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PROSPERa 
- Dost thou hear? 
MIRANDA 
- Your tale, Sir, would 

cure deafness. 

Shakespeare, 
The Tempest, Act 1, Sc. 2. 
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Welcome to the readers 

This book gives an account of present-day attempts at solving the problems 

posed by the truly amazing capabilities or our hearing organs. The emphasis 
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is on those aspects of the external ear, the middle ear and the cochlea which, 

to the best of our present knowledge, can be treated by a mechanistic analy

sis. The book represents the proceedings of a Symposium on Mechanics of Hea

ring, held at Delft (the Netherlands) in July 1983. The symposium was jointly 

sponsored by the International Union of Theoretical and Applied Mechanics 

(IUTAM) and the International Commission on Acoustics (ICA) and it functioned 

as a special symposium associated with the 11th ~nternational Congress on 

Acoustics in Paris. 

A scientific committee was appointed (see list below) under the chairmanship 

of the undersigned. The committee selected a number of possible contributors, 

and requested suggestions for additional contributors. In this way the core 

of the symposium programme was constructed. Each author had to produce a 

camera-ready manuscript which means that the authors are fully responsible 

for their texts. In a few instances the Bureau of the Symposium provided 

help to the authors to ensure that all manuscripts were typed according to 

the same rules. The book was made available at the time of the Symposium 

thanks to the diligence of Delft University Press. 

The following gives a guide as to the contents of the book. The first topic 

is called: 'External ear and middle ear'. A review paper by Shaw and Stinson 

analyzes the many physical properties that have been demonstrated in these 

organs. Sound is affected by structures of complex geometry. A modern way of 

attacking the problem of complexity is demonstrated by Funnell in his contri

bution on vibrations of the drum membrane. Sound does not only go from 'air' 

to 'ear' but - in view of cochlear emissions and other active, nonlinear phe

nomena - also in the opposite direction. See the paper by Matthews on the 

transmission of sound generated in the inner ear back to the middle ear and 

to the external ear. 
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The second main section of the book concerns 'Cochlear fluid mechanics', this 

subject more or less represents the 'classical' approach in cochlear mechanics. 

The section brings together a number of papers, mostly of a fundamental na

ture, treating the problem as to how cochlear fluids interact with cochlear 

membranes. One of the most versatile solution methods, the LG (Liouville

Green) or WKB (Wentzel, Kramers and Brillouin) method, is applied by Steele 

and Zais to cochlear structures of fairly complex geometry. Other applica

tions of that method in two- and three-channel cochlear models, are presen

ted by Babi~ and Novoselova. A different approach, more easily recognized as 

an asymptotic method, is illustrated by Holmes and Cole. To what extent expe

rimental data can be explained in terms of 'classical' models is demonstra

ted by Viergever and Diependaal. Very fundamental properties of models 

incorporating 'short waves' and the ways these properties are interconnected 

form the topic of the paper by Lighthill. 

With the advent of 'Cochlear emissions' - the name of the next section -

a new era seemed to start in the field of hearing theory. New experimental 

findings and a novel interpretation are presented in Kemp's contribution to 

this book. It is difficult to grasp all data and to construct a comprehen

sive model to explain them all, hence the studies of simplified models. See, 

for instance, the paper by Sutton and Wilson. More experimental data are pre

sented by Rutten and Buisman. These authors also relate the emission phenome

na to subjects of study in completely different fields of research: phase 

transitions of oscillators that operate near their critical points. One 

bridge too far? Certainly not! Finally, Wit and Ritsma consider spontaneous 

emissions in frequency and time. They also try to determine the minimal sti

mulus level that gives rise to an evoked emission - with a surprising result. 

The fourth main topic, obviously related to the previous one, is 'Active 

Systems'. Several authors in this field claim that the classical, passive 

cochlea model is not capable of explaining the essential elements of the 

most recent findings regarding vibrations in the cochlea. When a model is 

assumed to be active, i.e., to have the property that cochlear structures 

can actively generate acoustic energy, it is feasible to obtain a well

fitting response. This is demonstrated by the model responses obtained by 

Neely. Mountain, Hubbard and McMullen describe more general aspects of an 

active model and the way computed responses relate to experimental evidence, 

whereas Koshigoe and Tubis concentrate on feedback properties of an active 

model. 



In both papers nonlinearity appears as an essential feature of the model. 

Problems associated with reflections of waves generated inside the cochlea 

by active behaviour are analyzed by de Boer. Van Netten and Duifhuis give 
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an account of their first attempt at an analytical approach: the dynamics of 

the organ of Corti is described by the Van der Pol equation. Diependaal and 

Viergever studied numerical techniques for solving the problem of an active 

structure. They find one of the most advanced methods to fall definitely 

short of the goal in active models and they elucidate the reason for this 

property. 

The fifth section of the book, entitled 'Nonlinear micromechanics', tries 

to delve somewhat deeper into the problem of how the specific properties of 

the organ of Corti are brought about. Voldrich presents an account of the 

most recent anatomical findings. Jau and Geisler consider nonlinear effects 

as dependent upon a weighted average of basilar membrane displacement over 

a certain length. Khanna and Leonard enumerate the arguments why they think 

tuning properties of the cilia of cochlear hair cells are crucial, a feature 

that has been keeping theorists busy for a long time. 

A number of 'Special topics' remain, difficult to be brought under one hea

ding. Miller's experimental results on the static compliance of the basilar 

membrane contribute to present-day discussion on this topic. Allen shows how 

the dynamics of neural excitation in hair cells can be taken into account. 

Questions of sound conduction in water birds, the role of the cochlear aqua

duct and the significance of a flexible spiral lamina are considered by Kohl

loeffel. Bialek, finally, approaches the problem of cochlear action from 

quite a different angle. He calculates the noise level resulting from 

Brownian motion and finds this to be at least 20 - 30 dB above our hearing 

threshold. According to these results there should exist a filtering process 

subsequent to cochlear mechanics. 

Many thanks are due to the sponsoring agencies: IUTAM and ICA. The coopera

tion with the Department of Mathematics and Informatics, Delft University 

of Technology, served well to make the meeting a success. The undersigned 

gratefully acknowledges the work done by the scientific committee (see list 

below). The many contributions from Dr. M.A. Viergever who assumed the labo

rious task of Secretary of the Symposium, deserve to be mentioned specifi

cally. 
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The same applies to Mrs. M. den Boef who undertook the greater part of the 

local organization and administration work. 

Let us all hope that the present book will be a milestone along the road of 

modelling of the auditory system. 

The scientific Committee: 

Sir James Lighthill, London, UK 

C.R. Steele, Stanford, CA, USA 

E.A.G. Shaw, Ottawa, Canada 

E. de Boer, Amsterdam, Neth. (chairman) 

M.A. Viergever, Delft, Neth. (secretary) 

E. de Boer 

chairman 



Section I 

External ear and middle ear 



ABSTRACT 

THE HUMAN EXTERNAL AND MIDDLE EAR: MODELS AND CONCEPTS 

E.A.G. Shaw, M.R. Stinson 

National Reseapch Council 
Ottcuva, Canada 

The pepfoPmance of the extePnal eap, when viewed as a diffuse-field peceivep, 
is given in a simple exppession containing two acoustic impedances. In this 
sense, the extePnal eap has a high fpequency pepfoPmance quite close to the 
theopetical limit. Viewed as a dipectional antenna the extePnal eap is an 
acoustical wave ppocessop of considepable complexity. Apppoximately eight 
nOPmal modes sppead ovep neaply thpee octaves ape pequiped to account fop its 
distinctive chapactepistics. At the highest fpequencies, additional wave 
factops come into play neap the eapdpum. Netwopk concepts ape well suited to 
the mechanics of the middle eap but pequipe considepable development to allow 
fop the complex motion of the eapdpum which is the dominant factop at high 
fpequencies. ConsidePable ppogpess has been made with a two-piston model 
which gives peasonable eapdpum impedance and middle eap tpansmission cupves. 
This model shows that, at high fpequencies, it is the intePnal pesistance of 
the eapdpum that absopbs most of the incident sound enepgy and contpols 
middle eap tpansmission. A mope sophisticated tpeatment of eapdpum motion 
may soon be within peach. 

1. RECEPTION IN A DIFFUSE SOUND FIELD 

The primary function of the external ear, the collection of acoustical 

energy, can be quantified in a precise manner by performing a mental 

experiment in which the ear is first a receiver and then a transmitter. 

Hence, by invoking the acoustical reciprocity theorem, it can be shown (Shaw 

1979) that the power Pd absorbed at the eardrum, when the ear is immersed in 

a diffuse sound field of mean square pressure Pf2, is determined in essence 

by two impedances as follows: 

(1) 

In this expression, Za is the acoustic impedance seen by the eardrum looking 

outward through the external ear, Zd is the impedance presented to the 

external ear by the middle ear system, Ra and Rd are the resistive parts of 

these impedances, and A is the wavelength of sound. When Za is the conjugate 

of Zd and when the radiation efficiency n is 100% (no sound absorption 

between the eardrum and the diffuse field), the power received at the eardrum 

has its greatest possible value 

( 2) 

This is the total power flowing through a transparent sphere of cross

sectional area A2 /4n (radius A/2n) when immersed in the same diffuse sound 

3 
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field. Similarly, comparing equations (1) and (2), it follows that the 

"absorption cross section" of the non-ideal ear is 

( 3) 

The upper solid curve in Fig. 1 shows the calculated absorption cross section 

for a physical model of the external ear whose acoustical characteristics are 

closely matched to those of the median human ear (Shaw 1982). The values of 

Za for this model were obtained from impedance tube measurements and the 

values of Zd came from a middle ear network (see Shaw 1982). The validity of 

the method was confirmed by measurements of diffuse field response (Shaw 

1979). As can be seen, the human external ear is a poor sound collector at 

low frequencies but approaches the theoretical limit of performance at its 

principal resonance frequency (~ 2.7 kHz) and at higher frequencies. For 

comparison, the broken line in Fig. 1 shows the calculated absorption cross 

section when the external ear is eliminated and the eardrum is placed on the 

surface of a sphere representing the head. 
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Measurements indicate that the diffuse field response of the human ear is 

relatively insensitive to variations in geometry (Shaw 1980). The direct

ionality of the ear, which is highly significant in sound localization, is 

however closely linked with its geometry as shown in Fig. 2. These families 

of response curves were obtained with a special source designed to produce 

clean progressive waves at grazing incidence. The measurements were made at 
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Fig. 2. FPequency pesponse at six 
angles of incidence. uppep panel: 
Model eap with concha acoustically 
matched to median human eap. Lowep 
panel: Model eap with exponential 
concha • 

six source positions simulating median plane excitation at elevations betwen 

-150 and +600 • It is evident that the response of the model ear with "human" 

acoustical characteristics (upper panel) is highly directional at frequencies 

greater than 5 kHz whereas the response of the ear with the exponential 

concha is substantially independent of source position at all frequencies. 

The key to the directionality of the human ear is found in the normal modes 

of the concha (e.g. Shaw 1982). The pressure distributions symbolized in 

Fig. 3 are based on measurements on ten human ears with the ear canal closed. 

They are presented against the geometrical representation of the concha used 

in the model ear referred to in Fig. 2. For each measurement, the source 

position was carefully selected to excite the chosen mode while minimizing 

the excitation of adjacent modes. The resonance frequencies shown are the 

mean values for the ten subjects and the arrows indicate the directions of 

maximum excitation. These frequencies and directions are almost perfectly 

matched in the model ear. Notice that the second and third modes have 

Fig. 3. Relative phases of 
sound ppessupe in diffepent 
papts of concha based on 
data fpom ten human subjects. 
Sketch at left outlines 
cavity system in human 
concha. 
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pressure distributions that are primarily vertical while the fourth and fifth 

modes are predominantly horizontal. As indicated in Figs. 

doublets become triplets in the complete ear (canal open). 

3. EAR CANAL GEOMETRY 

and 2, the 

It has been customary to treat the human ear canal as a uniform cylindrical 

tube terminated by a plane eardrum set perpendicular to the canal axis. In 

reality, the eardrum is inclined to the canal axis forming a wedge-shaped 

volume at the end of the canal which tends to be bent away from the main body 

of the canal. The cavity depicted in Fig. 4 is one of an experimental series 

representing such characteristics (Stinson and Shaw 1982). As can be seen, 

the measured pressure distributions are significantly different from those 

associated with the simple canal. In particular, at the highest frequencies, 

the pressure maxima in the tapered portion of the cavity are much greater 

than those in the uniform cylindrical region. Furthermore, the first zone of 

the wave pattern is considerably extended which places the first minimum at a 

distance of approximately O.4A from the end rather than O.25A. The benefit 

conferred by this horn-like behaviour is offset by the presence of a pressure 

node across the inclined eardrum surface. 

4 . MIDDLE EAR MECHANICS 

For more than two decades lumped-element modelling has provided a valuable 

framework for middle ear mechanics. In particular, zwislocki's well known 

acoustical network (Zwislocki 1962) gives a good account of normal and 

pathological hlwan middle ears at frequencies up to 1 or 2 kHZ, as judged by 

the quality of fit between the calculated and measured values of input 
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impedance. Tb proceed to higher frequencies, it is essential to accommodate 

the mechanical complexity of the eardrum revealed in the holographic studies 

of Tbnndorf and Khanna (1972), L¢kberg et al (1980) and others. 
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Fig. 5 shows a lumped element representation of the human eardrum which takes 

into account some of its major vibrational characteristics while avoiding the 

fine structure associated with the flexural resonances which must surely be 

present. First, the eardrum surface is divided into two zones: So' which is 

tightly coupled to the malleus at all frequencies, and Sd' which is free to 

move with a substantial measure of independence at high frequencies where its 

motion is controlled primarily by its own inertia. These zones are treated 

as rigid pistons with mechanical impedances Zmd and Zmo and they are 

mechanically coupled by an impedance Zmdo' (At low frequencies, this 

coupling impedance represents the stiffness between the central and outer 

portions of an elastic shell. At high frequencies, it seems to be determined 

primarily by the internal damping of the shell.) Since the pistons are also 

acoustically coupled through the ear canal and middle ear cavities, the 

network representing the system must include an ideal transformer as shown in 

Fig. 5(c). 

In the complete middle ear network presented in Fig. 6, the acoustical 

impedances Zd=Zmd/Sd2, Z =Z IS 2 and Zd =Z IS 2 are now expressed as 
o mo 0 0 mdo d 

individual circuit elements. The elements connected to the secondary side of 

the transformer (Ro ' Lo etc.) correspond closely to the elements in 

zwislocki's network though the numerical values are very different due to the 

differences in reference areas. On the primary side, however, Ld now 

represents the inertance (mass/area2 ) of the major portion Sd of the eardrum, 

Cd the acoustical capacitance associated with the periphery of the eardrum 

and Rd the peripheral damping. The acoustical elements Cdo and Rdo ' 

representing mechanical coupling between the two areas of the eardrum, are 

discussed later. 

with suitable choices of parameters (e.g. Shaw and Stinson 1981), 

calculations based on Fig. 6 are in reasonable agreement with the median 
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Fig. 6. Middle earo 
networok based on 
compound-earodroum 
concept. 

p 

, 
R .. : 

1 
1 , 
I T--

u 

Eardrum Coupling 

1_- __ , 

Ouler 
Eardrum 

Incudo
Siopedial 
Joint 

'5.- --, 
I R, I 
I 1 
I C I 
: 'I __ J 

Stope., 
Cochlea 

:5.- i;: 
1 1 
1 l c 1 
1 1 
I Cc 1 
1- ___ _ 

input impedance data for normal and pathological ears, recent estimates of 

ear canal standing wave ratio (Stinson et al 1982) and observations of 

eardrum vibration. 

Some further implications of this network are presented in Fig. 7. The seven 

zones indicate the fractions of incident energy that are absorbed in various 

parts of the ear and the fraction that is reflected at the eardrum when a 

progressive wave of unit energy enters the ear canal. The fraction absorbed 

by the cochlea rises to a maximum of about 26% at 1 kHz while the fraction 

reflected at the eardrum falls to a minimum of approximately 28% at 4 kHz. 

At frequencies greater than 2.5 kHz, the lion's share of the energy is taken 

by Rdo which, from its position in the network, must surely represent 

mechanical resistance within the eardrum. This conclusion is perhaps 

surprising but seems inescapable if one accepts the essential correctness of 

the standing wave data. 

The probable function of Rdo is revealed in Fig. 8 which shows the piston 

velocity ratio as a function of frequency for various values of this 
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,resistance. At frequencies greater than 10 kHz this ratio (hence, the stapes 

velocity ratio also) is nearly proportional to Rdo • Evidently, at high 

frequencies, middle ear transmission is enhanced by the presence of 

mechanical damping in the eardrum. When Rdo is 170 ohms, as in Fig. 7, the 

piston velocity ratio is approximately 0.7 at frequencies up to 2 kHz, in 

agreement with Tonndorf and Khanna, and then falls rapidly with increasing 

frequency passing through the value of 0.14 at 5 kHz which also appears to be 

in agreement with experiment. 

When one considers the viscoelastic nature of the eardrum, it would not be 

surprising if Rdo and related elements such as Cdo should prove to be 

frequency dependent. The broken line in Fig. 8 has been drawn on the 

assumption that Cdo is constant while Rdo increases with the square root of 

frequency. The result is a significant increase in the velocity ratio at 

high frequencies. 

5. EARDRUM ASYMMETRY, HEARING THRESHOLD LEVELS AND THERMAL NOISE 

The smoothness of the median free-field hearing threshold curve suggests the 

presence of a mechanism, in the middle ear or beyond, which counterbalances 

the principal resonance of the human ear (Shaw, 1982). Work now in progress, 

inspired by the evident lack of symmetry between the anterior and posterior 

zones of the eardrum, starts with the premise that the major area, identified 

as Sd in Fig. 5(a), should be divided. This leads to a three-piston model 

which, with a suitable choice of parameters, produces the required minimum in 
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malleus velocity at 2.7 kHz. It is, however, necessary to accept less 

eardrum damping than seems likely in view of the standing wave data. 

In the free field, the radiation impedance of the external ear shunts the 

input terminals of the middle ear network. When the thermal noise of the 

combined system is calculated by invoking the Nyquist noise generator 

theorem, it is found that most of the noise appearing at the oval window is 

associated with the cochlea. By estimating the transmission of sound energy 

from the eardrum to the cochlea (e.g. lower solid curve in Fig. 1), it is 

then possible to calculate the detection limit imposed by thermal noise given 

some knowledge of the signal detectability (e.g. Green et al 1959). At 500 

Hz this limit is approximately 20 dB below the observed median hearing 

threshold level at the eardrum. Between 8 and 16 kHz, however, the thermal 

curve matches recently-determined threshold levels for young ears (Shaw and 

Stinson 1980) which is surprising. 

REFERENCES 

Green, D.M., McVey, M.J., and Licklider, J.C.R. (1959). Detection of a 
pulsed sinusoid in noise as a function of frequency, J. Acoust. Soc. 
Am. 31, 1446-1452. 

L¢kberg, O~., H¢gmoen, K. and Gundersen, T. (1980). Vibration 
measurement in the human tympanic membrane - in vivo, Acta Oto~apY,ngo~. 
89, 37-42. 

Shaw, ~A.G. (1979). Performance of external ear as sound collector, J. 
Acoust. Soc. Am. Supp~. 1, 65, S9. 

Shaw, E.A.G. (1980). 'Ihe Acoustics of the External Ear. In: Acoustica~ 
Factops Affecting Heaping Aid Pepfo~nce, edited by G.A. Studebaker 
and I. HOchberg (University park Press, Baltimore), pp. 109-125. 

Shaw, E.A.G. (1982). 'Ihe 1979 Rayleigh Medal Lecture: The Elusive 
Connection. In: Loca~ization of Sound: Theopy and App~ications, 
edited by R.W. Gatehouse (Amphora Press, Groton, Conn.), pp. 13-29. 

Shaw, E.A.G. and Stinson, M.R. (1980). Middle-ear function, thermal noise 
and hearing threshold levels. ppoceedings of the Tenth IntePnationa~ 
Congpess on Acoustics (Australian Acoust. Soc., Sydney) Vol.2, p.B-3.4. 

Shaw, E.A.G. and Stinson, M.R. (1981). Network concepts and energy flow in 
the human middle-ear, J. Acoust. Soc. Am. Supp~. 1 69, S43. 

Stinson, M.R. and Shaw, E.A.G. (1982). Wave effects and pressure 
distribution in the ear canal near the tympanic membrane. J. Acoust. 
Soc. Am. Supp~. 1, 12J S88. 

Stinson, M.R., Shaw, E.A.G. and Lawton, B.W. (1982). Estimation of 
acoustical energy reflectance at the eardrum from measurements of 
pressure distribution in the human ear canal, J. Acoust. Soc. Am. ~, 
766-773. 

Tonndorf, J. and Khanna, S.M. (1972). Tympanic membrane vibrations in human 
cadaver ears studied by time-averaged holography, J. Acoust. Soc. Am. 
52, 1221-1233. 

Zwislocki, J. (1962). Analysis of the Middle-Ear Function. Part I: Input 
Impedance, J. Acoust. Soc. Am. ~ 1514-1523. 



MODELING REVERSE MIDDLE EAR TRANSMISSION OF ACOUSTIC DISTORTION SIGNALS 

ABSTRACT 

John W. Matthews 

computer Systems Laboratory 
Washington University 

724 S. Euclid Ave. 
St. Louis, Missouri 63110, U.S.A. 

11 

In modeling the propagation of signals produced in the cochlea, the eiiects of 
the middle ear must be included. We present a linear two-port network model 
of the middle ear of cat with air cavities open. Effects of the eardrum, os
sicular chain, oval and round windows, and fluid in the vestibule are includ
ed. The two ports represented are: 1) the ear canal; and 2) the basal end of 
the cochlear spiral. The model parameters were selected to fit experimental 
data measuring various aspects of forward transmission only. However, we have 
used the model to reproduce acoustic distortion signals observed in the ear 
canal. Three significant findings are that: 1) The design of an acoustic 
coupler can have a large effect on signals measured in the ear canal; 2) The 
middle ear and acoustic coupler affect the reflection of distortion signals 
back into the cochlea and therefore affect distortion signals observed within 
the cochlea as well as in the ear canal; 3) The reverse transmission proper
ties of the middle ear circuit model are highly frequency dependent. 

1. INTRODUCTION 

Kemp's (1978) observation of acoustic emissions from the ear indicates that 

sound can propagate "backwards" through the middle ear into the ear canal. 

This paper deals with modeling the effects of the middle ear on the propaga

tion of distortion products generated within the cochlea. This middle ear 

modeling is part of a larger modeling effort (Matthews, 1980; Matthews et al., 

1981) whose objective is the consistent interpretation of intracochlear and 

aural acoustic distortion Signals observed in response to steady-state two

tone stimUli (Kim et al., 1980; Siegel et al., 1982; Kim, 1980). These inter

modulation distortion signals (e.g. 2f1-f2) are interpreted as being generated 

in the cochlea at a locus where both primary frequencies (f1 and f2) have 

strong response; the distortion signals then propagate within the cochlea both 

apically to the characteristic place of the distortion signal and basally to 

the stapes, through the middle ear, and into the ear canal. 

2. THE COMPREHENSIVE MODEL 

This section presents a "comprehensive" model which includes the effects of 

the stimulus delivery system, the middle ear, and the mechanics of the cochlea 

for cat (see Fig. 1). Since in this comprehensive model only the cochlea is 

nonlinear, any distortion signals must be generated within the cochlea. 

Distortion signals appearing at the eardrum must be propagated out of the 
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-- --+- --+-

E.L\RPHONE ,... 
ACOUSTIC -0- MIDDLE COCHLEA - ~ 

+ + + 
PE Pee Pc 
- - -DRIVER ,.... COUPLER EAR ~ (nonlinear) - ~ -

Fig. 1. Block diagram of a "comprehensive" model of the peripheral auditory 
system of cat and a stimulus delivery system. Pressure (P) and volume veloc
ity (U) are indicated at the earphone driver (E), ear canal near the eardrum 
(ec), and the most basal position of the cochlear spiral (C). Note that in 
this model only the cochlea is nonlinear. 

cochlea through the middle ear. On the other hand, the acoustic impedance of 

the driver, coupler and middle ear (as seen looking out of the cochlea) will 

determine the amount of reflection of these distortion signals back into the 

cochlea and thus will affect the total distortion signal within the cochlea. 

The models for the driver, coupler and middle ear will be electrical circuits 

and an acoustic-electric analogy will be maintained throughout the paper; this 

analogy is summarized in Table 1. These acoustic variables and units will be 

used throughout this paper, even in the middle ear model where mechanical 

variables (e.g., force and velocity) might be more natural. 

The driver and acoustic coupler models are those developed by Matthews (1980) 

to represent the physical devices used by Kim et al. (1980). The models are 

equivalent to a series RLC circuit connected to the "input" port of the middle 

ear model as far as their effect on signals produced in the cochlea is con

cerned. Element values for this RLC circuit are given in Fig. 4. 

Within the cochlear model, the fluid is represented by a two-dimensional, lin

ear, ideal fluid. The basilar membrane is represented by mass, stiffness, and 

damping functions of distance along the cochlear spiral. The damping of the 

basilar membrane is also a function of the velocity of the basilar membrane 

and this causes the cochlear model to be nonlinear (see Matthews, 1980). 

Variable Type Units Variable Type Units 

pressure dynelan 2 voltage volts 
volume velocity em3 I sec current amps 
acoustic compliance em 51dyne capaci tance farads 
acoustic mass gmlan'1 inductance henries 
acoustic damping dyne-seclan5 resistance ohms 
acoustic impedance dyne-seclan5 impedance ohms 

Table 1. Acoustical-Electrical analogy and units. These units are used 
throughout the paper. 



3. THE MIDDLE EAR MODEL 

Figure 2 shows a circuit model for the middle ear of cat with bulla and tym

panic air cavities widely open. This model modifies and extends the circuit 

Uee EARDRUM INCUS, STAPES. : Uc - AND ANNULAR LIGAMENT ~ 
MALLEUS AND VESTIBULE 

-------, 

, 
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~ I + MIDDLE EAR INCUDO- + 

! fEARDRUM\ 
PRESSURE MALLEOLAR 

Pee 
GAIN JOINT 

Pc 

ICOC~lEA I 
-

, 

-
I ROUND I 

: 
_____ J 

C· J 

WINDOWJ 

Ls Cd Raj Lv . U c 
~-i 

I 

+ 
Pc 

Crw 
~ ____ 4-__________ ~ __ ~ ______ ~~1 ------~-o----~ 

MIDDLE EAR MODEL 
Fig. 2. Circuit model for the middle ear of cat with air cavities open. 
Upper: block diagram; Lower: circuit. Pec is the pressure across the eardrum; 
Uec is the volume velocity into the eardrum. Pc is the pressure across the 
cochlear partition at the most basal position of the cochlear spiral; Uc is 
the volume velocity into scala vestibuli at this same position. Rc' Ro and Lo 
represent a model for the input impedance of cat cochlea and are not part of 
the middle ear model. The portion of the circuit to the right of Li is after 
Lynch et al. (1982). The values of the elements: Cds = 8 x 10-8 ; Rds = 1300; 
Lds = 0.054; Cdc = 3.5 x 10-7; Rdc = 55.2; Lam = 0.04; NT = 55; Cj = 1.2 x 
10-11 ; Li = 1.6; Ls = 3.3; Lv = 22; Cal = 3.7 x 10-10; Ral = 2 x 105 ; Rc = 1.2 
x 106 ; Ro = 2.8 x 105 ; Lo = 2250. 
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presented by Peake and Guinan (1967). The parameters Cds' Rds' and Lds repre

sent the compliance, damping and inertial effects of any motion of the eardrum 

that is not coupled to the malleus. Cdc' Rdc' and Ldm represent the compli

ance, damping and inertial effects of the coupled eardrum-malleus motion. T 

represents the pressure gain of the middle ear due to the lever action of 

malleus-incus motion and the difference in the effective areas of the eardrum 
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Fig. 3. Comparison of experimental data and response of the middle ear model. 
The data points are experimental data for cat plotted versus frequency (from 
various authors as cited in the figure). Magnitude in dB (upper) and phase in 
radians (lower) is shown in each part. Part (a): ratio of linear stapes dis
placement to linear malleus displacement; part (b): ratio of linear stapes 
displacement to pressure across the eardrum; part (c): acoustic input imped
ance at the eardrum; part (d): ratio of the pressure across the base of the 
cochlear partition to the pressure across the eardrum. The data in parts (a) 
to (c) were used in selecting element values for the model, but the data in 
part (d) were not used. 
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and the stapes footplate. Cj represents compliance in the incudo-malleolar 

joint. Li' Ls' and Lv represent inertial effects of the incus, stapes and 

fluid in the vestibule of the inner ear, respectively. Cal and Ral represent 

compliance and damping of the of the annular ligament around the footplate of 

the stapes. Crw represents compliance effects of the round window. Re, Re, 
and Lo represent a model of the input impedance of the cochlea of cat from 

Lynch et al. (1982). A mechanical middle ear model, equivalent to the circuit 

model shown here, is presented by Neely (1981). 

Figure 3 compares the response of the circuit model shown in Fig. 2 to various 

experimental data. The data in Fig. 3a, b, and c, but not those in Fig. 3d, 

were used in determining element values using methods similar to those used by 

Peake and Guinan (1967). Therefore, Fig. 3d shows an independent test of the 

middle ear model. 

All of the data in Fig. 3 are measures of forward transmission through the 

middle ear terminated by the cochlea. Figure 4 shows the response of the mid

dle ear circuit when driven "backwards" and terminated with a series RLC cir-

cuit representing the driver and coupler models. Figure 4a shows the magni

tude (dB re 1 acoustic ohm) and phase of the acoustic impedance looking out of 

the cochlea. For comparison the impedance looking into the cochlea for fre

quencies between 600 and 6000 Hz is approximately constant with a value of 

about 122 dB and zero phase (see Lynch et al., 1982; Matthews, 1980). Figure 

4b shows the "reverse pressure gain" of the middle ear circuit model. Both 

panels show the circuit response for three different ear canal terminations. 

4. ILLUSTRATION OF THE USE OF THE COMPREHENSIVE MODEL 

Figure 5 illustrates an application of the comprehensive model. A volume ve

locity containing only two frequencies, f1 and f 2 , varied together such that 

(2f1-f2) = 1550 HZ, was supplied by the earphone driver. The magnitudes and 

phases of f1 and f2 were selected such that their components in Pec were both 

65 dB SPL, zero cosine phase. The 1550 Hz components of both Pec and the bas

ilar membrane displacement at the 1550 Hz place were computed for the model. 

The basilar membrane displacement is plotted as the equivalent value of Pec 

for a 1550 Hz single tone necessary to produce the same displacement. The ear 

canal pressure results of the model show an overall similarity to Kim's (1980, 

Fig. 10) experimental data from cat, with an exception that the cat data show 

a prominent "lobing" while the model results do not. The basilar membrane 

displacement results of the model appear consistent with human psychophysical 

results by Zwicker (1980, Fig. 1 and 2). 
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5. DISCUSSION 

For the results shown in Fig. 5, the middle ear circuit accurately models both 

forward and reverse transmission. However, there are weaknesses in the middle 

ear mOdel. Most notable is the eardrum "shunt" represented by Rds' Cds and 

Lds • The acoustic impedance looking into the eardrum changes abruptly between 

3 and 4 kHz which is not reproduced by the model (see Fig. 3c). A more elabo

rate model for eardrum coupling (e.g. Shaw and Stinson, 1981) might improve 

the model in this regard. 

Distortion signals computed for the model's "ear canal" are particularly sen

sitive to both the form and parameter values of the coupler, driver, and 
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Fig. 4 . Reverse response of the middle ear model. TWo types of response of 
the middle ear circuit model are shown for a source at the cochlear port and 
three different passive terminations at the ear canal port. Part (a): the 
acoustic impedance looking out of the cochlea; part (b): the reverse pressure 
gain of the middle ear model. Magnitude in dB (upper) and phase in radians 
(lower) are shown. The solid lines are when the ear canal port of the circuit 
is terminated with the earphone driver and acoustic coupler models used by 
Matthews (1980). This is equivalent to a series RLC circuit with values: R = 
140; L = 0.0434; and C = 2.28 x 10-6 • The other curves show the effect of 
changing the driver/coupler model to have 10 times (dashed) or 0.1 times (dot
ted) the impedance of the Matthews model. 
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eardrum models. (This effect is shown for coupler-driver models in Fig 4b). 

Hence, different stimulus delivery systems could show very different distor

tion signals in the ear canal of the same animal because they "load" the audi

tory system differently. Even distortion propagation within the cochlea can 

be affected by the middle ear and stimulus delivery system through their ef

fect on cochlear "loading" (Fig. 4a). Therefore, it is important that atten

tion be given to the middle ear and stimulus delivery system when studying 

signals produced in the cochlea. 
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Fig. 5. Generation and propagation of distortion signals in the comprehensive 
model. The squares show the magnitude and phase of the 1550 Hz component of 
the ear canal pressure when the stimulus contained only f1 and f2' The cir
cles show the magnitude and phase of a measure of the 1550 Hz component of the 
cochlear partition displacement at the characteristic place for 1550 Hz. The 
measure plotted is the ear canal pressure of a single 1550 Hz tone necessary 
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The finite-element method allows one to model a structure as an assemblage of 
s1~le elements, using a digital computer. Its strong point is its ability to 
handle complexities, nonuniformities and irregularities such as abound in 
living systems. This paper discusses some recent developments in the use of 
this method to model the eardrum and related structures, including the 
generation of eardrum models with various mesh resolutions; their use in 
studying the system's natural frequencies and the effects of damping; and the 
creation of models of auditory structures other than the eardrum. 

1. GENERATION OF EARDRUM MODELS 

The mathematical models being discussed here are based on the 'finite-element 

method' • This is a method of analysis which has been used in engineering for 

a number of years. More recently it has been applied to biological problems. 

It is well suited to such problems because its strong point is its ability to 

handle complexities, nonuniformities and irregularities such as abound in 

living systems. The method handles a complicated system by dividing it into a 

large number of simple parts. Each part can be analyzed relatively easily, 

and its characteristics can be expressed with a small matrix equation. The 

interactions among the parts, and thus the over-all behaviour of the system, 

can then be calculated by assembling the small matrices into one large matrix 

equation suitable for solution by computer. 

My finite-element calculations are done using a modified version of SAP on the 

PDP-11/70 time-sharing system (MEDNET) of the BiOMedical Engineering Unit at 

McGill University. SAP is a powerful general-purpose finite-element programme 

that was developed at the University of California (Bathe, Wilson and 

Peterson, 1974) for large CDC and IBM computers. 

Until recently all of my finite-element meshes for the eardrum were generated 

manually. This made the generation of new meshes extremely tedious and prone 

to error, and made it impractical to attempt a study of the effects of varying 

the fineness of the mesh. The automated mesh-generation schemes usually used 

are not well suited to irregularly shaped biological structures, so I have 

developed a hierarchical modelling scheme for three-dimensional shallow shells 

with variable mesh resolution. This scheme uses automatic two-dimensional 



20 

finite-element mesh generation, and a specialized method for implementing the 

curvature of the eardrum (Funnell, 1983b). 

Using the above system I have examined the convergence of the drum model as 

the mesh resolution is increased. Using as a measure of resolution the 

nominal number of elements across the diameter of the structure, I varied the 

resolution from 6 to 15, my previous manually-generated model (Funnell and 

Laszlo, 1978) having been equivalent to about 8. Figure 1 shows some of the 

automatically generated meshes. I concluded that although the results at 8 

were of a precision comparable to other sources of error in the model, a 

resolution of 12 is a better compromise between precision and complexity 

(Funnell, 1983b). 

Fig. 1. Eardrum meshes generated for resolution parameters of 6~ 
9~ 12 and 15. See text for definition of resolution parameter. 
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2. NATURAL FREQUENCIES 

Using the models generated with the above method, an earlier study on the 

effects of parameter variations on the undamped natural frequencies and modes 

of the eardrum model (Funnell, 1980) was redone and extended (Funnell, 1983b). 

The parameters examined were (1) the angular stiffness and (2) the moment of 

inertia representing the ossicular load; (3) the material stiffness, (4) the 

mass density, and (5) the thickness of the eardrum itself; and two parameters 

representing the shape of the eardrum -- (6) the depth and (7) the curvature. 

fue effects of varying the first five parameters were relatively 

straightforward and qualitatively predictable: increasing stiffnesses raised 

the natural frequencies, increasing inertias lowered them, and the effects of 

the ossicular parameters were much less than those of the eardrum parameters. 

The effects of varying the three-dimensional shape were more complex, and seem 

to indicate that both the conical nature and the curvature of the drum may 

serve to broaden its frequency response (Fig. 2). 

3 

1 

o~----r---------~--------' 

1 2 4 
Radius of Curvature 

o 1 
Relative Depth 

2 

Fig. 2. Lowest six natural frequencies of eardrum model, as 
functions of (aJ radius of curvature and (b) relative depth. The 
fact that some of the lines cross indicates that the relative order 
of the different modes may change. The vertical lines indicate the 
'normal' values for the curvature and depth. 

3. DAMPING 

The natural frequencies discussed above were calculated in the absence of any 

damping. In order to be able to consider the amplitude of the eardrum's 
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response to arbitrary frequencies, rather just looking at its natural 

frequencies and mode shapes, it is necessary to include viscous effects, or 

damping, in the model. 

The SAP programme offers two alternative approaches to damping: either 

superposition of the undamped natural modes using one extra parameter 

(fraction of critical damping, taken to be the same for every mode); or direct 

time-domain integration using two damping parameters (Rayleigh damping). The 

superposition method is computationally cheaper if a reasonably small number 

of modes is adequate to represent the system response (Nelson and Greif, 1975, 

for example) but the fact that the natural frequencies of the eardrum model 

are quite closely spaced means that a fairly large number of modes must be 

included. 

I have done some preliminary calculations with the direct-integration 

approach, using the same eardrum mesh as in the natural-frequency 

calculations. The effective damping matrix [cl is given in terms of the mass 

and stiffness matrices as 

[cl 

where a 
o 

and a 
1 

are the two 

independent damping parameters that 

may be specified. It can be shown 

(Nelson and Greif, 1975) that the 

resultant damping ratio for the i-th 

mode, with angular frequency w. , is 
1. 

given by 

b. = (aO/wi + a 1wi )/2. 
1. 

In the calculations discussed below I 

have set a 
0 

0, and used values for 

a 1 of 10, 50 and 100 times 10-6 • 

Figure 3 shows the damping ratio as a 

function of frequency for these values 

of the damping parameters. Also noted 

are the frequencies of the first six 

undamped modes of the eardrum model. 

2 

2 4 
Frequency (kHz) 

Fig. 3. Damping ratio as a 
function of frequency for the 
three values of al used here. 
The vertical bars indicate the 
values of the first six natural 
frequencies. Note that the third 
and fourth bars overlap. 

6 

I have simulated the effect of applying a step function of torque to the 

rotational axis of the manubrium, and calculated the time response of the 

manubrium itself and of several points on the surface of the drum. The time 

responses were calculated in steps of 0.02 ms from 0 to 7 ms. Using NEXUS, a 
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general-purpose systems-and-signal-analysis package (Kearney and Hunter, 

1982), I differentiated these step responses to obtain the impulse responses, 

and then computed the Fourier transforms. 

Figure 4 shows the resulting frequency 

responses for one particular point on 

the eardrum for the different values 

of a. 
1 

It can be seen clearly that 

the multiple undamped modes of the 

system are smeared out by the damping. 

Note that these results are 

preliminary only: the computations 

have not been rigourously checked. 

The overall frequency response is also 

affected by the finite-element mesh 

and by the step-by-step integration 

procedure. 

A 81=0 . 00001 

[J 0 . 00005 

v 0 . 00010 
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Fig . 4. Frequency responses of 
a particular point on th~ 
eardrum, fo r three values of the 
damping parameter al ' 

It may become necessary to implement damping representations different from 

those currently used in SAP, and ultimately to use a more general 

frequency-dependent complex-modulus approach (Gupta, 1974; Soni and Bogner, 

1982) • Although practically nothing is known experimentally about material 

damping coefficients in the eardrum except for some low-frequency estimates by 

Decraemer (see Funnell and Laszlo, 1982), it will be useful to be able to 

estimate the effects of levels of damping that at least are consistent with 

what is known about viscoelastic behaviour in collagenous tissues. Middle-ear 

models with simplified lumped eardrum representations suggest that the damping 

in the eardrum is quite large (Shaw and Stinson, 1981), and there may be some 

methodological difficulties stemming from the fact that most engineering 

structural analyses concentrate on relatively low levels of damping, treated 

as perturbations of the undamped case. 

4. MODELS OF OTHER STRUCTURES 

We have in the past presented a finite-element model of the middle-ear 

ossicles, constructed on the basis of serial histological sections (Funnell 

and Phelan, 1981). More recently a student, V. Goel, has constructed simple 

models of the cat posterior incudal ligament and annular ligament. 
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Figure 5 shows the model of the 

incudal ligament. Preliminary 

simulations with SAP produced an 

estimate of 2300 dyn cm for the 

effective angular stiffness of the 

incudal ligament, to be compared to my 

previous estimate, based on a much 

more simplified geometry (Funnell and 

Laszlo, 1978) of 8500 dyn cm. 

This modelling will be pursued using a 

more complete series of histological 

sections: contours from this material 

will be digitized and used to create a 

much more accurate finite-element 

representation of the ossicular 

ligaments and muscles than has been 

possible before. 

Fig. 5. Finite-element model of 
the posterior incudal ligament. 
The three parts shown are, from 
left to right, the lateral 
portion of the ligament, the 
incus, and the medial portion of 
the ligament. 

The generation of element meshes for data from serial sections is extremely 

tedious if done manually. Several papers have been published recently 

describing approaches to three-dimensional mesh generation (Nguyen, 1982; and 

Perucchio, Ingraffea and Abel, 1982, among others), but none are very well 

suited to highly irregular three-dimensional objects. A number of methods 

have been described for triangulating irregular three-dimensional surfaces 

defined by contours from serial sections (Funnell, 1983a), but for modelling 

of the mechanics of the structures one must generate internal meshes for 

three-dimensional solids. 

discussed in section 

It is necessary to extend methods like that 

above, which generate triangular elements inside 

two-dimensional areas, to the generation of tetrahedral elements inside 

three-dimensional volumes. 
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BASILAR MEMBRANE PROPERTIES AND COCHLEAR RESPONSE 

C.R. Steele, J. Zais 

Stanford Univers'ity, Stanford CA. 94305 

ABSTRACT 

A WKB solution for a simplified analytical model of a guinea pig cochZea was 
used to imJes&igate the effect of basilar membrane (13M) mass and orthotropy on 
response. The eonclusi07i is Y'eaffiI'I7led that a physiological vaZue of 13M mass 
has little effect. The degree of orthotropy has no effect on peak location, but 
increases the subsequent decay of amplitude. The 13M stiffness is highly de
pendent on the microstructure, particularly the fiber density. With such ana
tomical detail the localization can be estimated which agrees with di.pect 
measurement. 

1. MODEL DESCRIPTION 

In the 3-D box model (Fig. la) the BM is represented as a hinged plate in the 

partition which separates the two fluid-filled chambers. The "plate" simulates 

the BM pectinate zone in Fig. lb, which seems to be the most significantelas-

tic element for the gross ("first filter") response of the actual cochlea. 

x SCALA TYMPANI 

Fig. 1. a} Straightened (one-mode) model of the cochlea. The 13M is 
modeled as a plate hinged to rigid shelves. b} Generalization of basal 
turn in high frequency cochleas. BMA basilar membrane arcuate zone; 
BMP basilar membrane pectinate zone (from Bruns (1979}). 

The geometrical properties (Table 1) are adapted from Fernandez (1952). various 

BM compliance distributions are shown in Fig. 2. As suggested in Steele and 

Taber (1981) a reasonable partition compliance is the curve C , which is 
c 

about equal to Bekesy's (1960) post mortem guinea pig measurements (denoted 
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by CB) in the apical region, and about 1/4 of those measurements in the 

basal region. Dancer and Franke (1980) estimate from direct in vivo measure-

ments that the volume compliance in the first turn is about 1/5 that of 

Bekesy's post mortem measurement. Of interest is the distribution CpL ' de-

duced from Bekesy's point load tests in humans, rescaled for the guinea pig. 

Table 1 

X!L b(~m) h(~m) 

0.0 60 15 
0.1 97 10 
0.2 115 6.8 
0.3 130 4.7 
0.4 140 3.8 
0.5 145 3.2 
0.6 150 2.9 
0.7 158 2.6 
0.8 165 2.2 
0.9 170 1.5 
1.0 175 1.0 

b = BMP width 
h = BMP thickness 
Ll = L2 0.8 mm 

L = 18 mm 
2 

Stapes area = 1 mm 
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Table 1. Geometrical properties of model adapted from guinea 
pig measurements of Fernandez (1952). 

Fig. 2. Compliance (volume displacement per unit length per unit 
of pressure difference) of cochlear partition: CB , the post mortem 
measurement of the guinea pig by B~k~sy (1960); CB/4 , may be closer 
to in vivo values, especially at basal end; CpL ' point load tests 
on human cochlea (B~k~sy (1960)) rescaled for the guinea pig; CC' 
compliance curve for Figs. 3-5. 

2. SOLUTION PROCEDURE 

The necessary equations for this type of model are contained in Steele and 

Taber (1979). The solution begins with calculating h , the equivalent fluid 
eq 

thickness resisting BM motion, which depends only on the model geometry, not 

BM characteristics. These values of h are then used to calculate the dis-
eq 

persion relation 
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(1) 

and related quantities at 11 stations along the cochlea for a set of wavenum-

bers. Cubic spline coefficients are computed for these quantities, so a solu-

tion can be found for any specified frequency. All calculations were performed 

on an HP-85 desktop computer, demonstrating the efficiency of the WKB scheme. 

The approximate computing times are: calculating h -15 
eq 

minutes; solving Eq.l 

and computing splines-IO minutes; solving traveling wave problem for given fre-

quency-3 minutes. 

3. RESULTS 

Figure 3 shows the dispersion relation as it appears at two locations along the 

BM. The wave number A is multiplied by the cross section height L2 ' and 

the frequencies are given as a fraction of the plate cut-off frequency at the 

base (here about 60kHz). The three cases studied are characterized by k, the 
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Fig. 3. Plot of dispersion relation at two locations along the 
cochlea for cases: A • orthotropic BM (k=O); B • isotropic BM 
(k=l); C • orthotropic BM with zero mass; all for compliance 
Cc in Fig. 2. 
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ratio of longitudinal to transverse stiffness: A) an orthotropic plate (k=O); 

B) an isotropic plate (k=l); C) k=O , but with a massless plate. Lighthill 

(1981) argues that the dispersion plot most have continually decreasing slope 

if the model is to describe cochlear function, and therefore must have both 

k=O and a nonzero plate mass, i.e. case A The actual BM response is 

plotted in Fig. 4 for a frequency of 4 kHz. It can be noted that the response 

in all three cases is essentially identical until past the peak. Then, case 

A dropps off most rapidly. The massless plate, case C, has only a slightly 

lower decay rate, while the isotropic plate, case B, has the greatest. 

Similar behavior can be found in Fig. 5, the plot of phase vs. distance. Again 

cases A and C agree well, while B differs only slightly. If the compliance 

is held constant while the BM is considered a clamped, instead of hinged, 

plate, the differences for cases A-C are similar in character, though not as 

pronounced. 

The results obtained here agree with those Steele and Taber (1979) found ana-

lyzing the experimental models of Cannell and Helle. For frequencies in the 

physiological range, AL2 is about 3 at the point of maximum response. For 

lower wavenumbers, the dispersion curves for each of cases A, B, and Care 

very similar, so it is not surprising that the responses are also similar. At 

the point where the signals have decayed to 0 dB ,AL2 is about 25. For lar

ger values the dispersion relations deviate substantially (Fig. 3). 

4. ESTIMATE FOR LOCALIZATION 

Though the solution of the cochlear model works rather well, the location of 

the point of maximum response is difficult to judge without carrying out the 

numerical details. In Steele (1974) a cochlear "model 0" is discussed, which 

consists of the BM as one of many hinged, tapered strips of an infinite, 

massless plate immersed in an infinite fluid. For a given frequency, short 

wavelengths occur at points beyond the "transition point" X which can be 
tp 
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Fig. 4. BM displacement for cases A, Band C. Results are 
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defined in terms of the volume compliance there as 

5 
rr 2 

2pw 
l20C(x ) 

tp 

Comparison with Eq. 1 shows that X occurs at the point at which 

h /b = l/rr 
eq 

(2) 

(3) 

At this point, the fluid inertia h is near the short wavelength asymptote, 
eq 

h l/A 
eq 

Since the damping of the traveling wave becomes severe as the wavelength 

becomes short, the amplitude is roughly 20 dB down from the peak at X 
tp 

In the guinea pig cochlea for X = 4.1 
tp 

mm , the compliance C=CB/4=0.15mm4/N 

gives the frequency f=15kHz, which by coincidence is close to the tuning for 

the neural fibers at that point. For BM fibers with E = 2l0N/mm2 and fiber 

-10 2 
area Af=lO mm, we find 

C 

so that 

f 

where b 

5 2 
8.lb /(h NfY) 

and h are in mm, f 

Nf is the number of fibers per mm 

(4) 

(5) 

is in kHz , C has the units 
4 

mm /N , and 

The parameter Y is 1,3 or 6 for hinged, 

constrained, or clamped edges, respectively. The values from various anatomi-

cal studies (Tiedemann (1970), Bruns (1976), Cabezudo (1978), Fernandez (1952), 

and Ehret and Frankenreiter (1977) produce the results in Fig. 6. Details for 

the filament density Nf are available only for the cat, so this density was 

assumed for the other cochleas. The width of BMP was assumed to be twice 

that of BMA. 

The correlation of Eq. 5 with the curves for localization obtained by a variety 

of direct measurements (Bruns (1979), Ehret (1978), Iurato (1962), Wilson and 

Evans (1977) is excellent for cat, guinea pig, and mouse, while the low-

frequency water buffalo might be expected to be similar to the human. 
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Fig. 6. Localization of 
frequency on the basilar 
membrane. So lid lines show 
the calculation of the tran
sition point, assuming that 
the BMP is the only flexible 
element. Dashed lines in
dicate results of direct 
evidence as given in: Rf 
bat-Bruns (1976), human
Bekesy (1960), cat-Wilson 
and Evans (1977), guinea 
pig-Wilson and Johnstone 
(1975), mouse-Ehret (1978). 
The cat fiber density was 
used for all. For the Rf 
bat, the BMF in the basal 
4 mm would flex at 300 kHz; 
however, the peculiar SSL 
resonates at 83 kHz . 

Consistent with the anatomy, hinged edges were assumed for the bat, cat and 

mouse, while constrained edges were assumed for the guinea pig with less pro-

nounced thinning at the edges of BMP. Compared to the measurement CB in 

the guinea pig cochlea, Eq. 5 gives about the same in the apical region, and 

about 25% of in the basal region, which is consistent with the measure-

ments of Dancer and Franke (1980). The curve in Fig. 6 for the water buffalo 

may be about right, since it is for hinged edges (too flexible) and for the 

cat (probably too stiff). 

The tentative conclusions are: 

(1) BM Compliance can be computed from measurements of the dimensions 

and microstructure. The fiber density is significant. 

(2) Localization of excitation according to frequency depends primarily 

on BMP compliance. 
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Three-dimensional hydrodynamical models of the mammalian cochlea are studied. 
The cochlea is considered as a rectangular long rigid tube, divided into longi
tudinal canals by either one or two visco-elastic anisotropic plates. One par
tition is fixed between two rigid slabs and represents the basilar membrane. 
The second plate can represent either Reissner's membrane (if its edges are 
fixed) or the tectorial membrane (if one of its edges remains free). The sol
utions of the models are obtained using Whitham's modification of the WKB 
method. Calculations on both the two-chambered and the three-chambered model 
are presented. 

1. INTRODUCTION - FORMULATION OF THE PROBLEM 

The WKB method is known to be an effective way of theoretical investigation of 

cochlear mechanics (Steele, 1974a; Steele and Taber, 1979; Babi~ and Novoselov~ 

1979; Viergever, 1980). In the present paper we apply the WKB approximation to 

two- and three-chambered models of the cochlea. 
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Fig. 1. Cross-sections of the 
cochlea models: (a) two-chambered 
model, (b) three-chambered model 
with Reissner's membrane (left) and 
with tectorial membrane (right). 
V = scala vestibuli, 
M = scala media, 
T = scala tympani. 

The cochlea models to be considered have a rectangular cross-section, divided 

into two or three chambers by flexible partitions (Fig. 1). The motion of the 

liquids in the canals can be described by the hydrodynamical equations 

-+ av 
at = 

-+ 

1 -+ 
grad P + vtN, p 

div(PV) = 0, 

( 1) 

(2) 

where p and V denote the fluid density and viscosity, and V is the velocity of 

the liquid particles. The boundary conditions on the rigid walls are: 

ap 
ay = 0 at y = O,L ( 3) 
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The normal components of the fluid velocity are continuous across the flexible 
+ 

boundaries. When P and P are the pressures just above and below a partition, 

we have 

(4) 

Moreover, we can formulate a relation between the trans-partition pressure 

P p+ and the partition displacement. We represent the partitions by aniso

tropic plates. The vibration of either partition may then be described by the 

equation 

L(W) 
a 2 a 2w a 2 a 2w a Z a 2w 

) (0 (x,y)-)+ (01 (x,y)-) + -- (0 1 (x,y)- + 
axz x ax2 axz ay2 ay2 ax2 

(5) 

+ 4 
a 2 

(0 
a 2w 

) 
a 2 a 2w a 2w + 

+ (0 (x,y)--)+ ]l(x,y)-- = P - P , 
axay 

xy 
axay ay2 y ay2 at2 

where 0x,Oy,Ol'Oxy are the components of the anisotropic stiffness, W(x,y) 

denotes the partition normal displacement, and ]l is the surface density of the 

partition. 

The thus formulated boundary value problem (1) - (5) is conveniently solved 

by means of the WKB approximation. 

2. APPROXIMATE SOLUTIONS 

The coefficients in Eq. (5) vary relatively slowly with x (that is, they change 

little within one wavelength). We therefore introduce the 'slow abscissa' 

Xl = sx, where S is a small parameter. Upon substitution of x 1/S for x in Eq. 

(5) we obtain 

S4(~ (0 
a 2w 

) ) 2 {a 2 (0 a 2w) a 2 
(0 1 

a 2w 
) + 4 

a 2 
(0 ~)}+ + S -- + --

ax2 x 
ax2 ax2 1ay2 ay2 2 aX1 ay xy aX1 ay 

1 1 1 
aX1 

a Z 
(0 

a 2w a 2w + 
+ -) + ]l P P , 0 Ox (Xl ,y) ... (6) ayZ y ayZ atZ x 

The WKB solution for the two-chambered model now has the form (Steele and 

Taber, 1979; Babic and Novoselova, 1979): 

(7) 

e 0, 



where Pv and PT are the pressures in scala vestibuli and scala tympani, re

spectively, and ~ is the wave number. 
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For the three-chambered model, a supplementary parameter r is needed to satisfy 

the boundary condition (4) at the two partitions. The solution then becomes 

(PM is the pressure in scala media) : 

e i8 t P' JTIy L s~nh(~JH2)cosh(~J(r-HM))cosh(~J(Hl-z))cos ~ 
J=O,l .. J 

e i8 I PJsinh(~ (H1-H ))sinh(~ h2)sinh(~ (r-z))cos JTIy 
J=O , 1 . • J M J J L 

(8) 

_e i8 I PJsinh(~ (H1-H ))cosh(~ r)cosh(~ (H2+Z))cos JTIy 
J=O, 1 . . J M J J L 

The parameter r has a simple physical meaning in case of non-viscous media. 

At the surface z = r the pressure PM is equal to zero and its gradient is 

directed along the z-axis. 

3. DISSIPATION 

Following Viergever (1978), we suppose the partitions to be visco-elastic 

structures. Their anisotropic stiffness then consists of statical and dynamical 

components: 

D 
Y 

D 
Y 

h 3 
+ iwR 

V 12 
D 

x 
(9) 

where D andD denote the statical stiffnesses, h is the thickness of the 
x y 

partition and RV is some viscous parameter. Perilymph and endolymph have a low 

viscosity (V = 0.01 cm2 /sec) so we may take into account only the boundary 

layer friction. As soon as the acoustical energy condenses near the elastic 

walls in the acoustical wave-guides, we may neglect the friction at the rigid 

walls. 

Following Inselberg (1978), we introduce supplementary bending moments ~M , ~M , 
x Y 

caused by the boundary-layer friction forces: 

~M 
x 

~M 
Y 

(10) 

The tangential velocity in an oscillating boundary layer depends on the vel

ocity at infinity as 

v = V (1 _ -z/o) 
co e , 

iV 
w 

d~M 
Introduction of the partial derivatives ___ x_ 

dX 

(11) 

d~ 

dYY into Eq. (5) [or Eq. (6) ] 
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yields, with the aid of Eq. (3) 

- + 
L (W) _ pVh (~-~) = P 

20 dZ dZ 
+ - P . 

4. SIMPLIFICATION OF THE PARTITION CONDITIONS 

( 12) 

We suppose that the partitions have only one transverse mode of displacement. 

Hence we write 

ie 
W = e wll (y) ( 13) 

for each partition velocity W(x,y). For the basilar membrane (BM) and Reissner's 

membrane (RM), which have fixed edges, an appropriate form of the shape 

function is 

for hinged edges, 

II (y) ( 14) 
for clampea egdes, 

where b is the membrane width. The tectorial membrane (TM) is represented by a 

plate with one hinged and one free edge. The corresponding shape function is 

II (y) = sin ( kb) sinh (ky) + sinh ( kb ) sin (ky) , (15) 

where k is the smallest positive root of 

tan (kb) = tanh (kb) . (16) 

The expressions (8) are rewritten in the form 

Pv 
ie I PJV 

J'1TY e cosh(s (H 1-Z))COS---
J=O,l .. 

J L 

PM e ie I P sinh(sJ(r-z)) cos J'1TY 

J=O,l .. 
JM L 

( 17) 

P e ie I P cosh(sJ(H 2+Z))cos J'ITY 
T 

J=O,l .. 
JT L 

Adapting the technique of Steele and Taber (1979), we express the coefficients 

PJV ' PJM ' PJT in terms of the partition modes: 

2 J- 2 

P 
pw AJ1w1 pw AJ1w1 

JV 
sJsinh(sJ(Hl-HM))OJ sJcosh(sJ(r-HM))OJ 

PJM ( 18) 

2 I 2 
pw AJ2w2 pw AJ2w2 

P =-

l-JT 
S J sinh (s JH2 ) 0 J s Jcosh (s J r ) 0 J 
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Here, the subscripts 1 and 2 denote the partition number (see Fig. lb), and 

if J = 0, 

AJin dy , (19) 

if J > 0, m = 1,2 

Substitution of the expressions (18) and (17) into Eq. (12) yields as boundary 

condition at the partitions 

ie 
F = L (e n(y»-

e ie L 0, 
J=O, 1 •• 

where 
G= f for 

~M-r for RM or TM, 

(20) 
BM, 

H 

Equation (20) is simplified by applying the method of softening of the boundary 

conditions. We equate to zero only the first coefficient of the eigenfunction 

expansion of the function F. This gives, if stiffness and density do not depend 

on y, 

-
=~ 

kb for TM, 
where R 

'IT for BM or 
\-

Y +b 
1 0 2 

Tl b f n dy, 

YO 

RM, 

T2 

YO+b 

f (n,,)2 dy, 

YO 

YO+b 

1 f n"ndy. 

k 2 b YO 

(21 ) 

The wavenumber ~and the parameter r can be calculated from these equations, 

e.g. by means of Newton iteration. 

5. AVERAGED LAGRANGIAN 

The evaluation of the amplitude coefficients Wi and w2 is based on the averaged 

Lagrangian method, which was applied by Steele and Taber (1979) for a two

chambered model. For the system with three canals and two partitions, the time

averaged Lagrangian density is 



42 

L 
2 2 

L{~ 
m=l 

D 
x 

m = 1,2. 

(22) 

The corresponding Euler equations are 

aL 
aWl = 0, d (aL) = o. 

dx a!; 
(23) 

The equations aL/awm 0 are equivalent with equation (21) in the absence of 

dissipation. The third equation of (23) and formulae (18) give the possibility 

to determine the amplitudes wm. 

6. RESULTS 

In our earlier paper (1979) we did not calculate the amplitude coefficients, 

and the cochlear width was taken equal to the BM width. The present more 

accurate model has less steep slopes and its maxima are lower (Fig. 2). 

Q) PI 

'd ,~ ;:s 
+> .... JO 
,..j i Zo 

10 

....... 0 

~ 0 .... 
'd 4 a:J 
J.4 ....., -If(. 

<II 'M' ~ -
.rl -W' 
Po • 

"" 

distance from basal end 

Fig. 2. EM/stapes transfer ratio of the two
chambered model. Continuous lines denote EM 
responses to stimuli of 18,9,3,1 kHz. Para-
meter values: 1 
D = D = 0.35 x exp(-x x 0.127 mm- )dn x em; 

y y 
D = O.OOlxD . v = 100 cm2/sec; R = 0; 
x y' -1 v 

b = O.13x exp(xx 0.0438 mm )mm;_l 
Hl = H2 = 1.58 x exp(-xx 0.025 mm )mm; 

-1 2 
~ = O. 0316 x exp ( x x O. 01 mm ) g / cm . 
The dashed response was calculated with 
parameter values corresponding to the three
chambered variant, for an input frequency 
of 2 kHz. 

computations on the three-chambered models showed that the iteration process con

verges only if the parameter r is close enough to half the distance between the 

partitions. So, jointly with the boundary conditions at the edge of the two par

titions, the stiffness of one plate practically determines the stiffness of the 

other plate. Therefore we conclude RM to be anisotropic. This anisotropy is con

sistent with the membrane's small curvature as discussed by Steele (1974b). 
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Fig. 3. Responses of the RM-BM three
chambered model. Input frequencies are 
18,8,4 and 2 kHz. Continuous lines: BM 
responses, broken lines: RM responses, 
for c larrrped BM and RM edges. 
Dashed lines: response to a 2 kHz stimulus 
for hinged BM edges. 
Parameter values (derived from Wever, 1949; 
Borsboom, Kalker, Viergever, 1980; 
Novoselova, 1978; Lim, 1980): 

-1 b2= 0.13 x exp(xxD.0438 mm )mm, 
-1 b1= L= H= 1.58x exp(-xx 0.025 mm )mm, 

R = 0.5 g/cm/sec, 
A -1 
D 2 = 0.0175 x exp(-xxO.07 mm )dnxcm, 

y -1 
h2 = 27.0x exp(xxO.028 mm )]..1171. 

Fitted parameter values: 
A -1 
D 1= 4640xexp(-xx 0.45 mm )dn x cm; 
A Y A 
D = O.OOlxD . v = v = 10 cm2/sec' 
x Y' 1 2 ' 

h1 = h2; HM = 0.3 mm. 

Fig. 4. Membrane/stapes transfer ratio of the 
TM-BM three-chambered model. 
Curve 1: TM response at Y = YO+b1. 

Curve 2: BM response at the same position. 
Curve 3: coincident response of BM and TM at 
Y = Yo+b 1/2. (Yo is the position of the left 

edges of BM and TM along the y-axis; b1, the 

TM lengt~equals half the BM width in this 
model) . 
Parameter values: input frequency 2 kHz, 
distance between membranes 5 ]..1171, 

-1 
Dy2 = 5.68 X 10 4 x exp(-x x 0.07 mm )dn x cm. 

Other parameters as in RM-TM model. 

Fig. 5. Development of the travelling 
wave in the TM-BM three-chambered model 
along the line y = Yo + b1· 

Curves 1 and 2 represent the instan
taneous displacement of TM and BM. The 
crossed line shows the altering of dis
tance between the men~ranes. Parameters 
as in Fig. 4. 

from ba:::o.1 end 
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Responses of the model where the upper partition represents RM are shown in 

Fig. 3. 

If we decrease the thickness of RM and the viscosity near its surface, the 

maximum of the RM response moves relatively to the BM maximum. The form of 

both tuning curves deteriorates, and double maxima and gaps arise. 

Figures 4 and 5 show responses of the model with the upper partition represen

ting the TM. It is remarkable that the TM does not move in the same phase along 

its length. This is due to the smallest positive root of Eq. (16) being larger 

than 7r (:::: 3.9). If we put b 1 = b 2/2, and the left edges Y01 and Y02 of the 

partitions are located at Yo' then the line y = yO + b 1/2 moves in the same 

direction as the BM, whereas the line y = YO+b 1 moves in the opposite direction 

(Fig. 5). 
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ABSTRACT 

PSEUDO-RESONANCE IN THE COCHLEA 

M. Holmes, J.D. Cole 

Rensselaer Polytechnic Institute 
Troy, New York USA 

A general two-variable approach to the coupled hydroelastic problem of an 
idealized cochlea is carried out. The basic small parameter is the 
slenderness of the cochlea. A typical non-linear eigenvalue problem in the 
transverse cross-section plane results for the phase-function. The slow 
amplitude and phase variation are obtained analytically. Viscous effects 
produce traveling waves and a sharp cut-off. 

1. INTRODUCTION 

It is felt that a simple geometrical model of the cochlea should be adequate 

for describing its mechanical operation. The essential physical features of 

incompressible viscous fluid flow and an elastic basilar membrane coupled to 

it must, however, be included. The general hydroelastic problem is too 

difficult to be solved analytically or even numerically at present. The 
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basic approach followed here is to exploit the slenderness of the cochlea to 

construct an asymptotic theory. In this way the problem is reduced to the 

solution of a mathematical problem in a cross-plane. The general approach 

is related to that of Steele (1981) and follows in detail that of Chadwick 

(1980). The theory exhibits traveling waves between the stapes and a 

(pseudo) resonant point with a rather sharp cut-off. 

2. LINEAR HYDROEL&STIC PROBLEM 

We consider the cochlea to consist of an unrolled tapered tube containing two 

chambers ti1at are each filled with an incompressible viscous fluid. The 

planar surface separating the chambers has a rigid section (representing the 

bony shelf) and a flexible portion (the basilar membrane). For simplicity 

the cochlear wall is assumed to be symmetric through this plane. Thus, in 
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z 

x 

Helicotrema 

Cochlear wall 

Fig. 1. Geometry and notation for three dimensional 
hydroelastic model of the cochlea. 

studying the response to a pure tone it is only necessary to consider the 

motion in the upper half of the system. 

To describe the dynamical motion in the cochlea we assume the basilar mem-

brane to be an orthotropic elastic plate and the fluid to be Newtonian. The 

linearized theory of hydro dynamics and elasticity then can be used as the 

amplitudes are relatively small over a large part of the audible range. Also, 

since frequencies are greater than 25 Hz, boundary layer theory can be ap-

plied to the fluid problem. Therefore, in nondimensional form, the equations 

of motion for the response to a pure tone (eit ) signal are: 

i) for the fluid pressure p(x,y,z) 

o (1a) 

ii) for the basilar membrane deflection n(x,y) 

(1b) 



The parameters are 

E - B -r; and 

where B,L are the width, length of the basilar membrane, respectively, and 
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rI is the driving frequency. Also, ric is a characteris tic resonant frequency 

of the plate and is gi ven as 

rI 2 D * c7 

where D2* is the bending rigidity of the plate in the y-direction and ~ is 

the density of the plate. Finally, D1 and D3 are the respective constant 

bending and twisting rigidities normalized by D2*' 

The normalized boundary condition for the pressure is 

on the BM 
(2) 

on rigid wall 

where n is the unit outward normal, a pB/~ 

13 ~ iB~rI I , 

and p, v are the density and kinematic viscosity of the fluid. As for the 

plate, it is assumed to be simply supported along its boundary. 

It has been pointed out by Dotson (1974) that it may be more appropriate to 

use a simply supported condition along the spiral ligament, where y = G_(x), 

and a clamped condition along the spiral lamina, where y = G+(x). If these 

boundary conditions are used there is little qualitative change in the 

analysis to follow. The simply supported assumption is made primarily to 

facilitate the discussion. It should also be stressed that due to the 

variable geometry, the normal in (2) depends on the spatial coordinates and, 

consequently, on the parameter E. The constant 13 in (2) represents the 
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viscous contribution to what is essentially the inviscid problem for the 

pressure. Since it is complex valued it plays a fundamental role in the 

attenuation of the wave-like solution that is obtained from (1). 

3. SLENDER BODY APPROXIMATION 

For the human cochlea, B - 0.5 mm and L - 3.5 cm which means that £ - 10- 2• 

We can take advantage of this by introducing asymptotic expansions in terms 

of the small parameter £. In doing this one finds that the appropriate 

expansions are of the WKB or two-variable form 

i0(x) 
p - £ e--r:- [Po(x,y,z) + Ep1 + ••• J 

i0(x) 
Tl - £ e £ [flO(X,y) + £Tl1 + ••• J • 

(4a) 

(4b) 

Substituting these into (1) and (2) it is found that 

where 

on BM 

on rigid wall 

and along the boundary of the BM, flo = ay2 Tlo = o. 

(Sa) 

(5b) 

(6) 

In (6), n represents the 
T 

unit outward normal in the transverse cross-section. 

Given a reasonably simple geometry one can solve this problem for Po' Tlo, and 

6x 2 • However, it does not determine how Po and Tlo vary with the longitudinal 

variable x, and to determine this it is necessary to consider the 0(£2) 

problem one obtains from substituting (5) into (1). For the case of S small 

one finds that this leads to the following solvability condition on Po and Tlo 



(7) 

where Co is a constant determined from the boundary condition at x o. The 

condition at x = 1 is not of concern since the wave is damped out 

exponentially before reaching the distal end for frequencies higher than 

several hundred Hz. 

4. SMALL 13 APPROXIMATION 

with (7) the problem for the first term expansion for small £ is complete. 

It consists of solving a nonlinear eigenvalue problem (5,6) in each trans-

verse cross-section. After this the slow modulation is determined from (7). 

Although there are methods to solve this problem, the fact that it is 

essentially nonlinear complicates the analysis considerably. It can be 

simplified somewhat, as is done below, by reintroducing the boundary layer 

approximation used to obtain (2). 

Recalling that for the audible spectrum 13 < < 1 then 

0x(x) ~ ko(x) + 13k 1 (x) • (8) 

From (5,6), to the first order in 13, we obtain the inviscid cross-plane 

problem 

and 

do Po 
T 

(ga) 

(9b) 

-ano on BM 
( 10) 

o on rigid wall 

The viscous correction to ko in (8) is found from the 0(13) problem that 

comes from (5,6) and is given as 

49 



50 

( 11) 

Thus, one only needs to solve the somewhat simpler real eigenvalue problem 

(9,10), then determine the viscous correction to the phase function from 

( 11) • 

5. SOLUTION OF NONLINEAR EIGENVALUE PROBLEM 

There are a number of ways to solve (9,10) for the first term expansions of 

the fluid pressure and plate displacement. For example, one coulo use 

numerical methods, Green's functions, or modal expansions. Each has its 

restrictions as well as its advantages. To illustrate one method consider 

the special idealized case of a rectangular cross-section as shown in 

Fig. 2. 

H(;tJ Z 
I 

Fig. 2. Transverse cross-section used for modal expansion. 

Separating variables in (9a) and substituting the result into (9b) one finds 

that 

00 G+ 
( ay4 _ 2D3ko2al + D1 ko4 - w2)no I am cOSYm y fG no cOSYmS ds (12 ) 

m=O 

where 

1/2H m = 0 

a 2 CtW2cm coth A H cm 
m A m 1/H m =I: 0 m 

\n2 Ym 2 + k o2 Ym = mll 
11 
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The nonlinear dependence on k 0 2 is clearly seen in this result and to 

handle it we also expand no in modes as follows 

From this and (12) one obtains the following algebraic problem for k 0 2 and b£ 

where 

K 
mn 

2 
G 
f + 

G 

cos • cos A (y - G )dy 
n 

( 13) 

Although there are an infinite number of equations for the b£'s in (13), the 

first few terms should serve as a reasonable approximation to the solution. 

From this the complete solution is found by determining kl in (11) and by 

also satisfying (7). 

6. NUMERICAL EXAMPLE 

As an example of the above analysis we now consider the specific case 

B = 0.05 cm, L = 3.5 cm, v = 0.008 cm/sec, p = 1.0 gm/cm2, and 

Eh3 

where 

E = 4 x 106 dyn/cm 2 , h = 1.05 x 10- 3 cm , and a = 0.5 

Also it is assumed that the plate is highly orthotropic so 

Dl D3 0 , H 1.5 , and G+ -G_ G(x) where 

G(x) 1 (5x + 1) 0 < x < 1 . 
TZ 

The result for the case of £ = 1 and m = 5 in ( 13) is shown in Fig. 3, 

where we have taken x = 0.5. It is clear from this preliminary calculation 
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that the tuning is relatively sharp. 

In general, if ko is real then waves exist; if ko is imaginary the solution 

damps (or grows) exponentially. The effect of viscosity in k, causes the 

standing waves of the zero viscosity solutions to become traveling waves, and 

also damps highly the short waves near the pseudo-resonant point. 

X=O.5 

8~------4----4---r-4~-4-+~r-------r-~-r--t--r-r~~t1 
d 23456789 3456789 
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One of the major problems in cochlear mechanics has been the incapability of 
cochlea models to provide a simultaneous match to amplitude and phase data of 
basilar membrane (BM) vibration. Negative results were reported by Allen and 
Sondhi (1979), Viergever (1980), and Neely (1981), all using a two-dimensional 
(2D) cochlea model. Steele and Taber (1981) on the other hand found fair agree
ment between their 3D model calculations and Wilson and Johnstone's (1975) BM 
data, which is puzzling since the model parameters were in the range where 2D 
and 3D responses do not differ significantly. 
The apparent contradiction is mainly due to an incorrect interpretation of 2D 
model results. The 'BM velocity' in the customary 2D model is the average of 
the partition velocity over the channel width rather than the average over the 
membrane width or the velocity of the BM centreline. The BM/stapes amplitude 
ratio has, consequently, been underestimated by 10-30 dB inmost 2D model cal
culations. By using the correct definition we have reached good agreement be
tween measurement results (Rhode 1971; Johnstone and Yates 1974) and 2D model 
results as regards both amplitude and phase. 

1. INTRODUCTION - STATEMENT OF THE PROBLEM 

Although the focus of mathematical modelling of cochlear mechanics has recently 

shifted towards nonlinear and active processes, the behaviour of linear, passive 

models is not yet fully understood. For the past few years the two main problems 

have been (i) the phenomenon of wave reflection, or rather the almost complete 

absence of it, and (ii) the insufficient quantitative agreement of model calcu

lations and experimental data of basilar membrane (BM) vibration. These problems 

now approach their solution. The absence of wave reflection in passive cochlea 

models is amply discussed in two forthcoming articles (De Boer, 1983; De Boer 

and Viergever, 1983),while the present paper deals with the comparison of model 

results and measurement results. 

The validation of macromechanical (linear and passive) cochlea models against 

experimental observations of BM motion has shown that the models are quite 

acceptable in a qualitative sense, but are susceptible of improvement in a 

quantitative sense. In particular, it has appeared to be possible to match 

either the amplitude or the phase of the BM/stapes transfer ratio, but not both 

simultaneously, i.e. with one set of parameters. This conclusion has been reach-

ed by Allen and Sondhi (1979) and Neely (1981) on the basis of Rhode's (1971) 

squirrel monkey data, and by Viergever (1980) on the basis of guinea pig data 



54 

recorded by B.M. Johnstone and Yates (1974) and by Wilson and J.R. Johnstone 

(1972, 1975). The cochlea model used by all authors was two-dimensional (2D). 

In contrast with these findings, Steele and Taber (1981) did report good agree

ment between their model results and Wilson and Johnstone's (1975) measurement 

results. They used a 3D model in their calculations. The obvious explanation 

of the discrepancy with the 2D model studies would be that a 3D model is signi

ficantly more accurate in simulating the BM response than a 2D model. This is 

not true, however. The fluid pressure in a 3D model depends strongly on the 

transverse coordinate, so fluid motion is fully three-dimensional. Nevertheless, 

2D and 3D models agree to a large extent as regards BM motion (Steele and Taber, 

1979b). Hence, the discrepancy must have another origin. 

We discovered the reason for the failure of the 2D calculations when we com

pared 1D, 2D and 3D responses of cochlear models (Viergever and Diependaal, 

1983). Each 2D model is, in a more or less explicit manner, derived from a 3D 

geometry by omitting fluid pressure variations in the direction lateral to the 

BM. This implies that the pressure in a 2D model is an average of the actual 

(3D) pressure over the channel width. Consequently, by applying the relation 

p = ZV, where P is the 2D transmembrane pressure and Z is the BM impedance, a 

velocity V is obtained which is not a BM velocity, but the average over the 

channel width of the velocity of the cochlear partition. Since the partition 

velocity is identical to zero except for the part covered by the BM, this pro

cedure underestimates the model response by a factor of b/S, the ratio of 

channel width to BM width, if the average of the BM velocity over its width is 

the desired output, or by a factor of TIb/2S if one is interested in the velo

city of the BM centreline. Allen and Sondhi (1979), Viergever (1980), and 

Neely (1981) did not take this effect into account, which is why their 2D cal

culations could not be brought in agreement with experimental observations. 

The aim of the present study is to demonstrate that a good match to the BM 

vibration data used in the mentioned 2D model studies can be accomplished as 

regards both amplitude and phase. Our starting point is a 3D box model of the 

cochlea, for which an approximate 2D response is formulated based on the 

Liouville-Green (LG) method. We have opted for a 2D solution (instead of a 3D 

one) because the LG approximation is less trustworthy in the 3D case (De Boer 

and Viergever, 1982). The model results are matched to data of Johnstone and 

Yates (1974) and Rhode (1971) by means of a curve fitting procedure with a 

limited number of free parameters. The results justify the conclusion that the 

type of cochlear model considered (i.e., linear and passive) adequately de

scribes the selected experimental fi~dings. 



2. LIST OF SYMBOLS 

x,y,z 
b,h,l 
S (x) 

w 
p 
(J 

H(x) 
D(x) 
Dl (x), D2 (x) 

Z(x) 

M(x), R(x), Sex) 
vex) 

k(x) 
Q(k) 
j 

xobs 

z=h 

z=o 

z=-h 

~: 

y=o y:b 

coordinates of the cochlea model, see Fig. 1 
width, height, length of a chamber of the model 
EM width 
radian frequency of the stapes motion 
fluid density 
density of the EM material 
thickness of EM plus attached cells 
flexural rigidity of the visco-elastic beams 
components of D(x) 

specific acoustic impedance of the EM 
mass, resistance, stiffness of the EM per unit area 
velocity of the EM centreline normalized to the stapes 
velocity 
wave number of the EM velocity wave 
geometry function 
imaginary unity 
point of observation 
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Fig. 1. Geome tl'Y of the 
coch lea mode l. 

bm: basilar membrane 
uc: upper chamber 
lc: lower chamber 
ow: oval window 
rw: round window 

3. MODEL AND SOLUTION METHOD 

The cochlea is modelled as a straight, two-chambered box, see Fig. 1. The walls 

of the box are rigid, with the exception of those at the basal end (x=O), which 

represent the oval window and the round window. The fluid in the two chambers 

is assumed to be incompressible and inviscid, and to behave linearly. The par

tition, located at z=O, has a rigid part (the shaded area in Fig. 1) and a 

flexible part, the basilar membrane. The EM is represented by a series of par

allel linearly visco-elastic simply supported beams in the transverse direction 

(the y-direction). These simplifications, as well as minor ones which were not 

mentioned here, have been justified in Viergever (1980, chapters 2 and 3). The 

equations describing the movements of the fluid and the EM to stimulation by 

the stapes (via the oval window) can be found in the same reference. 
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The model equations can be used for 1D, 2D and 3D calculations. The 3D mode is 

obtained by allowing the fluid pressure to vary in all three spatial dimensions. 

In the 2D mode the pressure varies in the x- and z-directions, but not in the 

y-direction, whereas in the 1D mode only variations in the x-direction are 

taken into consideration. The BM velocity is assumed to have a half sine-shaped 

distribution over the membrane width in all modes; there are no additional as

sumptions concerning this quantity in the 1D and 2D cases. 

The appropriate dimensionality of the calculations depends on the intent of the 

study. It has been shown repeatedly that the 1D approximation is adequate only 

for qualitative purposes, hence it is not suited for the present work. The 

choice between 2D and 3D is more difficult. The 3D mode is, of course, slightly 

more accurate on account of the extra space dimension, but there is a conflict 

with the requirement that we need to have a solution technique that is both re

liable and fast. Computational speed is important for two reasons. First, the 

principal model parameters are known only by order-of-magnitude estimates, which 

necessitates extensive parameter variation in fitting the measurement data. 

Second, the output of the model is BM velocity as a function of the longitudinal 

coordinate x, for a fixed input frequency, whereas the data are recorded in the 

form of frequency response curves, that is a response at a fixed point on the 

BM as a function of stimulus frequency. Consequently, a comparison between the 

two requires solution of the model equations for a large number of frequencies. 

The model equations are so complicated, particularly owing to the intricate 

structure of the cochlear partition, that they do not admit an analytic solution. 

Approximating the solution by a straightforward numerical technique has neither 

been feasible in the 3D mode because of computer storage problems. For the 2D 

case numerical solutions have been obtained (Allen, 1977; Allen and Sondhi, 

1979; Viergever, 1980; Neely, 1981), but the long computation times preclude 

numerical experimentation with the parameters. We must, consequently, settle for 

an asymptotic approach. The most suitable asymptotic method for solving cochlear 

mechanics problems is the LG approximation, which is based on the assumption 

that the BM wave travels in a medium of which the propagation properties do not 

vary much within one wavelength. The method has proved to be fairly reliable 

(Steele and Taber, 1979a; Viergever, 1980), although it has several pitfalls 

that are difficult, if at all, to avoid (De Boer and Viergever, 1982). An ad

ditional feature of the method is that its performance is best in one dimension 

and worst in three. Especially the decay of the amplitude envelope beyond the 

peak is too steep in the 3D response. It is, therefore, questionable whether 

2D or 3D calculations are to be preferred: 3D is more accurate than 2D, but 
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the LG approximation is better for 2D than for 3D. We have, somewhat arbitrarily 

chosen for the 2D mode. 

The LG solution to the cochlear model of Fig. 1. is (Steele and Taber, 1979b; 

Viergever and Diependaal, 1983) 

( ) _ j7Tbhk (0) 
V x - - 2S(0) 

with Q(k) satisfying 

Q (k) = _ Z(x) . 
2jWp 

x 
exp {-j J k(t,;)dt,;} , 

o 

For an explanation of the symbols, see Section 2. 

(1) 

(2) 

The impedance Z(x) of the BM is related to the parameters of the visco-elastic 

beam system by 

7T"D(x) 
Z(x) = jWOH(x) + ~~~-

jwS" (x) 

(3) 

We suppose that the BM consists of Kelvin material, the simplest visco-elastic 

material for a solid (Flugge, 1975, p.9), which implies that D(x) has the form 

D = Dl + jWD2 , with Dl and D2 real-valued quantities. Then Eq. (3) can be 

written in the form 

Z (x) jWM(x) + R(x) + S~x) . 
JW 

(4) 

The function Q(k) depends on the dimensionality of the fluid flow in the model 

and on geometrical parameters as chamber height and ratio BM width/chamber 

width. For the 2D mode of the model of Fig. 1, the value of Q(k) is 

Q(k) 
8S 

The 2D LG solution for the BM/stapes transfer ratio thus becomes 

V(x) 
j7Tbhk (x) 

2S(x) 

x 
x exp {- j f k(t,;)dt,;}, 

o 

with k(x) to be solved from 

k tanh(kh) = _ 16jwpS 

7T 2bZ 

(5) 

(6) 

( 7) 
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4. RESULTS 

Figure 2 shows a comparison of our calculations with guinea pig measurements of 

Johnstone and Yates, and Fig. 3 with data recorded by Rhode in the squirrel 

monkey. A few remarks need to be made so as to explain how the figures were 

produced. 

- Both experimental results were obtained with the Mossbauer technique. The 

Mossbauer source covers a large part of the BM width, so the measured response 

will be an average in the lateral direction rather than the velocity of the 

centreline. We estimated that the data represent an average over 2/3 of the 

width of the BM. In our model the BM velocity has a half sine shaped distri

bution over the width. Hence we multiplied V(x) by a factor 3/3/2~, which 

amounts to a reduction of 1.65 dB. 

- The data in Fig. 3, Rhode's 69-473 squirrel monkey results, were taken from 

the paper of Zweig, Lipes and Pierce (1976), since Rhode (1971) only published 

the amplitude of the response. Furthermore, Rhode measured BM/malleus transfer 

functions, while the cochlea model yields a BM/stapes ratio. We therefore 

adapted Rhode's data in conformity with his (1978, Fig. 5) stapes/malleus 

transfer ratios. The resulting reduction of the peak of the amplitude curve is 

consistent with Rhode's own findings. 

- Johnstone and Yates did not supply the point of observation on the BM in their 

study. We estimated itto be at 3 mm from the basal end using Wilson and 

Johnstone's (1975, Fig. 22) plot of cutoff frequency against position along 

the membrane. Rhode neither supplied the observation point. A reliable coch

lear map is not available for the squirrel monkey, so we rather arbitrarily 

set xobs = 15 mm in Fig. 3. We have checked that different choices of xobs 

did not significantly affect the quality of the fits. The values of the par

ameters MO' RO and So (see below) appeared to be quite sensitive to changes 

in xobs ' however. 

- Several of the model parameters were kept fixed in the calculations, viz. b, 

h, p and S(x). The values for guinea pig were derived from Fernandez' (1952) 

data, those for squirrel monkey were estimated since measurements of geometri

cal parameters in this species are not known to us. The values used can be 

found in the legend to the figures. Notice that the length of the cochlea is 

irrelevant. It suffices to consider the interval 0 ~ x ~ xobs ' because the 

response in xobs is uninfluenced by the part of the model with x > xobs ' cfr. 

Eq. (6). This is a consequence of the unidirectionality of the LG approach. 

- The remaining parameters M, R and S were written in the form MOexp(M l x) , 

ROexp(R1X), SOexp(Sl x ). The exponents Ml , Rl and 8 1 can be estimated since 
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they relate to geometrical parameters (see Viergever, 1980, Section 5.1). The 

coefficients MO' RO and So are known only roughly; they were determined by a 

curve fitting procedure. The resulting values are shown in the legends to 

Figs. 2 and 3. 

5. DISCUSSION OF THE RESULTS 

The agreement between our 2D model calculations and the measurement results of 

Johnstone and Yates, as shown in Fig. 2, is excellent. The only discrepancy is 

that the amplitude plateau of the model response is lower than that of the 

measurements (it occurs at -19 dB), but this is a typical shortcoming of the LG 

approach (Viergever, 1980, Fig. 5.2.4). The match to Rhode's data in Fig. 3 is 

less good, but still quite acceptable considering that BM motion was nonlinear 

in Rhode's observations. Here both the amplitude plateau and the phase plateau 

of the model are much lower than those of the measurements, again as a result 

of the LG approximation. 

Steele and Taber (1981) were the first to bring cochlear model calculations in 

fair quantitative agreement with experimental results of BM motion. They did so 

by comparing a 3D LG solution for a model similar to that of Fig. 1 with guinea 

pig data of Wilson and Johnstone (1975). The extent to which the calculated and 

measured responses agree is remarkable inasmuch as Steele and Taber did not 

make use of a curve fitting procedure. 

The results of the present study, together with those of Steele and Taber, show 

that the simple box model of Fig. 1 with linear and passive BM characteristics 

fully serves its purpose. It adequately describes the measured linear response 

of the BM to stapes movements. This is a quite satisfactory conclusion of our 

studies in cochlear macromechanics. It also justifies some optimism as regards 

the challenge offered to cochlear modelling by the recent observations of Khanna 

and Leonard (1982) and Sellick, Patuzzi, and Johnstone (1982), which demonstrate 

that the nonlinear and locally active processes that take place in the intact 

cochlea clearly manifest themselves at the level of BM vibration. 
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The interpretation of observations of basilar-membrane response to pure tones, 
and also the analysis of mathematical models of the mechanical response of the 
cochlea, are both valuably facilitated by a description in terms of energy 
flow. An attempt is made to describe this approach clearly, to demonstrate its 
advantages, and to relate it to other approaches. 

1. INTRODUCTION 

Insight into the extent of the contribution from cochlear mechanics to auditory 

sensitivity in frequency discrimination has to be derived by combining infor

mation from two sources. First, an inevitably limited range of in-vivo observa-

tions of basilar-membrane response to pure tones at various locations on the 

membrane is (in certain species) available. Secondly, many mathematical models 

of the cochlea's mechanical response to pure tones are available for various 

assumed mechanical properties and at various levels of modelling complication. 

Under these circumstances, little is gained by simply looking for a mathemati

cal model whose results are in general agreement with observation in those 

cases where reliable in-vivo observations are available. It is necessary to 

look for models that successfully bridge the gap between (a) the regrettably 

far from accurate knowledge of in-vivo mechanical properties and (b) the 

insufficiently extensive observations of cochlear response. Only models 

consistent both with (a) and with (b) can be provisionally used to extend 

knowledge beyond its current limitations. 

A model must be regarded as failing to bridge that gap if it demands unrealis

tic values of geometrical or mechanical parameters important for the cochlea's 

mechanical response. There is, in fact, a special reason why a wide range of 

models making seriously oversimplified assumptions on matters that significant

ly influence the mechanics may give misleadingly 'good' predictions. This 

reason is that the 'critical-layer absorption' property common (see Lighthill 

1981, and section 3 below) both to several relatively realistic models and to 

many models of varying degrees of unrealism (serious as in two-dimensional 

models or gross as in one-dimensional) does already suffice to ensure 
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prediction of the very sharp high-frequency cut-off characteristic of in-vivo 

basilar-membrane response measurements. 

On the other hand, a model utilising a realistic degree of relevant mechanical 

and geometrical complexity may require such an immense processing exercise 

from the computer that only its overall conclusions can be compared with 

observations; while detailed insight into how the model's operation at each 

location is related to assumptions about local properties may be lacking. 

Fortunately, however, it is well established that high-frequency asymptotics, 

under a wide variety of different names (see for example Steele 1974, De Boer 

1979, Viergever 1980, Holmes 1982) succeeds in avoiding this difficulty while 

(for all the frequencies of principal interest for cochlear mechanics) giving 

results that agree very well with results of accurate computations (Steele and 

Taber 1979). 

Although most of those writers who have usefully made complicated cochlear

mechanics models tractable through high-frequency asymptotics regarded it as, 

essentially, a mathematical device, the purposes of a model can be still 

better served if we utilise the well established one-to-one relationship bet

ween such asymptotics and the simple physical principles of energy flow. It 

is known (see for example Whitham 1974 or Lighthill 1978) that high-frequency 

asymptotics, applied to analyse vibrating systems, gives results identical 

with those obtained by making certain assumptions on how vibrational energy is 

changing as a result of energy flow and energy attenuation; the velocity of 

energy flow (or 'group velocity') being given as the gradient of a plot of 

frequency against wavenumber. This way of expressing the results from a model 

is summarised, for the cochlear-mechanics application, in the next section. 

While mathematically equivalent to high-frequency asymptotics, it has the 

advantage of a simple physical interpretation, yielding insight into how the 

model's operation at each location is related to assumptions about local 

properties. 

2. ENERGY-FLOW DESCRIPTION OF COCHLEAR RESPONSE TO PURE TONES 

The fundamental assumption, additional to that of high frequency, which under

lies both the mathematical asymptotics and their equivalent energy-flow des

cription, is one of adequate smoothness of variation of relevant cochlear 

properties (the mechanical and geometrical properties of the cochlear cross

section) from base to apex. We may describe the required smoothness of varia

tion, in energy-flow terms, as that needed to avoid passive reflexion of wave 
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energy flow. In a damaged cochlea, of course, such passive reflexion occurs at 

local irregularities or discontinuities of properties (and, in combination 

with re-reflexion at the base of the cochlea, may help to mediate tinnitus 

resonances). However, to model the mechanics of a normal cochlea, the assump

tion that properties of the basilar membrane and other important features of 

the cochlear partition vary smoothly along it, seems in accord with the avail

able data. (For an assessment of the assumption of high frequency, see section 

3.) 

Firmly underlying the energy-flow description is the concept of wavenumber, 

and it is important to recognize that this is a precisely defined quantity, 

directly related to one of the quantities (the phase) that is most readily 

observable in measurements of basilar-membrane response to a pure tone. Of 

course, the key observation that first suggested a travelling-wave interpreta

tion of cochlear mechanics was a progressive reduction in phase (that is, 

increasing 'phase lag') as distance from the base was increased. In that 

context the wavenumber, in mm- l , can be defined as a rate of change: the rate 

at which the phase (in radians) decreases per millimetre of distance along the 

cochlea (Eq. (5) below). This wavenumber, k, is a measure of 'crinkliness' or 

'waviness' - although it is not (in spite of its name) a sort of local 'number 

of waves' per millimetre; which indeed, since the phase change in a whole wave 

is 2rr, would be (k/2rr). Similarly, in terms of the commonly used circular 

frequency or radian frequency w, the frequency in hertz (cycles per second) is 

(w/2rr); but in cochlear response to a pure tone the difference between the two 

cases is that w takes a constant value while the measure of 'waviness' k 

varies, becoming greater with distance from the base: the vibrations are 

sinusoidal in time but not with respect to place. 

At anyone place (specified by its distance x from the base, measured along 

the cochlear partition), there is necessarily a 'dispersion relationship' 

between wand k. This identifies the value of k arising in experiments using 

pure tones at each different frequency w. Conversely, for vibrations where the 

basilar membrane's 'waviness' takes the value k, the dispersion relationship 

specifies the frequency w of pure tones for which that wavenumber k would be 

found at the place in question. 

This latter specification is of more fundamental significance from the mechan

ics standpoint. In any mode of vibration of any mechanical system that is only 

lightly damped, the relationship 
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w (1) 

holds between frequency w, stiffness s and inertia m. Here, the definitions of 

s and m are such that the system's potential energy and kinetic energy are 

1 2 1 dh 2 
2 sh and "2 m(dt) (2) 

in terms of some measure, h, of the displacement of the system in the mode in 

question. Equation (1) represents the fact that vibrational energy is, on the 

average, shared equally (while being transferred back and forth) between these 

potential and kinetic forms. Thus, for propagation of the primary mode of 

vibration of the basilar membrane (as supported by the spiral lamina and the 

bony shelf), the dispersion relationship between wand k at any place x takes 

the form of Eq. (1), where s and m represent the stiffness and inertia for 

that mode in vibrations of wavenumber k. Here, the stiffness s is that of the 

cochlear partition, being associated with a potential energy per millimetre 

length of cochlea residing almost entirely in the basilar membrane itself; but 

the kinetic energy per millimetre length resides not only in the partition but 

also in the fluid, so that the inert.ia per unit length, 

m (3) 

includes both the partition inertia, mp ' and a major fluid contribution, mf , 

whose dependence upon k will be seen to be of particular importance. 

High-frequency asymptotics are equivalent to the principle that, in any travel

ling-wave system that is only lightly damped, wave energy is propagated at a 

velocity 

U 
dw 
dk 

(derivative keeping x constant), 

equal to the gradient of the dispersion-relationship curve at the place in 

question. Energy flows towards the apex at a rate UE per second, where E is 

the vibrat.ional energy (potential and kinetic) per unit length of cochlea. 

Here, Eqs. (1) and (2) imply that vibrat.ions of ampl.itude a g.iven by 

h r ] de a (x) cos Lwt + e (x) , where dx -k, have E 1 
2 sa . 

2 

(4) 

(5) 

The local damping coeff.ic.ient D .is defined so that the rate of diss.ipation of 
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vibrational energy per unit length of cochlea (due to viscous, and any other, 

effects) is DE. The energy loss DEdx in an interval dx defines the reduction 

in energy flow UE in that interval. Thus, 

d(UE) 
dx 

-DE, giving E(x) 
U(O)E(O) 

U(x) 
[ Ix DdXJ 

exp - 0 U . (6) 

The whole energy-flow description of cochlear mechanics is summarized in Eqs. 

(1) to (6). They make the necessary bridge between (a) the mechanical proper-

ties assumed at each position X; namely, s, mp ' mf and D and their dependence 

on k (we shall see in section 3 that the variation of mf with k is the most 

important); and (b) the associated distribution of amplitude and phase in 

response to a pure tone of fixed frequency w. Thus, for given w, Eqs. (1), (2) 

and (3) specify the value of k for each x, and Eq. (4) that of U; whence Eq. 

(6) gives E, and then Eq. (5) shows how the phase of the vibrations is obtain

ed from k and the amplitude from E. 

3. CONCLUDING DISCUSSION 

The form of Eq. (6) helps greatly in interpreting the most striking feature of 

basilar-membrane response curves: their very sharp, yet highly asymmetrical, 

peak, with a precipitously steep falling away beyond it. Such behaviour is 

assured by one very important condition: that the energy propagation velocity 

U falls to zero 'somewhere'; that is, at some place x (when w is fixed) or, 

equivalently, at some frequency w (when x is fixed). Then, for fixed w, Eq. 

(6) with light damping D makes E(x) increase more and more as U(x) becomes leffi 

and less until, in a narrow 'critical layer' just before U becomes zero, the 

energy is absorbed because the integral (where dx/u represents an element of 

time during which the damping rate D operates) increases without limit. 

The above very important 'critical-layer absorption' condition, that U falls to 

zero 'somewhere', is known (Lighthill 1981) to demand dispersion curves of the 

general character shown, for different fixed x, in Fig. 1; where, evidently, 

the gradient (4) tends to zero (while the wavenumber increases without limit) 

as the frequency w rises to the 'resonant' value wr(x). Conversely, the broken 

line indicates how, for a tone of fixed frequency w, the same trends occur as 

x increases to the value for which w (x) = w. 
r 

Actually, dispersion curves as specified by Eqs. (1) and (3) take the forms 

shown in Fig. 1 if mf falls continuously from large values (much greater than 

m ) to zero as k gets larger and larger, while s remains essentially constant. 
p 
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Fig. 1. Dispersion curves assuring 'critical-layer absorption'. The curve 
appropriate to each place x (given five values in Fig. 1) tends asymptot
ically to a resonant value W = wr(x) as the wavenumber k increases. 

Of course the value of mf depends, as Eq. (2) indicates, on the assumed mode 

of displacement of the basilar membrane and on our choice of a measure, h, of 

that displacement. Fortunately, hydrodynamics allows us to derive a simple 

form of mf for any mode of displacement; say, a displacement 

n 
h1;(y) for o <y <n; where fo 1;(y)dy = 1 (7) 

may be recommended as a simple normalising condition that defines the measure 

h as the net change in cross-sectional area of the scala tympani due to 

basilar-membrane displacement. Then the ratio mf/p of fluid inertia to fluid 

density is a nondimensional quantity 

(8) 

where 

(9) 

is also nondimensional (and, by Eq. (3), 1;0 = 1). Figure 2, though calculated 

on just one of many possible assumptions about the basilar membrane's primary 

mode of bending, is qualitatively typical of the form of Eq. (6) in all cases. 

It shows, in particular, that lD theory is grossly inaccurate (even though, 

because it meets the critical-layer absorption requirement, the errors in its 

predictions are reduced) and that a significant feature in the curves' shape 

is absent from 2D theory. 

The principal approximation underlying Eq. (8) (replacing the cochlear cross

section by a square of side 2~ with the same area) is expected to reduce its 
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Fig. 2. Fluid inertia plotted against wavenumber, illustrated for a half
sinusoid mode of bending in a basilar membrane whose width 2b takes 
values 0.25, 0.5 or 0.75 times that assumed for the cochlear cross
section (Lighthill 1981). The curves marked ID and 2D are as derived by 
one-dimensional theory. 

accuracy very little. On the one hand, for small k~, Eq. (8) becomes 

1 

(H)2 
(10) 

and this coincides, for a cochlear cross-section of area 4~2 and arbitrary 

shape, with the conclusions of one-demensional theory, which are known to 

become correct for small k~ (less than about 0.5). On the other hand, for 

large k~, the fluid motion becomes progressively confined to a narrow layer of 

thickness k- l near the basilar membrane; which is both why Eq. (8) then 

becomes proportional to (k~)-l, and why the exact shape of cochlear cross

section becomes unimportant in this limit too. 

A brief comment may be added concerning the accuracy of the method of high

frequency asymptotics that utilizes these results. Comparing exact one

dimensional theory with and without simplification by the assumptions of high

frequency asymptotics, we can deduce that these produce inaccuracies only for 
-1 

k<0.2 mm ; and we can safely use this result because Eq. (8) reduces to Eq. 

(10), its one-dimensional form, as soon as k<0.7 mm- l (Lighthill 1981). The 

condition k>0.2 mm- l for accuracy of high-frequency asymptotics is satisfied 
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throughout the cochlea for frequencies above about 500 Hz. At lower frequen

cies it is satisfied except in a limited region near the base, and a simple 

method is available (Lighthill 1981, Fig. 14) for correcting results from 

high-frequency asymptotics to allow for its inaccuracy in this region. 

The fluid motions whose inertia is represented by Eq. (8) are a combination of 

obliquely travelling wave-like modes in each of which the fluid particles 

describe circular paths, and a longitudinal mode where the same is true for 

k~>1.5 (that is, as resonance is approached). They are potential flows outside 

a 'Stokes boundary layer' of displacement thickness (v/w)~, characteristic of 

all oscillatory motions, where the kinematic viscosity v of the cochlear fluids 

at body temperature is about 0.7 mm2 s-l; this thickness, about 0.01 mm at 

1 kHz, is too small to influence the fluid inertia. The boundary layer gives, 

however, a viscous-dissipation contribution 

-1 2 ~ 
ps w (~vw) (11) 

to the damping rate D, which (if it is the main contribution) is consistent 

with the assumption (D«w) of only light damping. 

We conclude with comments on m and s. The inertia of the cochlear partition, 
p 

mp ' is independent of k; but, as with mf , the value to be ascribed to it 

depends on the mode (and on the measure) of basilar-membrane displacement. 

Rewriting Eq. (C42) of Lighthill (1981) in the notation of this paper, the 

assumptions in Eq. (7) give 

m 
p 

(12) 

where M (y) is the mass per unit area of the basilar membrane and of all the 

other solid structures that move with it. 

Finally, the subject's major paradox needs to be highlighted once again. It 

is that the dispersion curves given by Eqs. (1) and (3), subject to behaviour 

of mf and mp as outlined above, will take the 'critical-layer absorption' form 

(Fig. 1) provided only that the stiffness s is essentially independent of k. 

This demands (Lighthill 1981, p. 168) that transverse stiffness dominates 

over longitudinal stiffness in vivo. Such a paradoxical conclusion appeared 

qUite incompatible with the measured properties (similar to those of 'an 

elastic plate') of basilar membranes taken from cadavers, until Voldrich 

(1978) discovered experimentally that the longitudinal stiffness was indeed 
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negligible in vivo although quickly becoming significant after death. 
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Cochlear emissions 
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Otoacoustic emission phase has been examined as a function of stimulus freq
uency. Two components have been compared. The emission of the acoustic product 
2f1-f2 has phase characteristics which are broadly derivable from current non
linear cochlear models. An explanation of stimulus frequency re-emission 
phase requires the postulation of multiple fixed place reflection/retransmiss
ion sites along the spiral organ. It is shown how the distortion product 
emission phenomenon can be used as an experimental probe to determine the 
sites of stimulus frequency retransmission. 

1. INTRODUCTION 

Detailed analysis of the sound pressure in the sealed ear canal during acou

stic stimulation reveals a small complex nonlinear component to be present at 

all stimulus level s (Kemp and Brown 1983). This component has been shown to be 

vulnerable to noise exposure, ototoxic drugs and physiological disturbances in 

the same way as is cochlear function (Anderson and Kemp 1979, Kemp 1982). Many 

features of the two tone interactions exhibited by this nonlinearity closely 

resemble those found in the cochlea (Kemp and Chum 1980, Brown and Kemp 1983). 

It is widely accepted that this nonlinear contribution to ear canal sound 

pressure is due to nonlinear biomechanical activity in the cochlea. 

There are two types of stimulated otoacoustic emissions with quite different 

intensity growth functions (Kemp and Brown 1983). The first type comprises the 

return of energy at the stimulus frequency/frequencies to the ear canal, i.e. 

stimulus frequency emissions or SFE's. Continuous acoustic excitation of the 

cochlea results in continuous stimulus frequency otoacoustic emissions as des-

cribed by Kemp and Chum 1980. The SFE level progressively saturates with 

stimulus level increase. 

The second type of emission arises from intermodulation within the cochlea 

when two stimulus tones are presented. Notably the distortion product 2fl-f2 

is emitted (Kemp 1978, Kim 1980, Kemp and Brown 1983, Brown and Kemp 1983). We 

refer to this as DPE or distortion product emission. Its level tends to be a 

constant proportion of stimulus level. 
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Techniques for observing SFE and DPE phenomena are described in the literature 

cited above. For frequency domain studies these generally involve phase locked 

narrow band filtering of the ear canal sound pressure signal to select the 

frequency component required, and often use suppression by an additional tone 

to identify the physiological element. 

The aim of this paper is to explore the relationship between SFE's, DPE's and 

cochlear wave propagation, and to take a first step towards modelling the uni

que SFE signal generated by individual ears. 

2. ACOUSTIC DISTORTION PRODUCT GENERATION BY THE COCHLEA 

The existence of DPE's can be predicted from nonlinear basilar membrane theory. 

The propagation of DP energy back from the site of generation to the base of 

the cochlea was modelled by Hall in 1974, but the conclusion that DP sound 

pressure would appear in the meatus was overlooked for some years. Although 

DPE does have a theoretical foundation the detailed comparison of experimental 

DPE data with measured cochlear parameters and with nonlinear model predict

ions is in its early stages. 

We can predict certain phase characteristics of the DPE from cochlear wave 

propagation data. A specific example for cat is presented and discussed in 

Fig. 1. With reference to Fig. 1, we consider below the expected phase behav

iour of the DPE under two conditions of stimulus frequency change. For this 

purpose we presume that the vectorial spacial sum of the DP produced in the 

intermodulation area between the fl and f2 places constitute a single source 

of DP with amplitude and phase ¢dp monotonically dependent on fl and f2. We 

take the (resultant) source of DP to be a place on the basilar membrane from 

which DP energy is effectively transmitted both apically to the DP resonant 

place and basally to create the DPE. 

At the place of generation the phase of the distortion product with respect to 

that derived directly from the stimuli, is given by 2¢fl-¢f2 where ¢fl and ¢f2 

are the stimuli phases at the interaction place. At the ear canal there is a 

small additional lag of ¢fdp due to reverse propagation. Referring to Fig. 1, 

if both fl and f2 are changed by the same proportion (i.e. keeping a fixed 

spacial separation on the EM) no phase changes of fl or f2 occur at the 

DP generation site. The phase of DPE should therefore, remain constant 

during iso-ratio stimulus sweeps, dependent of course upon the true logarith

mic frequency characteristics of basilar membrane mechanics. The DPE would 

appear to have zero group latency although the true phase delay would be 
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Fig. 1 . Propogation along the basilar membrane and DP generation. Extrapolated 
neUI'al data for cat after Neely and Kim 1 983. Left: This shows a derived 
basilar membrane vibration pattern dUI'ing two tone stimulation at 2 . 2 kHz (2) 
and 1 . 65 kHz (1) respectively . In a simplea~etrically nonlinear system the 
level of the intermodulation component 2f1 - f2 generated would depend upon the 
square of the f1 amplitude, Y1 times · the amplitude of f2, Y2. This function , 
performed on the actual vibration envelopes shown is also given. The median is 
between the f1 and f2 peaks but nearest to the f2 (higher frequency) peak. 
With other stimulus frequency ratios the inter modulation region would remain 
strongly constrained by the rapid apical cut-off in f2 eXcitation, and would 
always be near to the f2 place. Right : ~is shows the phase characteristics of 
several points on the BM in OUI' example. Lines 1 and 2 correspond to points at 
1. 33 and 1.44 cms, having fc 's of 2.2 and 1.65 kHz respectively, matching the 
excitation pattern on the left . Lines 3 and 4 relate to points with fc 's 
twice those of 1 and 2. We have generated this data by laterally shifting 1 
over the log fre04ency scale . Resonance in this idealised cochlea occurs at a 
phase lag of 51T at each points , marked by the horizontal line. The point (b) 
gives the phase of f1 at the f2 place, and point (a) gives the phase of f2 at 
the f1 place . Since maximum DP production OCCUI'S between f1 and f2 places, we 
take points b ' and c ' to be a better guide to the actual phase lags of the two 
stimuli at intermodulation. These are ¢f1=31T and ¢f2=71T respectively. The 
lag for the DP frequency (2f1 - f2) , ¢dp is seen to be small (- 0. 751T ). We pre
sume that this lag applies also to reverse transmission so that the phase of 
DPE is given by ¢dpe =2 ¢f1- ¢f2+¢dp . 

... 
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2 

stImulus frequency 

2 

kHz 

Fig. 2. The phase of human 
DPE under different stimu
lus frequency conditions . 
Stimuli were f1 , 75 dB SPL 
and f2, 70 dB SPL. The 
solid line is for iso-ratio 
stimulation with f1/f2=0.75 . 
Left: Dashed lines are for 
fixed f2 , swept f1 stimula
tion . Each line is for a 
different f2 value, marked 
by the arrow . Intersection 

with the solid line occurs when f1/f2=0 . 75. The triple line section marks 
where the maximum DPE amplitude was found . This occUI'red around f1/f2=0. 8. The 
DPE UXlS too small to obtain phase data at the ends of each line . The choice of 
f2 was not critical . Results were confirmed on 5 other ears . Right: fixed f1 
and swept f2, the phase changes are reversed but not halved as expected from 
¢dp=2¢ fl -¢f 2. 
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many waves. 

The zero group latency proposition was tested experimentally. Fig. 2 (solid 

line) shows DPE phase data for a human ear tested at fl/f2=O.75. There is only 

a modest phase change over the 2 kHz stimulus frequency sweep. This result has 

been confirmed on 14 other ears using fl/f2=0.8. In Fig. 3, DPE amplitude and 

phase data for three human ears is given with an expanded phase scale. Each 

ear shows a similar: n change over the 2.2 octave range with maximum lag at 

3.5 kHz. This limited frequency dependence might point to a systematic depart

ure from logarithmic performance in the human ear but is more likely to be due 

to the transmission characteristics of the middle ear. The implied DPE latency 

is less than ~ millisecond. Despite the flat phase characteristics of the iso

ratio DP measurements, the underlying mechanism can be shown to be sharply 

tuned by suppression experiments (Brown and Kemp 1983 Kemp and Brown 1983). 

Fig. 3. Iso-ratio measure
ments of the DPE amplitude 
and phase for 3 human ears 
from 1 to 5 kHz. Stimuli 
were flj 75 dB SPL, f2, 70 
dB SPL, and f1/f2=0.75. The 
transducer amplitude freq
uency responses have been 
digitally subtracted from 
the data. Artefactual dis
tortions were below the 
instrumental noise floor. 
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The DPE was suppressible by 10 dB by an 80 dB tone 
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We next consider what would happen if only stimulus 1 is increased in freq

uency. The lag of fl will increase over the f2 excitation region. If the place 

of interaction remains relatively fixed near f2, and ¢dp is small then d¢dpe= 

2d¢fl. Thus the DPE acts as a 'carrier' of fl phase changes at the interaction 

place. The rate of change of DPE phase with fl frequency directly depends upon 

the group latency of fl at the interaction site. In the cat example (Fig. 1) 

with f2=2.2 kHZ, the group latency of fl at the estimated interaction site is 

given by the slope at b' and is 2.8 milliseconds, or approximately 3 DP freq-

unecy waves. 

Experimental data for gerbil tested under the above conditions (Kemp and Brown 

1983) conforms to these predictions. The DPE latency was found to be just over 

2 milliseconds. In human ears greater latencies are found. Fig. 2 (dashed 

lines) gives examples of human DPE phase change under fixed f2, swept fl 

conditions. Phase changes of around 8n are seen over the 1/3 octave f1 range 

for which significant interaction is observed. These data indicate a 6 wave 



79 

latency of fl at the OP interaction place. 

3. STIMULUS FREQUENCY RE-EMISSION BY THE COCHLEA 

The re-emission of stimulus frequency energy by the cochlea is not an inherent 

property of current cochlear models. Nevertheless the phenomenon occurs to a 

substantial degree at low stimulus levels. For human subjects the SFE is typi

cally 10 db SPL during 40 dB stimulation as shown for two human ears in Fig. 

4. We must accept that the signal carried by the travelling wave can be re

transmitted or reflected by some biophysical mechanism. 

If we were to postulate that the retransmission mechanism was an integral part 

of the physiological response sharpening process then it would be active over 

some specific part of any excitation pattern; say at the peak. By the same 

reasoning we applied to iso-ratio s~imulation of OPE's, we would expect zero 

group latency for the SFE. 

A low-latency SFE has recently been found in gerbil at moderate to high stim

ulus levels (Kemp and Brown 1983). However at low levels in gerbil and at all 

stimulus levels in man the dominant nonlinear SFE component has a high group 

latency. Fig. 5 shows the rapid increase in SFE phase lag with stimulus fre

quency for human ears. The group latency is of the order of 10 waves. 

If Figs. 5 and 2 are compared in detail we find that SFE phase gradients match 

OPE phase gradients when fl is swept towards a fixed f2. This suggests a model 

for delayed SFE generation. 

In OPE generation the stimulus frequency f2 largely defines the point on the 

EM at which the OP is created. As discussed in section 2, OP transmissions 

from this place 'carry' the phase lag of fl at that place. If there were loc

alised regions of the BM from which stimulus retransmission of fl occurred, 

then we would expect just the phase agreement observed. The fl phase lag doub

ling inherent in 2fl-f2 generation would be matched in the SFE phenomenon by 

the doubling of phase lag in the reverse transmission of fl. Both the SFE and 

the OPE would have the same phase gradients with fl, provided the f2 place 

coincided with the SFE transmitter point. 

The range of frequencies over which substantial stimulus retransmission might 

be obtained from a single small region of anomolous biomechanical activity 

would depend on the width of the excitation pattern. By the OPE-SFE analogy 
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above this range can be estimated from Fig. 2 to be 1/3 to 1/2 octave so that 

several sources would be needed to explain the frequency extent of SFE shown 

in Fig. 4. In Fig. 4c we show the result of an attempt to model just one sec

tion of the SFE in 4b with an artificial transmitter point defined by an f2 of 

2.15 kHz. The phase of fl obtained via the DP process matches the phase of fl 

via the SFE process over a short frequency range. Clearly by an iterative pro

cess the SFE data pattern could be transformed into a set of f2 frequencies of 

various amplitudes. It remains to be seen whether a unique solution exists for 

a particular ear and whether the process would actually identify significant 

sites in the cochlea. 
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Fig. 5. SFE phase data extracted 
from Fig. 4 (aJ and (bJ. At 
frequencies of very Zow output and 
where Zatency changed abruptZy the 
trace has been broken and continued 
at zero Zag. 

So far we have treated the DPE and 

SFE phenomena as if occurring in 

isolation from each other. In fact, 

any intracochlear DP signal will 

act as a stimulus and excite the 

SFE mechanism. The result is a fine 

structure of the iso-ratio DPE. In 
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Fig. 4 (aJ and (bJ: Recordings of 
stimuZus frequency acoustic emiss
ions from two human ears. OnZy the 
in phase ampZitude is shown. The 
quadrature phase component Zooks the 
same but for a 90 degree shift in 
the ampZitude osciZZations with 
frequency. The osciZZations signify 
increasing SFE phase Zag with freq
uency with the SFE being aZternat
eZy in phase (+veJ and out off 
phase (-veJ with the stimuZus. Part 
(c J: a sampZe recording of DPE dur
ing an f1 sweep, with f2 fixed. 
Note the DP phase and ampZitude 
enveZope roughZy matches the SPE 
over a smaU range. 
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Fig. 6 we show iso-ratio DPE data with fine structure clearly due to the SFE 

mechanism. The fine structure 6 (a) is selectively suppressed by low level 

tones near to the DP frequency 6 (b). This allows isolation of the fine 
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Fig. 6. Two component (in 
phase and quad phaseJ rec
or-dings of acoustic emiss
ion components for two ears 
each over different small 
frequency ranges. Abscissa 
refers to the frequency Of 
the component displayed, 
not the stimuli. The fine 
structure is of interest. 
(aJ: ROJ;) DP data iso-ratio 
sweeps with fl/f2=O. 75 and 
levels 70 and 75 dB SPL. 
Note the ripples on the 
slowly changing DP compo
nent. These ripples were 
selectively suppressible by 

JA re OKle a tone of 1.1 fdp at 50 dB 
~---L---t~5~1 --~----t~6 1~~--~~--~2~~~--~--~2 SPL and above. This allows 

measured frequency kHz 
separation of two DP compo
nents. The robust component 

is (bJ and the easily supp
ressible one (c) shows considerable latency. The SFE for a 40 dB SPL stimulus 
at the DP frequency is shown in (d). This matches well the easily suppressible 
DP component (c). Clearly (c) is the SFE mechanism responding to the DP acting 
as a secondary stimulus within the cochlea. FinaUy (e) is the f1 stimulus in 
the meatus reduced by a factor of 30 to fit the otherwise fixed scaling. The 
ripples in the stimulus levels are due to interference by ·the SFE as are the 
ripples in the DP level (a), albeit at a second or-der level. 

structure component 6 (c), which then matches the SFE obtained for an extern

ally applied stimulus of frequency DP, 6 (d). 

4. SUM1AR Y AND CONCLU SIONS 

We have shown that the acoustic distortion product 2fl-f2 can be evoked by any 

close pair of tones and its phase behaviour can be predicted. The 2fl-f2 emi

ssion does not seem to depend upon intrinsic inhomogeneities in cochlear mech

anics, indeed the iso-ratio data confirms a high degree of homogeneity. The 

only localised factor is that. created by the f2 excitation itself. In contrast, 

stimulus frequency emissions clearly do need intrinsic localised anomalies to 

explain their phase properties. With selected f2 values, DP emission phase can 

match SF emission phase very well over a 1/3 octave frequency range below f2. 

We propose that this particular f2 defines an SFE-active site in the cochlea. 

Previous work (Kemp and Chum 1980) has shown the SFE to be most easily supp

ressed by slightly higher frequency tones. The saturating property of the SFE 

in contrast to the DPE perhaps implies that the mechanical anomaly is smoothed 

out at higher stimulations. 



82 

We find no basis for attributing signal delays to the SFE mechanism over and 

above those normally present in the travelling wave, once the doubling effect 

is accounted for. We do find latency in human ears to be greater than that 

found in laboratory animals under the same stimulus conditions between 1 and 

4 kHz. We propose the DPE phenomenon as a probe with which to explore cochlear 

wave propagation times, and the SFE phenomenon. 
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"Cochlear echoes" occur in restricted frequency bands specific to each ear, 
with a long peak latency. A computer simulation has been developed based on 
basilar membrane vibration amplitude and phase followed by a "second filter" 
process. The vector sum of the second filter outputs, representing gross 
cochlear activity, is very small for a smoothly changing basilar membrane 
impedance and regular tonotopic mapping of the second filters. HoweVer, any 
small irregularity in either of these functions leads to a ~peatly enhanced 
response in the corresponding frequency region, which simulates the bandwidth, 
latency, and other features of cochlear echoes. 

1. INTRODUCTION 

Two types of model have been proposed to explain cochlear echoes. Kemp (1978) 

and Kim et al. (1980a) have suggested a reverse travelling wave, reflected 

from an impedance discontinuity on the basilar membrane (BM), to explain the 

observed long latency and frequency specificity. Wilson (1980bd suggested 

an alternative model, based on an irregularity in frequency mapping and the 

synchronous swelling and shrinking of hair cells following a second filter (SF) 

process, in order to explain an experimentally observed zero reverse travel 

time and limited maximal amplitude. This model was designed to give minimal 

local influence on BM mechanics, but recent direct measurements, showing sharp 

basilar membrane tuning (Khanna and Leonard, 1981, and Sellick et al., 1982) 

now appear to require local feedback to occur. Furthermore, the high levels 

of ear-canal distortion product found by Kim et al. (1980b) and the high levels 

of spontaneous oto-acoustic emission reported by Glanville et al. (1971) and 

followed up by Wilson and Sutton (1983), render the hair cell swelling model 

less plausible. Nevertheless, other features of the model have been notably 

successful in Simulating cochlear echoes whereas a specific test based on a 

reverse travelling wave model (Neely, 1981) was not. The present paper devel

ops the consequences of such a two-stage model, in which gross cochlear activ

ity is unspecified. Active and non-linear processes do not feature in the 

model but could easily be incorporated. 

2. METHODS 
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A one-dimensional model of the BM was utilised based on a program of de Boer 

(1980), after Allen (1977). The parameter values were chosen to be approxim

ately representative of values for man. The impedance of the cochlear partit

ion is given by: 

Z(x) = (Co/iw)exp (-ax) + iWMo + Roexp(-ax/2) ( 1 ) 

with stiffness, C 
~ 0 

R 0 (M .C ) 
000 

length of cochlea 

= 109 dyn. cm- 3 ; mass, M = 0.05 g cm- 2 ; resistance, 
o -1 

with damping, 0, either 0.05 or 0.20; and a = 3 cm ; 

= 3.5 cm; height of scalae, h=J.1 cm. This gives a "true" 

resonance at the point where stiffness and mass components cancel. The resis

tive term gives a loss factor 0 constant with respect to x, which makes the 

travelling wave pattern invariant as a function of frequency or position (map

ping coefficient, 4.62 mm/octave). Two values of 0 (= 0.05, 0.20) were used 

in order to model both highly resonant and "classically" damped types of resp

onse. The calculated frequency response of one point (at which the stiffness 

and mass components of Z(x) cancel for 1 kHz) for both the values of 0 are 

illustrated in Fig. 1 (BM). 

A simple resonant second-order "second' filter (SF) was then incorporated with 

a Q value adjusted to give a combined filter bandwidth of about 140 Hz at 1 

kHz (i.e. a Ql0dB of about 7). The values of Q required were 8 and 20 for 0 

= 0.05 and 0.20 respectively. The SF resonance frequency was arbitrarily made 

equal to that of the BM for the low damping case (3.6dB down the HF cut-off) 

and 3dB down (i. e. below resonance in this case) for high BM damping. This 

procedure gives the responses shown in Fig. 1 (BM+SF); with the SF response 

normalised to give unity gain at its centre frequency for Q=8. 
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Fig. 1. Phase and amplitude responses for coch
lear model, relative to stapes motion. Left: 
for a point on basilar membrane (BM) with damp
ing factors (0) of 0.05 (selid line) and 0.20 
(dashed). Right: after 'second filter' (BM+SF), 
centred at 1001 Hz with Q=8 for low damping, and 
at 929 Hz with Q=20 for high damping. 

For a given input frequency, the program calcul

ated at each point the amplitude and phase of 

the BM response ~epresented by a vector in the 

complex plane) after which the filtering effect 

of the SF at each point is incorporated, thus 

giving a vector which represents the amplitude and phase of the activity at 

that point. This is shown diagrammatically in Fig. 2c. This can be imagined 

as rotating about the x-axis in time, and Figs. 2b and 2d are then 



a 

apex 

base 

b 

Re(v) 
L x x 

base apex 

e 

@ 

85 

Fig. 2. Waveform as a function of distance 
(x) along the EM for a 1 kHz input. (8 = 
0.20, Q=20). Re(v) and ImCv) refer to the 
real and imaginary parts of the (complex) 
excitation. (a) EM vibration pattern, (b) 
Effective excitation pattern after SF. 
(Net area under the curve is proportional 
to the instantaneous SR.) (c) Represent
ation of (b) in complex vectors. The waVe 
pattern 'rotates' in time about the x-axis. 
(d) Projection of (c), looking down the 
x-axis. (e) Calculation of summed respon
se (SR) by laying vectors end-to-end to 
form a phasor diagram. Resultant SR is 
distance between ends of chain (small with 
no irregularity). 

2-dimensional projections of it. These vectors are added to give a resultant 

'summed response' (SR) representing the net mechanical response or unlveighted 

cochlear microphonic potential. This is illustrated in Fig. 2e where the vec

tors of Fig. 2d are layed end-to-end to give a phasor diagram; the distance 

between the ends of this curve being the magnitude of the SR. It was verified 

that for the number of elements chosen (1000), the phase and amplitude changes 

between adjacent points were small enough to ensure the vector summation was 

sufficiently accurate (taking 4000 points made little difference) . 

3. RESULTS 

With a 'normal' BM and logarithmic frequency to linear place mapping of the SFs 

the SR was found to be extremely small and approximately uniform with frequen

cy. With any variation in BM phase and/or amplitude, however, the SR was no 

longer small. A small (8 element) irregularity was then incorporated into 

the SF mapping, such that each element had its SF centred at 1003 Hz (for 0 

0.05, 925 Hz for 8 = 0.20) instead of decreasing monotonically from 1022 Hz 

to 985 Hz as in the regular mapping (see Fig. 3). The effect that this has on 
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Fig. 3. Mapping of SF tuning (solid line) on 
to distance along EM, showing two irregular
ities (enlarged on inset; 8-elements = t mm). 
EM peak tuning values are shown (dashed) 
with an exaggerated basalward shift relative 
to resonance frequency. 

the SR can be seen in Fig. 4, where "0 dB" 

represents the SR for the uniform map. In 

both cases there is greatly enhanced response 

(+ 34dB) in a narrow frequency band (50 Hz 

for 8 = 0.05, and 30 Hz for 8 = 0.2). These 



86 

0 

'" .. 
u 
>-u 

:: 
0 2 "'" a. 

m30 
2 
~20 
.~ 
]-10 
o 

e; 0 

_'" BM domping (}05 BM domping O' 2 

',,- -"\" , 
sV"/-" '~""~":~'1\4"" ""'::""""""" ~"'" ., ' '- '0.... .. 

... ~,/ ,:/ \\" \\ 
.' .. : ', ... 
,", ... 

I '- \ 

Fig. 4. Phase and amplitude of SR as a 
function of frequency for (left) 8 = 
0.05, Q=8; (right) : 8 = 0 .20, Q=20. So
lid curves : 8-element plateau in SF map
ping; dot-dash: 8-element plateau in BM 
impedance; BM+SF curves shown for comp
arison. Zero amplitude is for regular 
SR mapping; arbitrary phase zero. 

are somewhat sharper than the BM+SF cur

ve, (dashed line), and the phase slope 

is steep and exceeds that for BM+SF. '\.... """ 
- 1~,L...8---'OCJ'-9--I'--"-I . -1I/-0-' 8--0""·-9-~~---JI' 1 

The 'notch' in the low damping case ari

ses due to cancellation between the loc-
Frequency ( kHz ) 

al response and the non-zero response 

from the regular mapping. 

The impulse responses were calculated (assuming linearity) from the amplitude 

and phase data for BM, SF, BM+SF, and for SR: the last case representing the 

click-evoked echo. These calculated impulse responses for both damping values 

are shown in Fig. 5. For SR, we have a slmo/ build up giving a very long delay 

to peak response, of about 14 cycles in both cases, compared with about 3 cyc-

les for the BM responses and about 8 or 6 cycles for BM+SF (8 ~ 0.05) . The 

picture is similar for 8 0.20. 

BM oomplnQ 0 '05 

~~F O·fotlOl a 

I • 

aM oompinQ 0 2 
SF O· foc'''' 20 

1l!11\\W.WM'_ 
SFmil 

~BM+-

o fO 20 3D 0 10 20 30 
Tim e ems) 

Fig. 5. Impulse responses f or: Left, top to 
bottom : SF alone (Q=8), BM alone (8 = 0.05), 
combined effects of BM+SF at same point, SR 
over all points with 8- element irregularity 
in SF mapping, centred at same point . Right : 
as left , for Q=20 and 0 = 0. 20. 

The effect of altering the length of the 

plateau region from 3 to 15 elements is shown 

in Fig. 6. The main effect is a change in 

bandwidth of the SR, with no effect on the 

phase slope. The impulse response for the 

15-element case illustrated, shows a slightly 

SR, left). 

lowe r latency than the 8-element case (Fig. 5, 

The sharp-cornered, horizontal 'plateau' used above is somewhat 

unrealistic, so a smoothed curve and less steep slopes were tried successive-

ly. These merely reduced the magnitude of the SR slightly, but not its band

width or phase slope. 

The interaction of two irregularities was also investigated. Fig. 7 shows 

the pattern of results found as a function of fr equency, with separation of 
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Fig. 6. SR phage and amplitude for various 
lengths of irregularity (3, 5, 7, 11, 15 elemen
ts). (0 = 0.05, SF Q = 8). Impulse response 
is for 15 element irregularity. 

the two (8 element) irregularities as parameter. 

Below 15 elements, the patterns merged but abo

ve that two separate regions were found. 

Instead of an irregularity in the mapping of the 

second filters, an irregularity in the cochlear 

partition impedance was introduced. An 8 elem-

ent section of BM was given a constant imped-

ance, corresponding to that previously occurring 

at the centre of that region, rather than having 

stiffness and resistance decrefing exponentially 

(see Eq. (1». The pattern of amplitude and phase irregularity seen suaaested 

some reflection (coefficient ~0.1) from the impedance discontinuity. The SR 
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Fig. 7. SR phase and amplitude, and impulse respon
ses, for a pair of 8-element irregularities at sep
arations of 16, 32, and 48 elements between centres. 
(6 = 0.05, Q=8). 

'" .. 
u 
>-

.:!. ., 
'" ~ 
a. 2 

50 

\ 

Fig. 8. SR phase and 
amplitude, and impulse 
responses, with a 
'damaged' region in the 
model. Regions of 
damage at 1 kHz place 
are (dashed) 1 element, 
(dot-dash) 8 element, 
(solid line, 'HF') 

-IOO."·7,.----:0..,·8,.---0='"·-=-9---'-'--.L..J',, entire basal end, up 
Frequency (kHz) to 1 kHz place. 

., 30 .., 
" == 20 

.. //}/\\ 
(0 = o. 05, Q=8). 

Q. 

E 
o 10 
a: 
Vl \~ 
OL-_-L_~_~~~ 

08 O·g ,., 
Frequency (kHz) 

"2 

is illustrated by the dot-dashed line in Fig. 4, and is comparable to that for 

the SF mapping irregularity, but the phase slope is steeper (equivalent to 

about 20 cycles delay at maximum), and shows a reversal in one frequency 

region. 

An alternative type of irregularity is in the sensitivity of individual eleme

nts: this is particularly relevant to localised hearing loss. It is found 

that even with just one element not contributing (equivalent to about 30 
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damaged hair cells) the expected SR is significant, and the frequency response 

found (Fig. 8 dashed line) is practically the same as the BM+SF response. 

Widening the 'damaged' region to 8 elements (dot-dash line) gives a broader 

bandwidth, and in the extreme case where all the basal contribution is elimin

ated, one finds a response (solid line, HF) like BM. Tbe corresponding impul

se responses are also illustrated, and show a decreasing latency as the 'dama

ged' region is widened (bottom to top). These results imply that the SR is 

susceptible to any non-uniformity in the sensitivity of the hair cells. 

The general pattern of findings was also found to be valid for a massless BM 

model, although with the parameters used the resulting amplitude and latency 

were less than the model with mass and a true resonance. 

4. SIMPLIFIED TREATMENT 

Since the SR with a uniform BM and SF mapping is very small, one can say that 

the non-uniform SR is very nearly equal to the difference between the response 

with an irreqularity and that with a uniform map. One then need only consider 

the region of irregularity itself, since the contributions from the rest of 

the BM will be identical in both cases. 

Next, one may take the amplitude of excitation to be constant and the phase to 

be linear over the region of a small irregularity. Then, since the phase of 

the resultant vector over the region is the same for both regular and irreg

ular mappings, and as the phase of the central element, the SR must have the 

same phase as this element; and the phase of the SR must vary with frequency 

as does the phase of the central element, i.e. as the phase of BM+SF. Under 

the above assumptions the magnitude of the SR will to a first approximation 

be proportional to A 6¢(6~ + 6~ /2) where 6¢ and 6~ are respectively the 

change in the SF and BM phase over the irregularity and A is the amplitude of 

the central vector. Agreement with the results of the full computation is 

reasonably good considering the approximations made. The additional phase 

slope for SR found in the comprehensive model arises from the slight change 

in amplitude across the irregularity. 

We conclude that the long latency which is seen in the SR is the result partly 

from the inherently large phase slope of the cochlear filter and partly from 

this additional factor. 

5. DISCUSSION 

A two~tage filter model with regular tonotopic mapping gives very little 
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SR due to the high degree of phase cancellation. This is specifically not so 

for either the BM alone (where SRmust represent stapes volume displacement) 

or an array of SF's alone. A slight irregularity in either or both of these 

functions, however, leads to a greatly enhanced summed response specific in 

frequency to the region of the irregularity. For model values chosen to 

match critical bands, the calculated bandwidth and latency values turn out to 

correspond with those for the cochlear echo (without recourse to reverse tra

vel time). The excess latency above that due to BMTSF can be viewed as a 

cancellation phenomenon attenuating the earlier part of the response. An imp

ortant function of phase delay along the BM may be to give a high degree of 

remote cancellation of mechanical and electrical responses to maintain stabil

ity with an active system. 

A mapping or sensitivity irregularity may be an early symptom of pathology. 

This might account for the occurrence of tinnitus after overstimulation (Kemp, 

1981, Zurek and Clark, 1981) and near the edges of a region of hearing loss 

(Wilson and Sutton, 1981). It is possible that under strongly driven condit

ions the degree of sensitivity irregularity between neighbouring elements may 

decrease. This would then reduce the relative strength of the SR and account 

for the low maximum levels of cochlear echo without requiring the underlying 

active process to saturate at this level. Clearly the latter would be an 

embarrassment for a sharpening mechanism intended to work over a wide dynamic 

range. 

The model has not considered the effect of feedback of SR to the middle ear 

and reflection back into the cochlea. This would be required in a full treat

ment to explain threshold minima, loudness enhancements, the occurrence of 

spontaneous emissions, etc. Thes-e effects would occur where the SR amplitude 

is appreciable and in phase with stapes vibration. The frequency spacing 

predicted by the model would then be about 70 Hz at 1 kHz, in agreement with 

experimental values (Kemp, 1979, Wilson, 1980a). 

It appears that the active process (i.e. the generators of the SR) must have 

some effect in sharpening the BM response (see Introduction). Si.nce anything 

that affects BM displacement must also (,vi th rigid walls and incompressible 

fluid) equally affect stapes motion, this local effect is transmitted to the 

stapes. With stapes volume velocity specified, this will be seen as a press

ure change. 

The long straight phase slopes found experimentally (Wilson, 198Qa) were not 
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found in the model. This may result from the limitations of the BM and SF 

models used. 
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Two classes of cochlear emissors were investigated on their amplitude and phase 
response to external continuous, sinusoidal stimulation. One class is that of 
narrowly tuned emissors which become active under stimulation, but show no 
spontaneous activity. The other class is already spontaneously active and 
remains active under stimulation. Both classes show non-linear input-output 
behaviour, frequency "entrainment" and "decoupUng" of ampUtude- and phase 
behaviour. Only in the non-spontaneous class the input-output amplitude beha
viour can be unambigiously described by power-like behaviour with power p = 
2/3. An attempt has been made to compare this power behaviour to that in an 
electrical near-critical feedback oscillator of the Wi en-bridge type and to 
give an explanation of input-output behaviour in terms of classical Landau 
theory on "phase tY'ansitions and critical phenomena". 

1. INTRODUCTION 

Since the pioneering work on acoustic emissions (AE's) by D.T. Kemp (1978) 

various aspects of this phenomenon have been investigated, for example emissive 

behaviour in normal and pathological ears (Kemp 1978, Kemp and Chum 1980a, 

Rutten 1980a, 1980b, Schmiedt and Adams 1981, Wilson 1980a, wit and Ritsma 

1979, 1980a, Wit et al. 1981), physiological vulnerability of AE (Anderson and 

Kemp 1979, Kemp 1982, Siegel and Kim 1982, Zurek and Clark 1982), spontaneous 

versus evoked AE's (Wilson 1980b, Zurek 1981), implications for models invol

ving non-linear and/or active processes (De Boer 1980, Johannesma 1980, Kemp 

1980a, Kim et al. 1980, Rutten 1980b, Wilson 1980c, Wit and Ritsma 1980b, 

Zwicker, 1979). Experiments and modelwork suggest that AE's originate in very 

narrowly tuned preneural active vibratory sources in the Organ of Corti. The 

vibratory sources can be either spontaneously active or become active upon sti

mulation, either after transient stimulation or during continuous sinusoidal 

stimulation. Sometimes, non-spontaneously active sources exhibit "transition 

behaviour", i.e. they change over to spontaneous behaviour after once having 

been evoked (sometimes referred to as "triggered tinnitus"). One is tempted to 

consider that the oscillators in the "black box" of the organ of Corti can be 

modeled in terms of non-linear feedback amplifiers, of which the feedback fac

tor can be modified externally (by stimulation) or internally (by parameter va

riation). The feedback factor can be sub-critical (stable passive tuned-filter 

behaviour), supercritical (stable oscillatory behaviour) or "true critical" 
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(fluctuating oscillatory behaviour). 

The idea of studying AE's in terms of "oscillators near feedback transitions" 

is attractive because electrical realisations of non-linear oscillators have 

been investigated in the past with regard to their critical properties (for 

example in Horn et al. 1976, Kawakubo et al. 1973). Moreover, even more attrac

tive is that in these studies it appeared that there exist close analogies be

tween the critical behaviour of oscillatory output voltage on the one hand and 

the developing of long-range order in many physical systems near phase transi

tions, such as in transitions in a gas-fluid system, in a paramagnetic-ferro

magnetic transition, in ferro-electrics, in lasers near threshold etc. One en

ters the field of "phase transitions and critical phenomena", a very extensive

ly and successfully studied field in especially solid-state physics during the 

last two decades (for introduction and review see Stanley 1971 and Domb and 

Green 1976). Theories in this field, from mean-field or Landau theory to ad

vanced renormalization or mode-coupling theories predict universal behaviour 

of critical phenomena in widely differing physical systems. The next section 

gives a very short survey of the critical behaviour of electrical oscillators 

regarded upon in terms of Landau theory. 

2. PHASE TRANSITIONS AND CRITICAL PHENOMENA 

Landau theory (see Stanley 1971) basically assumes that in a magnetic system 

the thermodynamic Helmholtz potential can be expanded in a two-variable Taylor 

series about the critical temperature T ~ Tc and about the magnetization M = O. 

It then predicts power-law behaviour near Tc for quantities such as magnetiza

tion, susceptibility, critical isotherm and specific heat. For example in a 

magnetic phase transition the magnetization M varies with temperature near Tc 

as M ~ (Tc-T)~, for field H = 0, T < T and M small. The isothermal zero-field 
dM c 

susceptibility XT = (3H)T varies as XT ~ (T-Tc )-l, for T > Tc' M = 0 and H = O. 

At T = Tc the magnetization develops as (the critical isotherm) M ~ H1/3 It is 

conventional to denote the powers as 6, -y and 1/0 respectively. Thus 6 1/2, 

Y = 1 and 0 = 3 in Landau theory. 

Kawakubo et al. (1973) and Horn et al. (1976) showed that a close analogy 

exists between the above described magnetic transition and the fluctuations of 

the output voltage of a negative resistance oscillator near threshold of 

oscillation. Their oscillator was a conventional Wi en-Bridge oscillator (Fig. 

1). As the circuit equation they use the threshold approximation 

f(t) (1) 
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Fig. 1. Wien-bridge electrical oscillator circuit. V : 
external drive. Feedback is controlled by variation §f 
R . Non-linearity is introduced by adding non-linear 
etements to one of the feedback branches. 

c in which the feedback factor a = R2/Rl+R2 and acritical 

== a c 
1/3 - l/A. As driving force a Johnson noise 

source f(t), to be thought in Va' is included. As a non

linear element, Horn et al. add a light bulb to the feedback circuit. Feedback 

a is then determined by the power dissipated in this non-linear element. The 

light bulb has a relaxation time T. This gives 

da a-ao 2 4 
dt + -T- = a I'¥I +bl'¥l + .. , (2) 

ao is the linear part of a, a and b are positive constants, '¥ is the complex 

amplitude of the oscillatory voltage defined by V(t) = Re '¥(t) e iWot. Stable 

oscillations then obey the condition 

o (3) 

where < > denote time averages. 

When a voltage Va Re E eiWot is applied the steady state oscillation condi

tion becomes 

(a -a ) <I'¥I> + T a <1'¥13> + T b <1'¥15> 
o c 

2 
+ ... -E/9Wo = 0 

(in the approximati.on f(t) = 0 one has <,¥>2 <1'¥1>2 = <1'¥1 2». 

with the identifications a o ~ T and a c ~ Tc and '¥ ~ M and E ~ H Eqs. (3) and 

(4) are equivalent to those in Landau theory. This implies that the critical 

behaviour of such an oscillator obeys 

<'¥> "v (a -a )1/2 
c 0 

o<'¥> -1 
~ "v (ao-ac ) 

and <'¥> "v E1/3 

(E 

(E 

(a 

0, 

= 0, 

= a 
0 

a ~ a ) 
0 c 

a :::>a c) 0 

) 
c 

(4) 

(5) 

(6) 

(7) 

Indeed, Horn et al. did observe experimentally power-law behaviour with powers 

S = 1/2, Y = 1 and 0 = 3 in this electrical analogue of a magnetic phase tran

sition (for details see Horn et al. 1976). In order to test Eq. (7) in the AE 

behaviour of the cochlea one should replace 1) the output voltage '¥ of the 

electrical oscillator by the output pressure amplitude Po of an AE (as obser

ved in the outer ear canal) 2) the driving voltage E by the pressure amplitude 

of a stimulating sinusoidal input PI (i.e. the input into the ear canal). Un

fortunately, theAE aquivalent of Eqs. (5) and (6) cannot be tested in humans, 

as this demands independent variation of the feedback factor a (possibly in an 

animal model this can be achieved by physiological manipulation). Of course, 
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testing Eq. (7) implies the assumption that the cochlear oscillators are very 

close to criticallity i.e. a % a c . 

In the next section we shall investigate to which extent the supposed relation 

<P > ~ P 1/3 is experimentally confirmed. 
o I 

3. EXPERIMENTAL METHOD AND RESULTS 

110T dBl 

os 
fr~y 

235kHz 

Fig. 2. Drawn line: Amplitude response characteris
stics of the microphone (Knowles, BT-1751] mounted 
in the meatal probe device. Dashed line: Amplitude 
response characteristic of the telephone (Knowles, 
EK 1606) mounted in thE same meatal probe device. 

The recording and stimulating equipment consisted of a miniature microphone/te

lephone assembly, the same as used in previous studies (Rutten 1980b). Their am

plitude characteristics are given in ,Fig. 2. The microphone output voltage was 

analysed with the aid of a Brookdeal two component lock-in analyser (type 9505 

SC) in the two-phase computer mode. The reference input of this analyser was 

connected to the input of the stimulus controlling amplifier. The stimulus was 

a continuous sinusoid. Amplitude and phase of the microphone output were analy

sed as a function of frequency between about 1000 and 4000 Hz. By vectorial 

analysis of the microphone output phasor the emissor amplitude and phase were 

separated out of the total signal, which is the vectorial sum of stimulus and 

emission (see also Kemp 1980b). The frequency of the stimulus was slowly swept 

back and forth between 1000 Hz and 4000 Hz at various stimulus levels varied 

by 5 dB steps between -20 dB and +40 dB HL. Also, at the beginning of each ex

periment, a search was performed for spontaneous emissions by the same proce

dure as above, but without input to the telephone. 

In ten young adults ,17 ears) with normal hearing acuity narrowly tuned conti-

nuous emissive behaviour was observed. Two types of emissive behaviour could be 

distinguished. The first type consisted of spontaneously present emissions 

(fluctuating amplitude , sharply tuned) which became stronger upon external sti

mulation at their own frequency and also became broader and asymmetrically tu

ned. The second type consists of emissions which were not spontaneously present 

but which became active during stimulation at a specific frequency. The main 

distinction is that their input/output amplitude behaviour (as a group) differs 

from the first-type group. Four ears showed both types of emissive behaviour. 

In most ears two or three emissors were observed. In one ear up to eighteen 

emissors were detected, between 1000 and 3000 Hz with a frequency spacing of 

about hundred Herz. 
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Fig . 3 . Left : Mi crophone out
put on a linear ampli tude 
s cale i n subject AS as a 
function of f requency and 
s timulus conditi on . Both 
spontaneous and stimulat ed 
(at 5 dB HL) output are shown . 
The response is the total 

~ 
6 dB SPL response, i. e . the vectorial 

sum of s t i mulus and emi ssion . 
Lower t race: one spont aneous 
emissi on with ampli t ude of 4 
dB SPL emer ges out of a noise 
floor of about -1 6 dB SPL. Up -. • ~ 6dB 

I 4 I 

SPL per t race : amplitude of t he 
S~ s timulus i s given as t he drawn 

line (see text) . The 'wodula
tion " (e xcept t he lar ge dip) 
under and a bove t his smooth 

2.10 230 kHz 250 
drawn cur ve r eflects the fre
quency "entrainment " behavi
our of 9 dis tinct emissions , 

whi ch become active under s timulati on . Fig. 3. Right : Same exper i 
f requency scale . ments as left , one month late2', on an ex tended 

Figure 3 demonstrates typical results in an ear which has one spontaneous emis

sion at a level of -4 dB SPL at a frequency of 2.38 kHz (lower trace in left 

part of Fig. 3). The remaining portion of this lower trace shows the noise level 

in this ear of about -16 dB SPL. The emission is very sharply "tuned", in fact 

the observed "bandwidth" is that of the two-phase analyser (So, the cochlear 

emissor may be even more sharply tuned). Upon stimulation with a 5 dB HL sinus

oid, (upper trace of left part of Fig. 3), the tuning pattern of this emission 

changes, it becomes asymmetric, its "peak to valley" level corresponds to 7 dB 

SPL. In the same trace one observes that nine other emissors become active at 

the left and right side of the "spontaneous" emission. The smooth drawn curve is 

the amplitude curve in the absence of emissive behaviour, this curve has been 

scaled down from the response curve at a stimulation level of 50 dB HL, at which 

level emissors are saturated and very small compared to the stimulus vector (see 

also Kemp 1980b). Upon increasing the stimulus level (results not shown) the 

"amplitude spectrum" retains its shape as at 5 dB HL, but shifted somewhat to 

lower frequencies. The right part of Fig. 3 shows details of results of re

measurements in the same ear, one month later, presented on an extended frequency 

scale. A strong similarity between right and left part of Fig. 3 can be observed, 

indicating the extreme stability of these emissive effects. Whereas Fig. 3 gives 

the total microphone output, Fig. 4 presents (in an other subject) emiss or am

plitude and phase, obtained after vectorial subtraction of the input signal from 

the total signal. This emissor-amplitude plot shows 5 emissors of which one is 

also spontaneously present at f = 1.61 kHz. At the 15 dB HL stimulus level the 
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Fig. 4. Lower part: Emissor phase reo 
stimulus at two stimulus levels, -5 
and 15 dB HL. The subsequent downward 
sloping curves are in fact continuous
ly connected to each other. Phase beha
viour remains unchanged under stimulus 
level variation. upper part: Emissor 
amplitude at three stimulus levels 
(dashed and drawn curves) and sponta
neous (dashed-dotted cvyve). The ver
tical scale is linear, however, curves 
are arbitrarily shifted vertically. At 
three peaks dB SPL is indicated. Note 
that peaks shift gradually to lower 
frequencies upon increasing the sti
mulus level. 

amplitude spectrum shows broadened tu

ning. The frequency of each peak is 

"entrained" to the left with increa-

sing stimulus level. Corresponding 

phase spectra (lower part of Fig. 4) 

do not show this entrainment, i.e. 

emissor phase behaviour" is unchanged 

under stimulus variation. 

Figure 5 summarizes the input-ouput (I/O) amplitude behaviour of emissors 

(across all ears) which were present under stimulation but which disappeared 

when the stimulus was removed. So, Fig. 5 presents the I/O characteristics of 

the non-spontaneous class of oscillators. The curves have been arbitrarily shif

ted along the horizontal axis in order to get a more clear overall view. For the 

emissive 
response 
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on each curve indicates the 5 dB HL sti-
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racteristic can be described by a power

law with power p = 2/3. About half of the 

number of the emissors show saturation be-

haviour. One of them shows power-like be-

Fig. 5. Non-spontaneously present emissors. 
Input-output behaviour of emissor response 
under stimulation at the emissor frequency 
(at maximum of tuning). Curves have been 
shifted arbitrarily along the stimulus 
scale. Vertical short lines at each curve 
denote 5 dB HL stimulus level. Average I/O 
power can be described very well by p = 
2/3. 
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Fig. 6. Same as fig. 5, but for spon
taneously present emissors. The sponta
neous emissor amplitude is indicated at 
left-under. Upon stimulation one finds 
the curves on the right. Horizontal 
scale in dB HL, curves have not been 
shifted as in fig. 5. I/O behaviour 
varies widely from p = 2/3 to gradually 
sloping (curve 5 for example) and final
ly to full saturation i.e. p = o. 

haviour over more than 40 dB, which is 

an exceptionally wide range. For the 

other class of emissors, i.e. the spon

taneous class, input/output results are 

given in Fig. 6. The open circles at 

the left show the spontaneous amplitude, while the output under stimulation is 

given in the various traces on the right. Numbers correspond to circles at the 

left. Compared to Fig. 5 the input-output behaviour is less homogenous, power 

2/3 is observed (curves 2 and 3) as well as strongly saturating behaviour (cur

ves 4 and 5) . 

4. DISCUSSION 

Experiments under continuous sinusoidal stimulation showed clear-cut power-like 

I/O behaviour with power p = 2/3 for the non-spontaneous emissors (Fig. 5), 

while the spontaneous class exhibits no such homogeneous power behaviour (such 

varying-power like behaviour was also found earlier under transient stimulation 

see Kemp 1978, Rutten 1980a,b, Schloth 1982, Wit et al. 1981). So, in order to 

compare with predicted power behaviour, we shall confine ourselves to the non

spontaneous class of oscillators (This confinement also allows to neglect 

Brownian noise in the cochlea as an initiating factor for spontaneous oscilla

tion, see de Vries, 1956). 

Our first concern should be to evaluate whether the condition u % Uc is experi

mentally fullfilled. Indeed, the non-averaged oscillation amplitude fluctuated 

strongly, with a typical time constant of 5 ms. This was observed in sampled 

portions of the filtered microphone signal of about 100 ms duration. However, 

a more precise evaluation of fluctuating behaviour should be in terms of cor

relation functions, to be performed in future experiments. 

The non-linearity of the I/O behaviour together with the "decoupling" of phase 

and amplitude (as in Fig. 4) indicate that the oscillators belong to the class 

of non-linear oscillators. Also, the asymmetrical tuning under stimulation (Fig. 

3) suggests non-linear limit-cycle oscillation (Machlup and Sluchin 1980). The 
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predicted power p :: 1/0 = 1/3 contrasts with the observed pmver p = 2/3. Apart 

from general criticism on Landau theory (Stanley 1971), one cause for this dis

crepancy might be that the expansion in Eq. (4) is not appropriate. Modifica

tion, for example by changing the positive sign in front of T a <1~1>3 (Eq. 4) 

to a negative sign yields 0 % (see Horn et al. 1976, from their fig. 3 the 

<I~I> versus E behaviour can be deduced for a ~ a c )' So, our experimental re

sult 0 = 3/2 li,"s somewhere "in between" these two expansions. Fitting to the 

"right" expansion seems achievable. However, construction of the right expan

sion should be on basis of experimental physiological/physical evidence on the 

real nature of feedback mechanisms in the organ of Corti, otherwise fitting re-

mains speculative. 

Resuming, we think to have presented a first step on a new way in the field of 

auditory physics to analyse behaviour of acoustic emissions. 
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With time window FFT analysis the latency of cochlear acoustic emissions was 
calculated. If mainly one frequency is present in the emission signal, this 
latency is frequency dependent: the lower the frequency, the longer the laten
cy. In the second part of this paper the measurement of minimum stimulus ener
gy to evoke a cochlear acoustic emission is described. This energy is so low 
(1 eV) that processes at molecular level are likely to play an important role. 

1. LATENCY OF COCHLEAR ACOUSTIC EMISSIONS EVOKED BY TRANSIENT STIMULI 

The latency of different components in click evoked cochlear acoustic emissions 

(C.A.E. 's) is frequency dependent. Low frequency components have longer laten

cies than high frequency components (see for instance the review by Anderson 

1980). This frequency dependency is in qualitative agreement with a model pro

posed by Kemp (1980) for C.A.E.'s. In this model a signal, based on the 

cochlear travelling wave, is fed back to the stapes. Recent measurements of 

Johnsen en Elberling (1982) in human subjects however do not show such a clear 

relationship between latency and frequency. Also measurements in monkeys (Wit 

and Kahmann 1982) throw some doubt upon the straightforward frequency-latency 

relationship put forward in earlier papers. Therefore we have remeasured laten

cies of C.A.E.'s using a time window analysis technique. 

We selected one ear (subject LE, right ear) that gives C.A.E. 's at different 

frequencies when stimulated with a click. Frequencies for relatively strong 

emissions are: 1.09 kHz, 1.47 kHZ, 1.61 kHz and 3.06 kHz. (This ear was also 

described in Wit et al. 1981). Click evoked C.A.E's were recorded from this 

ear with standard equipment. (Wit and Ritsma 1979). Clicks were presented with 

a repetition rate of 40/s. Responses were averaged 1024 times with a Datalab 

DL 4000 signal averager and analysed with a computer. In order to remove 

components from the averaged signal that are proportional to stimulus level, 

two subsequent recordings were subtracted after multiplication of the second 

recording by a factor of 2. This second recording was made with a 6 dB lower 

stimulus level as the first recording. (Wit and Kahmann 1982). Frequency spectra 

of the difference signal obtained in this way were calculated using an FFT algo

rithm. This was done after multiplication of the difference signal by a 3 ms 

long Hanning (cos 2 ) time window. By shifting the centre of this time window 
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along the time axis of the difference signal, the frequency contents of differ

ent parts of the signal could be studied. The results of such an analysis of 

the C.A.E.'s from LE's right ear is given in fig.l. This figure does not show 

a straightforward relation between response frequency and response latency. In 

the 3 kHz range for instance responses are present along the entire time axis 

from 5 to 17 ms after stimulus onset. 

Fig.l. Frequency spectra 
1-=----....L.!..L~i:!L--.loo17 of parts of C.A.E.signal 

for different positions 
of time window. 

In earlier measurents we had found (Wit and Ritsma 1980a) that an ear that 

gives C.A.E. 's at more than one frequency can be selectively stimulated with 

filtered clicks. By tuning the filter frequency to the frequency of one parti

cular C.A.E. component, this component is more strongly present in the frequen

cy spectrum of the time averaged response signal. Therefore we repeated the 

procedure described above with filtered clicks as stimuli. The centre frequency 

of the bandpass filter (24 dB/oct) was set at 1.1,1.5 and 3.1 kHz in three 

subsequent series of measurements. The amplitude of the emission component 

under study is given as a function of time window position in fig.2. Now a clear 

relation between frequency and latency can be seen for the 3.1 and the 1.5 kHz 

response components. The relation is less clear for the 1.1 kHz component. 

Therefore we selected another subject (PK) whose left ear emits predominantly 

one frequency (1.09 kHz). This ear was stimulated with an unfiltered click and 

the response signal analyzed. The result of the time window analysis is also 

given in fig.2. It gives a latency of approx. 11 ms for the 1.1 kHz response. 

This is at the same position along the time axis where the 1.1 kHz response 

from subject LE has a maximum. We therefore accept 11 ms as the value for the 

latency of a 1.1 kHz response. 
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Fig.2. Amplitude of emission 
components for different time 
window positions. Black dots re
present measurements from the 
same ear (LE). The open circles 
are from measurements from an
other ear (PK) . 

The latencies that can be derived from fig.2 are plotted in fig.3 as a function 

of C.A.E. frequency, together with a straight line. This straight line is the 

best fit to data from earlier measurements (Wit and Ritsma 1980b). The measure-

ments described in this paper give somewhat longer latencies for the 1.5 and 

the 3.1 kHz response than the values predicted by the straight line. Because 

this straight line fits latencies of response onset instead of maximum ampli

tude, this difference is not surprising. A second explanation for the observed 

latency difference might be that the non-linearity of a response is latency 

dependent. (Rutten 1980). The longer the latency of a response, the more the 

relation of its amplitude to stimulus level deviates from linearity. This fact 

may shift the envelope of a response component towards a longer latency value 

in the difference signal obtained with the procedure described above. However 

time window frequency analysis of a single response signal (without subtracting 

a response signal obtained with different stimulus level) yields exactly the 

same value for the latency of the 3.1 kHz response (6.1 ms) as that given in 

fig.3. 

Fig.3. Latency of three response components from 
subject LE's right ea~ compared to theoretical 
fit to earlier measurements. .0 
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So we conclude that there is a straightforward relation between frequency and 

latency of isolated C.A.E.'s (predominantly one single frequency). The lower 

the frequency of the emission, the longer the latency. However for complex 

emissions (more than one frequency in the response signal) such a simple rela

tion does not seem to be valid. 
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2. MINIMUM STIMULUS ENERGY 

It is well known that stimuli below auditory threshold can still give cochlear 

acoustic emissions. Wilson (1980a) for instance measured C.A.E. 's with quadra

ture lock-in amplifiers at stimulus levels 35-50 dB below auditory threshold, 

with continuous tone stimulation. In order to measure the minimum stimulus 

energy required to evoke an acoustic response from the cochlea, we selected one 

subject (DL) who was quiet enough to make measurements of very low response 

levels possible. 

Bandpass filtered (24 dB/oct) 0.1 ms long rectangular pulses were delivered to 

this subjects right ear with a repetition rate of 40/s. In earlier measurements 

we had found that this ear has a relatively strong C.A.E. component at 1.29 kHz 

(Wit et al.1981). Therefore the centre frequency of the stimulus bandpass 

filter was set at 1.3 kHz. Responses were measured with a sensitive microphone 

(Wilson 1980b), connected to the ear with a 1 cm long tube. This length of the 

connecting tube gives the microphone its maximum sensitivity around 1.3 kHz 

(Wit et al 1981, fig.1). The microphone signal was amplified, high pass filter

ed (200 Hz) and averaged 2048 times (1024 bins per record; binwidth 20~s). A 

typical result of a series of 4 measurements is given in fig.4. This figure may 

give the impression that the response (between dashed lines) can hardly be 
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Fig.4. Averaged microphone signal. 
Stimulus energy decreases with 6 dB 
steps from top to bottom, while ver
tical scale amplification increases 
with 6 dB steps. Response componen~ 
is present between dashed lines. 
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separated from background noise. However, stimulus levels are already very low 

in fig.4 (the 28 eV stimulus was approx. 10 dB below audible threshold). Stimu

lus energy was calculated by squaring the microphone signal and integrating it 

over the first 4.5 ms. Transformation into electron volts of energy entering 

the middle ear was done by assuming that no energy is reflected at the tympanic 

membrane with an area of 70 mm 2 • Stimulus peak level was calibrated in a 

1.3 cm 3 coupler with a ~" B&K condensor microphone. This coupler had the same 

volume as the ear under study, when measured with a clinical middle ear impe

dance meter (at 220 Hz) . 

The FFT of the signal interval between dashed lines in fig.4 (256 bins) was 

calculated and the amplitude of the 1.17-1.37 kHz interval plotted as a func

tion of stimulus level in fig.5. This amplitude was calibrated by calculating 

the FFT of a 1.29 kHz tone burst with constant amplitude in the recording 

interval of 256 bins and known sound' pressure level. 
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The ear under study permanently emits sound with a frequency of 1.29 kHz (fig. 

6). This spontaneously emitted signal is not "locked"to the time scale of the 

signal averager if the stimulus is to weak. So in the time averaging process it 



106 

will to a large extend disappear (Wit et al. 1981). The spectrum given in fig. 

6 was measured with a PAR type 4512 FFT real time spectrum analyser in the 

spectrum averaging mode. 

Fig.6. Top: Spontaneous emission from DL's 
right ear. 
Bottom: Signal from artificial ear (with a 
few 50 Hz harmonics). 

FREOUENCY 1kHz) 

A method complementary to frequency analysis of C.A.E.'s is to make use of the 

cross-correlation function for the response signal measured at low stimulus 

level and a reference Signal measured at a much higher stimulus level (Johnsen 

and Elberling 1982). We used a response measured with a 3000 eV stimulus as re-

ference. The maximum cross-correlation coefficient is given as a function of 

stimulus level in fig.7. 
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Fig.7. Maximum cross-correlation 
coefficient as a function of stimulus 
energy for 1.29 kHz response. Refer
ence signal was a response measured 
with high stimulus energy (3000 eV). 
The dashed line is the result of a 
simple smoothing procedure. 

Figures 5 and 7 show clearly that stimulus energies above approx. 1 eV do in

fluence the permanently present emission at 1.29 kHz in DL's right ear. The 

result of this influence is a higher amplitude for the 1.29 kHz component in 

the time-averaged response signal than without stimulus. These stimulus energies 

are so low that processes at the level of single molecules are likely to be 
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responsible for the observed phenomena. 

This assumption immediately raises the question of how the stimulus energy is 

concentrated to reach the molecule that absorbs this energy. It is unlikely 

that "macron-mechanical processes like vibrations of relatively large parts 

of the Organ of Corti play an important role. The understanding of absorption 

of acoustical energy at molecular level in the cochlea also requires a profound 

study of the influence of Brownian motion upon this process. (De Vries 1952, 

Harris 1967, Bialek 1980). 
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The recent observations of sharply-tuned basilar membrane motion and the 
existence of cochlear acoustic emissions provide evidence that the cochlea 
is an active mechanical system, capable of generating mechanical vibrations. 
A model of cochlear mechanics is presented in this paper to support the 
hypothesis that the primary function of mechanical generators in the cochlea 
is to amplify displacements of the basilar membrane at sound levels near the 
threshold of hearing. Some numerical solutions of this model show basilar 
membrane displacement amplitudes of about 1 angstrom for sound pressures at 
the eardrum of 0 dB SPL (20 p.Pa). The rate of energy flow out of the basilar 
membrane into the cochlear fluid due to the cochlear amplifier is often more 
than 40 dB greater than the rate of energy flow into the cochlea from the 
stapes. The action of the cochlear amplifier in this model may be inter
preted as a piezoelectric effect which provides a delayed positive feedback 
to basilar membrane motion. 

1. INTRODUCTION 

The experimental observations in recent years of cochlear acoustic emissions 

(Kemp, 1978) and sharply-tuned basilar membrane (BM) displacements (Sellick 

et al., 1982) have forced us to modify some traditional ideas about cochlear 

mechanics. The existence of acoustic emissions from the cochlea indicates 

the presence of mechanical generators within the cochlea. If we consider 

the cochlea to be an active mechanical system which can utilize available 

biochemical energy to generate mechanical vibrations, then we can begin to 

explain the sharply-tuned frequency response observed in the firing rate of 

auditory nerve fibers directly in terms of BM displacements. A model of 

cochlear mechanics is presented in this paper to support the hypothesis that 

the primary biological function of mechanical generators in the cochlea is 

to amplify BM displacements at sound levels near the threshold of hearing. 

2. THE COCHLEAR MODEL 

We will consider a linear, two-dimensional, ideal-fluid model of cochlear 

mechanics (Neely, 1980). The two fluid-filled chambers are each of height H 

in the y dimension and length L in the x dimension; they are separated by a 

cochlear partition at y=O, which is open in the apical region (L-Lh)<X<L 

to represent the helicotrema. Displacements of the cochlear partition in 

the model are the same as EM displacements. The stapes boundary at x=O 
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drives the cochlear fluid. 

The cochlear amplifier will be implemented by modifying the (usually pas

sive) representation of the mechanics of the cochlear partition. Since we 

are dealing with a linear model, it is convenient to characterize the parti

tion mechanics by a complex-valued driving-point impedance Z. The driving

point impedance is defined as the ratio of pressure difference across the 

cochlear partition to BM velocity as a function of position x and radian 

frequency 
• • -3 w = 27T f. The units of Z are dyn sec cm 

The BM impedance Z will be defined as the sum of two parts 

Z(x,w) = Zb(x,W) + Za(x,w) 

where Zb represents the contribution of the mass, damping, and stiffness 

of the BM 

and Z represents the effect of the cochlear amplifier 
a 

-(R3)2 
Za(x,W) 

iw M2(x) + R2(x) + K2(x)/iw 

The definition of Za was chosen according to the restriction that the 

cochlear amplifier should add only one degree-of-freedom to the partition 

mechanics at each position. The physical interpretation for Za is that 

(1) 

(2) 

(3) 

it represents an active biomechanical system located in the vicinity of the 

outer hair cells, which exerts a force on BM in parallel with the force due 

to fluid pressure. An alternative definition for Za will be presented in 

section 4. 

The choice of numerical values for BM impedance is largely a trial-and-error 

process relying on physical principles and comparisons between numerical so

lutions of the model and experimental observations. The following mechanical 

parameter functions were chosen to represent a cat cochlea using as a guide 

the cochlear input impedance of Lynch et al. (1982) the cochlear frequency

to-place map of Liberman (1982) and the single nerve fiber response measure

ments of Allen (1983): 

109 exp(-2.4x) 

3 
400 + 10 exp(-1.2x) 

(4) 

(5) 
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Fig. 1. The driving-point impedance Z of the basilar membrane (BM) is 
shown as a function of frequency at four places. The numerals next to 
each curve indicate the position as a fractional distance along BM. Part 
(a): magnitude of Z in dB re 1 dyn'sec'cm-3 ; part (b): phase of Z 
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with ~ radian (1/2 cycle) per division; part (c): real part of Z; part 
(d): imaginary part of Z. The impedance was computed at frequencies which 
are mUltiples of 48.8 HZ using the equations for Z given in the text. 
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Ml(X) 
-3 

10 exp(1.2x) (6) 

K2 (X) 250 exp(-2.2x) (7 ) 

R2 (X) 
-4 

10 exp(1.1x) 
-4 + 8xlO exp(-2.2x) (8) 

M2 (X) 3xlO-9 exp(2.2x) (9) 

R3 (X) 1.0 (10) 

The BM impedance is shown in Fig. 1 at four positions: X/(L-Ln) = 0.2, 0.4, 

0.6, and 0.8, where (L-Lh ) = 2.5 cm is the length of BM. The effect of Za 

on the BM impedance is clearly seen in Fig. l(c). At each BM position there 

is a resonant frequency for Za' at which the real part of Za' which is 

always negative, reaches its largest (most negative) value. For the parameters 
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chosen, the real part of Za becomes sufficiently negative to cause the real 

part of the driving-point impedance Z to become negative as well for a certain 

range of frequencies for each BM position. Whenever Z has a negative real 

part, the BM is a source of mechanical energy; this energy flows out at BM 

and into the cochlear fluid. The energy flow out of the BM does not cause the 

cochlear mechanical system to become unstable, if there is sufficient damping 

in other regions of BM to absorb the generated energy. 

3. NUMERICAL SOLUTIONS FOR BM DISPLACEMENT 

Numerical solutions for the cochlear model were obtained by a time-domain, 

finite-difference method (Neely, 1981). The height H = 0.1 cm and length 

L = 2.55 cm were represented with 6 and 409 points respectively. The 

stimulus was defined as a low-pass click voltage, followed by simple models 

for earphone transducer and middle-ear (Matthews, 1980). The cochlear state 

was computed at 1 microsecond intervals for 20480 time-steps. The computed 

eardrum pressure and BM displacement at 4 positions were saved every 10 

time-steps. The frequency response of BM displacement re eardrum pressure 

(shown in Fig. 2) was computed as the ratio of the discrete Fourier trans

forms of the respective 20 msec time responses. The frequency interval 

between data points is 48.8 Hz. 

The amplitude of BM displacement in Fig. 2(a) is normalized to show the peak 
-10 

amplitude in dB re 1 angstrom (10 m) corresponding to 0 dB (re 20 MPa rms) 

sound pressure level at the eardrum. The shape and characteristic frequency 

of the four response curves are similar to that of typical single nerve 

fiber responses in cat. The amplitude of BM displacement relative to eardrum 

pressure in this model at 7 kHz is nearly the same as that measured by 

Sellick et al. (1982) in guinea pig at 18 kHz. It should be noted that the 

amplitude ratio shown in Fig. 2(al would probably be larger if the model 

were three-dimensional and could represent BM width as being less than the 

entire width of the cochlea. 

The slope and delay functions in Figs. 2(c) and 2(d) were computed by taking 

differences of adjacent points of the amplitude and phase functions, respec

tively. The delay function represents the slope of the phase in cycles per 

kHz. The "stair-step" appearance of the delay curves in Fig. 2(d) is an 

indication of two straight-line segments in the phase curve plotted on a 

linear frequency scale. This was also a characteristic feature of Rhode's 

(1978) observations of the phase of BM displacement in squirrel monkey. 
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Fig. 2. Displacement of the basilar membrane (BM) re sound pressure at the 
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for eardrum pressure of 20 p,Pa rms; part (b): phase of BM displacement re 
eardrum pressure with 1 cycle per division; part (c): slope of the magni
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An attractive feature of the cochlear amplifier hypothesis is that it pro

vides a means of explaining the deterioration of sharp tuning which is often 

observed experimentally in a traumatized cochlea. The loss of the tip of a 

tuning curve is interpreted as a loss of cochlear amplifier gain. The 

impedance parameter R3 can be considered as a sort of gain control on the 

cochlear amplifier. Solutions of the cochlear model for R3 = 1.0, 0.9, and 

0.0 are shown in Fig. 3. The decreased cochlear amplifier gain clearly has a 

significant effect on BM displacement near the characteristic frequency. The 

amplitude at 7 kHz in Fig. 3(a} drops about 20 dB for R3 = 0.9 and drops 

about 70 dB for R3 = 0.0. 

4. DISCUSSION 

The BM impedance presented in section 2 can be "synthesized" by a mechanical 

system consisting of 2 masses, 2 springs, 2 positive damping elements, and 1 
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Fig. 3. Effect of changes in cochlear amplifier gain on basilar membrane 
(EM) displacement. Parts (a) - (d): same as in Fig. 2. The solid lines 
are reproduced from Fig. 2 (position 0.4, R3 = 1.0). The dashed lines 
show EM displacement with R3 = 0.9 and the dotted lines show EM dis
placement with R3 = 0.0. 

negative damping element. The use of negative damping in BM impedance was 

first presented as a means of explaining the ante- to post-mortem changes in 

BM displacement (Kim et al., 1980). A cochlear model with negative damping 

elements can produce BM displacements which closely resemble typical neural 

responses (Neely and Kim, 1983). Negative damping provides a convenient 

means of modeling active mechanical behavior in a linear cochlear model. 

A more appealing physical interpretation of the cochlear amplifier is that 

it represents a piezoelectric action powered by the cochlear microphonic 

(Davis, 1981). This type of electromechanical action can be modeled as a 

stiffness component which has a delayed effect. The corresponding definition 

for Za would be 
Za(x,W) = [K3(x)/iW] exp[-iw r(x)] (11) 

where r is a transduction latency of several microseconds. Preliminary 



frequency-domain model results using Eq. (11) to implement the cochlear amp

lifier are very similar to those using Eq. (3). Time-domain implementation, 

however, is much more difficult for Eq. (11). 

Non-linearities in cochlear mechanics are likely to originate in the coch

lear amplifier. One plausible way of modeling a nonlinear cochlear amplifier 

would be to set R3 (or K3 ) to zero if BM displacement exceeds some thresh

old, thus simulating saturation of the cochlear amplifier. 

Evidence for the existence of the cochlear amplifier is continually accumu

lating (Davis, 1983). Both analytical (de Boer, 1983) and numerical (Neely 

and Kim, 1983) model results now indicate that a cochlear amplifier is 

essential for producing basilar membrane displacements with the high sensi

tivity and sharp tuning observed experimentally. 
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We propose a feedback model for cochlear mechanics in which the hair cell 
cilia exert an active restoring force in response to displacement. The 
restoring force is described by first order kinetics and leads to an increase 
in sensitivity and frequency selectivity of the basilar membrane response. 
Several different experimental results from our laboratory suggest that hair 
cell membrane potential plays an important role in this feedback process. 
They include the measurement of acoustic emissions in response to passing 
sinusoidal electric current through the cochlea and the modulation of the 
sound pressure level (SPL) of single tones by electrical current. The latter 
effect saturates at levels of the acoustic stimulus similar to the level at 
which the cochlear microphonic saturates. The experimental data suggest that 
saturation of the transduction process at high SPL could account for the 
saturating nonlinearity observed by others in basilar membrane displacement. 
These electromechanical effects may also explain the generation of acoustic 
harmonics and distortion products as well as the positive cochlear summating 
potential. 

1. INTRODUCTION 

We have been exploring an extension of a hypothesis of cochlear function 

originally proposed by Gold (1948) and investigated in more detail by Neely 

and Kim (1982). The important assumption is that the outer hair cells exert 

an active force on the basilar membrane in response to movement of their 

cilia. Our model differs from that of Gold in that the active force is 

proportional to displacement rather than velocity. The model is a negative 

feedback system since at low frequencies the action of the hair cells is to 

oppose the movement of the basilar membrane. Figure 1 is a block diagram of 

the model in which the output of the hair cell displacement transducer drives 

the force generating process. The coupling between transduction and force 

generation may be mediated either by receptor potential or receptor current, 

but we will assume for purposes of this paper that the receptor potential is 

the important variable. 
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Fig. 1. Block diagram of the cochlear model. The feedback loop represents 
influence of the hair cells on the basilar membrane. 

2. MODEL OF OUTER HAIR CELL CILIA 

We have assumed for simplicity that the hair cell cilia can be modeled as a 

voltage-dependent spring. The spring constant K is a linear function of the 

hair cell membrane potential vet) : 

K = K (V + vet»~ o 0 
(1) 

where Ko and Vo are constants. We further assume that the spring is stretched 

when the system is at rest so that the relation between the force f(t) and the 

displacement x(t) with respect to the rest position is given by: 

f (t) K (V + vet»~ (X + x(t» 
000 

where Xo is the length at rest. Equation (2) can be expanded to give: 

f (t) K V X + K V x(t) + K X vet) + K vet) x(t) 
0000000 0 

We assume that vet) is a linear function of x(t) for small displacements. 

(2) 

(3) 
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However, v(t) will be low-pass filtered by the hair cell membrane time con-

stant. For larger displacements v(t) is assumed to exhibit a saturatitig 

nonlinearity due to the saturation of the transduction process. If we assume 

small displacements and neglect the fourth term in Eq. (3) then we have a 

linear relationship between f(t) and x(t) since v(t) is a linear function of 

x(t). The transfer function relating force to displacement for the hair cell 

is then: 

F (s) 

X (s) 

(4) 

where Kl is the transducer small signal gain and Tm is the hair cell membrane 

time constant. 

3. RESULTS AND DISCUSSION 

Figure 2 shows the simulated influence of the hair cells on the transfer 

function relating basilar membrane displacement to the pressure difference at 

one point along the membrane. The tectorial membrane in this model is assumed 

to have an over-darnped viscoelastic attachment to the bone. As the gain of 

the hair cell feedback system is increased there is a dramatic increase in the 

basilar membrane response near the resonant frequency. In addition there is a 

modest reduction in the response for frequencies somewhat below the resonant 

frequency. This reduction in response has been observed by Khanna and Leonard 

(1982) . 

The hair cell receptor potential is known to saturate as sound level is 

increased. Consequently we assume that the feedback gain provided by the hair 

cells will decrease at higher SPLs causing a decrease in the basilar membrane 

sensitivity at high SPLs. This behavior has been observed by Rhode (1971). 
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Fig. 2. Magnitude of the basilar membrane transfer function as a function of 
frequency. The increasing amplitude of the resonant peak results from 
increasing the feedback gain. 

The nonlinearity of the transduction process as well as the fourth term of Eq. 

(3) leads to the production of harmonic and intermodulation distortion. This 

nonlinearity also suggests a possibility for the origin of the positive summa-

ting potential (SP) provided the voltage-dependent stiffness makes the cilia 

stiffer when displaced in the depolarizing direction than when displaced in 

the hyperpolarizing airection. If we apply a constant sinusoidal pressure to 

the hair cell described by Eq. (3) and couple it to an electric circuit model 

of the cochlea, then both positive and negative summating potentials can be 

produced (McMullen, 1983). The positive SP is the result of the voltage-

dependent stiffness and the negative SP is the result of the asymmetrical 

saturation of the transducer. The positive SP dominates the extracellular 
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response at low frequencies and the negative SF dominates at high frequencies. 

The simulated intracellular SF is negative at low frequencies and positive at 

high frequencies. This result has been shown by Dallos et al. (1982). 

Equation (3) suggests that if we could independently vary V(t), then the hair 

cells should exert a proportional force on the basilar membrane and in turn on 

the cochlear fluids. The resulting pressure changes then would propogate back 

to the stapes and out through the middle ear to the tympanic membrane. 

To study this possibility we have injected sinusoidal current into scala 

media in the gerbil in an attempt to vary v(t). We simultaneously measured 

the sound pressure changes in the external meatus near the tympanic membrane. 

We found components in the sound spectrum at the electrical frequency and its 

harmonics (Mountain and Hubbard, 1983). In addition, if an external tone was 

applied to the ear, then modulation products (sidebands) were observed at the 

sum and difference of the acoustic and electrical frequencies (Hubbard and 

Mountain, 1982). Figure 3 shows the spectrum from such an experiment with 

the external tone present. Both the component due to the current injection 

alone and the sidebands disappear after the death of the animal and both can 

be eliminated by acoustic trauma. 

The component at the electrical frequency can be enhanced by the presence of 

an external tone (see Fig. 4a). Both the enhancement of the electrical com

ponent and the magnitude of the sidebands (Fig. 4b) are increased as the level 

of the external tone is increased. They tend to show saturation at high sound 

levels. This saturation occurs at levels of the external tone for which the 

cochlear microphonic saturates (see Fig. 4c). 

Our results suggest an important role for the transduction process in the 

hypothesized feedback loop. If this is indeed the case then any experimental 

manipulation which alters the sensitivity of the transduction process will 
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Fig. 3. The acoustic spectrum measured at the tympanic membrane in response to 
a 350 Hz (FE) 10 uA p. current and an external tone at 800 Hz (FA)' 

have a major impact on cochlear mechanics. For instance a decrease in the 

endocochlear potential (EP) will reduce the driving force on ionic flow 

through the transduction channels and in turn decrease the feedback gain. 

Hypoxia causes a decrease in EP and also causes a dramatic change in auditory 

nerve fiber sensitivity and frequency selectivity (Evans, 1976). Reduction of 

the EP by dc current injection alters cochlear nonlinearity (Mountain, 1980) 

and alters the tuning and sensitivity of inner hair cells (Nuttall, 1983) and 

of auditory nerve fibers (Hubbard et al., 1983 ; Teas et al., 1970). 



20 ... 
Z 
0 
iii 17 
CIl 
i::; 
lOlA. 
-,CIl 14 em v.., --IE: 
l-
V ... .... ... 

• 30 • 
HI 

CIl 
Q-Z ... 
eA. 
mCil 0 
101 m 
Q~ 
iii 

· 18 

·30 
30 

C 
V 
Z 
0 15 l: 
A. 0:.-
5E 
i,! 0 

a:: ca c.., 
!j-

· 111 l: 
V 
0 
V 

·30 
0 20 40 80 80 

EXTERNAL TONE LEVEL (dB SPLI 

Fig. 4. The response to an external tone at 800 Hz of; (a) the electrical 
emission, (b) the sideband emissions, (c) the cochlear microphonic. In (a) 
and (b) the current level was 10 uA p. at 350 Hz. 

125 



126 

REFERENCES 

Dallos, P., Santos-Sacchi, J., and Flock, A. (1982). Intracellular recordings 
from cochlear outer cells, Science 218, 582-584. 

Evans, E.F. (1976). Temporary sensorineural hearing losses and 8th nerve 
changes. In: Effects of Noise on Hearing, edited by D. Henderson, R.P. 
Hamernik, D.S. Dosanjh and J.H. Mills (Raven Press, Ne\'l York), 199-
22l. 

Gold, T. (1948). Hearing. II. The physical basis of the action of the cochlea, 
Proc. ROy. Soc. B. 210, 71-72. 

Hubbard, A.E., and Mountain, D.C. (1982). Injection of AC current into scala 
media alters the sound pressure at the tympanic membrane: variations 
\'lith acoustic stimulus parameters, J. Acoust. Soc. Am. 71, 5100. 

Hubbard, A.E., Voigt, H.F., and ~iountain, D.C. (1983). Injection of direct 
current into scala media alters auditory-nerve response properties, 
Abstracts of the Sixth Midwinter Research Meeting, Association for 
Research in Otolaryngology, 103-104. 

Khanna, S.M., and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat 
cochlea, Science 215, 305-306. 

MCMullen, T. (1983). Model of summating potential production by voltage
dependent cilia stiffness, Abstracts of the Sixth Midwinter Research 
Meeting, Association for Research in otolaryngology, 68-69. 

Mountain, D.C. (1980). Changes in endolymphatic potential and crossed olivo
cochlear bundle stimulation alter cochlear mechanics, Science 210, 71-
72. 

Mountain, D.C., and Hubbard, A.E. (1983). Injection of alternating current 
into scala media produces an ear canal emission of cochlear oriqin, 
Abstracts of the Sixth Midwinter Research Meeting, Association for 
Research in Otolaryngology, 103. 

Neely, S.T., and Kim, D.O. (1982). An active model for sharp tuning and high 
sensitivity in cochlear mechanisms, J. Acoust. Soc. Am. 71, 516. 

Nuttall, A.L. (1983). Inner hair cell dc receptor potential changes from 
direct currents introduced into the quinea pig cochlea, Abstracts of 
the Sixth Midwinter Research Meeting, Association for Research in 
Otolaryngology, 104-105. 

Rhode, w.s. (1971). Observations of the vibration of the basilar membrane in 
squirrel monkeys using the Mossbauer technique, J. Acoust. Soc. Am. 49, 
1218-1231. 

Strelioff, D., and Flock, ~. (1982). Mechanical properties of receptor cells 
in the guinea pig cochlea, Soc. Neurosci. Abstr. ~, 40. 

Teas, D.C., Konishi, T., and Wernick, J.S. (1970) Effects of electrical 
current applied to the cochlear partition on discharges in individual 
auditory-nerve fibers, II. Interaction of electrical polarization and 
acoustic stimulation, J. Acoust. Soc. Am. 50, 587-601. 



127 

A NON-LINEAR FEEDBACK MODEL FOR OUTER-HAIR-CELL STEREOCILIA AND ITS IMPLICA
TIONS FOR THE RESPONSE OF THE AUDITORY PERIPHERY 

S. Koshigoe, A. Tubis 

Department of Physics, Pwodue University, U.S.A. 

ABSTRACT 

The d'irect incorporation of negative resistance and nonlinear damping in a me
chanical model of the basilar membrane (EM) may be used to correlate EM res
ponse data as well as the properties of stimulated and spontaneous emissions 
in the external auditoloy meatus (S. Koshigoe and A. Tubis, 1982). We have 
tried to remedy the ad hoc nature of this f01''I7IaZ "black box" approach by seek
ing a microscopic basis for the assumed nonlinear and active EM response. 
Such a basis is suggested by evidence that mechanical cochlear function is 
strongly influenced by efferent innervation of outer hair cells (ORC) (D.C. 
Mountain, 1980; J.R. Siegel and D.O. Ki,m, 1982). We consider the chain: ORC 
stereocilia deflection -+ nonlinear change in receptor potential (A.J. Rudsneth 
and D.P. Corey, 197?)-+induced feedbqck force on the EM as the primary origin 
of nonlinear active cochZear response. Our proposed model is qualitatively 
compatible with data on cochlear emissions, nonlinear cochlear response, com
bination-tone psychophysics, and changes in cochlemo response induced by COCE 
stimulation or variation of the endocochlear potential. 

1. INTRODUCTION 

Over thirty years ago, Gold (1948) suggested the possible existence of a coch

lear biomechanical feedback loo~ in order to account for the observed frequen

cy resolution in hearing. He also speculated on the possibility of self-sus

tained oscillations in these loops which might result in acoustic emissions 

of cochlear origin in the external auditory meatus. Recent experimental find

ings which give some support to Gold's speculations include: 1) sharp neural

like basilar membrane (BM) tuning at low stimulus values by Khanna and Leo

nard [1982]; and Sellick et al. [1982]; 2) stimulated ear canal emissions, 

first detected by Kemp (1978); 3) spontaneous ear canal emissions found by 

Zurek (1981), Wilson and Sutton (1981), and others; 4) variation of nonlinear 

cochlear mechanical response via COCB stimulation or ac current injection in 

scala media (Mountain, 1980; Mountain and Hubbard, 1982; Siegel and Kim,1982) ; 

and 5) the discovery of the contractile proteins actin and myosin in hair 

cell structures (Flock and Cheung, 1977; Tilney, DeRosier, and Mulroy, 1980). 

The latter raises the intriguing possibility of a cochlear feedback loop 

based on hair-cell stereocilia deflection -+ nonlinear change in hair-cell po

tential (Hudspeth and Corey, 1977) -+ change in mechanical properties of 

stereocilia [i.e. a nonlinear feedback force which may have the requisite 

properties to account for 1)-4)]. A similar circumstance has been suggested 

by Weiss (1982), and by Koshigoe, Kwok, and Tubis (1982). 
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2. AD HOC MODEL 

Our initial attempt (Koshigoe and Tubis, 1982) to formulate a cochlear model 

to account for some of the properties of ear canal emissions, is based on a 

one-dimensional second-order (BM) model whose effective resistance R is a 

function of the BM velocity, tBM , as indicated in Fig. l(a). The one-dimen

sionality of the cochlear model allows for the exploration of various para

meter ranges with modest computational costs. The model is a merging of pre

vious ones which incorporate nonlinear resistance (Hubbard and Geisler, 1972; 

Kim, Molnar, and Pfeiffer, 1973; Hall, 1974) and negative damping (Neely, 

1981; Neely and Kim, 1983; Koshigoe and Tubis, 1983). In Section 3, a specif

ic cochlear feedback mechanism is proposed as a basis for this type of model. 

R may become locally very negative as a consequence of a cochlear pathology. 

This results in retrograde BM waves and related cochlear emissions in the ear 

canal. The nonlinearity of R serves to limit BM oscillations which may become 

unstable in linear models (Neely, 1981) Koshigoe and Tubis, 1983). It also 

may be used to account for external-tone-induced distortion products, fre

quency shifts, and suppression effects in the BM motion and in the ear canal 

pressure. Our computational scheme is indicated in Fig. l(b). The dynamical 

response of the system is calculated by using the finite difference method 

for spatial derivatives and applying the modified predictor-corrector method 

for time integration. In our investigation of spontaneous emissions and ex

ternal-tone suppression effects, we digital filter the ear canal signal so as 

to separate the external-tone frequency component from the spontaneous emissi-

on component. 

As expected, we find stable BM limit cycles which result in spontaneous emis

sions. Unfortunately, the triggering of these emissions is hard to avoid in 

this model as long as we adjust the model parameters so as to obtain realis

tic Kemp echoes. A quenching mechanism is required. We show in Fig. 2, the 

typical results for the suppression of a 2 KHz, 10 dB SPL spontaneous emission 

by external suppressor tones of 1 KHz, 3 KHZ, and 4 KHz. In agreement with 

experimental results, we find that the effect of the suppressor is to both re

duce and frequency shift the spontaneous emission. For suppressor frequencies 

less than the spontaneous frequency, the suppression onset occurs at an SPL 

less than that for a suppressor with frequency greater than the spontaneous 

frequency. Also the suppression curve slopes downward more sharply for the 

suppressor frequency less than the spontaneous frequency. The asymmetry of 

the suppression curves is of course due to the asymmetry of the BM activity 

pattern for the different suppressor tones. These results are in qualitative 

agreement with experimental findings (Zurek, 1981; Wilson and Sutton, 1981). 
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Frequency shifts of the spontaneous emissions were obtained when sufficiently 

high levelsof the suppressor signals were used. Although it was not possible 

to delineate the precise amounts of shifting because of the resolution of our 

FFT, the shifts were in qualitative agreement with the results of Wilson ~d 

Sutton (1981). 
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Fig. 1. Schematics of the ad hoc model for the auditory periphery. 
Part (aJ: EM resistance as a function of the EM velocity; 
part (b) computational set-up. The middle ear model of 
Neely (1981) is used. 

Fig. 2. Calculated suppression of a 2 KHz 10 dB SPL spontaneous 
emission by external suppressor tones of 1 KHz, 3 KHz, and 
4 KHz. The spontaneous emission level is taken to be that 
of ear-canal signal after being passed through a bandpass 
filter of center frequency, 2 Kijz, and bandwidth, 500.Hz' 2 
The resistance function is R(d,s ) = 250[A(d) + 1031s 1 + 

6' 2 BI1 BM 
+ 10 ISBMI 1 in c.g.s. units, where d = distance from 

stapes (cm); A(d) -1, 1.65 < d < 1.85; A = 0, otherwise; 
length of cochlea = 2.25 cm. 

3. FEEDBACK MODEL 

We outline here a possible feedback mechanism (Weiss, 1982; Koshigoe, Kwok, 

and Tubis, 1982) which may give some justification for and insight concerning 

the validity of the ad hoc type model. In order to make the basic ingredients 

of the model clear, we consider for s~mplicity an outer-hair-cell stereocilium 

(OHCS) which is tightly attached at its apex to the tectorial membrane (TM) 

(Lim, 1980). Its basal coupling to the rectangular lamina is assumed to give 

rise to a force on the BM equal to -KogSBM + I'lfs' K is the intrinsic stiff
o 

ness Hooke constant of the coupling, g is the radial shear-lever gain (Rhode 

and Geisler, 1967), and I'lfs is the feedback force which will be functionally 

related to the time dependence of the OHC membrane potential, VH(t). The con

nection between VH(t) and x(~ gSBM) , the OHCS displacement, is assumed to 

follow from the hair cell model of Fig. 3(a,b) (Davis, 1965; Widerhold, 1967; 

Klinke and Galley, 1974; Weiss, Mulroy, and Altmann, 1974). The x-dependence 

of r in Fig. 3(b) is suggested by the results of Hudspeth and Corey (1977). 

VH may be written as V~ + I'lVH(t), where V~ would be the steady state value of 

VH if x(t) = 0 (Weiss, Mulroy, and Altmann, 1974). 

Our proposed feedback mechanism is motivated by the observed variation in the 

mechanical cochlear response due to either COCB stimulation or induced changes 

in the endocochlear potential (EP). (See INTRODUCTION for references.) Both 

types of stimulation produce changes in VH. (COCB stimulation prObab!y de

creases RM by increasing the membrane permeability to ions such as K and 

Cl-.) Thus a strong linkage between VH and the feedback force, I'lfs' is sug

gested. 

At present, the connection (if any) between stereocilia stiffness and VH(t) is 

unknown. However, Tilney, Egelman, DeRossier, and Saunders (1983) ,in investi-

gations of the bending of stereocilia in bird cochlea, find sliding of adja

cent actin filaments past one another. Changes in VH may possibly affect the 
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b) Fig . 3 

x o 

r(x)= r(o)exp (-ax) 

Fig. 3. Hair cell model . Part (aJ: schematics ; part (bJ : the non
linear dependence of the apical- end resistance on x , the 
stereocilia deflection relative to the cuticular plate. 
VE, RE' VH' RM and eM and V~ are respectively the endococh
lear potential, the endocochlear resistance, the hair cell 
membrane potential, the distributed membrane resistance and 
capaci tance , and the "membrane battery " vo l tage associated 
with the Na+-X+ pump. 

cross-bridging of the actin fibers and hence the effective stiffness of the 

stereocil ia. We therefore make the economical hypothesis that the feedback 

force , 6fs (t) , i s proportional to 6VH (t- T) , where T denotes a possible time de

lay between the e l ectrical voltage increment and the r esultant mechanical 

change. 

In order t o easi l y see some of the essential imp lications of the model, we as

sume that the frequencies of motion are such that WT < 1 and WT M « 1, where 

TM RMCM· Then the derivative term in the equation for 6VH(t) may be dropped, 

6VH (t) may be expressed as a simple function of x(t), and 6fs may be approxi

mately written as A 6VH (x) - T *- 6v (x)x. Substitution of 6f in the dynami-
oX H s 

cal equat i ons for ~BM (= x/g) then y i e lds the effective nonl inear BM stiffness 

[K(x») and g resistance [R(x») functions: 

K(x) 
kb 
- + K 
g 0 

A rb d 
6V (x), R(x) = - + TA 

x H g dX 
(1) 

kb and rb are respectively the intrinsic BM stiffness and resistance para

meters. Using a power series for 6VH (x) , we find that there is a possibility 
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of self-sustained oscillations (i.e. spontaneous emissions), Kemp echoes, 

and sharp BM tuning if 

TAar(O)R (V -vol 
M E M 

< 0 , (2) 

which requires that A be negative. If this is the case, and if Rm+ RE < r(O), 

then the coefficients of x 2 in R(x) and K(x) are positive and negative res

pectively. 

4. SOME IMPLICATIONS OF THE FEEDBACK MODEL 

The form of R(x) provides for the possibility of stable limit cycles and Kemp 

echoes. The echoes may be quenched via efferent COCB stimulation which de-

creases [Indeed spontaneous cochlear oscillations may arise as a result 

of a pathology in the efferent pathway which renders RM large enough to satis

fy Eq. (12).] If the feedback process involves some type of actin-myosin in

teraction which is mediated e.g. by a modulated Ca++ influx, then it is plaus

ible that a local depletion of Ca++ may result in a reduction in magnitUde of 

the electromechanical coupling parameter A. Zurek (1981) reported fluctuating 

spontaneous emissions which may possibly be interpreted according to this pic

ture. The nonlinear form of R(x) will give essentially the same type of re

sults (external-tone suppression effects, etc.) as the ad hoc model. 

The nonlinear form of K(x) gives qualitatively the phase-intensity results for 

the psychophysical cubic difference tone obtained with the model of Furst and 

Goldstein (1982). 

The model provides a unified description of the effects of COCB stimulation 

and EP changes on the parameters of the nonlinear feedback force, and hence on 

the level of distortion products in the ear canal. 

o 
In calculations with VM ~ -220 mY, VE ~ 100 mY, reO) ~ 200 MQ, ~ ~ 40-100 MQ, 

and RMCM ~ 0.16 ms, we find possible spontaneous oscillation frequencies up to 

about 5 kHZ (the typical experimental range). The value of RMCM was chosen so 
o 

as to give a cut-off frequency of about 1000 Hz for lIVH/VH (Russell and Sel-

lick, 1978). 

In summary, the proposed feedback model accounts, at least qualitatively, for 

a variety of cochlear acoustic and electromechanical response data. Its 

basis must of course be challenged and tested by further experimental data on 

hair cell electromechanics and physiology. 
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In the formulation of a cochlea model, 'waves-to-the-right' (i.e. from stapes 
to helicotrema) are generally treated as equivalent to 'waves-to-the-left'. 
In the resonance peak region of the model the conditions for wave propagation 
vary so rapidly that there is every reason for waves to be reflected. Yet very 
little evidence of reflected waVes is observed, even in an active model. This 
property is studied by considering various models equipped with a perfectly 
absorbing wall at the stapes location so that reflected waves can't make the 
model unstable. A short-wave model does not give rise to reflections. However, 
a model in which short and long waves are possible shows a preference for 
waves in the 'normal' direction of propagation (waves-to-the-right), these 
undergo little or no reflection. Waves in the opposite direction may be reflec
ted when they enter the long-wave region from the short-wave region. The same 
model is also used to study which degree of impedance irregularity may cause 
a reflection (an evoked acoustic emission). This degree turns out to be ex
tremely small in an active model: an irregularity of 0.5 per cent extending 
over the width of two hair cells is sufficient to cause a reflection with the 
same intensity as the incident "Cave. 

1. INTRODUCTION - STATEMENT OF PROBLEM 

Solution methods for mathematical models of the cochlea have evolved a great 

deal in the past few years. Digital as well as semi-analytical solutions have 

been obtained for a wide variety of model structures including nonlinear and 

active models. Not all these solutions, however, provide really good insight 

into what is going on physically, and this is a serious shortcoming especially 

in view of problems associated with active behaviour and nonlinearity. 

In a linear passive model of the usual type waves do not appear to be reflec

ted at all by the inhomogeneity they encounter, see for the long-wave case 

de Boer and MacKay (1980) and for the general (passive) case de Boer and van 

Bienema (1982). Absence of reflection is also found in an active model 

(de Boer, 1983a). (This property holds true as long as the waves do not reach 

the helicotrema with an appreciable amplitude - we will tacitly assume this 

condition to be met throughout this paper). 
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In more than one sense this property is remarkable (for a more detailed ac

count see de Boer and Viergever, ---). Nonlinear effects create a local dis

turbance, particularly in the resonance region where these effects are the 

most pronounced. Doesn't this type of local disturbance produce reflected 

waves? More serious is the active case: here the locally created disturbance 

increases the incident wave energy by a large factor (cf. de Boer, 1983b). 

Doesn't that local disturbance give rise to waves to the left - reflected 

waves - as well as to the right? And don't these endanger stability? And how 

about local irregularities in the cochlea as thought responsible for acoustic 

emissions (cf. Kemp, 1980)? In this paper we will try to answer such questions 

by studying the destiny of locally created waves in the cochlea. To achieve 

this, we will study a model in which sound energy can be injected at any 

desired location. The model is formulated in such a way that eventual crea

tion of reflected waves does not lead to instability, this is done by making 

the stapes a perfect absorber. 

2. ELEMENTS OF THE MODEL - SHORT-WAVE CASE 

The basis of the (linear) model considered is a structure consisting of two 

elongated columns of fluid separated along their lengths by a partition of 

which a part is flexible. The flexible part of the partition, referred to as 

the 'basilar membrane' (BM) but actually comprising also the cells and struc

tures of the Organ of Corti, is to be described by way of its mechanical 

impedance Z(x), where x denotes the location along the length of the BM. This 

model is, of course, a simplification of reality but no really novel features 

are discovered when a more complete representation is chosen. 

For the formulation of the (three-dimensional) model equations we refer to 

de Boer (1981). In passive as well as active versions of this model the res

ponse in the region of the resonance peak is dominated by 'short waves'. 

Since this is the main region where reflections may arise because of inhomo

geneity we will first consider only short waves. A wave travelling in the 

direction of positive x in a short-wave cochlea model can be found as the 

solution to a simple first-order differential equation: 

dp(x) 
+ g(x) p(x) o (1) 

dx 



137 

where p(x) is the pressure and g(x) stands short for 2wp/Z(x) (w is 2rr times 

the frequency and p is the fluid density). Equation (1) can be derived from 

the model equation, Eq. (28) in de Boer (1981), by using the short-wave appro

ximation Q(k) = 11k for uni-directional waves (k is the wavenumber here). The 

solution to Eq. (1) is straightforward, it is a wave of which the (local) wave

number is equal to {-ig(x)}. An actual short-wave model should equally well 

accomodate waves going to the left as to the right. Thus there should exist 

a second-order differential equation of which the two independent solutions 

are: the solution to Eq. (1) and the solution to the same equation with a mi

nus instead of a plus sign. This equation turns out to be: 

2 
d p(x) gO dp(x) 

2 
- g p(x) o (2) 

g dx 

where g stands short for g(x) and gO for its first derivative. 

There are, of course, two boundary conditions to be met, one at the stapes 

and one at the helicotrema. The latter one prescribes, as usual, the wave 

to go to zero amplitude. The other boundary condition will be formulated in 

an unusual way, namely by stating that any wave travelling to the left is 

completely absorbed by the stapes. There is then no danger that a left-going 

wave, after being reflected by the stapes, can cause instability of the model. 

Acoustic energy can now be injected at any desired location x. To achieve 

freedom of reflection at the stapes we proceed as follows. Equation (2) is 

manipulated so that its second term is zero. The resulting equation is recog

nized to describe wave propagation in a non-homogeneous electrical transmis

sion line. (It is also similar in form to the wave equation for a long-wave 

cochlear model but that is of no concern here). The electrical transmission 

line can be terminated at one of its ends by its characteristic impedance 

thus ensuring that no reflection can take place at that end. This is imple

mented at the stapes end; for the short-wave case the characteristic impedance 

turns out to be constant, independent of Z(x) (as has also been found by 

Zwislocki, 1983, in a completely different context). 

3. SHORT WAVES AND THEIR REFLECTION 

In view of space limitations we must refrain from showing results for the 

short-wave active case in detail. We can describe these briefly in the fol

lowing terms. When sound energy is injected at a point inside the region of 
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the response maximum, waves emerge from that location travelling in both di

rections. Because the BM is active over the larger part of this region, both 

waves are amplified as they travel along. The left-going wave appears to be 

reflected somewhere, and the reflected wave, now travelling to the right, is 

amplified further. The latter wave eventually overrides the former one so that 

a dominant right-going wave travels toward the injection point and beyond it. 

It should be well remembered that this can only be true in a locally active 

structure (in contrast to the 'paradoxical wave travel' problem considered 

by Bekesy, 1960). 

Is this now an example of reflection of left-going waves that might be ex

pected on theoretical grounds (de Boer and Viergever, ---)? Some simple ma

nipulations of the model show that this is not so. For instance, displacement 

of the left-hand end (stapes location) produces a variation of the reflection 

pattern. Apparently, the reflection is an artefact, caused by imperfect ab

sorption of energy by the stapes. In turn, this is due to imperfect digital 

implementation of the no-reflection condition in the computer program. The 

short-wave model appears to be sensitive to this type of imperfection. 

The interpretation of these results is that in the short-wave case waves will 

not be reflected - no matter how inhomogeneous the medium of propagation is. 

This property is only subject to the condition that Z(x) is of such a form 

that the solution to eq. (1) has a one-sided spectrum (de Boer and Viergever, 

---). 

4. SHORT AND LONG WAVES 

The results presented in the preceding section were essentially negative. In 

the region of the cochlea where short waves dominate no clear tendency for 

(internal) reflection ~xists, neither for waves going to the right nor for 

those to the left. We know from a previous study (de Boer and MacKay (1980» 

that the case for long waves is similar. It remains to study the transition 

from long to short waves and vice versa. We need here a computation technique 

which applies to a general type of model, i.e., one that incorporates short 

as well as long waves, and that treats left- and right-going waves in exactly 

the same way. We again start from the formulation in de Boer (1981). For the 

purpose of this paper an even function of k is needed to approximate the ker

nel function Q(k) (cf. de Boer and van Bienema, 1982). We use the following 
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rational function: 

1 
2 

Co + a 2k 

Q(k) -------- (3) 

k 2 1 
2 

+ a 4k 

where the constants cO' a 2 and a 4 are chosen to obtain the best approximation 

to the Q(k) function for a 3-dimensional model. With substitution of eq. (3) 

the integral equation for the model can easily be converted into a differen

tial equation of the fourth order. Setting up this equation is simple and 

straightforward. As in the preceding case, the left-hand end is terminated in 

its characteristic impedance - this time evaluated for long waves. 

For the purpose of clarity real and imaginary components of the impedance Z(x) 

are chosen more or less independently in this paper. We keep, however, the 

function Z(x) close to realizability by verifying that the Fourier transform 

Y(k) of l/Z(x) is approximately a one-sided function of the wavenumber k 

(cf. de Boer and Viergever, ---). This is also important for active impedances 

as considered here. The form of Z(x) is the same as the one used in de Boer 

(1983a) but with the following parameters: E = 1, a O = 0.1, a 1 2.5 + 3i, 

x = 0.2, all in cgs units. The point x = 0 corresponds to the 'resonance range 
location' where Im {Z(x)} is zero. Fig. 1 shows the shape of the Z(x) function. 

Fig. 2 shows results of computations with this method, velocity of the BM 

against location x. The constant Co is chosen so as to have correct long

wave behaviour in a model where the fraction E 0.1 of the partition width 

is occupied by the EM. The other constants are chosen such as to have appro

ximately the same short-wave behaviour as in the preceding section. Fig. 2 

contains four curves. Curves A1 (amplitude) and A2 (phase) pertain to the 

'.0 
lDCA1. 

·D.S 

1.0 

Fig. 1. The impedance function Z(x). 
Solid line: real part, 
dashed line: imaginary part. 
Fornrula used is 

Z~) x 2 --- = a + a x exp{-4(---) } 
2wPEmO 0 1 x range 

0.05. 
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'normal' situation: injection occurs near the left-hand border 

(at x = -5.7 [mm]). These curves show the familiar response peak which sug

gests an internal amplification on the order of 40 dB. More important are the 

curves B1 and B2 which show the situation where injection occurs inside the 

active region (at x = -0.3 [mm}). A part of the wave is seen to travel 

toward the injection point. In fact, the situation can be understood in the 

same way as before: at the injection site two waves originate, one going to 

the right and one to the left. On their paths in the active region both waves 

are amplified. The left-going wave is reflected somewhere at the left-hand 

side of the peak and it is again amplified while travelling along after this 

reflection. This amplification eventually results in a dominating right-going 

wave approaching the site of energy injection. 

The problem is, again: what causes the reflection of the left-going wave? 

From various experiments it can provisionally be concluded that the reflection 

is not due to imperfection at the energy-absorbing wall. It is not due to the 

transition between active and passive behaviour either. The reflection appears 

to be associated with the transition between short and long waves, and as such 

it seems to be an intrinsic feature of this type of model. Further study is 

needed to elucidate this property . 
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5. LOCAL REFLECTION - EVOKED EMISSIONS 

With the experience acquired it is now possible to interpret the effect of 

a local disturbance in propagation conditions. Fig. 3 presents results of 

computations. Curves A1 and A2 show, just as in Fig. 2, the 'normal' wave 

pattern resulting from inj~ction at x = -5.7 [rnrnJ. For reasons of clarity the 

response has been shifted upward by 20 dB. Curves B1 and B2 show the response 

from driving the model in the same way but using an impedance function that 

has an irregularity. In fact, the impedance has been changed by 5 per cent 

from x = -0.3 to x = -0.276 [rnrnJ. The curves are seen to be most similar to 

the B-curves in Fig. 2. A very small irregularity in Z(x) apparently sets up 

a reflected wave that fully dominates the wave pattern. In effect, the initial 

part of the wave near the stapes is completely swamped by a left-going wave, 

and the magnitude of the remaining part has been altered considerably. This 

inversion of wave direction occurs with an irregularity as small as 0.5 per 

cent over this region (24 ~m long, i.e., extending over 2 hair cells). 

The effect of irregularities is largest in the region of the peak and slightly 

to the right of the top. This is easily understood: it is here where the reflec

ted wave is amplified the most. That the active model is so sensitive to local 

irregularities is also easily understood: on the entire pathway from stapes 

to reflection site and back to the stapes, waves undergo an amplification that 

is twice that of the incident wave alone (i.e., about 80 dB!). Note, inciden

tally, that the total propagation delay is also doubled. 

We should stress, finally, that the phenomenon observed in Fig. 3 cannot be 

seen in a more realistic model where the stapes is not a perfect absorber: on 

the basis of thermal noise such a model would go into spontaneous oscillation. 

The expedient of a perfectly absorbing stapes in an active model of the coch

lea appears to be very useful indeed: it allows us to understand the physics 

of the situation better. On the other hand, the fact that we have to use such 

a resource also shows how little we really know of what is going on in this 

type of active structure. 
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6. CONCLUDING REMARKS 

The following, partially tentative, conclusions may be drawn from this work: 

1) waves going to the right are not reflected, no matter how inhomoge

neous the medium is - this is subject to the condition mentioned in 

section 3. 

2) waves going to the left may be reflected in the transition between 

the short- and long-wave regions. 

3) an active model is extremely sensitive to slight irregularities of 

wave propagation conditions. 

4) when an evoked emission occurs from an irregularity, its latency is 

approximately twice that of the original incident wave to the site 

of the irregularity. 

Only a few of the questions posed in the Introduction have received an answer. 

For instance, it is not clear yet why in an active system all left-going waves 

tend to annihilate each other. Are these really being completely dominated by 

right-going waves? Or do all microscopically created left-going waves tend to 

cancel? The simple 'two-way' short-wave model developed in section 2 may be a 

convenient vehicle for a semi-analytical study of these problems. More diffi

cult is the topic of reflection between the long- and short-wave regions. 

Many problems of active systems thus remain somewhat obscure: it may take a 

while before further intricacies - such as those contributed by nonlinearity, 

for instance - can be grasped completely. 
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The current interpretations of data pertaining to cochlear mechanics appear to 
converge on the points that: 1. the ratio between pressure across the basilar 
membrane and membrane velocity is nonlinear. and 2. the mechano-electrical 
transduction process may be reversible. so that it can operate as an active 
mechanical process. It is becoming more widely accepted that these two 
properties originate in the hair cells. It is quite conceivable that there are 
small unsystematic as well as systematic differences between mechanical prop
erties of different hair cells. In order to analyse the behaviour of an active 
nonlinear cochlea we started to study a one-dimensional description of the 
cochlear hydromechanics. employing the usual equations for pressure and veloc
ity. Instead of defining a local impedance Z(x.w) as the pressure-to-velocity
ratio in the linear case. where it describes a linear second order oscillator. 
we now use a form describing a \Tan der Pol-oscillator. Evaluation for a single 
tone stimulus shows relatively ,harp excitation patterns at low intensities. 
With increasing intensity the f'-aks broaden and shift basalwards. The prop
erties of the Van der Pol-oscil,ltor. which are extensively documented. appear 
to provide a fruitful analysis tC/:ll. which can. a.o. readily be extended to a 
multi-tone stimulus. 

1. INTRODUCTION 

Theoretical cochlear mechanics has received considerable renewed interest over 

the past decade, as is reflected in the contributions to this symposium. The 

first impulse for the revival stemmed from the new basilar membrane data ob

tained around 1970 (Johnstone et al., 1970; Rhode, 1971; Wilson and Johnstone, 

1972) showing sharper frequency tuning than assumed so far. The second came 

from the availability of more powerful tools (hardware and software) for eval

uating more realistic models. It became feasible to evaluate 2- and 3-dimen

sional models, in addition to the 1-dimensional model (e.g. Lesser & Berkley, 

1972; Allen, 1977; Steele & Taber, 1979; De Boer, 1980a). Even the 3-dimen

sional models contain many simplifications of the physical reality. Most of 

these are sufficiently justifiable (Viergever, 1980). Many theorists, however, 

realize that one can not describe the ratio of cochlear partition velocity and 

pressure difference adequately with a linear, passive, second order impe

dance function. There is now an abundance of evidence that the intact cochlea 

behaves nonlinearly. This point has been pursued in several studies (e.g., 

Hubbard and Geisler, 1972; Hall, 1974; Matthews, 1980).Evidence that the 

cochlea may be mechanically active, at least at some frequencies, is compiling 
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steadily (e.g., Kemp, 1978) and theories accounting for this are being devel

oped (e.g., Kim et al., 1980). And thirdly, several investigators are beginning 

to take the microstructure of the cochlea into account (e.g., Duifhuis and 

Van de Vorst, 1980; Allen, 1980; Zwislocki and Kletsky, 1980). Inevitably this 

leads to higher order mechanical models. In addition to this, new developments 

in experimental cochlear mechanics revealed still sharper tuning properties 

(Khanna and Leonard, 1982; Sellick et al., 1982). These recent data cannot be 

accounted for with passive, linear models (de Boer, 1983). 

At this point we believe that it is possible and desirable to make significant 

progress with a macro-description of the cochlear partition by appropriate 

modification of the local impedance parameters. Thus we will not discuss the 

micromechanical structure and we will not specify the sources of nonlinear 

and active behaviour (which we assume to be the hair cells). We will explore, 

however, the combined effects of nonlinearity and activity. 

2. MODELLING ACTIVE AND NONLINEAR BEHAVIOUR 

As a starting point in the analysis of the combined effects of nonlinearity 

and active behaviour in cochlear hydromechanics we analyse the 1-dimensional 

long-wave model (Zwislocki, 1950). For the displacement y of the basilar mem-

brane at location x we have, as usual 

32 3 
[m(x)atT + r(x)a:t + c(x)Jy p(x) sin(wt + ¢(x» (1) 

where m(x) is relevant mass per square meter (kg/m2), c(x) is relevant stiff

ness per square meter (Pa/m), p(x) sin(wt + ¢(x» is the pressure difference 

across the membrane at x (Pa), but where active and nonlinear behaviour are 

incorporated in the damping term 

r(x) Pa.s/m (2) 

with Rl(X) and R2(X) > O. The choice of the nonlinear term is not entirely 

original (see, e.g., Hall, 1974). It adequately describes compression or satu

ration at high stimulus levels. Note that the active behaviour can only be 

pronounced at low input levels, i.e., when r(x) is small. 

Differentiating Eq. (1) with respect to t and substituting 
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we arrive at the Van der Pol-equation 

q cos (QT + ¢) (3) 

where the dots indicate differentiation with respect to T and where we have 

omitted the explicit indication of the dependence on x. Note that QT = wT. The 

applicability of the Van der pol-equation in this context was first proposed 

by Johannesma (1980). 

Properties of the Van der Pol-equation have been discussed extensively in the 

literature (e.g., Van der Pol, 1927; Stoker, 1950; McLachlan, 1950; Nayfeh and 

Mook,1979). 

We recall some characteristics for the free and the driven oscillator. 

1) The free oscillator, q = 0, generates a periodic waveform with a fundamen

tal of approximately (1 - S2/ 16 ). The ultimate stable oscillation is indepen

dent of the system's boundary conditions. The dimensionless factor s (the 

magnitude of which is comparable with the damping factor 0 in the passive 

linear models) determines the specific behaviour of the solution of Eq. (3). 

Hence, qualitatively the solution is independent of the strength of the non

linear term R2. If E < 1, then the higher harmonics in the solution may be 

neglected, yielding (e.g., McLachlan, 1950) 

v(T) v exp (ST/2) cos T [1 + 10 v 2 (exp (ST) - 1) r~ 
o 0 

(4) 

where vo is the initial (dimensionless) velocity amplitude v(o). If one as

sumes that the energy source (-Rl) can be switched on, or switched off, then 

the risetime and decay time can be evaluated. For the 90% risetime one ob-

taines 

which depends on the initial velocity 

live time) 

v , 
o 

(5) 

and for the 50% decay time (half-

(6) 

Even though nonlinear damping causes the decay, the decay time is independent 

of R2. 

2) For the sinusoidally driven OSCillator, q I 0, the response depends on 
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driving frequency and pressure magnitude. Either an oscillation developes only 

at the driving frequency, or one obtains a so-called combination oscillation 

consisting of fundamental and harmonics of the driving frequency and a free

oscillation component. If £ < 1, then the harmonics can be neglected in first 

approximation (Van der Pol, 1927). Thus, if £ « 1 and if driving frequency 

and pressure are chosen properly, then an oscillation builds up at the driving 

frequency only. This phenomenon is known as entrainment. The dependence of v on 

on q and w is implicitely given in 

with F ...3.... 
2£w ' cr 

(7) 

(e.g., Stoker, 1950). 

If the driving term contains two frequencies, then Eq. (3) becomes 

(8) 

This case has hardly been studied in the literature. It is of course of prime 

interest in this context in view of combination tone - and lateral suppression 

behaviour of the cochlea. Extending Van der Pol's method straightforwardly we 

obtained the coupled equations 

(9) 

where Fl, 01 and P I are defined as above. For the single Van der Pol-oscilla

tor this solution produces already some suppression. This is shown in Fig.1, 
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single Van del' Pol- oscillator. 
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which gives the response measure Pl + P2 as a function of the strength of com

ponent 2, proportional to F2, with Fl, Gl and G2 as parameters. (We stress that 

this is the result for a single oscillator. It is not a quantitative prediction 

of cochlear lateral suppression, which is the combined result of all the 

fluid-coupled oscillators.) Just as with the linear oscillator we may define 

the ratio of pressure and velocity as a local impedance. In the dimensionless 

normalized units s = Flip, or for a multicomponent driving pressure, general-

izing Eq. (9): 

9, =1, ... L (10) 

with L the number of components. Inspection of Eq. (10) reveals that the non

linear interaction of tones affects the real parts of s9, only and that the 

interaction term is independent of phase. 

3. MODELLING THE COCHLEA 

The behaviour of a one-dimensional cochlea is, for the long-wave approximation, 

described by the second order differential equation 

2iwp 
1jJxx - hZ(x,W) 1jJ o (11 ) 

with the appropriate boundary conditions. Equation (11) follows the notation 

used by De Boer (1980 b); henceforth p denotes fluid&nsity. The wave equation 

is equivalent with the definition of the cochlear (point) impedance 

Z(x,W) 
p(x,W) 

- w(x,w) (12) 

where p(x,w) is the pressure difference across the cochlear partition and 

w(x,W) its velocity, because 

w(x,W) 

and p(x,W) 2iWp 1jJ. 
b h 

(13) 

(14) 

Substituting Eq. (10), after appropriate scaling, into Eq. (11), which amounts 

to implying that Eqs. (13) and (14) remain valid, provides the following set 

of coupled nonlinear second order differential equations: 
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o (15) 

9,=l ... L 

with 4 b 2 [ C 
) - R1J 0.9, - - i(w m -

3 R2 9, w9, 

89, 
8 iW9,P b2 . 

3 h R2 

The sum term in Eq. (15) will describe suppression effects due to interaction 

with neighbouring components, whereas the second term will be responsible for 

saturation or compression at higher levels. The third and fourth term are re

lated directly to Eq. (11). For a single tone stimulus Eq. (15) reduces to 

O. (15a) 

Because S was supposed to be small, neither Eq. (15) nor Eq. (15a) contain 

solutions for the strength of harmonics or intermodulation frequencies. The 

latter simplification is probably not justified for the multi tone stimulus. 

4. NUMERICAL EVALUATION AND DISCUSSION 

We have evaluated Eq. (15a), the single tone case, using subroutine DTPTB from 

the International Mathematical and Statistical Libraries (IMSL). The parameter 

values used are m = 0.5 kg/m2 and c = 10 10 exp(-300 x) Palm, b = 10- 3m, 

h = 10- 3m, P = 10 3 kg/m 3 in line with other recent studies. The active 

"damping" term was tentatively chosen in such a way that E = 0.05 over the en

tire cochlea. The nonlinear part of the damping was also chosen arbitrarily, in 

such a way that R1/R2 is independent of x, yielding R2 = 10 7 • exp(-150 x) 

Pa.s 3/m 3 • 

Figure 2 shows the magnitude of the basilar membrane velocity for several 

boundary conditions at the stapes. For comparison a linear velocity-pattern has 

been added (with 0=0.05). Figure 3 is a replot of Fig.2, but normalized re 

input level. The most striking results are the relative sharp peak for low 

input levels and the broadening and basalward shift of the peaks with in

creasing levels. The sharper peak can account for the latest data (Khanna and 

Leonard, 1982; Sellick et al., 1982). At this point we have not attempted a 

precise parameter fit because the data set is still limited, but note that 

height and sharpness of the peak are determined by the negative damping 
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Fig. 2. Envelopes of velocity patterns 
for several input velocity levels at 
the stapes. 

parameter. The broadening and basal

ward shift with increasing level 

agrees with earlier data (Rhode, 

1971) and with results from passive 

nonlinear models (Hall, 1974), and 

is obviously determined by the non

linear damping parameter. 

In Fig.4 the phases corresponding 

with the 28 dB response have been 

plotted for four frequencies. The 

dips at the resonance points are 

not new; however, in this model 

their sharpness increases with in

creasing input level. So it ap-

pears that, as the velocity exci

tation pattern broadens at reso

nance, the phase dip tends to sharpen. 

DISTANCE FROM STAPES (em) 

Fig.3. As Fig . 2 but now normalized with 
respect to the stapes velocity. (For the 
o dB pattern the normalized velocity v 
at the resonance point is 2.3, i.e . suf
ficiently within the validity of the 
Van der Po l-osci ZZator.) . 
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Fig . 4. Phase characteristic correspon
ding with the 28 dB velocity response 
pattern. 

Thus far, phase dips have only appeared in multidimensional studies and their 

meaning is not yet quite clear_ Phase dips can be interpreted as points where 

two waves, one coming from the stapes and one coming from the apex, vanish. 

Unfortunately, phase-data beyond the resonance point are hardly available_ 
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Summarizing, we state that the nonlinearity and active behaviour of the 

Van der Pol-oscillator seem to furnish a promising description of these prop

erties of the cochlear partition. In view of the behaviour of a two-tone 

driven single Van der Pol-oscillator, as shown in Fig.1, it seems plausible 

that the complete model produces two tone suppression. This expectation can 

now be verified through evaluation of Eq. (15) for L = 2. The effects of in

termodulation products should then also be taken into accout. 
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NONLINEAR AND ACTIVE MODELLING OF COCHLEAR MECHANICS: A PRECARIOUS AFFAIR 

ABSTRACT 

Rob J. Diependaal, Max A. Viergever 

Department of Mathematics and Informatics 
Delft University of Technology, The Netherlands 

We have developed a numerical solution method for one-dimensional cochlea 
models in the time domain. The method has particularly been designed for models 
with a cochlear partition having nonlinear and active mechanical properties. 
Our starting point is the partial differential equation describing the response 
of the basilar membrane to stapes movements. Using Galerkin's principle, we 
reduce this equation to a system of ordinary differential equations in the time 
variable. The remaining initial value problem is solved by means of an explicit 
fourth order Runge-Kutta scheme with a variable-step routine. 
The calculations show that the response of an active, nonlinear cochlea model 
is very much contingent on the solution method. Approaches that exclude or 
suppress reflection phenomena must be considered inappropriate. 
The results obtained so far suggest that nonlinear and active modelling of 
cochlear mechanics should comply witn the following conditions in order to be 
consistent with experimental data: 
( i) The active and nonlinear properties must be tightly linked, 
( ii) Omission of these properties must yield the classical description 

of cochlear macromechanics, 
(iii) The active behaviour of the partition must be localized in a small longi

tudinal region of the cochlea. 

1. INTRODUCTION 

The field of cochlear modelling has recently changed its focus considerably. 

Stimulated by experimental results concerning cochlear acoustic emissions 

(pioneered by Kemp, 1978) many investigators have sought for ways to include 

active features in descriptions of cochlear functioning. A new impetus was 

given by the ascertainment that active behaviour clearly manifests itself at 

the level of basilar membrane (BM) vibration. While the earlier measurements 

including those of Rhode (1971, 1978) could all be matched quite well by the 

response of a passive model (Viergever and Diependaal, 1983), the results 

from Khanna and Leonard (1982) and Sellick, Patuzzi and Johnstone (1982) do not 

admit such a match. De Boer (1983a,b) has shown convincingly that models of 

cochlear mechanics must be endowed with active properties (for instance, nega

tive BM resistance) in order to produce responses that compare favourably with 

the new data. 

Active properties have been included in linear cochlea models by Kim, Neely, 

Molnar, and Matthews (1980), Neely (1981), De Boer (1983a) and Neely and Kim 

(1983). These studies have yielded interesting results, e.g. that locally 

active mechanical behaviour of the BM does not preclude an overall stable 
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response. It is more natural, however, to analyse cochlear activity in a non

linear context, since active and nonlinear features are either both present 

(in an intact cochlea) or both absent (in a damaged cochlea). A first attempt 

to combine the two can be found in another contribution to these proceedings 

(Van Netten and Duifhuis, 1983). 

Inclusion of active properties endangers the stability of the model response. 

Therefore, considerable attention should be given to the choice of solution 

method: no features may be introduced or obscured by the mathematical treat

ment of the model equations. Linear active models can relatively easily be 

solved in the frequency domain by means of convergent numerical approximations, 

if the models count no more than two spatial dimensions. Numerical methods for 

nonlinear models are more complex and much more time-consuming, though, be-

cause the solution is to be obtained in the time domain. This suggests the use 

of asymptotic methods, which are computationally fast and in addition will give 

more insight into the pertaining physical mechanisms than numerical techniques 

do. Indeed, Van Netten and Duifhuis (1983) utilized a linearizing asymptotic 

technique to transform their model equations to the frequency domain. 

The aim of the present work is to provide a frame of reference for asymptotic 

solution methods. To this end we formulate the cochlear model in the time 

domain and solve the equations using a straightforward numerical technique. 

For reasons of simplicity we have confined ourselves to a one-dimensional (lD) 

treatment. The method can, however, in principle (that is, apart from problems 

related to computer storage and computational speed) easily be extended to 

2D and 3D models. We consider the method as outlined in the sequel still as 

tentative. More model examples than the ones discussed in this paper will have 

to be covered before final conclusions about design and treatment of nonlinear 

and active models can be deduced. 

2. MODEL AND METHOD 

The geometry of the one-dimensional cochlear model and the assumptions upon 

which the model is based are discussed in Viergever (1980, chapter 2). The 

partial differential equation describing the response of the BM to stapes move-

ments is 

au + su } _ 2PS 0, o < x < L, t > 0, ( 1) 

at a 

with the initial and boundary conditions 



u(x,O) = 0 
0 ~ x :S: L, 

au 
(x,O) 0 

at 
= 

0 :S: x :S: L, 

a (m a 2 u au I 
ax 

+ r - + su) 
x=O 

f(t) , t 2 0 
at2 at 

(m 
a 2 u au 

su) I 0 0 + r -+ t 2 

at2 at 
x=L 

The meaning of the symbols is 

x 
t 
L 
a(x) 
S(x) 
p 
m(x) 
r(x) 
s(x) 
f(t) 

u(x,t) 

distance along the BM (x=O at the stapes) 
time variable 
length of the BM 
cross-sectional area of the channels 
BM width 
density of the cochlear fluids 
BM mass per unit area 
BM resistance per unit area 
BM stiffness per unit area 
input signal derived from stapes motion (a prescribed harmonic 
oscillation) 
displacement of the BM averaged over the membrane width 
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(2 ) 

(3) 

(4) 

(5) 

Equation (5) corresponds to a zero trans-BM pressure at the apical end of the 

cochlea. This condition is preferred to having the x-derivative of the pressure 

be zero at x = L, because the latter would make the matrix A (see below) singu

lar and hence would require modification of the numercial scheme. For the fre

quency range of interest (middle to high frequencies) the two conditions are 

physically equivalent. 

A discrete version of the problem is obtained by rendering the equations dis

crete in x, which yields an initial value problem with t as independent vari

able. We prefer this to solving a boundary value problem in x, which would 

result if the order of discretization were reversed. 

In addition, starting with the discretization in time would require a priori 

specification of the time T at which the interval [0,00) is truncat.ed. If the 

thus calculated response deviates too much from its stationary value, the com

putations would have to be repeated with a larger value of T. Our procedure is 

more flexible: we select a value of T, calculate the response and examine 

whether a stationary value has been reached. If this is not the case, we in

crease T and proceed with the already calculated result as new initial value. 

The finite element method is most suit.ed to accomplish the discretization in 

space because of the complexity of the boundary conditions (4) and (5). 
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We divide the BM length into n intervals (xi _ 1 ' xi)' i 1,2, ....... n, with 

Xo = 0, xn = L. Using Galerkin's principle we reduce Eq. (1) to a system of 

ordinary differential equations in t: 

A u + R u + S ~ ~, (6) 

T T 
Here, ~ (u l ' u 2 ' .... , un_i) with u i = u(xi,t) and k = (-f(t) ,0,0, ... ,0) . 

The matrix A follows from A = M + C with 

M 

and 

c 

'"0 
-~ 

0, , " 

I 
I 

, 

" 

J- --

'"I 
-~ 

, , , , 

" 

, , 

0,--------------- --0 

, 

, 

, 

", 

, , 

' ........ 

, , , 
" " " " " 

" , " , 
, " 
" " 

-n"l' n-2 
~'a;;::-;-

" 

, n-1 
- An_. 

- - - --- - - 0 

(6a) 

(6b) 

where mi stands short for m(xi ), ~i for xi - x i _ 1 and c i for 2PS(xi )/a(xi )· 

The matrices Rand S, finally, are obtained by replacing mi in Eq. (6a) with 

r i = r(xi,t) and si = s(xi ), respectively. 

Equation (6) will be used to determine u in the gridpoints xl' x 2 ' .•. , Xn _ 1 . 

For the endpoint xn the discretization with respect to x gives 

and thus, with the aid of conditions (2) and (3): 

u(X ,t) = O. 
n 

We rewrite Eq. (6) as a system of first order differential equations by 

introducing the auxiliary variable v 

reads 

0-, 
[:1 

., 
I 0 I l: AI 

+ 
0 -S -R 

The initial condition is found from 

u. In block matrix form, the system 

° 
k 

'- -
Eqs. (2) and (3) : 

(7) 

(8) 

(9) 
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r Q l at t = O. (10) 
i 0 I 

L - J 
We solve u and v from the initial value problem (9), (10) using an explicit 

fourth order Runge-Kutta scheme with a variable-step routine. This method pro

vides a good compromise as regards computational speed and stability properties. 

The quantity used for a comparison with experimental data and with other calcu

lations is the frequency spectrum of the BM velocity, which is computed from 

v(x,t) by means of a Fast Fourier Transform technique. 

3. NUMERICAL RESULTS 

We have applied the method outlined in the previous section to four model 

examples. 

Linear, passive [r(x,t) = rO(x) > OJ. This is a testcase which may point 

out errors in the numerical method or in the implementation. The results of 

our approach have been compared with those of a finite element solution 

method in the frequency domain (Borsboom, 1979) for the standard lD cochlea 

model. The two responses are in excellent agreement once the transients in 

the time domain response have become sufficiently small; this takes about 

1-2 sec (cochlea time). 

Nonlinear, passive. Following Hall (1974), we set r(x,t) = rO(x) { 1 + 

+ 0.1 v 2 (x,t)}. This type of (compressive) nonlinearity does not give any 

problems in the computations. Our results compare favourably with those of 

Hall. 

Linear, active. The example chosen is Kim et al.'s (1980) model, in which 

the resistance is negative on a part of the BM length. We did not succeed 

in solving this locally active model. The response becomes unstable before 

a harmonic response has been reached. The reason is that the transients 

caused by the onset of the input signal at t = 0 are amplified in the 

region of negative BM resistance. The response enters the region of in

stability of the numerical method and 'explodes'. Since the proposed Runge

Kutta scheme is very robust, it seems not feasible to solve this type of 

model in the time domain. 

Nonlinear, active. To our best knowledge, the only published model 

example in this class is the coupled chain of Van der Pol oscillators (Van 

Netten, 1982; Van Netten and Duifhuis, 1983). The resistance has the form 

r(x,t) = -rO(x) + r l (x) v 2 (x,t), with rO(x) and r 1 (x) positive. Fig. 

shows results of the present approach for this model. The BM response is 

very much different from the one calculated by Van Netten and Duifhuis, 
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Fig. 1. Response of Van Netten and Duifhuis'(1983) nonlinear active model, 
calculated by the approach of section 2. -5 
Input: harmonic stapes oscillation (frequency 2 kHz,amplitude 10 mm/ms). 
Output: EM velocity in the frequency domain, normalized to the amplitude of the 
stapes velocity. 

a: amplitude of first harmonic (2 kHz), after 1, 3, ? ms. 
b: phase of first harmonic (2 kHz), after 1, 3, ? ms. 
c: amplitude of de component, after 1 and? ms. 
d: amplitude of second harmonic, after 1 and? ms. 
We used 100 equidistant grid points on the EM, and 512 samples per period of 
oscillation in our FFT routine. 

Further parameters (after Van Netten, 1982): L = 35 mm, S = 1 mm, a = 1 mm 2 , 

p = 1 mg/mm 3, m = 0.5 mg/mm2 , r = {-3.5 + 10,000 v 2 } exp(-0.15x) mg/mm2ms, 
s = 10,000 exp(-0.3x) mg/mm2ms 2 , with x in mm and v (EM velocity) in mm/ms. 
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especially in the region before the amplitude peak has been reached. Our 

response saturates in this region owing to the combined effect of activity 

and nonlinearity. 

We suggest the following physical explanation for our results. The negative 

resistance of the BM produces energy. This creates continuously two series 

of waves, one going to the apex, the other to the base of the cochlea. Both 

types of waves are amplified in the stiffness-controlled (basal) part of the 

BM, which implies that the BM amplitude is increased at every point, but 

most markedly in the basal region. The compressive nonlinearity ensures 

that the response remains bounded. 

We are quite sure that our calculations are correct, since the results were 

insensitive to changes in discretization both in space and time (We found 

no appreciable difference with the approach of Fig. 1 if we doubled the 

number of grid points on the BM and halved the accuracy of the Runge-Kutta 

variable-step method). The ripples in the curves are due to the non-local 

nature of the activity; they disappear if only a small portion of the BM, 

say just before the amplitude peak, has a negative resistance. 

Van Netten and Duifhuis obtained their response directly in the frequency 

domain by linearizing the time-domain equations with the technique of 

harmonic balance. This asymptotic technique, which ignores non-harmonic 

components of the frequency spectrum, is apparently not valid for the 

model at issue. 

4. CONCLUSIONS 

We have developed a numerical method to solve 1D cochlea models in the time 

domain. The method adequately determines the response of passive models, 

whether linear or nonlinear. It is not suited for linear active models, 

however, owing to enhancement of transients before a stationary response has 

been reached. For this type of model we advocate a (non-asymptotic) solution 

method in the frequency domain. The most interesting case, models having both 

nonlinear and active BM properties, seems to be handled quite well by the 

present method. 

The intent of this work was to provide a frame of reference for asymptotic 

solution methods. The developed method indeed appears to be able to decide 

about the validity of asymptotic approaches applied to cochlea models. As for 

the main model example treated (Van Netten and Duifhuis, 1983) we found that 

the harmonic balance technique which linearizes the model equations is inap

propriate because it suppresses reflection phenomena. Moreover, our results 
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show that the discussed representation of nonlinear and active properties by 

a series of coupled Van der Pol oscillators yields a response that is not in 

conformity with experimental data. 
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The vital basilar membrane is anisotropic, that is why its movements differ 
from the postmortally changed one. The spiral ligament is, due to its elas
ticity, directly involved in cochlear mechanics. By modelling the movement of 
the cochlear partition segment, the lever-mediated transformation from BM dis
placement to the displacement of hair cell stereocilia is demonstrated. These 
findings have been documented microcinematographically. 
In a three-dimensional model, topographic relations of the supporting system 
showing the interconnection of individual radial segments are presented. 
During basilar membrane motion a complex pattern arises in the reticular lamina. 
This augments the contrast in displacement of neighbouring hair cells. 

1. VITAL BASILAR MEMBRANE RESPONSE 

To model the processes of cochlear mechanics we proceed from the principles of 

acoustics and from histological information on the general structure of the 

cochlear organ and on the mechanical characteristics of its particular struc

tures. A century of research into the organ of hearing has yielded a wealth of 

information. Much of it has passed unnoticed, some of it has tended to be em

phasized or even overrated. Often, in studying the physiological processes of 

the cochlea, findings made on postmortem-altered tissues are used, e.g. in 

modelling basilar membrane (BM) motion. A fresh BM responds to pressure on a 

small part of its surface in a way quite different from that of a chemically 

fixed or postmortem-altered membrane. A living membrane exhibits marked aniso

tropy, a dead one soon loses its mechanical orientation. The high sensitivity 

of BM mechanical properties to disorders in intracochlear homeostasis was con

firmed by Khanna and Leonard (1982). The BM radial fibres keep the shape of 

deformation of the living membrane confined to a narrow transverse groove 

whereas a fixed membrane or one examined a few dozen minutes after death be-

comes deformed over a wide crater-shaped circular area as described previously 

(Vold~ich, 1978). Structurally speaking, anisotropy is conditional upon the 

combined action of the elastic basic substance and the radial bundles of 

fibres which are elastic in bending but noted for tensile strength. The BM 

anisotropy is conducive not only to acute tuning and, consequently, to a high

degree frequency analysis already in the cochlea, but also to greater sensi

tivity to threshold intensities as less fluid displacement by the stapes is 

needed for deviation. 
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2. ROLE OF THE SPIRAL LIGAMENT IN COCHLEAR MECHANICS 

The tensile strength of the radial fibres will not permit their prolongation, 

which is why the BM width remains unchanged in deviation. In instrumental ma

nipulation, deviating the BM, we are able to see a live cochlear partition con

stituting a functional entity together with the spiral ligament. The BM can 

deviate thanks to the elasticity of the ligament which acts as a yielding and 

elastic structure rather than as a rigid support for the membrane periphery 

(Voldrich, Olehlova, 1982). 

Comparative morphology of the cochlea in different mammals including man 

showed the BM and the spiral ligament as being distinctly related to the func

tion of hearing provided they are studied as a whole. The essential point there 

is not the absolute width of the BM but rather the ratio of its width with re

gard to that of the spiral ligament (on the radial plane). This ratio shows a 

significant correlation with the cochlear tonotopy and with the range of hear

ing in different species (Burda, 1983). 

The elasticity of the spiral ligament should be taken into account in modelling 

cochlear mechanics. The BM is to be seen as a membrane stretched between the 

bony lamina and the ligament. Only so we can obtain a model of the conditions 

proper to a living mammalian organ. The mode of deviation in a fresh as dis

tinct from a postmortem-altered cochlear partition, as well as the role the 

spiral ligament has to play in cochlear mechanics have been documented micro

cinematographically (Voldrich, Ulehlova, 1981). 

3. TRANSFER OF BASILAR MEMBRANE MOTION TO STEREOCILIA 

Once we accept the idea of a mechanical frequency BM response along narrow 

radial segments, we can easily imagine the whole of the organ of Corti respon

ding as a chain of mutually independent transverse radial segments. One such 

segment would be made up of one inner and one outer pillar and three supporting 

Dei ters' cells, and of one inner a!Fl three outer hair cells. The fulcrum would 

be at the point of BM insertion to the bony lamina of the modiolus. The motion 

of the BM causes a shift of the reticular lamina against the tectorial membrane, 

the fulcrum of which is the edge of the spiral limbus. 

Let us suppose that the complex of supporting cells and reticular lamina is a 

rigid structure, similarly as the BM pars tecta; together with the pillars they 

form a fixed triangle. Let us also regard the tectorial membrane as rigid. By 

creating a model of relationship between the hypothetical segment of the organ 

of Corti and the tectorial membrane we can conceive an idea of how the BM devi-
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ation is transmitted to that of the stereocilia. It appears then that the angular 

displacement of the stereocilia is directly proportional to the BM displace

ment and to the height of the organ of Corti, and indirectly proportional to 

the length of the stereocilia and to the width of the displaced part of the BM. 

If we apply those relationships to the actual morphometric readings we can see 

that this lever-mediated transformation augments the BM displacement several 

times resulting in a relatively large displacement of the stereocilia. For in

stance, in the second coil of the guinea-pig cochlea the angular displacement 

build-up is about seven-fold. 

However, the actual topographic relationships of the cells of the organ of 

Corti are too complex to warrant any oversimplified ideas of independent 

radial segments. For orientation's sake let us choose the direction of the 

radial fibres of the BM. Scrutinizing the surface of the reticular lamina we 

can see no distinct structure in this direction. What we can see in the cellu-

lar pattern, though, is that the triad of outer hair cells is turning away from 

the radial direction towards the cochlear apex exactly as the tectorial membrane 

fibres do. The cuticular plates of the hair cells are turned proportionally, 

thus preserving the orientation of the stereocilia with regard to that of 

the tectorial membrane fibres. The hypothetical radial segment is, therefore, 

spatially curved, its base being radial and straight, its top in the reticular 

lamina inclined, with the peripheral portion turned towards the apex of the 

cochlea. 

4. NON-LINEARITY IN COCHLEAR MICROMECHANICS 

Unfortunately, the hypothesis of independent segments is thwarted by other 

topographic relationships, too. We can hardly disregard the fact, obvious enough 

from Retzius' drawings of the organ of Corti as well as from present-day pic

tures produced by scanning electron microscopy, that the base of each pair of 

pillar cells is not actually situated on the same radial axis of the BM, but 

that the inner pillars are shifted towards the cochlear base. The supporting 

Deiters' cells send out phalangeal processes to the reticular lamina two to 

three outer hair cells apically, whereas the hair cells are turned away in 

the basal direction (Fig. 1). 

The phalangeal axes and those of the hair cells subtend an angle of up to 60°. 

Thus, one or even two outer hair cell cuticular plates are situated between the 

hair cell cuticular plate and the phalangeal plate arising from the same sup

porting cell. Beside obliquity in the base-apex sense, there is also a differ

ent inclination in the modiolar plane, i.e. from the centre to the periphery 

of the cochlea. 
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CELL 
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Fig. 1. Drawing of the three-dimensional topographic relationship of the sup
porting and outer hair cells in the Corti organ. 

Thus, if we construct a rigid frame model with mutually interconnected elements, 

displacement at a given point on the BM will set the whole system in motion, in 

which case the purpose of acute BM tuning is lost. 

We have constructed a model made of rigid elements representing the frame of 

the organ of Corti and loosely hinged to the BM and the reticular lamina rather 

like articulated joints. The BM displacement is transmitted to the reticular 

lamina in a complex sort of pattern. By altering the degree of rigidity or 

freedom in the articulations, the BM displacement is transmitted to the reticu

lar lamina in different modes. Different parts of the lamina are displaced 

differently. A BM lift transmitted by way of the outer pillar will cause the 

lamina to shift mainly towards the modiolus, while a phalangeally mediated 

lift of the BM will cause the adjacent sector of the lamina to move up. This, 

in turn, affects the ne ighbouring sectors on the reticular lamina, thus causing 

different displacements of the stereocilia. It follows from the function of the 

above described model that on the reticular lamina there is a growing contrast 
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of displacements of hairs of the neighbouring sensory cells. This might be 

considered to be a mechanism for a more precise and more acute localization of 

stimulation of auditory cells. 
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RESULTS FROM A COCHLEAR MODEL UTILIZING LONGITUDINAL COUPLING 

ABSTRACT 

Y.C. Jau, C.D. Geisler 

Univepsity of Wisconsin-Madison 
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A one-dimensional computep simulation of the cat cochlea was developed 
utilizing a one-degpee-of-fpeedom model of the cochlea paptition, with the 
magnitude of the damping between the peticulap lamina and the tectopial mem
bpane dependent upon the envelope of basilap-membpane displacement integpated 
ovep a longitudinal pegion. Aspects of the model's output mimic auditopy
nepve fibep activity. The slopes of stimulus-pesponse cupves fop singZe-tone 
stimuli decpease as fpequency is incpeased above chapactePistic fpequency. 
Apppoppiate two-tone supppession is,obsepved ~hen the supppessing tone's 
fpequency is eithep above op bel~ that of an excitato~ tone at chapactepis
tic fpequency. Nonlineap longitudinal coupling in the cochlea is suggested. 

1. INTRODUCTION 

Models of the cochlea typically have assumed that the basilar partition can be 

divided up into discrete segments that have no coupling between them other 

than through the fluid in the scalae. Yet evidence has been accumulating that 

there is appreciable longitudinal coupling among elements of the organ of 

Corti. Many years ago, von Be'kesy (1960) reported that the tectorial membrane 

had considerable stiffness in the longitudinal direction, pivoting about the 

osseous spiral lamina like a book cover. More recently, Javel, Geisler and 

Ravindran (1978) found that the strength of the suppression exerted on a 

primary auditory fiber's rate of response to an excitatory tone by a higher-

frequency suppressive tone dropped off exponentially with inferred spatial 

separation between the respective characteristic places. Another set of 

experiments on auditory-nerve fibers (Robertson and Johnstone, 1981) has indi-

cated that exposing the ear to a high-intensity tone whose frequency is above 

best frequency can cause a reduction in two-tone suppression without changing 

the response pattern to a single tone. The most likely explanation for this 

reduction is that a longitudinal electromechanical effect normally caused by 
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the suppressive tone is fatigued or weakened by the high-intensity tone. 

From this and other evidence, we are convinced that realistic models of the 

cochlear partition must include longitudinal coupling. This paper describes 

the results obtained with a model containing such coupling. OUr specific 

hypothesis is that the presentation of sound causes the tectorial membrane to 

undergo static deformations toward the reticular lamina. This static deforma-

tion decreases the thickness of the subtectorial space, thereby increasing the 

damping resistance of the fluid confined to that space. This nonlinear effect 

is assumed to be proportional to the envelope of the displacement and to ex-

tend longitudinally along the cochlea with exponentially decreasing strength. 

2. THE MODEL 

Our model is a one-dimensional computer simulation of a 22.5-mm cat cochlea 

containing 100 sections (Jau, 1983). For each section, the scalar fluids are 

represented by a mass and the cochlear partition by the one-degree-of-freedom 

model shown in Fig. 1. This model, derived from Allen (1980), represents the 

basilar membrane with a 

spring-mass (kb - mb ) sys-

tern which is coupled to a 

rigid rotatable tectorial 

membrane by viscous fluid 

(r ) and hair-cell cilia 
p 

stiffness (k). The radial 
c 

shear lever gain (g) 

relates vertical basilar-

membrane displacement (;b) 

with its effective radial 

displacement. 

TM 
I 

Fig. 1. ModeZ of ~o~hZeap paptition used. 
TM--te~toPiaZ membPane, BM--basiZap mem
bpane, RL--peti~uZap Zamina. Othep symboZs 
defined in text. (Adapted fpom Allen, 1980.) 
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Due to our assumption that static deflections of the tectorial membrane occur 

and extend for appreciable longitudinal distances, we represented the sub-

tectorial fluid as a longitudinally controlled nonlinear damper. Specifi-

cally, we assumed that 

r (1 + Bf(x,t» po 

where r is a rest damping, B is a weighting factor, and po 

X+<l 

f(x,t) J D(y,t) exp(-ly - xl/A) dy 
x-a 

(1) 

( 2) 

where D(y,t) is the envelope of basilar-membrane displacement at a particular 

place and time, A is the longitudinal space constant, and a is the limit of 

longitudinal coupling. 

All simulations were for 12 msec of simulated time. Values of model param-

eters are given in Jau (1983). 

3. RESULTS 

The envelopes of basilar-membrane displacement in response to several inten-

sities of a 2.5-kHz tone are shown in Fig. 2a. As the intensity of the 

stimulus increases, the degree of peakiness decreases and the location of 

the maximum response (the "characteristic place") shifts toward the base. 

For the formulation chosen, the 40-dB response has about the maximum amount 

of peakiness that we could achieve in 12 msec of simulated time. 

The amplitudes of the basilar-membrane's vibrations at the 16.2-mm point in 

response to several different frequencies and amplitudes are shown in Fig. 2b. 

At the characteristic frequency, 2.5 kHZ, the amplitude curve has a slope of 

less than unity between 40 and 60 dB and shows even a smaller slope for higher 

intensities. At lower frequencies, the slopes are greater, with the low-
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intensity slopes approaching unity. The low-intensity slope for the 3.5-kHz 

curve is also close to unity, but the amplitude of response is much lower. 

Therefore, at 80 dB SPL, a stimulus intensity that is great enough to produce 

response amplitudes in the range of 50 dB, the higher-frequency curve has a 

slope that is even less than that of the characteristic frequency in that 

amplitude range. The cause of this latter slope reduction is the spread of 

damping that occurs from more basal points of the cochlea, where relatively 

large displacement amplitudes occur in response to the high-intensity signal. 

Even though large response amplitudes are achieved at this cochlear place (x 

16.2 mm) with the lower-frequency signals, the fact that it is well basal to 

the characteristic places for these frequencies means that its corresponding 

response amplitudes are controlled by the membrane stiffness, and not by the 

damping (Hubbard and Geisler, 1972), and hence behave nearly linearly. 
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The type of behavior shown in Fig. 2b is very reminiscent of auditory-nerve 

fiber activity, for which different rate-intensity curves usually have dif-

ferent slopes depending on the stimulus frequency. At frequencies well below 

characteristic frequency, these slopes have a common value, while for stimulus 

frequencies near and above characteristic frequency, the values of the slopes 

decrease monotonically with frequency (Geisler, Rhode and Kennedy, 1974; Sachs 

and Abbas, 1974). 

The response of the model to the simultaneous presentation of two tones is 

shown in Fig. 3a. In this case, the amplitude of the higher-frequency signal 

(f2 = 2.5 kHz) is 28 dB higher than that of the lower-frequency tone (fl = 1.G 

kHZ). For comparison purposes, the response to the 1.G-kHz tone presented by 

itself is also shown. Notice that the addition of f2 to fl causes a reduc-

tion of about 4 dB in the maximum value of the membrane's response at the 

characteristic place for fl (17.8 mm). Response amplitudes to fl alone and to 
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fl and f2 presented simultaneously are shown in Fig. 3b. Notice that the two 

curves are approximately parallel, especially over the low-intensity region. 

As the frequency of f2 increases relative to fl, the amount of suppression 

decreases (Jau, 1983). 

Auditory-nerve fibers also display suppression of response amplitudes when the 

suppressive tone f2 has a frequency well below that of fl (Sachs, 1968). A 

similar effect is observed in the model. The curve in Fig. 4 shows that the 
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Fig. 4. Maximum basiZap-membpane dispZa~ement VS, intensity of f2 (1 kHz), 
ppesented with f1 (2.5 kHz @ 20 dB), at x = 16.2 mm reF = f1). a = 1000, 
a = 4.5 mm, A = 10 mm. 

magnitude of the response to two tones, at the characteristic place for the 

higher-frequency tone (fl 2.5 kHz), shows non-monotonic behavior with in-

creases in the intensity of the low-frequency tone (f2) The response ampli-

tude decreases with increases in the strength of a low-intensity f2, but grows 

with increases in f2's intensity at higher levels. The response attenuation 

at the lower intensities is due to the spread of damping power from the apical 

sections excited by f2, while the increase in the response amplitude at the 

higher intensities is due to the excitatory effects of the low-frequency tone 

at the recording point. 
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4. DISCUSSION 

The idea of longitudinal coupling is not new but has been advanced by a 

number of other investigators. More than a decade ago, Lynn and Sayers (1970) 

proposed that the inner and outer hair cells, innervating different sections 

of the cochlea, were coupled neurally. More recently, Zwislocki (1975) as 

well as Dolmazon and Boulogne (1982) have proposed that the drive on the 

afferent nerve fibers located at a particular spot is the difference between 

activity due to the inner hair cells and that due to more basally located 

outer hair cells. We believe that this difference hypothesis is unable to 

account for such phenomena as two-tone suppression, for the period histograms 

of primary-fiber discharges taken under conditions of strong high-frequency f2 

suppression show no evidence of synchronizing to the suppressing frequency 

(Javel, Geisler and Ravindran, 1978). In a manner somewhat similar to ours, 

Kletsky and Zwislocki (1979) included longitudinal coupling in the tectorial

membrane portion of an electronic model of the cochlea, but the model that 

they used was linear. More closely related in spirit to our model is a reso

nating-reed model of the cochlea developed by these same authors (Zwislocki 

and Kletsky, 1980), in which the introduction of nonlinear coupling by means 

of a longitudinally stretched rubber band caused two-tone suppression. 

The results presented here show that the introduction of displacement-depen

dent longitudinal coupling into a cochlear model causes several nonlinear 

effects that are also observed in the discharge patterns of auditory-nerve 

fibers. For one, amplitude-intensity curves for single-tone stimuli take on 

slopes of decreasing value as frequency is increased above characteristic 

frequency. Secondly, two-tone suppression of the appropriate character is 

observed when the frequency of the suppressing tone is either above or below 

that of an excitatory tone at characteristic frequency. QUantitative compari

sons between the model data and the neural data were not made, because our 
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oversimplified model's responses to tonal stimuli are not nearly peaked enough 

at low intensities to accurately represent basilar-membrane vibrations. 

Nevertheless, the trends in the model's results are unequivocal and clearly 

demonstrate the surprising range of realistic effects produced by nonlinear 

longitudinal coupling. Similar mechanisms may be at work in the cochlea. 
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It has been shown (Khanna and Leonard, 1982) that sharply tuned basilar mem
brane (BM) responses are seen when the trauma produced in opening the cochlea 
is reduced to a minimum. In these animals, ear canal sound pressure levels 
(SPL) show a pressure minimum of 2 to 20 dB in the frequency region 10-30 kHz. 
The purpose of this paper is to show that the sharp EM tuning is independent 
of SPL minimums. An interpretation of the sharply tuned mechanical response 
is given. Its origin is in the sharply tuned mechanical response of the stereo
cilia bundles of the hair cells. 

1. INTRODUCTION 

In the frequency region above 10 kHz most of the incident acoustic waves in the 

ear canal are reflected by the tympanic membrane (TM) a't the far end. 

The interference between the incident and reflected waves produces standing 

waves (Stinson and Shaw, 1982; Khanna, 1982). A pressure minimum can occur only 

at that distance from the point of reflection where the phase angle between the 

two waves is an integral multiple of 211 radians. It is therefore possible for 

a minimum to occur at the probe microphone position (several mm from the TM) 

but not at the TM where the reflection occurs. As a consequence, if BM vibra

tions are referred to sound pressure measured by the probe microphone, the 

pressure minimum may enhance the real sharpness of the BM tuning if both oc

curred at the same frequency. 

An obvious way to bypass the problem of sound pressure measurement is to refer 

the basilar membrane (BM) vibration amplitude to the electrical input of the 

acoustic transducer. This can be done in our experiment since the Sokolich 

acoustic driver frequency response is flat throughout the frequency region of 

interest (1 to 30 kHz). It has been clear to us since 1980 (Khanna and Leonard, 

1981B) that sharp tuning of the EM can be demonstrated under conditions in 

which there are no standing wave artifacts. 

2. RESULTS 

In a few experiments the relative SPL measured by the probe microphone 

(constant driver voltage) in the 10-30 kHz region was relatively flat (+ 5 dB) 

and it did not vary in a way which would effect the sharpness of the BM tuning 
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(Fig. 1A). Electrical input applied to the acoustic transducer to produce a 

basilar membrane vibration of 10-8 cm is shown (Fig. 1B). A sharply tuned 

BM response with a peak-to-tail (1 kHz) ratio of 30 dB is seen. 

Two sets of responses measured roughly an hour apart are shown (Cat 9/24/80) . 
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In nine out of twelve experiments only shallow (5-7 dB) broad minimums similar 

to the one shown in Fig. 2A were observed in the calibration test . 
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The contribution of these in sharpening the observed BM response would be mini

mal. Relative magnitude of the electrical input to the transducer required to 

produce a basilar membrane response of 10-8 cm is sho~~ in Fig. 2B. A sharp 

tuning of the response with a CF of 26 kHz and a peak-to-tail ratio of 20 dB is 

seen (Cat 3/10/81). 

3. REVIEW OF TUNING PROPERTIES 

As stated earlier (Khanna and Leonard, 1982), the sharp tuning seen in our ex

periments is a direct consequence of reduction of trauma to the cochlea. The 

interpretation of the sharply tuned BM response has been discussed in detail 

elsewhere (Khanna, 1983A,B), it is summarized below. 

When SPL required to produce a constant BM vibration amplitude is plotted as a 

function of frequency two types of response components are seen. 

- A robust linear response is observed even in the presence of extensive 

trauma which may cause a loss in round window microphonic potential that 

exceeds 50 dB (Khanna and Leonard, 1981A). The SPL required is relatively 

constant up to a cut off frequency beyond which it increases steeply. The 

cut off frequency varies with the position on the cochlea. This response 

has been measured by a large number of investigators and is well under

stood (for a review see Rhode, 1980; Zwislocki, 1981). 

- An extremely fragile nonlinear response which is sharply tuned and located 

just below the cut off frequency of the linear response (Khanna and 

Leonard, 1982; Sellick et al., 1982). It is seen only in cochleas in which 

trauma is minimal. 

A comparison of BM mechanical tuning curves, hair cell dc receptor potential 

tuning curves (Sellick and Russell, 1978) and frequency tuning curves of audi-

tory nerve fibers (M.C. Liberman, personal communication) all with similar 

CF show important similarities and differences (see Khanna, 1983, for details) . 

- They all have similar shapes and Ql0 values. The peak height in dB (CF to 

0.5 CF) is much smaller for the BM, 35 dB as compared to 80 dB for the 

nerve fibers and the hair cells. 

- Trauma affects all three in the same general way: (i) CF moves to lower 

frequency, (ii) sensitivity decreases, (iii) slopes are reduced, (iv) 

sensitivity reduction is larger in magnitude at the hair cell than at the 

BM. 

- All three have nonlinear responses in the sharply tuned portion. The non

linearity of the BM response disappears at death (Rhode, 1974). The 
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mechanical nonlinearity of the hair cell stereocilia bundle has been ob

served by direct stimulation (Strelioff and Flock, 1982). 

This comparison indicates that the sharply tuned nonlinear mechanical response 

originates at the hair cell. 

4. INTERPRETATION 

The resonant properties of the stereocilia bundles of individual hair cells 

determine the shape of tuning seen in the sharply tuned tip region of the 

hair cell and single nerve fiber tuning curves in the auditory system. The 

physical dimensions of the stereocilia (diameter, height, number) are organized 

along the length of the auditory sensory organ in such a way that the hair 

cells which respond to higher frequencies have stiffer ciliary tufts (Lim, 

1980; Tilney and Saunders, 1982). The tuning frequency of each hair cell is 

determined by the mechanical parameters of its own stereocilia bundle and the 

associated tectorial tissue. 

Stimulation of the hair cells occurs via the tectorial membrane attachment to 

the tallest row of stereocilia. Due to this mechanical coupling, the sharply 

tuned response of the hair cell is reflected in the BM response. The mechanical 

properties of stereocilia are nonlinear and this nonlinearity is also reflected 

in the sharply tuned portion of the BM response. Trauma reduces the stiffness 

of the tallest stereocilia and decouples them from the stereocilia bundle 

(Tilney et al., 1982). Loss of stiffness lowers the resonant frequency of the 

stereocilia bundle and loss of coupling lowers their sensitivity. The loss of 

coupling also prevents the sharply tuned nonlinear response of the stereocilia 

from appearing at the basilar membrane. 

The principle that the tuning in the inner ear is due to mechanical resonant 

properties of the stereocilia may be quite general in nature because in a 

large number of animal species (amphibians) the auditory organs lack a basilar 

membrane (Wever, 1983). The hair cells rest on a stationary supporting struc

ture. These hair cells can only be stimulated through the vibration of their 

ciliary tufts. The sharpness of tuning observed in the auditory nerve fibers 

in these ears is comparable to that observed in the mammalian ears. The 

frequency selectivity in the amphibian ears can only be due to the mechanical 

properties of the stereocilia and the attached tectorial tissue (Capranica, 

1978). Mechanical tuning properties of free standing stereocilia in alligator 

lizard have been demonstrated (Holton, 1983). In view of the above a recon

sideration of some of the basic principles of the inner ear mechanics is in 

order. 
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ABSTRACT 

General theories of thermal and quantum fluctuations are used to calculate the 
levels of noise in models of inner ear mechanics. In each case considered, 
the calculated levels of thermal noise are much too large to be consistent 
with the detection of sub-angstrom motions at the threshold of hearing. 
Quantum noise levels are comparable to these threshold signals, implying that 
the inner ear is not a classical system. Some implications of these results 
for theories of hearing are noted. 

1. INTRODUCTION 

In the classical view of the cochlea, the stereocilia of the receptor cells 

respond passively to forces which result from basilar membrane displacement. 

In recent years, numerous revisions of this classical view have been suggested; 

most of these suggestions were presented as possible explanations for the 

remarkable filtering abilities of the mammalian cochlea and other inner ear 

organs (cf. Lewis et al. (1983) for review). 

In this paper I shall ~iscuss some implications of another remarkable ability 

of the inner ear, namely its detection of small signals. The most recent 

measurements in the cat cochlea find 10-10m motions of the basilar membrane at 

sound pressure levels 30 dB above the threshold for a reliable behavioral 

response of the animal (Khanna and Leonard, 1982). This suggests that the 

displacements at threshold are 10-llm or less, and this is consistent with 

results (Peake and Ling, 1980) from the alligator lizard basilar papilla 

(cf. Bialek and Schweitzer (1983a). Similarly, neurons from the saccule of 

the white-lipped frog display clear responses to 10-llm vibrations of the 
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whole frog (Lewis and Narins, 1981). 

Can the classical model, or any of its modern variants, account for the detec

tion of lO-ll m displacements? Three investigators, adopting different theo

retical methods, have reached widely diverging conclusions: De Vries (1956) 

and Flerov (1976) argue that the levels of thermal noise expected in the 

classical model are much larger than the threshold signals, while Harris 

(1968) suggests that the Brownian motion of the basilar membrane could be well 

below the threshold displacement. Allan Schweitzer and I (Bialek and 

Schweitzer, 1983a; 1983b), in a more systematic approach to the problems of 

noise in the inner ear, find that thermal noise levels are much greater than 

the threshold signals, and quantum noise levels are (perhaps surprisingly) 

significant. 

2. THERMAL NOISE AT THE STEREOCILIUM 

The detector elements of the inner ear are the stereocilia, which are roughly 

cylindrical objects of length L = 4ym and radius R = 50 nm; they consist of a 

crosslinked bundle of actin filaments (Flock and Cheung, 1977). From these 

facts we can estimate the mechanical properties of the cilium to be expected 

if the system is mechanically passive. All proteins, including actin, have a 

density of p = 1.3 gm-cm- 3 and a Young's modulus of Y ~2x1010Nt-m-2 (Karplus 

and McCammon, 1979). Thus a single stereocilium will have a mass m=npR 2L=4x 

lO_17kg • If the stereocilium is clamped at its base and free at its tip, then 

it will move in a cantilevered mode and have a stiffness K=3nYR4/16L3~10-3 

Nt-m- l • Indeed the cilia of many receptor cells are free-standing, and 

hinging of the base will only decrease the stiffness, so that our upper bound 

is correct. 

The upper bound on the stiffness of a stereocilium determines the thermal 
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noise displacements (Brownian motion) of the cilium which we would see if we 

made broad-band measurements of its motion. The result (Landau and Lifshitz, 

1977) is that the mean-square displacement «Ox)2>=kBT/K, where k B=1.36xlO- 23 

J-K- l is Boltzmann's constant and T=300K is the absolute temperature. Thus 

x / 112 -9 uxrms=(kBT K) ~2xlO m, which is 40 dB above the threshold displacements in 

the inner ear. 

To calculate the spectral density Sx of stereocilium Brownian motion, we need 

an estimate of its damping coefficient. An order of magnitude estimate may 

be obtained from the same hydrodynamic considerations which arise in the 

analysis of ciliary beating (Lighthill, 1975); for an object with the dimen-

sions given above we obtain y=lO-lONt-s-m- l , assuming that the viscosity of 

fluid surrounding the cilium is close to that of water. From the fluctuation-

dissipation theorem (Landau and Lifshitz, 1977), 

(1) 

where the root-mean-square fluctuations in a narrow bandwidth 6f are oXrms= 

(4TISX6f) 1/2. From the parameter estimates above, oXrms>1.3xlO- 12m(6f/1Hz)1/2 

for frequencies in the normal auditory range. If we are to detect 10-11m dis-

placements of single stereocilia, then the hair cell must possess a filter 

with a bandwidth of 50 Hz or less. 

It might be supposed that much larger detection bandwidths could be tolerated 

by averaging over the many stereocilia on each hair cell; this is not the 

case. At, for example, 1 kHz, fluid motion extends around the stereocilium 

through a boundary layer of depth = 20~m (for the viscosity of water; 

Landau and Lifshitz, 1959), and objects within this layer--such as cilia on a 

single receptor cell, or even nearby cells--will be coupled through the 

viscosity of the fluid. Systems which are viscously coupled exhibit 

correlated Brownian motions (Landau and Lifshitz, 1977), and hence there will 
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be little noise reduction upon averaging. 

3. THERMAL NOISE AT THE BASILAR MEMBRANE 

It might be possible to overcome stereocilium Brownian motion by amplifying 

the motion of the basilar membrane, but this will be disastrous if the 

Brownian motion of the membrane itself is significant. To estimate the 

Brownian motion of the membrane, we write the energy of the system in terms of 

the position and velocity of the membrane at each point in the cochlea, and 

then apply the Boltzmann distribution. 

In conventional models of membrane mechanics (de Boer 1970; Lighthill, 1980; 

Lewis et al., 1983), the energy consists of three components: the kinetic 

energy of the basilar membrane, the kinetic energy of the cochlear fluids, and 

the potential energy of the membrane. Considering the kinetic energy terms, 

the basilar membrane velocity V(x) at the point x along the cochlea has the 

spatial Fourier representation 

dk ikx 
V(x} = J 2TI e V(k}, (2) 

so that the kinetic energy of the membrane 

J 2 • dk 1 12 K.E.(membrane} = (mb/2) dxv (x) = (mb/2)) 2TI V(k) , (3) 

where m and b = lOOWm are the mass per unit area and width of the membrane, 

respectively. The kinetic energy of the fluid can be written 

K.E.(fluid} = (b/2)J ~~ PQ-l(k)IV(k}1 2 , (4) 

where P = 1 gm-em- 3 is the fluid density and Q(k) depends on the assumed 

geometry of the model (Lighthill, 1980). Thus, if the fluid motion is primar-

ily one-dimensional, Q(k} = hk 2 , where h O.lem is the effective height of 

the cochlear chambers, while if the motion is two-dimensional Q(k} = ktanh(kh). 

The total kinetic energy is therefore 



189 

(5) 

According to the Boltzmann distribution, the probability of any particular 

configuration of the system is e-E/ kBT , where E is the energy of the configura-

tion (Landau and Lifshitz, 1977). Applying Eq. (5) for the energy, the V(k) 

are Gaussian random variables; the variances are given by 

<V(k)V(k' » 

so that 

kBTO(k+k' ) 

b[m+PQ "(k)) 

<v 2 (x» - (k T/mb)f dk Q(k) 
- B 2'lT Q(k) +p/m 

For Q(k) given above the integral may be evaluated as 

<v 2 (x» (kBT/2bh 2P) (ph/m) 3/i 

(k BT/bh 2P) (ph/m) 2 

ph « m, 

ph » m. 

Current models often assume m = ph, so that the thermal fluctuations in 

basilar membrane velocity will be OV = (kBT/bh2P) 1/2 = 2xlO- S cm-sec- 1 • 
rms 

(6) 

(7) 

(8a) 

(8b) 

At a frequency of 1 kHz, these velocity fluctuations are equivalent to dis-

placement fluctuations of = lO-10 m, or more than 20 dB above threshold; the 

problem is correspondingly worse at higher frequencies. It may be shown that 

the correlation length for these fluctuations is = h, so that no reasonable 

spatial averaging could reduce their effect. 

The same reasoning may be applied to the potential energy, which is 

b f 2 
P.E.(membrane) = 2 dxc(x)z (x), (9) 

where z(x) and C(x) are the displacement and stiffness per unit area of the 

membrane, respectively. In analogy to Eq. (6), we find 

<z(x)z(x'» = k BTC- 1 (X)O(x - x'). (10) 

If we average over a region of length d, we will see displacement fluctua-

tions of OXrms = [kBT/bdC(x)) 1/2, and C may be determined from the resonance 
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condi tion (JJ;m = C. Thus, at the position in the cochlea corresponding to wo= 

2rr(lkHz), and with m = ph from above, a hair cell of diameter d = lO~ will 

"see" a basilar membrane Brownian motion oXrms = 3xlO- l om, or about 30 dB 

above threshold. Whether we measure displacement or velocity, the thermal 

noise at the basilar membrane is large--too large to allow significant 

amplification of the membrane motion (including through feedback; cf. Gold 

(1948» without making a serious problem much worse. The need to reduce the 

effects of this noise argues strongly for a filtering process subsequent to 

basilar membrane mechanics. 

4. QUANTUM NOISE AT THE STEREOCILIUM 

If we imagine a fictitious inner ear operating at absolute zero, there would 

be no thermal noise, but there are still quantum limits to the signals which 

can be reliably detected. In particular, if we try to follow the amplitude 

and phase of stereocilium motion--as the hair cell does by producing an AC 

receptor potential--then we will see a displacement noise, or zero-point 

motion (Braginsky et al.,(1980), «ox)2> = h/2(mK) 1/2, where m and K are the 

mass and stiffness of the stereocilium, respectively, and h=1.054xlO- 34 J-sec 

is Planck's constant. With the estimates of these parameters given above, 

the zero-point motion of the stereocilium is greater than lO-12m, or within 

an order of magnitude of threshold. This rough calculation demonstrates that 

the inner ear, near threshold, operates in a regime where quantum mechanical 

effects are non-negligible. 

Quantum mechanics also places limits on the performance of amplifiers used in 

the measurement process: any linear amplifier must contribute some minimum 

excess noise to the signals which it amplifies (Caves, 1982). If we are to 

make measurements near the limit imposed by zero-point motion, then our 



191 

amplifier must contribute no more than this minimum noise. Apparently the 

amplification processes occuring within the hair cells of the inner ear are 

"perfect" in this quantum mechanical sense. 

Is it plausible to suppose that "perfect" amplification occurs in a biological 

system? A number of biological systems are well described by theories in 

which quantum mechanical effects are explicit and significant (e.g. DeVault, 

1980). By extending these theories it is possible to "build" a perfect 

amplifier out of the known properties of biological molecules (Bialek and 

Schweitzer, 1983b). We therefore should not be surprised by the significance 

of quantum effects in a system which, after all, operates at a sub-molecular 

scale. The fact of our surprise remains, however. 
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In this pape7' we p7'esent a model of neu7'al 1'esponse to pU1'e tones and tone 
bU1'Sts. The rodel data fit the neu1'al data ove7' a la1'ge mnge of f1'e
quenaies and levels. Some exceptions to this fit a1'e discussed. The 
model is based on the Davis rodel of tmnsduction which descroibes the cell 
1'ecepto7' potential given cilia displacements. We augment the Davis model by 
a8swning, as UXI.S done in the Sch1'oede1'-HaU model, that the neu1'al 1'esponse 
is p1'Dpo1'tional to the cilia CU1'1'ent. We fU1'the1' asswne that the CU7'7'ent is 
lOUJ pass filte1'ed in 01'de1' to account fo7' loss of the phase locked 1'esponse 
fo1' f7'equencies above 5 kHz. 

1. INTRODUCTION 

In recent years an increased emphasis has been placed on improved under

standing of cochlear hair cell transduction. In this period a great deal of 

experimental data has demonstrated the validity of the Davis model of trans

duction. In 1958 Davis proposed that basilar membrane motion produces hair 

cell resistance charges, thereby modulating the receptor potential within 

the body of the hair cell. This idea has now been tested in many laborato

ries, and in all cases the model appears to be in agreement with the experi

mental data. 

However the transformation that leads to the probability of firing at the 

neuron level has not been as successfully explained, although it has been 

attempted [Schroeder and Hall, (1974); Smith and Zwislocki (1975); Ross, 

(1982) I. In the opinion of this author, one common flaw with each of these 

attempts was that they were not predicated on the Davis model. In the pre

sentation developed here we attempt to build on the basic Davis model, which 

seems to accurately model the receptor potential. We then study the type of 

transformation that is required to transform the receptor potential into a 

neural response. We next compare the model neural data to experimental data, 

discuss the weakness of the model, and discuss the the problems of physiolog

ical correlates. This final question relates to a basic unsolved problem in 

neurobiology, namely the question of the release of vesicles at the synaptic 

site. It is presently believed that calcium is responsible for the fusion of 

vesicles at the cell wall. Vesical fusion then leads to the release of 

transmitter substance into the synapse. This general mechanism is therefore 

likely to be involved in the signal path between the hair cell receptor 

potential and the neuron. 
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2. THE DAVIS MODEL 

The basic model, proposed in 1958 by Davis, has evolved into the more 

complete model shown in Fig. I, which is reproduced from Weiss et al. (1974). 

Because the model of Fig. 1 has evolved beyond the original Davis proposal, I 

shall refer to it here as the variable resistance model. This model, which 

describes the receptor potential in terms of the displacement of the cilia, 

has been directly tested in several ways. 

.. 

a. Receptop potential 

Fig. 1. This figupe has been peppoduced 
fpom Weiss et at. (1974). This rrm1el dif
fer'S fpom the opiginal Davis model in that 
membpane capacitance and conductance have 
been included. The cilia conductance g(x) 
is assumed to foPm a half-wave pectifiep as 
a function of the cilia displacement x, 
which in tupn is believed to pesult fpom the 
sheap between the tectopial membpane and the 
top of the haip ceU (peticulap lamina). 

The receptor potential has been experimentally measured by Flock (1971), 

Weiss et al. (1974), Russell and Sellick (1978), Dallos (1975), Hudspeth and 

Corey (1977), and Holton (1981). In Fig. 2 we see recent receptor potential 

measurements for four different cells (Holton, 1981) driven at each units 

characteristic frequency (CF). Two features are notable: Fi r'S t, the 

component in the response at the stimulus frequency decreases with increasing 

stimulus frequency. This effect is accounted for in the variable resistance 

model by the low-pass filter resulting from the cell capacitance which is in 

series with the cilia resistance. Second, the membrane voltage (enve-

lope) increases monotonically when the stimulus is applied, in a manner pre-

dieted by the variable resistance model. (This charging curve will be com-

pared to the neural response which is known to be quite different.) Thus the 

waveform of the receptor potential (Fig. 2) seems to be, at least quali ta

tively, in agreement with the model of Fig. 1. 

FREQUENCY (kHz) 

0 .52 1.03 2.02 

l~1 
:;/ 0 A 
!]-----~ ~ 
s ~I 
~ 0 ~ 

Fig 2. The data shOUJn hepe 
3.92 (fpom Holton, 1981) ape pecep

top potential measupements fpom 
,.-., 90 r aUigatop lizapd haip cells. 

L _ ~ ~ In this figupe the stimulus was 
eo r a tone bups ts (of 1XZPious fpe

~ i quencies and levels). Note hOUJ 
~ the potential incpeases, when 

70 - the tone is tUPned on, with a 
constant of about 1 77B (one 

~ ;iNfI,WINI--25 0 .... ·.---25 0- 25 
full pePiod of 1.03 kHz). Note 
a ls a the simi lap dis chapge time 
aftep the tone has been tupned TlME (msec) 

STIMULUS off· 
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b. Leve ~ dependence 

A third important characteristic of the cell, beside the rise time and the 

frequency response, is the level of dependence. This level dependence can be 

measured several different ways, however, basically it is the characteri

zation of the response of the cell as a function of the excitation level. 

Frequently this data is presented as a family of curves with frequency being 

the parameter (Russell and Sellick, 1978). 

Available level data frequently does not agree with the variable resistance 

model in that the DC saturation value for the receptor potential can be 

frequency dependent (relative to the CF). According to the variable resis

tance model, the time average receptor potential should saturate at a voltage 

which is independent of frequency. 

c. Resistance measur'ements 

A recent important check on the variable resistance model was made by 

Hudspeth and Corey (1977), and some of their results are shown in Fig. 3. 

Since their data are for bullfrog sacculus hair cells, the absolute sensitiv-

ities may not be representative of the mammalian auditory system. 

.... ...... .,.. Fig. 3. We show her'e the input-output r'eZation-dL· ... ship for' a hair' ceU. The cur've shows the poten-
., I j tid change fr'om the r'esting potentia~ (-58 mV) as 
,.. I a function of the displacement of the hair' bun-l' i 1 dle's tip by a 10-Hz t'r'iangle UXlve stimulus. An 

... __ ._ ......... -: ___ .. _............ .. a Ue'r'nate abs cissa r'epr'esents the es timated angle 
. 1 of flexion of the 9 )llm- long hair' bundle on the 

assumption that it pivots at its base. -u) 0 _-.0 -- 1.-1 
3. NEURAL RESPONSE MODEL 

The receptor potential is merely an intermediate step between the cilia dis

placement and the neural response, and a great deal more neural data is 

available in the literature than receptor potential data. The modeling 

position represented here is that an active linear transformation (a linear 

filter) will transform the receptor potential data into the neural response. 

Smith and Zwislocki (1975) also determined that the relation between the 

receptor potential and the neural response seemed consistent with a linear 

transformation. Their results are based on scaling relationships that they 

observed from a series of experiments using tones having incremental steps. 

Thus the model proposed here is in agreement with their results since we 

specifically assume a linear transformation. 

a. Pr'evious neur'al models 

The most widely acknowledged neural model to date has been the model of 
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Schroeder and Hall (1974). One notable aspect of the Schroeder-Hall model 

was their attempt at giving a physiological basis for the model. Unfortun-

ately this model had several deficiencies. Fi'Y'St, it is lacking a 

description of the hair cell receptor potential, such as described by the 

Davis variable resistance model. As a result, it is very difficult to relate 

the model to this physically measurable quantity. second, their maxi-

mum rate-level curve does not saturate for large levels. This deficiency is 

easily corrected by simple modifications to the model, thus it does not 

appear to be a major limitation. Thir>d, the model does not exhibit a 

loss of phase locking for frequencies above 5 kHz, as is commonly observed in 

neural data. Again, perhaps this deficiency could be easily corrected by a 

modification to the original model. 

The Schroeder-Hall model may be transformed into the form of the Davis model, 

by the use of the Thevenin equivalence theorem. However when this is done, 

the voltage source for the Schroeder-Hall model is signal dependent, whereas 

the voltage source for the Davis model is constant. Thus, the two models are 

formally different. The Davis and the Schroeder-Hall models are similar if 

one makes three changes, or identifications. Fir>st the voltage source 

in the Schroeder-Hall model, after the Thevenin transformation, must be set 

to a constant, to make it equivalent to the Davis model. second we iden-

tify the neural response with the current through r(t), as is assumed by the 

Schroeder-Hall model. Thir>dZy, we rust low-pass filter the current to 

account for the loss of a phase locked response in the neural data. If we 

make these three changes, we may combine the success of the two models. 

r r r 

i('~ITTII~ 
\ J 

OUTPUT 
LPF 

b. A composite modeZ 

Fig. 4. This figur>e shows the modeZ as p1"O
posed in this pape1". We sta1"t with a simpZi
fied ver>sion of the Davis modeZ for> the ceZZ 
1"ecepto1" poetentiaZ. We then take the cur>r>ent 
as the output. roathe1" than the voZtage. The 
CU1"1"ent and voZtage a1"e 1"eZated by the Zinea1" 
troansfor'rIUtion of Eq. 1. FinaZZy. in 01"de1" 
that the 1"esponse not be phase-Zocked at high 
f1"equencies. we Zow pass fiZter> the CU1"r>ent in 
01"de1" to pr>oduce the modeZ 1"esponse. The Zow
pass fUte1" is shown he1"e as a diffusion 
troansmission Zine. Some jus tifications exis t 
fo1" this pa1"ticuZar> choice of Zow-pass fiZte1". 
HOUJeve1" imp1"oved l71'iiiasur>ements a1"e needed to 
detemrine the true type of fiZtering which 
1"emoves the phase Zocked component above 4 01" 

5 kHz. 

In Fig. 4 we show the composite model as described above. The current in the 

variable resistance model is taken as the input to a low-pass filter labeled 
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LPF. The output of the low-pass filter must show no phase locked component 

for frequencies above 5 kHz since stimulus frequencies above this value are 

never seen in neural data. 

Next it is useful to recognize that the current may be computed from the 

receptor potential by linear operations since the current through r( t) is 

equal to the sum of the currents through the capacitor and the cell leakage 

resistance. Thus 

1 l(s) = V(s)(- + sC ) 
R m 

(1) 

m 

where s = 0 + iw is the Laplace transform complex frequency variable, Rm is 

the cell leakage resistance, and Cm is the total cell capacitance (Fig. 1). 

According to this model it is possible to compute the model neural response • 

by an active linear transformation of the hair cell receptor potential 

We now present data that support this conclusion. 

c. Model J"esponses to pUJ"e tones 

The data being modeled in this section are stimulus locked single tone histo

gram data of D. Johnson (1974). Pure tones were presented to the cat while 

single unit spikes times were recorded modulo the tone period. A histogram 

was then made of the probability of firing relative to the stimulus period. 

The model and neural results are compared in Fig. 5. The first two columns 

of this figure give the 200 Hz data at 10 dB levels, the second two columns 

are for 1800 Hz, and the last two columns give 3.4 kHz data. At low levels -

the unit fires at the spontaneous rate with equal probability over the inter 

val. As the level increases above the spontaneous rate the firing rate 

develops a phase locked sinusoidal component. For frequencies above 4 or 5 

kHz, a phase locked component is never observed. 

As the level is further increased the observed response depends on frequency 

For frequencies near 4kHz the response remains sinusoidal. For lower fre-

quencies the firing probability estimate appears half wave rectified, except 

at low frequencies where it has the characteristic shape seen in the bottom

most panel of the first column. 

The model results seen in the corresponding (second) column match the experi

mental data reasonably faithfully. The bottom-most panel in each model 

column gives the peak "rate" level curve as obtained from the model. These 

peak rate curves have been normalized to the maximum rate and are very 

similar to corresponding experimental data. 



198 

OJ,).1-4 ' D.a~· l4 11.1]') ' • 
.... 0- .--(1.11.1"" . ...,'.11, ,.0- I." oa ....... f1If:Ooo ;) . ... IOQ 

~ " '~'O L: "'70 "~D , _III'\J , . ..... ~ ~, -.... - I ... lID • • • - .. - ~~f .. ... .. . .. .-. .----------. "''''0' •. ,N·O-
"'~D 

. . . . 
k " k " b 

I. 
• • • ... . .. . .. 

"''''0' ~ " '~Cr '-I~D ~ 
.. 
~ 

.. 
~ 

.. 
• • • ... . .. . .. 

LJ\ .. ":~. 

~ "'~~r ~ "'~~-
,. ,. 

• • ... . .. . .. 
lJ\ 

I .' " ... , 6 .' 

· · '~t~r " '~~-· ··~'ITSJ ~ r~ ... . .. . .. 
LK .... :[;j. ~ · · '~t!:r K "'~~r 

, .", •• 
• • 

•• . .. . .. 
'ttl]' ,. f'VI-tOO 01 'tOht '{ezf I[2r •• . .. . .. -.' DI 64 . ' ' .' 01 ./14 . • ' .' CIa ... . . 

Fig. 5. In this figu"f'e we compa"f'e rrvdel calculations to the single-tone 
neupal data of Johnson (1974). The fi7'St colurrm is the neu"f'al data, as a 
function of level, in 10 dB steps, for' a f"f'equency of 213 Hz. The o"f'dinate 
is the estimated p"f'obabiZity of fir'ing, as a function of the tone penod. 
A U pane Z.s dis play one penod of the s timu lus independent of f"f'equency. The 
second colurrm is the rrvdel "f'esuZt fo"f' 200 Hz. The bottom-most panel gives 
the rrrxximum rrvdel output (finng pate) as a function of input level. The 
model "f'ate-level cUr've is very simila"f' to neu"f'al "f'ate-level CU"f'ves. Columns 
thr'ee and fou"f' give simila"f' data for' a f"f'equency of 1.8 kHz. Columns five 
and six a"f'e for' a fr'equency of 3.4 kHz. 

In order to qualitatively understand the low-frequency high-level curve, it 

is useful to think of the cilia resistance of the model r(t) as being 

swi tched between one of two possible resistances rLO and rHI, depending on 

the sign of the cilia excitation. When the cell resistance switches to rLO, 

the receptor capacitance begins to charge, and the cell voltage changes expo-

nentially to its new steady state potential. The current through r will 

increase dramatically at first because the voltage drop across r is large. 

As the voltage v increases toward VE the voltage across r decreases, thus the 

current decreases. 

d. Model "f'esponse to tone bu"f'sts 

Next we look at the case of a tone burst stimulus since it is a more compli-
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cated stimulus. In Fig. 6 we show neural data collected by the author (from 

cat). The tone burst was presented at the unit's CF (110 Hz). The unit had 

a normal CF threshold for this frequency range and had a very broad flat 

response near the CF. The histogram bin width was 50 \l sec; however, for 

plotting purposes the data was averaged by an eight sample long rectangular 

window and was decimated eight to one. The lowest panel displays the maximum 

instantaneous rate as a function of the sound level. The number in the upper 

right hand corner of each panel is the sound pressure in dB re 20 \l Pa. The 

decrease in rate at 75 dB is due to the first peak suppressing the response 

of the second peak, thus decreasing the maximum rate at the second peak. 

Such nonmonotonic behavior seems to be relatively common at low frequencies. 

Fig. 6. In this figur'e we s heM neupa 1.. tone buY'S t 
data mgasur'ed in eat by the author' using mgthocJs 
deser'ibed in Al.l.en (1983). The stimu1..us fr'equen
ey uxw 110Hz, and the sound l..eve 1.. went fr'om 24 
dB-SPL (dB r'e 20 ]l Pa) to 8'1 dB-SPL. The bottom
mos t pane 1.. s heMS the rraximum r'ate as a funetion 
of l..eve 1.. of the tone. The dip in pate at '15 dB
SPL is due to the iner'ease in fir>ing of the fiY'St 
peak whieh had a suppr'essive effeet on the seeond 
peak, ther'eby r'edueing the rraximum r'ate. As the 
pr'essur'e iner'eased fUr'ther', the firs t peak rote 
iner'eased to the pr'evious rraximum of the seeond 
peak. Note al.s 0 the eharoeter>is tie lJX1.vefor'm 
whieh, at high l..evel.s, sheMS a peak fir>ing 
r'esponse, whieh then deer'eases to a p1..ateau. For' 
one ha1..f eyel.e the unit fail.s to fir'e. Note al.so 
that the rraximum fir>ing pate on the 5th eye1..e is 
about 1/3 that of the first eye1..e for' the highest 
input l..evel.s. 

In Fig. 7 we show the hair cell model response to 

the identical tone burst. The left hand column 

gives the model cilia resistance values on a log scale. Note that for this 

figure the intensity changes by 10 dB for each panel whereas in the previous 

figure the sound intensity changed by 12.7 dB between panels. For Fig. 7 the 

middle column gives the model receptor potential (compare this to Fig. 2), 

while the right hand column shows the low-pass filtered current, which 

according to the model represents the probability of neural firing. In the 

bottom-most panel of the right hand column we show the maximum model firing 

rate as a function of level. Note the decrease in firing rate due to the 

suppression of the second peak by the first at 54 dB. Also note the 

similarity between the maximum rate-level curves of Figs. 6 and 7. 

Two differences are seen between the neural and model data. First the maxi-

mum firing rates for the third, fourth and fifth period are about half the 

maximum for the experimental data. In the case of the model these maxima 
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only drop about 40%. Second the time constant for recovery of the sponta

neous rate for the neural data (Fig. 6 is about 10 IDS, while the model 

recovery time (Fig. 7) is somewhat shorter. These two failures seem to be 

similar in their time constant and may represent a common model failure, or 

model parameter error. In general the agreement seems excellent. 

Zl .. ~ .. 

Fig. 7. These modeZ 7'esuUs shouZd 
be compa7'ed to the p7'evious figu7'e 
which gives neu7'aZ data unde7' the 
same condi tions. Fo7' the mode Z we 
shCM th7'ee co"turrms. The fiT'St is 
the ciUa 7'esistance as a function 
of time. The 7'esistance is pZotted 
on a Zog-07'dinate scal-e. In the 
second coZurrm we shCM the rrrJdeZ 
hai7' ceU 7'ecepto7' potentiaZ. In 
the Zas t (7'igh t-mos t) co Zurrm we 
ShCM the rrrJdeZ neu7'aZ 7'esponse, as 
computed f7'om the rrrJdeZ of Fig. 6. 

In Figs. 8 and 9 we compare similar 

data (Fig.8 is neural data from a 

cat unit having a CF of 4.85 kHz, 

while Fig. 9 is the corresponding hair cell model result). The ordinate, as 

before, gives the instantaneous firing rate. The bottom panel gives the 

maximum firing rate over the stimulus period as a function of level. Again 

the agreement seems excellent. 

In Fig. 9, as in Fig. 7, we show the model cilia resistance, receptor poten

tial, and firing rate, as a function of stimulus level. Note that the rise 

time for the receptor potential decreases as the level increases, as would be 

expected from the model for smaller charging resistances at large stimulus 

levels. Note also that the same effect may be seen in the neural data in 

Fig. 8 where the leading edge becomes relatively sharp at large sound levels 

(73 dB). 

4. DISCUSSION 

A most important aspect of modeling is identifying the model features with 

measurable physical (in this case biophysiological) quantities. In the case 

at hand we do not have sufficient experimental data to make definitive asso-

ciations. On the other hand there is a large body of literature on the 

chemical synapse since it is the object of intense research because of its 

pervasiveness in neural systems. If we assume that cochlear hair cells are 

similar to other biophysical systems, then it is possible to speculate on a 

physical realization of the hair cell model. 

According to the present view of chemical synaptic transmission (Llinas et 
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al., 1981) the following chain of events is assumed to occur: First the 

receptor potential controls the opening of calcium channels in the cell wall 

at or near the synapse. These ions then diffuse to the pre-synaptic membrane 

where they cause vesicles to fuse with the cell wall, thereby dumping their 

contents (transmitter substance) into the synaptic cleft. Either calcium 

currents or vesicle depletion might account for the initial burst in spike 

activi ty, and the slow decay in the firing rate for long times (10-20 ms) 

[e.g., transformation given by Eq. (1). J The low-pass filter of the model 

presented here might be due to the diffusion of the calcium ions from the 

cell wall to the synapse where the vesicles reside. 

Fig • . 8. We show hen tone 
bur'S t data (fr'om cat) for' a 
stimulus fr'equency of 4.8 kJJz. 
Note how the leading edge of 
the tone bur's t r'es pons e 
becomes very steep at high 
leve ls • Note als 0 that no 
4.8 k.'f z component is seen in 
the neu-ral -response. Afte-r 
the tone r'es pons e has been 
tu-rned off, the spontaneous 
-response slowly r'ecover'S with 
a time cons tant of abou t 20 
ms • 

Fig. 9. The rrodel conditions for' this 
figu-re ar'e nea-rly identical to thos e of the 
neu-ral data in Fig. 10. As in Fig. 9 the 
fir'S t co lumn shows the cilia -res is tance on 
a log scale. The second column gives the 
model -recepto-r potenHal. The thir'd column 
-is the rrodel neu-ral r'esponse. After' the 
tone has been tUr'ned off, the -recovery is 
too -rapid, -relative to the neur'al data, 
however' the ove-raZZ shape and r'esponse 8eem3 
quite r'easonable. The -rate level function 
is typical r'elative to neu-ral data, but the 
phase locked component -is too lar'ge, indica
ting that the si'71ple RC filter' used he-re was 
not sufficient to -remove the h'ighe-r fr'equen
cy components. 
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Point-load measurements of basilar membrane compliance in the guinea pig were 
made with the intent of providing insight into the membrane's structural be
havior and parameters for use in mathematical modeling. Selected points on a 
radial line across the basilar membrane were staticalZy displaced in one-half 
micron steps and the force required to maintain each increment of displacement 
recorded. Curves of force versus deflection were constructed for each point 
tested and appear trilinear in the O-'s micron range of deflection. The slope 
of these curves in the steepest region was then plotted as a function of norm
alized radial distance. Consistent among all tests is a comparatively stiff 
arcuate zone. Calculations of point-load compliance and volume compliance were 
compared to results obtained by other investigators. 

1. INTRODUCTION 

There is little doubt that the basilar membrane (BM) is the dominant elastic 

element of the cochlear partition. An accurate determination of its structural 

properties is thus important for the comparison of cochlear models with the 

physical system. With the demonstration that calculations can be carried out 

for three-dimensional models (Taber and Steele (1981», the knowledge of the 

variation of BM compliance with radial distance becomes necessary for the de-

termination of BM motion. To date, however, experimental data on this 

variation is sparse. The first experiments were done by Bekesy, who measured 

volume compliance in various mammals and also point elasticity in the human. 

The age and physiological condition of the samples in both cases is unknown, 

though, and the results obtained in the second case, by loading with a series 

of small hairs, are limited by the discrete nature of the values for force. 

Dancer and Franke (1980) estimated the volume compliance of the live guinea 
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pig to be one-fifth of Bekesy's post mortem measurements at a point 2 rom from 

the basal end. 
4 

This would indicate an in vivo value of about .04 rom IN at the 

2 rom point. Gummer et.al. (1981), in the post mortem guinea pig cochlea, 

measured the slope of the dynamic force-deflection curve as a function of 

static BM deflection for radially central locations in the basal region. Their 

results ranged from 1.22 - 3.57 miN. 

In order to obtain a more complete assessment of BM parameters, the following 

experiments were performed to measure the point-load compliance of the BM as a 

function of radial distance. The guinea pig was used because of the experi-

mental results already available, but it was necessary to work with the excised 

cochlea because of the requirement of perpendicular access to the BM. 

2. MATERIALS AND METHODS 

a. Specimen preparation 

Guinea pigs weighing between 250 and 300 grams were sacrificed with an overdose 

of Nembutal. The ear bullae were quickly removed and opened and the exposed 

cochleae embedded apex downward in dental cement. Scalpel and pick were used 

to carefully remove a section of bone of scala tympani to allow access for 

viewing and access by the force transducer. Care was taken to avoid contact 

with the BM and to preserve its attachments. The position exposed varied from 

1.0 to 2.5 rom from the basal end. A layer of perilymph was left above the 

membrane and a fluid reservoir created by surrounding the specimen with gauze 

soaked with Ringer's solution. A 6-7 micron layer of fluid was then main-

tained at all times above the membrane. The specimen was firmly clamped, scala 

tympani side of BM upward, in a frame providing three rotational degrees of 

freedom. 
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h. Measurement technique 

The system used to measure force involved a servo accelerometer (Systron Donner 

Inc., Concord, Calif., model 43ll-l-X15) of the type generally used in inertial 

guidance systems. The seismic mass, mounted on an arm of the accelerometer's 

pendulous element, was removed and a glass needle with tip diameter of 12.5 

microns glued in its place. A force applied to the arm causes a movement of 

the arm which is detected by a position sensor. An error signal adjusts the 

current to a torque-restoring coil which returns the arm to its original 

position. The voltage drop across a resistor in series with the coil can be 

measured and is proportional to the applied force. 

The force transducer was mounted in a micromanipulator providing three degrees 

of translational freedom. The specimen was placed below the glass needle and 

oriented with the needle perpendicular to the plane of the BM. A Wild stereo

microscope on 50X magnification was used to verify all positionings. The trans

ducer/needle was lowered to the BM at a point just radial to the edge of the 

primary spiral lamina (PSL) until contact was obtained as detected by an in

crease in the baseline voltage output of the force transducer. It was then 

lowered in one-half micron steps at 10 second intervals to a maximum dis

placement of 6-8 microns beyond the pre-loaded state. The voltage output of 

the transducer was continually recorded. When maximum displacement was reached, 

the needle was raised, moved 5 microns radially outward, and the process re

peated. Measurement was done until the spiral ligament (SL) was reached, in

volving 26-30 points as the width of the BM in the specimens studied was 135-155 

microns. Testing was completed within three hours post mortem. Distance from 

the basal end was determined with a graduated eyepiece. 

To eliminate noise, the entire apparatus was situated in an air-tight chamber 

mounted on a vibration-damping table, and output from the transducer was low-
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pass filtered. Since the impedance of the transducer system is infinite, the 

distance moved by the transducer needle is exactly the deflection of the EM and 

the voltage recorded at each step represents the force necessary to maintain 

that deflection. 

c. Calibration 

The sensitivity of the force transducer is 67 mV/dyne as measured with dead

weight loading. The servo system has a natural frequency of 160 Hz and a 

damping ratio of 0.7. Its resolution is .0001%, linearity .05% and non-repeat

ability .01%, all with regard to full scale. The precision of the entire sys

tem was determined to be 3% by testing on a uniform gelatinous block and a 

4 micron synthetic plate. 

d. Microstructure 

As an attempt to determine the actual state of the cochlea at the time of force 

recording, one cochlea, treated in the same manner as those tested, was fixed 

at 4 hours post mortem with phosphate-buffered formaldehyde(l%) and glutaral

dehyde(l%). Post-fixation followed with osmiurn(2%) in a veronal acetate buffer. 

Light microscopic examination of the embedded specimen revealed that the ap

pearance of the EM was identical to its appearance in micrographs of fresh 

cochleae. The mesothelial cells lining the EM retained structural integrity 

and the inner and outer pillars were intact. Swelling, vacuolization and lysis 

were evident in the inner and outer hair cells, Deiter's cells, Claudius's 

cells and the cochlear nerve. 

3. RESULTS 

Graphs displaying force versus EM displacement were obtained for each location 
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tested, yielding 112 curves for the four animals used in this report. The 

curves were trilinear, with the limits of the linear regions varying slightly 

from point to point. The first range generally corresponded to displacements 

I 
i 

! 
j 

,'" :: .. ~. 

i 

j 
! 
f 

LO 4.0 ' .0 ' 0 
OE.FL£CTlON (mlCronl) 

Fig. 1. Force-deflection curves 
for two points on the basilar 
membrane. 

of 0-3 microns, the second to 3-5 microns and the third to 5-7 or 8 microns. 

For locations near the PSL, however, the extent of the first and second 

ranges were very much shorter. Two characteristic curves are shown in Fig. 1. 

Figure 2 shows the inverse of the slope of the steepest (third) range of the 

force-deflection curves plotted versus radial distance. Each set of points 

represents data from one animal. The radial coordinate was normalized with 0.0 

at the edge of the PSL and 1.0 at the edge of the SL. Dominant in all curves 

is a stiff region extending from the PSL to approximately 0.33. The specimens 

in Fig. 2b show a region of intermediate compliance from .33-.56. All 

results show localized stiffening at a spot varying from .56-.64. 

4. DISCUSSION 

From anatomy, it sould appear that the first linear range corresponds to the 

loading of the mesothelial cells lining the BM, the second to the amorphous 
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four cochleae. 
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ground substance and the third to the fibers of the BM. These are the zones 

contacted by the needle as it pushes downward from scala tympani. The arches 

of Corti are obviously contributing a stiffening to the structure. The reasons 

for the notch at .56-.64 are as yet unknown; it may be due to support from the 

tonofibrils and phalangeal processes of the outer phalangeal (Deiter's) cells. 

Although the distance from the stapes was known for each of the radial posi-

tions, no attempt was made to correlate this to compliance since individual 
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variation makes it impossible to compare results from one animal to another. 

Only one set of measurements was possible per cochlea because of the time re-

quired for the procedure. 

It is difficult to compute volume compliances from these results, as the de-

formed shape of the membrane is not known. With the arcuate zone assumed rigid, 

the present results correspond to equivalent hydrostatic loading volume compli-

4 
ances of .04-.09 rom IN. The results of Dancer and Franke (1980) at the 2 rom 

point are .04 while those of B~kesy (1960) for the same point post mortem are 

4 
.18 rom IN. 

To compare the results obtained here to other measurements of point compliance, 

we must take into consideration the diameter of the instrument making contact 

with the fibers. If we assume that there is negligible longitudinal coupling 

between the fibers of the BM, as demonstrated by voldfich (1978) for the IS-min. 

post mortem cochlea, then we can model the BM as a set of transverse beams. 

The needle, of diameter 12.5 microns, should always fully contact at least 5 of 

the large fibers in the bottom layer of the BM pectinate zone, based on dimen-

sions reported by Iurato (1962). If the diameter of the needle is doubled, the 

effective moment of inertia of the structures contacted is doubled. If we nor-

malize the present results to an area of fibers one micron in width, the point-

load compliances vary from 4 miN in the arcuate zone to maxima of 25 miN in the 

pectinate zone, all steepest range values. The second range gives maxima of 

38 and the first range of 63 miN. The normalized results of Gummer et.al. 

(1981), who used a 25-micron diameter probe, are then 31-89 miN for their 

linear or "plateau" region. The discrepancy may be due to the dynamic nature 

of the latter's loadings or a difference in the linear zone of partition con-

tacted. 
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The ears of many birds and mammals were dissected and examined in search for 
functional specializations in aural sound conduction. To some of the findings 
the functional significance is postulated and they are grouped under the 
headings "The third window in waterbirds" and "Launching the Bekesy wave". 

1. THE THIRD WINDOW IN WATERBIRDS 

In some birds the cochlear aquaeduct is very wide, about as wide as the round 

window (Werner 1958, 1960). Scala t~pani directly faces the brain for about 

one third to one half of the cochlear length. This "third window" allows 

rapid pressure exchange between brain and cochlea. After noticing the wide 

aquaeduct especially in waterbirds - such as penguin, great crested grebe, 

pelican, flamingo, swan and goose - it occurred to me that the third window 

may have something to do with underwater acoustic orientation. Underwater 

directional hearing may be helped by allowing intercochlear fluid flow across 

the brain. 

Por the plane underwater sound wave with sound pressure Pp and particle ve

locity Vp: Pp = PwCVp (Pw mass density of water, c speed of sound in water). 

The wave affects the ears of submerged birds in two ways. 1. Pp sets the skull 

into vibration, probably mainly through action on the beak since the head is 

partly acoustically insulated through the air cushion trapped between fea

thers. Here we assume that Pp causes the sound pressure Pv in scala vestibuli 

and PT in scala tympani. PT and Pv are assumed equal in both ears and 

~P = PV-PT . 2. The bird is carried along by the sound wave with a velocity 

VB close to the particle velocity Vp (assume VB = Vp ). This is because the 

mass density of bird PB and water Pw is similar (assume Pw = PB = PBR = P;P BR 

mass density of brain). Through the acceleration inertial forces are set up 

in the bird's sound conducting system. Here we ignore all such forces as 

might arise in the middle and inner ear. We just consider transcerebral flow 

(Pig. la). 

The intercochlear pressure Pi arises due to the sound induced velocity Vp of 

the skull: 
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(1.1 ) 

(w = 2~f; f frequency; VFX component of skull ve l ocity in parallel with inter

cochlear axis X; cosa direction cosine, h intercochlear distance). 
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Pig . 1. Scheme fop undepwatep dipectional heaping in watepbipds. 
CaJ: the acoustic field ppessupe Pp causes sound ppessupes PVand 
PT (~P = PV- PXJ in scala vestibuli and tympani . Head accelepation 
causes dipect~on dependent intepcochleap ppessupe P~ and scala 
tympani ppessupes P'L' P 0R" (bJ: the left and pight~(~ , ~PR) 
tpanspaptitional pp~ssup~ amplitudes diffep and the diJrepence 
depends on dipection of sound wave . ,~middle eap space, BR bpain, 
eM basi lap membpane, RW pound window, Land R left and pight coch
lea, h intepcochZeap distance, Vpx = Vpcosa, Vp papticle velocity, 
a angle between dipection of souna wave and in~epcochleap axis X. 

Pi is an open circuit pressure; it could be measured across the brain if 

either one or bot h aquaeducts were rigidl y closed so blocking intercochlear 

flow. P i drives i ntercochlear volume flow against the internal (intracerebral) 

acoustic impedance Zi and the acoustic impedances at the t wo third windows 

(2Z 3 . W)' If most o f the flow i s shunted through the round window impedances 

(ZRW) it follows that 2Z 3 . W = 2ZRW ' Pi causes the pressure P iL in the left 

and P iR in the right scala tympani: 

Z 
RW 

2Z +Z. P, 
RW ~ ~ 

(1. 2) 



For the pressure across the cochlear partition in the left (nPL) and the 

right (nPR) ear: 

nP-P iL ' /:;PR 

nP -nP 
L R 

nP-P iR' nP 
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(1.3) 

Thus the intercochlear flow causes a difference in amplitude between the left 

and right transpartitional pressure (Fig. 1b). The difference depends on the 

direction of the sound wave. Underwater directional hearing of waterbirds may 

operate on this principle. 

2. LAUNCHING THE BEKESY WAVE 

The delivery of power to the acoustic load ZB by an acoustic system can be 

described as shown in Fig. 2.a. Po is the sound pressure between d and e for 

ZB 00, Zin is the internal impedance. At the circular frequency Wy maximum 

real power is absorbed by ZB(Wy ) if for the real (Re) and imaginary (Im) 

parts: 

ReZB(Wy ) = ReZ. (w ), ImZ (w ) = -ImZ. (w) 
~n y B Y ~n Y 

(2.1 ) 

Figure 2b: Let ZB = RB, Zin Rin+(jWCin)-l. The power [PB [2RB-1 absorbed by 

RB can be changed by shunting RB with an acoustic mass LS and so forming a 

high pass filter. At low frequencies inserting LS causes an insertion loss. 

However, it follows from Eqs. (2.1) that there is an insertion gain IG(WB) at 

10 Power absorbed with shunt 
IG(WB) = log Power absorbed without shunt 

RB+3Rin 
10 log ""4 .... R-.-

~n 

(2.2) 

If RB = gRin the shunted RB absorbs three times as much power as the non

shunted RB at WB' 

Figure 2c: Let ZB = RB, Zin = Rin+jWLin . Power absorption can be changed by 

inserting the acoustic shunt compliance Cs so forming a low pass filter. At 

high frequencies one obtains an insertion loss. Using Eqs. (2.1) one obtains 

an insertion gain at Wc if: 
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HIGH PASS LOW PASS 

Fig. 2. Power matched sound transmission to the Bekesy wave. 
(b,cJ: depending on internal impedance z. power absorption in a 
certain frequency band can be improved ~nshunting wave resistance 
HB with acoustic reactance. 

The scheme may be applied to the cochlea. ZB is the input impedance of the 

Bekesy wave that transports power into the cochlea; ZB = RB in the frequency 

range without reflections from the helicotrema. Zin is the source impedance 

at the fenestral boundaries. It is composed of the acoustic mass due to the 

flow field that couples wave- and boundary motion, plus the acoustic imped

ance at round and oval window. The latter contains the middle ear impedance 

and the radiation impedance of the eardrum as seen at the stapes footplate. 

Po is the transpartitional pressure due to the external sound field if 

ZB = 00 

-1 
At frequencies below middle ear resonance Zin = Rin+(jwCin ) • Power absorp-

tion by the Bekesy wave can be improved in a certain frequency range by 

shunting RB with an acoustic mass. 

a. The Duatus Brevis 

The ductus brevis in birds was discovered by de Burlet (1929, 1934). It can 

be seen in drawings of the parrot cochlea by Denker (1907), but Denker did 
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not recognize the duct. The duct runs between the neural limbus and the bony 

wall. In contrast to the helicotrema it interconnects the cochlear perilym

phatic canals at the basaZ end. Beyond a certain cut off frequency the duct 

presents a pure acoustic mass that shunts the cochlear partition at the basal 

end. 

The basal situation differs between birds. The ductus brevis is absent in owls 

(Schwartzkopff and Winter 1960), it is extremely narrow - nonfunctional - in 

chicken birds such as turkey, pheasant, quail, it is present in pigeon, song

birds, woodpecker, duck, and it is particularly wide in goose (duct in goose: 

diameter 0.6mm, length 2mm). 

At low frequencies the ductus brevis controls transpartitional pressure and 

it causes an insertion loss. However, in a certain frequency band below middle 

ear resonance it can cause an insertion gain (Eqs. (2.2), Fig. 2b). 

b. The Lamina ProbZem 

The problem of the flexible lamina spiralis ossea primaria (spl) is old 

(Perrault 1680, DuVerney 1684) yet few workers in hearing are aware that it 

exists (Steele 1976, Taber and steele 1981). The spl is part of the cochlear 

partition. It is wide in the basal turn where the basilar membrane (bm) is 

narrow. It narrows towards the apex as the bm widens. In many mammals spl is 

thick and rigid and it moves much less than the bm. These include the labora

tory mammals used in auditory physiology: cat, rat, chinchilla, guinea pig, 

mongolian gerbil, squirrel monkey, rabbit. In some mammals the basal spl 

(bspl) is very thin, fragile and flexible: for instance in pig, cow, man and 

mole (in mole just for the most basal 2mm). In pig and cow bspl deflects al

most as much as the basal bm (bbm) at low frequencies, and in case the bm is 

stiffened by formalin fixation bspl deflects more than bbm. In unfixed human 

preparations (2 days postmortem) bspl and bbm deflect with equal amplitude 

over the distance from 3 to 14 mm at sound frequencies up to 1 kHz. Under a 

static point load (hair probe) the human bspl deflects nearly as much as the 

round window membrane. Polvogt and Crowe (1937) reported that a partly 

deossified bspl is compatible with normal hearing in man. 

What is the functional significance of the flexible bspl? (It is probably not 

just the lack of sensitivity to ultrasound that allows an ear with flexible 

lamina.) The analogy to the acoustic plate absorber might be useful. At high 

frequencies the wavelength is short and the transpartitional pressure wave has 

a steep longitudinal gradient. So bspl is stiff owing to its longitudinal 

bending stiffness. At low frequencies the wavelength is long and the 
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transpartitional pressure distribution approximates to a spatially uniform 

pressure load. To this uniform load bspl yields like a soft plate since only 

the small radial bending stiffness provides restoring forces. Here bspl may 

have a resonance and beyond the resonance frequency its motion may be mass 

controlled provided the pressure load remains sufficiently uniform. Thus in a 

certain frequency band the flexible lamina may have an effect similar to 

shunting the Bekesy wave with a basal mass reactance. If this happened below 

middle ear resonance power absorption by RB could be improved (Eqs. (2.2), 

Fig. 2b). 

At frequencies above middle ear resonance Zin = Rin+jwLin . Part of the inter

nal acoustic mass Lin is due to the inertial flow field that couples footplate 

motion to wave motion. In noctural owls (Strix aluco, Strix flammea) the bony 

frame of the oval window projects deeply in between the cochlear and vesti

bular fluid compartments and the columella footplate acquires as a result the 

striking drop-like profile (Krause 1901, de Burlet 1934 Fig. 1238). This sep

aration between cochlea and vestibule changes the flow field. It may reduce 

the mass load imposed by the flow field and may thus improve high frequency 

sensi':.Lvity. Generally, power absorption can be improved by shunting RB with 

an acoustic compliance (Eqs. (2.3), Fig. 2c). 

c. The Limbus Problem 

In birds the bm is carried between the neural and abneural branch of the 

limbus. Over the basal part of the cochlea (along the cochlear windows) the 

limbus branches are only loosely anchored at the cochlear wall (independent 

of the presence or absence of the ductus brevis). Under a static point load 

they yield like elastic cantilevers supported in the upper cochlea. They do 

so too u~der an alternating pressure load. This seems to be the case also 

in caiman (Smolders, Wilson and Klinke 1982). The vibrating basal limbus 

could act similar to a compliant shunt of the basilar membrane at the basal 

end, thereby improving power absorption by RB at frequencies above middle ear 

resonance (Eqs. (2.3), Fig. 2c). 
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