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PROSPERO
— Dost thou hear?

MIRANDA
- Your tale, Sir, would

cure deafness.

Shakespeare,
The Tempest, Act 1, Sc. 2.
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IX

Welcome to the readers

This book gives an account of present-day attempts at solving the problems
posed by the truly amazing capabilities or our hearing organs. The emphasis

is on those aspects of the external ear, the middle ear and the cochlea which,
to the best of our present knowledge, can be treated by a mechanistic analy-
sis. The book represents the proceedings of a Symposium on Mechanics of Hea-
ring, held at Delft (the Netherlands) in July 1983. The symposium was jointly
sponsored by the International Union of Theoretical and Applied Mechanics
(IUTAM) and the International Commission on Acoustics (ICA) and it functioned
as a special symposium associated with the 11th International Congress on

Acoustics in Paris.

A scientific committee was appointed (see list below) under the chairmanship
of the undersigned. The committee selected a number of possible contributors,
and requested suggestions for additional contributors. In this way the core
of the symposium programme was constructed. Each author had to produce a
camera-ready manuscript which means that the authors are fully responsible
for their texts. In a few instances the Bureau of the Symposium provided
help to the authors to ensure that all manuscripts were typed according to
the same rules. The book was made available at the time of the Symposium

thanks to the diligence of Delft University Press.

The following gives a guide as to the contents of the book. The first topic
is called: 'External ear and middle ear'. A review paper by Shaw and Stinson
analyzes the many physical properties that have been demonstrated in these
organs. Sound is affected by structures of complex geometry. A modern way of
attacking the problem of complexity is demonstrated by Funnell in his contri-
bution on vibrations of the drum membrane. Sound does not only go from ‘air'
to 'ear' but - in view of cochlear emissions and other active, nonlinear phe-
nomena - also in the opposite direction. See the paper by Matthews on the
transmission of sound generated in the inner ear back to the middle ear and

to the external ear.



The second main section of the book concerns 'Cochlear fluid mechanics', this
subject more or less represents the 'classical' approach in cochlear mechanics.
The section brings together a number of papers, mostly of a fundamental na-
ture, treating the problem as to how cochlear fluids interact with cochlear
membranes. One of the most versatile solution methods, the LG (Liouville-
Green) or WKB (Wentzel, Kramers and Brillouin) method, is applied by Steele
and Zais to cochlear structures of fairly complex geometry. Other applica-
tions of that method in two- and three-channel cochlear models, are presen-
ted by Babid and Novoselova. A different approach, more easily recognized as
an asymptotic method, is illustrated by Holmes and Cole. To what extent expe-
rimental data can be explained in terms of 'classical' models is demonstra-
ted by Viergever and Diependaal. Very fundamental properties of models
incorporating 'short waves' and the ways these properties are interconnected

form the topic of the paper by Lighthill.

With the advent of 'Cochlear emissions' - the name of the next section -

a new era seemed to start in the field of hearing theory. New experimental
findings and a novel interpretation are presented in Kemp's contribution to
this book. It is difficult to grasp all data and to construct a comprehen-
sive model to explain them all, hence the studies of simplified models. See,
for instance, the paper by Sutton and Wilson. More experimental data are pre-
sented by Rutten and Buisman. These authors also relate the emission phenome-
na to subjects of study in completely different fields of research: phase
transitions of oscillators that operate near their critical points. One
bridge too far? Certainly not! Finally, Wit and Ritsma consider spontaneous
emissions in frequency and time. They also try to determine the minimal sti-

mulus level that gives rise to an evoked emission - with a surprising result.

The fourth main topic, obviously related to the previous one, is 'Active
Systems'. Several authors in this field claim that the classical, passive
cochlea model is not capable of explaining the essential elements of the
most recent findings regarding vibrations in the cochlea. When a model is
assumed to be active, i.e., to have the property that cochlear structures
can actively generate acoustic energy, it is feasible to obtain a well-
fitting response. This is demonstrated by the model responses obtained by
Neely. Mountain, Hubbard and McMullen describe more general aspects of an
active model and the way computed responses relate to experimental evidence,
whereas Koshigoe and Tubis concentrate on feedback properties of an active

model.



XI

In both papers nonlinearity appears as an essential feature of the model.
Problems associated with reflections of waves generated inside the cochlea
by active behaviour are analyzed by de Boer. Van Netten and Duifhuis give
an account of their first attempt at an analytical approach: the dynamics of
the organ of Corti is described by the Van der Pol equation. Diependaal and
Viergever studied numerical techniques for solving the problem of an active
structure. They find one of the most advanced methods to fall definitely
short of the goal in active models and they elucidate the reason for this

property.

The fifth section of the book, entitled 'Nonlinear micromechanics', tries
to delve somewhat deeper into the problem of how the specific properties of
the organ of Corti are brought about. Voldrich presents an account of the
most recent anatomical findings. Jau and Geisler consider nonlinear effects
as dependent upon a weighted average of basilar membrane displacement over
a certain length. Khanna and Leonard enumerate the arguments why they think
tuning properties of the cilia of cochlear hair cells are crucial, a feature

that has been keeping theorists busy for a long time.

A number of 'Special topics' remain, difficult to be brought under one hea-
ding. Miller's experimental results on the static compliance of the basilar
membrane contribute to present-day discussion on this topic. Allen shows how
the dynamics of neural excitation in hair cells can be taken into account.
Questions of sound conduction in water birds, the role of the cochlear aqua-
duct and the significance of a flexible spiral lamina are considered by Kohl-
loeffel. Bialek, finally, approaches the problem of cochlear action from
quite a different angle. He calculates the noise level resulting from
Brownian motion and finds this to be at least 20 - 30 dB above our hearing
threshold. According to these results there should exist a filtering process

subsequent to cochlear mechanics.

Many thanks are due to the sponsoring agencies: IUTAM and ICA. The coopera-
tion with the Department of Mathematics and Informatics, Delft University
of Technology, served well to make the meeting a success. The undersigned
gratefully acknowledges the work done by the scientific committee (see list
below). The many contributions from Dr. M.A. Viergever who assumed the labo-
rious task of Secretary of the Symposium, deserve to be mentioned specifi-

cally.
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The same applies to Mrs. M. den Boef who undertook the greater part of the

local organization and administration work.

Let us all hope that the present book will be a milestone along the road of
modelling of the auditory system.

E. de Boer

chairman

The scientific Committee:

Sir James Lighthill, London, UK

C.R. Steele, Stanford, CA, USA

E.A.G. Shaw, Ottawa, Canada

E. de Boer, Amsterdam, Neth. (chairman)

M.A. Viergever, Delft, Neth. (secretary)
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THE HUMAN EXTERNAL AND MIDDLE EAR: MODELS AND CONCEPTS
E.A.G. Shaw, M.R. Stinson

National Research Council
Ottawa, Canada

ABSTRACT

The performance of the external ear, when viewed as a diffuse-field receiver,
is given in a simple expression containing two acoustic impedances. In this
sense, the external ear has a high frequency performance quite close to the
theoretical limit. Viewed as a directional antemna the external ear is an
acoustical wave processor of considerable complexity. Approximately eight
normal modes spread over nearly three octaves are required to account for its
distinetive characteristics. At the highest frequencies, additional wave
factors come into play near the eardrum. Network concepts are well suited to
the mechanics of the middle ear but require considerable development to allow
for the complex motion of the eardrum which is the dominant factor at high
frequencies. Considerable progress has been made with a two-piston model
which gives reasonable eardrum impedance and middle ear transmission curves.
This model shows that, at high frequencies, it is the internal resistance of
the eardrum that absorbes most of the ineident sound emergy and controls
middle ear transmission. A more sophisticated treatment of eardrum motion
may soon be within reach.

1. RECEPTION IN A DIFFUSE SOUND FIELD

The primary function of the external ear, the collection of acoustical
energy, can be quantified in a precise manner by performing a mental
experiment in which the ear is first a receiver and then a transmitter.
Hence, by invoking the acoustical reciprocity theorem, it can be shown (Shaw
1979) that the power Pd absorbed at the eardrum, when the ear is immersed in
a diffuse sound field of mean square pressure pfz, is determined in essence

by two impedances as follows:
Py = (M2/4m)[4nR,Ry/ Z,+Z4 2] pg?/pc (M

In this expression, Za is the acoustic impedance seen by the eardrum looking
outward through the external ear, Zd is the impedance presented to the
external ear by the middle ear systenm, Ra and Rd are the resistive parts of
these impedances, and A is the wavelength of sound. When Za is the conjugate
of Zd and when the radiation efficiency n is 100% (no sound absorption
between the eardrum and the diffuse field), the power received at the eardrum

has its greatest possible value

P = (A2/4m) (pg?/pc) . (2)

This is the total power flowing through a transparent sphere of cross-

sectional area A2/4n (radius A/2m) when immersed in the same diffuse sound



field. Similarly, comparing equations (1) and (2), it follows that the

"absorption cross section" of the non-ideal ear is

A = (A2/4m)[4nR_Ry/ 2,424 2] (3)

The upper solid curve in Fig. 1 shows the calculated absorption cross section
for a physical model of the external ear whose acoustical characteristics are
closely matched to those of the median human ear (Shaw 1982). The values of
Za for this model were obtained from impedance tube measurements and the
values of zd came from a middle ear network (see Shaw 1982). The validity of
the method was confirmed by measurements of diffuse field response (Shaw
1979). As can be seen, the human external ear is a poor sound collector at
low frequencies but approaches the theoretical limit of performance at its
principal resonance frequency (~ 2.7 kHz) and at higher frequencies. For
comparison, the broken line in Fig. 1 shows the calculated absorption cross
section when the external ear is eliminated and the eardrum is placed on the

surface of a sphere representing the head.

Fig. 1. Calculated absorption
erose section for externmal ear
model combined with middle ear
network. Difference between
solid curves indicates fraction
of absorbed energy reaching
cochlea. Broken line shows
absorption eross section with
external ear eliminated.
(Adapted from Shaw 1982.)

2. DIRECTIONALITY AND NORMAL MODES

Measurements indicate that the diffuse field response of the human ear is
relatively insensitive to variations in geometry (Shaw 1980). The direct-
ionality of the ear, which is highly significant in sound localization, is
however closely linked with its geometry as shown in Fig. 2. These families
of response curves were obtained with a special source designed to produce

clean progressive waves at grazing incidence. The measurements were made at



Fig. 2. Frequency response at six

angles of ineidence. Upper panel:

Model ear with concha acoustically

matehed to median human ear. Lower
panel: Model ear with exponential

eoncha.

six source positions simulating median plane excitation at elevations betwen
-15° and +60°. It is evident that the response of the model ear with "human"
acoustical characteristics (upper panel) is highly directional at frequencies
greater than 5 kHz whereas the response of the ear with the exponential

concha is substantially independent of source position at all frequencies.

The key to the directionality of the human ear is found in the normal modes
of the concha (e.g. Shaw 1982). The pressure distributions symbolized in
Fig. 3 are based on measurements on ten human ears with the ear canal closed.
They are presented against the geometrical representation of the concha used
in the model ear referred to in Fig. 2. For each measurement, the source
position was carefully selected to excite the chosen mode while minimizing
the excitation of adjacent modes. The resonance frequencies shown are the
mean values for the ten subjects and the arrows indicate the directions of
maximum excitation. These frequencies and directions are almost perfectly

matched in the model ear. Notice that the second and third modes have

Fig. 3. Relative phases of
sound pressure in different
parte of concha based on
data from ten human subjects.
Sketeh at left outlines
cavity system in human
concha.



Fig. 4. Measured pressure
distributions in physical
model representing human ear
canal with bend and tapered
end. P(z): Pressure
magnitude along x-axis.
P_... Magnitude of pressure
maxy . f .
maxtima in uniform cylinder.

pressure distributions that are primarily vertical while the fourth and fifth
modes are predominantly horizontal. As indicated in Figs. 1 and 2, the

doublets become triplets in the complete ear (canal open).

3. EAR CANAL GEOMETRY

It has been customary to treat the human ear canal as a uniform cylindrical
tube terminated by a plane eardrum set perpendicular to the canal axis. In
reality, the eardrum is inclined to the canal axis forming a wedge-shaped
volume at the end of the canal which tends to be bent away from the main body
of the canal. The cavity depicted in Fig. 4 is one of an experimental series
representing such characteristics (Stinson and Shaw 1982). As can be seen,
the measured pressure distributions are significantly different from those
associated with the simple canal. In particular, at the highest frequencies,
the pressure maxima in the tapered portion of the cavity are much greater
than those in the uniform cylindrical region. Furthermore, the first zone of
the wave pattern is considerably extended which places the first minimum at a
distance of approximately 0.4\ from the end rather than 0.25)A. The benefit
conferred by this horn-like behaviour is offset by the presence of a pressure

node across the inclined eardrum surface.

4. MIDDLE EAR MECHANICS

For more than two decades lumped-element modelling has provided a valuable
framework for middle ear mechanics. In particular, Zwislocki's well known
acoustical network (Zwislocki 1962) gives a good account of normal and
pathological human middle ears at frequencies up to 1 or 2 kHz, as judged by

the quality of fit between the calculated and measured values of input



Fig. 5. Compound-eardrum
concept (a) S,: rigidly
attached to malleus, Sj:
remainder of eardrum; ?b) Rigid
pistons with mechanical
coupling; (e) Network with
ideal transformer.

impedance. To proceed to higher frequencies, it is essential to accommodate
the mechanical complexity of the eardrum revealed in the holographic studies

of Tonndorf and Khanna (1972), Lgkberg et al (1980) and others.

Fig. 5 shows a lumped element representation of the human eardrum which takes
into account some of its major vibrational characteristics while avoiding the
fine structure associated with the flexural resonances which must surely be
present. First, the eardrum surface is divided into two zones: So' which is
tightly coupled to the malleus at all frequencies, and Sd' which is free to
move with a substantial measure of independence at high frequencies where its
motion is controlled primarily by its own inertia. These zones are treated
as rigid pistons with mechanical impedances Zm and Zmo and they are

d

mechanically coupled by an impedance Zm . (At low frequencies, this

o
coupling impedance represents the stiff:ess between the central and outer
portions of an elastic shell. At high frequencies, it seems to be determined
primarily by the internal damping of the shell.) Since the pistons are also
acoustically coupled through the ear canal and middle ear cavities, the
network representing the system must include an ideal transformer as shown in

Fig. 5(c).

In the complete middle ear network presented in Fig. 6, the acoustical

i = 2 =] 2 =
impedances Zd Zmd/Sd B Zo Zmo/so and Zdo Zmdo/

individual circuit elements. The elements connected to the secondary side of

Sd2 are now expressed as

the transformer (Ro' Lo etc.) correspond closely to the elements in
Zwislocki's network though the numerical values are very different due to the
differences in reference areas. On the primary side, however, L_ now

d

represents the inertance (mass/areaz) of the major portion S_ of the eardrum,

d

Cd the acoustical capacitance associated with the periphery of the eardrum

and R.d the peripheral damping. The acoustical elements Cdo and Rdo'
representing mechanical coupling between the two areas of the eardrum, are

discussed later.

With suitable choices of parameters (e.g. Shaw and Stinson 1981),

calculations based on Fig. 6 are in reasonable agreement with the median



Fig. 6. Middle ear
network based on
eompound-eardrum
concept.

input impedance data for normal and pathological ears, recent estimates of
ear canal standing wave ratio (Stinson et al 1982) and observations of

eardrum vibration.

Some further implications of this network are presented in Fig. 7. The seven
zones indicate the fractions of incident energy that are absorbed in various
parts of the ear and the fraction that is reflected at the eardrum when a
progressive wave of unit energy enters the ear canal. The fraction absorbed
by the cochlea rises to a maximum of about 26% at 1 kHz while the fraction
reflected at the eardrum falls to a minimum of approximately 28% at 4 kHz.

At frequencies greater than 2.5 kHz, the lion's share of the energy is taken
by Rdo which, from its position in the network, must surely represent
mechanical resistance within the eardrum. This conclusion is perhaps
surprising but seems inescapable if one accepts the essential correctness of

the standing wave data.

The probable function of Rio is revealed in Fig. 8 which shows the piston

velocity ratio as a function of frequency for various values of this

Fig. 7. Calculated fractions
of ineident energy absorbed by
various structures and fraction
reflected at eardrum. Based on
middle-ear network with values
given in Shaw and Stinson
(1981) .



Fig. 8. Calculated eardrum velocity
ratio (Veloeity of area SO/VeZocity
of area S4) - for various values of
Ry, ALl other network parameter
values as given in Shaw and Stinson
(1981). Broken line based on R
varying as square root of frequency.

resistance. At frequencies greater than 10 kHz this ratio (hence, the stapes
velocity ratio also) is nearly proportional to Rdo' Evidently, at high
frequencies, middle ear transmission is enhanced by the presence of
mechanical damping in the eardrum. When Rao is 170 ohms, as in Fig. 7, the
piston velocity ratio is approximately 0.7 at frequencies up to 2 kHz, in
agreement with Tonndorf and Khanna, and then falls rapidly with increasing
frequency passing through the value of 0.14 at 5 kHz which also appears to be

in agreement with experiment.

When one considers the viscoelastic nature of the eardrum, it would not be

surprising if R ° and related elements such as C should prove to be

d do
frequency dependent. The broken line in Fig. 8 has been drawn on the
assumption that Cdo is constant while Rdo increases with the square root of
frequency. The result is a significant increase in the velocity ratio at

high frequencies.
5. EARDRUM ASYMMETRY, HEARING THRESHOLD LEVELS AND THERMAL NOISE

The smoothness of the median free-field hearing threshold curve suggests the
presence of a mechanism, in the middle ear or beyond, which counterbalances
the principal resonance of the human ear (Shaw, 1982). Work now in progress,
inspired by the evident lack of symmetry between the anterior and posterior
zones of the eardrum, starts with the premise that the major area, identified
as S, in Fig. 5(a), should be divided. This leads to a three-piston model

da
which, with a suitable choice of parameters, produces the required minimum in
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malleus velocity at 2.7 kHz. It is, however, necessary to accept less

eardrum damping than seems likely in view of the standing wave data.

In the free field, the radiation impedance of the external ear shunts the
input terminals of the middle ear network. When the thermal noise of the
combined system is calculated by invoking the Nyquist noise generator
theorem, it is found that most of the noise appearing at the oval window is
associated with the cochlea. By estimating the transmission of sound energy
from the eardrum to the cochlea (e.g. lower solid curve in Fig. 1), it is
then possible to calculate the detection limit imposed by thermal noise given
some knowledge of the signal detectability (e.g. Green et al 1959). At 500
Hz this limit is approximately 20 dB below the observed median hearing
threshold level at the eardrum. Between 8 and 16 kHz, however, the thermal
curve matches recently-determined threshold levels for young ears (Shaw and

Stinson 1980) which is surprising.
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MODELING REVERSE MIDDLE EAR TRANSMISSION OF ACOUSTIC DISTORTION SIGNALS
John W. Matthews

Computer Systems Laboratory
Washington University
724 S. Euclid Ave.
St. Louis, Missouri 63110, U.S.A.

ABSTRACT

In modeling the propagation of signals produced in the cochlea, the effects of
the middle ear must be included. We present a linear two-port network model
of the middle ear of cat with air cavities open. Effects of the eardrum, os-
sicular chain, oval and round windows, and fluid in the vestibule are includ-
ed. The two ports represented are: 1) the ear canal; and 2) the basal end of
the cochlear spiral. The model parameters were selected to fit experimental
data measuring various aspects of forward transmission only. However, we have
used the model to reproduce acoustic distortion signals observed in the ear
canal. Three significant findings are that: 1) The design of an acoustic
coupler can have a large effect on signals measured in the ear canal; 2) The
middle ear and acoustic coupler affect the reflection of distortion signals
back into the cochlea and therefore affect distortion signals observed within
the cochlea as well as in the ear canal; 3) The reverse transmission proper=
ties of the middle ear circuit model are highly frequency dependent.

1. INTRODUCTION

Kemp's (1978) observation of acoustic emissions from the ear indicates that
sound can propagate "backwards" through the middle ear into the ear canal.
This paper deals with modeling the effects of the middle ear on the propaga-
tion of distortion products generated within the cochlea. This middle ear
modeling is part of a larger modeling effort (Matthews, 1980; Matthews et al.,
1981) whose objective is the consistent interpretation of intracochlear and
aural acoustic distortion signals observed in response to steady-state two-
tone stimuli (Kim et al., 1980; Siegel et al., 1982; Kim, 1980). These inter-
modulation distortion signals (e.g. 2f¢-f;) are interpreted as being generated
in the cochlea at a locus where both primary frequencies (fq and £f3) have
strong response; the distortion signals then propagate within the cochlea both
apically to the characteristic place of the distortion signal and basally to

the stapes, through the middle ear, and into the ear canal.

2. THE COMPREHENSIVE MODEL

This section presents a "comprehensive" model which includes the effects of
the stimulus delivery system, the middle ear, and the mechanics of the cochlea
for cat (see Fig. 1). Since in this comprehensive model only the cochlea is
nonlinear, any distortion signals must be generated within the cochlea.

Distortion signals appearing at the eardrum must be propagated out of the
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EARPHONE "—2‘— ACOUSTIC “‘g_ MIDDLE _'?_ COCHLEA

DRIVER |—o— COUPLER |—o— EAR —o— (nonlinear)

Fig. 1. Block diagram of a "comprehensive" model of the peripheral auditory
system of cat and a stimulus delivery system. Pressure (P) and volume veloc-
ity (U) are indicated at the earphone driver (E), ear canal near the eardrum
(ec), and the most basal position of the cochlear spiral (C). Note that in
this model only the cochlea is nonlinear.

cochlea through the middle ear. On the other hand, the acoustic impedance of
the driver, coupler and middle ear (as seen looking out of the cochlea) will
determine the amount of reflection of these distortion signals back into the

cochlea and thus will affect the total distortion signal within the cochlea.

The models for the driver, coupler and middle ear will be electrical circuits
and an acoustic-electric analogy will be maintained throughout the paper; this
analogy is summarized in Table 1. These acoustic variables and units will be
used throughout this paper, even in the middle ear model where mechanical

variables (e.g., force and velocity) might be more natural.

The driver and acoustic coupler models are those developed by Matthews (1980)
to represent the physical devices used by Kim et al. (1980). The models are
equivalent to a series RLC circuit connected to the "input" port of the middle
ear model as far as their effect on signals produced in the cochlea is con-

cerned. Element values for this RLC circuit are given in Fig. 4.

Within the cochlear model, the fluid is represented by a two-dimensional, lin-
ear, ideal fluid. The basilar membrane is represented by mass, stiffness, and
damping functions of distance along the cochlear spiral. The damping of the
basilar membrane is also a function of the velocity of the basilar membrane

and this causes the cochlear model to be nonlinear (see Matthews, 1980).

Variable Type Units Variable Type Units
pressure dyne/cm2 vol tage volts
volume velocity cm3/sec current amps
acoustic compliance cm5/dyne capacitance farads
acoustic mass gm/cm inductance henries
acoustic damping dyne—sec/dn5 resistance ohms
acoustic impedance dyne—sec/cm5 impedance ohms

Table 1. Acoustical-Electrical analogy and units. These units are used
throughout the paper .
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3. THE MIDDLE EAR MODEL

Figure 2 shows a circuit model for the middle ear of cat with bulla and tym-

panic air cavities widely open. This model modifies and extends the circuit

MIDDLE EAR MODEL

Fig. 2. Circuit model for the middle ear of cat with air cavities open.
Upper: block diagram; Lower: circuit. Pg. is the pressure across the eardrum;
Uge is the volume velocity into the eardrum. Pq is the pressure across the
cochlear partition at the most basal position of the cochlear spiral; Ug is
the volume velocity into scala vestibuli at this same position. R., Ry, and L,
represent a model for the input impedance of cat cochlea and are not part of
the middle ear model. The portion of the circuit to the right of L; is after
Lynch et al. (1982). The values of the elements: Cgqg = 8 x 10"8; Rgs = 1300;
Lgs = 0.054; Cgc = 3.5 x 1077; Rgc = 55.2; Lgp = 0.04; Np = 55; C; s1.2x
10°11; 1, = 1.6; Lg = 3.3; L, = 22; Cq; = 3.7 x 10710; Ry; = 2 x 10°; Re = 1.2
6 = 5 =
x 10°; Ro = 2.8 x 10°; L,y = 2250.



14

presented by Peake and Guinan (1967). The parameters Cggs, Rggs and Lgg Tepre-
sent the compliance, damping and inertial effects of any motion of the eardrum
that is not coupled to the malleus. Cg., Rgcr and Lgp represent the compli-
ance, damping and inertial effects of the coupled eardrum-malleus motion. T
represents the pressure gain of the middle ear due to the lever action of

malleus-incus motion and the difference in the effective areas of the eardrum

Fig. 3. Comparison of experimental data and response of the middle ear model .
The data points are experimental data for cat plotted versus frequency (from
various authors as cited in the figure). Magnitude in dB (upper) and phase in
radians (lower) is shown in each part. Part (a): ratio of linear stapes dis-
placement to linear malleus displacement; part (b): ratio of linear stapes
displacement to pressure across the eardrum; part (c): acoustic input imped-
ance at the eardrum; part (d): ratio of the pressure across the base of the
cochlear partition to the pressure across the eardrum. The data in parts (a)

to (c) were used in selecting element values for the model, but the data in
part (d) were not used.
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and the stapes footplate. Cj represents compliance in the incudo-malleolar
joint. Lj, Lg, and Ly represent inertial effects of the incus, stapes and
fluid in the vestibule of the inner ear, respectively. Cg3 and R,] represent
compliance and damping of the of the annular ligament around the footplate of
the stapes. C.y represents compliance effects of the round window. Ry, Ry
and L, represent a model of the input impedance of the cochlea of cat from
Lynch et al. (1982). A mechanical middle ear model, equivalent to the circuit

model shown here, is presented by Neely (1981).

Figure 3 compares the response of the circuit model shown in Fig. 2 to various
experimental data. The data in Fig. 3a, b, and c, but not those in Fig. 34,
were used in determining element values using methods similar to those used by
Peake and Guinan (1967). Therefore, Fig. 3d shows an independent test of the

middle ear model.

All of the data in Fig. 3 are measures of forward transmission through the
middle ear terminated by the cochlea. Figure 4 shows the response of the mid-
dle ear circuit when driven "backwards" and terminated with a series RIC cir-
cuit representing the driver and coupler models. Figure 4a shows the magni-
tude (dB re 1 acoustic ohm) and phase of the acoustic impedance looking out of
the cochlea. For comparison the impedance looking into the cochlea for fre-
quencies between 600 and 6000 Hz is approximately constant with a value of
about 122 dB and zero phase (see Lynch et al., 1982; Matthews, 1980). Figure
4b shows the "reverse pressure gain" of the middle ear circuit model. Both

panels show the circuit response for three different ear canal terminations.

4. ILLUSTRATION OF THE USE OF THE COMPREHENSIVE MODEL

Figure 5 illustrates an application of the comprehensive model. A volume ve-
locity containing only two frequencies, fq and f,, varied together such that
(2f4~f5) = 1550 Hz, was supplied by the earphone driver. The magnitudes and
phases of f4 and f, were selected such that their components in P, were both
65 dB SPL, zero cosine phase. The 1550 Hz components of both P.. and the bas-
ilar membrane displacement at the 1550 Hz place were computed for the model.
The basilar membrane displacement is plotted as the equivalent value of P
for a 1550 Hz single tone necessary to produce the same displacement. The ear
canal pressure results of the model show an overall similarity to Kim's (1980,
Fig. 10) experimental data from cat, with an exception that the cat data show
a prominent "lobing"” while the model results do not. The basilar membrane
displacement results of the model appear consistent with human psychophysical

results by Zwicker (1980, Fig. 1 and 2).



16

5. DISCUSSION

For the results shown in Fig. 5, the middle ear circuit accurately models both
forward and reverse transmission. However, there are weaknesses in the middle
ear model. Most notable is the eardrum "shunt" represented by Rggs Cgg and
L3s- The acoustic impedance looking into the eardrum changes abruptly between
3 and 4 kHz which is not reproduced by the model (see Fig. 3c). A more elabo-
rate model for eardrum coupling (e.g. Shaw and Stinson, 1981) might improve

the model in this regard.

Distortion signals computed for the model's "ear canal" are particularly sen-

sitive to both the form and parameter values of the coupler, driver, and

Fig. 4. Reverse response of the middle ear model. Two types of response of
the middle ear circuit model are shown for a source at the cochlear port and
three different passive terminations at the ear canal port. Part (a): the
acoustic impedance looking out of the cochlea; part (b): the reverse pressure
gain of the middle ear model. Magnitude in dB (upper) and phase in radians
(lower) are shown. The solid lines are when the ear canal port of the circuit
is terminated with the earphone driver and acoustic coupler models used by
Matthews (1980). This is equivalent to a series RLC circuit with values: R =
140; L = 0.0434; and C = 2.28 x 10=6. The other curves show the effect of
changing the driver/coupler model to have 10 times (dashed) or 0.l times (dot-
ted) the impedance of the Matthews model.
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eardrum models. (This effect is shown for coupler-driver models in Fig 4b).
Hence, different stimulus delivery systems could show very different distor-
tion signals in the ear canal of the same animal because they "load" the audi-
tory system differently. Even distortion propagation within the cochlea can
be affected by the middle ear and stimulus delivery system through their ef-
fect on cochlear "loading" (Fig. 4a). Therefore, it is important that atten-
tion be given to the middle ear and stimulus delivery system when studying

signals produced in the cochlea.

Fig. 5. Generation and propagation of distortion signals in the comprehensive
model. The squares show the magnitude and phase of the 1550 Hz component of
the ear canal pressure when the stimulus contained only f; and f,. The cir-
cles show the magnitude and phase of a measure of the 1550 Hz component of the
cochlear partition displacement at the characteristic place for 1550 Hz. The
measure plotted is the ear canal pressure of a single 1550 Hz tone necessary
to produce the same displacement at the characteristic place.
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RECENT DEVELOPMENTS IN MODELLING THE EARDRUM AND RELATED STRUCTURES
USING THE FINITE-ELEMENT METHOD

W. Robert J. Funnell

BioMedical Engineering Unit, McGill University
8656 Drummond Street, Montréal, Québec, Canada H3G 1Y6

ABSTRACT

The finite-element method allows one to model a structure as an assemblage of
simple elements, using a digital computer. Its strong point is its ability to
handle complexities, nonuniformities and irregularities such as abound 1in
living systems. This paper discusses some recent developments in the use of
this method to model the eardrum and vrelated structures, including the
generation of eardrum models with various mesh resolutions; their use in
studying the system's natural frequencies and the effects of damping; and the
creation of models of auditory structures other than the eardrum.

1. GENERATION OF EARDRUM MODELS

The mathematical models being discussed here are based on the 'finite-element
method'. This is a method of analysis which has been used in engineering for
a number of years. More recently it has been applied to biological problems.
It is well suited to such problems because its strong point is its ability to
handle complexities, nonuniformities and irregularities such as abound in
living systems. The method handles a complicated system by dividing it into a
large number of simple parts. Each part can be analyzed relatively easily,
and its characteristics can be expressed with a small matrix equation. The
interactions among the parts, and thus the over-all behaviour of the system,
can then be calculated by assembling the small matrices into one large matrix

equation suitable for solution by computer.

My finite-element calculations are done using a modified version of SAP on the
PDP-11/70 time-sharing system (MEDNET) of the BioMedical Engineering Unit at
McGill University. SAP is a powerful general-purpose finite-element programme
that was developed at the University of California (Bathe, Wilson and

Peterson, 1974) for large CDC and IBM computers.

Until recently all of my finite-element meshes for the eardrum were generated
manually. This made the generation of new meshes extremely tedious and prone
to error, and made it impractical to attempt a study of the effects of varying
the fineness of the mesh. The automated mesh-generation schemes usually used
are not well suited to irregularly shaped biological structures, so I have
developed a hierarchical modelling scheme for three-dimensional shallow shells

with variable mesh resolution. This scheme uses automatic two-dimensional
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finite-element mesh generation, and a specialized method for implementing the

curvature of the eardrum (Funnell, 1983b).

Using the above system I have examined the convergence of the drum model as
the mesh resolution is increased. Using as a measure of resolution the
nominal number of elements across the diameter of the structure, I varied the
resolution from 6 to 15, my previous manually-generated model (Funnell and
Laszlo, 1978) having been equivalent to about 8. Figure 1 shows some of the
automatically generated meshes. I concluded that although the results at 8
were of a precision comparable to other sources of error in the model, a
resolution of 12 is a better compromise between precision and complexity

(Funnell, 1983b).

Fig. 1. Eardrum meshes generated for resolution parameters of 6,
9, 12 and 15. See text for definition of resolution parameter.
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2. NATURAL FREQUENCIES

Using the models generated with the above method, an earlier study on the
effects of parameter variations on the undamped natural frequencies and modes
of the eardrum model (Funnell, 1980) was redone and extended (Funnell, 1983b).
The parameters examined were (1) the angular stiffness and (2) the moment of
inertia representing the ossicular load; (3) the material stiffness, (4) the
mass density, and (5) the thickness of the eardrum itself; and two parameters
representing the shape of the eardrum -- (6) the depth and (7) the curvature.
The effects of varying the first five parameters were relatively
straightforward and qualitatively predictable: increasing stiffnesses raised
the natural frequencies, increasing inertias lowered them, and the effects of
the ossicular parameters were much less than those of the eardrum parameters.
The effects of varying the three-dimensional shape were more complex, and seem

to indicate that both the conical nature and the curvature of the drum may

.
=

serve to broaden its frequency response (Fig. 2).
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Fig. 2. Lowest six natural frequencies of eardrum model, as
functions of (a) wradius of curvature and (b) relative depth. The
fact that some of the lines cross indicates that the reZatéve order
of the different modes may change. The vertical lines indicate the
'mormal' values for the curvature and depth.

3. DAMPING

The natural frequencies discussed above were calculated in the absence of any

damping. In order to be able to consider the amplitude of the eardrum's
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response to arbitrary frequencies, rather just looking at its natural
frequencies and mode shapes, it is necessary to include viscous effects, or

damping, in the model.

The SAP programme offers two alternative approaches to damping: either
superposition of the undamped natural modes using one extra parameter
(fraction of critical damping, taken to be the same for every mode); or direct
time-domain integration using two damping parameters (Rayleigh damping). The
superposition method is computationally cheaper if a reasonably small number
of modes is adequate to represent the system response (Nelson and Greif, 1975,
for example) but the fact that the natural frequencies of the eardrum model
are quite closely spaced means that a fairly large number of modes must be

included.

I have done some preliminary calculations with the direct-integration
approach, using the same eardrum mesh as in the natural-frequency

calculations. The effective damping matrix [c] is given in terms of the mass

and stiffness matrices as

[e] = ao[m] + al[k],

2-
where a0 and a1 are the two
independent damping parameters that S 0.00010
k=)
may be specified. It can be shown g
(Nelson and Greif, 1975) that the %17 LA
- 1] o0.00005
resultant damping ratio for the i-th & |1
5]
mode, with angular frequency w,, is A 1T
. i | 0.00001
given by
0- T - —
b, = (a /w, + a_w.)/2. 0 2 4 6
i o i 11 Frequency (kHz)
In the calculations discussed below I
have set a_ = 0, and used values for Fig. . 3. Damping ratio as a
0 -6 function of frequency for the
a, of 10, 50 and 100 times 10 . three values of a; used here.
Figure 3 shows the damping ratio as a The vertical b?fs L@dlcate the
values of the first six natural
function of frequency for these values frequencies. Note that the third
of the damping parameters. Also noted and fourth bars overlap.

are the frequencies of the first six

undamped modes of the eardrum model.

I have simulated the effect of applying a step function of torque to the
rotational axis of the manubrium, and calculated the time response of the
manubrium itself and of several points on the surface of the drum. The time

responses were calculated in steps of 0.02 ms from O to 7 ms. Using NEXUS, a
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general-purpose systems-and-signal-analysis package (Kearney and Hunter,
1982), I differentiated these step responses to obtain the impulse responses,

and then computed the Fourier transforms.

Figure 4 shows the resulting frequency
responses for one particular point on
the eardrum for the different values
of a1. It can be seen clearly that
the multiple undamped modes of the
system are smeared out by the damping.
Note that these results are
preliminary only: the computations
have not been rigourously checked.
The overall frequency response is also
affected by the finite-element mesh Fig. 4. Frequency responses »of
and by the step-by-step integration a particular point on  the

eardrum, for three values of the

d . ;
procedure damping parameter aj.

It may become necessary to implement damping representations different from
those currently used in SAP, and ultimately to use a more general
frequency-dependent complex-modulus approach (Gupta, 1974; Soni and Bogner,
1982). Although practically nothing is known experimentally about material
damping coefficients in the eardrum except for some low-frequency estimates by
Decraemer (see Funnell and Laszlo, 1982), it will be useful to be able to
estimate the effects of levels of damping that at least are consistent with
what is known about viscoelastic behaviour in collagenous tissues. Middle-ear
models with simplified lumped eardrum representations suggest that the damping
in the eardrum is quite large (Shaw and Stinson, 1981), and there may be some
methodological difficulties stemming from the fact that most engineering
structural analyses concentrate on relatively low levels of damping, treated

as perturbations of the undamped case.

4. MODELS OF OTHER STRUCTURES

We have in the past presented a finite-element model of the middle-ear
ossicles, constructed on the basis of serial histological sections (Funnell
and Phelan, 1981). More recently a student, V. Goel, has constructed simple

models of the cat posterior incudal ligament and annular ligament.
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Figure 5 shows the model of the
incudal ligament. Preliminary
simulations with SAP produced an
estimate of 2300 dyn cm for the
effective angular stiffness of the
incudal ligament, to be compared to my
previous estimate, based on a much
more simplified geometry (Funnell and

Laszlo, 1978) of 8500 dyn cm.

This modelling will be pursued using a
more complete series of histological Fig 5 Finite-element model of
sections: contours from this material  the posterior incudal Ligament.
The three parts shown are, from
left to 7right, the Llateral
much more accurate finite-element portion of the Zigament, the

representation of the ossicular %ncus{ and the medial portion of
the ligament.

will be digitized and used to create a

ligaments and muscles than has been

possible before.

The generation of element meshes for data from serial sections 1is extremely
tedious if done manually. Several papers have been published recently
describing approaches to three-dimensional mesh generation (Nguyen, 1982; and
Perucchio, Ingraffea and BAbel, 1982, among others), but none are very well
suited to highly irregular three-dimensional objects. A number of methods
have been described for triangulating irregular three-dimensional surfaces
defined by contours from serial sections (Funnell, 1983a), but for modelling
of the mechanics of the structures one must generate internal meshes for
three-dimensional solids. It 1is necessary to extend methods 1like that
discussed in Section 1 above, which generate triangular elements inside
two-dimensional areas, to the generation of tetrahedral elements inside

three-dimensional volumes.
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BASILAR MEMBRANE PROPERTIES AND COCHLEAR RESPONSE

C.R. Steele, J. Zais

Stanford University, Stanford CA. 94305
ABSTRACT

A WKB solution for a simplified analytical model of a guinea pig cochlea was
used to invesiigute the effect of basilar membrane (BM) mass and orthotropy on
response. The conclusion 1s reaffirmed that a physiological value of BY mass
has little effect. The degree of orthotropy has no effect on peak location, but
increases the subsequent decay of amplitude. The BM stiffness is highly de-
pendent on the microstructure, particularly the fiber density. With such ana-
tomical detail the localization can be estimated which agrees with direct
measurement.

1. MODEL DESCRIPTION

In the 3-D box model (Fig. la) the BM is represented as a hinged plate in the
partition which separates the two fluid-filled chambers. The "plate" simulates
the BM pectinate zone in Fig. 1lb, which seems to be the most significant elas-

tic element for the gross ("first filter") response of the actual cochlea.

Fig. 1. a) Straightened (one-mode) model of the cochlea. The BM is
modeled as a plate hinged to rigid shelves. b) Generalization of basal
turn in high frequency cochleas. BMA basilar membrane arcuate zone;
BMP basilar membrane pectinate zone (from Bruns (1979)).
The geometrical properties (Table 1) are adapted from Fernandez (1952). Various
BM compliance distributions are shown in Fig. 2. As suggested in Steele and

Taber (1981) a reasonable partition compliance is the curve CC , which is

about equal to Békésy's (1960) post mortem guinea pig measurements (denoted
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by CB) in the apical region, and about 1/4 of those measurements in the
basal region. Dancer and Franke (1980) estimate from direct im vivo measure-
ments that the volume compliance in the first turn is about 1/5 that of
Békésy's post mortem measurement. Of interest is the distribution CPL , de-

duced from Békésy's point load tests in humans, rescaled for the guinea pig.

Table 1

X/L  b(um) h(um)
0.0 60 15
0.1 97 10
0.2 115 6.8
0.3 130 4.7
0.4 140 3.8
0.5 145 3.2
0.6 150 2.9
0.7 158 2.6
0.8 165 2.2
0.9 170 1.5
1.0 175 1.0

b = BMP width

h = BMP thickness
L

L

L L2 = 0.8 mm

= 18 mm 5
Stapes area = 1 mm
de = viscoelastic BM damping = 0.05

Table 1. Geometrical properties of model adapted from guinea
pig measurements of Fernandez (1952).

Fig. 2. Compliance (volume displacement per unit length per unit
of pressure difference) of cochlear partition: Cg , the post mortem
measurement of the guinea pig by Békésy (1960); Cp/4 , may be closer
to in vivo values, especially at basal end; Cp; , point load tests

on human cochlea (Békésy (1960)) rescaled for the guinea pig; Cos
compliance curve for Figs. 3-65.

2. SOLUTION PROCEDURE

The necessary equations for this type of model are contained in Steele and
Taber (1979). The solution begins with calculating heq , the equivalent fluid
thickness resisting BM motion, which depends only on the model geometry, not
BM characteristics. These values of heq are then used to calculate the dis-

persion relation
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2

£Ow) = (20h__ + p ) - T/G =0 (1)

q
and related quantities at 11 stations along the cochlea for a set of wavenum-
bers. Cubic spline coefficients are computed for these quantities, so a solu-
tion can be found for any specified frequency. All calculations were performed
on an HP-85 desktop computer, demonstrating the efficiency of the WKB scheme.
The approximate computing times are: calculating heq~15 minutes; solving Eq.1l

and computing splines-10 minutes; solving traveling wave problem for given fre-

quency-3 minutes.
3. RESULTS

Figure 3 shows the dispersion relation as it appears at two locations along the
BM. The wave number A is multiplied by the cross section height L2 , and
the frequencies are given as a fraction of the plate cut-off frequency at the

base (here about 60kHz). The three cases studied are characterized by k , the

Fig. 3. Plot of dispersion relation at two locations along the
cochlea for cases: A , orthotropic BM (k=0); B , isotropic BM
(k=1); C , orthotropic BM with zero mass; all for compliance
Ce in Fig. 2.
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ratio of longitudinal to transverse stiffness: A) an orthotropic plate (k=0);
B) an isotropic plate (k=1); C) k=0 , but with a massless plate. Lighthill
(1981) argues that the dispersion plot most have continually decreasing slope
if the model is to describe cochlear function, and therefore must have both
k=0 and a nonzero plate mass, i.e. case A . The actual BM response is
plotted in Fig. 4 for a frequency of 4 kHz . It can be noted that the response
in all three cases is essentially identical until past the peak. Then, case

A dropps off most rapidly. The massless plate, case C , has only a slightly

lower decay rate, while the isotropic plate, case B , has the greatest.

Similar behavior can be found in Fig. 5, the plot of phase vs. distance. Again
cases A and C agree well, while B differs only slightly. If the compliance
is held constant while the BM is considered a clamped, instead of hinged,

plate, the differences for cases A-C are similar in character, though not as

pronounced.

The results obtained here agree with those Steele and Taber (1979) found ana-
lyzing the experimental models of Cannell and Helle. For frequencies in the
physiological range, AL2 is about 3 at the point of maximum response. For
lower wavenumbers, the dispersion curves for each of cases A , B, and C are
very similar, so it is not surprising that the responses are also similar. At

the point where the signals have decayed to 0 dB , ALZ is about 25. For lar-

ger values the dispersion relations deviate substantially (Fig. 3).

4. ESTIMATE FOR LOCALIZATION

Though the solution of the cochlear model works rather well, the location of
the point of maximum response is difficult to judge without carrying out the
numerical details. 1In Steele (1974) a cochlear "model 0" is discussed, which
consists of the BM as one of many hinged, tapered strips of an infinite,
massless plate immersed in an infinite fluid. For a given frequency, short

wavelengths occur at points beyond the "transition point" ti which can be



Fig. 4. BM displacement for cases A, B and C . Results are
essentially identical up to maximum vesponse. After peak, isotro-
pic plate is most heavily damped, while the orthotropic plate is
most lightly. The turning point for this frequency and compliance
s X/L = 0.5 .

Fig. 5. Phase of traveling wave for cases A , B and C .
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defined in terms of the volume compliance there as

2 n5
200" = T3ocGa ) @
tp

Comparison with Eqg. 1 shows that X occurs at the point at which
h /b=1/m (3)
eq

At this point, the fluid inertia heq is near the short wavelength asymptote,

heq =1/ .

Since the damping of the traveling wave becomes severe as the wavelength

becomes short, the amplitude is roughly 20 dB down from the peak at ti .

In the guinea pig cochlea for ti = 4.1 mm , the compliance C=CB/4=O.15mm4/N

gives the frequency f=15kHz, which by coincidence is close to the tuning for

the neural fibers at that point. For BM fibers with E = 210N/mm2 and fiber

-10 2 .
area Af=10 mm , we find
5 2
C =8.1b /(h ny) (4)
so that
5/2
f= 2h(NfY)%/b / (5)
where b and h. are in mm , £ is in kHz , C has the units mm4/N , and
N is the number of fibers per mm . The parameter <y is 1,3 or 6 for hinged,

£

constrained, or clamped edges, respectively. The values from various anatomi-
cal studies (Tiedemann (1970), Bruns (1976), Cabezudo (1978), Fernandez (1952),
and Ehret and Frankenreiter (1977) produce the results in Fig. 6. Details for
the filament density Nf are available only for the cat, so this density was
assumed for the other cochleas. The width of BMP was assumed to be twice

that of BMA.

The correlation of Eq. 5 with the curves for localization obtained by a variety
of direct measurements (Bruns (1979), Ehret (1978), Iurato (1962), Wilson and
Evans (1977) is excellent for cat, guinea pig, and mouse, while the low-

frequency water buffalo might be expected to be similar to the human.
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Fig. 6. Localization of
frequency on the basilar
membrane. Solid lines show
the calculation of the tran-
sition point, assuming that
the BMP is the only flexible
element. Dashed lines in-
dicate results of direct
evidence as given in: Rf
bat-Bruns (1976), human-
Bekesy (1960), cat-Wilson
and Evans (1977), guinea
ptg-Wilson and Johnstone
(1975), mouse-Ehret (1978).
The cat fiber density was
used for all. For the Rf
bat, the BMP in the basal

4 mm would flex at 300 kHz;
however, the peculiar SSL
resonates at 83 kHz .

Consistent with the anatomy, hinged edges were assumed for the bat, cat and
mouse, while constrained edges were assumed for the guinea pig with less pro-
nounced thinning at the edges of BMP . Compared to the measurement CB in
the guinea pig cochlea, Eg. 5 gives about the same in the apical region, and
about 25% of CB in the basal region, which is consistent with the measure-
ments of Dancer and Franke (1980). The curve in Fig. 6 for the water buffalo
may be about right, since it is for hinged edges (too flexible) and for the

cat Nf (probably too stiff).

The tentative conclusions are:
(1) BM Compliance can be computed from measurements of the dimensions
and microstructure. The fiber density is significant.
(2) Localization of excitation according to frequency depends primarily

on BMP compliance.
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ON VIBRATION OF MEMBRANES IN THE MAMMALIAN COCHLEA
V.M. Babi&, S.M. Novoselova

V.A. Steklov Mathematical Institute,
The Academy of Sciences of the USSR

ABSTRACT

Three-dimensional hydrodynamical models of the mammalian cochlea are studied.
The cochlea is considered as a rectangular long rigid tube, divided into longi-
tudinal canals by either one or two visco—elastic anisotropic plates. One par-
tition is fized between two rigid slabs and represents the basilar membrane.
The second plate can represent either Reissner's membrane (if its edges are
fixed) or the tectorial membrane (if one of its edges remains free). The sol-
utions of the models are obtained using Whitham's modification of the WKB
method. Calculations on both the two-chambered and the three—chambered model
are presented.

1. INTRODUCTION - FORMULATION OF THE PROBLEM

The WKB method is known to be an effective way of theoretical investigation of
cochlear mechanics (Steele, 1974a; Steele and Taber, 1979; Babi¢& and Novoselova,
1979; Viergever, 1980). In the present paper we apply the WKB approximation to

two—- and three-chambered models of the cochlea.

Fig. 1. Cross-sections of the
cochlea models: (a) two—chambered
model, (b) three—chambered model
with Reissner's membrane (left) and
with tectorial membrane (right).

V = scala vestibuli,
M = scala media,
T = scala tympant.

The cochlea models to be considered have a rectangular cross-section, divided
into two or three chambers by flexible partitions (Fig. 1). The motion of the

liquids in the canals can be described by the hydrodynamical equations

>

%% = - %~grad P+ VA§, (1)
>

div(pv) = 0, (2)

where p and v denote the fluid density and viscosity, and V is the velocity of

the liquid particles. The boundary conditions on the rigid walls are:

pr Hy 5§=Oaty=O,L (3)
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The normal components of the fluid velocity are continuous across the flexible

+ -
boundaries. When P and P are the pressures just above and below a partition,

we have
+
9P _ 9P _
9z 0z at z =0, HM' (4)

Moreover, we can formulate a relation between the trans-partition pressure
- + . PR .
P - P and the partition displacement. We represent the partitions by aniso-

tropic plates. The vibration of either partition may then be described by the

equation
2 2 2 2 2 2
L(W) = §—-(Dx(x,y)§—ﬂj+ g——-(Dl(x,y)g—ES + §~—-(D1(x,y)§—ﬂ ) +
9x? 9x?  9x2 dy? oy? 9x? 5)
2 2 2 2 2 _
R S i TR S LA SUNRTY P - ML R
3xdy ¥ axdy ay? Y dy? at?

where Dx'Dy'Dl'ny are the components of the anisotropic stiffness, W(x,y)
denotes the partition normal displacement, and U is the surface density of the
partition.

The thus formulated boundary value problem (1) - (5) is conveniently solved

by means of the WKB approximation.
2. APPROXIMATE SOLUTIONS

The coefficients in Eg. (5) vary relatively slowly with x (that is, they change
little within one wavelength). We therefore introduce the 'slow abscissa'
X, = €x, where € is a small parameter. Upon substitution of x1/€ for x in Eq.

(5) we obtain

2 2 2 2 2 2 2
e 2 ~ (0, 2—%)) + ez{§~;-<D1§J§> + §—;-(D1 §—§-) a2 o, Wy,
Bx1 Bxl 8x1 oy dy axl Bxlay 8x18y
2 2 2 _
L AW Wt D=0 (x,,y)...
8y2 Y 8y2 3t2 X X 1 (6)

The WKB solution for the two-chambered model now has the form (Steele and
Taber, 1979; Babit¢ and Novoselova, 1979):

PV = ele 2 PJ cosh (CJ(Hl—z)) cos E%X ’

J=0,1..
) P_ cosh (Z_(H,+z)) cos LX (7)
T J J 2 L

J=0,1..

1 %1
_ _ T _ r2 _ 12272 2 _

0 =wt-¢e [ E(x)dx,, g2 - 3*n*/Lt 4 ® =0,

0
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where PV and PT are the pressures in scala vestibuli and scala tympani, re-

spectively, and & is the wave number.
For the three-chambered model, a supplementary parameter r is needed to satisfy
the boundary condition (4) at the two partitions. The solution then becomes

(PM is the pressure in scala media) :

_ 16 . _ Jmy
PV =e JZO . PJ 51nh(CJH2)cosh(§J(r-HM))cosh(CJ(Hl z) ) cos I
P, = eleJZO 1 P sinh(L_(H,-H ))sinh(Z_h,)sinh(Z_(r-2))cos J% , (8)
PT = -eleJZo . PJSinh(CJ(Hl-HM))cosh(CJr)cosh(CJ(H2+z))cos E%X .

The parameter r has a simple physical meaning in case of non-viscous media.
At the surface z = r the pressure PM is equal to zero and its gradient is

directed along the z-axis.
3. DISSIPATION

Following Viergever (1978), we suppose the partitions to be visco-elastic
structures. Their anisotropic stiffness then consists of statical and dynamical

components :
3 3

Dy=f)y+inv}11—, Dx='fjx+inv}11—, (9)
where ﬁx and'ﬁy denote the statical stiffnesses, h is the thickness of the
partition and RV is some viscous parameter. Perilymph and endolymph have a low
viscosity (v = 0.01 cmz/sec) so we may take into account only the boundary
layer friction. As soon as the acoustical energy condenses near the elastic
walls in the acoustical wave-guides, we may neglect the friction at the rigid

walls.

Following Inselberg (1978), we introduce supplementary bending moments AMX, AMy,
caused by the boundary-layer friction forces:

- + - +
W av W av
ovh - _x x =Y - ). (10)

AMX =72 B T X AMy - dy oy

The tangential velocity in an oscillating boundary layer depends on the vel-

ocity at infinity as

vev (-e?8, g1y (11)

9AM 9AM
X

Y into Eq. (5)[or Eq. (6)]

Introduction of the partial derivatives 3%’ '?E?‘
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yields, with the aid of Eq. (3)

- +
_pwh oV 9V, _ o7t
L (W) 28 (32 3z ) = P P . (12)

4. SIMPLIFICATION OF THE PARTITION CONDITIONS

We suppose that the partitions have only one transverse mode of displacement.
Hence we write

w = e %un (13)

for each partition velocity W(x,y). For the basilar membrane (BM) and Reissner's
membrane (RM), which have fixed edges, an appropriate form of the shape

function is

(14)

ﬂ( sin (H%? for hinged edges,
niy) =

|

{

“

sinz(ﬂia for clamped egdes,
where b is the membrane width. The tectorial membrane (TM) is represented by a
plate with one hinged and one free edge. The corresponding shape function is
n(y) = sin( kb)sinh(ky) + sinh( kb )sin(ky), (15)
where k is the smallest positive root of
tan (kb) = tanh (kb). (16)

The expressions (8) are rewritten in the form

i0 Jny
P_=e z P cosh (g _(H,-2z))cos — ,
v 30,1, Jv g L
_ i6 . _ Jny
P, =€ z P 51nh(§J(r z)) cos = (17)
=0,1..
_ 18 Jny
P =e z Pin cosh(gJ(H2+z))cos -

J=0,1..

Adapting the technique of Steele and Taber (1979), we express the coefficients

P P P in terms of the partitio E
v Tam’ For P n modes

2 2
It A _ W™ AggWy
av .

§J51nh(CJ(H1 HM))(SJ chosh(gJ(r—HM))ﬁJ
P, = 2 (18)

2
e ) PR
o

;Jsinh(CJHz)GJ ;Jcosh(ng)ﬁJ



41

Here, the subscripts 1 and 2 denote the partition number (see Fig. 1b), and

(1 if 3 =0,

) yo+bm sy
GJ = AJm =T f nm(y—yo)cos o ay , (19)
! Yo
]
Ll/21fJ>0, m=1,2

Substitution of the expressions (18) and (17) into Eq. (12) yields as boundary

condition at the partitions

F=r1efny) -

. pw?a?
0 T5— [tanh (£ 8 +coth (T M 1A - %l z2) cos J—;TJX =0,
J=0,1.. >°J°J
(20)
r for BM,
where G= H = H1 - HM (= HZ)‘

HM—r for RM or TM,

Equation (20) is simplified by applying the method of softening of the boundary
conditions. We equate to zero only the first coefficient of the eigenfunction
expansion of the function F. This gives, if stiffness and density do not depend

on y,

y 2 Ri2 R,y 2 -
b{& T1DX+2£ (b) T,D, + (b) T2Dy Hw Tl}
A Sh
= pw?L § 7o [tanh(Z,6) + coth(z ®] (1 - —zcé), (21)
J=0,1.. °J°J

{ kb for TM,
where R = < D3 =D, + 2D ,
1 X
! T for BM or RM,
+b + +
1y0 ) . Yotb 1yo b
T, = N f n“dy, T, = — f (n")deI T, = = —— J’ n"ndy.
1 b 2 " 3 2
Yo kv kb ¥

The wavenumber £ and the parameter r can be calculated from these equations,

e.g. by means of Newton iteration.
5. AVERAGED LAGRANGIAN

The evaluation of the amplitude coefficients W, and W, is based on the averaged
Lagrangian method, which was applied by Steele and Taber (1979) for a two-
chambered model. For the system with three canals and two partitions, the time-

averaged Lagrangian density is
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2 2
2 A\
2{9%-—1'- I ‘gmém [tanh (g G)+coth (g H)] -
m=1 J=0,1.. >J°J
w2 R D g2p2 T £%p ‘*
Xm m ~3m
— b (——0 T_D [1 (——0 + =—(2 —— + — )]}, (22)
4 2m “n D 2 T gt Ty
ym m m o
R 2 /_D T,
where W = (=) \ o -0 , D, =D ; m=1,2.
m b uT 3 X
m m 1m
The corresponding Euler equations are
oL oL _ d oL, _
aw =0, sz =0, = (BE) = 0. (23)

The equations BL/me = 0 are equivalent with equation (21) in the absence of
dissipation. The third equation of (23) and formulae (18) give the possibility

to determine the amplitudes Wo-

6. RESULTS

In our earlier paper (1979) we did not calculate the amplitude coefficients,
and the cochlear width was taken equal to the BM width. The present more

accurate model has less steep slopes and its maxima are lower (Fig. 2).

Fig. 2. BM/stapes transfer ratio of the two-
chambered model. Continuous lines denote BM
responses to stimuli of 18,9,3,1 kHz. Para-
meter values:

y = Dy 0.35x exp(~x x 0.127 mm )dnx cm;

D, = 0. 001ny, v = 100 emz/sec, R, = 0;
b = 0.13 % exp(z x 0.0438 mm_ )mm,

Hl = H2 = 1.58 x exp(~x % 0. 025 mm )rmrz,

W= 0.0316 x exp(xzx0.01 mm 1) g/em?.

The dashed response was calculated with
parameter values corresponding to the three-
chambered variant, for an input frequency
of 2 kHz.

Computations on the three-chambered models showed that the iteration process con-
verges only if the parameter r is close enough to half the distance between the
partitions. So, jointly with the boundary conditions at the edge of the two par-
titions, the stiffness of one plate practically determines the stiffness of the
other plate. Therefore we conclude RM to be anisotropic. This anisotropy is con-

sistent with the membrane's small curvature as discussed by Steele (1974b).
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Fig. 3. Responses of the RM-BM three—
chambered model. Input frequencies are
18,8,4 and 2 kHz. Continuous lines: BM
responses, broken lines: RM responses,

for clamped BM and RM edges.

Dashed lines: response to a 2 kHz stimulus
for hinged BM edges.

Parameter values (derived from Wever, 1949;
Borsboom, Kalker, Viergever, 1980;
Novoselova, 1978; Lim, 1980)

b—-013xeqﬂxx9(M38mm )mm

b = L= H=1.58% exp(-xzx 0.025 mm )nmb
R = 0.5 g/em/sec,

by = 0.0175 % exp(~x % 0.07 mm L)anx cm,
hy = 27. Oxexp(xx 0.028 mm )um

Fttted parameter values:

5y1: 4640Xexp(ﬂxx 0.45 mm_l)dn><cm;
A _ _ _ 2 .
Dx = 0.001% Dy VTV, = 10 em*/sec;
hl = h2; HM = 0.3 mm

Fig. 4. Membrane/stapes transfer ratio of the
TM-BM three—chambered model.
Curve 1: TM response at y = y0+b1.

Curve 2: BM response at the same position.
Curve 3: coincident response of BM and TM at
y = y0+b1/2. (yo 18 the position of the left

edges of BM and TM along the y-axis; bl’ the

TM length, equals half the BM width in this
model) .

Parameter values: input frequency 2 kHz,
distance between membranes 5 ym,

D5 = 5-68% 10% X exp (2 X 0.07 mm L )dn x cm.

Other parameters as in EM-IM model.

Fig. 5. Development of the travelling
wave in the TM-BM three-chambered model
along the line y = y, *+ b,

Curves 1 and 2 represent the instan—
taneous displacement of TM and BM. The
crossed line shows the altering of dis-
tance between the membranes. Parameters
as in Fig. 4.
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Responses of the model where the upper partition represents RM are shown in
Fig. 3.

If we decrease the thickness of RM and the viscosity near its surface, the

maximum of the RM response moves relatively to the BM maximum. The form of

both tuning curves deteriorates, and double maxima and gaps arise.

Figures 4 and 5 show responses of the model with the upper partition represen-
ting the TM. It is remarkable that the TM does not move in the same phase along
its length. This is due to the smallest positive root of Eg. (16) being larger
than T (23.9). If we put b1 = b2/2,and the left edges Y01 and Yoo of the
partitions are located at Ygr then the line y = Yo + b1/2 moves in the same
direction as the BM, whereas the line y = yo+b moves in the opposite direction

(Fig. 5).

1
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PSEUDO-RESONANCE IN THE COCHLEA

M. Holmes, J.D. Cole

Rensselaer Polytechnic Institute
Troy, New York USA

ABSTRACT

4 general two-variable approach to the coupled hydroelastic problem of an
idealized cochlea is carried out. The basic small parameter is the
slenderness of the cochlea. A typical non-linear eigenvalue problem in the
transverse cross-section plane results for the phase-function. The slow
amplitude and phase variation are obtained analytically. Viscous effects
produce traveling waves and a sharp cut-off.

1. INTRODUCTION

It is felt that a simple geometrical model of the cochlea should be adequate
for describing its mechanical operation. The essential physical features of
incompressible viscous fluid flow and an elastic basilar membrane coupled to
it must, however, be included. The general hydroelastic problem is too
difficult to be solved analytically or even numerically at present. The
basic approach followed here is to exploit the slenderness of the cochlea to
construct an asymptotic theory. 1In this way the problem is reduced to the
solution of a mathematical problem in a cross-plane. The general approach
is related to that of Steele (1981) and follows in detail that of Chadwick
(1980). The theory exhibits traveling waves between the stapes and a

(pseudo) resonant point with a rather sharp cut-off.

2., LINEAR HYDROELASTIC PROBLEM

We consider the cochlea to consist of an unrolled tapered tube containing two
chambers that are each filled with an incompressible viscous fluid. The
planar surface separating the chambers has a rigid section (representing the
bony shelf) and a flexible portion (the basilar membrane). For simplicity

the cochlear wall is assumed to be symmetric through this plane. Thus, in
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Fig. 1. Geometry and notation for three dimensional
hydroelastic model of the cochlea.

studying the response to a pure tone it is only necessary to consider the

motion in the upper half of the system.

To describe the dynamical motion in the cochlea we assume the basilar mem-
brane to be an orthotropic elastic plate and the fluid to be Newtonian. The
linearized theory of hydro dynamics and elasticity then can be used as the
amplitudes are relatively small over a large part of the audible range. Also,
since frequencies are greater than 25 Hz, boundary layer theory can be ap-
plied to the fluid problem. Therefore, in nondimensional form, the equations

of motion for the response to a pure tone (eit) signal are:
i) for the fluid pressure p(x,y,z)
(€28,2 + 3,2 + 3,2)p = 0 (1a)
ii) for the basilar membrane deflection n(x,y)

(3% + 203€23,25,2 + Dyt d - w?)n = -20%p(x,y,0%). (1b)
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The parameters are

€ = and w =

B
T
where B,L are the width, length of the basilar membrane, respectively, and

Q is the driving frequency. Also, @, is a characteristic resonant frequency

of the plate and is given as

where D2* is the bending rigidity of the plate in the y-direction and u is
the density of the plate. Finally, Dy and D3 are the respective constant
bending and twisting rigidities normalized by D2*.
The normalized boundary condition for the pressure is

-an on the BM

(3, - B32)p = ' (2)
0 on rigid wall

where n is the unit outward normal, o = pB/u ,

B = "-.—-;——r
iB<Q

and p, v are the density and kinematic viscosity of the fluid. As for the

plate, it is assumed to be simply supported along its boundary.

It has been pointed out by Dotson (1974) that it may be more appropriate to
use a simply supported condition along the spiral ligament, where y = G_(x),
and a clamped condition along the spiral lamina, where y = G,(x). If these
boundary conditions are used there is little qualitative change in the
analysis to follow. The simply supported assumption is made primarily to
facilitate the discussion. It should also be stressed that due to the
variable geometry, the normal in (2) depends on the spatial coordinates and,

consequently, on the parameter €. The constant B in (2) represents the
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viscous contribution to what is essentially the inviscid problem for the
pressure. Since it is complex valued it plays a fundamental role in the

attenuation of the wave-like solution that is obtained from (1).

3. SLENDER BODY APPROXIMATION

For the human cochlea, B ~ 0.5 mm and L ~ 3.5 cm which means that € ~ 10-2,
We can take advantage of this by introducing asymptotic expansions in terms
of the small parameter €. In doing this one finds that the appropriate

expansions are of the WKB or two-variable form

i0(x)

p~€ce T [polX,¥,2) + €D1 + «ea] (4a)
io(x)

n~-~tce € [nolx,y) + €Ny + R (4b)

Substituting these into (1) and (2) it is found that

(32 + 3,2)po = &2%po (5a)
(8% - 2036,23,2 + @.%D; - wl)no = -20%p5 (5b)
where
-0No on BM
- B3, )po = (6)
(anT nT o

0 on rigid wall ,

and along the boundary of the BM, ng = aYZnO = 0. In (6), n represents the
T

unit outward normal in the transverse cross-section.

Given a reasonably simple geometry one can solve this problem for pg, nNo, and
sz. However, it does not determine how pg and ng vary with the longitudinal
variable x, and to determine this it is necessary to consider the 0(82)
problem one obtains from substituting (5) into (1). For the case of B small

one finds that this leads to the following solvability condition on po and no



2 G+ 2,2 2

[fpo2dy az , & [ (D16,2n,2 4 D3ng )dy=%g ' (7)
¥ w2 G y %

where co is a constant determined from the boundary condition at x = 0. The

condition at x = 1 is not of concern since the wave is damped out

exponentially before reaching the distal end for frequencies higher than

several hundred Hz.

4., SMALL B APPROXIMATION

With (7) the problem for the first term expansion for small € is complete.
It consists of solving a nonlinear eigenvalue problem (5,6) in each trans-
verse cross-section., After this the slow modulation is determined from (7).
Although there are methods to solve this problem, the fact that it is
essentially nonlinear complicates the analysis considerably. It can be
simplified somewhat, as is done below, by reintroducing the boundary layer

approximation used to obtain (2).
Recalling that for the audible spectrum B < < 1 then
Be(x) ~ kol(x) + Bkq(x) . (8)

From (5,6), to the first order in B, we obtain the inviscid cross-plane

problem
(%2 + 3;2)po = ko?po (9a)
(8,4 - 2D3ko23y2 + koDy - wd)no = -2wlpolx,v,0) (9b)
and

-ano on BM

on Po = (10)
T 0 on rigid wall

The viscous correction to kg in (8) is found from the O(B) problem that

comes from (5,6) and is given as

49
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ko f po?
k = 0¥ (11)
1 N
2[[ po? dy dz + 20/w? [  (D1ko2no2 + D3no 2) dy
4 G Y

Thus, one only needs to solve the somewhat simpler real eigenvalue problem
(9,10), then determine the viscous correction to the phase function from

(1.
5. SOLUTION OF NONLINEAR EIGENVALUE PROBLEM

There are a number of ways to solve (9,10) for the first term expansions of
the fluid pressure and plate displacement. For example, one could use
numerical methods, Green's functions, or modal expansions. Each has its
restrictions as well as its advantages. To illustrate one method consider
the special idealized case of a rectangular cross-section as shown in

Fig. 2.
Hx Z

G_( X) g, +(®
- H®) Hx) j

Fig. 2. Transverse cross-section used for modal expansion.

Separating variables in (9a) and substituting the result into (9b) one finds

that
® G+
(&Y4 - 2D3k028y2 + Diko? - wl)ng = | ap cosy, v IG No cosYps ds  (12)
m=0
where
X 1/2H, m =0
= 20w“c Cp =
a = coth X H ™
m ‘—‘KKJE' m ! 1/H , m# 0
M2 = Y2 + ko? ‘ Yp = WT .
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The nonlinear dependence on ko2 is clearly seen in this result and to

handle it we also expand ng in modes as follows

Ne = bg cos Ay (y = G_) = - 1T - .
o , b2 2 r A =(m - nJ(e -G)

TL48

From this and (12) one obtains the following algebraic problem for ko2 and by

o« o«
(Ag4 + 2032922 + D1ko'+ -wd)bg = ] ) apbnKpnKng (13)
m=0 n=1
where
Sy
= 2 ° =
Ko B f cos Y ¥ . cos Xn (y - G)dy

G

Although there are an infinite number of equations for the by's in (13), the
first few terms should serve as a reasonable approximation to the solution.
From this the complete solution is found by determining kq in (11) and by

also satisfying (7).
6. NUMERICAL EXAMPLE

As an example of the above analysis we now consider the specific case

B=0.05cm, L = 3.5¢cm, v= 0.008 cm/sec, p = 1.0 gm/cmz, and

%
D Eh3

2 12(1 = 02)
where

E=4x 106 dyn/em2 , h = 1,05 x 103 cm , and 0 = 0.5 .

Also it is assumed that the plate is highly orthotropic so
Dy =D3 =0 , H= 1,5 , and G, = -G_ = G(x) where

G(x) = T% (5x + 1) r 0<x <1,

The result for the case of £ = 1 and m = 5 in (13) is shown in Fig. 3,

where we have taken x = 0.5. It is clear from this preliminary calculation
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that the tuning is relatively sharp.

In general, if kg is real then waves exist; if ko is imaginary the solution
damps (or grows) exponentially. The effect of viscosity in k4 causes the
standing waves of the zero viscosity solutions to become traveling waves, and

also damps highly the short waves near the pseudo-resonant point.

1.00

1

0.75

0.50

NORMALIZED AMPLITUDE

0.25

0.00

1x102

FREQUENCY (HZ)

Fig. 3. Tuning curve obtained at the longitudinal
location x = 0.5.
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SIMULTANEOUS AMPLITUDE AND PHASE MATCH OF COCHLEAR MODEL CALCULATIONS AND
BASILAR MEMBRANE VIBRATION DATA

Max A. Viergever, Rob J. Diependaal

Department of Mathematics & Informatics
Delft University of Technology, The Netherlands

ABSTRACT

One of the major problems in cochlear mechanics has been the incapability of
cochlea models to provide a simultaneous match to amplitude and phase data of
basilar membrane (BM) vibration. Negative results were reported by Allen and
Sondhi (1979), Viergever (1980), and Neely (1981), all using a two-dimensional
(2D) cochlea model. Steele and Taber (1981) on the other hand found fair agree-—
ment between their 3D model calculations and Wilson and Johnstone's (1975) BM
data, which is puzzling since the model parameters were in the range where 2D
and 3D responses do not differ significantly.

The apparent contradiction is mainly due to an incorrect interpretation of 2D
model results. The 'BM velocity' in the customary 2D model is the average of
the partition velocity over the channel width rather than the average over the
membrane width or the velocity of the BM centreline. The BM/stapes amplitude
ratio has, comsequently, been underestimated by 10-30 dB in most 2D model cal-
culations. By using the correct definition we have reached good agreement be-—
tween measurement results (Rhode 1971; Johnstone and Yates 1974) and 2D model
results as regards both amplitude and phase.

1. INTRODUCTION - STATEMENT OF THE PROBLEM

Although the focus of mathematical modelling of cochlear mechanics has recently
shifted towards nonlinear and active processes, the behaviour of linear, passive
models is not yet fully understood. For the past few years the two main problems
have been (i) the phenomenon of wave reflection, or rather the almost complete
absence of it, and (ii) the insufficient quantitative agreement of model calcu-
lations and experimental data of basilar membrane (BM) vibration. These problems
now approach their solution. The absence of wave reflection in passive cochlea
models is amply discussed in two forthcoming articles (De Boer, 1983; De Boer
and Viergever, 1983),while the present paper deals with the comparison of model

results and measurement results.

The validation of macromechanical (linear and passive) cochlea models against
experimental observations of BM motion has shown that the models are quite
acceptable in a qualitative sense, but are susceptible of improvement in a
quantitative sense. In particular, it has appeared to be possible to match
either the amplitude or the phase of the BM/stapes transfer ratio, but not both
simultaneously, i.e. with one set of parameters. This conclusion has been reach-
ed by Allen and Sondhi (1979) and Neely (1981) on the basis of Rhode's (1971)
squirrel monkey data, and by Viergever (1980) on the basis of guinea pig data
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recorded by B.M. Johnstone and Yates (1974) and by Wilson and J.R. Johnstone
(1972, 1975). The cochlea model used by all authors was two-dimensional (2D).

In contrast with these findings, Steele and Taber (1981) did report good agree-
ment between their model results and Wilson and Johnstone's (1975) measurement
results. They used a 3D model in their calculations. The obvious explanation

of the discrepancy with the 2D model studies would be that a 3D model is signi-
ficantly more accurate in simulating the BM response than a 2D model. This is
not true, however. The fluid pressure in a 3D model depends strongly on the
transverse coordinate, so fluid motion is fully three-dimensional. Nevertheless,
2D and 3D models agree to a large extent as regards BM motion (Steele and Taber,

1979b) . Hence, the discrepancy must have another origin.

We discovered the reason for the failure of the 2D calculations when we com-
pared 1D, 2D and 3D responses of cochlear models (Viergever and Diependaal,
1983) . Each 2D model is, in a more or less explicit manner, derived from a 3D
geometry by omitting fluid pressure variations in the direction lateral to the
BM. This implies that the pressure in a 2D model is an average of the actual
(3D) pressure over the channel width. Consequently, by applying the relation

P = ZV, where P is the 2D transmembrane pressure and Z is the BM impedance, a
velocity V is obtained which is not a BM velocity, but the average over the
channel width of the velocity of the cochlear partition. Since the partition
velocity is identical to zero except for the part covered by the BM, this pro-
cedure underestimates the model response by a factor of b/B, the ratio of
channel width to BM width, if the average of the BM velocity over its width is
the desired output, or by a factor of mb/28 if one is interested in the velo-
city of the BM centreline. Allen and Sondhi (1979), Viergever (1980), and
Neely (1981) did not take this effect into account, which is why their 2D cal-

culations could not be brought in agreement with experimental observations.

The aim of the present study is to demonstrate that a good match to the BM
vibration data used in the mentioned 2D model studies can be accomplished as
regards both amplitude and phase. Our starting point is a 3D box model of the
cochlea, for which an approximate 2D response is formulated based on the
Liouville-Green (LG) method. We have opted for a 2D solution (instead of a 3D
one) because the LG approximation is less trustworthy in the 3D case (De Boer
and Viergever, 1982). The model results are matched to data of Johnstone and
Yates (1974) and Rhode (1971) by means of a curve fitting procedure with a
limited number of free parameters. The results justify the conclusion that the
type of cochlear model considered (i.e., linear and passive) adequately de-

scribes the selected experimental findings.



2. LIST OF SYMBOLS

X,Y:2
b,h,1

B (x)

w

p

o

H(x)

D(x)

Dl(X)’ DZ(X)

Z(x)

M(x), R(x),
V(x)

S(x)

k(%)
Q(k)
j

Xobs
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coordinates of the cochlea model, see Fig. 1
width, height, length of a chamber of the model
BM width

radian frequency of the stapes motion

fluid density

density of the BM material

thickness of BM plus attached cells

flexural rigidity of the visco-elastic beams
components of D(x)

specific acoustic impedance of the BM

mass, resistance, stiffness of the BM per unit area
velocity of the BM centreline normalized to the stapes
velocity

wave number of the BM velocity wave

geometry function

imaginary unity

point of observation

Fig. 1. Geometry of the
cochlea model.

bm: basilar membrane
uc: upper chamber
le: lower chamber
ow: oval window

rw: round window

3. MODEL AND SOLUTION METHOD

The cochlea is modelled as a straight, two-chambered box,

see Fig. 1. The walls

of the box are rigid, with the exception of those at the basal end (x=0), which

represent the oval window and the round window. The fluid in the two chambers

is assumed to be incompressible and inviscid, and to behave linearly. The par-

tition, located at z=0, has a rigid part (the shaded area in Fig.

1) and a

flexible part, the basilar membrane. The BM is represented by a series of par-

allel linearly visco-elastic simply supported beams in the transverse direction

(the y-direction). These simplifications, as well as minor ones which were not

mentioned here, have been justified in Viergever (1980, chapters 2 and 3). The

equations describing the movements of the fluid and the BM to stimulation by

the stapes (via the oval window) can be found in the same reference.
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The model equations can be used for 1D, 2D and 3D calculations. The 3D mode is
obtained by allowing the fluid pressure to vary in all three spatial dimensions.
In the 2D mode the pressure varies in the x- and z-directions, but not in the
y-direction, whereas in the 1D mode only variations in the x-direction are
taken into consideration. The BM velocity is assumed to have a half sine-shaped
distribution over the membrane width in all modes; there are no additional as-

sumptions concerning this quantity in the 1D and 2D cases.

The appropriate dimensionality of the calculations depends on the intent of the
study. It has been shown repeatedly that the 1D approximation is adequate only
for qualitative purposes, hence it is not suited for the present work. The
choice between 2D and 3D is more difficult. The 3D mode is, of course, slightly
more accurate on account of the extra space dimension, but there is a conflict
with the requirement that we need to have a solution technique that is both re-
liable and fast. Computational speed is important for two reasons. First, the
principal model parameters are known only by order-of-magnitude estimates, which
necessitates extensive parameter variation in fitting the measurement data.
Second, the output of the model is BM velocity as a function of the longitudinal
coordinate x, for a fixed input frequency, whereas the data are recorded in the
form of frequency response curves, that is a response at a fixed point on the

BM as a function of stimulus frequency. Consequently, a comparison between the

two requires solution of the model equations for a large number of frequencies.

The model equations are so complicated, particularly owing to the intricate
structure of the cochlear partition, that they do not admit an analytic solution.
Approximating the solution by a straightforward numerical technique has neither
been feasible in the 3D mode because of computer storage problems. For the 2D
case numerical solutions have been obtained (Allen, 1977; Allen and Sondhi,
1979; Viergever, 1980; Neely, 1981), but the long computation times preclude
numerical experimentation with the parameters. We must, consequently, settle for
an asymptotic approach. The most suitable asymptotic method for solving cochlear
mechanics problems is the LG approximation, which is based on the assumption
that the BM wave travels in a medium of which the propagation properties do not
vary much within one wavelength. The method has proved to be fairly reliable
(Steele and Taber, 1979a; Viergever, 1980), although it has several pitfalls
that are difficult, if at all, to avoid (De Boer and Viergever, 1982). An ad-
ditional feature of the method is that its performance is best in one dimension
and worst in three. Especially the decay of the amplitude envelope beyond the
peak is too steep in the 3D response. It is, therefore, questionable whether

2D or 3D calculations are to be preferred: 3D is more accurate than 2D, but
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the LG approximation is better for 2D than for 3D. We have, somewhat arbitrarily

chosen for the 2D mode.

The LG solution to the cochlear model of Fig. 1. is (Steele and Taber, 1979b;

Viergever and Diependaal, 1983)

5
. BaQ/ak | x
_ jTbhk (0) =~ x=0 -
V(x) = 28(0) Bag/dx exp{ -j g k(E£)dg} , (1)

with Q(k) satisfying

Z(x)

ok) = - 2300 (2)

For an explanation of the symbols, see Section 2.
The impedance Z(x) of the BM is related to the parameters of the visco-elastic

beam system by

L
Z(x) = jwoH(x) + TD(x) . (3)

jwB® (x)

We suppose that the BM consists of Kelvin material, the simplest visco-elastic
material for a solid (Fligge, 1975, p.9), which implies that D(x) has the form
= + 9
D D1 ij2
written in the form

, with D1 and D2 real-valued quantities. Then Eg. (3) can be

. S (x)
Z(x) = JwM(x) + R(x) + e - (4)

The function Q(k) depends on the dimensionality of the fluid flow in the model
and on geometrical parameters as chamber height and ratio BM width/chamber

width. For the 2D mode of the model of Fig. 1, the value of Q(k) is

o) = — 28 (5)

T?pk tanh (kh)

The 2D LG solution for the BM/stapes transfer ratio thus becomes

Vix) = - JMohk (%) hk (0) csch®{hk (0)} + coth{nk(0)} %X
28(x) hk (x) csch®{hk (x)} + coth{nk(x)}
P4
x exp{ - j f k(&)ag}, (6)

0
with k(x) to be solved from

Kk tanh(kh) = - L0JweB (7)

bz
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4.

RESULTS

Figure 2 shows a comparison of our calculations with guinea pig measurements of

Johnstone and Yates, and Fig. 3 with data recorded by Rhode in the squirrel

monkey. A few remarks need to be made so as to explain how the figures were

produced.

Both experimental results were obtained with the Mdssbauer technigue. The
Méssbauef source covers a large part of the BM width, so the measured response
will be an average in the lateral direction rather than the velocity of the
centreline. We estimated that the data represent an average over 2/3 of the
width of the BM. In our model the BM velocity has a half sine shaped distri-
bution over the width. Hence we multiplied V(x) by a factor 3/572n, which
amounts to a reduction of 1.65 dB.

The data in Fig. 3, Rhode's 69-473 squirrel monkey results, were taken from
the paper of Zweig, Lipes and Pierce (1976), since Rhode (1971) only published
the amplitude of the response. Furthermore, Rhode measured BM/malleus transfer
functions, while the cochlea model yields a BM/stapes ratio. We therefore
adapted Rhode's data in conformity with his (1978, Fig. 5) stapes/malleus
transfer ratios. The resulting reduction of the peak of the amplitude curve is
consistent with Rhode's own findings.

Johnstone and Yates did not supply the point of observation on the BM in their
study. We estimated it to be at 3 mm from the basal end using Wilson and
Johnstone's (1975, Fig. 22) plot of cutoff frequency against position along
the membrane. Rhode neither supplied the observation point. A reliable coch-
lear map is not available for the squirrel monkey, so we rather arbitrarily
set Xbs — 15 mm in Fig. 3. We have checked that different choices of X bs
did not significantly affect the quality of the fits. The values of the par-

ameters M R, and S, (see below) appeared to be quite sensitive to changes

0" 70 0
in xobs' however.

Several of the model parameters were kept fixed in the calculations, viz. b,
h, p and B(x). The values for guinea pig were derived from Ferndndez' (1952)
data, those for squirrel monkey were estimated since measurements of geometri-
cal parameters in this species are not known to us. The values used can be
found in the legend to the figures. Notice that the length of the cochlea is
irrelevant. It suffices to consider the interval 0 < x < x , because the

obs

response in x is uninfluenced by the part of the model with x > x cfr.

obs obs’
Eg. (6). This is a consequence of the unidirectionality of the LG approach.

The remaining parameters M, R and S were written in the form M exp(Mlx),

0

R, and S1 can be estimated since

ROexp(Rlx), Soexp(Slx). The exponents Ml’ 1
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Fig. 2. Comparison of model results with data (crosses: amplitude, dots: phase)
observed in the living guinea pig by Johnstone and Yates (1974, Fig. 3). The
quantity displayed is the BM/stapes transfer ratio. Parameter values: x bs =
3mm, b =0.6mn, h=1.4mn, p=1.0 mg/mm~, B = 0.08 exp (0.04x) mm, ops

M = 0.098 mg/mm*, R = 3.8 ewp(~0.275x) uls/mm3, S = 7.7 exp(~0.55x) N/mn3.

Fig. 3. Comparison of model results with Rhode's in vivo 69-473 squirrel monkey
data (crosses: amplitude, dots: phase). The data were transformed to BM/stapes
ratios using Rhode's (1978, Fig. 5) stapes/malleus transfer function. Parameter
values: x bo = 15 mn, b = 0.5 mm, h = 1.0 mm, p = 1.0 mg/mm3, B = 0.08 cip
(0.0§x) m%,s M = 0.09 mg/mm?, = 1.2 exp(-0.10x) ulNs/mm3, S = 7.1 exp(-0.20x)
N/mm?®.
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they relate to geometrical parameters (see Viergever, 1980, Section 5.1). The
coefficients MO, RO and SO are known only roughly; they were determined by a
curve fitting procedure. The resulting values are shown in the legends to

Figs. 2 and 3.

5. DISCUSSION OF THE RESULTS

The agreement between our 2D model calculations and the measurement results of
Johnstone and Yates, as shown in Fig. 2, is excellent. The only discrepancy is
that the amplitude plateau of the model response is lower than that of the
measurements (it occurs at -19 dB), but this is a typical shortcoming of the LG
approach (Viergever, 1980, Fig. 5.2.4). The match to Rhode's data in Fig. 3 is
less good, but still quite acceptable considering that BM motion was nonlinear
in Rhode's observations. Here both the amplitude plateau and the phase plateau

of the model are much lower than those of the measurements, again as a result

of the LG approximation.

Steele and Taber (1981) were the first to bring cochlear model calculations in
fair quantitative agreement with experimental results of BM motion. They did so
by comparing a 3D LG solution for a model similar to that of Fig. 1 with guinea
pig data of Wilson and Johnstone (1975). The extent to which the calculated and
measured responses agree is remarkable inasmuch as Steele and Taber did not

make use of a curve fitting procedure.

The results of the present study, together with those of Steele and Taber, show
that the simple box model of Fig. 1 with linear and passive BM characteristics
fully serves its purpose. It adequately describes the measured linear response
of the BM to stapes movements. This is a quite satisfactory conclusion of our
studies in cochlear macromechanics. It also justifies some optimism as regards
the challenge offered to cochlear modelling by the recent observations of Khanna
and Leonard (1982) and Sellick, Patuzzi, and Johnstone (1982), which demonstrate
that the nonlinear and locally active processes that take place in the intact

cochlea clearly manifest themselves at the level of BM vibration.
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ADVANTAGES FROM DESCRIBING COCHLEAR MECHANICS IN TERMS OF ENERGY FLOW
J. Lighthill

University College London
United Kingdom

ABSTRACT

The interpretation of observations of basilar-membrane response to pure tones,
and also the analysis of mathematical models of the mechanical response of the
cochlea, are both valuably facilitated by a description in terms of energy
flow. An attempt is made to describe this approach clearly, to demonstrate its
advantages, and to relate it to other approaches.

1. INTRODUCTION

Insight into the extent of the contribution from cochlear mechanics to auditory
sensitivity in frequency discrimination has to be derived by combining infor-
mation from two sources. First, an inevitably limited range of in-vivo observa-
tions of basilar-membrane response to pure tones at various locations on the
membrane is (in certain species) available. Secondly, many mathematical models
of the cochlea's mechanical response to pure tones are available for various

assumed mechanical properties and at various levels of modelling complication.

Under these circumstances, little is gained by simply looking for a mathemati-
cal model whose results are in general agreement with observation in those
cases where reliable in-vivo observations are available. It is necessary to
look for models that successfully bridge the gap between (a) the regrettably
far from accurate knowledge of in-vivo mechanical properties and (b) the
insufficiently extensive observations of cochlear response. Only models
consistent both with (a) and with (b) can be provisionally used to extend

knowledge beyond its current limitations.

A model must be regarded as failing to bridge that gap if it demands unrealis-
tic values of geometrical or mechanical parameters important for the cochlea's
mechanical response. There is, in fact, a special reason why a wide range of
models making seriously oversimplified assumptions on matters that significant-
ly influence the mechanics may give misleadingly 'good' predictions. This
reason is that the 'critical-layer absorption' property common (see Lighthill
1981, and section 3 below) both to several relatively realistic models and to
many models of varying degrees of unrealism (serious as in two-dimensional

models or gross as in one-dimensional) does already suffice to ensure
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prediction of the very sharp high-frequency cut-off characteristic of in-vivo

basilar-membrane response measurements.

Oon the other hand, a model utilising a realistic degree of relevant mechanical
and geometrical complexity may require such an immense processing exercise
from the computer that only its overall conclusions can be compared with
observations; while detailed insight into how the model's operation at each
location is related to assumptions about local properties may be lacking.
Fortunately, however, it is well established that high-frequency asymptotics,
under a wide variety of different names (see for example Steele 1974, De Boer
1979, Viergever 1980, Holmes 1982) succeeds in avoiding this difficulty while
(for all the frequencies of principal interest for cochlear mechanics) giving

results that agree very well with results of accurate computations (Steele and

Taber 1979).

Although most of those writers who have usefully made complicated cochlear-
mechanics models tractable through high-frequency asymptotics regarded it as,
essentially, a mathematical device, the purposes of a model can be still
better served if we utilise the well established one-to-one relationship bet-
ween such asymptotics and the simple physical principles of energy flow. It
is known (see for example Whitham 1974 or Lighthill 1978) that high-frequency
asymptotics, applied to analyse vibrating systems, gives results identical
with those obtained by making certain assumptions on how vibrational energy is
changing as a result of energy flow and energy attenuation; the velocity of
energy flow (or 'group velocity') being given as the gradient of a plot of
frequency against wavenumber. This way of expressing the results from a model
is summarised, for the cochlear-mechanics application, in the next section.
While mathematically equivalent to high-frequency asymptotics, it has the
advantage of a simple physical interpretation, yielding insight into how the
model's operation at each location is related to assumptions about local

properties.
2. ENERGY-FLOW DESCRIPTION OF COCHLEAR RESPONSE TO PURE TONES

The fundamental assumption, additional to that of high frequency, which under-
lies both the mathematical asymptotics and their equivalent energy-flow des-—
cription, is one of adequate smoothness of variation of relevant cochlear
properties (the mechanical and geometrical properties of the cochlear cross-
section) from base to apex. We may describe the required smoothness of varia-

tion, in energy-flow terms, as that needed to avoid passive reflexion of wave
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energy flow. In a damaged cochlea, of course, such passive reflexion occurs at
local irregularities or discontinuities of properties (and, in combination
with re-reflexion at the base of the cochlea, may help to mediate tinnitus
resonances). However, to model the mechanics of a normal cochlea, the assump-
tion that properties of the basilar membrane and other important features of
the cochlear partition vary smoothly along it, seems in accord with the avail-
able data. (For an assessment of the assumption of high frequency, see section

3.)

Firmly underlying the energy-flow description is the concept of wavenumber,
and it is important to recognize that this is a precisely defined quantity,
directly related to one of the quantities (the phase) that is most readily
observable in measurements of basilar-membrane response to a pure tone. Of
course, the key observation that first suggested a travelling-wave interpreta-
tion of cochlear mechanics was a progressive reduction in phase (that is,
increasing 'phase lag') as distance from the base was increased. In that
context the wavenumber, in mm_l, can be defined as a rate of change: the rate
at which the phase (in radians) decreases per millimetre of distance along the
cochlea (Eq. (5) below). This wavenumber, k, is a measure of 'crinkliness' or
'waviness' - although it is not (in spite of its name) a sort of local 'number
of waves' per millimetre; which indeed, since the phase change in a whole wave
is 2m, would be (k/2m). Similarly, in terms of the commonly used circular
frequency or radian frequency w, the frequency in hertz (cycles per second) is
(w/27m); but in cochlear response to a pure tone the difference between the two
cases is that w takes a constant value while the measure of 'waviness' k
varies, becoming greater with distance from the base: the vibrations are

sinusoidal in time but not with respect to place.

At any one place (specified by its distance x from the base, measured along
the cochlear partition), there is necessarily a 'dispersion relationship'’
between w and k. This identifies the value of k arising in experiments using
pure tones at each different frequency w. Conversely, for vibrations where the
basilar membrane's 'waviness' takes the value k, the dispersion relationship
specifies the frequency w of pure tones for which that wavenumber k would be

found at the place in question.

This latter specification is of more fundamental significance from the mechan-
ics standpoint. In any mode of vibration of any mechanical system that is only

lightly damped, the relationship
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w=) e8]

holds between frequency w, stiffness s and inertia m. Here, the definitions of

s and m are such that the system's potential energy and kinetic energy are

% Sh2 and %—m(j—i—)z (2)
in terms of some measure, h, of the displacement of the system in the mode in
question. Equation (1) represents the fact that vibrational energy is, on the
average, shared equally (while being transferred back and forth) between these
potential and kinetic forms. Thus, for propagation of the primary mode of
vibration of the basilar membrane (as supported by the spiral lamina and the
bony shelf), the dispersion relationship between w and k at any place x takes
the form of Eq. (1), where s and m represent the stiffness and inertia for
that mode in vibrations of wavenumber k. Here, the stiffness s is that of the
cochlear partition, being associated with a potential energy per millimetre
length of cochlea residing almost entirely in the basilar membrane itself; but
the kinetic energy per millimetre length resides not only in the partition but

also in the fluid, so that the inertia per unit length,

m=m_ +m_, (3)

includes both the partition inertia, mp, and a major fluid contribution, mf,

whose dependence upon k will be seen to be of particular importance.

High-frequency asymptotics are equivalent to the principle that, in any travel-
ling-wave system that is only lightly damped, wave energy is propagated at a

velocity

ol .
U = a% (derivative keeping x constant), (4)
equal to the gradient of the dispersion-relationship curve at the place in
question. Energy flows towards the apex at a rate UE per second, where E is
the vibrational energy (potential and kinetic) per unit length of cochlea.

Here, Egs. (1) and (2) imply that vibrations of amplitude a given by

h = a(x)cosﬂut + e(x)1, where gﬁ

= - =1
ax - k, have E = > sa . (5)

The local damping coefficient D is defined so that the rate of dissipation of
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vibrational energy per unit length of cochlea (due to viscous, and any other,
effects) is DE. The energy loss DEdx in an interval dx defines the reduction

in energy flow UE in that interval. Thus,

SOE) _ _pE, giving E() = U(g)(i)(m exp [-ff; DSX']-

(6)
The whole energy-flow description of cochlear mechanics is summarized in Egs.
(1) to (6). They make the necessary bridge between (a) the mechanical proper-

ties assumed at each position x; namely, s, mp, m_ and D and their dependence

on k (we shall see in section 3 that the variatioi of me with k is the most
important); and (b) the associated distribution of amplitude and phase in
response to a pure tone of fixed frequency w. Thus, for given w, Egs. (1), (2)
and (3) specify the value of k for each x, and Egq. (4) that of U; whence Eq.
(6) gives E, and then Egq. (5) shows how the phase of the vibrations is obtain-

ed from k and the amplitude from E.
3. CONCLUDING DISCUSSION

The form of Eg. (6) helps greatly in interpreting the most striking feature of
basilar-membrane response curves: their very sharp, yet highly asymmetrical,
peak, with a precipitously steep falling away beyond it. Such behaviour is
assured by one very important condition: that the energy propagation velocity
U falls to zero 'somewhere'; that is, at some place X (when w is fixed) or,
equivalently, at some frequency w (when x is fixed). Then, for fixed w, Eq.

(6) with light damping D makes E (x) increase more and more as U(x) becomes less
and less until, in a narrow 'critical layer' just before U becomes zero, the
energy is absorbed because the integral (where dx/U represents an element of

time during which the damping rate D operates) increases without limit.

The above very important 'critical-layer absorption' condition, that U falls to
zero 'somewhere', is known (Lighthill 1981) to demand dispersion curves of the
general character shown, for different fixed x, in Fig. 1; where, evidently,
the gradient (4) tends to zero (while the wavenumber increases without limit)
as the frequency w rises to the 'resonant' value wr(x). Conversely, the broken
line indicates how, for a tone of fixed frequency w, the same trends occur as

X increases to the value for which wr(x) = w.

Actually, dispersion curves as specified by Egs. (1) and (3) take the forms

shown in Fig. 1 if m_ falls continuously from large values (much greater than

£
mp) to zero as k gets larger and larger, while s remains essentially constant.
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Fig. 1. Dispersion curves assuring 'critical-layer absorption'. The curve
appropriate to each place x (given five values in Fig. 1) tends asymptot-
ically to a resonant value w = wr(x) as the wavenumber k increases.

Of course the value of m. depends, as Eg. (2) indicates, on the assumed mode
of displacement of the basilar membrane and on our choice of a measure, h, of
that displacement. Fortunately, hydrodynamics allows us to derive a simple
form of me for any mode of displacement; say, a displacement

2%
hz(y) for O<y<2%; where jo z(y)dy =1 (7)

may be recommended as a simple normalising condition that defines the measure
h as the net change in cross-sectional area of the scala tympani due to
basilar-membrane displacement. Then the ratio mf/p of fluid inertia to fluid

density is a nondimensional quantity

mf coth k& v an
T 22% ®)
e n=l(k & + 4%n"1")
where
_ (28 nmy
c, =[5 tiycos =F ay (9)
is also nondimensional (and, by Eq. (3), ¢ = 1). Figure 2, though calculated

o
on just one of many possible assumptions about the basilar membrane's primary

mode of bending, is qualitatively typical of the form of Egq. (6) in all cases.
It shows, in particular, that 1D theory is grossly inaccurate (even though,
because it meets the critical-layer absorption requirement, the errors in its
predictions are reduced) and that a significant feature in the curves' shape

is absent from 2D theory.

The principal approximation underlying Eq. (8) (replacing the cochlear cross-

section by a square of side 2% with the same area) is expected to reduce its
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Fig. 2. Fluid inertia plotted against wavenumber, illustrated for a half-
sinusoid mode of bending in a basilar membrane whose width 2b takes
values 0.25, 0.5 or 0.75 times that assumed for the cochlear cross-
section (Lighthill 1981). The curves marked 1D and 2D are as derived by
one-dimensional theory.

accuracy very little. On the one hand, for small k&, Eg. (8) becomes

o |n?

1
®2) 2

; (10)

and this coincides, for a cochlear cross-section of area 422 and arbitrary
shape, with the conclusions of one-demensional theory, which are known to
become correct for small k{ (less than about 0.5). On the other hand, for
large k&, the fluid motion becomes progressively confined to a narrow layer of
thickness k—l near the basilar membrane; which is both why Egq. (8) then
becomes proportional to (kl)_l, and why the exact shape of cochlear cross-

section becomes unimportant in this limit too.

A brief comment may be added concerning the accuracy of the method of high-
frequency asymptotics that utilizes these results. Comparing exact one-
dimensional theory with and without simplification by the assumptions of high-
frequency asymptotics, we can deduce that these produce inaccuracies only for
k<0.2 mm_l; and we can safely use this result because Eq. (8) reduces to Eq.
(10), its one-dimensional form, as soon as k<O.7 mm_l (Lighthill 1981). The

condition k>O.2 mm_l for accuracy of high-frequency asymptotics is satisfied
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throughout the cochlea for frequencies above about 500 Hz. At lower frequen-
cies it is satisfied except in a limited region near the base, and a simple
method is available (Lighthill 1981, Fig. 14) for correcting results from

high-frequency asymptotics to allow for its inaccuracy in this region.

The fluid motions whose inertia is represented by Eg. (8) are a combination of
obliquely travelling wave-like modes in each of which the fluid particles
describe circular paths, and a longitudinal mode where the same is true for
k2>1.5 (that is, as resonance is approached). They are potential flows outside
a 'Stokes boundary layer' of displacement thickness (v/m)%, characteristic of
all oscillatory motions, where the kinematic viscosity v of the cochlear fluids
at body temperature is about 0.7 mm2 s_l; this thickness, about 0.0l mm at
1 kHz, is too small to influence the fluid inertia. The boundary layer gives,
however, a viscous-dissipation contribution

ps Lw? (%vm)l’ (11)
to the damping rate D, which (if it is the main contribution) is consistent

with the assumption (D<<w) of only light damping.

We conclude with comments on mp and s. The inertia of the cochlear partition,
mp, is independent of k; but, as with mf, the value to be ascribed to it
depends on the mode (and on the measure) of basilar-membrane displacement.
Rewriting Eq. (C42) of Lighthill (1981) in the notation of this paper, the

assumptions in Eqg. (7) give

28 2
m = [oM) [cw)]%ay, (12)
where M (y) is the mass per unit area of the basilar membrane and of all the

other solid structures that move with it.

Finally, the subject's major paradox needs to be highlighted once again. It
is that the dispersion curves given by Egs. (1) and (3), subject to behaviour
of me and mp as outlined above, will take the 'critical-layer absorption' form
(Fig. 1) provided only that the stiffness s is essentially independent of k.
This demands (Lighthill 1981, p. 168) that transverse stiffness dominates

over longitudinal stiffness in vivo. Such a paradoxical conclusion appeared
quite incompatible with the measured properties (similar to those of 'an
elastic plate') of basilar membranes taken from cadavers, until Voldrich

(1978) discovered experimentally that the longitudinal stiffness was indeed
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negligible in vivo although quickly becoming significant after death.
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AN INTEGRATED VIEW OF COCHLEAR MECHANICAL NONLINEARITIES
OBSERVABLE FROM THE EAR CANAL

D.T. Kemp, A.M. Brown

Institute of Laryngology and Otology
Gray's Inn Road, London WC1X 8EE

ABSTRACT

Otoacoustic emission phase has been examined as a function of stimulus freq-
uency. Two components have been compared. The emission of the acoustic product
2f1-f2 has phase characteristics which are broadly derivable from current non—
linear cochlear models. An explanation of stimulus frequency re-emission

phase requires the postulation of multiple fixed place reflection/retransmiss—
‘on sites along the spiral organ. It is shown how the distortion product
emission phenomenon can be used as an experimental probe to determine the
sites of stimulus frequency retransmission.

1. INTRODUCTION

Detailed analysis of the sound pressure in the sealed ear canal during acou-
stic stimulation reveals a small complex nonlinear component to be present at
all stimulus levels (Kemp and Brown 1983). This component has been shown to be
vulnerable to noise exposure, ototoxic drugs and physiclogical disturbances in
the same way as is cochlear function (Anderson and Kemp 1979, Kemp 1982). Many
features of the two tone interactions exhibited by this nonlinearity closely
resemble those found in the cochlea (Kemp and Chum 1980, Brown and Kemp 1983).
It is widely accepted that this nonlinear contribution to ear canal sound

pressure is due to nonlinear biomechanical activity in the cochlea.

There are two types of stimulated otoacoustic emissions with quite different
intensity growth functions (Kemp and Brown 1983). The first type comprises the
return of energy at the stimulus frequency/frequencies to the ear canal, i.e.
stimulus frequency emissions or SFE's. Continuous acoustic excitation of the
cochlea results in continuous stimulus frequency otoacoustic emissions as des-
cribed by Kemp and Chum 1980. The SFE level progressively saturates with

stimulus level increase.

The second type of emission arises from intermodulation within the cochlea
when two stimulus tones are presented. Notably the distortion product 2f1-£f2
is emitted (Kemp 1978, Kim 1980, Kemp and Brown 1983, Brown and Kemp 1983). We
refer to this as DPE or distortion product emission. Its level tends to be a

constant proportion of stimulus level.
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Techniques for observing SFE and DPE phenomena are described in the literature
cited above. For frequency domain studies these generally involve phase locked
narrow band filtering of the ear canal sound pressure signal to select the

frequency component required, and often use suppression by an additional tone

to identify the physiological element.

The aim of this paper is to explore the relationship between SFE's, DPE's and
cochlear wave propagation, and to take a first step towards modelling the uni-

que SFE signal generated by individual ears.
2. ACOUSTIC DISTORTION PRODUCT GENERATION BY THE COCHLEA

The existence of DPE's can be predicted from nonlinear basilar membrane theory.
The propagation of DP energy back from the site of generation to the base of
the cochlea was modelled by Hall in 1974, but the conclusion that DP sound
pressure would appear in the meatus was overlooked for some years. Although
DPE does have a theoretical foundation the detailed comparison of experimental
DPE data with measured cochlear parameters and with nonlinear model predict-

ions is in its early stages.

We can predict certain phase characteristics of the DPE from cochlear wave
propagation data. A specific example for cat is presented and discussed in
Fig. 1. With reference to Fig. 1, we consider below the expected phase behav-
iour of the DPE under two conditions of stimulus frequency change. For this
purpose we presume that the vectorial spacial sum of the DP produced in the
intermodulation area between the fl and f2 places constitute a single source
of DP with amplitude and phase ¢dp monotonically dependent on fl and f2. We
take the (resultant) source of DP to be a place on the basilar membrane from
which DP energy is effectively transmitted both apically to the DP resonant
place and basally to create the DPE.

At the place of generation the phase of the distortion product with respect to
that derived directly from the stimuli, is given by 2¢fl-¢£f2 where ¢fl and ¢£2
are the stimuli phases at the interacticn place. At the ear canal there is a
small additional lag of ¢fdp due to reverse propagation. Referring to Fig. 1,
if both fl and f2 are changed by the same proportion (i.e. keeping a fixed
spacial separation on the BM) no phase changes of fl or £2 occur at the

DP generation site. The phase of DPE should therefore, remain constant
during iso-ratio stimulus sweeps, dependent of course upon the true logarith-
mic frequency characteristics of basilar membrane mechanics. The DPE would

appear to have zero group latency although the true phase delay would be
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Fig. 1. Propogation along the basilar membrane and DP generation. Extrapolated
neural data for cat after Neely and Kim 1983. Left: This shows a derived
basilar membrane vibration pattern during two tone stimulation at 2.2 kHz (2)
and 1.65 kHz (1) respectively. In a simpleasymmetrically nonlinear system the
level of the intermodulation component 2f1-f2 generated would depend upon the
square of the f1 amplitude, Y1 times. the amplitude of f2, Y2. This function,
performed on the actual vibration envelopes shown is also given. The median is
between the fl1 and f2 peaks but nearest to the f2 (higher frequency) peak.
With other stimulus frequency ratios the intermodulation region would remain
strongly constrained by the rapid apical cut-off in f2 esgcitation, and would
always be near to the f2 place. Right: This shows the phase characteristics of
several points on the BM in our example. Lines 1 and 2 correspond to points at
1.33 and 1.44 cms, having fe's of 2.2 and 1.65 kHz respectively, matching the
excitation pattern on the left. Lines 3 and 4 relate to points with fe's

twice those of 1 and 2. We have generated this data by laterally shifting 1
over the log frequency scale. Resonance in this idealised cochlea occurs at a
phase lag of &1 at each points, marked by the horizontal line. The point (b)
gives the phase of f1 at the f2 place, and point (a) gives the phase of f2 at
the f1 place. Since maximum DP production occurs between f1 and f2 places, we
take points b' and ¢' to be a better guide to the actual phase lags of the two
stimuli at intermodulation. These are ¢fl=3m and ¢f2=71 respectively. The
lag for the DP frequency (2f1-f2), ¢dp s seen to be small (-0.757 ). We pre-
sume that this lag applies also to reverse transmission so that the phase of
DPE is given by o¢dpe=2¢fI1-of2+ddp.

Fig. 2. The phase of human
DPE under different stimu—
lus frequency conditions.
Stimuli were 1,75 dB SPL
and f2, 70 dB SPL. The
solid line is for iso-ratio
stimulation with f1/f2=0.75.
Left: Dashed lines are for
fixed f2, swept f1 stimula-
tion. Each line is for a
different f2 value, marked
by the arrow. Intersection
with the solid line occurs when f1/f2=0.75. The triple line section marks
where the maximun DPE amplitude was found. This occurred around f1/f2=0.8. The
DPE uas too small to obtain phase data at the ends of each line. The choice of
f2 was not critical. Results were confirmed on 5 other ears. Right:fixzed fI
aZd swept f2, the phase changes are reversed but not halved as expected from
$dp=2¢ fI-9f£2.
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many waves.

The zero group latency proposition was tested experimentally. Fig. 2 (solid
line) shows DPE phase data for a human ear tested at £f1/£2=0.75. There is only
a modest phase change over the 2 kHz stimulus frequency sweep. This result has
been confirmed on 14 other ears using f1/£2=0.8. In Fig. 3, DPE amplitude and
phase data for three human ears is given with an expanded phase scale. Each
ear shows a similar T change over the 2.2 octave range with maximum lag at
3.5 kHz. This limited frequency dependence might point to a systematic depart-
ure from logarithmic performance in the human ear but is more likely to be due
to the transmission characteristics of the middle ear. The implied DPE latency
is less than % millisecond. Despite the flat phase characteristics of the iso-
ratio DP measurements, the underlying mechanism can be shown to be sharply
tuned by suppression experiments (Brown and Kemp 1983 Kemp and Brown 1983).

Fig. 3. Iso-ratio measure-

ments of the DPE amplitude

and phase for 3 human ears

from 1 to & kHz. Stimul<l

were f1, 75 dB SPL, f2, 70

dB SPL, and f1/f2=0.75. The

transducer amplitude freq-

uency responses have been

digitally subtracted from

the data. Artefactual dis-

tortions were below the

instrumental noise floor.

The DPE was suppressible by 10 dB by an 80 dB tone at 0.9 f2, but not by a
similar tone at 1.3 f2, Z.e. the DPE was tuned.

We next consider what would happen if only stimulus 1 is increased in freg-
uency. The lag of fl will increase over the f2 excitation region. If the place
of interaction remains relatively fixed near f2, and ¢dp is small then d¢dpe=
2d¢fl. Thus the DPE acts as a 'carrier' of fl phase changes at the interaction
place. The rate of change of DPE phase with fl frequency directly depends upon
the group latency of fl at the interaction site. In the cat example (Fig. 1)
with £2=2.2 kHz, the group latency of fl at the estimated interaction site is
given by the slope at b' and is 2.8 milliseconds, or approximately 3 DP freg-

unecy waves.

Experimental data for gerbil tested under the above conditions (Kemp and Brown
1983) conforms to these predictions. The DPE latency was found to be just over
2 milliseconds. In human ears greater latencies are found. Fig. 2 (dashed
lines) gives examples of human DPE phase change under fixed f£2, swept fl
conditions. Phase changes of around 8T are seen over the 1/3 octave fl range

for which significant interaction is observed. These data indicate a 6 wave
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latency of fl at the DP interaction place.

3. STIMULUS FREQUENCY RE-EMISSION BY THE COCHLEA

The re-emission of stimulus frequency energy by the cochlea is not an inherent
property of current cochlear models. Nevertheless the phenomenon occurs to a
substantial degree at low stimulus levels. For human subjects the SFE is typi-
cally 10 db SPL during 40 dB stimulation as shown for two human ears in Fig.
4. We must accept that the signal carried by the travelling wave can be re-

transmitted or reflected by some biophysical mechanism.

If we were to postulate that the retransmission mechanism was an integral part
of the physiological response sharpening process then it would be active over
some specific part of any excitation pattern; say at the peak. By the same
reasoning we applied to iso-ratio stimulation of DPE's, we would expect zero

group latency for the SFE.

A low-latency SFE has recently been found in gerbil at moderate to high stim-
ulus levels (Kemp and Brown 1983). However at low levels in gerbil and at all
stimulus levels in man the dominant nonlinear SFE component has a high group
latency. Fig. 5 shows the rapid increase in SFE phase lag with stimulus fre-

quency for human ears. The group latency is of the order of 10 waves.

If Figs. 5 and 2 are compared in detail we find that SFE phase gradients match
DPE phase gradients when fl is swept towards a fixed f2. This suggests a model
for delayed SFE generation.

In DPE generation the stimulus frequency f2 largely defines the point on the
BM at which the DP is created. As discussed in section 2, DP transmissions
from this place 'carry' the phase lag of fl at that place. If there were loc-
alised regions of the BM from which stimulus retransmission of fl occurred,
then we would expect just the phase agreement observed. The fl phase lag doub-
ling inherent in 2f1-f2 generation would be matched in the SFE phenomenon by
the doubling of phase lag in the reverse transmission of fl. Both the SFE and
the DPE would have the same phase gradients with fl, provided the f2 place
coincided with the SFE transmitter point.

The range of frequencies over which substantial stimulus retransmission might
be obtained from a single small region of anomolous biomechanical activity

would depend on the width of the excitation pattern. By the DPE-SFE analogy
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above this range can be estimated from Fig. 2 to be 1/3 to 1/2 octave so that

several sources would be needed to explain the frequency extent of SFE shown

in Fig. 4. In Fig. 4c we show the result of an attempt to model just one sec-

tion of the SFE in 4b with an artificial transmitter point defined by an £2 of

2.15 kHz. The phase of fl obtained via the DP process matches the phase of fl

via the SFE process over a short frequency range. Clearly by an iterative pro-

cess the SFE data pattern could be transformed into a set of f2 frequencies of

various amplitudes. It remains to be seen whether a unigue solution exists for

a particular ear and whether the process would actually identify significant

sites in the cochlea.

Fig. 4 (a) and (b): Recordings of
stimilus frequency acoustic emiss-
Zons from two human ears. Only the
in phase amplitude is shown. The
quadrature phase component looks the
same but for a 90 degree shift in
the amplitude oscillations with
frequency. The oscillations signify
increasing SFE phase lag with freq-
uency with the SFE being alternat-—
ely in phase (+ve) and out off
phase (-ve) with the stimulus. Part
(¢): a sample recording of DPE dur-—
ing an f1 sweep, with f2 fixed.
Note the DP phase and amplitude
emwelope roughly matches the SFE
over a small range.

Fig. 5. SFE phase data extracted

from Fig. 4 (a) and (b). At
frequencies of very low output and
where latency changed abruptly the
trace has been broken and continued
at zero lag.

So far we have treated the DPE and
SFE phenomena as if occurring in
isolation from each other. In fact,
any intracochlear DP signal will
act as a stimulus and excite the
SFE mechanism. The result is a fine

structure of the iso-ratio DPE. In

Fig. 6 we show iso-ratio DPE data with fine structure clearly due to the SFE

mechanism. The fine structure 6 (a) is selectively suppressed by low level

tones near to the DP frequency 6 (b). This allows isolation of the fine
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Fig. 6. Two component (in
phase and quad phase) rec-
ordings of acoustic emiss-—
ion components for two ears
each over different small
frequency ranges. Abscissa
refers to the frequency of
the component displayed,
not the stimuli. The fine
structure is of interest.
(a): Raw DP data iso-ratio
sweeps with fl/f2=0.75 and
levels 70 and 75 dB SPL.
Note the ripples on the
slowly changing DP compo-
nent. These ripples were
selectively suppressible by
a tone of 1.1 fdp at 50 dB
SPL and above. This allows
separation of two DP compo-
nents. The robust component
Zs (b) and the easily supp-
ressible one (¢) shows considerable latency. The SFE for a 40 dB SPL stimulus
at the DP frequency is shown in (d). This matches well the easily suppressible
DP component (e¢). Clearly (c) is the SFE mechanism responding to the DP acting
as a secondary stimulus within the cochlea. Finally (e) is the f1 stimulus in
the meatus reduced by a factor of 30 to fit the otherwise fixed scaling. The
ripples in the stimulus levels are due to interference by the SFE as are the
ripples in the DP level (a), albeit at a second order level.

structure component 6 (c), which then matches the SFE obtained for an extern-

ally applied stimulus of frequency DP, 6 (d).
4. SUMMARY AND CONCLUSIONS

We have shown that the acoustic distortion product 2f1-f2 can be evoked by any
close pair of tones and its phase behaviour can be predicted. The 2fl1-f2 emi-
ssion does not seem to depend upon intrinsic inhomogeneities in cochlear mech-
anics, indeed the iso-ratio data confirms a high degree of homogeneity. The
only localised factor is that created by the f2 excitation itself. In contrast,
stimulus frequency emissions clearly do need intrinsic localised anomalies to
explain their phase properties. With selected £2 values, DP emission phase can
match SF emission phase very well over a 1/3 octave frequency range below f2.
We propose that this particular f2 defines an SFE-active site in the cochlea.
Previous work (Kemp and Chum 1980) has shown the SFE to be most easily supp-
ressed by slightly higher frequency tones. The saturating property of the SFE
in contrast to the DPE perhaps implies that the mechanical anomaly is smoothed

out at higher stimulations.
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We find no basis for attributing signal delays to the SFE mechanism over and
above those normally present in the travelling wave, once the doubling effect
is accounted for. We do find latency in human ears to be greater than that
found in laboratory animals under the same stimulus conditions between 1 and

4 kHz. We propose the DPE phenomenon as a probe with which to explore cochlear

wave propagation times, and the SFE phenomenon.
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