the interface
consistent, informative, empowering, and errorpreventing.

Managers may be responsible for seeing that the people they supervise implement security
measures.

Database administrators may be responsible for the access to and integrity of data in their
databases.

Information officers may be responsible for overseeing the creation and use of data; these
officers may also be responsible for retention and proper disposal of data.

Personnel staff members may be responsible for security involving employees, for example,
screening potential employees for trustworthiness and arranging security training programs.

6. Timetable

A comprehensive security plan cannot be executed instantly. The security plan includes a timetable
that shows how and when the elements of the plan will be performed. These dates also give
milestones so that management can track the progress of implementation.

If the implementation is to be a phased development (that is, the system will be implemented
partially at first, and then changed functionality or performance will be added in later releases), the
plan should also describe how the security requirements will be implemented over time. Even when
overall development is not phased, it may be desirable to implement the security aspects of the
system over time. For example, if the controls are expensive or complicated, they may be acquired
and implemented gradually. Similarly, procedural controls may require staff training to ensure that
everyone understands and accepts the reason for the control.



The plan should specify the order in which the controls are to be implemented so that the most
serious exposures are covered as soon as possible. A timetable also gives milestones by which to
judge the progress of the security program.

Furthermore, the plan must be extensible. Conditions will change: New equipment will be acquired,
new degrees and modes of connectivity will be requested, and new threats will be identified. The
plan must include a procedure for change and growth, so that the security aspects of changes are
considered as a part of preparing for the change, not for adding security after the change has been
made. The plan should also contain a schedule for periodic review. Even though there may have
been no obvious, major growth, most organizations experience modest change every day. At some
point the cumulative impact of the change is enough to require the plan to be modified.

7. Continuing Attention

Good intentions are not enough when it comes to security. We must not only take care in defining
requirements and controls, but we must also find ways for evaluating a system's security to be sure
that the system is as secure as we intend it to be. Thus, the security plan must call for reviewing
the security situation periodically. As users, data, and equipment change, new exposures may
develop. In addition, the current means of control may become obsolete or ineffective (such as
when faster processor times enable attackers to break an encryption algorithm). The inventory of
objects and the list of controls should periodically be scrutinized and updated, and risk analysis
performed anew. The security plan should set times for these periodic reviews, based either on
calendar time (such as, review the plan every nine months) or on the nature of system changes
(such as, review the plan after every major system release).

Security Planning Team Members

Who performs the security analysis, recommends a security program, and writes the security plan?
As with any such comprehensive task, these activities are likely to be performed by a committee
that represents all the interests involved. The size of the committee depends on the size and
complexity of the computing organization and the degree of its commitment to security.
Organizational behavior studies suggest that the optimum size for a working committee is between
five and nine members. Sometimes a larger committee may serve as an oversight body to review
and comment on the products of a smaller working committee. Alternatively, a large committee
might designate subcommittees to address various sections of the plan.

The membership of a computer security planning team must somehow relate to the different
aspects of computer security described in this book. Security in operating systems and networks
requires the cooperation of the systems administration staff. Program security measures can be
understood and recommended by applications programmers. Physical security controls are
implemented by those responsible for general physical security, both against human attacks and
natural disasters. Finally, because controls affect system users, the plan should incorporate users'
views, especially with regard to usability and the general desirability of controls.

Thus, no matter how it is organized, a security planning team should represent each of the following
groups.

computer hardware group



system administrators

systems programmers

applications programmers

data entry personnel

physical security personnel

representative users

In some cases, a group can be adequately represented by someone who is consulted at appropriate
times, rather than a committee member from each possible constituency being enlisted.

Assuring Commitment to a Security Plan

After the plan is written, it must be accepted and its recommendations carried out. Acceptance by
the organization is key; a plan that has no organizational commitment is simply a plan that collects
dust on the shelf. Commitment to the plan means that security functions will be implemented and
security activities carried out. Three groups of people must contribute to making the plan a success.

The planning team must be sensitive to the needs of each group affected by the plan.

Those affected by the security recommendations must understand what the plan means for the
way they will use the system and perform their business activities. In particular, they must see
how what they do can affect other users and other systems.

Management must be committed to using and enforcing the security aspects of the system.

Education and publicity can help people understand and accept a security plan. Acceptance involves
not only the letter but also the spirit of the security controls. Recall from Chapter 4 the employee
who went through 24 password changes at a time to get back to a favorite password, in a system
that prevented use of any of the 23 most recently used passwords. Clearly, the employee either did
not understand or did not agree with the reason for restrictions on passwords. If people understand
the need for recommended controls and accept them as sensible, they will use the controls properly
and effectively. If people think the controls are bothersome, capricious, or counterproductive, they
will work to avoid or subvert them.

Management commitment is obtained through understanding. But this understanding is not just a
function of what makes sense technologically; it also involves knowing the cause and the potential
effects of lack of security. Managers must also weigh tradeoffs in terms of convenience and cost.
The plan must present a picture of how cost effective the controls are, especially when compared to
potential losses if security is breached without the controls. Thus, proper presentation of the plan is
essential, in terms that relate to management as well as technical concerns.

Remember that some managers are not computing specialists. Instead, the system supports a
manager who is an expert in some other business function, such as banking, medical technology, or
sports. In such cases, the security plan must present security risks in language that the managers
understand. It is important to avoid technical jargon and to educate the readers about the nature of



the perceived security risks in the context of the business the system supports. Sometimes outside
experts can bridge the gap between the managers' business and security.

Management is often reticent to allocate funds for controls until the value of those controls is
explained. As we note in the next section, the results of a risk analysis can help communicate the
financial tradeoffs and benefits of implementing controls. By describing vulnerabilities in financial
terms and in the context of ordinary business activities (such as leaking data to a competitor or an
outsider), security planners can help managers understand the need for controls.

The plans we have just discussed are part of normal business. They address how a business handles
computer security needs. Similar plans might address how to increase sales or improve product
quality, so these planning activities should be a natural part of management.

Next we turn to two particular kinds of business plans that address specific security problems:
coping with and controlling activity during security incidents.

Business Continuity Plans

Small companies working on a low profit margin can literally be put out of business by a computer
incident. Large, financially sound businesses can weather a modest incident that interrupts their use
of computers for a while, although it is painful to them.

But even rich companies do not want to spend money unnecessarily. The analysis is sometimes as
simple as no computers means no customers means no sales means no profit.

Government agencies, educational institutions, and nonprofit organizations also have limited
budgets, which they want to use to further their needs. They may not have a direct profit motive,
but being able to meet the needs of their customersthe public, students, and constituentspartially
determines how well they will fare in the future. All kinds of organizations must plan for ways to
cope with emergency situations.

A business continuity plan[1] documents how a business will continue to function during a
computer security incident. An ordinary security plan covers computer security during normal times
and deals with protecting against a wide range of vulnerabilities from the usual sources. A business
continuity plan deals with situations having two characteristics:

[1] The standard terminology is "business continuity plan," even though such a plan is needed by and applies to a university's

"business" of educating students or a government's "business" of serving the public.

catastrophic situations, in which all or a major part of a computing capability is suddenly
unavailable

long duration, in which the outage is expected to last for so long that business will suffer

There are many situations in which a business continuity plan would be helpful. Here are some
examples that typify what you might find in reading your daily newspaper:

A fire destroys a company's entire network.

A seemingly permanent failure of a critical software component renders the computing system



unusable.

A business must deal with the abrupt failure of its supplier of electricity, telecommunications,
network access, or other critical service.

A flood prevents the essential network support staff from getting to the operations center.

As you can see, these examples are likely to recur, and each disables a vital function.

You may also have noticed how often "the computer" is blamed for an inability to provide a service
or product. For instance, the clerk in a shop is unable to use the cash register because "the
computer is down." You may have a CD in your hand, plus exactly the cash to pay for it. But the
clerk will not take your money and send you on your way. Often, computer service is restored
shortly. But sometimes it is not. Once we were delayed for over an hour in an airport because of an
electrical storm that caused a power failure and disabled the airlines' computers. Although our
tickets showed clearly our reservations on a particular flight, the airline agents refused to let anyone
board because they could not assign seats. As the computer remained down, the agents were
frantic[2] because the technology was delaying the flight and, more importantly, disrupting
hundreds of connections.

[2] The obvious, at least to us, idea of telling passengers to "sit in any seat" seemed to be against airline policy.

The key to coping with such disasters is advance planning and preparation, identifying activities that
will keep a business viable when the computing technology is disabled. The steps in business
continuity planning are these:

Assess the business impact of a crisis.

Develop a strategy to control impact.

Develop and implement a plan for the strategy

Assess Business Impact

To assess the impact of a failure on your business, you begin by asking two key questions:

• What are the essential assets? What are the things that will prevent the business
from doing business? Answers are typically of the form "the network," "the customer
reservations database," or "the system controlling traffic lights."

• What could disrupt use of these assets? The vulnerability is more important than the
threat agent. For example, whether destroyed by a fire or zapped in an electrical
storm, the network is nevertheless down. Answers might be "failure," "corrupted," or
"loss of power."

You probably will find only a handful of key assets when doing this analysis.

Do not overlook people and the things they need for support, such as documentation and



communications equipment. Another way to think about your assets is to ask yourself, "What is the
minimum set of things or activities needed to keep business operational, at least to some degree?"
If a manual system would compensate for a failed computer system, albeit inefficiently, you may
want to consider building such a manual system as a potential critical asset. Think of the airline
unable to assign seats from a chart of the cabin.

Later in this chapter we study risk analysis, a comprehensive examination of assets, vulnerabilities,
and controls. For business continuity planning we do not need a full risk analysis. Instead, we focus
on only those things that are critical to continued operation. We also look at larger classes of
objects, such as "the network," whose loss or compromise can have catastrophic effect.

Develop Strategy

The continuity strategy investigates how the key assets can be safeguarded. In some cases, a
backup copy of data or redundant hardware or an alternative manual process is good enough.
Sometimes, the most reasonable answer is reduced capacity. For example, a planner might
conclude that if the call center in London fails, the business can divert all calls to Tokyo. It is
possible, though, that the staff in Tokyo cannot handle the full load of the London traffic; this
situation may result in irritated or even lost customers, but at least some business can be
transacted.

Ideally, you would like to continue business with no loss. But with catastrophic failures, usually only
a portion of the business function can be preserved. In this case, you must develop a strategy
appropriate for your business and customers. For instance, you can decide whether it is better to
preserve half of function A and half of B, or most of A and none of B.

You also must consider the time frame in which business is done. Some catastrophes last longer
than others. For example, rebuilding after a fire is a long process and implies a long time in disaster
mode. Your strategy may have several steps, each dependent on how long the business is disabled.
Thus, you may take one action in response to a one-hour outage, and another if the outage might
last a day or longer.

Because you are planning in advance, you have the luxury of being able to think about possible
circumstances and evaluate alternatives. For instance, you may realize that if the Tokyo site takes
on work for the disabled London site, there will be a significant difference in time zones. It may be
better to divert morning calls to Tokyo and afternoon ones to Dallas, to avoid asking Tokyo workers
to work extra hours.

The result of a strategy analysis is a selection of the best actions, organized by circumstances. The
strategy can then be used as the basis for your business continuity plan.

Develop Plan

The business continuity plan specifies several important things:

who is in charge when an incident occurs

what to do



who does it

The plan justifies making advance arrangements, such as acquiring redundant equipment, arranging
for data backups, and stockpiling supplies, before the catastrophe. The plan also justifies advance
training so that people know how they should react. In a catastrophe there will be confusion; you do
not want to add confused people to the already severe problem.

The person in charge declares the state of emergency and instructs people to follow the procedures
documented in the plan. The person in charge also declares when the emergency is over and
conditions can revert to normal.

Thus, the business continuity planning addresses how to maintain some degree of critical business
activity in spite of a catastrophe. Its focus is on keeping the business viable. It is based on the asset
survey, which focuses on only a few critical assets and serious vulnerabilities that could threaten
operation for a long or undetermined period of time.

The focus of the business continuity plan is to keep the business going while someone else
addresses the crisis. That is, the business continuity plan does not include calling the fire
department or evacuating the building, important though those steps are. The focus of a business
continuity plan is the business and how to keep it functioning to the degree possible in the situation.
Handling the emergency is someone else's problem.

Now we turn to a different plan that deals specifically with computer crises.

Incident Response Plans

An incident response plan tells the staff how to deal with a security incident. In contrast to the
business continuity plan, the goal of incident response is handling the current security incident,
without regard for the business issues. The security incident may at the same time be a business
catastrophe, as addressed by the business continuity plan. But as a specific security event, it might
be less than catastrophic (that is, it may not interrupt business severely) but could be a serious
breach of security, such as a hacker attack or a case of internal fraud. An incident could be a single
event, a series of events, or an ongoing problem.

An incident response plan should

define what constitutes an incident

identify who is responsible for taking charge of the situation

describe the plan of action

The plan usually has three phases: advance planning, triage, and running the incident. A fourth
phase, review, is useful after the situation abates so that this incident can lead to improvement for
future incidents.

Advance Planning

As with all planning functions, advance planning works best because people can think logically,



unhurried, and without pressure. What constitutes an incident may be vague. We cannot know the
details of an incident in advance. Typical characteristics include harm or risk of harm to computer
systems, data, or processing; initial uncertainty as to the extent of damage; and similar uncertainty
as to the source or method of the incident. For example, you can see that the file is missing or the
home page has been defaced, but you do not know how or by whom or what other damage there
may be.

In organizations that have not done incident planning, chaos may develop at this point. Someone
calls the network manager. Someone sends e-mail to the help desk. Someone calls the FBI, the
CERT, the newspapers, or the fire department. People start to investigate on their own, without
coordinating with the relevant staff in other departments, agencies, or businesses. And there is a lot
of conversation, rumor, and misinformation: more heat than light.

With an incident response plan in place, everybody is trained in advance to call the designated
leader. There is an established list of people to call, in order, in case the first person is unavailable.
The leader decides what to do next, and he or she begins by determining if this is a real incident or
a false alarm. Indeed, natural events sometimes look like incidents, and the facts of the situation
should be established first. If the leader decides this may be a real incident, he or she invokes the
response team.

Response Team

The response team is the set of people charged with responding to the incident. The response team
may include

director: person in charge of the incident, who decides what actions to take and when to
terminate the response. The director is typically a management employee.

lead technician: person who directs and coordinates the response. The lead technician decides
where to focus attention, analyzes situation data, documents the incident and how it was
handled, and calls for other technical people to assist with the analysis.

advisor(s): legal, human resources, or public relations staff members as appropriate.

In a small incident a single person can handle more than one of these roles. Nevertheless, it is
important that a single person be in charge, a single person who directs the response work, a single
point of contact for "insiders" (employees, users), and a single point of contact for "the public."

To develop policy and identify a response team, you need to consider certain matters.

Legal issues: An incident has legal ramifications. In some countries, computer intrusions are
illegal, so law enforcement officials must be involved in the investigation. In other places, you
have discretion in deciding whether to ask law enforcement to participate. In addition to
criminal action, you may be able to bring a civil case. Both kinds of legal action have serious
implications for the response. For example, evidence must be gathered and maintained in
specific ways in order to be usable in court. Similarly, laws may limit what you can do against
the alleged attacker: Cutting off a connection is probably acceptable, but launching a
retaliatory denial-of-service attack may not be.

Preserving evidence: The most common reaction in an incident is to assume the cause was



internal or accidental. For instance, you may surmise that the hardware has failed or that the
software isn't working correctly. The staff may be directed to change the configuration, reload
the software, reboot the system, or similarly attempt to resolve the problem by adjusting the
software. Unfortunately, each of these acts can irreparably distort or destroy evidence. When
dealing with a possible incident, do as little as possible before "dusting for fingerprints."

Records: It may be difficult to remember what you have already done: Have you already
reloaded a particular file? What steps got you to the prompt asking for the new DNS server's
address? If you call in an outside forensic investigator or the police, you will need to tell
exactly what you have already done.

Public relations: In handling an incident your organization should speak with one voice. You
risk sending confusing messages if too many people speak. It is especially important that only
one person speak publicly if legal action may be taken. An unguarded comment may tip off the
attacker or have a negative effect on the case. You can simply say that an incident occurred,
tell briefly and generally what it was, and state that the incident is now under control and
normal operation is resuming.

After the Incident Is Resolved

Eventually, the incident response team closes the case. At this point it will hold a review after the
incident to consider two things:

Is any security control action to be taken? Did an intruder compromise a system because
security patches were not up-to-date; if so, should there be a procedure to ensure that
patches are applied when they become available? Was access obtained because of a poorly
chosen password; if so, should there be a campaign to educate users on how to strong
passwords? If there were control failures, what should be done to prevent similar attacks in
the future?

Did the incident response plan work? Did everyone know whom to notify? Did the team have
needed resources? Was the response fast enough? What should be done differently next time?

The incident response plan ensures that incidents are handled promptly, efficiently, and with
minimal harm.



8.2. Risk Analysis

Good, effective security planning includes a careful risk analysis. A risk is a potential problem that
the system or its users may experience. We distinguish a risk from other project events by looking
for three things, as suggested by Rook [ROO93]:

1. A loss associated with an event. The event must generate a negative effect: compromised
security, lost time, diminished quality, lost money, lost control, lost understanding, and so on.
This loss is called the risk impact.

2. The likelihood that the event will occur. The probability of occurrence associated with each risk
is measured from 0 (impossible) to 1 (certain). When the risk probability is 1, we say we have
a problem.

3. The degree to which we can change the outcome. We must determine what, if anything, we
can do to avoid the impact or at least reduce its effects. Risk control involves a set of actions
to reduce or eliminate the risk. Many of the security controls we describe in this book are
examples of risk control.

We usually want to weigh the pros and cons of different actions we can take to address each risk. To
that end, we can quantify the effects of a risk by multiplying the risk impact by the risk probability,
yielding the risk exposure. For example, if the likelihood of virus attack is 0.3 and the cost to clean
up the affected files is $10,000, then the risk exposure is $3,000. So we can use a calculation like
this one to decide that a virus checker is worth an investment of $100, since it will prevent a much
larger potential loss. Clearly, risk probabilities can change over time, so it is important to track them
and plan for events accordingly.

Risk is inevitable in life: Crossing the street is risky but that does not keep us from doing it. We can
identify, limit, avoid, or transfer risk but we can seldom eliminate it. In general, we have three
strategies for dealing with risk:

1. avoiding the risk, by changing requirements for security or other system characteristics

2. transferring the risk, by allocating the risk to other systems, people, organizations, or assets;
or by buying insurance to cover any financial loss should the risk become a reality

3. assuming the risk, by accepting it, controlling it with available resources, and preparing to deal
with the loss if it occurs

Thus, costs are associated not only with the risk's potential impact but also with reducing it. Risk
leverage is the difference in risk exposure divided by the cost of reducing the risk. In other words,
risk leverage is



If the leverage value of a proposed action is not high enough, then we look for alternative but less
costly actions or more effective reduction techniques.

Risk analysis is the process of examining a system and its operational context to determine
possible exposures and the potential harm they can cause. Thus, the first step in a risk analysis is to
identify and list all exposures in the computing system of interest. Then, for each exposure, we
identify possible controls and their costs. The last step is a costbenefit analysis: Does it cost less to
implement a control or to accept the expected cost of the loss? In the remainder of this section, we
describe risk analysis, present examples of risk analysis methods, and discuss some of the
drawbacks to performing risk analysis.

The Nature of Risk

In our everyday lives, we take risks. In crossing the road, eating oysters, or playing the lottery, we
take the chance that our actions may result in some negative resultsuch as being injured, getting
sick, or losing money. Consciously or unconsciously, we weigh the benefits of taking the action with
the possible losses that might result. Just because there is a risk to a certain act we do not
necessarily avoid it; we may look both ways before crossing the street, but we do cross it. In
building and using computing systems, we must take a more organized and careful approach to
assessing our risks. Many of the systems we build and use can have a dramatic impact on life and
health if they fail. For this reason, risk analysis is an essential part of security planning.

We cannot guarantee that our systems will be risk free; that is why our security plans must address
actions needed should an unexpected risk become a problem. And some risks are simply part of
doing business; for example, as we have seen, we must plan for disaster recovery, even though we
take many steps to avoid disasters in the first place.

When we acknowledge that a significant problem cannot be prevented, we can use controls to
reduce the seriousness of a threat. For example, you can back up files on your computer as a
defense against the possible failure of a file storage device. But as our computing systems become
more complex and more distributed, complete risk analysis becomes more difficult and time
consumingand more essential.

Steps of a Risk Analysis

Risk analysis is performed in many different contexts; for example, environmental and health risks
are analyzed for activities such as building dams, disposing of nuclear waste, or changing a
manufacturing process. Risk analysis for security is adapted from more general management
practices, placing special emphasis on the kinds of problems likely to arise from security issues. By
following well-defined steps, we can analyze the security risks in a computing system.

The basic steps of risk analysis are listed below.



1. Identify assets.

2. Determine vulnerabilities.

3. Estimate likelihood of exploitation.

4. Compute expected annual loss.

5. Survey applicable controls and their costs.

6. Project annual savings of control.

Sidebar 8-3 illustrates how different organizations take slightly different approaches, but the basic
activities are still the same. These steps are described in detail in the following sections.

Step 1: Identify Assets

Before we can identify vulnerabilities, we must first decide what we need to protect. Thus, the first
step of a risk analysis is to identify the assets of the computing system. The assets can be
considered in categories, as listed below. The first three categories are the assets identified in
Chapter 1 and described throughout this book. The remaining items are not strictly a part of a
computing system but are important to its proper functioning.

Sidebar 8-3: Alternative Steps in Risk Analysis

There are many formal approaches to performing risk analysis. For example, the U.S.
Army used its Operations Security (OPSEC) guidelines during the Vietnam War [SEC99].
The guidelines involve five steps:

1. Identify the critical information to be protected.

2. Analyze the threats.

3. Analyze the vulnerabilities.

4. Assess the risks.

5. Apply countermeasures.

Similarly, the U.S. Air Force uses an Operational Risk Management procedure to support
its decision making. [AIR00] The steps are



1. Identify hazards.

2. Assess hazards.

3. Make risk decisions.

4. Implement controls.

5. Supervise.

As you can see, the steps are similar, but their details are always tailored to the
particular situation at hand. For this reason, it is useful to use someone else's risk
analysis process as a framework, but it is important to change it to match your own
situation.

hardware: processors, boards, keyboards, monitors, terminals, microcomputers, workstations,
tape drives, printers, disks, disk drives, cables, connections, communications controllers, and
communications media

software: source programs, object programs, purchased programs, in-house programs, utility
programs, operating systems, systems programs (such as compilers), and maintenance
diagnostic programs

data: data used during execution, stored data on various media, printed data, archival data,
update logs, and audit records

people: skills needed to run the computing system or specific programs

documentation: on programs, hardware, systems, administrative procedures, and the entire
system

supplies: paper, forms, laser cartridges, magnetic media, and printer fluid

It is essential to tailor this list to your own situation. No two organizations will have the same assets
to protect, and something that is valuable in one organization may not be as valuable to another.
For example, if a project has one key designer, then that designer is an essential asset; on the
other hand, if a similar project has ten designers, any of whom could do the project's design, then
each designer is not as essential because there are nine easily available replacements. Thus, you
must add to the list of assets the other people, processes, and things that must be protected. For
example, RAND Corporation's Vulnerability Assessment and Mitigation (VAM) methodology [ANT02]
includes additional assets, such as

the enabling infrastructure

the building or vehicle in which the system will reside

the power, water, air, and other environmental conditions necessary for proper functioning



human and social assets, such as policies, procedures, and training

The VAM methodology is a process supported by a tool to help people identify assets, vulnerabilities,
and countermeasures. We use other aspects of VAM as an example technique in later risk analysis
steps.

In a sense, the list of assets is an inventory of the system, including intangibles and human
resource items. For security purposes, this inventory is more comprehensive than the traditional
inventory of hardware and software often performed for configuration management or accounting
purposes. The point is to identify all assets necessary for the system to be usable.

Step 2: Determine Vulnerabilities

The next step in risk analysis is to determine the vulnerabilities of these assets. This step requires
imagination; we want to predict what damage might occur to the assets and from what sources. We
can enhance our imaginative skills by developing a clear idea of the nature of vulnerabilities. This
nature derives from the need to ensure the three basic goals of computer security: confidentiality,
integrity, and availability. Thus, a vulnerability is any situation that could cause loss of
confidentiality, integrity, and availability. We want to use an organized approach to considering
situations that could cause these losses for a particular object.

Software engineering offers us several techniques for investigating possible problems. Hazard
analysis, described in Sidebar 8-4, explores failures that may occur and faults that may cause them.
These techniques have been used successfully in analyzing safety-critical systems. However,
additional techniques are tailored specifically to security concerns; we address those techniques in
this and following sections.

Sidebar 8-4: Hazard Analysis Techniques

Hazard analysis is a set of systematic but informal techniques intended to expose
potentially hazardous system states. Using hazard analysis helps us find strategies to
prevent or mitigate harm once we understand what problems can occur. That is, hazard
analysis ferrets out not only the effects of problems but also their likely causes so that
we can then apply an appropriate technique for preventing a problem or softening its
consequences. Hazard analysis usually involves creating hazard lists as well as
procedures for exploring "what if" scenarios to trigger consideration of nonobvious
hazards. The problems' sources can be lurking in any artifacts of the development or
maintenance process, not just in the code. There are many kinds of problems, ranging
from incorrect information or code, to unclear consequences of a particular action. A
good hazard analysis takes all of them into account.

A variety of techniques support the identification and management of potential hazards
in complex critical systems. Among the most effective are hazard and operability studies
(HAZOP), failure modes and effects analysis (FMEA), and fault tree analysis (FTA).
HAZOP is a structured analysis technique originally developed for the process control



and chemical plant industries. FMEA is a bottom-up technique applied at the system
component level. A team identifies each component's possible faults or fault modes;
then, it determines what could trigger the fault and what systemwide effects each fault
might have. By keeping system consequences in mind, the team often finds possible
system failures that are not made visible by other analytical means. FTA complements
FMEA. It is a top-down technique that begins with a postulated hazardous system
malfunction. Then, the FTA team works backward to identify the possible precursors to
the mishap. By tracing from a specific hazardous malfunction, the team can derive
unexpected contributors to mishaps and identify opportunities to mitigate the risk of
mishaps.

We decide which technique is most appropriate by understanding how much we know
about causes and effects. When we know the cause and effect of a given problem, we
can strengthen the description of how the system should behave. If we can describe a
known effect with unknown cause, then we use deductive techniques such as FTA to
help us understand the likely causes of the unwelcome behavior. Conversely, we may
know the cause of a problem but not understand all the effects; here, we use inductive
techniques such as FMEA to help us trace from cause to all possible effects. Finally, to
find problems about which we may not yet be aware, we perform an exploratory
analysis such as a HAZOP study.

To organize the way we consider threats and assets, we can use a matrix such as the one shown in
Table 8-2. One vulnerability can affect more than one asset or cause more than one type of loss.
The table is a guide to stimulate thinking, but its format is not rigid.

Table 8-2. Assets and Security Properties.

Asset Confidentiality Integrity Availability

Hardware      

Software      

Data      

People      

Documentation      

Supplies      

In thinking about the contents of each matrix entry, we can ask the following questions.



• What are the effects of unintentional errors? Consider typing the wrong command,
entering the wrong data, using the wrong data item, discarding the wrong listing, and
disposing of output insecurely.

• What are the effects of willfully malicious insiders? Consider disgruntled employees,
bribery, and curious browsers.

• What are the effects of outsiders? Consider network access, dial-in access, hackers,
people walking through the building, and people sifting through the trash.

• What are the effects of natural and physical disasters? Consider fires, storms, floods,
power outages, and component failures.

Table 8-3 is a version of the previous table with some of the entries filled in. It shows that certain
general problems can affect the assets of a computing system. In a given installation, it is necessary
to determine what can happen to specific hardware, software, data items, and other assets.

Table 8-3. Assets and Attacks.

Asset Secrecy Integrity Availability

Hardware   overloaded
destroyed
tampered with

failed stolen
destroyed
unavailable

Software stolen copied
pirated

impaired by Trojan
horse modified
tampered with

deleted misplaced
usage expired

Data disclosed accessed
by outsider
inferred

damaged -
software error -
hardware error -
user error

deleted misplaced
destroyed

People     quit retired
terminated on
vacation

Documentation     lost stolen
destroyed

Supplies     lost stolen
damaged

Some organizations use other approaches to determining vulnerabilities and assessing their
importance. For example, Sidebar 8-5 describes the U.S. Navy's approach to vulnerability
evaluation.

Alas, there is no simple checklist or easy procedure to list all vulnerabilities. But from the earlier



chapters of this book you have seen many examples of vulnerabilities to assets, and your mind has
been trained to think of harm that can occur. Tools can help us conceive of vulnerabilities by
providing a structured way to think. For example, RAND's VAM methodology suggests that assets
have certain properties that make them vulnerable. The properties exist in three categories: aspects
of the design or architecture, aspects of behavior, and general attributes. Table 8-4 lists these
properties in more detail. Notice that the properties apply to many kinds of systems and at various
places within a given system.

Table 8-4. Attributes Contributing to Vulnerabilities.

Design/Architecture Behavioral General

Singularity

- Uniqueness

- Centrality

- Homogeneity

Separability

Logic/implementation
errors; fallibility

Design sensitivity,
fragility, limits,
finiteness

Unrecoverability

Behavioral
sensitivity/fragility

Malevolence

Rigidity

Malleability

Gullibility,
deceivability, naïveté

Complacency

Corruptibility,
controllability

Accessible,
detectable,
identifiable,
transparent,
interceptable

Hard to manage
or control

Self-
unawareness and
unpredictability

Predictability

From [ANT02], copyright © RAND 2002, reprinted by permission.



Sidebar 8-5: Integrated Vulnerability Assessments and CARVER

The U.S. Navy (see
http://www.safetycenter.navy.mil/orm/generalorm/introduction/default.htm) performs
Integrated Vulnerability Assessments (IVAs) as part of its risk analysis process. An IVA
uses checklists to review system vulnerabilities and suggest appropriate mitigative
strategies. The steps in an IVA include

1. identifying vulnerabilities

2. assigning priorities to the vulnerabilities

3. brainstorming countermeasures

4. assessing the risks

The Criticality, Accessibility, Recuperability, Vulnerability, Effect, and Recognizability
(CARVER) method is employed to assign priorities to the vulnerabilities. Numeric ratings
are applied to each vulnerability, and the sum represents a vulnerability score.
However, the summation procedure blurs the distinctions among different types of risks,
so the value of the overall score is questionable. Nevertheless, IVAs and CARVER may
be useful in helping make security planning issues more visible.

These attributes can be used to build a matrix, each of whose entries may suggest one or more
vulnerabilities. An example of such a matrix is shown in Figure 8-2. Using that matrixfor example,
the design attribute limits, finiteness applied to a cyber object, a software programcould lead you to
suspect buffer overflow vulnerabilities, or uniqueness for a hardware object could signal a single
point of failure. To use this methodology you would work through the matrix, thinking of each
contributing attribute on each asset class to derive the set of vulnerabilities.

Figure 8-2. Vulnerabilities Suggested by Attributes and Objects. (From
[ANT02], copyright © RAND 2002, reprinted by permission.)

[View full size image]
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Antón et al. [ANT02] point out that it is not enough to fill in the matrix cells. We must also consider
combinations of situations that might enable certain vulnerabilities. For example, as Figure 8-3
shows, at least six attributes can allow a successful attack by Trojan horse. The homogeneity of the
design or architecture may encourage an attacker to place a Trojan horse in a well-understood
location. The horse may be loaded by a gullible user who downloads a seemingly benign file. To do
this, the attacker must have some control over users and their machines; in general, this is a
manifestation of the accessibility of systems, especially on the Internet, and the lack of user
awareness when a remote site sends data to an unsuspecting system.



Figure 8-3. Vulnerabilities Enabling a Trojan Horse Attack. (From
[ANT02], copyright © RAND 2002, reprinted by permission.)

[View full size image]

Step 3: Estimate Likelihood of Exploitation

The third step in conducting a risk analysis is determining how often each exposure is likely to be
exploited. Likelihood of occurrence relates to the stringency of the existing controls and the
likelihood that someone or something will evade the existing controls. Sidebar 8-6 describes several
approaches to computing the probability that an event will occur: classical, frequency, and
subjective. Each approach has its advantages and disadvantages, and we must choose the approach
that best suits the situation (and its available information).

In security, it is often not possible to directly evaluate an event's probability by using classical
techniques. However, we can try to apply frequency probability by using observed data for a specific
system. Local failure rates are fairly easy to record, and we can identify which failures resulted in
security breaches or created new vulnerabilities. In particular, operating systems can track data on
hardware failures, failed login attempts, numbers of accesses, and changes in the sizes of data files.

Another alternative is to estimate the number of occurrences in a given time period. We can ask an
analyst familiar with the system to approximate the number of times a described event occurred in
the last year, for example. Although the count is not exact (because the analyst is unlikely to have
complete information), the analyst's knowledge of the system and its usage may yield reasonable
estimates.



Of course, the two methods described depend on the fact that a system is already built and has
been in use for some period of time. In many cases, and especially for proposed systems, the usage
data are not available. In this case, we may ask an analyst to estimate likelihood by reviewing a
table based on a similar system; this approach is incorporated in several formal security risk
processes. For example, the analyst may be asked to choose one of the ratings shown in Table 8-5.
Completing this analysis depends on the rater's professional expertise. The table provides the rater
with a framework within which to consider each likelihood. Differences between close ratings are not
very significant. A rater should be able to distinguish between something that happens once a year
and once a month.

Table 8-5. Ratings of Likelihood.

Frequency Rating

More than once a day 10

Once a day 9

Once every three days 8

Once a week 7

Once in two weeks 6

Once a month 5

Once every four months 4

Once a year 3

Once every three years 2

Less than once in three years 1

The Delphi approach is a subjective probability technique originally devised by RAND [HAL67] to
deal with public policy decisions. It assumes that experts can make informed estimates based on
their experience; the method brings a group of experts to consensus. The first step in using Delphi
is to provide each of several experts with information describing the situation surrounding the event
under consideration. For example, the experts may be told about the software and hardware
architecture, conditions of use, and expertise of users. Then, each expert individually estimates the
likelihood of the event. The estimates are collected, reproduced, and distributed to all experts. The
individual estimates are listed anonymously, and the experts are usually given some statistical
information, such as mean or median. The experts are then asked whether they wish to modify their
individual estimates in light of values their colleagues have supplied. If the revised values are
reasonably consistent, the process ends with the group's reaching consensus. If the values are
inconsistent, additional rounds of revision may occur until consensus is reached.



Sidebar 8-6: Three Approaches to Probability

Normally, we think of probability or likelihood as one concept. But in fact, we can think
about and derive probabilities in many ways. The approach to probability that you use
suggests how much confidence you can have in the probability numbers you derive.

Classical probability is the simplest and most theoretical kind. It is based on a model of
how the world works. For example, to calculate the probability that a given side of a six-
sided die will result from tossing the die, we think of a model of a cube, where each side
is equally sized and weighted. This kind of probability requires no empirical data. The
answers can be derived from the model itself, and in an objective way. However,
classical probability requires knowledge of elementary events and is bound to the
model's correctness. It is difficult to use classical probability to handle problems
involving infinite sets.

When we cannot use classical probability, we often choose to use frequency probability.
Here, instead of building a model of a die, we take a real die and toss it many times,
recording the result each time. This approach to probability requires historical data and
assumes environmental stability and replication. In our example, we assume that the
die is weighted properly and the tossing motion is the same each time. Frequency
probabilities are never exact. What we hope is that, in their limit, they approach the
theoretical probability of an event. Thus, if 100 people each toss a die 100 times, each
person's distribution may be slightly different from the others, but in the aggregate the
distribution will approach the correct one. Clearly, frequency probability cannot be
applied to unique events; for example, we cannot use it to estimate the probability that
software will fail in a particular way on a particular day.

When we cannot use classical or frequency probability, we often rely on subjective
probability, which requires neither data nor formal analysis. Here, we ask experts to
give us their opinions on the likelihood of an event, so the probability may differ from
one person to another. We sometimes use the Delphi method (described later in this
section) to reconcile these differences. The big advantage of subjective probability is
that it can be used in all circumstances. However, it is clearly not objective, and it
requires a coherent and complete understanding of the situation and its context.

In any given risk analysis we may use two or even all three of these estimating
techniques. We prefer classical probability, but we use other techniques as necessary.

Step 4: Compute Expected Loss

By this time, we have gained an understanding of the assets we value, their possible vulnerabilities,
and the likelihood that the vulnerabilities will be exploited. Next, we must determine the likely loss if
the exploitation does indeed occur. As with likelihood of occurrence, this value is difficult to
determine. Some costs, such as the cost to replace a hardware item, are easy to obtain. The cost to
replace a piece of software can be approximated reasonably well from the initial cost to buy it (or
specify, design, and write it). However, we must take care to include hidden costs in our
calculations. For instance, there is a cost to others of not having a piece of hardware or software.



Similarly, there are costs in restoring a system to its previous state, reinstalling software, or
deriving a piece of information. These costs are substantially harder to measure.

In addition, there may be hidden costs that involve legal fees if certain events take place. For
example, some data require protection for legal reasons. Personal data, such as police records, tax
information, census data, and medical information, are so sensitive that there are criminal penalties
for releasing the data to unauthorized people. Other data are company confidential; their release
may give competitors an edge on new products or on likely changes to the stock price. Some
financial data, especially when they reflect an adverse event, could seriously affect public confidence
in a bank, an insurance company, or a stock brokerage. It is difficult to determine the cost of
releasing these data.

If a computing system, a piece of software, or a key person is unavailable, causing a particular
computing task to be delayed, there may be serious consequences. If a program that prints
paychecks is delayed, employees' confidence in the company may be shaken, or some employees
may face penalties from not being able to pay their own bills. If customers cannot make
transactions because the computer is down, they may choose to take their business to a competitor.
For some time-critical services involving human lives, such as a hospital's life-support systems or a
space station's guidance systems, the costs of failure are infinitely high.

Thus, we must analyze the ramifications of a computer security failure. The following questions can
prompt us to think about issues of explicit and hidden cost related to security. The answers may not
produce precise cost figures, but they will help identify the sources of various types of costs.

• What are the legal obligations for preserving the confidentiality or integrity of a given
data item?

• What business requirements and agreements cover the situation? Does the
organization have to pay a penalty if it cannot provide a service?

• Could release of a data item cause harm to a person or organization? Would there be
the possibility of legal action if harm were done?

• Could unauthorized access to a data item cause the loss of future business
opportunity? Might it give a competitor an unfair advantage? What would be the
estimated loss in revenue?

• What is the psychological effect of lack of computer service? Embarrassment? Loss of
credibility? Loss of business? How many customers would be affected? What is their
value as customers?

• What is the value of access to data or programs? Could this computation be
deferred? Could this computation be performed elsewhere? How much would it cost
to have a third party do the computing elsewhere?

• What is the value to someone else of having access to data or programs? How much
would a competitor be willing to pay for access?

• What other problems would arise from loss of data? Could the data be replaced or
reconstructed? With what amount of work?



These are not easy costs to evaluate. Nevertheless, they are needed to develop a thorough
understanding of the risks. Furthermore, the vulnerabilities in computer security are often
considerably higher than managers expect. Realistic estimates of potential harm can raise concern
and suggest places in which attention to security is especially needed.

Step 5: Survey and Select New Controls

By this point in our risk analysis, we understand the system's vulnerabilities and the likelihood of
exploitation. We turn next to an analysis of the controls to see which ones address the risks we have
identified. We want to match each vulnerability with at least one appropriate security technique, as
shown in Figure 8-4. Once we do that, we can use our expected loss estimates to help us decide
which controls, alone or in concert, are the most cost effective for a given situation. Notice that
vulnerabilities E and F are countered by primary techniques 2 and 4, respectively. The secondary
control techniques 2 and 3 for vulnerability F are good defense in depth. The fact that there is no
secondary control for vulnerability E is a minor concern. But vulnerability T is a serious caution,
because it has no control whatsoever.

Figure 8-4. Mapping Control Techniques to Vulnerabilities. (Adapted from
[ANT02], copyright © RAND 2002, reprinted by permission.)

[View full size image]

For example, consider the risk of losing data. This loss could be addressed by several of the controls
we have discussed in previous chapters: periodic backups, redundant data storage, access controls
to prevent unauthorized deletion, physical security to keep someone from stealing a disk, or
program development standards to limit the effect of programs on the data. We must determine the
effectiveness of each control in a given situation; for instance, using physical security in a building
already equipped with guards and limited access may be more effective than sophisticated software-
based controls.



What Criteria Are Used for Selecting Controls?

We can also think of controls at a different level. Table 8-6 lists a selection of strategies presented
in the VAM methodology; we can use the list to mitigate the effects of a vulnerability. This method
reflects a systems approach and also the military defense environment for which VAM was
developed.

Table 8-6. Categories of Mitigation Techniques.

Resilience and Robustness Intelligence, Surveillance,
Reconnaissance (ISR), and Self-
Awareness

Heterogeneity

Redundancy

Centralization

Decentralization

Verification and
validation, software and
hardware engineering,
evaluation, testing

Control of exposure,
access, and output

Trust learning and
enforcement systems

Nonrepudiation, so that
some agent cannot
erase identifying
information about who
or what took a particular
action

Hardening

Fault, uncertainty,
validity, and quality
tolerance and graceful
degradation

Static resource allocation

Dynamic resource

Intelligence operations

Self-awareness, monitoring, and
assessments

Deception for intelligence, surveillance,
and reconnaissance

Attack detection, recognition, damage
assessment, and forensics (friend and
foe)

Counterintelligence, Denial of ISR, and
Target Acquisition

General counterintelligence

Deception for counterintelligence

Denial of ISR and target acquisition



Resilience and Robustness Intelligence, Surveillance,
Reconnaissance (ISR), and Self-
Awareness

Static resource allocation

Dynamic resource
allocation

Management

Threat response
structures and plans

Rapid reconstitution and
recovery

Adaptability and learning

Immunological defense
systems

Vaccination

Deterrence and Punishment

Preventive and retributive
information/military operations

Criminal and legal penalties and
guarantees

Law enforcement, civil proceedings

From [ANT02], copyright © RAND 2002, reprinted by permission.

VAM characterizes controls in terms of four high-level aspects: resilience and robustness;
intelligence, surveillance, reconnaissance (ISR), and self-awareness; counterintelligence, denial of
ISR, and target acquisition; and deterrence and punishment. Notice that many of these controls are
technical but embrace the entire system architecture. For example, heterogeneity is a control that
can be implemented only when the system is designed so that it is composed of dissimilar pieces,
such as operating systems of different brands. Similarly, redundancy and decentralization are
architectural elements, too. Some people think of controls as specific pieces of hardware and
software, such as firewalls and virus checkers. But in fact, this broader list takes a software
engineering approach to security: Make the system sturdy from the beginning, rather than trying
only to patch holes with security-specific, self-contained subsystems.

The VAM methodology takes this table one step further, using it to compare vulnerabilities to
possible controls. The matrix shown in Figure 8-5 lists attributes leading to vulnerabilities (as seen
in Table 8-4) along the left side, and the controls of Table 8-6 along the top. Thus, each cell of the
matrix corresponds to whether a particular control addresses a given vulnerability.

Figure 8-5. Matrix of Vulnerabilities and Controls. (From [ANT02],
copyright © RAND 2002, reprinted by permission.)

[View full size image]
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matrix corresponds to whether a particular control addresses a given vulnerability.

Figure 8-5. Matrix of Vulnerabilities and Controls. (From [ANT02],
copyright © RAND 2002, reprinted by permission.)
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How Do Controls Affect What They Control?

Controls have positive and negative effects: Encryption, for example, protects confidentiality, but it
also takes time and introduces key management issues. Thus, when selecting controls, you have to
consider the full impact.

The creators of VAM recognized that sometimes attributes enhance security and other times detract
from it. For example, heterogeneity may be useful as a control in preventing the proliferation of the
same kind of logic error throughout a system. But heterogeneity can also make the system's design
harder to understand and, therefore, harder to maintain; the result can be a fragile design that is
easy for an attacker to cause to fail. For this reason, VAM has included a rating scheme to reflect
the relationship depicted by each cell of the matrix. A cell relating a vulnerability to a security
technique contains a number from 2 to 2, according to this scheme:

2 means that the control mitigates the vulnerability significantly and should be a prime
candidate for addressing it.

1 means that the control mitigates the vulnerability somewhat, but not as well as one labeled
2, so it should be a secondary candidate for addressing it.

0 means that the vulnerability may have beneficial side effects that enhance some aspect of
security. (Example: homogeneity can facilitate both static and dynamic resource allocation. It
can also facilitate rapid recovery and reconstitution.)

-1 means that the control worsens the vulnerability somewhat or incurs new vulnerabilities.

-2 means that the control worsens the vulnerability significantly or incurs new vulnerabilities.

The VAM rating scheme is depicted in Figure 8-6; the full explanation of each row name, column
name and rating can be found in [ANT02]. The matrix is used to support decisions about controls in
the following way. We begin with the rows of the matrix, each of which corresponds to a
vulnerability. We follow the row across to look for instances in which a cell is labeled with a 2 (or a



1, if there are no 2s). Then we follow the column up to its heading, to see which security techniques
(the column labels) are strong controls for this vulnerability. For example, the matrix indicates that
heterogeneity, redundancy, and decentralization are good controls for design sensitivity or fragility.
Next, we notice that both heterogeneity and decentralization are also labeled with a -1 in that cell,
indicating that by using them, we may enable other vulnerabilities. For instance, heterogeneity can
enable several systems to complement each other but can make the overall system harder to
maintain. Similarly, decentralization makes it more difficult for an attacker to exploit fragilities, but
at the same time it can make the system more fragile due to a need for coordination. In this way,
we can look at the implications of using each control to address known vulnerabilities.

Figure 8-6. Valuation of Security Techniques. (From [ANT02], copyright
© RAND 2002, reprinted by permission.)

[View full size image]

Which Controls Are Best?

By now, we have noted a large number of primary and secondary controls to use against our
identified vulnerabilities. We need a way to determine the most appropriate controls for a given
situation. VAM offers us a refinement process based on three roles: operational, design, and policy.
That is, if we are interested in security from the perspective of someone who will be using or
managing the system, we take the operational perspective. If instead we view security from an
implementation point of view, we take the developer's role. And if we view the system in the larger
context of how it provides information processing to relevant organizations, we adopt the policy
point of view. VAM provides tables, such as the one shown in Figure 8-7, to identify the relevance of
each control to each perspective.



Figure 8-7. Relevance of Certain Security Techniques to Roles and Attack
Components. (From [ANT02], copyright © RAND 2002, reprinted by

permission.)
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In this matrix, the rows represent security controls, and the columns serve two functions. The first
three columns represent the three perspectives for evaluating the relevance of the control:
operational, developer, and policy. The second five columns note at what stage of an attack the



control is most useful: allowing an attacker to have knowledge about the system, enabling access to
the system, providing a target for attack, enabling nonretribution, and assessing the extent to which
an attack has been successful. In this matrix, the 1s and 2s labeling the cells have a different
meaning from the previous matrix. Here, a 1 indicates that the control is weakly relevant to the
perspective or attack stage, and a 2 indicates that it is strongly relevant.

Finally, VAM presents a matrix to illustrate the relationships among the attack stages and the
vulnerable objects in a system. For example, an attacker can gain knowledge about a system not
only by obtaining source code and doing reverse engineering but also by using organizational charts
and social engineering.

The VAM approach is comprehensive and effective, supported by a software tool to walk an analyst
through the stages of identifying vulnerabilities, selecting controls, and refining choices. [ANT02]
contains tables and charts that explain the rating system and the relationships among tables; we
have presented some of those tables and charts, courtesy of Antón et al., because they offer good
examples that introduce you to the details of selecting controls. Sometimes, however, you can do a
much less rigorous analysis by simply listing the possible controls, assessing the strengths and
weaknesses of each, and choosing the one(s) that seem to be most appropriate.

Step 6: Project Savings

By this point in our risk analysis, we have identified controls that address each vulnerability in our
list. The next step is to determine whether the costs outweigh the benefits of preventing or
mitigating the risks. Recall that we multiply the risk probability by the risk impact to determine the
risk exposure. The risk impact is the loss that we might experience if the risk were to turn into a
real problem. There are techniques to help us determine the risk exposure.

The effective cost of a given control is the actual cost of the control (such as purchase price,
installation costs, and training costs) minus any expected loss from using the control (such as
administrative or maintenance costs). Thus, the true cost of a control may be positive if the control
is expensive to administer or introduces new risk in another area of the system. Or the cost can
even be negative if the reduction in risk is greater than the cost of the control.

For example, suppose a department has determined that some users have gained unauthorized
access to the computing system. It is feared that the intruders might intercept or even modify
sensitive data on the system. One approach to addressing this problem is to install a more secure
data access control program. Even though the cost of the access control software is high ($25,000),
its cost is easily justified when compared to its value, as shown in Table 8-7. Because the entire cost
of the package is charged in the first year, even greater benefits are expected for subsequent years.

Table 8-7. Justification of Access Control Software.

Item Amount

Risks: disclosure of company confidential data, computation based
on incorrect data

Cost to reconstruct correct data: $1,000,000 @ 10%
likelihood per year

$100,000



Item Amount

Risks: disclosure of company confidential data, computation based
on incorrect data

Effectiveness of access control software: 60% -60,000

Cost of access control software +25,000

Expected annual costs due to loss and controls (100,000
60,000 + 25,000)

$65,000

Savings (100,000 65,000) $35,000

Another company uses a common carrier to link to a network for certain computing applications.
The company has identified the risks of unauthorized access to data and computing facilities through
the network. These risks can be eliminated by replacement of remote network access with the
requirement to access the system only from a machine operated on the company premises. The
machine is not owned; a new one would have to be acquired. The economics of this example are not
promising, as shown in Table 8-8.

Table 8-8. Cost/Benefit Analysis for Replacing Network
Access.

Item Amount

Risk: unauthorized access and use

Access to unauthorized data and programs $100,000 @ 2%
likelihood per year

$2,000

Unauthorized use of computing facilities $10,000 @ 40%
likelihood per year

4,000

Expected annual loss (2,000 + 4,000) 6,000

Effectiveness of network control: 100% -6,000

Control cost:

Hardware (50,000 amortized over 5 years) +10,000

Software (20,000 amortized over 5 years) +4,000

Support personnel (each year) +40,000

Annual cost 54,000

Expected annual loss (6,000 6,000 + 54,000) $54,000

Savings (6,000 54,000) -$48,000

To supplement this tabular analysis, we can use a graphical depiction to contrast the economics
involved in choosing among several strategies. For example, suppose we are considering the use of
regression testing after making an upgrade to fix a security flaw. Regression testing means applying
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tests to verify that all remaining functions are unaffected by the change. It can be an expensive
process, especially for large systems that implement many functions. (This example is taken from
Pfleeger and Atlee [PFL06a].)

To help us make our decision, we draw a diagram such as that in Figure 8-8. We want to compare
the risk impact of doing regression testing with not doing it. Thus, the upper part of the diagram
shows the risks in doing regression testing, and the lower part the risks of not doing regression
testing. In each of the two cases, one of three things can happen: We find a critical fault, there is a
critical fault but we miss finding it, or there are no critical faults to be found. For each possibility, we
first calculate the probability of an unwanted outcome, P(UO). Then, we associate a loss with that
unwanted outcome, L(UO). Thus, in our example, if we do regression testing and miss a critical fault
lurking in the system (a probability of 0.05), the loss could be $30 million. Multiplying the two, we
find the risk exposure for that strategy to be $1.5 million. As you can see from the calculations in
the figure, it is far safer to do the regression testing than to skip it.

Figure 8-8. Risk Calculation for Regression Testing.

[View full size image]

As shown in these examples, risk analysis can be used to evaluate the true costs of proposed
controls. In this way, risk analysis can be used as a planning tool. The effectiveness of different
controls can be compared on paper before actual investments are made. Risk analysis can thus be
used repeatedly, to select an optimum set of controls.



Arguments For and Against Risk Analysis

Risk analysis is a well-known planning tool, used often by auditors, accountants, and managers. In
many situations, such as obtaining approval for new drugs, new power plants, and new medical
devices, a risk analysis is required by law in many countries. There are many good reasons to
perform a risk analysis in preparation for creating a security plan.

Improve awareness. Discussing issues of security can raise the general level of interest and
concern among developers and users. Especially when the user population has little expertise
in computing, the risk analysis can educate users about the role security plays in protecting
functions and data that are essential to user operations and products.

Relate security mission to management objectives. Security is often perceived as a financial
drain for no gain. Management does not always see that security helps balance harm and
control costs.

Identify assets, vulnerabilities, and controls. Some organizations are unaware of their
computing assets, their value to the organization, and the vulnerabilities associated with those
assets. A systematic analysis produces a comprehensive list of assets, valuations, and risks.

Improve basis for decisions. A security manager can present an argument such as "I think we
need a firewall here" or "I think we should use token-based authentication instead of
passwords." Risk analysis augments the manager's judgment as a basis for the decision.

Justify expenditures for security. Some security mechanisms appear to be very expensive and
without obvious benefit. A risk analysis can help identify instances where it is worth the
expense to implement a major security mechanism. Justification is often derived from
examining the much larger risks of not spending for security.

However, despite the advantages of risk analysis, there are several arguments against using it to
support decision making.

False sense of precision and confidence. The heart of risk analysis is the use of empirical data
to generate estimates of risk impact, risk probability, and risk exposure. The danger is that
these numbers will give us a false sense of precision, thereby giving rise to an undeserved
confidence in the numbers. However, in many cases the numbers themselves are much less
important than their relative sizes. Whether an expected loss is $100,000 or $150,000 is
relatively unimportant. It is much more significant that the expected loss is far above the
$10,000 or $20,000 budget allocated for implementing a particular control. Moreover, anytime
a risk analysis generates a large potential loss, the system deserves further scrutiny to see if
the root cause of the risk can be addressed.

Hard to perform. Enumerating assets, vulnerabilities, and controls requires creative thinking.
Assessing loss frequencies and impact can be difficult and subjective. A large risk analysis will
have many things to consider. Risk analysis can be restricted to certain assets or
vulnerabilities, however.

Immutability. It is typical on many software projects to view processes like risk analysis as an
irritating fact of lifea step to be taken in a hurry so that the developers can get on with the



more interesting jobs related to designing, building, and testing the system. For this reason,
risk analyses, like contingency plans and five-year plans, have a tendency to be filed and
promptly forgotten. But if an organization takes security seriously, it will view the risk analysis
as a living document, updating it at least annually or in conjunction with major system
upgrades.

Lack of accuracy. Risk analysis is not always accurate, for many reasons. First, we may not be
able to calculate the risk probability with any accuracy, especially when we have no past
history of similar situations. Second, even if we know the likelihood, we cannot always
estimate the risk impact very well. The risk management literature is replete with papers about
describing the scenario, showing that presenting the same situation in two different ways to
two equivalent groups of people can yield two radically different estimates of impact. And
third, we may not be able to anticipate all the possible risks. For example, bridge builders did
not know about the risks introduced by torque from high winds until the Tacoma Narrows
Bridge twisted in the wind and collapsed. After studying the colossal failure of this bridge and
discovering the cause, engineers made mandatory the inclusion of torque in their simulation
parameters. Similarly, we may not know enough about software, security, or the context in
which the system is to be used, so there may be gaps in our risk analysis that cause it to be
inaccurate.

This lack of accuracy is often cited as a deficiency of risk analysis. But this lack is a red herring. Risk
analysis is useful as a planning tool, to compare and contrast options. We may not be able to
predict events accurately, but we can use risk analysis to weigh the tradeoffs between one action
and another. When risk analysis is used in security planning, it highlights which security
expenditures are likely to be most cost effective. This investigative basis is important for choosing
among controls when money available for security is limited. And our risk analysis should improve
as we build more systems, evaluate their security, and have a larger experience base from which to
draw our estimates.

A risk analysis has many advantages as part of security plan or as a tool for less formal security
decision making. It ranges from very subjective and imprecise to highly quantitative. It is useful for
generating and documenting thoughts about likely threats and possible countermeasures. Finally, it
supports rational decision making about security controls.

Next we turn to another aspect of security planningdeveloping security policies.



8.3. Organizational Security Policies

A key element of any organization's security planning is an effective security policy. A security policy
must answer three questions: who can access which resources in what manner?

A security policy is a high-level management document to inform all users of the goals of and
constraints on using a system. A policy document is written in broad enough terms that it does not
change frequently. The information security policy is the foundation upon which all protection efforts
are built. It should be a visible representation of priorities of the entire organization, definitively
stating underlying assumptions that drive security activities. The policy should articulate senior
management's decisions regarding security as well as asserting management's commitment to
security. To be effective, the policy must be understood by everyone as the product of a directive
from an authoritative and influential person at the top of the organization.

People sometimes issue other documents, called procedures or guidelines, to define how the
policy translates into specific actions and controls. In this section, we examine how to write a useful
and effective security policy.

Purpose

Security policies are used for several purposes, including the following:

recognizing sensitive information assets

clarifying security responsibilities

promoting awareness for existing employees

guiding new employees

Audience

A security policy addresses several different audiences with different expectations. That is, each
groupusers, owners, and beneficiariesuses the security policy in important but different ways.

Users

Users legitimately expect a certain degree of confidentiality, integrity, and continuous availability in
the computing resources provided to them. Although the degree varies with the situation, a security
policy should reaffirm a commitment to this requirement for service.

Users also need to know and appreciate what is considered acceptable use of their computers, data,



and programs. For users, a security policy should define acceptable use.

Owners

Each piece of computing equipment is owned by someone, and the owner may not be a system
user. An owner provides the equipment to users for a purpose, such as to further education, support
commerce, or enhance productivity. A security policy should also reflect the expectations and needs
of owners.

Beneficiaries

A business has paying customers or clients; they are beneficiaries of the products and services
offered by that business. At the same time, the general public may benefit in several ways: as a
source of employment or by provision of infrastructure. For example, you may not be a client of
BellSouth, but when you place a telephone call from London to Atlanta, you benefit from BellSouth's
telecommunications infrastructure. In the same way, the government has customers: the citizens of
its country, and "guests" who have visas enabling entry for various purposes and times. A
university's customers include its students and faculty; other beneficiaries include the immediate
community (which can take advantage of lectures and concerts on campus) and often the world
population (enriched by the results of research and service).

To varying degrees, these beneficiaries depend, directly or indirectly, on the existence of or access
to computers, their data and programs, and their computational power. For this set of beneficiaries,
continuity and integrity of computing are very important. In addition, beneficiaries value
confidentiality and correctness of the data involved. Thus, the interests of beneficiaries of a system
must be reflected in the system's security policy.

Balance Among All Parties

A security policy must relate to the needs of users, owners, and beneficiaries. Unfortunately, the
needs of these groups may conflict. A beneficiary might require immediate access to data, but
owners or users might not want to bear the expense or inconvenience of providing access at all
hours. Continuous availability may be a goal for users, but that goal is inconsistent with a need to
perform preventive or emergency maintenance. Thus, the security policy must balance the priorities
of all affected communities.

Contents

A security policy must identify its audiences: the beneficiaries, users, and owners. The policy should
describe the nature of each audience and their security goals. Several other sections are required,
including the purpose of the computing system, the resources needing protection, and the nature of
the protection to be supplied. We discuss each one in turn.

Purpose



The policy should state the purpose of the organization's security functions, reflecting the
requirements of beneficiaries, users, and owners. For example, the policy may state that the system
will "protect customers' confidentiality or preserve a trust relationship," "ensure continual usability,"
or "maintain profitability." There are typically three to five goals, such as:

Promote efficient business operation.

Facilitate sharing of information throughout the organization.

Safeguard business and personal information.

Ensure that accurate information is available to support business processes.

Ensure a safe and productive place to work.

Comply with applicable laws and regulations.

The security goals should be related to the overall goal or nature of the organization. It is important
that the system's purpose be stated clearly and completely because subsequent sections of the
policy will relate back to these goals, making the policy a goal-driven product.

Protected Resources

A risk analysis will have identified the assets that are to be protected. These assets should be listed
in the policy, in the sense that the policy lays out which items it addresses. For example, will the
policy apply to all computers or only to those on the network? Will it apply to all data or only to
client or management data? Will security be provided to all programs or only the ones that interact
with customers? If the degree of protection varies from one service, product, or data type to
another, the policy should state the differences. For example, data that uniquely identify clients may
be protected more carefully than the names of cities in which clients reside.

Nature of the Protection

The asset list tells us what should be protected. The policy should also indicate who should have
access to the protected items. It may also indicate how that access will be ensured and how
unauthorized people will be denied access. All the mechanisms described in this book are at your
disposal in deciding which controls should protect which objects. In particular, the security policy
should state what degree of protection should be provided to which kinds of resources.

Characteristics of a Good Security Policy

If a security policy is written poorly, it cannot guide the developers and users in providing
appropriate security mechanisms to protect important assets. Certain characteristics make a
security policy a good one.

Coverage



A security policy must be comprehensive: It must either apply to or explicitly exclude all possible
situations. Furthermore, a security policy may not be updated as each new situation arises, so it
must be general enough to apply naturally to new cases that occur as the system is used in unusual
or unexpected ways.

Durability

A security policy must grow and adapt well. In large measure, it will survive the system's growth
and expansion without change. If written in a flexible way, the existing policy will be applicable to
new situations. However, there are times when the policy must change (such as when government
regulations mandate new security constraints), so the policy must be changeable when it needs to
be.

An important key to durability is keeping the policy free from ties to specific data or protection
mechanisms that almost certainly will change. For example, an initial version of a security policy
might require a ten-character password for anyone needing access to data on the Sun workstation
in room 110. But when that workstation is replaced or moved, the policy's guidance becomes
useless. It is preferable to describe assets needing protection in terms of their function and
characteristics, rather than in terms of specific implementation. For example, the policy on Sun
workstations could be reworded to mandate strong authentication for access to sensitive student
grades or customers' proprietary data. Better still, we can separate the elements of the policy,
having one policy statement for student grades and another for customers' proprietary data.
Similarly, we may want to define one policy that applies to preserving the confidentiality of
relationships, and another protecting the use of the system through strong authentication.

Realism

The policy must be realistic. That is, it must be possible to implement the stated security
requirements with existing technology. Moreover, the implementation must be beneficial in terms of
time, cost, and convenience; the policy should not recommend a control that works but prevents the
system or its users from performing their activities and functions. Sidebar 8-7 points out that
sometimes the policy writers are seduced by what is fashionable in security at the time of writing. It
is important to make economically worthwhile investments in security, just as for any other careful
business investment.

Usefulness

An obscure or incomplete security policy will not be implemented properly, if at all. The policy must
be written in language that can be read, understood, and followed by anyone who must implement
it or is affected by it. For this reason, the policy should be succinct, clear, and direct.

Examples

To understand the nature of security policies, we study a few examples to illustrate some of the



points just presented.

Sidebar 8-7: The Economics of Information Security Policy

Anderson [AND02a] asks that we consider carefully the economic aspects of security
when we devise our security policy. He points out that the security engineering
community tends to overstate security problems because it is in their best interest to do
so. "The typical infosec professional is a firewall vendor struggling to meet quarterly
sales targets to prop up a sagging stock price, or a professor trying to mine the
'cyberterrorism' industry for grants, or a policeman pitching for the budget to build up a
computer crime agency." Thus, they may exaggerate a security problem to meet a
more pressing goal.

Moreover, the security community is subject to fads, as in other disciplines. Anderson
says that network security is trendy in 2002, which means that vendors are pushing
firewalls and encryption, products that have been oversold and address only part of the
typical organization's security problems. He suggests that, rather than focusing on what
is fashionable, we focus instead on asking for a reasonable return on our investment in
security.

Soo Hoo's research indicates that a reasonable number is 20 percent, at a time when
companies usually expect a 30 percent return from their investments in information
technology [SOO00]. In this context, it may be more worthwhile to implement simple,
inexpensive measures such as enabling screen-locking than larger, more complex and
expensive measures such as PKI and centralized access control. As Anderson points out,
"you could spend a bit less on security if you spend it smarter."

Data Sensitivity Policy

Our first example is from an organization that decided to classify all its data resources into four
levels, based on how severe might be the effect if a resource were damaged. These levels are listed
in Table 8-9. Then, the required protection was based on the resource's level. Finally, the
organization analyzed its threats, their possible severities, and countermeasures, and their
effectiveness, within each of the four levels.

Table 8-9. Example: Defined Levels of Data Sensitivity.

Name Description Examples

Sensitive could damage competitive
advantage

business strategy

profit plans



Name Description Examples

Personal or protected could reveal personal,
private, or protected
information personal data:

employees' salaries
or performance
reviews

private data:
employee lists

protected data: data
obligated to protect,
such as those
obtained under a
nondisclosure
agreement

Company confidential could damage company's
public image

audit reports,
operating plans

Open no harm

press releases

white paper

marketing materials

Although the phrases describing the degree of damage are open to interpretation, the intent of
these levels is clear: All information assets are to be classified as sensitive, personal, confidential, or
open, and protection requirements for these four types are detailed in the remainder of the
organization's policy document.

Government Agency IT Security Policy

The U.S. Department of Energy (DOE), like many government units, has established its own security
policy. The following excerpt is from the policy on protecting classified material, although the form is
appropriate for many unclassified uses as well.

It is the policy of DOE that classified information and classified ADP [automatic data
processing] systems shall be protected from unauthorized access (including the enforcement of
need-to-know protections), alteration, disclosure, destruction, penetration, denial of service,
subversion of security measures, or improper use as a result of espionage, criminal,
fraudulent, negligent, abusive, or other improper actions. The DOE shall use all reasonable
measures to protect ADP systems that process, store, transfer, or provide access to classified
information, to include but not limited to the following: physical security, personnel security,
telecommunications security, administrative security, and hardware and software security
measures. This order establishes this policy and defines responsibilities for the development,
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implementation, and periodic evaluation of the DOE program.

The policy then continues for several more pages to list specific responsibilities for specific people.

The cited paragraph is comprehensive, covering practically every possible source (espionage, crime,
fraud, etc.) of practically every possible harm (unauthorized access, alteration, destruction, etc.),
and practically every possible kind of control (physical, personnel, etc.). The generality of the
header paragraph is complemented by subsequent paragraphs giving specific responsibilities:

"Each data owner shall determine and declare the required protection level of information . . ."

"Each security officer shall . . . perform a risk assessment to identify and document specific . .
. assets, . . . threats, . . . and vulnerability . . ."

"Each manager shall...establish procedures to ensure that systems are continuously
monitored...to detect security infractions . . ."

and so on.

Internet Security Policy

The Internet does not have a governing security policy per se, because it is a federation of users.
Nevertheless, the Internet Society drafted a security policy for its members [PET91]. The policy
contains the following interesting portions.

Users are individually responsible for understanding and respecting the security policies of the
systems (computers and networks) they are using. Users are individually accountable for their
own behavior.

Users have a responsibility to employ available security mechanisms and procedures for
protecting their own data. They also have a responsibility for assisting in the protection of the
systems they use.

Computer and network service providers are responsible for maintaining the security of the
systems they operate. They are further responsible for notifying users of their security policies
and any changes to these policies.

Vendors and system developers are responsible for providing systems which are sound and
which embody adequate security controls.

Users, service providers, and hardware and software vendors are responsible for cooperating
to provide security.

Technical improvements in Internet security protocols should be sought on a continuing basis.
At the same time, personnel developing new protocols, hardware or software for the Internet
are expected to include security considerations as part of the design and development process.

These statements clearly state to whom they apply and for what each party is responsible.



Policy Issue Example: Government E-mail

Organizations develop computer security policies along the lines just described. Generally the
policies lead to the familiar assets, vulnerabilities, and controls. But sometimes you have to start
with existing policieswhich may be formal documents or informal understandingsand consider how
they apply in new situations. Is this action consistent with the goals of the policy and therefore
acceptable? Applying policies can be like being a judge. As security professionals, we often focus on
security policy without remembering the context in which we are making policy decisions. In this
section, we look at a real-life issue to see how security policy fits into the broader scope of issues
the security must address.

The U.S. government has proposed using network technologies to enhance its ability to interact with
American citizens. Some people think that by employing functions such as electronic mail and World
Wide Web access, the government could make more information available to citizens more quickly
and at the same time be more responsive to citizens' needs. It is also hoped that costs would be
reduced, a winning proposition for government and taxpayers alike.

This proposal has clear security implications. Indeed, having read this far in this book, you can
probably list dozens of security issues that must be addressed to make this proposal work. The
technology to design, build, and support this type of function exists, and the requirements, design,
and implementation can easily be done from a technological point of view. But what about the other
issues involved in building such a system? Neu et al. [NEU98] point out that the technology must be
viewed in the larger institutional, organizational, and administrative contexts.

Much of what the government wants to do is already done. Many federal agencies have web sites
providing large amounts of information to citizens, such as regulations, reports, and forms. This
type of information is equally accessible to anyone who needs it. But other information exchange is
more personalized: submitting completed tax forms, filing required paperwork for licenses and
benefits, and asking specific questions about an individual's records, for example. Clearly the last
type suggests stringent requirements relating to confidentiality, authentication, and integrity.

Neu et al. mention several security policy issues that must be addressed before such a system could
be implemented. These include the following:

How do the commercial firms' security policies meet the government's security needs?

To enable secure communication, the government will likely want to use public key encryption.
As we noted in Chapter 2, a certificate authority associates a public key with a particular user,
establishing the user's identity. But for the government communication system, we must also
know who has authority to access information and services and to initiate transactions. The
processes required to perform identification are likely to be different from those performing
authorization. In particular, identification may require direct interaction with a user, whereas
authorization may require links among large databases.

A citizen may have more than one identity. For example, Jane Doe may be the same person as
Mrs. Nathaniel Simmons, who is also the same person as the Trustee for the Estate of Mr.
Robert Jones. In turn, each of these identities may have multiple authorities. How will the
identification authorities interact with the authorization ones to enable these situations?

Sometimes the authorization does not need to be tied to a specific identity. For example, a
government agency may need to know only that an individual is capable of paying for a



service, much as a credit card company provides a credit rating. How will the authorization be
able to release the minimum amount of information possible about an individual?

How will certificate authorities have a high degree of confidence in their identification of
individuals?

How will certificate authorities deal with the need to view certain documents, such as birth
certificates and passports, in person? This condition may mean that certificate authorities may
be required to have local offices around the country.

Should there be a single certificate authority or many? A single provider can minimize the need
for multiple keys and might save money by streamlining operations. But a single provider can
also monitor all of a citizen's transactions, inviting abuse.

These issues are not trivial. Their solutions, not at all obvious, build on the concepts presented in
this book. But they do so in a way that is not just technological. We can easily build a PKI to provide
certificates to anyone we want. But how do we connect two certificates, connoting that the digital
identities actually belong to the same person? In the real world you can be anonymous by
purchasing something with cash; how can you be anonymous digitally?

But in addition to the security issues, there are also broader issues of management, responsibility,
and law. Neu et al. note that, even when the technical issues are resolved, we have still to answer
these questions:

• What happens if a certificate authority makes a mistake, either by identifying or
authorizing the wrong person or by assigning keys to an impostor? What are the
legal and financial implications of such an error? What if the error is made even
though the certificate authority followed government guidelines?

• How will citizens create, record, and protect their keys? If smart cards are used to
store keys, does that card become a national identity card?

• What legal protections are available to electronic transactions? For example, in the
United States today, it is illegal to intercept someone's surface mail, but it is not
illegal to intercept someone's electronic mail.

• How do we prove that official electronic communications, such as a summons or
subpoena, have been read? Will a citizen be responsible for regularly checking e-mail
for official documents?

• If law enforcement officials need to access encrypted electronic communications, how
will they be able to perform the decryption? Will there be a method by which they
can obtain the key? Does this require the citizen to participate?

• What levels of protection are required for electronic documents? For instance, should
medical records have the same level of protection as tax returns or driving
violations? How do these levels apply across the different states that have very
different laws? How does the protection address international law?

• How will every citizen be provided with an electronic mail address? What happens
when an e-mail address changes? What security standards will apply to e-mail boxes
and service providers?



• How will the government ensure equal access to electronic government services?
Should the government provide help and training to first-time users?

• How will electronic communication be phased in to the current mix of paper and
telephone communication?

These questions are not challenges to the technical side of computer security. But they are very
much a part of the administrative side. It is not sufficient to know all the latest encryption
algorithms; you also have to know how the use of computer security mechanisms fits into the
broader context of how they are used and what they support. This example is included to introduce
you to the procedural, administrative, policy, and privacy issues that a computer security
administrator must consider. These questions highlight the degree to which security planning and
policy must fit in with the larger policy issues that we, as individuals, organizations, and societies,
must address. For this reason, in the next chapter we turn to the legal and ethical considerations of
computer security.

But before we move to those concerns, we must cover one more topic involved in administering
security: physical security. Protecting computing systems from physical harm is no less important
than protecting data from modification in transit through a network. In the next section we briefly
survey physical security vulnerabilities and controls.



8.4. Physical Security

Much of this book has focused on technical issues in security and their technical solutions: firewalls,
encryption techniques, and more. But many threats to security involve human or natural disasters,
events that should also be addressed in the security plan. For this reason, in this section we
consider how to cope with the nontechnical things that can go wrong. There are two pieces to the
process of dealing with nontechnical problems: preventing things that can be prevented and
recovering from the things that cannot be prevented. Physical security is the term used to
describe protection needed outside the computer system. Typical physical security controls include
guards, locks, and fences to deter direct attacks. In addition, there are other kinds of protection
against less direct disasters, such as floods and power outages; these, too, are part of physical
security. As we will see, many physical security measures can be provided simply by good common
sense, a characteristic that Mark Twain noted "is a most uncommon virtue."

Natural Disasters

Computers are subject to the same natural disasters that can occur to homes, stores, and
automobiles. They can be flooded, burned, melted, hit by falling objects, and destroyed by
earthquakes, storms, and tornadoes. Additionally, computers are sensitive to their operating
environment, so excessive heat or inadequate power is also a threat. It is impossible to prevent
natural disasters, but through careful planning it is possible to reduce the damage they inflict. Some
measures can be taken to reduce their impact. Because many of these perils cannot be prevented or
predicted, controls focus on limiting possible damage and recovering quickly from a disaster. Issues
to be considered include the need for offsite backups, the cost of replacing equipment, the speed
with which equipment can be replaced, the need for available computing power, and the cost or
difficulty of replacing data and programs.

Flood

Water from a natural flood comes from ground level, rising gradually, and bringing with it mud and
debris. Often, there is time for an orderly shutdown of the computing system; at worst, the
organization loses some of the processing in progress. At other times, such as when a dam breaks,
a water pipe bursts, or the roof collapses in a storm, a sudden flood can overwhelm the system and
its users before anything can be saved. Water can come from above, below, or the side. The
machinery may be destroyed or damaged by mud and water, but most computing systems are
insured and replaceable by the manufacturer. Managers of unique or irreplaceable equipment who
recognize the added risk sometimes purchase or lease duplicate redundant hardware systems to
ensure against disruption of service.

Even when the hardware can be replaced, we must be concerned about the stored data and
programs. The system administrator may choose to label storage media in a way that makes it easy
to identify the most important data. For example, green, yellow, and red labels may show which
disks are the most sensitive, so that all red disks are moved from the data center during a storm.
Similarly, large plastic bags and waterproof tape can be kept near important equipment and media;



they are used to protect the hardware and storage media in case of a burst pipe or other sudden
flood.

The real issue is protecting data and preserving the ability to compute. The only way to ensure the
safety of data is to store backup copies in one or more safe locations.

Fire

Fire is more serious than water; often there is not as much time to react, and human lives are more
likely to be in immediate danger. To ensure that system personnel can react quickly, every user and
manager should have a plan for shutting down the system in an orderly manner. Such a process
takes only a few minutes but can make recovery much easier. This plan should include individual
responsibilities for all people: some to halt the system, others to protect crucial media, others to
close doors on media cabinets. Provision should be made for secondary responsibilities, so that
onsite staff can perform duties for those who are not in the office.

Water is traditionally used to put out fires, but it is not a good idea for use in computer rooms. In
fact, more destruction can be the result of sprinklers than of the fires themselves. A fire sensor
usually activates many sprinklers, dousing an entire room, even when the fire is merely some
ignited paper in a wastebasket and of no threat to the computing system. Many computing centers
use carbon dioxide extinguishers or an automatic system that sprays a gas such as Halon to
smother a fire but leave no residue. Unfortunately, these gas systems work by displacing the
oxygen in the room, choking the fire but leaving humans unable to breathe. Consequently, when
these protection devices are activated, humans must leave, disabling efforts to protect media.

The best defense for situations like these is careful placement of the computing facility. A
windowless location with fire-resistant access doors and nonflammable full-height walls can prevent
some fires from spreading from adjacent areas to the computing room. With a fire- and smoke-
resistant facility, personnel merely shut down the system and leave, perhaps carrying out the most
important media.

Fire prevention is quite effective, especially because most computer goods are not especially
flammable. Advance planning, reinforced with simulation drills, can help make good use of the small
amount of time available before evacuation is necessary.

Other Natural Disasters

Computers are subject to storms, earthquakes, volcanoes, and similar events. Although not natural
disasters, building collapse, explosion, and damage from falling objects can be considered in the
same category. These kinds of catastrophes are difficult to predict or estimate.

But we know these catastrophes will occur. Security managers cope with them in several ways:

developing contingency plans so that people know how to react in emergencies and business
can continue

insuring physical assetscomputers, buildings, devices, suppliesagainst harm

preserving sensitive data by maintaining copies in physically separated locations



Power Loss

Computers need their foodelectricityand they require a constant, pure supply of it. With a direct
power loss, all computation ceases immediately. Because of possible damage to media by sudden
loss of power, many disk drives monitor the power level and quickly retract the recording head if
power fails. For certain time-critical applications, loss of service from the system is intolerable; in
these cases, alternative complete power supplies must be instantly available.

Uninterruptible Power Supply

One protection against power loss is an uninterruptible power supply. This device stores energy
during normal operation so that it can return the backup energy if power fails. One form of
uninterruptible power supply uses batteries that are continually charged when the power is on but
which then provide power when electricity fails. However, size, heat, flammability, and low output
can be problems with batteries.

Some uninterruptible power supplies use massive wheels that are kept in continuous motion when
electricity is available. When the power fails, the inertia in the wheels operates generators to
produce more power. Size and limited duration of energy output are problems with this variety of
power supply. Both forms of power supplies are intended to provide power for a limited time, just
long enough to allow the current state of the computation to be saved so that no computation is
lost.

Surge Suppressor

Another problem with power is its "cleanness." Although most people are unaware of it, a variation
of 10 percent from the stated voltage of a line is considered acceptable, and some power lines vary
even more. A particular power line may always be 10 percent high or low.

In many places, lights dim momentarily when a large appliance, such as an air conditioner, begins
operation. When a large motor starts, it draws an exceptionally large amount of current, which
reduces the flow to other devices on the line. When a motor stops, the sudden termination of draw
can send a temporary surge along the line. Similarly, lightning strikes may send a momentary large
pulse. Thus, instead of being constant, the power delivered along any electric line shows many brief
fluctuations, called drops, spikes, and surges. A drop is a momentary reduction in voltage, and a
spike or surge is a rise. For computing equipment, a drop is less serious than a surge. Most
electrical equipment is tolerant of rather large fluctuations of current.

These variations can be destructive to sensitive electronic equipment, however. Simple devices
called "surge suppressors" filter spikes from an electric line, blocking fluctuations that would affect
computers. These devices cost from $20 to $100; they should be installed on every computer,
printer, or other connected component. More sensitive models are typically used on larger systems.

As mentioned previously, a lightning strike can send a surge through a power line. To increase
protection, personal computer users usually unplug their machines when they are not in use, as well
as during electrical storms. Another possible source of destruction is lightning striking a telephone
line. Because the power surge can travel along the phone line and into the computer or peripherals,



the phone line should be disconnected from the modem during storms. These simple measures may
save much work as well as valuable equipment.

Human Vandals

Because computers and their media are sensitive to a variety of disruptions, a vandal can destroy
hardware, software, and data. Human attackers may be disgruntled employees, bored operators,
saboteurs, people seeking excitement, or unwitting bumblers. If physical access is easy to obtain,
crude attacks using axes or bricks can be very effective. One man recently shot a computer that he
claimed had been in the shop for repairs many times without success.

Physical attacks by unskilled vandals are often easy to prevent; a guard can stop someone
approaching a computer installation with a threatening or dangerous object. When physical access is
difficult, more subtle attacks can be tried, resulting in quite serious damage. People with only some
sophisticated knowledge of a system can short-circuit a computer with a car key or disable a disk
drive with a paper clip. These items are not likely to attract attention until the attack is completed.

Unauthorized Access and Use

Films and newspaper reports exaggerate the ease of gaining access to a computing system. Still, as
distributed computing systems become more prevalent, protecting the system from outside access
becomes more difficult and more important. Interception is a form of unauthorized access; the
attacker intercepts data and either breaks confidentiality or prevents the data from being read or
used by others. In this context, interception is a passive attack. But we must also be concerned
about active interception, in the sense that the attacker can change or insert data before allowing it
to continue to its destination.

Theft

It is hard to steal a large mainframe computer. Not only is carrying it away difficult, but finding a
willing buyer and arranging installation and maintenance also require special assistance. However,
printed reports, tapes, or disks can be carried easily. If done well, the loss may not be detected for
some time.

Personal computers, laptops, and personal digital assistants (PDAs, such as Palms or Blackberries)
are designed to be small and portable. Diskettes and tape backup cartridges are easily carried in a
shirt pocket or briefcase. Computers and media that are easy to carry are also easy to conceal.

We can take one of three approaches to preventing theft: preventing access, preventing portability,
or detecting exit.

Preventing Access

The surest way to prevent theft is to keep the thief away from the equipment. However, thieves can
be either insiders or outsiders. Therefore, access control devices are needed both to prevent access
by unauthorized individuals and to record access by those authorized. A record of accesses can help



identify who committed a theft.

The oldest access control is a guard, not in the database management system sense we discussed in
Chapter 6 but rather in the sense of a human being stationed at the door to control access to a
room or to equipment. Guards offer traditional protection; their role is well understood, and the
protection they offer is adequate in many situations. However, guards must be on duty continuously
in order to be effective; providing breaks implies at least four guards for a 24-hour operation, with
extras for vacation and illness. A guard must personally recognize someone or recognize an access
token, such as a badge. People can lose or forget badges; terminated employees and forged badges
are also problems. Unless the guard makes a record of everyone who has entered a facility, there is
no way to know who (employee or visitor) has had access in case a problem is discovered.

The second oldest access control is a lock. This device is even easier, cheaper, and simpler to
manage than a guard. However, it too provides no record of who has had access, and difficulties
arise when keys are lost or duplicated. At computer facilities, it is inconvenient to fumble for a key
when your hands are filled with tapes or disks, which might be ruined if dropped. There is also the
possibility of piggybacking: a person walks through the door that someone else has just unlocked.
Still, guards and locks provide simple, effective security for access to facilities such as computer
rooms.

More exotic access control devices employ cards with radio transmitters, magnetic stripe cards
(similar to 24-hour bank cards), and smart cards with chips containing electronic circuitry that
makes them difficult to duplicate. Because each of these devices interfaces with a computer, it is
easy for the computer to capture identity information, generating a list of who entered and left the
facility, when, and by which routes. Some of these devices operate by proximity, so that a person
can carry the device in a pocket or clipped to a collar; the person obtains easy access even when
hands are full. Because these devices are computer controlled, it is easy to invalidate an access
authority when someone quits or reports the access token lost or stolen.

The nature of the application or service determines how strict the access control needs to be.
Working in concert with computer-based authentication techniques, the access controls can be part
of defense in depthusing multiple mechanisms to provide security.

Preventing Portability

Portability is a mixed blessing. We can now carry around in our pockets devices that provide as
much computing power as mainframes did twenty years ago. Portability is in fact a necessity in
devices such as PDAs and mobile phones. And we do not want to permanently affix our personal
computers to our desks, in case they need to be removed for repair or replacement. Thus, we need
to find ways to enable portability without promoting theft.

One antitheft device is a pad connected to cable, similar to those used to secure bicycles. The pad is
glued to the desktop with extremely strong adhesive. The cables loop around the equipment and are
locked in place. Releasing the lock permits the equipment to be moved. An alternative is to couple
the base of the equipment to a secure pad, in much the same way that televisions are locked in
place in hotel rooms. Yet a third possibility is a large, lockable cabinet in which the personal
computer and its peripherals are kept when they are not in use. Some people argue that cables,
pads, and cabinets are unsightly and, worse, they make the equipment inconvenient to use.

Another alternative is to use movement-activated alarm devices when the equipment is not in use.
Small alarms are available that can be locked to a laptop or PDA. When movement is detected, a



loud, annoying whine or whistle warns that the equipment has been disturbed. Such an alarm is
especially useful when laptops must be left in meeting or presentation rooms overnight or during a
break. Used in concert with guards, the alarms can offer reasonable protection at reasonable cost.

Detecting Theft

For some devices, protection is more important than detection. We want to keep someone from
stealing certain systems or information at all costs. But for other devices, it may be enough to
detect that an attempt has been made to access or steal hardware or software. For example,
chaining down a disk makes it unusable. Instead, we try to detect when someone tries to leave a
protected area with the disk or other protected object. In these cases, the protection mechanism
should be small and unobtrusive.

One such mechanism is similar to the protection used by many libraries, bookstores, or department
stores. Each sensitive object is marked with a special label. Although the label looks like a normal
pressure-sensitive one, its presence can be detected by a machine at the exit door if the label has
not been disabled by an authorized party, such as a librarian or sales clerk. Similar security code
tags are available for vehicles, people, machinery, and documents. Some tags are enabled by radio
transmitters. When the detector sounds an alarm, someone must apprehend the person trying to
leave with the marked object.

Interception of Sensitive Information

When disposing of a draft copy of a confidential report containing its sales strategies for the next
five years, a company wants to be especially sure that the report is not reconstructable by one of its
competitors. When the report exists only as hard copy, destroying the report is straightforward,
usually accomplished by shredding or burning. But when the report exists digitally, destruction is
more problematic. There may be many copies of the report in digital and paper form and in many
locations (including on the computer and on storage media). There may also be copies in backups
and archived in e-mail files. In this section, we look at several ways to dispose of sensitive
information.

Shredding

Shredders have existed for a long time, as devices used by banks, government agencies, and others
organizations to dispose of large amounts of confidential data. Although most of the shredded data
is on paper, shredders can also be used for destroying printer ribbons and some types of disks and
tapes. Shredders work by converting their input to thin strips or pulp, with enough volume to make
it infeasible for most people to try to reconstruct the original from its many pieces. When data are
extremely sensitive, some organizations burn the shredded output for added protection.

Overwriting Magnetic Data

Magnetic media present a special problem for those trying to protect the contents. When data are
stored on magnetic disks, the ERASE or DELETE functions often simply change a directory pointer to
free up space on the disk. As a result, the sensitive data are still recorded on the medium, and they



can be recovered by analysis of the directory. A more secure way to destroy data on magnetic
devices is to overwrite the data several times, using a different pattern each time. This process
removes enough magnetic residue to prevent most people from reconstructing the original file.
However, "cleaning" a disk in this fashion takes time. Moreover, a person using highly specialized
equipment might be able to identify each separate message, much like the process of peeling off
layers of wallpaper to reveal the wall beneath.

Degaussing

Degaussers destroy magnetic fields. Passing a disk or other magnetic medium through a degausser
generates a magnetic flux so forceful that all magnetic charges are instantly realigned, thereby
fusing all the separate layers. A degausser is a fast way to cleanse a magnetic medium, although
there is still question as to whether it is adequate for use in the most sensitive of applications.
(Media that have had the same pattern for a long time, such as a disk saved for archival purposes,
may retain traces of the original pattern even after it has been overwritten many times or
degaussed.) For most users, a degausser is a fast way to neutralize a disk or tape, permitting it to
be reused by others.

Protecting Against Emanation: Tempest

Computer screens emit signals that can be detected from a distance. In fact, any components,
including printers, disk drives, and processors, can emit information. Tempest is a U.S.
government program under which computer equipment is certified as emission-free (that is, no
detectable emissions). There are two approaches for preparing a device for Tempest certification:
enclosing the device and modifying the emanations.

The obvious solution to preventing emanations is to trap the signals before they can be picked up.
Enclosing a device in a conductive case, such as copper, diffuses all the waves by conducting them
throughout the case. Copper is a good conductor, and the waves travel much better through copper
than through the air outside the case, so the emissions are rendered harmless.

This solution works very well with cable, which is then enclosed in a solid, emanation-proof shield.
Typically, the shielded cable is left exposed so that it is easy to inspect visually for any signs of
tapping or other tampering. The shielding must be complete. That is, it does little good to shield a
length of cable but not also shield the junction box at which that cable is connected to a component.
The line to the component and the component itself must be shielded, too.

The shield must enclose the device completely. If top, bottom, and three sides are shielded,
emanations are prevented only in those directions. However, a solid copper shield is useless in front
of a computer screen. Covering the screen with a fine copper mesh in an intricate pattern carries
the emanation safely away. This approach solves the emanation problem while still maintaining the
screen's usability.

Entire computer rooms or even whole buildings can be shielded in copper so that large computers
inside do not leak sensitive emanations. Although it seems appealing to shield the room or building
instead of each component, the scheme has significant drawbacks. A shielded room is inconvenient
because it is impossible to expand the room easily as needs change. The shielding must be done
carefully, because any puncture is a possible point of emanation. Furthermore, continuous metal
pathways, such as water pipes or heating ducts, act as antennas to convey the emanations away



from their source.

Emanations can also be designed in such a way that they cannot be retrieved. This process is similar
to generating noise in an attempt to jam or block a radio signal. With this approach, the emanations
of a piece of equipment must be modified by addition of spurious signals. Additional processors are
added to Tempest equipment specifically to generate signals that fool an interceptor. The exact
Tempest modification methods are classified.

As might be expected, Tempest-enclosed components are larger and heavier than their unprotected
counterparts. Tempest testing is a rigorous program of the U.S. Department of Defense. Once a
product has been approved, even a minor design modification, such as changing from one
manufacturer's power supply to an equivalent one from another manufacturer, invalidates the
Tempest approval. Therefore, these components are costly, ranging in price from 10 percent to 300
percent more than similar non-Tempest products. They are most appropriate in situations in which
the data to be confined are of great value, such as top-level government information. Other groups
with less dramatic needs can use other less rigorous shielding.

Contingency Planning

The key to successful recovery is adequate preparation. Seldom does a crisis destroy irreplaceable
equipment; most computing systemspersonal computers to mainframesare standard, off-the-shelf
systems that can be easily replaced. Data and locally developed programs are more vulnerable
because they cannot be quickly substituted from another source. Let us look more closely at what to
do after a crisis occurs.

Backup

In many computing systems, some data items change frequently, whereas others seldom change.
For example, a database of bank account balances changes daily, but a file of depositors' names
and addresses changes much less often. Also the number of changes in a given period of time is
different for these two files. These variations in number and extent of change relate to the amount
of data necessary to reconstruct these files in the event of a loss.

A backup is a copy of all or a part of a file to assist in reestablishing a lost file. In professional
computing systems, periodic backups are usually performed automatically, often at night when
system usage is low. Everything on the system is copied, including system files, user files, scratch
files, and directories, so that the system can be regenerated after a crisis. This type of backup is
called a complete backup. Complete backups are done at regular intervals, usually weekly or
daily, depending on the criticality of the information or service provided by the system.

Major installations may perform revolving backups, in which the last several backups are kept.
Each time a backup is done, the oldest backup is replaced with the newest one. There are two
reasons to perform revolving backups: to avoid problems with corrupted media (so that all is not
lost if one of the disks is bad) and to allow users or developers to retrieve old versions of a file.
Another form of backup is a selective backup, in which only files that have been changed (or
created) since the last backup are saved. In this case, fewer files must be saved, so the backup can
be done more quickly. A selective backup combined with an earlier complete backup gives the effect
of a complete backup in the time needed for only a selective backup. The selective backup is subject
to the configuration management techniques described in Chapter 3.



For each type of backup, we need the means to move from the backup forward to the point of
failure. That is, we need a way to restore the system in the event of failure. In critical transaction
systems, we address this need by keeping a complete record of changes since the last backup.
Sometimes, the system state is captured by a combination of computer- and paper-based recording
media. For example, if a system handles bank teller operations, the individual tellers duplicate their
processing on paper recordsthe deposit and withdrawal slips that accompany your bank
transactions; if the system fails, the staff restores the latest backup version and reapplies all
changes from the collected paper copies. Or the banking system creates a paper journal, which is a
log of transactions printed just as each transaction completes.

Personal computer users often do not appreciate the need for regular backups. Even minor crises,
such as a failed piece of hardware, can seriously affect personal computer users. With a backup,
users can simply change to a similar machine and continue work.

Offsite Backup

A backup copy is useless if it is destroyed in the crisis, too. Many major computing installations rent
warehouse space some distance from the computing system, far enough away that a crisis is not
likely to affect the offsite location at the same time. As a backup is completed, it is transported to
the backup site. Keeping a backup version separate from the actual system reduces the risk of its
loss. Similarly, the paper trail is also stored somewhere other than at the main computing facility.

Personal computer users concerned with integrity can take home a copy of important disks as
protection or send a copy to a friend in another city. If both secrecy and integrity are important, a
bank vault, or even a secure storage place in another part of the same building can be used. The
worst place to store a backup copy is where it usually is stored: right next to the machine.

Networked Storage

With today's extensive use of networking, using the network to implement backups is a good idea.
Storage providers sell space in which you can store data; think of these services as big network-
attached disk drives. You rent space just as you would consume electricity: You pay for what you
use. The storage provider needs to provide only enough total space to cover everyone's needs, and
it is easy to monitor usage patterns and increase capacity as combined needs rise.

Networked storage is perfect for backups of critical data because you can choose a storage provider
whose physical storage is not close to your processing. In this way, physical harm to your system
will not affect your backup. You do not need to manage tapes or other media and physically
transport them offsite.

Cold Site

Depending on the nature of the computation, it may be important to be able to recover from a crisis
and resume computation quickly. A bank, for example, might be able to tolerate a four-hour loss of
computing facilities during a fire, but it could not tolerate a ten-month period to rebuild a destroyed
facility, acquire new equipment, and resume operation.

Most computer manufacturers have several spare machines of most models that can be delivered to



any location within 24 hours in the event of a real crisis. Sometimes the machine will come straight
from assembly; other times the system will have been in use at a local office. Machinery is seldom
the hard part of the problem. Rather, the hard part is deciding where to put the equipment in order
to begin a temporary operation.

A cold site or shell is a facility with power and cooling available, in which a computing system can
be installed to begin immediate operation. Some companies maintain their own cold sites, and other
cold sites can be leased from disaster recovery companies. These sites usually come with cabling,
fire prevention equipment, separate office space, telephone access, and other features. Typically, a
computing center can have equipment installed and resume operation from a cold site within a week
of a disaster.

Hot Site

If the application is more critical or if the equipment needs are more specialized, a hot site may be
more appropriate. A hot site is a computer facility with an installed and ready-to-run computing
system. The system has peripherals, telecommunications lines, power supply, and even personnel
ready to operate on short notice. Some companies maintain their own; other companies subscribe
to a service that has available one or more locations with installed and running computers. To
activate a hot site, it is necessary only to load software and data from offsite backup copies.

Numerous services offer hot sites equipped with every popular brand and model of system. They
provide diagnostic and system technicians, connected communications lines, and an operations
staff. The hot site staff also assists with relocation by arranging transportation and housing,
obtaining needed blank forms, and acquiring office space.

Because these hot sites serve as backups for many customers, most of whom will not need the
service, the annual cost to any one customer is fairly low. The cost structure is like insurance: The
likelihood of an auto accident is low, so the premium is reasonable, even for a policy that covers the
complete replacement cost of an expensive car. Notice, however, that the first step in being able to
use a service of this type is a complete and timely backup.

Physical Security Recap

By no means have we covered all of physical security in this brief introduction. Professionals become
experts at individual aspects, such as fire control or power provision. However, this section should
have made you aware of the major issues in physical security. We have to protect the facility
against many sorts of disasters, from weather to chemical spills and vehicle crashes to explosions.
It is impossible to predict what will occur or when. The physical security manager has to consider all
assets and a wide range of harm.

Malicious humans seeking physical access are a different category of threat agent. With them, you
can consider motive or objective: is it theft of equipment, disruption of processing, interception of
data, or access to service? Fences, guards, solid walls, and locks will deter or prevent most human
attacks. But you always need to ask where weaknesses remain; a solid wall has a weakness in every
door and window.

The primary physical controls are strength and duplication. Strength means overlapping controls
implementing a defense-in-depth approach so that if one control fails, the next one will protect.



People who built ancient castles practiced this philosophy with moats, walls, drawbridges, and arrow
slits. Duplication means eliminating single points of failure. Redundant copies of data protect against
harm to one copy from any cause. Spare hardware components protect against failures.



8.5. Summary

The administration of security draws on skills slightly different from the technical skills we developed
in the earlier chapters of this book. The security administrator must understand not just security
assets, threats, vulnerabilities, and controls, but management and implementation. In this chapter
we examined four parts of how security is administered.

First, security planning is a process that drives the rest of security administration. A security plan is
a structure that allows things to happen in a studied, organized manner. General security plans
explain how the organization will match threats to controls and to assets. Business continuity plans
focus on the single issue of maintaining some ability to do business. Incident response plans cover
how to keep a security event, such as a breach or attack, from running out of control. All plans offer
the advantage that you can think about a situation in advance, with a clear mind, when you can
weigh options easily.

Risk assessment is a technique supporting security planning. In a risk assessment, you list
vulnerabilities and controls, and then balance the cost of each control against the potential harm it
can block. Risk assessments let you calculate the savings of security measures, instead of their
costs, as is more frequently the case. Not all risk can be blocked. With a thorough risk assessment,
you can know what risks you choose to accept.

An organizational security policy is a document that specifies the organization's goals regarding
security. It lists policy elements that are statements of actions that must or must not be taken to
preserve those goals. Policy documents often lead to implementational procedures. Also, user
education and awareness activities ensure that users are aware of policy restrictions.

Physical security concerns the physical aspects of computing: the devices themselves and harm that
can come to them because of the buildings in which they are contained. Physical security addresses
two branches of threats: natural threats to buildings and the infrastructure, and human threats.
Redundancy and physical controls address physical security threats.

The administration of security has a strong human component, from the writing of plans and
policies, to the mental work in performing a risk analysis, to the human guards that implement or
reinforce many physical controls. In the next chapter we continue our study of the human aspects of
computer security as we consider the economics of cybersecurity.



8.6. Terms and Concepts

security plan, 509

policy, 510

requirement, 512

constraint, 512

control, 512

requirement qualities:

correctness, 513

consistency, 513

realism, 513

need, 513

verifiability, 513

traceability, 513

schedule, 516

plan review, 516

plan timetable, 516

security planning team, 517

management commitment to security plan, 518

business continuity plan, 518

incident response plan, 521

risk analysis, 524

risk impact, 524

problem, 524

avoided risk, 524

transferred risk, 524



assumed risk, 524

risk leverage, 525

assets:

hardware, 527

software, 527

data, 527

human assets, 527

documentation, 527

supplies, 527

infrastructure, 527

hazard and operability (HAZOP) studies, 528

fault tree analysis (FTA), 528

failure modes and effects analysis (FMEA), 528

attributes contributing to vulnerabilities:

singularity, 531

separability, 531

logic errors, 531

design sensitivity, 531

unrecoverability, 531

behavioral sensitivity, 531

malevolence, 531

rigidity, 531

malleability, 531

gullibility, 531

complacency, 531

corruptibility, 531

accessibility, 531

difficulty to control, 531



unpredictability, 531

predictability, 531

likelihood of exploitation, 531

Delphi method, 533

classical probability, 534

frequency probability, 534

subjective probability, 534

annual loss expectation (ALE), 544

cost/benefit analysis, 544

risk calculation, 544

organizational security policy:

purpose, 547

users, 547

owners, 548

beneficiaries, 548

balancing interest, 548

policy contents, 848

policy characteristics:

coverage, 550

durability, 550

realism, 550

usefulness, 550

physical security, 556

natural disaster, 556

flood, 556

fire, 557

power loss, 558

uninterruptible power supply, 558



surge suppressor, 558

drop, 558

spike, 558

surge, 558

intruder, 559

theft prevention, 559

theft detection, 561

disposal of sensitive information, 561

shredder, 562

degausser, 562

emanations, 562

Tempest, 562

backup, 563

complete backup, 564

revolving backup, 564

selective backup, 564

offsite backup, 564

cold disaster recovery site, 565

hot disaster recovery site, 565

networked storage device, 565



8.7. To Learn More

Management of security is far broader than we can cover here. In fact, entire books have been
written on the topic, and you can find courses and workshops just on security management.
Parker's book [PAR81] is one of the first and still valid if only because the people aspects of security
have changed little, in contrast to the technology. Best practices lists (two good ones are [ISA02]
and [ISF00]) are useful for checking for the most critical areas. The essays in Tipton and Krause
[TIP04] address many aspects of management.

The Rittinghouse and Hancock book [RIT03] is especially good on incident handling procedures.

Basic works on risk analysis are Rook's tutorial [ROO93] and the paper by Fairley and Rook [FAI97].
Alberts and Donofee [ALB05] describe risk evaluation in complex cases. The topic is also addressed
in many other fields, such as engineering, management, and politics.

For a discussion of the cautions of using risk analysis on software projects, see [PFL00]. This issue
of the Journal of Systems and Software is a special issue on risk management for software
engineering.



8.8. Exercises

1 In what ways is denial of service (lack of availability for authorized users) a
vulnerability to users of single-user personal computers?

2 Identify the three most probable threats to a personal computing system in an office
with fewer than ten employees. That is, identify the three vulnerabilities most likely
to be exploited. Estimate the number of times each vulnerability is exploited per
year; justify your estimate.

3 Perform the analysis of Exercise 2 for a personal computing system located in a large
research laboratory.

4 Perform the analysis of Exercise 2 for a personal computing system located in the
library of a major university.

5 List three factors that should be considered when developing a security plan.

6 State a security requirement that is not realistic. State a security requirement that is
not verifiable. State two security requirements that are inconsistent.

7 Investigate your university's or employer's security plan to determine whether its
security requirements meet all the conditions listed in this chapter. List any that do
not. When was the plan written? When was it last reviewed and updated?

8 Cite three controls that could have both positive and negative effects.

9 For an airline, what are its most important assets? What are the minimal computing
resources it would need to continue business for a limited period (up to two days)?
What other systems or processes could it use during the period of the disaster?

10 Answer Exercise 9 for a bank instead of an airline.

11 Answer Exercise 9 for an oil drilling company instead of an airline.

12 Answer Exercise 9 for a political campaign instead of an airline.

13 When is an incident over? That is, what factors influence whether to continue the
work of the incident handling team or to disband it?

14 List five kinds of harm that could occur to your own personal computer. Estimate the
likelihood of each, expressed in number of times per year (number of times could be
a fraction, for example, 1/2 means could be expected to happen once every two
years). Estimate the monetary loss that would occur from that harm. Compute the
expected annual loss from these kinds of harm.



15 Cite a risk in computing for which it is impossible or infeasible to develop a classical
probability of occurrence.

16 Investigate the computer security policy for your university or employer. Who wrote
the policy? Who enforces the policy? Who does it cover? What resources does it
cover?

17 List three different sources of water to a computing system, and state a control for
each.

18 You discover that your computing system has been infected by a piece of malicious
code. You have no idea when the infection occurred. You do have backups performed
every week since the system was put into operation but, of course, there have been
numerous changes to the system over time. How could you use the backups to
construct a "clean" version of your system?



Chapter 9. The Economics of Cybersecurity

In this chapter

Making an economic case for security

Measuring and quantifying economic value

Modeling the economics of cybersecurity

In Chapter 8, we began to examine the kinds of security decisions you might make about your
computer, system, or network. In this chapter, we focus on decisions involved in allocating scarce
financial resources to cybersecurity. That is, as a practitioner, you must decide in what kinds of
security controls to invest, based on need, cost, and the tradeoffs with other investments (that may
not be security related).

For example, the chief executive officer may announce that because the company has done well,
there is a sum of money to invest for the benefit of the company. She solicits proposals that
describe not only the way in which the money can be used but also the likely benefits to be received
(and by whom) as a result. You prepare a proposal that suggests installation of a firewall, a spam
filter, an encryption scheme to create a virtual private network, and the use of secure identification
tokens for remote network access. You describe the threats addressed by these products and the
degree (in terms of cost and company profit) to which the proposed actions will benefit the
company. The CEO compares your proposal with other possible investments: buying a subsidiary to
enable the company to provide a new product or service, acquiring new office space that will include
a larger library and more computer labs, or simply holding the money for a few years to generate a
return that will profit the company. The choices, and the tradeoffs among them, can be analyzed by
understanding the economics of cybersecurity.

We begin this chapter by describing what we mean by a business case: the framework for
presenting information about why we think a particular security investment is needed. Then we
examine more closely the elements needed in the business case: data and relationships that show
that there is a problem and that the proposed solution will be good for the company. Presenting the
business case involves not just economics but the need for consistent terminology, measurement,
and a context in which to make informed decisions. The business case is informed by our
understanding of technology but must be framed in business language and concepts so that it can
be easily compared with nonsecurity choices.

Next, we look at analyses of the magnitude and nature of the cybersecurity problem in several
countries, including the United States, Britain, and Australia. To make a compelling business case
for security investment, we need data on the risks and costs of security incidents. Unfortunately, as



our discussion shows, reliable data are hard to find, so we outline the kind of data collection that
would help security professionals.

Once we have good data, we can build models and make projections. We examine several ways to
model the impact of a cybersecurity investment. Building and using a model involve understanding
key factors and relationships; we discuss examples of each. Finally, we explore the possibilities for
future research in this rich, interdisciplinary area.



9.1. Making a Business Case

There are many reasons why companies look carefully at their investments in cybersecurity. Table
9-1 shows the results of a series of in-depth interviews with organizations in the U.S. manufacturing
industry, health care companies, universities, Internet service providers, electric utilities, nonprofit
research institutions, and small businesses. It shows that various pressures, both internal and
external, drive organizations to scrutinize the amount and effectiveness of their cybersecurity
practices and products.

Table 9-1. Influences on Cybersecurity Investment
Strategy (adapted from [ROW06])

Categories of Influence Average Percentage
Across
Organizations

Regulatory requirement 30.1 %

Network history or information technology staff
knowledge

18.9 %

Client requirement or request 16.2 %

Result of internal or external audit 12.4 %

Response to current events, such as media attention 8.2 %

Response to compromised internal security 7.3 %

Reaction to external mandate or request 5.0 %

Other 1.7 %

But how do companies decide how much to invest in cybersecurity, and in what ways? Typically,
they use some kind of benchmarking, in which they learn what other, similar companies are
spending; then they allocate similar amounts of resources. For example, if Mammoth Manufacturing
is assessing the sufficiency of its cybersecurity investments, it may determine (through surveys or
consultants) that other manufacturing companies usually spend x percent of their information
technology budgets on security. If Mammoth's investment is very different, then Mammoth's
executives may question what is different about Mammoth's needs, practices, or risk tolerance. It
may be that Mammoth has a more capable support staff, or simply that Mammoth has a higher
tolerance for risk. Such analysis helps Mammoth executives to decide if investments should
increase, decrease, or stay the same.

Notice that this approach supports only decisions about an appropriate level of spending. Then,
intelligent, detailed decisions must be made about specific expenditures: what capabilities are
needed, which products should be purchased and supported, and what kind of training may be



helpful, for instance. The chief information security officer at a large, multinational company
describes the decision-making this way: "I am not suggesting this be done slavishlyyou do not have
to follow the herdbut it is important to know in what direction the herd is going, and at what speed.
When we talk about adhering to 'industry norms and best practices,' these types of things become
very important."

But such investment decisions are not made in a vacuum. Requests for cybersecurity resources
usually have to compete with other types of requests, and the final decisions are made based on
what is best for the business. Thus, there has always been keen interest in how to make a
convincing argument that security is good for business. When companies have to balance
investments in security with other business investments, it is difficult to find data to support such
decision-making. Because of the many demands on an organization's finite resources, any request
for those resources must be accompanied by a good business case. A business case for a given
expenditure is a proposal that justifies the use of resources. It usually includes the following items:

a description of the problem or need to be addressed by the expenditure

a list of possible solutions

constraints on solving the problem

a list of underlying assumptions

analysis of each alternative, including risks, costs, and benefits

a summary of why the proposed investment is good for the organization

Thus, the business case sets out everything a manager needs for making an informed decision
about the proposal.

In many instances, several proposals are considered at once, some competing with others. For
example, one group may propose to implement new network security while another prefers to focus
on physical security. No matter what the proposal, it must be framed as a business opportunity.

Respected business publications often address the problem of technology investment. For example,
Kaplan and Norton [KAP92] suggest that any evaluation of an existing or proposed investment in
technology be reported in several ways at once to form a "balanced scorecard":

from a customer view, addressing issues such as customer satisfaction

from an operational view, looking at an organization's core competencies

from a financial view, considering measures such as return on investment or share price

from an improvement view, assessing how the investment will affect market leadership and
added value

It is typical for companies to focus exclusively on return on investment, in part because the other
views are less tangible.



Determining Economic Value

Favaro and Pfleeger [FAV98] suggest that economic value can be a unifying principle in considering
any business opportunity. That is, we can look at each investment alternative in terms of its
potential economic value to the company or organization as a whole. In fact, maximizing economic
value can very well lead to increases in quality, customer satisfaction, and market leadership.

However, there are many different ways to capture economic value. For example, Gordon and Loeb
[GOR06a] present several ways of thinking about the economic benefit of cybersecurity, including
net present value, internal rate of return, and return on investment. We must decide which
investment analysis approach is most appropriate for security-related investment decision-making
based on economic value.

Investment analysis is concerned only with the best way to allocate capital and human resources.
Thus, it is distinctly different from cost estimation or metrics; it weighs several alternatives,
including the possibility of retaining earnings to provide an expected annual rate of return. In other
words, from a high-level corporate perspective, management must decide how a proposed
technology investment compares with simply letting the money earn interest in the bank.

Not all investment analysis reflects this reality. Gordon and Loeb [GOR06] describe how
organizations actually budget for information security expenditures. They show that economic
concepts are beginning to gain acceptance from senior information security managers in preparing
information security budgets.

Gordon and Loeb [GOR02b] also point out conceptual and practical problems with many of the
common accounting approaches. They note that managers often use accounting rules to measure
return on investment, but that the accounting measure is inappropriate for evaluating information
security projects both before the fact and after they are concluded. To see why, consider how
difficult it would be to evaluate the return on investment in introducing electronic mail at an
organization. We know there is a clear benefit, but it can be daunting to find a good way to measure
the benefit. Gordon and Loeb recommend that companies focus instead on selecting a profit goal by
optimizing their level of information security investment, rather than by maximizing a measure of
return on investment.

Net Present Value

Taking the perspective of a financial analyst, Favaro and Pfleeger [FAV98] look critically at the most
commonly used approaches: net present value, payback, average return on book value, internal
rate of return, and profitability index. Favaro and Pfleeger explain why net present value (NPV)
makes the most sense for evaluating software-related investments. For this reason, we explore NPV
in some detail here.

When proposing technology, you must be sure to consider all costs. For example, to invest in a new
security tool, a company may spend money for training and learning time, as well as for the tool
itself. The NPV calculation subtracts these initial investment costs from the projected benefits.

More formally, the net present value is the present value of the benefits minus the value of the
initial investment. That is, NPV compares the value of a dollar (or euro or yuen) today to the value
of that same dollar (or euro or yuen) in the future, taking into account the effects of inflation and
returns on investment. NPV expresses economic value in terms of total project life, regardless of



scale or time frame. Since investment planning involves spending money in the future, we can think
of the present value of an investment as the value today of a predicted future cash flow.

Suppose, for example, that the rationale for spending 100 units today on a proposed project
suggests that the project might yield a benefit (profit) of 200 units five years from now. To assess
the overall project benefit to the company, we must adjust the 200 units both for inflation and for
the interest or growth the firm would otherwise gain on the 100 units over five years if it were
instead to invest the money in a traditional financial vehicle, such as a bank account. Suppose 100
units invested traditionally (and wisely) today might yield 170 units in five years. Then the present
value of the proposed project is only 30 units (200 - 170), although the 30 units of profit represent
a net benefit for the company.

In general, if the NPV of a prospective project is positive, it should be accepted. However, if NPV is
negative, the project should probably be rejected; the negative NPV means that cash flows from the
project will be less than from a safer, more traditional investment. If our example calculation had
yielded a future benefit of only 120 units that, when discounted to present value, yielded 90 units,
the proposed project would likely lead to a net loss of 10 units. In other words, investing in the
project would require 100 units to derive only 90 units of benefitnot a very savvy business strategy.

Adjusting Future Earnings Against Investment Income

As noted before, if a company has disposable or uncommitted money on hand today that it wants to
invest, it has several choices: it can spend it now or save it for the future. If the company decides to
save it, the earnings compound so that the value of that money in the future is greater than it is
today (not considering inflation). Suppose corporate savings generate a 5 percent annual return;
then by investing today's 100 units, the firm can expect to have almost 128 units in five years.
Calculations of this kind suggest a threshold that must be met if a proposed project is considered by
the company to be worthwhile. Thus, if a proposed cybersecurity (or any other) project requires an
up-front investment of 100 units, its profit by the fifth year has to be at least 128 units to be
economically viable. In this way, net present value calculations give companies a way to compare
and contrast several investment strategies and pick the most economically desirable one(s).

Moreover, an advantage of using net present value to assess a security project is that it evaluates
the effects of the proposed investment over the life of the project. For example, if the proposed
project loses money for the first two years but then proceeds to be highly profitable in all
succeeding years, it may be a wise long-term investment. NPV provides a fair comparison for
projects that turn profitable at different times in the future; the hard part is knowing how far in the
future to perform the calculation.

Our example used a five percent return on savings. In general, the NPV calculation uses a discount
rate or opportunity cost, corresponding to the rate of return expected from an equivalent
investment in capital markets; this rate may change over time and, of course, is difficult to predict
for the future. In other words, the discount rate reflects how much money an organization could
make if it invested its money in the bank or a financial vehicle instead of in software technology.
Companies often use NPV to evaluate proposed projects; for instance, Hewlett-Packard used NPV to
evaluate investment in two multiyear corporate reuse projects.

The formal equation for calculating NPV is



where Bt and Ct are the benefits and costs anticipated from the investment in each time period t. C0

is the initial investment, the discount rate (expected rate of return on investment) is k, and n is the
number of time periods over which the investment's costs and benefits are considered.

Net Present Value Example

To see how NPV works, consider the situation at Acme Corporation, where the chief security officer
is considering protecting its networks in one of two ways:

Buy an off-the-shelf intrusion detection system (IDS). This choice involves a large initial
procurement cost, with subsequent high returns (based on avoided work), but the off-the-shelf
product will be outdated and must be replaced after three years.

1.

Build a customized intrusion detection system with a reusable design. The reuse requires
considerable up-front costs for design and documentation, but the long-term costs are less
because the product's life will be longer.

2.

In each case, the direct savings from the software are the same: finding and stopping malicious
behavior. The net present value calculation may resemble Table 9-2. In this example, suppose it
costs $9,000 to purchase an intrusion detection system, and $4,000 to build one. Thus, initial
investments for each choice are $9,000 and $4,000, respectively. Using a time period of one year,
we can assess the cash flows for each choice. For the purchased IDS, no additional development is
likely to be required by the end of year 1, and we estimate that avoided costs (that is, the benefit of
not having to deal with intrusions) are $5,000. For the home-grown IDS, we estimate that we will
avoid intrusions but will be correcting and perfecting the software in the first year; hence, we
estimate that $7,000 of development cost will offset the $5,000 in benefit, for a net cost of $2,000
at the end of year 1. By year 2, we reap benefits for both choices, but maintenance and
documentation still offset the benefits of the home-grown software. In year 3, we expect more
benefit from each choice. By year 4, we must upgrade the purchased IDS, resulting in a negative
cash flow, while the home-grown software continues to provide positive benefit. Using a discount
rate of 15 percent, we see that the purchased intrusion detection system has a slightly higher NPV
and is therefore preferred.

Table 9-2. Net Present Value Calculation for Two
Alternatives

Cash Flows Choice 1: Buy IDS
Software

Choice 2: Build IDS
Software

Initial
Investment

-$9,000 -$4,000

Year 1 $5,000 -$2,000

Year 2 $6,000 $2,000



Cash Flows Choice 1: Buy IDS
Software

Choice 2: Build IDS
Software

Year 3 $7,000 $4,500

Year 4 -$4,000 $6,000

Sum of all
cash flows

$5,000 $6,500

NPV at 15% $2,200 $2,162

Notice that, even though the home-grown software has a higher total cash flow, the NPV suggest
that Acme should invest in an off-the-shelf IDS. This result reflects the fact that the NPV approach is
sensitive to the timing of the cash flows; the later the return, the more the overall value is
penalized. Thus, time to market is essential to the analysis and affects the outcome. The size or
scale of a project is also reflected in the NPV.

Because NPV is additive, we can evaluate the effects of collections of projects simply by summing
their individual NPVs. On the other hand, significant gains from one technology can mask losses
from investment in another; for this reason, it is useful to evaluate each type of investment
separately. In real-world practice, NPV is not used for naive single-project evaluation, but rather in
the context of a more comprehensive financial and strategic framework [FAV96].

Internal Rate of Return

The internal rate of return (IRR) is derived from the net present value; it is equal to the discount
rate that makes the NPV equal to zero. In other words, it is the expected rate of return from this
investment. If the internal rate of return is 4 percent and the discount rate is 12 percent, we have a
poor proposal, because we could do better investing money elsewhere. If, however, the internal rate
of return is 18 percent versus a discount rate of 12 percent, our proposal is wise because it
generates a higher rate of return than we would be able to earn in other ways.

Return on Investment

Return on investment (ROI) calculations are closely related to IRR and NPV. The ROI is generated
by dividing the last period's accounting profits (calculated from revenues and costs) by the cost of
the investments required to generate those profits. Thus, ROI looks back at how a company or
organization has performed, whereas NPV and IRR project likely future performance of new
investments.

According to the CSI/FBI Computer Security Survey administered in 2005, 38 percent of
respondents use ROI to assess the value of cybersecurity, 19 percent use IRR, and 18 percent use
NPV.

Estimating Costs Fairly

Davidson [DAV05] describes how Oracle evaluated two different intrusion detection systems. The
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value and accuracy of each system were assessed as contributions to how well the company could
do its job: "The old system had a ridiculously high number of alarms every week, and an
extraordinary amount of them70 to 80 percentwere false positives. We looked at what it was costing
us to track down the alarms that we really needed to do something about, including the costs for
people to sort through the alarms and analyze them. The new product had a much lower alarm rate
as well as a lower false positive rate. The information provided by the new product was better, at a
lower cost. Economic analysis, specifically return on investment, helped us choose the new supplier
over the old one."

In this example Davidson tries to put a value on the time it takes her staff to investigate alarms.
Although there were many false alarms (that is, not real incidents), the time invested still
represents a cost associated with using the old system.

In general, businesses need to know whether and how investing one more unit buys them more
security. The effects on security depend on various perspectives, such as effects on the global
economy, the national economy, and corporate supply chains. Sidebar 9-1 illustrates how an
organization can generate a business case for a security technology.

A business case is an argument for doing something: investing in new technology, training people,
adding a security capability to a product, or maintaining the status quo. As we have seen, because
many management arguments are made in terms of money, computer security business cases are
often framed in economic terms: amount saved, return for taking an action, or cost avoided.
Sometimes it is difficult to separate the security effects from the more general effects, such as
improved functionality or better access to assets. This separation problem makes it harder to
answer the question, "How much more security does that investment buy me?" Moreover, these
arguments beg the question of how to derive sound numbers in computer security. In the next
section we analyze sources of quantitative data.



9.2. Quantifying Security

Cybersecurity threats and risks are notoriously hard to quantify and estimate. Some vulnerabilities, such as buffer overflows, are well understood, and
we can scrutinize our systems to find and fix them. But other vulnerabilities are less understood or not yet apparent. For example, how do you predict
the likelihood that a hacker will attack a network, and how do you know the precise value of the assets the hacker will compromise? Even for events that
have happened (such as widespread virus attacks) estimates of the damage vary widely, so how can we be expected to estimate the costs of events that
have not happened?

Sidebar 9-1: A Business Case for Web Applications Security

Cafésoft [CAF06] presents a business case for web applications security on its corporate web site. The business case explains the
return on investment for an organization that secures its web applications. The ROI argument has four thrusts.

Revenue: Increases in revenue can occur because the security increases trust in the web site or the company.

Costs: The cost argument is broader than simply the installation, operation, and maintenance of the security application. It
includes cost savings (for example, from fewer security breaches), cost avoidance (for example, from fewer calls to the help
desk), efficiency (for example, from the ability to handle more customer requests), and effectiveness (for example, from the
ability to provide more services).

Compliance: Security practices can derive from the organization, a standards body, a regulatory body, best practice, or simply
agreement with other organizations. Failure to implement regulatory security practices can lead to fines, imprisonment, or bad
publicity that can affect current and future revenues. Failure to comply with agreed-upon standards with other organizations or
with customers can lead to lost business or lost competitive advantage.

Risk: There are consequences to not implementing the proposed security measures. They can involve loss of market share or
productivity, legal exposure, or loss of productivity.

To build the argument, Cafésoft recommends establishing a baseline set of costs for current operations of a web application and then
using a set of measurements to determine how security might change the baseline. For example, the number of help-desk requests
could be measured currently. Then, the proposer could estimate the reduction in help-desk requests as a result of eliminating user self-
registration and password management. These guidelines can act as a more general framework for calculating return on investment for
any security technology. Revenue, cost, compliance, and risk are the four elements that characterize the costs and benefits to any
organization.

Unfortunately, quantification and estimation are exactly what security officers must do to justify spending on security. Every security officer can describe
a worst-case scenario under which losses are horrific. But such arguments tend to have a diminishing impact: After management has spent money to
counter one possible serious threat that did not occur, it is reluctant to spend again to cover another possible serious threat.

Gordon and Loeb [GOR02a] argue that for a given potential loss, a firm should not necessarily match its amount of investment to the potential impact
on any resource. Because extremely vulnerable information may also be extremely costly to protect, a firm may be better off concentrating its



protection resources on information with lower vulnerabilities.

The model that Gordon and Loeb present suggests that to maximize the expected benefit from investment to protect information, a firm should spend
only a small fraction of the expected loss due to a security breach. Spending $1 million to protect against a loss of $1 million but with a low expected
likelihood is less appropriate than spending $10,000 to protect against a highly likely $100,000 breach.

The Economic Impact of Cybersecurity

Understanding the economic impact of cybersecurity issuesprevention, detection, mitigation, and recoveryrequires models of economic relationships that
support good decision-making. However, realistic models must be based on data derived both from the realities of investment in cybersecurity and
consequences of actual attacks. In this section, we describe the nature of the data needed, the actual data available for use by modelers and decision
makers, and the gap between ideal and real.

For any organization, understanding the nature of the cybersecurity threat requires knowing at least the following elements:

number and types of assets needing protection

number and types of vulnerabilities that exist in a system

number and types of likely threats to a system

Similarly, understanding the realities of cyber attack also requires knowing the number and types of attacks that can and do occur, and the costs
associated with restoring the system to its pre-attack state and then taking action to prevent future attacks.

Both the types of possible attacks and the vulnerabilities of systems to potential cyber attacks are fairly well understood. However, the larger direct and
indirect consequences of such attacks are still largely unknown. We may know that a system has been slowed or stopped for a given number of days,
but often we have no good sense of the repercussions as other systems can no longer rely on the system for its information or processing. For instance,
an attack on a bank can have short- and long-term effects on the travel and credit industries, which in turn can affect food supply. This lack of
understanding has consequences among interconnected computers.

Data to Justify Security Action

Interest in society's reliance on information technology has spawned a related interest in cybersecurity's ability to protect our information assets.
However, we lack highquality descriptive data.

Data are needed to support cybersecurity decision-making at several levels.

National and global data address national and international concerns by helping users assess how industry sectors interact within their country's
economy and how cybersecurity affects the overall economy. These data can help us understand how impairments to the information infrastructure
can generate ripple effects[1] on other aspects of national and global economies.

[1] A ripple effect is a cascading series of events that happen when one event triggers several others, which in turn initiate others.

Enterprise data enable us to examine how firms and enterprises apply security technologies to prevent attacks and to deal with the effects of
security breaches.

In particular, the data capture information about how enterprises balance their security costs with other economic demands.

Technology data describe threats against core infrastructure technologies, enabling modelers to develop a set of least-cost responses.



If we were looking at cost of labor, raw materials, or finished goods, we would have excellent data from which to work. Those concepts are easier to
quantify and measure, governments assist in collecting the data, and economists know where to turn to obtain them. What makes these statistics so
valuable to economists is that they are comparable. Two economists can investigate the same situation and either come to similar conclusions or, if they
differ, investigate the data models underlying their arguments to determine what one has considered differently from the other.

Data to support economic decision-making must have the following characteristics:

Accuracy. Data are accurate when reported values are equal or acceptably close to actual values. For example, if a company reports that it has
experienced 100 attempted intrusions per month, then the actual number of attempted intrusions should equal or be very close to 100.

Consistency. Consistent reporting requires that the same counting rules be used by all reporting organizations and that the data be gathered under
the same conditions. For example, the counting rules should specify what is meant by an "intrusion" and whether multiple intrusion attempts by a
single malicious actor should be reported once per actor or each time an attempt is made. Similarly, if a system consists of 50 computers and an
intrusion is attempted simultaneously by the same actor in the same way, the counting rules should indicate whether the intrusion is counted once
or 50 times.

Timeliness. Reported data should be current enough to reflect an existing situation. Some surveys indicate that the nature of attacks has been
changing over time. For instance, Symantec's periodic threat reports [SYM06] indicate that attack behavior at the companies it surveys has
changed from mischievous hacking to serious criminal behavior. Reliance on old data might lead security personnel to be solving yesterday's
problem.

Reliability. Reliable data come from credible sources with a common understanding of terminology. Good data sources define terms consistently, so
data collected in one year are comparable with data collected in other years.

Sidebar 9-2 describes some of the data available to support cybersecurity decision-making.

Notice that some of the results in Sidebar 9-2 present trend data (37 percent in 2003 versus 65 percent in 2005 use security standards) and others
report on events or activities (organizations have hardened their systems). However, few of the results contain data that could be used directly in a
security investment business case.

Security Practices

The Information Security Breaches Survey (ISBS) is a particularly rich source of information about cybersecurity incidents and practices and
provides a good model for capturing information about cybersecurity. A collaborative effort between the U.K. Department of Trade and Industry and
PricewaterhouseCoopers, this survey is administered every two years to U.K. businesses large and small. Participants are randomly sampled and asked
to take part in a structured telephone interview. In late 2005 and early 2006, over a thousand companies agreed to participate in the study.
Additionally, PricewaterhouseCoopers conducted in-depth interviews with a few participants to verify results of the general interviews.

Sidebar 9-2: A Summary of Recent Security Surveys

We are not at a loss for surveys on computer crime and security incidents. Several surveys have been conducted for a number of years, so there is a
significant body of collected data. Some surveys are more statistically accurate than others. And because of survey design, the data from one year's
survey are not necessarily comparable to other years of that same survey, let alone to other surveys. Here are some of the surveys of the area.

The CSI/FBI Computer Crime and Security Survey is administered in the United States by the Computer Security Institute; it is endorsed by
California units of the Federal Bureau of Investigation. Voluntary and anonymous, the participants are solicited from CSI members and attendees at
CSI conferences and workshops. Five thousand information security practitioners were given the survey in 2005, and 699 responded.

Key findings:



Viruses are the largest source of financial loss. Unauthorized access showed dramatic gains, replacing denial of service as the second greatest
source of loss.

The total dollar amount of financial loss from cyber crime is decreasing.

The reporting of intrusions continues to decrease, for fear of negative publicity.

Only 87 percent of respondents conduct security audits, up from 82 percent in the previous survey.

The 2005 Australian Computer Crime and Security Survey is the fourth annual survey conducted by AusCERT, the Australian National Computer
Emergency Response Team. Modeled on the CSI/FBI Computer Crime and Security Survey, the Australian survey examines Australia's private and
public industry cybersecurity threats, records the number of cyber incidents, and attempts to raise awareness of security issues and effective methods
of attack prevention. The survey questionnaire was sent to the chief information security officers of 540 public and private sector organizations in
Australia. Participation in the survey was voluntary and anonymous, and AusCERT received 188 responses.

Key findings:

Only 35 percent of respondents experienced attacks that affected the confidentiality, availability, or integrity of their networks or data systems in
2005, compared with 49 percent in 2004 and 42 percent in 2003.

The level of insider attacks has remained constant over three years, at 37 percent.

Viruses were the most prevalent type of attack. Denial of service created the most financial loss.

Only 37 percent of respondents used security standards in 2003, but 65 percent use them now.

In its third year, the Deloitte Touche Tohmatsu Global Security Survey  in 2005 continued to focus on security practices of major global financial
institutions. The respondents were voluntary and anonymous, and the data were gathered from extensive interviews with chief information security
officers and chief security officers of financial institutions. Additionally, Deloitte allows a preselected group of institutions to participate in the survey
using an online questionnaire instead of the interviews. The survey gathers data on seven areas: governance, investment, value, risk, use of security
technologies, quality of operations, and privacy. The main issues it addresses are the state of information security practices in the financial services
industry, the perceived levels of risk, the types of risks, and the resources and technologies applied to these risks.

Key findings:

Organizations have hardened their systems, making them less attractive to security breaches from hackers.

The weakest link is humans, not technology, particularly using phishing and pharming attacks.

Only 17 percent of respondents overall deem government security-driven regulations as "very effective," and 50 percent "effective" in improving
their organization's security position or in reducing data protection risks.

There is a trend toward having the chief information security officer report to the highest levels of the organization.

The 2004 Ernst and Young Global Information Security Survey found that although company executives are aware of computer security threats,
their security practices are lacking. The survey, which included input from 1,233 companies worldwide, also concluded that internal threats are
underemphasized and that many organizations rely on luck rather than security measures for protection. Ernst and Young has been conducting this
kind of annual survey since 1993, using two methods for data collection. Companies are first asked to participate in face-to-face interviews; if that is
not possible, they are sent electronic questionnaires. The survey is anonymous, and participation is voluntary.

Key findings:



Only one in five respondents strongly agreed that their organizations perceive information security as a priority at the highest corporate levels.

Lack of security awareness by users was the top obstacle to effective information security. However, only 28 percent of respondents listed
"raising employee information security training or awareness" as a top initiative in 2004.

The top concern among respondents was viruses, Trojan horses, and Internet worms. A distant second was employee misconduct, regardless of
geographic region, industry, or organizational size.

Fewer than half of the respondents provided employees with ongoing training in security and controls.

Only one in four respondents thought their information security departments were successful in meeting organizational security needs.

One in ten respondents consider government security-driven regulations to be effective in improving security or reducing risk.

The Internet Crime Complaint Center (IC3) is a collaborative U.S. effort involving the Federal Bureau of Investigation and the National White Collar
Crime Center. It provides information to national, state, and local law enforcement agencies that are battling Internet crime. The IC3 collected its fifth
annual compilation of complaints in 2005.

Key findings:

During 2005, the IC3 received over 231,000 submissions, an increase of 11.6 percent over the previous year. Of these, almost 100,000
complaints were referred to law enforcement organizations for further consideration. The majority of the referred cases involved fraud. The total
dollar loss was over $182 million, with median dollar loss of $424 per complainant.

Internet auction fraud was the most frequent complaint, involved in 62.7 percent of the cases. Almost 16 percent of the cases involved
nondelivered merchandise or nonpayment. Credit or debit card fraud was involved in almost 7 percent of the cases. The remaining top categories
involved check fraud, investment fraud, computer fraud, and confidence fraud.

More than three of four perpetrators were male, and half resided in one of the following states: California, New York, Florida, Texas, Illinois,
Pennsylvania, or Ohio. Although most of the reported perpetrators were from the United States, a significant number were located in Nigeria, the
United Kingdom, Canada, Italy, or China.

Sixty-four percent of complainants were male, nearly half were between the ages of 30 and 50, and one-third resided in one of the four most
populated states: California, Florida, Texas, or New York. For every dollar lost by a female, $1.86 dollars was lost by a male.

High activity scams included Super Bowl ticket scams, phishing attempts associated with spoofed sites, reshipping, eBay account takeovers,
natural disaster fraud, and international lottery scams.

The Imation Data Protection Survey sponsored by Imation Corporation attempts to understand how small and mid-size U.S. companies conduct
data backup, protection, and recovery. In 2004, the online survey gathered information from 204 tape storage managers and information technology
directors, who were selected by the Technology Advisory Board, a worldwide panel of more than 25,000 engineers, scientists, and IT professionals.

Key findings:

Most companies have no formal data backup and storage procedures in place. They rely instead on the initiative of individual employees.

E-mail viruses are the primary reason companies review and change their data protection procedures.

Regular testing of disaster recovery procedures is not yet a common practice.

In 2002, Information Security Magazine (ISM) gathered data from 2,196 security practitioners regarding organizational behavior and practices. By



separating the data by organization size, the ISM survey detailed the differences in security responses and budget allocations. The survey found

Security spending per user and per machine decreases as organization size increases.

Allocating money for security does not reduce the probability of being attacked but does help an organization detect losses.

Most organizations do not have a security culture or an incident response plan.

Survey Sources

CSI/FBI Survey:
http://www.gocsi.com/forms/fbi/csi_fbi_survey.jhtml

Australian Computer Crime and Security Survey:
www.auscert.org.au/render.html?it=2001

Deloitte Global Information Security Survey:
www.deloitte.com/dtt/research/0,1015,sid=1013&cid=85452,00.html

Ernst and Young Global Security Survey:
www.ey.com/global/download.nsf/International/2004_Global_Information_Security_Survey/$file/2004_Global_Information_Security_Survey_2004.pdf

2005 IC3 Internet Crime Report:
www.ic3.gov/media/annualreport/2005_ic3report.pdf

DTI Information Security Breaches Survey 2006:
www.pwc.com/extweb/pwcpublications.nsf/docid/
7FA80D2B30A116D7802570B9005C3D16

ICSA Tenth Annual Computer Virus Prevalence Survey:
www.icsalabs.com/icsa/docs/html/library/whitepapers/VPS2004.pdf

The survey results are reported in four major categories: dependence on information technology, the priority given to cybersecurity, trends in security
incidents, and expenditures on and awareness of cybersecurity. In general, information technology is essential to U.K. businesses, so computer security
is becoming more and more important. Of businesses surveyed, 97 percent have an Internet connection, 88 percent of which are broadband. More than
four in five businesses have a web site, most of which are hosted externally. Small business is particularly dependent on information technology: Five of
six said that they could not run their companies without it. Many of the respondents rate security above efficiency when specifying corporate priorities.

Nearly three times as many companies have a security policy now than in 2000. Almost every responding organization does regular backups, and three-
quarters store the backups offsite. These organizations are proactive about fighting viruses and spam; 98 percent of businesses have antivirus software,
80 percent update their antivirus signatures within a day of notification of a new virus, and 88 percent install critical operating system patches within a
week. Moreover, 86 percent of companies filter their incoming e-mail for spam. They view these controls as sufficient and effective; three-quarters of
U.K. businesses are confident or very confident that they identified all significant security breaches in the previous year.

Economic Impact

But what is the economic impact of the policies and controls? Although the large increase in security incidents during the 1990s has stabilized (62
percent of U.K. companies had a security incident in 2005, compared with 74 percent in 2003), the reported costs remain substantial. The average U.K.
company spends 4 to 5 percent of its information technology budget on information security, but two out of five companies spend less than 1 percent on

http://www.gocsi.com/forms/fbi/csi_fbi_survey.jhtml


security.

The average cost of a company's worst security incident was about £12,000, up from £10,000 in 2003. Moreover, large businesses are more likely than
small businesses to have incidents and to have more of them (the median is 19 per year). A large business's worst breach costs on average £90,000.
Overall, the cost of security breaches to U.K. companies has increased by about half since 2003; it is approximately £10 billion per annum. Fewer than
half the companies surveyed conduct a security risk assessment, and those that do tend to spend more on security. Table 9-3 summarizes the changes
in incidents and cost reflected by the ISBS survey.

Table 9-3. Overall Changes in Cost of U.K. Security Incidents
(adapted from ISBS 2006)

  Overall Change Change for Large
Businesses

Number of companies affected 20% 10%

Median number of cybersecurity
incidents at affected companies

50% 30%

Average cost of each incident 20% 10%

Total change in cost of
cybersecurity incidents

50% 50%

Are the Data Representative?

How representative are these data? Pfleeger et al. [PFL06c] have evaluated the available data, which collectively paint a mixed picture of the security
landscape.

Classification of Attack Types

Understandably, the surveys measure different things. One would hope to be able to extract similar data items from several surveys, but unfortunately
that is not often the case.

For example, the Australian Computer Crime and Security Survey reported a decrease in attacks of all types, but 43 percent of CSI member
organizations reported increases from 2003 to 2004. The Deloitte survey found the rate of breaches to have been the same for several years. The
variation may derive from the differences in the populations surveyed: different countries, sectors, and degrees of sophistication about security matters.

Types of Respondents

Most of these surveys are convenience surveys, meaning that the respondents are self-selected and do not form a representative sample of a larger
population. For convenience surveys, it is usually difficult or impossible to determine which population the results represent, making it difficult to
generalize the findings. For example, how can we tell if the CSI/FBI survey respondents represent the more general population of security practitioners
or users? Similarly, if, in a given survey, 500 respondents reported having experienced attacks, what does that tell us? If the 500 respondents represent
73 percent of all those who completed the survey, does the result mean that 73 percent of companies can expect to be attacked in the future? Or, since
completing the questionnaire is voluntary, can we conclude only that respondents in the attacked 500 sites were more likely to respond than the
thousands of others who might not have been attacked? When done properly, good surveys sample from the population so that not only can results be
generalized to the larger group but also the results can be compared from year to year (because the sample represents the same population).



Comparability of Categories

There are no standards in defining, tracking, and reporting security incidents and attacks. For example, information is solicited about

"electronic attacks" (Australian Computer Crime and Security Survey)

"total number of electronic crimes or network, system, or data intrusions" and "unauthorized use of computer systems" (CSI/FBI)

"security incidents," "accidental security incidents," "malicious security incidents," and "serious security incidents" (Information Security Breaches
Survey)

"any form of security breach" (Deloitte Global Security Survey)

"incidents that resulted in an unexpected or unscheduled outage of critical business systems" (Ernst and Young Global Information Security
Survey)

Indeed, it is difficult to find two surveys whose results are strictly comparable. Not only are the data characterized differently, but the answers to many
questions are based on opinion, interpretation, or perception, not on consistent capture and analysis of solid data.

Sources of Attack

Even the sources of attack are problematic. The Australian survey notes that the rate of insider attacks has remained constant, but the Deloitte survey
suggests that the rate is rising within its population of financial institutions. There is some convergence of findings, however. Viruses, Trojan horses,
worms, and malicious code pose consistent and serious threats, and most business sectors fear insider attacks and abuse of access. Most studies
indicate that phishing is a new and growing threat.

Financial Impact

Many of the surveys capture information about effect as well as cause. A 2004 survey by ICSA Labs reports a 12 percent increase in "virus disasters"
over 2003, but the time to recover lost or damaged data increased 25 percent. The cost of recovery exceeded $130,000 on average. By contrast, the
Australian, Ernst and Young, and CSI/FBI surveys found a decrease in total damage from attacks. The nature of the losses varies, too; CSI/FBI reports
that 25 percent of respondents experienced financial loss, and 56 percent experienced operational losses.

These differences may derive from the difficulty of detecting and measuring the direct and indirect effects of security breaches. There is no accepted
definition of loss, and there are no standard methods for measuring it. Indeed, the ICSA 2004 study notes that "respondents in our survey historically
underestimate costs by a factor of 7 to 10."

There is some consensus on the nature of the problems. Many surveys indicate that formal security policies and incident response plans are important.
Lack of education and training appears to be a major obstacle to improvement. In general, a poor "security culture" (in terms of awareness and
understanding of security issues and policies) is reported to be a problem. However, little quantitative evidence supports these views. Thus, in many
ways, the surveys tell us more about what we do not know than about what we do know. Many organizations do not know how much they have invested
in security protection, prevention, and mitigation. They do not have a clear strategy for making security investment decisions or evaluating the
effectiveness of those decisions. The inputs required for good decision makingsuch as rates and severity of attacks, cost of damage and recovery, and
cost of security measures of all typesare not known with any accuracy.

Conclusion

We can conclude only that these surveys are useful for anecdotal evidence. A security officer can point to a survey and observe that 62 percent of U.K.
respondents reported a security incident at an average loss of £12,000. But management will rightly ask whether those figures are valid for other



countries, what constitutes an incident, and whether its organization is vulnerable to those kinds of harm.

The convenience surveys are a good start, but for serious, useful analysis, we need statistically valid surveys administered to the same population over
a period of time. In that way we can derive meaningful measures and trends. The surveys need to use common terminology and common ways to
measure effect so that we can draw conclusions about past and likely losses. And ideally, comparable surveys will be administered in different countries
to enable us to document geographical differences. Without these reliable data, economic modeling of cybersecurity is difficult.



9.3. Modeling Cybersecurity

Cybersecurity economics is a nascent field, bringing together elements of cybersecurity and
economics to help decision-makers understand how people and organizations invest constrained
resources in protecting their computer systems, networks, and data. Among the many questions to
ask about cybersecurity investments are these:

• How much should an organization invest in cybersecurity to protect assets of a given
value?

• What is the likely impact of a security breach?

• What are the costs and benefits of sharing information?

Transferring Models

What kinds of models are available to help us make good investment decisions by answering
questions such as these? Typical first steps often involve applying a standard approach in one
discipline to a problem in a second discipline.

For example, to answer the first question, Gordon and Loeb [GOR02a] apply simple accounting
techniques to develop a model of information protection. They consider three parameters: the loss
conditioned on a breach's occurring, the probability of a threat's occurring, and the vulnerability
(defined as the probability that a threat, once realized, would be successful). The impact is
expressed in terms of money expected to be lost by the organization when the breach occurs. They
show that, for a given potential loss, the optimal amount an organization should spend to protect an
information asset does not always increase as the asset's vulnerability increases. Indeed, protecting
highly vulnerable resources may be inordinately expensive. According to Gordon and Loeb's models,
an organization's best strategy may be to concentrate on information assets with midrange
vulnerabilities. Moreover, they show that, under certain conditions, the amount an organization
should spend is no more than 36.8 percent of the expected loss. However, Willemson [WIL06]
constructs an example where a required investment of 50 percent may be necessary; he also shows
that, if the constraints are relaxed slightly, up to 100 percent is required.

Campbell et al. [CAM03] address the second question by examining the economic effect of
information security breaches reported in newspapers or publicly traded U.S. corporations. Common
wisdom is that security breaches have devastating effects on stock prices. However, Campbell and
her colleagues found only limited evidence of such a reaction. They show that the nature of the
breach affects the result. There is a highly significant negative market reaction for information
security breaches involving unauthorized access to confidential data, but there seems to be no
significant reaction when the breach involves no confidential information. Models based on these
results incorporate the "snowball effect, accruing from the resultant loss of market share and stock
market value" [GAL05].



Gal-Or and Ghose [GAL05] use the Campbell result in addressing the third problem. Using game
theory, they describe the situation as a non-cooperative game in which two organizations, A and B,
with competing products choose optimal levels of security investment and information sharing. A
and B choose prices simultaneously. The game then helps them decide how much information to
share about security breaches. Included in the game are models of cost and demand that reflect
both price and competition.

Their model tells us the following about the costs and benefits of sharing information about security
breaches:

A higher level of security-breach information sharing by organization A leads B to a higher
level of such sharing, and it also leads B to a higher level of investment in security technology.
Thus, "technology investment and information sharing act as strategic complements in
equilibrium."

Sometimes organizations have one product that can be substituted for another. As the degree
of product substitutability increases, so too do the information sharing and technology
investment by both A and B.

Security-breach information sharing and security technology investment levels increase with
firm size and industry size.

In general, there are strong incentives to share breach information, and the incentives become
stronger as the firm size, industry size, and amount of competition grow.

Models such as these offer an initial framing of the problem, particularly when researchers are
exploring relationships and setting hypotheses to obtain a deeper understanding. However, as with
any new (and especially cross-disciplinary) research area, initial understanding soon requires a
broader reach.

Models for Decision-Making

The reach of initial models is being broadened in many ways. For example, some researchers are
looking to anthropology, sociology, and psychology to see how human aspects of decision-making
can be woven into economic models. This research hopes to expand the explanatory power of the
models, enabling them to reflect the complexities of human thought about problems that are
sometimes difficult to comprehend but that have a clear bearing on making economic decisions
about cybersecurity investments. For example, as we saw with the Gordon and Loeb model, many
economic models include parameters to capture the risk that various problems will occur. But
deriving a reasonable probability for the risk is not always the only problem with risk quantification.
Once the risk factors are calculated, they must be communicated in a way that allows a decision-
maker to compare and contrast scenarios. Jasanoff [JAS91] describes the difficulty of understanding
and contrasting numbers that do not relate easily to everyday experience.

Framing the Issue

When presented with information about risk in terms of probability and payoff, researchers have
found that



When the payoff is small, people focus on the risk.

When the risk is small, people focus on the payoff.

Many cybersecurity risks have a very small likelihood of occurrence but can have an enormous
impact in terms of cost, schedule, inconvenience, or even human life.

More generally, the way a problem is framed can make a big difference in the choices people make.
For example, when cybersecurity investment choices are portrayed as risk avoidance or loss
avoidance, the options are immersed in one kind of meaning. However, when the choices are
described as opportunities to establish a competitive edge as a totally trustworthy company or as
required by the demands of recognized "best practices" in the field or industry, the same group may
make very different investment selections. Swanson and Ramiller [SWA04] suggest that this
phenomenon is responsible for technology adoption that seems otherwise irrational. Thus, the
communication of information can lead to a variety of framing biases. Decision-support systems
based on models of cybersecurity economics can use this kind of behavioral science information
about framing and risk perception to communicate risk so that the decision maker selects the best
options.

Group Behavior

When behavioral scientists examine economic actions, they question whether rational choice alone
(assumed in most cybersecurity economics models) can adequately model how economic agents
behave. Behavioral economics is based on hypotheses about human psychology posed by
researchers such as Simon [SIM78], Kahneman and Tversky [KAH00], and Slovic et al. [SLO02].
These researchers have shown not only that people make irrational choices but also that framing
the same problem in different but equivalent ways leads people to make significantly different
choices. One of the key results has been a better understanding of how humans use heuristics to
solve problems and make decisions.

Often, decision-makers do not act alone. They act as members of teams, organizations, or business
sectors, and a substantial body of work describes the significant differences in decisions made by
individuals acting alone and acting collectively. When an individual feels as if he or she is part of a
team, decisions are made to meet collective objectives rather than individual ones (Bacharach
[BAC99] and Sugden [SUG00]). This group identity leads to team reasoning. But the group identity
depends on a sense of solidaritythat is, on each team member's knowing that others are thinking
the same way.

Normative expectations derived from this group identity can govern team behavior. That is, each
member of a group is aware of the expectations others have of him or her, and such awareness
influences the choices made. Such behaviors can sometimes be explained by the theory of esteem
[BRE00]. Esteem is a "positional good," meaning that one person or organization can be placed
above others in a ranking of values, such as trust. The esteem earned by a given action or set of
actions is context-dependent; its value depends on how that action compares with the actions of
others in a similar circumstance. For example, one corporate chief security officer interviewed by
RAND researchers noted that he is motivated by wanting his customers to take him seriously when
he asks them to trust his company's products. His esteem is bound to their perception of his
products' (and company's) trustworthiness.

Jargon is also related to normative expectations. Shared meanings, specialized terminology, and the



consonance of assumptions underlying group discussions can lead to familiarity and trust among
team members [GUI05]. The jargon can help or hurt decision-making, depending on how a problem
is framed.

The most frequently cited downside of group decision-making is the tendency in a hierarchy for the
most dominant participant(s) to speak first and to dominate the floor. The other group members go
along out of bureaucratic safety, groupthink, or because they simply cannot get the "floor time" to
make themselves hearda phenomenon known as production blocking. Some groupware systems
now on the market are designed specifically for overcoming these potentially negative effects of
interpersonal factors in group decision-making [BIK96].

Group behavior extends beyond teams to affect clients, colleagues, and even competitors. Each of
these peers can affect the decision-maker as consumer of a good or service when something's value
can depend on who else uses it ([COW97] and [MAN00]). We see examples when managers ask
about "best practices" in other, similar companies, embracing a technology simply because some or
most of the competition has embraced it. In the case of security, the technology can range from the
brand of firewall software to the security certification (such as CISSP) of software developers.

Credibility and Trust

The number and nature of encounters among people also affects a decision. When information is
passed from Jenny to Ben, Ben's confidence in Jenny affects the information's credibility. Moreover,
there is an "inertial component": Ben's past encounters with Jenny affect his current feelings. The
number of encounters plays a part, too; if the number of encounters is small, each encounter has a
"noteworthy impact" [GUI05]. This credibility or trust is important in the economic impact of
cybersecurity, as shown in Sidebar 9-3.

The Role of Organizational Culture

Trust and interpersonal relations are solidly linked to economic behavior. Because interpersonal
interactions are usually embedded in the organizations in which we work and live, it is instructive to
examine the variation in organizational cultures to see how they may affect economic decision-
making, particularly about investments in cybersecurity.

We can tell that two cultures are different because they exhibit different characteristics: symbols,
heroes, rituals, and values.

Symbols are the words, gestures, pictures and objects that carry specific meanings for a group
of people using them to communicate [HOF05]. For example, a corporate security group's
culture may be manifested in jargon about PKI, IPSEC, and cryptographic algorithms.



Sidebar 9-3: Why Trust Is an Economic Issue

Trust can characterize intra-organizational relationships as well as relationships
that span organizational boundaries. But in cybersecurity, trust is an interpersonal
or social relationship that merits special attention. To see why trust plays an
especially important role in cybersecurity economics, think of a person or
organization as having two characteristics: being trustful (that is, willing to trust
another person or organization) or trustworthy (that is, engendering the trust of
someone or something else) [PEL05]. Trust itself is a function not only of civil and
criminal law but also of the norms of a civil society. These norms are conveyed in
interpersonal interactions, often moderating or preventing negative behaviors, such
as fraud. For example, Rabin [RAB93] has shown that payoffs depend not only on
players' actions but also on their intentions. The intention is determined both from
what players do and from what they can do but do not. Norms can act to deter a
player from taking an unpopular, unethical, or even illegal action.

Trust, like esteem, is also a positional good, affecting economics when people are
willing to pay more for goods and services they trust. Therefore, understanding the
nature of trust helps us make ourselves and our organizations more trustworthy.
Several researchers highlight characteristics that can affect whether and how we
trust a person, good, or service.

Pelligra [PEL05] makes a convincing argument that interpersonal relationships
create and enhance trust: "A trusting move induces trustworthiness through an
endogenous modification of [someone's] preference structure. A single act of
genuine trust may provide additional reasons to behave trustworthily."

Pettit [PET95] describes how traits displayed by the party to be trusted are
determined by self-interest: the desire to be admired by others. As trust becomes
more valued, it grows.

"Following the norm of trust has an effect on both the beliefs and the norms of
others. It creates a virtuous circle … if we act as if we expect the best from the
others, they will often behave better as a result" [BAR98].

This need to be thought well of by others is also called "therapeutic trust."
Horsburgh [HOR60] describes how it affects economic decisions: "One of the
reasons for [A's] willingness to risk the loss of his money is a belief that this may
induce [B] to act more honourably than he originally intended."

Heroes of a culture are those people whose behaviors are highly prized, serving as role models
for the others in the group. We often laud our heroes as ACM or IEEE Fellows, as recipients of
medals or prizes, or as honored speakers at conferences and workshops.

Rituals are activities performed by all the group's members that are socially essential but not
necessary to the business. For example, group meetings to introduce new members are often
ways of teaching the language and symbols to newcomers but are not always essential for
getting work done.



These three characteristics make up a culture's practices. It is easy to see that a key motivation for
any organization wanting to improve its trustworthiness or that of its products is to build a
cybersecurity culturethat is, to embrace practices that make developers more aware of security and
of the actions that make the products more secure.

As shown in Figure 9-1, values lie at the culture's core. We can think of values as "broad tendencies
to prefer certain states of affairs over others" [HOF05, p. 8]. This relationship is crucial to
understanding cybersecurity's economic tradeoffs: If developers, managers, or customers do not
value security, they will neither adopt secure practices nor buy secure products.

Figure 9-1. Manifestations of National Culture [Hofstede and Hofstede
2005]

A person's personal values derive from family, school and work experiences. From a cybersecurity
perspective, the best way to enhance the value of cybersecurity is to focus on work and, in
particular, on organizational culture.

Hofstede and Hofstede [HOF05] have explored the factors that distinguish one organizational
culture from another. By interviewing members of many organizations and then corroborating their
findings with the results of other social scientists, they have determined that organizational cultures
can be characterized by where they fit along six different dimensions, shown in Table 9-4. The table
shows the polar opposites of each dimension, but in fact most organizations fall somewhere in the
middle. We discuss each dimension in turn.

Table 9-4. Dimensions of Organizational Culture

Pole 1 Pole 2 Explanation



Pole 1 Pole 2 Explanation

Process oriented Results oriented Means versus goals

Employee oriented Job oriented Concern for people versus
concern for completing the
job

Parochial Professional Identity from organization
versus from the profession

Open system Closed system With respect to newcomers

Loose control Tight control With respect to employee
autonomy

Normative Pragmatic Rule-based versus job-driven

Process versus results. An organization that is process oriented reflects the value that if good
practices are enacted properly, the desired results will follow. That is, the means will lead to
acceptable ends. However, others insist that the proof of the pudding is in the eating; even if
you follow a good recipe, you still have to evaluate the result directly to verify its quality.
Security organizations that emphasize process are often focused on "best practices," training
members to develop, evaluate, and use software in prescribed ways. On the other hand,
organizations that emphasize results are focused on testing and evaluation, to ensure that
products work as advertised.

Employee versus job. An organization that values its employees is concerned about employee
satisfaction and job motivation. At the other extreme, an organization focused on the job
usually uses measures such as milestones toward completion to determine if progress is being
made.

Parochial versus professional. A parochial organization rewards its employees for meeting
goals set internally, by the organization, division, or company. A professional organization
looks outside the company to professional awards and certification authorities for ways of
rewarding its employees. For example, a professional organization would value CISSP
certification, while a parochial organization prefers in-house rewards, such as promotion.

Open versus closed. When an organization is open, it welcomes new talent from outside,
having no qualms about investing in training to help newcomers understand the symbols,
heroes, and rituals. A closed organization prefers to hire from within so that cultural values
and practices are preserved and reinforced.

Loose versus tight control. A loosely controlled organization usually allows teams to form by
themselves; employees have some flexibility in deciding with whom they want to work, and
there are few reporting requirements. In a tightly controlled organization, the managers create
the teams and impose significant reporting requirements to ensure that project progress is
being made.

Normative versus pragmatic. Normative organizations are usually focused on best practices.
They often have a standard or recommended life-cycle methodology that is imposed on all
development and maintenance projects, with supporting measures and reviews to ensure that
the methodology is being applied. By contrast, pragmatic organizations are more job-driven,
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the methodology is being applied. By contrast, pragmatic organizations are more job-driven,



doing what it takes to get the job done, even if that means using unorthodox or untested
approaches to solving the problem. Pragmatic organizations are usually the ones that use
small groups applying "agile methods."

These differences are summarized in Table 9-5.

Table 9-5. Organizational Culture and Example Security
Choices

Dimension Choices

Process versus Results Best practice versus
Testing and evaluation

Employee versus Job Employee satisfaction versus
Milestones toward completion

Parochial versus
Professional

Organizational rewards versus
Professional rewards and certification

Open versus Closed
System

Hire from outside versus
Promote or retrain from within

Loose versus Tight
Control

Self-organizing teams with little bureaucratic control
versus
Managerially imposed teams with much reporting

Normative versus
Pragmatic

Rule-based, "life cycle methodology" versus
Job-driven, "agile methods"

These dimensions affect an organization's cybersecurity economics. The organizational culture,
described by the set of positions along six dimensions, reflects the underlying organizational values
and therefore suggests the kinds of choices likely for cybersecurity investment behavior. For
example:

A results-driven organization may choose to invest in penetrate-and-patch behavior rather
than in best-practice training.

A professional organization may certify all its security professionals, but a parochial one may
prefer to invest instead in rewarding those developers whose products have the fewest security
failures after release.

A normative organization may develop a security engineering methodology that is enforced on
all projects, while a pragmatic organization may develop its own security strategy on a project-
by-project basis.

Companies and organizations invest in cybersecurity because they want to improve the security of
their products or protect their information infrastructure. Understanding the human aspects of
projects and teams can make these investment decisions more effective in three ways. First,
knowing how interpersonal interactions affect credibility and trust allows decision-makers to invest
in ways that enhance these interactions. Second, cybersecurity decision-making always involves



quantifying and contrasting possible security failures in terms of impact and risk. Behavioral
scientists have discovered dramatic differences in behavior and choice, depending on how risks are
communicated and perceived. Similarly, people make decisions about trustworthiness that are not
always rational and are often influenced by recentness. Tools supporting cybersecurity investment
decisions can take into account this variability and can communicate choices in ways that users can
more predictably understand them. Third, organizational culture can be a key predictor of how a
firm uses security information, makes choices about security practices, and values positional goods
like esteem and trust. Each of these actions in turn affects the firm's trustworthiness and the
likelihood that its products' security will match their perception by consumers.

The behavioral, cultural, and organizational issues have effects beyond the organization, too.
Because one firm's security has implications for other enterprises in a business sector or along a
supply chain, the interpersonal interactions among colleagues in the sector or chain can affect their
expectations of trust and responsibility. Companies can make agreements to invest enough along
each link of the chain so that the overall sector or supply chain security is assured, with minimal
cost to each contributor.



9.4. Current Research and Future Directions

Just as security concerns confidentiality, integrity, and availability, current research in cybersecurity
economics focuses on the economic value and implications of these characteristics. The economics
of cybersecurity is an emerging discipline. Its novelty and multidisciplinarity mean that, as with any
new area of investigation, there is a scattering of information and much we do not yet know.

Current research in cybersecurity economics focuses on the interaction between information
technology and the marketplace. When we buy or use software, we are involved in the market in
several ways. First, the price we pay for software may depend on how much we trust it; some
consumers trust freeware far less than they trust a branded, proprietary product for which they pay
a substantial price. Second, some companies use the "softness" of software to charge more or less,
depending on tradeoffs involving personal information. Third, the marketplace can be manipulated
to encourage vendors to reduce the number of flaws in their products. In this section, we
summarize the kinds of problems being addressed by today's research and describe several open
questions yet to be answered.

Economics and Privacy

Andrew Odlyzko is taking a careful look at how economics and privacy interact, particularly with the
increased use of differential pricing. As the cost of storing and analyzing data continues to decrease,
businesses can easily capture data about customer behavior. Practices such as differential pricing
encourage customers to part with personal information in exchange for lower prices. Many of us
have "affinity cards" at supermarkets, office supply stores, bookstores, and more that give us
special offers or discounts when we give the vendors permission to capture our buying behavior.
Businesses can also monitor where and how we navigate on the web and with whom we interact.
The differential pricing also constrains and modifies our behavior, as when we purchase airline or
rail tickets online in exchange for lower fares than we would have paid by telephone or in person.
We consider the privacy impacts of data collection and analysis in Chapter 10.

Economists Alessandro Acquisti and Hal Varian have analyzed the market conditions under which it
can be profitable for an enterprise to use the privacy/pricing tradeoff. Many researchers are
interested in the balance among personal, business, and societal costs and benefits. On his web
site, Acquisti asks, "Is there a sweet spot that satisfies the interests of all parties?"

Economics and Integrity

In Chapter 11 we discuss the pros and cons of sharing information about known vulnerabilities.
Many researchers are investigating the economic tradeoffs.

Eric Resorla explains that because there are so many flaws in large software products, the removal
of a single flaw makes no real difference; a malicious actor will simply find another flaw to exploit.
He suggests that disclosure of a flaw's presence before it is patched encourages the malicious
behavior in the first place. However, Ashish Arora, Rahul Telang, and Hao Xu argue in favor of



disclosure. Their models suggest that without disclosure, there is no incentive for software vendors
to find and patch the problems. Although disclosure increases the number of attacks, the vendors
respond rapidly to each disclosure, and the number of reported flaws decreases over time.
Interestingly, their analysis of real data reveals that open source projects fix problems more quickly
than proprietary vendors, and large companies fix them more quickly than small ones.

Stuart Schechter examines how market forces can be used to prevent or decrease vulnerabilities.
He suggests that economies establish markets where vulnerabilities can be traded. In such a
market, the price for exploiting a product's vulnerability would indicate to consumers its level of
security. Andy Ozment takes a similar, market-based approach, applying auction theory to analyze
how vulnerability markets could be better run. He also discusses how such markets could be
exploited by those with malicious intent.

Economics and Regulation

There is always heated argument between those who think the marketplace will eventually address
and solve its own problems, and those who want a government entity to step in and regulate in
some way. In security, these arguments arise over issues like spam, digital rights management, and
securing the critical information infrastructure. Many researchers are investigating aspects of the
cyber marketplace to see whether regulation is needed.

Consider spam: If most people had a highly effective spam filter, almost all spam would be filtered
out before it appeared in the inbox, so the usefulness of spam would be greatly reduced to the
sender and the volume of spam would drop. In a marketplace, when some (but not all) members
take an action that benefits everyone, the ones who do not take the action are said to get a free
ride. For example, if most people are vaccinated for an illness, then those who choose not to be
vaccinated still benefit from the slowed progress of the disease because the disease does not spread
rapidly through the vaccinated majority. In the same way, market regulationrequiring all users to
employ a spam filtercould rid the world of spam. But lack of regulation, or some degree of free
riding, might be good enough. Hal Varian has been investigating the effects of free riding on overall
system reliability.

Many researchers investigating spam invoke economic models to suggest marketbased solutions to
reducing unwanted electronic mail. For example, paying a small price for each e-mail messagecalled
a micropaymentwould generate negligible charges for each consumer but could stop cold the
spammer who sends out millions of messages a day.

A similar economic concept is that of an externality. Here, two people or organizations make a
decision or enact a transaction, and a third party benefitseven though the third party played no role.
Geoffrey Heal and Howard Kunreuther are examining security externalities, particularly where
security problems have optimal solutions (from a computing point of view) that are not socially
optimal. They are investigating the case in which there is a threat of an event that can happen only
once, the threat's risk depends on actions taken by others, and any agent's incentive to invest in
reducing the threat depends on the actions of others.

Copyright and digital rights management are frequent topics for regulatory discussion. Marc
Fetscherin and C. Vlietstra are examining the business models of online music providers, particularly
in how the price is determined for a given piece of music. They show that the price is affected by
buyer's rights (to copy and move to portable players) as well as by geographic location and music
label. Felix Oberholzer and Koleman Strumpf have examined records of downloads and music sales,
showing that the downloads do no harm to the music industry. This result is controversial, and



several papers present dissenting views. Hal Varian discusses the broader problem of the effect of
strict controls on innovation. He suggests that as control increases, those who are uncomfortable
with risk will stop innovating.

In general, cybersecurity economics researchers are investigating how to use market forces to
encourage socially acceptable security behavior.



9.5. Summary

This chapter has examined some of the key findings of the nascent, interdisciplinary community that
is investigating the economics of cybersecurity. As we have seen, investing in cybersecurity is not
just a matter of comparing technology need with available technological function. Instead, it is an
intriguing function of business need, incentives, regulatory demand, risk tolerance, current business
practice, and more. As Bruce Schneier [SCH06c] points out, "often systems fail because of
misplaced economic incentives: the people who could protect a system are not the ones who suffer
the cost of failure."

Organizations can use benchmarking to determine if their cybersecurity expenditures are on par
with others in their industry. But apart from a recommended total expenditure or percentage of
revenue, organizations need clear and effective strategies for deciding where and how each
cybersecurity unit of currency should be spent. Learning lessons from the past does not always offer
good guidance for choice of strategy. For example, if your company has suffered no breaches for a
year, is it because it invested well in cybersecurity technology and practices, or simply because
there were no effective attacks? Many companies install firewalls, but few encrypt their electronic
mail. Does that mean that firewalls are more effective than encryption, or simply that regulations or
customer requirements mandate the former but the not the latter?

Many organizations use common accounting principles to assess the business benefits of their
cybersecurity investments. Using approaches such as net present value or return on investment,
they try to quantify the effects of cybersecurity practices and technology on revenues. However,
such calculations require credible data about the nature, frequency, and effects of attacks.
Currently, reported data are derived from convenience surveys, rather than from carefully sampled
populations. Moreover, there is no consistency in terminology or counting rules from one survey to
another. Thus, it is difficult to generalize the meaning of reported measures and trends. This
problem is being addressed in the United States by the Departments of Justice and Homeland
Security. During 2006, they administered the National Computer Security Survey, which was sent to
thousands of businesses across 37 industry sectors. The statistically sampled survey asks questions
about

The nature and extent of computer security incidents;

Monetary costs and other consequences of these incidents;

Incident details such as types of offenders and reporting to authorities; and

Computer security measures used by companies.

According to the survey's web site (http://www.ncss.rand.org), the intent is to provide "national
and industry-level estimates of the prevalence of computer security incidents (such as denial of
service attacks, fraud, or theft of information) against businesses and their resulting losses incurred
by businesses." In addition to enabling businesses to benchmark themselves with more credible
data, the survey results should allow businesses, business sectors, and governments to make better
decisions about cybersecurity investments and policies.

http://www.ncss.rand.org


Because the field of cybersecurity economics is new and growing, our understanding is growing and
changing, too. The topics from the 2006 Workshop on the Economics of Information Security are
representative [SCH06c]:

We heard papers presented on the economics of digital forensics of cell phonesif you have an
uncommon phone, the police probably don't have the tools to perform forensic analysisand the
effect of stock spam on stock prices: It actually works in the short term. We learned that
more-educated wireless network users are not more likely to secure their access points, and
that the best predictor of wireless security is the default configuration of the router.

Other researchers presented economic models to explain patch management, peer-to-peer
worms, investment in information security technologies and opt-in versus opt-out privacy
policies. There was a field study that tried to estimate the cost to the U.S. economy for
information infrastructure failures: less than you might think. And one of the most interesting
papers looked at economic barriers to adopting new security protocols, specifically DNS
Security Extensions.

Continuing research in cybersecurity economics will address the intersection of business,
government and technology. As a student of computer security, it is important for you to remember
that many of your decisions have significant impact beyond the technological tools and practices you
choose.
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9.7. To Learn More

Because cybersecurity economics is a nascent field, many of the new results are reported at
conferences rather than in journals. There are several conferences at which economics issues are
discussed. The Workshop on the Economics of Information Security is held every year. The
proceedings are available on the web (the 2006 proceedings are at
http://weis2006.econinfosec.org), and some of the best papers from the earliest workshops are
included in Camp and Lewis [CAM04]. Economics is becoming relevant to the iTrust conferences, at
which researchers examine the role of trust in Internet business relationships. Other conferences at
which economics is often discussed are the Conference on Privacy, Security, and Trust (held each
year in Canada); the Financial Cryptography conference (organized by the International Financial
Cryptography Association); and the CACR Information Security Workshop.

IEEE Security and Privacy magazine has had two relevant special issues: one in January 2005 on
the economics of information security and another in May 2007 on managing security.
Communications of the ACM often has articles about economics, as do many of the security-related
publications.

Ross Anderson's web page on economics and security, at
http://www.cl.cam.ac.uk/~rja14/econsec.html, is the best place to start reading if you are
interested in this topic. He has pointers to major conferences, papers, books, and web sites.
Alessandro Acquisti's web site is also useful, particularly in pointing to papers about economics and
privacy: http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm.

http://weis2006.econinfosec.org
http://www.cl.cam.ac.uk/~rja14/econsec.html
http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm


9.8. Exercises

1. We have seen how trust is an economic good associated with security. Trust usually
means that one person believes in or relies on the opinion, product, or service of
another person, service, or product. Some researchers study trust relationships and
the way that trust is transferred from one person to another. For example, if Ana
trusts Bob and Bob trusts Chasity, then Ana would like to base her trust in Chasity in
part on the degree to which she trusts Bob. If we represent the trust relationship by
the symbol R, we can represent this problem as If a R b and b R c, then what can we
say about a R c?

Discuss the factors that might be involved in determining what we can say about the
relationship a R c. How are these factors related to economics? For example, can the
price of a product or service be tied to testimonials from people or organizations that
the consumer trusts?

2. Many people think of security as a cost to projects, products, or services: the cost of
analyzing a system for vulnerabilities, the cost of providing products or processes to
detect unwanted activities, the cost of products or processes to prevent or mitigate
unwanted activities, and so on. But security can also be considered a benefit, such as
when adding security to a product attracts more customers or enables a provider to
raise a product's price. Discuss the various ways that security provides economic
benefit, not only to an enterprise but also to a nation.

3. Security and risk are clearly related: The more at risk a system or data set is the
more security is desirable to protect it. Discuss how prices for security products may
be tied to the degree of risk. That is, will people or organizations be willing to pay
more if the risk is higher?

4. Good economic analysis depends on good data. How would you define a
cybersecurity incident that should be counted in a cybersecurity survey? If an attack
occurs repeatedly, should it be counted each time? If it occurs simultaneously to
multiple computers or systems, how should it be counted? What other issues should
be considered in designing a useful cybersecurity survey?

5. Thanks in part to availability of information in digital form, vendors can easily collect
personal or organizational information and use it to offer differential pricing. For
example, a site may offer lower prices based on past buying history or the
expectation of future business. Or a vendor's "buyer's club" or "affinity card" may
offer lower prices in exchange for the right to gather purchase information over time.
Some people balk at such differential pricing as an invasion of privacy. Discuss the
economic costs and benefits of trading privacy for lower prices.



Chapter 10. Privacy in Computing

In this chapter

Privacy as an aspect of security

Authentication effects on privacy

Privacy and the Internet

Privacy implications for emerging technologies

Computers did not invent or even cause privacy issues; we had those long before computers and
probably even before written language. But computers' high-speed processing and data storage and
transmission capabilities made possible data collection and correlation that affect privacy. Because
privacy is part of confidentiality, it is an aspect of computer security.

Privacy is a human right, although people can legitimately disagree over when or to what extent
privacy is deserved; this disagreement may have cultural, historical, or personal roots. Laws and
ethics, which we study in Chapter 11, can set the baseline for and enforce expectations of privacy.
But inherently, the right to privacy depends on the situation and the affected parties. And just as
confidentiality, integrity, and availability can conflict, so too can privacy and other aspects of
security. We won't take a position on when a right to privacy should be enforceable because that is
outside the scope of this book. You might characterize the presentation of this chapter as "assuming
a particular right to privacy exists, what are its implications in computing and information
technology?" We as citizens help decide the contours of privacy rights; we as computer security
experts implement those decisions in computer systems.

Privacy is also a broad topic, affected by computing but not just a security topic. We don't want to
try to survey all possible privacy issues in this chapter, just those inextricably linked to computer
security.

In this chapter we look at the meaning of information privacy. We examine identification and
authentication, two familiar aspects of computing that have significant privacy implications. We
study how privacy relates to the Internet, specifically in e-mail and web access. Finally, we
investigate some emerging computer-based technologies for which privacy is important.



10.1. Privacy Concepts

In this section we examine privacy, first from its general or common usage and then as it applies in
technological situations.

Aspects of Information Privacy

Information privacy has three aspects: sensitive data, affected parties, and controlled disclosure. In
fact, these aspects are similar to the three elements of access control from Chapter 5: subject,
object, and access rights.

We examine these three in turn.

Controlled Disclosure

What is privacy? A good working definition is that privacy is the right to control who knows certain
aspects about you, your communications, and your activities. In other words, you voluntarily choose
who can know things about you and what those things are. People ask you for your telephone
number: your auto mechanic, a clerk in a store, your tax authority, a new business contact, or a
cute person in a bar. You consider why the person wants the number and decide whether to give it
out. But the key point is you decide. So privacy is something over which you have considerable
influence.

You do not have complete control, however. Once you give your number to someone else, your
control is diminished because it depends in part on what someone else does. As soon as you give
out your number, you transfer authority and control to someone else. You may say "don't give my
number to anyone else," "use discretion," or "I am sensitive about my privacy," but you do not
control the other person. You have to trust the other person to comply with your wishes, whether
you state them explicitly or not. This problem is similar to the propagation problem of computer
security: Anyone who has access to an object can copy, transfer, or propagate that object or its
content to others without restriction.

Sensitive Data

Someone asks you for your shoe size; you might answer, "I'm a very private person and cannot
imagine why you would want to know such an intimate detail" or you could say "10C"; some people
find that data more sensitive than others. We know things people usually consider sensitive, such as
financial status, certain health data, unsavory events in their past, and the like, so if you learn
something you consider sensitive about someone, you will keep it quiet. But most of us are not too
sensitive about our shoe size, so we don't normally protect that if we learn it about someone else.
Of course, if a friend told me not to pass that along, I wouldn't. It is not up to me to question why
someone else considers something private.



Here are examples (in no particular order) of data many people consider private.

identity, the ownership of private data and the ability to control its disclosure

finances, credit, bank details

legal matters

medical conditions, drug use, DNA, genetic predisposition to illnesses

voting, opinions, membership in advocacy organizations

preferences: religion, sexuality

biometrics, physical characteristics, polygraph results, fingerprints

diaries, poems, correspondence, recorded thoughts

privileged communications with professionals such as lawyers, accountants, doctors,
counselors, and clergy

performance: school records, employment ratings

activities: reading habits, web browsing, music, art, videos

air travel data, general travel data, a person's location (present and past)

communications: mail, e-mail, telephone calls, spam

history: "youthful indiscretions," past events

illegal activities, criminal records

Privacy is also affected by who you are. When you are in a room of people you don't know, perhaps
at a reception, someone may come up to you and say "So you are the man who baked that beautiful
cake over there; I really appreciate your skills as a pastry chef." It feels kind of nice to get that kind
of recognition. Conversely, a friend was frequently on local television; she far preferred having
dinner at home instead of going to a restaurant because she had grown tired of people rushing up
to her saying "you're [Olga], I see you all the time on TV." Public personalities cherish the aspects
of privacy they retain. World champion athletes cannot avoid having their results made public,
whereas you might not want everyone to know how poorly you finished in the last event. Culture
also influences what people consider sensitive.

In general, a person's privacy expectations depend on context: who is affected and what the
prevailing norm of privacy is.

Affected Subject

This brings us to another point about privacy: Individuals, groups, companies, organizations, and
governments all have data they consider sensitive. So far we have described privacy from the
standpoint of a person. Companies may have data they consider private or sensitive: product plans,



key customers, profit margins, and newly discovered technologies. For organizations such as
companies, privacy usually relates to gaining and maintaining an edge over the competition. Other
organizations, for example, schools, hospitals, or charities, may need to protect personal data on
their students, patients, or donors, or they may want to control negative news, and so forth.
Governments consider military and diplomatic matters sensitive, but they also recognize a
responsibility to keep confidential data they collect from citizens, such as tax information. We may
use terms like subject or owner to cover privacy issues affecting people, groups, and the like.

Privacy is an aspect of confidentiality. As we have learned throughout this book, the three security
goals of confidentiality, integrity, and availability conflict, and confidentiality frequently conflicts with
availability. If you choose not to have your telephone number published in a directory, that also
means some people will not be able to reach you by telephone.

Summary

To summarize, here are some points about privacy:

Privacy is controlled disclosure: The subject chooses what personal data to give out and to
whom.

After disclosing something, a subject relinquishes much control to the receiver.

What data are sensitive is at the discretion of the subject; people consider different things
sensitive. Why a person considers something sensitive is less important than that it is.

Individuals, informal groups, and formal organizations all have things they consider private.

Privacy has a cost; choosing not to give out certain data may limit other benefits.

In the next section we consider some examples of data that some people consider private.

Computer-Related Privacy Problems

You may notice that many of the kinds of sensitive data and many of the points about privacy have
nothing to do with computers. You are exactly right: These sensitivities and issues predate
computers. Computers and networks have only affected the feasibility of some unwanted
disclosures. Public records offices have long been open for people to study the data held there, but
the storage capacity and speed of computers have given us the ability to amass, search, and
correlate. Search engines have given us the ability to find one data item out of billions, the
equivalent of finding one sheet of paper out of a warehouse full of boxes of papers. Furthermore,
the openness of networks and the portability of technology (such as laptops, PDAs, cell phones, and
memory devices) have greatly increased the risk of disclosures affecting privacy.

Rezgui et al. [REZ03] list eight dimensions of privacy (specifically as it relates to the web, although
the definitions carry over naturally to other types of computing).

Information collection: Data are collected only with knowledge and explicit consent.



Information usage: Data are used only for certain specified purposes.

Information retention: Data are retained for only a set period of time.

Information disclosure: Data are disclosed to only an authorized set of people.

Information security: Appropriate mechanisms are used to ensure the protection of the data.

Access control: All modes of access to all forms of collected data are controlled.

Monitoring: Logs are maintained showing all accesses to data.

Policy changes: Less restrictive policies are never applied after-the-fact to already obtained
data.

Here are the privacy issues that have come about through use of computers.

Data Collection

As we have previously said, advances in computer storage make it possible to hold and manipulate
huge numbers of records. Disks on ordinary consumer PCs are measured in gigabytes (109 bytes),
and commercial storage capacities often measure in terabytes (1012 bytes). In 2006, EMC
Corporation announced a storage product whose capacity exceeds one petabyte (1015 bytes). (For
perspective on these numbers, scientists estimate the capacity of the human brain to be between
one terabyte and one petabyte.) Indiana University plans to acquire a supercomputer with one
petabyte of storage, and the San Diego Supercomputer Center has online storage of one petabyte
and offline archives of seven petabytes. Estimates of Google's stored data are also in the petabyte
range. We have both devices to store massive amounts of data and the data to fill those devices.
Whereas physical space limited storing (and locating) massive amounts of printed data, electronic
data take relatively little space.

We never throw away data; we just move it to slower secondary media or buy more storage.

No Informed Consent

Where do all these bytes come from? Although some are from public and commercial sources
(newspapers, web pages, digital audio, and video recordings) and others are from intentional data
transfers (tax returns, a statement to the police after an accident, readers' survey forms, school
papers), still others are collected without announcement. Telephone companies record the date,
time, duration, source, and destination of each telephone call. ISPs track sites visited. Some sites
keep the IP address of each visitor to the site (although an IP address is usually not unique to a
specific individual). The user is not necessarily aware of this third category of data collection and
thus cannot be said to have given informed consent.

Loss of Control

We realize that others may keep data we give them. When you order merchandise online, you know
you have just released your name, probably some address and payment data, and the items you



purchased. Or when you use a customer appreciation card at a store, you know the store can
associate your identity with the things you buy. Having acquired your data, a merchant can
redistribute it to anyone. The fact that you booked one brand of hotel room through a travel agent
could be sold to other hotels. If you frequently telephone someone in one city and have taken
several plane trips to that city, local stores, restaurants, or tourist attractions in that city might want
your name. You have little control over dissemination (or redissemination) of your data.

We do not always appreciate the ramifications of lost control. Suppose in a moment of anger you
dash off a strong note to someone. Although 100 years ago you would have written the note on
paper and 50 years ago you would have voiced the comment by telephone, now you post the
message to a blog. Next suppose you have a change of heart and you want to retract your angry
note. Let us consider how you would deal with these three forms of the communication. For the
written note, you write a letter of apology, your recipient tears up your first note, and no trace
remains. In the second case you telephone to apologize and all that remains is a memory. As for the
blog, you delete your posting. However, several other people might have seen your original posting
and copied it to blogs or other web sites that you do not control. Search engines might have found
the original or copies. And other people might have picked up your words and circulated them in e-
mail. Thus, with letters and phone calls, we can usually obliterate something we want to retract. But
once something is out of your control on the web, it may never be deleted.

This example concerned something you wrote. A similar situation concerns something written about
you. Someone else has posted something on the web that is personal about you and you want it
removed. Even if the poster agrees, you may not be able to remove all its traces.

Finally, some people are finding they reveal more than they should on sites like myspace.com.
Prospective employees are being turned down for jobs because of things they have written. The web
is a great historical archive, but because of archives, caches, and mirror sites, things posted on the
web may never go away.

A second issue of loss of control concerns data exposure. Suppose a company holds data about you
and that company's records are exposed in a computer attack. The company may not be responsible
for preventing harm to you, compensating you if you are harmed, or even informing you of the
event.

Ownership of the Data

In the cases just described, customer details are being marketed. Information about you is being
sold and you have no control; nor do you get to share in the profit.

Even before computers customer data were valuable. Mailing lists and customer lists were company
assets that were safeguarded against access by the competition. Sometimes companies rented their
mailing lists when there was not a conflict with a competitor. But in those cases, the subject of the
data, the name on the list, did not own the right to be on the list or not. With computers the volume
and sources of data have increased significantly, but the subject still has no rights.

These issuesloss of control, no informed consent, no ownership of datahave significant privacy
implications. The way we address these kinds of issues is with policies, written statements of
practice that inform all affected parties of their rights. In the next section we investigate privacy
policies for computing.



10.2. Privacy Principles and Policies

In the United States, interest in privacy and computer databases dates back at least to the early
1970s. (It is worth noting that the U.S. Watergate burglary occurred in 1972. Shortly after, reports
surfaced that Nixon maintained an enemies list and had used IRS records as a means of combating
adversaries. Thus people in the United States were sensitive about privacy at that time. Public
concern for privacy has varied over the years.) In the early 1970s, a committee developed privacy
principles that have affected U.S. laws and regulations and that also set the path for privacy
legislation in other countries. We study the recommendations of that committee in the next section.

Fair Information Policies

In 1973 Willis Ware of the RAND Corporation chaired a committee to advise the Secretary of the
U.S. Department of Human Services on privacy issues. The report (summarized in [WAR73a])
proposes a set of principles of fair information practice.

Collection limitation. Data should be obtained lawfully and fairly.

Data quality. Data should be relevant to their purposes, accurate, complete, and up-to-date.

Purpose specification. The purposes for which data will be used should be identified and the
data destroyed if no longer necessary to serve that purpose.

Use limitation. Use for purposes other than those specified is authorized only with consent of
the data subject or by authority of law.

Security safeguards. Procedures to guard against loss, corruption, destruction, or misuse of
data should be established.

Openness. It should be possible to acquire information about the collection, storage, and use of
personal data systems.

Individual participation. The data subject normally has a right to access and to challenge data
relating to her.

Accountability. A data controller should be designated and accountable for complying with the
measures to give effect to the principles.

These principles describe the rights of individuals, not requirements on collectors; that is, the
principles do not require protection of the data collected.

Ware [WAR73b] raises the problem of linking data in multiple files and of overusing keys, such as
social security numbers, that were never intended to be used to link records. And although he saw
that society was moving toward a universal identity number, he feared that movement would be
without plan (and hence without control). He was right, even though he could not have foreseen the



amount of data exchanged 30 years later.

Turn and Ware [TUR75] consider protecting the data themselves, recognizing that collections of
data will be attractive targets for unauthorized access attacks. They suggest four ways to protect
stored data:

Reduce exposure by limiting the amount of data maintained, asking for only what is necessary
and using random samples instead of complete surveys.

Reduce data sensitivity by interchanging data items or adding subtle errors to the data (and
warning recipients that the data have been altered).

Anonymize the data by removing or modifying identifying data items.

Encrypt the data.

You will see these four approaches mentioned again because they are the standard techniques
available for protecting the privacy of data.

U.S. Privacy Laws

Ware and his committee expected these principles to apply to all collections of personal data on
individuals. Unfortunately, that is not the way the legislation developed.

The Ware committee report led to the 1974 Privacy Act (5 USC 552a), which embodies most of
these principles, although that law applies only to data maintained by the U.S. government. The
Privacy Act is a broad law, covering all data collected by the government. It is the strongest U.S.
privacy law because of its breadth: It applies to all personal data held anywhere in the government.

The United States subsequently passed laws protecting data collected and held by other
organizations, but these laws apply piecemeal, by individual data type. Consumer credit is
addressed in the Fair Credit Reporting Act, healthcare information in the Health Insurance Portability
and Accountability Act (HIPAA), financial service organizations in the GrammLeachBliley Act (GLBA),
children's web access in the Children's Online Privacy Protection Act (COPPA), and student records in
the Federal Educational Rights and Privacy Act. Not surprisingly these separate laws are inconsistent
in protecting privacy.

Laws and regulations do help in some aspects of privacy protection. Antón et al. investigated the
impact of the HIPAA law by analyzing companies' posted privacy policies before and after the
privacy provisions of the law became effective [ANT06]. They found the following in policies posted
after HIPAA:

Statements on data transfer (to other organizations) were more explicit than before HIPAA.

Consumers still had little control over the disclosure or dissemination of their data.

Statements were longer and more complex, making them harder for consumers to understand.

Even within the same industry branch (such as drug companies), statements varied
substantially, making it hard for consumers to compare policies.



Statements were unique to specific web pages, meaning they covered more precisely the
content and function of a particular page.

A problem with many laws is that the target areas of the laws still overlap: Which law (if any) would
require privacy protection of a university student's health center bills paid by credit card? The laws
have different protection and handling requirements, so it is important to determine which law
applies to a single piece of data. Also, gaps between laws are not covered. As new technologies
(such as computers, the Internet, or cell phones) are developed, either existing privacy laws have to
be reinterpreted by the courts to apply to the new technologies or new laws have to be passed,
which takes time.

Sometimes the privacy provisions of a law are a second purpose, somewhat disguised by the first
purpose of the law. As an example, the primary purpose of HIPAA was to ensure that people who
left or were terminated from one job had health insurance to cover them until they got another job;
the privacy aspects were far less prominent as the law was being developed.

Controls on U.S. Government Web Sites

Because privacy is ambiguous, privacy policies are an important way to both define the concept in a
particular setting and specify what should or will be done about it.

The Federal Trade Commission (FTC) has jurisdiction over web sites, including those of the federal
government, that solicit potentially private data. In 2000 [FTC00], the FTC set requirements for
privacy policy for government web sites. Because government web sites are covered by the Privacy
Act, it was easy for the FTC to require privacy protection. The FTC determined that in order to obey
the Privacy Act, government web sites would have to address five privacy factors.

Notice. Data collectors must disclose their information practices before collecting personal
information from consumers.

Choice. Consumers must be given a choice as to whether and how personal information
collected from them may be used.

Access. Consumers should be able to view and contest the accuracy and completeness of data
collected about them.

Security. Data collectors must take reasonable steps to ensure that information collected from
consumers is accurate and secure from unauthorized use.

Enforcement. A reliable mechanism must be in place to impose sanctions for noncompliance
with these fair information practices.

In 2002, the U.S. Congress enacted the e-Government Act of 2002 requiring that federal
government agencies post privacy policies on their web sites. Those policies must disclose

the information that is to be collected

the reason the information is being collected

the intended use by the agency of the information



the entities with whom the information will be shared

the notice or opportunities for consent that would be provided to individuals regarding what
information is collected and how that information is shared

the way in which the information will be secured

the rights of the individual under the Privacy Act and other laws relevant to the protection of
the privacy of an individual

These two acts apply only to web sites; data collected by other means (for example, by filing forms)
are handled differently, usually on a case-by-case or agency-by-agency basis. The requirements
reflected in the e-Government Act focus on the type of data (data supplied to the government
through a web site) and not on the general notion of privacy.

Controls on Commercial Web Sites

The e-Government Act places strong controls on government data collection through web sites. As
we described, privacy outside the government is protected by law in some areas, such as credit,
banking, education, and healthcare. But there is no counterpart to the e-Government Act for private
companies.

No Deceptive Practices

The Federal Trade Commission has the authority to prosecute companies that engage in deceptive
trade or unfair business practices. If a company advertises in a false or misleading way, the FTC can
sue. The FTC has used that approach on web privacy: If a company advertises a false privacy
protectionthat is, if the company says it will protect privacy in some way but does not do sothe FTC
considers that false advertising and can take legal action. Because of the FTC, privacy notices at the
bottom of web sites do have meaning.

This practice leads to a bizarre situation, however. A company is allowed to collect personal
information and pass it in any form to anyone, as long as the company's privacy policy said it would
do so, or at least the policy did not say it would not do so. Vowing to maintain privacy and
intentionally not doing so is an illegal deceptive practice. Stating an intention to share data with
marketing firms or "other third parties" makes such sharing acceptable, even though the third
parties could be anyone.

Examples of Deceptive Practices

The FTC settled a prosecution in 2005 against CartManager International, a firm that runs familiar
web shopping cart software to collect items of an order, obtain the purchaser's name and address,
and determine shipping and payment details. This software runs as an application under other well-
known retail merchants' web sites to handle order processing. Some of these other retailers had
privacy statements on their web sites saying, in effect, that they would not sell or distribute
customers' data, but CartManager did sell the data it collected. The FTC held that the relationship to
CartManager was invisible to users, and so the policy from the online merchants applied also to



CartManager.

In another case, Antón [ANT04] analyzed the privacy policy posted on the web site of Jet Blue
airlines and found it misleading. Jet Blue stated that it would not disclose passenger data to third
parties. It then released passenger data, "in response to a special request from the Department of
Defense" to Torch Concepts, which in turn passed it to the Defense Department to use to test
passenger screening algorithms for airline security. The data in question involved credit card
information: Clearly the only reason for Jet Blue to have collected those data from passengers was
to process charges for airline tickets.

The analysis by Antón is interesting for two reasons: First, Jet Blue violated its own policy. Second,
the Department of Defense may have circumvented the e-Government Act by acquiring from a
private company data it would not have been able to collect as a government entity. The purpose
for which the data were originally collected was ordinary business and accounting activities of Jet
Blue. Using those same records to screen for terrorists was outside the scope of the original data
collection.

Commercial sites have no standard of content comparable to the FTC recommendation from the e-
Government Act. Some companies display solid and detailed privacy statements that they must
obey. On the other hand, you may find no statement at all, which gives the company the greatest
flexibility because it is impossible to lie when saying nothing. Cranor [CRA03] makes some
recommendations for useful web privacy policies.

Non-U.S. Privacy Principles

In 1981, the Council of Europe (an international body of 46 European countries, founded in 1949)
adopted Convention 108 for the protection of individuals with regard to the automatic processing of
personal data, and in 1995, the European Union (E.U.) adopted Directive 95/46/EC on the
processing of personal data. Directive 95/46/EC, often called the European Privacy Directive,
requires that rights of privacy of individuals be maintained and that data about them be

processed fairly and lawfully

collected for specified, explicit and legitimate purposes and not further processed in a way
incompatible with those purposes (unless appropriate safeguards protect privacy)

adequate, relevant, and not excessive in relation to the purposes for which they are collected
and/or further processed

accurate and, where necessary, kept up to date; every reasonable step must be taken to
ensure that inaccurate or incomplete data having regard for the purposes for which they were
collected or for which they are further processed, are erased or rectified

kept in a form that permits identification of data subjects for no longer than is necessary for
the purposes for which the data were collected or for which they are further processed

In addition, individuals have the right to access data collected about them, to correct inaccurate or
incomplete data, and to have those corrections sent to those who have received the data. The
report adds three more principles to the Fair Information Policies.



Special protection for sensitive data. There should be greater restrictions on data collection
and processing that involves "sensitive data." Under the E.U. data protection directive,
information is sensitive if it involves "racial or ethnic origin, political opinions, religious beliefs,
philosophical or ethical persuasion . . . [or] health or sexual life."

Data transfer. This principle explicitly restricts authorized users of personal information from
transferring that information to third parties without the permission of the data subject.

Independent oversight. Entities that process personal data should not only be accountable but
should also be subject to independent oversight. In the case of the government, this requires
oversight by an office or department that is separate and independent from the unit engaged
in the data processing. Under the data protection directive, the independent overseer must
have the authority to audit data processing systems, investigate complaints brought by
individuals, and enforce sanctions for noncompliance.

(This is a very brief summary of the much longer law. See the original Directive for more detail.)
These requirements apply to governments, businesses, and other organizations that collect personal
data. Since the 1995 directive, the European Union has extended coverage to telecommunications
systems and made other changes to adapt to advances in technology.

In addition to European countries and the United States, other countries, such as Japan, Australia,
and Canada, have passed laws protecting the privacy of personal data about individuals.

Different laws in different jurisdictions will inevitably clash. Relations between the European Union
and the United States have been strained over privacy because the E.U. law forbids sharing data
with companies or governments in countries whose privacy laws are not as strong as those of the
E.U. (The United States and the European Union have agreed to a set of "safe harbor" principles
that let U.S. companies trade with European countries in spite of not meeting all European privacy
laws.) In Sidebar 10-1 you can see how these different laws can affect commerce and, ultimately,
diplomatic relations.

Anonymity, Multiple Identities

One way to preserve privacy is to guard our identity. Not every context requires us to reveal our
identity, so some people wear a form of electronic mask.

Anonymity

A person may want to do some things anonymously. For example, a rock star buying a beach house
might want to avoid unwanted attention from neighbors, or someone posting to a dating list might
want to view replies before making a date.

Mulligan [MUL99] lists several reasons people prefer anonymous activity on the web. Some people
like the anonymity of the web because it reduces fears of discrimination. Fairness in housing,
employment, and association are easier to ensure when the basis for potential discrimination is
hidden. Also, people researching what they consider a private matter, such as a health issue or
sexual orientation, are more likely to seek first information from what they consider an anonymous
source, turning to a human when they have found out more about their situation.

Anonymity creates problems, too. How does an anonymous person pay for something? A trusted



third party (for example, a real estate agent or a lawyer) can complete the sale and preserve
anonymity. But then you need a third party and the third party knows who you are. Chaum [CHA81,
CHA82, CHA85] studied this problem and devised a set of protocols by which such payments could
occur without revealing the buyer to the seller.

Multiple IdentitiesLinked or Not

Most people already have multiple identities. To your bank you might be the holder of account
123456, to your motor vehicles bureau you might be the holder of driver's license number 234567,
and to your credit card company you might be the holder of card 345678. For their purposes, these
numbers are your identity; the fact that each may (or may not) be held in your name is irrelevant.
The name does become important if it is used as a way to link these records. How many people
share your name? Can (or should) it serve as a key value to link these separate databases? We
ignore the complication of misspellings and multiple valid forms (with and without middle initials,
with full middle name, with one of two middle names if you have them, and so forth).

Sidebar 10-1: A Clash of Privacy Principles

Privacy is serious business. Commerce, travel, or communication can stop when data
are to be shared among organizations or countries with different privacy principles. For
example, in trying to secure its borders after the 11 September 2001 attacks, the
United States created a program to screen airline passengers for possible terrorist links.
The program uses information in the Passenger Name Record (PNR): the data collected
by airlines when you book a flight from one place to another. The PNR includes 34
categories of information: not only your name and flight details but also your telephone
number, credit card information, meal preferences, address, and more. Because
Europeans constitute the largest group of visitors to the United States (almost 10
million in 2004), the Americans asked European airlines to supply PNR data within 15
minutes of a plane's departure for the United States.

Recall that the European Privacy Directive prohibits the use of data for purposes other
than those for which they were collected. The U.S. request clearly violated the directive.
After considerable negotiation, the European Commission and the European Council
reached an agreement in May 2004 to allow airlines to give the data to the United
States.

However, the European Parliament objected, and on 30 May 2006, the European Court
of Justice, the highest court in the European Union, ruled that the European Commission
and European Council lacked authority to make such a deal with the United States.
Privacy principles were not the primary basis for the ruling, but they had a big impact
nevertheless: "Specifically, the court said passenger records were collected by airlines
for their own commercial use, so the European Union could not legally agree to provide
them to the American authorities, even for the purposes of public security or law
enforcement" [CLA06]. A spokesperson for the U.S. Department of Homeland Security
countered that privacy is not the issue, since the data could be solicited from each
passenger who arrives in the United States.



If the United States does not get the requested data, it could in theory deny landing
rights to the nonparticipating airlines. Nearly half of all foreign air travel to the United
States is trans- Atlantic, so the disruption could cost millions to all the economies
involved. It remains to be seen how this clash of privacy principles will be resolved.

Suppose you changed your name legally but never changed the name on your credit card; then your
name could not be used as a key on which to link. Another possible link field is address. However,
trying to use an address on which to link presents another risk: Perhaps a criminal lived in your
house before you bought it. You should not have to defend your reputation because of a previous
occupant. Now we need to match on date, too, so we connect only people who actually lived in a
house at the same time. Then we need to address the problem of group houses or roommates of
convenience, and so forth. As computer scientists, we know we can program all these possibilities,
but that requires careful and time-consuming consideration of the potential problems before
designing the solution. We can also see the potential for misuse and inaccuracy.

Linking identities correctly to create dossiers and break anonymity creates privacy risks, but linking
them incorrectly creates much more serious risks for the use of the data and the privacy of affected
people. If we think carefully we can determine many of the ways such a system would fail, but that
approach is potentially expensive and time consuming. The temptation to act quickly but
inaccurately will also affect privacy.

Pseudonymity

Sometimes, full anonymity is not wanted. A person may want to order flower bulbs but not be
placed on a dozen mailing lists for gardening supplies. But the person does want to be able to place
similar orders again, asking for the same color tulips as before. This situation calls for pseudonyms,
unique identifiers that can be used to link records in a server's database but that cannot be used to
trace back to a real identity.

Multiple identities can also be convenient, for example, having a professional e-mail account and a
social one. Similarly, disposable identities (that you use for a while and then stop using) can be
convenient. When you sign up for something and you know your e-mail address will be sold many
times, you might get a new e-mail address to use until the spam and other unsolicited e-mail are
oppressive, and then you discard the address. These uses are called pseudonymity. Seigneur and
Jensen [SEI03] discuss the use of e-mail aliases to maintain privacy. These ways protect our privacy
because we do not have to divulge what we consider sensitive data. But they also show we need a
form of privacy protection that is unavailable.

The Swiss bank account was a classic example of a pseudonym. Each customer had only a number
to access the account. Presumably anyone with that number could perform any transaction on the
account. (Obviously there were additional protections against guessing.) While such accounts were
in use (their use was discontinued in the early 1990s because of their having been used to hold ill-
gotten Nazi gains from World War II), Swiss banks had an outstanding reputation for maintaining
the anonymity of the depositors.

Some people register pseudonyms with e-mail providers so that they have anonymous drop boxes
for e-mail. Others use pseudonyms in chat rooms or with online dating services. We consider
pseudonyms later in this chapter when we study privacy for e-mail.



Government and Privacy

The government gathers and stores data on citizens, residents, and visitors. Government facilitates
and regulates commerce and other kinds of personal activities such as healthcare, employment,
education, and banking. In those roles the government is both an enabler or regulator of privacy
and a user of private data. Government use of private data should be controlled. In this section we
consider some of the implications of government access to private data.

Authentication

Government plays a complex role in personal authentication. Many government agencies (such as
the motor vehicles bureau) use identifiers to perform their work. Authentication documents (such as
passports and insurance cards) often come from the government. The government may also
regulate the businesses that use identification and authentication keys. And sometimes the
government obtains data based on those keys from others (for example, the U.S. government
planned to buy credit reports from private companies to help with screening airline passenger lists
for terrorists). In these multiple roles, the government may misuse data and violate privacy rights.

Data Access Risks

Recognizing that there were risks in government access to personal data, the Secretary of Defense
appointed a committee to investigate private data collection. The Technology and Privacy Advisory
Committee, chaired by Newton Minow, former chair of the Federal Communications Commission,
produced its report in 2004 [TAP04]. Although their charge had been to review privacy and data
collection within the Department of Defense, they found it impossible to separate the DoD from the
rest of government, so they made recommendations for both the Department of Defense and the
federal government as a whole.

They recognized risks when the government started to acquire data from other parties:

data errors: ranging from transcription errors to incorrect analysis

inaccurate linking: two or more correct data items but incorrectly linked on a presumed
common element

difference of form and content: precision, accuracy, format, and semantic errors

purposely wrong: collected from a source that intentionally gives incorrect data, such as a
forged identity card or a false address given to mislead

false positive: an incorrect or out-of-date conclusion that the government does not have data
to verify or reject, for example, delinquency in paying state taxes

mission creep: data acquired for one purpose leading to a broader use because the data will
support that mission

poorly protected: data of questionable integrity because of the way it has been managed and
handled



These risks apply to all branches of government, and most of them apply to private collection and
use of data.

Steps to Protect Against Privacy Loss

The committee recommended several steps the government can take to help safeguard private
data.

Data minimization. Obtain the least data necessary for the task. For example, if the goal is to
study the spread of a disease, only the condition, date, and vague location (city or county)
may suffice; the name or contact information of the patient may be unnecessary.

Data anonymization. Where possible, replace identifying information with untraceable codes
(such as a record number); but make sure those codes cannot be linked to another database
that reveals sensitive data.

Audit trail. Record who has accessed data and when, both to help identify responsible parties
in the event of a breach and to document the extent of damage.

Security and controlled access. Adequately protect and control access to sensitive data.

Training. Ensure people accessing data understand what to protect and how to do so.

Quality. Take into account the purpose for which data were collected, how they were stored,
their age, and similar factors to determine the usefulness of the data.

Restricted usage. Different from controlling access, review all proposed uses of the data to
determine if those uses are consistent with the purpose for which the data were collected and
the manner in which they were handled (validated, stored, controlled).

Data left in place. If possible, leave data in place with the original owner. This step helps guard
against possible misuses of the data from expanded mission just because the data are
available.

Policy. Establish a clear policy for data privacy. Do not encourage violation of privacy policies.

These steps would help significantly to ensure protection of privacy.

Identity Theft

As the name implies, identity theft is taking another person's identity. Use of another person's credit
card is fraud; taking out a new credit card in that person's name is identity theft. Identity theft has
risen as a problem from a relatively rare issue in the 1970s. In 2005, the U.S. Federal Trade
Commission received over 250,000 complaints of identity theft [FTC06]. Most cases of identity theft
become apparent in a month or two when fraudulent bills start coming in. By that time the thief has
made a profit and has dropped this identity, moving on to a new victim.



Having relatively few unique keys facilitates identity theft: A thief who gets one key can use that to
get a second, and those two to get a third. Each key gives access to more data and resources. Few
companies or agencies are set up to ask truly discriminating authentication questions (such as the
grocery store at which you frequently shop or the city to which you recently bought an airplane
ticket or third digit on line four of your last tax return). Because there are few authentication keys,
we are often asked to give the same key (such as mother's maiden name) out to many people,
some of whom might be part-time accomplices in identity theft.



10.3. Authentication and Privacy

In Chapter 4 we studied authentication, which we described as a means of proving or verifying a
previously given identity. We also discussed various authentication technologies, which are subject
to false accept (false positive) and false reject (false negative) limitations. A social problem occurs
when we confuse authentication with identification.

We know that passwords are a poor discriminator. You would not expect all users of a system to
have chosen different passwords. All we need is for the IDpassword pair to be unique. On the other
end of the spectrum, fingerprints and the blood vessel pattern in the retina of the eye are unique:
given a fingerprint or retina pattern we expect to get but one identity that corresponds or to find no
match in the database. That assumes we work with a good image. If the fingerprint is blurred or
incomplete (not a complete contact or on a partly unsuitable surface), we might get several possible
matches. If the possible matches are A, B, and C and the question is whether the print belongs to B,
it is probably acceptable to allow the access on the grounds that the identity was among a small set
of probable matches. Other authenticators are less sophisticated still. Hand geometry or the
appearance of a face does not discriminate so well. Face recognition, in particular, is highly
dependent on the quality of the facial image: Evaluating a photograph of one person staring directly
into a camera is very different from trying to work with one face in the picture of a crowd.

Two different purposes are at work here, although the two are sometimes confused. For
authentication we have an identity and some authentication data, and we ask if the authentication
data match the pattern for the given identity. For identification, we have only the authentication
data and we ask which identity corresponds to the authenticator. The second is a much harder
question to answer than the first. For the first, we can say the pattern matches some percentage of
the characteristics of our stored template, and based on the percentage, we declare a match or no
match. For the second question, we do not know if the subject is even in the database. So even if
we find several potential matches at various percentages, we do not know if there might be an even
better match with a template not in our database.

What Authentication Means

We use the term authentication to mean three different things [KEN03]: We authenticate an
individual, identity, or attribute. An individual is a unique person. Authenticating an individual is
what we do when we allow a person to enter a controlled room: We want only that human being to
be allowed to enter. An identity is a character string or similar descriptor, but it does not
necessarily correspond to a single person, nor does each person have only one name. We
authenticate an identity when we acknowledge that whoever (or whatever) is trying to log in as
admin has presented an authenticator valid for that account. Similarly, authenticating an identity in
a chat room as SuzyQ does not say anything about the person using that identifier: It might be a
16-year-old girl or a pair of middle-aged male police detectives, who at other times use the identity
FrereJacques.

Finally, we authenticate an attribute if we verify that a person has that attribute. An attribute is a
characteristic. Here's an example of authenticating an attribute. Some places require one to be 21



or older in order to drink alcohol. A club's doorkeeper verifies a person's age and stamps the
person's hand to show that the patron is over 21. Note that to decide, the doorkeeper may have
looked at an identity card listing the person's birth date, so the doorkeeper knew the person's exact
age to be 24 years, 6 months, 3 days, or the doorkeeper might be authorized to look at someone's
face and decide if the person looks so far beyond 21 that there is no need to verify. The stamp
authenticator signifies only that the person possesses the attribute of being 21 or over.

In computing applications we frequently authenticate individuals, identities, and attributes. Privacy
issues arise when we confuse these different authentications and what they mean. For example, the
U.S. social security number was never intended to be an identifier, but now it often serves as an
identifier, an authenticator, a database key, or all of these. When one data value serves two or
more uses, a person acquiring it for one purpose can use it for another.

Relating an identity to a person is tricky. In Chapter 7 we tell the story of rootkits, malicious
software by which an unauthorized person can acquire supervisory control of a computer. Suppose
the police arrest Ionut for chewing gum in public and seize his computer. By examining the
computer the police find evidence connecting that computer to an espionage case. The police show
incriminating e-mail messages from Ionut on Ionut's computer and charge him. In his defense,
Ionut points to a rootkit on his computer. He acknowledges that his computer may have been used
in the espionage, but he denies that he was personally involved. The police have, he says, drawn an
unjustifiable connection between Ionut's identity in the e-mail and Ionut the person. The rootkit is a
plausible explanation for how some other person acted under the identity of Ionut. This example
shows why we must carefully distinguish individual, identity, and attribute authentication.

We examine the privacy implications of authentication in the next section.

Individual Authentication

There are relatively few ways of identifying an individual. When we are born, for most of us our birth
is registered at a government records office, and we (probably our parents) receive a birth
certificate. A few years later our parents enroll us in school, and they have to present the birth
certificate, which then may lead to receiving a school identity card. We submit the birth certificate
and a photo to get a passport or a national identity card. We receive many other authentication
numbers and cards throughout life.

The whole process starts with a birth certificate issued to (the parents of) a baby, whose physical
description (height, weight, even hair color) will change significantly in just months. Birth
certificates may contain the baby's fingerprints, but matching a poorly taken fingerprint of a
newborn baby to that of an adult is challenging at best. (For additional identity authentication
problems, see Sidebar 10-2.)

Fortunately, in most settings it is acceptable to settle for weak authentication for individuals: A
friend who has known you since childhood, a schoolteacher, neighbors, and coworkers can support a
claim of identity.



Sidebar 10-2: Will the Real Earl of Buckingham Please Step

Forward?

In a recent case [PAN06], a man claiming to be the Earl of Buckingham was identified
as Charlie Stopford who had disappeared from his family in Florida in 1983 and
assumed the identity of Christopher Buckingham, an 8-month-old baby who died in
1963. Stopford was questioned in England in 2005 after a check of passport details
revealed the connection to the Buckingham baby and then arrested when he didn't
know other correlating family details. (His occupation at the time of his arrest?
Computer security consultant.) So the British authorities knew he was not Christopher
Buckingham, but who was he? The case was solved only because his family in the
United States thought they recognized him from photos and a news story as a husband
and father who had disappeared more than 20 years earlier. Because he had been in
the U.S. Navy (in military intelligence, no less) and his adult fingerprints were on file,
authorities were able to make a positive identification.

As for the title he appropriated for himself, there has been no Earl of Buckingham since
1687.

Consider the case of certain people who, for various reasons need to change their
identity. When the government does this, for example when a witness goes into hiding,
the government creates a full false identity, including school records, addresses,
employment records, and so forth. How can we authenticate the identity of war
refugees whose home country may no longer exist, let alone a civil government and a
records office. How does an adult confirm an identity after fleeing a hostile territory
without waiting at the passport office for two weeks for a document?

Identity Authentication

We all use many different identities. When you buy something with a credit card, you do so under
the identity of the credit card holder. In some places you can pay road tolls with a radio frequency
device in your car, so the sensor authenticates you as the holder of a particular toll device. You may
have a meal plan that you can access by means of a card, so the cashier authenticates you as the
owner of that card. You check into a hotel and get a magnetic stripe card instead of a key, and the
door to your room authenticates you as a valid resident for the next three nights. If you think about
your day, you will probably find 10 to 20 different ways some identity of you has been
authenticated.

From a privacy standpoint, there may or may not be ways to connect all these different identities. A
credit card links to the name and address of the card payer, who may be you, your spouse, or
anyone else willing to pay your expenses. Your auto toll device links to the name and perhaps
address of whoever is paying the tolls: you, the car's owner, or an employer. When you make a
telephone call, there is an authentication to the account holder of the telephone, and so forth.

Sometimes we do not want an action associated with an identity. For example, an anonymous tip or
"whistle-blower's" telephone line is a means of providing anonymous tips of illegal or inappropriate



activity. If you know your boss is cheating the company, confronting your boss might not be a good
career-enhancing move. You probably don't even want there to be a record that would allow your
boss to determine who reported the fraud. So you report it anonymously. You might take the
precaution of calling from a public phone so there would be no way to trace the person who called.
In that case, you are purposely taking steps so that no common identifier could link you to the
report.

Because of the accumulation of data, however, linking may be possible. As you leave your office to
go to a public phone, there is a record of the badge you swiped at the door. A surveillance camera
shows you standing at the public phone. The record of the coffee shop has a timestamp showing
when you bought your coffee (using your customer loyalty card) before returning to your office. The
time of these details matches the time of the anonymous tip by telephone. In the abstract these
data items do not stand out from millions of others. But someone probing a few minutes around the
time of the tip can construct those links. In this example, linking would be done by hand. Ever-
improving technology permits more parallels like these to be drawn by computers from seemingly
unrelated and uninteresting datapoints.

Therefore, to preserve our privacy we may thwart attempts to link records. A friend gives a fictitious
name when signing up for customer loyalty cards at stores. Another friend makes dinner
reservations under a pseudonym. In one store they always ask for my telephone number when I
buy something, even if I pay cash. Records clerks do not make the rules, so it is futile asking them
why they need my number. If all they want is a number, I gladly give them one; it just doesn't
happen to correspond to me.

Anonymized Records

Part of privacy is linkages: Some person is named Erin, some person has the medical condition
diabetes; neither of those facts is sensitive. The linkage that Erin has diabetes becomes sensitive.

Medical researchers want to study populations to determine incidence of diseases, common factors,
trends, and patterns. To preserve privacy, researchers often deal with anonymized records, records
from which identifying information has been removed. If those records can be reconnected to the
identifying information, privacy suffers. If, for example, names have been removed from records but
telephone numbers remain, a researcher can use a different database of telephone numbers to
determine the patient, or at least the name assigned to the telephone. Removing enough
information to prevent identification is difficult and can also limit the research possibilities.

As described in Chapter 6, Ross Anderson was asked to study a major database being prepared for
citizens of Iceland. The database would have brought together several healthcare databases for the
benefit of researchers and healthcare professionals. Anderson's analysis was that even though the
records had been anonymized, it was still possible to relate specific records to individual people
[AND98a, JON00]. Even though there were significant privacy difficulties, Iceland went ahead with
plans to build the combined database.

In one of the most stunning analyses on deriving identities, Sweeney [SWE01] reports that 87
percent of the population of the United States is likely to be identified by the combination of 5-digit
zip code, gender, and date of birth. That statistic is amazing when you consider that close to 10,000
U.S. residents must share any birthday or that the average population in any 5-digit zip code area is
30,000. Sweeney backs up her statistical analysis with a real-life study. In 1997 she analyzed the
voter rolls of Cambridge, Massachusetts, a city of about 50,000 people, one of whom was the then
current governor. She took him as an example and found that only six people had his birth date,



only three of those were men, and he was the only one of those three living in his 5-digit zip code.
As a public figure, he had published his date of birth in his campaign literature, but birth dates are
sometimes available from public records. Similar work on deriving identities from anonymized
records [SWE04, MAL02] showed how likely one is to deduce an identity from other easily obtained
data.

Sweeney's work demonstrates compellingly how difficult it is to anonymize data effectively. Many
medical records are coded with at least gender and date of birth, and those records are often
thought to be releasable for anonymous research purposes. Furthermore, medical researchers may
want a zip code to relate medical conditions to geography and demography. Few people would think
that adding zip codes would lead to such high rates of breach of privacy.

Conclusions

As we have just seen, identification and authentication are two different activities that are easy to
confuse. Part of the confusion arises because people do not clearly distinguish the underlying
concepts. The confusion is also the result of using one data item for more than one purpose.

Authentication depends on something that confirms a property. In life few sound authenticators
exist, so we tend to overuse those we do have: an identification number, birth date, or family name.
But, as we described, those authenticators are also used as database keys, with negative
consequences to privacy.

We have also studied cases in which we do not want to be identified. Anonymity and pseudonymity
are useful in certain contexts. But data collection and correlation, on a scale made possible only with
computers, can defeat anonymity and pseudonymity.

As we computer professionals introduce new computer capabilities, we need to encourage a public
debate on the related privacy issues.

In the next section we study data mining, a data retrieval process involving the linking of databases.



10.4. Data Mining

In Chapter 6 we described the process and some of the security and privacy issues of data mining.
Here we consider how to maintain privacy in the context of data mining.

Private sector data mining is a lucrative and rapidly growing industry. The more data collected, the
more opportunities for learning from various aggregations. Determining trends, market preferences,
and characteristics may be good because they lead to an efficient and effective market. But people
become sensitive if the private information becomes known without permission.

Government Data Mining

Especially troubling to some people is the prospect of government data mining. We believe we can
stop excesses and intrusive behavior of private companies by the courts, unwanted publicity, or
other forms of pressure. It is much more difficult to stop the government. In many examples
governments or rulers have taken retribution against citizens deemed to be enemies, and some of
those examples come from presumably responsible democracies. Much government data collection
and analysis occurs without publicity; some programs are just not announced and others are
intentionally kept secret. Thus, citizens have a fear of what unchecked government can do. Citizens'
fears are increased because data mining is not perfect or exact, and as many people know,
correcting erroneous data held by the government is next to impossible.

Privacy-Preserving Data Mining

Because data mining does threaten privacy, researchers have looked into ways to protect privacy
during data mining operations. A naïve and ineffective approach is trying to remove all identifying
information from databases being mined. Sometimes, however, the identifying information is
precisely the goal of data mining. More importantly, as the preceding example from Sweeney
showed, identification may be possible even when the overt identifying information is removed from
a database.

Data mining has two approachescorrelation and aggregation. We examine techniques to preserve
privacy with each of those approaches.

Privacy for Correlation

Correlation involves joining databases on common fields. As in a previous example, the facts that
someone is named Erin and someone has diabetes have privacy significance only if the link between
Erin and diabetes exists. Privacy preservation for correlation attempts to control that linkage.

Vaidya and Clifton [VAI04] discuss data perturbation as a way to prevent privacy-endangering
correlation. As a simplistic example, assume two databases contain only three records, as shown in



Table 10-1. The ID field linking these databases makes it easy to see that Erin has diabetes.

Table 10-1. Example for Data Perturbation.

Name ID

Erin 1

Aarti 2

Geoff 3

ID Condition

1 diabetes

2 none

3 measles

One form of data perturbation involves swapping data fields to prevent linking of records. Swapping
the values Erin and Geoff (but not the ID values) breaks the linkage of Erin to diabetes. Other
properties of the databases are preserved: Three patients have actual names and three conditions
accurately describe the patients. Swapping all data values can prevent useful analysis, but limited
swapping balances privacy and accuracy. With our example of swapping just Erin and Geoff, you still
know that one of the participants has diabetes, but you cannot know if Geoff (who now has ID=1)
has been swapped or not. Because you cannot know if a value has been swapped, you cannot
assume any such correlation you derive is true.

Our example of three data points is, of course, too small for a realistic data mining application, but
we constructed it just to show how value swapping would be done. Consider a more realistic
example on larger databases. Instead of names we might have addresses, and the purpose of the
data mining would be to determine if there is a correlation between a neighborhood and an illness,
such as measles. Swapping all addresses would defeat the ability to draw any correct conclusions
regarding neighborhood. Swapping a small but significant number of addresses would introduce
uncertainty to preserve privacy. Some measles patients might be swapped out of the high-incidence
neighborhoods, but other measles patients would also be swapped in. If the neighborhood has a
higher incidence than the general population, random swapping would cause more losses than
gains, thereby reducing the strength of the correlation. After value swapping an already weak
correlation might become so weak as to be statistically insignificant. But a previously strong
correlation would still be significant, just not as strong.

Thus value-swapping is a technique that can help to achieve some degrees of privacy and accuracy
under data mining.

Privacy for Aggregation

Aggregation need not directly threaten privacy. As demonstrated in Chapter 6, an aggregate (such
as sum, median, or count) often depends on so many data items that the sensitivity of any single
contributing item is hidden. Government statistics show this well: Census data, labor statistics, and



school results show trends and patterns for groups (such as a neighborhood or school district) but
do not violate the privacy of any single person.

As we explained in Chapter 6, inference and aggregation attacks work better nearer the ends of the
distribution. If there are very few or very many points in a database subset, a small number of
equations may disclose private data. The mean of one data value is that value exactly. With three
data values, the means of each pair yield three equations in three unknowns, which you know can
be solved easily with linear algebra. A similar approach works for very large subsets, such as (n-3)
values. Mid-sized subsets preserve privacy quite well. So privacy is maintained with the rule of n
items, over k percent, as described in Chapter 6.

Data perturbation works for aggregation, as well. With perturbation you add a small positive or
negative error term to each data value. Agrawal and Srikant [AGR00] show that given the
distribution of data after perturbation and given the distribution of added errors, it is possible to
determine the distribution (not the values) of the underlying data. The underlying distribution is
often what researchers want. This result demonstrates that data perturbation can help protect
privacy without sacrificing the accuracy of results.

Vaidya and Clifton [VAI04) also describe a method by which databases can be partitioned to
preserve privacy. Our trivial example in Table 10-1 could be an example of a database that was
partitioned vertically to separate the sensitive association of name and condition.

Summary of Data Mining and Privacy

As we have described in this section, data mining and privacy are not mutually exclusive: We can
derive results from data mining without sacrificing privacy. True, some accuracy is lost with
perturbation. A counterargument is that the weakening of confidence in conclusions most seriously
affects weak results; strong conclusions become only marginally less strong. Additional research will
likely produce additional techniques for preserving privacy during data mining operations.

We can derive results without sacrificing privacy, but privacy will not exist automatically. The
techniques described here must be applied by people who understand and respect privacy
implications. Left unchecked, data mining has the potential to undermine privacy. Security
professionals need to continue to press for privacy in data mining applications.



10.5. Privacy on the Web

The Internet is perhaps the greatest threat to privacy. As Chapter 7 says, an advantage of the
Internet, which is also a disadvantage, is anonymity. A user can visit web sites, send messages, and
interact with applications without revealing an identity. At least that is what we would like to think.
Unfortunately, because of things like cookies, ad-ware, spybots, and malicious code, the anonymity
is superficial and largely one-sided. Sophisticated web applications can know a lot about a user, but
the user knows relatively little about the application.

The topic is clearly of great interest: a recent Google search returned 7 billion hits for the phrase
"web privacy."

In this section we investigate some of the ways a user's privacy is lost on the Internet.

Understanding the Online Environment

The Internet is like a nightmare of a big, unregulated bazaar. Every word you speak can be heard
by many others. And the merchants' tents are not what they seem: the spice merchant actually
runs a gambling den, and the kind woman selling scarves is really three pirate brothers and a tiger.
You reach into your pocket for money only to find that your wallet has been emptied. Then the
police tell you that they would love to help but, sadly, no laws apply. Caveat emptor in excelsis.

We have previously described the anonymity of the web. It is difficult for two unrelated parties to
authenticate each other. Internet authentication most often confirms the user's identity, not the
server's, so the user is unsure that the web site is legitimate. This uncertainty makes it difficult to
give informed consent to release of private data: How can consent be informed if you don't know to
whom you are giving consent?

Payments on the Web

Customers of online merchants have to be able to pay for purchases. Basically, there are two
approaches: the customer presents a credit card to the merchant or the customer arranges
payment through an online payment system such as PayPal.

Credit Card Payments

With a credit card, the user enters the credit card number, a special number printed on the card
(presumably to demonstrate that the user actually possesses the card), the expiration date of the
card (to ensure that the card is currently active), and the billing address of the credit card
(presumably to protect against theft of credit card). These protections are all on the side of the
merchant: They demonstrate that the merchant made a best effort to determine that the credit card
use was legitimate. There is no protection to the customer that the merchant will secure these data.



Once the customer has given this information to one merchant, that same information is all that
would be required for another merchant to accept a sale charged to the same card.

Furthermore, these pieces of information provide numerous static keys by which to correlate
databases. As we have seen, names can be difficult to work with because of the risk of misspelling,
variation in presentation, truncation, and the like. Credit card numbers make excellent keys because
they can be presented in only one way and there is even a trivial check digit to ensure that the card
number is a valid sequence.

Because of problems with stolen credit card numbers, there has been some consideration of
disposable credit cards: cards you could use for one transaction or for a fixed short period of time.
That way, if a card number is stolen or intercepted, it could not be reused. Furthermore, having
multiple card numbers limits the ability to use a credit card number as a key to compromise privacy.

Payment Schemes

The other way to make web payments is with an online payment scheme, such as PayPal (which is
now a subsidiary of the eBay auction site). You pay PayPal a sum of money and you receive an
account number and a PIN. You can then log in to the PayPal central site, give an e-mail address
and amount to be paid, and PayPal transfers that amount. Because it is not regulated under the
same banking laws as credit cards, PayPal offers less consumer protection than does a credit card.
However, the privacy advantage is that the user's credit card or financial details are known only to
PayPal, thus reducing the risk of their being stolen. Similar schemes use cell phones.

Site and Portal Registrations

Registering to use a site is now common. Often the registration is free; you just choose a user ID
and password. Newspapers and web portals (such as Yahoo or MSN) are especially fond of this
technique. The explanation they give sounds soothing: They will enhance your browsing experience
(whatever that means) and be able to offer content to people throughout the world. In reality, the
sites want to obtain customer demographics that they can then sell to marketers or show to
advertisers to warrant their advertising.

People have trouble remembering numerous IDs so they tend to default to simple ones, often
variations on their names. And because people have trouble remembering IDs, the sites are making
it easier: Many now ask you to use your e-mail address as your ID. The problem with using the
same ID at many sites is that it now becomes a database key on which previously separate
databases from different sites can be merged. Even worse, because the ID or e-mail address is
often closely related to the individual's real name, this link also connects a person's identity with the
other collected data. So now, a data aggregator can infer that V. Putin browsed the New York Times
looking for articles on vodka and longevity and then bought 200 shares of stock in a Russian
distillery.

You can, of course, try to remember many different IDs. Or you can choose a disposable persona,
register for a free e-mail account under a name like xxxyyy, and never use the account for anything
except these mandatory free registrations. And it often seems that when there is a need, there
arises a service. See www.bugmenot.com for a service that will supply a random anonymous ID and
password for sites that require a registration.



Whose Page Is This?

The reason for registrations has little to do with the newspaper or the portal; it has to do with
advertisers, the people who pay so the web content can be provided. The web offers much more
detailed tracking possibilities than other media. If you see a billboard for a candy bar in the morning
and that same advertisement remains in your mind until lunch time and you buy that same candy
bar at lunch, the advertiser is very happy: The advertising money has paid off. But the advertiser
has no way to know whether you saw an ad (and if so which one). There are some coarse
measures: After an ad campaign if sales go up, the campaign probably had some effect. But
advertisers would really like a closer cause-and-effect relationship. Then the web arrived.

Third-Party Ads

You log in to Yahoo Sports and you might see advertisements for mortgages, banking, auto loans,
maybe some sports magazines or a cable television offer, and a fast food chain. You click one of the
links and you either go directly to a "buy here now" form or you get to print a special coupon worth
something on your purchase in person. Web advertising is much more connected to the purchaser:
You see the ad, you click on it, and they know the ad did its job by attracting your attention. (With a
highway billboard they never know if you watch it or traffic.) When you click through and buy, the
ad has really paid off. When you click through and print a coupon that you later present, a tracking
number on the coupon lets them connect to advertising on a particular web site. From the
advertiser's point of view, the immediate feedback is great.

But each of these activities can be tracked and connected. Is it anyone's business that you like
basketball and are looking into a second mortgage? Remember that from your having logged in to
the portal site, they already have an identity that may link to your actual name.

Contests and Offers

We cannot resist anything free. We will sign up for a chance to win a large prize, even if we have
only a minuscule chance of succeeding. Advertisers know that. So contests and special offers are a
good chance to get people to divulge private details. Another thing advertisers know is that people
are enthusiastic at the moment but enthusiasm and attention wane quickly.

A typical promotion offers you a free month of a service. You just sign up, give a credit card
number, which won't be charged until next month, and you get a month's use of the service for
free. As soon as you sign up, the credit card number and your name become keys by which to link
other data. You came via a web access, so there may be a link history from the forwarding site.

Precautions for Web Surfing

In this section we discuss cookies and web bugs, two technologies that are frequently used to
monitor a user's activities without the user's knowledge.

Cookies



Cookies are files of data set by a web site. They are really a cheap way to transfer a storage need
from a web site to a user.

A portal such as Yahoo allows a user to customize the look of the web page. Sadie wants the news
headlines, the weather, and her e-mail, with a bright background; Norman wants stock market
results, news about current movies playing in his area, and interesting things that happened on this
day in history, displayed on a gentle pastel background. Yahoo could keep all this preference
information in its database so that it could easily customize pages it sends to these two users. But
Netscape realized that the burden could be shifted to the user. The web protocol is basically
stateless, meaning that the browser displays whatever it is given, regardless of anything that has
happened previously.

A cookie is a text file stored on the user's computer and passed by the user's browser to the web
site when the user goes to that site. Thus, preferences for Sadie or Norman are stored on their own
computers and passed back to Yahoo to help Yahoo form and deliver a web page according to
Sadie's or Norman's preferences. A cookie contains six fields: name, value, expiration date, path on
the server to which it is to be delivered, domain of the server to which it is to be delivered, and
whether a secure connection (SSL) is required in order for the cookie to be delivered. A site can set
as many cookies as it wants and can store any value (up to 4,096 bytes) it wants. Some sites use
cookies to avoid a customer's having to log in on each visit to a site; these cookies contain the
user's ID and password. A cookie could contain a credit card number, the customer name and
shipping address, the date of the last visit to the site, the number of items purchased or the dollar
volume of purchases.

Obviously for sensitive information, such as credit card number or even name and address, the site
should encrypt or otherwise protect the data in the cookie. It is up to the site what kind of
protection it wants to apply to its cookies. The user never knows if or how data are protected.

The path and domain fields protect against one site's being able to access another's cookies.
Almost. As we show in the next section, one company can cooperate with another to share the data
in its cookies.

Third-Party Cookies

When you visit a site, its server asks your browser to save a cookie. When you visit that site again
your browser passes that cookie back. The general flow is from a server to your browser and later
back to the place from which the cookie came. A web page can also contain cookies for another
organization. Because these cookies are for organizations other than the web page's owner, they
are called third-party cookies.

DoubleClick has built a network of over 1,500 web sites delivering content: news, sports, food,
finance, travel, and so forth. These companies agree to share data with DoubleClick. Web servers
contain pages with invisible ads from DoubleClick, so whenever that page is loaded, DoubleClick is
invoked, receives the full invoking URL (which may also indicate other ads to be loaded), and is
allowed to read and set cookies for itself. So, in essence, DoubleClick knows where you have been,
where you are going, and what other ads are placed. But because it gets to read and write its
cookies, it can record all this information for future use.

Here are some examples of things a third-party cookie can do.



Count the number of times this browser has viewed a particular web page.

Track the pages a visitor views, within a site or across different sites.

Count the number of times a particular ad has appeared.

Match visits to a site with displays of an ad for that site.

Match a purchase to an ad a person viewed before making the purchase.

Record and report search strings from a search engine.

Of course, all these counting and matching activities produce statistics that the cookie's site can also
send back to the central site any time the bug is activated. And these collected data are also
available to send to any other partners of the cookie.

Let us assume you are going to a personal investing page which, being financed by ads, contains
spaces for ads from four stockbrokers. Let us also assume eight possible brokers could fill these four
ad slots. When the page is loaded, DoubleClick retrieves its cookie, sees that you have been to that
page before, and also sees that you clicked on broker B5 sometime in the past; then DoubleClick
will probably engineer it so that B5 is one of the four brokers displayed to you this time. Also
assume DoubleClick sees that you have previously looked at ads for very expensive cars and
jewelry. Then full-priced brokers, not discount brokerages, are likely to be chosen for the other
three slots. DoubleClick says that part of its service is to present ads that are the most likely to be
of interest to the customer, which is in everybody's best interest.

But this strategy also lets DoubleClick build a rich dossier of your web surfing habits. If you visit
online gambling sites and then visit a money-lending site, DoubleClick knows. If you purchase
herbal remedies for high blood pressure and then visit a health insurance site, DoubleClick knows.
DoubleClick knows what personal information you have previously supplied on web forms, such as
political affiliation, sexual matters, religion, financial or medical status, or identity information. Even
without your supplying private data, merely opening a web page for one political party could put
you on that party's solicitation list and the other parties' enemies lists. All this activity goes under
the general name of online profiling. Each of these pieces of data is available to the individual firm
presenting the web page; DoubleClick collects and redistributes these separate data items as a
package.

Presumably all browsing is anonymous. But as we have shown previously, login IDs, e-mail
addresses, and retained shipping or billing details can all lead to matching a person with this
dossier, so it is no longer an unnamed string of cookies. In 1999, DoubleClick bought Abacus,
another company maintaining a marketing database. Abacus collects personal shopping data from
catalog merchants, so with that acquisition, DoubleClick gained a way to link personal names and
addresses that had previously been only patterns of a machine, not a person.

Cookies associate with a machine, not a user. (For older versions of Windows this is true; for Unix
and Windows NT, 2000, and XP, cookies are separated by login ID.) If all members of a family share
one machine or if a guest borrows the machine, the apparent connections will be specious. The
second problem of the logic concerns the correctness of conclusions drawn: Because the cookies
associate actions on a browser, their results are incomplete if a person uses two or more browsers
or accounts or machines. As in many other aspects of privacy, when the user does not know what
data have been collected, the user cannot know the data's validity.



Web Bugs: Is There an Exterminator?

The preceding discussion of DoubleClick had a passing reference to an invisible image. Such an
image is called a clear GIF, 1 x 1 GIF, or web bug. It is an image file 1 pixel by 1 pixel, so it is far
too small to detect by normal sight. To the web browser, an image is an image, regardless of size;
the browser will ask for a file from the given address.

The distinction between a cookie and a bug is enormous. A cookie is a tracking device, transferred
between the user's machine and the server. A web bug is an invisible image that invites or invokes
a process. That process can come from any location. A typical advertising web page might have 20
web bugs, inviting 20 other sites to drop images, code, or other bugs onto the user's machine. All
this occurs without the user's direct knowledge or certainly control.

Unfortunately, extermination is not so simple as prohibiting images smaller than the eye can see,
because many web pages use such images innocently to help align content. Or some specialized
visual applications may actually use collections of minute images for a valid purpose. The answer is
not to restrict the image but to restrict the collection and dissemination of data.

Spyware

Cookies are tracking objects, little notes that show where a person has been or what a person has
done. The only information they can gather is what you give them by entering data or selecting an
object on a web page. As we see in the next section, spyware is far more powerfuland potentially
dangerous.

Cookies are passive files and, as we have seen, the data they can capture is limited. They cannot,
for example, read a computer's registry, peruse an e-mail outbox, or capture the file directory
structure. Spyware is active code that can do all these things that cookies cannot, generally
anything a program can do because that is what they are: programs.

Spyware is code designed to spy on a user, collecting data (including anything the user types). In
this section we describe different types of spyware.

Keystroke Loggers and Spyware

We have previously referred to keystroke loggers, programs that reside in a computer and record
every key pressed. Sophisticated loggers discriminate, recording only web sites visited or, even
more serious, only the keystrokes entered at a particular web site (for example, the login ID and
password to a banking site.)

A keystroke logger is the computer equivalent of a telephone wiretap. It is a program that records
every key typed. As you can well imagine, keystroke loggers can seriously compromise privacy by
obtaining passwords, bank account numbers, contact names, and web search arguments.

Spyware is the more general term that includes keystroke loggers and also programs that
surreptitiously record user activity and system data, although not necessarily at the level of each
individual keystroke. A form of spyware, known as adware (to be described shortly) records these
data and transmits them to an analysis center to present ads that will be interesting to the user.
The objectives of general spyware can extend to identity theft and other criminal activity.



In addition to the privacy impact, keystroke loggers and spyware sometimes adversely affect a
computing system. Not always written or tested carefully, spyware can interfere with other
legitimate programs. Also, machines infected with spyware often have several different pieces of
spyware, which can conflict with each other, causing a serious impact on performance.

Another common characteristic of many kinds of spyware is the difficulty of removing it. For one
spyware product, Altnet, removal involves at least twelve steps, including locating files in numerous
system folders [CDT03].

Hijackers

Another category of spyware is software that hijacks a program installed for a different purpose. For
example, file-sharing software is typically used to share copies of music or movie files. Services
such as KaZaa and Morpheus allow users to offer part of their stored files to other users. According
to the Center for Democracy in Technology [CDT03], when a user installed KaZaa, a second
program, Altnet, was also installed. The documentation for Altnet said it would make available
unused computing power on the user's machine to unspecified business partners. The license for
Altnet grants Altnet the right to access and use unused computing power and storage. An ABC News
program in 2006 [ABC06] reports on taxpayers whose tax returns were found on the Internet after
the taxpayers used a file-sharing program.

The privacy issue for a service such as Altnet is that even if a user authorizes use of spare
computing power or sharing of files or other resources, there may be no control over access to other
sensitive data on the user's computer.

Adware

Adware displays selected ads in pop-up windows or in the main browser window. The ads are
selected according to the user's characteristics, which the browser or an added program gathers by
monitoring the user's computing use and reporting the information to a home base.

Adware is usually installed as part of another piece of software without notice. Buried in the lengthy
user's license of the other software is reference to "software x and its extension," so the user
arguably gives permission for the installation of the adware. File-sharing software is a common
target of adware, but so too are download managers that retrieve large files in several streams at
once for faster downloads. And products purporting to be security tools, such as antivirus agents,
have been known to harbor adware.

Writers of adware software are paid to get their clients' ads in front of users, which they do with
pop-up windows, ads that cover a legitimate ad, or ads that occupy the entire screen surface. More
subtly, adware can reorder search engine results so that clients' products get higher placement or
replace others' products entirely.

180Solutions is a company that generates pop-up ads in response to sites visited. It distributes
software to be installed on a user's computer to generate the pop-ups and collect data to inform
180Solutions of which ads to display. The user may inadvertently install the software as part of
another package; in fact, 180Solutions pays a network of 1,000 third parties for each installation of
its software on a user's computer. Some of those third parties may have acted aggressively and
installed the software by exploiting a vulnerability on the user's computer [SAN05]. A similar



product is Gator or Claria or GAIN from the Gator Corporation. Gator claims its software is installed
on some 35 million computers. The software is designed to pop up advertising at times when the
user might be receptive, for example, popping up a car rental ad right after the user closed an
online travel web site page.

There is little analysis of what these applications collect. Rumors have it that they search for name,
address, and other personal identification information. The software privacy notice from Gain's web
site lists many kinds of information it may collect:

Gain Privacy Statement

1. WHAT INFORMATION DOES GAIN COLLECT?

GAIN Is Designed to Collect and Use Only Anonymous Information. GAIN collects and
stores on its servers anonymous information about your web surfing and computer
use. This includes information on how you use the web (including the URL addresses
of the web pages you view and how long you view them), non-personally identifiable
information you provide on web pages and forms (including the Internet searches
you conduct), your response to online ads, what software is on the computer (but no
information about the usage or data files associated with the software), system
settings, and information about how you use GAIN-Supported Software. For more
information about the data we collect, click:
www.gainpublishing.com/rdr/73/datause.html.

"What software is on the computer" and "system settings" seem to cover a wide range of
possibilities.

Drive-By Installation

Few users will voluntarily install malicious code on their machines. Authors of spyware have
overcome suspicions to get the user to install their software. We have already discussed dual-
purpose software and software installed as part of another installation.

A drive-by installation is a means of tricking a user into installing software. We are familiar with
the pop-up installation box for a new piece of software, saying "your browser is about to install x
from y. Do you accept this installation? Yes / No." In the drive-by installation, a front piece of the
software has already been downloaded as part of the web page. The front piece may paste a
different image over the installation box, it may intercept the results from the yes / no boxes and
convert them to yes, or it may paste a small image over the installation box obliterating "x from y"
and replace it with "an important security update from your browser manufacturer." The point is to
perform the installation by concealing from the user the real code being installed.

Shopping on the Internet

The web offers the best prices because many merchants compete for your business, right? Not
necessarily so. And spyware is partly to blame.



Consider two cases: You own a store selling hardware. One of your customers, Viva, is extremely
faithful: She has come to you for years; she wouldn't think of going anywhere else. Viva is also
quite well off; she regularly buys expensive items and tends to buy quickly. Joan is a new customer.
You know she has been to other hardware stores but so far she hasn't bought much from you. Joan
is struggling with a large family, large mortgage, and small savings. Both come in on the same day
to buy a hammer, which you normally sell for $20. What price do you offer each? Many people say
you should give Viva a good price because of her loyalty. Others say her loyalty gives you room to
make some profit. And she can certainly afford it. As for Joan, is she likely to become a steady
customer? If she has been to other places, does she shop by price for everything? If you win her
with good prices, might you convince her to stay? Or come back another time? Hardware stores do
not go through this analysis: a $20 hammer is priced at $20 today, tomorrow, and next week, for
everyone, unless it's on sale.

Not true online. Remember, online you do not see the price on the shelf; you see only the price
quoted to you on the page showing the hammer. Unless someone sitting at a nearby computer is
looking at the same hammers, you wouldn't know if someone else got a price offer other than $20.

According to a study done by Turow et al. [TUR05] of the Annenberg Public Policy Center of the
University of Pennsylvania School of Communications, price discrimination occurs and is likely to
expand as merchants gather more information about us. The most widely cited example is
Amazon.com, which priced a DVD at 30 percent, 35 percent, and 40 percent off list price
concurrently to different customers. One customer reported deleting his Amazon.com tracking
cookie and having the price on the web site drop from $26.00 to $22.00 because the web site
thought he was a new customer instead of a returning customer. Apparently customer loyalty is
worth less than finding a new target.

The Turow study involved an interview of 1,500 U.S. adults on web pricing and buying issues.
Among the significant findings were these:

53 percent correctly thought most online merchants did not give them the right to correct
incorrect information obtained about them.

50 percent correctly thought most online merchants did not give them the chance to erase
information collected about them.

38 percent correctly thought it was legal for an online merchant to charge different people
different prices at the same time of day.

36 percent correctly thought it was legal for a supermarket to sell buying habit data.

32 percent correctly thought a price-shopping travel service such as Orbitz or Expedia did not
have to present the lowest price found as one of the choices for a trip.

29 percent correctly thought a video store was not forbidden to sell information on what videos
a customer has rented.

A fair market occurs when seller and buyer have complete knowledge: If both can see and agree
with the basis for a decision, each knows the other party is playing fairly. The Internet has few
rules, however. Loss of Internet privacy causes the balance of knowledge power to shift strongly to
the merchant's side.





10.6. E-Mail Security

E-mail is exposed as it travels through the web. Furthermore, the privacy of an e-mail message can
be compromised on the sender's or receiver's side, without warning.

Consider the differences between e-mail and regular letters. Regular mail is handled by a postal
system that by law is forbidden to look inside letters. A letter is sealed inside an opaque envelope,
making it almost impossible for an outsider to see the contents. The physical envelope is tamper-
evident, meaning it shows if someone opens it. A sender can drop a letter in any mailbox, making
the sending of a letter anonymous. For these reasons, we have a high expectation of privacy with
regular mail. (At certain times in history, for example during a war or under an autocratic ruler, mail
was inspected regularly. In those cases, citizens knew their mail was not private.)

In this section we look at the reality of privacy for e-mail.

Where Does E-Mail Go, and Who Can Access It?

We cover e-mail and privacy-enhanced e-mail in Chapter 7. In this section we look only at the
mechanics of transmitting e-mail with attention to privacy impacts.

E-mail is conceptually a point-to-point communication. If Janet sends e-mail to Scott, Janet's
computer establishes a virtual connection with Scott, the computers synchronize, and the message
is transferred by SMTP (simple mail transfer protocol). However, Scott may not be online at the
moment Janet wants to send her message, so the message to Scott is stored for him on a server
(called a POP or post office protocol server). The next time Scott is online, he downloads that
message from the server. In the point-to-point communication, Janet's message is private; in the
server version, it is potentially exposed while sitting on the server.

Janet may be part of a large organization (such as a company or university), so she may not have a
direct outbound connection herself; instead, her mail is routed through a server, too, where the
message's privacy is in jeopardy. A further complication is aliases and forwarding agents that add
more midpoints to this description. Also, Internet routing can make many hops out of a conceptual
point-to-point model.

What started as a simple case can easily have at least five parties: (a) Janet and her computer, (b)
Janet's organization's SMTP server, (c) Janet's organization's ISP, (d) Scott's POP server, and (e)
Scott and his computer. For now, we are most interested in the three middle parties: (b), (c), and
(d). Any of them can log the fact that it was sent or can even keep a copy of the message.

Interception of E-mail

E-mail is subject to the same interception risks as other web traffic: While in transit on the Internet,
e-mail is open for any interceptor to read.



In Chapter 7 we described techniques for encrypting e-mail. In particular, S/MIME and PGP are two
widely used e-mail protection programs. S/MIME and PGP are available for popular mail handlers
such as Outlook, Outlook Express, Eudora, Apple Mail, Netscape Communicator, and others. These
products protect e-mail from the client's workstation through mail agents, across the Internet, and
to the recipient's workstation. That protection is considered end-to-end, meaning from the sender to
the recipient. Encrypted e-mail protection is subject to the strength of the encryption and the
security of the encryption protocol.

A virtual private network, also described in Chapter 7, can protect data on the connection between a
client's workstation and some edge point, usually a router or firewall, at the organization to which
the client belongs. For a corporate or government employee or a university student, communication
is protected just up to the edge of the corporate, government, or university network. Thus, with a
virtual private network, e-mail is protected only from the sender to the sender's office, not even up
to the sender's mail agent, and certainly not to the recipient.

Some organizations routinely copy all e-mail sent from their computers. Purposes for these copies
include using the e-mail as evidence in legal affairs and monitoring the e-mail for inappropriate
content.

Monitoring E-Mail

Companies and government agencies can legitimately monitor their employees' e-mail use. Schools
and libraries can monitor the computer use of patrons. Network administrators and ISPs can
monitor traffic for normal business purposes, such as to measure traffic patterns or to detect spam.
Organizations must advise users of this monitoring, but the notice can be a small notice in a
personnel handbook or in the fine print of a service contract. Organizations can use the monitoring
data for any legal purpose, for example, to investigate leaks, to manage resources, or to track user
behavior.

Network users should have no expectation of privacy in their e-mail or general computer use.

Anonymous E-mail and Remailers

We have described anonymity in other settings; there are reasons for anonymous e-mail, as well.

As with telephone calls, employees sending tips or complaining to management may want to do so
anonymously. For example, consumers may want to contact commercial establishmentsto register a
complaint, inquire about products, or request informationwithout getting on a mailing list or
becoming a target for spam. Or people beginning a personal relationship may want to pass along
some information without giving away their identities. These are some of the reasons people want
to be able to send anonymous e-mail.

Free e-mail addresses are readily available from Yahoo, Microsoft Hotmail, and many other places.
People can treat these addresses as disposable: Obtain one, use it for a while, and discard it (by
ceasing to use it).

Simple Remailers



Another solution is a remailer. A remailer is a trusted third party to whom you send an e-mail
message and indicate to whom you want it sent. The remailer strips off the sender's name and
address, assigns an anonymous pseudonym as the sender, and forwards the message to the
designated recipient. The third party keeps a record of the correspondence between pseudonyms
and real names and addresses. If the recipient replies, the remailer removes the recipient's name
and address, applies a different anonymous pseudonym, and forwards the message to the original
sender. Such a remailer knows both sender and receiver, so it provides pseudonymity, not
anonymity.

Mixmaster Remailers

A more complicated design is needed to overcome the problem that the remailer knows who are the
real sender and receiver. This approach is similar to the concept of onion routing described in
Chapter 7. The basic tool is a set of cooperating hosts that agree to forward mail. Each host
publishes its own public encryption key.

The sender creates a message and selects several of the cooperating hosts. The sender designates
the ultimate recipient (call it node n) and places a destination note with the content. The sender
then chooses one of the cooperating hosts (call it node n-1), encrypts the package with the public
key of node (n-1) and places a destination note showing node (n) with the encrypted package. The
sender chooses another node (n-2), encrypts, and adds a destination note for (n-1). The sender
thus builds a multilayered package, with the message inside; each layer adds another layer of
encryption and another destination.

Each remailer node knows only from where it received the package and to whom to send it next.
Only the first remailer knows the true recipient, and only the last remailer knows the final recipient.
Therefore, no remailer can compromise the relationship between sender and receiver.

Although this strategy is sound, the overhead involved indicates that this approach should be used
only when anonymity is very important.

Spoofing and Spamming

E-mail has very little authenticity protection. Nothing in the SMTP protocol checks to verify that the
listed sender (the From: address) is accurate or even legitimate. Spoofing the source address of an
e-mail message is not difficult. This limitation facilitates the sending of spam because it is
impossible to trace the real sender of a spam message. Sometimes the apparent sender will be
someone who knows the recipient or someone on a common mailing list with the recipient. Spoofing
such an apparent sender is intended to lend credibility to the spam message.

Phishing is a form of spam in which the sender attempts to convince the sender to reveal personal
data, such as banking details. The sender enhances the credibility of a phishing message by
spoofing a convincing source address, or using a deceptive domain name

These kinds of e-mail messages entice gullible users to reveal sensitive personal data. Because of
limited regulation of the Internet, very little can be done to control these threats. User awareness is
the best defense.



Summary

E-mail is exposed from sender to receiver, and there are numerous points for interception. Unless
the e-mail is encrypted, there is little to prevent its access along the way.

For businesses, governments, schools, and other organizations, network administrators and
managers may read any e-mail messages sent.



10.7. Impacts on Emerging Technologies

In this section we look at the privacy implications of three emerging technologies. Nothing inherent
in the technologies affects privacy, but the applications for the technologies have risk. The first is a
broadcast technology that can be used for tracking objects or people. Second is a group of
technologies to facilitate elections. The final technology is a new method for voice-grade telephone
calls.

RFID

Radio frequency identification or RFID is a technology that uses small, low-power wireless radio
transmitters called RFID tags. The devices can be as small as a grain of sand and they cost just
pennies apiece. Tags are tuned to a particular frequency and each has a unique ID number. When a
tag receives its signal, it sends its ID number signal in response. Many tags have no power supply of
their own and receive their power to send a signal from the very act of receiving a signal. Thus,
these devices are passive until they receive a signal from an interrogating reader.

The distance at which they can receive and broadcast a receivable signal varies from roughly five
centimeters at the least powerful end to several meters at the most powerful end. Some
transmitters have their own power supply (battery) and can transmit over an even greater distance.
Probably as receivers get better, the reception distance will increase.

Current uses of RFID tags include

toll plaza payments

transit system fare cards

stock or inventory labels

passports and identity cards

Two applications of RFID tags are of special interest from a privacy standpoint, as we show in the
next sections.

Consumer Products

Assume you have bought a new shirt. If the manufacturer has embedded an RFID tag in the shirt,
the tag will assist the merchant in processing your sale, just as barcodes do today. But barcodes on
merchandise identify only a manufacturer's product, such as an L.L Bean green plaid flannel shirt,
size M. The RFID tag can identify not only the product but also the batch and shipment; that is, the
tag's value designates a specific shirt. The unique ID in the shirt helps the merchant keep track of
stock, knowing that this shirt was from a shipment that has been on the sales display for 90 days.



The tag also lets the manufacturer determine precisely when and where it was produced, which
could be important if you returned the shirt because of a defect.

As you walk down the street, your shirt will respond to any receiver within range that broadcasts its
signal. With low-power tags using today's technology, you would have to pass quite close to the
receiver for it to obtain your signal, a few centimeters at most. Some scientists think this reception
will be extended in the future, and others think the technology exists today for high-power readers
to pick up the signal a meter away. If the distance is a few centimeters, you would almost have to
brush up against the receiver in order for it to track the tag in your shirt; at a meter, someone could
have a reader at the edge of the sidewalk as you walk past.

Your shirt, shoes, pen, wallet, credit card, mobile phone, media player, and candy bar wrapper
might each have an RFID tag. Any one of these would allow surreptitious tracking; the others
provide redundancy. Tracking scenarios once found only in science fiction are now close to reality.

One privacy interest is the accumulation of readings as you go about your business. If a city were
fitted with readers on every street corner, it would be possible to assemble a complete profile of
your meanderings; timestamps would show when you stopped for a while between two receivers.
Thus, it is imaginable and probably feasible to develop a system that could track all your
movements.

The other privacy concern is what these tags say about you: One tag from an employee ID might
reveal for whom you work, another from a medicine bottle might disclose a medical condition, and
still another from an expensive key fob might suggest your finances. Currently you can conceal
objects like your employee ID in your pocket; with RFID technology you may have to be more
careful to block invisible radio signals.

RFID Tags for Individuals

Tagging a shirt is a matter of chance. If you buy the right kind of shirt you will have a tag that lets
you be monitored. But if you buy an untagged shirt, or find and cut out the tag, or disable the tag,
or decide not to wear a shirt, you cannot be tracked.

Some people choose to be identifiable, regardless of what they wear. Some people with an unusual
medical condition have already had an RFID tag permanently implanted in their arm. This way, even
if a patient is brought unconscious to a hospital, the doctors can scan for a tag, receive the person's
unique number, and look up the person's medical record by that number. A similar approach is
being used to permit animals to cross quarantine borders or to uniquely identify animals such as
valuable racehorses.

In these examples, individuals voluntarily allow the tags to be implanted. But remember that once
the tags are implanted, they will respond to any appropriate receiver, so our example of walking
down the street still holds.

RFID advocates hasten to point out that the technology does not currently permit reading the
simplest tags at a distance and that receivers are so expensive that it would be prohibitive to build a
network capable of tracking someone's every movement. As we point out in cryptography and
reiterate in software, you should not base your security just on what is technically possible or
economiclly feasible today.



Security and Privacy Issues

We have already described two of RFID's major privacy issues: the ability to track individuals
wherever they go and the ability to discern sensitive data about people. The related issue is one of
correctness. The reading sensor may malfunction or the software processing IDs may fail; both
cases lead to mistaken identity. How do you challenge that you were not someplace when the
receiver shows you were? Another possible failure is forgery of an RFID tag. Here again the sensor
would pick up a reading of a tag associated with you. The only way you could prove you were not
near the sensor is to have an alibi, supporting where you actually were.

Juels [JUE05] presents several privacy-restoring approaches to RFID use. Among the ideas he
proposes are blasting (disabling a tag), blocking (shielding a tag to block its access by a reader),
reprogramming (so a tag emits a different number), and encrypting (so the output is selectively
available).

RFID technology is still very young, but its use is growing rapidly. As with similarly sensitive
technologies, protecting privacy will be easier before the uses proliferate.

Electronic Voting

Voting is another area in which privacy is important. We want votes to be private, but at the same
time we want a way to demonstrate that all collected votes are authentic. With careful control of
paper ballots, we can largely satisfy both those requirements, but the efficiency of such systems is
poor. We would like to use computerized voting systems to improve efficiency without sacrificing
privacy or accuracy. In this section we consider the privacy aspects of computerized voting.

Computer Voting

Citizens want to vote anonymously. Although anonymity is easy to achieve with paper ballots
(ignoring the possibility of fingerprint tracing or secretly marked ballots) and fairly easy to achieve
with machines (assuming usage protocols preclude associating the order in which people voted with
a voting log from the machine), it is more difficult with computers. Properties essential to a fair
election were enumerated by Shamos [SHA93].

Each voter's choices must be kept secret.

Each voter may vote only once and only for allowed offices.

The voting system must be tamperproof, and the election officials must be prevented from
allowing it to be tampered with.

All votes must be reported accurately.

The voting system must be available for use throughout the election period.

An audit trail must be kept to detect irregularities in voting, but without disclosing how any
individual voted.



These conditions are challenging in ordinary paper- and machine-based elections; they are even
harder to meet in computer-based elections. Privacy of a vote is essential; in some repressive
countries, voting for the wrong candidate can be fatal. But public confidence in the validity of the
outcome is critical, so there is a similarly strong need to be able to validate the accuracy of the
collection and reporting of votes. These two requirements are close to contradictory.

DeMillo and Merritt [DEM83] devised protocols for computerized voting. Hoffman [HOF00] studied
the use of computers at polling places to implement casting of votes. Rubin [RUB00] concludes:
"Given the current state of insecurity of hosts and the vulnerability of the Internet to manipulation
and denial-of-service attacks, there is no way that a public election of any significance involving
remote electronic voting could be carried out securely." But Tony Blair, British prime minister,
announced in July 2002 that in the British 2006 general election, citizens would vote in any of four
ways: online (by Internet) from a work or home location, by mail, by touch-tone telephone, or at
polling places through online terminals. All the counts of the elections would be done electronically.
In 2002, Brazil used a computer network to automate voting in its national election (in which voting
was mandatory).

Privacy and the Process

Counting ballots is only one step in the election process; building and maintaining the list of eligible
voters, recording who has voted (and keeping one person from voting twice), supporting absentee
ballots, assisting voters at the wrong polling place, and transmitting election results to election
headquarters are other important steps. Each of these has obvious privacy implications. For
example, in some political cultures, it may be desirable to maintain privacy of who has voted (to
prevent retaliation against people who did not vote for a powerful candidate). Similarly, as we know
from other security studies, it is important to protect the privacy of votes in transmission to election
headquarters.

The Computer Science and Telecommunications Board of the National Academy of Science [NRC05]
studied electronic voting. Its purpose was to raise questions to ensure they are considered in the
debate about electronic voting. The privacy questions they asked concerned individual privacy in
voter registration, the privacy of individual voters, and public confidence in the process.

Rubin [RUB02], Schneier [SCH04b], and Bennet [BEN04], among others, have studied electronic
voting. Rubin raises the question of Internet voting, which has an obvious benefit of easy access for
a segment of the population (and a corresponding weakness of more difficult access for people who
do not have Internet access or who are not comfortable with computing technology). But given the
very weak privacy protections we have already seen for the Internet, the privacy aspects of such a
proposal require a careful look.

VoIP and Skype

Privacy aspects of traditional telephony were fairly well understood: Telephone companies were
regulated monopolies that needed to preserve the confidentiality of their clients' communications.
Exceptions occur under statutorially defined circumstances for law enforcement purposes and in
emergencies. Furthermore, the technology was relatively resistant to eavesdropping, with the
greatest exposure at the endpoints.

Cellular telephony and Internet-based phone service have significantly changed that situation.



Voice over IP (VoIP) is a protocol for transmission of voice-grade telephone traffic over the
Internet. The major VoIP carrier is Skype. (VoIP rhymes with "boy" plus P, and Skype rhymes with
"hype.") You use a telephone handset or microphone and speaker connected to your computer. To
call from London to Rio, for example, you would invoke the VoIP application, giving it the telephone
number in Rio. A local office in Rio would call the number in Rio and patch that call to its Internet
servers. (The process is even easier if both endpoints use VoIP.)

The advantage of VoIP is cost: For people who already have a fixed-price broadband Internet
connection, adding VoIP need only cover the costs of the local connection on the remote end and a
fee for software. But as we have seen in other Internet applications, privacy is sacrificed. Even if the
voice traffic is solidly encrypted, the source and destination of the phone call will be somewhat
exposed through packet headers.

Conclusions on Emerging Technologies

Each of these areas is a technology in its very early stages. The promise for each is great. Privacy
issues will not be considered unless they are raised forcefully.

Our experience with security has shown that if we consider security early in a system's life, wider
options are available for security. The other thing experience has repeatedly shown is that adding
security to a nearly complete system is between very difficult and impossible. For both reasons,
privacy and security analysis should occur along with the technology and application development.

For all three technologies, however, there seems to be financial pressure to create devices and deal
with use issues later. This is exactly the wrong way to go about designing any system.
Unfortunately, people seem to be starting with the technology and working backward to systems
that would use that technology. The approach should be the other way around: Specify the
necessary requirements, including privacy considerations, and develop a system to implement those
requirements reliably.



10.8. Summary

In this chapter on privacy we have examined how security, privacy, technology, and information
interact. On the one side are new capabilities made available only because of the power and
capacity of computers. On the other side are human rights and expectations of privacy. As we have
shown, these two sides do not have to be in conflict: Privacy and technology are not necessarily
antithetical.

The first step in establishing privacy is the same as the other areas of computer security: We must
first define a privacy policy that documents what privacy we require. The early work by Ware's
committee laid out very important fundamental principles of information privacy.

Next, we looked at the interplay between individuals, identities, attributes, and authentication,
similar to the way we studied subjects, objects, and access rights in Chapter 5. Specific examples of
privacy in e-mail and the web showed how privacy is and is not currently upheld in computerized
information handling. Finally, emerging topics like computerized voting, Internet telephony, and
RFIDs show us that in rapidly changing technology, we need to ensure that privacy interests are
upheld.

Privacy rights are an issue with both a political and technological dimension. The technology is
perhaps the easier part: Once we decide politically which privacy rights we want to retain, we can
usually make the technology conform. But our study of security has shown us that securityor
privacyis unlikely to happen unless we demand it.



10.9. Terms and Concepts

privacy, 603

confidentiality, 603

controlled disclosure, 604

sensitive data, 604

privacy dimensions:

collection, 606

usage, 606

privacy dimensions (cont'd):

retention, 606

disclosure, 606

access control, 606

monitoring changes, 606

policy, 606

informed consent, 607

data exposure, 608

data ownership, 608

Fair Information Practices:

collection, 609

quality, 609

identified purpose, 609

limited use, 609

security, 609

open practice, 609

subject participation, 609



accountability, 609

limited maintenance of data, 609

data perturbation, 609

anonymization, 609

encryption, 609

Privacy Act of 1974, 610

privacy policy factors:

notice, 611

choice, 611

secure storage, 611

enforcement, 611

e-Government Act, 611

deceptive trade practices, 612

European Privacy Directive, 613

anonymity, 614

multiple identities, 614
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data collection risks:

errors, 617
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errors of form, 617

falsely given, 617

false positive, 617

missions creep, 617

poor protection, 617

data privacy safeguards:

data minimization, 617

anonymization, 618



audit trail, 618

controlled access, 618

training, 618

quality, 618

restricted usage, 618

data left in place, 618

policy, 618

identity theft, 618

authentication versus identification, 619

individual authentication, 619

identity authentication, 619

attribute authentication, 620

deanonymization, 622

data mining, 624

privacy-preserving data modification, 624

correlation, 624

aggregation, 625

web privacy, 626

web payments, 627

site registration, 628

disposable identity, 628

cookie, 629

third-party cookie, 630

online profiling, 631

web bug, 631

clear GIF, 631

1x1 GIF, 631

spyware, 632



keystroke logger, 632

hijacker, 632

adware, 633

drive-by installation, 634

e-mail privacy, 635

e-mail interception, 636

e-mail monitoring, 637

remailer, 637

simple remailer, 637

mixmaster remailer, 638

spoof, 638

spam, 638

RFID, 639

tag, 639

electronic voting, 641

voice over IP, 642

VoIP, 642

Skype, 642



10.10. Where the Field Is Headed

The privacy aspects of security are expanding rapidly, as this chapter has indicated. A question we
as computer scientists need to ask ourselves is "just because we can do something, should we?" We
can combine massive amounts of data, but is the gain from that worth the risk?

Despite the best efforts of researchers such as Sweeney [SWE04], people make inadequate
attempts to protect privacy and then express surprise when personal privacy is violated. The topic
of anonymizing data securely, to meet the combined needs of researching demographics and
protecting privacy, is certain to continue to expand. There are several promising results in the area
of anonymizing data in databases for privacy-preserving data mining. Clifton and colleagues [CLI03,
KAN04, VAI04] and Malin and Sweeney [MAL02] are leading some important efforts.

A major multinational organization needs to strongly encourage countriesespecially the United
Statesto develop a comprehensive, worldwide framework for citizens' data privacy. The computer
security community can and should continue to demonstrate the importance of that problem, but
ultimately the answers here will have to be political. The various privacy rights organizations, such
as the Electronic Privacy Information Center (EPIC), Privacy.Org, and Privacy International, and
professional computing societies, such as IEEE and ACM, must continue their efforts.

Internet privacy will not occur by popular demand. Advertisers, content providers, spammers, and
fraudsters derive too many advantages from collection of online data. Because some of the same
techniques are used by information trackers and malicious attackers, good protection against
malicious code will also have a positive impact on personal Internet privacy. So, too, will increased
user knowledge.



10.11. To Learn More

One mark of the degree of interest in a topic is whether entire workshops and conferences address
it. The Computers Freedom and Privacy conference has been held annually since 1991 (see
http://www.cfp.org/). Other conferences focus on narrower topics, such as data mining or privacy of
elections. Professional societies such as ACM, IEEE, and SIAM sponsor these conferences and
promote them regularly on their web sites.

Avi Rubin of Johns Hopkins University challenges his students to explore novel attacks and
protections for privacy. Because of his work in the security of electronic voting, he is in charge of a
National Science Foundation project to improve the reliability and trustworthiness of electronic
voting. The Johns Hopkins Information Security Institute, of which Rubin is Technical Director, has
produced several good studies of privacy vulnerabilities.

Annie Antón of North Carolina State University has developed tools to analyze privacy policies. She
collaborates with ThePrivacyPlace.Org, an interdisciplinary research activity including researchers at
Georgia Tech, the CERIAS group at Purdue University, and the University of Lugano.

http://www.cfp.org/


10.12. Exercises

1. You have been asked to participate in developing the requirements for an RFID-
based identification card for students, faculty, and affiliates at a university. First, list
five to ten different uses of the card. Second, from that list of uses, detail what data
the card needs to broadcast to receivers that will accomplish those uses. Third,
identify uses that could be made of that data by rogue receivers surreptitiously
planted around the university campus. Which rogue accesses threaten personal
privacy? In what ways? What is the degree of harm?

2. You have been asked to perform a similar exercise for a secret government
organization. List overt and covert uses of the card, list data that need to be
broadcast, and identify potential misuses of the data.

3. If you were supplying electronic voting machines for an election, what could you do
to violate individuals' privacy rights? That is, suggest some not readily apparent ways
you could rig the machines to make it possible to determine after the election who
had voted for which candidates.

4. Suppose a telephone company maintained records on every telephone call it handled,
showing the calling phone number; the called phone number; and the time, date,
and duration of the call. What uses might the telephone company make of those
records? What uses might commercial marketers make? What uses might a rival
telephone company make? What uses might a government make? Which of those
uses violate individuals' privacy rights?

5. Refer to the results of Turow's survey on shopping on the Internet in Section 10.5.
Many people thought certain common practices of Internet commerce were illegal.
Should a law be passed to make them illegal? Why or why not?



Chapter 11. Legal and Ethical Issues in
Computer Security

In this chapter

Program and data protection by patents, copyrights, and trademarks

Computer crime

Ethical analysis of computer security situations

Codes of professional ethics

In this chapter we study human controls applicable to computer security: the legal system and
ethics. The legal system has adapted quite well to computer technology by reusing some old forms
of legal protection (copyrights and patents) and creating laws where no adequate ones existed
(malicious access). Still, the courts are not a perfect form of protection for computer resources, for
two reasons. First, the courts tend to be reactive instead of proactive. That is, we have to wait for a
transgression to occur and then adjudicate it, rather than try to prevent it in the first place. Second,
fixing a problem through the courts can be time consuming (sometimes taking years) and
expensive; the latter characteristic prevents all but the wealthy from addressing most security
issues.

On the other hand, ethics has not had to change, because ethics is more situational and personal
than the law. For example, the privacy of personal information is becoming an important part of
computer security. And although technically this issue is just an aspect of confidentiality, practically
it has a long history in both law and ethics. The purpose of this chapter is to round out our study of
protection for computing systems by understanding the context in which security is assessed and
applied.

Not always are conflicts resolved pleasantly. Some people will think that they have been treated
unfairly, and some people do indeed act unfairly. In some countries, a citizen reacts to a wrongful
act by going to court. The courts are seen as the ultimate arbiters and enforcers of fairness. But, as
most lawyers will tell you, the courts' definition of fair may not coincide with yours. Even if you
could be sure the courts would side with you, a legal battle can be emotionally draining. Our
purpose in this section is not only to understand how the legal system helps protect computer
security but also to know how and when to use the legal system wisely.

Law and computer security are related in several ways. First, international, national, state, and city



laws can affect privacy and secrecy. These statutes often apply to the rights of individuals to keep
personal matters private. Second, laws regulate the use, development, and ownership of data and
programs. Patents, copyrights, and trade secrets are legal devices to protect the rights of
developers and owners of programs and data. Similarly, one aspect of computer security is
controlling access to programs and data; that access control is supported by these mechanisms of
the law. Third, laws affect actions that can be taken to protect the secrecy, integrity, and availability
of computer information and service. These basic concerns in computer security are both
strengthened and constrained by applicable laws. Thus, legal means interact with other controls to
establish computer security.

However, the law does not always provide an adequate control. When computer systems are
concerned, the law is slowly evolving because the issues are similar to but not the same as those for
property rights. Computers are new, compared to houses, land, horses, or money. As a
consequence, the place of computer systems in law is not yet firmly established. As statutes are
written and cases decided, the roles of computers and the people, data, and processes involved are
becoming more defined in the law. However, laws do not yet address all improper acts committed
with computers. Finally, some judges, lawyers, and police officers do not understand computing, so
they cannot determine how computing relates to other, more established, parts of the law.

The laws dealing with computer security affect programmers, designers, users, and maintainers of
computing systems and computerized data banks. These laws protect, but they also regulate the
behavior of people who use computers. Furthermore, computer professionals are among the best-
qualified advocates for changing old laws and creating new ones regarding computers. Before
recommending change, however, professionals must understand the current state of computers and
the law. Therefore, we have three motivations for studying the legal section of this chapter:

to know what protection the law provides for computers and data

to appreciate laws that protect the rights of others with respect to computers, programs, and
data

to understand existing laws as a basis for recommending new laws to protect computers, data,
and people

The next few sections address the following aspects of protection of the security of computers.

Protecting computing systems against criminals. Computer criminals violate the principles of
confidentiality, integrity, and availability for computer systems. Preventing the violation is
better than prosecuting it after the fact. However, if other controls fail, legal action may be
necessary. In this section we study several representative laws to determine what acts are
punishable under the law.

Protecting code and data. Copyrights, patents, and trade secrets are all forms of legal
protection that can be applied to programs and, sometimes, data. However, we must
understand the fundamental differences between the kind of protection these three provide
and the methods of obtaining that protection.

Protecting programmers' and employers' rights. The law protects both programmers and
people who employ programmers. Generally, programmers have only limited legal rights to
access programs they have written while employed. This section contains a survey of the rights
of employees and employers regarding programs written for pay.



Protecting users of programs. When you buy a program, you expect it to work properly. If it
doesn't, you want the legal system to protect your rights as a consumer. This section surveys
the legal recourse you have to address faulty programs.

Computer law is complex and emerging rather rapidly as it tries to keep up with the rapid
technological advances in and enabled by computing. We present the fundamentals in this book not
in their full detail as you would expect by someone with a law degree, but as a situational analysis
to heighten the awareness of those who are not lawyers but who must deal with the law's
implications. You should consult a lawyer who understands and specializes in computer law in order
to apply the material of this section to any specific case. And, as most lawyers will advise, ensuring
legal protection by doing things correctly from the beginning is far easierand cheaperthan hiring a
lawyer to sort out a web of conflict after things have gone wrong.



11.1. Protecting Programs and Data

Suppose Martha wrote a computer program to play a video game. She invited some friends over to
play the game and gave them copies so that they could play at home. Steve took a copy and
rewrote parts of Martha's program to improve the quality of the screen display. After Steve shared
the changes with her, Martha incorporated them into her program. Now Martha's friends have
convinced her that the program is good enough to sell, so she wants to advertise and offer the
game for sale by mail. She wants to know what legal protection she can apply to protect her
software.

Copyrights, patents, and trade secrets are legal devices that can protect computers, programs, and
data. However, in some cases, precise steps must be taken to protect the work before anyone else
is allowed access to it. In this section, we explain how each of these forms of protection was
originally designed to be used and how each is currently used in computing. We focus primarily on
U.S. law, to provide examples of intent and consequence. Readers from other countries or doing
business in other countries should consult lawyers in those countries to determine the specific
differences and similarities.

Copyrights

In the United States, the basis of copyright protection is presented in the U.S. Constitution. The
body of legislation supporting constitutional provisions contains laws that elaborate on or expand
the constitutional protections. Relevant statutes include the U.S. copyright law of 1978, which was
updated in 1998 as the Digital Millennium Copyright Act (DMCA) specifically to deal with computers
and other electronic media such as digital video and music. The 1998 changes brought U.S.
copyright law into general conformance with the World Intellectual Property Organization treaty of
1996, an international copyright standard to which 95 countries adhere.

Copyrights are designed to protect the expression of ideas. Thus, a copyright applies to a creative
work, such as a story, photograph, song, or pencil sketch. The right to copy an expression of an
idea is protected by a copyright. Ideas themselves, the law alleges, are free; anyone with a bright
mind can think up anything anyone else can, at least in theory. The intention of a copyright is to
allow regular and free exchange of ideas.

The author of a book translates ideas into words on paper. The paper embodies the expression of
those ideas and is the author's livelihood. That is, an author hopes to earn a living by presenting
ideas in such an appealing manner that others will pay to read them. (The same protection applies
to pieces of music, plays, films, and works of art, each of which is a personal expression of ideas.)
The law protects an individual's right to earn a living, while recognizing that exchanging ideas
supports the intellectual growth of society. The copyright says that a particular way of expressing an
idea belongs to the author. For example, in music, there may be two or three copyrights related to a
single creation: A composer can copyright a song, an arranger can copyright an arrangement of that
song, and an artist can copyright a specific performance of that arrangement of that song. The price
you pay for a ticket to a concert includes compensation for all three creative expressions.



Copyright gives the author the exclusive right to make copies of the expression and sell them to the
public. That is, only the author (or booksellers or others working as the author's agents) can sell
copies of the author's book.

Definition of Intellectual Property

The U.S. copyright law (§102) states that a copyright can be registered for "original works of
authorship fixed in any tangible medium of expression,...from which they can be perceived,
reproduced, or otherwise communicated, either directly or with the aid of a machine or device."
Again, the copyright does not cover the idea being expressed. "In no case does copyright protection
for an original work of authorship extend to any idea." The copyright must apply to an original work,
and it must be in some tangible medium of expression.

Only the originator of the expression is entitled to copyright; if an expression has no determinable
originator, copyright cannot be granted. Certain works are considered to be in the public domain,
owned by the public, by no one in particular. Works of the U.S. government and many other
governments are considered to be in the public domain and therefore not subject to copyright.
Works generally known, such as the phrase "top o' the mornin' to ye," or the song "Happy Birthday
to You," or a recipe for tuna noodle casserole, are also so widely known that it would be very
difficult for someone to trace originality and claim a copyright. Finally, copyright lasts for only a
limited period of time, so certain very old works, such as the plays of Shakespeare, are in the public
domain, their possibility of copyright having expired.

The copyrighted expression must also be in some tangible medium. A story or art work must be
written, printed, painted, recorded (on a physical medium such as a plastic record), stored on a
magnetic medium (such as a disk or tape), or fixed in some other way. Furthermore, the purpose of
the copyright is to promote distribution of the work; therefore, the work must be distributed, even if
a fee is charged for a copy.

Originality of Work

The work being copyrighted must be original to the author. As noted previously, some expressions
in the public domain are not subject to copyright. A work can be copyrighted even if it contains
some public domain material, as long as there is some originality, too. The author does not even
have to identify what is public and what is original.

For example, a music historian could copyright a collection of folksongs even if some are in the
public domain. To be subject to copyright, something in or about the collection has to be original.
The historian might argue that collecting the songs, selecting which ones to include, and putting
them in order was the original part. In this case, the copyright law would not protect the folksongs
(which would be in the public domain) but would instead protect that specific selection and
organization. Someone selling a sheet of paper on which just one of the songs was written would
likely not be found to have infringed on the copyright of the historian. Dictionaries can be
copyrighted in this way, too; the authors do not claim to own the words, just their expression as a
particular dictionary.

Fair Use of Material



The copyright law indicates that the copyrighted object is subject to fair use. A purchaser has the
right to use the product in the manner for which it was intended and in a way that does not interfere
with the author's rights. Specifically, the law allows "fair use of a copyrighted work, including such
use by reproduction in copies… for purposes such as criticism, comment, news reporting, teaching
(including multiple copies for classroom use), scholarship or research." The purpose and effect of
the use on the potential market for or value of the work affect the decision of what constitutes fair
use. For example, fair use allows making a backup copy of copyrighted software you acquired
legally: Your backup copy protects your use against system failures but it doesn't affect the author
because you have no need for nor do you want use of two copies at once. The copyright law usually
upholds the author's right to a fair return for the work, while encouraging others to use the
underlying ideas. Unfair use of a copyrighted item is called piracy.

The invention of the photocopier made it more difficult to enforce fair use. You can argue it is fair
use to make a copy of the Tuscany section of a travel book to carry with you and throw away during
your holiday so you don't have to carry the whole book with you. Today many commercial copy
shops will copy a portionsometimes an entire chapterof a book or a single article out of a journal but
refuse to copy an entire volume, citing fair use. With photocopiers, the quality of the copy degrades
with each copy, as you know if you have ever tried to read a copy of a copy of a copy of a paper.

The copyright law also has the concept of a first sale: after having bought a copyrighted object, the
new owner can give away or resell the object. That is, the copyright owner is entitled to control the
first sale of the object. This concept works fine for books: An author is compensated when a
bookstore sells a book, but the author earns no additional revenue if the book is later resold at a
secondhand store.

Requirements for Registering a Copyright

The copyright is easy to obtain, and mistakes in securing a copyright can be corrected. The first step
of registration is notice. Any potential user must be made aware that the work is copyrighted. Each
copy must be marked with the copyright symbol ©, the word Copyright, the year, and the author's
name. (At one time, these items were followed by All rights reserved to preserve the copyright in
certain South American countries. Adding the phrase now is unnecessary but harmless.)

The order of the elements can be changed, and either © or Copyright can be omitted (but not
both). Each copy distributed must be so marked, although the law will forgive failure to mark copies
if a reasonable attempt is made to recall and mark any ones distributed without a mark.

The copyright must also be officially filed. In the United States a form is completed and submitted to
the Copyright Office, along with a nominal fee and a copy of the work. Actually, the Copyright Office
requires only the first 25 and the last 25 pages of the work, to help it justify a claim in the event of
a court case. The filing must be done within three months after the first distribution of the work. The
law allows filing up to five years late, but no infringements before the time of filing can be
prosecuted.

A U.S. copyright now lasts for 70 years beyond the death of the last surviving author or, if the item
was copyrighted by a company or organization, for 95 years after the date of publication. The
international standard is 50 years after the death of the last author or 50 years from publication.

Copyright Infringement



The holder of the copyright must go to court to prove that someone has infringed on the copyright.
The infringement must be substantial, and it must be copying, not independent work. In theory, two
people might write identically the same song independently, neither knowing the other. These two
people would both be entitled to copyright protection for their work. Neither would have infringed on
the other, and both would have the right to distribute their work for a fee. Again, copyright is most
easily understood for written works of fiction because it is extremely unlikely that two people would
express an idea with the same or similar wording.

The independence of nonfiction works is not nearly so clear. Consider, for example, an arithmetic
book. Long division can be explained in only so many ways, so two independent books could use
similar wording for that explanation. The number of possible alternative examples is limited, so that
two authors might independently choose to write the same simple example. However, it is far less
likely that two textbook authors would have the same pattern of presentation and the same
examples from beginning to end.

Copyrights for Computer Software

The original copyright law envisioned protection for things such as books, songs, and photographs.
People can rather easily detect when these items are copied. The separation between public domain
and creativity is fairly clear. And the distinction between an idea (feeling, emotion) and its
expression is pretty obvious. Works of nonfiction understandably have less leeway for independent
expression. Because of programming language constraints and speed and size efficiency, computer
programs have less leeway still.

Can a computer program be copyrighted? Yes. The 1976 copyright law was amended in 1980 to
include an explicit definition of computer software. However, copyright protection may not be an
especially desirable form of protection for computer works. To see why, consider the algorithm used
in a given program. The algorithm is the idea, and the statements of the programming language are
the expression of the idea. Therefore, protection is allowed for the program statements themselves,
but not for the algorithmic concept: copying the code intact is prohibited, but reimplementing the
algorithm is permitted. Remember that one purpose of copyright is to promote the dissemination of
ideas The algorithm, which is the idea embodied in the computer program, is to be shared.

A second problem with copyright protection for computer works is the requirement that the work be
published. A program may be published by distribution of copies of its object code, for example, on
a disk. However, if the source code is not distributed, it has not been published. An alleged infringer
cannot have violated a copyright on source code if the source code was never published.

Copyrights for Digital Objects

The Digital Millennium Copyright Act (DMCA) of 1998 clarified some issues of digital objects
(such as music files, graphics images, data in a database, and also computer programs), but it left
others unclear.

Among the provisions of the DMCA are these:

Digital objects can be subject to copyright.

It is a crime to circumvent or disable antipiracy functionality built into an object.



It is a crime to manufacture, sell, or distribute devices that disable antipiracy functionality or
that copy digital objects.

However, these devices can be used (and manufactured, sold, or distributed) for research and
educational purposes.

It is acceptable to make a backup copy of a digital object as a protection against hardware or
software failure or to store copies in an archive.

Libraries can make up to three copies of a digital object for lending to other libraries.

So, a user can make reasonable copies of an object in the normal course of its use and as a
protection against system failures. If a system is regularly backed up and so a digital object (such
as a software program) is copied onto many backups, that is not a violation of copyright.

The uncertainty comes in deciding what is considered to be a device to counter piracy. A
disassembler or decompiler could support piracy or could be used to study and enhance a program.
Someone who decompiles an executable program, studies it to infer its method, and then modifies,
compiles, and sells the result is misusing the decompiler. But the distinction is hard to enforce, in
part because the usage depends on intent and context. It is as if there were a law saying it is legal
to sell a knife to cut vegetables but not to harm people. Knives do not know their uses; the users
determine intent and context.

Consider a music CD that you buy for the obvious reason: to listen to again and again. You want to
listen to the music on your MP3 player, a reasonable fair use. But the CD is copy protected, so you
cannot download the music to your computer to transfer it to your MP3 player. You have been
prohibited from reasonable fair use. Furthermore, if you try to do anything to circumvent the
antipiracy protection, you violate the antipiracy provision, nor can you buy a tool or program that
would let you download your own music to your own MP3 player, because such a tool would violate
that provision.

Reaction to the Digital Millennium Copyright Act has not been uniformly favorable. (See, for
example, [MAN98, EFF06].) Some say it limits computer security research. Worse, others point out
it can be used to prevent exactly the free interchange of ideas that copyright was intended to
promote. In 2001 a Princeton University professor, Edward Felten, and students presented a paper
on cryptanalysis of the digital watermarking techniques used to protect digital music files from being
copied. They had been pressured not to present in the preceding April by music industry groups who
threatened legal action under the DMCA.

Digital objects are more problematic than paper ones because they can be copied exactly. Unlike
fifth-generation photocopies, each digital copy of a digital object can be identical to the original.

Copyright protects the right of a creator to profit from a copy of an object, even if no money
changes hands. The Napster situation (see Sidebar 11-1) is an interesting case, closely related to
computer data. It clearly distinguishes between an object and a copy of that object.

An emerging principle is that software, like music, is acquired in a style more like rental than
purchase. You purchase not a piece of software, but the right to use it. Clarifying this position, the
U.S. No Electronic Theft (NET) Act of 1997 makes it a criminal offense to reproduce or distribute
copyrighted works, such as software or digital recordings, even without charge.

The area of copyright protection applied to computer works continues to evolve and is subject to



much interpretation by the courts. Therefore, it is not certain what aspects of a computer work are
subject to copyright. Courts have ruled that a computer menu design can be copyrighted but that
"look and feel" (such as the Microsoft Windows user interface) cannot. But is not the menu design
part of the look and feel?

Although copyright protection can be applied to computer works, the copyright concept was
conceived before the electronic age, and thus the protection may be less than what we desire.
Copyrights do not address all the critical computing system elements that require protection. For
example, a programmer might want to protect an algorithm, not the way that algorithm was
expressed in a particular programming language. Unfortunately, it may be difficult to obtain
copyright protection for an algorithm, at least as copyright law is currently interpreted. Because the
copyright laws are evolving, we must also take care when copyrights are used as excuses, as we
see in Sidebar 11-2.

Sidebar 11-1: Napster: No Right to Copy

Napster is a web-based clearinghouse for musical files. To see why its existence was
problematic, we must first consider its predecessor, MP3. MP3.com was an archive for
digital files of music. Users might obtain the MP3 file of a particular song for their
personal listening pleasure. Eventually, one of the users might upload a file to MP3.com,
which made it available to others. In May 2000, the courts ruled that MP3.com had
illegally copied over 45,000 audio CDs and distributed copyright works illegally.

To address the legal issues, music lovers sought an approach one step away from actual
distribution, thereby being legal under U.S. laws. Instead of being a digital archive,
Napster was designed to be a clearinghouse for individuals. A person might register with
Napster to document that he or she had a digital version of a particular performance by
an artist. A second person would express interest in that recording, and Napster would
connect the two. Thus, Napster never really touched the file itself. Instead, Napster
operated a peer-to-peer file swapping service.

In February 2001, the U.S. 9th Circuit Court ruled that Napster infringed on the
copyrights of various artists. The Recording Industry Association of America brought the
suit, representing thousands of performers.

Yet another step removed is peer-to-peer (P2P) sharing. With P2P you install software
that opens all or part of your disk storage for access by others (and you receive similar
access to other computers). The security implications are staggering but obvious to
anyone reading this book, so we will not list them here. We are concerned now with the
legal and ethical aspects of P2P sharing.

The crux of these cases is what a person buys when purchasing a CD. The copyright law
holds that a person is not buying the music itself, but is buying the right to use the CD.
"Using" the CD means playing it, lending it to a friend, giving it to someone else, or
even reselling it. But the original artist has the right to control distribution of copies of
it, under the principle of first sale.



Patents

Patents are unlike copyrights in that they protect inventions, tangible objects, or ways to make
them, not works of the mind. The distinction between patents and copyrights is that patents were
intended to apply to the results of science, technology, and engineering, whereas copyrights were
meant to cover works in the arts, literature, and written scholarship. A patent can protect a "new
and useful process, machine, manufacture, or composition of matter." The U.S. law excludes "newly
discovered laws of nature… [and] mental processes." Thus "2+2=4" is not a proper subject for a
patent because it is a law of nature. Similarly, that expression is in the public domain and would
thus be unsuitable for a copyright. Finally, you can argue that mathematics is purely mental, just
ideas. Nobody has ever seen or touched a twotwo horses, yes, but not just a two. A patent is
designed to protect the device or process for carrying out an idea, not the idea itself.

Sidebar 11-2: Inappropriate Reference to Copyright Law

Sometimes vendors refer to copyright law inappropriately, to discourage customers
from returning a software package. Kaner and Pels [KAN98] explain that some
companies do not want to be bothered dealing with returns, especially when the
software package it has sold turns out to be defective. The company may publish a
policy, posted on the store wall, window, or web site, noting that it cannot accept
returns because doing so would violate the copyright act. But in fact the act says
nothing about returns. It restricts only software rentals. The case analysis for the
lawsuit between Central Point Software, Inc., and Global Software and Accessories, Inc.,
(resolved in 1995) notes that giving a refund does not turn the sale into a rental.

Requirement of Novelty

If two composers happen to compose the same song independently at different times, copyright law
would allow both of them to have copyright. If two inventors devise the same invention, the patent
goes to the person who invented it first, regardless of who first filed the patent. A patent can be
valid only for something that is truly novel or unique, so there can be only one patent for a given
invention.

An object patented must also be nonobvious. If an invention would be obvious to a person ordinarily
skilled in the field, it cannot be patented. The law states that a patent cannot be obtained "if the
differences between the subject matter sought to be patented and the prior art are such that the
subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains." For example, a piece of
cardboard to be used as a bookmark would not be a likely candidate for a patent because the idea
of a piece of cardboard would be obvious to almost any reader.

Procedure for Registering a Patent

One registers a copyright by filing a brief form, marking a copyright notice on the creative work, and



distributing the work. The whole process takes less than an hour.

To obtain a patent, an inventor must convince the U.S. Patent and Trademark Office that the
invention deserves a patent. For a fee, a patent attorney will research the patents already issued for
similar inventions. This search accomplishes two things. First, it determines that the invention to be
patented has not already been patented (and, presumably, has not been previously invented).
Second, the search can help identify similar things that have been patented. These similarities can
be useful when describing the unique features of the invention that make it worthy of patent
protection. The Patent Office compares an application to those of all other similar patented
inventions and decides whether the application covers something truly novel and nonobvious. If the
office decides the invention is novel, a patent is granted.

Typically, an inventor writes a patent application listing many claims of originality, from very
general to very specific. The Patent Office may disallow some of the more general claims while
upholding some of the more specific ones. The patent is valid for all the upheld claims. The patent
applicant reveals what is novel about the invention in sufficient detail to allow the Patent Office and
the courts to judge novelty; that degree of detail may also tell the world how the invention works,
thereby opening the possibility of infringement.

The patent owner uses the patented invention by producing products or by licensing others to
produce them. Patented objects are sometimes marked with a patent number to warn others that
the technology is patented. The patent holder hopes this warning will prevent others from infringing.

Patent Infringement

A patent holder must oppose all infringement. With a copyright, the holder can choose which cases
to prosecute, ignoring small infringements and waiting for serious infractions where the
infringement is great enough to ensure success in court or to justify the cost of the court case.
However, failing to sue a patent infringementeven a small one or one the patent holder does not
know aboutcan mean losing the patent rights entirely. But, unlike copyright infringement, a patent
holder does not have to prove that the infringer copied the invention; a patent infringement occurs
even if someone independently invents the same thing, without knowledge of the patented
invention.

Every infringement must be prosecuted. Prosecution is expensive and time consuming, but even
worse, suing for patent infringement could cause the patent holder to lose the patent. Someone
charged with infringement can argue all of the following points as a defense against the charge of
infringement.

This isn't infringement. The alleged infringer will claim that the two inventions are sufficiently
different that no infringement occurred.

The patent is invalid. If a prior infringement was not opposed, the patent rights may no longer
be valid.

The invention is not novel. In this case, the supposed infringer will try to persuade the judge
that the Patent Office acted incorrectly in granting a patent and that the invention is nothing
worthy of patent.

The infringer invented the object first. If so, the accused infringer, and not the original patent



holder, is entitled to the patent.

The first defense does not damage a patent, although it can limit the novelty of the invention.
However, the other three defenses can destroy patent rights. Worse, all four defenses can be used
every time a patent holder sues someone for infringement. Finally, obtaining and defending a patent
can incur substantial legal fees. Patent protection is most appropriate for large companies with
substantial research and development (and legal) staffs.

Applicability of Patents to Computer Objects

The Patent Office has not encouraged patents of computer software. For a long time, computer
programs were seen as the representation of an algorithm, and an algorithm was a fact of nature,
which is not subject to patent. An early software patent case, Gottschalk v. Benson, involved a
request to patent a process for converting decimal numbers into binary. The Supreme Court
rejected the claim, saying it seemed to attempt to patent an abstract idea, in short, an algorithm.
But the underlying algorithm is precisely what most software developers would like to protect.

In 1981, two cases (Diamond v. Bradley and Diamond v. Diehr) won patents for a process that used
computer software, a well-known algorithm, temperature sensors, and a computer to calculate the
time to cure rubber seals. The court upheld the right to a patent because the claim was not for the
software or the algorithm alone, but for the process that happened to use the software as one of its
steps. An unfortunate inference is that using the software without using the other patented steps of
the process would not be infringement.

Since 1981 the patent law has expanded to include computer software, recognizing that algorithms,
like processes and formulas, are inventions. The Patent Office has issued thousands of software
patents since these cases. But because of the time and expense involved in obtaining and
maintaining a patent, this form of protection may be unacceptable for a small-scale software writer.

Trade Secrets

A trade secret is unlike a patent or copyright in that it must be kept a secret. The information has
value only as a secret, and an infringer is one who divulges the secret. Once divulged, the
information usually cannot be made secret again.

Characteristics of Trade Secrets

A trade secret is information that gives one company a competitive edge over others. For example,
the formula for a soft drink is a trade secret, as is a mailing list of customers or information about a
product due to be announced in a few months.

The distinguishing characteristic of a trade secret is that it must always be kept secret. Employees
and outsiders who have access to the secret must be required not to divulge the secret. The owner
must take precautions to protect the secret, such as storing it in a safe, encrypting it in a computer
file, or making employees sign a statement that they will not disclose the secret.

If someone obtains a trade secret improperly and profits from it, the owner can recover profits,
damages, lost revenues, and legal costs. The court will do whatever it can to return the holder to



the same competitive position it had while the information was secret and may award damages to
compensate for lost sales. However, trade secret protection evaporates in case of independent
discovery. If someone else happens to discover the secret independently, there is no infringement
and trade secret rights are gone.

Reverse Engineering

Another way trade secret protection can vanish is by reverse engineering. Suppose a secret is the
way to pack tissues in a cardboard box to make one pop up as another is pulled out. Anyone can cut
open the box and study the process. Therefore, the trade secret is easily discovered. In reverse
engineering, one studies a finished object to determine how it is manufactured or how it works.

Through reverse engineering someone might discover how a telephone is built; the design of the
telephone is obvious from the components and how they are connected. Therefore, a patent is the
appropriate way to protect an invention such as a telephone. However, something like a soft drink is
not just the combination of its ingredients. Making a soft drink may involve time, temperature,
presence of oxygen or other gases, and similar factors that could not be learned from a straight
chemical decomposition of the product. The recipe of a soft drink is a closely guarded trade secret.
Trade secret protection works best when the secret is not apparent in the product.

Applicability to Computer Objects

Trade secret protection applies very well to computer software. The underlying algorithm of a
computer program is novel, but its novelty depends on nobody else's knowing it. Trade secret
protection allows distribution of the result of a secret (the executable program) while still keeping
the program design hidden. Trade secret protection does not cover copying a product (specifically a
computer program), so it cannot protect against a pirate who sells copies of someone else's
program without permission. However, trade secret protection makes it illegal to steal a secret
algorithm and use it in another product.

The difficulty with computer programs is that reverse engineering works. Decompiler and
disassembler programs can produce a source version of an executable program. Of course, this
source does not contain the descriptive variable names or the comments to explain the code, but it
is an accurate version that someone else can study, reuse, or extend.

Difficulty of Enforcement

Trade secret protection is of no help when someone infers a program's design by studying its output
or, worse yet, decoding the object code. Both of these are legitimate (that is, legal) activities, and
both cause trade secret protection to disappear.

The confidentiality of a trade secret must be ensured with adequate safeguards. If source code is
distributed loosely or if the owner fails to impress on people (such as employees) the importance of
keeping the secret, any prosecution of infringement will be weakened. Employment contracts
typically include a clause stating that the employee will not divulge any trade secrets received from
the company, even after leaving a job. Additional protection, such as marking copies of sensitive
documents or controlling access to computer files of secret information, may be necessary to
impress people with the importance of secrecy.



Protection for Computer Objects

The previous sections have described three forms of protection: the copyright, patent, and trade
secret laws. Each of these provides a different form of protection to sensitive things. In this section
we consider different kinds of computer objects and describe which forms of protection are most
appropriate for each kind. Table 11-1 shows how these three forms of protection compare in several
significant ways.

Table 11-1. Comparing Copyright, Patent, and Trade Secret
Protection.

  Copyright Patent Trade Secret

Protects Expression of
idea, not idea
itself

Inventionthe way
something works

A secret,
competitive
advantage

Protected object
made public

Yes; intention is
to promote
publication

Design filed at
Patent Office

No

Requirement to
distribute

Yes No No

Ease of filing Very easy, do-it-
yourself

Very complicated;
specialist lawyer
suggested

No filing

Duration Life of human
originator plus 70
years, or total of
95 years for a
company

19 years Indefinite

Legal protection Sue if
unauthorized
copy sold

Sue if invention
copied

Sue if secret
improperly
obtained

Computer artifacts are new and constantly changing, and they are not yet fully appreciated by the
legal system based on centuries of precedent. Perhaps in a few years the issue of what protection is
most appropriate for a given computer object will be more clear-cut. Possibly a new form of
protection or a new use of an old form will apply specifically to computer objects. For example, the
European Union has already enacted model legislation for copyright protection of computer
software. However, one of its goals was to promote software that builds on what others have done.
Thus, the E.U. specifically exempted a product's interface specification from copyright and permitted
others to derive the interface to allow development of new products that could connect via that
interface.



Until the law provides protection that truly fits computer goods, here are some guidelines for using
the law to protect computer objects.

Protecting Hardware

Hardware, such as chips, disk drives, or floppy disk media, can be patented. The medium itself can
be patented, and someone who invents a new process for manufacturing it can obtain a second
patent.

Protecting Firmware

The situation is a little less clear with regard to microcode. Certainly, the physical devices on which
microcode is stored can be patented. Also, a special-purpose chip that can do only one specific task
(such as a floating-point arithmetic accelerator) can probably be patented. However, the data
(instructions, algorithms, microcode, programs) contained in the devices are probably not
patentable.

Can they be copyrighted? Are these the expression of an idea in a form that promotes dissemination
of the idea? Probably not. And assuming that these devices were copyrighted, what would be the
definition of a copy that infringed on the copyright? Worse, would the manufacturer really want to
register a copy of the internal algorithm with the Copyright Office? Copyright protection is probably
inappropriate for computer firmware.

Trade secret protection seems appropriate for the code embedded in a chip. Given enough time, we
can reverse-engineer and infer the code from the behavior of the chip. The behavior of the chip
does not reveal what algorithm is used to produce that behavior. The original algorithm may have
better (or worse) performance (speed, size, fault tolerance) that would not be obvious from reverse
engineering.

For example, Apple Computer is enforcing its right to copyright protection for an operating system
embedded in firmware. The courts have affirmed that computer software is an appropriate subject
for copyright protection and that protection should be no less valid when the software is in a chip
rather than in a conventional program.

Protecting Object Code Software

Object code is usually copied so that it can be distributed for profit. The code is a work of creativity,
and most people agree that object code distribution is an acceptable medium of publication. Thus,
copyright protection seems appropriate.

A copyright application is usually accompanied by a copy of the object being protected. With a book
or piece of music (printed or recorded), it is easy to provide a copy. The Copyright Office has not yet
decided what is an appropriate medium in which to accept object code. A binary listing of the object
code will be taken, but the Copyright Office does so without acknowledging the listing to be
acceptable or sufficient. The Office will accept a source code listing. Some people argue that a
source code listing is not equivalent to an object code listing, in the same way that a French
translation of a novel is different from its original language version. It is not clear in the courts that
registering a source code version provides copyright protection to object code. However, someone



should not be able to take the object code of a system, rearrange the order of the individual
routines, and say that the result is a new system. Without the original source listings, it would be
very difficult to compare two binary files and determine that one was the functional equivalent of
the other simply through rearrangement.

Several court cases will be needed to establish acceptable ways of filing object code for copyright
protection. Furthermore, these cases will have to develop legal precedents to define the equivalence
of two pieces of computer code.

Protecting Source Code Software

Software developers selling to the mass market are reticent to distribute their source code. The
code can be treated as a trade secret, although some lawyers also encourage that it be copyrighted.
(These two forms of protection are possibly mutually exclusive, although registering a copyright will
not hurt.)

Recall that the Copyright Office requires registering at least the first 25 and the last 25 pages of a
written document. These pages are filed with the Library of Congress, where they are available for
public inspection. This registration is intended to assist the courts in determining which work was
registered for copyright protection. However, because they are available for anybody to see, they
are not secret, and copyright registration can expose the secrecy of an ingenious algorithm. A
copyright protects the right to distribute copies of the expression of an idea, not the idea itself.
Therefore, a copyright does not prevent someone from reimplementing an algorithm, expressed
through a copyrighted computer program.

As just described, source code may be the most appropriate form in which to register a copyright
for a program distributed in object form. It is difficult to register source code with the Copyright
Office while still ensuring its secrecy. A long computer program can be rearranged so that the first
and last 25 pages do not divulge much of the secret part of a source program. Embedding small
errors or identifiable peculiarities in the source (or object) code of a program may be more useful in
determining copyright infringement. Again, several court cases must be decided in order to establish
procedures for protection of computer programs in either source or object form.

Protecting Documentation

If we think of documentation as a written work of nonfiction (or, perhaps, fiction), copyright
protection is effective and appropriate for it. Notice that the documentation is distinct from the
program. A program and its documentation must be copyrighted separately. Furthermore, copyright
protection of the documentation may win a judgment against someone who illegally copies both a
program and its documentation.

In cases where a written law is unclear or is not obviously applicable to a situation, the results of
court cases serve to clarify or even extend the words of the law. As more unfair acts involving
computer works are perpetrated, lawyers will argue for expanded interpretations of the law. Thus,
the meaning and use of the law will continue to evolve through judges' rulings. In a sense,
computer technology has advanced much faster than the law has been able to.

Protecting Web Content



Content on the web is media, much the same as a book or photograph, so the most appropriate
protection for it is copyright. This copyright would also protect software you write to animate or
otherwise affect the display of your web page. And, in theory, if your web page contains malicious
code, your copyright covers that, too. As we discussed earlier, a copyrighted work does not have to
be exclusively new; it can be a mixture of new work to which you claim copyright and old things to
which you do not. You may purchase or use with permission a piece of web art, a widget (such as
an applet that shows a spinning globe), or some music. Copyright protects your original works.

Protecting Domain Names and URLs

Domain names, URLs, company names, product names, and commercial symbols are protected by a
trademark, which gives exclusive rights of use to the owner of such identifying marks.



11.2. Information and the Law

Source code, object code, and even the "look and feel" of a computer screen are recognizable, if not
tangible, objects. The law deals reasonably well, although somewhat belatedly, with these things.
But computing is in transition to a new class of object, with new legal protection requirements.
Electronic commerce, electronic publishing, electronic voting, electronic bankingthese are the new
challenges to the legal system. In this section we consider some of these new security
requirements.

Information as an Object

The shopkeeper used to stock "things" in the store, such as buttons, automobiles, and pounds of
sugar. The buyers were customers. When a thing was sold to a customer, the shopkeeper's stock of
that thing was reduced by one, and the customer paid for and left with a thing. Sometimes the
customer could resell the thing to someone else, for more or less than the customer originally paid.

Other kinds of shops provided services that could be identified as things, for example, a haircut,
root canal, or defense for a trial. Some services had a set price (for example, a haircut), although
one provider might charge more for that service than another. A "shopkeeper" (hair stylist, dentist,
lawyer) essentially sold time. For instance, the price of a haircut generally related to the cost of the
stylist's time, and lawyers and accountants charged by the hour for services in which there was no
obvious standard item. The value of a service in a free economy was somehow related to its
desirability to the buyer and the seller. For example, the dentist was willing to sell a certain amount
of time, reserving the rest of the day for other activities. Like a shopkeeper, once a service provider
sold some time or service, it could not be sold again to someone else.

But today we must consider a third category for sale: information. No one would argue against the
proposition that information is valuable. Students are tempted to pay others for answers during
examinations, and businesses pay for credit reports, client lists, and marketing advice. But
information does not fit the familiar commercial paradigms with which we have dealt for many
years. Let us examine why information is different from other commercial things.

Information Is Not Depletable

Unlike tangible things and services, information can be sold again and again without depleting stock
or diminishing quality. For example, a credit bureau can sell the same credit report on an individual
to an unlimited number of requesting clients. Each client pays for the information in the report. The
report may be delivered on some tangible medium, such as paper, but it is the information, not the
medium, that has the value.

This characteristic separates information from other tangible works, such as books, CDs, or art
prints. Each tangible work is a single copy, which can be individually numbered or accounted for. A
bookshop can always order more copies of a book if the stock becomes depleted, but it can sell only
as many copies as it has.



Information Can Be Replicated

The value of information is what the buyer will pay the seller. But after having bought the
information, the buyer can then become a seller and can potentially deprive the original seller of
further sales. Because information is not depletable, the buyer can enjoy or use the information and
can also sell it many times over, perhaps even making a profit.

Information Has a Minimal Marginal Cost

The marginal cost of an item is the cost to produce another one after having produced some
already. If a newspaper sold only one copy on a particular day, that one issue would be prohibitively
expensive because it would have to cover the day's cost (salary and benefits) of all the writers,
editors, and production staff, as well as a share of the cost of all equipment for its production. These
are fixed costs needed to produce a first copy. With this model, the cost of the second and
subsequent copies is minuscule, representing basically just the cost of paper and ink to print them.
Fortunately, newspapers have very large press runs and daily sales, so the fixed costs are spread
evenly across a large number of copies printed. More importantly, publishers have a reasonable idea
of how many copies will sell, so they adjust their budgets to make a profit at the expected sales
volume, and extra sales simply increase the profit. Also, newspapers budget by the month or
quarter or year so that the price of a single issue does not fluctuate based on the number of copies
sold of yesterday's edition.

In theory, a purchaser of a copy of a newspaper could print and sell other copies of that copy,
although doing so would violate copyright law. Few purchasers do that, for four reasons.

The newspaper is covered by copyright law.

The cost of reproduction is too high for the average person to make a profit.

It is not fair to reproduce the newspaper that way.

There is usually some quality degradation in making the copy.

Unless the copy is truly equivalent to the original, many people would prefer to buy an authentic
issue from the news agent, with clear type, quality photos, actual color, and so forth.

The cost of information similarly depends on fixed costs plus costs to reproduce. Typically, the fixed
costs are large whereas the cost to reproduce is extremely small, even less than for a newspaper
because there is no cost for the raw materials of paper and ink. However, unlike a newspaper,
information is far more feasible for a buyer to resell. A copy of digital information can be perfect,
indistinguishable from the original, the same being true for copies of copies of copies of copies.

The Value of Information Is Often Time Dependent

If you knew for certain what the trading price of a share of Microsoft stock would be next week, that
information would be extremely valuable because you could make an enormous profit on the stock
market. Of course, that price cannot be known today. But suppose you knew that Microsoft was



certain to announce something next week that would cause the price to rise or fall. That information
would be almost as valuable as knowing the exact price, and it could be known in advance.
However, knowing yesterday's price for Microsoft stock or knowing that yesterday Microsoft
announced something that caused the stock price to plummet is almost worthless because it is
printed in every major financial newspaper. Thus, the value of information may depend on when you
know it.

Information Is Often Transferred Intangibly

A newspaper is a printed artifact. The news agent hands it to a customer, who walks away with it.
Both the seller and the buyer realize and acknowledge that something has been acquired.
Furthermore, it is evident if the newspaper is seriously damaged; if a serious production flaw
appears in the middle, the defect is easy to point out.

But times are changing. Increasingly, information is being delivered as bits across a network instead
of being printed on paper. If the bits are visibly flawed (that is, if an error detecting code indicates a
transmission error), demonstrating that flaw is easy. However, if the copy of the information is
accurate but the underlying information is incorrect, useless, or not as expected, it is difficult to
justify a claim that the information is flawed.

Legal Issues Relating to Information

These characteristics of information significantly affect its legal treatment. If we want to understand
how information relates to copyright, patent, and trademark laws, we must understand these
attributes. We can note first that information has some, limited legal basis for the protection. For
example, information can be related to trade secrets, in that information is the stock in trade of the
information seller. While the seller has the information, trade secret protection applies naturally to
the seller's legitimate ability to profit from information. Thus, the courts recognize that information
has value.

However, as shown earlier, a trade secret has value only as long as it remains a secret. For
instance, the Coca-Cola Company cannot expect to retain trade secret protection for its formula
after it sells that formula. Also, the trade secret is not secure if someone else can derive or infer it.

Other forms of protection are offered by copyrights and patents. As we have seen earlier, neither of
these applies perfectly to computer hardware or software, and they apply even less well to
information. The pace of change in the legal system is slow, helping to ensure that the changes that
do occur are fair and well considered. The deliberate pace of change in the legal system is about to
be hit by the supersonic rate of change in the information technology industry. Laws do not, and
cannot, control all cyber threats. Let us look at several examples of situations in which information
needs are about to place significant demands on the legal system.

Information Commerce

Information is unlike most other goods traded, even though it has value and is the basis of some
forms of commerce. The market for information is still young, and so far the legal community has
experienced few problems. Nevertheless, several key issues must be resolved.



For example, we have seen that software piracy involves copying information without offering
adequate payment to those who deserve to be paid. Several approaches have been tried to ensure
that the software developer or publisher receives just compensation for use of the software: copy
protection, freeware, and controlled distribution. More recently, software is being delivered as
mobile code or applets, supplied electronically as needed. The applet approach gives the author and
distributor more control. Each applet can potentially be tracked and charged for, and each applet
can destroy itself after use so that nothing remains to be passed for free to someone else. But this
scheme requires a great deal of accounting and tracking, increasing the costs of what might
otherwise be reasonably priced. Thus, none of the current approaches seem ideal, so a legal remedy
will often be needed instead of, or in addition to, the technological ones.

Electronic Publishing

Many newspapers and magazines post a version of their content on the Internet, as do wire services
and television news organizations. For example, the British Broadcasting Company (BBC) and the
Reuters news services have a significant web presence. We should expect that some news and
information will eventually be published and distributed exclusively on the Internet. Indeed,
encyclopedias such as the Britannica and Expedia are mainly web-based services now, rather than
being delivered as the large number of book volumes they used to occupy. Here again the publisher
has a problem ensuring that it receives fair compensation for the work. Cryptography-based
technical solutions are under development to address this problem. However, these technical
solutions must be supported by a legal structure to enforce their use.

Protecting Data in a Database

Databases are a particular form of software that has posed significant problems for legal
interpretation. The courts have had difficulty deciding which protection laws apply to databases.
How does one determine that a set of data came from a particular database (so that the database
owner can claim some compensation)? Who even owns the data in a database if it is public data,
such as names and addresses?

Electronic Commerce

Laws related to trade in goods have evolved literally over centuries. Adequate legal protections exist
to cover defective goods, fraudulent payment, and failure to deliver when the goods are tangible
and are bought through traditional outlets such as stores and catalogs. However, the situation
becomes less clear when the goods are traded electronically.

If you order goods electronically, digital signatures and other cryptographic protocols can provide a
technical protection for your "money." However, suppose the information you order is not suitable
for use or never arrives or arrives damaged or arrives too late to use. How do you prove conditions
of the delivery? For catalog sales, you often have receipts or some paper form of acknowledgment
of time, date, and location.

But for digital sales, such verification may not exist or can be easily modified. These legal issues
must be resolved as we move into an age of electronic commerce.



Protecting Information

Clearly, current laws are inadequate for protecting the information itself and for protecting
electronically based forms of commerce. So how is information to be protected legally? As
described, copyrights, patents, and trade secrets cover some, but not all, issues related to
information. Nevertheless, the legal system does not allow free traffic in information; some
mechanisms can be useful.

Criminal and Civil Law

Statutes are laws that state explicitly that certain actions are illegal. A statute is the result of a
legislative process by which a governing body declares that the new law will be in force after a
designated time. For example, the parliament may discuss issues related to taxing Internet
transactions and pass a law about when relevant taxes must be paid. Often, a violation of a statute
will result in a criminal trial, in which the government argues for punishment because an illegal act
has harmed the desired nature of society. For example, the government will prosecute a murder
case because murder violates a law passed by the government. In the United States, criminal
transgressions are severe, and the law requires that the judge or jury find the accused guilty
beyond reasonable doubt. For this reason, the evidence must be strong and compelling. The goal of
a criminal case is to punish the criminal, usually by depriving him or her of rights in some way (such
as putting the criminal in prison or assessing a fine).

Civil law is a different type of law, not requiring such a high standard of proof of guilt. In a civil
case, an individual, organization, company, or group claims it has been harmed. The goal of a civil
case is restitution: to make the victim "whole" again by repairing the harm. For example, suppose
Fred kills John. Because Fred has broken a law against murder, the government will prosecute Fred
in criminal court for having broken the law and upsetting the order of society. Abigail, the surviving
wife, might be a witness at the criminal trial, hoping to see Fred put in prison. But she may also sue
him in civil court for wrongful death, seeking payment to support her surviving children.

Tort Law

Special legal language describes the wrongs treated in a civil case. The language reflects whether a
case is based on breaking a law or on violating precedents of behavior that have evolved over time.
In other words, sometimes judges may make determinations based on what is reasonable and what
has come before, rather than on what is written in legislation. A tort is harm not occurring from
violation of a statute or from breach of a contract but instead from being counter to the
accumulated body of precedents. Thus, statute law is written by legislators and is interpreted by the
courts; tort law is unwritten but evolves through court decisions that become precedents for cases
that follow. The basic test of a tort is what a reasonable person would do. Fraud is a common
example of tort law in which, basically, one person lies to another, causing harm.

Computer information is perfectly suited to tort law. The court merely has to decide what is
reasonable behavior, not whether a statute covers the activity. For example, taking information
from someone without permission and selling it to someone else as your own is fraud. The owner of
the information can sue you, even though there may be no statute saying that information theft is
illegal. That owner has been harmed by being deprived of the revenue you received from selling the
information.



Because tort law is written only as a series of court decisions that evolve constantly, prosecution of
a tort case can be difficult. If you are involved in a case based on tort law, you and your lawyer are
likely to try two approaches: First, you might argue that your case is a clear violation of the norms
of society, that it is not what a fair, prudent person would do. This approach could establish a new
tort. Second, you might argue that your case is similar to one or more precedents, perhaps drawing
a parallel between a computer program and a work of art. The judge or jury would have to decide
whether the comparison was apt. In both of these ways, law can evolve to cover new objects.

Contract Law

A third form of protection for computer objects is contracts. A contract is an agreement between
two parties. A contract must involve three things:

an offer

an acceptance

a consideration

One party offers something: "I will write this computer program for you for this amount of money."
The second party can accept the offer, reject it, make a counter offer, or simply ignore it. In
reaching agreement with a contract, only an acceptance is interesting; the rest is just the history of
how agreement was reached. A contract must include consideration of money or other valuables.

The basic idea is that two parties exchange things of value, such as time traded for money or
technical knowledge for marketing skills. For example, "I'll wash your car if you feed me dinner" or
"Let's trade these two CDs" are offers that define the consideration. It helps for a contract to be in
writing, but it does not need to be. A written contract can involve hundreds of pages of terms and
conditions qualifying the offer and the consideration.

One final aspect of a contract is its freedom: the two parties have to enter into the contract
voluntarily. If I say "sign this contract or I'll break your arm," the contract is not valid, even if
leaving your arm intact is a really desirable consideration to you. A contract signed under duress or
with fraudulent action is not binding. A contract does not have to be fair, in the sense of equivalent
consideration for both parties, as long as both parties freely accept the conditions.

Information is often exchanged under contract. Contracts are ideal for protecting the transfer of
information because they can specify any conditions. "You have the right to use but not modify this
information," "you have the right to use but not resell this information," or "you have the right to
view this information yourself but not allow others to view it" are three potential contract conditions
that could protect the commercial interests of an owner of information.

Computer contracts typically involve the development and use of software and computerized data.
As we note shortly, there are rules about who has the right to contract for softwareemployers or
employeesand what are reasonable expectations of software's quality.

If the terms of the contract are fulfilled and the exchange of consideration occurs, everyone is
happy. Usually. Difficulties arise when one side thinks the terms have been fulfilled and the other
side disagrees.

As with tort law, the most common legal remedy in contract law is money. You agreed to sell me a



solid gold necklace and I find it is made of brass. I sue you. Assuming the court agreed with me, it
might compel you to deliver a gold necklace to me, but more frequently the court will decide I am
entitled to a certain sum of money. In the necklace case, I might argue first to get back the money I
originally paid you, and then argue for incidental damages from, for example, the doctor I had to
see when your brass necklace turned my skin green, or the embarrassment I felt when a friend
pointed to my necklace and shouted "Look at the cheap brass necklace!" I might also argue for
punitive damages to punish you and keep you from doing such a disreputable thing again. The court
will decide which of my claims are valid and what a reasonable amount of compensation is.

Summary of Protection for Computer Artifacts

This section has presented the highlights of law as it applies to computer hardware, software, and
data. Clearly these few pages only skim the surface; the law has countless subtleties. Still, by now
you should have a general idea of the types of protection available for what things and how to use
them. The differences between criminal and civil law are summarized in Table 11-2.

Table 11-2. Criminal vs. Civil Law.

  Criminal Law Civil Law

Defined by

Statutes Contracts

Common law

Cases brought by

Government Government

Individuals and
companies

Wronged party

Society Individuals and
companies

Remedy

Jail, fine Damages,
typically
monetary

Contracts help fill the voids among criminal, civil, and tort law. That is, in the absence of relevant
statutes, we first see common tort law develop. But people then enhance these laws by writing
contracts with the specific protections they want.

Enforcement of civil lawtorts or contractscan be expensive because it requires one party to sue the



other. The legal system is informally weighted by money. It is attractive to sue a wealthy party who
could pay a hefty judgment. And a big company that can afford dozens of top-quality lawyers will
more likely prevail in a suit than an average individual.



11.3. Rights of Employees and Employers

Employers hire employees to generate ideas and make products. The protection offered by
copyrights, patents, and trade secrets appeals to employers because it applies to the ideas and
products. However, the issue of who owns the ideas and products is complex. Ownership is a
computer security concern because it relates to the rights of an employer to protect the secrecy and
integrity of works produced by the employees. In this section we study the respective rights of
employers and employees to their computer products.

Ownership of Products

Suppose Edye works for a computer software company. As part of her job, she develops a program
to manage windows for a computer screen display. The program belongs to her company because it
paid Edye to write the program: she wrote it as a part of a work assignment. Thus, Edye cannot
market this program herself. She could not sell it even if she worked for a non-software-related
company but developed the software as part of her job. Most employees understand this aspect of
their responsibilities to their employer.

Instead, suppose Edye develops this program in the evenings at home; it is not a part of her job.
Then she tries to market the product herself. If Edye works as a programmer, her employer will
probably say that Edye profited from training and experience gained on the job; at the very least,
Edye probably conceived or thought about the project while at work. Therefore, the employer has an
interest in (that is, owns at least part of) the rights to her program. However, the situation changes
if Edye's primary job does not involve programming. If Edye is a television newscaster, her
employer may have contributed nothing that relates to her computer product. If her job does not
involve programming, she may be free to market any computer product she makes. And if Edye's
spare-time program is an application that tracks genealogy, her employer would probably not want
rights to her program, since it is far from its area of business. (If you are in such a situation
yourself, you should check with your employer to be sure.)

Finally, suppose Edye is not an employee of a company. Rather, she is a consultant who is self-
employed and, for a fee, writes customized programs for her clients. Consider her legal position in
this situation. She may want to use the basic program design, generalize it somewhat, and market
it to others. Edye argues that she thought up, wrote, and tested the program; therefore, it is her
work, and she owns it. Her client argues that it paid Edye to develop the program, and it owns the
program, just as it would own a bookcase she might be paid to build for the station.

Clearly, these situations differ, and interpreting the laws of ownership is difficult. Let us consider
each type of protection in turn.

Ownership of a Patent

The person who owns a work under patent or copyright law is the inventor; in the examples
described earlier, the owner is the programmer or the employer. Under patent law, it is important to



know who files the patent application. If an employee lets an employer patent an invention, the
employer is deemed to own the patent and therefore the rights to the invention.

The employer also has the right to patent if the employee's job functions included inventing the
product. For instance, in a large company a scientist may be hired to do research and development,
and the results of this inventive work become the property of the employer. Even if an employee
patents something, the employer can argue for a right to use the invention if the employer
contributed some resources (such as computer time or access to a library or database) in
developing the invention.

Ownership of a Copyright

Owning a copyright is similar to owning a patent. The author (programmer) is the presumed owner
of the work, and the owner has all rights to an object. However, a special situation known as work
for hire applies to many copyrights for developing software or other products.

Work for Hire

In a work for hire situation, the employer, not the employee, is considered the author of a work.
Work for hire is not easy to identify and depends in part on the laws of the state in which the
employment occurs. The relationship between an employee and employer is considered a work for
hire if some or all of the following conditions are true. (The more of these conditions that are true,
the more a situation resembles work for hire.)

The employer has a supervisory relationship, overseeing the manner in which the creative
work is done.

The employer has the right to fire the employee.

The employer arranges for the work to be done before the work was created (as opposed to
the sale of an existing work).

A written contract between the employer and employee states that the employer has hired the
employee to do certain work.

In the situation in which Edye develops a program on her job, her employer will certainly claim a
work for hire relationship. Then, the employer owns all copyright rights and should be identified in
place of the author on the copyright notice.

Licenses

An alternative to a work for hire arrangement is licensed software. In this situation, the
programmer develops and retains full ownership of the software. In return for a fee, the
programmer grants to a company a license to use the program. The license can be granted for a
definite or unlimited period of time, for one copy or for an unlimited number, to use at one location
or many, to use on one machine or all, at specified or unlimited times. This arrangement is highly
advantageous to the programmer, just as a work for hire arrangement is highly advantageous to



the employer. The choice between work for hire and license is largely what the two parties will
agree to.

Trade Secret Protection

A trade secret is different from either a patent or a copyright in that there is no registered inventor
or author; there is no registration office for trade secrets. In the event a trade secret is revealed,
the owner can prosecute the revealer for damages suffered. But first, ownership must be
established because only the owner can be harmed.

A company owns the trade secrets of its business-confidential data. As soon as a secret is
developed, the company becomes the owner. For example, as soon as sales figures are
accumulated, a company has trade secret right to them, even if the figures are not yet compiled,
totaled, summarized, printed, or distributed. As with copyrights, an employer may argue about
having contributed to the development of trade secrets. If your trade secret is an improved sorting
algorithm and part of your job involves investigating and testing sorting algorithms, your employer
will probably claim at least partial ownership of the algorithm you try to market.

Employment Contracts

An employment contract often spells out rights of ownership. But sometimes the software developer
and possible employer have no contract. Having a contract is desirable both for employees and
employers so that both will understand their rights and responsibilities.

Typically, an employment contract specifies that the employee be hired to work as a programmer
exclusively for the benefit of the company. The company states that this is a work for hire situation.
The company claims all rights to any programs developed, including all copyright rights and the
right to market. The contract may further state that the employee is receiving access to certain
trade secrets as a part of employment, and the employee agrees not to reveal those secrets to
anyone.

More restrictive contracts (from the employee's perspective) assign to the employer rights to all
inventions (patents) and all creative works (copyrights), not just those that follow directly from
one's job. For example, suppose an employee is hired as an accountant for an automobile company.
While on the job, the employee invents a more efficient way to burn fuel in an automobile engine.
The employer would argue that the employee used company time to think about the problem, and
therefore the company was entitled to this product. An employment contract transferring all rights
of inventions to the employer would strengthen the case even more.

An agreement not to compete is sometimes included in a contract. The employee states that simply
having worked for one employer will make the employee very valuable to a competitor. The
employee agrees not to compete by working in the same field for a set period of time after
termination. For example, a programmer who has a very high position involving the design of
operating systems would understandably be familiar with a large body of operating system design
techniques. The employee might memorize the major parts of a proprietary operating system and
be able to write a similar one for a competitor in a very short time. To prevent this, the employer
might require the employee not to work for a competitor (including working as an independent
contractor). Agreements not to compete are not always enforceable in law; in some states the
employee's right to earn a living takes precedence over the employer's rights.





11.4. Redress for Software Failures

So far, we have considered programs, algorithms, and data as objects of ownership. But these
objects vary in quality, and some of the legal issues involved with them concern the degree to which
they function properly or well. In fact, people have legitimate differences of opinion on what
constitutes "fair," "good," and "prudent" as these terms relate to computer software and
programmers and vendors. The law applies most easily when there is broad consensus. In this
section we look closely at the role that quality plays in various legal disputes. At the same time, we
also look at the ethical side of software quality, foreshadowing a broader discussion on ethics later
in this chapter.

Program development is a human process of design, creation, and testing, involving a great deal of
communication and interaction. For these reasons, there will always be errors in the software we
produce. We sometimes expect perfect consumer products, such as automobiles or lawn mowers. At
other times, we expect products to be "good enough" for use, in that most instances will be
acceptable. We do not mind variation in the amount of cheese in our pizza or a slight flaw in the
glaze on a ceramic tile. If an instance of a product is not usable, we expect the manufacturer to
provide some appropriate remedy, such as repair or replacement. In fact, the way in which these
problems are handled can contribute to a vendor's reputation for quality service; on the rare
occasions when there is a problem, the vendor will promptly and courteously make amends.

But the situation with software is very different. To be fair, an operating system is a great deal more
complex than many consumer products, and more opportunities for failure exist. For this reason,
this section addresses three questions:

• What are the legal issues in selling correct and usable software?

• What are the moral or ethical issues in producing correct and usable software?

• What are the moral or ethical issues in finding, reporting, publicizing, and fixing
flaws?

In some ways, the legal issues are evolving. Everyone acknowledges that all vendors should
produce good software, but that does not always happen. The more difficult concerns arise in the
development and maintenance communities about what to do when faults are discovered.

Selling Correct Software

Software is a product. It is built with a purpose and an audience in mind, and it is purchased by a
consumer with an intended use in an expected context. And the consumer has some expectations of
a reasonable level of quality and function. In that sense, buying software is like buying a radio. If
you buy a faulty radio, you have certain legal rights relating to your purchase and you can enforce
them in court if necessary. You may have three reactions if you find something wrong with the



radio: You want your money back, you want a different (not faulty) radio, or you want someone to
fix your radio. With software you have the same three possibilities, and we consider each one in
turn.

To consider our alternatives with software, we must first investigate the nature of the faulty code.
Why was the software bad? One possibility is that it was presented on a defective medium. For
example, the CD may have had a flaw and you could not load the software on your computer. In
this case, almost any merchant will exchange the faulty copy with a new one with little argument.
The second possibility is that the software worked properly, but you don't like it when you try it out.
It may not do all it was advertised to do. Or you don't like the "look and feel," or it is slower than
you expected it to be, or it works only with European phone numbers, not the phone scheme in your
country. The bottom line is that there is some attribute of the software that disappoints you, and
you do not want this software.

The final possibility is that the software malfunctions, so you cannot use it with your computer
system. Here, too, you do not want the software and hope to return it.

I Want a Refund

If the item were a radio, you would have the opportunity to look at it and listen to it in the shop, to
assess its sound quality, measure its size (if it is to fit in a particular space), and inspect it for flaws.
Do you have that opportunity with a program? Probably not.

The U.S. Uniform Commercial Code (UCC) governs transactions between buyers and sellers in the
United States. Section 2-601 says that "if the goods or the tender of delivery fail in any respect to
conform to the contract, the buyer may reject them." You may have had no opportunity to try out
the software before purchase, particularly on your computer. Your inspection often could not occur
in the store (stores tend to frown on your bringing your own computer, opening their shrink-
wrapped software, installing the software on your machine, and checking the features). Even if you
could have tried the software in the store, you may not have been able to assess how it works with
the other applications with which it must interface. So you take home the software, only to find that
it is free from flaws but does not fit your needs. You are entitled to a reasonable period to inspect
the software, long enough to try out its features. If you decide within a reasonably short period of
time that the product is not for you, you can cite UCC §2-601 to obtain a refund.

More often, though, the reason you want to return the software is because it simply is not of high
enough quality. Unfortunately, correctness of software is more difficult to enforce legally.

I Want It to Be Good

Quality demands for mass market software are usually outside the range of legal enforcement for
several reasons.

Mass-market software is seldom totally bad. Certain features may not work, and faults may
prevent some features from working as specified or as advertised. But the software works for
most of its many users or works most of the time for all of its users.

The manufacturer has "deep pockets." An individual suing a major manufacturer could find
that the manufacturer has a permanent legal staff of dozens of full-time attorneys. The cost to



the individual of bringing a suit is prohibitive.

Legal remedies typically result in monetary awards for damages, not a mandate to fix the
faulty software.

The manufacturer has little incentive to fix small problems. Unless a problem will seriously
damage a manufacturer's image or possibly leave the manufacturer open to large damage
amounts, there is little justification to fix problems that affect only a small number of users or
that do not render the product unfit for general use.

Thus, legal remedies are most appropriate only for a large complaint, such as one from a
government or one representing a large class of dissatisfied and vocal users. The "fit for use"
provision of the UCC dictates that the product must be usable for its intended purpose; software
that doesn't work is clearly not usable. The UCC may help you get your money back, but you may
not necessarily end up with working software.

Some manufacturers are very attentive to their customers. When flaws are discovered, the
manufacturers promptly investigate the problems and fix serious ones immediately, perhaps holding
smaller corrections for a later release. These companies are motivated more by public image or
moral obligation than by legal requirement.

Trope [TRO04] proposes a warranty of cyberworthiness. The warranty would state that the
manufacturer made a diligent search for security vulnerabilities and had removed all known critical
ones. Furthermore, the vendor will continue to search for vulnerabilities after release and, on
learning of any critical ones, will contact affected parties with patches and work-arounds. Now, a
maker is potentially liable for all possible failings, and a major security-critical flaw could be very
costly. Trope's approach limits the exposure to addressing known defects reasonably promptly.

Reporting Software Flaws

Who should publicize flawsthe user or the manufacturer? A user might want the recognition of
finding a flaw; delaying the release might let someone else get that credit. A manufacturer might
want to ignore a problem or fail to credit the user. And either could say the other was wrong. And
how should these flaws be reported? Several different viewpoints exist.

What You Don't Know Can Hurt You

The several variants of Code Red in 2001 sparked a debate about whether we should allow full
disclosure of the mechanisms that allow malicious code to enter and thrive in our systems. For
example, the first variant of Code Red was relatively benign, but the third and fourth variants were
powerful. When the first Code Red variant appeared, it was studied by many security analysts,
including those at eEye Digital Security in Aliso Viejo, California. In an effort to pressure vendors
and software managers to take seriously the threats they represent, eEye practices full disclosure of
what it knows about security flaws.

However, some observers claim that such open sharing of information is precisely what enables
hackers to learn about vulnerabilities and then exploit them. Several developers suspect that eEye's
openness about Code Red enabled the more powerful variants to be written and disseminated
[HUL01].



Scott Culp [CUL01], Microsoft's manager of Windows security, distinguishes between full disclosure
and full exposure; he thinks that source code or detailed explanations of a vulnerability's concept
should be protected. And many security analysts encourage users and managers to apply patches
right away, closing security holes before they can be exploited. But as we saw in Sidebar 3-5, the
patches require resources and may introduce other problems while fixing the initial one. Each
software-using organization must analyze and balance the risks and cost of not acting with the risks
and costs of acting right away.

The Vendor's Interests

Microsoft argues that producing one patch for each discovered vulnerability is inefficient both for the
vendor and the user. The vendor might prefer to bundle several patches into a single service pack
or, for noncritical vulnerabilities, to hold them until the next version. So, Microsoft would like to
control if or when the report of a vulnerability goes public.

Craig Mundie, Microsoft's Chief Technology Officer, suggests a stronger reason to minimize
disclosure of vulnerability information. "Every time we become explicit about a problem that exists
in a legacy product, the response to our disclosure is to focus the attack. In essence we end up
funneling them to the vulnerability." [FIS02a] Scott Culp argued [CUL01] that "a vendor's
responsibility is to its customers, not to a self-described security community." He opposed what he
called "information anarchy,… the practice of deliberately publishing explicit, step-by-step
instructions for exploiting security vulnerabilities without regard for how the information may be
used." But he also acknowledged that the process of developing, distributing, and applying patches
is imperfect, and his own company "need[s] to make it easier for users to keep their systems
secure."

Users' Interests

David Litchfield, a security researcher noted for locating flaws in vendors' programs, announced in
May 2002 that he would no longer automatically wait for a vendor's patch before going public with a
vulnerability announcement. Citing "lethargy and an unwillingness to patch security problems as and
when they are found," [FIS02b] Litchfield criticized the approach of holding fixes of several
vulnerabilities until enough had accumulated to warrant a single service pack. He makes the point
that publicized or not, the vulnerabilities still exist. If one reporter has found the problem, so too
could any number of malicious attackers. For a vendor to fail to provide timely patches to
vulnerabilities of which the vendor is aware leaves the users wide open to attacks of which the user
may be unaware.

Litchfield's solution is to put pressure on the vendor. He announced he would give vendors one
week's notice of a vulnerability before publicizing the vulnerabilitybut not the details of how to
exploit itto the world.

"Responsible" Vulnerability Reporting

Clearly the conflicting interests of vendors and users must meet at some compromise position. (For
an example of how vulnerability disclosure does not work, see Sidebar 11-3.) Christey and Wysopal
[CHR02] have proposed a vulnerability reporting process that meets constraints of timeliness, fair
play, and responsibility. They call the user reporting a suspected vulnerability a "reporter" and the



manufacturer the "vendor." A third partysuch as a computer emergency response centercalled a
"coordinator" could also play a role when a conflict or power issue arises between reporter and
vendor. Basically, the process requires reporter and vendor to do the following:

Sidebar 11-3: Flaw? What Flaw? I Don't See a Flaw.

In July 2005, security researcher Michael Lynn made a presentation to the Black Hat
security conference. As a researcher for Internet Security Systems (ISS) he had
discovered what he considered serious vulnerabilities in the underlying operating
system IOS on which Cisco based most of its firewall and router products. ISS had
made Cisco aware of the vulnerabilities a month before the presentation, and the two
companies had been planning a joint presentation there but canceled the presentation.

Concerned that users were in jeopardy because the vulnerability could be discovered by
attackers, Lynn presented enough details of the vulnerability for users to appreciate its
severity. ISS had tried to block Lynn's presentation or remove technical details, but he
resigned from ISS rather than be muzzled. Cisco tried to block the presentation, as well,
demanding that 20 pages be torn from the conference proceedings. Various sites posted
the details of the presentation, lawsuits ensued, and the copies were withdrawn in
settlement of the suits. The incident was a public relations nightmare for both Cisco and
ISS. (For an overview of the facts of the situation, see Bank [BAN05].)

The issue remains: How far can or should a company go to limit vulnerability disclosure?
On the one hand, a company wants to limit disclosure, while on the other hand users
want to know of a potential weakness that might affect them. Researchers fear
companies will not act quickly to close vulnerabilities, thus leaving customers at risk.
Regardless of the points, the legal system is not the way to address disclosure.

Computer security is not the only domain in which these debates arise. Matt Blaze, a
computer security researcher with AT&T Labs investigated physical locks and master
keys [BLA03]; these are locks for organizations such as college dormitories and office
buildings, in which individuals have keys to single rooms, and a few maintenance or
other workers have a single master key that will open all locks. Blaze describes a
technique that can find a master key for a class of locks with relatively little effort
because of a characteristic (vulnerability?) of these locks; the attack finds the master
key one pin at a time. According to Schneier [SCH03] and Blaze, the characteristic was
well known to locksmiths and lock-picking criminals, but not to the general public
(users). A respected cryptographer, Blaze came upon his strategy naturally: His
approach is analogous to a standard cryptologic attack in which one seeks to deduce the
cryptographic key one bit at a time.

Blaze confronted an important question: Is it better to document a technique known by
manufacturers and attackers, but not to users, or to leave users with a false sense of
security? He opted for disclosure. Schneier notes that this weakness has been known for
over 100 years and that several other master key designs are immune to Blaze's attack.
But those locks are not in widespread use because customers are unaware of the risk
and thus do not demand stronger products. Says Schneier, "I'd rather have as much
information as I can to make informed decisions about security."



The vendor must acknowledge a vulnerability report confidentially to the reporter.

The vendor must agree that the vulnerability exists (or argue otherwise) confidentially to the
reporter.

The vendor must inform users of the vulnerability and any available countermeasures within
30 days or request additional time from the reporter as needed.

After informing users, the vendor may request from the reporter a 30-day quiet period to allow
users time to install patches.

At the end of the quiet period the vendor and reporter should agree upon a date at which time
the vulnerability information may be released to the general public.

The vendor should credit the reporter with having located the vulnerability.

If the vendor does not follow these steps, the reporter should work with a coordinator to
determine a responsible way to publicize the vulnerability.

Such a proposal can only have the status of a commonly agreed-on process, since there is no
authority that can enforce adherence on either users or vendors.

Quality Software

Boris Beizer, a consultant, has said, "Software should be shipped with bugs. The zero-defect notion
is mythological and theoretically unachievable. That doesn't mean shipping ill-behaved or useless
software; it means being open with users about the bugs we find, sending notices or including the
bug list, publishing the workarounds when we have them, and being honest and open about what
we have and haven't yet tested and when we do and don't plan to test in the near future." [COF02]

The whole debate over how and when to disclose vulnerabilities avoids the real issue. The world
does not need faster patches, it needs better software with fewer vulnerabilities after delivery to the
user. Forno [FOR01] says, "The most significant danger and vulnerability facing the Wired World is
continuing to accept and standardize corporate and consumer computer environments on
technology that's proven time and again to be insecure, unstable, and full of undocumented bugs
('features') that routinely place the Internet community at risk."

In January 2002, Bill Gates, CEO of Microsoft, announced that producing quality software with
minimal defects was his highest priority for Microsoft, ahead of new functionality. His manager of
development of the XP operating system announced he was requiring programmers involved in
development of XP to attend a course in secure programming. Did the initiative work? In one five-
day period in June 2002, Microsoft released six separate patches for security vulnerabilities. In
November 2004, Microsoft went to once-a-month patch releases and has distributed an average of
two to three new critical patches each month since then.

The issue is not how promptly a vulnerability is patched or how much detail is released with a
vulnerability announcement. The issue is that, as the Anderson report [AND72] noted over three
decades ago, "penetrate and patch" is a fatally flawed concept: after a flaw was patched, the
penetrators always found other old flaws or new flaws introduced because of or in the patch. The



issue is technical, psychological, sociological, managerial, and economic. Until we produce
consistently solid software, our entire computing infrastructure is seriously at risk.



11.5. Computer Crime

The law related to contracts and employment is difficult, but at least employees, objects, contracts,
and owners are fairly standard entities for which legal precedents have been developed over
centuries. The definitions in copyright and patent law are strained when applied to computing
because old forms must be made to fit new objects; for these situations, however, cases being
decided now are establishing legal precedents. But crimes involving computers are an area of the
law that is even less clear than the other areas. In this section we study computer crime and
consider why new laws are needed to address some of its problems.

Why a Separate Category for Computer Crime Is Needed

Crimes can be organized into certain recognized categories, including murder, robbery, and littering.
We do not separate crime into categories for different weapons, such as gun crime or knife crime,
but we separate crime victims into categories, depending on whether they are people or other
objects. Nevertheless, driving into your neighbor's picture window can be as bad as driving into his
evergreen tree or pet sheep. Let us look at an example to see why these categories are not
sufficient and why we need special laws relating to computers as subjects and objects of crime.

Rules of Property

Parker and Nycom [PAR84] describe the theft of a trade secret proprietary software package. The
theft occurred across state boundaries by means of a telephone line; this interstate aspect is
important because it means that the crime is subject to federal law as well as state law. The
California Supreme Court ruled that this software acquisition was not theft because

Implicit in the definition of "article" in Section 499c(a) is that it must be something tangible…
Based on the record here, the defendant did not carry any tangible thing… from the computer
to his terminal unless the impulses which defendant allegedly caused to be transmitted over
the telephone wire could be said to be tangible. It is the opinion of the Court that such
impulses are not tangible and hence do not constitute an "article."

The legal system has explicit rules about what constitutes property. Generally, property is tangible,
unlike magnetic impulses. For example, unauthorized use of a neighbor's lawn mower constitutes
theft, even if the lawn mower was returned in essentially the same condition as it was when taken.
To a computer professional, taking a copy of a software package without permission is clear-cut
theft. Fortunately, laws evolve to fit the times, and this interpretation from the 1980s has been
refined so that bits are now recognized items of property.

A similar problem arises with computer services. We would generally agree that unauthorized access
to a computing system is a crime. For example, if a stranger enters your garden and walks around,
even if nothing is touched or damaged, the act is considered trespassing. However, because access
by computer does not involve a physical object, not all courts punish it as a serious crime.



Rules of Evidence

Computer printouts have been used as evidence in many successful prosecutions. Frequently-used
are computer records generated in the ordinary course of operation, such as system audit logs.

Under the rules of evidence, courts prefer an original source document to a copy, under the
assumption that the copy may be inaccurate or may have been modified in the copying process. The
biggest difficulty with computer-based evidence in court is being able to demonstrate the
authenticity of the evidence. Law enforcement officials operate under a chain of custody
requirement: From the moment a piece of evidence is taken until it is presented in court, they track
clearly and completely the order and identities of the people who had personal custody of that
object. The reason for the chain of custody is to ensure that nobody has had the opportunity to alter
the evidence in any way before its presentation in court. With computer-based evidence, it can be
difficult to establish a chain of custody. If a crime occurred on Monday but was not discovered until
Wednesday, who can verify that the log file was not altered? In fact, it probably was altered many
times as different processes generated log entries. The issue is to demonstrate convincingly that the
log entry for 2:37 on Monday does in fact correspond to the event that took place at that time on
Monday, not some attempt on Thursday to plant a false clue long after the crime took place.

Threats to Integrity and Confidentiality

The integrity and secrecy of data are also issues in many court cases. Parker and Nycom [PAR84]
describe a case in which a trespasser gained remote access to a computing system. The computing
system contained confidential records about people, and the integrity of the data was important.
The prosecution of this case had to be phrased in terms of theft of computer time and valued as
such, even though that was insignificant compared with loss of privacy and integrity. Why? Because
the law as written recognized theft of computer time as a loss, but not loss of privacy or destruction
of data.

Now, however, several federal and state laws recognize the privacy of data about individuals. For
example, disclosing grades or financial information without permission is a crime, and tort law would
recognize other cases of computer abuse.

Value of Data

In another computer crime, a person was found guilty of having stolen a substantial amount of data
from a computer data bank. However, the court determined that the "value" of that data was the
cost of the paper on which it was printed, which was only a few dollars. Because of that valuation,
this crime was classified as a misdemeanor and considered to be a minor crime. Fortunately, the
courts have since determined that information and other intangibles can have significant value.

The concept of what we value and how we determine its value is key to understanding the problems
with computer-based law. In most economies, paper money is accepted as a valuable commodity,
even if the paper on which it is printed is worth only a few cents. Cash is easy to value: A dollar bill
is worth one dollar. But consider the way we determine the value of a company's assets. Usually,
the valuation reflects the amount of money a person or organization is willing to pay for it. For
example, the assets of a credit bureau are its files. Banks and insurance companies willingly pay
$20 or more for a credit report, even though the paper itself is worth less than a dollar. For a credit



bureau, the amount a willing customer will pay for a report is a fair estimate of the report's value;
this estimate is called the market value of the report. However, the credit bureau (or any company)
has other assets that are not sold but are just as valuable to the company's financial viability. For
instance, a confidential list of clients has no market value that can be established, but the list may
be essential. Its value is apparent only when a loss is suffered, such as when the secret information
is made available to a competitor. Over time, the legal system will find ways to place a value on
data that is representative of its value to those who use it. Although these methods of valuation are
accepted in civil suits, they have not yet been widely accepted in criminal prosecution.

Acceptance of Computer Terminology

The law is also lagging behind technology in its acceptance of definitions of computing terms. For
example, according to a federal statute, it is unlawful to commit arson within a federal enclave (18
USC 81). Part of that act relates to "machinery or building material or supplies" in the enclave, but
court decisions have ruled that a motor vehicle located within a federal enclave at the time of the
burning was not included under this statute. Because of that ruling, it is not clear whether computer
hardware constitutes "machinery" in this context; "supplies" almost certainly does not include
software. Computers and their software, media, and data must be understood and accepted by the
legal system.

Why Computer Crime Is Hard to Define

From these examples, it is clear that the legal community has not accommodated advances in
computers as rapidly as has the rest of society. Some people in the legal process do not understand
computers and computing, so crimes involving computers are not always treated properly. Creating
and changing laws are slow processes, intended to involve substantial thought about the effects of
proposed changes. This deliberate process is very much out of pace with a technology that is
progressing as fast as computing.

Adding to the problem of a rapidly changing technology, a computer can perform many roles in a
crime. A particular computer can be the subject, object, or medium of a crime. A computer can be
attacked (attempted unauthorized access), used to attack (impersonating a legitimate node on a
network), and used as a means to commit crime (Trojan horse or fake login). Computer crime
statutes must address all of these evils.

Why Computer Crime Is Hard to Prosecute

Even when everyone acknowledges that a computer crime has been committed, computer crime is
hard to prosecute for the following reasons.

Lack of understanding. Courts, lawyers, police agents, or jurors do not necessarily understand
computers. Many judges began practicing law before the invention of computers, and most
began before the widespread use of the personal computer. Fortunately, computer literacy in
the courts is improving as judges, lawyers, and police officers use computers in their daily
activities.



Lack of physical evidence. Police and courts have for years depended on tangible evidence,
such as fingerprints. As readers of Sherlock Holmes know, seemingly minuscule clues can lead
to solutions to the most complicated crimes (or so Doyle would have you believe). But with
many computer crimes there simply are no fingerprints and no physical clues of any sort.

Lack of recognition of assets. We know what cash is, or diamonds, or even negotiable
securities. But are twenty invisible magnetic spots really equivalent to a million dollars? Is
computer time an asset? What is the value of stolen computer time if the system would have
been idle during the time of the theft?

Lack of political impact. Solving and obtaining a conviction for a murder or robbery is popular
with the public, and so it gets high priority with prosecutors and police chiefs. Solving and
obtaining a conviction for an obscure high-tech crime, especially one not involving obvious and
significant loss, may get less attention. However, as computing becomes more pervasive, the
visibility and impact of computer crime will increase.

Complexity of case. Basic crimes that everyone understands, such as murder, kidnapping, or
auto theft, can be easy to prosecute. A complex money-laundering or tax fraud case may be
more difficult to present to a jury because jurors have a hard time following a circuitous
accounting trail. But the hardest crime to present may be a high-tech crime, described, for
example, as root access by a buffer overflow in which memory was overwritten by other
instructions, which allowed the attacker to copy and execute code at will and then delete the
code, eliminating all traces of entry (after disabling the audit logging, of course).

Age of defendant.. Many computer crimes are committed by juveniles. Society understands
immaturity and disregards even very serious crimes by juveniles because the juveniles did not
understand the impact of their actions. A more serious, related problem is that many adults
see juvenile computer crimes as childhood pranks, the modern equivalent of tipping over an
outhouse.

Even when there is clear evidence of a crime, the victim may not want to prosecute because of
possible negative publicity. Banks, insurance companies, investment firms, the government, and
healthcare groups think their trust by the public will be diminished if a computer vulnerability is
exposed. Also, they may fear repetition of the same crime by others: so-called copycat crimes. For
all of these reasons, computer crimes are often not prosecuted.

Examples of Statutes

As a few examples from the 1980s have pointed out, in the early days, prosecution of computer
crimes was hampered by lack of clear appreciation of the nature or seriousness of crime involving
computers. Although theft, harm to persons, and damage to property have been crimes for a long
time, in some cases new laws were useful to make it obvious to the courts what computer-related
behavior was unacceptable. Most states now have laws covering computer crime of one sort or
another. Also, computer-related crimes now appear in sentencing guidelines.

In this section we highlight a few of the laws defining aspects of crime against or using computers.

U.S. Computer Fraud and Abuse Act



The primary federal statute, 18 USC 1030, was enacted in 1984 and has been amended several
times since. This statute prohibits

unauthorized access to a computer containing data protected for national defense or foreign
relations concerns

unauthorized access to a computer containing certain banking or financial information

unauthorized access, use, modification, destruction, or disclosure of a computer or information
in a computer operated on behalf of the U.S. government

accessing without permission a "protected computer," which the courts now interpret to
include any computer connected to the Internet

computer fraud

transmitting code that causes damage to a computer system or network

trafficking in computer passwords

Penalties range from $5,000 to $100,000 or twice the value obtained by the offense, whichever is
higher, or imprisonment from 1 year to 20 years, or both.

U.S. Economic Espionage Act

This 1996 act outlaws use of a computer for foreign espionage to benefit a foreign country or
business or theft of trade secrets.

U.S. Electronic Funds Transfer Act

This law prohibits use, transport, sale, receipt, or supply of counterfeit, stolen, altered, lost, or
fraudulently obtained debit instruments in interstate or foreign commerce.

U.S. Freedom of Information Act

The Freedom of Information Act provides public access to information collected by the executive
branch of the federal government. The act requires disclosure of any available data, unless the data
fall under one of several specific exceptions, such as national security or personal privacy. The law's
original intent was to release to individuals any information the government had collected on them.
However, more corporations than individuals file requests for information as a means of obtaining
information about the workings of the government. Even foreign governments can file for
information. This act applies only to government agencies, although similar laws could require
disclosure from private sources. The law's effect is to require increased classification and protection
for sensitive information.

U.S. Privacy Act



The Privacy Act of 1974 protects the privacy of personal data collected by the government. An
individual is allowed to determine what data have been collected on him or her, for what purpose,
and to whom such information has been disseminated. An additional use of the law is to prevent one
government agency from accessing data collected by another agency for another purpose. This act
requires diligent efforts to preserve the secrecy of private data collected.

U.S. Electronic Communications Privacy Act

This law, enacted in 1986, protects against electronic wiretapping. There are some important
qualifications. First, law enforcement agencies are always allowed to obtain a court order to access
communications or records of them. And an amendment to the act requires Internet service
providers to install equipment as needed to permit these court-ordered wiretaps. Second, the act
allows Internet service providers to read the content of communications in order to maintain service
or to protect the provider itself from damage. So, for example, a provider could monitor traffic for
viruses.

GrammLeachBliley

The U.S. GrammLeachBliley Act (Public Law 106-102) of 1999 covers privacy of data for customers
of financial institutions. Each institution must have a privacy policy of which it informs its customers,
and customers must be given the opportunity to reject any use of the data beyond the necessary
business uses for which the private data were collected. The act and its implementation regulations
also require financial institutions to undergo a detailed security-risk assessment. Based on the
results of that assessment, the institution must adopt a comprehensive "information security
program" designed to protect against unauthorized access to or use of customers' nonpublic
personal information.

HIPAA

In 1996, Public Law 104-191, the Health Insurance Portability and Accountability Act (HIPAA) was
passed in the United States. Although the first part of the law concerned the rights of workers to
maintain health insurance coverage after their employment was terminated, the second part of the
law required protection of the privacy of individuals' medical records. HIPAA and its associated
implementation standards mandate protection of "individually identifiable healthcare information,"
that is, medical data that can be associated with an identifiable individual. To protect the privacy of
individuals' healthcare data, healthcare providers must perform standard security practices, such as
the following:

Enforce need to know.

Ensure minimum necessary disclosure.

Designate a privacy officer.

Document information security practices.

Track disclosures of information.



Develop a method for patients' inspection and copying of their information.

Train staff at least every three years.

Perhaps most far-reaching is the requirement for healthcare organizations to develop "business
associate contracts," which are coordinated agreements on how data shared among entities will be
protected. This requirement could affect the sharing and transmittal of patient information among
doctors, clinics, laboratories, hospitals, insurers, and any other organizations that handle such data.

USA Patriot Act

Passed in 2001 in reaction to terrorist attacks in the United States, the USA Patriot Act includes a
number of provisions supporting law enforcement's access to electronic communications. Under this
act, law enforcement need only convince a court that a target is probably an agent of a foreign
power in order to obtain a wiretap order. The main computer security provision of the Patriot Act is
an amendment to the Computer Fraud and Abuse Act:

Knowingly causing the transmission of code resulting in damage to a protected computer is a
felony.

Recklessly causing damage to a computer system as a consequence of unauthorized access is
also a felony.

Causing damage (even unintentionally) as a consequence of unauthorized access to a
protected computer is a misdemeanor.

The CAN SPAM Act

Unsolicited "junk" e-mail or spam is certainly a problem. Analysts estimate that as much as 70
percent of all e-mail traffic is spam.

To address pressure from their constituents, in 2003 U.S. lawmakers passed the Controlling the
Assault of Non-Solicited Pornography and Marketing (CAN SPAM) Act. (One wonders how many staff
members it took to find a sequence of words to yield that acronym.) Key requirements of the law
are these:

It bans false or misleading header information.

It prohibits deceptive subject lines.

It requires commercial e-mail to give recipients an opt-out method.

It bans sale or transfer of e-mail addresses of people who have opted out.

It requires that commercial e-mail be identified as an advertisement.

Critics of the law point out that it preempts state laws, and some states had stronger laws. It also
can be read as permitting commercial e-mail as long as the mail is not deceptive. Finally, and most



importantly, it does little to regulate spam that comes from offshore: a spam sender simply sends
spam from a foreign mailer, perhaps in a country more interested in generating business for its
national ISPs than in controlling worldwide junk e-mail. The most telling result: The volume of spam
has not declined since the law.

California Breach Notification

The first state in the U.S. to enact such a law, California passed SB1386, effective in 2003. This law
requires any company doing business in California or any California government agency to notify
individuals of any breach that has, or is reasonably believed to have, compromised personal
information on any California resident. As a state law, it is limited to California residents and
California companies. At least 20 other states have since followed with some form of breach
notification.

The most widely reported application of the law was in February 2005 when Choicepoint disclosed
that some California residents had been affected by loss of 145,000 pieces of personal identity
information. Initially only affected California residents were informed, but after news of that
disclosure was made public, Choicepoint revealed how many people total were involved and began
notifying them.

International Dimensions

So far we have explored laws in the United States. But many people outside the United States will
read this book, perhaps wondering why they should learn about laws from a foreign country. This
question has two answers.

Technically, computer security laws in the United States are similar to those in many other
countries: Lawmakers in each country learn about subtle legal points and interpretation or
enforcement difficulties from laws passed in other countries. Many other countries, such as
Australia, Canada, Brazil, Japan, the Czech Republic, and India, have recently enacted computer
crime laws. These laws cover offenses such as fraud, unauthorized computer access, data privacy,
and computer misuse. Schjolberg [SCH02] has compiled a survey of different countries' laws to
counter unauthorized access.

The second reason to study laws from a foreign country is that the Internet is an international
entity. Citizens in one country are affected by users in other countries, and users in one country
may be subject to the laws in other countries. Therefore, you need to know which laws may affect
you. The international nature of computer crime makes life much more complicated. For example, a
citizen of country A may sit in country B, dial into an ISP in country C, use a compromised host in
country D, and attack machines in country E (not to mention traveling on communications lines
through dozens of other countries). To prosecute this crime may require cooperation of all five
countries. The attacker may need to be extradited from B to E to be prosecuted there, but there
may be no extradition treaty for computer crimes between B and E. And the evidence obtained in D
may be inadmissible in E because of the manner in which it was obtained or stored. And the crime
in E may not be a crime in B, so the law enforcement authorities, even if sympathetic, may be
unable to act.

Although computer crime is truly international, differing statutes in different jurisdictions inhibit
prosecution of international computer crime. In the remainder of this section we briefly discuss laws



around the world that differ from U.S. laws and that should be of interest to computer security
students.

Council of Europe Agreement on Cybercrime

In November 2001, the United States, Canada, Japan, and 22 European countries signed the
Council of Europe Agreement on Cybercrime to define cybercrime activities and support their
investigation and prosecution across national boundaries. The significance of this treaty is not so
much that these activities are illegal but that the countries acknowledged them as crimes across
their borders, making it easier for law enforcement agencies to cooperate and for criminals to be
extradited for offenses against one country committed from within another country. But to really
support investigation, prosecution, and conviction of computer criminals, more than just these 25
countries will have to be involved.

The treaty requires countries that ratify it to adopt similar criminal laws on hacking, computer-
related fraud and forgery, unauthorized access, infringements of copyright, network disruption, and
child pornography. The treaty also contains provisions on investigative powers and procedures, such
as the search of computer networks and interception of communications, and requires cross-border
law enforcement cooperation in searches and seizures and extradition. The original treaty has been
supplemented by an additional protocol making any publication of racist and xenophobic
propaganda via computer networks a criminal offense.

E.U. Data Protection Act

The E.U. Data Protection Act, based on the European Privacy Directive, is model legislation for all
the countries in the European Union. It establishes privacy rights and protection responsibilities for
all citizens of member countries. The act governs the collection and storage of personal data about
individuals, such as name, address, and identification numbers. The law requires a business purpose
for collecting the data, and it controls against disclosure. Dating from 1994 in its initial form, this
law was one of the first to establish protection requirements for the privacy of personal data. Most
significantly, the act requires equivalent protection in non-E.U. countries if organizations in the
European Union pass protected data outside the European Union. Chapter 10 contains more detail
on this directive.

Restricted Content

Some countries have laws controlling Internet content allowed in their countries. Singapore requires
service providers to filter content allowed in. China bans material that disturbs social order or
undermines social stability. Tunisia has a law that applies the same controls on critical speech as for
other media forms [HRW99].

Further laws have been proposed to make it illegal to transmit outlawed content through a country,
regardless of whether the source or destination of the content is in that country. Given the complex
and unpredictable routing structure of the Internet, complying with these laws, let alone enforcing
them, is effectively impossible.



Use of Cryptography

Cryptography is the fourth major area in which different countries have developed laws. We survey
these laws in a subsequent section.

Why Computer Criminals Are Hard to Catch

As if computer crime laws and prosecution were not enough, it is also difficult for law enforcement
agencies to catch computer criminals. There are two major reasons for this.

First, computer crime is a multinational activity that must usually be pursued on a national or local
level. There are no international laws on computer crime. Even though the major industrial nations
cooperate very effectively on tracking computer criminals, criminals know there are "safe havens"
from which they cannot be caught. Often, the trail of a criminal stops cold at the boundary of a
country. Riptech Inc. [BEL02] studies Internet attack trends by many factors. For the period
JanuaryJune 2002 the United States led the world in source of Internet attacks (40 percent)
followed by Germany (7 percent). But when you normalize these data for number of users, a very
different pattern emerges. Per Internet user, Israel and Hong Kong lead among those nations with
more than 1 million users, and Kuwait and Iran top the list among nations with fewer than 1 million
users. Nations all over the globe appear on these lists, which demonstrates that attackers can and
do operate from many different countries.

Complexity is an even more significant factor than country of origin. As we have stated throughout
this book, networked attacks are hard to trace and investigate because they can involve so many
steps. A smart attacker will "bounce" an attack through many places to obscure the trail. Each step
along the way makes the investigator complete more legal steps. If the trail leads from server A to
B to C, the law enforcement investigators need a search warrant for data at A, and others for B and
C. Even after obtaining the search warrants, the investigator has to find the right administrator and
serve the warrants to begin obtaining data. In the time the investigator has to get and serve
warrants, not to mention follow leads and correlate findings, the attacker has carefully erased the
digital evidence.

In a CNET News article, Sandoval [SAN02] says law enforcement agencies are rarely able to track
down hackers sophisticated enough to pull off complicated attacks. Sandoval quotes Richard Power,
editorial director of the Computer Security Institute: "It's a world class business." Independent
investigator Dan Clements says, "only about 10 percent of active hackers are savvy enough to work
this way consistently, but they are almost always successful."

What Computer Crime Does Not Address

Even with the definitions included in the statutes, the courts must interpret what a computer is.
Legislators cannot define precisely what a computer is because computer technology is used in
many other devices, such as robots, calculators, watches, automobiles, microwave ovens, and
medical instruments. More importantly, we cannot predict what kinds of devices may be invented
ten or fifty years from now. Therefore, the language in each of these laws indicates the kinds of
devices the legislature seeks to include as computers and leaves it up to the court to rule on a
specific case. Unfortunately, it takes awhile for courts to build up a pattern of cases, and different
courts may rule differently in similar situations. The interpretation of each of these terms will be



unsettled for some time to come.

Value presents a similar problem. As noted in some of the cases presented, the courts have trouble
separating the intrinsic value of an object (such as a sheet of paper with writing on it) from its cost
to reproduce. The courts now recognize that a Van Gogh painting is worth more than the cost of the
canvas and paint. But the courts have not agreed on the value of printed computer output. The cost
of a blank diskette is miniscule, but it may have taken thousands of hours of data gathering and
machine time to produce the data encoded on a diskette. The courts are still striving to determine
the fair value of computer objects.

Both the value of a person's privacy and the confidentiality of data about a person are even less
settled. In a later section we consider how ethics and individual morality take over where the law
stops.

Cryptography and the Law

The law is used to regulate people for their own good and for the greater good of society. Murder,
theft, drinking, and smoking are circumscribed by laws. Generally, the balance between personal
freedom and the good of society is fairly easy to judge; for example, one's right to fire a gun ends
when the bullet hits someone. Cryptography is also a regulated activity, but the issues are a little
less clear-cut, in part because there is little open discussion of the subject.

People want to protect their privacy, including the secrecy of communications with others.
Businesses want similar confidentiality. Criminals want secrecy so that they can communicate
criminal plans in private. Governments want to track illegal activity, both to prevent crime and to
apprehend and convict criminals after a crime has been committed. Finally, nations want to know
the military and diplomatic plans of other nations. As shown throughout this book, cryptography can
be a powerful tool to protect confidentiality, but being able to break cryptography can be a potent
tool for government. Phrased differently, it suits governments' interests if people cannot use
cryptography that is too good (meaning, unbreakable by the government).

Controls on Use of Cryptography

Closely related to restrictions on content are restrictions on the use of cryptography imposed on
users in certain countries. In China, for example, State Council Order 273 requires foreign
organizations or individuals to apply for permission to use encryption in China. Pakistan requires
that all encryption hardware and software be inspected and approved by the Pakistan
Telecommunication Authority. And in Iraq, use of even the Internet is strictly limited, and
unauthorized use of encryption carries heavy penalties.

France's encryption policy is probably the most widely discussed. Import of encryption products is
subject to a registration requirement: A vendor's registration for a mass-market commercial product
is valid for all imports of that product. Use of encryption for authentication is unlimited. Use of
encryption with a key length up to 128 for confidentiality requires only the vendor's registration. Use
of products with a key length greater than 128 bits requires that the key be escrowed with a trusted
third party.

Such laws are very difficult to enforce individually. Cryptography, steganography, and secret writing
have been used for centuries. The governments know they cannot prevent two cooperating people



from concealing their communications. However, governments can limit widespread computer-based
use by limiting cryptography in mass-market products. Although policing 50 million computer users
is impossible, controlling a handful of major computer manufacturers is feasible, especially ones
whose profits would be affected by not being able to sell any products in a particular country. Thus,
governments have addressed cryptography use at the source: the manufacturer and vendor.

Controls on Export of Cryptography

Until 1998, the United States led other industrialized nations in controlling cryptography. It did this
by controlling export of cryptographic products, using the same category as munitions, such as
bombs and atomic missiles. Although the law applied to everyone, in practice it could be enforced
reasonably only against mass-market software manufacturers. Software makers could export
freely[1] any product using symmetric encryption with a key length of 40 bits or less. Exceptions
allowed stronger encryption for financial institutions and for multinational corporations using the
encryption for intracompany communication. Cryptography solely for authentication (for example,
digital signatures) was also permitted. Although the law did not control the use of cryptography,
limiting export effectively limited its use because major vendors could not sell products worldwide
with strong encryption.

[1] That is, they could export to all but a handful of so-called rogue nations subject to stringent controls on munitions.

U.S. policy was especially important because most mass-market software vendors were based in the
United States, and many users were in the United States. The United States could also pressure
software vendors not to write programs in such a way that someone could add the cryptography at
an overseas location. Although a software vendor could move to or open a subsidiary in an
uncontrolled country, a new vendor has a hard time obtaining a significant share of the market
against large, established competitors. If such a vendor were able to take a significant amount of
business away from U.S. companies, there would be an outcry and possible political pressure from
the U.S. government. Thus, U.S. policy on this issue would and did dominate the world market.

Cryptography and Free Speech

Cryptography involves not just products; it involves ideas, too. Although governments effectively
control the flow of products across borders, controlling the flow of ideas, either in people's heads or
on the Internet, is almost impossible.

In a decision akin to splitting hairs, the U.S. courts ruled that computer object code was subject to
the export restrictions, but a printed version of the corresponding source code was an idea that
could not be restricted. The case in question involved Phil Zimmermann, the inventor of PGP e-mail
encryption. In 1997, Zimmermann "exported" books containing the printed source code to PGP, and
volunteers in Europe spent 1000 hours scanning the pages of the book; they then posted this
source code publicly on the Internet. To highlight the vacuousness of this distinction, people
reduced the object code of the PGP program to a bar code and printed that code on T-shirts with the
caption "Warning, this T-shirt may be a controlled munition."

Cryptographic Key Escrow

Although laws enable governments to read encrypted communications, the governments don't really



want to read all of them. A joking e-mail message or a file with your tax data is seldom a national
security concern. But suppose there was evidence of cheating on your taxes or your writings were
seditious. In these cases the government could convince a court to allow it to search your home,
office, or computer files. It might then have reason and justification for wanting to read your
encrypted data. So the government devised a scheme in which your encryption keys would become
available only with court authorization.

In 1996 the U.S. government offered to relax the export restriction for so-called escrowed
encryption, in which the government would be able to obtain the encryption key for any encrypted
communication. The key escrow approach was a part of an initiative known under names such as
Clipper, Capstone, and Fortezza. Ultimately this approach failed; the public feared what the
government could actually access. See [HOF95] and [DEN99] for more discussion on the key escrow
debate.

Current Policy

The U.S. National Research Council (NRC) reported the results of an 18-month study [NRC96] to
recommend a cryptographic policy for the U.S. federal government. The report carefully weighed all
the factors affected by cryptographic policy, such as protecting sensitive information for U.S.
companies and individuals as well as foreign ones, international commerce, enforcing laws
(prevention, investigation, and prosecution), and intelligence gathering. The report's
recommendations for policy include the following:

No law should bar the manufacture, sale, or use of any form of encryption within the United
States.

Export controls on cryptography should be relaxed but not eliminated.

Products providing confidentiality at a level that meets most general commercial requirements
should be easily exportable. In 1996, that level included products that incorporate 56-bit key
DES, and so these products should be easily exportable.

Escrowed encryption should be studied further, but, as it is not yet a mature technology, its
use should not be mandated.

Congress should seriously consider legislation that would impose criminal penalties on the use
of encrypted communications in interstate commerce with the intent to commit a crime.

The U.S. government should develop a mechanism to promote information security in the
private sector.

In September 1998, the U.S. government announced that it was opening up export of encryption.
Export of single (56-bit) key DES would be allowed to all countries except seven that supported
terrorism. Unlimited size encryption would be exportable to 45 major industrial countries for use by
financial institutions, medical providers, and e-commerce companies. Furthermore, the process for
applying for permission, which had been another formidable deterrent, was simplified to a review
taking no more than a week in most cases.

Summary of Legal Issues in Computer Security



This section has described four aspects of the relationship between computing and the law. First, we
presented the legal mechanisms of copyright, patent, and trade secret as means to protect the
secrecy of computer hardware, software, and data. These mechanisms were designed before the
invention of the computer, so their applicability to computing needs is somewhat limited. However,
program protection is especially desired, and software companies are pressing the courts to extend
the interpretation of these means of protection to include computers.

We also explored the relationship between employers and employees, in the context of writers of
software. Well-established laws and precedents control the acceptable access an employee has to
software written for a company.

Third, we examined the legal side of software vulnerabilities: Who is liable for errors in software,
and how is that liability enforced? Additionally, we considered alternative ways to report software
errors.

Fourth, we noted some of the difficulties in prosecuting computer crime. Several examples showed
how breaches of computer security are treated by the courts. In general, the courts have not yet
granted computers, software, and data appropriate status, considering value of assets and
seriousness of crime. The legal system is moving cautiously in its acceptance of computers. We
described several important pieces of computer crime legislation that represent slow progress
forward.



11.6. Ethical Issues in Computer Security

This final section helps clarify thinking about the ethical issues involved in computer security. We
offer no answers. Rather, after listing and explaining some ethical principles, we present several
case studies to which the principles can be applied. Each case is followed by a list of possible ethical
issues involved, although the list is not necessarily all-inclusive or conclusive. The primary purpose
of this section is to explore some of the ethical issues associated with computer security and to
show how ethics functions as a control.

Differences Between the Law and Ethics

As we noted earlier, law is not always the appropriate way to deal with issues of human behavior. It
is difficult to define a law to preclude only the events we want it to. For example, a law that restricts
animals from public places must be refined to permit guide dogs for the blind. Lawmakers, who are
not computer professionals, are hard pressed to think of all the exceptions when they draft a law
concerning computer affairs. Even when a law is well conceived and well written, its enforcement
may be difficult. The courts are overburdened, and prosecuting relatively minor infractions may be
excessively time consuming relative to the benefit.

Thus, it is impossible or impractical to develop laws to describe and enforce all forms of behavior
acceptable to society. Instead, society relies on ethics or morals to prescribe generally accepted
standards of proper behavior. (In this section the terms ethics and morals are used
interchangeably.) An ethic is an objectively defined standard of right and wrong. Ethical standards
are often idealistic principles because they focus on one objective. In a given situation, however,
several moral objectives may be involved, so people have to determine an action that is appropriate
considering all the objectives. Even though religious groups and professional organizations promote
certain standards of ethical behavior, ultimately each person is responsible for deciding what to do
in a specific situation. Therefore, through our choices, each of us defines a personal set of ethical
practices. A set of ethical principles is called an ethical system.

An ethic is different from a law in several important ways. First, laws apply to everyone: One may
disagree with the intent or the meaning of a law, but that is not an excuse for disobeying the law.
Second, the courts have a regular process for determining which law supersedes which if two laws
conflict. Third, the laws and the courts identify certain actions as right and others as wrong. From a
legal standpoint, anything that is not illegal is right. Finally, laws can be enforced to rectify wrongs
done by unlawful behavior.

By contrast, ethics are personal: two people may have different frameworks for making moral
judgments. What one person deems perfectly justifiable, another would never consider doing.
Second, ethical positions can and often do come into conflict. As an example, the value of a human
life is very important in most ethical systems. Most people would not cause the sacrifice of one life,
but in the right context some would approve of sacrificing one person to save another, or one to
save many others. The value of one life cannot be readily measured against the value of others, and
many ethical decisions must be founded on precisely this ambiguity. Yet, there is no arbiter of
ethical positions: when two ethical goals collide, each person must choose which goal is dominant.



Third, two people may assess ethical values differently; no universal standard of right and wrong
exists in ethical judgments. Nor can one person simply look to what another has done as guidance
for choosing the right thing to do. Finally, there is no enforcement for ethical choices. These
differences are summarized in Table 11-3.

Table 11-3. Contrast of Law vs. Ethics.

Law Ethics

Described by formal, written
documents

Described by unwritten principles

Interpreted by courts Interpreted by each individual

Established by legislatures
representing all people

Presented by philosophers, religions,
professional groups

Applicable to everyone Personal choice

Priority determined by courts if two
laws conflict

Priority determined by an individual if
two principles conflict

Court is final arbiter of "right" No external arbiter

Enforceable by police and courts Limited enforcement

Studying Ethics

The study of ethics is not easy because the issues are complex. Sometimes people confuse ethics
with religion because many religions supply a framework in which to make ethical choices. However,
ethics can be studied apart from any religious connection. Difficult choices would be easier to make
if there were a set of universal ethical principles to which everyone agreed. But the variety of social,
cultural, and religious beliefs makes the identification of such a set of universal principles
impossible. In this section we explore some of these problems and then consider how understanding
ethics can help in dealing with issues of computer security.

Ethics and Religion

Ethics is a set of principles or norms for justifying what is right or wrong in a given situation. To
understand what ethics is we may start by trying to understand what it is not. Ethical principles are
different from religious beliefs. Religion is based on personal notions about the creation of the world
and the existence of controlling forces or beings. Many moral principles are embodied in the major
religions, and the basis of a personal morality is a matter of belief and conviction, much the same as
for religions. However, two people with different religious backgrounds may develop the same
ethical philosophy, while two exponents of the same religion might reach opposite ethical
conclusions in a particular situation. Finally, we can analyze a situation from an ethical perspective
and reach ethical conclusions without appealing to any particular religion or religious framework.
Thus, it is important to distinguish ethics from religion.



Ethical Principles Are Not Universal

Ethical values vary by society, and from person to person within a society. For example, the concept
of privacy is important in Western cultures. But in Eastern cultures, privacy is not desirable because
people associate privacy with having something to hide. Not only is a Westerner's desire for privacy
not understood but in fact it has a negative connotation. Therefore, the attitudes of people may be
affected by culture or background.

Also, an individual's standards of behavior may be influenced by past events in life. A person who
grew up in a large family may place greater emphasis on personal control and ownership of
possessions than would an only child who seldom had to share. Major events or close contact with
others can also shape one's ethical position. Despite these differences, the underlying principles of
how to make moral judgment are the same.

Although these aspects of ethics are quite reasonable and understandable, they lead people to
distrust ethics because it is not founded on basic principles all can accept. Also, people from a
scientific or technical background expect precision and universality.

Ethics Does Not Provide Answers

Ethical pluralism is recognizing or admitting that more than one position may be ethically
justifiableeven equally soin a given situation. Pluralism is another way of noting that two people
may legitimately disagree on issues of ethics. We expect and accept disagreement in such areas as
politics and religion.

However, in the scientific and technical fields, people expect to find unique, unambiguous, and
unequivocal answers. In science, one answer must be correct or demonstrable in some sense.
Science has provided life with fundamental explanations. Ethics is rejected or misunderstood by
some scientists because it is "soft," meaning that it has no underlying framework or it does not
depend on fundamental truths.

One need only study the history of scientific discovery to see that science itself is founded largely on
temporary truths. For many years the earth was believed to be the center of the solar system.
Ptolemy developed a complicated framework of epicycles, orbits within orbits of the planets, to
explain the inconsistency of observed periods of rotation. Eventually his theory was superseded by
the Copernican model of planets that orbit the sun. Similarly, Einstein's relativity theory opposed
the traditional quantum basis of physics. Science is littered with theories that have fallen from favor
as we learned or observed more and as new explanations were proposed. As each new theory is
proposed, some people readily accept the new proposal, while others cling to the old.

But the basis of science is presumed to be "truth." A statement is expected to be provably true,
provably false, or unproven, but a statement can never be both true and false. Scientists are
uncomfortable with ethics because ethics does not provide these clean distinctions.

Worse, there is no higher authority of ethical truth. Two people may disagree on their opinion of the
ethics of a situation, but there is no one to whom to appeal for a final determination of who is
"right." Conflicting answers do not deter one from considering ethical issues in computer security.
Nor do they excuse us from making and defending ethical choices.



Ethical Reasoning

Most people make ethical judgments often, perhaps daily. (Is it better to buy from a hometown
merchant or from a nationwide chain? Should I spend time with a volunteer organization or with my
friends? Is it acceptable to release sensitive data to someone who might not have justification for
access to that data?) Because we all engage in ethical choice, we should clarify how we do this so
that we can learn to apply the principles of ethics in professional situations, as we do in private life.

Study of ethics can yield two positive results. First, in situations in which we already know what is
right and what is wrong, ethics should help us justify our choice. Second, if we do not know the
ethical action to take in a situation, ethics can help us identify the issues involved so that we can
make reasoned judgments.

Examining a Case for Ethical Issues

How, then, can issues of ethical choice in computer security be approached? Here are several steps
to making and justifying an ethical choice.

1. Understand the situation. Learn the facts of the situation. Ask questions of interpretation or
clarification. Attempt to find out whether any relevant forces have not been considered.

2. Know several theories of ethical reasoning. To make an ethical choice, you have to know how
those choices can be justified.

3. List the ethical principles involved. What different philosophies could be applied in this case?
Do any of these include others?

4. Determine which principles outweigh others. This is a subjective evaluation. It often involves
extending a principle to a logical conclusion or determining cases in which one principle clearly
supersedes another.

The most important steps are the first and third. Too often people judge a situation on incomplete
information, a practice that leads to judgments based on prejudice, suspicion, or misinformation.
Considering all the different ethical issues raised forms the basis for evaluating the competing
interests of step four.

Examples of Ethical Principles

There are two different schools of ethical reasoning: one based on the good that results from
actions and one based on certain prima facie duties of people.

Consequence-Based Principles

The teleological theory of ethics focuses on the consequences of an action. The action to be
chosen is that which results in the greatest future good and the least harm. For example, if a fellow



student asks you to write a program he was assigned for a class, you might consider the good (he
will owe you a favor) against the bad (you might get caught, causing embarrassment and possible
disciplinary action, plus your friend will not learn the techniques to be gained from writing the
program, leaving him deficient). The negative consequences clearly outweigh the positive, so you
would refuse. Teleology is the general name applied to many theories of behavior, all of which focus
on the goal, outcome, or consequence of the action.

There are two important forms of teleology. Egoism is the form that says a moral judgment is
based on the positive benefits to the person taking the action. An egoist weighs the outcomes of all
possible acts and chooses the one that produces the most personal good for him or her with the
least negative consequence. The effects on other people are not relevant. For example, an egoist
trying to justify the ethics of writing shoddy computer code when pressed for time might argue as
follows. "If I complete the project quickly, I will satisfy my manager, which will bring me a raise and
other good things. The customer is unlikely to know enough about the program to complain, so I am
not likely to be blamed. My company's reputation may be tarnished, but that will not be tracked
directly to me. Thus, I can justify writing shoddy code."

The principle of utilitarianism is also an assessment of good and bad results, but the reference
group is the entire universe. The utilitarian chooses that action that will bring the greatest collective
good for all people with the least possible negative for all. In this situation, the utilitarian would
assess personal good and bad, good and bad for the company, good and bad for the customer, and,
perhaps, good and bad for society at large. For example, a developer designing software to monitor
smokestack emissions would need to assess its effects on everyone breathing. The utilitarian might
perceive greater good to everyone by taking the time to write high-quality code, despite the
negative personal consequence of displeasing management.

Rule-Based Principles

Another ethical theory is deontology, which is founded in a sense of duty. This ethical principle
states that certain things are good in and of themselves. These things that are naturally good are
good rules or acts, which require no higher justification. Something just is good; it does not have to
be judged for its effect.

Examples (from Frankena [FRA73]) of intrinsically good things are

truth, knowledge, and true opinion of various kinds; understanding, wisdom

just distribution of good and evil; justice

pleasure, satisfaction; happiness; life, consciousness

peace, security, freedom

good reputation, honor, esteem; mutual affection, love, friendship, cooperation; morally good
dispositions or virtues

beauty, aesthetic experience

Rule-deontology is the school of ethical reasoning that believes certain universal, self-evident,
natural rules specify our proper conduct. Certain basic moral principles are adhered to because of
our responsibilities to one another; these principles are often stated as rights: the right to know, the



right to privacy, the right to fair compensation for work. Sir David Ross [ROS30] lists various duties
incumbent on all human beings:

fidelity, or truthfulness

reparation, the duty to recompense for a previous wrongful act

gratitude, thankfulness for previous services or kind acts

justice, distribution of happiness in accordance with merit

beneficence, the obligation to help other people or to make their lives better

nonmaleficence, not harming others

self-improvement, to become continually better, both in a mental sense and in a moral sense
(for example, by not committing a wrong a second time)

Another school of reasoning is based on rules derived by each individual. Religion, teaching,
experience, and reflection lead each person to a set of personal moral principles. The answer to an
ethical question is found by weighing values in terms of what a person believes to be right behavior.

Summary of Ethical Theories

We have seen two bases of ethical theories, each applied in two ways. Simply stated, the two bases
are consequence based and rule based, and the applications are either individual or universal. These
theories are depicted in Table 11-4.

Table 11-4. Taxonomy of Ethical Theories.

  Consequence-based Rule-based

Individual Based on consequences to
individual

Based on rules acquired by
the individualfrom religion,
experience, analysis

Universal Based on consequences to all
of society

Based on universal rules,
evident to everyone

In the next section, we apply these theories to analyze certain situations that arise in the ethics of
computer security.



11.7. Case Studies of Ethics

To understand how ethics affects professional actions, ethicists often study example situations. The
remainder of this section consists of several representative examples. These cases are modeled
after ones developed by Parker [PAR79] as part of the AFIPS/NSF study of ethics in computing and
technology. Each case study is designed to bring out certain ethical points, some of which are listed
following the case. You should reflect on each case, determining for yourself what the most
influential points are. These cases are suitable for use in a class discussion, during which other
values will certainly be mentioned. Finally, each case reaches no conclusion because each individual
must assess the ethical situation alone. In a class discussion it may be appropriate to take a vote.
Remember, however, that ethics are not determined by majority rule. Those siding with the
majority are not "right," and the rest are not "wrong."

Case I: Use of Computer Services

This case concerns deciding what is appropriate use of computer time. Use of computer time is a
question both of access by one person and of availability of quality of service to others. The person
involved is permitted to access computing facilities for a certain purpose. Many companies rely on
an unwritten standard of behavior that governs the actions of people who have legitimate access to
a computing system. The ethical issues involved in this case can lead to an understanding of that
unwritten standard.

The Case

Dave works as a programmer for a large software company. He writes and tests utility programs
such as compilers. His company operates two computing shifts: During the day program
development and online applications are run; at night batch production jobs are completed. Dave
has access to workload data and learns that the evening batch runs are complementary to daytime
programming tasks; that is, adding programming work during the night shift would not adversely
affect performance of the computer to other users.

Dave comes back after normal hours to develop a program to manage his own stock portfolio. His
drain on the system is minimal, and he uses very few expendable supplies, such as printer paper. Is
Dave's behavior ethical?

Values Issues

Some of the ethical principles involved in this case are listed below.

Ownership of resources. The company owns the computing resources and provides them for its
own computing needs.



Effect on others. Although unlikely, a flaw in Dave's program could adversely affect other
users, perhaps even denying them service because of a system failure.

Universalism principle. If Dave's action is acceptable, it should also be acceptable for others to
do the same. However, too many employees working in the evening could reduce system
effectiveness.

Possibility of detection, punishment. Dave does not know whether his action would be wrong or
right if discovered by his company. If his company decided it was improper use, Dave could be
punished.

What other issues are involved? Which principles are more important than others?

Analysis

The utilitarian would consider the total excess of good over bad for all people. Dave receives benefit
from use of computer time, although for this application the amount of time is not large. Dave has a
possibility of punishment, but he may rate that as unlikely. The company is neither harmed nor
helped by this. Thus, the utilitarian could argue that Dave's use is justifiable.

The universalism principle seems as if it would cause a problem because clearly if everyone did this,
quality of service would degrade. A utilitarian would say that each new user has to weigh good and
bad separately. Dave's use might not burden the machine, and neither might Ann's; but when Bill
wants to use the machine, it is heavily enough used that Bill's use would affect other people.

Alternative Situations

Would it affect the ethics of the situation if any of the following actions or characteristics were
considered?

Dave began a business managing stock portfolios for many people for profit.

Dave's salary was below average for his background, implying that Dave was due the
computer use as a fringe benefit.

Dave's employer knew of other employees doing similar things and tacitly approved by not
seeking to stop them.

Dave worked for a government office instead of a private company and reasoned that the
computer belonged "to the people."

Case II: Privacy Rights

In this case the central issue is the individual's right to privacy. Privacy is both a legal and an ethical
issue because of the pertinent laws discussed in the previous section.



The Case

Donald works for the county records department as a computer records clerk, where he has access
to files of property tax records. For a scientific study, a researcher, Ethel, has been granted access
to the numerical portionbut not the corresponding namesof some records.

Ethel finds some information that she would like to use, but she needs the names and addresses
corresponding with certain properties. Ethel asks Donald to retrieve the names and addresses so
she can contact these people for more information and for permission to do further study.

Should Donald release the names and addresses?

Some Principles Involved

Here are some of the ethical principles involved in this case. What are other ethical principles?
Which principles are subordinate to which others?

Job responsibility. Donald's job is to manage individual records, not to make determinations of
appropriate use. Policy decisions should be made by someone of higher authority.

Use. The records are used for legitimate scientific study, not for profit or to expose sensitive
data. (However, Ethel's access is authorized only for the numerical data, not for the private
information relating property conditions to individuals.)

Possible misuse. Although he believes Ethel's motives are proper, Donald cannot guarantee
that Ethel will use the data only to follow up on interesting data items.

Confidentiality. Had Ethel been intended to have names and addresses, they would have been
given initially.

Tacit permission. Ethel has been granted permission to access parts of these records for
research purposes, so she should have access to complete her research.

Propriety. Because Ethel has no authority to obtain names and addresses and because the
names and addresses represent the confidential part of the data, Donald should deny Ethel's
request for access.

Analysis

A rule-deontologist would argue that privacy is an inherent good and that one should not violate the
privacy of another. Therefore, Donald should not release the names.

Extensions to the Basic Case

We can consider several possible extensions to the scenario. These extensions probe other ethical
issues involved in this case.



• Suppose Donald were responsible for determining allowable access to the files. What
ethical issues would be involved in his deciding whether to grant access to Ethel?

• Should Ethel be allowed to contact the individuals involved? That is, should the health
department release individuals' names to a researcher? What are the ethical issues
for the health department to consider?

• Suppose Ethel contacts the individuals to ask their permission, and one-third of them
respond giving permission, one-third respond denying permission, and one-third do
not respond. Ethel claims that at least one-half of the individuals are needed to make
a valid study. What options are available to Ethel? What are the ethical issues
involved in deciding which of these options to pursue?

To show that ethics can be context dependent, let us consider some variations of the situation.
Notice that these changes affect the domain of the problem, but not the basic question: access to
personal data.

If the domain were medical records, the case would be covered by HIPAA, and so we would first
consider a legal issue, not an ethical one. Notice, however, how the case changes subtly depending
on the medical condition involved. You may reach one conclusion if the records deal with "ordinary"
conditions (colds, broken legs, muscle injuries), but a different conclusion if the cases are for
sexually transmitted diseases or AIDS. You may also reach a different conclusion if the research
involves genetic conditions of which the subject may be unaware (for example, being a carrier for
Huntington's disease or hemophilia).

But change the context once more, and consider web surfing habits. If Donald works for an Internet
service provider and could determine all the web sites a person had visited, would that be fair to
disclose?

Case III: Denial of Service

This case addresses issues related to the effect of one person's computation on other users. This
situation involves people with legitimate access, so standard access controls should not exclude
them. However, because of the actions of some, other people are denied legitimate access to the
system. Thus, the focus of this case is on the rights of all users.

The Case

Charlie and Carol are students at a university in a computer science program. Each writes a
program for a class assignment. Charlie's program happens to uncover a flaw in a compiler that
ultimately causes the entire computing system to fail; all users lose the results of their current
computation. Charlie's program uses acceptable features of the language; the compiler is at fault.
Charlie did not suspect his program would cause a system failure. He reports the program to the
computing center and tries to find ways to achieve his intended result without exercising the system
flaw.



The system continues to fail periodically, for a total of ten times (beyond the first failure). When the
system fails, sometimes Charlie is running a program, but sometimes Charlie is not. The director
contacts Charlie, who shows all of his program versions to the computing center staff. The staff
concludes that Charlie may have been inadvertently responsible for some, but not all, of the system
failures, but that his latest approach to solving the assigned problem is unlikely to lead to additional
system failures.

On further analysis, the computing center director notes that Carol has had programs running each
of the first eight (of ten) times the system failed. The director uses administrative privilege to
inspect Carol's files and finds a file that exploits the same vulnerability as did Charlie's program. The
director immediately suspends Carol's account, denying Carol access to the computing system.
Because of this, Carol is unable to complete her assignment on time, she receives a D in the course,
and she drops out of school.

Analysis

In this case the choices are intentionally not obvious. The situation is presented as a completed
scenario, but in studying it you are being asked to suggest alternative actions the players could
have taken. In this way, you build a repertoire of actions that you can consider in similar situations
that might arise.

• What additional information is needed?

• Who has rights in this case? What rights are those? Who has a responsibility to
protect those rights? (This step in ethical study is used to clarify who should be
considered as the reference group for a deontological analysis.)

• Has Charlie acted responsibly? By what evidence do you conclude so? Has Carol?
How? Has the computing center director acted responsibly? How? (In this step you
look for past judgments that should be confirmed or wrongs that should be
redressed.)

• What are some alternative actions Charlie or Carol or the director could have taken
that would have been more responsible?

Case IV: Ownership of Programs

In this case we consider who owns programs: the programmer, the employer, the manager, or all.
From a legal standpoint, most rights belong to the employer, as presented earlier in this chapter.
However, this case expands on that position by presenting several competing arguments that might
be used to support positions in this case. As described in the previous section, legal controls for
secrecy of programs can be complicated, time consuming, and expensive to apply. In this case we
search for individual ethical controls that can prevent the need to appeal to the legal system.

The Case



Greg is a programmer working for a large aerospace firm, Star Computers, which works on many
government contracts; Cathy is Greg's supervisor. Greg is assigned to program various kinds of
simulations.

To improve his programming abilities, Greg writes some programming tools, such as a cross-
reference facility and a program that automatically extracts documentation from source code. These
are not assigned tasks for Greg; he writes them independently and uses them at work, but he does
not tell anyone about them. Greg has written them in the evenings, at home, on his personal
computer.

Greg decides to market these programming aids by himself. When Star's management hears of this,
Cathy is instructed to tell Greg that he has no right to market these products since, when he was
employed, he signed a form stating that all inventions become the property of the company. Cathy
does not agree with this position because she knows that Greg has done this work on his own. She
reluctantly tells Greg that he cannot market these products. She also asks Greg for a copy of the
products.

Cathy quits working for Star and takes a supervisory position with Purple Computers, a competitor
of Star. She takes with her a copy of Greg's products and distributes it to the people who work with
her. These products are so successful that they substantially improve the effectiveness of her
employees, and Cathy is praised by her management and receives a healthy bonus. Greg hears of
this, and contacts Cathy, who contends that because the product was determined to belong to Star
and because Star worked largely on government funding, the products were really in the public
domain and therefore they belonged to no one in particular.

Analysis

This case certainly has major legal implications. Probably everyone could sue everyone else and,
depending on the amount they are willing to spend on legal expenses, they could keep the cases in
the courts for several years. Probably no judgment would satisfy all.

Let us set aside the legal aspects and look at the ethical issues. We want to determine who might
have done what, and what changes might have been possible to prevent a tangle for the courts to
unscramble.

First, let us explore the principles involved.

• Rights. What are the respective rights of Greg, Cathy, Star, and Purple?

• Basis. What gives Greg, Cathy, Star, and Purple those rights? What principles of fair
play, business, property rights, and so forth are involved in this case?

• Priority. Which of these principles are inferior to which others? Which ones take
precedence? (Note that it may be impossible to compare two different rights, so the
outcome of this analysis may yield some rights that are important but that cannot be
ranked first, second, third.)

• Additional information. What additional facts do you need in order to analyze this
case? What assumptions are you making in performing the analysis?



Next, we want to consider what events led to the situation described and what alternative actions
could have prevented the negative outcomes.

• What could Greg have done differently before starting to develop his product? After
developing the product? After Cathy explained that the product belonged to Star?

• What could Cathy have done differently when she was told to tell Greg that his
products belonged to Star? What could Cathy have done differently to avert this
decision by her management? What could Cathy have done differently to prevent the
clash with Greg after she went to work at Purple?

• What could Purple have done differently upon learning that it had products from Star
(or from Greg)?

• What could Greg and Cathy have done differently after Greg spoke to Cathy at
Purple?

• What could Star have done differently to prevent Greg from feeling that he owned his
products? What could Star have done differently to prevent Cathy from taking the
products to Purple?

Case V: Proprietary Resources

In this case, we consider the issue of access to proprietary or restricted resources. Like the previous
one, this case involves access to software. The focus of this case is the rights of a software
developer in contrast with the rights of users, so this case concerns determining legitimate access
rights.

The Case

Suzie owns a copy of G-Whiz, a proprietary software package she purchased legitimately. The
software is copyrighted, and the documentation contains a license agreement that says that the
software is for use by the purchaser only. Suzie invites Luis to look at the software to see if it will fit
his needs. Luis goes to Suzie's computer and she demonstrates the software to him. He says he
likes what he sees, but he would like to try it in a longer test.

Extensions to the Case

So far the actions have all been ethically sound. The next steps are where ethical responsibilities
arise. Take each of the following steps as independent; that is, do not assume that any of the other
steps has occurred in your analysis of one step.

Suzie offers to copy the disk for Luis to use.

Suzie copies the disk for Luis to use, and Luis uses it for some period of time.



Suzie copies the disk for Luis to use; Luis uses it for some period of time and then buys a copy
for himself.

Suzie copies the disk for Luis to try out overnight, under the restriction that he must bring the
disk back to her tomorrow and must not copy it for himself. Luis does so.

Suzie copies the disk with the same restrictions, but Luis makes a copy for himself before
returning it to Suzie.

Suzie copies the disk with the same restrictions, and Luis makes a copy for himself, but he
then purchases a copy.

Suzie copies the disk with the same restrictions, but Luis does not return it.

For each of these extensions, describe who is affected, which ethical issues are involved, and which
principles override which others.

Case VI: Fraud

In previous cases, we have dealt with people acting in situations that were legal or, at worst,
debatable. In this case, we consider outright fraud, which is illegal. However, the case really
concerns the actions of people who are asked to do fraudulent things.

The Case

Alicia works as a programmer in a corporation. Ed, her supervisor, tells her to write a program to
allow people to post entries directly to the company's accounting files ("the books"). Alicia knows
that ordinarily programs that affect the books involve several steps, all of which have to balance.
Alicia realizes that with the new program, it will be possible for one person to make changes to
crucial amounts, and there will be no way to trace who made these changes, with what justification,
or when.

Alicia raises these concerns to Ed, who tells her not to be concerned, that her job is simply to write
the programs as he specifies. He says that he is aware of the potential misuse of these programs,
but he justifies his request by noting that periodically a figure is mistakenly entered in the books
and the company needs a way to correct the inaccurate figure.

Extensions

First, let us explore the options Alicia has. If Alicia writes this program, she might be an accomplice
to fraud. If she complains to Ed's superior, Ed or the superior might reprimand or fire her as a
troublemaker. If she refuses to write the program, Ed can clearly fire her for failing to carry out an
assigned task. We do not even know that the program is desired for fraudulent purposes; Ed
suggests an explanation that is not fraudulent.

She might write the program but insert extra code that creates a secret log of when the program
was run, by whom, and what changes were made. This extra file could provide evidence of fraud, or
it might cause trouble for Alicia if there is no fraud but Ed discovers the secret log.



At this point, here are some of the ethical issues involved.

• Is a programmer responsible for the programs he or she writes? Is a programmer
responsible for the results of those programs? (In contemplating this question,
suppose the program were to adjust dosage in a computer-controlled medical
application, and Ed's request were for a way to override the program controls to
cause a lethal dosage. Would Alicia then be responsible for the results of the
program?)

• Is a programmer merely an employee who follows orders (assigned tasks)
unthinkingly?

• What degree of personal risk (such as possible firing) is an employee obliged to
accept for opposing an action he or she thinks is improper?

• Would a program to manipulate the books as described here ever be justified? If so,
in what circumstances would it be justified?

• What kinds of controls can be placed on such programs to make them acceptable?
What are some ways that a manager could legitimately ask an employee to write a
program like this?

• Would the ethical issues in this situation be changed if Alicia designed and wrote this
program herself?

Analysis

The act-deontologist would say that truth is good. Therefore, if Alicia thought the purpose of the
program was to deceive, writing it would not be a good act. (If the purpose were for learning or to
be able to admire beautiful code, then writing it might be justifiable.)

A more useful analysis is from the perspective of the utilitarian. To Alicia, writing the program brings
possible harm for being an accomplice to fraud, with the gain of having cooperated with her
manager. She has a possible item with which to blackmail Ed, but Ed might also turn on her and say
the program was her idea. On balance, this option seems to have a strong negative slant.

By not writing the program her possible harm is being fired. However, she has a potential gain by
being able to "blow the whistle" on Ed. This option does not seem to bring her much good, either.
But fraudulent acts have negative consequences for the stockholders, the banks, and other innocent
employees. Not writing the program brings only personal harm to Alicia, which is similar to the harm
described earlier. Thus, it seems as if not writing the program is the more positive option.

There is another possibility. The program may not be for fraudulent purposes. If so, then there is no
ethical conflict. Therefore, Alicia might try to determine whether Ed's motives are fraudulent.

Case VII: Accuracy of Information



For our next case, we consider responsibility for accuracy or integrity of information. Again, this is
an issue addressed by database management systems and other access control mechanisms.
However, as in previous cases, the issue here is access by an authorized user, so the controls do not
prevent access.

The Case

Emma is a researcher at an institute where Paul is a statistical programmer. Emma wrote a grant
request to a cereal manufacturer to show the nutritional value of a new cereal, Raw Bits. The
manufacturer funded Emma's study. Emma is not a statistician. She has brought all of her data to
Paul to ask him to perform appropriate analyses and to print reports for her to send to the
manufacturer. Unfortunately, the data Emma has collected seem to refute the claim that Raw Bits is
nutritious, and, in fact, they may indicate that Raw Bits is harmful.

Paul presents his analyses to Emma but also indicates that some other correlations could be
performed that would cast Raw Bits in a more favorable light. Paul makes a facetious remark about
his being able to use statistics to support either side of any issue.

Ethical Concerns

Clearly, if Paul changed data values in this study, he would be acting unethically. But is it any more
ethical for him to suggest analyzing correct data in a way that supports two or more different
conclusions? Is Paul obligated to present both the positive and the negative analyses? Is Paul
responsible for the use to which others put his program results?

If Emma does not understand statistical analysis, is she acting ethically in accepting Paul's positive
conclusions? His negative conclusions? Emma suspects that if she forwards negative results to the
manufacturer, they will just find another researcher to do another study. She suspects that if she
forwards both sets of results to the manufacturer, they will publicize only the positive ones. What
ethical principles support her sending both sets of data? What principles support her sending just
the positive set? What other courses of action has she?

Case VIII: Ethics of Hacking or Cracking

What behavior is acceptable in cyberspace? Who owns or controls the Internet? Does malicious or
nonmalicious intent matter? Legal issues are involved in the answers to these questions, but as we
have pointed out previously, laws and the courts cannot protect everything, nor should we expect
them to. Some people separate investigating computer security vulnerabilities from exploiting them,
calling the former "white hat" hacking and the latter "black hat." It is futile to try to stop people
from learning nor should we even try, for the sake of society, as Cross [CRO06] points out. There is
reasonable debate over publication or dissemination of knowledge: Is the world safer if only a few
are allowed to know how to build sophisticated weapons? Or how to break certain security systems?
Is the public better served by open knowledge of system vulnerabilities? We recommend students,
researchers, faculty, and technologists, and certainly users, join in thoughtful debate of this issue,
one of the largest ethical matters in our field.

In this final case study we consider ethical behavior in a shared-use computing environment, such



as the Internet. The questions are similar to "what behavior is acceptable in outer space?" or "who
owns the oceans?"

Goli is a computer security consultant; she enjoys the challenge of finding and fixing security
vulnerabilities. Independently wealthy, she does not need to work, so she has ample spare time in
which to test the security of systems.

In her spare time, Goli does three things: First, she aggressively attacks commercial products for
vulnerabilities. She is quite proud of the tools and approach she has developed, and she is quite
successful at finding flaws. Second, she probes accessible systems on the Internet, and when she
finds vulnerable sites, she contacts the owners to offer her services repairing the problems. Finally,
she is a strong believer in high-quality pastry, and she plants small programs to slow performance
in the web sites of pastry shops that do not use enough butter in their pastries. Let us examine
these three actions in order.

Vulnerabilities in Commercial Products

We have already described a current debate regarding the vulnerability reporting process. Now let
us explore the ethical issues involved in that debate.

Clearly from a rule-based ethical theory, attackers are wrong to perform malicious attacks. The
appropriate theory seems to be one of consequence: who is helped or hurt by finding and
publicizing flaws in products? Relevant parties are attackers, the vulnerability finder, the vendor,
and the using public. Notoriety or credit for finding the flaw is a small interest. And the interests of
the vendor (financial, public relations) are less important than the interests of users to have secure
products. But how are the interests of users best served?

Full disclosure helps users assess the seriousness of the vulnerability and apply appropriate
protection. But it also gives attackers more information with which to formulate attacks. Early
full disclosurebefore the vendor has countermeasures readymay actually harm users by leaving
them vulnerable to a now widely known attack.

Partial disclosurethe general nature of the vulnerability but not a detailed exploitation
scenariomay forestall attackers. One can argue that the vulnerability details are there to be
discovered; when a vendor announces a patch for an unspecified flaw in a product, the
attackers will test that product aggressively and study the patch carefully to try to determine
the vulnerability. Attackers will then spread a complete description of the vulnerability to other
attackers through an underground network, and attacks will start against users who may not
have applied the vendor's fix.

No disclosure. Perhaps users are best served by a scheme in which every so often new code is
released, sometimes fixing security vulnerabilities, sometimes fixing things that are not
security related, and sometimes adding new features. But without a sense of significance or
urgency, users may not install this new code.

Searching for Vulnerabilities and Customers

What are the ethical issues involved in searching for vulnerabilities? Again, the party of greatest
interest is the user community and the good or harm that can come from the search.



On the positive side, searching may find vulnerabilities. Clearly, it would be wrong for Goli to report
vulnerabilities that were not there simply to get work, and it would also be wrong to report some
but not all vulnerabilities to be able to use the additional vulnerabilities as future leverage against
the client.

But suppose Goli does a diligent search for vulnerabilities and reports them to the potential client. Is
that not similar to a service station owner's advising you that a headlight is not operating when you
take your car in for gasoline? Not quite, you might say. The headlight flaw can be seen without any
possible harm to your car; probing for vulnerabilities might cause your system to fail.

The ethical question seems to be which is greater: the potential for good or the potential for harm?
And if the potential for good is stronger, how much stronger does it need to be to override the risk
of harm?

This case is also related to the common practice of ostensible nonmalicious probing for
vulnerabilities: Hackers see if they can access your system without your permission, perhaps by
guessing a password. Spafford [SPA98] points out that many crackers simply want to look around,
without damaging anything. As discussed in Sidebar 11-4, Spafford compares this seemingly
innocent activity with entry into your house when the door is unlocked. Even when done without
malicious intent, cracking can be a serious offense; at its worst, it has caused millions of dollars in
damage. Although crackers are prosecuted severely with harsh penalties, cracking continues to be
an appealing crime, especially to juveniles.

Sidebar 11-4: Is Cracking a Benign Practice?

Many people argue that cracking is an acceptable practice because lack of protection
means that the owners of systems or data do not really value them. Spafford [SPA98]
questions this logic by using the analogy of entering a house.

Consider the argument that an intruder who does no harm and makes no changes is
simply learning about how computer systems operate. "Most of these people would
never think to walk down a street, trying every door to find one unlocked, then search
through the drawers or the furniture inside. Yet, these same people seem to give no
second thought to making repeated attempts at guessing passwords to accounts they
do not own, and once onto a system, browsing through the files on disk." How would
you feel if you knew your home had been invaded, even if no harm was done?

Spafford notes that breaking into a house or a computer system constitutes trespassing.
To do so in an effort to make security vulnerabilities more visible is "presumptuous and
reprehensible." To enter either a home or a computer system in an unauthorized way,
even with benign intent, can lead to unintended consequences. "Many systems have
been damaged accidentally by ignorant (or careless) intruders."

We do not accept the argument that hackers make good security experts. There are two
components to being a good security professional: knowledge and credibility. Diligent
explorers, who may experiment with computer breaking in a benign setting like a closed
laboratory network, can learn just as much about finding and exploiting vulnerabilities
as a hacker. The key differentiator is trust. If you hire a hacker you will always have a



nagging fear that your expert is gathering data to attack you or someone else.
Comparing two otherwise equal candidates for a position, you choose the one with the
lesser risk. To us, the hacker-turned-consultant is seeking to capitalize on a history of
unethical behavior. See [PFL06b] for a longer discussion.

Politically Inspired Attacks

Finally, consider Goli's interfering with operation of web sites whose actions she opposes. We have
purposely phrased the issue in a situation that arouses perhaps only a few gourmands and
pâtissiers. We can dismiss the interest of the butter fans as an insignificant minority on an
insignificant issue. But you can certainly think of many other issues that have brought on wars. (See
Denning's excellent article on cybercriminals [DEN99a] for real examples of politically motivated
computer activity.)

The ethical issues abound in this scenario. Some people will see the (butter) issue as one of
inherent good, but is butter use one of the fundamental good principles, such as honesty or fairness
or not doing harm to others? Is there universal agreement that butter use is good? Probably there
will be a division of the world into the butter advocates (x%), the unrestricted pastry advocates
(y%), and those who do not take a position (z%). By how much does x have to exceed y for Goli's
actions to be acceptable? What if the value of z is large? Greatest good for the greatest number
requires a balance among these three percentages and some measure of benefit or harm.

Is butter use so patently good that it justifies harm to those who disagree? Who is helped and who
suffers? Is the world helped if only good, but more expensive, pastries are available, so poor people
can no longer afford pastry? Suppose we could determine that 99.9 percent of people in the world
agreed that butter use was a good thing. Would that preponderance justify overriding the interests
of the other 0.1 percent?

Codes of Ethics

Because of ethical issues such as these, various computer groups have sought to develop codes of
ethics for their members. Most computer organizations, such as the Association for Computing
Machinery (ACM), the Institute of Electrical and Electronics Engineers (IEEE), and the Data
Processing Management Association (DPMA), are voluntary organizations. Being a member of one of
these organizations does not certify a level of competence, responsibility, or experience in
computing. For these reasons, codes of ethics in these organizations are primarily advisory.
Nevertheless, these codes are fine starting points for analyzing ethical issues.

IEEE

The IEEE has produced a code of ethics for its members. The IEEE is an organization of engineers,
not limited to computing. Thus, their code of ethics is a little broader than might be expected for
computer security, but the basic principles are applicable in computing situations. The IEEE Code of
Ethics is shown in Figure 11-1.



Figure 11-1. IEEE Code of Ethics. (Reprinted courtesy of
the Institute of Electrical and Electronics Engineers ©

1996.)

We, the members of the IEEE, in recognition of the importance of our
technologies in affecting the quality of life throughout the world, and in
accepting a personal obligation to our profession, its members, and the
communities we serve, do hereby commit ourselves to conduct of the
highest ethical and professional manner and agree

to accept responsibility in making engineering decisions consistent
with the safety, health, and welfare of the public, and to disclose
promptly factors that might endanger the public or the environment;

1.

to avoid real or perceived conflicts of interest whenever possible, and
to disclose them to affected parties when they do exist;

2.

to be honest and realistic in stating claims or estimates based on
available data;

3.

to reject bribery in all of its forms;4.

to improve understanding of technology, its appropriate application,
and potential consequences;

5.

to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or
experience, or after full disclosure of pertinent limitations;

6.

to seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the
contributions of others;

7.

to treat fairly all persons regardless of such factors as race, religion,
gender, disability, age, or national origin;

8.

to avoid injuring others, their property, reputation, or employment by
false or malicious action;

9.

to assist colleagues and coworkers in their professional development
and to support them in following this code of ethics.

10.

ACM

The ACM code of ethics recognizes three kinds of responsibilities of its members: general moral
imperatives, professional responsibilities, and leadership responsibilities, both inside the association
and in general. The code of ethics has three sections (plus a fourth commitment section), as shown



in Figure 11-2.

Figure 11-2. ACM Code of Ethics and Professional
Conduct. (Reprinted courtesy of the Association for

Computing Machinery © 1993.)

As an ACM member I will ...

1.1 Contribute to society and human well-being

1.2 Avoid harm to others

1.3 Be honest and trustworthy

1.4 Be fair and take action not to discriminate

1.5 Honor property rights including copyrights and patents

1.6 Give proper credit for intellectual property

1.7 Respect the privacy of others

1.8 Honor confidentiality

As an ACM computing professional I will ...

2.1 Strive to achieve the highest quality, effectiveness, and dignity in
both the process and products of professional work

2.2 Acquire and maintain professional competence

2.3 Know and respect existing laws pertaining to professional work

2.4 Accept and provide appropriate professional review

2.5 Give comprehensive and thorough evaluations of computer
systems and their impacts, including analysis of possible risks

2.6 Honor contracts, agreements, and assigned responsibilities

2.7 Improve public understanding of computing and its consequences

2.8 Access computing and communication resources only when
authorized to do so

As an ACM member and an organization leader, I will ...

3.1 Articulate social responsibilities of members of an organizational
unit and encourage full acceptance of those responsibilities



3.2 Manage personnel and resources

3.3 Acknowledge and support proper and authorized uses of an
organization's computing and communication resources

3.4 Ensure that users and those who will be affected by a system
have their needs clearly articulated during the assessment and design
of requirements; later the system must be validated to meet
requirements

3.5 Articulate and support policies that protect the dignity of users
and others affected by a computing system

3.6 Create opportunities for members of the organization to learn the
principles and limitations of computer systems

As an ACM member, I will ...

4.1 Uphold and promote the principles of this code

4.2 Treat violations of this code as inconsistent with membership in
the ACM

Computer Ethics Institute

The Computer Ethics Institute is a nonprofit group that aims to encourage people to consider the
ethical aspects of their computing activities. The organization has been in existence since the mid-
1980s, founded as a joint activity of IBM, the Brookings Institution, and the Washington Theological
Consortium. The group has published its ethical guidance as ten commandments of computer ethics,
listed in Figure 11-3.

Figure 11-3. The Ten Commandments of Computer
Ethics. (Reprinted with permission, Computer Ethics

Institute, Washington, D.C.)



Thou shalt not use a computer to harm other people.1.

Thou shalt not interfere with other people's computer work.2.

Thou shalt not snoop around in other people's computer files.3.

Thou shalt not use a computer to steal.4.

Thou shalt not use a computer to bear false witness.5.

Thou shalt not copy or use proprietary software for which you have
not paid.

6.

Thou shalt not use other people's computer resources without
authorization or proper compensation.

7.

Thou shalt not appropriate other people's intellectual output.8.

Thou shalt think about the social consequences of the program you
are writing or the system you are designing.

9.

Thou shalt always use a computer in ways that insure consideration
and respect for your fellow humans.

10.

Many organizations take ethics seriously and produce a document guiding the behavior of its
members or employees. Some corporations require new employees to read its code of ethics and
sign a promise to abide by it. Others, especially at universities and research centers, have special
boards that must approve proposed research and ensure that projects and team members act
ethically. As an individual professional, it may be useful for you to review these codes of ethics and
compose a code of your own, reflecting your ideas about appropriate behavior in likely situations. A
code of ethics can help you assess situations quickly and act in a consistent, comfortable, and
ethical manner.

Conclusion of Computer Ethics

In this study of ethics, we have tried not to decide right and wrong, or even to brand certain acts as
ethical or unethical. The purpose of this section is to stimulate thinking about ethical issues
concerned with confidentiality, integrity, and availability of data and computations.

The cases presented show complex, conflicting ethical situations. The important first step in acting
ethically in a situation is to obtain the facts, ask about any uncertainties, and acquire any additional
information needed. In other words, first we must understand the situation.

The second step is to identify the ethical principles involved. Honesty, fair play, proper
compensation, and respect for privacy are all ethical principles. Sometimes these conflict, and then
we must determine which principles are more important than others. This analysis may not lead to
one principle that obviously overshadows all others. Still, a ranking to identify the major principles



involved is needed.

The third step is choosing an action that meets these ethical principles. Making a decision and taking
action are difficult, especially if the action has evident negative consequences. However, taking
action based on a personal ranking of principles is necessary. The fact that other equally sensible
people may choose a different action does not excuse us from taking some action.

This section is not trying to force the development of rigid, inflexible principles. Decisions may vary,
based on fine differences between two situations. Or a person's views can change over time in
response to experience and changing context. Learning to reason about ethical situations is not
quite the same as learning "right" from "wrong." Terms such as right and wrong or good and bad
imply a universal set of values. Yet we know that even widely accepted principles are overridden by
some people in some situations. For example, the principle of not killing people may be violated in
the case of war or capital punishment. Few, if any, values are held by everyone or in all cases.
Therefore, our purpose in introducing this material has been to stimulate you to recognize and think
about ethical principles involved in cases related to computer security. Only by recognizing and
analyzing principles can you act consistently, thoughtfully, and responsibly.



11.8. Terms and Concepts

legal protection for computers and data, 649

copyright, 649

intellectual property, 650

originality, 651

fair use, 651

copyright registration, 652

copyright infringement, 652

Digital Millenium Copyright Act, 653

patent, 655

novelty, 656

patent registration, 656

patent infringement, 657

trade secret, 658

reverse engineering, 658

trade secret enforcement, 659

information, 663

information depletion, 663

information replication, 664

information marginal cost, 664

information timeliness, 664

information tangibility, 665

information commerce, 665

electronic publishing, 666

database, 666



electronic commerce, 666

crimnal law, 667

civil law, 667

tort law, 667

contract law, 668

employer and employee rights, 670

product ownership, 670

patent ownership, 670

copyright ownership, 671

work for hire, 671

license, 671

employment contract, 672

property, 673

redress for faulty software, 673

U.S. Uniform Commercial Code, 674

warranty of cyberworthiness, 675

vulnerability reporting, 675

rules of evidence, 680

U.S. Computer Fraud and Abuse Act, 683

U.S. Economic Espionage Act, 683

U.S. Electronic Funds Transfer Act, 683

U.S. Freedom of Information Act, 684

U.S. Privacy Act, 684

U.S. Electronic Communications Privacy Act, 684

Gramm-Leach-Bliley Act, 684

HIPAA, 684

USA Patriot Act, 685

CAN SPAM Act, 685



California breach notification, 686

Council of Europe Agreement on Cybercrime, 687

cryptographylegality of use, 689

export of cryptography, 690

escrowed encryption, 691

ethics, 692

religion, 694

ethical pluralism, 695

ethical reasoning, 695

teleology, 696

egoism, 696

utilitarianism, 697

deontology, 697

rule-deontology, 697

code of ethics, 710



11.9. To Learn More

Two excellent and readable works on ethical reasoning are by Frankena [FRA73] and Harris
[HAR86]. Harris, especially, is written clearly and concretely.

The Communications of the ACM devoted a special issue (June 2006) to hackers. The articles by
Cross [CRO06], Bono et al. [BON06], and Grand [GRA06] are thoughtful pieces on learning by
hacking, An earlier special issue (December 1995) was devoted to ethics. The articles by Huff and
Martin [HUF95], Johnson and Mulvey [JOH95], and Laudon [LAU95] are thought provoking.



11.10. Exercises

1. List the issues involved in the software vulnerability reporting argument. What are
the technical issues? What are the psychological/sociological ones? What are the
managerial ones? What are the economic ones? What are the ethical ones? Select a
vulnerability reporting process that you think is appropriate and explain why it meets
more requirements than any other process.

2. Would you hire Goli (the computer security consultant and hacker from case study
VIII) to protect your computer system? How would you respond if she came to you
describing a vulnerability in your system and offering to help you fix it? Explain your
answer.

3. Prepare an argument for or against the proposition that the following is ethical
behavior. You and some friends decide to share music from CDs. You copy some to
your computer and then burn identical copies for your friends. Does the argument
change if the exchange is done with unknown people, through an anonymous file-
sharing service on the order of Napster?

4. Prepare an argument for or against the proposition that the following is ethical
behavior. While visiting a friend in another city you turn on your laptop and your
wireless adapter senses a strong signal of an unsecured access point named siren-
island. You connect to it and use Internet access throughout the weekend. Does the
argument change if the time period is not just a weekend but unlimited (you are not
just visiting but you live there) and the access point name obviously relates to the
person who lives in the next apartment?

5. You acquire a network vulnerability scanning tool and try it out on a network address
segment belonging to people at your university or business. The scanner identifies
one computer named PrinceHal that has many serious vulnerabilities. You deduce to
whom the machine belongs. Explain the ethical implications of (a) telling the owner
what you have found, (b) telling your local administrator or security officer what you
have found, (c) exploiting one of the relatively minor vulnerabilities to show the
owner how serious the exposure is, (d) exploiting a relatively minor vulnerability as a
prank without telling the owner, (e) telling the owner what you have found and then
demanding money for details on the vulnerabilities, (f) using one of the
vulnerabilities to acquire control of the machine, downloading and installing patches
and changing settings to address all the vulnerabilities, and never telling anyone
what you have done.

6. Prepare an argument for or against the proposition that the following is ethical
behavior. You apply for admission to graduate school. The school says it will inform
applicants of their status on 15 March by posting a coded list of acceptances and
rejections. On 9 March you discover that the list is already posted; you have to
address it by a specific URL instead of just clicking a button. You post a notice to a
widely read bulletin board advising others of the exposure. Does the argument



change if the date on which you discover the web site is 9 February, not 9 March?
Does the argument change if the people on the list are individually identifiable? Does
the argument change if the list is a set of grades for a class (and the people are
individually identifiable)? Does the argument change if the list is an ordered list of
liver transplant candidates (and the people are individually identifiable)? (Note: after
you have prepared your argument, read [SMI05].)

7. Prepare an argument for or against the proposition that the following is ethical
behavior. Without telling anyone, your ISP starts tracking every HTTP exchange from
all its customers' computers. They use the data to determine heavy traffic routes in
order to improve service to frequently accessed sites, such as search engines. Does
the argument change if the purpose is to derive revenue by selling the data to
advertisers seeking to determine popularity of different sites? Does the argument
change if the purpose is to make traffic records available for government analysis?

8. Someone you know has a blog which, although not directly listed on her home page,
you found by a simple search query. In her blog she writes some really explicit
descriptions of a relationship with another friend of yours. Explain the ethical
implications of (a) your reading the blog, (b) your telling the second friend about it,
(c) your telling other friends about it, (d) your posting a link to it on your home page.

9. The Red King decided he did not like the color blue or anyone who would wear it or
even mention its name. Being all powerful, he summoned all the Internet search
engines and told them that henceforth if they hoped to do business in his country,
they would have to edit out of their search results any that contained the offensive
word (which he would not even utter). Some protested and stopped doing business in
the kingdom, others assented, and some sneaked in the occasional blue reference by
using a synonym, while waiting for the Red King to be replaced by the Rainbow
Queen. Prepare an argument for or against the ethical position of the three ISPs'
responses. (After you have prepared your answer, read [THO06].)

10. Prepare an argument for or against the proposition that the following is ethical
behavior. You are running in an election for head of the sanitation department. Your
opponent, the incumbent, is well liked; you know you will have strong competition.
You write a story alleging that your opponent has developed a process to turn
garbage into gold and stands to get rich from his access to city garbage. You know
that not only is the story untrue, it is so incredible that almost nobody would believe
it. Nevertheless, you plant it anonymously on the web and give it some interesting
keywords to help search engines find it. Sure enough, about one week before election
day, not only do people discover it but they start furiously sending it to each other,
your town sets a new high in e-mail traffic, and you win in a landslide. When
questioned about this event years later, you shrug your shoulders and say, "It's the
Internet: People who believe what they read there deserve just what they get."

11. Prepare an argument for or against the proposition that the following is ethical
behavior. You are a medical researcher developing a new treatment for a serious
condition. You have a drug that has done well in limited trials, but a competitor has a
drug that seems more effective. One day you discover the competitor's network and
find, to your amazement, that you can access internal machines, including a machine
that seems to have trial results for your competitor's drug. You carefully change the
statistics so that your product compares more favorably. Does the argument change
if you change your data, not the competitor's? Does the argument change if the data



concern snake migration patterns?



Chapter 12. Cryptography Explained

In this chapter

Mathematics of encryption

Cryptanalysis: how encryption systems are "broken"

Theory of strong symmetric algorithms

Detailed descriptions of the DES and AES algorithms

Theory of public key encryption

Detailed description of the RSA algorithm; details of other public key algorithms

Digital signatures

Quantum cryptography

Creating and implementing good cryptography is subtle and difficult, because the goals of a
cryptographic algorithm seem to conflict with each other. We want to construct an algorithm that is
easy for the legitimate sender and receiver to operate, but difficultbordering on impossiblefor the
malicious interceptor to break. As we noted in Chapter 2, the interceptor can use any kind of attack
to try to break the encryption: find a weakness in the algorithm, deduce or coerce or guess a key,
determine the decryption of a single message or a whole flood of transmissions, exploit a flaw in the
algorithm's implementation, or even cut and paste encrypted text without actually knowing the
underlying plaintext. Although cryptography is arguably the most important tool a security expert
has available, failed or flawed cryptography can give the false illusion of security. For these reasons,
the security expert should have both a solid understanding of cryptography and a healthy respect
for what can go wrong with its use. This chapter gives you that understanding by explaining in detail
the mathematics underpinning different encryption schemes.

If there is one lesson to be learned from the history of cryptography, either before or after
computerization, it is that cryptography is best left to experts. By learning the material in this
chapter, you will have an advanced understanding of cryptography. But be mindful that
understanding is not the same as mastery. You need to learn more than this book offers to



appreciate cryptography's subtlety. At the end of the chapter, we recommend several references to
help you on your way to mastery, should you be interested in it. The information presented in
Chapter 2 described the basic concepts of cryptography, addressing what you need to know to
understand how to use cryptography in various kinds of security controls. In this chapter, we look
more closely at the how and why, not just the what.

Solid cryptography is based on results generated by the disciplines of mathematics and formal
computer science. Thus, this chapter begins with discussion from these fields, with enough detail for
you to understand the cryptography but not so deep as to be far beyond the scope of this book.
Then we progress to the two branches of cryptography introduced in Chapter 2: symmetric (single,
secret key), and asymmetric (public key) algorithms. We present details of the DES, AES, and RC-
series of symmetric systems, and the knapsack, RSA, and El Gamal asymmetric systems. We
conclude with quantum cryptography, an interesting but futuristic approach with some emerging
commercial products; it is new and relatively untested, but it is likely to appear in actual
cryptosystems in the next few years.



12.1. Mathematics for Cryptography

Encryption is a two-edged sword: We want to encrypt important information relatively easily, but we
would like an attacker to have to work very hard to break an encryptionso hard that the attacker
will stop trying to break the encryption and focus instead on a different method of attack (or, even
better, a different potential victim).

To accomplish these goals, we try to force an interceptor to solve a hard problem, such as figuring
out the algorithm that selected one of n! permutations of the original message or data. However,
the interceptor may simply generate all possible permutations and scan them visually (or with some
computer assistance), looking for probable text. Thus, the interceptor need not solve our hard
problem. We noted in Chapter 2 the many ways this could happen. Indeed, the interceptor might
solve the easier problem of determining which permutation was used in this instance. Remember
that the attacker can use any approach that works. Thus, it behooves us as security specialists to
make life difficult for the interceptor, no matter what method is used to break the encryption. In this
section, we look particularly at how to embed the algorithm in a problem that is extremely difficult
to solve. By that, we mean either that there is no conceivable way of determining the algorithm
from the ciphertext or that it takes too long to reconstruct the plaintext to be worth the attacker's
time.

Complexity

If the encryption algorithm is based on a problem that is known to be difficult to solve and for which
the number of possible solutions is very large, then the attacker has a daunting if not impossible
task. In this case, even with computer support, an exhaustive brute force solution is expected to be
infeasible. Researchers in computer science and applied mathematics help us find these "hard
problems" by studying and analyzing the inherent complexity of problems. Their goal is to say not
only that a particular solution (or algorithm) is time consuming, but also that there simply is no easy
solution. Much of the important work in this area was done in the early 1970s, under the general
name of computational complexity. Thus, we begin our study of secure encryption systems by
developing a foundation in problem complexity; we also introduce the mathematical concepts we
need to understand the theory.

NP-Complete Problems

Cook [COO71] and Karp [KAR72] conducted an important investigation of problem complexity based
on what are called NP-complete problems. The mathematics of the problems' complexity is
daunting, so we present the notions intuitively, by studying three problems. Each of the problems is
easy to state, not hard to understand, and straightforward to solve. Each also happens to be NP-
complete. After we describe and discuss the problems, we develop the precise meaning of NP-
completeness.



Satisfiability

Consider the problem of determining whether any given logical formula is satisfiable. That is, for a
given formula, we want to know whether there is a way of assigning the values TRUE and FALSE to
the variables so that the result of the formula is TRUE. Formally, the problem is presented as
follows.

Given a formula that meets these conditions

It is composed of the variables v1, v2,...,vn and their logical complements ¬v1, ¬v2,..., ¬vn.

It is represented as a series of clauses in which each clause is the logical OR ( ) of variables
and their logical complements.

It is expressed as the logical AND ( ) of the clauses.

is there a way to assign values to the variables so that the value of the formula is TRUE? If there is
such an assignment, the formula is said to be satisfiable.

For example, the formula

(v1)  (v2  v3)  (¬ v3  ¬v1)

is satisfiable, whereas

(v1)  (v2  v3)  (¬v3  ¬v1)  (¬v2)

is not. Both of these formulas are in the form prescribed.

Knapsack

The name of the problem relates to placing items into a knapsack. Is there a way to select some of
the items to be packed such that their "sum" (the amount of space they take up) exactly equals the
knapsack capacity (the target)? We can express the problem as a case of adding integers. Given a
set of nonnegative integers and a target, is there a subset of the integers whose sum equals the
target?

Formally, given a set S = {a1, a2,..., an} and a target sum T, where each ai  0, we want to know if
there is a selection vector, V = [v1, v2,..., vn], each of whose elements is 0 or 1, such that

The selection vector V records a 1 for each element chosen for the sum and a 0 for each not chosen.
Thus, each element of S can be used once or not at all.

For example, the set S might be {4, 7, 1, 12, 10}. A solution exists for target sum T = 17, since 17



= 4 + 1 + 12. The selection vector is V = [1,0,1,1,0]. No solution is possible for T = 25.

Clique

Given a graph G and an integer n, is there a subset of n vertices such that every vertex in the
subset shares an edge with every other vertex in the subset? (A graph in which each vertex is
connected to every other vertex is called a clique.)

Formally, we are given a graph G = (V, E) where V is a set of vertices and E  V x V is the set of
edges, and given a number n > 0. The problem is to determine whether there is a subset of n

vertices, VS  V, such that for each pair of vertices vi, vj in VS, the edge (vi, vj) is in E.

As an example, consider Figure 12-1. Vertices (v1, v2, v7, v8) form a clique of size 4, but there are
no cliques of 5 vertices.

Figure 12-1. Clique Subgraphs in a Graph.

Characteristics of NP-Complete Problems

These three problems are reasonable representatives of the class of NP-complete problems. Notice
that they share the following characteristics.

Each problem is solvable, and a relatively simple approach solves it (although the approach
may be time consuming). For each of them, we can simply enumerate all the possibilities: all
ways of assigning the logical values of n variables, all subsets of the set S, all subsets of n
vertices in G. If there is a solution, it will appear in the enumeration of all possibilities; if there
is no solution, testing all possibilities will demonstrate that.

1.

There are 2n cases to consider if we use the approach of enumerating all possibilities (where n
depends on the problem). Each possibility can be tested in a relatively small amount of time,
so the time to test all possibilities and answer yes or no is proportional to 2n.

2.

3.



2.

The problems are apparently unrelated, having come from logic, number theory, and graph
theory, respectively.

3.

If it were possible to guess perfectly, we could solve each problem in relatively little time. For
example, if someone could guess the correct assignment or the correct subset, we could
simply verify that the formula had been satisfied or a correct sum had been determined, or a
clique had been identified. The verification process could be done in time bounded by a
polynomial function of the size of the problem.

4.

The Classes P and NP

Let P be the collection of all problems for which there is a solution that runs in time bounded by a
polynomial function of the size of the problem. For example, you can determine if an item is in a list
in time proportional to the size of the list (simply by examining each element in the list to determine
if it is the correct one), and you can sort all items in a list into ascending order in time bounded by
the square of the number of elements in the list (using, for example, the well-known bubble sort
algorithm.) There may also be faster solutions; that is not important here. Both the searching
problem and the sorting problem are in P, since they can be solved in time n and n2, respectively.

For most problems, polynomial time algorithms reach the limit of feasible complexity. Any problem
that could be solved in time n1,000,000,000 would be in P, even though for large values of n, the time
to perform such an algorithm might be prohibitive. Notice also that we do not have to know an
explicit algorithm; we just have to be able to say that such an algorithm exists.

By contrast, let NP be the set of all problems that can be solved in time bounded by a polynomial
function of the size of the problem, assuming the ability to guess perfectly. (In the literature, this
"guess function" is called an oracle or a nondeterministic Turing machine). The guessing is
called nondeterminism.

Of course, no one can guess perfectly. We simulate guessing by cloning an algorithm and applying
one version of it to each possible outcome of the guess, as shown in Figure 12-2. Essentially, the
idea is equivalent to a computer programming language in which IF statements could be replaced
by GUESS statements: Instead of testing a known condition and branching depending on the
outcome of the test, the GUESS statements would cause the program to fork, following two or more
paths concurrently.

Figure 12-2. Simulating Nondeterminism.

[View full size image]



The ability to guess can be useful. For example, instead of deciding whether to assign the value
TRUE or FALSE to variable v1, the nondeterministic algorithm can proceed in two directions: one
assuming TRUE had been assigned to v1 and the other assuming FALSE. As the number of variables
increases so does the number of possible paths to be pursued concurrently.

Certainly, every problem in P is also in NP, since the guess function does not have to be invoked.
Also, a class, EXP, consists of problems for which a deterministic solution exists in exponential time,
cn for some constant c. As noted earlier, every NP-complete problem has such a solution. Every

problem in NP is also in EXP, so P  NP  EXP.

The Meaning of NP-Completeness

Cook [COO71] showed that the satisfiability problem is NP-complete, meaning that it can
represent the entire class NP. His important conclusion was that if there is a deterministic,
polynomial time algorithm (one without guesses) for the satisfiability problem, then there is a
deterministic, polynomial time algorithm for every problem in NP; that is, P = NP.

Karp [KAR72] extended Cook's result by identifying a number of other problems, all of which shared
the property that if any one of them could be solved in a deterministic manner in polynomial time,
then all of them could. The knapsack and clique problems were identified by Karp as having this
property. The results of Cook and Karp included the converse: If for even one of these problems (or
any NP-complete problem) it could be shown that there was no deterministic algorithm that ran in



polynomial time, then no deterministic algorithm could exist for any of them.

In discussing problem complexity, we must take care to distinguish between a problem and an
instance of a problem. An instance is a specific case: one formula, one specific graph, or one
particular set S. Certain simple graphs or simple formulas may have solutions that are easy and fast
to identify. A problem is more general; it is the description of all instances of a given type. For
example, the formal statements of the satisfiability, knapsack, and clique questions are statements
of problems, since they tell what each specific instance of that problem must look like. Solving a
problem requires finding one general algorithm that solves every instance of that problem.

Essentially the problem space (that is, the classification of all problems) looks like Figure 12-3.
There are problems known to be solvable deterministically in polynomial time (P), and there are

problems known not to have a polynomial time solution (EXP and beyond), so P  EXP and P 

EXP, meaning P EXP and we can also show NP  EXP. The class NP fits somewhere between P

and EXP: P  NP  EXP. It may be that P = NP, or that P  NP.

Figure 12-3. Hierarchies of Complexity Classes.

[View full size image]



The significance of Cook's result is that NP-complete problems have been studied for a long time by
many different groups of peoplelogicians, operations research specialists, electrical engineers,
number theorists, operating systems specialists, and communications engineers. If there were a
practical (polynomial time) solution to any one of these problems, we would hope that someone
would have found it by now. Currently, several hundred problems have been identified as NP-
complete. (Garey and Johnson [GAR79] catalog many NP-complete problems.) The more problems
in the list, the stronger the reason to believe that there is no simple (polynomial time) solution to
any (all) of them.

NP-Completeness and Cryptography

Hard-to-solve problems are fundamental to cryptography. Basing an encryption algorithm on one of
these hard problems would seem to be a way to require the interceptor to do a prodigious amount
of work to break the encryption. Unfortunately, this line of reasoning has four fallacies.

An NP-complete problem does not guarantee that there is no solution easier than exponential;
it merely indicates that we are unlikely to find an easier solution. This distinction means that
the basis of the difficulty in cracking an encryption algorithm might deteriorate if someone
should show that P = NP. This is the least serious of the fallacies.

1.

Every NP-complete problem has a deterministic exponential time solution, that is, one that
runs in time proportional to 2n. For small values of n, 2n is not large, and so the work of the
interceptor using a brute force attack may not be prohibitive. We can get around this difficulty
by selecting the algorithm so that the instance of the problem is very large; that is, if n is
large, 2n will be appropriately deterring.

2.

Continuing advances in hardware make problems of larger and larger size tractable. For
example, parallel processing machines are now being designed with a finite but large number
of processors running together. With a GUESS program, two processors could simultaneously
follow the paths from a GUESS point. A large number of processors could complete certain
nondeterministic programs in deterministic mode in polynomial time. However, we can select
the problem's setting so that the value of n is large enough to require an unreasonable number
of parallel processors. (What seems unreasonable now may become reasonable in the future,
so we need to select n with plenty of room for growth.)

3.

Even if an encryption algorithm is based on a hard problem, the interceptor does not always
have to solve the hard problem to crack the encryption. In fact, to be useful for encryption,
these problems must have a secret, easy solution. An interceptor may look for the easy way
instead of trying to solve a hard underlying problem. We study an example of this type of
exposure later in this chapter when we investigate the MerkleHellman knapsack algorithm.

4.

Other Inherently Hard Problems

Another source of inherently difficult problems is number theory. These problems are appealing
because they relate to numeric computation, so their implementation is natural on computers. Since
number theory problems have been the subject of much recent research, the lack of easy solutions
inspires confidence in their basic complexity. Most of the number theory problems are not NP-
complete, but the known algorithms are very time consuming nevertheless.



Two such problems that form the basis for secure encryption systems are computation in Galois
fields and factoring large numbers. In the next section we review topics in algebra and number
theory that enable us to understand and use these problems.

Properties of Arithmetic

We begin with properties of multiplication and division on integers. In particular, we investigate
prime numbers, divisors, and factoring since these topics have major implications in building secure
encryption algorithms. We also study a restricted arithmetic system, called a "field." The fields we
consider are finite and have convenient properties that make them very useful for representing
cryptosystems.

Unless we explicitly state otherwise, this section considers only arithmetic on integers. Also, unless
explicitly stated otherwise, we use conventional, not mod n, arithmetic in this section.

Inverses

Let • be an operation on numbers. For example, • might be + (addition) or * (multiplication). A
number i is called an identity for • if x • i = x and i • x = x for every number x. For example, 0 is
an identity for +, since x + 0 = x and 0 + x = x. Similarly, 1 is an identity for *.

Let i be an identity for •. The number b is called the inverse of a under • if a • b = i and b • a = i.
An identity holds for an entire operation; an inverse is specific to a single number. The identity
element is always its own inverse, since i • i = i. The inverse of an element a is sometimes denoted
a-1.

Using addition on integers as an example operation, we observe that the inverse of any element a is
(-a), since a + (-a) = 0. When we consider the operation of multiplication on the rational numbers,
the inverse of any element a (except 0) is 1/a, since a * (1/a) = 1. However, under the operation of
multiplication on the integers, there are no inverses (except 1). Consider, for example, the integer
2. There is no other integer b such that 2 * b = 1. The positive integers under the operation + have
no inverses either.

Primes

To say that one number divides another, or that the second is divisible by the first, means that
the remainder of dividing the second by the first is 0. Thus, we say that 2 divides 10, since 10/2 = 5
with remainder 0. However, 3 does not divide 10, since 10/3 = 3 with remainder 1. Also, the fact
that 2 divides 10 does not necessarily mean that 10 divides 2; 2/10 = 0 with remainder 2.

A prime number is any number greater than 1 that is divisible (with remainder 0) only by itself
and 1.[1] For example, 2, 3, 5, 7, 11, and 13 are primes, whereas 4 (2 * 2), 6 (2 * 3), 8 (2 * 2 *
2), and 9 (3 * 3) are not. A number that is not a prime is a composite.

[1] We disregard -1 as a factor, since (-1) * (-1) = 1.



Greatest Common Divisor

The greatest common divisor of two numbers, a and b, is the largest integer that divides both a
and b. The greatest common divisor is often written gcd(a, b). For example, gcd(15, 10) = 5 since 5
divides both 10 and 15, and nothing larger than 5 does. If p is a prime, for any number q < p,
gcd(p, q) = 1. Clearly, gcd(a, b) = gcd(b, a).

Euclidean Algorithm

The Euclidean algorithm is a procedure for computing the greatest common divisor of two
numbers. This algorithm exploits the fact that if x divides a and b, x also divides a - (k * b) for
every k. To understand why, if x divides both a and b, then a = x * a1 and b = x * b1. But then,

a - (k * b) = x * a1 - (x * k * b1)

  = x * (a1 - k * b1)

  = x * d

so that x divides (is a factor of) a - (k * b).

This result leads to a simple algorithm for computing the greatest common denominator of two
integers. Suppose we want to find x, the gcd of a and b, where a > b.

Rewrite a as

a = m * b + r

where 0  r < b. (In other words, compute m = a/b with remainder r.) If x = gcd(a,b), x divides a,

x divides b, and x divides r. But gcd(a, b) = gcd(b, r) and a > b > r  0. Therefore, we can simplify
the search for gcd by working with b and r instead of a and b:

b = m' * r + r'

where m' = b/r with remainder r'. This result leads to a simple iterative algorithm, which terminates
when a remainder 0 is found.

Example

For example, to compute gcd(3615807, 2763323), we take the following steps.



3,615,807 = (1) * 2,763,323 + 852,484

2,763,323 = (3) * 852,484 + 205,871

852,484 = (4) * 205,871 + 29,000

205,871 = (7) * 29,000+2,871

29,000 = (10) * 2,871 + 290

2,871 = (9) * 290 + 261

290 = (1) * 261 + 29

261 =(9) * 29 + 0

Thus, gcd(3615807, 2763323) = 29.

Modular Arithmetic

Modular arithmetic offers us a way to confine results to a particular range, just as the hours on a
clock face confine us to reporting time relative to 12 or 24. We have seen in earlier chapters how, in
some cryptographic applications, we want to perform some arithmetic operations on a plaintext
character[2] and guarantee that the result will be another character. Modular arithmetic enables us
to do this; the results stay in the underlying range of numbers. An even more useful property is that
the operations +, -, and * can be applied before or after the modulus is taken, with similar results.

[2] Strictly speaking, these operations were on a numeric value associated with the character.

Recall that a modulus applied to a nonnegative integer means remainder after division, so that 11
mod 3 = 2 since 11/3 = 3 with remainder 2. If a mod n = b then

a = c * n + b

for some integer c. Two different integers can have the same modulus: 11 mod 3 = 2 and 5 mod 3
= 2. Any two integers are equivalent under modulus n if their results mod n are equal. This
property is denoted

x n y if and only if (x mod n) = (y mod n)

Equivalently,

x n y if and only if (x - y) = k * n for some k

In the following sections, unless we use parentheses to indicate otherwise, a modulus applies to a
complete expression. Thus, you should interpret a + b mod n as (a + b) mod n, not a + (b mod n).

Properties of Modular Arithmetic

Modular arithmetic on the nonnegative integers forms a construct called a commutative ring with
operations + and * (addition and multiplication). Furthermore, if every number other than 0 has an



inverse under *, the group is called a Galois field. All rings have the properties of associativity and
distributivity; commutative rings, as their name implies, also have commutativity. Inverses under
multiplication produce a Galois field. In particular, the integers mod a prime n are a Galois field. The
properties of this arithmetic system are listed here.

Property Example

associativity a + (b + c) mod n = (a + b) + c mod n
a * (b * c) mod n = (a * b)* c mod n

commutativity a + b mod n = b + a mod n
a * b mod n = b * a mod n

distributivity a * (b + c) mod n = ((a * b) + (a * c)) mod n

existence of identities a + 0 mod n = 0 + a mod n = a
a * 1 mod n = 1 * a mod n = a

existence of inverses a + (-a)mod n = 0

a * (a-1) mod n = 1 if a  0

reducibility (a + b) mod n = ((a mod n) + (b mod n)) mod n
(a * b) mod n = ((a mod n) * (b mod n)) mod n

Example

As an example, consider the field of integers mod 5 shown in the tables below. These tables
illustrate how to compute the sum or product of any two integers mod 5. However, the reducibility
rule gives a method that you may find easier to use. To compute the sum or product of two integers
mod 5, we compute the regular sum or product and then reduce this result by subtracting 5 until
the result is between 0 and 4. Alternatively, we divide by 5 and keep only the remainder after
division.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3



* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

For example, let us compute 3 + 4 mod 5. Since 3 + 4 = 7 and 7 - 5 = 2, we can conclude that 3 +
4 mod 5 = 2. This fact is confirmed by the table. Similarly, to compute 4 * 4 mod 5, we compute 4
* 4 = 16. We can compute 16 - 5 = 11 - 5 = 6 - 5 = 1, or we can compute 16/5 = 3 with remainder
1. Either of these two approaches shows that 4 * 4 mod 5 = 1, as noted in the table. Since
constructing the tables shown is difficult for large values of the modulus, the remainder technique is
especially helpful.

Computing Inverses

In the ordinary system of multiplication on rational numbers, the inverse of any nonzero number a
is 1/a, since a * (1/a) = 1. Finding inverses is not quite so easy in the finite fields just described. In
this section we learn how to determine the multiplicative inverse of any element.

The inverse of any element a is that element b such that a * b = 1. The multiplicative inverse of a
can be written a-1. Looking at the table for multiplication mod 5, we find that the inverse of 1 is 1,
the inverse of 2 is 3 and, since multiplication is commutative, the inverse of 3 is also 2; finally, the
inverse of 4 is 4. These values came from inspection, not from any systematic algorithm.

To perform one of the secure encryptions, we need a procedure for finding the inverse mod n of any
element, even for very large values of n. An algorithm to determine a-1 directly is likely to be faster
than a table search, especially for large values of n. Also, although there is a pattern to the
elements in the table, it is not easy to generate the elements of a particular row, looking for a 1
each time we need an inverse. Fortunately, we have an algorithm that is reasonably simple to
compute.

Fermat's Theorem

In number theory, Fermat's theorem states that for any prime p and any element a < p,

ap mod p = a

or

ap-1 mod p = 1

This result leads to the inverses we want. For a prime p and an element a < p, the inverse of a is
that element x such that



ax mod p = 1

Combining the last two equations, we obtain

ax mod p = 1 = ap-1 mod p

so that

x = ap-2 mod p

This method is not a complete method for computing inverses, in that it works only for a prime p
and an element a < p.

Example

We can use this formula to determine the inverse of 3 mod 5:

3-1 mod 5 = 35-2 mod 5

  = 33 mod 5

  = 27 mod 5

  = 2

as we determined earlier from the multiplication table.

Algorithm for Computing Inverses

Another method to compute inverses is shown in the following algorithm. This algorithm, adapted
from [KNU73], is a fast approach that uses Euclid's algorithm for finding the greatest common
divisor.

{**Compute x = a-1 mod n given a and n **}



c0:= n

c1:= a  

b0:= 0  

b1:= 1  

i:= 1  

repeat  

  ci+1:= ci-1 mod ci

  t:= ci-1 div ci

  bi + 1:= bi-1 - t * b i

  i:= i + 1

until ci = 0

if (b i-1 0) then x:= bi-1 else x:= n + bi-1

We use these mathematical results in the next sections as we examine two encryption systems
based on arithmetic in finite fields.



12.2. Symmetric Encryption

We were introduced to symmetric encryption in Chapter 2. Here we review the two fundamentals of
symmetric encryption, confusion and diffusion, as they are represented in modern algorithms. We
also review cryptanalysis so that we can appreciate how encryption can fail. Finally, we study the
details of the two main symmetric systems, DES and AES. We also introduce three other fairly
common schemes: RC2, RC4, and RC5.

Fundamental Concepts

To refresh your memory and prepare you for a detailed description of DES and AES, we present
here a review of important points from Chapter 2.

Confusion and Diffusion; Substitution and Permutation

Recall from Chapter 2 that confusion is the act of creating ciphertext so that its corresponding
plaintext is not apparent. Substitution is the basic tool for confusion; here, we substitute one
element of ciphertext for an element of plaintext in some regular manner. Substitution is also the
point at which a key is typically introduced in the process. As we noted in Chapter 2, single
substitutions can be fairly easy to break, so strong encryption algorithms often employ several
different substitutions.

Diffusion is the act of spreading the effect of a change in the plaintext throughout the resulting
ciphertext. With poor diffusion, a change to one bit in the plaintext results in a change to only one
bit in the ciphertext. A cryptanalyst might trace single bits backward from ciphertext to plaintext,
having the effect of reducing 2n possibilities in an n-bit ciphertext to just n, and thereby reducing
the cryptanalytic complexity from exponential to linear. This reduction is not desirable; we always
want to make the cryptanalyst work as hard as possible.

Substitution is sometimes represented by so-called S-boxes, which are nothing other than table-
driven substitutions. Diffusion can be accomplished by permutations, or "P-boxes." Strong
cryptosystems may use several iterations of a substitute-permute cycle. Such a cycle is shown in
Figure 12-4. In the figure, a line entering an S-box from the top undergoes a substitution in the
box. Then it is sent to another S-box in the line below by permutation of the order in some way; this
permutation is represented by the lines spreading out at many angles.

Figure 12-4. Substitutions and Permutations.



Problems of Symmetric Key Systems

Symmetric key systems present several difficulties.

As with all key systems, if the key is revealed (stolen, guessed, bought, or otherwise
compromised), the interceptors can immediately decrypt all the encrypted information they
have available. Furthermore, an impostor using an intercepted key can produce bogus
messages under the guise of a legitimate sender. For this reason, in secure encryption
systems, the keys are changed fairly frequently so that a compromised key will reveal only a
limited amount of information.

1.

Distribution of keys becomes a problem. Keys must be transmitted with utmost security since
they allow access to all information encrypted under them. For applications that extend
throughout the world, this can be a complex task. Often, couriers are used to distribute the
keys securely by hand. Another approach is to distribute the keys in pieces under separate
channels so that any one discovery will not produce a full key. (For example, the Clipper
program in the United States uses a 2-piece key distribution.) This approach is shown in Figure
12-5.

Figure 12-5. Key Distribution in Pieces.

2.



As described earlier, the number of keys increases with the square of the number of people
exchanging secret information. This problem is usually contained by having only a few people
exchange secrets directly so that the network of interchanges is relatively small. If people in
separate networks need to exchange secrets, they can do so through a central "clearing
house" or "forwarding office" that accepts secrets from one person, decrypts them, reencrypts
them using another person's secret key, and transmits them. This technique is shown in Figure
12-6.

3.

Figure 12-6. Distribution Center for Encrypted Information.

[View full size image]

Data Encryption Standard

The symmetric systems provide a two-way channel to their users: A and B share a secret key, and
they can both encrypt information to send to the other as well as decrypt information from the
other. The symmetry of this situation is a major advantage.



As long as the key remains secret, the system also provides authentication, proof that a message
received was not fabricated by someone other than the declared sender. Authenticity is ensured
because only the legitimate sender can produce a message that will decrypt properly with the
shared key.

As we noted in Chapter 2, the Data Encryption Standard (DES) [NBS77] is a system developed for
the U.S. government for use by the general public. It has been officially accepted as a cryptographic
standard both in the United States and abroad. Many hardware and software systems use the DES.
However, its adequacy has recently been questioned.

Overview of the DES Algorithm

Recall that the strength of the DES algorithm derives from repeated application of substitution and
permutation, one on top of the other, for a total of 16 cycles. That is, plaintext is affected by a
series of cycles of a substitution then a permutation. The iterative substitutions and permutations
are performed as outlined in Figure 12-7.

Figure 12-7. Cycles of Substitution and Permutation.

[View full size image]



We noted in Chapter 2 that the algorithm uses only standard arithmetic and logical operations on up
to 64-bit numbers, so it is suitable for implementation in software on most current computers.
Although complex, the algorithm is repetitive, making it suitable for implementation on a single-
purpose chip. In fact, several such chips are available on the market for use as basic components in
devices that use DES encryption in an application.

Details of the Encryption Algorithm

The basis of the DES is two different ciphers, applied alternately. Shannon noted that two weak but
complementary ciphers can be made more secure by being applied together (called the "product" of
the two ciphers) alternately, in a structure called a product cipher. The product of two ciphers is
depicted in Figure 12-8.

Figure 12-8. Product Ciphers.



After initialization, the DES algorithm operates on blocks of data. It splits a data block in half,
scrambles each half independently, combines the key with one half, and swaps the two halves. This
process is repeated 16 times. It is an iterative algorithm using just table lookups and simple bit
operations. Although the bit-level manipulations of the algorithm are complex, the algorithm itself
can be implemented quite efficiently. The rest of this section identifies the individual steps of the
algorithm. In the next section, we describe each step in full detail.

Input to the DES is divided into blocks of 64 bits. The 64 data bits are permuted by a so-called
initial permutation. The data bits are transformed by a 64-bit key (of which only 56 bits are used).
The key is reduced from 64 bits to 56 bits by dropping bits 8, 16, 24, … 64 (where the most
significant bit is named bit "1"). These bits are assumed to be parity bits that carry no information
in the key.

Next begins the sequence of operations known as a cycle. The 64 permuted data bits are broken
into a left half and a right half of 32 bits each. The key is shifted left by a number of bits and
permuted. The key is combined with the right half, which is then combined with the left half. The
result of these combinations becomes the new right half; the old right half becomes the new left
half. This sequence of activities, which constitutes a cycle, is shown in Figure 12-9. The cycles are
repeated 16 times. After the last cycle is a final permutation, which is the inverse of the initial
permutation.

Figure 12-9. A Cycle in the DES.



For a 32-bit right half to be combined with a 64-bit key, two changes are needed. First, the
algorithm expands the 32-bit half to 48 bits by repeating certain bits, while reducing the 56-bit key
to 48 bits by choosing only certain bits. These last two operations, called expansion permutations
and permuted choices, are shown in the diagram of Figure 12-10.

Figure 12-10. Types of Permutations.

[View full size image]



Details of Each Cycle of the Algorithm

Each cycle of the algorithm is really four separate operations. First, a right half is expanded from 32
bits to 48. Then, it is combined with a form of the key. The result of this operation is then
substituted for another result and condensed to 32 bits at the same time. The 32 bits are permuted
and then combined with the left half to yield a new right half. This whole process is shown in Figure
12-11.

Figure 12-11. Details of a Cycle.

[View full size image]

Expansion Permutation

Each right half is expanded from 32 to 48 bits by means of the expansion permutation. The
expansion permutes the order of the bits and also repeats certain bits. The expansion has two
purposes: to make the intermediate halves of the ciphertext comparable in size to the key and to
provide a longer result that can later be compressed.

The expansion permutation is defined by Table 12-1. For each 4-bit block, the first and fourth bits



are duplicated, while the second and third are used only once. This table shows to which output
position(s) the input bits move. Since this is an expansion permutation, some bits move to more
than one position. Each row of the table shows the movement of eight bits. The interpretation of this
table is that bit 1 moves to positions 2 and 48 of the output, while bit 10 moves to position 15. A
portion of the pattern is also shown in Figure 12-12.

Table 12-1. Expansion Permutation.

Bit 1 2 3 4 5 6 7 8

Moves to Position 2,48 3 4 5,7 6,8 9 10 11,13

Bit 9 10 11 12 13 14 15 16

Moves to Position 12,14 15 16 17,19 18,20 21 22 23,25

Bit 17 18 19 20 21 22 23 24

Moves to Position 24,26 27 28 29,31 30,32 33 34 35,37

Bit 25 26 27 28 29 30 31 32

Moves to Position 36,38 39 40 41,43 42,44 45 46 47,1

Figure 12-12. Pattern of Expansion Permutation.

Key Transformation

As described above, the 64-bit key immediately becomes a 56-bit key by deletion of every eighth
bit. At each step in the cycle, the key is split into two 28-bit halves, the halves are shifted left by a
specified number of digits, the halves are then pasted together again, and 48 of these 56 bits are
permuted to use as a key during this cycle.

Next, the key for the cycle is combined by an exclusive OR function with the expanded right half.
That result moves into the S-boxes we are about to describe.

At each cycle, the halves of the key are independently shifted left circularly by a specified number of
bit positions. The number of bits shifted is given in Table 12-2.



Table 12-2. Bits Shifted by Cycle Number.

Cycle Number Bits Shifted

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

After being shifted, 48 of the 56 bits are extracted for the exclusive OR combination with the
expanded right half. The choice permutation that selects these 48 bits is shown in Table 12-3. For
example, from this table we see that bit 1 of the shifted key goes to output position 5, and bit 9 is
ignored in this cycle.

Table 12-3. Choice Permutation to Select 48 Key Bits.
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S-Boxes

Substitutions are performed by eight S-boxes. An S-box is a permuted choice function by which six
bits of data are replaced by four bits. The 48-bit input is divided into eight 6-bit blocks, identified as
B1B2... B8; block Bj is operated on by S-box Sj.

The S-boxes are substitutions based on a table of 4 rows and 16 columns. Suppose that block Bj is
the six bits b1b2b3b4b5b6. Bits b1 and b6, taken together, form a two-bit binary number b1b6, having
a decimal value from 0 to 3. Call this value r. Bits b2, b3, b4, and b5 taken together form a 4-bit
binary number b2b3b4b5, having a decimal value from 0 to 15. Call this value c. The substitutions
from the S-boxes transform each 6-bit block Bj into the 4-bit result shown in row r, column c of
section Si of Table 12-4. For example, assume that block B7 in binary is 010011. Then, r = 01 = 1
and c = 1001 = 9. The transformation of block B7 is found in row 1, column 9 of section 7 of Table
12-4. The value 3 = 0011 is substituted for the value 010011.

Table 12-4. S-Boxes of DES.
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P-Boxes

After an S-box substitution, all 32 bits of a result are permuted by a straight permutation, P. Table
12-5 shows the position to which bits are moved. Eight bits are shown on each row. For example,
bit 1 of the output of the substitution moves to bit 9, and bit 10 moves to position 16.



Table 12-5. Permutation Box P.

Bit Goes to Position

18 9 17 23 31 13 28 2 18

916 24 16 30 6 26 20 10 1

1724 8 14 25 3 4 29 11 19

2532 32 12 22 7 5 27 15 21

Initial and Final Permutations

The DES algorithm begins with an initial permutation that reorders the 64 bits of each input
block. The initial permutation is shown in Table 12-6.

Table 12-6. Initial Permutation.

Bit Goes to Position

18 40 8 48 16 56 24 64 32

916 39 7 47 15 55 23 63 31

1724 38 6 46 14 54 22 62 30

2532 37 5 45 13 53 21 61 29

3340 36 4 44 12 52 20 60 28

4148 35 3 43 11 51 19 59 27

4956 34 2 42 10 50 18 58 26

5764 33 1 41 9 49 17 57 25

At the conclusion of the 16 substitutionpermutation rounds, the DES algorithm finishes with a final
permutation (or inverse initial permutation), which is shown in Table 12-7.

Table 12-7. Final Permutation (Inverse Initial
Permutation).

Bit Goes to Position

18 58 50 42 34 26 18 10 2

916 60 52 44 36 28 20 12 4

1724 62 54 46 38 30 22 14 6



Bit Goes to Position

2532 64 56 48 40 32 24 16 8

3340 57 49 41 33 25 17 9 1

4148 59 51 43 35 27 19 11 3

4956 61 53 45 37 29 21 13 5

5764 63 55 47 39 31 23 15 7

Complete DES

Now we can put all the pieces back together. First, the key is reduced to 56 bits. Then, a block of 64
data bits is permuted by the initial permutation. Following are 16 cycles in which the key is shifted
and permuted, half of the data block is transformed with the substitution and permutation functions,
and the result is combined with the remaining half of the data block. After the last cycle, the data
block is permuted with the final permutation.

Decryption of the DES

The same DES algorithm is used both for encryption and decryption. This result is true because
cycle j derives from cycle (j-1) in the following manner:

Equation (1)

Equation (2)

where  is the exclusive OR operation and f is the function computed in an expand-shift-
substitute-permute cycle. These two equations show that the result of each cycle depends only on
the previous cycle.

By rewriting these equations in terms of Rj-1 and Lj-1, we get

Equation (3)
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data bits is permuted by the initial permutation. Following are 16 cycles in which the key is shifted
and permuted, half of the data block is transformed with the substitution and permutation functions,
and the result is combined with the remaining half of the data block. After the last cycle, the data
block is permuted with the final permutation.

Decryption of the DES

The same DES algorithm is used both for encryption and decryption. This result is true because
cycle j derives from cycle (j-1) in the following manner:
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Equation (2)

where  is the exclusive OR operation and f is the function computed in an expand-shift-
substitute-permute cycle. These two equations show that the result of each cycle depends only on
the previous cycle.

By rewriting these equations in terms of Rj-1 and Lj-1, we get

Equation (3)



and

Equation (4)

Substituting (3) into (4) gives

Equation (5)

Equations (3) and (5) show that these same values could be obtained from the results of later
cycles. This property makes the DES a reversible procedure; we can encrypt a string and also
decrypt the result to derive the plaintext again.

With the DES, the same function f is used forward to encrypt or backward to decrypt. The only
change is that the keys must be taken in reverse order (k16, k15, ..., k1) for decryption. Using one
algorithm either to encrypt or to decrypt is very convenient for a hardware or software
implementation of the DES.

Questions About the Security of the DES

Since its first announcement, there has been controversy concerning the security provided by the
DES. Although much of this controversy has appeared in the open literature, certain features of the
DES have neither been revealed by the designers nor inferred by outside analysts.

Design of the Algorithm

Initially, there was concern with the basic algorithm itself. During development of the algorithm, the
National Security Agency (NSA) indicated that key elements of the algorithm design were "sensitive"
and would not be made public. These elements include the rationale behind transformations by the
S-boxes, the P-boxes, and the key changes. There are many possibilities for the S-box substitutions,
but one particular set was chosen for the DES.

Two issues arose about the design's secrecy. The first involved a fear that certain "trapdoors" had
been embedded in the DES algorithm so that a covert, easy means was available to decrypt any
DES-encrypted message. For instance, such trapdoors would give NSA the ability to inspect private
communications.

After a Congressional inquiry, the results of which are classified, an unclassified summary
exonerated NSA from any improper involvement in the DES design. (For a good discussion on the
design of DES, see [SMI88a].)



The second issue addressed the possibility that a design flaw would be (or perhaps has been)
discovered by a cryptanalyst, this time giving an interceptor the ability to access private
communications.

Both Bell Laboratories [MOR77] and the Lexan Corporation [LEX76] scrutinized the operation (not
the design) of the S-boxes. Neither analysis revealed any weakness that impairs the proper
functioning of the S-boxes. The DES algorithm has been studied extensively and, to date, no serious
flaws have been published.

In response to criticism, the NSA released certain information on the selection of the S-boxes
([KON81, BRA77]).

No S-box is a linear or affine function of its input; that is, the four output bits cannot be
expressed as a system of linear equations of the six input bits.

Changing one bit in the input of an S-box results in changing at least two output bits; that is,
the S-boxes diffuse their information well throughout their outputs.

The S-boxes were chosen to minimize the difference between the number of 1s and 0s when
any single input bit is held constant; that is, holding a single bit constant as a 0 or 1 and
changing the bits around it should not lead to disproportionately many 0s or 1s in the output.

Number of lterations

Many analysts wonder whether 16 iterations are sufficient. Since each iteration diffuses the
information of the plaintext throughout the ciphertext, it is not clear that 16 cycles diffuse the
information sufficiently. For example, with only one cycle, a single ciphertext bit is affected only by
a few bits of plaintext. With more cycles, the diffusion becomes greater, so ideally no one ciphertext
bit depends on any subset of plaintext bits.

Experimentation with both the DES and its IBM predecessor Lucifer was performed by the NBS and
by IBM as part of the certification process of the DES algorithm. These experiments have shown
[KON81] that 8 iterations are sufficient to eliminate any observed dependence. Thus, the 16
iterations of the DES should surely be adequate.

Key Length

The length of the key is the most serious objection raised. The key in the original IBM
implementation of Lucifer was 128 bits, whereas the DES key is effectively only 56 bits long. The
argument for a longer key centers around the feasibility of an exhaustive search for a key.

Given a piece of plaintext known to be enciphered as a particular piece of ciphertext, the goal for
the interceptor is to find the key under which the encipherment was done. This attack assumes that
the same key will be used to encipher other (unknown) plaintext. Knowing the key, the interceptor
can easily decipher intercepted ciphertext.

The attack strategy is the "brute force" attack: Encipher the known plaintext with an orderly series
of keys, repeating with a new key until the enciphered plaintext matches the known ciphertext.
There are 256 56-bit keys. If someone could test one every 100 milliseconds, the time to test all



keys would be 7.2 * 1015 seconds, or about 228 million years. If the test took only one
microsecond, then the total time for the search is (only!) about 2,280 years. Even supposing the
test time to be one nanosecond, infeasible on current technology machines, the search time is still
in excess of two years, assuming full-time work with no hardware or software failures!

Diffie and Hellman [DIF77] suggest a parallel attack. With a parallel design, multiple processors can
be assigned the same problem simultaneously. If one chip, working at a rate of one key per

microsecond, can check about 8.6 * 1010 keys in one day, it would take 106 days to try all 256  7
* 1016 keys. However, 106 chips working in parallel at that rate could check all keys in one day.

Hellman's original estimate of the cost of such a machine was $20 million (at 1977 prices). The price
was subsequently revised upward to $50 million. Assuming a "key shop" existed where people
would bring their plaintext/ciphertext pairs to obtain keys and assuming that there was enough
business to keep this machine busy 24 hours a day for 5 years, the proportionate cost would be only
about $20,000 per solution. As hardware costs continue to fall, the cost of such a machine becomes
lower. The stumbling block in the economics of this argument is prorating the cost over five years:
If people learned such a device was available at affordable prices, use of the DES would cease for
important data. Hellman predicted [HEL79] that hardware prices would fall to the point where this
attack would be feasible.

There has been a dramatic drop in the price of computing hardware per instruction per microsecond.
In 1998 a piece of special-purpose hardware was built that could infer a DES key in 112 hours for
only $130,000. Kocher [KOC99] describes the machine. As the price of hardware continues to drop,
the security of DES continues to fall.

An alternative attack strategy is the table lookup argument [HEL80]. For this attack, assume a
chosen plaintext attack. That is, assume we have the ability to insert a given plaintext block into the
encryption stream and obtain the resulting ciphertext under a still-secret key. Hellman argues that
with enough advance time and enough storage space, it would be possible to compute all of the 256

results of encrypting the chosen block under every possible key. Then, determining which key was
used is a matter of looking up the output obtained.

By a heuristic algorithm, Hellman suggests an approach that will limit the amount of computation
and data stored to 237, or about 6.4 * 1011. Again assuming many DES devices working in parallel,
it would be possible to precompute and store results.

A brute force parallel attack against DES succeeded in 1997. (Thus, the concerns about key length
in 1977 were validated in two decades.) Using the Internet, a team of researchers divided the key
search problem into pieces (so that computer A tries all keys beginning 0000..., computer B tries all
keys beginning 0001..., computer C tries all keys beginning 0010..., and so forth). This attack works
because the key space is linear: any 56-bit string could be used as a key, and the parallel attack
simply divides the key space among all search machines. In four months, using approximately 3500
machines, the researchers were able to recover a key to a DES challenge posted by RSA
Laboratories [KOC99]. This challenge required thousands of cooperating participants. It is doubtful
that such an attack could be accomplished in secret with public machines. Because the approach is
linear, 3500 machines in 120 days is equivalent to 35,000 machines in 12 days.

Weaknesses of the DES

The DES algorithm also has known weaknesses, but these weaknesses are not believed to be
serious limitations of the algorithm's effectiveness.



Complements

The first known weakness concerns complements. (Throughout this discussion, "complement"
means "ones complement," the result obtained by replacing all 1s by 0s and 0s by 1s in a binary
number.) If a message is encrypted with a particular key, the complement of that encryption will be
the encryption of the complement message under the complement key. Stated formally, let p
represent a plaintext message and k a key, and let the symbol ¬x mean the complement of the
binary string x. If c = DES(p, k) (meaning c is the DES encryption of p using key k), then ¬c =
DES(¬p, ¬k). Since most applications of encryption do not deal with complement messages and
since users can be warned not to use complement keys, this problem is not serious.

Weak Keys

A second known weakness concerns choice of keys. Because the initial key is split into two halves
and the two halves are independently shifted circularly, if the value being shifted is all 0s or all 1s,
then the key used for encryption in each cycle is the same as for all other cycles. Remember that
the difference between encryption and decryption is that the key shifts are applied in reverse. Key
shifts are right shifts, and the number of positions shifted is taken from the bottom of the table up,
instead of top down. But if the keys are all 0s or all 1s anyway, right or left shifts by 0, 1, or 2
positions are all the same. For these keys, encryption is the same as decryption: c = DES(p, k), and
p = DES(c, k). These keys are called "weak keys." The same thing happens if one half of the key is
all 0s and the other half is all 1s. Since these keys are known, they can simply be avoided, so this,
too, is not a serious problem.

The four weak keys are shown in hexadecimal notation in Table 12-8. (The initial key permutation
extracts every eighth bit as a parity bit and scrambles the key order slightly. Therefore, the "half
zeros, half ones" keys are not just split in the middle.)

Table 12-8. Weak DES Keys.

Left Half Right Half Weak Key Value

zeros zeros 0101 0101 0101 0101

ones ones FEFE FEFE FEFE FEFE

zeros ones 1F1F 1F1F 0E0E 0E0E

ones zeros E0E0 E0E0 F1F1 F1F1

Semiweak Keys

A third difficulty is similar: Specific pairs of keys have identical decryption. That is, there are two
different keys, k1 and k2, for which c = DES(p, k1) and c = DES(p, k2). This similarity implies that k1

can decrypt a message encrypted under k2. These socalled semiweak keys are shown in Table 12-9.
Other key patterns have been investigated with no additional weaknesses found to date. We should,



however, avoid any key having an obvious pattern such as these.

Table 12-9. Semiweak DES Key Pairs.

01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01

1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E

01E0 01E0 01F1 01F1 E001 E001 F101 F101

1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E

011F 011F 010E 010E 1F01 1F01 0E01 0E01

E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1

Design Weaknesses

In another analysis of the DES, [DAV83b] shows that the expansion permutation repeats the first
and fourth bits of every 4-bit series, crossing bits from neighboring 4-bit series. This analysis
further indicates that in S-box S4, one can derive the last three output bits the same way as the
first by complementing some of the input bits. Of course, this small weakness raises the question of
whether there are similar weaknesses in other S-boxes or in pairs of S-boxes.

It has also been shown that two different, but carefully chosen, inputs to S-boxes can produce the
same output (see [DAV83b]). Desmedt et al. [DES84] make the point that in a single cycle, by
changing bits only in three neighboring S-boxes, it is possible to obtain the same output; that is,
two slightly different inputs, encrypted under the same key, will produce identical results at the end
of just one of the l6 cycles.

Key Clustering

Finally, the researchers in [DES84] investigate a phenomenon called "key clustering." They seek to
determine whether two different keys can generate the same ciphertext from the same plaintext,
that is, two keys can produce the same encryption. The semiweak keys are key clusters, but the
researchers seek others. Their analysis is very involved, looking at ciphertexts that produce identical
plaintext with different keys in one cycle of the DES, then looking at two cycles, then three, and so
forth. Up through three cycles, they found key clusters. Because of the complexity involved, they
had to stop the analysis after three cycles.

Differential Cryptanalysis

These inherent design problemsweak keys, key clustering, and so forthwere all discovered through
intensive research into the strength of DES shortly after its introduction. Although the results are
significant from the standpoint of cryptologists, none of them called into question the overall
usefulness of DES.



In 1990 Biham and Shamir [BIH90] (see also [BIH91, BIH92, and BIH93]) announced a technique
they named differential cryptanalysis. The technique applied to cryptographic algorithms that
use substitution and permutation. This powerful technique was the first to have impressive effects
against a broad range of algorithms of this type.

The technique uses carefully selected pairs of plaintext with subtle differences and studies the
effects of these differences on resulting ciphertexts. If particular combinations of input bits are
modified simultaneously, particular intermediate bits are also likely with a high probability to change
in a particular way. The technique looks at the exclusive OR (XOR) of a pair of inputs; the XOR will
have a 0 in any bit in which the inputs are identical and a 1 where they differ.

The full analysis is rather complicated, but we present a sketch of it here. The S-boxes transform six
bits into four. If the S-boxes were perfectly uniform, one would expect all 4-bit outputs to be equally
likely. However, as Biham and Shamir show, certain similar texts are more likely to produce similar
outputs than others. For example, examining all pairs of 6-bit strings with an XOR pattern 35 in
hexadecimal notation (that is, strings of the form ddsdsd where d means the bit value is different
between the two strings and s means the bit value is the same) for S-box S1, the researchers found
that the pairs have an output pattern of dsss 14 times, ddds 14 times, and all other patterns a
frequency ranging between 0 and 8. That says that an input of the form ddsdsd has an output of the
form dsss 14 times out of 64, and ddds another 14 times out of 64; each of these results is almost
1/4, which continues to the next round. Biham and Shamir call each of these recognizable effects a
"characteristic"; they then extend their result by concatenating characteristics. The attack lets them
infer values in specific positions of the key. If m bits of a k-bit key can be found, the remaining (k-
m) bits can be found in an exhaustive search of all 2(k-m) possible keys; if m is large enough, the
2(k-m) exhaustive search is feasible.

In Biham and Shamir [BIH90] the authors present the conclusions of many results they have
produced by using differential cryptanalysis; they describe the details of these results in the
succeeding papers. The attack on Lucifer, the IBM-designed predecessor to DES, succeeds with only
30 ciphertext pairs. FEAL is an algorithm similar to DES that uses any number of rounds; the n-
round version is called FEAL-n. FEAL-4 can be broken with 20 chosen plaintext items [MUR90],

FEAL-8 [MIY89] with 10,000 pairs [GIL90]; and FEAL-n for n 31 can be broken faster by
differential cryptanalysis than by full exhaustive search [BIH91].[3]

[3] In cryptology, it often seems like a dog chasing its tail: one cryptologist proposes a new algorithm, and a year later someone

else demonstrates the fatal flaw in that algorithm. Cryptology is a very exacting discipline. As we have already advised, amateurs

should learn from these examples: Even the best professionals can be tripped by details.

The results concerning DES are impressive. Shortening DES to fewer than its normal 16 rounds
allows a key to be determined from chosen ciphertexts in fewer than the 256 (actually, expected
value of 255) searches. For example, with 15 rounds, only 252 tests are needed (which is still a large
number of tests); with 10 rounds, the number of tests falls to 235, and with 6 rounds, only 28 tests
are needed. However, with the full 16 rounds, this technique requires 258 tests, or 22 = 4 times
more than an exhaustive search would require.

Finally, the authors show that with randomly selected S-box values, DES is easy to break. Indeed,
even with a change of only one entry in one S-box, DES becomes easy to break. One might
conclude that the design of the S-boxes and the number of rounds were chosen to be optimal.

In fact, that is true. Don Coppersmith of IBM, one of the original team working on Lucifer and DES,
acknowledged [COP92] that the technique of differential cryptanalysis was known to the design
team in 1974 when they were designing DES. The S-boxes and permutations were chosen in such a
way as to defeat that line of attack.



Security of the DES

The cryptanalytic attacks described here have not exposed any significant, exploitable vulnerabilities
in the design of DES. But the weakness of the 56-bit key is now apparent. Although the amount of
computing power or time needed is still significant enough to deter casual DES key browsing, a
dedicated adversary could succeed against a specific DES ciphertext of significant interest.

Does this mean the DES is insecure? No, not yet. Nobody has yet shown serious flaws in the DES.
With a triple DES approach (described in Chapter 2), the effective key length is raised from 56 bits
to 112 or 168 bits,[4] increasing the difficulty of attack exponentially. In the near term (years,
probably decades) triple DES is strong enough to protect even significant commercial data (such as
financial data or patient medical records). Still, DES is nearing the end of its useful lifetime, and a
replacement is in order. With millions of computers in the world, clearly DES is inadequate to
protect sensitive information with a modest time value. Similarly, algorithms with key lengths of 64
and 80 bits may be strong enough for a while, but an improvement in processor speeds and number
of parallel computers threatens those, too. (See [BLA96] and [LEN01] for more discussion on the
relationship between key length and security with various algorithms.)

[4] Merkle [MER81] notes an uncommon attack in which triple DES fails to yield the expected strength of 112 bits.

Advanced Encryption Standard

As we learned in Chapter 2, the U.S. NIST issued a call in 1997 for a new encryption system.
Several restrictions were placed on the candidate algorithms: they had to be available worldwide
and free of royalties, and their design had to be public. The criteria for selection of the five finalists
were

security

cost

algorithm and implementation characteristics

The finalists were

MARS from IBM [BAR99]. This algorithm is optimized for implementation on current large-scale
computers (such as those from IBM), but it may be less efficient on PCs. It involves
substitutions, as with the S-boxes of DES, addition, and shifting and rotation.

RC6 from RSA Laboratories [RIV98]. This algorithm is along the lines of existing algorithm
RC5. Its design is so simple that it could even be memorized. The 128-bit block is manipulated
as four 32-bit quarter-blocks. In 20 rounds, two quarter-blocks are XORed with a simple
mathematical function of the other two; then the four quarter-blocks change position, rotating
left 32 bits. The simple design leads to a fast and easy implementation.

Serpent by Anderson et al. [AND98b]. This algorithm is cryptographically conservative,
meaning that it has been structured with more rounds of confusion and diffusion than its



designers think are necessary. It uses 32 rounds, each of which consists of a key addition, 4-
bit to 4-bit substitution using one of eight substitutions, and then some mixing operations that
combine bits across different 32-bit words. The algorithm lends itself readily to hardware
(chip) implementation, based on parallel 4-bit subprocessors.

Twofish from Counterpane Security [SCH98]. The designers of Twofish developed a design of
substitution tables that depends on the encryption key instead of on fixed substitution tables
(like the S-boxes of DES). This approach, the designers state, leads to greater security. As in
DES, the algorithm operates on half the block at a time and then the two halves are swapped.
Each round involves matrix multiplication in a finite field. Some of Twofish's work can be
precomputed, so the implementation can be optimized for speed.

Rijndael by Daemen and Rijmen [DAE00, DAE02]. This algorithm uses cycles of four different
kinds of operations, although all of the operations are simple. Thus, the implementation should
be simple and efficient, without a significant sacrifice to security.

NIST indicated that no cryptographic weaknesses had been found in any of the five candidate
algorithms. Rijndael was selected because it offered the best combination of security, performance,
efficiency, ease of implementation, and flexibility. In 2001 it was formally adopted by the U.S.
government for protection of government data transmission and storage. NIST relied heavily on
public analysis of the algorithms.

Structure of the AES

AES is a block cipher of block size 128 bits. The key length can be 128, 192, or 256 bits. (Actually,
the Rijndael algorithm can be extended to any key length that is a multiple of 64, although only
128, 192, and 256 are recognized in the AES standard.)

AES is a substitution-permutation cipher involving n rounds, where n depends on the key length. For
key length 128, 10 rounds are used; for 192, 12; and for 256, 14. The cycle of AES is simple,
involving a substitution, two permuting functions, and a keying function.

It is convenient to think of a 128-bit block of AES as a 4 x 4 matrix, called the "state." We present
the state here as the matrix s[0,0]..s[3,3]. The state is filled from the input in columns. Assume, for
example, that the input is the 16 bytes b0, b1, b2, b3,..., b15. These bytes are then represented in
the state as shown in Table 12-10. Some operations in Rijndael are performed on columns of the
state, and some on rows, so this representation implements a form of columnar transposition.

Table 12-10. Representation of the "State" in Rijndael.

b0 b4 b8 b12   s0,0 s0,1 s0,2 s0,3

b1 b5 b9 b13   s1,0 s1,1 s1,2 s1,3

b2 b6 b10 b14   s2,0 s2,1 s2,2 s2,3

b3 b7 b11 b15   s3,0 s3,1 s3,2 s3,3



The four steps of the algorithm operate as follows.

1. Byte substitution: The first step is a simple substitution: s[i,j] becomes s'[i,j], through a
defined substitution table.

2. Shift row: In the second step, the rows of s are permuted by left circular shift; the first
(leftmost, high order) i elements of row i are shifted around to the end (rightmost, low order).

3. Mix columns: The third step is a complex transformation on the columns of s under which the
four elements of each column are multiplied by a polynomial, essentially diffusing each
element of the column over all four elements of that column.

4. Add round key: Finally, a key is derived and added to each column.

This sequence is repeated for a number of rounds depending on the key length.

Before describing these rounds, we must first mention that Rijndael is defined in the Galois field
GF(28) by the irreducible polynomial

p = x8 + x4 + x3 + x + 1

In this mathematical system, a number is represented as a series of coefficients to this eighth-
degree polynomial. For example, the number 23, represented in binary as 10111, is the polynomial

1x4 + 0x3 + 1x2 + 1x + 1 = x4 + x2 + x1 + 1

Addition of coefficients is performed (mod 2), so that addition is the same as subtraction which is
the same as exclusive OR: 0 + 0 = 0, 1 + 0 = 0 + 1 = 1, 1 + 1 = 0. Multiplication is performed as
on polynomials: (x3 + 1) * (x4 + x) = (x7 + x4 + x4 + x) = (x7 + x).

Although the mathematics of Galois fields are well beyond the scope of this book, it is important to
realize that this mathematical foundation adds an underlying structure to what might otherwise
seem like the random scrambling of numbers. As we explain how Rijndael works, we point out the
uses of the Galois field, without necessarily explaining their full meaning. The mathematical
underpinning gives credibility to Rijndael as a strong cipher.

Byte Substitution

Rijndael byte substitution is a conventional substitution box. However, the designers opened a small
window into their algorithm's structure. The table is not just an arbitrary arrangement of bytes.
Each byte b is replaced by the byte which is the result of the following two mathematical steps:

•. Compute the multiplicative inverse of b in GF(28); 0, having no multiplicative inverse, is
represented by 0.

•. Exclusive OR that result with 99 = hexadecimal 63 = 0110 0011.



Using inverses in GF(28) ensures that each value appears exactly once in the table. Combining with
99 helps break up patterns. The complete substitution table is shown in Table 12-11. For example,
the byte 20 is replaced by B7, in row 2, column 0.

Table 12-11. Sub-bytes Substitution.

[View Full Width]

Shift Row

Actually, Rijndael is defined for blocks of size 128, 192, and 256 bits, too, even though the AES
specifies a block size of only 128 bits. In the shift row step, assume a block is composed of 16 (or
24 or 32) bytes numbered (from left, or most significant, to right) 1 to 16 (or 24 or 32). In the shift
row, the numbered bytes are shifted to the positions as shown in Table 12-12. That is, for 128- and
192-bit blocks, row i is rotated left (i-1) bytes; for 256-byte blocks, rows 3 and 4 are shifted an
extra byte.

Table 12-12. Shift Row Operation for 128-, 192-, and 256-bit Blocks.



That is, row n is shifted left circular (n-1) bytes, except for 256-bit blocks, in which case row 2 is
shifted 1 byte and rows 3 and 4 are shifted 3 and 4 bytes, respectively.

Mix Column

In the mix column operation, each column (as depicted in shift rows) is multiplied by the matrix

so that



However, this "multiplication" is performed on bytes by logical operations, so multiplying the column
by 1 means leaving it unchanged, multiplying by 2 (binary 10) means shifting each byte left one bit,
and multiplying by 3 (binary 11) means shifting left one bit and adding (exclusive ORing) the
original unshifted value. For example,

s'
1,1 = s0,1  2s1,1  2s2,1  s2,1  s3,1

where 2s2,1 is s2,1 shifted left one bit. (The symbol  denotes exclusive OR.) Results longer than 8
bits are reduced by computing mod P for the generating polynomial P of the Rijndael algorithm; this
means that 100011011 is subtracted (exclusive ORed) from the result until the result has at most
eight significant bits.

Add Subkey

The final step of a cycle is to add (exclusive OR) a variation of the key with the result so far. The
variation is as follows. The first key is the key itself. The second key is changed 4-byte word by
word. The first word is rotated one byte left, then transformed by the substitution of the byte
substitution step, then added (exclusive ORed) with a constant. The rest of the words in that subkey
are produced by the exclusive OR of the first word with the corresponding word from the previous

key. So, if key variation k1 is w1w2w3w4 (four 32-bit words, or 128 bits), then k2 is w1'(w2 

w1')(w3  w1')(w4  w1') where w1'is w1 rotated left 1 byte, substituted, and exclusive ORed with
a constant.

A picture of the full AES is shown in Figure 12-13. Notice that in the Mix Columns step the algorithm
takes a "right turn," changing from a row (word) orientation to a column structure.

Figure 12-13. Structure of the AES.

[View full size image]



Cryptanalysis of the AES

Rijndael has been subjected to extensive cryptanalysis by professional and amateur cryptographers
since it was proposed for the AES. It is a variation on an earlier algorithm, Square, from the same
authors; that algorithm, too has been analyzed extensively in the community.

To date, no significant problems have been found with Rijndael. One property that has been
discovered, which is both good and bad, is that it is quite regular. Regularity is evident if an input is
chosen and all bytes except one of that input are held constant. Then, the one remaining byte is
repeatedly changed through all 256 different possible values; after one round of Rijndael, 4 bytes
will go through all 256 values, and after two rounds, 16 bytes will go through all 256 values. This
result demonstrates unusually good diffusion, in that small changes in the input have a widespread
effect. However, the regularity of this pattern might give some clue to an attacker, although that is
unlikely.

We have noted that Rijndael draws heavily from algebra, especially Galois fields. The substitution
and column mixing functions are not just numbers chosen at random but instead solve certain
fundamental problems in Galois field theory. The authors have not offered a mathematical argument
for why such a basis gives strength toor at least does not detract fromthe approach. But substantial
work in that area makes it unlikely that there are any hidden shortcutsways in which an attacker
could solve an encryption in a manner significantly easier than a brute force key search. Over time
we can expect mathematicians to explore this algorithm and its underlying field.

For now, the AES seems a solid replacement for the DES.

RC2, RC4, and RC5



The RC2, RC4 and RC5 ciphers all come from Ron Rivest, one of the inventors of the RSA algorithm
and founder of RSA Laboratories. The RC in the names means either "Rivest cipher" or "Ron's code,"
depending on which source you believe. The ciphers are structurally different, but all have some
degree of common use, so we explore them briefly here.

RC2

RC2 is a block cipher designed as a simple and fast algorithm [KNU02]. Although Rivest originally
intended the algorithm to be held proprietary, someone released its design description on the
Internet in 1996. The algorithm was first intended for international use by the Lotus Notes office
application suite; it would use a short enough key (40 bits) to satisfy U.S. export restrictions to
most countries, thereby assuring Lotus of international marketablity. In fact, RC2 supports key sizes
from 8 to 128 bits, giving it strength exceeding DES against exhaustive key search. Its operation is
similar enough to DES that it can be substituted for DES in applications, giving an international
edition with no difficulty. With relaxation of export restrictions in 2000, the need for a shorter-key
DES replacement has fallen.

RC2 consists of two operations: mixing and mashing. In mixing, a bit stream undergoes some
transposition in the form of bit shifting with concurrent substitution through binary (AND, OR, NOT)
operations on parts of the bits. During each round of mixing, a complete shuffle of bits occurs from
right, moving left, and cycling around to the right again. There are sixteen rounds of mixing. The
mashing round is pure substitution. Two mashing rounds are performed after mixing rounds 5 and
11.

Invented in 1987, RC2 is old as cryptosystems go. There have been no serious weaknesses
discovered in the design.

RC4

RC4 is a stream cipher, widely used in wireless networks (WEP and WPA), as well as in SSL and
various products. It was especially popular before 2000 because, like RC2, it employs a variable
length key and so could be configured to use a 40-bit key, short enough to pass export restrictions.

RC4 is essentially a keyed pseudorandom number generator (PRNG); it generates a stream of bits in
no predictable order. For encryption, the stream of bits is XORed with the plaintext bits.

The algorithm is ingeniously simple. It uses a 256-element array A containing each of the 256
possible values of an 8-bit byte. Pointers i and j identify bytes from the array to be swapped. At
each step, i is incremented by 1, j is replaced by j + A[i], A[i] and A[j] are swapped, and the byte
A[A[i]+A[j]] is produced as output. (All additions are carried out mod 256.) The algorithm is very
efficient, especially for a software implementation.

No serious cryptanalytic weaknesses have been found in the algorithm itself. However, as noted in
Chapter 2, the random number sequence of an XOR stream cipher must never repeat. That is, the
same key must never be used for two different plaintexts. To see why, consider plaintexts p1 and
p2, encrypted with a common key k.

c1 = p1 k



c2 = p2 k

The attacker takes the two ciphertexts and computes

from which p1 and p2 may be recoverable with frequency analysis, probable plaintext, or other
techniques.

Many implementations of RC4 have exactly that weakness. To initialize array A, the algorithm starts
with all 256 bytes in numerical order. Then it works through the 256 bytes, swapping each byte with
a byte whose location depends, in part, on a byte from the key: for each i,

j := j + A[i] + key[i]

and A[i] and A[j] are swapped. So the up-to-256-byte key controls how the random number array is
initialized.

To protect against identical plaintext attacks, ciphers, especially XOR stream ciphers, are used with
an initialization vector, also called a nonce. In some implementations of RC4 the nonce is appended
to the key, effectively extending and randomizing the key.

Fluhrer et al. [FLU01] analyzed the output of RC4 for all possible keys and found that the output is
biased, leaking information about the key. If the nonce has been appended to the key, it is possible
to narrow the search space for the key significantly.

RC4 is widely used for WEP encryption on wireless networks. The wireless access point and remote
device use the same key indefinitely until manually rekeyed. The weakness Fluhrer et al. identified
has allowed WEP encryption to be broken in minutes. This weakness has led to the development of
WPA and WPA2 for wireless communication, the latter using the much stronger AES encryption.

RC4 has also been used in Microsoft Office products Word and Excel to encrypt password-protected
documents. Microsoft makes the mistake of encrypting each version of a document under the same
encryption key (password). Wu [WU05] describes an attack like the XOR stream attack described
above by which the text of an encrypted document can be retrieved easily given two versions of the
document.

RC5

RC5 is a fully parameterized block cipher; this means the key length, block size, and number of
cycles can be varied to alter the balance between security and complexity of operation and use. RC5
[RIV94] uses a simple design that served as a model for the AES candidate RC6.

A data block in RC5 is split in half, the left half is modified, the halves are swapped, the new left half
(that is, the old right half) is modified the same way, and the halves are swapped again. That
sequence constitutes a full round of the algorithm. The modifications of each half-round involve
XOR, circular shift, and addition of a portion of the key. In an unusual twist for a cryptographic



algorithm, the number of bits shifted depends on the input data: The left half is shifted by the
number of bits of the value of the right half.

No significant weaknesses have been found in RC5. Encryption with a small number of rounds (12)
has been found to be subject to differential cryptanalysis, but the number of rounds can be set
arbitrarily. Because the operations per round are few and simple and the speed of the
implementation depends linearly on the number of rounds, raising the number of rounds above 12
does not significantly slow down encryption.

Cryptographic Challenges

RSA Laboratories has issued cryptographic challenges. They post ciphertext strings under a specified
algorithm, and they offer a cash prize to the first person who correctly finds the corresponding
plaintext and decryption key. (For more details, see www.rsasecurity.com/rsalabs/node.asp?
id=2091.)

The first challenge, for DES, has already been solved. In a breathtaking 22 hours and 15 minutes,
the Electronic Frontier Foundation (EFF) managed to decrypt the DES-encrypted string posted 18
January 1999. The solvers used a network of 100,000 computers to derive the 56-bit key in
conjunction with a special-purpose hardware-cracking unit built for approximately $250,000. EFF
won an earlier competition with the hardware cracker alone, by finding a key in three days' time
[EFF98].

RSA Labs posted challenges for various sizes of RC5 in 1997. The first challenge, RC5-32/12/5, was
broken in 3.5 hours. (The notation RC5-x/y/z means RC5 with an x-bit word (block) size, using y
rounds and a z-byte key.) RC5-32/12/6 was broken in 313 hours, RC5-32/12/7 in 265 days, and
RC5-32/12/8 in 2002 after 1,757 days. Work is underway on RC5-32/12/9 (a 72-bit key). The
major contender is the distributed collaboration put together by distributed.net, which won both the
/6 and /7 RC-5 challenges.

These challenges are interesting mathematical and cryptological puzzles, but they serve another
purpose as well. They show clearly that standard 56-bit DES keys are no longer secure enough to be
used for situations requiring any real security. However, 64-bit RC5 keys have required more than
four years by a very large network of machines to be broken. This result is encouraging because it
indicates that 112-bit triple DES (or the stronger 168-bit variety) is amply secure even for data
requiring long-term protection. This analysis matches the 1996 recommendations of a distinguished
panel of cryptologists: Blaze et al. [BLA96] said then that for safety, keys in 1996 should be about
75 bits long, and to provide 20 years' of protection 90 bits were preferable. In 2005, NIST
investigated encryption algorithms [NIS05] and recommended using 80-bit keys for 5 years of
protection, 112-bit keys for 25 years, and 128 bits for more than 25 years.



12.3. Public Key Encryption Systems

In 1976, Diffie and Hellman [DIF76] proposed a new kind of system, public key encryption, in which
each user would have a key that did not have to be kept secret. Counterintuitively, the public nature
of the key would not inhibit the system's secrecy. The public key transformation is essentially a one-
way encryption with a secret (private) way to decrypt.

Public key systems have an enormous advantage over conventional key systems: Anyone can send
a secret message to a user, while the message remains adequately protected from being read by an
interceptor. With a conventional key system, a separate key is needed for each pair of users. As we
have seen, n users require n * (n - 1)/2 keys. As the number of users grows, the number of keys
rapidly increases. Determining and distributing these keys is a problem; more serious is maintaining
security for the keys already distributed, because we cannot expect users to memorize so many
keys.

Characteristics

With a public key or asymmetric encryption system, each user has two keys: a public key and a
private key. The user may publish the public key freely. The keys operate as inverses. Let kPRIV be a
user's private key, and let kPUB be the corresponding public key. Then,

P = D(kPRIV, E(kPUB,P))

That is, a user can decode with a private key what someone else has encrypted with the
corresponding public key. Furthermore, with the second public key encryption algorithm,

P = D(kPUB, E(kPRIV, P)

a user can encrypt a message with a private key and the message can be revealed only with the
corresponding public key. (We study an application of this second case later in this chapter, when
we examine digital signature protocols.)

These two properties imply that public and private keys can be applied in either order. Ideally, the
decryption function D can be applied to any argument, so we can decrypt first and then encrypt.
With conventional encryption, one seldom thinks of decrypting before encrypting. With public keys,
it simply means applying the private transformation first, and then the public one.

We saw in Chapter 2 that, with public keys, only two keys are needed per user: one public and one
private. Thus, users B, C, and D can all encrypt messages for A, using A's public key. If B has
encrypted a message using A's public key, C cannot decrypt it, even if C knew it was encrypted with
A's public key. Applying A's public key twice, for example, would not decrypt the message. (We
assume, of course, that A's private key remains secret.) In the remainder of this section, we look
closely at three types of public key systems: MerkleHellman knapsacks, RSA encryption, and El
Gamal applied to digital signatures.



MerkleHellman Knapsacks

Merkle and Hellman [MER78b] developed an encryption algorithm based on the knapsack problem
described earlier. The knapsack problem presents a set of positive integers and a target sum, with
the goal of finding a subset of the integers that sum to the target. The knapsack problem is NP-
complete, implying that to solve it probably requires time exponential in the size of the problemin
this case, the number of integers.

We present MerkleHellman in two steps, to aid understanding. First we outline the operation of the
MerkleHellman knapsack encryption method. Then we revisit the technique in more detail.

Introduction to MerkleHellman Knapsacks

The idea behind the MerkleHellman knapsack scheme is to encode a binary message as a solution to
a knapsack problem, reducing the ciphertext to the target sum obtained by adding terms
corresponding to 1s in the plaintext. That is, we convert blocks of plaintext to a knapsack sum by
adding into the sum those terms that match with 1 bits in the plaintext, as shown in Figure 12-14.

Figure 12-14. Knapsack for Encryption.

Plaintext 1 0 1 0 0 1  

Knapsack 1 2 5 9 20 43  

Ciphertext 1   5     43  

Target Sum             49

Plaintext 0 1 1 0 1 0  

Knapsack 1 2 5 9 20 43  

Ciphertext   2 5   20    

Target Sum             27

A knapsack is represented as a vector of integer terms in which the order of the terms is important.
There are actually two knapsacksan easy one, to which a fast (linear time) algorithm exists, and a
hard one, derived by modifying the elements of the easy knapsack. The modification is such that a
solution with the elements of either knapsack is a solution for the other one as well. This
modification is a trapdoor, permitting legitimate users to solve the problem simply. Thus, the
general problem is NP-complete, but a restricted version of it has a very fast solution.

The algorithm begins with a knapsack set, each of whose elements is larger than the sum of all
previous elements. Suppose we have a sequence where each element ak is larger than a1 + a2 +…+
ak-1. If a sum is between ak and ak+1, it must contain ak as a term, because no combination of the
values a1, a2,…, ak-1 could produce a total as large as ak. Similarly, if a sum is less than ak, clearly it



cannot contain ak as a term.

The modification of the algorithm disguises the elements of the easy knapsack set by changing this
increasing-size property in a way that preserves the underlying solution. The modification is
accomplished with multiplication by a constant mod n.

Detailed Explanation of the MerkleHellman Technique

This detailed explanation of MerkleHellman is intended for people who want a deeper understanding
of the algorithm.

General Knapsacks

The knapsack problem examines a sequence a1, a2, …, an of integers and a target sum, T. The
problem is to find a vector of 0s and 1s such that the sum of the integers associated with 1s equals
T. That is, given S = [a1,a2, …, an], and T, find a vector V of 0s and 1s such that

For example, consider the list of integers [17,38,73,4,11,1] and the target number 53. The problem
is to find which of the integers to select for the sum, that is, which should correspond with 1s in V.
Clearly 73 cannot be a term, so we can ignore it. Trying 17, the problem reduces to finding a sum
for (53 - 17 = 36). With a second target of 36, 38 cannot contribute, and 4 + 11 + 1 are not
enough to make 36. We then conclude that 17 is not a term in the solution.

If 38 is in the solution, then the problem reduces to the new target (53 - 38 = 15). With this target,
a quick glance at the remaining values shows that 4 and 11 complete the solution, since 4 + 11 =
15. A solution is thus 38 + 4 + 11.

This solution proceeded in an orderly manner. We considered each integer as possibly contributing
to the sum, and we reduced the problem correspondingly. When one solution did not produce the
desired sum, we backed up, discarding recent guesses and trying alternatives. This backtracking
seriously impaired the speed of solution.

With only six integers, it did not take long to determine the solution. Fortunately, we discarded one
of the integers (73) immediately as too large, and in a subproblem we could dismiss another integer
(38) immediately. With many integers, it would have been much more difficult to find a solution,
especially if they were all of similar magnitude so that we could not dismiss any immediately.

Superincreasing Knapsacks

Suppose we place an additional restriction on the problem: The integers of S must form a
superincreasing sequence, that is, one where each integer is greater than the sum of all
preceding integers. Then, every integer ak would be of the form



In the previous example, [1,4,11,17,38,73] is a superincreasing sequence. If we restrict the
knapsack problem to superincreasing sequences, we can easily tell whether a term is included in the
sum or not. No combination of terms less than a particular term can yield a sum as large as the
term. For instance, 17 is greater than 1 + 4 + 11 (=16). If a target sum is greater than or equal to
17, then 17 or some larger term must be a term in the solution.

The solution of a superincreasing knapsack (also called a simple knapsack) is easy to find. Start
with T. Compare the largest integer in S to it. If this integer is larger than T, it is not in the sum, so
let the corresponding position in V be 0. If the largest integer is less than or equal to T, that integer
is in the sum, so let the corresponding position in V be 1 and reduce T by the integer. Repeat for all
remaining integers in S. An example solving a simple knapsack for targets 96 and 95 is shown in
Figure 12-15.

Figure 12-15. Example of Solving a Simple Knapsack.

96: 73? Yes 95: 73? Yes

96 - 73 =
23:

38? No 95 - 73 =
22:

38? No

23: 17? Yes 22: 17? Yes

23 - 17 = 6: 11? No 22 - 17 = 5: 11? No

6: 4? Yes 5: 4? Yes

6 - 4 = 2: 1? Yes 5 - 4 = 1: 1? Yes

2 - 1 = 1 No Solution 1 - 1 = 0 Solution

The Knapsack Problem as a Public Key Cryptographic Algorithm

The MerkleHellman encryption technique is a public key cryptosystem. That is, each user has a
public key, which can be distributed to anyone, and a private key, which is kept secret. The public
key is the set of integers of a knapsack problem (not a superincreasing knapsack); the private key
is a corresponding superincreasing knapsack. The contribution of Merkle and Hellman was the
design of a technique for converting a superincreasing knapsack into a regular one. The trick is to
change the numbers in a nonobvious but reversible way.

Modular Arithmetic and Knapsacks



In normal arithmetic, adding to or multiplying a superincreasing sequence preserves its
superincreasing nature, so the result is still a superincreasing sequence. That is, if a > b then k * a
> k * b for any positive integer k.

However, in arithmetic mod n, the product of two large numbers may in fact be smaller than the
product of two small numbers, since results larger than n are reduced to between 0 and n-1. Thus,
the superincreasing property of a sequence may be destroyed by multiplication by a constant mod
n.

To see why, consider a system mod 11. The product 3 * 7 mod 11 = 21 mod 11 = 10, while 3 * 8
mod 11 = 24 mod 11 = 2. Thus, even though 7 < 8, we find that 3 * 7 mod 11 > 3 * 8 mod 11.
Multiplying a sequence of integers mod some base may destroy the superincreasing nature of the
sequence.

Modular arithmetic is sensitive to common factors. If all products of all integers are mapped into the
space of the integers mod n, clearly there will be some duplicates; that is, two different products
can produce the same result mod n. For example, if w * x mod n = r, then w * x + n mod n = r, w
* x + 2n mod n = r, and so on. Furthermore, if w and n have a factor in common, then not every
integer between 0 and n-1 will be a result of w * x mod n for some x.

For instance, look at the integers mod 5. If w = 3 and x = 1, 2, 3,…, the multiplication of x * w mod
5 produces all the results from 0 to 4, as shown in Table 12-13. Notice that after x = 5, the modular
results repeat.

Table 12-13. 3 * x mod 5.

x 3 * x 3 * x mod 5

1 3 3

2 6 1

3 9 4

4 12 2

5 15 0

6 18 3

7 21 1

However, if we choose w = 3 and n = 6, not every integer between 0 and 5 is used. This occurs
because w and n share the common factor 3. Table 12-14 shows the results of 3 * x mod 6. Thus,
there may be some values that cannot be written as the product of two integers mod n for certain
values of n. For all values between 0 and n-1 to be produced, n must be relatively prime to w
(that is, they share no common factors with each other).

Table 12-14. 3 * x mod 6.



x 3 * x 3 * x mod 6

1 3 3

2 6 0

3 9 3

4 12 0

5 15 3

6 18 0

7 21 3

If w and n are relatively prime, w has a multiplicative inverse mod n. That means that for every
integer w, there is another integer w-1 such that w * w-1 = 1 mod n. A multiplicative inverse undoes
the effect of multiplication: (w * q) * w -1 = q. (Remember that multiplication is commutative and
associative in the group mod n, so that w * q * w -1 = (w * w-1) * q = q mod n.)

With these results from modular arithmetic, Merkle and Hellman found a way to break the
superincreasing nature of a sequence of integers. We can break the pattern by multiplying all
integers by a constant w and taking the result mod n where w and n are relatively prime.

Transforming a Superincreasing Knapsack

To perform an encryption using the MerkleHellman algorithm, we need a superincreasing knapsack
that we can transform into what is called a hard knapsack. In this section we show you just how to
do that.

We begin by picking a superincreasing sequence S of m integers. Such a sequence is easy to find.
Select an initial integer (probably a relatively small one). Choose the next integer to be larger than
the first. Then select an integer larger than the sum of the first two. Continue this process by
choosing new integers larger than the sum of all integers already selected.

For example,

Sequence Sum so far Next term

[1,    

[1, 1 2

[1,2, 1 + 2 = 3 4

[1, 2, 4, 1 + 2 + 4 = 7 9

[1, 2, 4, 9, 1 + 2 + 4 + 9 = 16 19

is such a sequence.

The superincreasing sequence just selected is called a simple knapsack. Any instance of the



knapsack problem formed from that knapsack has a solution that is easy to find.

After selecting a simple knapsack S = [s1, s2,…,sm], we choose a multiplier w and a modulus n. The
modulus should be a number greater than the sum of all si. The multiplier should have no common
factors with the modulus. One easy way to guarantee this property is to choose a modulus that is a
prime number, since no number smaller than it will have any common factors with it.

Finally, we replace every integer si in the simple knapsack with the term

hi = w * si mod n

Then, H = [h1, h2,…, hm] is a hard knapsack. We use both the hard and simple knapsacks in the
encryption.

For example, start with the superincreasing knapsack S = [1, 2, 4, 9] and transform it by
multiplying by w and reducing mod n where w = 15 and n = 17.

1 * 15 = 15 mod 17 = 15

2 * 15 = 30 mod 17 = 13

4 * 15 = 60 mod 17 = 9

9 * 15 = 135 mod 17 = 16

The hard knapsack derived in this example is H = [15, 13, 9, 16].

Example Using MerkleHellman Knapsacks

Let us look at how to use MerkleHellman encryption on a plaintext message P. The encryption
algorithm using MerkleHellman knapsacks begins with a binary message. That is, the message is
envisioned as a binary sequence P = [p1, p2,…, pk]. Divide the message into blocks of m bits, P0 =
[pl, p2,…, pm], P1 = [pm+1,…, p2m], and so forth. The value of m is the number of terms in the
simple or hard knapsack.

The encipherment of message P is a sequence of targets, where each target is the sum of some of
the terms of the hard knapsack H. The terms selected are those corresponding to 1 bits in Pi so that
Pi serves as a selection vector for the elements of H. Each term of the ciphertext is P i * H, the target
derived using block Pi as the selection vector.

For this example, we use the knapsacks S = [1, 2, 4, 9] and H = [15, 13, 9, 16] obtained in the
previous section. With those knapsacks, w = 15, n = 17, and m = 4. The public key (knapsack) is
H, while S is kept secret.

The message

P = 0100101110100101

is encoded with the knapsack H = [15, 13, 9,16] as follows.

P = 0100 1011 1010 0101



[0, 1, 0, 0] * [15, 13, 9, 16] = 13

[1, 0, 1, 1] * [15, 13, 9, 16] = 40

[1, 0, 1, 0] * [15, 13, 9, 16] = 24

[0, 1, 0, 1] * [15, 13, 9, 16] = 40

The message is encrypted as the integers 13, 40, 24, 29, using the public knapsack H = [15, 13, 9,
16].

Knapsack Decryption Algorithm

The legitimate recipient knows the simple knapsack and the values of w and n that transformed it to
a hard public knapsack. The legitimate recipient determines the value w-1 so that w * w-1 = 1 mod
n. In our example, 15 * 1 mod 17 is 8, since 15 * 8 mod 17 = 120 mod 17 = (17 * 7) + 1 mod 17
= 1.

Remember that H is the hard knapsack derived from the simple knapsack S. H is obtained from S by

H = w * S mod n

(This notation, in which a constant is multiplied by a sequence, should be interpreted as hi = w * si

mod n for all i, 1 i m.)

The ciphertext message produced by the encryption algorithm is

C = H * P = w * s * P mod n

To decipher, multiply C by w-1, since

w-1 * C = w-1 * H * P = w-1 * w * S * P = S * P mod n

To recover the plaintext message P, the legitimate recipient would solve the simple knapsack
problem with knapsack S and target w-1 * C i for each ciphertext integer Ci. Since w-1 * C i = S * P
mod n, the solution for target w-1 * C i is plaintext block Pi, which is the message originally
encrypted.

Example of Decryption

We continue our example, in which the underlying simple knapsack was S = [1, 2, 4, 9], with w =
15 and n = 17. The transmitted messages were 13, 40, 24, and 29.

To decipher, we multiply these messages by 8 mod 17 because 8 is 15-1 mod 17. Then we can
easily solve the simple knapsacks, as shown here:

13 * 8 = 104 mod 17 = 2 = [0100]

40 * 8 = 320 mod 17 = 14 = [1011]

24 * 8 = 192 mod 17 = 5 = [1010]



29 * 8 = 232 mod 17 = 11 = [0101]

The recovered message is thus 0100101110100101.

Cryptanalysis of the Knapsack Algorithm

In this example, because m is 4, we can readily determine the solution to the knapsack problem for
13, 40, 24, and 29. Longer knapsacks (larger values of m), which also imply larger values of the
modulus n, are not so simple to solve.

Typically, you want to choose the value of n to be 100 to 200 binary digits long. If n is 200 bits
long, the si are usually chosen to be about 2200 apart. That is, there are about 200 terms in the
knapsacks, and each term of the simple knapsack is between 200 and 400 binary digits long. More
precisely, s0 is chosen so that

1  s0 < 2200,

2200  s1 < 2201,

2201  s2 < 2202,

and so on, so that there are approximately 2200 choices for each si.

You can use a sequence of m random numbers, r1, r2, r3,…, rm to generate the simple knapsack just
described. Each ri must be between 0 and 2200. Then each value si of the simple knapsack is
determined as

si = 2200+i-1 + ri

for i = 1, 2,…, m.

With such large terms for S (and H), it is infeasible to try all possible values of si to infer S given H
and C. Even assuming a machine could do one operation every microsecond, it would still take 1047

years to try every one of the 2200 choices for each si. A massively parallel machine with 1000 or
even 1,000,000 parallel elements would not reduce this work factor enough to weaken the
encryption.

Weaknesses of the MerkleHellman Encryption Algorithm

The MerkleHellman knapsack method seems secure. With appropriately large values for n and m,
the chances of someone's being able to crack the method by brute force attack are slim.

However, an interceptor does not have to solve the basic knapsack problem to break the encryption,
since the encryption depends on specially selected instances of the problem. In 1980, Shamir found
that if the value of the modulus n is known, it may be possible to determine the simple knapsack.
The exact method is beyond the scope of this book, but we can outline the method of attack. For
more information, see the articles by Shamir and Zippel [SHA80] and Adleman [ADL83].

First, notice that since all elements of the hard knapsack are known, you can readily determine



which elements correspond to which elements of the simple knapsack. Consider h0 and h1, the first
two elements of a hard knapsack, corresponding to simple knapsack elements s0 and s1.

Let

ρ= h0/h1 mod n

Since h0 = w * s0 mod n and h1 = w * s1 mod n, it is also true that

ρ = (w * s0)/(w * s1) = s0/s1 mod n

Given the ratio ρ, determine the sequence

∆ = ρ mod n, 2 * ρ mod n 3 * ρ mod n, …, k * ρ mod n, …, 2m * ρ mod n

For some k, k and sl will cancel each other mod n; that is, k * (1/s1) = 1 mod n. Then

k * ρ mod n = k * s0 * 1/s1 mod n = so mod n = s0

It is reasonable to expect that s0 will be the smallest element of ∆. Once s0 is known, determining
w, then w-1 and each of the si are not hard.

A more serious flaw was identified later by Shamir [SHA82]. The actual argument is also beyond the
scope of this book, but again it can be sketched fairly briefly. The approach tries to deduce w and n
from the hi alone.

The approximate size of n can be deduced from the fact that it will be longer than any of the hi since
they have been reduced mod n; however, n will not be substantially longer than the longest hi, since
it is likely that the results after taking the modulus will be fairly evenly distributed between 1 and n.

Assume you are trying to guess w. You might iteratively try different candidate values ω= 1, 2, 3, .
. . for w. The graph of ω * hi mod n as a function of ω would increase steadily until a value of ω * hi

was greater than n. At that point, the graph of ω * hi would be discontinuous and have a small
value. The values of ω * hi would then resume their steady increase as ω increased until ω * hi

exceeded n again. The graph would form a progression of jagged peaks, resembling the teeth of a
saw. The slope of each "tooth" of the graph is hi. Figure 12-16 displays a graphical representation of
this process.

Figure 12-16. Graph of Change of MerkleHellman Knapsack Function.



The correct value of ω = w occurs at one of the points of discontinuity of the graph of ω * hi mod n.
This same pattern occurs for all values hi: h1, h2, and so forth. Since ω is a discontinuity point of ω *
h1 mod n, it is also a discontinuity of ω * h2 mod n, of ω * h3 mod n, and so forth. To determine ω
superimpose the graph of ω * h1 mod n on ω * h2 mod n, superimpose those graphs on ω * h3 mod
n, and so on. Then, w will be at one of the places where all of the curves are discontinuous and fall
from a high value to a low one. Two such graphs are shown in Figure 12-17. The problem of
determining w is thus reduced to finding the point at which all of these discontinuities coincide.

Figure 12-17. Coinciding Discontinuities.

The actual process is a little more difficult. The value of n has been replaced by real number N.
Since n and N are unknown, the graphs are scaled by dividing by N and then approximating by
successive values of the real number ω/N in the function (ω/N) * hi mod 1.0. Fortunately, this
reduces to the solution of a system of simultaneous linear inequalities. That problem can be solved



in polynomial time. Therefore, the Merkle Hellman knapsack problem can be broken in reasonable
time.

Notice that this solution does not apply to the general knapsack problem; it applies only to the
special class of knapsack problems derived from superincreasing sequences by multiplication by a
constant modulo another constant. Thus, the basic knapsack problem is intact; only this restricted
form has been solved. This result underscores the point that a cryptosystem based on a hard
problem is not necessarily as hard to break as the underlying problem.

Since it has become known that the MerkleHellman knapsack can be broken, other workers have
analyzed variations of MerkleHellman knapsacks. (See, for example, [BRI83] and [LAG83].) To date,
transformed knapsacks do not seem secure enough for an application where a concerted attack can
be expected. The MerkleHellman algorithm or a variation would suffice for certain low-risk
applications. However, because the MerkleHellman method is fairly complicated to use, it is not
often recommended.

RivestShamirAdelman (RSA) Encryption

The RSA algorithm is another cryptosystem based on an underlying hard problem. This algorithm
was introduced in 1978 by Rivest, Shamir, and Adelman [RIV78]. As with the MerkleHellman
algorithm, RSA has been the subject of extensive cryptanalysis. No serious flaws have yet been
foundnot a guarantee of its security but suggesting a high degree of confidence in its use.

In this section, we present the RSA algorithm in two parts. First, we outline RSA, to give you an idea
of how it works relative to the other algorithms we have studied. Then, we delve more deeply into a
detailed analysis of the steps involved.

Introduction to the RSA Algorithm

On the surface, the RSA algorithm is similar to the MerkleHellman method, in that solving the
encryption amounts to finding terms that add to a particular sum or multiply to a particular product.
The RSA encryption algorithm incorporates results from number theory, combined with the difficulty
of determining the prime factors of a target. The RSA algorithm also operates with arithmetic mod
n.

Two keys, d and e, are used for decryption and encryption. They are actually interchangeable. (The
keys for MerkleHellman were not interchangeable.) The plaintext block P is encrypted as Pe mod n.
Because the exponentiation is performed mod n, factoring Pe to uncover the encrypted plaintext is
difficult. However, the decrypting key d is carefully chosen so that (Pe)d mod n = P. Thus, the
legitimate receiver who knows d simply computes (Pe)d mod n = P and recovers P without having to
factor Pe.

The encryption algorithm is based on the underlying problem of factoring large numbers. The
factorization problem is not known or even believed to be NP-complete; the fastest known algorithm
is exponential in time.

Detailed Description of the Encryption Algorithm



The RSA algorithm uses two keys, d and e, which work in pairs, for decryption and encryption,
respectively. A plaintext message P is encrypted to ciphertext C by

C = Pe mod n

The plaintext is recovered by

P = Cd mod n

Because of symmetry in modular arithmetic, encryption and decryption are mutual inverses and
commutative. Therefore,

P = Cd mod n = (Pe)d mod n = (Pd)e mod n

This relationship means that one can apply the encrypting transformation and then the decrypting
one, or the decrypting one followed by the encrypting one.

Key Choice

The encryption key consists of the pair of integers (e, n), and the decryption key is (d, n). The
starting point in finding keys for this algorithm is selection of a value for n. The value of n should be
quite large, a product of two primes p and q. Both p and q should be large themselves. Typically, p
and q are nearly 100 digits each, so n is approximately 200 decimal digits (about 512 bits) long;
depending on the application, 768, 1024, or more bits may be more appropriate. A large value of n
effectively inhibits factoring n to infer p and q.

Next, a relatively large integer e is chosen so that e is relatively prime to (p - 1) * (q - 1). (Recall
that "relatively prime" means that e has no factors in common with (p - 1) * (q - 1).) An easy way
to guarantee that e is relatively prime to (p - 1) * (q - 1) is to choose e as a prime that is larger
than both (p - 1) and (q - 1).

Finally, select d such that

e * d = 1 mod (P - 1) * (q - 1)

Mathematical Foundations of the RSA Algorithm

The Euler totient function φ(n) is the number of positive integers less than n that are relatively
prime to n. If p is prime, then

φ(p) = p - 1

Furthermore, if n = p * q, where p and q are both prime, then

φ(n) = φ(p) * φ(q) = (p - 1) * (q - 1)

Euler and Fermat proved that

xφ(n)  1 mod n

for any integer x if n and x are relatively prime.



Suppose we encrypt a plaintext message P by the RSA algorithm so that E(P) = Pe. We need to be
sure we can recover the message. The value e is selected so that we can easily find its inverse d.
Because e and d are inverses mod φ(n),

e * d  1 mod φ(n)

or

e * d = k * φ(n) +1 (*)

for some integer k.

Because of the EulerFermat result, assuming P and p are relatively prime,

Pp-1  1 mod p

and, since (p-1) is a factor of φ(n),

pk*φ(n)  1 mod p

Multiplying by P produces

pk*φ(n)+1  p mod p

The same argument holds for q, so

pk*φ(n)+1  p mod q

Combining these last two results with (*) produces

(Pe)d = Pe*d

  = Pk*φ(n)+1

  = P mod p

  = P mod q

so that

(Ped  p mod n

and e and d are inverse operations.

Example

Let p = 11 and q = 13, so that n = p * q = 143 and φ(n) = (p - 1) * (q - 1) = 10 * 12 = 120. Next,
an integer e is needed, and e must be relatively prime to (p - 1) * (q - 1). Choose e = 11.

The inverse of 11 mod 120 is also 11, since 11 * 11 = 121 = 1 mod 120. Thus, both encryption and
decryption keys are the same: e = d = 11. (For the example, e = d is not a problem, but in a real



application you would want to choose values where e is not equal to d.)

Let P be a "message" to be encrypted. For this example we use P = 7. The message is encrypted as
follows: 711 mod 143 = 106, so that E(7) = 106. (Note: This result can be computed fairly easily
with the use of a common pocket calculator. 711 = 79 * 72. Then 79 = 40 353 607, but we do not
have to work with figures that large. Because of the reducibility rule, a * b mod n = (a mod n) * (b
mod n) mod n. Since we will reduce our final result mod 143, we can reduce any term, such as 79,
which is 8 mod 143. Then, 8 * 72 mod 143 = 392 mod 143 = 106.)

This answer is correct since D(106) = 10611 mod 143 = 7.

Use of the Algorithm

The user of the RSA algorithm chooses primes p and q, from which the value n = p * q is obtained.
Next e is chosen to be relatively prime to (p - 1) * (q - 1); e is usually a prime larger than (p - 1) or
(q - 1). Finally, d is computed as the inverse of e mod (φ(n)).

The user distributes e and n and keeps d secret; p, q, and φ(n) may be discarded (but not revealed)
at this point. Notice that even though n is known to be the product of two primes, if they are
relatively large (such as 100 digits long), it will not be feasible to determine the primes p and q or
the private key d from e. Therefore, this scheme provides adequate security for d.

It is not even practical to verify that p and q themselves are primes, since that would require
considering on the order of 1050 possible factors. A heuristic algorithm from Solovay and Strassen
[SOL77] can determine the probability of primality to any desired degree of confidence.

Every prime number passes two tests. If p is prime and r is any number less than p, then

gcd(P,r) = 1

(where gcd is the greatest common divisor function) and

j(r,p)  r(p-1)/2 mod p

where J(r,p) is the Jacobi function defined as follows.

If a number is suspected to be prime but fails either of these tests, it is definitely not a prime. If a
number is suspected to be a prime and passes both of these tests, the likelihood that it is prime is
at least 1/2.

The problem relative to the RSA algorithm is to find two large primes p and q. With the Solovay and
Strassen approach, you first guess a large candidate prime p. You then generate a random number
r and compute gcd(p,r) and J(r,p). If either of these tests fails, p was not a prime, and you stop the
procedure. If both pass, the likelihood that p was not prime is at most 1/2. The process repeats with



a new value for r chosen at random. If this second r passes, the likelihood that a nonprime p could
pass both tests is at most 1/4. In general, after the process is repeated k times without either test
failing, the likelihood that p is not a prime is at most 1/2k.

Zimmerman [ZIM86] gives a method for computing RSA encryptions efficiently.

Cryptanalysis of the RSA Method

Like the MerkleHellman knapsack algorithm, the RSA method has been scrutinized intensely by
professionals in computer security and cryptanalysis. Several minor problems have been identified
with it, but there have been no flaws as serious as those for the MerkleHellman method. Boneh
[BON99] catalogs known attacks on RSA. He notes no successful attacks on RSA itself, but several
serious but improbable attacks on implementation and use of RSA.

Cryptographic Challenges

As it has done for symmetric encryption, RSA has set challenges for RSA encryption. (See
http://www.rsasecurity.com/rsalabs/node.asp?id=2093 for more details.) These challenges involve
finding the two prime factors of a composite number of a particular size. These numbers are
identified by their size in decimal digits or bits. (For very rough approximations, three bits are close
to one decimal digit.) The first challenges (using decimal digit lengths) were RSA-140, -155, -160,
and -200. Then using bit lengths, the challenges were RSA-576, -640, -704, -768, and so on. RSA-
200, the last number in the decimal series, is 663 bits long, so its difficulty fits between RSA-640
and RSA-704.

Numbers through RSA-200 have been factored. The first, RSA-140, was factored in 1999 in 1 month
using approximately 200 machines. RSA-155, a 512-bit number, was factored in 1999 in
approximately 3.7 months using 300 machines, but RSA-160 was factored in 2003 in only 20 days.
(It is believed that improvements in hardware were significant in that time reduction.) The most
recent, RSA-200, was factored in 2005 [RSA05] after about 18 calendar months of elapsed time,
using an unspecified number of machines.

As with the symmetric key challenges, these are not just academic exercises. They give a good
indication of the state of the art in factoring and hence the sizes of numbers known to be factorable
(and hence weak choices for key lengths). For most encryption an attacker would not be able to
covertly assemble the number of high performance machines needed to factor a number quickly.
Thus, 512 bits is probably too small for all but the least important uses, but slightly above that, 600
to 700 bits requires months for a dedicated network to crack. A key of about 768 bits is probably
satisfactory for routine uses now, and a 1024-bit key will likely withstand very diligent attacks for
some time.

The El Gamal and Digital Signature Algorithms

Another public key algorithm was devised in 1984 by El Gamal [ELG85, ELG86]. While this algorithm
is not widely used directly, it is of considerable importance in the U.S. Digital Signature Standard
(DSS) [NIS92b, NIS94] of the National Institute of Standards and Technology (NIST). This
algorithm relies on the difficulty of computing discrete logarithms over finite fields. Because it is
based on arithmetic in finite fields, as is RSA, it bears some similarity to RSA.

http://www.rsasecurity.com/rsalabs/node.asp?id=2093


We investigated digital signatures in Chapter 2. Recall that a digital signature is, like a handwritten
signature, a means of associating a mark unique to an individual with a body of text. The mark
should be unforgeable, meaning that only the originator should be able to compute the signature
value. But the mark should be verifiable, meaning that others should be able to check that the
signature comes from the claimed originator. The general way of computing digital signatures is
with public key encryption; the signer computes a signature value by using a private key, and
others can use the public key to verify that the signature came from the corresponding private key.

El Gamal Algorithm

In the El Gamal algorithm, to generate a key pair, first choose a prime p and two integers, a and x,
such that a < p and x < p and calculate y = ax mod p. The prime p should be chosen so that (p - 1)
has a large prime factor, q. The private key is x and the public key is y, along with parameters p
and a.

To sign a message m, choose a random integer k, 0 < k < p - 1, which has not been used before
and which is relatively prime to (p - 1), and compute

r = ak mod p

and

s = k-1 (m - xr) mod (p - 1)

where k-1 is the multiplicative inverse of k mod (p - 1), so that k * k-1 = 1 mod (p - 1). The
message signature is then r and s. A recipient can use the public key y to compute yr rs mod p and
determine that it is equivalent to am mod p. To defeat this encryption and infer the values of x and
k given r, s, and m, the intruder could find a means of computing a discrete logarithm to solve y =
ax and r = ak.

Digital Signature Algorithm

The U.S. Digital Signature Algorithm (DSA) (also called the Digital Signature Standard or DSS)
[NIS94] is the El Gamal algorithm with a few restrictions. First, the size of p is specifically fixed at
2511 < p < 2512 (so that p is roughly 170 decimal digits long). Second, q, the large prime factor of
(p - 1) is chosen so that 2159 < q < 2160. The algorithm explicitly uses H(m), a hash value, instead
of the full message text m. Finally, the computations of r and s are taken mod q. Largely, one can
argue that these changes make the algorithm easy to use for those who do not want or need to
understand the underlying mathematics. However, they also weaken the potential strength of the
encryption by reducing the uncertainty for the attacker.



12.4. Quantum Cryptography

Research into new ways of performing cryptography continues. We have seen how researchers have
relied on aspects of mathematics to generate hard problems and to devise algorithms. In this
section, we look at an alternative view of how cryptography may be done in the future. The
approach we describe is not now on the market, nor is it likely to be so in the next few years. But it
illustrates the need for creative thinking in inventing new encryption techniques. Although the
science behind this approach is very difficult, the approach itself is really quite simple.

The novel approach, quantum cryptography, is in a way a variant of the idea behind a one-time pad.
Remember from Chapter 2 that the one-time pad is the only provably unbreakable encryption
scheme. The one-time pad requires two copies of a long string of unpredictable numbers, one copy
each for the sender and receiver. The sender combines a number with a unit of plaintext to produce
the ciphertext. If the numbers are truly unpredictable (that is, they have absolutely no discernible
pattern), the attacker cannot separate the numbers from the ciphertext.

The difficulty with this approach is that there are few sources of sharable strings of random
numbers. There are many natural phenomena that could yield a string of unpredictable numbers,
but then we face the problem of communicating that string to the receiver in such a way that an
interceptor cannot obtain them. Quantum cryptography addresses both problems, generating and
communicating numbers. It was first explored by Wiesner [WIE83] in the 1980s; then the idea was
developed by Bennett a decade later [BEN92a, BEN92b].

Quantum Physics

Unlike other cryptographic approaches, quantum cryptography is based on physics, not
mathematics. It uses what we know about the behavior of light particles. Light particles are known
as photons; they travel through space with a directional orientation. Photons vibrate in all directions
as they travel. Although photons can have any directional orientation from 0° to 360°, for purposes
of this cryptography, we can assume there are only four directional orientations. We can denote

these four orientations with four symbols, , ,  and . It is possible to distinguish between a

 and  photon with high certainty. However, the  and  photons sometimes appear as  or .

Similarly, it is possible to distinguish between  and , but sometimes  and  will be perceived
as  or . Fortunately, those shortcomings are inconsequential to the cryptographic algorithm.

A polarizing filter is a device or procedure that accepts any photons as input but produces only
certain kinds of photons as output. There are two types of photon filters: + and x. A + filter

correctly discriminates between  and  photons but has a 50 percent chance of also counting an

 or  as a  or an ; conversely, a x filter distinguishes between  and  but may also accept

half of the  and  photons. Think of a + filter as a narrow horizontal slit through which a 

photon can slide easily, but an  will always be blocked. Sometimes (perhaps half the time), an 
or  photon vibrates in a way to sneak through the slit also. A x filter is analagously like a vertical
slit.



Photon Reception

Quantum cryptography operates by sending a stream of photons from sender to receiver. The
sender uses one of the polarizing filters to control which kind of photon is sent. The receiver uses
either filter and records the orientation of the photon received. It does not matter if the receiver
chooses the same filter the sender did; what matters is whether the receiver happened by chance to
choose the same type as did the sender.

The most important property of quantum cryptography is that no one can eavesdrop on a
communication without affecting the communication. With a little simple error detection coding, the
sender and receiver can easily determine the presence of an eavesdropper. Heisenberg's uncertainty
principle says that we cannot know both the speed and location of a particle at any given time; once
we measure the speed, the location has already changed, and once we measure the location, the
speed has already changed. Because of this principle, when we measure any property of a particle,
it affects other properties. So, for example, measuring the orientation of a photon affects the

photon. A horizontal slit filter blocks all  and half of the  and  photons, so it affects the photon
stream coming through. The sender knows what was sent, the receiver knows what was received,
but an eavesdropper will alter the photon stream so dramatically that sender and receiver can easily
determine someone is listening.

Let us see how this unusual approach can be used for cryptography.

Cryptography with Photons

The cryptographic algorithm is very inefficient, in that more than twice the bits transmitted are not
used in cryptography. The bits being transmitted are photons which, fortunately, are very highly
available.

Suppose the sender, Sam, generates a series of photons, remembering their orientation. Sam and

his receiver, Ruth, call  or  0 and  or  1. Such a series is shown in Figure 12-18.

Figure 12-18. Transmission of Photons.

Now, Ruth uses either of her polarizing filters, + and x at random, recording the result. Remember

that a + filter will accurately distinguish between a  and  photon, but sometimes also declare a
 or  as a . So Ruth does not know if the results she measures are what Sam sent. Ruth's

choice of filters, and the results she obtained, are shown in Figure 12-19.

Figure 12-19. Results Interpreted Through Filters.



[View full size image]

Some of those results are correct and some are incorrect, depending on the filter Ruth chose. Now
Ruth sends to Sam the kind of filter she used, as shown in Figure 12-20.

Figure 12-20. Filters Used.

[View full size image]

Sam tells Ruth which filters were the correct ones she used, as shown in Figure 12-21, from which
Ruth can determine which of the results obtained were correct, as shown in Figure 12-22. In this
example, Ruth happened to choose the right filter six times out of ten, slightly higher than
expected, and so six of the ten photons transmitted were received correctly. Remembering that 

or  means 0 and  or  means 1, Ruth can convert the photons to bits, as shown in the figure. In
general, only half the photons transmitted will be received correctly, and so only half the bandwidth
of this communication channel carries meaningful data.

Figure 12-21. Correct Filters.

[View full size image]



Figure 12-22. Correct Results.

[View full size image]

Notice that Ruth can tell Sam which filters she used and Sam can tell Ruth which of those will yield
correct results without revealing anything about the actual bits transmitted. In this way, Sam and
Ruth can talk about their transmission without an eavesdropper's knowing what they actually share.

Implementation

The theory of quantum cryptography is solid, but some technical difficulties still must be worked out
before the scheme can be put in practice. To implement quantum cryptography, we need a source
of photons randomly but detectably oriented (for the sender) and a means of filtering the received
photons reliably. A photon gun can fire photons on demand. Several different research teams are
working to develop photon guns for cryptography, but so far none has succeeded. The best current
technology involves pulsed lasers, but here, too, there is a problem. Occasionally the laser emits not
one but two photons, which disturbs the pattern of reception and transmission. However, with error
correcting codes on the stream of bits, it is relatively easy to detect and correct a few erroneous
bits.

On the receiving side, too, there are problems. One device is subject to catastrophic failure in which
it emits a current surge. Although this surge is easily detected, it requires the device to be reset,
which takes time.



Experimental implementations of quantum cryptography are still in the laboratories. The U.K.
Defence Evaluation and Research Agency in Malvern, England, demonstrated a successful
communication through the atmosphere over a distance of 2 km, and the U.S. Los Alamos National
Laboratory is testing a portable device that can operate over 45 km on a clear night. In 2006, the
U.S. National Institute for Standards and Technology has demonstrated a quantum cryptographic
system that operates over one kilometer over glass fiber at a rate of four megabits per second. In
2004, BBN Communications and Harvard University activated a joint network secured by quantum
encryption. The network has six servers and covers a distance of ten kilometers. Reliable
communications up to 20 kilometers have been achieved, and some scientists expect to be able to
cover 50 kilometers reliably in the near future. (See [ELL04] for a discussion of the potential of
quantum cryptography.)

These results, all obtained within the past few years, show significant progress as quantum
cryptography moves from the research bench to the prototype lab. Although still not ready for
widespread public adoption, quantum cryptography is becoming a real possibility for commercial use
within the next decade.



12.5. Summary of Encryption

In this chapter we have continued the study of encryption begun in Chapter 2. This chapter has
focused on the details of the cryptographic algorithms, as well as on their weaknesses.
Cryptography is certainly a field that learns from its mistakes.

To be a cryptographer you need to understand many topics in mathematics: number theory,
algebra, analysis, and probability, to name a few. Computational complexity, the source of NP-
complete problems, has elements of both mathematics and computer science. All these fields have
hard problems and open questions. But the good cryptographer cannot simply look to hard or
unsolved problems as a basis for secure algorithms, because tomorrow someone could solve one of
these hard problems or find a partial solution that undermines the expected difficulty of those
algorithms.

We have studied the details of two symmetric algorithms: the older DES and the newer AES. The
DES algorithm is still appropriate for protecting data of moderate sensitivity, such as e-mail
messages or files of private data that nobody would expend a significant effort to break. But the
structural flaw in DES is its rigidity: as processors became more powerful, there was no way to
extend the work factor associated with breaking a 56-bit DES encryption. The AES is much more
flexible, so we can expect it to evolve as the power of processors improves. Its 128-, 192-, and
256-bit key size should last quite well, and, as the inventors point out, the algorithm extends
naturally beyond 256 bits.

We also studied the RSA asymmetric algorithm. It remains useful because it can use any key length;
the only limitation is that longer key lengths require significantly more time to encrypt.

The concept of quantum cryptography has been around for decades, but implementing it is only now
becoming feasible. It offers an entirely different approach to cryptography, from which any field
profits on occasion.



12.6. Terms and Concepts
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Data Encryption Standard (DES), 732
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12.7. Where the Field Is Headed

Cryptography is a lively field; looking at the proceedings of the major conferences, such as Crypto
and Eurocrypt, you will see many new ideas and collegial challenges to older ones. NIST received
approximately twenty proposals for the AES, from which it chose five finalists. Acknowledging that
they had found no cryptanalytic flaws in any of the final five, the NIST researchers selected one for
reasons of performance and implementation. The other four come from very respected
cryptologists, and their continuing work is certainly worth watching.

The other area of interest is quantum cryptography. If it is to become viable, it will very soon move
from the laboratory to model implementations.



12.8. To Learn More

The highly readable presentation of elementary cryptography by Sinkov [SIN66] is well worth study.
A more precise and mathematical analysis is done by Konheim [KON80] and Meyer and Matyas
[MEY82]. For historicaland foundationalreasons, one needs to know the works of Friedman
[FRI76a,b,c]. See also the references for Chapter 2.

Schneier [SCH96] is an encyclopedia of cryptography that is both thorough and readable. Stinson
[STI96] develops a course on serious cryptography. Smith [SMI01] presents a good overview of the
AES selection process, and Landau [LAN00a,b] gives a good analysis of the challenges of DES and
the advantages of AES.



12.9. Exercises

1. Show that formula F = (v1) (v2  v3) ( v3 v1) is satisfiable, and justify

that formula G = (v1)  (v2  v3)  ( v3 v1)  ( v2) is not.

2. Are there any other cliques in the graph of Figure 12-1?

3. Give a procedure for locating a clique of size n in any given graph. What is the time
complexity of your algorithm?

4. An algorithm with a GUESS statement can be replaced by two clones of procedures
executing the algorithm, one clone executing as if TRUE had been the correct guess,
and the other executing as if FALSE had been correct. If one of these clones later
encounters another guess, it clones itself again, so that two clones become three.
Suppose an algorithm executes in n steps. What is a limit to the number of cloned
processes needed to simulate that algorithm?

5. Explain why 2n is the difficulty factor for a deterministic solution to a nondeterministic
problem of time n. That is, justify that the time bound 2n is correct.

6. Differentiate between a problem and an instance of a problem. Cite an example of
each.

7. Suppose an encryption algorithm is based on the satisfiability problem. Estimate the
number of machine instructions necessary to solve the satisfiability problem by
testing all cases. Using current technology hardware, how many variables are needed
in the formula so that the time to solve this problem exceeds one year? What is the
corresponding figure for hardware of five years ago? Ten years ago? Assuming
similar speed improvements in the next five years, how long will it take to solve
today's one-year-sized problem?

8. Compute gcd(1875, 405).

9. Justify that NP EXP; that is, that NP EXP. Hint: the way to do this is to show a
problem in EXP that cannot be in NP.

10. Justify that (a * b) mod n = ((a mod n) * (b mod n)) mod n.

11. Write the addition and multiplication tables for the integers mod 4 and for the
integers mod 7.

12. By Fermat's theorem, what is the multiplicative inverse of 2 in the field of integers
mod 11?



13. With a public key encryption, suppose A wants to send a message to B. Let APUB and
APRIV be A's public key and private key, respectively; similarly for B. Suppose C
knows both public keys but neither private key. If A sends a message to B, what
encryption should A use so that only B can decrypt the message? (This property is
called secrecy.) Can A encrypt a message so that anyone receiving the message will
be assured the message came only from A? (This property is called authenticity.)
How or why not? Can A achieve both secrecy and authenticity for one message? How
or why not?

14. Given the knapsack [17, 38, 23, 14, 11, 21], is there a solution for the target 42? Is
there a solution for the target 43? Is there a solution for the target 44?

15. Convert the superincreasing knapsack [1, 3, 5, 11, 23, 47, 97] to a hard knapsack by
multiplying by 7 mod 11; by 7 mod 29.

16. Encrypt the message 1011011010010l by each of the two hard knapsacks of the
previous exercise.

17. Encrypt the message 10110110100101 by each of the two simple knapsacks of the
previous exercise.

18. Is the MerkleHellman algorithm an "onto" algorithm? That is, is every number k, 0 
k < n, the result of encrypting some number using a fixed knapsack? Justify your
answer.

19. Explain why the graph of ωhi is discontinuous when ωhi > n.

20. Find keys d and e for the RSA cryptosystem where p = 7 and q = 11.

21. Find primes p and q so that 12-bit plaintext blocks could be encrypted with RSA.

22. Is the DES an onto function; that is, is every 64-bit binary string the result of
encrypting some string? Justify your answer.

23. Prove the complement property for the DES.

24. Is a product cipher necessarily as hard to break, more hard, or less hard than the
product of the difficulties of the constituent ciphers? Justify your answer.

25. Could the full 64 bits of a DES key be used, thereby giving it a strength of 264 instead
of 256? Justify your answer.

26.

Assume each S-box substitution takes 8 units of time (because of the eight 6-
bit substitutions), each P-box permutation takes 4 units of time (counting 1 unit
per byte), each expansion permutation takes 8 units of time (because of the
eight 4-bit expansions and permutations) and each initial and final permutation
takes 8 units. Compute the number of units of time for an entire 16-round cycle
of the DES.

a.

b.



Now suppose DES were redesigned to work with a 112-bit key and a cycle on
128 bits of input, by increasing the number of S- and P-boxes. You do not have
to define the details of this design. Using similar timing assumptions as in the
first part of this question, compute the number of units of time for an entire 16-
round cycle of 112-bit DES.

b.

Perform a similar estimate for the timing of triple DES, using
E(k1,D(k2,E(k1,m))).

c.

27. Explain how the AES key length would be expanded to 256 + 64 = 320 bits. That is,
explain what changes to the algorithm would be needed.

28. The Rijndael algorithm uses a byte substitution table that comes from a formula
applied to GF(28). Is it necessary to use that formula? That is, would any substitution
table work? What restrictions are there on the form of the table?

29. A property of the Rijndael algorithm is that it is quite regular. Why is this both a good
and bad property for a cryptographic algorithm?

30. Suppose you are designing a processor that would compute with encrypted data. For
example, given two encrypted data values E(x) and E(y), the processor would

compute E(x)  E(y), where  is an encrypted addition operator that performs

addition on encrypted numbers. D(E(x)  E(y)) must be the same as x + y. None of
the encryption algorithms of this chapter has the property that E(x) + E(y) = E(x +
y), although the encrypted addition operator does not necessarily have to be +. For
the three algorithms of this chapter, is there a relationship between E(x), E(y), E(x +
y)?
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1 x 1 GIF [See Web bugs.]

12-step password attacks 2nd

802.11 (wireless) standards 2nd 3rd 4th
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A1, TCSEC class 2nd

Acceptance testing

Access acceptability, databases

Access control

     databases 2nd

     e-mail

     file protection

         all-none

         group

         individual permissions

         per-object

         per-user

         persistent permissions

         SUID (set userid)

         temporary acquired permissions

     memory and address protection

         base/bounds registers

         context switch

         fences

         page frames

         paging 2nd

         relocation

         relocation factor

         segment address table

         segmentation 2nd

        selective protection [See Tagged architecture.]

         tagged architecture

     principles of trusted systems

     privacy in computing

     privacy principles and policies

     protected objects

         access control matrix

         ACLs (access control lists)

         AS (authentication server)

         capability

         directories

         domains

         erasing deleted files

         KDC (key distribution center)

         Kerberos

         local name space



         procedure-oriented

         protection goals

         pseudonyms

         revocation of access

         role-based

         single sign-on

         TGS (ticket-granting server)

         types of

         wild cards

Access control matrix

Access decisions, databases

Access policy ambiguity

Access triples security policy

Accountability principle

Accuracy

     cost of security

     of information, ethical issues

ACK (acknowledgment)

ACLs (access control lists) 2nd

ACM (Association for Computing Machinery), code of ethics 2nd

Acquisti, Alessandro

Acrobat PDF, deleting text

Action phrases

Active code, network threat 2nd

Active fault detection

Active server pages (ASP)

Active wiretapping

ActiveX controls

Add subkey

Addresses (IP) [See IP addresses.]

Addresses (memory) [See Memory and address protection.]

Adequate protection principle

Adjusting future earnings

Administering security [See Physical security; Risk analysis; Security plan; Security policies.]

Advertising, web privacy

Adware

AES (Advanced Encryption System) [See also DES (Data Encryption Standard).]

     add subkey

     byte substitution

     cryptanalysis of

     definition

     design contest

     MARS algorithm

     mix column

     RC6 algorithm

     Rijndael algorithm 2nd

     Serpent algorithm

     shift row

     structure of

     symmetric encryption

     Twofish algorithm

     versus DES



Affected subject

Agents, malicious

Aggregation of data 2nd

AH (authentication header)

Airport security, case study

Al Qaeda computer case study

Alarms 2nd [See also Alerts.]

ALE (annualized loss expectation)

Alerts [See also Alarms.]

Algebra, Euclidean

Algorithm design, DES

Algorithms, encryption [See Encryption, algorithms.]

Aliasing errors

All-none file protection

Allocation of general objects

Amateur computer criminals

Ambiguous access policies

Amplifiers, network

Analog network communication

Analysis, risk [See Risk analysis.]

Ancheta, Jeanson James

Anderson, Ross 2nd 3rd 4th

Angle of dispersion

Annualized loss expectation (ALE)

Anomaly-based intrusion detection

Anonymity 2nd

Anonymization 2nd

Anonymous e-mail

Antipiracy feature

Antón, Annie

Appended viruses

Applets, hostile 2nd

Application layer 2nd

Application proxy gateways

Applications

     code errors

    security [See Programs, security.]

     viruses

Architecture, networks

Arithmetic properties of cryptography

Arora, Ashish

ARPANET 2nd

AS (authentication server)

ASINTOER code

ASP (active server pages)

Asperger syndrome

Assertions

Assessment

    quality [See Evaluation.]

    risk [See Risk analysis.]

Asset identification

Association for Computing Machinery (ACM), code of ethics 2nd



Associativity

Assurance [See Trusted systems, assurance.]

Assurance arguments

Asymmetric encryption [See also Public key encryption; RSA (Rivest-Shamir-Adelman) encryption.]

     authentication

     characteristics of

     cryptanalysis of knapsack algorithm

     definition

     flow diagram

     general knapsacks

     hard knapsacks

     key distribution

     key management

     knapsack decryption algorithm

     knapsacks, and modular arithmetic

     knapsacks, as cryptographic algorithms

     MerkleHellman knapsacks 2nd

     overview

     relatively prime values

     RSA (Rivest-Shamir-Adelman)

     simple knapsacks 2nd

     superincreasing knapsacks 2nd

AT&T

Attachment viruses

Attackers [See also Crackers; Hackers.]

     amateurs

     career criminals

     motives

     network threat

     psychological profile

     terrorists

Attacks [See also Threats; Vulnerabilities.]

     attractive targets

     controls

     definition

     information leaks

     MOM (method, opportunity, motive)

     reprocessing used data items

     sources

     types

     universities, as prime targets

     vulnerabilities

Attacks, methods

     12-step password attacks

    brute force [See Brute force attack.]

     brute force password

     chosen plaintext

     ciphertext only

    cryptanalytic [See Cryptanalysis.]

     cyber

     database inference

         combined results control



         concealing control

         controls for

         count attacks

         direct attack

         indirect attack

         limited response suppression

         linear system vulnerability

         mean attacks

         median attacks

         problem summary

         query analysis

         random data perturbation

         random sample control

         statistical inference attacks

         sum attacks

         suppression control

         tracker attacks

    denial of service [See DDoS (distributed denial of service); DoS (denial of service).]

     encrypted password file

     exhaustive password

     full plaintext

     logic bombs

     man-in-the-middle

     partial plaintext

     password

         12-step process

         brute force

         encrypted password file

         exhaustive

         indiscreet users

         plaintext password list

         probability

         salt extension

         trial and error

         weak passwords

     probable plaintext

     salami

         definition 2nd

         examples

         persistence of

     timing

     trapdoors

     Trojan horses

     viruses

Attractive targets

Attributes 2nd

Audience for security policies

Audit trails

Auditability of databases

Audits

     data overload, case study

     log reduction



     principles of trusted systems

Australian Computer Crime and Security Survey

Authentication

     asymmetric encryption algorithms

     certificates

     Digital distributed

     distributed

     flaws

     mutual

     network vulnerabilities

         avoidance

         eavesdropping

         guessing passwords

         man-in-the-middle attack

         masquerade

         nonexistent authentication

         phishing

         session hijacking

         spoofing

         trusted authentication

         well-known authentication

         wiretapping

     nonexistent

     privacy in computing

         anonymized records

         attributes

         identity 2nd

         individual 2nd

         meaning of

         overview

     privacy principles and policies

     strong, networks

     symmetric encryption algorithms

     trusted, network vulnerability

    users [See User authentication.]

Authentication header (AH)

Authentication server (AS)

Authenticity, databases

Automatic exec by file type

Availability of data

     data and services

     data mining

     databases

     definition

    denial of service [See DDoS (distributed denial of service); DoS (denial of service).]

Avoidance
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B1, TCSEC class 2nd

B2, TCSEC class 2nd

B3, TCSEC class 2nd

Backdoors [See Trapdoors.]

Backing up data

Balanced scorecard

Base registers

Baseline

Bastion host

Beacon gif [See Web bugs.]

Beizer. Boris

BellLa Padula security model

Beneficiaries of security policies

Benign viruses

Best practices 2nd

BestBuy

Biba integrity security model

BIND (Berkeley Internet Name Domain)

Binding of functionality

Biometrics 2nd [See also Face recognition authentication.]

"Black hole" failure

Black-box testing

Blaze, Matt

Block ciphers [See also AES (Advanced Encryption System); DES (Data Encryption Standard).]

Bombs, software [See Logic bombs; Time bombs.]

Book ciphers

Boot sector viruses

Bootstrapping

Botnets

Bots

Boundaries, network

Boundary condition errors

Bounds disclosure

Bounds registers

Brain virus

Breakable encryption

Breaking encryption [See also Cryptanalysis.]

     chosen plaintext attacks

     ciphertext only attacks

     full plaintext attacks

     partial plaintext attacks



     probable plaintext attacks

     weaknesses

Britain [See United Kingdom.]

British evaluation criteria

Broadcast mode

Brute force attack 2nd

Buffer overflow 2nd

Bugs

     software

     web 2nd

Bulletin boards

Business case

     adjusting future earnings

     balanced scorecard

     cost estimates

     definition

     determining economic value

     discount rate

     false positives

     influences on investment strategy

     IRR (internal rate of return)

     net present value

     opportunity cost

     overview

     ROI (return on investment)

     web application, case study

Business continuity plan

Byte substitution
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C1, TCSEC class

C2, TCSEC class 2nd

Cables, network

     coaxial

     eavesdropping

     Ethernet

     impedance

     inductance

     networking

     UTP (unshielded twisted pair)

     wiretapping

Caesar cipher

California Breach Act

CAN (campus area network)

CAN SPAM Act

Capability

Capability Maturity Model (CMM)

Capstone

Career computer criminals

CartManager International

CARVER (criticality, accessibility, recuperability, vulnerability, effect, and recognizability) method

Case studies

     airport security

     al Qaeda computer

     analysis of Shakespeare's plays

     attacker profile

     "black hole" failure

     business case

     CartManager International

     computerized text analysis

     copyright

     data mining

     database integrity failure

     database precision

     deceptive practices

     difficulties of securing code

     e-mail theft

         Hollywood

         New Zealand Herald

         Wilshire Associates, Inc.

     Earl of Buckingham



     ethical issues

         accuracy of information

         cracking

         DoS (denial of service)

         fraud

         hacking

         ownership of programs

         privacy rights

         proprietary resources

         use of computer services

     FAIS (Foreign Affairs Information System)

     hacker sting operation

     Hollywood e-mail theft

     human fallibility

     identity theft

     JetBlue airlines

     Kennedy, Edward

     Key Online Banking

     Lewis, John

     Lloyd's Bank

     mafia boss

     microcontrollers in automobiles

     MP3.com

     Napster

     online banking

     PKI (public key infrastructure)

     privacy

     privacy, government intrusion

         Icelandic DNA database

         U.K. RIPA (Regulation of Investigatory Powers Act)

     screening for terrorists

     security, as add-on

     silken codes

     Stopford, Charlie

     Torch Concepts

     tracking Russian nuclear weapons

     U.S Census Bureau

     U.S. Government

         audit data overload

         security report card

     V.A. (Veterans Administration)

     Wilshire Associates, e-mail theft

     wireless vulnerabilities

     WW II

         ASINTOER code

         Enigma code machine

         Japanese codes

         poem codes

         silken codes

         Soviet Union codes

Catastrophe, recovering from [See Backing up data; Physical security; Recovery from backup.]

CCB (configuration and change control board)



CDs (compact disks)

     copy protection 2nd

     fair use

     XCP (extended copy protection) rootkit

Census Bureau

Centralization

CERT (Computer Emergency Response Team)

Certificate authority 2nd

Certificates

     authentication

     encryption

     encryption, uses for

     trust

         through common respected individual

         without a single hierarchy

     trust threshold

CGI (Common Gateway Interface)

Chain of custody

Chaining

Challenge, attack motive

Challenge-response systems 2nd 3rd

Change logs

Change management [See Configuration.]

Channels, covert [See Covert channels.]

Chats

Checksums, cryptographic

     definition

     multilevel databases

     networks

Children's Online Privacy Protection Act (COPPA)

Chinese Wall security policy

Chosen ciphertext attack

Chosen plaintext attacks

Ciphers

     block [See also AES (Advanced Encryption System); DES (Data Encryption Standard).]

     book

     Caesar

     complexity

     cryptanalysis

     cryptographer's dilemma

     keyless

     keys

     one-time pads

     permutations

     product 2nd

     random number sequences

     RC2

     RC4

     RC5

     stream

     substitution

         book ciphers



         Caesar cipher

         complexity

         cryptanalysis

         cryptographer's dilemma

         keys

         one-time pads

         permutations

         random number sequences

         Vernam cipher

         Vignère tableau 2nd

     Vernam

     Vernam cipher

     Vignère tableau 2nd

Ciphertext 2nd

Ciphertext only attacks

Civil law

Claims language

Clark-Wilson commercial security policy

Classical probability

Classification

Clear gif [See Web bugs.]

Clear-box testing

Cleartext [See also Plaintext.]

CLEFs (Commercial Licensed Evaluation Facilities)

Clients, network

Clipper [See also Keys (encryption), escrow.]

Clique problem

Closed versus open organizations

Clustering, key

CMM (Capability Maturity Model)

Coaxial cable

Code (program)

     compatibility

     debugging [See also Testing.]

     error correcting

     errors

     inspection

    malicious [See Malicious code.]

     mobile

     review

    security [See Programs, security.]

     signing 2nd

     walk-through

Code Red worm 2nd

Codes (encoding systems) [See also Cryptography; Encryption.]

     hash

     Huffman

     Japanese

     poem

     silken

     Soviet Union

Codes (of conduct)



    of best practice [See Best practices.]

    of ethics [See Ethics.]

Cohesion

Cold site backups

Columnar transpositions

Combined Federal Criteria

Combined results control

Command insertion

Command structure

Commercial Licensed Evaluation Facilities (CLEFs)

Commercial security policies

Commit flag

Commit phase 2nd

Committing database updates

Common Criteria

Common Gateway Interface (CGI)

Common Intrusion Detection Framework

Communication mode, networks

Community string

Commutative filters

Commutative ring

Comparability, evaluating

Comparable data, data mining

Compartments

Compatibility of

     code

     evaluation

Complements, DES

Complete backups

Complete mediation 2nd [See also Incomplete mediation.]

Complex attacks

Component testing [See Unit testing.]

Components, software [See Modularity.]

Composites

Computational complexity, cryptography

Computer crime

     definition

     legal issues

         California Breach Act

         CAN SPAM Act

         computer terminology and the law

         confidentiality threats

         Council of Europe Agreement on Cybercrime

         cryptography 2nd

         defining

         E.U. Data Protection Act

         GLBA (Graham-Leach-Bliley Act)

         HIPAA (Health Insurance Portability and Accountability Act)

         integrity threats

         international dimensions

         overview

         prosecuting



         restricted content

         rules of evidence

         rules of property

         scope limitations

         statutes, examples

         U.S. Computer Fraud and Abuse Act

         U.S. Economic Espionage Act

         U.S. Electronic Communications Privacy Act

         U.S. Electronic Funds Transfer Act

         U.S. Freedom of Information Act

         U.S. Privacy Act

         USA Patriot Act

         value of data

     reporting

     statistics

Computer criminals [See Attackers; Crackers; Hackers.]

Computer Emergency Response Team (CERT)

Computer Ethics Institute 2nd

Computer Fraud and Abuse Act

Computer objects [See Objects, digital.]

Computer screen emanations

Computer terminology and the law

Computerized text analysis

Computing systems

     components of

     definition

     intrusion characteristics

Concealing control

Concurrency

Conditional compilation

Conditions, security models

Confidence level

Confidentiality [See also Privacy.]

     data 2nd

     databases

     definition

     e-mail

     multilevel databases

     overview

     threats

Configuration

     audit

     databases

     identification

     management

Configuration and change control board (CCB)

Confinement

Confusion 2nd

Connection flooding

Connectivity [See Networks.]

Consequence-based ethics

Consistency, database 2nd



Constrained data items

Constraints

Consumer products, privacy

Content integrity

Contests, web privacy

Context switch

Contingency planning [See Physical security; Risk analysis; Security plan.]

Continuity plan

Contract law

Control, network

Controlled disclosure

Controls [See also Defense methods.]

    data protection [See Encryption.]

     database inference attacks

     definition

     effectiveness

     export of cryptography

    for networks [See Networks, controls.]

     hardware

     layered defense

     mapping to vulnerabilities

     overlapping

     overview

     physical

     policies and procedures

     security plan

     selecting

         criteria for

         mapping controls to vulnerabilities 2nd

         positive and negative effects

         ratings

         VAM (Vulnerability Assessment and Mitigation)

     software

     software development

         acceptance testing

         active fault detection

         black-box testing

         CCB (configuration and change control board)

         clear-box testing

         CMM (Capability Maturity Model)

        components [See Modularity.]

         conditional compilation

         configuration audit

         configuration identification

         configuration management

         confinement

         coupling

         delta files

         design principles

         developer characteristics

         development standards 2nd

         difference files



         encapsulation

         FMEA (failure modes and effects analysis)

         formal methods

         FTA (fault tree analysis)

         genetic diversity

         hazard analysis

         HAZOP (hazard and operability studies)

         independent testing

         information hiding

         installation testing

         integration testing

         lessons from mistakes

         modularity

         mutual suspicion

         nature of software development

         overview

         passive fault detection

         peer reviews

         penetration testing 2nd

         performance testing

         problem response

         process standards

         program practice conclusions

         program verification

         proof of correctness

         redundancy

         regression testing

         risk prediction

         security audits

         security requirements

         static analysis

         status accounting

         testing

        tiger team testing [See Penetration testing.]

         unit testing

     usage of cryptography

Convention 2nd

Cookies

     network threat

     per-session

     persistent

     threats posed by

     user authentication

     viruses

     web privacy

COPPA (Children's Online Privacy Protection Act)

Copy protection 2nd

Copyright

     case study

     definition

     DMCA (Digital Millennium Copyright Act) 2nd

     fair use



     first sale

     for computer software

     for digital objects

     inappropriate references to

     infringement

     intellectual property

     legal issues 2nd

     Napster

     originality of work

     ownership

     piracy

     public domain

     registering

Core [See Kernel.]

Correcting mistakes, data mining

Correction codes, database reliability

Correctness of data, data mining

Correlation of data

Cost of security [See Economics of cybersecurity.]

Cost/benefit risk analysis

Council of Europe

Council of Europe Agreement on Cybercrime

Count attacks

Coupling

Covert channels

     creating

     definition

     file lock channel

     identifying

     information flow analysis

     overview

     shared resource matrix

     signaling through images

     steganography

     storage channels

     threat presented by

     timing channels

Crackers [See also Attackers; Hackers.]

Cracking, ethical issues

Credibility

Credit card payments, web privacy

Crime [See Computer crime.]

Criminal law

Criteria development

Criticality, accessibility, recuperability, vulnerability, effect, and recognizability (CARVER) method

Cryptanalysis

     AES (Advanced Encryption System)

     breaking encryption

         chosen plaintext attacks

         ciphertext only attacks

         full plaintext attacks

         partial plaintext attacks



         probable plaintext attacks

         weaknesses

     Caesar cipher

     definition

     differential 2nd

     digram analysis

     knapsack algorithm

     overview

     RSA (Rivest-Shamir-Adelman) encryption

     substitution ciphers

Cryptanalysts

Cryptographer's dilemma

Cryptographers

Cryptographic challenges

     RSA (Rivest-Shamir-Adelman) encryption

     symmetric encryption

Cryptographic checksum

     definition

     multilevel databases

     networks

Cryptographic hash functions

Cryptographic separation 2nd

Cryptography [See also Encryption.]

     and free speech

     asymmetric encryption

         characteristics of

         cryptanalysis of knapsack algorithm

         general knapsacks

         hard knapsacks

         knapsack decryption algorithm

         knapsacks, and modular arithmetic

         knapsacks, as cryptographic algorithms

         MerkleHellman knapsacks 2nd

         relatively prime values

         RSA (Rivest-Shamir-Adelman)

         simple knapsacks 2nd

         superincreasing knapsacks 2nd

     Capstone

     character representation

     ciphertext

     Clipper

     computer crime 2nd

     current policy

     decryption

     definition

     DSA (Digital Signature Algorithm)

     El Gamal algorithm

     encrypted text

     encryption

     export controls

     Fortezza

     interceptors



     intruders

     key escrow

     legal issues

     mathematics of

         arithmetic properties

         commutative ring

         composites

         computational complexity

         division

         Euclidean algebra

         Fermat's theorem

         Galois fields

         greatest common divisor

         hierarchies of complexity

         identity (mathematical)

         inherently hard problems

         instances

         inverses, computing

         inverses, definition

         knapsack problem

         modular arithmetic

         nondeterminism

         nondeterministic Turing machines

         NP class

         NP-complete problems

         oracles

         overview

         P class

         prime numbers

         problems, definition

         satisfiability

     modular arithmetic

     original text

    perfect cipher [See One-time pads.]

     permutations

         columnar transpositions

         combined approaches

         definition

         digram analysis

         digrams

         encipherment/decipherment complexity

         patterns

         product ciphers

         substitution ciphers

         trigrams

     plaintext

     quantum

         cryptography with photons

         implementation

         overview

         photon reception

         polarizing filters



         quantum physics

     recipients

     senders

     substitution ciphers

         book ciphers

         Caesar cipher

         complexity

         cryptanalysis

         cryptographer's dilemma

         keys

         one-time pads

         permutations

         random number sequences

         Vernam cipher

         Vignère tableau 2nd

     substitutions

     symmetric encryption [See also DES (Data Encryption Standard).]

         AES (Advanced Encryption System)

         confusion

         cryptographic challenges

         diffusion

         permutation

         problems with

         RC2 cipher

         RC4 cipher

         RC5 cipher

         substitution

     transmission medium

    transpositions [See Permutations.]

     usage controls

     with photons

Cryptology

Cryptosystems

CSI/FBI Computer Crime and Security Survey

Culp, Scott

Culture of organizations [See Organizational culture.]

Cyber attacks

CyberCop Scanner

Cyberterrorism

Cycle, DES

     details

     example

     permutation

     substitution
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D, TCSEC class

DAC (discretionary access control)

Daemen, John

Danseglio. Mike

Data [See also Information.]

     access risks

     anonymization

     availability, databases

     form checks, database

     justifying cost of security

         accuracy

         consistency

         reliability

         representative

     left in place

     minimization

     perturbation

         data mining

         database attacks

         database inference

         privacy

         random

    secrecy [See Confidentiality; Privacy.]

     semantics, data mining

     sensitivity

     stored, protecting

Data Encryption Algorithm (DEA) [See also DES (Data Encryption Standard).]

Data Encryption Algorithm-1 (DEA-1) [See also DES (Data Encryption Standard).]

Data mining [See also Databases.]

     case study

     comparable data

     correcting mistakes

     data availability

     data correctness

     data semantics

     definition

     eliminating false matches

     integrity

     overview

     privacy

         aggregation of data



         correlation of data

         data perturbation

         government

         preserving privacy

         sensitivity

Data Protection Act

Database administrators 2nd

Database management system (DBMS)

Databases [See also Data mining.]

     advantages of

     aggregation [See also Inference.]

     attributes

     components of

     decentralization

     definition

    deleting fields and records [See Queries.]

    editing fields and records [See Queries.]

     elements

     fields

    front end [See DBMS (database management system).]

     inference [See also Aggregation.]

         combined results control

         concealing control

         controls for

         count attacks

         definition

         direct attack

         indirect attack

         limited response suppression

         linear system vulnerability

         mean attacks

         median attacks

         problem summary

         query analysis

         random data perturbation

         random sample control

         statistical inference attacks

         sum attacks

         suppression control

         tracker attacks

     logical structure

    manipulating [See Queries.]

     protection laws

     queries

     records

         definition

        manipulating [See Queries.]

         projecting

         selecting

     relations

     reliability

         commit flag



         committing updates

         concurrency

         consistency 2nd

         correction codes

         data form checks

         definition

         error detection

         filters

         intent phase

         monitors

         operating system protection features

         patterns

         recovery from backup

         redundancy

         shadow fields

         shadow values

         state constraints

         transition constraints

         two-phase update

    retrieving fields and records [See Queries.]

     schema

     security requirements

         access control 2nd

         auditability

         availability

         change logs

         confidentiality

         configuration management

         field checks

         inference

         integrity 2nd

         pass-through problem

         release proliferation

         user authentication

         version proliferation

     sensitive data

         access acceptability

         access decisions

         authenticity

         bounds disclosure

         characteristics of

         data availability

         definition

         disclosures, types of

         exact data disclosure

         existence disclosure

         negative result disclosure

         overview

         probable value disclosure

         security versus precision

     subschema

Databases, multilevel



     confidentiality

     differentiated security

     duplicate records

     granularity

     integrity

     polyinstantiation

     redundancy

     security designs

         commutative filters

         distributed databases

         federated databases

         filtering

         guards

         integrity locks

         practical issues

         trusted front-end

         views

         windows

     security issues

     security proposals

         cryptographic checksum

         encryption

         integrity lock

         partitioning

         sensitivity lock

         separation

         "spray paint" lock

         Summer Study on Database Security

Datagrams

DBMS (database management system)

DDoS (distributed denial of service) [See also Availability ; DoS (denial of service).]

     diagram of

     network threat

     TFN (Tribal Flood Network) 2nd

     TFN2K 2nd

de Vere, Edward

DEA (Data Encryption Algorithm) [See also DES (Data Encryption Standard).]

DEA-1 (Data Encryption Algorithm-1) [See also DES (Data Encryption Standard).]

Debugging code [See also Testing code.]

Decentralization, databases

Deceptive practices

Deciphering data [See Decryption.]

Decision making

Decoding data [See Decryption.]

Decryption

     algorithm

     definition

     DES (Data Encryption Standard)

     knapsacks

Defacing web sites

Defense methods [See also Controls.]

     privacy principles and policies



     viruses

Defining computer crime

Degaussing magnetic data [See also Magnetic remanence.]

Deleting

    database fields and records [See Queries.]

     PDF text

     Word text

Deloitte and Touche Tohmatsu Global Security Survey

Delphi approach

Delta (configuration control method)

Denial of service (DoS) [See DoS (denial of service).]

Deontology

Department of Energy (DOE) policy

Department of Trade and Industry (DTI)

Depletion of information

DES (Data Encryption Standard) [See also AES (Advanced Encryption System).]

     algorithm design

     background

     brute force attack

     complements

     cycle details

     cycle, example

     decryption

     design weaknesses

     differential cryptanalysis 2nd

     double DES

     encryption algorithm

     expansion permutations 2nd

     final permutation 2nd

     history

     initial permutation 2nd

     inverse initial permutation 2nd

     key clustering

     key length

     key transformation

     Lucifer algorithm

     number of iterations

     overview 2nd

     P-boxes 2nd

     parallel attack

     permutation cycle

     permutation types

     permuted choices

     product cipher

     S-boxes 2nd

     security of 2nd 3rd

     semiweak keys

     substitution cycle

     triple DES

     versus AES

     weak keys

     weaknesses



Destination unreachable protocol

Determining economic value [See Economics of cybersecurity.]

DHCP (Dynamic Host Configuration Protocol)

Diamond v. Bradley

Diamond v. Diehr

Difference files

Differential cryptanalysis 2nd

Differentiated security, multilevel databases

Diffie-Hellman key exchange

Diffusion 2nd

Digital distributed authentication

Digital Equipment Corporation

Digital Millennium Copyright Act (DMCA) 2nd

Digital network communication

Digital objects [See Objects, digital.]

Digital Signature Algorithm (DSA)

Digital Signature Standard (DSS)

Digital signatures

Digram analysis

Digrams

Direct attack

Directive 95/46/EC

Directories

"Dirty" power

Disaster recovery [See Backing up data; Physical security; Recovery from backup.]

Disaster, natural [See Natural disasters.]

Disclosure

     bounds

     controlled

     exact data

     existence

     negative result

     of software problems

     privacy issues

     probable value

     types of

Discount rate

Discretionary access control (DAC)

Distributed authentication

Distributed databases

Distributed denial of service (DDoS) [See DDoS (distributed denial of service).]

Division, cryptography

DMCA (Digital Millennium Copyright Act) 2nd

DNS attacks

DNS cache poisoning

Document viruses

Documentation

     availability, network threat

     protection, legal issues

DOE (Department of Energy) policy

Domain errors

Domain names 2nd



Domain switching

Domains

Dominance

DoS (denial of service) [See also Availability ; DDoS (distributed denial of service).]

     broadcast mode

     connection flooding

     DNS attacks

     DNS cache poisoning

     echo chargen

     estimated activity

     ethical issues

     network threat

     ping of death

     smurf attack

     SYN flood

     teardrop attacks

     traffic redirection

     transmission failure

Dot-dot-slash directory travel

Double DES

DoubleClick

Drive-by installation

Drops, electrical

DSA (Digital Signature Algorithm)

DSS (Digital Signature Standard)

DTI (Department of Trade and Industry)

Dumpster diving

Dunham, Ken

Duplicate database records

Durability

Dynamic Host Configuration Protocol (DHCP)
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e-Government Act of 2000

E-mail

     attachment viruses

     government security policy example

     network encryption

    over networks [See Networks, secure e-mail.]

     privacy

         access control

         anonymous

         interception

         mixmaster remailers

         monitoring

         overview

         remailers

         simple remailers

         spamming

         spoofing

         transmitting

     theft case studies

         Hollywood

         New Zealand Herald

         Wilshire Associates, Inc.

E.U. Data Protection Act

Earl of Buckingham

Ease of use

Easiest penetration principle

Eavesdropping 2nd

Echo chargen attack

Echo protocol

Economic Espionage Act

Economics of cybersecurity

     business case

         adjusting future earnings

         balanced scorecard

         cost estimates

         definition

         determining economic value

         discount rate

         false positives

         influences on investment strategy

         IRR (internal rate of return)



         net present value

         opportunity cost

         overview

         ROI (return on investment)

         web application, case study

     current and future

         externalities

         free rides

         integrity

         policies

         regulation

     modeling

         credibility

         decision making

         framing the issue

         group behavior

         overview

         role of organizational culture

         transferring models

         trust as economic issue

     organizational culture

         cultural practices

         cultural values

         dimensions of

         employee versus job

         heroes

         loose versus tight control

         normative versus pragmatic

         open versus closed

         parochial versus professional

         process versus results

         rituals

         role of organizational culture

         security choices, examples

         symbols

     quantifying value

         accurate data

         attack sources

         attack types

         comparability of categories

         consistent data

         cost of U.K. security incidents

         economic impact 2nd 3rd

         ISBS (Information Security Breeches Survey) 2nd

         justification data

         overview

         reliable data

         representative data

         respondent types

         security practices 2nd

         timelines

     security surveys



         Australian Computer Crime and Security

         CSI/FBI Computer Crime and Security

         Deloitte and Touche Tohmatsu Global Security

         Ernst and Young Global Information Security

         IC3 (Internet Crime Complaint Center)

         Imation Data Protection

         sources for

     trust, as economic issue

Economics of security policies

Economy of mechanism

EEye Digital Security

Effectiveness

     evaluating

     of controls

Effectiveness principle

Egoism

El Gamal algorithm

Electrical power

Electronic commerce, laws

Electronic Communications Privacy Act

Electronic Funds Transfer Act

Electronic publishing, laws

Electronic voting

Elements, databases

Emanations from computer screens

Emerging technologies

     consumer products

     electronic voting

     overview

     privacy issues

     RFID (radio frequency identification)

     security issues

     Skype

     VoIP (Voice over IP)

Emphatic assertion

Employee contracts

Employee rights [See Rights of employees and employers.]

Employee versus job

Employer rights [See Rights of employees and employers.]

Encapsulated security payload (ESP)

Encapsulation

Enciphered text

Enciphering data [See Cryptography; Encryption.]

Encipherment/decipherment complexity

Encoding data [See Cryptography; Encryption.]

Encrypted password file attacks

Encrypted tunnels

Encryption [See also Asymmetric encryption; Cryptography; Symmetric encryption.]

     algorithms [See also AES (Advanced Encryption System); DES (Data Encryption Standard); RSA (Rivest-Shamir-Adelman)

encryption.]

         block ciphers

         confusion



         definition

         diffusion

         secure, characteristics of

         stream ciphers

         trustworthy, properties of

     breakable

    breaking [See Cryptanalysis.]

     ciphertext

     cleartext

     cryptosystems

     definition 2nd

     e-mail

     enciphered text

     factoring large numbers 2nd

     key management

     keyless ciphers

     keys

     link

     multilevel databases

     networks

         AH (authentication header)

         certificate authorities

         comparison of methods

         e-mail

         encrypted tunnels

         end-to-end

         ESP (encapsulated security payload)

         firewalls

         IKE (ISAKMP key exchange)

         ISAKMP (Internet Security Association Key Management Protocol)

         issues

         link

         overview

         PKI (public key infrastructure)

         security associations

         signed code

         SPI (security parameter index)

         SSH (secure shell)

         SSL (Secure Sockets Layer)

         TLS (transport layer security)

         tunnels

         VPNs (virtual private networks)

     private key [See also AES (Advanced Encryption System); DES (Data Encryption Standard); Symmetric encryption.]

     protocols

     public key [See also Asymmetric encryption; RSA (Rivest-Shamir-Adelman) encryption.]

         characteristics

         definition

         flow diagram

         key proliferation

         purpose of

     text

     uses for



         certificates

         chaining

         checksums

         cryptographic checksum

         cryptographic hash functions

         Diffie-Hellman key exchange protocol

         digital signatures

         key exchange

End-to-end encryption

Enforced sharing

England [See United Kingdom.]

Enigma code machine

Equivalent programs

Erasing deleted files

Ernst and Young Global Information Security Survey

Error checking, trapdoors

Error correcting codes

Error detection 2nd

Errors [See also Faults; Flaws.]

     buffer overflow 2nd

     definition

    incomplete mediation [See Incomplete mediation.]

     privilege escalation

     time-of-check to time-of-use flaws

Escape-character attack

ESP (encapsulated security payload)

Espionage 2nd

Estimating security value [See Economics of cybersecurity.]

Ethernet cable

Ethical codes

Ethical hacking [See Penetration testing.]

Ethical issues [See also Legal issues.]

     a case for

     case studies

         accuracy of information

         cracking

         DoS (denial of service)

         fraud

         hacking

         ownership of programs

         privacy rights

         proprietary resources

         use of computer services

     overview

Ethical pluralism

Ethical principles

     consequence-based

     deontology

     duties of people

     egoism

     examples of

     intrinsic good



     rule-based

     rule-deontology

     teleological theory

     utilitarianism

Ethical reasoning

Ethical systems

Ethics

     and religion

     studying

     universality

     versus law

Euclidean algebra

Euler totient function

European Privacy Directive

Evaluating security value [See Economics of cybersecurity.]

Evaluation

     action phrases

     British criteria

     claims language

     CLEFs (Commercial Licensed Evaluation Facilities)

     Combined Federal Criteria

     Common Criteria

     comparability

     criteria development

     effectiveness

     emphatic assertion

     Europe

     German Green Book

     ITSEC (Information Technology Security Evaluation Criteria) 2nd

     marketability

     overview

     process description

     protection profiles

     security targets

     security, as add-on

     summary of criteria

     target phrases

     TCSEC (Trusted Computer System Evaluation Criteria) 2nd

     TOE (target of evaluation)

     transferability

     United States 2nd

Even parity

Evidence

     destroying

     gathering

     physical

     preserving

     rules of

Exact data disclosure

Examples of problems [See Case studies.]

Execution domain switching

Executives



Exhaustive password attacks

Existence disclosure

Expansion permutations 2nd

Exploitation examples

Export controls in cryptography

Exposing messages

Extended copy protection (XCP) rootkit

Externalities
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F1-F10 functionality classes

Fabrications

Face recognition authentication [See also Biometrics.]

Factoring large numbers 2nd

Failover mode

Failure 2nd

Failure modes and effects analysis (FMEA) 2nd

Fair Credit Reporting Act

Fair information policies 2nd

Fair service guarantee

Fair use

Fairbrother, Peter

FAIS (Foreign Affairs Information System)

False intrusion detection

False positives

Falsifying messages

Fame, attack motive

Fault tolerance, networks

Fault tree analysis (FTA) 2nd

Faults

     active detection

     definition

     fixing

     passive detection

Faux environment

FBI

     al Qaeda computer

     breaking WEP

     Computer Crime and Security Survey 2nd

     loss from attacks

     organized crime

     stolen laptops

     survey of cyberattacks

     value of cybersecurity

Federal Educational Rights and Privacy Act

Federal Trade Commission (FTC)

Federated databases

Felten, Edward

Fence register

Fences

Fermat's theorem



Field checks, databases

Fields, databases

File lock channel

File names, iishack problem

File protection

     all-none

     group

     individual permissions

     per-object

     per-user

     persistent permissions

     SUID (set userid)

     temporary acquired permissions

Files

    access control [See Access control.]

     directory access

     erasing deleted 2nd

Filters

     database reliability

     multilevel databases

     polarizing

Final permutation 2nd

fingerd flaw 2nd

Fingerprint authentication [See also Biometrics.]

Fingerprint, operating system or applications

Fires

Firewalls

     network encryption

     networks

         application proxy gateway

         authentication

         comparison of

         definition

         design

         guards

         limitations

         overview

         packet filtering gateway

         personal

         sample configuration

         stateful inspection

         types of

     rules set

Firmware, legal issues

First sale

Flaws

     aliasing

     ambiguous access policies

     authentication

     boundary conditions

     definition

     domain errors



     exploitation examples

     identification

     incomplete mediation

     known vulnerabilities

     logic errors

     overview

     serialization

     time-of-check to time-of-use flaws

     types of

     typical flaws

     user interface vulnerability

     validation errors

Floods

Flow analysis

FMEA (failure modes and effects analysis) 2nd

Follett, Ken

Footprints, satellite broadcast

Foreign Affairs Information System (FAIS)

Forgery 2nd

Formal methods

Formal verification

Format failures

Fortezza [See also Keys (encryption) escrow.]

Frames, network

Framing the issue

Fraud

     Computer Fraud and Abuse Act

     ethical issues

     laws

Free rides

Free speech, and cryptography

Freedom of Information Act

Frequency probability

Front end

     databases

     trusted

FTA (fault tree analysis) 2nd

FTC (Federal Trade Commission)

Full disclosure

Full plaintext attacks

Functional correctness

Future earnings, adjusting
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Galois fields

Gates, Bill

     on passwords

     on product quality

Gateways

     application proxy

     packet filtering

General knapsacks

Genetic diversity

Geosynchronous orbit

German Green Book

Gibson, Steve

GISA (German Information Security Agency)

GLBA (Graham-Leach-Bliley Act) 2nd

Goals of security

Gottschalk v. Benson

Government [See also specific governments.]

     and privacy

         Council of Europe

         European Privacy Directive

         Icelandic DNA database

         principles and policies

         U.K. RIPA (Regulation of Investigatory Powers Act)

     data mining

     e-mail, security policy example

GrahamDenning security model

Grandin, Temple

Granularity 2nd

Greatest common divisor

Group behavior

Group file protection

Guaranteed fair service

Guards 2nd 3rd

Guess function

Guessing passwords
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Hackers [See also Attackers; Crackers.]

     overview

     sting operation

     versus crackers

Hacking

    ethical [See Penetration testing.]

     ethical issues

Hactivism, attack motive

Halting problem 2nd

Hard knapsacks

Hardware [See also Cables ; Networks.]

     controls

     legal issues

     viruses

Hardware-enforced protection

Hash codes [See also Hash function.]

Hash function

Hazard analysis 2nd [See also Physical security.]

HAZOP (hazard and operability studies) 2nd

Herald, New Zealand

Heroes, organizational

Heuristic intrusion detection 2nd

Hierarchical security policies

Hierarchical structuring

Hierarchies of complexity

High-confidence software

Highjackers

HIPAA (Health Insurance Portability and Accountability Act) 2nd

Hollywood e-mail theft

Honeypots

Hoo, Soo

Host-based intrusion detection

Hostile applets 2nd

Hosts

Hot site backups

HRU (HarrisonRuzzoUllman) security model

Huffman codes

Human fallibility case study

Hyppönen, Mikko
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I/O operation

IBM

     history of DES

     Lucifer algorithm

     MVS/ESA operating system

     Processor Resources/System Manager (PR/SM)

     U.S. government suit

IC3 (Internet Crime Complaint Center)

Icelandic DNA database

ICMP (Internet Control Message Protocol)

Identification

     errors

     principles of trusted systems

     versus authentication

Identity (authentication) 2nd

Identity (mathematical)

Identity theft 2nd

Ideology, attack motive

IDS (intrusion detection system)

     anomaly based

     Common Intrusion Detection Framework

     definition

     false results

     goals for

     heuristic 2nd

     host based

     misuse

     model based

     network based

    networks [See Networks; IDS (intrusion detection system).]

     overview

     principles of trusted systems

     response to alarms

     signature based 2nd

     state based

     statistical analysis

     stealth mode

     strengths and weaknesses

     types of

IEEE (Institute for Electrical and Electronics Engineers)

     code of ethics 2nd



     Standard 2nd

IIS (Internet Information Server) 2nd

iishack problem

IKE (ISAKMP key exchange)

Images, signaling through [See Steganography.]

Imation Data Protection Survey

Imbruglia, George

Impedance, electrical

Impersonation

     man-in-the-middle attack

     masquerade

     network threat

     of login

     phishing 2nd

     session hijacking

     spoofing

         cryptographic protection

         interface illusions

         network vulnerability

         trusted path

     steganography

     trusted systems

     web bugs 2nd

Implementation flaws

Incident response plans

Incident response teams

Incomplete mediation 2nd [See also Complete mediation.]

Independent testing

Indirect attack

Individual authentication 2nd

Inductance

Industrial espionage

Inference, database attacks

     combined results control

     concealing control

     controls for

     count attacks

     direct attack

     indirect attack

     limited response suppression

     linear system vulnerability

     mean attacks

     median attacks

     problem summary

     query analysis

     random data perturbation

     random sample control

     statistical inference attacks

     sum attacks

     suppression control

     tracker attacks

Information [See also Data; Databases.]



     anarchy

     collection, privacy issues 2nd

     commerce

     depletion

     disclosure, privacy issues

     flow analysis

     hiding

     leaks [See also Covert channels.]

     replication

     retention, privacy issues

     security, privacy issues

     usage, privacy issues

Information officers, security responsibilities

Information Security Breeches Survey (ISBS) 2nd

Information Technology Security Evaluation Criteria (ITSEC) 2nd

Informed consent

Infrared networks

Inherently hard problems

Initial permutation 2nd

Inspection, code

Installation testing

Instances

Institute for Electrical and Electronics Engineers (IEEE)

     code of ethics 2nd

     Standard 2nd

Intangible transfer

Integrated viruses

Integrated Vulnerability Assessments (IVAs)

Integration testing 2nd

Integrity

     *-property

     data 2nd

     data mining

     databases 2nd [See also Reliability.]

     definition

     economic

     enforcement

     locks 2nd

     multilevel databases

     overview

     threats

Intellectual property

Intelligence gathering

Intent phase

Intercepting sensitive information

Interception 2nd 3rd

Interceptors

Interface illusions

Internal networks

Internal rate of return (IRR)

Internet [See also Web sites.]

Internet Control Message Protocol (ICMP)



Internet Crime Complaint Center (IC3)

Internet Information Server (IIS) 2nd

Internet protocol [See IP addresses.]

Internet Scanner

Internet Security Association Key Management Protocol (ISAKMP)

Internet Security Systems (ISS)

Internet worm

Internets

Interprocess communication

Interruptions

Intrinsic good

Intruders

Intrusion detection system (IDS) [See IDS (intrusion detection system).]

Intrusion, characteristics

Inverse initial permutation 2nd

Inverses 2nd

Invisible gif [See Web bugs.]

IP addresses

     resolution

     shortage of 2nd

    spoofing [See Spoofing.]

     translation 2nd

IPSec (IP Security Protocol Suite)

IPv6

Iris pattern authentication [See Biometrics.]

IRR (internal rate of return)

ISAKMP (Internet Security Association Key Management Protocol)

ISAKMP key exchange (IKE)

ISBS (Information Security Breeches Survey) 2nd

ISO OSI (Open Systems Interconnection) model

Isolation

ISS (Internet Security Systems)

ITSEC (Information Technology Security Evaluation Criteria) 2nd

Ivanov, Alexey

IVAs (Integrated Vulnerability Assessments)
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Jacobi function

Japanese Naval code

Java code

JetBlue airlines

Job versus employee

JVM (Java virtual machine)
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Karger, Paul

KDC (key distribution center)

Kennedy, Edward

Kerberos

     access to protected objects

     network controls

     networks

Kernel

Kernelized design

Key Online Banking

Keyless ciphers

Keyrings, e-mail

Keys (encryption)

     clustering

     definition

     distribution

     encryption

     escrow

     exchange

     length

     management

     private [See also AES (Advanced Encryption System); DES (Data Encryption Standard); Symmetric encryption.]

     proliferation

     public [See also Asymmetric encryption; RSA (Rivest-Shamir-Adelman) encryption.]

         characteristics

         definition

         flow diagram

         key proliferation

         purpose of

     RSA (Rivest-Shamir-Adelman) encryption

     transformation

Keystroke logging 2nd

Klein, Joe

Knapsack problem

Knapsacks

     and modular arithmetic

     as cryptographic algorithms

     decryption algorithm

     general

     hard

     MerkleHellman 2nd



     simple 2nd

     superincreasing 2nd

Kneed-to-know security policies

KSOS 2nd

KVM 2nd
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L0pht 2nd

L1-L6 assurance levels

LAN (local area network)

Laptop computers, vulnerabilities

Lattice security model

Laws [See also Legal issues.]

     California Breach Act

     CAN SPAM Act

     civil

     contract

     Council of Europe Agreement on Cybercrime

     criminal

     E.U. Data Protection Act

     fraud

     GLBA (Graham-Leach-Bliley Act)

     HIPAA (Health Insurance Portability and Accountability Act)

     information-related

         as object

         database protection

         depletion

         electronic commerce

         electronic publishing

         information commerce

         intangible transfer

         marginal cost

         replication

         time-dependent value

     protecting computer artifacts

     RIPA (Regulation of Investigatory Powers Act)

     statutes, definition

     statutes, examples

     tort

     U.S. Computer Fraud and Abuse Act

     U.S. Economic Espionage Act

     U.S. Electronic Communications Privacy Act

     U.S. Electronic Funds Transfer Act

     U.S. Freedom of Information Act

     U.S. Privacy Act

     USA Patriot Act

     versus ethics

Layered defense



Layered trust

Layering networks

Leaking

     access rights

     information [See also Covert channels.]

Least common mechanism

Least privilege

Legal control [See Laws; Legal issues.]

Legal issues [See also Ethical issues; Laws.]

     computer crime

         California Breach Act

         CAN SPAM Act

         Computer Fraud and Abuse Act

         computer terminology and the law

         confidentiality threats

         Council of Europe Agreement on Cybercrime

         cryptography 2nd

         defining

         E.U. Data Protection Act

         Economic Espionage Act

         Electronic Communications Privacy Act

         Electronic Funds Transfer Act

         Freedom of Information Act

         GLBA (Graham-Leach-Bliley Act)

         HIPAA (Health Insurance Portability and Accountability Act)

         integrity threats

         international dimensions

         overview

         Patriot Act

         Privacy Act

         prosecuting

         restricted content

         rules of evidence

         rules of property

         scope limitations

         statutes, examples

         value of data

     cryptography

     overview

     program and data protection

         computer objects

         copyright 2nd

         documentation protection

         domain names

         firmware

         hardware

         object code software

         patents 2nd

         reverse engineering

         source code software

         trade secrets 2nd

         trademark



         URLs

         web content

     rights of employees and employers

         copyright ownership

         employee contracts

         licensed software

         patent ownership

         product ownership

         trade secrets

         work for hire

     software failure

         full disclosure

         overview

         quality demands

         quality software

         refunds

         reporting flaws

         selling correct software

         user interests

         vendor interests

         warranty of cyberworthiness

Legislation [See Laws.]

Levy, Elias

Lewis, John

Library viruses

Licensed software

Limited privilege

Limited response suppression

Linear system vulnerability

Link encryption

Links, network

Linux

Litchfield, David

Lloyd's Bank

Local area network (LAN)

Local name space

Locks

     access control

     integrity 2nd

     sensitivity

     "spray paint,"

Logic bombs 2nd

Logic errors

Logical separation 2nd

Logs

     audit

     database changes

     database transactions

     reduction

Loose versus tight organizational control

Loose-lipped system

Lower bound



Lucifer algorithm

Lynn, Michael
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MAC (mandatory access control)

MAC (Media Access Control) address

Mafia boss case study

Mafiaboy

Magnetic remanence

Malformed packets

Malicious code [See also Nonmalicious errors; Programs, security; Viruses; Worms.]

     agents

     history of

     implementation time

     interface illusions

     keystroke logging

     logic bombs

     man-in-the-middle attacks

     potential for harm

     privilege escalation

     rabbits

     rootkit revealers

     rootkits

     Sony XCP (extended copy protection) rootkit

     spoofing

     threat assessment

     time bombs

     timing attacks

     Trojan horses

     types of 2nd

     worms

     zero day exploits

Malware [See Malicious code.]

MAN (metropolitan area network)

Man-in-the-middle attacks 2nd [See also Impersonation; Masquerade; Spoofing.]

Managers, security responsibilities

Mandatory access control (MAC)

Mapping controls to vulnerabilities 2nd

Marginal cost

Marketability, evaluating

Marks, Leo

MARS algorithm

Masquerade [See also Man-in-the-middle ; Spoofing.]

Mathematics of cryptography [See Cryptography.]

MD4 hash function



MD5 hash function

Mean attacks

Media Access Control (MAC) address

Media, network

Median attacks

Mediation

     complete 2nd

     incomplete 2nd

Memory and address protection

     base/bounds registers

     context switch

     fences

     page frames

     paging 2nd

     Palladium (protect memory project)

     principles of trusted systems 2nd

     relocation

     relocation factor

     segment address table

     segmentation 2nd

     tagged architecture

Memory-resident viruses

MerkleHellman knapsacks 2nd

Message confidentiality

Message digests [See Cryptographic checksum.]

Message integrity

Method, opportunity, motive (MOM)

Methods of

    attack [See Attacks, methods.]

    defense [See Controls; Defense methods.]

Metropolitan area network (MAN)

MIC (message integrity check)

Microcontrollers in automobiles

Microcontrollers, automobile control systems

Microsoft

     on career criminals

     on full disclosure

     on passwords

     on product quality

     passport

     patching flaws

     single sign-on

Microsoft Redaction Tool

Microsoft Word, deleting text

Microwave networks

     description

     eavesdropping

     wiretapping

Military security policies

Mining, data [See Data mining.]

Misdelivering messages

Misuse intrusion detection



Mitnick, Kevin

Mix column

Mixmaster remailers

Mixter

Mobile agents

Mobile code

Model-based intrusion detection

Modeling security economics

     credibility

     decision making

     framing the issue

     group behavior

     overview

     role of organizational culture

     transferring models

     trust as economic issue

Models, security [See Security models.]

Modular arithmetic 2nd

Modularity of code

MOM (method, opportunity, motive)

Money, attack motive

Monitoring

     e-mail

     privacy

Monitors 2nd

Monoalphabetic cipher

Moore's Law

Morals [See Ethical issues.]

Morris, Robert, Jr. 2nd

Morris, Robert, Sr.

Motives for attacks

MP3.com

Multics 2nd 3rd

Multifactor authentication

Multilevel databases [See Databases, multilevel.]

Multilevel security

Multiple identities

Multiple virtual memory spaces

Multiplexed signals

Multiprogrammed operating systems

Mundie, Craig 2nd

Mutual authentication

Mutual suspicion
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Napster

National Institute of Standards and Technology (NIST)

National Research Council (NRC)

National Security Agency (NSA) 2nd 3rd

Natural disasters

NBS (National Bureau of Standards) 2nd

NCSC (National Computer Security Center) 2nd

Negative result disclosure

Nessus

Net present value

netcat scanner

Network interface cards (NICs)

Network-based intrusion detection

Networked backups

Networks

     address shortage 2nd

     amplifiers

     analog communication

     angle of dispersion

     boundaries

     cables

         coaxial

         eavesdropping

         Ethernet

         impedance

         inductance

         networking

         UTP (unshielded twisted pair)

         wiretapping

     CAN (campus area network)

     clients

     coaxial cable

     communication mode

     control

     datagrams

     diagram of

     digital communication

     domain names

     environment of use 2nd

     Ethernet cable

     fault tolerance



     firewalls

         application proxy gateway

         comparison of

         definition

         design

         guards

         limitations

         overview

         packet filtering gateway

         personal

         sample configuration

         stateful inspection

         types of

     footprints

     frames

     geosynchronous orbit

     hosts

     IDS (intrusion detection system)

         anomaly based

         definition

         false results

         goals for

         heuristic 2nd

         host based

         misuse

         model based

         network based

         overview

         response to alarms

         signature based 2nd

         state based

         statistical analysis

         stealth mode

         strengths and weaknesses

         types of

     infrared

     internets

     LAN (local area network)

     layering

     links

     MAC (Media Access Control) address

     MAN (metropolitan area network)

     media

     microwave

     NICs (network interface cards)

     nodes

     opaqueness

     optical fiber

     OSI (Open Systems Interconnection) model

     overview

     ownership

     packets 2nd



     peers

     port numbers

     protocol stack

     protocols

     repeaters

     resilience

     routers

     routing concepts

     satellite

     secure e-mail

         confidentiality

         designs

         encryption

         keyrings

         MIC (message integrity check)

         PGP (Pretty Good Privacy)

         requirements

         ring of trust

         S/MIME (Secure MIME)

         sample systems

         solutions

         threats

     servers

     sessions

     shape

     single point of failure

     size

     SYN_RECV connections

     TCP protocols

     TCP/IP protocol

     the Internet

     top-level domain

     topography

     types of

     UDP (user datagram protocol)

     UTP (unshielded twisted pair) cable

     WAN (wide area network)

     wireless

     workstations

Networks, controls

     ACLs (access control lists)

     alarms

     alerts

     architecture

     challenge-response systems

     content integrity

     cryptographic checksum

     design

     Digital distributed authentication

     encryption

         AH (authentication header)

         certificate authorities



         comparison of methods

         e-mail

         encrypted tunnels

         end-to-end

         ESP (encapsulated security payload)

         firewalls

         IKE (ISAKMP key exchange)

         ISAKMP (Internet Security Association Key Management Protocol)

         issues

         link

         overview

         PKI (public key infrastructure)

         security associations

         signed code

         SPI (security parameter index)

         SSH (secure shell)

         SSL (Secure Sockets Layer)

         TLS (transport layer security)

         tunnels

         VPNs (virtual private networks)

     error correcting codes

     error detection

     even parity

     failover mode

     failure tolerance

     firewalls

     hash codes

     honeypots

     Huffman codes

     implementation

     intrusion detection

     Kerberos

     mobile agents

     odd parity

     one-time password

     onion routing

     parity check

     password tokens

     redundancy

     router access controls

     segmentation

     single points of failure

     SSID (Service Set Identifier)

     strong authentication

     summary of

     threat analysis

     tickets

     TKIP (Temporal Key Integrity Program)

     traffic flow security

     WEP (wired equivalent privacy)

     wireless security

     WPA (WiFi Protected Access)



Networks, threats

     active code 2nd

     active wiretapping

     ActiveX controls

     anonymity

     application code errors

     ASP (active server pages)

     attackers

     authentication vulnerabilities

         avoidance

         eavesdropping

         guessing passwords

         man-in-the-middle attack

         masquerade

         nonexistent authentication

         phishing

         session hijacking

         spoofing [See also Man-in-the-middle; ; Masquerade.]

         trusted authentication

         well-known authentication

         wiretapping

     automatic exec by file type

     botnets

     bots

     broadcast mode

     buffer overflow

     bulletin boards

     cable

         eavesdropping

         impedance

         inductance

         wiretapping

     challenge motive

     chats

     complex attacks

     connection flooding

     cookies

     cyberterrorism

     DDoS (distributed denial of service)

     defacing web sites

     distributed authentication

     DNS attacks

     DNS cache poisoning

     documentation availability

     DoS (denial of service)

     dot-dot-slash directory travel

     dumpster diving

     eavesdropping

     echo chargen

     escape-character attack

     espionage

     exposing messages



     falsifying messages

     fame motive

     format failures

     hactivism

     hostile applets

     ICMP (Internet Control Message Protocol)

     ideological motive

     iishack problem

     impersonation

     implementation flaws

     in mobile code

     intelligence gathering

     Java code

     JVM (Java virtual machine)

     malformed packets

     message confidentiality

     message integrity

     microwave

     misdelivering messages

     money motive

     motives for attacks

     multiple points of attack

     multiplexed signals

     noise

     optical fiber

     organized crime

     packet sniffers

     passive wiretapping

     ping of death

     port scans

     protocol failures

     protocol flaws

     reconnaissance

     replaying old messages

     RFC (Request For Comment)

     rogue access points

     sandbox

     satellite

     script kiddies

     scripts

     server-side includes

     sharing

     smurf attack

     social engineering

     SYN flood

     system complexity

     system fingerprinting

     teardrop attacks

     traffic flow analysis

     traffic redirection

     transmission failure

     unknown path



     unknown perimeter

     vulnerabilities

     vulnerabilities, summary of

     war driving

     web site vulnerabilities

     wireless

         eavesdropping

         interception

         rogue access points

         theft of service 2nd

         vulnerabilities

         war driving

         wiretapping

     wiretapping

     zombies

New Zealand Herald

NICs (network interface cards)

NIST (National Institute of Standards and Technology)

nmap scanner

Nodes, network

Noise, in communications

Nondeterminism

Nondeterministic Turing machines

Nonexistent authentication

Nonhierarchical security policies

Nonmalicious errors [See also Malicious code; Programs, security.]

     buffer overflows

     causes of failures

     combined flaws

     incomplete mediation

     synchronization

     time-of-check to time-of-use errors

Normative versus pragmatic organizations

NP class

NP-complete problems

NRC (National Research Council)

NSA (National Security Agency) 2nd 3rd

Nuclear weapons, tracking

Nucleus [See Kernel.]

Number of iterations

Number theory 2nd
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Object code, legal issues [See also Copyright.]

Objects, digital

     allocation

     copying

     copyright

     information as

     legal issues

     patents

    protected [See Protected objects.]

     reusing

OCTAVE methodology

Odd parity

Odlyzko, Andrew

Offers, web privacy

Offsite backups

One-by-one gif [See Web bugs.]

One-time execution viruses

One-time pads

One-time passwords 2nd

One-way functions

Onion routing

Online banking

Online environment

Online profiling

Opaqueness, of network

Opcodes

Open design

Open source

Open Systems Interconnection (OSI) model

Open versus closed organizations

Operating system data protection

Operating system protection features

Operating system security [See also Programs, security; Trusted systems.]

     cryptographic separation

     executives

     file protection

         all-none

         group

         individual permissions

         per-object

         per-user



         persistent permissions

         SUID (set userid)

         temporary acquired permissions

     granularity

     hardware-enforced protection

     history of

     levels of protection

     logical separation

     memory and address protection

         base/bounds registers

         context switch

         fences

         page frames

         paging 2nd

         relocation

         relocation factor

         segment address table

         segmentation 2nd

        selective protection [See Tagged architecture.]

         tagged architecture

     monitors

     multiprogrammed operating systems

     physical separation

     protected objects, accessing

         access control matrix

         ACLs (access control lists)

         AS (authentication server)

         capability

         directories

         domains

         erasing deleted files

         KDC (key distribution center)

         Kerberos

         local name space

         procedure-oriented

         protection goals

         pseudonyms

         revocation of access

         role-based

         single sign-on

         TGS (ticket-granting server)

         types of

         wild cards

     protection methods

     separation

     system functions

     temporal separation

     user authentication

         additional authentication information

         biometrics 2nd

         challenge-response system 2nd

         cookies



         flaws

         impersonating trusted systems

         impersonation of login

         multifactor authentication

         one-time passwords

         overview

         password attacks

         password selection criteria

         passwords as authenticators

         phishing

         process description

         single sign-on

         two-factor authentication

         versus identification

Opportunity cost

Optical fiber networks

     description

     eavesdropping

     wiretapping

Oracle, estimating security costs

Oracles

Orange Book [See TCSEC (Trusted Computer System Evaluation Criteria).]

Organizational culture

     cultural practices

     cultural values

     dimensions of

     employee versus job

     heroes

     loose versus tight control

     normative versus pragmatic

     open versus closed

     parochial versus professional

     process versus results

     rituals

     role of organizational culture

     security choices, examples

     symbols

Organized crime

Originality of work

OSI (Open Systems Interconnection) model

Overlapping controls

Overwriting magnetic data

Owners

Ownership

     networks

     of data

     programs

     web sites

Ozment, Andy
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P class

P-boxes 2nd

Packet filtering gateways

Packet sniffers

Packets, network 2nd

Page address translation

Page frames

Page size

Page translation table

Paged segmentation

Paging 2nd

Palladium (protect memory project)

Parallel attack

Parity check

Parker, Donn

Parochial versus professional organizations

Partial ordering

Partial plaintext attacks

Partitioning multilevel databases

Pass-through problem

Passenger Name Record (PNR)

Passive fault detection

Passive wiretapping

Passport

Password attacks

     12-step process

     brute force

     encrypted password file

     exhaustive

     guessing

     indiscreet users

     plaintext password list

     probability

     salt extension

     trial and error

     weak passwords

Passwords

     as authenticators

     frequency of change

     guessing

     Microsoft



     mnemonic qualities

     network tokens

     one-time

     selection criteria

     with Kerberos

Patents

     definition

     Diamond v. Bradley

     Diamond v. Diehr

     for computer objects

     Gottschalk v. Benson

     infringement

     legal issues 2nd

     ownership

     registering

     requirements of novelty

Path, trusted [See Trusted path.]

Patriot Act

Patterns

     cryptographic permutations

     database reliability

     virus signatures

Payment schemes, web privacy

Payments online, web privacy

PDF, deleting text

Peer reviews

Peers, network

Penetrate-and-patch technique

Penetration testing 2nd 3rd

Per-object file protection

Per-session cookies

Per-subject protection

Per-user file protection

Performance testing

Permission based principles of trusted systems

Permissions [See also Privilege.]

     individual

     persistent

     temporary acquired

Permutation cycle

Permutations

     columnar transpositions

     combined approaches

     definition

     digram analysis

     digrams

     encipherment/decipherment complexity

     patterns

     product ciphers

     substitution ciphers

     symmetric encryption

     trigrams



     types

Permuted choices

Persistent cookies

Personal computer users, security responsibilities

Personal firewall

Personal identification number (PIN)

Personnel staff members, security responsibilities

PGP (Pretty Good Privacy)

Phishing 2nd [See also Impersonation.]

Photon reception

Photons, cryptography with

Physical controls

Physical security

     backing up data

     cold site backups

     complete backups

     computer screen emanations

     contingency planning

     definition

     degaussing magnetic data

     "dirty" power

     fires

     floods

     guards

     hot site backups

     intercepting sensitive information

     locks

     natural disasters

     networked backups

     offsite backups

     overwriting magnetic data

     power loss

     revolving backups

     selective backups

     shell backups

     shredding paper data

     smart cards

     surge suppressors

     Tempest program

     theft prevention

     unauthorized access

     UPS (uninterruptible power supply)

     vandalism

Physical separation 2nd

PIN (personal identification number)

Ping of death

Ping protocol

Piracy

Pixel tags [See Web bugs.]

PKI (public key infrastructure)

Plaintext

     chosen plaintext attacks



     ciphertext only attacks

     definition

     full plaintext attacks

     partial plaintext attacks

     password list attacks

     probable plaintext attacks

Planning, security [See Risk analysis; Security plan.]

PNR (Passenger Name Record)

Poem codes

Polarizing filters

Policies [See also Principles; Security policies; Standards.]

     economic

    privacy [See Privacy.]

    security [See Security policies.]

Polyinstantiation

Polymorphism, viruses

Port numbers

Port scans

Power off, virus defense

Power, electrical

Power, Richard

PR/SM [See IBM, Processor Resources/System Manager.]

Pragmatic versus normative organizations

Precision versus security

Prediction, of risk [See Risk analysis.]

Pretty Good Privacy (PGP)

Prevention [See Controls; Defense methods.]

Prime numbers

Primitive operations

Principles [See also Policies; Standards.]

     economic

    privacy [See Privacy.]

     security

         adequate protection

         easiest penetration

         effectiveness

         weakest link

    trusted systems [See Trusted systems.]

Privacy [See also Confidentiality.]

     access control

     affected subject

     aspects of

     authentication

         anonymized records

         attributes

         identity 2nd

         individual 2nd

         meaning of

         overview

     case study

     computer-related problems

     controlled disclosure



     data mining

         aggregation of data

         correlation of data

         data perturbation

         government

         preserving privacy

         sensitive data

     dimensions of privacy

     e-mail

         access control

         anonymous

         interception

         mixmaster remailers

         monitoring

         overview

         remailers

         simple remailers

         spamming

         spoofing

         transmitting

     emerging technologies

         consumer products

         electronic voting

         overview

         privacy issues

         RFID (radio frequency identification)

         security issues

         Skype

         VoIP (Voice over IP)

     government and

         Council of Europe

         European Privacy Directive

         Icelandic DNA database

         principles and policies

         U.K. RIPA (Regulation of Investigatory Powers Act)

     history of

     information collection 2nd

     information disclosure

     information retention

     information security

     information usage

     informed consent

     loss of control

     monitoring

     on the web

         advertising

         adware

         contests

         cookies

         credit card payments

         drive-by installation

         highjackers



         keystroke loggers

         offers

         online environment

         online profiling

         payment schemes

         payments online

         precautions

         registration

         shopping

         site ownership

         spyware

         third-party ads

         third-party cookies

         web bugs

     ownership of data

     policy changes

     principles and policies

         access control

         anonymity

         audit trails

         authentication

         Convention 2nd

         COPPA (Children's Online Privacy Protection Act)

         Council of Europe

         data access risks

         data anonymization

         data left in place

         data minimization

         deceptive practices

         defense methods

         Directive 95/46/EC

         e-Government Act of 2000

         European Privacy Directive

         Fair Credit Reporting Act

         fair information

         Fair Information Policies

         Federal Educational Rights and Privacy Act

         FTC (Federal Trade Commission)

         GLBA (Graham-Leach-Bliley Act)

         government policies

         HIPAA (Health Insurance Portability and Accountability Act)

         identity theft

         multiple identities

         non-U.S.

         Privacy Act (5 USC 552a)

         protecting stored data

         pseudonymity

         quality

         restricted usage

         training

         U.S. laws

         Ware committee report



         web site controls, commercial

         web site controls, government

     rights, ethical issues

     RIPA (Regulation of Investigatory Powers Act)

     sensitive data

Privacy Act 2nd

Privacy-preserving data mining

Private key encryption [See also AES (Advanced Encryption System); DES (Data Encryption Standard); Symmetric encryption.]

Privilege [See also Permissions.]

     escalation

     limited

Probability

Probability password attacks

Probable plaintext attacks

Probable value disclosure

Problems, cryptographic

Procedure-oriented access control

Process activation

Process versus results organizations

Product cipher, DES

Product ciphers

Product ownership

Professional versus parochial organizations

Profile, of attackers

Programs

     definition [See also Applications; Code (program); Software.]

     protection legal issues

         computer objects

         copyright 2nd

         documentation protection

         domain names

         firmware

         hardware

         object code software

         patents 2nd

         reverse engineering

         source code software

         trade secrets 2nd

         trademark

         URLs

         web content

Programs, security [See also Operating system security; Trusted systems.]

    controls [See Controls.]

     cyber attacks

     errors

     failures

     faults

     fixing faults

     flaws

         aliasing

         authentication

         boundary conditions



         definition

         domain errors

         identification

         logic errors

         overview

         serialization

         types of

         validation errors

     IEEE Standard 2nd

    intentional incidents [See Cyber attacks.]

     malicious code [See also Attacks, methods; Trapdoors; Viruses.]

         agents

        back doors [See Trapdoors.]

         history of

         implementation time

         interface illusions

         keystroke logging

        leaking information [See Covert channels.]

         logic bombs

         man-in-the-middle attacks

         potential for harm

         privilege escalation

         rabbits

         rootkit revealers

         rootkits

         Sony XCP (extended copy protection) rootkit

         spoofing

         threat assessment

         time bombs

         timing attacks

         Trojan horses

         types of 2nd

         worms

         zero day exploits

     nonmalicious errors

         buffer overflows

         causes of failures

         combined flaws

         incomplete mediation

         synchronization

         time-of-check to time-of-use errors

     overview

     penetrate-and-patch technique

     unexpected behavior

Project leaders, security responsibilities

Proliferation of keys

Proof of program correctness

Propagation of errors

Proprietary resources, ethical issues

Prosecuting computer crime

Protected objects, accessing

     access control matrix



     ACLs (access control lists)

     AS (authentication server)

     capability

     directories

     domains

     erasing deleted files

     KDC (key distribution center)

     Kerberos

     local name space

     procedure-oriented

     protection goals

     pseudonyms

     revocation of access

     role-based

     single sign-on

     TGS (ticket-granting server)

     types of

     wild cards

Protecting stored data

Protection [See Controls; Defense methods.]

Protection profiles

Protection system commands

Protection systems

Protocols

     destination unreachable

     echo

     encryption

     failures

     flaws

     networking

     ping

     SMTP (simple mail transport protocol)

     SNMP (simple network management protocol)

     source quench

     stack

     TCP/IP

     UDP (user datagram protocol)

Provenzano, Bernardo

Proxies

Proxy firewall

Pseudonymity

Pseudonyms

PSOS (Provably Secure Operating System)

Public domain

Public key encryption [See also Asymmetric encryption; RSA (Rivest-Shamir-Adelman) encryption.]

     characteristics

     definition

     flow diagram

     key proliferation

     purpose of

Public key infrastructure (PKI)
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Q0-Q7 quality levels

Quality

     demands

     privacy principles and policies

     software

Quantifying security value

     accurate data

     attack sources

     attack types

     comparability of categories

     consistent data

     cost of U.K. security incidents

     economic impact 2nd 3rd

     ISBS (Information Security Breeches Survey) 2nd

     justification data

     overview

     reliable data

     representative data

     respondent types

     security practices 2nd

     timelines

Quantum cryptography

     cryptography with photons

     implementation

     overview

     photon reception

     polarizing filters

     quantum physics

Quantum physics

Queries database

Query analysis, database inference
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Rabbits

Radio frequency identification (RFID)

RAND Corporation 2nd

Random number sequences

Random sample control

Ranum, Marcus

RC2 cipher

RC4 cipher

RC5 cipher

RC6 algorithm

Read-only files, viruses

Realism

Rearrangement [See Permutations.]

Recipients

Reconnaissance

Records, database 2nd

Recovery from backup

Redaction Tool

Redundancy

     database reliability

     multilevel databases

     networks

     process comparison

Reference monitor

Refunds

Registration

     copyright

     patents

     web privacy

Regression testing

Regulation of Investigatory Powers Act (RIPA)

Regulation, economics

Relational operators

Relations, database

Relatively prime values

Release proliferation

Reliability

     databases [See also Integrity.]

         commit flag

         committing updates

         concurrency



         consistency 2nd

         correction codes

         data form checks

         definition

         error detection

         filters

         intent phase

         monitors

         operating system protection features

         patterns

         recovery from backup

         redundancy

         shadow fields

         shadow values

         state constraints

         transition constraints

         two-phase update

Religion, and ethics

Relocation

Relocation factor

Remailers

Remanence, magnetic

Repeaters, network

Replay attack

Reporting

     computer crime

     program flaws

Reprocessing used data items

Request For Comment (RFC)

Requirements checking

Requirements of novelty

Resident viruses

Resilience, network

Resorla, Eric

Respondent types

Response

     CERT (Computer Emergency Response Team)

     intrusion detection

     limited response suppression

     plans

     teams

     to alarms

Responsibility for security

Restricted content

Restricted usage

Results versus process organizations

Retina pattern authentication [See Biometrics.]

Return on investment (ROI)

Reverse engineering

Reviews, design and code

Revocation of access

Revolving backups



RFC (Request For Comment)

RFID (radio frequency identification)

.rhosts file

Right, versus wrong [See Ethics.]

Rights of employees and employers

     copyright ownership

     employee contracts

     licensed software

     patent ownership

     product ownership

     trade secrets

     work for hire

Rijmen, Vincent

Rijndael algorithm 2nd [See also AES (Advanced Encryption System).]

Ring of trust

RIPA (Regulation of Investigatory Powers Act)

Risk analysis [See also Security plan.]

     classical probability

     Delphi approach

     FMEA (failure modes and effects analysis)

     frequency probability

     FTA (fault tree analysis)

     hazard analysis techniques

     HAZOP (hazard and operability studies)

     IVAs (Integrated Vulnerability Assessments)

     nature of risk

     probability

     pros and cons

     steps involved in

         alternative steps

         asset identification

         control selection

         cost/benefit analysis

         expected loss computations

         exploitation estimation

         savings projections

         vulnerability identification

     subjective probability

     VAM (Vulnerability Assessment and Mitigation)

Risks

     definition

     exposure

     impact

     leverage

     nature of

     prediction [See also Risk analysis.]

Rituals, organizational

Rivest, Ron

Rivest-Shamir-Adelman (RSA) encryption [See RSA (Rivest-Shamir-Adelman) encryption.]

.rlogin file

Rochefort, Joseph

Rogue access points



Rogue programs [See Malicious code.]

ROI (return on investment)

Role-based access control

rootkit

Rootkit revealers

Rootkits

Roundoff error

Router access controls

Routers

Routing concepts

RSA (Rivest-Shamir-Adelman) encryption

     cryptanalysis of

     cryptographic challenges

     description

     Euler totient function

     Jacobi function

     key choice

     mathematical foundations

     overview 2nd

     using the algorithm

Rule-based ethics

Rule-deontology

Rules of evidence

Rules of property

Rules set, firewall

Russian nuclear weapons, tracking
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S-boxes 2nd

S/MIME (Secure MIME)

Salami attack

Salt extension

Sandbox

SAS Institute

Satellite networks

     description

     eavesdropping

     wiretapping

Satisfiability, cryptography

Scanners

     port

     virus

Schecter, Stuart

Schell, Roger

Schema, database

Schneier, Bruce

SCOMP 2nd

Scrambling data [See Cryptography; Encryption.]

Screening router 2nd

Script kiddies

Scripts

Secrecy [See Confidentiality; Privacy.]

Secret key encryption [See Symmetric encryption.]

Secure encryption algorithms

Secure Hash Algorithm (SHA)

Secure Hash Standard (SHS)

Secure MIME (S/MIME)

Secure shell (SSH)

Secure Sockets Layer (SSL)

Security

     as add-on

     associations

     audits

     availability 2nd

     confidentiality [See also Privacy.]

     definition

     features

     goals

     integrity 2nd



     kernel

     money versus information

    physical [See Physical security.]

    software [See Operating system security; Programs, security.]

     targets

    value of [See Economics of cybersecurity.]

     versus precision, databases

    weaknesses [See Vulnerabilities.]

Security models

     *-property (star property)

     BellLa Padula

     Biba integrity

     command structure

     conditions

     definition

     GrahamDenning

     HarrisonRuzzoUllman

     integrity *-property

     lattice model

     leaking access rights

     lower bound

     multilevel security

     partial ordering

     primitive operations

     protection system commands

     protection systems

     relational operators

     simple integrity property

     simple security property

     TakeGrant

     theoretical limitations of systems

     upper bound

     uses for

     write-down

Security parameter index (SPI)

Security plan [See also Risk analysis; Security policies.]

     business continuity plan

     commitment to

     constraints

     contents of

     continuing attention

     controls

     current status

     definition

     framework for

     history of

     incident response plans

     incident response teams

     OCTAVE methodology

     policy statement

     requirements

     responsibilities



     team members

     timetable

Security policies [See also Policies; Principles; Security plan.]

     access triples

     audience

     beneficiaries

     characteristics of

     Chinese Wall

     Clark-Wilson commercial

     classification

     commercial

     compartments

     constrained data items

     contents

     definition 2nd 3rd

     dominance

     durability

     economics of

     examples

         data sensitivity

         DOE (Department of Energy) policy

         government e-mail

         Internet policy

     hierarchical

     issues

     kneed-to-know

     military

     nonhierarchical

     owners

     purpose

     realism

     separation of duty

     transformation procedures

     usefulness

     users

     well-formed transactions

Segment address table

Segment address translation

Segmentation

     combined wit paging

     networks

     overview

Selective backups

Selective protection [See Tagged architecture.]

Self-healing code

Self-stabilizing code

Selling correct software

Semiweak keys

Senders

Sendmail flaw

Sensitive data

     data mining



     databases

         access acceptability

         access decisions

         authenticity

         bounds disclosure

         characteristics of

         data availability

         definition

         disclosures, types of

         exact data disclosure

         existence disclosure

         negative result disclosure

         overview

         probable value disclosure

         security versus precision

     overview

Sensitivity lock

Separation

     multilevel databases

     of duty

     of privilege

     overview

     principles of trusted systems

Serialization error

Serpent algorithm

Server-side includes

Servers, network

Service Set Identifier (SSID)

Service, denial of [See DDoS (distributed denial of service); DoS (denial of service).]

Session hijacking [See also Impersonation.]

Sessions, network

Set userid (SUID)

SHA (Secure Hash Algorithm)

Shadow fields

Shadow values

Shakespeare, authorship debate

Shannon, Claude

Shape, networks

Shared resource matrix

Sharing

     access

     enforced

     network threat

     session keys

Shell backups

Shift row

Shneiderman, Ben

Shopping online, privacy

Shredding paper data

SHS (Secure Hash Standard)

Signaling through images [See Steganography.]

Signature-based intrusion detection 2nd



Signatures, viruses

     definition

     execution patterns

     polymorphism

     scanners

     storage patterns

     transmission patterns

Signed code

Silken codes case study

Simple integrity property

Simple knapsacks 2nd

Simple remailers

Simple security property

Single point of failure, networks 2nd

Single sign-on 2nd

Size, networks

Skype

Smart cards

SMTP (simple mail transport protocol)

Smurf attack

SNMP (simple network management protocol)

Social engineering

SOE (Special Operations Executive)

Software [See also Applications; Code (program); Programs.]

     access control

     configuration management

    controls [See Controls.]

     failure, legal issues

         full disclosure

         overview

         quality demands

         quality software

         refunds

         reporting flaws

         selling correct software

         user interests

         vendor interests

         warranty of cyberworthiness

     malicious modification

    security [See Operating system security; Programs, security.]

Sony XCP (extended copy protection) rootkit

Source code, legal issues

Source quench protocol

Soviet Union codes

Spafford, Eugene

Spam 2nd

Special Operations Executive (SOE)

SPI (security parameter index)

Spikes, electrical

Spoofing [See also Impersonation.]

     cryptographic protection

     e-mail



     interface illusions

     network vulnerability

     trusted path

"Spray paint" lock

Spying 2nd

Spyware

SSH (secure shell)

SSID (Service Set Identifier)

SSL (Secure Sockets Layer)

Stack pointer

Standards [See also Policies; Principles.]

     IEEE Standard 2nd

     process

     software development 2nd

Star property (*-property)

State constraints

State-based intrusion detection

Stateful inspection firewalls

Static code analysis

Statistical analysis, intrusion detection

Statistical inference attacks

Statistics, computer crime

Status accounting

Statutes 2nd [See also Laws.]

Stealth mode intrusion detection

Steganography

Stevens, Thomas

Stoll, Cliff 2nd

Stopford, Charlie

Storage channels

Stream ciphers

Strong authentication

Subjective probability

Subschema, database

Substitution ciphers

     book ciphers

     Caesar cipher

     complexity

     cryptanalysis

     cryptographer's dilemma

     keys

     one-time pads

     permutations

     random number sequences

     Vernam cipher

     Vignère tableau 2nd

Substitution cycle, DES

Substitution, symmetric encryption

Substitutions

SUID (set userid)

Sum attacks

Summer Study on Database Security



Superincreasing knapsacks 2nd

Suppression control

Surge suppressors

Surges, electrical

Surrounding viruses

Surveys of security

     Australian Computer Crime and Security

     CSI/FBI Computer Crime and Security

     Deloitte and Touche Tohmatsu Global Security

     Ernst and Young Global Information Security

     IC3 (Internet Crime Complaint Center)

     Imation Data Protection

     sources for

Swallow, William

Symantec 2nd

Symbols, organizational

Symmetric encryption [See also AES (Advanced Encryption System); DES (Data Encryption Standard); Private key encryption.]
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